

Lecture Notes in Computer Science 3716
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lois Delcambre Christian Kop
Heinrich C. Mayr John Mylopoulos
Oscar Pastor (Eds.)

Conceptual
Modeling – ER 2005

24th International Conference on Conceptual Modeling
Klagenfurt, Austria, October 24-28, 2005
Proceedings

13

Volume Editors

Lois Delcambre
Portland State University, Computer Science Department
P.O. Box 751 Portland, OR 97207-0751, USA
E-mail: lmd@cs.pdx.edu

Christian Kop
Heinrich C. Mayr
Alpen-Adria Universität Klagenfurt
Institute of Business Informatics and Application Systems
Klagenfurt, Austria
E-mail: {chris,mayr}@ifit.uni-klu.ac.at

John Mylopoulos
University of Toronto, Bahen Center for Information Technology
40 St George Street, Room BA7266
Toronto, Ontario M5S 2E4, Canada
E-mail: jm@cs.toronto.edu

Oscar Pastor
Universidad Politécnica de Valencia
Dept. de Sistemas Informáticos y Computación
Camino de Vera s/n, 46022 Valencia, España
E-mail: opastor@dsic.upv.es

Library of Congress Control Number: 2005934479

CR Subject Classification (1998): H.2, H.4, F.4.1, I.2.4, H.1, J.1, D.2, C.2

ISSN 0302-9743
ISBN-10 3-540-29389-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29389-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11568322 06/3142 5 4 3 2 1 0

Preface

Conceptual modeling is fundamental to any domain where one must cope with
complex real-world situations and systems because it fosters communication be-
tween technology experts and those who would benefit from the application
of those technologies. Conceptual modeling is the key mechanism for under-
standing and representing the domains of information system and database en-
gineering but also increasingly for other domains including the new “virtual”
e-environments and the information systems that support them. The importance
of conceptual modeling in software engineering is evidenced by recent interest in
“model-driven architecture” and “extreme non-programming”. Conceptual mod-
eling also plays a prominent role in various technical disciplines and in the social
sciences.

The Annual International Conference on Conceptual Modeling (referred to
as the ER Conference) provides a central forum for presenting and discussing
current research and applications in which conceptual modeling is the major
emphasis. In keeping with this tradition, ER 2005, the 24th ER Conference,
spanned the spectrum of conceptual modeling including research and practice
in areas such as theories of concepts and ontologies underlying conceptual mod-
eling, methods and tools for developing and communicating conceptual models,
and techniques for transforming conceptual models into effective (information)
system implementations. Moreover, new areas of conceptual modeling includ-
ing Semantic Web services and the interdependencies of conceptual modeling
with knowledge-based, logical and linguistic theories and approaches were also
addressed.

The Call for Papers attracted 169 research papers from 37 different nations;
31 papers from 22 nations, i.e., 21.9%, were selected for presentation at the con-
ference and publication in these proceedings based on a stringent review process
in which each paper was assessed by at least three reviewers. These accepted
papers, together with three invited keynote speeches, a demo and poster ses-
sion, and a concluding panel discussion, were featured in 14 technical conference
sessions. ER 2005 also featured five workshops organized in 15 technical ses-
sions and 7 tutorials presented by outstanding experts in their fields. We were
enthusiastic about the quality of this year’s program in all its particulars.

Many individuals contributed to making ER 2005 a success. First, we thank
the authors for their valuable contributions. Second, we thank the members of
the Program Committee and the additional reviewers for their detailed reviews
and discussion. Special appreciation is due to our last-minute reviewers, i.e., the
“Swat Team,” who provided additional reviews for papers, nearly around the
clock, in parallel with the PC chairs meeting. Similarly, we thank the chairs
of the various tracks for their effectiveness. And we offer special thanks to our
keynote speakers for their insightful contributions.

VI Preface

We are very grateful to Peter Jelitsch, our student who composed these pro-
ceedings and painstakingly adapted nearly every paper to the LNCS layout.
Likewise we acknowledge the engagement and enthusiasm of all members of the
organizational team, who gave their best to make ER 2005 an unforgettable
event. Last but not least we thank our sponsors and supporters, in particular
the University of Klagenfurt, the Governor of Carinthia and the Mayor of Kla-
genfurt, for their financial support.

Klagenfurt, October 2005 Heinrich C. Mayr
Lois Delcambre

John Mylopoulos
Oscar Pastor

Christian Kop

ER 2005 Conference Organization

Honorary Conference Chair

Peter P.S. Chen Lousiana State University, USA

General Conference Chair

Heinrich C. Mayr Alpen-Adria University of Klagenfurt, Austria

Scientific Program Co-chairs

Lois M.L. Delcambre Portland State University, Portland, USA
John Mylopoulos University of Toronto, Canada
Oscar Pastor López Universitat Politècnica de València, Spain

Workshop and Tutorial Co-chairs

Jacky Akoka CEDRIC – CNAM, France/Institut National des
Télécommunications, Evry, France

Stephen W. Liddle Brigham Young University, Provo, USA
Il-Yeol Song Drexel University, Philadelphia, USA

Panel Chair

Wolfgang Hesse Philipps-Universität Marburg, Germany

Demos and Posters Chair

Tatjana Welzer University of Maribor, Slovenia

Industrial Program Chair

Andreas Schabus Microsoft Austria, Vienna, Austria

ER Steering Committee Liaison Manager

Veda Storey Georgia State University, USA

VIII Organization

Joint Conferences Steering Committee Co-chairs

Ulrich Frank University of Essen-Duisburg, Germany
Jörg Desel Catholic University Eichstätt-Ingolstadt,

Germany

Organization and Local Arrangements

Markus Adam
Stefan Ellersdorfer
Günther Fliedl
Robert Grascher

Peter Jelitsch
Christian Kop
Heinrich C. Mayr
Alexander Salbrechter

Christine Seger
Claudia Steinberger

Program Committee

Jacky Akoka CEDRIC – CNAM, France/Institut National des
Télécommunications, Evry, France

Sonia Bergamaschi Università di Modena, Italy
Shawn Bowers University of California, San Diego, USA
Terje Brasethvik NTNU, Trondheim, Norway
Ruth Breu University of Innsbruck, Austria
Diego Calvanese Free University of Bozen – Bolzano, Italy
Cindy Chen University of Massachusetts, Lowell, USA
Jaelson Brelaz de Castro Federal University of Pernambuco, Brazil
Shing-Chi Cheung HKUST, China
Roger Chiang University of Cincinnati, USA
Stefan Conrad Heinrich-Heine-Unversität Düsseldorf, Germany
Joao Falcao e Cunha Universidade do Porto, Portugal
Bogdan Czejdo Loyola University New Orleans, USA
Karen Davis University of Cincinnati, USA
Debabrata Dey University of Washington, USA
Johann Eder Alpen-Adria University of Klagenfurt, Austria
Ramez Elmasri University of Texas at Arlington, USA
David W. Embley Brigham Young University, Provo, USA
Vadim Ermolayev Zaporozhye State Univ., Ukraine
Ulrich Frank University of Essen-Duisburg, Germany
Piero Fraternali Politecnico di Milano, Italy
Antonio L. Furtado PUC Rio de Janeiro, Brazil
Andreas Geppert Credit Suisse, Switzerland
Nicola Guarino CNR, Trento, Italy
Terry Halpin Northface Univ., Salt Lake City, USA
Sari Hakkarainen NTNU, Trondheim, Norway
Brian Henderson-Sellers University of Technology, Sydney, Australia
Shigeichi Hirasawa Waseda University, Japan

Organization IX

Emilio Iborra CARE Technologies S.A., Denia, Spain
Matthias Jarke RWTH Aachen, Germany
Christian S. Jensen Aalborg University, Denmark
Manfred Jeusfeld Tilburg University, The Netherlands
Hannu Kangassalo University of Tampere, Finland
Kamalakar Karlapalem Intl. Institute of Information Technology, India
Roland Kaschek Massey University, New Zealand
Vijay Khatri Indiana University at Bloomington, USA
Dongwon Lee Pennsylvania State University, USA
Mong-Li Lee National University of Singapore, Singapore
Julio Leite PUC Rio de Janeiro, Brazil
Qing Li City University of Hong Kong, China
Stephen W. Liddle Brigham Young University, Provo, USA
Ee-Peng Lim Nanyang Technological University, Singapore
Mengchi Liu Carleton University, Canada
Ray Liuzzi Air Force Research Laboratory, USA
Bertram Ludäscher San Diego Supercomputer Center, USA
Murali Mani Worcester Polytechnic Institute, USA
Sal March Vanderbilt University, Nashville, USA
Esperanza Marcos Universidad Rey Juan Carlos, Madrid, Spain
Fabio Massacci Università di Trento, Italy
Thomas Matzner Germany
Sergey Melnik Microsoft Research, USA
Renate Motschnig Universität Wien, Austria
Tapio Niemi CERN, Switzerland
Antoni Olive Universitat Politècnica de Catalunya, Spain
Maria E. Orlowska University of Queensland, Australia
Jian Pei Simon Fraser University, Burnaby, Canada
Barbara Pernici Politecnico di Milano, Italy
Mario Piattini Universidad de Castilla-La Mancha, Spain
Dimitris Plexousakis FORTH-ICS, Greece
Sandeep Purao Pennsylvania State University, USA
Sudha Ram University of Arizona, USA
Colette Rolland Université Paris 1, Panthéon-Sorbonne, France
Gustavo Rossi Universidad de La Plata, Argentina
Elke Rundensteiner Worcester Polytechnic Institute, USA
Juan Sanchez Universitat Politècnica de València, Spain
Peter Scheuermann Northwestern University, USA
Michael Schrefl Johannes Kepler Universität Linz, Austria
Daniel Schwabe PUC Rio de Janeiro, Brazil
Elmar Sinz Otto-Friedrich-Universität Bamberg, Germany
Arne Solvberg Norwegian Institute of Technology, Norway
Il-Yeol Song Drexel University, Philadelphia, USA
Nicolas Spyratos Université Paris-Sud 11, France
Veda C. Storey Georgia State University, USA
Markus Stumptner University of South Australia, Adelaide,

Australia

X Organization

Katsumi Tanaka Kyoto University, Japan
Ernest Teniente Universitat Politècnica de Catalunya, Spain
Bernhard Thalheim Christian-Albrechts-Universität Kiel, Germany
Dimitri Theodoratos New Jersey Institute of Technology, USA
Juan C. Trujillo Universidad de Alicante, Spain
Jean Vanderdonckt Université Catholique de Louvain, Belgium
Michalis Vazirgiannis Athens University of Economics and Business,

Greece
Csaba Veres NTNU, Trondheim, Norway
Yair Wand University of British Columbia, Vancouver,

Canada
Tengjiao Wang Peking University, China
Roel Wieringa University of Twente, The Netherlands
Ge Yu Northeastern University, China
Shuigeng Zhou Fudan University, China

External Referees

Reema Al-Kamha
Muhammed Al-Muhammed
Evguenia Altareva
Anastasia Analyti
Danilo Ardagna
Roberta Benassi
Domenico Beneventano
Palash Bera
Ghassan Beydoun
Andreas Boegl
Marco Brambilla
Agne Brilingaite
Giovanni Toffetti Carughi
José Maŕıa Cavero
Kevin C. Chang
Nam Yoon Choi
Ryan Choi
Sara Comai
Nelly Condori
Valeria de Castro
Cristian Pérez de Laborda
M. de Rougemont
Yihong Ding
Wanchun Dou
Vishal Dwivedi
Magdalini Eirinaki

Maged El-Sayed
Joerg Evermann
Eduardo Fernandez-Medina
Roberta Ferrario
Anders Friis-Christensen
Mathias Goller
Cesar Gonzalez-Perez
Masayuki Goto
Georg Grossmann
Francesco Guerra
Maria Halkidi
Lillian Hella
Wiebe Hordijk
John Horner
Jon Espen Invaldsen
Jürgen Jung
Lutz Kirchner
Christian Koncilia
Saoujanya Lanka
Bo Luo
Andreia Malucelli
Juergen Mangler
Daisuke Matsushita
Raimundas Matulevicius
Enrico Mussi
John Mylopoulos

Organization XI

Seog-Chan Oh
Jeong-ha Oh
Alessandro Oltramari
Asem Omari
Mirko Orsini
Byung-Kwon Park
Jeffrey Parsons
Jay Pisharat
Christopher Popfinger
Christoph Quix
Erhard Rahm
Ana Paula Rocha
Belén Vela Sánchez
Tetsuya Sakai
Mehmet Sayal
Torsten Schlichting
Michael Schrefl
Zhe Shan

Param Vir Singh
Min Song
Darijus Strasunskas
Cui Tao
George Tsatsaronis
Satya Valluri
Pascal van Eck
Phan Luong Viet
Maurizio Vincini
Johanna Vompras
Changjie Wang
Stella Wang
Andreas Wombacher
Carson Woo
Hidetaka Yamagishi
Zhen Zhang
Xiaohua Zhou

“Swat Team”

Silvia Abrahão
Laura Bright
Hugo Estrada
Günther Fliedl
Christian Kop
Alicia Martinez
Javier Muñoz
Susan Price

Gonzalo Rojas
Alexander Salbrechter
Victoria Torres
Kristin Tufte
Pedro Valderas
Jürgen Vöhringer

Organized by

Institute of Business Informatics and Application Systems, Alpen-Adria Univer-
sity of Klagenfurt, Austria

Sponsored by

ER Institute
The Governor of Carinthia
The City Mayor of Klagenfurt

In Cooperation with

GI Gesellschaft für Informatik e.V.
Austrian Computer Society

Table of Contents

Specific Approaches

Conceptual Modeling of Structure and Behavior with UML – The Top
Level Object-Oriented Framework (TLOOF) Approach

Iris Reinhartz-Berger . 1

How to Manage Uniformly Software Architecture at Different
Abstraction Levels

Nassima Sadou, Dalila Tamzalit, Mourad Oussalah 16

Schema Integration Based on Uncertain Semantic Mappings
Matteo Magnani, Nikos Rizopoulus, Peter Mc.Brien,
Danilo Montesi . 31

Process Modeling and Views

Combining Intention-Oriented and State-Based Process Modeling
Pnina Soffer, Colette Rolland . 47

Pattern-Based Analysis of the Control-Flow Perspective of UML
Activity Diagrams

Petia Wohed, Wil M.P. van der Aalst, Marlon Dumas,
Arthur H.M. ter Hofstede, Nick Russell . 63

A Three-Layered XML View Model: A Practical Approach
Rajugan R., Elizabeth Chang, Tharam S. Dillon,
Ling Feng . 79

Conceptual Modeling in eLearning

Modeling Group-Based Education
Manuel Caeiro-Rodŕıguez, Mart́ın Llamas-Nistal,
Luis Anido-Rifón . 96

Learning Process Models as Mediators Between Didactical Practice
and Web Support

Renate Motschnig-Pitrik, Michael Derntl . 112

XIV Table of Contents

Managing Models and Modeling

A Fundamental View on the Process of Conceptual Modeling
S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper,
Th.P. van der Weide . 128

How to Tame a Very Large ER Diagram (Using Link Analysis and
Force-Directed Drawing Algorithms)

Yannis Tzitzikas, Jean-Luc Hainaut . 144

A Multilevel Dictionary for Model Management
Paolo Atzeni, Paolo Cappellari, Philip A. Bernstein 160

A MOF-Compliant Approach to Software Quality Modeling
Xavier Burgués, Xavier Franch, Josep M. Ribó . 176

Requirements and Software Engineering

Conceptual Modeling Based on Transformation Linguistic Patterns
Isabel Dı́az, Juan Sánchez, Alfredo Matteo . 192

Applying Modular Method Engineering to Validate and Extend the
RESCUE Requirements Process

Jolita Ralyté, Neil Maiden, Colette Rolland, Rébecca Deneckère 209

Security Patterns Meet Agent Oriented Software Engineering:
A Complementary Solution for Developing Secure Information
Systems

Haralambos Mouratidis, Michael Weiss, Paolo Giorgini 225

Ontologies

Kuaba Ontology: Design Rationale Representation and Reuse in
Model-Based Designs

Adriana Pereira de Medeiros, Daniel Schwabe, Bruno Feijó 241

Ontology Creation: Extraction of Domain Knowledge from Web
Documents

Veda C. Storey, Roger Chiang, G. Lily Chen . 256

Choosing Appropriate Method Guidelines for Web-Ontology Building
Sari Hakkarainen, Darijus Strasunskas, Lillian Hella,
Stine Tuxen . 270

Table of Contents XV

Web Services and Navigational Models

Conceptual Model Based Semantic Web Services
Muhammed Al-Muhammed, David W. Embley,
Stephen W. Liddle . 288

Automatically Grounding Semantically-Enriched Conceptual Models
to Concrete Web Services

Eran Toch, Avigdor Gal, Dov Dori . 304

Transforming Web Requirements into Navigational Models: AN MDA
Based Approach

Pedro Valderas, Joan Fons, Vicente Pelechano . 320

Aspects of Workflow Modeling

Accelerating Workflows with Fixed Date Constraints
Martin Bierbaumer, Johann Eder, Horst Pichler 337

Workflow Data Patterns: Identification, Representation and Tool
Support

Nick Russell, Arthur H.M. ter Hofstede, David Edmond,
Wil M.P. van der Aalst . 353

Actor-Oriented Design of Scientific Workflows
Shawn Bowers, Bertram Ludäscher . 369

Blueprints and Measures for ETL Workflows
Panos Vassiliadis, Alkis Simitsis, Manolis Terrovitis,
Spiros Skiadopoulos . 385

Queries and OLAP Summaries

Vague Sets or Intuitionistic Fuzzy Sets for Handling Vague Data:
Which One Is Better?

An Lu, Wilfred Ng . 401

A Semantic Approach to Query Rewriting for Integrated XML Data
Xia Yang, Mong Li Lee, Tok Wang Ling, Gillian Dobbie 417

A Taxonomy of Inaccurate Summaries and Their Management in
OLAP Systems

John Horner, Il-Yeol Song . 433

XVI Table of Contents

Temporal and Spatial Modeling

XCM: Conceptual Modeling for Dynamic Domains
Luis González Jiménez . 449

Precise Modeling and Verification of Topological Integrity Constraints
in Spatial Databases: From an Expressive Power Study to Code
Generation Principles

Magali Duboisset, François Pinet, Myoung-Ah Kang,
Michel Schneider . 465

Topological Relationships Between Complex Lines and Complex Regions
Markus Schneider, Thomas Behr . 483

Author Index . 497

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 1 – 15, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Conceptual Modeling of Structure and Behavior
with UML – The Top Level Object-Oriented

Framework (TLOOF) Approach

Iris Reinhartz-Berger

University of Haifa, Carmel Mountain, Haifa 31905, Israel
iris@mis.hevra.haifa.ac.il

Abstract. In the last decade UML has emerged as the standard object-oriented
conceptual modeling language. Since UML is a combination of previous
languages, such as Booch, OMT, Statecharts, etc., the creation of multi-views
within UML was unavoidable. These views, which represent different aspects
of system structure and behavior, overlap, raising consistency and integration
problems. Moreover, the object-oriented nature of UML sets the ground for
several behavioral views in UML, each of which is a different alternative for
representing behavior. In this paper I suggest a Top-Level Object-Oriented
Framework (TLOOF) for UML models. This framework, which serves as the
glue of use case, class, and interaction diagrams, enables changing the
refinement level of a model without losing the comprehension of the system as
a whole and without creating contradictions among the mentioned structural
and behavioral views. Furthermore, the suggested framework does not add new
classifiers to the UML metamodel, hence, it does not complicate UML.

1 Introduction

Conceptual modeling is fundamental to any domain where one has to cope with
complex real world systems. The real world exhibits two separate aspects: structure
(objects, nouns, etc.) and behavior (operations, verbs, etc.). Although different
aspects, structure and behavior are highly intertwined in the real world: operations get
input objects, operations might change structures, sentences include both nouns and
verbs, and so on. In spite of the differences between these two aspects in the real
world, in the last few decades most of the modeling and programming languages are
object-oriented, encapsulating behavior (operations) in structure (objects). The most
popular, de-facto standard modeling language is the Unified Modeling Language
(UML), which is used for specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business modeling and other non-software
systems [16]. UML 1.x defines ten types of diagrams, which are divided into three
categories. Four diagram types represent structure and include the class, object,
component, and deployment diagrams. Five diagram types, which represent different
aspects of dynamic behavior, include use case, sequence, activity, collaboration
(called communication diagrams in UML 2.0), and Statechart diagrams. Finally,
package diagrams represent ways to organize and manage application modules. The
UML 2.0 draft [17] adds three more diagram types: timing diagrams for exploring the

2 I. Reinhartz-Berger

behaviors of one or more objects throughout a given period of time, composite
structure diagrams for exploring run-time instances collaborating over
communication links, and interaction overview diagrams for tailoring interactions and
activity diagrams in order to describe the system flow of control. A system modeled
by UML consists of several different, but related and even overlapping, diagrams of
various types.

The popularity UML gained and the standardization efforts of its creators made
UML a common modeling language which is used in the various steps of system
development, including during the requirement analysis, design, and testing phases.
Many automatic code generators have been developed for generating code from UML
models to various (especially object-oriented) programming languages. These usages
of UML models require that they will be formal, complete, unambiguous, and
consistent, otherwise, their interpretation into code "may lead to misunderstandings
and errors that will result in faulty software." [19]

Although UML provides a convenient, standard mechanism for software engineers
to represent high-level system designs as well as low-level implementation details
[24], several drawbacks prevent UML from being largely used in the industry. The
main drawbacks are the fragmentation of UML views and the absence of solid glue
between them, which arise syntactic and semantic consistency problems. UML
syntactic rules relate to well-formedness of expressions, consistency of identifiers
with their declarations, etc. Such rules, which are expressed in the UML metamodel,
can be checked by diagram editors or CASE tools. Semantic consistency, on the other
hand, is concerned with the compatibility of the meaning of the different views.
Engels et al pointed two types of semantic consistency: horizontal and vertical [8].
Horizontal consistency refers to rules that should be preserved when traveling
between different (overlapping) viewpoints of the same system, while vertical
consistency concerns with rules that should be preserved during the different
development stages.

The consistency problems of UML are also associated with integration problems.
The different UML views represent a single system. Humans engage in the
development process, such as clients, users, designers, and implementers, should
comprehend the system as a whole, complete unit. Moreover, automatic tools, for
example code generators, should be able to generate a consistent, qualitative
implementation from a UML multiple view model.

Several solutions for UML consistency and integration problems have been
proposed over the years (e.g., [3], [5], [7], [14]). Most of them suggested using a
formal language in addition to UML or running translation, verification, or testing
algorithms on existing UML models. In this paper, I suggest a Top-Level Object-
Oriented Framework (TLOOF) for creating complete, coherent UML models which
capture both system structure and behavior. As a framework, TLOOF consists of a set
of assumptions, concepts, and practices that constitutes a way of viewing and
constructing UML models. In particular, this approach enables explicit bindings
between UML use case, class, and interaction diagrams, thereby supporting
incremental development of consistent and integral UML models. A set of
consistency rules between these UML views is defined and exemplified.

The structure of the rest of the paper is as follows. Section 2 reviews and discusses
the main consistency and integration problems of UML and some of their solutions.

 Conceptual Modeling of Structure and Behavior with UML 3

Section 3 presents the proposed approach, exemplifying it on a simple ordering
system. Section 4 defines consistency rules between UML views in the TLOOF
approach. Finally, Section 5 summarizes and discusses the benefits and shortcomings
of the suggested solution and refers to future research plan.

2 Literature Review: Consistency and Integrity of UML Models

2.1 UML Consistency and Integration Problems

The need to model and design complex systems, which involve structural, behavioral,
functional, and architectural aspects, introduced the notion of a view. Each view
presents a different perspective of the system being developed. The actual views and
the way in which system aspects are projected onto individual views are method- or
language-dependent [10]. Although the usage of multiple views has great benefits in
focusing on a specific aspect of the modeled system and in preserving the views in a
reasonable size, it also raises consistency and integration problems.

Paige and Ostroff [19] differ between the single model approach, which supports
the construction of a single consistent model that can be separated into various views,
and the multiple models approach, which is based on independent construction of
multiple models of the same system. They propose that "to best support seamless,
reversible software development of reliable software, it is preferable to follow the
single model principle for a specific subset of development tasks."

Henderson-Sellers [13] reviewed several object-oriented modeling languages that
combine several diagram types (each), including Booch, OMT, BON, Fusion, etc.,
and checked how the different diagram types fit together to create a unified, multi-
dimensional model. His conclusion was that at least at the meta-level of description,
there is significant convergence and agreement on how the suite of diagrams is
connected.

As noted, Engels et al [8] divide UML consistency problems into horizontal and
vertical ones. Horizontal consistency problems (also known as inter-model
consistency problems) refer to contradictions that might exist due to the fact that the
various views model the same system and the information resides at them overlaps.
An example of a constraint related to horizontal consistency is: "Each Statechart must
correspond to a state dependent class on a class diagram" [10]. The vertical
consistency problems refer to inconsistencies or contradictions that exist when
applying UML to the different development stages (due to the different abstraction
levels of these stages). An example for this type of constraints is: "The information
needed for implementing a use case must be described in a class diagram" [10]. While
usually the data needed for checking horizontal consistency is explicitly modeled in
the UML views, some of the information needed for verifying vertical consistency is
implicit or expressed informally.

Another problem that exists due to the use of multiple UML views is
misunderstanding of the system as a whole (i.e., integration problems). Using their
framework for evaluating system analysis and design methods, Tun and Bielkowicz
[25] claim that UML views (diagram types) are fragmented and there is little glue
between them. Moreover, they assert that without rigorous crosschecking between the

4 I. Reinhartz-Berger

views, it would be hard to have confidence that the system would possess essential
quality characteristics such as completeness, correctness, and consistency. Two
experiments which compared a single-view methodology, Object-Process
Methodology (OPM) [6], to multi-view modeling languages, Object Modeling
Technique (OMT) and UML ([20] and [22], respectively) showed that the single view
of OPM is more effective than the multiple view modeling language in generating a
better system specification. Most of the errors in the multiple view models resulted
from the need to maintain consistency among the different diagram types and to
gather information that is scattered across the views.

The consistency and integration problems of UML are also influenced from the
existence of several behavioral views in UML, some of which represent specific
scenarios rather than complete behavioral patterns. Uchitel et al [26] proposed an
algorithm for synthesizing behavioral models from UML scenarios. Their algorithm
translates a scenario specification to a Finite Sequential Processes (FSP) specification,
which is then used for building a composite behavior model in the form of a labeled
transition system (LTS).

Several studies checked if there is any preference between UML behavioral views.
Otero and Dolado [18], for example, compared the semantic comprehension of
sequence, collaboration, and state diagrams. The comparison was done in terms of the
total time to complete tasks and their scores. They found that the comprehension of
behavioral models in object-oriented designs depends on the complexity of the
system. However, using sequence diagrams is the most comprehensible way to
represent the system behavior. Hahn and Kim [12] conducted an experiment to check
the effects of diagrammatic representation on the cognitive integration process of
systems analysis and design. The researchers checked the comprehension of process
components represented in sequence, collaboration, activity, and activity flow1
diagrams. The results showed that decomposition of process components (which
exists in sequence and collaboration diagrams) had a positive effect on both the
analysis and design activities, while layout organization had a positive effect only on
the design performance. Ambler [1] suggests using collaboration diagrams to show
asynchronous messaging between objects, while sequence diagrams are preferable for
synchronous logic.

2.2 Solutions for UML Consistency and Integration Problems

Several solutions have been proposed for UML consistency and integration problems.
These solutions can be divided into translation and verification approaches.

Translation approaches translate multi-view models into more formal languages of
model checkers. The model checker tool is then deployed to analyze the given model
for inconsistencies. Bowman et al [3], for example, use LOTOS in order to present a
formal framework for checking consistency among various viewpoints in Open
Distributed Processing (ODP). They define consistency between specifications X1,
X2, …, Xn as the existence of a physical implementation which is a realization of all
X1, X2, …, Xn. Furthermore, they classify consistency classes, such as binary

1 Activity flow diagrams are similar to activity diagrams, except that the activities are not

arranged within swimlanes.

 Conceptual Modeling of Structure and Behavior with UML 5

consistency, complete consistency, balanced consistency, and inter language
consistency, and express their characteristics using LOTOS. Rasch and Wehrheim
[21] use Object-Z in order to give a precise semantics to UML class and Statechart
diagrams and to check for consistencies between these views.

Mens et al [14] suggest restricting to description logic in order to specify and
detect inconsistencies between UML models. They claim that the use of description
logic is especially relevant since it contains five reasoning tasks that can be directly
used to achieve subsumption, instance checking, relation checking, concept
consistency, and knowledge base consistency.

Große-Rhode [11] suggests a semantic approach for the integration of views. This
approach, which is applied to the structural and behavioral views of UML, is based on
transition systems, algebraic specifications, and transformation rules.

Engels et al [8] present a general methodology to deal with consistency problems
in UML behavioral views. According to this methodology, relevant aspects of the
models are mapped to a semantic domain in which precise consistency tests can be
formulated.

Baresi and Pezze [2] suggest transforming fragments of UML models into high-
level Petri nets that serve as a formal semantic domain. This way, UML behavioral
views can be simulated and analyzed.

Verification approaches present testing or validation algorithms which check
inconsistencies and contradictions between various views. Chiorean et al [5] use an
OCL-based framework in order to ensure consistency among UML views. All the
consistency rules are defined at the metamodel level, supporting their reuse for any
specific user model.

Bodeveix et al [4] implemented a tool for checking the coherence between the
different UML views. This tool is based on an OCL interpreter and a set of OCL
expressions over the UML metamodel. Furthermore, OCL is extended to support
temporal constraints over the behavioral views of UML.

Engels et al [7] propose dynamic metamodeling (DMM) as a notation for defining
consistency conditions. DMM extends the metamodeling idea by introducing
metaoperations for the metamodel classes. These operations encapsulate the dynamic
semantics of the classes. A DMM-based testing environment, which consists of a test
driver, a test controller, and DMM interpreters, was developed.

Based on a classification of consistency constraints that occur in and between
specifications at various stages of the lifecycle, Nentwich et al [15] identify a set of
requirements that consistency management mechanisms have to address in order to
provide proper support. Examples of these requirements are flexibility in constraint
application, a tolerant approach to consistency, support for distributed documents, etc.
Using a lightweight framework that leverages standard Internet technologies, the
researchers address the consistency problems without requiring tight integration,
complex translation of specifications, or bulky tools.

The mentioned translation approaches require definitions of translation rules from
UML models to semantic, formal languages and definitions of consistency rules in yet
other formal languages. This is usually done in two separate supporting tools:
translation generators and model checkers, which together with UML-based CASE
tools perform the environment in which the translation approaches exist. Moreover,
after detecting inconsistencies a backward process should be applied, translating the

6 I. Reinhartz-Berger

locations where inconsistencies were found back to the UML models in order to
enable the developers to fix the inconsistencies. The verification approaches require
in addition sophisticated environments which include test drivers, interpreters,
controllers, etc. Moreover, as noted, some of the consistency rules are not explicitly
expressed in UML models, demanding semantic interpretation of the UML models
and understanding the intentions of their developers.

While both the translation and verification approaches run one time algorithms for
checking UML models after their development processes have been completed, I
suggest verifying the legibility of the models during the development process. The
suggested approach requires defining a top level diagram which glues the different
views of a system under development and represents their relationships explicitly.
The developers will be aware of existing inconsistencies at any specific time of the
development process, thereby being able to correct the models as early as possible.
Detecting inconsistencies in early development phases contributes to shortening the
system's delivery time ("time-to-market").

3 The Top-Level Object-Oriented Framework Approach

The Top Level Object-Oriented Framework (TLOOF) approach introduces a TLOOF
diagram type which is actually an extension of a use case diagram type. In addition to
the actors and use cases which exist in regular use case diagrams, a TLOOF diagram
includes collaborations and realization relations, both are already part of the UML
vocabulary. Collaborations provide a way to group chunks of interaction behavior
[9]. In other words, collaborations can be viewed as system processes that might have
several possible scenarios, each of which can (or should) be described in a different
interaction diagram. Realizations specify relationships between specification model
elements and model elements that implement them. In particular they link use cases to
collaborations. Collaborations are symbolized in UML as dashed ellipses, while
realizations are denoted by dashed lines ending with triangles. Fig. 1, for example, is
a TLOOF diagram of an ordering system. This system requires that a customer will be
able to find a product and order it. During the requirement analysis stage, three
specification model elements are established: the actor Customer and the use cases
Product Finding and Product Ordering. A more detailed specification could be
written, dividing Product Ordering into searching, reserving, paying, and supplying,
but this type of specification is not needed at the requirement level.

While designing the system, the developers find out that they have to implement
three main processes: Product Searching, Product Reserving, and Product Paying
and Supplying, each of which is modeled in Fig. 1 as a collaboration. From
encapsulation and reuse perspectives, Product Paying And Supplying includes
Product Searching, which realizes Product Finding as well as Product Ordering.
All the three collaborations realize the Product Ordering use case. The transition
between the abstract level of the system, i.e., the use cases, and the more refined
description of the same system (the collaborations) is explicitly specified through
realization relations. Moreover, this transition is relatively simple since both use cases
and collaborations refer to functional elements.

 Conceptual Modeling of Structure and Behavior with UML 7

Product Searching

Product Reserving

Product Paying And Supplying

Product Ordering

Customer

Product Finding

<<include>>

Fig. 1. The TLOOF diagram of an ordering system

Each one of the collaborations that appears in Fig. 1 can be in-zoomed to express
its internal structure and behavior. The collaborations are classified into simple and
compound collaborations. Compound collaborations are composed of other simple or
compound collaborations and, hence, are modeled by composite structure diagrams. A
composite structure diagram follows activity diagram notations for ordering and
activating collaborations. A simple collaboration includes a single (possibly generic)
scenario. Simple collaborations are modeled using interaction diagrams, i.e., sequence
or collaboration diagrams. A simple or compound collaboration defines which objects
can participate in the collaboration, how many objects of the same class can
participate in the collaboration, and what their roles are. Using UML stereotypes,
there are five possible roles for the associations connecting classes (objects) and
collaborations:

1. The <<involved>> stereotype connects a collaboration to a class (or an actor) the
objects of which can participate in the collaboration as unchangeable inputs.

2. The <<affected>> stereotype connects a collaboration to a class the objects of
which can be affected during the collaboration. These objects exist before and
after the collaboration occurrence, but their data or states are changed.

3. The <<created>> stereotype connects a collaboration to a class the objects of
which are created during the collaboration.

4. The <<deleted>> stereotype connects a collaboration to a class the objects of
which are destroyed during the collaboration.

5. The <<transient>> stereotype connects a collaboration to a class the objects of
which are local to the collaboration.

Product Paying and Supplying from Fig. 1, for example, is a compound
collaboration which is composed of four simple collaborations, Product Searching,
Product Paying, Product Supplying, and Error Announcing. First, Product
Searching is executed, determining if the Product was found or not. If the searched
Product was found, Product Paying is executed followed by Product Supplying.
Otherwise, Error Announcing is activated. Either way, the end of Product
Supplying or Error Announcing determines the end of the whole Product Paying

8 I. Reinhartz-Berger

Product Paying And Supplying
Supply

Pay

Payment Screen

Order Details

Customer Details

Product Paying

<<transient>>

<<transient>>

<<affected>>

<<affected>>

Product Supplying
<<transient>><<affected>>

<<involved>>

Search

Product

<<affected>>

<<involved>>
Customer

<<involved>>
Product Searching

<<transient>>

<<involves>>
<<involved>>

Search Screen

<<transient>>

Error Announcing

<<transient>>

[found] [not(found)]

Partial Legend:

entity class boundary class control class

 actor collaboration branching

Fig. 2. The composite structure diagram of Product Paying and Supplying

And Supplying collaboration. Following the branching and merging notations of
UML activity diagrams, Fig. 2 describes the above in a composite structure diagram.
In addition, Fig. 2 specifies the object classes needed for the different collaborations.
Product Paying, for example, uses a boundary object of type Payment Screen and a
control object of type Pay as transient elements. One Customer is involved in any
Product Paying process. During its execution, Product Paying also affects an entity
object of type Order Details and an entity object of type Customer Details.
Examples for these effects can be changing the order status in Order Details and
adding the customer's credit card details in Customer Details. Product Paying can
also use any information from the two entity objects, for example the ordered amount
(from Order Details) which is needed for calculating the final order price. Product,
on the other hand, is only involved in Product Paying, enabling the access to the
product price but disabling its change.

Following [12, 18] results, Product Searching, which is a simple collaboration, is
expressed in Fig. 3 by the sequence diagram2. This diagram preserves the "interface"
level described by the composite structure diagram in Fig. 2. In other words, in this
scenario Search Screen and Search are transient, while Customer and Product are
only involved (used without being changed).

2 For simplicity, the operation signatures in the sequence diagram are suppressed, not showing

the operation parameters.

*

 Conceptual Modeling of Structure and Behavior with UML 9

 : Customer

 : Search Screen

 : Search

 : Product

InsertDetails()

PList = FindProduct()

Pi = IsKeyWordInProductName()

Di = IsKeyWordInDescription()

Ci = IsInCategory()

[Pi or Di or Ci] getDetails()

Loop: [for each Product]

found= (Plist!=null)

found

Fig. 3. A sequence diagram describing Product Searching

The collaborations, which are described in composite structure diagrams and in
interaction diagrams, induce a basic class diagram with its classes (boundary, control,
and entity classes), associations, and operations. In the TLOOF approach, the
structure of the system is developed to serve the functionality and not the other way,
bridging the gap between the requirement analysis phase, which is usually functional-
or goal-oriented, and the design phase, which is architectural-oriented. Fig. 4 is the
class diagram, or more accurately the robustness diagram [23], induced from the three
collaborations of the ordering system applying the following construction rules:

1. All the classes whose objects appear in any interaction diagram appear also in
the class diagram.

2. An association between two classes in the class diagram exists if there is a direct
message between two objects of these classes in an interaction diagram.

3. All the messages of an interaction diagram are interpreted into operations in the
class diagram.

10 I. Reinhartz-Berger

Search Screen

Customer

Search

Payment Screen

Product

nn

Reservation Screen

Order Details

nn

Customer Details

nn

Pay

Supply

Fig. 4. The induced class (robustness) diagram for the ordering system

These construction rules follow the consistency rules required from class and
interaction diagrams in a regular UML model [10]. For clarity purposes, the features
(attributes and operations) in Fig. 4 are suppressed. After (automatically) creating the
basic class diagram, the developers can improve it by adding attributes, associations,
operations, etc.

4 Consistency Rules for the TLOOF Approach

As noted, the TLOOF approach does not increase the vocabulary of UML, while
better connecting the different views of the same system. Moreover, the explicit
bindings of UML use case, class, and interaction diagrams in the TLOOF approach
helps defining consistency rules between these views. This section defines and
exemplifies the consistency rules introduced by the TLOOF approach.

4.1 Consistency Rules Within the TLOOF Diagram

As noted, the TLOOF diagram extends the use case diagram and, hence, all the use
case diagram rules should be enforced in the TLOOF diagram as well. In particular,
each use case in a TLOOF diagram should be connected either directly or indirectly to
an actor. Indirect connections exist through inheritance relations, while direct
bindings use associations. In addition, the TLOOF approach defines the required
realization relations between use cases and collaborations.

 Conceptual Modeling of Structure and Behavior with UML 11

The TLOOF realization rule:
Each use case in a TLOOF diagram is realized by at least one collaboration.

Relating to vertical consistency, the TLOOF realization rule enables traceability of

the system functional requirements. Each functional requirement, which is expressed
by a use case, is realized by at least one collaboration, ensuring that no requirements
are lost. Pay attention that the TLOOF realization rule enables a situation in which the
implemented system, expressed by the collaborations, will include additional, not
requested functionality. In Fig. 1, for example, the Product Finding use case
(requirement) is realized by one collaboration, Product Searching, while Product
Ordering is realized by three collaborations. In this case, each collaboration realizes
a requirement, except of Product Searching that realizes two requirements.

4.2 Consistency Rules of Composite Structure Diagrams

A composite structure diagram defines the interface of a collaboration: what are the
classes whose objects participate in the collaboration and what are their multiplicities
and roles. As noted, the relation between a collaboration and a class can be
stereotyped by one of the following: involved, affected, created, deleted, or transient,
each of which refers to a different possible effect of the collaboration on the class
objects.

The compound collaboration refinement rule:
The declaration (interface) of a compound collaboration includes the declarations
of its constituent collaborations. The inclusion order of the collaboration
association stereotypes is affected (the most general), created, deleted, involved,
and transient (the most particular).

The compound collaboration refinement rule regards to consistency between a

composite structure diagram that describes a compound collaboration and the
composite structure diagrams that describe its constituents. If we were zooming-out
from Product Paying And Supplying, shown in Fig. 2, this collaboration would be
connected to Customer via an involved-stereotyped association, to Pay, Search,
Supply, Payment Screen, and Search Screen via transient-stereotyped associations,
and to Product, Order Details, and Customer Details via affected-stereotyped
associations.

The actor participation rule:
An actor appears in a composite structure diagram if the actor is connected to a
use case which is realized by that collaboration. This connection can be either
directly via an association or indirectly by an inheritance relation.

The actor participation rule is derived from the vertical consistency requirement: if

an actor is required for a use case, then it will be required for the collaborations that
realize (implement) this use case. No contradictions should occur when refining the
requirement specification expressed in a use case diagram to a more detailed design

12 I. Reinhartz-Berger

specification expressed in composite structure diagrams. In Fig. 2, Customer is
involved in Product Searching, since in Fig. 1 there is an association between
Customer and Product Finding, whose realization is Product Searching. Similarly,
Customer is involved in Product Paying due to the fact that Product Paying is part
of Product Paying And Supplying and the latter realizes Product Ordering, which
is connected to Customer in the TLOOF diagram shown in Fig. 1. If Customer were
not connected directly to Product Finding in Fig. 1 but through another use case, say
Product Handling, from which Product Finding inherits, the Customer would be
still involved in the composite structure diagram of Product Searching.

4.3 Consistency Rules Between Composite Structure Diagrams and Interaction
Diagrams

Four rules define the consistency required between composite structure diagrams and
interaction diagrams. Three of these rules correspond to three of the five stereotypes
of composite structure diagrams: created, deleted, and transient3. The fourth rule
concerns that there will be no additional, redundant objects in the interaction
diagrams, i.e., objects whose classes are not declared in the corresponding composite
structure diagram.

The created object rule:
Objects of a class which is connected to a collaboration via a created-stereotyped
association should be created (without deleting) in at least one related interaction
diagram. Furthermore, the number of the created objects in a single interaction
diagram should not exceed the corresponding class multiplicity in the
collaboration.

The deleted object rule:
Objects of a class which is connected to a collaboration via a deleted-stereotyped
association should be deleted (without creating) in at least one related interaction
diagram. Furthermore, the number of the deleted objects in a single interaction
diagram should not exceed the corresponding class multiplicity in the
collaboration.

The transient object rule:
Objects of a class which is connected to a collaboration via a transient-
stereotyped association should be created and deleted in at least one related
interaction diagram. Furthermore, the number of the transient objects in a single
interaction diagram should not exceed the corresponding class multiplicity in the
collaboration.

The Search Screen and Search classes are connected via transient-stereotyped

associations to the Product Searching collaboration in the composite structure

3 The two other stereotypes, affected and involved, require naming convention rules and, hence,

are not defined as consistency rules.

 Conceptual Modeling of Structure and Behavior with UML 13

diagram shown in Fig. 2. In the sequence diagram which describes this collaboration,
shown in Fig. 3, one Search Screen object and one Search object are transient, i.e.,
created and deleted within the specific scenario. In other words, the effect of the
sequence diagram on these objects corresponds (does not violate) the interface
declared by the composite structure diagram.

The composite structure integrity rule:
The class of each object that appears in an interaction diagram should appear also
in the composite structure diagram of the corresponding collaboration. The class
multiplicity in that collaboration is the maximum number of objects that appear in
a single interaction diagram of that collaboration.

The composite structure integrity rule ensures that there will be no objects that

participate in an interaction diagram, while their classes are not declared in the
collaboration interface. Figures 2 and 3 exemplify this rule: the class of each object
that appears in Fig. 3 appears also in Fig. 2.

5 Summary and Future Work

The Top-Level Object-Oriented Framework (TLOOF) approach glues commonly
used UML views by introducing the TLOOF diagram, which is actually an extension
of the use case diagram with realized collaborations. The TLOOF diagram is refined
into composite structure diagrams, each of which represents a separate collaboration.
A composite structure diagram is refined by other composite structure diagrams in
case of compound collaborations or by interaction diagrams in case of simple
collaborations. This set of diagrams induces a connected graph with a single root, the
TLOOF diagram, whose leaves are interaction diagrams. The connected graph
enables smooth transitions from one aspect of the system to another without loosing
the legibility and comprehension of the entire system. Seven rules, which can be
easily implemented and checked, ensure that the UML models obtained in the
TLOOF approach are consistent. This set of rules is complete, since it defines a
consistency rule for each element that appears in more than one diagram type.
Contrarily to the translation and verification approaches for solving UML consistency
and integration problems, the TLOOF approach enforces developing only consistent
and integral UML models.

The TLOOF approach makes use of existing notions of UML, such as
collaborations, realization relations, and composite structure diagrams. The
associations between collaborations and classes are classified using stereotypes, a
UML build-in extension mechanism. While not extending the UML vocabulary, the
TLOOF approach provides the missing glue for UML views and enables checking
model consistency and integrity. Furthermore, the TLOOF approach bridges the gap
between the requirement analysis and design stages, enabling requirement
traceability. Indeed, checking the comprehension of regular UML models vs. TLOOF
models (i.e., UML models that apply the TLOOF approach) on a small group of
undergraduate information system students, the TLOOF models were found to be
more comprehensive in their description of system behavior and more supportive in
requirement traceability.

14 I. Reinhartz-Berger

Further research is planned to deal with overlapping interactions, synchronization
points of collaborations, and distribution of collaborations. A series of experiments
will verify the comprehension and easiness of developing UML models in the
TLOOF approach. A CASE tool for supporting the TLOOF approach is also planned
to be developed.

References

1. Ambler, S. W.: How the UML Models Fit Together. Software Development Online:
Focus on UML (2000). http://www.sdmagazine.com/documents/s=815/sdm0003z/
0003z1.htm

2. Baresi, L., Pezze, M.: On Formalizing UML with High-Level Petri Nets. Concurrent
Object-Oriented Programming and Petri Nets (2001) 276-304.

3. Bowman, H., Steen, M., Boiten, E.A., Derrick, J.: A Formal Framework for Viewpoint
Consistency. Formal Methods in System Design 21 (2) (2002) 111-166.

4. Bodeveix, J.P., Millan, T., Percebois, C., Le Camus, C., Bazex, P., Feraud, L., Sobek, R.:
Extending OCL for Verifying UML Models Consistency. Workshop on Consistency
Problems in UML-based Software Development, 5th International Conference on the
Unified Modeling Language- the Language and its applications (UML'2002), Dresden,
Germany (2002) 75-90.

5. Chiorean, D., Pasca, M., Carcu, A., Botiza, C., Moldovan, S.: Ensuring UML models
consistency using the OCL Environment. Workshop on OCL 2.0 - Industry standard or
scientific playground?, 6th International Conference on the Unified Modeling Language -
the Language and its applications (UML'2003), San Francisco (2003),
http://i11www.ira.uka.de/~baar/oclworkshopUml03/papers/06_ensuring_uml_model_cons
istency.pdf

6. Dori, D.: Object-Process Methodology - A Holistic Systems Paradigm. Springer Verlag,
Heidelberg, NY (2002).

7. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Testing the Consistency of Dynamic
UML Diagrams. Proc. 6th International Conference on Integrated Design and Process
Technology (IDPT 2002), Pasadena CA (2002), http://www.uni-paderborn.de/cs/ag-
engels/Papers/2002/EngelsHHS-IDPT02.pdf

8. Engels, G., Kuster, J. M., Groenewegen, L., Heckel, R.: A Methodology for Specifying
and Analyzing Consistency of Object-Oriented Behavioral Models. In V. Gruhn (ed.):
Proceedings of the 8th European Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-9). ACM Press,
Vienna Austria (2001) 186-195.

9. Fowler, M., Scott, K.: UML Distilled: A Brief Guide to the Standard Object Modeling
Language. 3rd edition, Addison-Wesley (2003).

10. Gomaa, H., Wijesekera, D.: Consistency in Multiple-View UML Models: A Case Study.
Workshop on Consistency Problems in UML-based Software Development II, 6th
International Conference on the Unified Modeling Language- the Language and its
applications (UML'2003), San Francisco (2003) 1-8.

11. Große-Rhode, M.: Integrating Semantics for Object-Oriented System Models. 28th
International Colloquium on Automata, Languages and Programming (ICALP 2001),
Crete, Greece, Lecture Notes in Computer Science 2076 (2001) 40-60.

 Conceptual Modeling of Structure and Behavior with UML 15

12. Hahn, J., Kim, J.: Why Are Some Diagrams Easier to Work With? Effects of
Diagrammatic Representation on the Cognitive Integration Process of Systems Analysis
and Design. ACM Transactions on Computer-Human Interaction, 6 (3) (1999) 181-213.

13. Henderson-Sellers, B. OO Diagram Connectivity. Journal of Object-Oriented
Programming, 11 (7) (1998) 60-68.

14. Mens, T., Van Der Straeten, R., Simmonds, J.: Maintaining Consistency between UML
Models Using Description Logic. Workshop on Consistency Problems in UML-based
Software Development II, 6th International Conference on the Unified Modeling
Language- the Language and its applications (UML'2003), San Francisco (2003) 71-77.

15. Nentwich, C., Emmerich, W., Finkelstein, A., Ellmer, E.: Flexible consistency checking.
ACM Transactions on Software Engineering and Methodologies 12 (1) (2003) 28-63.

16. Object Management Group. Unified Modeling Language Specification – version 1.4.
ftp://ftp.omg.org/pub/docs/formal/01-09-67.pdf

17. Object Management Group. UML 2.0 Superstructure FTF convenience document.
http://www.omg.org/docs/ptc/04-10-02.zip

18. Otero, M.C., Dolado, J.J.: An Initial Experimental Assessment of the Dynamic Modeling
in UML. Empirical Software Engineering 7 (2002) 27-47.

19. Paige, R., Ostroff, J.: The Single Model Principle. Journal of Object Technology 1 (5)
(2002) 63-81.

20. Peleg, M., Dori, D.: The Model Multiplicity Problem: Experimenting with Real-Time
Specification Methods. IEEE Transaction on Software Engineering 26 (8) (2000) 742-759.

21. Rasch, H., Wehrheim, H.: Consistency Between UML Classes and Associated State
Machines. Workshop on Consistency Problems in UML-based Software Development, 5th
International Conference on the Unified Modeling Language- the Language and its
applications (UML'2002), Dresden, Germany (2002) 46-60.

22. Reinhartz-Berger, I., Dori, D.: OPM vs. UML – Experimenting Comprehension and
Construction of Web Application Models. Empirical Software Engineering (EMSE), 10
(1) (2005) 57-80.

23. Scott, K., Rosenberg, D.: Successful Robustness Analysis. Software Development Online:
The lifecycle starts here (2001). http://pyre.third-bit.com/helium/extern/rosenberg04.pdf

24. Tilley, S., Huang, S.: A qualitative assessment of the efficacy of UML diagrams as a form
of graphical documentation in aiding program understanding. Proceedings of the 21st
annual international conference on Documentation, San Francisco, CA (2003) 184-191.

25. Tun, T., Bielkowicz, P.: A Critical Assessment of UML using an Evaluation Framework.
8th CAiSE/IFIP8.1 International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design (EMMSAD’03) (2003) 29-37.

26. Uchitel, S., Kramer, J. and Magee, J. Synthesis of Behavioral Models from Scenarios.
IEEE Transactions on Software Engineering 29 (2) (2003) 99-115.

How to Manage Uniformly Software
Architecture at Different Abstraction Levels

Nassima Sadou, Dalila Tamzalit, and Mourad Oussalah

LINA - CNRS FRE 2729, Faculty of Sciences Nantes University,
2, rue de la Houssiniere BP 92208 44322, Nantes cedex 03, France

{Nassima.sadou, dalila.tamzalit, mourad.oussalah}@univ-nantes.fr

Abstract. We aim to rise software architecture evolution to a higher
level of abstraction. We consider the software architecture through three
abstraction levels namely, from the most abstract one: the meta level, the
architectural one and the application level. According to this, we pro-
pose SAEV (Software Architecture EVolution Model). It can describe
and manage the evolution at these different levels in a uniform way:
as well the evolution of architectures as the evolution of applications.
In addition, it can manage the evolution independently of any descrip-
tion or implementation language. For this, software architecture elements
(like component, interface, connector and configuration) are considered
as first-class entities and SAEV leans on its own concepts and evolution
mechanism. SAEV associates to each architectural element its evolution
strategy and evolution rules which define its evolution. These rules and
strategies must respect all invariants defined on each architectural ele-
ment to guarantee the coherence of architecture across the evolution.

1 Introduction

Software architecture takes an increasingly importance in the field of software
engineering for its re-use, assembly and deployment features. Software architec-
ture offers a high abstraction level for the description of systems, by defining
their architectures in terms of components describing the systems functionali-
ties and the connectors which express the interactions among these components
[19]. An architecture correctly defined allows the designers to reason about sys-
tems properties such as compatibility among components, the performance and
reliability at high abstraction level [10,18]

Currently, a number of Architecture Description Languages (ADLs) are de-
fined to aid the components-based systems development, such as C2 [2], ACME
[9], Darwin [13]. Most of their efforts focus on the systems specification, develop-
ment and deployment. Few works are devoted to the evolution of these systems.
For the ADLs that approach this problematic of evolution, there proposals are
even limited to some techniques such as subtyping, inheritance, composition [15].

We consider the software architecture through three abstraction levels
namely, from the most abstract one: the meta level, the architectural one and the
application level. we propose SAEV (Software Architecture EVolution Model)

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 16–30, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

How to Manage Uniformly Software Architecture 17

to describe and manage the evolution at these different levels in a uniform way:
as well the evolution of architectures as the evolution of applications. For this,
software architecture elements (like component, interface, connector and config-
uration) are considered as first-class entities and SAEV leans on its own concepts
and evolution mechanism. The evolution of an architectural element is managed
through the evolution strategies and evolution rules. The later are based on
the ECA rules (Event/Condition/Action) and they describe all the evolutions
operations that we can apply on an architectural elements.

The remainder of this paper is organized as follows. Section 2 describes our
principal objectives and motivations; section 3 presents the minimal and consen-
sual architectural elements of ADLs ; section 4 describes the proposed evolution
model through its concepts and its meta-model as well as its operational mecha-
nism. Section 5 illustrates the evolution model on an example. Section 6 presents
the related work, before concluding and presenting our perspectives.

2 Motivations and Main Objectives

Developed systems evolve as well as their architectures. We may need, for in-
stance to add new components, to modify the existing ones or to modify the
connections between these components. This evolution must be identified and
managed to maintain the architecture coherence of the evolved system. We pro-
pose SAEV(Software Architecture EVolution model) as a solution to face the
software architecture evolution problem. We are interested more precisely by
the structural evolution of architectures. For that, SAEV must:

– Abstract the evolution, from the specific behavior of architectural elements.
That allows to:
• Define a uniform mechanisms for the description and the management

of the evolution independently of the architectural elements and their
description languages.

• Support the re-use of these evolution mechanisms in several cases of
evolution.

– Be open to the addition of new evolutions, in particular those that are not
envisaged initially by the model. It must be for that reflective and adaptive.

– Support static evolution (at the architecture specification time) as well as
dynamic one (at the application execution time).

To achieve these objectives, SAEV must take into account all architectural
elements proposed by ADLs. We present the main elements in the following
section.

3 Main Architectural Elements of ADLs

We present hereafter the main architectural elements commonly supported by
the majority of ADLs ([8,9,15,19]). We present first their most accepted defini-
tions in the software architecture community, their Meta model, then we position
them according to different abstraction levels.

18 N. Sadou, D. Tamzalit, and M. Oussalah

3.1 Presentation of the Architectural Elements

- Component: represents the computational elements and data stores of a
system. It is described by an interface which exports the services that it provides
and the services that it requires and one or more implementations. Databases
and mathematical functions are examples of component.

- Connector: represents the interaction among components as well as the
rules that control this interaction. A connector can describe simple instruction
like procedure call or access to a shared variable, but also it can describe a
complex interaction like the database access protocols. It is mainly represented
by an interface and one or more implementations.

- Interface: the interface is the only visible part of components and connec-
tors. It provides the set of services (provided or required) and interaction points.
The interaction points of component are called ports (provided or required port).
Those of the connectors are called roles, we distinguish also provided roles from
required roles.

-Configuration: represents a connected graph of components and connec-
tors. It describes how they are fastened to each other. The configuration is de-
scribed also by an interface which provides a set of interaction points (provided
ports and required ports) and a set of services. We distinguish also two kinds of
links used to fasten configuration’s elements (components and connectors).

o Attachments : they express which ports of a given component connected to
which roles of a connector (a provided port must be attached only to a required
role and a required port must be attached only to a provided role).

o Bindings : they define links among: a ports of a composed component and
those of its subcomponents, a roles of a composite connector and those of its
subconnectors or among the ports of a configuration and those of its components.

These elements are represented by the following meta model described using
the class diagram of UML[4].

Each architectural element is represented by a class and each element can be
connected to other elements by an association of composition. Each element is
characterized by an interface and its contents (elements which compose it).

3.2 Architectural Elements Abstraction Levels

Some of the surveyed ADLs such as C2 [2], ACME [9] and Rapide [12] consider
components and connectors as first-class entities and distinguish respectively
the component-type and the connector-type from their component-instances and
connector-instances. This distinction is not valid for other concepts like config-
uration, interface, etc. For example the configuration is considered only at the
moment of the instantiation as a graph of components-instances and connectors-
instances. From our point of view, we consider all architectural elements as first-
class entities and which can be positioned at three abstraction levels: the Meta
level, the Architectural level and the Application one, we illustrate these levels
with the figure (Fig2).

1. Meta Level: It is the level of definition of all ADLs architectural elements,
like configuration, component, connector and interface.

How to Manage Uniformly Software Architecture 19

Fig. 1. Architectural Elements Meta model

Fig. 2. Architectural Elements Abstraction Level

2. Architectural Level: It is the level of the description of any architecture
using one or more architectural elements defining in the meta level. The Figure
2, presents a Client/Serveur architecture with a Configuration: CSConf ; three
components : client, server, data base and of two connectors N1 and N2.

3. Application Level: It is the level of description of any application in ac-
cordance with its architecture. For example, from the preceding architecture
client/server, we can build the following application made up of: one instance

20 N. Sadou, D. Tamzalit, and M. Oussalah

of the configuration CSConf: Cf, two instances of the component client: C1,
C2 one instance of the component data base: DBoracle, one instance of the
component server: S1; two instances of connector N1: N1-1, N1-2 and one
instance of connector N2: N2.1.

4 SAEV: Software Architecture EVolution Model

The evolution of software architecture is reflected through the different changes
carried out on its elements. These changes can be, for example the addition of a
component, the deletion of one of its components, the deletion of a connectors
among these components. Each change may cause also impacts that should be
managed to maintain the whole architecture in a coherent state. In order to face
this requirements and the software architecture evolution needs, the adopted
solution must answer at least the following questions:

– What are the elements of an architecture, which can evolve, through its life
cycle?

– What are all operations acting on these elements?
– What are the impacts of an operation applied to an element and how to

manage this impact?

Basing on these concerns and the previous objectives, SAEV offers a whole
of concepts to describe and manage the software architecture evolution.

4.1 SAEV’s Meta Model

To describe the evolution of an architecture, we associated with each of its ele-
ment (architectural element) an evolution strategy. A strategy gathers the whole
of evolution rules which describe the operations that can be applied to this archi-
tectural element. Thus, each evolution rule must respect the invariants defined
on this architectural element.

We detail each concept in the following section, we illustrate each concept
only with the meta level elements but the principle remains the same for those
of the architectural level.

Fig. 3. SAEV’s Meta-Model

How to Manage Uniformly Software Architecture 21

4.2 SAEV’s Concepts

- Architectural Element: It represents any element of a software architecture
at each architectural level. In our case, it can be a configuration, a component,
a connector, or an interface.

- Invariant: It represents an architectural element constraint which must
be respected through its life cycle.Any change in the architecture must maintain
the correctness of this invariant. We present hereafter the invariants associated
with the main architectural elements: Configuration, component, connector.

Table 1. Architectural Elements Invariants

A.Elements Invariants
Configuration - a configuration must have an interface, by which it can delegate

with other configurations or with its components
- a configuration must be composed at least of one component
- a connector must connect at least two components
- a component can not be related directly to an other component

Component - a component must be compose at the least of an interface
component;

Connector - a connector must be composed at the least of an interface
component;

Interface - configuration and component interface must be composed
at least of one provide port or service

- Evolution Operation: It is an operation that can be applied to a given
architectural element and which can cause its evolution. We have identified the
following evolution operations: Addition, Deletion, Modification, Substitution.
Generally the evolution of software architecture is carried out by the execution of
one or more evolution operations on its architectural elements. In the following,
we describe examples of evolution operations.

Table 2. Example of Evolution Operations

A.Elements Evolution Operations
Configuration - Addition, deletion or modification of a provided or required port

- Addition, deletion or modification of a provided or required service
- Addition or deletion of component or connector
- Modification of the name of component or connector

Component - Addition, deletion or modification of a provided or required port
- Addition, deletion or modification of a provided or required service
- Addition or deletion of component implementation

Connector - Addition, deletion or modification of a provided or required role
- Addition, deletion or modification of a provided or required service
- Addition or deletion of component implementation

22 N. Sadou, D. Tamzalit, and M. Oussalah

Thus it is possible to add, delete and modify the interface and the contents of
any architectural element, except the modification of the component or connector
implementation which does not raise on the structural evolution.

- Evolution Rule: It describes the execution of an operation on a given
architectural element. It expresses the necessary conditions to execute this oper-
ation as well as the rules to be triggered if necessary on the other architectural
elements, to propagate the rule impacts.

The evolution rules are based on the ECA formalism (Event Condition Ac-
tion). Thus each evolution rule is made of:

– an event: is the evolution invocation coming from the designer or from an-
other rule. It is intercepted by the evolution manager;

– one or more conditions: that must be satisfied to execute the action part of
the evolution rule.

– one or more actions, an action can be an:
• event, in this case, it will be redirected toward another rule;
• elementary action to be executed on the architectural element. We

note them: Architectural-element-name.Execute.operation-name (para-
meters);

We present in the following example of evolution rule.

Table 3. Example of Evolution Rules

R1: deletion of Component
Event:delete-comp(Cf: Config,C: comp)
Condition:
C ∈ comp(Cf), prov-interface(C) connected to prov-interface(Cf)
∃NC ⊂ con(Cf) and ∀N ∈ NC, N is connected to C and N
is not charred
Action:

For N ∈ NC delete-connector (Cf,N):
For b ∈ bindings(Cf,C) : delete-binding(Cf,C,b)
For I ∈ interface-comp(C) : delete-interface-comp(Cf,C,I)
C.Execute-delete-component(Cf)

The rule R1 describes the deletion of the component C belonging to the
configuration Cf. This rule triggers firstly the deletion of connectors connected
to C, then the deletion of bindings between the component C and configuration
Cf, the deletion of the interface of C and finally the deletion of the component C.

The whole of the defined evolution rules is stored in a rules base. The designer
will be able to re-use these rules or to create his own evolution rules.

- Evolution strategy: We associate with each architectural element an
evolution strategy. An evolution strategy gathers the whole of the evolution
rules which describe all the evolution operations (addition, deletion, modification
substitution) that can be applied to this architectural element. These rules can
be already defined in the evolution rules base as, they can be rules defined by
the designer.

How to Manage Uniformly Software Architecture 23

Fig. 4. SAEV and the Abstraction Levels

- Evolution Manager: It is an actor, representing the processing system.
Its role is intercepting the events emanating from the designer or the evolution
rules towards an architectural element. Then it triggers the execution of the
corresponding evolution rules, according to the evolution strategy associated
with this architectural element. We detail this process in the following section.

4.3 Evolution Mechanism

The evolution mechanism describes the execution process of the evolution model.
It is composed of two steps the interception of the events and the execution of
the evolution rules;

Step1: Interception of the event; The evolution manager

– intercepts each event emitted towards the architectural element, either by
the designer or by the evolution rules;

– selects the evolution strategy associated with the architectural element on
which the event is invoked;

– then selects in this strategy the evolution rules that correspond to the event
and that have a satisfied conditions.

Step 2: Execution of the evolution rules The evolution manager triggers the
execution of the action part of the selected rule (s). Two cases can arise:

– If the action corresponds to an event, the manager intercepts it also it follows
the step1-2.

– If it corresponds to an another action the manager triggers its execution on
the architectural element on which the operation is invoked.

5 SAEV and the Abstraction Levels

The proposed evolution model SAEV must be able to describe and manage the
evolution of an architecture at the architectural level as well as at the application
level. Thus, it can be positioned at the meta level (all its concepts will be defined
at the meta level) to manage the evolution of the architectural level and it can

24 N. Sadou, D. Tamzalit, and M. Oussalah

Fig. 5. Description of SAEV at the Different Levels

be positioned at the architectural level (the concepts of SAEV will be defined at
the architectural level) to manage the evolution of the application level.

The previous figure illustrates the use of SAEV at the differents abstraction
levels. At the Meta level an ArchitecturalElement can represent a: Configura-
tion, Component, Connector or an Interface. We associate to each element its
Evolution Operations, Evolution Rules, Evolution Strategy and its invariants.
We define them as subclasses of SAEV’s classes. In the preceding figure we
present an example of strategy:S1 which inherit from the class EvolutionStrat-
egy and which is associated with the architectural element component. S1 is also
composed of two rules R1,R2 which inherit from the class EvolutionRule.

At the architectural level an ArchitecturalElement can be any element of the
given architecture description. In the previous figure it can be for example the
component Client or the component Server. Also at this level, we associate to
each architectural element its Evolution Operations, Evolutions Rules, Evolution
Strategies and Invariants).

The concepts of SAEV (Evolutions rules, Invariants, Strategies,) defined at
the Meta level are not redefined at the architectural level, and they must be
respected at the two levels (architectural and application). For example an evo-
lution rule which describes the deletion of a component client at the application
level is not redefined at the architectural level, but it extended only the evolu-
tion rule which describes the deletion of a Component at the meta level. As the
same with all other concepts of SAEV. For these raisons, we have defined the
relation of inheritance between the concepts of SAEV defined at the meta level
and those defined at the application level.

How to Manage Uniformly Software Architecture 25

6 Example

We illustrate the evolution model on example, which describes the evolution of
System managing the Organization of a given Company (COS). Its evolution
is caused by the reorganization of this company. This example will illustrated
the evolution at the architectural level, thus our evolution model SAEV must be
positioned at the meta level.

Initially, the configuration of the system COS is made up of the following
components: Registered office (RO), Division(D), Department(DP), Service(S);
and the connectors among these component N1), N2, N3, N4.

The reorganization of the company causes the creation of new Agencies,
instead of divisions,the reorganization of the services distribution. Concretely
this evolution will be expressed by the following operations on the configuration
COS:

– Deletion of the component Division
– Addition of the component Agency
– The provided services ps1, ps2 offered respectively by the components Reg-

ister office, and Service will be transferred to the component Agency. The
provided service sf3 offered initially by the component Division will be trans-
ferred to the component Service.

Evolution steps: We suppose that the preceding evolution rules are mem-
orized in the rule bases defined at the meta level and also the corresponding
strategies.

The first event emanating from the designer is the deletion of the compo-
nent Division (delete-component(COS,Division) emitted toward the configura-
tion COS. The Evolution Manager (E.M):

– intercepts this event and selects the evolution strategy of the configuration
(S1);

– selects in this strategy the evolution rule which correspond to this event
and which have a satisfied conditions, it selects the rule R1 and triggers its
execution:

Fig. 6. Configuration COS before Evolution

26 N. Sadou, D. Tamzalit, and M. Oussalah

1. the first action of R1 is an event corresponding to the deletion of con-
nectors (N1, N2) attached to the component Division (delete-connector
(COS,N1) and delete-connector(COS,N2);
(a) The E.M intercepts the first event(delete- connector(COS,N1) and

selects the corresponding evolution strategy (the strategy S1);
(b) selects in this strategy the corresponding rule, the rule: R2

Table 4. Examples of Evolution Rules

R1: Deletion of component R2 : deletion of connector
Event:delete-comp(Cf: Config,C: comp) Event:delete-connect(Cf:Config, N: con)
Condition: C ∈ comp(Cf), prov-interface(C) Condition: N ∈ con(Cf) ∃ C and C’ ∈
connected to prov-interface(Cf) comp(Cf) attached to N
NC ⊂ con(Cf) and ∀N ∈ NC, N Action:
is connected to C and N is not charred For t ∈ attachments(Cf,C, N) :
Action: delete-attachment(Cf,C,N,t)
For N ∈ NC delete-connector (Cf,N): For t′ ∈ attachments : (Cf,C’,N)
For b ∈ bindings(Cf, C) delete-attachment(Cf,C’,N,t’)

delete-binding(Cf,C,b For I ∈ interface-con (N) :
For I ∈ interface-comp(C): delete-interface-cont(Cf,N,I)

delete-interface-comp(Cf,C,I) N.Execute-delete-connector(Cf)
C.Execute-delete-component(Cf)
R3 : deletion of attachment R4 : deletion of interface-connector

Event: delete-attach (Cf:conf,C:comp, Event:delete-inter-con(Cf: Conf, N: con,
N:con,t:att) I: inter-con)
Condition: t ∈ attach(Cf,C, N) Condition: ∃R ⊂ I or S ⊂ I
Action: Actions: For r ∈ R :
t.Execute-delete-attachment(Cf, C,N) r.Execute-delete-role(Cf,N)

For s ∈ S :
s.Execute-delete-service(Cf,N)

R5 : delete bindings R6: delete interface component
Event : delete-binding(Cf : Conf, C : Event : delete-inter-comp(Cf: Conf, C:
comp, b :bind) comp, I : inter-comp)
Condition : b ∈ bindings(Cf,C) Condition: P: ports ⊂ I , S:Service ⊂ I
Action : b.Execute-delete-binding(Cf, C) Actions:

For p ∈ P p.Execute-delete-port(Cf,C)
For s ∈ S :
s.Execute-delete-service(Cf,C)

Table 5. Examples of Evolution Strategies

Strategies Operations Evolution Rules
S1 configuration Deletion R1, R2
S2 component Deletion R6
S3 connector Deletion R4
S4 attachment Deletion R3

How to Manage Uniformly Software Architecture 27

i. the first action of R2 is delete-attachment (COS,N1,t) using the
strategy S4 the E.M triggers the rule R4 which delete all attach-
ments in which the connector N1 takes part;

ii. the second action: delete-interface-connector (COS,N,I) using the
strategy S3 the E.M triggers the Rule R6 which delete the inter-
face of the connector N1;

iii. then the last action of R2 ”execute-delete-connector(COS,N1)
causes the deletion of the connector N1.
with the same steps (1-3) the connector N2 will be deleted also.

2. When all actions of R2 are sequentially executed, the manager executes
with the same way the other actions of R1 : The last action of R1
(C.Execute-delete-component(Cf))causes the deletion of the component
Division.

Table 6. Comparison of some Architecture Evolution Supports

Crit ACME C2 SAEV
CR1 The evolution is described The same with C2 The evolution is defined

with the architecture ADL. independently of the
Thus it is integrated in architecture description.
the architecture description Thus all its concepts

(invariants,rules and
strategies)can be reused

CR2 components and connectors components and it distinguishes three
are defined with connectors are defined traction levels: meta
two abstraction levels. with two abstraction level,architectural level
(instance and type) levels(type,instance). and application level
Configuration called system is configuration is defined
distinguished from the family only at the instance
which describes the whole (application)level
of system’s types

CR3 Define the evolution of the define the evolution of SAEV can be applied to
components and the the components and the three abstraction
connectors types. connectors at the type levels.

and instance level
CR4 Structural subtyping heterogenous subtyping Propose a whole and

to evolve the components to evolve components uniform operations to
and connectors and connectors. Offers each architectural

the operations of addit- elements(addition,
ion, deletion upgrading deletion, modification)
and reconnection as evolution rules which
of components describe these rules

CR5 Allows the static evolution allows static and allows static and
Dynamic ACME is defined dynamic evolution dynamic evolution
to support dynamic
evolution

28 N. Sadou, D. Tamzalit, and M. Oussalah

7 Related Works

Few ADLs treat the architecture evolution problem. For those who approach
this, the support, they propose are limited to certain techniques such as the
inheritance, subtyping, composition, refinement [4] like C2[2] and ACME[8]. C2
is the ADL which most exploited the precedents techniques. Indeed, it proposes
several mechanisms of subtyping to evolve the components: interface subtyping,
behavior subtyping, implementation subtyping. Several of these mechanisms can
be combined together to define a subtype of a component (heterogeneous subtyp-
ing). For the connector the language does not propose the same techniques. The
C2 connectors don’t propose a specific interface and support the communication
of a number not predetermined of components.

ACME proposes the same evolution mechanisms for the component and the
connector (the connectors of ACME are regarded as first class entities, which
structurally do not differ from the components) based on structural subtyping
using the clause extend.

To position and compare our evolution model to the evolution supports pro-
posed by others ADLs (C2 and ACME), we have identified 5 criteria, which
are:

– CR1:the degree of the abstraction of the evolution.
– CR2: the abstraction level considered for each architectural element.
– CR3: the consideration of the evolution at each abstraction level
– CR4:the evolution operations proposed to evolve each architectural element.
– CR5:the type of evolution considered, static or dynamic.

This comparison is illustrated by the preceding Table (Table 6).

8 Conclusion

We proposed in this article a model for the software architecture evolution, inde-
pendently of their description languages. We consider the software architecture
through three abstraction levels: the meta level, the architectural one and the
application level. According to this, we propose SAEV (Software Architecture
EVolution Model). It allows the description and the management of the evolu-
tion at these different levels in a uniform way: it can positioned at the meta level
to manage the evolution of the architectural level, and it can positioned at the
architectural level to describe the evolution of the application level. SAEV is
based on the common architectural elements for the majority of ADLs: config-
urations, components, connectors and interfaces. To each element, it associates
an evolution strategy. An evolution strategy gathers the whole of evolution rules
which describe all the operations that we can apply to this element. The evo-
lution rules must respect the architectural elements invariants to maintain the
architecture in a coherent state.

The evolution model SAEV answers the number of the objectives that we
have fixed initially (section 2), since the evolution is represented independently

How to Manage Uniformly Software Architecture 29

of the architectural elements and the same and uniform evolution mechanisms
(evolution operations, evolution rules and evolution strategies) are defined to
evolve any architectural element.

Until here, we have tested SAEV on examples of architectures specifications
that we call static evolution, the implementation of SAEV will then allow us to
test and validate our model on cases of dynamic evolution.

References

1. R. Allen : A formal Approach to software Architecture Description, PHD thesis,
Carnegie Mellon University Center, Dr. Minneapolis, MN, April 1996.

2. R. Allen, R. Douence, D.Garln : specifying and analyzing Dynamic Software Archi-
tectures, In pro-ceeding of the Conference on Fundamental Approaches to Software
Engineering, Lisbon, Portugal Mars 1994.

3. L. F. Andrade, J.L. Fiadeiro : architecture based evolution of software systems,
LNCS 2804 : 148-181, 2003.

4. G.Booch, J. Rumbaugh, and I. Jacobson: The Unified Modeling Language User
Guide, Addison-Wesley Professional, Reading, Massachusetts, 1998.

5. C.Crnkovic, M.Larsson : Challenges of component-based development, in the jour-
nal of Systems and Software 201-212, 2002.

6. F. Duclos, J.Estublier and R. Sanlaville : Opened Architecture to software adap-
tation, software en-gineering, review N 58, September 2001.

7. http://www.eclipse.org/uml2
8. W.B. Frakes, A case study of a reusable component collection in the information

retrieval domain, The Journal of Systems and Software, pp 265-270, 2004;
9. D. Garlan, R. Monroe, D. Wile: ACME: Architectural Description Of Components-

based systems, Leavens Gary and Sitaraman Murali, Foundations of component-
Based Systems, Cambridge Uni-versity Press, 2002,pp. 47-68.

10. D. Garlan, D. Perry: introduction to the special issue on software architecture,
IEEE Transactions on Software Engineering, 21(4), April 1995.

11. R. Land: An architectural approach to software evolution and integration, Licenti-
ate thesis, ISBN 91-88834-09-3, Department of Computer Engineering, Mlardalen
University, September 19th 2003.

12. D. Luckham, M. Augustin, J. Kenny, J. Vera, D. Bryan, W. Mann: Specification
and analysis of System Architectures using Rapide”, IEE Transaction on Software
Engineering, vol.21, N 4, April 1995,.336-355.

13. J. Magee, N Dulay, S. Eisenbach, J. Kramer : Specifying Distributed Software Ar-
chitectures, In Proceedings of the fifth European Software Engineering conference,
Barcelona, Spain, September 1995.

14. N. Medvidovic, D.S.Rosenblum, and R.N. Taylor: A Language and Environment
for Architecture-based Software Development and evolution. In proceeding of the
21st international conference en Software engineering , pp.44-53, may 1999.

15. N.Medvidovic, R. N. Taylor : A Classification and Comparison Framework for Soft-
ware Architec-ture Description Languages, IEEE Transactions on Software Engi-
neering, Vol. 26, 2000.

16. M.Oussalah, Changes and Versioning in complex objects, International Workshop
on Principles of Software Evolution, IWPSE 2001, , Sep. 10 - 11, Vienna University
of Technology, Austria.

30 N. Sadou, D. Tamzalit, and M. Oussalah

17. D.E. Perry, A.L. Wolf : Foundations for study of software Architecture, In
ACM/SIGSOFT Soft-ware Engineering Notes, volume 17, pages 40-52, October
1992.

18. R. Roshandel, A.V.D. Hoek, M. Miki-Rakic, N. Medvidovic : Mae-A System Model
and Environ-ment for Managing Architectural Evolution : ACM Transactions on
Software Engineering and Methodology, April 2004.

19. A.Smeda, M. Oussalah, T. Khamaci : A Multi-Paradigm Approach to Describe
Complex Software System”, WSEAS Transactions on Computers, Issue 4, Volume,
3, October 2003, pp. 936-941.

Schema Integration Based on Uncertain
Semantic Mappings

Matteo Magnani1, Nikos Rizopoulos2, Peter Mc.Brien2, and Danilo Montesi3

1 Department of Computer Science, University of Bologna,
Via Mura A.Zamboni 7, 40127 Bologna, Italy

matteo.magnani@cs.unibo.it
2 Department of Computing, Imperial College London,

180 Queen’s Gate, South Kensington Campus, London SW7 2AZ, UK
{nr600, pjm}@doc.ic.ac.uk

3 Department of Mathematics and Informatics, University of Camerino,
Via Madonna delle Carceri 9, I-62032 Camerino (MC), Italy

danilo.montesi@unicam.it

Abstract. Schema integration is the activity of providing a unified rep-
resentation of multiple data sources. The core problems in schema inte-
gration are: schema matching, i.e. the identification of correspondences,
or mappings, between schema objects, and schema merging, i.e. the cre-
ation of a unified schema based on the identified mappings. Existing
schema matching approaches attempt to identify a single mapping be-
tween each pair of objects, for which they are 100% certain of its correct-
ness. However, this is impossible in general, thus a human expert always
has to validate or modify it. In this paper, we propose a new schema
integration approach where the uncertainty in the identified mappings
that is inherent in the schema matching process is explicitly represented,
and that uncertainty propagates to the schema merging process, and fi-
nally it is depicted in the resulting integrated schema.

1 Introduction

In this paper we present a new method of schema integration based on uncertain
semantic mappings. Schema integration is the activity of providing a unified rep-
resentation of multiple data sources. The core problems in schema integration
are: schema matching [1], i.e. the identification of correspondences, or mappings,
between schema objects, and schema merging [2], i.e. the creation of a unified
schema based on the identified mappings. In our approach, we focus on semantic
schema integration and on semantic mappings between schema objects. Knowl-
edge about semantic mappings is essential to produce an integrated schema [3].
Early [6,7] and more recent work [4,5,8] has shown that if all semantic mappings
are known, then schema merging can be performed semi-automatically.

Unfortunately, it can be very difficult to identify semantic mappings with
certainty. Manual schema matching is usually time consuming, and it may be

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 31–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

32 M. Magnani et al.

S1 student reg
1:N

1:N course tch1:1
1:N staff

S2 student reg
0:N

0:N course tch1:1
0:N staff

Fig. 1. Schema S1 and S2: undergraduate and postgraduate data sources

pg ug

student

�

S1.reg
1:N

1:N
S1.course

S2.course

�

S1.tch
1:1

1:N

S2.tch
1:1

0:N

staff

S2.reg
0:N

0:N

reg
0:N

0:N

Fig. 2. Schema S12: integration of S1 and S2

unfeasible, especially with large databases. Automatic schema matching is inher-
ently uncertain because the semantics of schema objects cannot be fully derived
from data and meta-data information. In our novel approach, uncertainty in the
identified mappings is represented during the schema matching process, that un-
certainty propagates to the schema merging process, and it is depicted in the
resulting integrated schema.

As a motivating example, consider the schemas S1 and S2 in Figure 1. Schema
S1 models a data source of undergraduate students. Undergraduates are registered
(reg) in courses that are taught (tch) by staff members. Schema S2 models a data
source of postgraduate students, which can also optionally register in fourth-year
undergraduate courses to refresh their knowledge or familiarize themselves with
new subjects. Therefore, S1.student and S2.student are disjoint, while S1.course
subsumes S2.course. Additionally, S1.staff and S2.staff are equivalent. The cardi-
nalities of the tch relationship in the two schemas differ, since not all staff mem-
bers teach fourth-year courses. The aforementioned semantic mappings drive the
schema merging process. For example, the disjointness mapping between the stu-
dent entities triggers schema transformations that rename the entities to make
them distinct, e.g. into ug and pg, and add a union entity, e.g. student, that rep-
resents the union set of both undergraduate and postgraduate students. This is
illustrated in Figure 2, where the complete integrated schema S12 is presented.

However, in general it is impossible to identify fully automatically the correct
semantic mappings. Even in the small example above, where the schemas are
almost identical, the semantics of the schema objects show subtle differences
which make the discovery of the actual semantic mappings very difficult. Most
existing techniques [9,10,11] try to identify a single mapping for each pair of
objects, which of course could be wrong. For example, an automatic schema

Schema Integration Based on Uncertain Semantic Mappings 33

matching technique might produce an equivalence mapping between the two
student entities in S1 and S2, based on name comparison.

In this paper, we extend the concept of semantic mapping to include the
notion of uncertainty, thus enabling schema matching techniques to show their
level of belief on the mappings that they produce. Our goal is the management
of this uncertainty. We do not include the implementation details of discovering
uncertain mappings, nor the merging technique used to produce the integrated
schema, even though we give such examples to illustrate our approach. To gain
an intuition of our methodology, assume to have a finite amount of belief that
can be distributed to the alternative semantic mappings of two schema objects.
When we are certain about a mapping we assign all our belief to it. This is
implicitly done by the existing schema matching techniques [1]. A straightfor-
ward extension of this concept can be obtained by allowing several alternative
mappings to be possible, and distributing our belief to them. For example we
might think that the two student entities are either disjoint (if we believe that
one entity is undergraduates and the other postgraduates), or equivalent (if both
entities represent all the students). This legitimate uncertainty should not pre-
vent the integration of schemas S1 and S2. In fact we can think of two possible
integrations, one based on disjointness, where one would form a generalisation hi-
erarchy under student, as shown in Figure 2, and the other based on equivalence,
where there would be just a single student entity in the final schema. Hence the
uncertainty in the mapping between the two student entities propagates to the
corresponding alternative integrations. The final integrated schema is created by
combining all the produced mappings and it is structurally uncertain.

Our approach, which produces a set of possible mappings for each pair of
schema objects, subsumes previous work where a single mapping is specified
for each pair. As far as we know, there are two other related approaches that
are concerned with uncertainty in schema and data integration. In [12] an ap-
proach to integrating XML documents is described, based on probability theory,
that deals with uncertainty in data-level schemas. However, we focus on schema
integration, and probability theory is just a particular case of the formalism
used in our approach to manage uncertainty. In [13], uncertainty is only exam-
ined on equivalence mappings, while we provide a much wider set of possible
semantic mappings, e.g. subsumption and disjointness. Moreover, in [13] only
mappings between sets of attributes are considered, while we propose a more
general methodology for matching and merging whole schemas.

The paper is organized as follows. In the next section we briefly present an
existing schema integration method based on semantic mappings [14,8]. In the
following sections, we extend it to deal with uncertainty. In particular, in Section
3 we introduce the theory used to represent uncertainty, and provide the formal
definition of uncertain semantic relationship (USR), together with illustrative
examples. In the same section, we also present a software architecture that can
be used to compare schemas and discover USRs. In Section 4 we analyze de-
pendencies between USRs, and describe the process of building an uncertain
integrated schema, i.e. a set of possible schemas with a belief distribution over

34 M. Magnani et al.

them. The main problem tackled in this section is the management of dependen-
cies between USRs. Finally, we draw our concluding remarks. Schemas S1 and
S2 in Figure 1 will be used as a working example throughout the paper.

2 Schema Integration Based on Semantic Mappings

In this section, we summarize the schema integration approach presented in
[14,8], which we then extend in the sections that follow to deal with uncertainty.

2.1 Semantic Relationships

In [14], a mapping between two schema objects is specified by a semantic relation-
ship. We have defined six types of semantic relationships between schema objects
based on a set comparison of their intentional domains, i.e. the set of real-world
objects that they represent [14]. We use Domint(E) to define the intentional
domain of an ER entity E. The intentional domain of a binary ER relationship
is a subset of the Cartesian domain of the intentional domains of the entities it
associates, e.g. in schema S1, Domint(reg) ⊆ Domint(student)×Domint(course).
The semantic relationships are:

1. equivalence (S=): Schema object ER1 is equivalent to ER2, ER1
S=ER2, iff

Domint(ER1) = Domint(ER2)
2. subset-subsumption (S⊂): Schema object ER1 is a subset of schema object

ER2, ER1
S⊂ER2, iff Domint(ER1) ⊂ Domint(ER2)

3. superset-subsumption (S⊃): Schema object ER1 is a superset of schema
object ER2, ER1

S⊃ER2, iff Domint(ER1) ⊃ Domint(ER2)
4. intersection (S∩): Two schema objects ER1 and ER2 are intersecting, ER1

S∩
ER2, iff ¬(ER1

S⊂ER2),¬(ER1
S⊃ER2), Domint(ER1) ∩ Domint(ER2) �= ∅, ∃

ER3 : Domint(ER1) ∩Domint(ER2) = Domint(ER3)
5. disjointness (

S
∩/): Two schema objects ER1 and ER2 are disjoint, ER1

S
∩/ER2,

iff Domint(ER1)∩Domint(ER2) = ∅, ∃ER3 : Domint(ER1)∪Domint(ER2) ⊆
Domint(ER3)

6. incompatibility (
S
/∼): Two schema objects ER1 and ER2 are incompatible,

ER1
S
/∼ER2, iff Domint(ER1) ∩ Domint(ER2) = ∅, � ∃ER3 : Domint(ER1) ∪

Domint(ER2) ⊆ Domint(ER3)

It is important to notice that object ER3 in the definition of intersection
and disjointness may or may not exist in the schemas. The notation ∃ER3 :
condition means that there is a real-world concept in the domain of the data
sources examined, that can be represented by an existing or non-existing schema
object ER3 that satisfies the condition. The notation � ∃ER3 : condition in the
definition of incompatibility means that there is no real-world concept that would
be represented by a schema object ER3 to satisfy the specified condition. We
term semantically compatible any two schema objects related by one of the
above semantic relationships, except incompatibility.

Schema Integration Based on Uncertain Semantic Mappings 35

During schema matching, the identification of the above semantic relation-
ships is accomplished by a bidirectional comparison. Our architecture consists of
a pool of experts that exploit different types of information to compare schema
objects, e.g. schema object names, cardinalities, instances, statistical data over
the instances, data types, value ranges and lengths. The experts produce sim-
ilarity degrees which are then aggregated, and with the help of user-defined
thresholds the semantic relationships between the schema objects are specified.
For example, the comparison of schemas S1 and S2 in Figure 1 could produce
the following semantic mappings:

S1.student
S
∩/ S2.student S1.course

S
/∼ S2.staff S1.reg

S
∩/ S2.reg

S1.student S
/∼ S2.course S1.staff S= S2.staff S1.reg

S
/∼ S2.tch

S1.student S
/∼ S2.staff S1.staff

S
/∼ S2.student S1.tch

S
/∼ S2.reg

S1.course S⊂ S2.course S1.staff
S
/∼ S2.course S1.tch

S
/∼ S2.tch

S1.course S
/∼ S2.student

The generation of schema S12 in Figure 2 is based on these mappings. However,
this ‘definite’ answer misses the fact that we may not be certain that some of
the above mappings are correct, and hence alternative integrated schemas exist.

2.2 Schema Merging

In [8], we have defined the merging of schemas based on the semantic map-
pings specified between their schema objects. Formal rules have been defined
that generate both-as-view (BAV) schema transformations [15] and merge two
schemas. The application of three such rules on entities E1 and E2 is illustrated
in Figure 3.

E2

�

E1

(a) E2
S⊂E1

E3

� �

E1 E2

(b) E1
S∩E2

E3

�

E1 E2

(c) E1
S
∩/E2

Fig. 3. Partial Integrated Schemas: ER Entity Subsumption, Intersection, Disjointness

Figure 3(a) illustrates the partial integrated schema that is created when a
subsumption relationship is identified between two ER entities, e.g. the superset-
subsumption relationship identified between entity course in S1 and course in S2.
We call it a partial integrated schema because it is just a part of the final inte-
grated schema. Figure 3(b) illustrates the partial integrated schema that is cre-
ated when an intersection relationship is identified between two entities, and Fig-
ure 3(c) shows the partial integrated schema created when a disjointness relation-
ship is identified between two entities, e.g. the two student entities in S1 and S2.

36 M. Magnani et al.

3 Uncertain Semantic Relationships

As already discussed in the introduction, an uncertain semantic mapping is a dis-
tribution of beliefs over the set of all possible semantic relationships. To represent
beliefs, we have adopted Shafer’s belief functions [16]. This choice is justified by
the fact that Shafer’s belief functions can represent the main kinds of uncertainty
present in schema matching (as illustrated in the Examples 1–5 that follow).

The basic concept of Shafer’s theory is a function called basic probability as-
signment (BPA), that assigns some probability mass to possible events. The set
of all possible elementary events is called frame of discernment, and is repre-
sented by the letter Θ. In our case, Θ is the set of semantic relationships defined
in Section 2, i.e. { S=,

S∩,
S⊂,

S⊃,
S
∩/,

S
/∼}. Possible events correspond to subsets of Θ.

For instance, the set { S=,
S∩} represents the event “The correct semantic relation-

ship is either equivalence or intersection”, and m({ S=,
S∩}) is the probability mass

supporting exactly this event.

Definition 1 (Basic Probability Assignment (BPA)). A function m :
2Θ → [0, 1] is called basic probability assignment whenever:

– m(∅) = 0
–

∑
A⊆Θ m(A) = 1

From a BPA function, we can compute the belief and plausibility of any
subset A of Θ.

Bel(A) =
∑
B⊆A

m(B) (1)

Pl(A) =
∑

B⊆Θ,B∩A �=∅
m(B) (2)

Belief in A is the sum of all probability masses assigned to subsets of A.
For example, let A be the set { S=,

S
/∼}. If we assign some probability mass to

the set { S=}, this increases our belief in all the events containing it. In fact, if
we have some evidence supporting the event “The true semantic relationship
is equivalence”, the same evidence increases also our belief in the event “The
true semantic relationship is either equivalence or incompatibility”. Plausibility
of A = { S=,

S
/∼} is the sum of all probability masses that are compatible with

{ S=,
S
/∼}. For example, some probability mass assigned to { S=,

S
∩/} tells us that A is

plausible, without increasing our belief in it, because the right relationship could
be disjointness. These definitions can be used to formally define an USR:

Definition 2 (Uncertain Semantic Relationship (USR)). An uncertain
semantic relationship between two schema objects A and B is a pair (Θ, m),
where Θ = { S=,

S∩,
S⊂,

S⊃,
S
∩/,

S
/∼} and m is a BPA.

In the following examples we present the main possible types of USRs, to
show that Shafer’s theory is expressive enough to represent all USRs that can
be found in schema integration.

Schema Integration Based on Uncertain Semantic Mappings 37

Example 1 (Certain Relationship). A certain semantic relationship is a special
case of USR, where all the probability mass is assigned to a singleton. For ex-
ample, a BPA m({ S=}) = 1 means that we are sure that the true relationship is
equivalence.

Example 2 (Probabilistic Relationship). We can use m to assign probabilities
to alternative relationships. A BPA m({S

∩/}) = .4, m({ S
/∼}) = .6 means that the

probability of disjointness is .4, while the probability of incompatibility is .6.

Example 3 (Non-specific Relationship). In many cases, we will only be able to
restrict Θ, i.e. to exclude some relationships. If we know that two objects are not
equivalent, and that the first cannot be a subset of the second, the corresponding
BPA will be m({S∩,

S⊃,
S
∩/,

S
/∼}) = 1.

Example 4 (Partial Ignorance). When we have some information supporting one
or more relationships, we should commit part of our belief to them. For instance,
a BPA m({ S=}) = .2, m({Θ}) = .8 means that we have some evidence that two
objects are equivalent, but we are not sure. Notice that in this case m does
not define probabilities. A typical problem with probabilities is the difficulty
to justify their precise numerical values. The BPA presented in this example is
much more flexible, as it corresponds to a belief Bel({ S=}) = .2 and a plausibility
Pl({ S=}) = 1, and thus defines a confidence interval [.2, 1] on the equivalence
relationship.

Example 5 (Total Ignorance). As a final example, consider a case in which we
have no information about two objects, or we do not want to compare them.
This can be very useful to compare parts of schemas, as we show in Section 3.1.
We can express our ignorance using the following BPA: m({Θ}) = 1.

3.1 Discovery of USRs

The concept of USR defined above is very intuitive, and is supported by a well
known theory at the same time. In this section we present an architecture to
discover USRs, and provide an example of schema matching between two entities
of S1 and S2.

As in the method described in Section 2, the comparison of schema objects is
performed by a pool of experts, each one specialized on some features. However,
to support the inherent uncertainty of schema matching, experts produce USRs.
The mapping between any two schema objects is computed by aggregating the
results of all the available experts. Our architecture is illustrated in Figure 4.

The aggregation of USRs is easily achieved by using Dempster’s combination
rule, that takes two BPAs over the same frame of discernment Θ as input [16].
Using this rule, the combination of experts’ beliefs is both based on a sound
theory and easy to implement. For every subset A of Θ, the combination of two
beliefs (defined by BPAs m1 and m2) is defined as:

m(A) =

{
0 if A = ∅∑

A1⊆Θ,A2⊆Θ,A1∩A2=A m1(A1)m2(A2)
1−∑

A1⊆Θ,A2⊆Θ,A1∩A2=∅ m1(A1)m2(A2)
if A �= ∅ (3)

38 M. Magnani et al.

. . .exp1 exp2 expn−1 expn

USR1 USR2 USRn−1 USRn

USR

Fig. 4. Architecture proposed to discover USRs

This rule can be used to combine the USRs produced by two experts. The
combination of the beliefs of n experts is obtained by iteratively applying it n−1
times.

After the application of the rule, it may happen that some semantic relation-
ships are supported by a very small amount of probability mass. In this case, we
can decide to dispose of them, and to keep only the relationships supported by a
significant amount of probability mass. Thresholds can be used for this purpose.
This is useful to improve efficiency, as it reduces the cardinality of the event
space, and it allows us not to consider possible semantic relationships that are
very unlikely to be the correct ones. However, in this paper we do not investigate
how to choose thresholds, as we focus on the theoretical aspects of our method.
In general, they can be found experimentally, or set up by the users.

Our architecture has many desirable features: (a) its implementation can be
focused on experts, that can be very small independent software agents, (b) it is
scalable, as experts can be deleted and added to the pool with no complexity, (c)
it is easily parallelizable, as experts can run on different and dedicated hardware,
and (d) experts can be software modules, equipped with data analysis tools, or
they can be humans, using software interfaces.

The only requirement on experts is to output USRs. Dempster’s rule can be
used as long as they do not contradict each other. Therefore, human experts
can cooperate with software agents to improve the quality of integration of large
schemas, thanks to Dempster’s combination rule. If a human expert knows or
identifies with certainty some relationships, the beliefs of other experts will not
be considered, as far as they do not state explicitly that the human USR is wrong.
At the same time, we can expect human experts to give their contribution on
some parts of the schemas, letting software agents compare the remaining schema
objects. This can be done by expressing total ignorance about the objects we
do not want to compare. Total ignorance does not influence the combination of
beliefs of other experts.

3.2 Examples

To clarify how USRs can be discovered, we present an example involving three
experts. However, the definition of experts lies outside the scope of this paper,
and we introduce them only to show how our architecture works. This example
focuses on the comparison of the two student entities in schemas S1 and S2.

The first expert compares the cardinality of two schema objects, i.e. the
number of instances belonging to them. If cardinalities are equal, subsumption

Schema Integration Based on Uncertain Semantic Mappings 39

is not possible. If the cardinality of the first object is greater than the other,
they cannot be equivalent and the second object cannot subsume the first one.
Notice that this expert assumes that all instances belonging to those objects
in the real world are stored in the database. It would be easy to improve the
expert so that some instances can be missing, using fuzzy comparisons. How-
ever, this is not needed in this example. The cardinality of S1.student is much
greater than that of S2.student, because there are much more undergraduate
students than postgraduates. Therefore, the first expert can exclude equiva-
lence and subset-subsumption. The USR produced by this expert is defined by
m1({S∩,

S⊃,
S
∩/,

S
/∼}) = 1.

The second expert compares object names, using an ontology. The ontology
stores information about the six relationships under consideration, when compar-
ing English words. For example, a subsumption relationship between the terms
undergraduate and student corresponds to some confidence on the fact that a
schema object whose name is undergraduate is a subset of a schema object called
student. Moreover, the expert would also have some (less) confidence about the
equality of the two corresponding objects. As it only compares the names of the
entities, the ontology-based expert will always assume to be possibly wrong. The
second expert, based on the identical names of student entities, might produce
the following BPA: m2({ S=}) = .7, m2({ S⊂,

S⊃,
S
∩/, S∩}) = .2, m2({Θ}) = .1.

The third expert compares the instances of two schema objects. For efficiency
reasons, it only compares a subset of the instances of S1.student with all the
instances of the S2.student entity, and vice versa. Obviously, the expert cannot
compare directly real-world objects, but must compare name, type, and values of
the entity identifiers in the ER schemas. This induces uncertainty on the result.
In our example, the third expert cannot find matches between the instances of
the two student entities, because an undergraduate cannot be a postgraduate and
vice versa. Therefore, it will support the set of relationships {S∩,

S
∩/}. However, as

already said, the expert cannot be certain of this information. Its USR is defined
by: m3({S∩,

S
∩/}) = .8, m3({Θ}) = .2.

The combination of m1, m2, and m3 is obtained by applying Dempster’s rule,
and produces the following USR:

m({S∩,
S
∩/}) = 4/5, m({S∩,

S⊃,
S
∩/}) = 2/15, m({S∩,

S⊃,
S
∩/,

S
/∼}) = 1/15.

Table 1. Belief, plausibility of alternative semantic relationships between students

Relationship Bel Pl

{S=} 0 0
{S⊂} 0 0
{S⊃} 0 1

5

{S∩} 0 1
{S

∩/} 0 1
{S

/∼} 0 1
15

40 M. Magnani et al.

This result is what we would expect from the combination of the three USRs.
The second expert assigns a large amount of probability mass to the equiva-
lence relationship, but this option is excluded by the first expert. For this rea-
son, equivalence is not considered in the final USR. The high probability mass
assigned to disjointness and intersection is justified by the fact that m1, m2
and m3 support these two relationships. In fact, all experts think that disjoint-
ness and intersection are plausible, and one of them (the third expert) believes
in it.

In Table 3.2 we have indicated belief and plausibility of every alternative
relationship. Notice that both S∩ and

S
∩/ are completely plausible, while S= and S⊂

are not plausible at all. The choice of further considering S⊃ and
S
/∼ in our analysis

depends on the threshold we set up. In our working example, we will not consider
them as they are not plausible enough, compared to S∩ and

S
∩/.

4 Uncertain Integrated Schema

This section presents the schema merging process of our methodology. Based on
schema matching and the discovered uncertain semantic relationships, several
possible integrated schemas can be created. We explain how the beliefs assigned
to the uncertain semantic relationships are propagated to these schemas and a
final uncertain integrated schema is produced. First, though, the dependencies
between the uncertain semantic relationships need to be examined and possible
conflicts need to be identified.

4.1 Dependencies Between Semantic Relationships

Consider again the two schemas S1 and S2. Similarly to Section 3.2, the uncertain
semantic relationships between the two reg ER relationships can be computed.
These two ER relationships have identical names but they do not have any
instances in common and particularly S1.reg represents a much larger set of
instances. Thus, the three experts described in Section 3.2 will produce the
same USRs as the ones produced for students. These are aggregated and the
highest probability mass is assigned to disjointness and intersection, m({S∩,

S
∩/}) =

4
5 . Because the rest of the alternatives have very small probability masses we

can safely assume that m({S∩,
S
∩/}) = 1. The same assumption will also produce

m({S∩,
S
∩/}) = 1 for the student entities. Finally, suppose that a human expert has

specified that the semantic relationship between the course entities is superset-
subsumption, m({ S⊃}) = 1, i.e. S1.course

S⊃ S2.course.
During schema merging, these produced USRs need to be combined. Table 2

illustrates all their possible combinations. Consider the second row of the table,
where S1.course

S⊃ S2.course, S1.reg
S∩ S2.reg and S1.student

S
∩/ S2.student. The inter-

section relationship between the two reg ER relationships specifies that there is
at least one common instance between S1.reg and S2.reg, i.e. there is a common
instance of S1.student and S2.student that is associated with a common instance

Schema Integration Based on Uncertain Semantic Mappings 41

of S1.course and S2.course. But, according to the second row of the table, the
student entities are disjoint and do not have any instances in common. There-
fore, the combination of semantic relationships in the second row of the table is
invalid.

Table 2. Possible combinations of alternative semantic relationships between course,
reg, and student schema objects

S1.course,S2 .course S1.reg,S2.reg S1.student,S2.student
S⊃ S∩ S∩
S⊃ S∩

S
∩/

S⊃
S
∩/ S∩

S⊃
S
∩/

S
∩/

This example manifests the existence of dependencies between the semantic
relationships of ER relationships and the semantic relationships of the associated
ER entities, and vice versa. In this paper, we focus just on binary ER relation-
ships. We have exhaustively examined their dependencies and we present in
Table 3 all the legal combinations.

The table considers the general case of two ER relationships: ER relationship
R1 that associates ER entities A1 and B1 and ER relationship R2 that associates
entities A2 and B2 (Figure 5). The first column of the table specifies the semantic
relationship between the entities A1 and A2, and the second column specifies
the semantic relationship between B1 and B2. The third column examines the
possible semantic relationships between R1 and R2.

A1 R1

LA1
:UA1

LB1
:UB1

B1 A2 R2

LA2
:UA2

LB2
:UB2

B2

Fig. 5. Two ER relationships: R1 and R2

Our previous example, where the intersection relationship between S1.reg
and S2.reg was invalid, is a case of A1

S⊂A2, B1
S
∩/B2 instantiated to S2.course

S⊂
S1.course, S2.student

S
∩/ S1.student. Row nine of Table 3 defines that in this case the

legal semantic relationships between R1 and R2, instantiated to S2.reg and S1.reg,
are only incompatibility and disjointness. Thus, the intersection relationship
between them is invalid, as previously shown.

In some cases, a semantic relationship between R1 and R2 can only be legal
when a cardinality condition is satisfied, e.g. we can have that A1

S=A2, A2
S=B2,

R1
S=R2 if and only if the cardinalities of R1 and R2 are identical (first row of

Table 3).
Except from dependencies between the semantic relationships of ER relation-

ships and the semantic relationships of their associated ER entities, there are

42 M. Magnani et al.

Table 3. Dependencies between entities and ER relationships

A1,A2 B1,B2 R1,R2

S= S=
S
/∼,

S
∩/, S∩: always possible,

S=: LA1=LA2 , UA1=UA2 , LB1=LB2 , UB1=UB2 ,
S⊂: LA1 ≤ LA2 , UA1 ≤ UA2 , ¬(LA1=LA2 , UA1=UA2=(1, 1)),

LB1 ≤ LB2 , UB1 ≤ UB2 , ¬(LB1=LB2 , UB1=UB2=(1, 1)),
S⊃: LA1 ≥ LA2 , UA1 ≥ UA2 , ¬(LA1=LA2 , UA1=UA2=(1, 1)),

LB1 ≥ LB2 , UB1 ≥ UB2 , ¬(LB1=LB2 , UB1=UB2=(1, 1)).
S=

S⊂
S
/∼,

S
∩/, S∩: always possible,

S=: LA1=LA2 , UA1=UA2 , UB1=UB2 , LB1=0,
S⊂: LA1 ≤ LA2 , UA1 ≤ UA2 , UB1 ≤ UB2 ,
S⊃: LA1 ≥ LA2 , UA1 ≥ UA2 , LB2=0, UB1 ≥ UB2 .

S=
S∩

S
/∼,

S
∩/, S∩: always possible,

S=: LA1=LA2 , UA1=UA2 , LB1=LB2=0,
S⊂: LA1 ≤ LA2 , UA1 ≤ UA2 , ¬(LA1=LA2=1, UA1=UA2=1),

LB1=0, UB1 ≤ UB2 ,
S⊃: LA1 ≥ LA2 , UA1 ≥ UA2 , ¬(LA1=LA2=1, UA1=UA2=1),

LB2=0, UB1 ≥ UB2 .
S=

S
∩/

S
/∼,

S
∩/: always possible.

S=
S
/∼

S
/∼: always possible.

S⊂ S⊂
S
/∼,

S
∩/, S∩: always possible,

S⊂: UA1 ≤ UA2 , UB1 ≤ UB2 ,
S⊃: UA1 ≥ UA2 , UB1 ≥ UB2 , LA2=LB2=0,
S=: UA1=UA2 , UB1=UB2 , LA2=LB2=0.

S⊂ S⊃
S
/∼,

S
∩/, S∩: always possible,

S⊂: LB1=0, UB1 ≤ UB2 , UA1 ≤ UA2 ,
S⊃: UA1 ≥ UA2 , UB1 ≥ UB2 , LA2=0,
S=: UA1=UA2 , UB1=UB2 , LA2=LB1=0.

S⊂ S∩
S
/∼,

S
∩/, S∩: always possible,

S⊂: LB1=0, UB1 ≤ UB2 , UA1 ≤ UA2 ,
S⊃: UA1 ≥ UA2 , UB1 ≥ UB2 , LA2=LB2=0,
S=: UA1=UA2 , UB1=UB2 , LB1=LB2=LA2=0.

S⊂
S
∩/

S
/∼,

S
∩/: always possible.

S⊂
S
/∼

S
/∼: always possible.

S∩ S∩
S
/∼,

S
∩/, S∩: always possible,

S⊂: LA1=0, UA1 ≤ UA2 , LB1=0, UB1 ≤ UB2 ,
S⊃: LA2=0, UA2 ≤ UA1 , LB2=0, UB2 ≤ UB1 ,
S=: LA1=LA2=0,LB1=LB2=0, UA1=UA2 , UB1=UB2 .

S∩
S
∩/

S
/∼,

S
∩/: always possible.

S∩
S
/∼

S
/∼: always possible.

S
∩/

S
∩/

S
/∼,

S
∩/: always possible.

S
∩/

S
/∼

S
/∼: always possible.

S
/∼

S
/∼

S
/∼: always possible.

Schema Integration Based on Uncertain Semantic Mappings 43

Table 4. Dependencies between schema objects of the same kind

A,B B,C A,C A,B B,C A,C
S=

S⊂ S⊂ S=
S⊃ S⊃

S=
S∩ S∩ S=

S
∩/

S
∩/

S=
S
/∼

S
/∼ S⊂ S⊂ S⊂

S⊂ S⊃ S=, S∩, S⊂, S⊃,
S
∩/, S

/∼ S⊂ S∩ S∩, S⊂,
S
∩/, S

/∼
S⊂

S
∩/

S
∩/, S

/∼ S⊂
S
/∼

S
∩/, S

/∼
S⊃ S⊃ S⊃ S⊃ S∩ S⊃, S∩
S⊃

S
∩/ S∩, S⊃,

S
∩/, S

/∼ S⊃
S
/∼ S∩, S⊃,

S
∩/, S

/∼
S∩ S∩ S=, S∩, S⊂, S⊃,

S
∩/, S

/∼ S∩
S
∩/ S∩, S⊃,

S
∩/, S

/∼
S∩

S
/∼ S∩, S⊃,

S
∩/, S

/∼
S
∩/

S
∩/ S=, S∩, S⊂, S⊃,

S
∩/, S

/∼
S
∩/

S
/∼ S∩, S⊂, S⊃,

S
∩/, S

/∼
S
/∼

S
/∼ S=, S∩, S⊂, S⊃,

S
∩/, S

/∼

also dependencies between the semantic relationships of the same type of con-
structs. Consider the following example. The ER relationship S1.tch subsumes
S2.tch but we might be uncertain about the semantic relationship between S1.reg
and S2.tch since both of them associate person identifiers with course identifiers.
S1.reg has a much larger set of instances than S2.tch, and therefore equivalence
and subset-subsumption relationships are excluded. Thus, from a comparison of
S1.reg and S2.tch a pool of experts could decide to support the set { S⊃,

S∩,
S
/∼} of

possible semantic relationships. However, since S1.reg and S1.tch are incompat-
ible, based on the structure of S1, and S1.tch subsumes S2.tch, the intersection
and superset-subsumption relationships between S1.reg and S2.tch are also ex-
cluded. Therefore, S1.reg and S2.tch must be incompatible.

This restriction of relationships is generalised in Table 4, where all legal com-
binations of semantic relationships between three objects A, B and C of the same
type of construct are defined. Objects B and C belong to the same schema thus
their semantic relationship can be derived from the schema structure. Semantic
relationships between A,B and A,C are discovered during schema matching. In
our example of S1.reg and S2.tch, A is instantiated to S2.tch and B,C to S1.tch
and S1.reg, respectively. If the semantic relationships S2.tch

S⊂ S1.tch and S1.tch
S
/∼ S1.reg are certain, then based on Table 4 S1.reg and S2.tch can only be disjoint
or incompatible.

4.2 Schema Merging

In the previous sections we compared student and reg schema objects, obtaining
a set of possible semantic relationships between them, with BPAs representing
our belief distribution. In particular, both student and reg schema objects could
be either disjoint or intersecting. This is shown in Table 2.

Now assume that S1.course
S⊃ S2.course and S1.tch

S⊃ S2.tch relationships are
certain, while the relationship between S1.staff and S2.staff could be S=, with a
probability of .7, or S⊃, with a probability of .3. We can build a complete table
(Table 5), that is an extension of Table 2, representing all possible combinations

44 M. Magnani et al.

of semantic relationships between all pairs of schema objects. In Table 5 we
have concentrated only on compatible objects. Each row of this final table corre-
sponds to a possible integrated schema, where each semantic relationship defines
a partial integrated schema, like those represented in Figure 3. For example, in
the possible integrated schema (a) of Table 5 staff entities are equivalent, while
in the possible integrated schema (b) S1.staff subsumes S2.staff. Based on this
table we can create the corresponding schemas. The schemas corresponding to
rows (a) and (b) of Table 5 are illustrated in Figure 6.

Table 5. Possible combinations of semantic relationships in the integrated schema

S1.stud.,S2.stud. S1.reg,S2.reg S1.course,S2.course S1.staff,S2.staff S1.tch,S2.tch
(a)

S
∩/

S
∩/ S⊃ S=

S⊃

(b)
S
∩/

S
∩/ S⊃ S⊃ S⊃

(c) S∩ S∩ S⊃ S=
S⊃

(d) S∩ S∩ S⊃ S⊃ S⊃

(e) S∩
S
∩/ S⊃ S=

S⊃

(f) S∩
S
∩/ S⊃ S⊃ S⊃

S2.student S1.student

student

�

S1.reg
1:N

1:N
S1.course

S2.course

�

S1.tch
1:1

1:N

S2.tch
1:1

0:N

staff

S2.reg
0:N

0:N

reg
0:N

0:N

(a)

S2.student S1.student

student

�

S1.reg
1:N

1:N
S1.course

S2.course

�

S1.tch
1:1

1:N

S2.tch
1:1

0:N
S2.staff

S1.staff

�

S2.reg
0:N

0:N

reg
0:N

0:N

(b)

Fig. 6. Two of the final alternative integrated schemas generated by our approach

Schema Integration Based on Uncertain Semantic Mappings 45

The BPA obtained as a combination of all the aforementioned USRs is defined
by m{(a), (c), (e)} = .7, and m{(b), (d), (f)} = .3. The corresponding beliefs
and plausibilities can be easily computed using (1) and (2). The meaning of this
BPA reflects the uncertainty on the partial integrated schemas. The set {(a),
(b), (c), (d), (e), (f)}, together with its BPA, is called an uncertain integrated
schema, and is the final product of our schema integration approach on our
working example.

From the uncertain integrated schema we can reconstruct all the previously
produced USRs. For example, we previously assigned a probability mass of 1
to the set of relationships { S=,

S∩} between the two student entities. This value
can be obtained from the uncertain integrated schema by adding together all
the probability masses assigned to combinations of possible integrated schemas
where S1.student

S
∩/ S2.student or S1.student S∩ S2.student. This corresponds to all

the rows of Table 5, i.e. all possible schemas. Similarly, if we sum all masses
assigned to possible combinations of schemas where S1.staff S= S2.staff, we obtain
.7, while for S1.staff

S⊃ S2.staff we obtain .3.

5 Conclusion and Future Work

In this paper we have presented a new method of schema integration. Differently
from other existing methods, our approach manages the inherent uncertainty in
(semi-)automatic schema matching, and supports six kinds of semantic relation-
ships between schema objects. These features are essential to cope with real
schema integration tasks, where many semantic relationships are possible, and
it is very unlikely to know all of them with certainty.

An analysis of the computational complexity of our method is outside the
scope of this paper. However, it is easy to identify two main possible causes of in-
efficiency related to the management of uncertainty. The first is the combination
of the USRs produced by the experts. In fact, the complexity of exact methods for
performing Dempster’s combination rule is exponential on the size of the frame of
discernment, because it must consider all its subsets in the worst case. However,
the frame of discernment in our method contains only six elements – our seman-
tic relationships. Therefore, the complexity of the combination is bounded by a
small constant. The second issue is the number of possible integrated schemas
generated by the method, that can be exponential on the number of schema
objects. However, in practice the output of our method will not be the set of
all possible integrated schemas, but only the most probable ones. The number
of schemas returned by the method can be decided in advance. Finally, an ap-
propriate use of thresholds can further reduce the number of schemas, without
losing significant information.

While the theory underlying our method has been presented in this paper, we
still need to experimentally verify its efficiency and effectiveness. In the future,
we are going to implement it as an extension of an existing schema integration
software [14].

46 M. Magnani et al.

References

1. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
VLDB Journal 10 (2001) 334–350

2. Bernstein, P.: Applying model management to classical meta data problems. In:
Proc. CIDR (2003) 209–220

3. Batini, C., Lenzerini, M., Navathe, S.: A comparative analysis of methodologies
for database schema integration. ACM Computing Surveys 18 (1986) 323–364

4. Bernstein, P.A., Pottinger, R.A.: Merging models based on given correspondences.
In: Proc. 29th VLDB Conference, Berlin (2003)

5. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming platform for generic
model management. In: Proc. SIGMOD, ACM Press (2003) 193–204

6. Hayne S., Ram S.: Multi-User View Integration System (MUVIS): An Expert
System for View Integration. In: ICDE (1990) 402–409

7. Spaccapietra, S., Parent, C.: View Integration: A Step Forward in Solving Struc-
tural Conflicts. IEEE TKDE, 6(2), (1994) 258–274

8. Rizopoulos, N., McBrien, P.: A general approach to the generation of conceptual
model transformations. In: Proc. CAiSE. LNCS, Springer-Verlag (2005)

9. Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with Cupid. In:
Proc. 27th VLDB Conference. (2001) 49–58

10. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map ontologies on
the Semantic Web. In: Proc. World-Wide Web Conference. (2002) 662–673

11. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: ICDE. (2002)
117–128

12. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data
integration. In: ICDE. (2005)

13. Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling
and evaluating automatic semantic reconciliation. VLDB Journal 14 (2005) 50–67

14. Rizopoulos, N.: Automatic discovery of semantic relationships between schema
elements. In: ICEIS (1). (2004) 3–8

15. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transfor-
mation rules. In: Proc. ICDE, IEEE (2003) 227–238

16. Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 47 – 62, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Combining Intention-Oriented and State-Based
Process Modeling

Pnina Soffer1 and Colette Rolland2

1 MIS Department, Faculty of Social Science, Haifa University,
Carmel Mountain, Haifa 35901, Israel

spnina@is.haifa.ac.il
2 Universite Paris1 Panthéon Sorbonne CRI, 90 rue de Tolbiac, 75013 Paris, France

Colette.rolland@univ-paris1.fr

Abstract. Business process modeling and design has gained importance in
recent years. Consequently, a large number of modeling languages have
emerged. Many of them lack formality, whereas some others support the
verification of the designed process. Most of existing modeling languages adopt
an operational view focusing on how the process is performed. By contrast,
others follow the human intention of achieving a goal as the force that drives
the process, and concentrate on what the process must do, i.e. on its rationale.
The aim of this paper is to combine intention-oriented modeling with formal
state-based modeling and achieve their synergy, benefiting from the advantages
of both. We use the Map formalism as an example of the former and the
Generic Process Model (GPM) as an example of the latter. The paper proposes
a procedure for converting a Map into GPM concepts, illustrates it with the
SAP Material Management Module and shows the benefits resulting from it.

1 Introduction

Conceptual modeling is aimed at representing the real world for purposes such as
understanding, communicating, and reasoning in the process of information systems
analysis and design. An important area that emerged in recent years is business process
modeling, whose main focus is capturing behavioral aspects of the world, but it also
relates to other aspects. Various types of process modeling languages and formalisms
have emerged, supporting a variety of purposes. The existing formalisms can be
roughly classified according to their orientation to activity-sequence oriented
languages (e.g., UML Activity Diagram), agent-oriented languages (e.g., Role-Activity
Diagram [7]), state-based languages (e.g., UML statecharts), and intention-oriented
languages (e.g., Map [9]). Many of these languages lack formality, and serve as a
graphical tool assisting in the creative task of process and IS design. The lack of
formality makes the analysis and verification of the designed processes a difficult task.

The concept of goal is central in business process modeling and design. It is
included in many definitions of business processes (e.g., “a business process is a set
of partially ordered activities aimed at reaching a goal” [6]). However, most process
modeling languages do not employ a goal construct as an integral part of the model.
This is sometimes justified by viewing these models as an “internal” view of a
process, focusing on how the process is performed and externalizing what the process
is intended to accomplish in the goal [5].

48 P. Soffer and C. Rolland

In contrast, intention-oriented process modeling focuses on what the process is
intended to achieve, thus providing the rationale of the process, i.e. why the process is
performed. Intention-oriented process modeling follows the human intention of
achieving a goal as a force that drives the process. As a consequence, goals to be
accomplished are explicitly represented in the process model together with the
different alternative ways for achieving them, thus facilitating the selection of the
appropriate alternative for achieving the goal.

Process goals are also present in some state-based modeling formalisms (e.g., [2]).
However, as opposed to intention oriented goals, in state-based modeling a goal
stands for a state or a set of states on which the process terminates. State-based
modeling captures a process as a flow of states, leading to the goal state. This
representation of a process takes a structural view rather than an intentional view, and
can be formal enough to provide a basis for analyzing the properties of a process
model and its validity [13].

The main difference between the goal concept in intention-oriented modeling and
state-based modeling is that in the former, while aiming at representing the human
intention, goals are not formally defined and may bear a rather vague meaning. In the
latter, in contrast, goals are formally defined, but are not directly related to the human
intention.

The aim of this paper is to combine intention-oriented modeling with state-based
modeling and achieve their synergy, benefiting from the advantages of both. The
intention-oriented modeling notation we use is the Map formalism [9, 11], and the
state-based modeling notation is the Generic Process Model (GPM) [12, 13]. The
Map notation is intuitive and easy to apply and understand. It is particularly suitable
for representing unstructured processes, whose sequence of activities may vary in
different situations, or processes including variability (e.g. product lines, ERP or
adaptable processes), whose sequence of activities is selected at run time depending
on the situation at hand. However, Maps are not formally defined, hence there is no
structured procedure for analyzing a Map for deficiencies and invalidity. Furthermore,
while the map concepts are intuitively understood, there is no precise definition to
their semantics. We suggest a procedure for converting a Map to the state-based
concepts of GPM, and use the formality and precision gained in order to achieve a
better understanding of the concepts underlying the map. In particular, this
understanding provides insights to the essence of acting on an intention. The result is
an intention-oriented model which is formally defined and can be analyzed for
completeness and validity.

The remainder of the paper is organized as follows: Section 2 provides an
overview of both modeling formalisms, Map and GPM; Section 3 interprets Map
concepts in GPM terms; Section 4 presents a procedure for transforming Map
representation into GPM model, illustrates it by an example, and demonstrates how a
model can be analyzed and improved by applying this transformation; conclusions are
given in Section 5.

2 The Map and GPM Formalisms

This section provides an overview of both modeling formalisms, the Map and GPM.

 Combining Intention-Oriented and State-Based Process Modeling 49

2.1 An Overview of Map

In this section we introduce the concept of a map and illustrate it with the Material
Management map (MM map), based on the information provided in [1] regarding the
SAP R/3 Materials Management module.

The Map representation system allows to represent a process model expressed in
intentional terms. It provides a representation mechanism based on a non-
deterministic ordering of intentions and strategies.

A map is a labeled directed graph (Figure 1) with intentions as nodes and
strategies as edges. An edge enters a node if its strategy can be used to achieve the
intention of the node. Since there can be multiple edges entering a node, the map is
capable of representing many strategies that can be used for achieving an intention.

An intention represents a goal that can be achieved by the performance of a
process. For example, the MM map in Figure 1 has Purchase Material and Monitor
Stock as intentions. Furthermore, each map has two special intentions, Start and Stop,
to respectively start and end the process.

A strategy is an approach, a manner to achieve an intention. In Figure 1 Manual
strategy is a manner to manually generate an order to Purchase Material.

A section is a key element of a map. It is a triplet as for instance <Start, Purchase
Material, Planning Strategy> which couples a source intention (Start) to a target
intention (Purchase Material) through a strategy (Planning strategy) and represents a
way to achieve the target intention Purchase Material from the source intention Start

following the Planning Strategy. Each section of the map captures a specific manner
in which the process associated with this goal can be performed. A section may be
recursive when its source and target intentions are the same. In Figure 1, the section
<Purchase Material, Purchase Material, reminder strategy> is recursive.

Sections of a map are connected to one another. This occurs:

(a) When a given goal can be achieved using different strategies. This is
represented in the map by several sections between a pair of intentions. The
topology corresponding to the case where several strategies can be selected
is called a multi-thread. In Figure 1 the multi-thread between Start and
Purchase Material represents the two ways in which the Purchase Material
intention can be achieved (manually and by planning). When the strategies
are mutually exclusive, sections are said to constitute a bundle, specified by a
dotted line and refined in a separate map. In Figure 1, Planning strategy is a
bundle composed of two exclusive strategies to achieve the Purchase
Material intention, namely By reorder point planning and by forecast based
planning, as shown in Figure 2. Only one of these can be selected each time
the Planning strategy is taken.

(b) When an intention can be achieved by several combinations of strategies.
This is represented in the map by a pair of intentions connected by several
sequences of sections. Such a topology is called a multi-path. In Figure 1
there are five paths leading from Start to Monitor Stock.

In general, a map is a multi-path from Start to Stop and contains bundles and
multi-threads. Figure 1 contains several paths from Start to Stop to handle the
“normal cases” and complete the process (i.e. to achieve the Stop) through the

50 P. Soffer and C. Rolland

Purchase Material and the Monitor Stock intentions. This map also allows
exceptional cases as, for instance, with the path that directly allows to Monitor Stock
following the By Bill for Expenses strategy.

Fig. 1. The material management map

Purchase
material

Start Reorder Point
strategy

Forecast
based
strategy

Fig. 2. The Planning strategy bundle

Finally, a section of a map can be refined as another map. This happens when it is
possible to view the section as having its own intentions and associated strategies.
The entire refined map then represents the section.

As a consequence of its intentional orientation, a map does not represent a flow of
tasks. Rather, it presents a non deterministic ordering of intention / strategy selections
to accomplish the main process intention. Besides, given the multi-path and multi-
thread topologies, a map is able to present a global perspective of the diverse ways of
achievement the process intention. The map of Figure 1 for example, shows 25 paths
from Start to Stop, 5 following the Bill for Expenses strategy, 10 following the
Planning Strategy, and 10 following the Manual strategy. All these paths allow to
achieve the main process intention namely, Satisfy Material Need Efficiently.

 Combining Intention-Oriented and State-Based Process Modeling 51

The Map was selected as the intention-oriented model to be formalized in this
paper because, unlike other intention-oriented models (e.g., i* [15]), it captures the
flow of a process and establishes a direct relation between a goal and the actions that
can be taken in order to achieve it. As well, maps employ a small set of constructs (as
compared to i*) and therefore allow us to concentrate on the concept of intention and
the way it drives a process.

2.2 An Overview of GPM

GPM is based on Bunge’s ontology [3, 4], as adapted for information systems
modeling (e.g., [8, 14]), for conceptual modeling, and for modeling business process
concepts.

According to the ontological framework, the world is made of things that possess
properties. Properties can be intrinsic (e.g. height) to things or mutual to several
things (e.g. a person works for a company). Things can compose to form a composite
thing that has emergent properties, namely, properties not possessed by the
individuals composing it. Properties (intrinsic or mutual) are perceived by humans in
terms of attributes, which can be represented as functions on time. The state of a
thing is the set of values of all its attribute functions (also termed state variables).
When properties of things change, these changes are manifested as state changes or
events. State changes can happen either due to internal transformations in things (self
action of a thing) or due to interactions among things. Not all states are possible, and
not all state changes can occur. The rules governing possible states and state changes
are termed state laws and transition laws, respectively. States can be classified as
being stable or unstable, where an unstable state is a state that must change by law,
and a stable state is a state that can only change as a result of an action of something
external to the thing or the domain.

A domain is a part of the world of which we wish to model changes, and
represents the scope of our control. A domain is a set of things and their interactions,
and is represented by a set of state variables, which stand for the intrinsic and mutual
properties of these things, including emergent properties of the domain itself. A sub-
domain is a part of the domain, represented by a subset of the domain state variables.
A sub-domain may be in a stable state while the entire domain is in an unstable state,
meaning that a different part of the domain is currently subject to changes.

A process is a sequence of unstable states, transforming by law until a stable state
is reached. A process is defined over a domain, which sets the boundaries of what is in
a stable or an unstable state. Events that occur outside the domain are external events
and they can activate the domain when it is in a stable state.

A process model in GPM is a quadruple <S, L, I, G>, where S is a set of states
representing the domain of the process; L is the law, specified as mapping between
subsets of states; I is a subset of unstable states, which are the initial states of the
process after a triggering external event has occurred; G is a subset of stable states,
which are the goal of the process. Subsets of states are specified by conditions defined
over criterion functions in the state variables of the domain. Hence, a process starts
when a certain condition on the state of the domain holds, and ends when its goal is
reached, i.e., when another condition specified on the state of the domain holds. For
example, the initial set of a production process can be specified as {s| Production

52 P. Soffer and C. Rolland

Order Status = “Released” AND Materials = “Available” AND Resources =
“Available”}, which is a set of unstable states (that became unstable by the release of
the production order). The goal of this production process can be specified as {s|
Production Order Status = “Completed” AND Quality = “Approved”}, which is a set
of stable states. The states in the goal set may differ from each other in the values of
state variables such as production time and cost. Nevertheless, they all meet the
condition specified. The criterion function defines the set of state variables that are
relevant for determining that the process has reached its goal.

3 Interpreting Map in GPM Terms

In this section we interpret the concepts of Map in GPM terms and establish a set of
concepts which is common to both formalisms.

3.1 Basic Concepts

A Map is specified as a set of intentions or goals to be achieved, and strategies for
achieving them. The goals can be interpreted as sets of desired states, on which the
strategies terminate. However, taking an action (strategy) aimed at reaching a goal
does not necessarily end in attaining it. Some goals may require a number of actions
to be performed before being achieved. In other cases an action may or may not
achieve the goal, and, based on the result accomplished, that action may be repeated
or another action may be taken. Still, the Map notation specifies every strategy as
leading to an intention, even if it is not able to immediately achieve the goal. In fact,
the intention a strategy leads to specifies why this strategy is taken rather than the goal
it actually achieves. Hence, transforming this into state-based concepts, we may view
an intention to which a strategy leads as having a ”core”, which is the goal to be
attained, and a broader set of states in which some action towards attaining the goal
has already been performed. Taking an action (strategy) aimed at reaching the goal,
does not necessarily end in attaining the goal, but should reach a state which is closer
to that goal than the one prior to the action. All the strategies that lead to a given
intention must at least end in a state where some action towards attaining the goal has
been done.

Hence, defining an intention in state-based terms should include two parts: a basic
subset of states indicating that some action has been performed, and the goal set.

Formally expressed:
An Intention I is specified as <BI, GI>, where BI is the intention Basic subset of

states and GI is the intention Goal.
Being “in” an intention I means being in a state s∈BI. The Goal set is, naturally, a

subset of the basic set of the intention, GI⊆BI. Based on the GPM notation, all the
subsets of states are specified in terms of conditions over criterion functions.

For example, BI of the intention Purchase Material in Figure 1 is the set of states
where a purchase order was issued, and GI is the set of states where the goods arrived
from the supplier.

A strategy is an action by which an intention can be achieved.

 Combining Intention-Oriented and State-Based Process Modeling 53

A section in a Map is comprised of a source intention, a target intention, and a
strategy leading from the source to the target. In GPM terms, a section is a mapping
between subsets of states, hence it specifies the law. When going from one intention
to another, a strategy may be selected based on (a) preferences and success
expectations, or (b) the current situation. The latter case means that a strategy does
not necessarily start on any state s∈BI. Rather, it can start on a subset of the states in
the Basic subset of its source intention. Similarly, it leads to a state belonging to a
subset of its target intention Basic set, which is a result of the specific actions of the
strategy. In Figure 1 the Bill for Expenses strategy will start on a subset of
“emergency” states, and end on a subset of states where goods arrive and expenses are
billed for. Two or more strategies that share a common initial subset of states are a
bundle. It is therefore clear that a section is not only defined by the Basic set of its
source and target intentions, but by more specific subsets of initial and final states.
Formally expressed:

A section S from intention I to intention J is a mapping between an initial subset
of states IS and a final subset of states FS, such that:

(a) IS ⊆ BI
(b) FS ⊆ BJ

Going from intention I to intention J means trying to achieve the goal of J. Even if
this goal is not achieved, the strategy taken should result in a state which is “closer” to
that goal than the one prior to the action taken. We would like to be able to state that
|GJ - FS| < |GJ - IS|. This is obvious when the section includes two different intentions,
leading from intention I to J, since the desired goal GJ⊆BJ, on which the section ends.

However, for recursive sections, whose source and target intentions are the same
one, the notion of distance between subsets of states should be examined.

Assume the goal criterion function relates to a single state variable (i.e., it has a
single dimension). We shall also assume that this state variable exists in a domain of
values where the operators >, <, = hold. This means that there is some kind of
ordinality in the values that may be attained by state variables. This ordinality may be
numerical, preference-based, or a result of procedural sequence. Then, moving along
this dimension, the distance from the goal changes, and one can clearly identify that a
strategy ends on a state which is closer to the goal than the state before. However, a
criterion function may relate to a number of state variables (i.e., be multi-
dimensional). Furthermore, these dimensions may have trade-off relations among
them. Computing a precise distance from the goal in such situations may involve
weighing techniques, thus the computed distance would depend on the weight
assigned to each dimension. Nevertheless, changes in the distance with respect to
each dimension separately can still be straightforward and easily perceived.

As an example, assume an intention of improving a production process. The
improvement may be in terms of cost, time, and quality, which have trade-off
relations among them. The improvement intention can be achieved through different
strategies: cost-reduction strategy, quality-improvement strategy, time-reduction
strategy, and so on. However, the cost-reduction strategy may inversely affect the
product quality, the quality-improvement strategy may increase the cost, the time-
reduction strategy may decrease the cost but damage the quality, etc. Yet, they are all
valid strategies.

54 P. Soffer and C. Rolland

For any practical purpose, we may assume the process designer can clearly
identify and evaluate whether a strategy “contributes” to achieving a goal along each
dimension, and whether a final subset of states is “closer” to a goal set. For such
purposes, a move along at least one dimension will be sufficient for determining that
such contribution is made, and we can expect different strategies to contribute along
different dimensions. Furthermore, a Map is a model that specifies possible and
alternative paths (combinations of strategies), thus facilitating the selection of an
appropriate strategy at run time, when the process is executed. Such selection may
take into account trade-offs among dimensions and assign appropriate weights in the
course of the decision making. However, this decision and its factors are situation-
dependent, and not a part of the process modeling and design phase.

In summary, the computation of an absolute distance between subsets of states is
situation dependent. The strategies in a map should clearly reduce the distance from
the goal set along one dimension, thus establish a possible path to be taken, where the
actual decision whether to take this path can be made in run time.

3.2 Section Classification

To gain more understanding about the nature of processes modeled by Maps, we shall
now elaborate on types of sections, and differentiate them to classes based on their
behavior. A section may either be recursive or non-recursive. Its initial subset of
states (IS) is a subset of the basic set of its source intention, and its final subset of
states (FS) is a subset of the basic set of its target intention. As discussed above, the
final subset of states should be defined so that the section ends in a state whose
distance from the goal is smaller than the initial distance.

Figure 3 outlines possible cases of sections, their initial and final subsets with
respect to their source and target intentions.

Cases 1 and 2 are cases where the strategy leads to a state closer to the goal than
the initial state, but not to the goal itself. In case 1 the strategy leads from intention I
to intention J. Its initial set is a subset of the goal of I, as this goal must have been
achieved before proceeding to the next intention. Reaching intention J means reaching
a state where some action towards attaining the goal has been performed, but has not
actually achieved the goal. It might be that the goal requires a number of actions to be
performed, in which case a recursive strategy can be taken, or that the goal
achievement depends on an external event yet to occur. For example, one may have
an intention of calling a meeting to discuss a certain issue. A strategy of preparing a
presentation and materials for discussion will bring to a state which is closer to the
goal, but the goal itself will not be achieved until the other participants will arrive.

Case 2 is of a recursive strategy, going between two subsets of the same intention,
getting closer to the goal, but not reaching it. A recursive strategy can be taken only
after some action towards the goal has already been performed, so the current (initial)
state belongs to the basic set of the intention. For example, after preparing the
presentation and material for the meeting discussed earlier, a recursive strategy of this
type would be to send reminders to all the participants. This strategy is a move in the
direction of the goal (the meeting), but cannot reach the goal itself.

Cases 3 and 4 are cases where the strategy may lead to the goal and may not, as its
final set of states partly overlaps the goal set. These are cases where only after an

 Combining Intention-Oriented and State-Based Process Modeling 55

Fig. 3. Possible cases of Initial and Final subsets of sections

action was taken one can see if the goal has been achieved or if another (recursive)
strategy should be taken. For example, when a mechanic tries to fix a car, he cannot
be certain that the action he is taking will solve the problem indeed. If the problem is
not solved, then he uses the new information he gained to reassess the situation and
decide what his next strategy will be. In other words, the strategies that belong to
cases 3 and 4 have a potential of reaching the goal, but are not certain to do so. If the
goal is not reached by them then a recursive strategy is still needed.

Cases 5 and 6 are cases where the strategy leads to the goal directly and with
certainty. For example, producing an item is a strategy that leads to the goal of having
the item available.

It may seem as if there is a seventh case, which is unique to intentions of
maintaining a certain state that has already been reached. In such cases some
recursive strategies are aimed at verifying that the desired state is not violated. As an
example, consider the intention of keeping one’s body in a good health, which has a
recursive strategy of periodical physical examinations. It may seem that the initial
state of such strategies is in the goal set. However, it is not certain to be so.
Uncertainty makes the initial state of these strategies to be outside the goal set, and
verification brings the final state back to being in the goal.

I
BI

GI

IS

I
BI

GI

IS

I
BI

GI

IS

J
BJ

GJFS
S

J
BJ

GJFS
S

J
BJ

GJ

FS
S

I
BI

GI

FS

IS

I
BI

I BI

IS

FS

FS

GI

GI

IS

S

S

S

Non-recursive sections Recursive sections

1 2

3 4

5 6

56 P. Soffer and C. Rolland

The above analysis leads to the following general results:

Result 1: Let S be a non-recursive section (I, J, s) then IS⊆GI.

This result is based on the assumption that a new intention will be sought only
once the former one has been achieved. This is true in most cases. However, there are
cases where an intention is temporal, and ceases to exist at a moment in time even if it
is not achieved. For example, the intention of saving a drowning person will cease to
exist when it is clear that the person cannot be saved anymore. Then the strategy
leading to whatever the next intention is, will not start at the goal set of the current
intention.

Result 2: Let S be a recursive section (I, I, s) then IS∩GI = ∅.

This result is straightforward, since a recursive strategy is not needed and will not
be performed if we are already at the goal set of the intention.

4 Representation Transformation and Process Analysis

In this section we propose a procedure for transforming a Map to a GPM model,
demonstrate it using the material management example, and discuss the insights that
can be gained by this transformation.

4.1 The Transformation Procedure

Based on the concepts discussed and defined in Section 3, transforming a map to a
GPM model would include the following steps:

1. Define each intention:
(a) The intention Goal GI, in terms of conditions over criterion functions.
(b) The intention Basic Set BI, in terms of conditions over criterion functions,

specifying states where some action towards the goal has been
performed. GI⊆BI.

(c) The Start and Stop intentions can be defined as sets of states without
distinction between a Basic Set and a Goal set.

2. Define sections as the law: a mappings between subsets of states (IS and FS),
applying the following:
(a) If the section is between two different intentions I and J, then:

i. The initial set IS⊆GI, where the conditions additional to the Goal
condition specify the situation in which a certain strategy is to be
taken.

ii. The final set FS⊆BJ, where the conditions additional to the Basic Set
condition specify the situation after the actions that were performed
as part of the specific strategy.

(b) If the section includes a recursive strategy from an intention I to itself,
then:

 Combining Intention-Oriented and State-Based Process Modeling 57

i. The initial set satisfies IS⊆BI and IS∩GI = ∅.
ii. The final set FS should be closer to GI at least along one dimension

of the GI criterion function.
(c) Bundles are addressed as sets of sections, whose IS is mutual.

3. Repeat for each section refinement, placing IS as the Start intention of the
refined map and FS as the Stop intention of the refined map.

To demonstrate the procedure, we shall use the material management example, and
transform the map shown in Figure 1 to GPM representation. For simplicity, we shall
not elaborate on the details of the bundles included in the map.

Step 1: Intention Definition
The states defining the intentions are specified and explained in Table 1.

The Start and Stop intentions specify states where nothing has been done and
where the specific material handling is finished, respectively. Notice that the Goal
conditions form subsets of the sets specified by the Basic conditions for the intentions
of Purchase Material and Monitor Stock.

Table 1. Intention definition

Intention Basic condition Goal condition Explanation
Start (Purchase Requisition: not existing)

AND (Purchase Order: not existing)
AND (Bill for Expenses: not existing).

Start is when nothing has
been done for purchasing

Purchase
Material

Purchase Order
Status ≤
“delivered”

Sourced Goods =
“arrived”

Basic condition is that a
purchase order exists. The
goal is the arrival of
material.

Monitor
Stock

Sourced Goods =
”in stock”

Stock
Data(attributes) =
Stocked
Goods(properties)

Basic condition is the
existence of material in
stock. Monitoring is
keeping the data an
accurate representation of
reality.

Stop (Invoice = “verified”) AND [(Payment
= “authorized”) XOR (Payment =
“blocked”)]

Stop is when payment of
purchased goods is passed
to the finances module.

Step 2: Define Sections as the Law
The states defining the sections are specified and explained in Table 2. The Initial and
final conditions of each section include the basic or goal conditions of the relevant
intentions (depending on the section type), and additional conditions. The sections are
marked according to their mark in Figure 1. The explanations provide some additional
assumptions made about the initial and final states of the sections.

58 P. Soffer and C. Rolland

Table 2. Section definition

Section Initial condition Final condition Explanation
C1

(Purchase Requisition: not
existing) AND (Purchase_
Order: not existing) AND
(Bill for Expenses: not
existing) AND (Material
Planning Type =
“automatic”)

(Purchase Order Status <
“delivered”) AND
(Requisition Status =
”converted to order”)

The planning strategy
applies to materials whose
planning type is defined as
automatic. Requisitions are
generated and converted to
orders

C2

(Purchase Requisition: not
existing) AND (Purchase
Order: not existing) AND
(Bill for Expenses: not
existing) AND (Material
Planning Type = “manual”)

(Purchase Order Status <
“delivered”) AND
(Requisition Status =
”approved”)

The manual strategy applies
to materials whose planning
type is defined as manual.
Requisitions are generated
and approved.

C3

(Purchase Requisition: not
existing) AND (Purchase_
Order: not existing) AND
(Bill for Expenses: not
existing) AND (Required
Date – Current Date < XX)

(Sourced Goods = “in
stock”) AND (Expenses
Billing = “registered”)

The bill for expense strategy
applies when the material is
needed suddenly and
urgently, for a date which is
less than XX days from the
current

C4

(Purchase Order Status <
“delivered”) AND (Delivery
Date < Current Date)

(Purchase Order Status <
“delivered”) AND (Order
History: Reminder
registered)

The reminder strategy is
taken when the delivery
date passed. It sends a
reminder and registers it.

C5

(Purchase Order Status <
“delivered”) AND (Sourced
Goods = “arrived”)

(Sourced Goods = “in
stock”) AND (Purchase
Order status =
“delivered”)

The out-in strategy is taken
when goods arrive and puts
them in stock.

C6

(Sourced Goods = “in stock”)
AND (Reservation Request)

(Sourced Goods = “in
stock”) AND (Stock
Status = “reserved”)

Stock status records a
reservation request for the
attributes to match reality

C7

(Sourced Goods = “in stock”)
AND (Quality = “not
verified”)

(Sourced Goods = “in
stock”) AND (Quality =
“approved”)

The quality attribute reflects
uncertainty until quality is
verified and approved

C8

(Sourced Goods = “in stock”)
AND (Balance checking =
“needed”)

(Stock Data(attributes) =
Stocked
Goods(properties)) AND
(Stock Documents =
“generated”)

The balance strategy serves
for verifying and
documenting that the data
attributes match reality

C9

(Sourced Goods = “in stock”)
AND (Material Value = “not
recorded”)

(Sourced Goods = “in
stock”) AND (Material
Value = “recorded”)

Recording the material
value sets the value attribute
to match reality

C10

(Sourced Goods = “in stock”)
AND (Movement Request)

(Sourced Goods = “in
stock”) AND (Inventory
Transaction = “recorded”)

Recording a physical
movement so location data
matches reality

C11

(Stock Data(attributes) =
Stocked Goods(properties))
AND (Invoice = “arrived”)

(Invoice = “verified”)
AND [(Payment =
“authorized”) XOR
(Payment = “blocked”)]

Verifying the invoice and
authorizing/blocking its
payment

 Combining Intention-Oriented and State-Based Process Modeling 59

Note, that most of the recursive sections of the Monitor Stock intention are not
assumed to lead with certainty to the goal (which is a full match between the stock
data as registered and its real properties). This is because each strategy contributes to
the accurate representation with respect to a specific issue only (e.g., quality, location,
reservation, etc.). These strategies may get to the goal along one of its dimensions,
while the other dimensions are not involved. The only strategy that leads to the goal
with certainty is the Inventory Balance strategy, where the accuracy of the data is
verified completely.

The example used here does not include section refinements, hence, step 3 of the
procedure shall not be demonstrated. A refinement of the section <Purchase Material,
Monitor Stock, Out-In strategy> is presented in [10]. Applying the procedure to this
refinement, the Start intention would be specified by the condition (Purchase Order
Status < “delivered”) AND (Sourced Goods = “arrived”) and the Stop intention would
be specified by (Sourced Goods = “in stock”) AND (Purchase Order Status =
“delivered”).

4.2 Process Analysis

Transforming a Map representation to GPM representation enables identification of
anomalies and deficiencies in the represented process. In particular, we may find
indications for incompleteness of the specification and discontinuity of the process.

Deficiency of specification may be indicated by one of the following three cases:

(1) An intention in which the Basic Set includes states where no outgoing strategy is

defined. Formally expressed: φ≠−
⊆
U

IS BI
SI IB .

(2) An intention for which no strategy leads to the Goal set (i.e., all its ingoing
strategies belong to cases 1 and 2 according to the classification of Figure 3).
Formally: Fs∩GI = ∅ for every S leading to I.
(3) A section (except sections including the Start intention) for which no strategy
leads to the initial set. Formally: FS’∩IS=∅ for every S’≠S.

Case (1) is definitely a case of incompleteness, since it indicates the existence of
states for which the law does not specify how to proceed. Assume the section <Start,
Purchase Material, Bill for expenses > is not in figure1. Thus, due to the (Bill for
Expenses : not existing) part of the basic condition of Start, this rule would help
discovering the map is lacking a strategy.

Cases (2) and (3) may either indicate incompleteness or discontinuity.
In case (2): if the intention goal can only be achieved as a result of an external

event then the process is non-continuous. Otherwise, a strategy for achieving the goal
needs to be defined for the law to be complete.

In the material management example, the Purchase Material intention does not
have any strategy that leads to its goal. The goal, which is the arrival of goods, can
only be obtained by an external event. As suggested in [10, 13], in such cases a
reminder strategy is needed in order to make sure that the process will not be waiting
for that external event indefinitely. It is also possible to specify an exception handling
strategy, to be taken if the external event does not occur after the reminder strategy

60 P. Soffer and C. Rolland

has been taken. The exception handling strategy will cancel the purchase order and
terminate the process.

In case (3): if the initial set of a section can only be achieved as a result of an
external event then the process is non-continuous. Otherwise, a strategy for reaching a
state where the next step can begin needs to be defined for the law to be complete.

In the material management example the Financial Control strategy can only start
when an invoice has arrived (external event). A reminder strategy is needed in order
to make sure that this happens. However, there is no explicit intention to which such
strategy should lead. This may indicate that payment for goods is an intention by
itself, which should be separated from the Stop intention.

The result of the analysis is presented in Figure 4.

Stop

Planning
strategy

Start

Purchase
Material

Monitor
Stock

Out-In
strategy

Bill for
expenses
strategy

Reminder
strategy

Quality
inspection
strategy

Inventory
balance
strategy

Valuation
strategy

In-In strategy

Invoice
reminder
strategy

Manual
strategy

Financial
control
strategy

Pay for Goods

Exception
strategy

Archiving
strategy

Debt recovery
strategy

Stop

Planning
strategy

Start

Purchase
Material

Monitor
Stock

Out-In
strategy

Bill for
expenses
strategy

Reminder
strategy

Quality
inspection
strategy

Inventory
balance
strategy

Valuation
strategy

In-In strategy

Invoice
reminder
strategy

Manual
strategy

Financial
control
strategy

Pay for Goods

Exception
strategy

Archiving
strategy

Debt recovery
strategy

Fig. 4. Modified material management map

The new material management map includes an Exception strategy, leading from
the Purchase Material intention to the Stop intention to be taken in cases of failure to
receive the goods from the supplier. This strategy includes canceling the purchase
order, so the process can start again.

As well, a new intention of Pay for Goods is added to the map. The Financial
Control strategy leads to this intention, and it also has a recursive strategy of Invoice
Reminder, aimed at assuring that the invoice arrives from the supplier and the process
is not held waiting for it.

An Archiving strategy leads to the Stop intention. The Archiving strategy includes
archiving the process data (purchase order, payment details, etc.) once the process is
completed. We need to add as well a Debt recovery strategy to handle the case where
the external event does not occur after the reminder strategy has been taken.

 Combining Intention-Oriented and State-Based Process Modeling 61

5 Conclusion

By combining the map and GPM we arrived at a formalism which precisely defines
how human intentions drive a process. The result is an intention driven approach to
process modeling that supports the analysis and verification of a designed map.

Modeling a business process in map terms provides an intentional view of what
the process aims to achieve and the different ways to do it. Intentions in the map
express goals to be attained and hide the details of how to implement them. Strategies
are made explicit thus showing the different ways of achieving a goal. Finally, the
map, as a multiple assembly of goals with multiple ways of achieving them,
represents multiple variations in a business process.

Transforming a business process representation in map terms into GPM concepts
provides a state-based formalisation of a map which is conducive to analysis and
verification. We showed how reasoning on intention and section sets of states can
help identifying incompleteness in the map specification. The basis of this reasoning
is the clear distinction between the ultimate goal of an intention and its basic set,
where some actions are already done, but the goal is not reached yet. This distinction
led to the section classification presented in the paper, which corresponds to the
validity analysis guidelines of GPM. Since the reasoning is semantic rather than
technical, it is applicable to process models at a variety of scales.

However, it is clear that process analysis needs to be guided and we expect to lay
down guidelines to help detecting anomalies and deficiencies in the represented
process. It seems also, from the experiments that we conducted, that generic patterns
for corrective actions in given deficiency situations could be designed. This will form
the topic of future work.

References

1. ASAP World Consultancy and J. Blain et al, Using SAP R/3, Prentice Hall of India, 1999.
2. Bider, I., Johannesson, P., Perjons, E. (2002), “Goal-Oriented Patterns for Business

Processes”, Position paper for Workshop on Goal-Oriented Business Process Modeling
(GBPM’02).

3. Bunge. M., Treatise on Basic Philosophy: Vol. 3, Ontology I: The Furniture of the World.
Reidel, Boston, 1977.

4. Bunge. M., Treatise on Basic Philosophy: Vol. 4, Ontology II: A World of Systems, Reidel,
Boston, 1979.

5. Dietz, J.L.G., Basic Notions Regarding Business Processes and Supporting Information
Systems, Proceedings of BPMDS’04, CAiSE’04 Workshops Proceedings, Latvia, Riga,
Vol. 2, pp. 160-168, 2004

6. Hammer, M. and Champy, J. (1994), Reengineering the Corporation – A manifesto for
Business Revolution, Nicholas Brealey Publishing, London.

7. Ould, M. A., Business Processes: Modeling and Analysis for Reengineering and
Improvement, John Wiley & Sons, 1995.

8. Paulson D. and Wand, Y., 1992, "An Automated Approach to Information Systems
Decomposition," IEEE Transactions on Software Engineering, 18 (3), pp. 174-189.

9. C.Rolland, N. Prakash, A. Benjamen, A Multi-Model View of Process Modelling,
Requirements Engineering Journal, 4(4) pp 169-187, 1999

62 P. Soffer and C. Rolland

10. Rolland C., Prakash N., Bridging the gap between Organizational needs and ERP
functionality. Requirements Engineering Journal 5, 2000.

11. C. Salinesi, C. Rolland. Fitting Business Models to Software Functionality: Exploring the
Fitness Relationship. 15th Conference on Advanced Information Systems Engineering,
(CAISE'03), Springer-Verlag (pub), 2003.

12. Soffer, P., and Wand, Y., 2003, “On the Notion of Soft Goals in Business Process
Modeling”, Business Process Management Journal (to appear).

13. Soffer P. and Wand Y., 2004, Goal-driven Analysis of Process Model Validity, Advanced
Information Systems Engineering (CAiSE’04) (LNCS 3084), p. 521-535

14. Wand, Y. and. Weber, R (1990), “An Ontological Model of an Information System”,
IEEE Transactions on Software Engineering, Vol. 16, No. 11, pp. 1282-1292.

15. Yu, E., and Mylopoulos, J. (1996), “Using Goals, Rules, and Methods to Support
Reasoning in Business Process Reengineering”, International Journal of Intelligent
Systems in Accounting, Finance and Management, Vol. 5, pp. 1-13.

Pattern-Based Analysis of the Control-Flow Perspective
of UML Activity Diagrams�

Petia Wohed1, Wil M.P. van der Aalst2,3, Marlon Dumas3,
Arthur H.M. ter Hofstede3, and Nick Russell3

1 Centre de Recherche en Automatique de Nancy, Université Henri Poincaré - Nancy 1/CNRS,
BP239, 54506 Vandoeuvre les Nancy, France
petia.wohed@cran.uhp-nancy.fr

2 Department of Technology Management, Eindhoven University of Technology,
GPO Box 513, NL5600 MB Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl
3 Faculty of Information Technology, Queensland University of Technology,

GPO Box 2434, Brisbane QLD 4001, Australia
{m.dumas, a.terhofstede, n.russell}@qut.edu.au

Abstract. The Unified Modelling Language (UML) is a well-known family of
notations for software modelling. Recently, a new version of UML has been re-
leased. In this paper we examine the Activity Diagrams notation of this latest ver-
sion of UML in terms of a collection of patterns developed for assessing control-
flow capabilities of languages used in the area of process-aware information sys-
tems. The purpose of this analysis is to assess relative strengths and weaknesses
of control-flow specification in Activity Diagrams and to identify ways of ad-
dressing potential deficiencies. In addition, the pattern-based analysis will yield
typical solutions to practical process modelling problems and expose some of the
ambiguities in the current UML 2.0 specification [9].

Keywords: UML, Activity Diagrams, Workflow Patterns, YAWL.

1 Introduction

The Unified Modelling Language (UML), frequently referred to as a de facto standard
for software modelling, has recently undergone a significant upgrade to a new major
version, namely UML 2.01. Being a multi-purpose language, UML offers a spectrum
of notations for capturing different aspects of software structure and behaviour. One
of these notations, namely Activity Diagram (AD), is intended for modelling computa-
tional and business/organisational processes.

If the UML AD notation is to be adopted as a standard for business process mod-
elling, it should compare favourably with other notations in this space. In order to fa-
cilitate such a comparison a comprehensive analysis on UML AD has been performed

� This work is funded in part by Interop NoE, IST-508011, and by the Australian Research
Council under the Discovery Grant ”Expressiveness Comparison and Interchange Facilitation
Between Business Process Execution Languages”.

1 http://www.uml.org

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 63–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

64 P. Wohed et al.

and the results of it are reported here. The goal of this analysis has been to evaluate the
capabilities and limitations of UML AD.

Evaluating and comparing modelling notations, particularly in the area of business
processes, is a delicate endeavour. Empirical evaluations in terms of case studies may
lead to valuable insights, but the conclusions are difficult to generalise due to their re-
stricted scope. Theoretical evaluations on the other hand rely heavily on the evaluation
framework they utilize. For instance, evaluations in terms of ontologies, such as the
Bunge Wand and Weber (BWW) ontology [6,10], lead to coarse-grained results since
these ontologies are composed of highly general concepts whose pertinence and mani-
festation in the context of business processes have not yet been studied.

In order to provide a more fine-grained analysis we have chosen a specialised
evaluation framework. It is constituted by the set of workflow patterns defined on
www.workflowpatterns.com. While originally developed as an instrument to
evaluate languages supported by workflow systems, these patterns have also success-
fully been used to evaluate languages for process-aware information systems develop-
ment [5,16,15,8,18]. Initially restricted to the control-flow perspective (i.e. the ordering
of activities in a process) [3] these patterns have recently been extended in accordance
with Jablonski and Bussler’s classification [7] to accommodate the data perspective
(which deals with data transfer between activities) [12] and the resource perspective
(dealing with the resource allocation for the execution of the activities within a pro-
cess) [11]. Moreover, based on the workflow patterns framework, a workflow defini-
tion language called YAWL (Yet Another Workflow Language) has been designed [2]
and implemented [1]. YAWL provides a reference formalisation for the control-flow
patterns.

Hence, we motivate our choice for using the workflow patterns framework by ar-
guing that it is 1) well tested, 2) provides a sufficient level of granularity for a deep
analysis and 3) it is the most complete and powerful framework existing for evaluating
the capabilities of a process modelling language. Moreover, using a framework which
has been applied numerous times, will facilitate comparison between the analysed lan-
guages.

Accordingly, this paper reports the results of an evaluation of UML 2.0 AD in terms
of the workflow patterns. Due to space limitations it presents the results from the eval-
uation of the control-flow perspective only2. The contributions of the paper are:

– The identification of some limitations in UML AD and recommendations for ad-
dressing these with minimal disruption to the current design of the language.

– Discussions on how to capture the patterns in UML AD which provide elements of
reusable knowledge for process designers that encounter these patterns.

– An analysis of UML AD, e.g., pointing out ambiguities in the behaviour part of the
current version of the specification [9].

An evaluation of UML AD version 1.4 in terms of these patterns has been previously
reported [5]. However, while in UML 1.4, activity diagrams are based on statecharts,
in UML 2.0 they have a semantics defined in terms of token flow inspired by (though
not fully based on) Petri nets. Thus, the evaluation of UML 2.0 leads to different results

2 For an evaluation of the data perspective see [17].

Pattern-Based Analysis of the Control-Flow Perspective of UML ADs 65

than the one for UML 1.4. Furthermore, an attempt at evaluating UML 2.0 AD using
the workflow patterns has been conducted by White [15]. However, some of the results
reported by White may be questioned as explained in the remainder of this paper.

The paper is organised as follows. Section 2 briefly introduces the UML 2.0 AD
notation. Section 3 reports on the evaluation of UML AD in terms of the control-flow
patterns. Finally, Section 4 summarises the results and concludes the paper.

2 Overview of UML 2.0 AD

In UML AD the fundamental unit of behaviour specification is the Action. “An action
takes a set of inputs and converts them to a set of outputs, though either or both sets may
be empty.” [9], p. 2293. Actions may also modify the state of the system. The language
provides a very detailed action taxonomy, where more than 40 different action types
are specified. However, a deep discussion of them is outside the scope of this paper and
in Figure 1a we only present the action types that we have found to be relevant to our
evaluation. These are Action, Accept Event, Send Signal, and Call Behavior Action.

a) Actions b) Control Nodes

Action/Activity AcceptEvent

SendSignalCallBehaviorAction Fork JoinMerge

...

InitialNode ActivityFinal FlowFinal

Decision
[cond1]

[cond n]

...

Fig. 1. UML 2.0 AD, Main Symbols

Furthermore, to present the overall behaviour of a system, the concept of Activity is
used. Activities are composed of actions and/or other activities and they define depen-
dencies between their elements. Graphically, they are composed of nodes and edges.
The edges, used for connecting the nodes, define the sequential order between these.
Nodes represent either Actions, Activities, Data Objects, or control nodes. The various
types of control nodes are shown in Figure 1b.

3 Workflow Control-Flow Patterns in UML 2.0 AD

In this section, an analysis of UML AD version 2.0 is provided in terms of the control-
flow patterns as defined in [3]. In this analysis YAWL (Yet Another Workflow Lan-
guage) [2] is used as a reference realisation of the patterns (where appropriate). As
YAWL is a formally defined language, its solutions for the patterns leave no room for
ambiguity. Due to space restrictions the patterns themselves will not be discussed in
detail here; for this the reader is referred to [3].

3 In the remainder of this paper page numbers without reference refer to [9].

66 P. Wohed et al.

3.1 Basic Control-Flow Patterns, Multiple Choice and Multiple Merge

The first seven control-flow patterns, namely Sequence, Parallel Split, Synchronisation,
Exclusive Choice, Simple Merge, Multiple Choice, and Multiple Merge are directly
supported in UML AD. In fact, the first five of these patterns are supported by basically
all process modelling and description languages and they correspond to control-flow
constructs defined by the Workflow Management Coalition [14].

Figure 2 shows the solutions to the first seven patterns in UML AD and, as a point
of comparison, in YAWL. The following paragraphs briefly discuss these solutions.
Descriptions of the patterns are not included as they are relatively straightforward and
they can be found in [3].

There are two ways of representing Sequence in YAWL (see Figure 2a). Two tasks
can be connected directly, or they can have a condition (which corresponds to the con-
cept of “place” in Petri nets) in between. Where two tasks are connected directly the
condition in between exists in a formal sense, it is just not shown graphically. In UML,
this basic pattern is solved in a very similar manner (see Figure 2b), i.e. through a
control-flow arrow (p. 382), though UML does not explicitly support the notion of state
hence there is no equivalent concept to the YAWL condition.

c) AND-split task

g) XOR-split task

e) AND-join task

i) XOR-join task

a) Sequence

b) Control flow

B

C
A

Parallel Split Synchronisation

Exclusive Choice Simple/Multiple Merge

d) Explicit AND-split

Sequence

B

C
A

B

C

A

B

C

A

f) Explicit AND-join

B

C

A
B

C

A

B

C
A

j) XOR-join

A
B

C

[Guard1]

[Guard2]

h) Explicit XOR-split

Multiple Choice

A
[Guard1]

[Guard2]

B

C

k) OR-split task

B

C
A

l) OR-split

[Guard1]

[Guard2]

Y
A

W
L

U
M

L
Y

A
W

L
U

M
L

Fig. 2. Basic Control-flow Constructs in UML AD and in YAWL

Pattern-Based Analysis of the Control-Flow Perspective of UML ADs 67

The Parallel Split is captured in YAWL by an AND-split (see Figure 2c). In UML
it is captured by a ForkNode, represented as a bar with one incoming edge and two or
more outgoing edges (p. 404) (see Figure 2d). Furthermore, as “an action may have sets
of incoming and outgoing activity edges...” (p. 336) and “when completed, an action
execution offers [..] control tokens on all its outgoing control edges” (p. 337) the parallel
split can also be modelled implicitly, by drawing the outgoing edges directly from the
action node and omitting the fork node.

Synchronisation in YAWL is captured through the AND-join (see Figure 2e). In
UML AD, the construct used for synchronisation is the JoinNode, i.e. a control node
depicted as a bar with multiple incoming edges and one outgoing edge (p. 411) as shown
in Figure 2f. A JoinNode may be associated with a condition (also called joinSpec). A
joinSpec typically refers to the names of the incoming edges of the joinNode to which
it is associated, but it may also be an arbitrary boolean expression. By default (i.e. if
no joinSpec is provided as in Figure 2f), the joinSpec is taken to be an “and” of all
the incoming edges, that is, a token has to be available at each of the incoming edges
before the join node can emit a token, thus guaranteeing synchronisation of all incoming
edges. Similarly to the parallel split solution, UML offers an “implicit” join notation:
If the node that directly follows a join node is an action node, then the join node can be
omitted and instead all the edges to be “joined” can be directly connected to the action
node in question. The meaning of this implicit join is stated to be: “an action execution
is created when all its [..] control flows prerequisites have been satisfied” (p. 337).

The Exclusive Choice in YAWL is captured by the XOR-split (see Figure 2g). In
the YAWL environment, predicates specified for outgoing arcs of an XOR-split may
overlap. In case multiple predicates evaluate to true, the arc with the highest preference
(which is specified at design time) is selected. If all predicates evaluate to false, the de-
fault arc is chosen. The treatment of the XOR-split in YAWL guarantees that no matter
what predicates are specified, exactly one outgoing branch will be chosen. In UML, a
DecisionNode, graphically depicted by a diamond with one incoming edge and multiple
outgoing edges, is used to represent this pattern (p. 387). The decision condition can be
defined through “guards” attached to the outgoing edges (see Figure 2h). If the guard
of more than one of the outgoing edges evaluates to true and if multiple edges accept
the token and have approval from their targets for traversal at the same time, then the
semantics of the construct depicted in Figure 2h is not defined (p. 388) and hence the
“guards” should be made exclusive. A predefined “else” branch can be used which is
chosen when none of the guards of the other branches evaluates to true. However, the
use of “else” is optional.

In YAWL, the Simple Merge pattern is expressed using the XOR-join (see Fig-
ure 2i). In UML this pattern is represented by a MergeNode, that is, a diamond with
several incoming edges and one outgoing edge (see Figure 2j). These solutions, for
both YAWL and UML AD, also constitute a solution to the Multiple Merge pattern
where parallelism may occur in the branches preceding the join and each completion of
such a branch leads to (another) execution of the branch following the join.

In the Multiple Choice pattern, in contrast with the exclusive choice, zero, one, or
multiple outgoing branches may be chosen. The multiple choice in YAWL is captured
through the OR-split (see Figure 2k). It should be noted that in the YAWL environment

68 P. Wohed et al.

at least one outgoing branch will be chosen, which makes its OR-split slightly less
general than the pattern. In YAWL, the selection of at least one branch is guaranteed by
the specification of a default branch which is chosen if none of the predicates evaluate
to true (including the predicate associated with the default branch). In UML AD, the
solution for this pattern is the same as the solution for the parallel split, except that in
addition guards controlling which branches should be started have to be defined for the
edges departing from the ForkNode (see Figure 2l).

3.2 Synchronising Merge

Description. A form of synchronisation where execution can proceed if and only if one
of the incoming branches has completed and from the current state of the process it is
not possible to reach a state where any of the other branches has completed.

Solution in YAWL. The main challenge of achieving this form of synchronisation is to
be able to determine where more completions of incoming branches are to be expected.
In the general case, this may require a computationally expensive state analysis.

In YAWL a special OR-join symbol, directly captures this pattern (see the task D in
Figure 3a and in Figure 3b). The semantics of the OR-join are such that it is enabled if
and only if an incoming branch has signaled completion and from the current state it is
not possible to reach a state where another incoming branch signals completion. While
this can handle workflows of a structured nature like that in Figure 3a, it can also handle
non-structured workflows such as the one displayed in Figure 3b.

As a possible scenario for the example in Figure 3b, consider the situation where
after completion of activity A both activities B and C are enabled. Now, if activity C
completes while activity B is still running, activity D has to wait for B’s completion.
More precisely, it has to wait for the outcome of the decision whether activity E or
activity F shall be enabled (as activity B is an AND-split only one of the activities
E and F will be enabled). If activity F is enabled, activity D has to wait for F ’s
completion. If, instead, activity E is enabled (and it is not possible that any of the other
outgoing branches of the OR-join will be enabled) then activity D is enabled as well.

For a more complete treatment of OR-joins in YAWL see [19].

Solution in UML. No direct support is provided for this pattern. White [15] provides
a tentative solution. However, there are two problems with this solution. Firstly, it as-
sumes the existence of a corresponding OR-split (i.e., as the example in Figure 3a),

b) Complex OR-join scenarioa) OR-join task

B

D

C interpret_
results

organise_peer_review

organise_student_
evaluation

A

determine_
teaching_
evaluation

C

E
B

A
D

F

Fig. 3. Synchronising Merge in YAWL

Pattern-Based Analysis of the Control-Flow Perspective of UML ADs 69

hence it would not be general enough to work in an unstructured context (as exempli-
fied in Figure 3b). Secondly, the solution proposed by White includes the following
joinSpec: “a condition expression that controls how many Tokens must arrive from the
incoming control flow before a Token will continue through the outgoing control flow”
([15], p. 11). This condition expression is, however, not specified and it is not clear how
it could be determined how many tokens to expect. In addition, even if somehow this
could be detected, how can one deal with multiple tokens arriving on the same branch
as a result of loops?

3.3 Discriminator

Description. A form of synchronisation for an activity where out of a number of in-
coming branches executing in parallel, the first branch to complete initiates the activity.
When the other branches complete they do not cause another invocation of the activity.
After all branches have completed the activity is ready to be triggered again (in order
for it to be usable in the context of loops). The discriminator is a special case of the
N-out-of-M Join (also called partial join [4]) as it corresponds to a 1-out-of-M Join.

Solution in YAWL. In YAWL, one of the ways to capture the discriminator involves the
use of cancellation regions [2]. The discriminator is specified with a multiple merge and
a cancellation region encompassing the incoming branches of the activity
(see Figure 4a). In this realisation, the first branch to complete starts the activity in-
volved, which then cancels the other executing incoming branches. This is not in exact
conformance with the original definition of the pattern as it actually cancels the other
branches. However, this choice is motivated by the fact that it is clear in this approach
what the region is that is in the sphere of the discriminator giving it a clearer semantics.

Solution in UML. The solution in UML AD (see Figure 4c) uses the concept of Inter-
ruptibleActivityRegion (p. 409) which is very similar to the notion of cancellation re-
gion in YAWL. Hence, the solution is very close to the solution in YAWL. Furthermore,
due to the use of weights (p. 352) on the interruptingEdge it also easily generalises to
the N-out-of-M Join. YAWL provides direct support for N-out-of-M Join too, but the
solution there is based on the concept of thresholds within the multiple instances task
construct. This solution is shown in Figure 4b and the multiple instances task concept
is further discussed in subsection 3.5.

a) Discriminator in YAWL c) 2 out of 3 join in UML AD

B

C

D

b) N-out-of-M Join in YAWL

D
B

[n,m,t,s/d]
A

B

C

{weight = 2}

D

Fig. 4. Solutions for the Discriminator pattern

70 P. Wohed et al.

White [15] presents a solution which uses an expression which checks for each
incoming branch whether it has completed. He claims that the first token to arrive will
progress the flow and the other tokens will not. The expression given seems to be an
annotation which is not part of the UML AD notation. In addition, it is unclear how
this would work if the discriminator is to be activated more than once (e.g. because it
appears in a loop).

3.4 Structural Patterns

In this section we briefly consider the patterns involving arbitrary cycles and implicit
termination.

Description of Arbitrary Cycles. Some process specification approaches only allow
the specification of loops with unique entry and exit points. Arbitrary cycles are loops
with multiple ways of exiting the loop or multiple ways of entering the loop.

Both YAWL and UML AD (also pointed out by White [15]) support arbitrary cycles.

Description of Implicit Termination. A given subprocess should be terminated when
there is nothing else to be done. In other words, there are no active activities in the sub-
process and no other activity can be made active (and at the same time the subprocess
is not in deadlock). This termination strategy is referred to as implicit termination.

Solution in YAWL. YAWL deliberately does not support implicit termination in order
to force workflow designers to think carefully about workflow termination.

Solution in UML. UML AD provides direct support for this pattern. There are two
notions for capturing termination namely, ActivityFinalNode and FlowFinalNode (see
Figure 1). “A flow final destroys all tokens that arrive at it” (p. 403). It does not terminate
the whole activity but only a flow within it. Implicit termination is then captured by
ending every thread within an activity with a FlowFinalNode (same as in [15]).

3.5 Multiple Instances Patterns

This section focuses on the class of so-called “multiple instances” (MI) patterns. These
patterns refer to situations where there can be more than one instance of a task active at
the same time in the same case. The first of these patterns is concerned with the creation
of multiple instances.

Description of MI without Synchronisation. Within the context of a single case (i.e.,
process instance) multiple instances of an activity can be created, i.e., there is a facility
to spawn off new threads of control. Each of these threads of control is independent of
other threads. Moreover, there is no need to synchronise these threads.

Solution of MI without Synchronisation in UML AD. Consider the UML AD ex-
ample in Figure 5a which is taken from [9] (Figure 267, p. 404). This UML AD ex-
ample provides a partial solution to the pattern. Instances of “Install Component” are
“spawned-off” through a loop and the conditions associated with the DecisionNode will
determine how many such instances will ultimately be created.

The next three patterns deal with the synchronisation of multiple instances. The first
such pattern is Multiple Instances with a Priori Design Time Knowledge which can
typically be supported by replicating the activity involved as many times as required.

Pattern-Based Analysis of the Control-Flow Perspective of UML ADs 71

This is possible in UML AD. The other two patterns deal with synchronisation of mul-
tiple instances where the number of instances is not known at design time.

The pattern Multiple Instances with a Priori Runtime Knowledge captures the
situation when for one case an activity is enabled multiple times. The number of in-
stances of a given activity for a given case varies and may depend on characteristics of
the case or availability of resources, but is known at some stage during runtime, before
the instances of that activity have to be created. Once all instances are completed some
other activity needs to be started.

The pattern Multiple Instances without a Priori Runtime Knowledge is based on
the previous pattern with the further complication that the number of instances to be
created (and later on synchronised) are not know at any stage during runtime, before
the instances have to be created. Even while some of the instances are being executed
or have already completed, new ones can be created.

Solutions in YAWL. YAWL provides direct support for the multiple instance patterns.
A multiple instance task in YAWL has four attributes: the minimum number of instances
to be created; the maximum number; a threshold for continuation (where the semantics
is that if all created instances have completed or the threshold has been reached the
multiple instance task can complete); and an attribute with the possible values static
and dynamic indicating whether or not it is possible to create new instances when a
multiple instance task has been started (see Figure 4b).

Solution of Multiple Instances with a Priori Runtime Knowledge in UML AD. Here
too we consider a UML AD solution taken from [9] (Figure 262, p. 401) as the basis
for our discussion (see Figure 5b). In this example, the notion of ExpansionRegion,
where the region consists of a single action, is used twice, once for BookF light and
once for BookHotel. The small rectangles, divided into compartments and attached
to a region, are meant to represent the input/output collections of elements, for the
region. The action/s in the region is/are executed once for each element from the input
collection (“or once per element position, if there are multiple collections” (p. 396)).
“On each execution of the region, an output value from the region is inserted into an
output collection at the same position as the input elements” (p. 395). The semantics
of differing numbers in the inputs and their corresponding output collections is not
clear. Furthermore, the way in which the multiple instances are executed, i.e., “parallel”,
“iterative”, or “stream”, is defined through an attribute of the ExpansionRegion node.

a) MI without Synchronization b) MI with a Priori Runtime Knowledge

Build
Component

[no more
components
to be built]

Install
Component

[more components
to be built]

Specify
Trip

Route

Print
Itinerary

Book
Hotel

Book
Flight

Fig. 5. Multiple Instances in UML AD (solutions reprinted from Figures 267 and 262 from [9])

72 P. Wohed et al.

[no more inst]
{weight = nr of inst}

yes
no

Task A updates the
variable "nr of inst"
& "no more inst."

A

C

B

More inst of B
to be created?

CBA

[no more inst]
{weight = nr of
inst}

Task A updates the
variable "nr of inst"
& "no more inst."

a) Solution with variables b) Solution with object streams and weights

Fig. 6. MI without a Priori Runtime Knowledge in UML AD

The UML specification is not explicit about the completion of an ExpansionRegion,
only about its initiation. We assume that it is completed when all its instances have
completed.

Solution of Multiple Instances without a Priori Runtime Knowledge in UML AD.
This pattern is not directly supported in UML AD. The notion of expansion region can
not be used here as once an expansion region receives the required input collection(s)
no values can be added afterwards. There are however workarounds that achieve the
required functionality. The first solution, which is depicted in Figure 6a, is inspired by
Figure 265, p. 403, from the UML specification [9] and by the solution provided by
White [15]. The idea is to keep track of two variables, one representing the number of
instances created so far, and one, a boolean, capturing whether there is a need to create
more instances. The solution in Figure 6a is however more precise as to how synchroni-
sation is to occur than both the solution provided by White [15] and the solution shown
in [9]. Another workaround is to use object streams and weights. This solution is de-
picted in Figure 6b and exploits the fact that both the guard and the weight of an edge
need to be satisfied (p. 352).

3.6 Deferred Choice

Description. A point in the process where one of several branches is chosen. In contrast
to the XOR-split, the choice is not made explicitly (e.g. based on data or a decision) but
several alternatives are offered to the environment (this is akin to the pick construct in
BPEL4WS4, the choice construct in BPML5, or the event-based decision gateway con-
struct in BPMN6). However, in contrast to the OR-split, only one of the alternatives is
executed. This means that once the environment activates one of the branches, the other
alternative branches are withdrawn. It is important to note that the choice is delayed un-
til the processing in one of the alternative branches is actually started, i.e. the moment
of choice is as late as possible.

Solution in YAWL. YAWL is based on Petri nets and therefore directly supports the
deferred choice construct. A condition (the YAWL term for a place) is specified as

4 www-128.ibm.com/developerworks/library/specification/ws-bpel
5 www.bpmi.org
6 www.bpmn.org

Pattern-Based Analysis of the Control-Flow Perspective of UML ADs 73

a) YAWL b) Exclusive choice

A
Signal 1

Signal 2 C

B

c) UML AD

B

A

C

B

A

C

Fig. 7. Deferred Choice (in UML AD the solution is identical to the one presented in [15])

input to the activities that can result from the choice. At runtime, the alternative that is
chosen consumes the token thus disabling the other alternatives.

Figure 7a illustrates the solution and contrasts it with the solution of the Exclusive
Choice pattern in Figure 7b. The vertical dotted lines drawn in these figures are only
meant for emphasising the moment of choice and they are not part of the language.

Solution in UML. This pattern is captured in UML AD through a fork and a set of ac-
cept signal actions, one preceding each action in the choice. In addition, an interruptible
activity region encircling these signals is defined (see Figure 7c). The semantics is that
the first signal received will enable and trigger the activity following it (which follows
from the definition of AcceptEventAction on p. 250) and disable the rest of the activ-
ities included in the deferred choice by terminating all other remaining receive signal
actions in the region (which follows from the definition of InterruptibleActivityRegion
on p. 409). This solution is identical to that proposed by White [15].

In UML AD 1.4 this pattern can be captured using a “waiting state” (see [5]), but
this is not applicable in UML AD 2.0 due to its lack of support for the notion of state.

3.7 Interleaved Parallel Routing

Description. Several activities are executed in an arbitrary order: The order is decided
at runtime, and no two activities are executed concurrently (i.e. no two activities are
active for the same process instance at the same time).

Solution in YAWL. Given that YAWL is based on Petri nets, the idea of a mutex place
can be used as presented in [3]. This solution is shown in Figure 8a. The finesse of
this solution is that it is general enough to also capture the case where sequences of
activities have to be interleaved. In the figure, the sequences to be interleaved are A, B
with C, D. It is important that A is always executed before B and likewise, C before D
(on top of the requirement that no two activities are executed at the same time).

Solution in UML. Similar to UML AD version 1.4, this pattern is not directly supported
in UML 2.0 although a workaround solution can be designed using signals that act as
semaphores. This is due to the absence of the notion of state (or the notion of “place”
as supported in Petri nets). A workaround solution is shown in Figure 8b. Before an
action can start this signal needs to have been received, and after the completion of an
action this signal needs to be sent as to indicate that another action may now execute.
In this solution, an action can start after the preceding AcceptEven action received the
signal S. After it completes, the following action sends the signal again so that another

74 P. Wohed et al.

A B

DC

a) YAWL b) UML AD

C DS S S

AS BS S

S SS

Fig. 8. Solutions for Interleaved Parallel Routing

action can be executed. As this other action may be in the same thread (e.g. after A it
should be possible to execute not only C, but also B) there is a subtle issue of avoiding
that an action of another thread will always “grab” the signal. This would occur if the
SendSignal and the AcceptEvent actions were put in sequence, rather than in parallel,
after completion of activities not last in a thread. The solution presented in Figure 8b
assumes that 1) a signal can be sent from an action in a flow to an action in the same
flow, 2) even though there may be multiple receivers ready to receive a signal only
one of them will actually consume it (this is supported by the statement “[..] only one
action accepts a given event occurrence, even if the event occurrence would satisfy
multiple concurrently executing actions.”, p. 250), 3) subthreads of a flow really execute
in parallel, and 4) a signal can be sent before anyone is ready to receive it (this is the
case as signals are stored in the objects associated with send/receive signal actions).

The two solutions presented by White [15] are not considered to be satisfactory. The
first solution models the pattern by putting a verbal constraint on a couple of parallel
activities stating that they are not to be run in parallel. The second solution provided by
White uses the deferred choice pattern to capture the interleaved parallel routing pattern
(as outlined in [3]). This solution suffers from combinatorial explosion as it boils down
to enumerating all possible execution sequences of the activities involved.

3.8 Milestone

Description. A given activity can only be enabled if a certain milestone has been
reached which has not yet expired. A milestone is defined as a point in the process
where a given activity has finished and an activity following it has not yet started.

Solution in YAWL. YAWL directly supports the milestone pattern as it is based on Petri
nets and therefore it can exploit the notion of state. A milestone can be realised through
the use of arcs back and forth to a condition (which corresponds to the notion of place
in Petri nets) testing whether a thread has reached a certain state (see Figure 9a).

Solution in UML. There is no direct support for the milestone in UML AD as the
concept of state is not directly supported. A workaround can be devised with the use
of signals, see Figure 9b. In the solution depicted in this figure, there is a race after
the completion of A between continuing B, which has to await the receipt of Signal1
indicating that continuation of the thread is appropriate, and performing some other
activity C. Activity C can only be performed after A has completed and before B
has started. This is achieved by sending Signal2 which triggers Signal3 if indeed

Pattern-Based Analysis of the Control-Flow Perspective of UML ADs 75

B

C

A

a) YAWL b) UML AD

Signal 3 C... ...Signal 2 Signal 4

A
Signal 1

Signal 2

B
...

...

Signal 3 Signal 4

Fig. 9. Solutions for Milestone

the corresponding thread is in the correct state. If it is allowed to execute, then after
completion, C issues Signal4 for indicating this.

The solution proposed by White [15] does not capture this pattern, as it does not
model the expiration of the milestone. According to this solution an activity which
potentially can be executed at a certain milestone, is always executed.

While workarounds exist for the state-based patterns, it is clear that mimicking the
concept of a place as it exists in Petri nets through the use of signals may add a lot of
complexity and could lead to models that are significantly less comprehensible. More-
over, many of the workarounds assume specific semantics for the constructs in UML
AD. As yet, there are no formal semantics for UML AD and the workarounds may turn
out to be invalid. Interpretations used by other authors suggest that there is currently no
consensus on the semantics of the more advanced constructs.

3.9 Cancellation Patterns

There are two cancellation patterns: cancel activity and cancel case. As their semantics
is straightforward we immediately focus on their solutions in YAWL and UML AD.

Solutions in YAWL. In Figure 10a execution of task B implies cancellation of task A,
as this task is in the cancellation set of task B. In fact, any region can be chosen for
cancellation so cancellation sets allow for cancellation of a single task, a whole case,
and anything in between.

Solutions in UML. In UML AD, the cancel activity pattern can be captured as shown
in Figure 10b. In this solution an interruptable region is used where apart from activity

a) Cancel Activity (and Cancel Case) in YAWL b) Cancel Activity in UML AD

A

B

A

Cancel
A

Fig. 10. Cancellation concepts

76 P. Wohed et al.

A there is an AcceptEventAction ready to accept a signal indicating that A should be
cancelled. If such a signal is received during the execution of activity A, and as an
interruptingEdge is used, everything in the region (in this case only activity A) will be
cancelled (p. 409). The solution in Figure 10b is inspired by Figure 274 on p. 410 of
the UML specification [9]. It is also identical to the solution presented by White [15].
Note that due to the statement “If an AcceptEventAction has no incoming edges, then
the action starts when the containing activity or structured node [i.e. the interruptible
region in this case] does...”(p. 334) no incoming edge is used for the cancellation event.

In UML AD, the cancel case pattern is captured by the ActivityFinalNode: “A token
reaching an activity final node terminates the activity [..], it stops all executing actions
in the activity, and destroys all tokens in object nodes, except in the output activity
parameter nodes.”(p. 357). White [15] offers two solutions: one along the lines of
the approach to cancel activity (by making the process to be cancelled an activity and
running it in parallel with the cancellation event) and another using ActivityFinalNode.

4 Conclusion

Table 1 summarises the evaluation in terms of the control-flow patterns. A ’+’ indicates
direct support for the pattern (i.e. there is a construct in the language that directly sup-
ports the pattern). The evaluation of UML 2.0 is contrasted with a previous evaluation
of UML 1.47. Overall, UML 2.0 is a clear improvement over UML 1.4 in terms of direct
support for the control-flow patterns. In regards to the patterns that UML 2.0 AD does
not directly support we would like to make the following recommendations:

– Given the difficulties in supporting state-based patterns, most notably the Inter-
leaved Parallel Routing pattern and the Milestone pattern, it may be worthwhile
to provide direct support for the notion of place as it exists in Petri nets. Petri net
places capture the notion of “waiting state” in a much less restrictive way than Ac-
ceptEventAction do. Similar to YAWL, one could then allow for implicit places
thereby avoiding places that unnecessarily clutter up the diagram.

– UML AD currently does not support the creation of new instances of an activity
while other instances of that activity are already running. This could be resolved
through extensions to the ExpansionRegion construct along the lines of the “multi-
ple instance” tasks in YAWL.

– Given the lack of support for the Synchronising Merge, a concept similar to the
OR-join as it exists in YAWL could be added to UML AD.

During this pattern-based analysis, we have identified several ambiguities in the current
UML specification, for example regarding the behaviour of expansion regions when the
size(s) of the input and output collections do not match as mentioned in section 3.5, or
the behaviour of signals that are raised before any accept signal can consume them (sec-
tion 3.7). In general, such ambiguities can be resolved by identifying relevant passages
in the specification and giving them an interpretation, as we have done in this paper, but
a formalisation would help in making more precise and reliable interpretations. Unfor-
tunately, the UML AD notation is not yet formalised (although work in this direction is

7 This evaluation is based on [5] and the table presented at www.workflowpatterns.com.

Pattern-Based Analysis of the Control-Flow Perspective of UML ADs 77

Table 1. Comparison of UML AD version 2.0 and version 1.4

Nr Pattern 2.0 1.4 Nr Pattern 2.0 1.4
1 Sequence + + 11 Implicit Termination + –
2 Parallel Split + + 12 MI without Synchronization + –
3 Synchronisation + + 13 MI with a priori Design Time Knowledge + +
4 Exclusive Choice + + 14 MI with a priori Runtime Knowledge + +
5 Simple Merge + + 15 MI without a priori Runtime Knowledge – –
6 Multiple Choice + – 16 Deferred Choice + +
7 Synchronising Merge – – 17 Interleaved Parallel Routing – –
8 Multiple Merge + – 18 Milestone – –
9 Discriminator + – 19 Cancel Activity + +
10 Arbitrary Cycles + – 20 Cancel Case + +

ongoing e.g. [13]) and there are inherent difficulties in assessing a language that does
not have a commonly agreed upon formal semantics nor an execution environment. We
hope, however, that the analysis reported here, where different solutions are presented
and discussed in both UML and a formalised language, namely YAWL, will serve to
clarify (even if not directly formalise) the semantics of many of the language constructs,
and thereby motivate further improvements to the language.

References

1. W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and Imple-
mentation of the YAWL System. In A. Persson and J. Stirna, editors, Proc. of the 16th Int.
Conf. on Advanced Information Systems Engineering (CAiSE’04), volume 3084 of LNCS,
pages 142–159. Springer, 2004.

2. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, 2005.

3. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

4. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual Modelling of Workflows. In M.P.
Papazoglou, editor, Proc. of the 14th Int. Object-Oriented and Entity-Relationship Modelling
Conf. (OOER), volume 1021 of LNCS, pages 341–354. Springer, 1998.

5. M. Dumas and A. ter Hofstede. UML Activity Diagrams as a Workflow Specification Lan-
guage. In M. Gogolla and C. Kobryn, editors, Proc. of the 4th Int. Conf. on the Unified
Modeling Language (UML01), volume 2185 of LNCS, pages 76–90. Springer Verlag, 2001.

6. P. Green and M. Rosemann. Applying Ontologies to Business and Systems Modeling Tech-
niques and Perspectives: Lessons Learned. Journal of Database Management, 15(2):105–
117, 2004.

7. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

8. J-H. Kim and C. Huemer. Analysis, Transformation, and Improvements of ebXML Chore-
ographies Based on Workflow Patterns. In R. Meersman and Z. Tari, editors, Proc. of the
OTM Confederated Int. Conf. (CoopIS, DOA, and ODBASE), Part I, volume 3290 of LNCS,
pages 66–84. Springer, 2004.

9. OMG. UML 2.0 Superstructure Specification. UML 2.0 Superstructure FTF convenience
document ptc/04-10-02, 2004. www.omg.org/cgi-bin/doc?ptc/2004-10-02.

78 P. Wohed et al.

10. A.L. Opdahl and B. Henderson-Sellers. Ontological Evaluation of the UML Using the
Bunge-Wand-Weber Model. Software and System Modeling, 1(1):43–67, 2002.

11. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow Re-
souce Patterns: Identification, Representation and Tool Suppport. In O. Pastor and J. Falcão
e Cunha, editors, Proc. of 17th Int. Conf. on Advanced Information Systems Engineering
(CAiSE05), volume 3520 of LNCS, pages 216–232. Springer, 2005.

12. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow Data
Patterns. In L. Delcambre, H.C. Mayr, J. Mylopoulos, and O. Pastor, editors, to appear in
Proc. of 24th Int. Conf. on Conceptual Modeling (ER05), LNCS. Springer Verlag, Oct 2005.

13. H. Störrle. Semantics of Control-Flow in UML 2.0 Activities. In P. Bottoni, C. Hundhausen,
S. Levialdi, and G. Tortora, editors, Proc. of IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’04), pages 235–242. Springer Verlag, 2004.

14. WfMC. Workflow Management Coalition Terminology & Glossary, Document Number
WFMC-TC-1011, Document Status - Issue 3.0. Technical report, Workflow Management
Coalition, Brussels, Belgium, 1999.

15. S. White. Process Modeling Notations and Workflow Patterns. In L. Fischer, editor, Workflow
Handbook 2004, pages 265–294. Future Strategies Inc., Lighthouse Point, FL, USA, 2004.

16. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In Il-Y. Song, S. W. Liddle,
T. W. Ling, and P. Scheuermann, editors, Proc. of 22nd Int. Conf. on Conceptual Modeling
(ER 2003), volume 2813 of LNCS, pages 200–215. Springer, 2003.

17. P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Rus-
sell. Pattern-based Analysis of UML Activity Diagrams. BETA Working Paper Se-
ries, WP 129, Eindhoven University of Technology, Eindhoven, The Netherlands, 2004.
http://www.bpm.fit.qut.edu.au/projects/babel/docs/p242.pdf.

18. P. Wohed, E. Perjons, M. Dumas, and A.H.M. ter Hofstede. Pattern Based Analysis of EAI
Languages - The Case of the Business Modeling Language. In Proc. of the 5th Int. Conf. on
Enterprise Information Systems (ICEIS 2003), volume 3, pages 174–184, 2003.

19. M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a
General, Formal and Decidable Approach to the OR-Join in Workflow Using Reset Nets.
In G. Ciardo and P. Darondeau, editors, Proc. of 26th Int. Conf. on Applications and Theory
of Petri Nets 2005, volume 3536 of LNCS, pages 423–443. Springer, 2005.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 79 – 95, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Three-Layered XML View Model:
A Practical Approach

Rajugan R.1, Elizabeth Chang2, Tharam S. Dillon1, and Ling Feng3

1 eXel Lab, Faculty of IT, University of Technology, Sydney, Australia
{rajugan, tharam}@it.uts.edu.au

2 School of Information Systems, Curtin University of Technology, Australia
Elizabeth.Chang@cbs.cutin.edu.au

3 Faculty of Computer Science, University of Twente, The Netherlands
ling@ewi.utwente.nl

Abstract. Since the early software models, abstraction and conceptual seman-
tics have proven their importance in software engineering methodologies. For
example, Object-Oriented conceptual modeling offers the power in describing
and modeling real-world data semantics and their inter-relationships in a form
that is precise and comprehensible to users. Conversely, XML is becoming the
dominant standard for storing, describing and interchanging data among various
Enterprises Information Systems and databases. With the increased reliance on
such self-describing, schema-based, semi-structured data language/(s), there ex-
ists a requirement to model, design, and manipulate XML data and associated
semantics at a higher level of abstraction than at the instance level. But, existing
Object-Oriented conceptual modeling languages provide insufficient modeling
constructs for utilizing XML schema like data descriptions and constraints, and
most semi-structured schema languages lack the ability to provide higher levels
of abstraction (such as conceptual models) that are easily understood by hu-
mans. To this end, it is interesting to investigate conceptual and schema formal-
isms as a means of providing higher level semantics in the context of XML-
related data engineering. In this paper, we use XML view as a case in point and
present a three-layered view model with illustrated examples taken from a real-
world application domain. We focus on conceptual and schema view defini-
tions, view constraints, and the conceptual query operators.

1 Introduction

In software engineering, many methodologies have been proposed to capture
real-world problems into manageable segments, which can be communicated,
modeled, and developed into robust maintainable software systems. Since the early
software models, abstraction and conceptual semantics have proven their importance
in software engineering methodologies. For example, in Object-Oriented (OO)
conceptual models, they have the power in describing and modeling real-world data
semantics and their inter-relationships in a form that is precise and comprehensible to
users [17, 23]. With the emergence of semi-structured data, Semantic Web (SW) [44],
web services [46], and ubiquitous systems, it is important to investigate new data
models for Enterprise Information Systems (EIS) that can correlate and co-exist with
heterogeneous, multifunctional schemas under the context of Enterprise Content

80 R. Rajugan et al.

Management [5]. Any such data models should accommodate heterogeneous schemas
and changing model and data requirements at a higher level of abstraction, yet adopt-
able to the current software engineering paradigm.

Conversely, since the introduction of eXtensible Markup Language (XML) [47], it
is fast emerging as the dominant standard for storing, describing, and interchanging
data among various EIS and heterogeneous databases. In combination with XML
Schema [49], which provides rich facilities for constraining and defining XML con-
tent, XML provides an ideal platform and flexibility for capturing and representing
complex EIS data formats. But, OO modeling languages (such as UML [34], Ex-
tended-ER[19]) provide insufficient modeling constructs for utilizing XML schema
based data descriptions and constraints. Also, XML Schema lacks the ability to pro-
vide higher levels of abstraction (such as conceptual models) that are easily under-
stood by humans [20, 21].

In data engineering, some forms of data “abstraction” and perspectives have been
provided by the view formalisms and have been supported by data model specific
query language. Since the introduction of relational data model [16, 19], motivation
for views has changed over the last two decades. At present, views are widely used in,
(i) user access and user access control applications [41]; (ii) defining user perspec-
tives/profiles [10]; (iii) designing data perspectives; (iv) dimensional data modeling
[32]; (v) providing improved performance and logical abstraction (materialized
views) in data warehouse/OLAP and web-data cache environments [22, 24, 31, 40];
(vi) web portals & profiles; and (vii) Semantic Web, for sub-ontology or Ontology
views [42, 51]. From this list, it is apparent that the uses and applications of views are
realized more than their originally intended purpose proposed by Date et al. (i.e., the
2-Es - data Extraction and Elaboration [52]), with extensive research being carried out
by both researchers and industry to improve their design, construction, and perform-
ance. Yet, in our view, the view concept still remains as a data language and model
dependent low-level (instance) construct. In the OO paradigm, the modeling lan-
guages provide minimal or no semantics to capture abstract view formalisms at the
conceptual level [35, 52] and the existing XML technology standards have no support
for concrete view formalisms.

To tackle this issue, in our early work, we have proposed to extend the concept of
semi-structured XML view with conceptual and schemata notions [35]. In this paper,
we present in a systematic way, (i) a view formalism for XML with there levels of
abstractions, namely, concept, schema, and instance; (ii) detailed modeling primitives
for such a view formalism, including constraints and conceptual operators; and (iii)
the transformation methodology across various abstraction levels. Please note that the
intention of this paper is neither to propose a new view standard for XML nor
extensions to XML query languages. Rather, we focus on providing XML view
mechanism at the conceptual, schema, and document levels by means of OO concep-
tual modeling. To help illustrate our concepts, we conduct a real-world case study in a
fictitious global logistic company called LWC & e-Solutions Inc., e-Sol in short.
Also, our three-layered view model has been utilized in real-world, data intensive
application scenarios [36, 39] such as; (i) design of XML document warehouses and
distributed FACT repositories, (ii) design of websites and web portals, (iii) design of
User Access Control (UAC) and UAC middleware, and (4) design of (Ontology)
views for Semantic Web.

 A Three-Layered XML View Model: A Practical Approach 81

The rest of this paper is organized as follows. In section 2, we review early work in
view related domains, followed by the description of our case study example in sec-
tion 3. This is followed by the formal introduction of our three-layered XML view
model in section 4. We detail each of the three layers in section 5, 6, and 7, respec-
tively. We conclude the paper and outline future work in section 8.

2 Related Work

Here we first briefly look at the history of the view mechanisms available today and
some of the proposals for new view mechanisms supporting semi-structured data and
constraint specification for views. Existing view models can be grouped into four
categories, namely; (a) early (namely relational) view models, (b) OO view models,
(c) semi-structured (namely XML) view models and (d) views for SW.

2.1 Early View Models

The relational view formalism [18, 19, 24, 26, 27] has been discussed extensively in
many industrial and research forums since its proposal by Date [16]. The relational
(classical) definition of a view is based on ANSI/SPAC three-schema architecture
(Tsichritzis & Klug 1978) [16, 19, 27], where a view is treated as a virtual relation,
constructed by a query which is executed on one or more stored relations [16, 19].
Later the concept of view was extended to support complex queries and/or aggre-
gate/summary queries. Generally, a relational view definition is persistent which
contains the list of attributes or elements that are incorporated within the view,
together with the declarations on how to extract those elements from the underly-
ing stored relations or classes, or from another view [16, 19]. A relational view
can be queried, joined with another relations or classes, and be included in another
view definition.

During the OO revolution, the relational view definitions were extended to OO
data models by Won Kim et al. [26, 27], Abiteboul et al. [2], and Chang [13]. Here
the views were defined in a synonymous manner to the relational model and/or ex-
tending the relational definition [26] when needed (supporting the 2-Es; data Extrac-
tion, Elaboration and some research directions towards data Extension). They in-
cluded the idea of the virtual class. Both relational and OO view concepts make two
implicit assumptions; that the underlying data is structured and there exists a fixed
data model and a data access/query language. But only Chang et al. allows some form
of abstraction at a higher level, a view definition in the form of abstract views [13].
All other view definitions are defined at the data manipulation language level. This
we argue is not enough to provide a real-world scenario and/or abstraction to complex
domain. We argue that, providing view formalism at the conceptual level will im-
prove the resulting view implementation, similar to a conceptual model of a software
system.

2.2 Views for Semi-structured Data

Since the emergence XML, the need for semi-structured data models, which have to
be independent of the fixed data models and data access, violates fundamental proper-

82 R. Rajugan et al.

ties of persistent data models. Many researchers attempted to solve these issues by
using graph based [55] and/or semi-structured data models [3, 28]. Again, the actual
view definitions are only available at the lower level of the implementation and not at
the conceptual level.

One of the early discussions on XML view was by Serge Abiteboul [1] and later
more formally by Sophie Cluet et al. [15]. They proposed a declarative notion of
XML views. Abiteboul et al. pointed out that, a view for XML, unlike classical views,
should do more than just providing different presentation of underlying data [1]. This,
he argues, arises mainly due to the nature (semi-structured) and the usage (primarily
as common data model for heterogeneous data on the web) of XML. He also argues
that, an XML view specification should rely on a data model (like ODMG [8] model)
and a query language. In the paper [15], they discuss in detail on how abstract
paths/DTDs are mapped to concrete paths/DTDs. These concepts, which are imple-
mented in the Xyleme project [29], provide one of the most comprehensive mecha-
nisms to construct an XML view to-date. The Xyleme project uses an extension of
ODMG Object Query Language (OQL) to implement such an XML view. But, in
relation to conceptual modeling, these view concepts provide no support. The view
formalism is derived from the instantiated XML documents (instant level) and is
associated with DTD in comparison to flexible XML Schema. Also, the Xyleme view
concept is mainly focused on web based XML data. Other view models for XML
include; (a) the MIX (Mediation of Information using XML) view system [30] and (b)
an intuitive view model for XML using Object-Relationship-Attribute model for
Semi-Structured data (ORA-SS) [14]. This is one of the first view model that supports
some of abstraction above the data language level.

In related work in Semantic Web (SW) [45] paradigm, some work has been done
in views for SW [42], where the authors proposed a view formalism for RDF docu-
ment with support for Resource Description Framework (RDF) [43] schema (using a
RDF schema supported query language called RQL). This is one of the early works
focused purely on RDF/SW paradigm and has sufficient support for logical modeling
of RDF views. But RDF is an object-attribute-value triple, where it implies object has
an attribute with a value [21]. But RDF makes only intentional semantics and not data
modeling semantics. Therefore, unlike views for XML, views for such RDF (both
logical and concrete) have no tangible scope outside its domain. In related area of
research, the authors of the work propose a logical view formalism for ontology [51]
with limited support for conceptual extensions, where materialized ontology views are
derived from conceptual/abstract view extensions.

2.3 View Constraints

In data modeling, specifications often involve constraints. In the case of views, it is
usually specified by the data language in which they are defined in. For example, in
relational model, views are defined using SQL and a limited set of constraints can be
defined using SQL[16, 19], namely, (1) presentation specific (such as display head-
ings, column width, pattern order etc), (2) range and string patterns for aggregate
fields, (3) input formats for updatable views, and (4) other DBMS specific (such view
materialization, table block, size, caching options etc).

 A Three-Layered XML View Model: A Practical Approach 83

In Object-Relational and OO models, views had similar constraints but they are
more extensive and explicit due to the data model. The views here are constructed and
specified by DBMS specific (such as OQL [8]) and/or external languages (such as
C++, Java or O2C [2]). It is a similar situation in views for semi-structured data para-
digm, where rich set of view constrains are defined using languages such as OQL
based LOREL [4]. But the work by authors of [14] provides some form of higher-
level view constraints (under ORA-SS model) for XML views, while the work in [42]
provides some form of logical level view constraints to be defined in views for in
SW/RDF paradigm. Here, for our view formalism, we look into using UML/OCL as
our view constraint specification language. Also, our work should not be confused
with work such as [7], where authors use OCL to “model” (not to specify) relational
views, which utilizes OCL from a data engineering point of view than a for constraint
specification.

3 An Illustrative Case Study

The e-Sol Inc. aims to provide logistics, warehouse, and cold storage space for its
global customers and collaborative partners. The e-Sol solution includes a standalone
and distributed Warehouse Management System (WMS/e-WMS), and a Logistics
Management System (LMS/e-LMS) on an integrated e-Business framework called e-
Hub [11] for all inter-connected services for customers, business customers, collabo-
rative partner companies, and LWC staff (for e-commerce B2B and B2C). Some real-
world applications of such company, its operations and IT infrastructure can be found
in [11, 12, 25].

In WMS (Fig. 3 & 4), customers book/reserve warehouse and cold storage space
for their goods. They send in a request to warehouse staff via fax, email, or phone,
and depending on warehouse capacity and customers’ grade (individual, company or
collaborative partner), they get a booking confirmation and a price quote. In addition,
customers can also request additional services such as logistics, packing, packaging
etc. When the goods physically arrive at the warehouse, they are stamped, sorted,
assigned lots numbers and entered into the warehouse database (in Lots-Master).
From that day onwards, customers get regular invoices for payments. In addition,
customers can ask the warehouse to handle partial sales of their goods to other ware-
house customers (updates Lots-Movement and Goods-Transfer), sales to overseas
(handled by LMS) or take out the goods in full or in partial (Lots-Movement). Also
customer can check, monitor their lots, buy/sell lots and pay orders via an e-
Commerce system called e-WMS. In LMS, customers use/request logistics services
(warehouse or third-party logistics providers) provided by the warehouse chains. This
service can be regional or global including multi-national shipping companies. Like e-
WMS, e-LMS provide customers and warehouses an e-Commerce based system to do
business. In e-Hub, all warehouse services are integrated to provide one-stop ware-
house services (warehouse, logistics, auction, goods tracking, payment etc) to cus-
tomers, third-party collaborators and potential customers. A context diagram of the
system is given in Fig. 1, followed by some detailed models in Fig. 3-4.

In e-Sol, due to the business process, data have to be in different formats to support
multiple systems, customers, warehouses and logistics providers. Also, data have to

84 R. Rajugan et al.

be duplicated at various points in time, in multiple databases, to support collaborative
business needs. In addition, since new customers/providers to join the system (or
leave), the data formats has to be dynamic and should be efficiently duplicated with-
out loss of semantics. This presents an opportunity to investigate how to use our XML
conceptual, schema and instance views to design e-Sol at a higher level of abstrac-
tions to support changing business, environments, and data formats.

Conceptual Level

Schema Level

Document Level

Objects, Relationships,
Constraints

Simple/Complex element
types, Schema constraints

1

Layer Primitives
UML/OCL

XSemantic Net

Abstraction Layers

XQuery

XML Schema

OEM1

1Ontology Extraction Methodology/Algorithms

Java
Query segments and
document trees

1..*

1

1..*

Classes, Relationships, OCL expressions

Nodes, Edges, Labels, Constraints

FLWOR Expressions

Fig. 1. e-Sol, context diagram Fig. 2. Three-layered view model for XML

4 A Three-Layered XML View Model

Our XML view study is based on the following two postulates about the real world.

Postulate 1: The term context refers to the domain that interests an organization as a
whole. It is more than a measure, and implies a meaningful collection of objects,
relationships among these objects, as well as some constraints associated with the
objects and their relationships, which are relevant to its applications. For example,
“people”, “order”, and “customer” can be examples of context in the e-Sol system.

Postulate 2: The term view refers to a certain perspective of the context that makes
sense to one or more stakeholders of the organization or an organization unit at a
given point in time. For example, “processed-order” and “overdue-order” are two
contrasting views in the “order” context of the e-Sol system.

Fig. 2 outlines our XML view model, which is comprised of three different levels,
namely, conceptual level, schema level, and instance level.

(i) The top conceptual level describes the structure and semantics of XML views in
a way which is more comprehensible to human users. It hides the details of
view implementation and concentrates on describing objects, relationships
among the objects, as well as the associated constraints upon the objects and re-
lationships. This level can be modeled using some well-established modeling
language such as UML [34], or our developed XML-specific XSemantic Net
[20, 39], etc. Thus, the modeling primitives include object, attribute, relation-

 A Three-Layered XML View Model: A Practical Approach 85

ship, and constraint. The output of this level is a well-defined valid conceptual
model in UML, XSemantic Net, or even OMG's MOF (Meta-Object-Factory),
which can be either visual (such as UML class diagrams) or textual (in the case
of UML/XMI models).

(ii) The middle scheme level describes the schema of XML views for the view im-
plementation, using the XML Schema language. Views at the conceptual level
are mapped into the views at the schema level via the transformation mecha-
nism developed in our previous work [20, 21]. The output of this level will be in
either textual (such as XML Schema language) or some visual notations that
comply from the schema language (such as graph).

(iii) The bottom instance level implies a fragment of instantiated XML data, which
conforms to the corresponding view schema defined at the upper level.

For simplicity, we also call XML view at conceptual level XML conceptual view,
XML view at schema level XML schema view, and XML view at instance level XML
instance view. We elaborate each of the three levels in the following sections.

5 Conceptual Views

Context is presented in UML using modeling primitives like object, attribute, rela-
tionship and constraint in this study. To enable the construction of a valid XML con-
ceptual view from a context, we introduce the notion of conceptual operator whose
details can be found in our work [37]. These conceptual level operators are compara-
ble to relational operators in the relational model, but they operate on conceptual level
objects and relationships. They are grouped into set operators, namely union, differ-
ence, intersection, Cartesian product and unary operators namely projection, rename,
restructure, selection and joins, and can facilitate systematic construction of
conceptual views from context. These conceptual operators can be easily transformed
into query segments, user-defined functions and/or procedures for implementation. By
doing so, they help the modeler to capture view construct at the abstract level without
knowing or worrying about query/language syntax.

Definition 1: An XML conceptual view Vc is a 4-ary tuple Vc
 = (Vc

name, V
c
obj, V

c
rel,

Vc
constraint), where Vc

name is the name of the XML conceptual view Vc, Vc
obj is a set of

objects in Vc
, V

c
rel is a set of object relationships in Vc, and Vc

constraint is a set of con-
straints associated with Vc

obj and Vc
rel in Vc.

Definition 2: Let C = (Cname, Cobj, Crel, Cconstraint) denote a context which consists of a
context name Cname, a set of objects Cobj, a set of object relationships Crel, and a set of
constraints associated with its objects and relationships Cconstraint. Let D be a set of
conceptual operators. Vc

 = (Vc
name, V

c
obj, V

c
rel, V

c
constraint) is called a valid XML con-

ceptual view of the context C, if and only if the following conditions satisfy:

(i) For any object ∀o∈Vc
obj, there exist objects ∃o1, …, on∈Cobj, such that o = λ1…λm

(o1, …, on) where λ1…λm ∈ D . That is, o is a newly derived object from existing
objects o1, …, on in the context via a series of conceptual operators λ1,…λm like
select, join, etc.

86 R. Rajugan et al.

(ii) For any constraint ∀c∈ Vc
constraint, there exists a constraint ∃c’∈ Cconstraint or a

new constraint c’’ constraints associated with Vc
obj or V rel .

(iii) For any hierarchical relationship ∀rh∈Vc
rel, there does not exist a relationship

between one or more and Vc
obj and Cobj.

(iv) For any association relationship/dependency relationships ∀ra∈Vc
rel, there may

exist a relationship between one or more Vc
obj and Cobj.

Fig. 3. e-Sol, core user model, relationships and constraints

Example 1: In Fig. 3, “Warehouse-Manager” is a valid XML conceptual view, named
in the context of “Staff”. Its objects are taken from the e-Sol “Core-Users” UML
objects via the conceptual select [37] operator σwarehouse-Staff.Role=“manager” (Core-Users).
Similarly, the conceptual view of name “Site-Manager” (Fig. 3) in the given context
“Staff” is constructed via both SELECT and PROJECT operators.

Example 2: Conceptual views (Fig. 4), “Customer-History”, “Lot-Master-Charge-
History” and “Rent-Warehouse-Space-History” are perspectives / views in the
context of “Warehouse-History” of the e-Sol system.

Example 3: Conceptual view (Fig. 3), “Collaborative-Partner” is a perspectives /
view in the context of “Customer” in e-Sol.

 A Three-Layered XML View Model: A Practical Approach 87

Example 4: In the case of conceptual view “Income” (shown in Fig. 3), the conceptual
construct is a conceptual JOIN operator with join conditions, where x = Staff, y =
Salary-Pkg and z = Benefit-Pkg:

(x→(x.staffID=y.staffID) y) AND (x→ (x.staffID=z.staffID) z).

Example 5: In Fig.4 illustrates another valid conceptual view “Lot-Master-Charge-
History” in the given context “Lot-Management”. Here, at the conceptual level, it is
stated as a materialized conceptual view, implying that it is a persistence view during
the life time of the system. This characteristic is also stated in the OCL statement
(Fig. 4).

It should be noted that, in our model, when referring to conceptual view OCL
statements, it is provided only as a complement (such stating derived attributes,
uniqueness etc.) to the visual UML model. Our aim is to keep the view definitions as
visual as possible (in direct contrast to the work [7]) and avoid ambiguous and impre-
cise textual specifications of the view definitions.

5.1 Modeling Conceptual Views

The modeling of XML conceptual views can be done using UML, plus a set of stereo-
types [38] and newly introduced conceptual operators [37]. In addition, to make view
constraints more explicit and visible, we use OMG’s Object Constraint Language
(OCL) [33].

As our conceptual view mechanism is defined at a higher-level of abstraction, we
can provide an explicit view constraint specification model, as most high-level
OOCM languages (such as UML, XSemantic nets, E-ER) provide some form of con-
straint specification. In the case of XSemantic nets, constraints are provided as part of
the model elements [20, 39]. In the next section, we will look at specifying constraints
using UML/OCL.

5.2 Modeling Conceptual View Constraints

In UML, OCL, which is now a part of the UML 2.0 standard [34], can support unam-
biguous constraints specifications for UML models. In our conceptual view model,
we incorporate OCL (in addition to built-in UML constraints features) as our view
constraint specification language to explicitly state view constraints. It should be
noted that, we do not use OCL to define views, rather state additional constraints
using OCL. OCL supports defining derived classes [33, 50], which is close to a view
concept [7]. It is of the form of;

context: <derived-class-name>::<new-attribute-name>: Type
derive: <source-stored-class>.

[some expression representing the derivation rule]
/ [<source-stored-class-attribute>

To define our conceptual views, we show view classes visually, with the <<view>>
stereotypes and the relationship between the stored class and the view as
<<construct>> stereotype. Therefore, we do not require non-visual OCL view speci-
fication as shown above, but can be used to show some of the derivations rule

88 R. Rajugan et al.

for the attributes and/or operations to make the view definition more explicit and
precise. It also supports specifying derived values and attributes in already existing
views (and stored classes) and specified in the form of;

context Typename::assocRoleName: Type
derive: -- some expression representing the derivation rule

Fig. 4. e-Sol, core data stores, relationships and constraints

In addition, further constraints can be defined for conceptual views including; (1)
domain constraints (range of values, min, max, pattern etc), (2) constructional con-
tents (set, sequence, bag, ordered-set), (3) ordering (4) explicit homogenous composi-
tion/heterogeneous compositions, (5) adhesion and/or dependencies (6) exclusive
disjunction and many more. Specifying these constraints using OCL expression in
conceptual views are similar to that of stored domain objects.

Example 6: In the case of conceptual view “Income” (Fig. 3), the following OCL
statements hold true;

 A Three-Layered XML View Model: A Practical Approach 89

context Income :: Staff : ID
derive : Staff.staffID

context Income :: benefits : Real
derive : Benefit-Pkg.totalBenefits

context Income :: baseSalary : Real
derive : Salary-Pkg.baseSalary

context Income :: totalSalary : Real
derive : totalSalary =

(self.baseSalary – self.tax)
+ benefits –

self.totalDeductions

Example 7: In the case of conceptual view “Warehouse-Manager” (Fig. 3), we indicate
the unique staffID by the following OCL expression;

context Staff
inv : self->isUnique(self.staffID)

Example 8: In the case of conceptual views “Warehouse-Manager” and “Warehouse-
Staff”, in the context of “Staff” (Fig. 3), we indicate the adhesion relationship be-
tween them using the following OCL statements given below.

context Warehouse-Staff :: managedBy : ID
derive : Warehouse-Manager.staffID

context Warehouse-Manager
inv: self.responsibleFor := Set(Warehouse-Staff.staffID)

context ManageStaff
inv : Warehouse-Staff->managedBy (Warehouse-Manager.staffID)

Example 9: In the case of conceptual views “Lot-Movement” (Fig. 4), the exclusive
disjunction between Internal-Lot-Movement (stored goods change owners) and
External-Lot-Movement (goods shipped outside the warehouse) can be show via the
OCL statement “OR” between the relationships as shown in Fig. 4.

Example 10: Similarly, the exclusive disjunction between conceptual views Cus-
tomer-Logistics (where customers provide/use their own logistics service provider
to move goods out of the warehouses) and LMS (where customers utilize the ware-
houses’ own logistics services), can be show via the OCL “OR” statement (Fig. 4).

6 XML Schema Views

An XML conceptual view can be transformed/mapped into a corresponding XML
schema view (in XML Schema language) using the techniques we developed in [20,
21, 53, 54]. Table 1 provides a very brief overview of our transformation rule mecha-
nism. Due to space limitation, we refer readers to [20, 21, 38, 39, 53, 54] for detailed
descriptions of mapping Object-Oriented conceptual models to XML Schema.

Formally, let ℵc

s
denote the transformation mechanism which can translate a set

of objects, their relationships and constraints into a set of simpleType/complextType
definitions for XML elements/attributes and associated element/attribute constraints
in the XML Schema language.

Definition 3: An XML schema view Vs is a triple Vs
 = (Vs

name, V
s
simpleType, V

s
complexType,

Vs
constraint), where Vs

name is the name of the XML schema view Vs, Vc
simpleType,

Vs
complexType are simple and complex type definitions for XML elements/attributes, and

90 R. Rajugan et al.

Vs
constraint is a set of constraints upon the defined XML elements/attributes. Here,

Vc
simpleType, V

s
complexType, and Vs

constraint are expressed in the XML Schema Language, and
Vs

name is also the name of the resulting XML schema file, i.e., a valid W3C XML
document name.

Definition 4: Given an XML conceptual view Vc
 = (Vc

name, V
c
obj, V

c
rel, V

c
constraint), V

s
 =

(Vs
name, V

s
simpleType, V

s
complexType, V

s
constraint) is a valid XML schema view of Vc, if and

only if Vs
 is transformed from Vc by ℵc

s
. That is, ℵc

s
: Vc →Vs.

To get the flavor of such a transformation, in the following, we exemplify how the
OCL constraints at the conceptual level are mapped to the XML schema level.

Table 1. Transformation rules from conceptual view to schema view

Conceptual view (in UML) Schema view (in XML Schema)

View class and View class hierarchy
(View-of-view)

Complex type construction (xsd:complexType) and complex type/element
hierarchies

View class constraints (e.g. Ordering,
homogenous composition etc.

Built-in XML Schema constraints.

View attributes XML Schema simple types (integer, float, string, date, time etc.)

View attribute constraints (e.g. Object
Identifier (OID)

XML Schema constructs using “facet” and XML Schema specific ele-
ment/attribute constraints

Attribute grouping (constructional
contents such as set, bag)

XML Schema list (NMTOKENS, IDREFS, & ENTITIES), or new list types
using <xsd:list> construct and union by using <xsd:union> construct.

Structural Relationships (IS-A, compo-
sition, association)

<xsd:sequence>, <xsd:choice> & <xsd:all> with
<xsd:extension> / <xsd:restriction> and ID, IDREF/IDREFS
or KEY and KEYREF constructs

Domain constraints “facets” mechanism to create new types, apply restriction etc.

Uniqueness Constraint XML Schema <xsd:unique> construct

Cardinality Constraint XML Schema maxOccurs/minOccurs construct

Referential Constraint XML Schema ID, IDREF/IDREFS or KEY and KEYREF constructs.

Stereotype <<view>> Complex type construction (xsd:complexType) and complex type/element
hierarchies.

Stereotype <<OID>> Combination of XML Schema simple types ID, IDREF/IDREFS or KEY and
KEYREF constructs and XML Schema unique constraint.

Example 11: The ordered/unordered compositions (e.g. in Fig. 4, “Lot-Master” &
“Goods-Items”), shown using the stereotype (<<1>>, <<2>>,…), are mapped using the
<xs:sequence> construct; (a) at the conceptual view attribute level and (b) at the
conceptual view class level. This is shown below in code listing 1.

Example 12: As shown in Example 9, the exclusive disjunction constraint (Fig. 4)
between “Internal-Lot-Movement” and “External-Lot-Movement” can be mapped
XML Schema using the <xs:choice> schema construct, as shown below in code
listing 2.

 A Three-Layered XML View Model: A Practical Approach 91

<!-- additional nesting -->
<xs:complexType name="Composite_Object/attrbute">

<xs:sequence>
<xs:element name="Componant-A/attribute-a"

 type="xs:OID"/>
 <!-- additional nesting -->

 <!-- additional nesting -->
</xs:sequence>

</xs:complexType>
<!-- additional nesting -->

<!-- additional nesting -->
<xs:element name="Lot-Movement">

<xs:complexType>
<xs:complexContent>

 <xs:extension base="LotMovementType">
 <!-- additional nesting -->
 <xs:choice>

 <xs:element name=
"Internal-Lot-Movement"

type="InternalLotMovementType"/>
 <!-- additional nesting -->
 <xs:element name=

"External-Lot-Movement"
 type="ExternalLotMovementType"/>

 <!-- additional nesting -->
 </xs:choice>
 <!-- additional nesting -->
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

</xs:element>
<!-- additional nesting -->

Code Listing 1: Code sample for exam-
ple 11

Code Listing 2: Code sample for example 12

Example 13: The unique constraint (the <<OID>>) in Staff can be mapped to the view
schema as shown in the code fragment below (Fig. 3 & 4).

 <!-- additional nesting -->
<xs:complexType name="staffType">
 <xs:sequence>
 <xs:element name="staffID" type="OIDType"/>
 <!-- additional nesting -->
 <xs:element name="managedBy">
 <xs:key name="manager">
 <xs:selector/>
 <xs:field xpath="staffID"/>
 </xs:key>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <!-- additional nesting -->
 <!-- additional nesting -->
 <xs:complexType name="OIDType">
 <xs:sequence>
 <xs:element name="ID">
 <xs:unique name="OID">
 <xs:selector xpath="OIDType"/>
 <xs:field xpath="ID"/>
 </xs:unique>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
<!-- additional nesting -->

7 XML Instance Views

An XML instance view is an instantiated imaginary XML document which conforms
to the XML schema view defined at the schema level. An instance view can be used
for many purposes such as database views, materialised semantic Web-views, etc.,
and can be generated from simple projection of selected document tags to provide
dynamic window into complex heterogenous documents. Based on how these docu-
ments are constructed/behave, we classify XML instance views into three categories

92 R. Rajugan et al.

[35], namely, derived instance views, constructed instance views, and triggered in-
stance views.

XML instance views can be constructed via a native XML query language (e.g.
XQuery [48], SQL 2003 [6]) or some specific algorithms such as Ontology Extraction
Methodology (OEM) [52] (the MOVE [51] system), which can be achieved by the
transformation of conceptual operators D defined at the conceptual level [37] into a
language-specific query fragment QueryD , say FLWOR expressions in XQuery etc. In

a related work [52], the authors have shown how conceptual operators can be trans-
formed and mapped to query algorithms in the MOVE system.

In this paper, we briefly discuss XQuery as the document view construct language.
Here, we choose XQuery as document view constructor as it is gaining momentum as
the language of choice for XML databases and repositories. It is a functional language
[9] and its functionalities are comparable to early/mid SQL standards (in the relational
model). In addition it is well-suited for our purpose better than other XML query
languages (such as XPath or XSLT) as; (a) XQuery is easy to read and write in com-
parison XPath and XSLT, (b) in direct contrast to XQuery’s powerful For-Let-Where-
Order-Return (FLWOR) expression, XPath/XSLT are purely presentation oriented,
(c) XQuery provides User-Defined Functions (UDF) and variable binding and (d)
XQuery support XML Schema. Table 2 below shows a brief summary of such map-
pings (including some built-in XQuery operators).

Table 2. Transformation of conceptual operators to instance view query expressions

Conceptual
Operator

XQuery Equivalent Illustrative Example Code

Union Built-in operator
(union or |)

let $a := document ("d1.xml")
let $b := document ("d2.xml")
return <union-result> {$a | $b}</union-result>

Intersection Built-in operator
intersect

let $a := document ("d1.xml")
let $b := document ("d2.xml")
return <intersect-result>

{$a intersect $b}</intersect-result>

Difference Built-in operator
except

let $a := document ("d1.xml")
let $b := document ("d2.xml")
return <difference-result>

{$a except $b}</difference-result>

Cartesian
Product

In any FLWOR
expression, when
more than one
variable is bound to
a FOR clause (no
where clause)

for $a in document("d1.xml"),
 $b in document("d2.xml")
return <simple-CP-example> <a>{$a}
 {$b}
</simple-CP-example>

Join for $a in document("d1.xml"),
 $b in document("d2.xml")
where $a/ID = $b/ID
return <simple-JOIN-example> <d1>{$a}</d1>

<d2>{$b}</d2> </simple-JOIN-example>

Project Any valid FLWOR expression. Simplest PROJECT expression is
doc(“d1.xml”)

Select,
Rename,
Restruct(ure)

User defined func-
tions and/or Built-
in operates

Any valid FLWOR expression, with selective/conditional clause

 A Three-Layered XML View Model: A Practical Approach 93

Formally, we can have the following definition for XML instance views.

Definition 5: Given an XML schema view Vs and a set of XML source documents S,
Vi

 is called a valid XML instance view of Vs over S if and only if Vi is a well-formed
XML document, extracted from S by certain query operators in QueryD , and conform-

ing to the XML schema Vs.

Example 14: As described in Examples 1, 7 and 8, the conceptual view operators of
the view “Warehouse-Manager” can be mapped to the document view construct
(XQuery expression) as shown below in the code segment.

for $role in document ("staff.xml")//Role
where $role = "Manager"
return <Warehouse-Manager> {$role} </Warehouse-Manager>

Example 15: If a new domain requirement exists to add new conceptual view Manage-

ment-Memo send to all “Warehouse-Manager”, we can do that using Cartesian Product
conceptual operator. Here in document level, we can map that conceptual operator to
the following XQuery expression;

for $a in document("Warehouse-Manager.xml")//Role,
 $b in document("Management-Memo.xml")//Message
return <send-memo> <W-Mgr>{$a}</W-Mgr>

<Mgr-Memo>{$b}</Mgr-Memo></send-memo>

8 Conclusion and Future Work

In this paper, we presented a view model with conceptual and schema extensions. We
also presented a view constraint specification model (OCL based) and conceptual
operators. We showed how conceptual views are mapped to its schema and document
level equivalent, with illustrated case study examples.

For future work, some further issues deserve investigation. First, the investigation
of a formal mapping approach to conceptual view constraints, to automate the view
constraint model transformation between the conceptual and schema level constraints.
Second, the automation of the mapping process between conceptual operators to vari-
ous query language expressions (such as XQuery). Third, is the investigation into
dynamic perspectives of the conceptual view formalism that can be applied to tradi-
tional data, Semantic Web and web service domains.

References

1. S. Abiteboul, "On Views and XML," Proc. of the 18th ACM PODS '99, USA, 1999.
2. S. Abiteboul and A. Bonner, "Objects and Views," Proc. of the Int. Conf. on Management

of Data (ACM SIGMOD '91), 1991.
3. S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge, "Views for Semistruc-

tured Data," Workshop on Management of Semistructured Data, USA, 1997.
4. S. Abiteboul, et al., "The Lorel Query Language for Semistructured Data," Int. Journal on

Digital Libraries, vol. 1, pp. 68-88, 1997.
5. AIIM, "The ECM Association (http://www.aiim.org/index.asp)," AIIM, 2005.
6. ANSI and ISO, "ANSI - SQL 2003," ANSI / ISO 2003.

94 R. Rajugan et al.

7. H. Balsters, "Modelling Database Views with Derived Classes in the UML/OCL-
framework," The UML '03, USA, 2003.

8. R. G. G. Cattell, et al., "The Object Data Standard: ODMG 3.0," Morgan Kaufmann, 2000,
pp. 300.

9. D. D. Chamberlin and H. Katz, XQuery from the experts : a guide to the W3C XML query
language. Boston: Addison-Wesley, 2003.

10. E. Chang and T. S. Dillon, "Integration of User Interfaces with Application Software and
Databases Through the Use of Perspectives," 1st Int. Conf. on ORM '94, Australia, 1994.

11. E. Chang, et al., "A Virtual Logistics Network and an e-Hub as a Competitive Approach
for Small to Medium Size Companies," Int. Human.Society@Internet Conf., Korea, 2003.

12. E. Chang, et al., "Virtual Collaborative Logistics and B2B e-Commerce," e-Business
Conf., Duxon Wellington, NZ, 2001.

13. E. J. Chang, "Object Oriented User Interface Design and Usability Evaluation," in De-
partment of CS-CE: La Trobe University, Melbourne, Australia, 1996.

14. Y. B. Chen, T. W. Ling, and M. L. Lee, "Designing Valid XML Views," Proc. of the 21st
Int. Conf. on Conceptual Modeling (ER '02), Tampere, Finland, 2002.

15. S. Cluet, P. Veltri, and D. Vodislav, "Views in a Large Scale XML Repository," Proc. of
the 27th VLDB Conf. (VLDB '01), Roma, Italy, 2001.

16. C. J. Date, An introduction to database systems, 8th ed. New York: Pearson/Addison
Wesley, 2003.

17. T. S. Dillon and P. L. Tan, Object-Oriented Conceptual Modeling: Prentice Hall, Austra-
lia, 1993.

18. J. H. Doorn, L. C. Rivero, and (eds), Database Integrity: Challenges & Solutions: Idea
Group Publishing, Hershey, PA, 2002.

19. R. Elmasri and S. Navathe, Fundamentals of database systems, 4th ed. New York: Pear-
son/Addison Wesley, 2004.

20. L. Feng, E. Chang, and T. S. Dillon, "A Semantic Network-based Design Methodology for
XML Documents," ACM Trans. on IS (TOIS), vol. 20, No 4, pp. 390 - 421, 2002.

21. L. Feng, E. Chang, and T. S. Dillon, "Schemata Transformation of Object-Oriented Con-
ceptual Models to XML," Int. J. of Comp. Sys. Sci. & Eng., vol. 18(1), pp. 45-60, 2003.

22. V. Gopalkrishnan, Q. Li, and K. Karlapalem, "Star/Snow-flake Schema Driven Object-
Relational Data Warehouse Design and Query Processing Strategies," 1st First Int. Conf.
on Data Warehousing and Knowledge Discovery (DaWaK '99), Florence Italy, 1999.

23. I. Graham, A. C. Wills, and A. J. O'Callaghan, Object-oriented methods : principles &
practice, 3rd ed. Harlow: Addison-Wesley, 2001.

24. A. Gupta, I. S. Mumick, and (eds), Materialized views: techniques, implementations, and
applications: MIT Press, 1999.

25. ITEC, "iPower Logistics (http://www.logistics.cbs.curtin.edu.au/)," 2002.
26. W. Kim, "Research Directions in Object-Oriented Database Systems," Proc. of the 19th

ACM Sym. on Principles of Database Systems, Nashville, Tennessee, USA, 1990.
27. W. Kim and W. Kelly, "Chapter 6: On View Support in Object-Oriented Database Sys-

tems," in Modern Database Systems: Addison-Wesley Publishing Company, 1995, pp.
108-129.

28. H. Liefke and S. Davidson, "View Maintenance for Hierarchical Semistructured," Proc. of
the Second Int. Conf. on DaWak '00, London, UK, 2000.

29. Lucie-Xyleme, "Xyleme: A Dynamic Warehouse for XML Data of the Web," Int. Data-
base Engineering & Applications Symposium (IDEAS '01), Grenoble, France, 2001.

30. B. Ludaescher, et al., "View Definition and DTD Inference for XML," Post-ICDT Work-
shop on Query Processing for Semistructured Data and Non-Standard Data Formats, 1999.

 A Three-Layered XML View Model: A Practical Approach 95

31. M. K. Mohania, K. Karlapalem, and Y. Kambayashi, "Data Warehouse Design and Main-
tenance through View Normalization," 10th Int. Conf. on DEXA '99, Italy, 1999.

32. V. Nassis, et al., "Conceptual and Systematic Design Approach for XML Document Ware-
houses," Int. J. of Data Warehousing and Mining, vol. 1, No 3, 2005.

33. OMG-OCL, "UML 2.0 OCL Final Adopted specification (http://www.omg.org/cgi-
bin/doc?ptc/2003-10-14)," OMG, 2003.

34. OMG-UML™, "UML 2.0 (http://www.uml.org/#UML2.0)," 2003.
35. R.Rajugan, E. Chang, T. S. Dillon, and L. Feng, "XML Views: Part 1," 14th Int. Conf. on

Database and Expert Systems Applications (DEXA '03), Prague, Czech Republic, 2003.
36. R.Rajugan, et al., "Engineering XML Solutions Using Views," The 5th Int. Conf. on Com-

puter and Information Technology (CIT '05), Shanghai, China, 2005.
37. R.Rajugan, E. Chang, T. S. Dillon, and L. Feng, "A Layered View Model for XML Re-

positories & XML Data Warehouses," The 5th Int. Conf. on CIT '05, China, 2005.
38. R.Rajugan, E. Chang, T. S. Dillon, and L. Feng, "XML Views, Part III: Modeling XML

Conceptual Views Using UML," 7th Int. Conf. on Ent. IS (ICEIS '05), Miami, USA, 2005.
39. R.Rajugan, et al., "Semantic Modelling of e-Solutions Using a View Formalism with

Conceptual & Logical Extensions," 3rd Int. IEEE Conf. on INDIN '05, Australia, 2005.
40. M. Rafanelli and (ed), "Multidimensional Databases: Problems and Solutions," Idea Group

Inc., 2003, pp. 474.
41. R. Steele, W. Gardner, R.Rajugan, and T. S. Dillon, "A Design Methodology for User

Access Control (UAC) Middleware," Proc. of the IEEE Int. Conf. on EEE '05, 2005.
42. R. Volz, D. Oberle, and R. Studer, "Views for light-weight Web ontologies," Proc. of the

ACM Symposium on Applied Computing (SAC '03), USA, 2003.
43. W3C-RDF, "Resource Description Framework (RDF), (http://www.w3.org/RDF/)," 3 ed:

The World Wide Web Consortium (W3C), 2004.
44. W3C-SW, "(http://www.w3.org/2001/sw/)," W3C, 2005.
45. W3C-SW, "Semantic Web, (http://www.w3.org/2001/sw/)," W3C, 2005.
46. W3C-WS, "Web Services Activity, (http://www.w3.org/2002/ws/)," W3C, 2002.
47. W3C-XML, "Extensible Markup Language (XML) 1.0, (http://www.w3.org/XML/)," 3 ed:

The World Wide Web Consortium (W3C), 2004.
48. W3C-XQuery, "XQuery 1.0: An XML Query Language," in XML Query Language

(XQuery): The World Wide Web Consortium (W3C), 2004.
49. W3C-XSD, "XML Schema," vol. 2004, 2 ed: W3C, 2004.
50. J. B. Warmer and A. G. Kleppe, The object constraint language : getting your models

ready for MDA, 2nd ed. Boston, MA: Addison-Wesley, 2003.
51. C. Wouters, T. S. Dillon, J. W. Rahayu, E. Chang, and R. Meersman, "Ontologies on the

MOVE," 9th Int. Conf. on Db. Sys. for Adv. Apps. (DASFAA '04), Korea, 2004.
52. C. Wouters, Rajugan R., et al., "Ontology Extraction Using Views for Semantic Web," in

Web Semantics and Ontology, USA: Idea Group Publishing, 2005.
53. R. Xiaou, et al., "Mapping Object Relationships into XML Schema," Proc. of OOPSLA

Workshop on Objects, XML and Databases, 2001.
54. R. Xiaou, et al., "Modeling and Transformation of Object-Oriented Conceptual Models

into XML Schema," 12th Int. Conf. on DEXA '01 2001, 2001.
55. Y. Zhuge and H. Garcia-Molina, "Graph structured Views and Incremental Maintenance,"

Proceeding of the 14th IEEE Conf. on Data Engineering (ICDE '98), USA, 1998.

Modeling Group-Based Education
A Proposal for a Meta-model

Manuel Caeiro-Rodŕıguez, Mart́ın Llamas-Nistal, and Luis Anido-Rifón

University of Vigo, Department of Telematic Engineering,
C/ Maxwell S/N E-36310, Spain

{Manuel.Caeiro, Martin.Llamas, Luis.Anido}@det.uvigo.es
http://www-gist.det.uvigo.es/~mcaeiro

Abstract. Currently, one of the most important application domains
for Software Engineering is distance education and e-learning. There ex-
ist some standards/specifications that deal with the definition of both
the data models and services needed in this environment. Among them,
Educational Modelling Languages (EMLs) define the content and pro-
cess within a unit of instruction. Nevertheless, current EMLs do not
completely cover the whole educational scenarios. This paper uses work-
flow management techniques to present a conceptual meta-model for
group-based educational design. This meta-model includes all required
elements, flows and policies needed in this domain. Lacks in current Ed-
ucational Modelling Languages will be identified to model group-based
education.

1 Introduction

Computer-supported learning has evolved both with technological and instruc-
tional developments. In the one side, during the last years, there has been a great
evolution in the field of information sciences. The development of computer net-
works and the appearance of the Web have promoted the creation of interactive
and group-based systems that free humans from time and place constraints.
In the other side, during the last decades, instructional and pedagogical initia-
tives have focused their efforts on collaborative educational scenarios, trying to
enhance human learning processes and capabilities [1]. Group-based education
gathers a broad range of educational practices and approaches: constructivism,
project-based, inquire-based, discussion-based, etc.

Accordingly to these evolutions, Educational Modeling Languages (EMLs)
[2] were proposed some years ago to enable the modeling of units of instruction
(e.g. a lesson, a course). The purpose of this work is to contribute to the develop-
ment of an EML to support the description of group-based educational scenarios
and practices. It requires a meta-model that enables the characterization of the
different ways of interaction and collaboration among learners and academic staff
(teachers, tutors, etc.). Eventually, the achievement of a standardized EML will
enable the development of tools both for the design and enactment of units of
instruction, improving the labor of instructional designers, pedagogic experts,
etc., and the educational experiences of teachers and learners.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 96–111, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modeling Group-Based Education 97

2 Educational Modeling Languages

The CEN/ISSS WS-LT [3] survey of Educational Modeling Languages proposed
the following EML definition: An EML is a semantic information model and
binding, describing the content and process within a ’unit of learning’ from a
pedagogical perspective in order to support reuse and interoperability. Therefore,
the purpose of EMLs, of which IMS Learning Design (LD) is the most out-
standing proposal [4], is to support the description of diverse teaching-learning
experiences (i.e. learning designs), embodying different kind of tasks, processes,
persons, tools, and contexts. Later, these designs may be used by an engine
to enable, control, and support the intended learning experiences through the
design enactment.

For example, the LD proposal is a meta-language that allows to codify units-
of-study (e.g. courses, course components, programs of study), associating each
element of content (e.g. texts, tasks, tests, assignments) with information de-
scribing its instructional use (e.g., roles, relations, interactions, and activities
of students and teachers). LD is mainly concerned with supporting the coordi-
nation issues that take place in education: how to control the order of specific
activities to be performed by humans and applications, and the use of resources.
Basically, it is a declarative language, but it also has an important transactional
component. The LD specification has an XML binding to compose learning de-
signs.

In group-based settings, EMLs are related with CSCL Scripts [5]: A script
is a story or scenario that the students and tutors have to play as actors play
a movie script. In group-based educational scenarios, these scripts are proposed
as activity programs that aim to facilitate collaborative learning by specifying
activities in collaborative settings, eventually sequencing these activities and
assigning them to learners. But, currently there is no language or EML-based
proposal that completely satisfies the design requirements involved in CSCL
Scripts. As a consequence, our purpose is to contribute to the development of
EMLs proposing a meta-model that supports such issues.

We want to emphasize that both EMLs and CSCL Scripts involve workflow
and groupware issues. It is necessary to consider: (i) the tasks that have to
be performed by each participant, the control flow, the data flow, etc.; and
(ii) the way how learners and academic staff interact among them. But, it is
necessary to have in mind the idea that educational scenarios are different from
the ones in industry or software engineering. The goal is not task achievement
efficiency or effectiveness, but apprenticeship, i.e. what the student has learnt
from performing a set of tasks.

3 Group-Based Educational Design

Group-based education requires that learners and academic staff (e.g. tutors,
professors, etc.) participate in a great variety of experiences (problem-solving,
group discussions, games, simulations, projects, etc.), where people, documents,

98 M. Caeiro-Rodŕıguez, M. Llamas-Nistal, and L. Anido-Rifón

and tools are arranged in different ways. The variety of ways can be considered
in the nature of tasks [6] (gathering and distributing information; creating docu-
ments; discussing and commenting around productions; planning activities), the
interaction among participants (free communication, document sharing, etc.),
the number of participants, the work arrangement, etc. Some examples of tasks
in group-based experiences are [5, 7]:

– Individual. Many times learning involves the work of individual persons
(learners or academic staff) working towards particular goals (i.e. a learner
has to read a text and produce some kind of summary).

– Collaborative. Participants work together on the same group task, either syn-
chronously or in frequent asynchronous interaction. Learners and staff share
a common working space, documents, tools, and communicating facilities
and try to achieve a common goal.

– Cooperative. The group educational goal is spitted in sub-goals. Learners
are assigned to solve sub-tasks individually or in small groups. Then, once
the sub-goals have been achieved, a collaborative task enables that all the
participants share their results and discuss about the experiences.

– Collective. There is no group goal, but individual educational goals. Each
learner works alone or in small groups on his own task, but shares results
and problems with the others, and therefore shares inspiration, exchanges
help and so forth. The different working groups can take advantage of the
common information.

In order to propose a supporting model for our intended EML, we have classi-
fied the elements and behaviors involved in the tasks, interactions, and arrange-
ments, which can appear in a group-based educational scenario. Our analysis is
based on the identification of perspectives, and for each perspective, the patterns
that may be involved in it. As a result, we obtain a set of criterions that drive the
development of our model. We consider a perspective (also aspect or dimension)
as a feature that involves a certain purpose and that can be analyzed separately
from other perspectives. Some perspectives have been identified during the last
years in related domains: workflow [8], groupware [9], human-computer interac-
tion [10], etc. A pattern is an abstraction that is frequently repeated. It can be
considered as a general solution to a common problem [11]. We consider patterns
as the common forms that need to be described by an EML.

We have tried to find the key perspectives and patterns involved in group-
based educational scenarios. The research involved the mentioned works (work-
flow, groupware, human-computer interaction, etc.) and CSCL design [12-14]. In
table 1 we present the identified perspectives and some of the involved patterns
(organized by groups). In the next items we provide some explanations:

– Causal. It answers the question about why to perform a certain unit of in-
struction. It gives educational information about the learning goal or goals
to be attained, the pedagogical approach, the background required, etc. This
perspective is not directly related with the modeling of the unit of instruc-
tion, but it is important to facilitate their search, classification, etc.

Modeling Group-Based Education 99

Table 1. Perspectives and pattern groups for group-based educational design

Perspective Pattern Groups

Causal Educational info: Educational Goals, Pre-requirements, etc.
Learner info: Preferences, Background, Portfolio, etc.

Functional Composition patterns: Collaborative, Cooperative, Collective, etc.
Constraint patterns: Pre/Post-conditions, Inter-dependencies, etc.

Behavioral Basic control: Sequence, Parallel Split, Synchronization, etc.
Advanced branching and synchronization: Multi-choice, etc.
Structural: Arbitrary Cycles, Implicit Termination, etc.
Involving multiple instances: Without Synchronization, etc.
State-based: Deferred Choice, Milestone, etc.

Temporal Synchronization: A before B, A starts B, A finishes B, etc.
Scheduling: Deadline, Start Point, etc.
Allocation: Maximum, Minimum, Average Execution Time, etc.

Informational Data visibility: Task Data, Block Data, Scope Data, etc.
Data interaction: Task to Task, to Multiple Instance Task, etc.
Data transfer: by Value, by Reference, Copy, etc.
Data-based routing: Data Existence, Data Value, etc.

Operational Tool configuration: Parameters, Model-based, Pattern-based, etc.
Tool interaction: Push-oriented, Pull-oriented, Events, etc.

Authorization Static (Access Control) Authorization, Obligation, etc.
Dynamic (Floor control): Delegate, Revoke, Cancel, Request, etc.

Interaction Mode: Synchronous, Asynchronous, Notification, etc.
Media Type: Text, Images, Audio, Video, Gestural, etc.
Policies: Master-Slave, Round Robin, Hot Seat, Free, etc.

Organizational Participant grouping: Flat, Hierarchical, Constrained, etc.
Participant relationships: delegation, priority, etc.

Resource Resource assignment: Single Offer, Multiple Offer, Allocation, etc.
Resource Info: Runtime Data, Portfolio, etc.

Awareness Asynchronous: Focused, Filtered, Aggregation, Summary, etc.
Synchronous: Tele-pointer, Presence Indicator, etc.

– Functional. It answers the question about what has to be done in each task
of the unit of instruction. This perspective characterizes the tasks that have
to be performed and how these tasks are decomposed into smaller units [7].

– Behavioral. It answers the question about when to perform a task in an
unit of instruction. This perspective (also named as process or control flow)
describes the execution ordering of tasks. Workflow patterns have being spec-
ified to evaluate the expressiveness of this perspective in workflow [15].

– Temporal. It answers the question about when to perform a task in time.
It adds another dimension to the control flow of tasks. Without temporal
constraints, a task is initiated when its preceding tasks have finished. Allen
relationships [16] describe time constraints between two tasks.

– Informational. It answers the question about what information is available
to perform a task in an unit of instruction. The informational perspective
(also named as data flow) describes the information used, its flow and depen-

100 M. Caeiro-Rodŕıguez, M. Llamas-Nistal, and L. Anido-Rifón

dencies among tasks. Artifacts (e.g. Learning Objects [22]) and information
can flow between tasks in different ways [9, 17]. Synchronous data flow takes
place when the sender task terminates and the receiver starts. Asynchronous
data flow takes place during task execution, concerning copy or transfer.

– Operational. It answers the question about what operations are available to
perform a task in an unit of instruction. It comprises the applications used
in the activities. It describes the methods for accessing or invoking external
applications (e.g. simulators, editors, communication and collaboration ser-
vices). These can be very different in nature but from the process point of
view the technical details of the applications are to be kept transparent.

– Authorization. It answers the question about what access rights have users to
access objects and operations in the environment. This perspective enables
to establish the limits of the education environment for each participant and
group (e.g. public and private workspaces), to show certain artifacts, etc.

– Interaction. It answers the question about how participants can interact dur-
ing communication and co-operation. Communication encompasses the pro-
cess of transfer and exchange of information. It is a basic functionality in-
volved in any collaborative situation. Typical communication tools are: e-
mail, desktop conferencing systems, chat, whiteboard, etc. Co-operation is
concerned on the access and change of a shared set of data. In co-operation,
we group the set of interactions related to the storage and manipulation
of shared artifacts. Examples of systems that provide these functionalities
are shared editors, virtual whiteboards, shared repositories, etc. The inter-
action perspective is very important in collaborative educational settings to
organize and coordinate the way in which learners and staff interact.

– Organizational. It answers the question about what organizational structure
is responsible for performing an unit of instruction. The organizational per-
spective describes the structure of the participants and groups devoted to
perform tasks. It is possible to consider educational scenarios where group
structure can vary from task to task.

– Resource. It answers the question about who is responsible of performing
each task of an unit of instruction. This perspective is concerned with the
management of resources in the educational process. Resources can be human
(e.g. a worker) or non-human (e.g. a room, a machine), although the main
focus is on human resources. One of the main important points is how a
resource is assigned to tasks and grouped into teams.

– Awareness. It answers the question about what runtime information have to
be presented to each participant in an unit of instruction. Awareness refers to
how is made visible or available to participants what the other participants
are doing or have done. Awareness can be used for educational purposes in
many ways. Usually, teachers need to obtain information about the actions
of their learners. In order to give to the right participant the information and
to avoid information overload, awareness should be focused, customized, and
temporally constrained [8, 18].

In addition to these perspectives, there are two important points to consider
in group-based educational scenarios. The first one is related to the structure of

Modeling Group-Based Education 101

the scenarios. In the one side, some instructional approaches require very well
defined roles, groups, tasks, environments, etc. In the other side, there are in-
structional approaches that consider open scenarios, including ill-defined tasks,
unstructured collaborations, etc. Therefore it should be possible to design plans
with flexible structures. The second one is related to enactment and execution
flexibility. Many times educational plans have to be changed during their execu-
tion. Therefore, it should be possible to enable that some authorized participants
(e.g. tutors) can introduce modifications or alter the design during its enactment.

4 A Meta-model Proposal for Group-Based Educational
Design

In this section, we present the meta-model proposed to support the modeling of
group-based units of instruction. This meta-model has an XML binding repre-
sentation that enables such design. We have tried to support the perspectives
and patterns introduced in the previous section. The proposals are based on
workflow, groupware, and human-computer interaction results. Especially, we
have taken key ideas from [9, 15, 17, 19, 20, 21].

4.1 Basic Elements

The proposed meta-model is object-based and state-oriented. All elements in
the meta-model derive from the abstract Entity element [20], cf. figure 1. An
Entity contains attributes, operations, events, and is linked to other entities via
relationships. In addition, any Entity can be related with Rules that can be
used to perform operations in the Entity when some conditions evaluate true.
We have considered the following built-in elements in the Entity:

– Attributes. There are at least two attributes included in all the elements
of the meta-model. (a) The state attribute is used to maintain the current
state of the element. All the elements will be associated with a state-diagram
model in order to support their enactment. The available operations and
events will be restricted by its state [20]. (b) The meta-data attribute is
used to maintain information describing the element (e.g. version, creation
date, etc.). Some of the elements (Educational Scenario, Environment) may
include educational meta-data definitions using the LOM standard [22]. This
meta-data model enables the description of the educational purpose of the
elements.

– Operations. They are used to change the state of the element. Built in opera-
tions are devoted to change the attributes (changeState, changeMeta-data),
and to change the rules (addRule, deleteRule). The management of any ele-
ment by an enactment engine has to be produced through calls to its oper-
ations. Therefore, it is possible to enable that some participant can perform
some enactment control.

– Events. Events are generated when an operation is invoked and when the
state of the element changes.

102 M. Caeiro-Rodŕıguez, M. Llamas-Nistal, and L. Anido-Rifón

Rule

Condition

Expression

Action

Event

> perform

> when

Entity

Attributes
 state
 meta-data

Operations
changeMeta -data
changeState
addRule
deleteRule

Events
stateChanged

Fig. 1. The entity model. All the meta-model elements derive from this basic entity
type

– Rules. Rules are included to provide control functionality. They present the
following form: If Condition (event, expression) is TRUE then Action. This
provides a generic mechanism to invoke operations over elements as needed.
For example, it would be possible to specify that a participant has to be
notified if a certain resource is modified.

4.2 Meta-model Structure and Description

In this section, we present the proposed meta-model. Figure 2 illustrates the
core elements and the functional relationships. The most basic concept is the
Educational Scenario (ES), which represents a unit of instruction at any aggre-
gation degree. An ES is intended to perform a certain task (e.g. solve an exercise,
read a document, support a learner working with a simulator), focused towards
some educational objective (e.g. to get some expertise, some knowledge) and
considering certain restrictions (e.g. time conditions).

The ES element is the aggregation point where all other elements are an-
chored. Each ES constitutes a context of elements not accessible from other ES.
In this way it is possible to construct well-structured and separated educational
spaces. An ES aggregates the following elements:

– Educational Scenarios. An ES may contain other ES devoted to breakdown a
general goal into several sub-goals. All the ESs present the same organization.
Relationships (Connectors and Flows) are considered to relate the elements
of a Parent ES with the elements of a Child ES and the elements of Child
ESs among them.

– Roles. The ES needs to consider some participants, at least one, to Perform
the intended tasks. The number of participants is not restricted, and partic-
ipants can be grouped in group hierarchies as desired. We have considered
three special roles: (i) the Professor role is not mandatory, but if it is included
the role can modify the prescribed ES as desired and control its enactment;
(ii) the Responsible role is mandatory (but may be performed by several
participants), and it has authorization to define new child ESs, providing

Modeling Group-Based Education 103

Flow
Connector

Control Flow
Temporal

Flow

1

1

*out

1

* in

1

1..* 1..* *> Perform > Use

Object

Child

Parent

Child

Parent

C
hi

ld

Parent

*

Role
Connector

Participant
Assignment

0..1 0..1

Policy

tofrom

Flow

1

*out

1

* in

tofrom

1input output1

Data
Connector

Data Flow

Flow

1

*out

1

* in

tofrom

1 1input output input output

0..1 0..1 0..1 0..1

has

to

Professor

Responsible

Participant

*

*

*

*

1..*

*

Role / Group

Profile
Portfolio
Transcript

Educational
Scenario

Learning Goals
Pre-requirement
Post-requirement
Meta-data

Input *0..1

Output *0..1

Environment

Objects
Applications
Operations
Interactions

Application

Fig. 2. The proposed meta-model

a breakdown of the current one; (iii) finally, there can be any number of
Participants.

– Environments. The ES can consider some Environments containing the Re-
sources to be Used to achieve the goal. Environments can be grouped hier-
archical, but finally they will be composed by information documents (e.g.
HTML pages, texts, figures, etc.) and tools (e.g. communication facilities,
simulators, text processors, etc.). There may be two special kinds of Environ-
ments associated to an ES, namely Input and Output, that represent input
and output parameters. These parameters work in association with Input
and Output conditions to decide when a certain ES need to be enacted.

– Connectors. We consider three different kinds of connectors: Role Connector,
Flow Connector, and Data Connector. Each one of them provides several
mechanisms by which corresponding elements may be related: (i) the Flow
Connector is used to relate the flow control among ESs (e.g. sequence, OR-
join, AND-split, parameter conditions, temporal conditions, etc.); (ii) the
Role Connector enables the transfer of participants through roles, supporting
that a certain participant can perform different roles in different ESs (e.g.
free, Responsible decides); (iii) the Data Connector supports the data flow
among Environments and ESs (e.g. copy, transfer, synchronize, etc.). The
Connectors use Rules to provide conditioned behaviors.

– Flows. They are simple links used to connect the different Connectors. Flows
are associated with the Connectors, never with other elements (Roles, ES,
and Environment).

104 M. Caeiro-Rodŕıguez, M. Llamas-Nistal, and L. Anido-Rifón

– Policies. They are used to specify authorizations for the roles involved in
an ES. Policies are used to define the permissions (rights, obligations, pro-
hibitions, dispensations) that are provided to each role to use objects and
applications of the ES.

Educational Scenario. An ES represents a unit of education at any level
of granularity or specificity satisfying the functional perspective. Therefore, ESs
play a central role, being both the concept for process structuring, and the corner
stone on which reuse is promoted. We have taken this idea from the workflow do-
main, where it has been established that a system that does not include separate
classes for atomic and composite tasks can more easily accommodate design-time
and run-time evolution, making the language simpler and more efficient [19]. The
approach is a mixture of block-based and flow-based. ESs are entities that are
further described by decomposing each one. ESs are grouped via a hierarchy of
ESs flows. Composite ES are either collections, which have an unordered list
of sub-items, or networks where some sub-items are interconnected. Collections
and networks thus refer to models with different degree of structure. The inter-
connection network is made up of two types of elements: Flow Connectors and
Flows. Each ES may have two Flow Connectors to describe the conditions to
initiate and finish in accordance with behavioral and temporal perspectives.

Each ES (either composite or atomic) can be instantiated multiple times.
It involves learning goals, pre-requirements and post-requirements. Meta-data
has already been considered in the Entity type and therefore may be present
in all the elements of the meta-model. It is possible to specify a lower bound
and an upper bound for the number of instances created after initiating the
scenario. Moreover, it is possible to indicate that the ES has to be instantiate
a variable number of times depending on a certain condition. For example, in
many educational situations a tutor has to perform a task several times (e.g. to
evaluate an exercise, to supervise a learner) that depends on a certain condition
(the number of exercises and learners, respectively).

Roles. The participants that may be involved in an ES are persons, groups, and
software agents. They are all considered in the model through the Role element.
In general, EMLs distinguish between two generic roles (learner and staff), that
can be further specialized to define new roles. We consider the definition of new
roles through refinement and aggregation relationships (refinement relationships
are not depicted in the figure to improve clarity):

– Refinement relationships enable to define more specialized behaviors. For
example, it is possible to establish that there is a project leader in a group
of learners. This specialized role may be used to provide higher permissions
using policies.

– Aggregation relationships enable to compose groups, arranging other roles.
There is no restriction to the aggregation level. Therefore it is possible to
construct flat and hierarchical groups. This provides support for the organi-
zation perspective.

Modeling Group-Based Education 105

We have considered an original mechanism to facilitate the transfer of par-
ticipants between roles. It is based on interconnections between roles using Role
Connectors and Flows. These mechanisms enable that the participants can per-
form different roles at different ESs (e.g. it is possible to specify that a learner
who is project leader in an ES should not be project leader in another ES). In
this way we provide a solution for the resource assignment.

Learner roles have attributes that support the maintenance of information
about the participants. Specifically, to support the resource perspective we con-
sider: (i) a profile attribute, with information about the features of the learner
(personal information, preferences, learning styles, etc.); (ii) a portfolio attribute,
with information about tasks and works performed; and (iii) a transcript at-
tribute, used to record information about the progress of the user in the current
ES (e.g. project contributions, documents created, etc.). The information that
constitutes the transcript of a role would be specified during the design of the
ES, and it would be gathered automatically during runtime. In this way, a tutor
could assess the performance of a learner in a course considering the transcripts
of the roles played by the learner.

Environments. An ES may require several Environments containing the Ob-
jects and Applications to be Used by participants in order to Perform the in-
tended task. Aggregation of Environments is included to support the definition
of workspace hierarchies. Input and Output environments to ES are included to
facilitate the establishment of conditions for its enactment. A object is any kind
of document that may be used during an educational experience. Communica-
tion and collaboration perspectives are supported by the inclusion of appropriate
applications.

Objects, Applications and Environments are Entities that may contain spe-
cial attributes, operations, events, and rules. For educational design purposes
and to support information and operational perspectives, it is very important
to consider the interaction of Resources with Roles, with other Resources, and
with ESs:

– Environment to Role interaction. By default, roles may access the Environ-
ments available in the current ES and in the parents ES. This general access
rule may be constrained by appropriate Policies .

– Environment to Environment interaction. Data Connectors and Flows are
used to connect the Environments and Resources. They enable the transfer of
documents among Environments, the transfer of documents to applications,
to relate documents to applications, etc.

– Environment to ES interaction. Environments and Resources should present
clear state-diagrams to support the management of the interaction during
enactment. It should be possible to configure an Application (e.g. the setup
of a simulator), and to interact with it (e.g. obtain the qualification from an
automatic assessment tool).

Control Flow. Flow Connectors and flows are used to specify input conditions,
output conditions, and connections among ES supporting the control flow. A

106 M. Caeiro-Rodŕıguez, M. Llamas-Nistal, and L. Anido-Rifón

AND-split

XOR-split

OR-split

AND-join

XOR-join

OR-join

Fig. 3. Basic connection notation

Flow Connector represents an issue to resolve regarding the flow of tasks. Some
decisions may be straightforward to prescribe during the early planning of a
process, while others must be made by human actors during performance. The
Responsible roles have to solve unresolved conditions.

Connectors (Flow, Role, and Data) are described using Rules and Expres-
sions. The default Connector type is unspecified, which does not say anything
about the relationship between inputs and outputs, it only considers a simple
transfer. It is possible to specify conditions AND/XOR/OR both to join in-
comming flows and to split outgoing flows [21] (see Figure 3). Connectors can
be linked among them to compose more sophisticated decisions. Timing and
scheduling conditions may be included, providing Scheduled Tasks, Milestones,
etc. It is also possible to specify that a Connector requires the intervention of
participants using Policies (e.g. Tutor has Obligation to Resolve Connector).

Role Flow. We consider that an ES involves one or several Role elements. The
roles involved in different ES may be different, and we propose a mechanism to
transfer participants among them. This mechanism is based on Role Connectors
and Flows. A Role Connector represents an issue to resolve regarding the flow
of roles. Some decisions may be straightforward to prescribe during the early

Parent-ES

B - ESA - ES

Learner

Pair

Y

||

Leader Worker

||

||

||

Pair

Worker Leader

||||

Fig. 4. Example of role transfer from one to two sub-ESs (A and B). Learners have
to be grouped into pairs. It is required to maintain pair members, but they have to
interchange the pair-role in each scenario (Leader and Worker).

Modeling Group-Based Education 107

planning of an unit of instruction, while others must be made by human actors
(e.g. tutors) during performance. Role Connectors specify for each ES how its
Roles are transferred to each of its sub-ES roles.

As it is explained in the previous section, Connectors are described using
Rules and Expressions. Role Connectors can include conditions considering the
Role Profile or Transcript. In this way, it is possible to select the learners that
obtained the better and worse results in a previous ES to form pairs in a new
ES. As in the previous case, it will be possible to specify Policies that require
the intervention of participants to provide a solution (e.g. a responsible tutor
decides how to group participants). Figure 4, shows and example of role transfer
from a Parent-ES to two sub-ESs (A and B). Learners have to be assigned to
pairs and it is required to maintain pair members, but they have to change the
pair-role in each scenario (Leader and Worker). In the figure you can see that
the leader in A-ES is the worker in the B-ES and vice versa.

Data Flow. Data flow deals with Resource transfer that may occur between
different Environments. Environments are not transferred in association with the
control flow, but they are moved independently. Similarly to the previous cases,
we propose a mechanism based on Data Connectors and Flows. A Data Con-
nector represents an issue to resolve regarding the flow of data among Environ-
ments. Data Connectors specify for each Environment how its Sub-environments
and Resources are transferred to other Environments. In this way, we support
the modeling of synchronous and asynchronous data flow. Data Connectors in-
clude the following operations: Copy, Transfer, Synchronize, Share, and Update.
Rules are included to indicate when the corresponding operations have to be
performed. In addition to transfer documents, this mechanism is also used to
transfer documents to tools.

Policies. Policies are used to specify the authorization of participants to per-
form certain operations. In general, policies are the means to dynamically regu-
late the behavior of system components without changing code and without re-
quiring the consent or cooperation of the components being governed. By chang-
ing policies, a system can be continuously adjusted to accommodate variations
in external constraints and conditions. We consider policies as a mechanism to fit

Policy

Authorization Obligation

Positive Auth. Negative Auth. Positive Obl. Negative Obl.

Role
> has

Rule
> to

Fig. 5. Police structure

108 M. Caeiro-Rodŕıguez, M. Llamas-Nistal, and L. Anido-Rifón

the enactment environment to the educational design. Figure 5 presents our pro-
posed policy structure that is based on Rei [23]. Rei is a general purpose policy
language that supports the description of security policies, management policies,
and even conversation policies. The proposed structure includes the notions of
rights, prohibitions, obligations, and dispensations. A Policy is defined relating a
Role to a certain Rule. The Role is authorized/prohibited/obligated/dispensed
of doing a certain Action if some conditions are true. Rei also offers other four
speech acts that can be used to modify policies dynamically: delegate, revoke,
cancel, and request.

4.3 Other Issues

In this section, we briefly introduce some issues that are considered in the pro-
posed meta-model.

Awareness. Many educational and instructional strategies require that tutors
receive appropriate information about the actions and progressions of their learn-
ers. We consider the definition of Awareness Specifications and Awareness Roles
to support flexible, focused, and constrained awareness [18]. Awareness Speci-
fications enable the description of what events have to be captured, filter such
events, compose summaries, etc. These specifications can contain rules to con-
strain the monitored roles and establish temporal conditions. Awareness Roles
enable to specify who should receive the awareness information.

Run-Time Control. In educational settings, plans use to change and to suffer
variations. There are several practices and situations for this: (i) many times
teachers do not completely describe a course plan; they consider some phases and
provide some organization to produce an incomplete plan; (ii) during execution
certain participants or resources are not available, and the proposed ESs have to
be adapted; (iii) exceptions may appear due to learner giving up, group breaks;
etc. To provide a solution two issues should be considered:

– Model Evolution. The meta-model proposed in this paper provides a great
flexibility to define different instructional scenarios. At the same time the
elements and structures are well separated and delimited. In this way, it is
possible to modify certain ESs without affecting the others.

– Enactment control by users. Users can be given the capacity to change the
enactment state. All the elements include the operations that are used by
the enactment engine to control the execution automatically. Anyway, some
users could be authorized to execute these operations.

4.4 A Brief Example

In this section we depict a small modelling example of a group-based learning
practice that could be described using the introduced meta-model. The example
is based on the subject ’Ingenieŕıa del Software I’ (Software Engineering I),

Modeling Group-Based Education 109

which is offered in the second year of the telecommunication engineering studies
of the University of Vigo. In this subject, after some initial lectures, learners are
proposed several practices that they have to carry out in pairs. We propose an ES
to articulate each one of such practices, named as Software Engineering Practice.
The Software Engineering Practice involves two main kinds of actors: Pair and
Tutor. A pair is a group, made up of two actors: Leader and Worker. These
actors are transferred from the parent ES roles (i.e.: the subject actors: Learners
and Tutors) using Role Connectors and Flows. We assign Parent Learners to
Leaders and Workers, and Parent Tutors to Tutors directly (cf. Figure 4).

In the subject model, we have considered a sequence of three Software Engi-
neering Practice ESs. The Pair participants are maintained in each of the three
Practice ESs, but changing the Learners role. Namely, the Leader in the first
Practice will be the Worker in the second, and the Worker in the first will be the
Leader in the second. The role of each Learner in the third Practice is decided
according to the previous results. In relation with the children ESs, roles are
transferred to each sub-ES directly, accordingly to its defined roles.

The Software Engineering Practice ES is decomposed in five sub-ESs con-
nected by Flow Connectors and Flows. The first sub-ES is devoted to design a
solution to the proposed practice. This task has to be done by the Leader role
of the Pair, using a Design Environment to produce a Design document. When
the first sub-ES is finished, two sub-ESs are initiated: Programming and Design
Evaluation. The Design Evaluation sub-ES is assigned to the Tutor, who has
to review the proposed design. As result a Design Evaluation document is pro-
vided. This review may be used by the Leader to modify and update the initial
Design document in the next sub-ES: Design Revision. In parallel with these two
sub-ESs, the Pair is devoted to program the intended design in the Program-
ming sub-ES. This task may be assigned to the Worker only, but we prefer that
both participants collaborate in the programming due to educational reasons.
Furthermore, the Pair may decide to breakdown this task in several sub-tasks
to organize and manage their programming activities (e.g. each member of the
pair may program different functions and then they integrate it). This is enabled
by allowing the Worker role to specify new sub-ESs. When the Pair finishes the
Programming ES, the Program Evaluation sub-ES is activated. This sub-ES is
assigned to the Tutor to review and evaluate the final Pair products Design and
Program documents to produce a Program Evaluation.

5 Conclusions

We do believe that the EML approach to model and support the design of di-
verse education scenarios is going to play a key role in future e-learning systems.
Our purpose is to contribute to the development of EMLs, focusing on their
support for group-based education. We have considered the different forms that
group-based education may present: individual, collaborative, cooperative, col-
lective, etc., in order to provide a unique meta-model that is able to deal with
all of them. Its core advantages are: (i) to provide a clear and simple way to

110 M. Caeiro-Rodŕıguez, M. Llamas-Nistal, and L. Anido-Rifón

articulate instruction; (ii) to enable different forms of structure; (iii) to support
the interaction and coordination among participants, resources, and tasks in a
extensible way; and (iv) to facilitate the flexibility of final models.

From the framework it is possible to check whether the current EMLs are
able or not to properly deal with group-based education. The identified lacks
will be overcome through extensions of the language both syntax and semantics.
The next steps of our work are oriented towards this direction. The presented
framework will be used to test IMS Learning Design and other EMLs. Then, the
needed extensions will be proposed.

Acknowledgements

We want to thank Spanish Ministerio de Educación y Ciencia for its partial
support to this work under grant MetaLearn: methodologies, architectures and
languages for E-learning adaptive services (TIN2004-08367-C02-01).

References

1. Smith, P. L., Ragan, T. J.: Instructional Design, 3rd Edition, Wiley, Hossey-Bass
Education (2005)

2. Koper, R.: Modeling units of study from a pedagogical perspective The pedagogical
metamodel behind EML, Open University of the Netherlands (2001)

3. Rawlings, A., van Rosmalen, P., Koper, R., Rodrguez-Artacho, M., Lefrere, P.:
Survery of Educational Modelling Languages (EMLs), Version 1, CEN/ISSS WS-
LT (2002)

4. Koper, R., Olivier, B., Anderson, T.: IMS Learning Design Information Model,
IMS Global Learning Consortium (2003)

5. Dillenbourg, P.: Over-scripting CSCL: The Risks of Blending Collaborative Learn-
ing and Instructional Design. In Kirschner, P. P. A. (Ed.): Three Worlds of CSCL.
Can We Support CSCL, Open Universiteit Nederland (2002) 61–91

6. Strijbos, J. W., Kirschner, P., Martens, R. L.: Designing for Interaction: Six Steps
to Designing Computer-supported Group-based Learning. Computers & Educa-
tion, 42 (2004) 403–424

7. Schneider, D. K.: Conception and Implementation of Rich Pedagogical Scenarios
through Collaborative Portal Sites. In The Future of Learning II, Sharing Repre-
sentations and Flow in Collaborative Learning Environments, IOS Press (2004)

8. van der Aalst, W. M. P., Weske, M., Wirtz, G.: Advanced Topics in Workflow
Management: Issues, Requirements, and Solutions. J. of Integrated Design, (2003)

9. Lonchamp, J.: Process Model Patterns for Collaborative Work. Proc. of the 15th
IFIP World Computer Congress, Telecooperation Conference, Telecoop’98, Austria
(1998)

10. Pinelle, D., Gutwin, C., Greenberg, S.: Tasks with the Mechanics of Collaboration.
ACM Transactions on Computer-Human Interaction, 10(4) (2003) 281–311

11. Alexander, C.: Pattern Language: Towns, Buildings, Construction, Oxford Univer-
sity Press, New York (1997)

12. Kirschner, P. A. (Ed.): Three Worlds of CSCL. Can We Support CSCL. OUNL,
The Netherlands (2002)

Modeling Group-Based Education 111

13. Strijbos, J. W., Kirschner, P., Martens, R. L. (Eds.): What we Know about CSCL
in Higher Education, Kluwer Academic Publishers, Dordrecht (2003)

14. Wasson, B., Ludvigsen, S., Hoppe, U. (Eds.): Designing for Change in Networked
Learning Environments. Proceedings of the International Conference on Com-
puter Support for Collaborative Learning. Kluwer Academic Publishers, Dordrecht
(2003)

15. van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., Barros, P.:
Workflow Patterns. Distributed and Parallel Databases, 14(1) (2003) 5–51

16. Raposo, A. B., Fucks, H.: Defining Task Interdependencies and Coordination Mech-
anisms for Collaborative Systems. Frontiers in Artificial Intelligence and Applica-
tions, 74, IOS Press (2002)

17. Russell, N., ter Hofstede, A. H. M., Edmond, D., van der Aalst, W. M. P.: Workflow
Data Patterns, QUT Technical report, FIT-TR-2004-01, Brisbane (2004)

18. Baker, D., Georgakopoulos, D., Schuster, H.: Awareness Provisioning in Collabo-
ration Management Cooperative Information Systems, 11(1&2) (2002) 145–173

19. Jorgensen, H. D.: Interactive Process Models. Ph. D. Thesis, Norwegian University
of Science and Technology, Norway (2004)

20. Dami, S., Estublier, J., Amiour, M.: APEL: a Graphical Yet Executable Formalism
for Process Modeling. Automated Software Engineering, 5(1) (1998)

21. van der Aalst, W. M. P., Hofstede, A. H. M.: YAWL: Yet Another Workflow Lan-
guage. Information Systems (2003)

22. Duval, E. (Ed.): IEEE 1484.12.1-2002 Learning Object Metadata Standard, IEEE
Official Standard (2002)

23. Kagal, L.: Rei: A Policy Language for the Me-Centric Project. HP Labs Technical
Report, HPL-2002-270 (2002)

Learning Process Models as Mediators Between
Didactical Practice and Web Support

Renate Motschnig-Pitrik and Michael Derntl

Department of Knowledge and Business Engineering and
Research Lab for Educational Technologies, University of Vienna,

Rathausstrasse 19, 1010 Vienna, Austria
{renate.motschnig, michael.derntl}@univie.ac.at

Abstract. Within the last decade the introduction of technology-
enhanced learning (“e-learning") has become a focal strategy in several
universities and organizations. While much research has been devoted to
producing e-content, describing it with metadata, and to constructing
e-learning platforms, relatively little attention has been paid to using
patterns and conceptual modeling techniques as a means of knowledge
development and communication serving to improve the learning pro-
cess in terms of depth, scope, and effective tool support. Our research is
targeted at filling this gap by considering conceptual models of learning
processes as mediators between rich didactic elements and Web service
modules that closely match students’ and instructors’ demands on ef-
fective support. In this paper we illustrate our pattern-based research
framework by giving an example, discussing the driving role and merits
of conceptual modeling, providing an overview of our pattern knowledge
base, and sharing our vision for future development.

1 Introduction

Technology-enhanced learning has become a hot topic for every university and
organization. E-content, its description by metadata, and its delivery via learn-
ing platforms employ the minds of many researchers, teachers and administra-
tors. In our view, the current conception of the whole complex phenomenon of
technology-enhanced learning is strong with regard to different forms of repre-
senting, sharing, and delivering learning content anytime and everywhere. How-
ever, it seems quite weak in re-engineering learning processes such as to exploit
technology to a degree that surpasses mere representation, sharing, and delivery
by offering radically novel learning scenarios [1]. These scenarios blend face-
to-face and Web-supported learning such that the strengths of both settings,
mediate and immediate, can be exploited and the learning process can proceed
closer to the intentions and needs of individuals.

We have experienced that blended scenarios, due to their reliance on multiple
media-didactic and face-to-face elements tend to be more versatile and complex
than traditional lecturing. This is why structuring and abstraction mechanisms
with well defined semantics, as they are typically provided by modeling languages

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 112–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Learning Process Models as Mediators 113

such as the UML, are particularly well suited for model building and sharing of
scenarios of technology-enhanced teaching/learning processes. However, semi-
formal visual models as means of communication and tools driving design and
evaluation processes are rare. Currently, focus is still primarily on the content,
while the process and setting of learning are (almost) neglected, despite findings
from various learning theories that underline the importance of process and its
motivation and enactment by people. Hence the primary objective of this paper
is to highlight the central role of conceptual modeling for mediating between
learning processes and appropriate Web support modules.

Psychological and pedagogical theories agree on viewing lectures that solely
serve to transmit information to several students as little effective in the long
run, e.g. [2,3,4]. Knowledge that is not used tends to be forgotten very fast and
in all but the most basic areas it is quite unlikely that different students will
use the same knowledge in the near future. There is evidence that a form of
learning and practice that tends to be more self-initiated and self-organized is
more persistent and hence something we should strive for (e.g. [5]). In that re-
spect our hypothesis that has been validated by three years of experience and
Action Research is that modern ICT has the potential to play a significant part
in approaching more individual, social, and persistent learning processes. In or-
der to implement, research, adopt, and reuse such processes, they need to be
made explicit. This is the point where conceptual models are indispensable in
so far as they act as vehicles for systematic technological as well as educational
innovation! Whereas the lead in effective learning still stays with persons, their
capabilities, and social- and interpersonal values, thoughtfully designed scenar-
ios, accompanying Web services, and easily accessible content have the potential
to significantly support persons by reducing the time and effort needed for vari-
ous organizational and administrative issues. This time then can be invested in
engaging in a challenging, more spontaneous facilitation of learning.

Focusing on conceptual modeling, our approach to technology-enhanced
learning proceeds in two major steps1 as sketched in Fig. 1. The initial step
comprises the capturing of successful learning/teaching processes in visual mod-
els taking on the form of extended UML activity diagrams. Thereby we focus on
the modeling of activities and associated document flows (or “content flows").
The patterns resulting from capturing recurring process phases are organized at
varying levels of abstraction and composition. Typically, they are used in presen-
tations and discussions regarding didactical practice and applicability in specific
course contexts. At the same time, the patterns form the specifications for the
second step, namely the design and prototyping of interactive Web services [7,8]
that implement the patterns as open-source modules and thus ease the organiza-
tion and administration of courses as well as the communication and cooperation
of participants. The Web services are applied in courses, reflected upon by stu-
dents, discussed among instructors, and incrementally and iteratively improved,
specialized and diversified, tightly following didactical practice as reflected by

1 Note that a more detailed description of the transition process following the Blended
Learning System Structure (BLESS) model is given in [6].

114 R. Motschnig-Pitrik and M. Derntl

Pattern mining and validation,
Conceptual modeling of patterns

Design of web templates,
Application in courses

Discussion,
Adaptation, Diversification

Questionnaire

Feedback Item
(from Collect Feedback)

Questionnaire
Item Block

Questionnaire
Item

Scaled
Questionnaire

Item

Open
Questionnaire

Item

Questionnaire
Item Response

1..*

Item Scale
*

has scale

1

1..* Participant
(from Course)

* respond to *

Feedback

General

Questionnaire
«Pattern»

Publish

«Pattern»

Feedback Phase

«use»

Collect

«Pattern»

(from General)

{optional}

«include» Course

«Pattern»

Feedback Collector Feedback Provider

«Pattern»

Questionnaire

Construct
questionnaire

w

Publish
questionnaire

w Complete
questionnaire

w

Analyze
questionnaires

*Publish

«Pattern»

«use»

Feedback
Phase «derive»

Pattern mining and validation,
Conceptual modeling of patterns

Design of web templates,
Application in courses

Discussion,
Adaptation, Diversification

Questionnaire

Feedback Item
(from Collect Feedback)

Questionnaire
Item Block

Questionnaire
Item

Scaled
Questionnaire

Item

Open
Questionnaire

Item

Questionnaire
Item Response

1..*

Item Scale
*

has scale

1

1..* Participant
(from Course)

* respond to *

Feedback

General

Questionnaire
«Pattern»

Publish

«Pattern»

Feedback Phase

«use»

Collect

«Pattern»

(from General)

{optional}

«include» Course

«Pattern»

Feedback Collector Feedback Provider

«Pattern»

Questionnaire

Construct
questionnaire

w

Publish
questionnaire

w Complete
questionnaire

w

Analyze
questionnaires

*Publish

«Pattern»

«use»

Feedback
Phase «derive»

Questionnaire

Feedback Item
(from Collect Feedback)

Questionnaire
Item Block

Questionnaire
Item

Scaled
Questionnaire

Item

Open
Questionnaire

Item

Questionnaire
Item Response

1..*

Item Scale
*

has scale

1

1..* Participant
(from Course)

* respond to *

Feedback

General

Questionnaire
«Pattern»

Publish

«Pattern»

Feedback Phase

«use»

Collect

«Pattern»

(from General)

{optional}

«include» Course

«Pattern»

Feedback Collector Feedback Provider

«Pattern»

Questionnaire

Construct
questionnaire

w

Publish
questionnaire

w Complete
questionnaire

w

Analyze
questionnaires

*Publish

«Pattern»

«use»

Feedback
Phase «derive»

Fig. 1. Conceptual models as central elements in developing effective, technology-
enhanced learning support driven by action research

Test and Evaluation
Instruments

………………………………
………………………………
………………………………
………………….……………
………………………………
………………………………
………………………………
…….

………………………………
………………………………
………………………………
………………………………
………….……………………
………………………………
………………………………
…………………………….

Antwortverhalten allgemein
Der Lehrveranstaltungsleiter oder die
Lehrveranstaltungsleiterin gibt:
O destruktive, demotivierende Antworten
O ineffektive, überhebliche Antworten
O minimal effektive Antworten
O Antworten, die merklich zum

Weiterkommen beitragen
O Antworten, die einem Mut zusprechen,

förderlich sind und in hohem Maß zum
Weiterkommen beitragen

Visual Models of Scenarios &
Repository Organization

Learning Platform

Web ServicesWeb Services

Knowledge Management

Learning TechnologyLearning Technology

TechnologyTechnology--Enhanced CoursesEnhanced Courses

Adaptation of Theories
from Soft Sciences

Action Research Action Research
CyclesCycles

Fig. 2. Conceptual modeling centrally embedded in the technology-enhanced learning
space

actual users [9]. Each course is associated with precisely those Web services that
are actually needed in a given phase, no more and no less, in order to provide
focus.

Briefly, our overall question and target is: How can learning processes that
aim at deep, significant learning [10] be captured, co-developed by teams of
experts, and communicated to practitioners? In this paper we focus on the con-

Learning Process Models as Mediators 115

ceptual modeling issues of blended, significant learning. Readers interested in the
Action Research perspective of our pattern-based approach are referred to [11],
the derivation of Web services is described in more detail in [12,13], and [14,15]
put emphasis on the Person-Centered didactical baseline [10] of our technology-
enhanced learning framework. The embedding of conceptual modeling in that
framework is depicted in Fig. 2. An initial example in the following Section
is intended to set the scene by giving a taste of a course in which significant,
whole-person learning is the major goal. We will show how conceptual modeling
in terms of UML activity diagrams, stereotypes, and patterns is used to cap-
ture course skeletons and provide the core for tool support and evaluation. In
Section 3, the role of conceptual models in technology-enhanced learning will
be elaborated. Section 4 introduces technology-enhanced learning stereotypes as
extension mechanisms to UML, presents our pattern knowledge base, and relates
our work to other pattern initiatives. In the final Section we will share our vision
for future research and development.

2 Example: A Technology-Enhanced Course on Soft
Skills in Project Management

This Section motivates the use of conceptual models for capturing didactically
rich, technology-enhanced learning processes. Fig. 3 illustrates a course scenario
from a practical course on soft skills in project management using a UML activity
diagram with stereotype extensions. The swimlanes serve to relate activities and
document flows with those actors that play the central role and frequently control
the respective activities. This allows for intuitive gross estimates on the degree
of instructor- or student-centeredness of courses at first glance.

In order to provide room for active interaction in class, fundamental material,
links, and a list with references to further literature are supplied by the instructor
over the learning platform at the time of course initialization. Also, key data
on the course such as time, location, goals, brief description, etc. are provided
such that students have initial information before enrolling in the course. The
respective activity (“Create course space. . . ") primarily proceeds on the Web
and hence is stereotyped with a ‘W’ icon in Fig. 3.

The initial meeting, stereotyped with a ‘P’ icon standing for present, is used
to discuss the innovative course style, requirements, and learning methods, as
well as to introduce the learning platform and to finalize the list of participants.
Then students are asked to fill out an online questionnaire aimed at capturing
their initial motivation, attitudes towards learning, ways they tend to profit from
academic courses, etc. Furthermore, students are asked to assign themselves to
small teams of about three to four students for cooperative work.

The face-to-face thread of the course consists of ten moderated workshops, 4
hours each, where individual topics within the gross framework of “soft-skills in
project management" are elaborated following a strongly interactive style. The
first three workshops are moderated by the instructor who introduces various
didactical techniques such as team discussions, collection of issues on a flip chart,

116 R. Motschnig-Pitrik and M. Derntl

 Instructor Active Team Participants

The first three workshops
are held by the instructor,
the rest are moderated
by student teams.

Workshop unit

Project Management - Soft Skills

Create course space and
publish course information

w

Download
and view infos

on topics w

Public
reaction
sheets w

Content on specific
soft skill topics

Basic soft skills
content

Reactions

Empirical
evaluation results

 [else]

Prepare course
unit B

Initial Meeting P

Moderate
course unit

P

 [10 workshops completed]

Grade
participants

Evaluate
questionnaire

data B

Initial
questionnaire

w

Discussion
forum w

Personal
diary w

Upload
documents

w

Team
building

B

Final
questionnaire

w
Peer-

evaluation
w

Self-
evaluation

wQA

 Instructor Active Team Participants

The first three workshops
are held by the instructor,
the rest are moderated
by student teams.

Workshop unit

Project Management - Soft Skills

Create course space and
publish course information

w

Download
and view infos

on topics w

Public
reaction
sheets w

Content on specific
soft skill topics

Basic soft skills
content

Reactions

Empirical
evaluation results

 [else]

Prepare course
unit B

Initial Meeting P

Moderate
course unit

P

 [10 workshops completed]

Grade
participants

Evaluate
questionnaire

data B

Initial
questionnaire

w

Discussion
forum w

Personal
diary w

Upload
documents

w

Team
building

B

Final
questionnaire

w
Peer-

evaluation
w

Self-
evaluation

wQA

Fig. 3. Course scenario blending face-to-face meetings with Web-supported elements
following a Person-Centered style

moderation cards, mind maps, role playing, etc., by applying them. Students
reflect how they perceived the whole situation in online reaction sheets, which are
discussed in the subsequent workshop unit. Accompanying descriptions of these
techniques and more theoretical background on their application is provided via
the learning platform and can be inspected on demand. The remaining seven
workshops are prepared by teams of students on topics we agree upon during
the initial sessions. Preparation of a workshop includes the provision of e-content

Learning Process Models as Mediators 117

regarding the selected topic, as shown in the document flow object produced
by “Upload documents". Preparation also encompasses consultation with the
instructor with regard to the moderation sequence and elements (included in
“Prepare course unit", which is stereotyped with a ‘B’ icon for denoting a blended
activity). After each workshop, students submit online reaction sheets that can
be read by all participants and are aimed at providing multi-perspective feedback
to the team that moderated the workshop (the “active team" in Fig. 3).

At any time, students have access to the basic material provided on the plat-
form, as shown in the Web-based activity “Download and view info on topics" of
the course scenario. Concurrently, they are expected to briefly document their
learning activities in a personal diary that shall support them in writing their
self-evaluation at the end of the course. Furthermore, a discussion forum is avail-
able for communication with the instructor, Web master, and fellow students on
all course relevant issues.

At the end of the course students evaluate themselves online. This is accom-
plished by responding to questions such as: What did I contribute? What could
I take with me from the course? How intensive was my contribution with respect
to my team mates? etc. In addition, an online peer-evaluation is conducted in
which each team evaluates all other teams in terms of their moderated workshop
and the e-content they provided. Furthermore, each student completes a final
online questionnaire that is used to evaluate the course on a more objective level.
The self- and peer-evaluations are used by the instructor in his or her grading,
thus complementing the grading process by an individual- and a group perspec-
tive reflecting the participative, student-centered didactic strategy inherent in
course conception and design.

A first look reveals that the scenario has multiple threads and didactic el-
ements. In our view, however, this additional complexity adds significant value
to the learning process, such as:

– More self-directed learning with more responsibilities of the learners and the
group;

– Learning on the intellectual level, due to the elaboration of literature, as
well as learning on the social and personal level due to intense teamwork
and moderation of a course unit;

– More active participation and communication of students and instructor in
face-to-face as well as online phases; during interactions active listening skills
and attitudes like openness, respect, and the desire to deeply understand the
other person are essential. They tend to be acquired through interaction if
perceived by students.

– More authenticity of the problems to be tackled can be achieved, since stu-
dents can select problems and material and raise questions they find worth
considering;

– More perspectives on the content/theories can be discussed;
– Students take on more roles. Besides being authors, moderators, presenters,

and listeners, they are peers and comment on the work of others;
– More group orientation and cooperation;

118 R. Motschnig-Pitrik and M. Derntl

– Explicit consideration and integration of qualitative and quantitative means
of quality assurance allowing for participative, formative evaluation and im-
provement of the course.

– Note, however, that instructors need interpersonal competencies that go
far beyond being good lecturers in order to facilitate significant learning
in technology-enhanced, person-centered courses.

We have experienced that the diagrammatic notation is indispensable for
sharing the learning design with colleagues. Also, the choice of proper abstrac-
tions, consistent names, and the provision of multiple grain sizes have proved
essential in communicating didactical practice in general and in the contribution
of technology-enhanced learning elements in particular.

In the scenario depicted in Fig. 3, the activity “Peer-evaluation", for instance,
refers to a pattern. This denotes a reoccurring activity sequence having a sepa-
rate, reusable activity diagram. Patterns will be revisited and discussed in more
detail in Section 4. While the results of quantitative studies based on the initial
and final online questionnaire of the course on Project Management–Soft Skills
are intended to be discussed in an upcoming paper, below we share excerpts
from student’s self-evaluations:

One student writes: “I hope I have contributed with my own inputs regarding
the topic of negotiation and through active participation in all course units. I
have learned to apply new moderation techniques and have acquired a balanced
overview of soft skills. . . In addition I could, for sure, gain maximum benefit
through frequently posing my own questions and thereby framing the discus-
sions. A key experience was the workshop we held on our own: Despite intensive
preparation I have realized ways of improvement that were shown up by the
feedback we received."

Another student reports: “I have participated actively and have often volun-
teered to take part in exercises since I have seen that it is impossible to moderate
a good workshop without the support of the whole group. I have delivered de-
tailed reaction sheets since I believe that honest and specific feedback of the
group can be truly facilitative."

Our experience and students’ reactions substantiate the added value of the
more complex, technology-enhanced scenario. The particular benefit of concep-
tual modeling regarding quality assurance lies in the fact that questions as well
as reactions can be associated with process phases and didactic elements, thus
adding structure and transparency to researching technology-enhanced learn-
ing. Generally speaking, our solution regarding knowledge communication of
the learning scenario lies in the specification of conceptual models as means of
information sharing and provision of blueprints for deriving support modules.

3 The Role of Conceptual Modeling in
Technology-Enhanced Learning

In our research framework on technology-enhanced learning, conceptual models
take on a key position that specializes, and in specific issues even surpasses, the

Learning Process Models as Mediators 119

role of conceptual modeling in software engineering and information systems.
More specifically, conceptual models of technology-enhanced learning processes
allow for:

– Explication of didactical knowledge, in particular of learning strategies such
as problem-based learning, inductive derivation of knowledge, deductive
learning, constructivist knowledge creation, etc.

– Specification of the social setting and role of learning activities, such as “team
building" or “personal diary".

– Models reveal the cooperative structures in learning activities, e.g. coopera-
tion in teams or between participants and instructors, and the interplay of
present and online/distant phases in these activities.

– Presentation of learning processes at various levels of generalization / spe-
cialization and arbitrary switching between levels, if that leads to better
understanding.

– Knowledge communication between educational scientists, educators, educa-
tional technologists, and developers. This is especially important as learning
design is an inherently interdisciplinary task, where conceptual models can
play an important mediator role [16].

– Derivation of patterns to capture generic and reusable practices and orga-
nization of patterns in a knowledge base (repository) [17]. In this respect,
the use of conceptual modeling techniques in combination with the object-
oriented paradigm can contribute to increasing the extensibility of the pat-
tern structures in the knowledge base.

– Reuse of scenarios and supporting Web services.
– Platform independent specification of functional requirements on a support-

ing learning platform.
– Provision of a conceptual framework for research, most prominently Ac-

tion Research [18]. This means that individual didactical elements (phases,
threads, activities) can be researched in a targeted, participative way [19]
considering different users’ perspectives.

– Specification of the interdependence between process and content flows. This
allows for the subsequent derivation of workflow- or better learnflow models
and the integration of e-content modules [20].

– Identification and explicit integration of various means of quality assurance
activities into learning scenarios in order to improve learning processes. Ex-
amples of such activities are online reaction sheets allowing for formative
evaluation or final online questionnaires aiming at quantitative studies.

Whereas description of the extensions to UML diagrams in the form of stereo-
types are postponed to the next Section, note, specifically, that we emphasize
process over content, claiming that for good learning the design of the learning
process is at least as important as content design and that these two features
must go hand in hand. Therefore the patterns capture successful, largely domain-
independent teaching/learning or facilitating processes and consider content, be-
ing domain-dependent, as complementary, yet integrated into the process view.
From the modeling perspective, content flows are specified in the form of “object

120 R. Motschnig-Pitrik and M. Derntl

flows". Swimlanes in activity diagrams can be used to indicate the primary actor
who elaborates and provides the content.

Furthermore, our more technical goal is to raise the level of abstraction of
learning platforms. When we view current platforms as providing useful standard
“atoms" like forum, workspace, folder, access rights management, chat, etc., our
proposal can be seen as to combine these atoms into molecules. These are com-
municating Web services built from atoms and arranged to optimally support
the underlying process patterns. A collection of Web services is instantiated for
each course such that the course’s workflow (better learnflow) can be supported
at a level that is considerably higher and more user-centered than the standard
atoms provided by current platforms. Note, however, that our conceptual sce-
nario models are not (yet) intended to specify automatically executable flow
semantics, contrary to the IMS Learning Design specification [21] for example,
which shows a very high degree of formal expression using XML. In our case,
formal completeness was deliberately traded for better understandability where
required. Nonetheless, the learnflow model of a pattern acts as the primary guid-
ance system for specifying and implementing the functionality required by a Web
service supporting that pattern. For instance, a Web service implementing the
Diary pattern would emphasize particularly those Web-based activities that are
arranged in the pattern’s activity model, i.e. publishing of diary requirements,
diary initialization, and diary review on the side of the instructor, and updating
the diary on the side of the students (see Fig. 5). However, this does not imply
that other “gadgets" or add-on functionality, such as sorting or querying the
diary log, are necessarily excluded from a concrete Diary implementation.

4 Conceptual Modeling of Technology-Enhanced
Learning Patterns

4.1 Background and Related Approaches

Patterns are generic descriptions of solutions to frequently recurring problems or
situations [22]. The pattern approach was originally developed by C. Alexander
in the field of architecture, but currently most prominently considered in soft-
ware design as a vehicle for efficient communication of best practice in tackling
common design situations in object-oriented software systems [23]. The pattern
approach found its way into many other disciplines and in recent years also
into technology-enhanced learning. Surprisingly, most of these approaches rely
on purely text-based knowledge communication. Few, if any, employ conceptual
modeling techniques.

– The E-LEN project [24] is a European network of e-learning organizations.
Among its four special interest groups, patterns are used as means of commu-
nication, development, and dissemination of effective e-learning experiences.
Conceptual modeling does not play any noticeable role in the E-LEN efforts.

– The Pedagogical Patterns Project [25] provides a compilation of prose-style
patterns for many educational scenarios. However, these patterns neither

Learning Process Models as Mediators 121

use conceptual models, nor do they include or address explicitly the use of
learning technology.

– The Educational Environment Modeling Language E2ML [26] defines a com-
plex, pedagogically neutral modeling notation for instructional design. With
respect to learning processes, this language provides a method of modeling
the timeline of a course design, which produces a Gantt-chart-like visualiza-
tion of the “action flow".

– IMS Learning Design includes a learning design best practice and imple-
mentation guide [27] that employs conceptual modeling techniques: it shows
learning content and resources in a process-oriented, formalized way by us-
ing use cases for analysis, activity diagrams for modeling of the use cases’
narratives, and IMS/LD compliant XML documents that are used for con-
tent development and packaging. Patterns are not explicitly considered – the
ultimate artifacts produced compliant to this standard are XML documents.

– Other pattern approaches primarily address design and usability issues in
Web-based environments while not explicitly referring to Web-based learn-
ing systems, such as patterns for hypermedia design [28], or for Human-
Computer Interaction in general [29,30].

– There are some approaches that do not explicitly refer to patterns in the
Alexandrian sense, but that are somehow conceptually related in their view-
points on technology-enhanced teaching/learning activities, e.g. CSCL
scripts [31] or Laurillard’s Conversational Framework [32].

The approach employed in this paper makes intensive use of conceptual mod-
eling techniques, as we believe that modeling is one of the primary means of han-
dling and decomposing the complexity inherent in socio-technical environments.
We concentrate on a balanced compromise between purely text-based means of
communication and description on the one hand and highly formal representa-
tions (e.g. XML) for machine-processing on the other hand. While most of the
related pattern approaches presented above focus on content and technological
aspects, one distinctive asset of our approach is the concentration on the learning
process and on arrangement of face-to-face and Web-based elements in (blended)
learning design and, pragmatically, the transparent externalization and commu-
nication of effective technology-enhanced learning experience. Another specific
and, in our view, essential feature of our approach is the existence of a psycho-
logically well founded theory, namely the Person-Centered Approach [33], which
provides the didactical baseline for pattern design.

4.2 UML Extensions for Technology-Enhanced Learning

For explicitly depicting the face-to-face and online elements involved in
technology-enhanced learning processes the standard UML meta-model was ex-
tended by adding the following custom stereotypes for action states (better
known as “activities") in activity diagrams:

«web-based» Means that the activity primarily proceeds on the Web (or dis-
tant with technology support). If an activity stereotyped this way occurs in

122 R. Motschnig-Pitrik and M. Derntl

an activity diagram, the respective pattern typically provides a Web tem-
plate for online-support of that activity. This stereotype is presented as an
icon (a circle containing the letter ‘W’) at the right-hand side of the activity.
The activity is additionally filled in light blue to increase visual effect.

«present» Indicates that the activity primarily takes place in a face-to-face
setting. The icon for this stereotype is a circle containing the letter ‘P’ at the
right-hand side of the activity. The activity carrying this stereotype is filled
in light green.

«blended» Indicates a mix of the former two stereotypes: the activity is con-
ducted in a blended style, mixing or alternating online and face-to-face modes
and delivery channels. The icon for this stereotype is a circle with the letter
‘B’. An activity carrying this stereotype is filled in light red.

«quality-assurance» This stereotype is attached to activities that produce
documents or data which can subsequently be used for the (predominantly
formative) evaluation of the learning process and learning support (e.g. on-
line questionnaires or reaction sheets). The icon for this stereotype is a circle
containing the acronym ‘QA’.

«pattern» This stereotype is typically attached to subactivity states. A subac-
tivity points to another activity diagram that shows a more detailed flow of
the activities. This helps to avoid overloading the diagrams with too many
activities, allowing different levels of granularity and aggregation in the mod-
els. If the subactivity points to a pattern sequence, it carries the stereotype
«pattern». Note that this stereotype may be omitted in diagrams for reasons
of brevity and readability, as for example in Fig. 3.

Examples showing the association of these stereotypes with concrete activi-
ties appear in the scope of a complete course scenario in Fig. 3, and as part of
a pattern’s activity model in Fig. 5.

4.3 Pattern Organization and Modeling

Currently about 50 patterns, which were mined from the technology-enhanced
teaching / learning practices of the authors’ institution over the last three years,
are available in our pattern repository [17]. The repository offers an initial, rich
pool of patterns that can flexibly be combined and extended in response to
the situation at hand. The patterns in the repository are arranged at differ-
ent levels of detail and abstraction. Unlike most other pattern approaches that
specify pattern inter-relations textually, we provide a conceptual model of the
repository and the relations among the patterns using UML static structure di-
agrams. The patterns describe courses and course modules / phases being com-
posed of smaller, reusable process elements, such as publishing of electronic con-
tent, knowledge construction in groups, team exercises, online discussion, various
forms of feedback and evaluation, and other techniques suited for technology-
enhanced learning. Each pattern is hosted in a pattern package, which is used to
group related patterns together. Currently the repository includes seven pack-
ages, which are listed in alphabetical order and briefly described in the following:

Learning Process Models as Mediators 123

Evaluation

Evaluation

«Pattern»

Self-Evaluation

«Pattern»

Instructor-
Examination

«Pattern»

Self-
Examination

«Pattern»

Examination

«Pattern»

Blended
Evaluation

«Pattern»

Generic
Evaluation

«Pattern»

Instructor-
Evaluation

«Pattern»

Peer-Evaluation

«Pattern»

«include»1..*

Evaluation

Evaluation

«Pattern»

Self-Evaluation

«Pattern»

Instructor-
Examination

«Pattern»

Self-
Examination

«Pattern»

Examination

«Pattern»

Blended
Evaluation

«Pattern»

Generic
Evaluation

«Pattern»

Instructor-
Evaluation

«Pattern»

Peer-Evaluation

«Pattern»

«include»1..*

Fig. 4. The Evaluation pattern package

Instructor Participants

«Pattern»

Diary

Publish diary
requirements

w
Publish

«Pattern»

Initialize
diaries w

«use»

Update
diaries w

Review
diaries w

*

Updated diaries

Empty diaries

Fig. 5. Activity model of the Diary pattern

Assessment. Methods of assessing participants’ achievements with the ulti-
mate goal of determining a grade for each participant.

Course types. Describes familiar course types in terms of technology-enhanced
practices. Examples: Lab Course or Seminar.

Evaluation. Different methods of evaluating participants’ contributions in a
learning activity, whereby evaluation means valuing judgment on the perfor-
mance of participants. This package is depicted in Fig. 4.

Feedback. Different ways of collecting feedback from course participants. Ex-
amples: Reaction Sheets for written, unstructured feedback, or Feedback
Forum, which uses discussion forums for collecting more structured feedback.

General. Generally reusable patterns or patterns not matching any one of the
specific purposes defined for other packages. Diary is an example of a general

124 R. Motschnig-Pitrik and M. Derntl

Diary

Diary Entry

Date
Text

*

1 create *Instructor
(from Course)

Participant
(from Course)

Learning Activity
(from Course)

* linked to 1

1

Author

submit *

Fig. 6. Structural model of entities and relationships involved in the Diary pattern

pattern, which can be employed in almost any learning scenario. It is used in
the scenario in Fig. 3, and its activities are depicted in Fig. 5. Other general
patterns include Achievement Award, Publish, or Preliminary Phases.

Interactive elements. The largest package, hosting patterns used to foster
interaction and interactivity among participants, instructors, tutors, and/or
external guests. Examples: Brainstorming, Theory Elaboration, Online
Discussion, Consultation, etc.

Project-based learning. Patterns describing some sort of iterative and/or in-
cremental learning process which can be expressed through several successive
(project) milestones, for example Learning Contracts.

In the structural repository model, the patterns are modeled using stereo-
typed classes. Relationships between patterns take on two different types:

– Generalization, connecting a concrete lower-level pattern with a more ab-
stract higher-level pattern (e.g., Evaluation as a generalized form of the
Peer-Evaluation pattern in Fig. 4).

– Dependency, modeling the inclusion, usage, or adaptation of a pattern by
another pattern.

Each pattern also includes a structural model of the entities involved in the
activity model of the pattern when appropriate (see Fig. 6 for an example). Be-
sides supporting the user in understanding the underlying concept of a pattern,
this is particularly useful when deriving requirements of Web support for the
pattern. Subsequently, a combination of the structural models may serve to de-
fine a data model when implementing a learning platform particularly dedicated
to blended, process- and person-centered learning.

Note that each pattern additionally includes a detailed textual description re-
garding the pattern’s intent, motivation, parameters, relations to other patterns,
examples of use, results of previous evaluations, and literature references.

5 Conclusions and Further Work

We have illustrated the central role of conceptual, semiformal process models
in our framework on technology-enhanced learning (Fig. 2). We have outlined
why visual, conceptual models are indispensable for capturing, promoting, re-
searching, and improving rich didactical practices on several grounds. Firstly,

Learning Process Models as Mediators 125

they offer instruments that allow one to decompose and manage the complexity
inherent in socio-technical practice. In this way they offer vehicles for knowl-
edge communication that have proved effective in dialogues with psychologists,
educational-, communication-, and computer scientists. Secondly, the latter can
use the process models as functional specifications for deriving Web templates
and prototypes of Web services implementing didactical practices being derived
directly from students’ and instructors’ needs. Our strategy is to offer these
Web services (CEWebS, Cooperative Environment Web Services) as open-source
modules such as to allow for broad adaptation, improvement and reuse. A vision
in this respect is the promotion and Web-support of person-centered didactical
practice to contribute to making technology-enhanced learning more effective,
significant, and enjoyable.

Aside of these traditional roles of conceptual models, technology-enhanced
learning scenarios and patterns serve to capture and explicate theoretically
founded didactical models such as inductive, deductive, and problem-based learn-
ing [34]. Furthermore, they can be used to denote those phases in the learning
process, where specific document- or content flows immerse into the learning
process or are produced as material- or content output. Finally and importantly,
stereotyped activities in the process models allow one to drive attention to focal
perspectives, such as activities being performed solely on the Web, in presence
phases, or serving quality assurance. The integration of the latter, in particular,
has opened up a new dimension, namely the explicit consideration and conse-
quent improvement of the quality of learning processes as integral constituents
of these same processes. Means such as transparent online reaction sheets or
online questionnaires have proved to be simple yet effective and feed into our
participatory action research initiative [35].

We have argued that modeling processes and artifacts of teaching and learn-
ing in the form of patterns allows one to reuse proven didactic principles and
thus saves time for course design. This benefit is further strengthened in the case
that the patterns are implemented the form of open-source Web services that
significantly reduce the effort spent on organizational and administrative issues.

Further research follows multiple threads. One of them addresses the cap-
turing and implementation of further patterns with a particular focus on in-
ternational courses where students and instructors are truly distributed. We
are also in the process of developing instruments for evaluating the effects of
technology-enhanced, person-centered learning and the impact of instructor’s
attitudes, process design, and amount of online phases on issues such as learning
outcome, motivation, effort, and personal relevance of learning. If this research
provides a path to a more meaningful way of learning in technology-enhanced
and immediate environments, it will have served its purpose well.

References

1. Papert, S.A.: Mindstorms. 2nd edn. Basic Books, New York (1999)
2. Rogers, C.R.: On Becoming a Person - A Psychotherapists View of Psychotherapy.

Constable, London (1961)

126 R. Motschnig-Pitrik and M. Derntl

3. Tausch, R., Tausch, A.M.: Erziehungs-Psychologie. Hogrefe, Göttingen, Germany
(1998)

4. Jonassen, D.H., ed.: Handbook of research on educational communications and
technology. 2nd edn. Lawrence Erlbaum Associates, Mahwah, NJ (2004)

5. Wenger, E.: Communities of practice - Learning, meaning, and identity. Cambridge
University Press, Cambridge (1998)

6. Derntl, M., Motschnig-Pitrik, R.: The role of structure, patterns, and people in
blended learning. The Internet and Higher Education 8 (2005) 111–130

7. Curbera, F., Nagy, W.A., Weerawarana, S.: Web services: Why and how? In: OOP-
SLA’2001 (Workshop on Object-Oriented Web Services), Tampa, Florida (2001)

8. W3C: Web Services Architecture - W3C Working Draft 8 August 2003.
http://www.w3.org/TR/ws-arch/ (2003)

9. Motschnig-Pitrik, R., Derntl, M., Mangler, J.: Developing cooperative environment
web services based on action research. In: 5th International Conference on Practi-
cal Aspects of Knowledge Management (PAKM 2004), Vienna, Austria, Springer
(2004) 453–462

10. Rogers, C.R.: Freedom to Learn for the 80’s. Charles E. Merrill Publishing Com-
pany, Columbus, Ohio (1983)

11. Derntl, M., Motschnig-Pitrik, R.: A pattern approach to person-centered e-learning
based on theory-guided action research. In: 4th International Conference on Net-
worked Learning (NLC), Lancaster, UK (2004)

12. Derntl, M., Mangler, J.: Web services for blended learning patterns. In: 4th IEEE
International Conference on Advanced Learning Technologies, Joensuu, Finland,
IEEE Computer Society (2004) 614–618

13. Mangler, J., Derntl, M.: CEWebS - Cooperative Environment Web Services. In:
4th International Conference on Knowledge Management (I-KNOW ’04), Graz,
Austria (2004) 617–624

14. Motschnig-Pitrik, R., Holzinger, A.: Student-centered teaching meets new media:
Concept and case study. Journal of Educational Technology & Society 5 (2002)
160–172

15. Motschnig-Pitrik, R., Mallich, K.: Effects of person-centered attitudes on profes-
sional and social competence in a blended learning paradigm. Journal of Educa-
tional Technology & Society 7 (2004) 176–192

16. Heemskerk, M., Wilson, K., Pavao-Zuckerman, M.: Conceptual models as tools for
communication across disciplines. Conservation Ecology 7 (2003) Article #8

17. Derntl, M.: Patterns for Person-Centered e-Learning. PhD Thesis, Faculty of
Computer Science, University of Vienna (2005)

18. Baskerville, R.L.: Investigating information systems with action research. Com-
munications of the Association for Information Systems 2 (1999)

19. Ottosson, S.: Participation action research - a key to improved knowledge of man-
agement. Technovation 23 (2003) 87–94

20. Bajnai, J., Steinberger, C.: Eduweaver - the web-based courseware design tool. In:
International Conference WWW/Internet 2003, Algarve, Portugal, IADIS (2003)
659–666

21. IMS Global Learning Consortium: IMS learning design specification.
http://www.imsglobal.org/learningdesign/index.cfm (2003)

22. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel,
S.: A Pattern Language - Towns, Buildings, Construction. Oxford University Press,
New York (1977)

23. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA (1995)

Learning Process Models as Mediators 127

24. E-LEN Project: E-LEN project homepage. http://www.tisip.no/E-LEN/ (2003)
25. Pedagogical Patterns Project: Pedagogical Patterns Project homepage.

http://www.pedagogicalpatterns.org (2002)
26. Botturi, L.: E2ML - educational environment modeling language. In: Ed-Media’03,

Honolulu, Hawaii, USA, AACE Press (2003) 304–311
27. IMS Global Learning Consortium: IMS learning design best practice and

implementation guide. http://www.imsglobal.org/learningdesign/ldv1p0/
imsld_bestv1p0.html (2003)

28. Nanard, M., Nanard, J., Kahn, P.: Pushing reuse in hypermedia design: golden
rules, design patterns and constructive templates. In: 9th ACM Conference on
Hypertext and Hypermedia, Pittsburgh, Pennsylvania, ACM Press (1998) 11–20

29. Tidwell, J.: UI patterns and techniques. http://time-tripper.com/uipatterns
(2002)

30. Borchers, J.: A Pattern Approach to Interaction Design. John Wiley & Sons,
Chichester (2000)

31. Dillenbourg, P.: Over-Scripting CSCL: The risks of blending collaborative learning
with instructional design. In Kirschner, P.A., ed.: Three worlds of CSCL. Can we
support CSCL. Open Universiteit Nederland, Heerlen (2002) 61–91

32. Laurillard, D.: Rethinking University Teaching: A Conversational Framework for
the Effective Use of Learning Technologies. 2nd edn. Routledge Farmer, London
(2001)

33. Rogers, C.R.: Client-centered therapy: Its current practice, implications, and the-
ory. Houghton Mifflin, Boston, MA (1951)

34. Swertz, C.: Didaktisches Design. Ein Leitfaden für den Aufbau hypermedialer
Lernsysteme mit der Web-Didaktik. Bertelsmann Verlag, Bielefeld (2004)

35. Motschnig-Pitrik, R.: An action research-based framework for assessing blended
learning scenarios. In: Ed-Media’04, Lugano, Switzerland, AACE Press (2004)
3976–3981

A Fundamental View on the Process
of Conceptual Modeling

S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper, and Th.P. van der Weide

Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

{S.Hoppenbrouwers, Th.P.vanderWeide, E.Proper}@cs.ru.nl

Abstract. In an ongoing effort to better understand the process of cre-
ating conceptual models (in particular formal ones), we present a fun-
damental view of the process of modeling. We base this view on the
idea that participants in such a process are involved in a deliberate and
goal-driven effort to share and reconcile representations of their personal
conceptions of (parts of) the world. This effort takes the shape of a mod-
eling dialogue, involving the use of controlled language. We thus take a
fundamental approach to subjective aspects of modeling, as opposed to
traditional approaches which essentially consider models as objective en-
tities. We position and present our initial theory of modeling, and briefly
discuss how we intend to validate and further develop it.

1 Introduction

The view on conceptual modeling as presented in this paper is rooted in a number
of different modeling practices and theories. We take the point of view that the
act of conceptual modeling should be understood (1) at a fundamental level, (2)
in context of what models are for, and (3) taking into account the capacities
and goals of the individuals who create or use them [1]. In taking this view we
have, first and foremost, been inspired by the conceptual modeling approach
called ORM (Object Role Modeling) [2]. We have been involved in studies of the
application of ORM in domain modeling and requirements engineering [3, 4]. In
addition, we have drawn from theory and practical experience acquired through
the ArchiMate project, which focused on Enterprise Architecture Modeling [5].

1.1 Focus and Fundamental Assumptions

The central question we address is: “Why do we model?”. We attempt to answer
this question in a generic fashion that nevertheless clears a path for further and
more specific research. Further elaborations and directions for solutions are based
on our answer to the question, which is: “We model because modeling answers
questions”. While this is too generic an answer to solve much, it does directly
clarify our approach to conceptual modeling. By asking: “Who asks the ques-
tions that need to be answered?” and “Why these people ask those questions?”,
we immediately arrive at a view on conceptual modeling that is deeply rooted
in communication, involving language as a means to achieve communication

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 128–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Fundamental View on the Process of Conceptual Modeling 129

[6, Chapter 3]. This entails that we are especially interested in cooperative aspects
of modeling: we focus on what a model, and the process of creating it, achieves
in terms of communication between people. Essentially, modeling concerns cre-
ative learning. It is akin to communication techniques encountered in education
and knowledge management. Modeling is a learning process in which cooperating
participants together construct a view on (and a model of) reality [7]. Ultimately,
therefore, we see modeling as a tool for developing and sharing knowledge.

Our communication-based approach is largely inspired by the desire to under-
stand (and eventually improve) the modelling process. We believe that indeed,
for this purpose, communication aspects of modeling are crucial. However, we
also believe that many if not all other approaches can be combined with or even
integrated into such a view.

Modeling as we see it may or may not involve the use of a (semi-)formal mod-
eling language, i.e. a modeling language the syntax and (in case of fully formal
languages) semantics of which can be coherently formulated in a mathematical
language. While we focus primarily on formal modeling, we include informal and
semi-formal modeling in our view, and are strongly interested in the differences
and commonalities that hold between the various flavours.

1.2 Questions and Answers Underlying Modeling

The vast majority of literature on modeling concerns restrictions on the form,
structure, and meaning that a model (expressed in a certain language) should
respect. Such restrictions may range from an iconic vocabulary for conveying a
coherent set of informal notions, to a fully formal set of restrictions on syntax
and semantics. We do not argue for or against any form of modeling or modeling
language, but emphasize the importance of asking why a certain restriction is
imposed, and what its relation is to the questions asked and answered in context
of the modeling process and the use of the finished model. In fact, we are less
interested here in the modeling languages per se than in the questions asked as
part of the modeling process.

We observe that many of the questions asked during actual modeling are not
answered if a complete, finished model is “read”. Instead, many questions are
asked and answered during the process of modeling. The finished model corre-
sponds to the minutes of a meeting that has taken place [8]. Reading the minutes
certainly answers some questions, but provides no further opportunities for ask-
ing new questions, nor to add to the answers or to verify whether what has been
said is well understood (i.e. truly learned) by all parties involved. In addition,
we observe that in many cases, people tend to adapt the modeling language
used (the “Way of Modeling” [9]) to the needs that occur during the modeling
process [10]. We can only hope to understand all these aspects of modeling by
looking at the details of the process. We therefore propose a view on modeling
that respects its product (and the intended usage thereof), while also clarifying
the nature of the modeling process and what it might involve and achieve apart
from the product as such. Our view thus is process-oriented, yet aspires to be
complementary to product-oriented views.

130 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

The questioning-and-answering that takes place during modeling can fruitfully
be seen as a dialog or conversation. Given the assumptions presented above, un-
derstanding the goals of modeling, and the means to match them, boils down to
understanding the questions people ask during modeling, and the means they
deploy to get them answered. Once this becomes clear, we can begin to work to-
wards the formulation of basic modeling strategies. These are ways of proceeding
in a modeling dialogue that are optimally fit to fulfill two main goals:

1. Answering all the questions the participants in the modeling process might
have (explicitly or implicitly).

2. Answering all the questions asked by those who use the product (i.e. the
completed model).

In this paper, we will not discuss modeling strategies as such, but merely pave
the way for study of actual modeling dialogue and the strategies it involves. We
focus here on the essentials of our view on modeling.

1.3 Positioning Verification and Validation

Restrictions on models are generally related to one of two sets of demands on
quality: those related to verifiability (a.k.a. “internal quality”) of a model, and
those related to validity (a.k.a. “external quality”) of a model. In formal mod-
eling literature, emphasis lies mostly on verifiability, but clearly a good formal
model must also be valid. However, in many cases validity is not a matter that can
be resolved by any means of objective validation in the mathematical sense. It
usually depends on subjective judgments passed and viewpoints held by humans.
Because of this, though validation is considered an important and problematic
issue, it is often discarded because it cannot be handled very well within the
realm of mainstream computer science.

Based on our extensive personal experience in modeling, as well as our theo-
retical work in that area [1, 3, 11, 12, 6, and more] we expect that the validation
of models (in both informal and formal modeling) can be much improved by
means of better modeling processes and strategies, within a communicative ap-
proach. Along similar lines, it should also be possible to formulate dialogue-based
strategies that lead to verifiable correctness in completed models.

It is not just the quality of models we are concerned about. We also hope that
by finding detailed modeling strategies, we can eventually help deal with an
increasingly problematic bottleneck that occurs in AI and system development:
a growing demand for constant creation of formal models in specific and dynamic
operational contexts, combined with a lack of people who are capable and willing
to perform the modeling required.

Our main focus is on formal conceptual modeling because in terms of combined
validation and verification, it poses the biggest challenge and is most urgent.
Also, the modeling bottleneck mostly concerns formal models. We strive for an
integrated approach to achieving validation and verification: a good process,
resulting in a valid model which is also verifiably correct in the end. The key
then is to achieve a careful and systematic exchange of questions and answers,

A Fundamental View on the Process of Conceptual Modeling 131

guided and restricted by the particular demands on both validity and verifiability
as posed by the context in which and for which a model is created.

1.4 Approach

Though science has since long embraced and studied the product of formal mod-
eling (the models and modeling languages), the details of the underlying produc-
tion process (modeling) still lie mostly in the realm of art. We aspire to be more
scientific about the modeling process as such. This requires a study of modeling
in terms of participant behavior. More in particular, we intend to find and de-
velop well-formulated strategies as a means to describe modeling processes, in
order to better understand what courses of action lead to good (valid, verifiable)
formal models in line with specific demands posed by their contexts.

In finding answers to the questions raised above, we are currently in the stage
of developing a theoretical framework. The plausibility and soundness of this
framework is argued initially in terms of its linguistic [6, 13], epistemic [14] and
semiotic [15, 16] foundations. Once a plausible and sound theoretical framework
is created, we will conduct a series of modeling experiments to confirm the va-
lidity of the framework.

2 Conceptual Modeling

The aim of this section is to more closely investigate the process of conceptual
modeling. In defining precisely what we mean by modeling a domain, we first
need to introduce a framework describing the essential process that takes place
when a person (for example, a stakeholder) observes a domain (for example, a
work situation to be supported by an information system).

Let us first consider what happens if some viewer observes ‘the universe’.
Our central underlying assumption is that viewers perceive a universe and then
produce a conception of that part they deem relevant. The conceptions harbored
by a viewer cannot be communicated and discussed with other viewers unless
they are articulated somehow (the need for this ability in the context of system
development is evident). In other words, a conception needs to be represented.
Following Peirce, we embrace the idea that both perception and conception of
a viewer are strongly influenced by her interest in the observed universe. The
viewer is an actor perceiving and conceiving the universe (the ‘world’ around
the viewer), using her senses. A conception is that which results, in the mind
of a viewer, when she observes the universe –using her senses– and interprets
what she perceives. Finally, a representation is the result of a viewer denoting a
conception, using some language and medium to express herself.

2.1 Viewers and Their Frame of Reference

From a modeling point of view, a viewer could metaphorically be seen as an
observation tool (a telescope) used to obtain information from the observed uni-
verse. The modeler may observe the universe directly, but still depends on the

132 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

viewer and the representations she brings forth to get (more) accurate informa-
tion. An observation tool should provide a trustworthy image of the universe
in such a way that structure that can be derived from the image corresponds
to the structure of the observed universe. Different observation tools (or even
different observations) may yield different images (representations), all reflecting
the same universe.

In our context, a viewer is assumed to be competent (i.e. knowledgeable)
[12] and trustworthy (i.e. not tell lies). The viewer is also capable of providing a
verbalized image of the observed world, consisting of statements in some language
(either verbal or graphical; ORM, for example, covers both). We also assume that
the structure of the statements uttered has at least some correspondence with
the structure of the world observed. Without referring to particular universals,
we assume there to be some underlying commonality in how people perceive
and conceptualize the world. Both the bio-cognitive make-up of people and their
experiences of living as and among humans create at least some common ground,
reflected in their language [6, 13].

As mentioned above, in conceiving a part of the universe, viewers will be
influenced by their particular interest in the observed universe. In the context
of system development (more in particular, enterprise architecture), this corre-
sponds to what tends to be referred to as a concern [17]. For example, a viewer
may be concerned with safety issues within a domain. Though we acknowledge
that a concern may influence the choice of modeling language, we abstract for the
moment form such peculiarities, and see a viewer purely as a language source with
a personal syntax. Sentences delimited by this syntax convey the meaning of the
associated (personal) world. The underlying semantical function is an unknown
and possibly informal function. We call a language (intended for communication)
informal if it has no well-defined syntax, or no semantic interpretation in terms
of some underlying formal (i.e. mathematically expressed) model.

Concerns are not the only factors that influence a viewer’s conception of a
domain. Another important factor concerns the pre-conceptions a viewer may
harbor as they are brought forward by their social, cultural, educational and
professional background. More specifically, in the context of formal modeling,
viewers will approach a domain with the aim of describing it in terms of some
predefined set of meta-concepts, such as classes, activities, constraints, etc. The
set of meta-concepts a viewer is used to using (or trained to use) when mod-
eling a domain will strongly influence the conception of the viewer (the well
known Sapir-Whorf hypothesis in its weak and commonly accepted form [18]).
We therefore presume that when viewers model a domain, they do so from a cer-
tain perspective; their Weltanschauung (German for “view of the world”) [19].
The Weltanschauung can essentially be equated to the notion of a viewpoint [17].

Viewers may decide to zoom in on a particular part of the universe they
observe, or to state it more precisely, they may zoom in on a particular part
of their conception of the universe. This allows us to define the notion of a
domain as: any subset of a conception (being a set of elements) of the universe,
that is conceived of as being some ‘part’ or ‘aspect’ of the universe. In the

A Fundamental View on the Process of Conceptual Modeling 133

context of (information) system development, we have a particular interest in
unambiguous abstractions from domains. This is what we refer to as a model : a
purposely abstracted and unambiguous conception of a domain. Note that both
the domain and its model are conceptions harbored by the same viewer. We are
now in a position to define more precisely what we mean by modeling: the act
of purposely abstracting a model from (what is conceived to be) a part of the
universe.

For practical reasons, we will understand the act of modeling to also include
the activities involved in the representation of the model by means of some
language and medium. In line with [16], we consider modeling to boil down to
“making statements in some language”.

2.2 Participants in the Modeling Process

In this and the following sections, we will use the generic term participant for
all actors taking part in the modeling process. Importantly, all such participants
are viewers as defined above.

For the sake of the argument, let us consider a basic (and admittedly over-
simplified) situation in which two participants in the modeling process play the
following roles. One is the domain expert, who is competent and trustworthy; she
knows all there is to know about the target domain, or can find out more if need
be. In other words, she can generate and validate statements about the domain,

Dialogue

Document

formal

specification

Interpretation

Paraphrasing Modeling

Verification

Universe of Discourse

Personal

Models

Informal

Semantics

Formal

Semantics

Domain expert

Completeness

Principle

System Analyst

Falsification

Principle

Natural

language

Controlled

language

Formal

language

Expressing

Reconsidering

Fig. 1. The classic view on the conceptual modeling process

134 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

but she has no formalization skills. The other participant is the system analyst,
who has no knowledge of the target domain but does know how to create a ver-
ifiably correct formal model. The interactive relation between the example roles
of domain expert and system analyst is depicted in figure 1, which represents
the classic view on modeling. The upper half of the figure shows the “informal”
world of the domain expert, statements about this world which are typically
expressed in natural language. The lower half of the figure shows the “formal”
world of the system analyst, statements about which are typically expressed in
some formal language. The link between the two worlds is achieved through a
dialogue (and a dialogue document that records it). We presume the dialogue to
be conducted using some form of controlled language (see discussion below).

In the activity of cooperatively creating a formal model on the basis of infor-
mal information, there is a parallel and a symmetry between the Completeness
principle and the Falsification principle (positioned on the upper and lower right
in figure 1). In the formal world, a model may be deemed falsifiable because it is
semantically or syntactically incorrect. While such formal falsifiability is impos-
sible in the informal world, this world allows for judgments of (in)completeness:
has everything that needs to be said been said (and has no more than what is
relevant been said)? Though the parallel may not be an ultimate, philosophical
one, it does hold for the practice of formal modeling: the best we can do as
we provide informal input is be complete (within the boundaries of relevance);
the best we can do in formal articulation is be formally correct. The marriage
between the two makes for good formal models.

In our view, then, the domain expert typically harbors an informal seman-
tic function (natural language), while the system analyst’s language may be
expected to be governed by a formal semantic function. However, both are “lan-
guage sources”; it is just that their syntax and semantics differ in structure and
nature. Thus, beyond this example, it seems justified to indeed use the more neu-
tral concept participant as a generic term for domain expert and system analyst.
Participants all have their personal syntax and a formal or informal semantic
function, depending on the roles they play in modeling.

In the context of communication resulting in formal models (in particular,
the traces of communication recorded in the dialogue document; see figure 1),
we strictly focus on written expressions. Though the document is linear, and
therefore the order in which the text has been uttered is captured, further as-
pects of communication and medium (time, location, gestures and facial expres-
sions, technologies used to communicate, etc.) are discarded and abstracted from.
There is one exception to this: it is recorded which participants uttered a par-
ticular sentence. Also, we consider the possibility to accept, at a more advanced
stage or our research, dialogue logs involving the use of graphical utterances
(drawings) that are (in syntactic terms) translatable 1:1 to verbalizations.

2.3 Controlled Language

Formal and informal language may be hard to fully reconcile, but a classic meet-
ing point between natural and formal language lies in similarities between the

A Fundamental View on the Process of Conceptual Modeling 135

basics of their grammar and meaning, in particular in predicates and predica-
tion. After all, formal languages have historically been derived from their nat-
ural counterparts. It has since long been recognized that when we use simple,
elementary sentences in natural language, we can relatively easily bridge the gap
between formal and informal [20, 10], even if the bridge can only bear very light
traffic. Such simple, elementary language can be described by a relatively sim-
ple grammar and can yet be realistically used in a modeling conversation (see,
for example, [21]). We referred to it as controlled language [22]. Our notion of
controlled language is related to that of simplified English; see [23]. The syntax
(not necessarily the semantics!) of a controlled language is limited and fixed, and
therefore it can expected to be both known to and agreed on by its various users
[6, p26-31].

The competency of a participant [12] may then be defined as:

1. transform model into controlled language,
2. validate a description in controlled language.

It is assumed that a participant can express statements in this controlled lan-
guage, but is also capable to express statements about that language. In system
development, it is crucial to reach clarity and agreement about terminology,
concepts, and sometimes syntax used in communication between members of
the development team [4]. Controlled language can be used to reach clarity and
agreement about any other type of language that might be used (for example,
full-fledged natural language, schematic language, or (semi-)formal language).
Thus it becomes possible to discuss any model through controlled language,
but also to discuss the modeling languages –both formal and informal– through
controlled language.

2.4 The Goal of Modeling

The goal of the modeling process can be described as: trying to reach a state
where all participants agree that they have some degree of common understand-
ing (for a similar stance in context of requirements engineering, see [24]). The
participants try to derive from their personal semantics a group semantics. Par-
ticipants will be convinced this goal has been achieved if they have validated
their assumptions to contentment of everyone involved. For example, a system
analyst will be convinced that the derived model is complete if the model has
been validated against the real situation. In our view, this means that the domain
expert, harboring the semantics of her conception of the universe, has positively
responded to the controlled language description of the model provided by the
system analyst, which may be rooted in a formal language. Various semantic
functions come into play, but the shared, controlled language (which may be
cooperatively constructed) performs an intermediary function.

The goal of the interaction can thus be seen as the construction of (1) a
grammar for representations that are acceptable to all participants, and (2)
semantic interpretation(s) in terms of some model(s). The grammar produced
in the interaction is a generative device. It can also be used as a parsing device.

136 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

<S> -> John is 34 <X> -> John <Y> -> 34

<S> -> <X> is <Y> <S> -> <X> is <Y>

<X> -> Person <X0> <Y> -> <Y0> years

<X0> -> John <Y0> -> 34

Abstract

Concrete

(1) (2) (3)

Fig. 2. Parsing levels

The grammar is correct when all sample sentences can be generated. From the
point of view of the system analyst, the target model is restricted by the (formal)
semantics of the modeling technique used. From the point of view of the domain
expert, validation of the model may be seen as assigning meaning (interpretation)
to the representations generated by the system analyst. A more symmetric way
of putting this is that for each party (a), the other party (b) agrees with the
controlled language statements provided by party (a).

Example 1. A simple sentence like John is 34 is the initial statement verbalizing
a fact occurring in the domain, provided by a domain expert (see case 1 in
figure 2). The parsing structure of this sentence leads to case 2 of this figure.
A simple modeling strategy is to defoliate parse trees, i.e. remove labels and
constants like John and 34. These defoliated parse trees provide an example
of the grammatical structure of the expert language. The leaves are concrete
instances. During modeling, we are interested in acquiring the expert grammar,
and therefore we are (only) interested in the defoliated parse trees.

The 3rd case provides a fully qualified version of the sentence in NIAM nor-
mal form. Fully qualified sentences are well suited as a basis for modeling. How-
ever, domain experts are more inclined to produce statements as in case (2).
A main goal of a modeling dialog aiming for a NIAM model is to detect and
resolve unqualified constants, hence asking and answering questions related to
qualification.

Initially, the dialogue may use a modeling technique that accepts statements
that do not convey all the information needed for a formalization. However, the
system analyst will eventually require statements that match a more demanding
and restrictive modeling technique like NIAM. During modeling, the model will
have tomigrate fromthefirst (informal) to the second (formal)modeling technique.

2.5 Modeling as Interaction Between Viewers

The modeling process is seen as a goal-driven dialogue between a number of
participants. Each participant is a viewer. The only way the participants can
achieve their modeling goals is to communicate with each other, and remember

A Fundamental View on the Process of Conceptual Modeling 137

and build on what has been discussed. An explicit way to do this would be to keep
“modeling minutes” that are agreed on by the participants (figure 1). Taking a
dialogue perspective on a modeling process is in line with a constructionist world
view [25, 16].

As discussed, formal modeling can be succesfully captured by recording re-
stricted aspects of communication. In this vein, in the NIAM method, the type of
communication that takes place between modeling participants depicted as the
telephone methaphor (two participants who communicate via a telephone line).
Following this image, the modeling minutes consist of a recording or logbook
of the telephone conversation. In order to capture the more rich and complex
dialogue patterns in larger groups, we propose the so-called chatbox metaphor,
assuming the participants communicate as in a chatbox. This is a real-time, tele-
type like communication channel that has become immensely popular among
internet users; famous public applications of this type are, for example, Jabber,
ICQ and MSN. In advanced use, chatbox conversations may branch off of (and
rejoin) other chatbox conversations.

In view of the chatbox metaphor, the communication between the partici-
pants is assumed to be conducted entirely through a chatbox. If we view only
the sentences of a particular participant, then it makes sense to interpret this
view as a description of the model put forward by this participant. As the partici-
pant’s model may evolve during the chat, obtaining the model from a participant
involves the dynamics of dialogue, and is certainly not trivial.

For practical reasons, we will make some assumptions about the language
that is used by the participants during the chat. The underlying controlled lan-
guage model should be such that putting a sentence in some chosen normal form
(for example, NIAM normal form) is an activity that does not require other
skills from the participant than elementary knowledge of language and sufficient
knowledge of the domain observed by this participant.

2.6 Some Types of Modeling Dialogue

As an illustration of various kinds of dialogue that may occur, consider the three
modeling situations described below:

tabula rasa – This kind of modeling process is roughly comparable with the
way in which a baby learns the basics of how the world is, from its parents and
environment –with its developing language as a key item. This is roughly the
type of process compatible with the simplified domain expert - system analyst
scenario discussed above. However, in that scenario the demands posed by a
formal language of course imply a much stricter set of questions-to-answer
than a child would harbor

open mind – This kind of modeling process takes place when two people with
their own, well-developed views on the world, are eager to learn about their
mutual views –as reflected in their languages. This type of modeling starts off
with two unconnected representations/models, after which the commonalities
between them may soon be discovered. This may or may not lead to a full
reconciliation of the initial models in terms of a translation between them.

138 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

colliding views – This kind of modeling process will occur when the partici-
pants have different views on the world, and the participants’ priorities force
them to maintain (part of) that view, while at the same time a mutually
acceptable model is needed. This will usually lead to conflicts –modeling con-
flicts, possibly rooted in language conflicts, reflecting world view conflicts.
Modeling of this type will have to involve negotiation or argumentation about
a common model. In some cases, one participant will impose his model upon
the other participant; in others, one participant will be able to convince an-
other by rational argumentation; in yet other cases, pure negotiation will
take place: seeking a compromise both parties can agree with.

Importantly, either the “open mind” or “colliding views” situation occurs
whenever pre-existing conceptualizations or models (possibly, rooted in ex-
isting systems) are relevant to the modeling process, which in fact is very
often the case.

The modeling strategies followed in the three types of conversation mentioned
above are quite different. In addition, how the basic strategies are executed will
strongly depend on the sort of model that is aimed for, and the modeling lan-
guages involved. It seems most realistic to start with investigating the “tabula
rasa” type of dialogue and work up from there. The “colliding views” strate-
gies are the most complex but seem representative of many real-life modeling
situations in; arguably, they are ultimately the most interesting.

3 Modeling as a Dialogue

In the previous section (as illustrated by figure 1), we discussed our view on mod-
eling as an exchange of statements between participants, in a modeling dialogue.
In this section we introduce our core model for such dialogues-for-modeling.

3.1 Basics

As a starting point, we assume two participants in the modeling process, referred
to as a and b respectively. Each participant harbors some volume of knowledge.
For example, in a modeling process a domain expert has knowledge of the uni-
verse of discourse (i.e. some domain); as discussed in the previous section, we
assume a domain expert to be fully knowledgeable: we do not question the valid-
ity of the expert’s knowledge as such. We further assume the falsifiable basis (the
test, as it were) for having acquired knowledge is the capability to demonstrate
it. As a consequence, assuming participant p to have knowledge Sp corresponds
to assuming p to be capable to somehow demonstrate the knowledge elements
from Sp. Whether this demonstration is considered convincing depends on the
judgment of the other participant, the initial contributor of the knowledge. This
judgment will, generally, also depend on the goals and demands driving the
modeling dialogue (as viewed by the participants).

Epistemically [14] we choose to view knowledge indeed as knowledge and not
as belief. Thus, we abstract from such philosophical questions as whether or not

A Fundamental View on the Process of Conceptual Modeling 139

the domain expert has knowledge that does not match reality. We collapse the
notions of knowledge and belief to keep our current argument transparent.

As for the demonstration of knowledge, consider the following illustrative
example (loosely based on [7]). If a teacher attempts to teach a student about
something (for example, a historical episode), she tries to create in the student’s
mind a conception of the item taught that is equal or very similar to her own.
How can she be convinced that the student has conceived (learned) the item?
By asking for a demonstration of that knowledge. Such a demonstration can
come in various forms. Discarding non-verbal demonstrations, we distinguish
exemplification and paraphrasing as the most common techniques for convincing
a teacher. These techniques can also be applied within modeling dialogues.

Traditional approaches to communication in modeling simply assume a par-
ticipant who is willing to transfer domain knowledge to another participant who
is eager to learn about this domain, i.e. to create a conception of it. The dialogue
that brings about the transfer is assumed to be objectively meaningful: to be
de-contextualized, making the message independent of time, location, and par-
ticipant. This motivates a view of the modeling process restricted to the actual
symbols used in communication, abstracting from the participants as such.

In the traditional view, subjectivity is only a relevant notion if there are
disagreements between domain experts, which should be resolved. Contrary to
the traditional view, we are neutral about the subjective conceptions of the
participants involved in modeling.

We assume that participants are willing to communicate about their knowl-
edge, and are willing to listen to the others. Thus, both a and b must be willing
to take turns in playing the leading role of contributor and or the more passive
role of receiver.

3.2 Characterizing the Dialogue

Let us first consider a the simple, “tabula rasa” view on knowledge transfer. We
assume, without loss of generality, participants a and b to be in different roles
(a is the contributor, b the receiver). The basic assumptions that must underly
the dialogue are the following:

1. participant a is willing to transfer its knowledge to participant b,
2. participant b is willing to assimilate a’s knowledge.

The above assumptions directly relate to the dialogue between a and b. The
pragmatic assumptions with respect to the statements made in context of the
modeling dialogue can be phrased as follows:

1. a has the intention to talk; a makes a statement s under the assumption
that b seeks to know s.

2. b has the intention to listen; if a states s, then b assumes this is done with
the ultimate intention to enable b know s.

Note that during modeling the participants will take turns in playing the
leading role of contributor and or the more passive role of receiver. In the di-
alogue document the transferred statements will be registered, including the

140 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

participants involved and the roles they play at that moment. This model allows
dialogues to have sub-dialogues, with very specific goals that are sub-goals of
the main dialogue. This is in line with the chatbox model for communication.

This analysis of the “tabula rasa” type of modeling dialogue can be extended
to cover the “open mind” and “colliding views” types as introduced in the pre-
vious section:

3. a has the additional intention enable b to translate his representation to s;
a makes a statement s under the assumption that b seeks map his represen-
tation to s where possible.

4. b has the additional intention to translate his representation to s; if a states
s, then b assumes this is done to enable him to map his representation to s
where possible.

5. a has the additional intention to negotiate, argue in favor of, or impose s on
b; a makes a statement s under the assumption that b wants to negotiate,
needs to be convinced of, or will have to be forced to accept s.

6. b has the additional intention to negotiate about s in view of his own, pre-
ferred representation, defend his own representation through argumentation,
or resist accepting s instead of his own representation; if a states s, then b
assumes this is done in order to negotiate, argue in favor of, or impose s
upon him.

We consider understanding of the above intentions, and the strategies that follow
from them, to be fundamental to the understanding of the modeling process. Mat-
ters maybe complicated by unawareness of one participant of some goal or strategy
of another participant; also, various goals and strategies may become entangled.

4 Conclusion and Future Work

We have presented a fundamental view on (formal) modeling rooted in knowl-
edge creation and exchange, in which communication plays a central role. We
have argued that to achieve a high quality combination of validity and verifia-
bility in models, we need to look not only at the product, but specifically also
at the process of modeling. In line with our communicative approach, the mod-
eling process is viewed as a dialogue between participants. We have described a
first, general analysis of the essential properties of modeling dialogues. In par-
ticular we discussed the central role controlled language can play in modeling
dialogues, and the basic underlying intentions of such dialogues, rooted in the
sharing, translation, negotiation, argumentation, and imposing of (participant-
based) knowledge representations. This should provide a good starting point for
more detailed, domain-specific or application-specific exploration of modeling di-
alogues, with as a central goal the discovery of modeling strategies and optimal
selection of such strategies depending on the goals for particular situations.

As possible domains of application of the controlled use of modeling strategies,
the following flavors of modeling seem particularly interesting: domain model-
ing, information modeling, architecture modeling, ontological modeling, and in-
teractive querying. We plan on focused research activities in all of these areas.

A Fundamental View on the Process of Conceptual Modeling 141

Possibly, the range of application areas can be extended to include more complex
forms of modeling, such as software modeling, formal business rules specification,
and numerous AI applications.

Validation and improvement of our theoretical framework will be a crucial
aspect of our further research. After further investigating the plausibility and
soundness of our framework, we will test its validity by starting a substantial ex-
perimentation programme to validate our initial theory, the chatbox metaphor,
and the use of controlled language. We thus intend to lay an empirical foun-
dation under our exploration of the basic dynamics of modeling and the use of
controlled language therein. We intend to start our experiments by investigating
“tabula rasa” type modeling, and quickly move into “open mind” modeling. Un-
derstanding and improving “opposite views” modeling is more challenging, and
may be successful only in the long run, but is also the Main Prize. Core focus
of our theory development will be on eliciting, describing, and testing strategies
for formal modeling (possibly also other forms of modeling).

One of our long term objectives is to investigate ways of developing a new
brand of CASE tools that involves the interactive monitoring and guidance of
some dedicated (i.e. situationally fitted) modeling process, integrated with the IS
development process at large. Two factors underly this idea: solving the modeling
bottleneck and improving model quality and grounding. The new brand of case
tools can be expected to be a blend of classic, product-oriented CASE tools on the
one hand, and cooperative, interactive dialogue systems on the other (probably
involving issues as studied in the field of Computer Supported Cooperative Work
or CSCW).

We eventually hope to extend the range of our experiments by providing an
increasingly attractive digital environment for people to use during modeling,
providing added value for the participants as well as data for the researchers,
and enabling insightful interaction between the two groups.

References

1. Proper, H., Verrijn-Stuart, A., Hoppenbrouwers, S.: Towards utility-based se-
lection of architecture-modelling concepts. In Hartmann, S., Stumptner, M.,
eds.: Proceedings of the Second Asia-Pacific Conference on Conceptual Modelling
(APCCM2005), Newcastle, New South Wales, Australia. Volume 42 of Conferences
in Research and Practice in Information Technology Series., Sydney, New South
Wales, Australia, Australian Computer Society (2005) 25–36.

2. Halpin, T.: Information Modeling and Relational Databases, From Conceptual
Analysis to Logical Design. Morgan Kaufman, San Mateo, California, USA (2001).

3. Proper, H., Bleeker, A., Hoppenbrouwers, S.: Object-role modelling as a do-
main modelling approach. In Grundspenkis, J., Kirikova, M., eds.: Proceedings
of the Workshop on Evaluating Modeling Methods for Systems Analysis and De-
sign (EMMSAD’04), held in conjunctiun with the 16th Conference on Advanced
Information Systems 2004 (CAiSE 2004). Volume 3., Riga, Latvia, EU, Faculty of
Computer Science and Information Technology, Riga Technical University, Riga,
Latvia, EU (2004) 317–328.

142 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

4. Bleeker, A., Proper, H., Hoppenbrouwers, S.: The role of concept management
in system development – a practical and a theoretical perspective. In Grabis,
J., Persson, A., Stirna, J., eds.: Forum proceedings of the 16th Conference on
Advanced Information Systems 2004 (CAiSE 2004), Riga, Latvia, EU, Faculty of
Computer Science and Information Technology, Riga Technical University, Riga,
Latvia, EU (2004) 73–82.

5. Lankhorst, M., others: Enterprise Architecture at Work : Modelling, Communica-
tion and Analysis. Springer, Berlin, Germany, EU (2005).

6. Hoppenbrouwers, S.: Freezing Language; Conceptualisation processes in ICT sup-
ported organisations. PhD thesis, University of Nijmegen, Nijmegen, The Nether-
lands, EU (2003).

7. Pask, G.: Conversation, cognition, and learning: a cybernetic theory and method-
ology. Elsevier (1975).

8. Veldhuijzen van Zanten, G., Hoppenbrouwers, S., Proper, H.: System Development
as a Rational Communicative Process. In Callaos, N., Farsi, D., Eshagian-Wilner,
M., Hanratty, T., Rish, N., eds.: Proceedings of the 7th World Multiconference
on Systemics, Cybernetics and Informatics. Volume XVI., Orlando, Florida, USA
(2003) 126–130.

9. Wijers, G., Heijes, H.: Automated Support of the Modelling Process: A view based
on experiments with expert information engineers. In Steinholz, B., Sølvberg,
A., Bergman, L., eds.: Proceedings of the Second Nordic Conference CAiSE’90
on Advanced Information Systems Engineering. Volume 436 of Lecture Notes in
Computer Science., Stockholm, Sweden, EU, Springer-Verlag, Berlin, Germany, EU
(1990) 88–108.

10. Hoppenbrouwers, J., Vos, B.v.d., Hoppenbrouwers, S.: Nl structures and conceptual
modelling: Grammalizing for KISS. Data & Knowledge Engineering 23 (1997) 79–
92.

11. Proper, H., Hoppenbrouwers, S.: Concept evolution in information system evolu-
tion. In Gravis, J., Persson, A., Stirna, J., eds.: Forum proceedings of the 16th
Conference on Advanced Information Systems 2004 (CAiSE 2004), Riga, Latvia,
EU, Faculty of Computer Science and Information Technology, Riga Technical
University, Riga, Latvia, EU (2004) 63–72.

12. Frederiks, P., Weide, T.v.d.: Information modeling: the process and the required
competencies of its participants. In Meziane, F., Métais, E., eds.: 9th International
Conference on Applications of Natural Language to Information Systems (NLDB
2004). Volume 3136 of Lecture Notes in Computer Science., Manchester, United
Kingdom, EU, Springer-Verlag, Berlin, Germany, EU (2004) 123–134.

13. Pinker, S.: The Language Instinct. Allen Lane/Penguin Press, London, United
Kingdom, EU (1994).

14. Meyer, J.J., Hoek, W.v.d.: Epistemic Logic for AI and Computer Science. Cam-
bridge University Press, Cambridge, United Kingdom, EU (1995).

15. Peirce, C.: Volumes I and II – Principles of Philosophy and Elements of Logic.
Collected Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts,
USA (1969).

16. Krogstie, J.: A semiotic approach to quality in requirements specifications. In
Kecheng, L., Clarke, R., Andersen, P., Stamper, R., Abou-Zeid, E.S., eds.: IFIP
TC8/WG8.1 Working Conference on Organizational Semiotics – Evolving a Science
of Information Systems, Montréal, Québec, Canada, Kluwer Academic Publishers,
Dordrecht, The Netherlands, EU (2002) 231–250.

A Fundamental View on the Process of Conceptual Modeling 143

17. The Architecture Working Group of the Software Engineering Committee, Stan-
dards Department, IEEE: Recommended Practice for Architectural Description of
Software Intensive Systems. Technical Report IEEE P1471-2000, The Architecture
Working Group of the Software Engineering Committee, Standards Department,
IEEE, Piscataway, New Jersey, USA (2000).

18. Chandler, D.: The Act of Writing: a Media Theory Approach. University of Wales,
Aberystwyth, United Kingdom, EU (1995).

19. Wood-Harper, A., Antill, L., Avison, D.: Information Systems Definition: The
Multiview Approach. Blackwell Scientific Publications, Oxford, United Kingdom,
EU (1985).

20. Frederiks, P.: Object-Oriented Modeling based on Information Grammars. PhD
thesis, University of Nijmegen, Nijmegen, The Netherlands, EU (1997).

21. Rolland, C., Souveyet, C., Ben Achour, C.: Guiding goal modeling using scenarios.
IEEE Transactions on Software Engineering 24 (1998) 1055–71.

22. Schwitter, R.: Controlled Natural Languages. Centre for Language Technology,
Macquary University, Sydney, Australia. (2004).

23. Farrington, G.: An Overview of the International Aerospace Language. (1996).
24. Pohl, K.: The three dimensions of requirements engineering: a framework and its

applications. Information Systems 19 (1994) 243–258.
25. Berger, P., Luckmann, T.: The Social Construction of Reality. Doubleday, New

York, New York, USA (1966).

How to Tame a Very Large ER Diagram
(Using Link Analysis and Force-Directed

Drawing Algorithms)

Yannis Tzitzikas1 and Jean-Luc Hainaut2

1 University of Crete and FORTH-ICS, Heraklion, Greece
2 Institut d’Informatique, University of Namur (F.U.N.D.P.), Belgium

tzitzik@csi.forth.gr, jlh@info.fundp.ac.be

Abstract. Understanding a large schema without the assistance of per-
sons already familiar with it (and its associated applications), is a hard
and very time consuming task that occurs very frequently in reverse en-
gineering and in information integration. In this paper we describe a
novel method that can aid the understanding and the visualization of
very large ER diagrams that is inspired by the link analysis techniques
that are used in Web Searching. Specifically, this method takes as input
an ER diagram and returns a smaller (top-k) diagram that consists of
the major entity and relationship types of the initial diagram. Concern-
ing the drawing of the resulting top-k graphs in the 2D space, we pro-
pose a force-directed placement algorithm especially adapted for ER dia-
grams. Specifically, we describe and analyze experimentally two different
force models and various configurations. The experimental evaluation on
large diagrams of real world applications proved the effectiveness of this
technique.

1 Prologue

It has been recognized long ago that the usefulness of conceptual diagrams (e.g.
ER/UML diagrams) degrades rapidly as they grow in size. Understanding a
large schema without the assistance of persons already familiar with it, is of-
ten a nightmare. Unfortunately, large conceptual schemas are becoming more
and more frequent. The integration of information systems, the development or
reverse engineering of large systems, the usage of ERP (the SAP database in-
cludes 30.000 tables) and the development of the Semantic Web (structured into
ontologies potentially including dozens of thousands of classes) naturally lead
to the building of very large schemas. Although a good drawing of a concep-
tual schema could aid its understanding, and several approaches for automatic
placement have been already proposed (e.g. see [33,23,8,28,10]), it is a widely ac-
cepted opinion that the automatic layout facilities offered by current UML-based
CASE tools are not satisfactory even for very small diagrams (for more see [14])1.
1 General graph drawings algorithms (e.g. see [2]) usually make some assumptions

that are not always valid in conceptual graphs.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 144–159, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

How to Tame a Very Large ER Diagram 145

Consequently, the vast majority of layouts created today are done ”by hand”; a
human designer makes most, if not all, of the decisions about the position of the
objects to be presented [26]. The visualization and drawing of large conceptual
graphs is even less explored. The classical hierarchical decomposition techniques
that are used for visualizing large plain graphs (for a survey see Chapter 3 of
[29]), have not been applied or tested on conceptual graphs. Consequently, only
manual collapsing mechanisms (like those described in [22]) are currently avail-
able for decreasing the visual clutter and for aiding the understanding of big
conceptual graphs. In addition, the techniques that have have been proposed
for reducing the size of a conceptual graph (in order to aid its comprehension),
specifically ER clustering, either require human input [15,34,18,7], or they are
automated but not tested on large conceptual schemas [30,1].

We decided to devise an automatic technique for identifying the major entity
and relationship types of a very large conceptual graph as a means for facili-
tating its understanding. As Link Analysis has been proved very successful in
Web Searching [6,25] and recently in several other application domains [19,20],
we decided to design a similar in spirit technique for one very common and im-
portant kind of conceptual schemas, namely Entity-Relationship (ER) diagrams
[9]. Concerning the drawing in the 2D space of the resulting top-k graphs, we de-
scribe a force-directed placement algorithm especially adapted for ER diagrams.
Specifically, we describe and analyze experimentally two different force models
and various configurations.

Both of the techniques that are presented in this paper can be applied not
only to ER diagrams, but also on other kinds of conceptual graphs. The Seman-
tic Web is one interesting application area because it is founded on ontologies
(potentially including dozens of thousands of classes) that are exchanged in a
layout-missing format. In this context, the provision of top-k diagrams and au-
tomatic layout services is very important as they can aid understanding that
is very important for accomplishing tasks like semantic annotation, creation of
ontology mappings, ontology specialization, etc.

This paper is structured as follows: Section 2 describes Link Analysis for
ER diagrams, Section 3 introduces force-directed placement algorithms for ER
diagrams and finally, Section 4 concludes this paper.

2 Link Analysis for ER Diagrams

Our objective here is to identify the major entity and relationship types of a
very large ER diagram in order to facilitate its understanding. We designed
a PageRank [6] style scoring method because PageRank is described in terms
on the entire Web, while HITS [25] is mainly applied on small collections of
pages (say those retrieved in response to a query). We view an ER diagram as a
triple (E, R, I) where E = {e1, ..., eN} denotes the entity types, R = {r1, ..., rm}
denotes the relationship types, and I the isA relationships over E (i.e. I ⊆
E × E). For any given e ∈ E, we shall use connR(e) to denote those entity
types that are connected with e through relationship types, connsb(e) denote

146 Y. Tzitzikas and J.-L. Hainaut

the direct subtypes of e, and connsp(e) the direct supertypes of e. We shall also
use the following shorthands: connI(e) = connsb(e) ∪ connsp(e) and conn(e) =
connR(e) ∪ connI(e). Since two entity types may be connected with more than
one relationship types we consider connR(e) as a bag for being able to record
duplicates. In addition, we shall use attrs(e) to denote the attributes of an entity
type e.

Now the score (or EntityRank) of an entity type e in E, denoted Sc(e), can
be defined as follows:

Sc(e) = q/N + (1− q) ∗
∑

e′∈connR(e)

Sc(e′)
|connR(e′)| (1)

where q stands for a constant less than 1 (e.g. 0.15 as in the case of Google)2 One
can easily see that the above formula simulates a random walk in the schema.
Under this view each relationship type is viewed as a bidirectional transition
and the probability of randomly jumping to an entity type is the same for all
entity types (i.e. q/N). The resulting scores of the entity types correspond to
the stationary probabilities of the Markov chain.

A rising question here is how we can incorporate n-ary (n > 2) relationship
types into the aforementioned model. This can be achieved by replacing each n-
ary relationship type (n > 2) over n entity types e1, ..., en by n(n− 1)/2 binary
relationship types that form a complete graph3 over e1, ..., en. Consequently, an
n-ary relationship type is viewed as n(n− 1)/2 binary relationships.

An alternative approach is to assume that the probability of jumping to a
random entity is not the same for all entities, but it depends on the number of
its attributes. In this case we define the score (or BEntityRank) of an entity type
e in E as follows:

Sc(e) = q
|attrs(e)|
|Attr| + (1 − q) ·

∑
e′∈connR(e)

Sc(e′)
|connR(e′)| (2)

where Attr denotes the set of all attributes of all entity types (i.e. Attr =
∪{ attrs(e) | e ∈ E}). This particular formula simulates a user navigating ran-
domly in the schema who jumps to a random entity e with probability q|attrs(e)|

|Attr|
or follows a random relationship type (on the current entity). The probability
|attrs(e)|
|Attr| corresponds to the probability of selecting e by clicking randomly on a

list that enumerates the attributes of all entity types of the schema.
The linear algebra version of EntityRank and BEntityRank is given in Ap-

pendix A.
Let’s now discuss the differences between link analysis for ER diagrams and

link analysis for the Web. Firstly, Web links are directed, while relationship

2 If we set q = 0.15 or below then an iterative method for computing the scores (e.g.
the Jacobi method) requires at most 100 iterations to convergence.

3 A complete graph is a graph in which each pair of graph vertices is connected by an
edge.

How to Tame a Very Large ER Diagram 147

Fig. 1. Excerpt (< 10%) of a large ER diagram drawn using a force-directed placement
algorithm

types are not directed thus the latter are considered as bidirectional transitions.
Secondly, we do not collapse all relationships types between two entity types
into one (as it is done with Web links), and this is the reason why we consider
connR as a bag. Thirdly, in ER diagrams we should count ”self hyperlinks”
(i.e. cyclic relationship types), although the Web techniques ignore them. For
example, consider a schema consisting of two entity types {Person, City} and
two relationship types {Person lives City, Person fatherOf Person}. If we
ignore the relationship type fatherOf , then both Person and City would be
equally scored, a not so good choice. At last, although in the Web link analysis
is exploited mainly for ranking the results of retrieval queries, in our case we
don’t need just a ranked list of entity types, but rather another diagram that
consists of the major entity and relationship types.

We have implemented and evaluated the above scoring schemes into the
DB− MAIN CASE tool (for more see [17,21]). The designer provides a threshold
per between 0 and 100. Subsequently, all entity types with score lower than
per% ∗ScMax, where ScMax denotes the highest score, disappear. Controlling
the visibility of entity types according to their score, and not according to their
rank, is preferred as it better handles ties. Concerning relationship types, only
those that connect the visible entity types are displayed. The computation of the
scores takes only some seconds on a conventional PC. Specifically, to compute the
scores we use the Jacobi iterative algorithm. We have noticed that 50 iterations
give quite stable orderings and their application on schemas with 1000 entity
and relationship types takes less than 2 seconds in a conventional PC.

Figure 1 shows a very small part of the ER diagram of a Belgian distribution
company. Though the schema comprises about 450 nodes and 800 edges only, the
layout is definitely useless for understanding the schema and the corresponding
application.

Now Figure 2 shows in micrography the diagram of the top-11 entity types
of the schema of Figure 1 according to EntityRank (for reasons of space, the

148 Y. Tzitzikas and J.-L. Hainaut

0-N

0-N

SUIVRE LE DOSSIER

1-N

0-N

SUIVI OPERATRICE

0-N

0-N

SUIVI LIVRAISON COLIS

0-N

0-N

SUIVI DES TOPS CLIENT

0-N

0-N

1-1

SUIVI COMMANDES

0-N

0-N

0-N

SUIVI ACTIVITE

1-N

1-N

STAT FOURNISSEUR MENSUELLES

0-N

0-N

simulation prix de vente

0-N

0-N

réexpédition colis

est remplace
0-1 remplace

0-1

Remplacement

date début de validité
0-N

date de fin de validité
0-N

0-N

remise fin année fournisseur

0-N

0-N

POSITIONS/ACTIVITE/MOIS

0-N

0-N
POS-DTE

0-N

1-N

pondération

0-N

0-N

Poids max/canal

0-N

1-N

PAYS LANGUE

0-N

0-N

0-N

PAYS ENSEIGNE LANGUE

0-N

1-1

pays du fournisseur

0-N

1-1

pays de la devise

0-1

0-N

Pays d'origine

décrire
0-N

description
0-11-1

0-N

0-N

Notice

0-N

0-N

Mouvement de stock

0-N0-N

Date de depot
1-1LOT

1-1
0-NLIVRAISON COLIS

1-N

1-1

HISTORIQUE COLIS

0-N
0-NFRAIS PAR DEFAUT pays destination

0-N

pays d'origine
0-N FRAIS DE DOUANE

1-1

0-N

fournisseur/pays

1-1

0-N

fournisseur/langue

0-N

0-N

FORMULE PAR PAYS/LANGUE

0-N

0-N

0-N

Cadeau associé
0-N EARLY BIRD

article vpc pièce
0-N

article vpc ensemble
0-N

décomposition d'un ensemble

0-N

0-N

dte/pay

1-1

0-N

Document par langue

0-N

0-N

cumul mouvement systeme mesure

0-N

0-N

Composition

0-N

0-N

colcom/suicol

0-N

1-1

col/eta

1-1
0-N

cn/suicol

1-1

0-N

cn/pay

1-1

0-N

cd/suicol

0-1

0-N

cd/eta

1-1

0-N

Canal livraison

1-1

0-N

Canal commande

0-N

0-N

0-N

calcul goulotte
0-N

0-N

0-N

calcul canal

1-1 0-Natvsec/cd

0-N

0-1

artvpc/frn

0-N

1-N

artref/tva

0-N

1-N

artref/douref

1-N

0-N

artref/atvsec

0-N

1-1

artref/artvpc
0-N

0-N

0-N

0-N

ALIMENTER

1-1

0-N

achfrn/lan

SECTEUR ACTIVITE

REFERENCE ARTICLE

PAYS

LANGUE

FOURNISSEUR

ETAT D'AVANCEMENT (LIGNE OU CO

DATE

COMMANDE

COLIS
CANAL

ARTICLE VPC

Fig. 2. The diagram of the top-11 entity types of the schema of Figure 1

0-N

0-N0-N

supplies

0-N
0-N

Stock Movement

replaces
0-1

replacedBy
0-1

replacement

0-N

0-N
POSITIONS/ACTIVITIES/MONTHS

0-N

1-N

Operator

0-N

1-1description
0-1 describes

0-N

Notice

0-N

0-N

Max Weight/Channel

0-N

0-N

0-N

follow-up activity
Bonus

0-N

0-N

0-N

EARLY BIRD

0-N 0-N

DefaultCost

partOf
0-N

0-N

decomposition

origin
0-N

destination
0-N

Customs costs

0-N
0-N

country language

0-N

1-1

cn/pay

0-N

0-N

0-N

channelCalculation

0-N 0-N

0-N

path Calculation
0-N

0-N

accumulated movements

State of Progress

SectorOfActivity

Item

Country

Channel

Fig. 3. The diagram of the top-5 entity types of the schema of Figure 1

attributes are not displayed in this figure). Although this schema has 54 rela-
tionship types it is extremely more easy to visualize, and thus to understand,
than the original schema. Of course, one user could start from even smaller di-
agrams. For instance, Figure 3 shows the graph of the top-5 entity types of the
same schema. It indeed contains the major entity types of this application and
a user can immediately understand the application domain of this schema.

In case of diagrams with big isA hierarchies, some entity types, although ma-
jor, may not receive high scores because their relationship types are scattered
in several subentity types. To handle this case, we introduced a (optional) pre-
processing step in which each isA hierarchy of the schema is collapsed into one
entity type that collects all the attributes and relationship types of its subentity
types.

Concerning evaluation, at first we have to note that the evaluation of the
effectiveness of link analysis techniques for ER diagrams (for conceptual graphs
in general), is more difficult than in the case of Web. In the latter case, it is

How to Tame a Very Large ER Diagram 149

not so hard to judge whether the top ranked pages are indeed relevant to the
submitted query. However, in the case of conceptual graphs, one has to know well
in advance the conceptual graph in order to judge whether the resulting small
graph indeed contains the major concepts of the conceptual graph and of its
underlying domain. Inevitably, the most reliable evaluation of such techniques
can be done only in already known conceptual graphs. For this reason we applied
this method to almost every conceptual schema that the DBMAIN group has
produced the last 3 years. This was a quite representative test bed as it includes
big schemas of existing (and non artificial) real world applications. We always
obtained surprisingly good results. For reasons of space we cannot report here the
exact results of the evaluation of EntityRank (and BEntityRank) using metrics
coming from the area of IR (for more [35]). In addition, it is an advantage that
the proposed formulas for link analysis are mathematically founded and that
the underlying model (the random walk model) is quite relevant to browsing,
i.e. to the most widely used method for understanding a conceptual graph. At
last, another evidence that link analysis is indeed appropriate for ER diagrams is
that all large schemas that we have tested have a small set of elements, usually
less than 5% of the total ones, whose scores are significantly higher than the
rest. This at least indicates that big ER diagrams tend to have a well connected
kernel which, at least in our experiments, always comprised the more important
concepts of the application domain.

3 Automatic ER Drawing

For drawing automatically the top-k ER diagrams that are derived by the pre-
vious technique, we shall view them as mechanical systems. Below we present
two force models that combine the spring-model (proposed and developed in
[13,24,16]) with the magnetic-spring model (proposed in [32,31]) in a way that
is appropriate for ER diagrams.

3.1 Force Model A

Here entity types are viewed as equally charged particles which repel each other.
Relationship types and isA relationships are viewed as springs that pull their
adjacent entity types. Moreover, we assume that the springs that correspond to
isA links are all magnetized and that there is a global magnetic field that acts on
these springs. Specifically, this magnetic field is parallel (i.e. all magnetic forces
operate in the same direction) and the isA springs are magnetized unidirection-
ally, so they tend to align with the direction of the magnetic field, here upwards.
Figure 4 illustrates this metaphor.

Under the above force model, the force on a entity type ei is given by:

F (ei) =
∑

ej∈conn(ei)

f(ej, ei) +
∑

ej∈E,ej �=ei

g(ej , ei) +
∑

ej∈connI(ei)

h(ej , ei) (3)

where: f(ej, ei) is the force exerted on ei by the spring between ej and ei (note
that ei and ej are connected by a relationship type or an isA link), g(ej , ei) is

150 Y. Tzitzikas and J.-L. Hainaut

Person CompanyworksAt

Manager Secretary

electrical repulsion

magnetic field

magnet

Fig. 4. Viewing an ER diagram as a mechanical system

the electrical repulsion exerted on ei by the entity type ej , and h(ej, ei) is the
rotational force exerted on ei by the entity type ej (here ei and ej are connected
by an isA link).

Figure 5 gives some indicative examples that explain the role of the forces f ,
g and h. Specifically, figure (a) justifies the spring force, figure (b) justifies the
electrical repulsion and shows that high electrical repulsion (high Ke) results in
symmetrical drawings, and figure (c) illustrates how the magnetic field can be
used in order to obtain the classical top-down drawings for isA hierarchies.

(c)

(b)

with f with f and g (low Ke)

with f and g (high Ke) and h

with f and g (high Ke)

with f and g (high Ke)

no force with f

(a)

no force

Fig. 5. Forces and ER Drawings

The spring force f(ej, ei) follows Hooke’s law, i.e. it is proportional to the
difference between the distance between ej and ei and the zero-energy length of
the spring. Let d(p, p′) denote the Euclidean distance between two points p and
p′ and let pi = (xi, yi) denote the position of an entity type ei. The x component
of the force f(ei) is given by:

fx(ei) =
∑

ej∈conn(ei)

Ks
i,j(d(pi, pj)− Li,j)

xj − xi

d(pi, pj)

How to Tame a Very Large ER Diagram 151

where Li,j denotes the natural (zero energy) length of the spring between ei and
ej . This means that if d(pi, pj) = Li,j then no force is exerted by the spring
between ei and ej . Now Ks

i,j denotes the stiffness of the spring between ei and
ej . The larger the value of Ks

i,j , the more tendency for the distance d(pi, pj) to
be close to Li,j . The y component of the force f(ei) is defined analogously.

The electrical force g(ej , ei) follows an inverse square law. The x component
of the force g(ei) is given by:

gx(ei) =
∑

ej∈E,ej �=ei

Ke
i,j

d(pi, pj)2
xi − xj

d(pi, pj)

where Ke
i,j is used to control the repulsion strength between ei and ej. The y

component of the force g(ei) is defined analogously.
The magnetic force h(ej , ei) depends on the angle between the isA spring

(that connects ej and ei) and the direction of the magnetic field and it induces a
rotational force on that spring. For example, Figure 6 shows an isA link between
ei and ej and the exerted forces on ei and ej due to the magnetic field. The x
and y components of the magnetic force h(ei) are given by:

hx(ei) =
∑

ej∈connsp(ei)

Km xj − xi

Li,j
+

∑
ej∈connsb(ei)

Km xj − xi

Li,j

hy(ei) =
∑

ej∈connsp(ei)

Km Li,j + yj − yi

Li,j
−

∑
ej∈connsb(ei)

Km Li,j + yi − yj

Li,j

where Km is used to control the strength of the magnetic field.

l
e

h (e)

h (e)

j

ei

y − y

x − x

l

Magnetic Field

x y

x

j

j i

h (e)y

j

i

i

j

i

h (e)

Fig. 6. Magnetic forces and isA links

The x and y components of the composed force F (ei) on an entity type
ei are obtained by summing up, i.e.: Fx(ei) = fx(ei) + gx(ei) + hx(ei) and
Fy(ei) = fy(ei) + gy(ei) + hy(ei).

As in the link analysis technique, we view an n-ary relationship type as
n(n− 1)/2 springs.

3.2 Force Model B

One weakness of the above model is that the resulting drawings can have several
overlaps. The reason is that: (a) there is no repulsion among relationship types,

152 Y. Tzitzikas and J.-L. Hainaut

and (b) there is no repulsion between entity and relationship types. Figure 7
illustrates this problem. This drove us to introduce a different force model where
each relationship type is viewed as a particle too. Clearly, the resulting electrical
repulsion discourages the creation of overlaps (between entity and relationship
types, or between relationship types themselves). Notice that according to this
view, a relationship type does no longer correspond to one spring. Specifically,
the particle of a relationship type over k entity types, is connected with one
spring with each one of them. The forces on entity types and relationship types
are computed analogously to the force model A.

(b)

Without rel−rel repulsion

Without ent−rel. repulsion

With rel−rel repulsion

With ent−rel repulsion

(a)

Fig. 7. Forces and ER Drawings

3.3 The Drawing Algorithm

We can reach a drawing by an algorithm that simulates the mechanical system.
Such a algorithm would seek for a configuration with locally minimal energy,
i.e. a drawing in which the forces on each node is zero. A variety of numerical
techniques can be used to find an equilibrium configuration, and thus the final
drawing. We have adopted the iterative method based on the method proposed
in [13]. At first the nodes are placed at random positions. At each iteration,
the force on each node is computed and then the node is moved towards the
corresponding direction by a small amount proportional to the magnitude of the
force. This can be continued until convergence, but we can also limit the number
of iterations.

Note that if we would like to find a drawing that corresponds to a state
with globally minimal energy, then we would have to resort to very general op-
timization methods. For instance, a method based on simulated annealing is
proposed in [11], while an approach based on genetic algorithms is described
in [4]. However the computational complexity of these techniques turns them
not very appropriate for interactive design systems. In addition, and according
to the results of the extensive empirical analysis of several force-directed algo-
rithms (including globally minimal energy algorithms) upon plain graphs that
are reported in [3], there is no universal winner and the general approach is to
try several methods and choose the best.

3.4 Experimental Evaluation

We have investigated and evaluated all these issues in the context of the CASE
tool DB-MAIN. The specification of the parameters L, Ks, Ke and Km is not a

How to Tame a Very Large ER Diagram 153

trivial task as these parameters determine in a high degree how the final drawing
will look like. One flexibility of the proposed approach is that we can adjust the
spring length (Li,j), spring stiffness(Ks

i,j) and electrical repulsion(Ke
i,j), in order

to customize the appearance of the drawing according to the semantics of the
ER diagram constructs. For instance, as it is desirable to keep the nodes of an
isA hierarchy close enough and since between any two isA-related entity types
we only have to draw a line (and not any hexagon-enclosed string), we can use
a smaller length for isA-springs than that of relationship-springs. In any case,
the user can change their value at run-time.

Figure 8 shows one drawing obtained by the algorithm using low electrical
repulsion. Although the isA hierarchy is drawn as a top-down drawing and we
have no overlaps, this drawing is not satisfying because a designer would hardly
manually place into the space occupied by an isA hierarchy an entity type that
does not belong to that hierarchy. After we increased the repulsion and the
magnetic field we never faced again such a drawing. The lesson learned is that
high repulsion not only results in symmetrical drawings but its combination
with a strong magnetic field results in clear isA drawings. Another drawing of
a diagram with 4 isA hierarchies that is derived by the algorithm according to
force model A, is shown in Figure 9.

high Ke, high Kmlow Ke

Fig. 8. How to obtain clean isA drawings

1-1
0-N R_3

1-1 0-NR_2

1-1
0-N

R_1

1-1
0-NR

ENTITY_9

ENTITY_8

ENTITY_7
ENTITY_6

ENTITY_5

ENTITY_4

ENTITY_3

ENTITY_2
ENTITY_11

ENTITY_10

ENTITY_1

ENTITY

Fig. 9. A drawing of a diagram with 4 isA hierarchies according to force model A

A more complex case is shown in Figure 10. Figure 10.(a) shows a manually
placed diagram where all subentity types have been placed at the outer part of
the drawing. Figure (b) shows the drawing obtained according to force model
B. Notice that every isA hierarchy now corresponds to a top-down drawing and
that the entire drawing is symmetrical and satisfying.

154 Y. Tzitzikas and J.-L. Hainaut

1-1

0-N

R_9

1-1

0-N
R_8

1-1

0-N

R_7

1-1

0-N

R_6

1-1

0-N

R_5

1-1
0-N R_4

1-1

0-N

R_3

1-1

0-N

R_2

1-1

0-N

R_10

1-1

0-N

R

ENTITY_9

ENTITY_8

ENTITY_7

ENTITY_6

ENTITY_5

ENTITY_4

ENTITY_3

ENTITY_2

ENTITY_1

ENTITY

(a)

1-1

0-N

R_9

1-1 0-N

R_8

1-1

0-N

R_7

1-1

0-N

R_6

1-1

0-N

R_5

1-10-N R_4

1-1

0-N

R_3

1-1

0-N
R_2

1-1

0-N

R_10

1-1

0-N

R

ENTITY_9

ENTITY_8 ENTITY_7

ENTITY_6

ENTITY_5
ENTITY_4

ENTITY_3ENTITY_2

ENTITY_1

ENTITY

(b)

Fig. 10. Drawing of a diagram with several IsA hierarchies. (a): manual drawing where
isA links are not vertical. (b): drawing obtained according to force model B.

The experimental evaluation showed that the drawings according to force
model A suffer from overlaps, while those according to force model B have a few
(or none) overlaps. The difference between force model A and force model B is
even more evident in dense diagrams. Figure 11 shows the drawings obtained
by these two models when applied on the top-5 (|E| = 5, |R| = 17) diagram of
Figure 3. Again, the second drawing is evidently better. A noteworthy remark
here is that the second diagram is more clear and intuitive than the manually
specified layout that is shown in Figure 3. This indicates that in certain cases
(at least when the diagram is very dense) the automatically-derived drawings
can be better than the manually drawn.

0-N

0-N

0-N
supplies

0-N

0-N

Stock Movement

replaces
0-1

replacedBy
0-1

replacement

0-N

0-N

POSITIONS/ACTIVITIES/MONTHS

0-N

0-N

0-N

path Calculation

0-N

1-N

Operator
0-N

1-1description
0-1

describes
0-N

Notice

0-N

0-N

Max Weight/Channel

0-N

0-N

0-N

follow-up activity

Bonus
0-N

0-N

0-N

EARLY BIRD

0-N

0-N

DefaultCost

partOf
0-N

0-N
decomposition

origin
0-N

destination
0-N

Customs costs

0-N

0-N

country language

0-N

1-1

cn/pay

0-N

0-N

0-N

channelCalculation

0-N

0-N

accumulated movements

State of Progress

SectorOfActivity

Item

Country

Channel

(a)

0-N

0-N
0-N

supplies

0-N

0-N

Stock Movement

replaces
0-1

replacedBy
0-1

replacement

0-N

0-N

POSITIONS/ACTIVITIES/MONTHS

0-N
0-N

0-N

path Calculation
0-N

1-N

Operator

0-N

1-1description
0-1

describes
0-N

Notice

0-N

0-N

Max Weight/Channel

0-N

0-N

0-N

follow-up activity

Bonus
0-N

0-N

0-N

EARLY BIRD

0-N
0-N

DefaultCost

partOf
0-N

0-N

decomposition

origin
0-N

destination
0-N

Customs costs

0-N
0-N

country language

0-N

1-1

cn/pay 0-N

0-N
0-N

channelCalculation

0-N

0-N
accumulated movements

State of Progress

SectorOfActivity

Item

Country

Channel

(b)

Fig. 11. Force model A vs force model B on a diagram with |E| = 5 and |R| = 17

However, we have to note that force model B has two weaknesses comparing
to force model A: (i) it is computational more expensive, and (ii) in the resulting

How to Tame a Very Large ER Diagram 155

drawings the tentacles of binary relationship types are in many cases unneces-
sarily not aligned. This is evident in Figure 12. Although this is not a major
problem it is an issue for further research.

1-1

0-N

R_9

1-1

0-N

R_8

1-1

0-N

R_7

1-1
0-N

R_6

1-1

0-N

R_5
1-1

0-N

R_4

1-1
0-N

R_3

1-1

0-N

R_2
1-1

0-N

R_15

1-1

0-N

R_14

1-1

0-N

R_13

1-1

0-N

R_12 1-1

0-N

R_111-1

0-N

R_10

1-1

0-N

R_1

1-1

0-N

R

ENTITY_8

ENTITY_7

ENTITY_6

ENTITY_5

ENTITY_4

ENTITY_3

ENTITY_2

ENTITY_1

ENTITY

(a)

1-1

0-N

R_9

1-1

0-N
R_8

1-1

0-N

R_7

1-1
0-NR_6

1-1

0-N
R_5

1-1

0-N

R_4

1-1

0-N
R_3

1-1

0-N

R_2
1-1

0-N

R_15

1-1

0-N

R_14

1-1

0-N

R_13

1-1

0-N

R_12

1-1

0-N

R_11

1-1

0-N

R_10

1-1

0-NR_1

1-1

0-N

R

ENTITY_8

ENTITY_7

ENTITY_6

ENTITY_5

ENTITY_4

ENTITY_3

ENTITY_2

ENTITY_1

ENTITY

(b)

1-1

0-N

R_9

1-1

0-N

R_8

1-1

0-N

R_7

1-1 0-NR_6

1-1

0-N

R_5 1-1

0-N

R_4

1-1

0-N

R_311-1

0-N

R_30

1-10-N R_3

1-1
0-N R_29

1-1

0-N

R_28

1-1

0-N

R_27

1-1 0-NR_26

1-1

0-N

R_25

1-1

0-N

R_24

1-1

0-N

R_23 1-1

0-N

R_22

1-1 0-NR_21

1-1

0-N

R_20

1-1

0-N

R_2

1-1

0-N

R_19

1-10-N R_18

1-1

0-N

R_17

1-1

0-N

R_16

1-1

0-N

R_15

1-1

0-N

R_14

1-1

0-N

R_13

1-1

0-N

R_12

1-1

0-N

R_11

1-1

0-N

R_10

1-1

0-N

R_1

1-1

0-N

R

ENTITY_9

ENTITY_8

ENTITY_7

ENTITY_6

ENTITY_5

ENTITY_4

ENTITY_3

ENTITY_2

ENTITY_16

ENTITY_15

ENTITY_14

ENTITY_13 ENTITY_12

ENTITY_11

ENTITY_10

ENTITY_1

ENTITY

(c)

1-1

0-N

R_9

1-1

0-N

R_8

1-1

0-N

R_7

1-1 0-NR_6

1-1

0-N

R_5

1-1

0-N

R_4

1-1

0-N
R_31

1-1

0-N

R_30

1-10-N R_3

1-10-N

R_29

1-1

0-N

R_28

1-1

0-N

R_27

1-1 0-N

R_26

1-1

0-N

R_25

1-1

0-N

R_24

1-1

0-N

R_23

1-1

0-N

R_22

1-1 0-N

R_21

1-1

0-N

R_20

1-1

0-N

R_2

1-1

0-N

R_19

1-1
0-N

R_18

1-1

0-N

R_17

1-1

0-N

R_16

1-1

0-N

R_15

1-1

0-N

R_14

1-1

0-N

R_13

1-1

0-N

R_12

1-1

0-N

R_11

1-1

0-N

R_10

1-1

0-N

R_1

1-1

0-N

R

ENTITY_9

ENTITY_8

ENTITY_7

ENTITY_6

ENTITY_5

ENTITY_4

ENTITY_3

ENTITY_2

ENTITY_16

ENTITY_15

ENTITY_14

ENTITY_13
ENTITY_12

ENTITY_11

ENTITY_10

ENTITY_1

ENTITY

(d)

Fig. 12. Force model A vs force model B. (a): force model A. (b): force model B. (c):
force model A. (d): force model B.

Figure 13 shows the automatic layout obtained for the top-11 diagram (that
was presented in Figure 2). The high relative number of relationships makes
the drawing almost unreadable. This example suggests that we should take into
account the density of a diagram, in order to reach readable and clear drawings.

0-N

0-N

SUIVRE LE DOSSIER

1-N

0-N

SUIVI OPERATRICE

0-N

0-N

SUIVI LIVRAISON COLIS

0-N

0-N

SUIVI DES TOPS CLIENT
0-N

0-N

1-1

SUIVI COMMANDES

0-N

0-N

0-NSUIVI ACTIVITE

1-N

1-N

STAT FOURNISSEUR MENSUELLES
0-N

0-N

simulation prix de vente

0-N

0-N

réexpédition colis

est remplace
0-1

remplace
0-1

Remplacement

date début de validité
0-N

date de fin de validité
0-N

0-N remise fin année fournisseur

0-N

0-N

POSITIONS/ACTIVITE/MOIS

0-N

0-N
POS-DTE

0-N

1-N

pondération

0-N

0-N

Poids max/canal

0-N

1-N

PAYS LANGUE

0-N

0-N

0-N

PAYS ENSEIGNE LANGUE

0-N

1-1

pays du fournisseur

0-N

1-1

pays de la devise0-1

0-N

Pays d'origine décrire
0-N

description
0-1

1-1

0-N

0-N Notice

0-N

0-N

Mouvement de stock

0-N

0-NDate de depot
1-1

LOT

1-1

0-N
LIVRAISON COLIS

1-N

1-1

HISTORIQUE COLIS

0-N

0-N
FRAIS PAR DEFAUT

pays destination
0-N

pays d'origine
0-N

FRAIS DE DOUANE

1-1

0-N

fournisseur/pays

1-1

0-N

fournisseur/langue

0-N

0-N

FORMULE PAR PAYS/LANGUE

0-N

0-N

0-N Cadeau associé
0-N

EARLY BIRD

article vpc pièce
0-N

article vpc ensemble
0-N

décomposition d'un ensemble

0-N

0-N

dte/pay 1-1

0-N

Document par langue

0-N

0-N
cumul mouvement systeme mesure

0-N

0-N

Composition

0-N

0-N

colcom/suicol

0-N

1-1

col/eta

1-1

0-N
cn/suicol

1-1

0-N
cn/pay

1-1

0-N

cd/suicol

0-1

0-N
cd/eta1-1

0-N

Canal livraison

1-1

0-N

Canal commande
0-N

0-N

0-Ncalcul goulotte

0-N

0-N

0-N

calcul canal

1-1 0-Natvsec/cd

0-N

0-1

artvpc/frn

0-N

1-N

artref/tva

0-N

1-N

artref/douref

1-N

0-N

artref/atvsec

0-N

1-1

artref/artvpc

0-N

0-N

0-N

0-NALIMENTER

1-1

0-N

achfrn/lan

SECTEUR ACTIVITE

REFERENCE ARTICLE

PAYS

LANGUE

FOURNISSEUR

ETAT D'AVANCEMENT (LIGNE OU CO

DATE

COMMANDE

COLIS

CANAL

ARTICLE VPC

Fig. 13. Dense diagram drawing

Roughly, we could handle dense diagrams by considering: (i) larger springs,
(ii) higher electrical repulsion, (iii) less stiff springs. For example, and assuming
force model A, Figure 14.(a) shows the drawing obtained with spring length
L′ = 5L, Figure 14.(b) shows the drawing obtained with Ke′

= 100Ke, and
Figure 14.(c) shows the drawing obtained with Ks′

= Ks/10000. Indeed, all are
better than the original drawing shown in Figure 13. Another simple method that
is both effective and efficient is to scale up the entire drawing (i.e. multiply each
coordinate by a constant c > 1). Nevertheless, an issue that is worth further
research is to investigate the effectiveness of local-density adaptations, e.g. to
adapt the spring lengths according to the local density of the graph. EntityRank
and BEntityRank scores could be exploited for this purpose.

As a final remark note that the above drawing techniques can be applied
for drawing the structural part of ontologies expressed in RDFS [5] and OWL
[12]. The only difference is that RDFS supports property specialization which

156 Y. Tzitzikas and J.-L. Hainaut

0-N

0-N

SUIVRE LE DOSSIER

1-N

0-N

SUIVI OPERATRICE

0-N

0-N

SUIVI LIVRAISON COLIS

0-N

0-N

SUIVI DES TOPS CLIENT

0-N

0-N

1-1

SUIVI COMMANDES

0-N

0-N

0-N

SUIVI ACTIVITE

1-N

1-N

STAT FOURNISSEUR MENSUELLES

0-N

0-N

simulation prix de vente

0-N

0-N

réexpédition colis

est remplace
0-1

remplace
0-1

Remplacement

date début de validité
0-N

date de fin de validité
0-N

0-N remise fin année fournisseur

0-N

0-N

POSITIONS/ACTIVITE/MOIS

0-N

0-N
POS-DTE

0-N

1-N

pondération

0-N

0-N

Poids max/canal

0-N

1-N

PAYS LANGUE

0-N

0-N

0-N

PAYS ENSEIGNE LANGUE

0-N

1-1

pays du fournisseur

0-N

1-1

pays de la devise

0-1

0-N

Pays d'origine

décrire
0-N

description
0-1

1-1

0-N

0-N Notice

0-N

0-N

Mouvement de stock

0-N

0-N

Date de depot
1-1

LOT

1-1

0-N

LIVRAISON COLIS

1-N

1-1

HISTORIQUE COLIS

0-N

0-N

FRAIS PAR DEFAUT

pays destination
0-N

pays d'origine
0-N

FRAIS DE DOUANE

1-1

0-N

fournisseur/pays

1-1

0-N

fournisseur/langue

0-N

0-N

FORMULE PAR PAYS/LANGUE

0-N

0-N

0-N

Cadeau associé
0-N

EARLY BIRD

article vpc pièce
0-N

article vpc ensemble
0-N

décomposition d'un ensemble

0-N

0-N

dte/pay

1-1

0-N

Document par langue

0-N

0-N

cumul mouvement systeme mesure

0-N

0-N

Composition

0-N

0-N

colcom/suicol

0-N

1-1

col/eta

1-1

0-N

cn/suicol

1-1

0-N

cn/pay

1-1

0-N

cd/suicol

0-1

0-N

cd/eta

1-1

0-N

Canal livraison

1-1

0-N

Canal commande

0-N

0-N

0-N
calcul goulotte

0-N

0-N

0-N

calcul canal

1-1

0-N

atvsec/cd

0-N

0-1

artvpc/frn

0-N

1-N

artref/tva

0-N

1-N

artref/douref

1-N

0-N

artref/atvsec

0-N

1-1

artref/artvpc

0-N

0-N

0-N

0-N

ALIMENTER

1-1

0-N

achfrn/lan

SECTEUR ACTIVITE

REFERENCE ARTICLE

PAYS

LANGUE

FOURNISSEUR

ETAT D'AVANCEMENT (LIGNE OU CO

DATE

COMMANDE

COLIS

CANAL

ARTICLE VPC

(a)

0-N

0-N
SUIVRE LE DOSSIER

1-N

0-N

SUIVI OPERATRICE

0-N

0-N

SUIVI LIVRAISON COLIS

0-N

0-N

SUIVI DES TOPS CLIENT

0-N

0-N

1-1

SUIVI COMMANDES

0-N

0-N

0-N

SUIVI ACTIVITE

1-N

1-N

STAT FOURNISSEUR MENSUELLES

0-N

0-N

simulation prix de vente

0-N

0-N

réexpédition colis

est remplace
0-1

remplace
0-1

Remplacement

date début de validité
0-N

date de fin de validité
0-N

0-Nremise fin année fournisseur

0-N

0-N

POSITIONS/ACTIVITE/MOIS

0-N

0-N

POS-DTE

0-N

1-N

pondération

0-N

0-N

Poids max/canal 0-N

1-N

PAYS LANGUE

0-N

0-N

0-N

PAYS ENSEIGNE LANGUE

0-N 1-1pays du fournisseur0-N 1-1pays de la devise

0-1

0-N

Pays d'origine

décrire
0-N

description
0-1

1-1

0-N

0-N Notice

0-N

0-N

Mouvement de stock

0-N

0-N

Date de depot
1-1

LOT

1-1

0-N

LIVRAISON COLIS

1-N

1-1
HISTORIQUE COLIS

0-N
0-N

FRAIS PAR DEFAUT

pays destination
0-N

pays d'origine
0-N

FRAIS DE DOUANE 1-10-N fournisseur/pays

1-1

0-N

fournisseur/langue

0-N

0-N

FORMULE PAR PAYS/LANGUE

0-N

0-N

0-N

Cadeau associé
0-N

EARLY BIRD

article vpc pièce
0-N

article vpc ensemble
0-N

décomposition d'un ensemble

0-N

0-N

dte/pay

1-1
0-NDocument par langue

0-N

0-N

cumul mouvement systeme mesure

0-N

0-N

Composition

0-N

0-N

colcom/suicol

0-N

1-1

col/eta

1-1

0-N

cn/suicol

1-1

0-N

cn/pay

1-1

0-N
cd/suicol

0-1

0-N

cd/eta

1-1

0-N

Canal livraison

1-1

0-N

Canal commande
0-N

0-N
0-N

calcul goulotte

0-N
0-N

0-N

calcul canal1-1

0-N

atvsec/cd 0-N

0-1

artvpc/frn

0-N

1-N

artref/tva

0-N

1-N

artref/douref

1-N

0-N

artref/atvsec

0-N

1-1

artref/artvpc

0-N

0-N
0-N

0-N

ALIMENTER

1-1

0-N

achfrn/lan

SECTEUR ACTIVITE

REFERENCE ARTICLE

PAYS

LANGUE

FOURNISSEUR

ETAT D'AVANCEMENT (LIGNE OU CO

DATE

COMMANDE

COLIS

CANAL

ARTICLE VPC

(b)

0-N

0-N

SUIVRE LE DOSSIER

1-N

0-N

SUIVI OPERATRICE

0-N

0-N

SUIVI LIVRAISON COLIS

0-N

0-N

SUIVI DES TOPS CLIENT

0-N

0-N

1-1

SUIVI COMMANDES

0-N

0-N

0-N

SUIVI ACTIVITE

1-N

1-N

STAT FOURNISSEUR MENSUELLES
0-N

0-N

simulation prix de vente

0-N

0-N

réexpédition colis

est remplace
0-1

remplace
0-1

Remplacement

date début de validité
0-N

date de fin de validité
0-N

0-N remise fin année fournisseur

0-N

0-N

POSITIONS/ACTIVITE/MOIS

0-N

0-N

POS-DTE

0-N

1-N

pondération

0-N

0-N

Poids max/canal

0-N

1-N

PAYS LANGUE

0-N

0-N

0-N

PAYS ENSEIGNE LANGUE

0-N

1-1

pays du fournisseur

0-N

1-1

pays de la devise

0-1

0-N

Pays d'origine

décrire
0-N

description
0-1

1-1

0-N

0-N Notice

0-N

0-N

Mouvement de stock

0-N

0-NDate de depot
1-1

LOT

1-1

0-N

LIVRAISON COLIS

1-N

1-1

HISTORIQUE COLIS

0-N

0-N

FRAIS PAR DEFAUT

pays destination
0-N

pays d'origine
0-N

FRAIS DE DOUANE

1-1

0-N

fournisseur/pays

1-1

0-N

fournisseur/langue

0-N

0-N

FORMULE PAR PAYS/LANGUE

0-N

0-N

0-N

Cadeau associé
0-N

EARLY BIRD

article vpc pièce
0-N

article vpc ensemble
0-N

décomposition d'un ensemble

0-N

0-N

dte/pay 1-1

0-N

Document par langue

0-N

0-N

cumul mouvement systeme mesure

0-N

0-N

Composition

0-N

0-N

colcom/suicol

0-N

1-1

col/eta
1-1

0-N

cn/suicol

1-1

0-N

cn/pay

1-1

0-N

cd/suicol

0-1

0-N

cd/eta

1-1

0-N

Canal livraison

1-1

0-N

Canal commande
0-N

0-N

0-N

calcul goulotte

0-N

0-N

0-N

calcul canal

1-1

0-N

atvsec/cd

0-N

0-1

artvpc/frn

0-N

1-N

artref/tva

0-N

1-N

artref/douref

1-N

0-N

artref/atvsec

0-N

1-1

artref/artvpc

0-N

0-N

0-N

0-N

ALIMENTER

1-1

0-N

achfrn/lan

SECTEUR ACTIVITE

REFERENCE ARTICLE

PAYS

LANGUE

FOURNISSEUR

ETAT D'AVANCEMENT (LIGNE OU CO

DATE

COMMANDE

COLIS

CANAL

ARTICLE VPC

(c)

Fig. 14. (a): larger springs; (b): higher repulsion; (c) less stiff springs

however will be handled correctly due to the magnetic field that is applied on
specialization/generalization links (also indicated by Figure 9).

4 Conclusion

We described a novel method for identifying the major elements of an ER dia-
gram that is based on link analysis. This method can significantly aid (a) the
understanding, (b) the visualization, and (c) the drawing of very large schemas.
The proposed technique can elevate automatically the major elements and allows
exploring the schema gradually: from the more important elements to the less.
Consequently, it can be very useful in reverse engineering and in information inte-
gration. Moreover, the scores can be exploited for ordering the schema elements
that match a keyword query of the user. In addition, and given the inability
to produce automatically aesthetically satisfying layouts for large schemas, the
small (top-k graphs) that can be derived by this technique can be visualized
effectively and this is very useful during communication (e.g. between designers
and application programmers or in requirements engineering and training). For
this purpose we investigated a force-directed drawing algorithm and evaluated
two different force models upon several conceptual schemas of real applications.
For small and medium sized diagrams the results were satisfying in most of the
cases. In the rest cases, human intervention (moving, nailing) and rerun of the
drawing algorithm could rectify the problems.

Acknowledgements

The first author wants to thank Tonia Dellaporta for the several fruitful and re-
ally enjoyable discussions on this issue. Also many thanks to Jean-Rock Maurisse,
Anne-France Brogneaux and Jean Herald for their help on using the DB-MAIN
toolkit.

References

1. Jacky Akoka and Isabelle Comyn-Wattiau. “Entity-Relationship and Object-
Oriented Model Automatic Clustering”. Data and Knowledge Engineering,
20(2):87–117, 1996.

How to Tame a Very Large ER Diagram 157

2. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis Tollis. “Graph
drawing: algorithms for the visualization of graphs”. Prentice Hall Englewood Cliffs
(N.J.), 1999. ISBN/ISSN : 0-13-301615-3.

3. F. J. Braedenburg, M. Himsolt, and C. Rohrer. “An Experimental Comparison of
Force-Direceted and Randomized Graph Drawing Algorithms”. In Procs of Graph
Drawing, GD’95, pages 76–87, 1996.

4. J. Branke, F. Bucher, and H. Schmeck. “Using Genetic Algorithms for Drawing
Undirected Graphs”. In Procs of the 3rd Nordic Workshop on Genetic Algorithms
and Their Applications, 3NWGA, pages 193–2005, 1997.

5. Dan Brickley and R. V. Guha. “Resource Description Framework
(RDF) Schema specification: Proposed Recommendation, W3C”, March 1999.
http://www.w3.org/TR/1999/PR-rdf-schema-19990303.

6. Sergey Brin and Lawrence Page. “The Anatomy of a Large-scale Hypertextual
Web Search Engine”. In Proceedings of the 7th International WWW Conference,
Brisbane, Australia, April 1998.

7. L. J. Campbell, Terry A. Halpin, and Henderik Alex Proper. “Conceptual Schemas
with Abstractions: Making Flat Conceptual Schemas More Comprehensible”. Data
and Knowledge Engineering, 20(1):39–85, 1996.

8. Rodolfo Castello, Rym Mili, and I. Tollis. “A Framework for the Static and Interac-
tive Visualization of Statecharts”. Journal of Graph Algorithms and Applications,
6(3):313–351, 2002.

9. P. Chen. “The Entity-Relationship Model - Toward a Unified View of Data”. ACM
Transactions on Database Systems, 1(1):9–36, March 1976.

10. Richard Cole. “Automatic Layout of Concept Lattices using Force Directed Place-
ment and Genetic Algorithms”. In Proc. of the 23th Australiasian Computer Sci-
ence Conference, pages 47–53. Australian Computer Science Communications 1,
IEEE Computer Society, 2000.

11. R. Davidson and D. Harel. “Drawing Graphics Nicely Using Simulated Annealing”.
ACM Trans. Graph., 15, 1996.

12. M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-
ness, P. F. Patel-Schneider, and L.A. Stein. “OWL Web Ontology Language 1.0
Reference”, 2002. (http://www.w3c.org/TR/owl-ref).

13. P. Eades. “A Heuristic for Graph Drawing”. Congressus Numerantium, 42, 1984.
14. Holger Eichelberger and Jurgen Wolff von Gudenberg. “UML Class Diagrams -

State of the Art in Layout Techniques”. In Proceeding of Vissoft 2003, International
Workshop on Visualizing Software for Understanding and Analysis, pages 30–34,
2003.

15. P. Feldman and D. Miller. “Entity Model Clustering: Structuring a Data Model
by Abstraction”. The Computer Journal, 29(4):348–360, 1986.

16. T. Fruchterman and E. Reingold. “Graph Drawing by Force-directed Placement”.
Software - Practice and Experience, 21(11):1129–1164, 1991.

17. F.U.N.D.P. “DB-MAIN”. (http://www.info.fundp.ac.be/∼dbm/).
18. Munish Gandhi, EdwardL Robertson, and Dirk Van Gucht. “Levelled Entity Re-

lationship Model”. In Procs of the 13rd Intern. Conf. on the Entity Relationship
Approach, ER’94, pages 420–436, Manchester, U.K., December 1994.

19. Floris Geerts, Heikki Mannila, and Evimaria Terzi. “Relational Link-based rank-
ing”. In Procs of the 30th Intern. Conference on Verly Large Data Bases,
VLDB’2004, Toronto, Canada, August 2004.

20. Zoltan Gyongyi, Hector Garcia-Molina, and Jan Pedersen. “Combating Web Spam
with TrustRank”. In Procs of the 30th Intern. Conference on Verly Large Data
Bases, VLDB’2004, Toronto, Canada, August 2004.

158 Y. Tzitzikas and J.-L. Hainaut

21. Jean-Luc Hainaut. “Transformation-based Database Engineering”. In Transforma-
tion of Knowledge, Information and Data: Theory and Applications. IDEA Group
Pub., 2004.

22. Jouni Huotari, Kalle Lyytinen, and Marketta Niemela. “Improving Graphical Infor-
mation System Model Use with Elision and Connecting Lines”. ACM Transactions
on Computer-Human Interaction, 10(4), 2003.

23. Yannis E. Ioannidis, Miron Livny, Jian Bao, and Eben M. Haber. “User-Oriented
Visual Layout at Multiple Granularities”. In Proc. of the 3rd International Work-
shop on Advanced Visual Interfaces, pages 184–193, Gubbio, Italy, May 1996.

24. T. Kamada. ”On Visualization of Abstract Objects and Relations”. PhD thesis,
Dept. of Information Science, Univ. of Tokyo, Dec 1988.

25. Jon Kleinberg. “Authoritative Sources in a Hyperlinked Environment”. In Proceed-
ings of 9th ACM-SIAM Symposium on Discrete Algorithms, San Francisco, USA,
1998.

26. Simon Lok and Steven Feiner. “A Survey of Automated Layout Techniques for
Information Presentations”. In Procs of the 1st. Int. Symp. on Smart Graphics,
Hawthorne, NY, 2001.

27. Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge
University Press, 1995.

28. Arthur Ouwerkerk and Heiner Stuckenschmidt. “Visualizing RDF Data for P2P
Information Sharing”. In Procs of the workshop on Visualizing Information in
Knowledge Engineering, VIKE’03, Sanibel Island, FL, 2003.

29. Aaron J. Quigley. “Large Scale Relational Information Visualization, Clustering,
and Abstraction”. PhD thesis, University of Newcastle, Australia, August 2001.
(http://www.it.usyd.edu.au/∼aquigley/thesis/aquigley-thesis-mar-02.pdf).

30. O. Rauh and E. Stickel. ”Entity Tree Clustering: A Method for Simplifying ER
Design”. In Procs of the 11th Int. Conf. on Entity-Relationship Approach, ER’92.

31. K. Sugiyama and K. Misue. “A Simple and Unified Method for Drawing Graphs:
Magnetic-Spring Algorithm”. In Procs of Graph Drawing Conference, GD’94, pages
364–375, 1994.

32. K. Sugiyama and K. Misue. “Graph Drawing by Magnetic-Spring Model”. Journal
on Visual Lang. Comput., 6(3), 1995.

33. R. Tamassia, C. Batini, and M. Talamo. “An algorithm for automatic layout
of entity-relationship diagrams”. In Procs of the 3rd International Conference
on Entity-relationship approach to software engineering, pages 421–439. Elsevier
North-Holland, Inc., 1983.

34. T. J. Teory, W. Guangping, D. L. Bolton, and J. A. Koenig. “ER Model Cluster-
ing as an Aid for User Communication and Documentation in Database Design”.
Communications of the ACM, 32(8):975–987, 1989.

35. Yannis Tzitzikas and Jean-Luc Hainaut. ”Ranking the Elements of Conceptual
Diagrams”, 2005. (submitted for publication).

A Linear Algebra Version of (B)EntityRank

Let A be the generalized adjacency matrix of an ER diagram where A[ei, ej]
equals the number of transitions from ei to ej . Now the probability transition
matrix M is obtained by normalizing each row of A to sum to 1. EntityRank is
based on a Markov chain on the entity types with transition matrix

q · U + (1− q) ·M

How to Tame a Very Large ER Diagram 159

where U is the transition matrix of uniform transition probabilities i.e. U[ei, ej] =
1/N for all i, j. The vector of the EntityRank scores, denoted by Sc, is then
defined to be the stationary distribution of this Markov chain. Equivalently, Sc
is the principal right eigenvector of the transition matrix (q · U + (1 − q) ·M)T ,
since by definition the stationary distribution satisfies (q ·U+(1−q)·M)T Sc = Sc.
On the other hand, BEntityRank (the biased version of EntityRank) is based on
the transition matrix:

q · B + (1− q) ·M
where B[ej , ei] = |attrs(ei)|

|Attr| where Attr denotes the set of all attributes of all
entity types (i.e. Attr = ∪{ attrs(e) | e ∈ E}).

As another remark note that in an undirected (strongly connected and non-
bipartite) graph G = (V, R), the stationary probability of a node u is given
by P (u) = deg(u)

2|R| where deg(u) is the degree of u [27]. This means that in an
undirected graph (or multigraph) the stationary probabilities can be computed
very efficiently and without the need of an iterative algorithm. In our case we
cannot employ the above method due to the ”teleporting” transitions which
are indispensable in our case for ensuring that the transition graph is strongly
connected (note that large ER diagrams are not always connected). Specifically,
the ”teleporting” transitions of BEntityRank are not symmetric and this cannot
be captured by an undirected graph. For instance, consider the case of an ER
diagram consisting of two entity types e1 and e2 and one relationship type
between them, where e1 has one attribute and e2 has two attributes. According
to a random walk on the undirected graph both entity types have probability
1/2. According to BEntityRank if q = 0 then P (e1) = P (e2) = 1/2, if q = 1
then P (e1) = 1/3 and P (e2) = 2/3, and if q = 0.5 then P (e1) = 0.44 and
P (e2) = 0.55.

A Multilevel Dictionary for Model Management

Paolo Atzeni1, Paolo Cappellari1, and Philip A. Bernstein2

1 Università Roma Tre, Italy
{atzeni, cappellari}@dia.uniroma3.it

2 Microsoft Research, Redmond, WA, USA
philbe@microsoft.com

Abstract. We discuss the main features of a multilevel dictionary based
on a metamodel approach. The application is an implementation of Mod-
elGen, the model management operator that translates schemas from one
model to another, for example from ER to relational or from XSD to ob-
ject. The dictionary manages schemas and, at a metalevel, a description
of the models of interest. It describes all models in terms of a limited
set of metaconstructs. It describes all the schemas in a unifying model,
called the supermodel, which generalizes all the others. The dictionary
is composed of four parts, based on the combination of two features:
schema level or model level, and model specific or model generic. We
also show how such a dictionary can be the basis for a model indepen-
dent approach to reporting, that provides a detailed textual and XML
description of schemas.

1 Introduction

The need for handling design artifacts corresponding to different models arises in
many different application settings. In the database world, we often have different
systems that we need to use to handle our data, which use different (data)
models, or we might need to exchange or integrate schemas expressed in different
models. Small variations of models are often enough to create difficulties: for
example, while most designers use the ER model, the actual features adopted by
different methodologies and tools almost never coincide and so any integration
requires a conversion. The introduction of new technology often introduces more
heterogeneity and more need for translations. This happened with respect to
analysis and design settings, where the growth of UML has not really simplified
things, as the formalism is very complex and most people use just a subset
of it—but each uses a different subset! XML has also contributed to increased
heterogeneity, as data sources are now often described by means of XML Schemas
(possibly in simplified versions).

In all these situations, there is the need to translate design artifacts from
one model to another. There is also a need to translate data, but we focus only
on design artifacts here. The models of interest can be significantly different,
including those traditionally used in databases, as well as many others, such as
those for XML documents, Web site structure descriptions, data warehouses,

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 160–175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Multilevel Dictionary for Model Management 161

and restrictions or variants of each of them. The requirement, in all these cases,
is the capability to handle different models and to be able to translate schemas
from one model to another: given a source scheme S1 in a model M1 and a target
model M2, the need is to be able to generate the translation of S1 into M2.

These translation problems have always been tackled in practical settings
by means of ad-hoc solutions, for example by writing a program for each spe-
cific application. This is clearly very expensive, as it is laborious and hard to
maintain. Bernstein et al. [8,9] have recently argued for generic solutions for all
problems that require the management of descriptions of application artifacts.
They proposed a high level approach, called model management, based on a
set of operators to be applied to schemas. A specific operator in the family is
ModelGen, which translates schemas from a source model to a target model, ex-
actly as we required above. This paper reports on some new features of a recent
development for ModelGen.

An early approach to ModelGen was proposed by Atzeni and Torlone [4,5]
who developed a tool, called MDM, to manage heterogeneous schemas based on
a notion of metamodel. A metamodel is a set of constructs (the metaconstructs)
that can be used to define models. The translation of a schema from one model
to another is then defined in terms of translations over the metaconstructs, in
such a way that the same translation is used for a given metaconstruct in all
the models where it appears. In this approach, a translation is performed by
eliminating constructs not allowed in the target model, and possibly introducing
new constructs. Translations are built from elementary transformations, each
of which is essentially an elimination step. Other authors have proposed sim-
ilar approaches, including Claypool and Rundensteiner et al. [11,12], Song et
al. [19], Bézivin et al [10]. The ideas at the basis of the MDM tool and of similar
approaches are interesting and useful. But they do have one weakness, namely
that they hide the representation of the models and transformations within the
source code of the tool. So any extension of the models or customization of the
translations would be very complex.

We have recently started a completely new development for ModelGen, with
various novel features. One important feature is that it makes the description
of models and the specification of translations visible and easily modifiable. In
this paper, we give a detailed account of the dictionary that enables this feature,
with its structure and the consequent benefits. A preliminary discussion of the
overall development is available in [2].

The main contribution of this paper is the structure of the dictionary, which
allows the integrated management of the descriptions of models and schemas for
the various models of interest. The dictionary has a relational structure, which
allows for the effective development of translation steps by means of Datalog
rules [2]. It also makes it easy to produce model-specific reports in a model-
independent way.

The paper is organized as follows. Section 2 illustrates the background of the
approach, its main features and the relationship with some related literature. The
next two sections describe the dictionary in some detail: Section 3 concentrates

162 P. Atzeni, P. Cappellari, and P.A. Bernstein

on the lower level, which describes schemas and Section 4 concentrates on the
metalevel, which describes models and thus the structure of the lower level.
Then, in Section 5 we show how the approach can be the basis for effective,
model-independent reporting. Section 6 is the conclusion.

2 Background, Contribution and Related Work

The starting point for our work is the MDM proposal [4], whose principles are
as follows. A metamodel is a set of constructs that can be used to define mod-
els, which are instances of the metamodel. The approach is based on Hull and
King’s observation [14] that the constructs used in most known models can be
expressed by a limited set of generic (i.e. model-independent) metaconstructs:
lexical, abstract, aggregation, generalization, and function. Each model is de-
fined by its constructs and the metaconstructs they refer to. Simple versions of
popular models are as follows:

– a simplified version of the ER model involves entities (which correspond to
the abstract metaconstruct), attributes for them (corresponding to the meta-
construct attribute of abstract), and relationships (aggregations of abstracts);

– a simplified version of the object-oriented (OO) model involves classes (which
also correspond to abstracts), fields (also attributes of abstracts), and refer-
ences from classes to classes (the metaconstruct reference to abstract).

The translation of a schema from one model to another is defined in terms
of translations over the metaconstructs. A major concept in the approach is the
supermodel, a model that has constructs corresponding to all the metaconstructs
known to the system. Each model is a specialization of the supermodel. So a
schema in any model is also a schema in the supermodel, apart from the specific
names used for constructs. The supermodel acts as a “pivot” model, so that it
is sufficient to have translations from each model to and from the supermodel,
rather than translations for each pair of models. Thus, only 2n translations are
needed between n models, not n2 translations. Moreover, since every schema
in any model is an instance of the supermodel, the only needed translations
are those within the supermodel with the target models in mind; a translation
is performed by eliminating constructs not allowed in the target model, and
possibly introducing new constructs.

In our new ModelGen development effort, we wanted to automate as many
activities as possible, and to support the rapid construction and maintenance of
the others. A visible dictionary turned out to be a major contribution in this
direction. We realized that a database structure for it would be effective, espe-
cially a relational one, as we felt that the translation steps could be effectively
implemented in Datalog. To handle models and schemas effectively and to coor-
dinate the individual models with the supermodel, we organized the dictionary
in four parts, which can be characterized along two coordinates: the first corre-
sponding to whether they describe models or schemas and the second depending
on whether they refer to specific models or to the supermodel (see Figure 1).

A Multilevel Dictionary for Model Management 163

�

�

models
(M)

metamodels
(mM)

supermodel
(SM)

meta-supermodel
(mSM)

model specific model generic

schema descriptions

model descriptions
(the “metalevel”)

Fig. 1. The four parts of the dictionary

The most abstract part is at the model level and is model generic. It de-
scribes the supermodel, that is, the set of constructs used by the tool for building
schemas. We refer to this part as mSM, the “meta-supermodel,” as it is about
the supermodel. The second part at the model level is model specific. It describes
the individual models. It includes metamodels, referred to as mM. For each of
them, mM describes the specific constructs used, each corresponding to a con-
struct in the supermodel. We refer to these first two parts as the “metalevel”
of the dictionary, as it contains the description of the structure of the lower
level, whose content describe schemas. The lower level is also composed of two
parts, one referring to the supermodel constructs (therefore called the SM part)
and the other to model-specific constructs (the M part). The structure of the
schema level is, in our system, automatically generated out of the content of the
metalevel: so we can say that the dictionary is self-generating out of a small core.

In the next two sections we discuss the details of the two levels of the dictio-
nary, proceeding bottom up. In Section 3 we concentrate on the schema level.
In Section 4 we illustrate the metalevel and its relationship to the lower one.

There are many proposals for dictionary structure in the literature. The use
of dictionaries to handle metadata has been popular since the early database sys-
tems of the 1970’s, initially in systems that were external to those handling the
database (see Allen et al. [1] for an early survey). With the advent of relational
systems in the 1980’s, it became possible to have dictionaries be part of the
database itself, within the same model. Today, all DBMSs have such a compo-
nent. Extensive discussion was also carried out in even more general frameworks,
with proposals for various kinds of dictionaries, describing various features of
systems (see for example [6,13,15]) within the context of industrial CASE tools
and research proposals. More recently, a number of metadata repositories have
been developed [17]. They generally use relational databases for handling the
information of interest. There are other significant recent efforts towards the
description of multiple models, including the Model Driven Architecture (MDA)
and, within it, the Common Warehouse Metamodel (CWM) [18], and Microsoft
Repository [7]; in contrast to our approach, these do not distinguish metalevels,
as the various models of interest are all specializations of a most general one,
UML based.

The description of models in terms of the (meta-)constructs of a metamodel
was proposed by Atzeni and Torlone [4]. But it used a sophisticated graph lan-

164 P. Atzeni, P. Cappellari, and P.A. Bernstein

guage, which was hard to implement. The other papers that followed the same
or similar approaches [10,11,12,19] also used specific structures.

We know of no literature that describes a dictionary that exposes schemas
and instances in a highly correlated way, in both model-specific and model-
independent ways. Only portions of similar dictionaries have been proposed.
None of them offer the rich interrelated structure we have here.

3 The Schema Level

Let us proceed with the description of the dictionary starting from the most
natural parts, those that describe schemas. The M component has the structure
of traditional dictionaries: a table for each construct, with tuples corresponding
to the elements in the schemas. In Figure 3 we show the dictionary for a version
of the ER model, containing the descriptions of the two schemas in Figure 2.

The structure of the dictionary is rather standard and follows that often used
in textbooks for describing the model (for example, Atzeni et al. [3, p.178]). We
consider a simple version of the model, with n-ary relationships: this requires the
separate table ComponentOfRelationship, used to specify the participation
of an entity to a relationship. The version of the ER model we use includes a few
of the basic features, which we use as representative properties. For example,
minimum cardinalities are represented by the boolean IsOptional (abbreviated
as IsOpt in the figure), so that the allowed minimum cardinality is 0 (“true” as
the value for IsOpt) or 1 (“false” for IsOpt) and the maximum cardinality is rep-
resented by IsFunctional (IsFunct), with 1 and “N” as possible values. Similarly,
for attributes, we have the boolean property isKey, used to represent whether
they belong to the (main) identifier. Many other features are omitted here for
the sake of space, such as optionality or nullability of attributes and external
identification of entities. But they can be easily included and have indeed been
implemented in our prototype tool. A Schema column in each table specifies the
schema the constructs refer to. We could have Schema only in the Entity table
and omit it from the others. But the redundancy is not a big issue and would
have consequences requiring further discussion.

Supplier

�Code
�SName
�City

(1,N)

Product Supply������������ Department
(0,N) (0,N)�ProdNo

�Name

� DeptNo
� DeptName

Employee Membership������������ Group
(1,1) (0,N)�EN

�Name

� Code
� Name

Fig. 2. Two simple ER schemas

A Multilevel Dictionary for Model Management 165

Schema
OID Name
s1 1st ER Schema
s2 2nd ER Schema

Entity
OID Name Schema
e1 Supplier s1
e2 Product s1
e3 Department s1
e4 Employee s2
e5 Group s2

Relationship
OID Name Schema
r1 Supply s1
r2 Membership s2

AttributeOfEntity
OID Entity Name Type isKey Sch.
a1 e1 Code int true s1
a2 e1 SName string false s1
a3 e1 City string false s1
a4 e2 ProdNo int true s1
a5 e2 Name string false s1
a6 e3 DeptNo int true s1
a7 e3 DeptName string false s1
a8 e4 EN int true s2
...

ComponentOfRelationship
OID Rel’ship Entity IsOpt IsFunct Sch.
c1 r1 e1 false false s1
c2 r1 e2 true false s1
c3 r1 e3 true false s1
c4 r2 e4 false true s2
c5 r2 e5 true false s2

Fig. 3. The dictionary for a simple ER model

Employee
EmpNo
Name
Salary

Department

DeptNo
DeptName

�Membership

Fig. 4. A simple OODB schema

Schema
OID Name
s3 OODB Schema

Class
OID Name Schema
cl1 Employee s3
cl2 Department s3

Field
OID Class Name Type Sch.
f1 cl1 EmpNo int s3
f2 cl1 Name string s3
f3 cl1 Salary int s3
f4 cl2 DeptNo int s3
f5 cl2 DeptName string s3

ReferenceAttribute
OID Name Class ClassTo Schema
ref1 Membership cl1 cl2 s3

Fig. 5. The dictionary for a simple OODB model

In this M portion of the dictionary, we would like to be able to handle different
models. Therefore, we have a portion of the dictionary like the one shown in
Figure 3 for each model we are interested in. For example, if we want to handle
a simple version of OODB schemas, such as that in Figure 4, we need a dictionary

166 P. Atzeni, P. Cappellari, and P.A. Bernstein

Schema
OID Name Model
s1 1st ER Schema m1
s2 2nd ER Schema m1
s3 OODB Schema m2

Abstract
OID Name Schema
e1 Supplier s1
e2 Product s1
e3 Department s1
e4 Employee s2
e5 Group s2
cl1 Employee s3
cl2 Department s3

AttributeOfAbstract
OID Abstract Name Type IsId Sch.
a1 e1 Code int true s1
a2 e1 SName string false s1
...
a8 e3 EN int true s2
...
f1 cl1 EmpNo int ? s3
f2 cl1 Name string ? s3
...

ReferenceAttributeOfAbs
OID Name Abs AbsTo Schema
ref1 Membership cl1 cl2 s3

AggrOfAbstract
OID Name Schema
r1 Supply s1
r2 Membership s2

ComponentOfAggrOfAbstract
OID AggrOfAbs Abs isOpt isFunct Sch.
c1 r1 e1 false false s1
c2 r1 e2 true false s1
c3 r1 e3 true false s1
c4 r2 e4 false true s2
c5 r2 e5 true false s2

Fig. 6. A portion of the SM part of the dictionary

like the one shown in Figure 5. The OO model we use here is very simple, with
just classes with scalar fields (each with a type, but with no other property;
for example, we assume there is no way to specify they are optional nor to
define keys) and reference attributes (fields that are references to other classes,
representing 1:N relationships). The Schema table is the same as the one in
Figure 3: the dictionary includes one table which refers to schemas for all the
models of interest. It has an additional column that specifies the model to which
the schema belongs, a reference to a Model table we will see shortly in the mM
part of the dictionary.

Model-specific dictionaries are pretty standard. If we represented just the
relational model, we would have something similar to some of the system tables
of many DBMSs. The other parts of the dictionary are original, together with
the overall structure. If we refer to Figure 1 again, starting from the M quadrant,
two directions of abstraction are possible: we could consider the various models
altogether, rather than each of them independently, thus moving to the SM
quadrant in Figure 1. Or we can go from the level of schemas to its metalevel,
that of models—quadrant mM. We consider the horizontal extension here, and
the other in the next section.

As we mentioned in Section 2, a crucial issue in our approach is the use of
the supermodel, a model that includes all the others as special cases, and can

A Multilevel Dictionary for Model Management 167

therefore be used to describe schemas in all models. The supermodel includes a
rather limited set of constructs, to which the various model-specific constructs
correspond. In the cases we just showed, Entity in the ER model and Class
in OODB correspond to the same metaconstruct, called Abstract. The super-
model unifies in its tables all the dictionaries for the various models, by merging
the tables whose constructs refer to the same metaconstruct. Entity and Class
are merged, as are Attribute and Field. The schemas we saw in Figures 2
and 4 are represented in the SM portion of the dictionary by the tables shown
in Figure 6. Here we see six tables rather than the nine in Figures 3 and 5. It is
important to note that the number stays limited. In our current implementation
we have ten tables for the SM part and more than fifty in the M part. The former
number is stable whereas the latter could grow if new models are added.

The main benefit of this dictionary organization is that we can specify our
translations in a simpler way, by referring to metaconstructs rather than to con-
structs. This is especially effective given the relational structure of the dictionary,
as we write our rules in a variant of Datalog [2]. Notice that some properties
in the supermodel are not used in some of the models. Also, properties need
not have the same name in different models. For example, the IsId property of
AttributeOfAbstract is not used in the Field table of the OO model and
is used, but with the name IsKey, in the ER model. In fact, we have a null value,
denoted by a question mark ‘?’, for column IsId in tuples that correspond to
fields of our OO model. We revisit this point in the next section.

4 The Metalevel

The second direction of abstraction of the basic dictionary is its metalevel, that
is, the description of the structure of the dictionary itself. Essentially, this level
stands with respect to the dictionary in the same way as the dictionary stands
with respect to the actual data. As we have two components at the schema
level (M and SM), we also have two components at the metalevel, the mM part,
which describes the structure of M, and the mSM part, which describes the
structure of SM. These components of the dictionary are shown in Figures 7
and 8, respectively. The structure that is shown is complete. The content refers
to the specific, simplified dictionaries of the previous section, shown in Figures 6
(for the supermodel) and 3 and 5 (for the models).

In Figure 8, each row in the MSM Construct table describes a metacon-
struct, by means of a unique identifier (the OID column), a Name for the metacon-
struct (which is also unique, but not really used as an identifier), and a boolean
property isLexical, used to indicate whether the constructs corresponding to the
metaconstruct have (visible) values or not. Hull and King [14] define as lexical
the constructs that have values. In Figure 8, the rows of MSM Construct list
some of the main constructs we have defined, specifically, those needed for the
constructs shown in the previous examples. The metamodel we are experiment-
ing with contains a few additional metaconstructs, referring to aggregations of
lexicals and their components, foreign keys over them (for handling value based

168 P. Atzeni, P. Cappellari, and P.A. Bernstein

MM Model
OID Name
m1 ER
m2 OODB

MM Construct
OID Name Model MSM-Constr IsLex
co1 Entity m1 mc1 false
co2 AttributeOfEntity m1 mc2 true
co3 Relationship m1 mc3 false
co4 ComponentOfRelationship m1 mc4 false
co5 Class m2 mc1 false
co6 Field m2 mc2 true
co7 ReferenceAttribute m2 mc5 false

MM Property
OID Name Constr Type MSM-Pr
pr1 Name co1 string mp1
pr2 Name co2 string mp2
pr3 IsKey co2 bool mp3
pr4 Name co3 string mp4
pr5 IsOpt co4 bool mp5
pr6 IsFunct co4 bool mp6
pr7 Name co5 string mp1
pr8 Name co6 string mp2
pr9 Name co7 string mp7

MM Reference
OID Name Constr IsPartOf ConstrTo MSM-Ref
ref1 Entity co2 true co1 mr1
ref2 Rel’p co4 true co3 mr2
ref3 Entity co4 false co1 mr3
ref4 Class co6 true co5 mr1
ref5 Class co7 true co5 mr4
ref6 Cl.To co7 false co5 mr5

Fig. 7. The mM part of the dictionary

MSM Construct
OID Name IsLex
mc1 Abstract false
mc2 AttributeOfAbstract true
mc3 AggregationOfAbstract false
mc4 ComponentOfAggrOfAbstract false
mc5 ReferenceAttributeOfAbs false

MSM Precedence
Predecessor Successor

mc1 mc2
mc1 mc3
mc3 mc4
mc1 mc5

MSM Property
OID Name Constr Type
mp1 Name mc1 string
mp2 Name mc2 string
mp3 IsId mc2 bool
mp4 Name mc3 string
mp5 IsOpt mc4 bool
mp6 IsFunct mc4 bool
mp7 Name mc5 string

MSM Reference
OID Name Constr IsPartOf ConstrTo
mr1 Abstract mc2 true mc1
mr2 Aggregation mc4 true mc3
mr3 Abstract mc4 false mc1
mr4 Abstract mc5 true mc1
mr5 AbstractTo mc5 false mc1

Fig. 8. The mSM part of the dictionary

models, especially the relational model), generalizations and their components,
and a few others for handling nested structures. Note that “Abstract” is not lexi-
cal, as instances of the corresponding constructs (for example “Entity”), have no

A Multilevel Dictionary for Model Management 169

actual values directly associated with them. By contrast, “AttributeOfAbstract”
is lexical, because the instances of its constructs, such as “AttributeOfEntity”,
do have values.

The rows in MM Construct (in Figure 7) correspond closely to those in
MSM Construct. They describe constructs in the various models, each with
a unique identifier (the OID column), a reference to the model (Model, a foreign
key referencing the MM Model table, which lists all the models currently stored
in the system), a reference to the corresponding metaconstruct (MSM-Constr, a
foreign key to MSM Construct) and a Name for the construct, unique within
the model. The first row in MM Construct states that there is a construct
with name “Entity,” belonging to the “ER” model (as “m1” is the OID for such
a model in Model), corresponding to the “Abstract” metaconstruct (as “mc1”
is the OID for “Abstract” in MSM Construct).

We can see here how mSM and mM belong to a metalevel: each tuple in
MSM Construct corresponds to a table in SM and vice versa and the same is
the case for MM Construct and the tables in M.

The other two tables in mSM, MSM Property and MSM Reference,
describe some details of metaconstructs (and, as a consequence, of constructs),
which in turn correspond to the structure of the tables in SM. The properties
describe the value columns in the tables of the dictionary: each property has a
Name and a Type, plus a unique OID and a reference to the construct it belongs
to, Construct. For example, the second row in MSM Property says that each
“Attribute of Abstract” (“mc2” is the OID for “Attribute of Abstract”) has
property “Name,” of type string. The third row says that each “Attribute of
Abstract” also has a boolean one, “IsId.” Thus, table AttributeOfAbstract
in SM has a string column Name and a boolean column IsId, corresponding to
these properties.

References in table MSM Reference describe the columns in the dictio-
nary tables that contain identifiers of other constructs. Specifically, each refer-
ence has a name, a construct it belongs to (Construct), a constructs it refers to
(ConstructTo) and a boolean IsPartOf, which we will discuss soon. The second
and third row in MSM Reference say that each “Component of Aggregation
of Abstracts” (“mc4” for Construct) has a reference named “Aggregation” to
an “Aggregation of Abstract” (“mc3” for ConstructTo in the second row) and
a reference named “Abstract” to an “Abstract” (“mc1” for ConstructTo in the
third row). Again, this describes features of the schema level dictionary. The
table ComponentOfAggregationOfAbstract has two references, one to
AggregationOfAbstract and the other to Abstract.

The boolean IsPartOf specifies whether the construct which is the source of
the reference is a component of the target and has no autonomous existence.
This notion is used as a criterion for the automatic construction of reports for
schemas in the various models. For example, the first and the second tuple have
value “true” for IsPartOf, to specify that each “Attribute Of Abstract” is part of
an “Abstract” and that each “Component of Aggregation of Abstract” is part
of an “Aggregation of Abstract.” The third row has “false,” to specify that each

170 P. Atzeni, P. Cappellari, and P.A. Bernstein

“Component of Aggregation of Abstracts” has a reference to an “Abstract,”
without being part of it. Clearly, if a construct has multiple references, at most
one of them can have “true” for IsPartOf. Otherwise, the occurrences of this
construct would be required to be “physical” components of two different objects
at the same time.

The table MSM Precedence specifies that a Successor construct can ap-
pear in a model only if a Predecessor one also appears. For example, a model
can have “Aggregation of Abstract” only if it also has “Abstract.” Even if most
precedences follow from references, this need not be the case. In the cases shown
in the figure, we have four precedences. The one we just commented on could
not be inferred from references. In the mathematical sense, MSM Precedence
is a partial order, so a construct cannot be an indirect predecessor of itself. This
is used by our model definition tool to allow for the definition of constructs in
the proper order: we can introduce a concept only after its predecessor(s) have
been defined.

In summary, the structure of the SM dictionary is completely described by
the content of the mSM dictionary and can therefore be generated automatically
out of it. Apart from the Schema table, SM contains a table for each row of
MSM Construct. Let c be the metaconstruct in one such row. The table for
c has the following columns:

– the “service” columns OID and Schema
– one column for each row of MSM Property that has c as the value for

Construct
– one column for each row of MSM Reference that has c as the value for

Construct; this column is a foreign key reference to the table for the Con-
structTo construct in the same row

– a Type column if the row of MSM Construct has the value “true” for
IsLexical

In the tool we are developing [2], the structure of SM is automatically gen-
erated once mSM is defined. Suitable features have been defined for changing it
when needed, without losing the contents.

Tables MM Property and MM Reference in mM play the same role as
MSM Property and MSM Reference play in mSM, in the sense that they
describe the properties and references of the constructs in the various models.
Each table of the M dictionary can be generated from mM in the same way
as the tables of SM can be generated from mSM: one table for each row in
MM Construct, with “service” columns plus those indicated in MM Proper-
ty and MM Reference.

Notice the relationships between the tables in mM (Figure 7) and mSM (Fig-
ure 8). A conceptual schema for the mM and mSM components of the dictionary
is shown in Figure 9. A row in MM Construct (Figure 7) states that there is a
construct, with a given Name, in a certain Model (foreign key to MM Model),
corresponding to a MSM-Construct (foreign key to MSM Construct). A row
in MM Property states that a Construct has a property with a Name and a
Type. Each property here is a specialization of a property in mSM. This can be

A Multilevel Dictionary for Model Management 171

mSMmM
MM-

Reference
������������

MSM-
Reference

(1,1) (0,N)

from�������� to��������

(1,1)(1,1)

(0,N)(0,N)

from�������� to��������

(1,1)(1,1)

(0,N)(0,N)

MM-Model

(0,N)������������
(1,1) MM-

Construct
������������

MSM-
Construct

(1,1) (0,N)
(0,N)

Dep��������
(0,N)

������������

(0,N)

(1,1)

������������

(0,N)

(1,1)

MM-
Property

������������
MSM-

Property
(1,1) (0,N)

Fig. 9. A simplified ER-schema of the metalevel of the dictionary

expressed by the following constraint: for each row p in MM Property, there
is a row p′ in MSM Property such that p.Construct is a construct whose meta-
construct is p′.Construct (that is, there is a row c in MM Construct such that
c.OID=p.Construct and c.MSM-Construct=p′.Construct), and p.Type=p′.Type. A
similar constraint holds between MM Reference and MSM Reference.

The various conditions on the tables in mM are enforced by the process used
for defining models and populating the tables in mM. A model is defined by
means of a set of constructs each of which is associated with a metaconstruct.
At the same time, there cannot be two constructs in a model corresponding to the
same metaconstruct. For each construct, one can define a property corresponding
to each of the properties of the metaconstruct and a reference for each of the
metaconstruct’s references. However, in general, properties of metaconstructs
need not all be used in the constructs that correspond to them. For example,
“Attribute of Abstract” has a “IsKey” property, which is not used by “Field”
in the OO model, whereas it is used in the ER model. This is the metalevel
description of what we already commented on at the end of Section 3 regarding
the schema level. Both properties and references can change their name from
mSM to mM. For properties, the case we have in the examples seen so far is
“IsId” which becomes “IsKey.” In the examples all references change their names,
as they correspond to the names of the constructs rather that those of the
metaconstructs.

Notice that the structure and the content of both MM Property and
MM Reference are redundant. Some of the information in them could be de-
rived from that in MSM Property and MSM Reference, respectively. This
is clearly the case for columns Construct and Type in MM Property and Con-
struct, IsPartOf, and ConstructTo in MM Reference. However, in this way they

172 P. Atzeni, P. Cappellari, and P.A. Bernstein

can be used directly to generate the structure of the tables for the M dictionary,
which is indeed their main use.

Also, it is worth noting that most of the tables in mM and mSM could be
pairwise merged, as they are very similar: for example MSM Construct and
MM Construct could be merged. This would lead to a “self-describing type
system,” so that code developed in the tool to operate on user-defined types
would also operate on system-defined types. This would be true for example
for display methods in an interactive tool and for reporting features. Here we
preferred to show them separately, to emphasize the symmetry with the schema
level. Another reason is that the process for defining a model reads values in
mSM and inserts new ones into mM, and we wanted to emphasize the different
roles. At the implementation level, the two tables could be merged, or even with
separate tables, the code that accesses them could be shared.

5 Reporting

Whenever we have schemas in a model, we are interested in producing reports for
them. Such reports give detailed textual documentation of the organization of
schemas, in a readable and machine-processable way. This issue is delicate here,
because we handle many different models, each with its own special features.
Each model has its own specific aspects that it could be important to highlight.
Probably, in order to provide a suitable emphasis for the specific aspects of each
model, we would need a reporting facility expressly defined for it. Still, in a
framework that allows for the definition of many different models, a general,
flexible way of producing reports would be highly desirable.

Our metamodel approach gives the basis for a model independent report-
ing feature. Each model involves a set of constructs, each with properties and
references. Properties are directly associated with constructs. For example, the
Name of an Entity in the ER model or the Type of a Field in the OO model.
References relate constructs, in at least two different ways. In some cases, the
reference specifies that a given construct is so tightly associated with another
construct that it is indeed a component. For example, in the ER model, each At-
tributeOfEntity is a component of an Entity and each ComponentOfRe-
lationship is a component of Relationship. In other cases, the connection is
looser, essentially an external reference to another construct. This is the case
for the reference between ComponentOfRelationship and Entity. As we
discussed in Section 3, we have the boolean IsPartOf exactly to distinguish these
two types of references.

Using this idea, we have developed a simple, effective algorithm for producing
reports which associates components with the constructs they belong to. It takes
into account a topological order over constructs induced by MSM Precedence
and presents occurrences of constructs according to that order. A topological
order over constructs always exists, as MSM Precedence is a partial order
(as we said in Section 3). For example, constructs that are not components
of other constructs (i.e., base constructs) are presented first. Precedences are
actually defined in mSM but can be extended in a straightforward way to each

A Multilevel Dictionary for Model Management 173

model in mM. Occurrences of constructs that are incomparable according to
the topological order are clustered. In principle, the presentation order of such
clusters is arbitrary. In the current implementation, they are presented in the
order in which the constructs were defined in the model.

The reports are produced in XML, so that they are both self-documenting
and machine processable if needed, for example, for better presentation by means
of style sheets. Let c1, . . ., ck be a topological ordering for the base constructs
in the model. The algorithm considers the constructs in order, c1, . . ., ck, and,
for each ci outputs the description of each of its occurrences o, with the form:

element named ci with attributes including OID and properties of o,
with the following optional subelements

if o has components, an element <components>, with subelements
that are the (recursive) descriptions of the component occurrences

if o has references with “false” for IsPartOf
the referenced object with its properties (but not the components)

The names of the constructs themselves come from the metamodel and there-
fore the generation is indeed model-independent.

The structure of the report for an ER schema, according to the simple version
of the model we saw in Section 3, would be the following, with some syntactic
sugar to make it more readable:

<schema name="schemaName" model="modelName">
<constructs>
<constructName listOfProperties>

<components> (if any)
<constructName listOfProperties>

...
</constructName>
...

</components>
</<constructName>
<constructName listOfProperties>
...

</constructs>
</schema>

Therefore, the report for the first ER schema shown in Figure 2 would be
the following:

<schema OID="s1" name="1st ER Schema" model="ER">
<constructs>
<entity OID="e1" name="Supplier">
<components>
<attributeOfEntity OID="a1" name="Code" isKey="true" type="int"/>
<attributeOfEntity OID="a2" name="SName" isKey="false"

type="string"/>
<attributeOfEntity OID="a3" name="City" isKey="false" type="string"/>
</components>

</entity>
<entity OID="e2" name="Product">
<components>
<attributeOfEntity OID="a4" name="ProdNo" isKey="true" type="int"/>

174 P. Atzeni, P. Cappellari, and P.A. Bernstein

<attributeOfEntity OID="a5" name="Name" isKey="false" type="string"/>
</components>

</entity>
<entity OID="e3" name="Department">
<components>
<attributeOfEntity OID="a6" name="DeptNo" isKey="true" type="int"/>
<attributeOfEntity OID="a7" name="DeptName" isKey="false"

type="string"/>
</components>

</entity>
<relationship OID="r1" name="Supply">
<components>
<componentOfRelationship OID="c1" isOpt="false" isFunct="false">
<entity OID="e1" name="Supplier"/>
</componentOfRelationship>
<componentOfRelationship OID="c2" isOpt="true" isFunct="false">
<entity OID="e2" name="Product"/>
</componentOfRelationship>
<componentOfRelationship OID="c3" isOpt="true" isFunct="false">
<entity OID="e3" name="Department"/>
</componentOfRelationship>
</components>

</relationship>
</constructs>
</schema>

We experimented with stylesheets for reports generated in this way. They
are reasonably effective, even when produced in a completely model-independent
way. For example, a convenient way to produce reports is hypertext based, where
a single HTML page is built for a schema, with internal links that make it easy
to navigate from one construct to another. Lists of constructs of the various
types can also be easily generated.

6 Conclusions

The structure of the dictionary we have shown here is being used in the tool
under development. It supports a variety of activities in a model independent
way. Beside the generation from the core, it supports reporting, as we illustrated,
and generation of parametric formats for import and export of schemas. Overall,
the availability of a dictionary with a visible structure is very useful in the
development of translation rules and in the maintenance of the tool itself. In
particular, changes to the model do not require changes to the tool’s engine.
These are consequences of the main novelty of our approach which offers an
integrated and highly correlated representation of schemas and models, both in
a model specific way and within a unified framework, the supermodel.

References

1. F. W. Allen, M. E. S. Loomis, and M. V. Mannino. The integrated dictio-
nary/directory system. ACM Comput. Surv., 14(2):245–286, 1982.

2. P. Atzeni, P. Cappellari, and P. A. Bernstein. Modelgen: Model independent
schema translation. In ICDE, IEEE Computer Society, pages 1111-1112, 2005.

A Multilevel Dictionary for Model Management 175

3. P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Databases: concepts, languages
and architectures. McGraw-Hill, 1999.

4. P. Atzeni and R. Torlone. Management of multiple models in an extensible database
design tool. EDBT, Lecture Notes in Computer Science 1057, Springer, pages 79–
95, 1996.

5. P. Atzeni and R. Torlone. Mdm: a multiple-data-model tool for the management
of heterogeneous database schemes. SIGMOD,ACM, pages 291–301, 1997.

6. C. Batini, G. D. Battista, and G. Santucci. Structuring primitives for a dictionary
of entity relationship data schemas. IEEE Trans. Software Eng., 19(4):344–365,
1993.

7. P. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders, and D. Shutt. Mi-
crosoft repository version 2 and the open information model. Information Systems,
22(4):71–98, 1999.

8. P. A. Bernstein. Applying model management to classical meta data problems.
CIDR, pages 209–220, 2003.

9. P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A vision of management of
complex models. SIGMOD Record, 29(4):55–63, 2000.

10. J. Bézivin, E. Breton, G. Dupé, and P. Valduriez. The atl transformation-based
model management framework. Research Report Report 03.08, IRIN, Université
de Nantes, 2003.

11. K. T. Claypool and E. A. Rundensteiner. Sangam: A framework for modeling
heterogeneous database transformations. In ICEIS (1), pages 219–224, 2003.

12. K. T. Claypool, E. A. Rundensteiner, X. Zhang, H. Su, H. A. Kuno, W.-C. Lee, and
G. Mitchell. Sangam - a solution to support multiple data models, their mappings
and maintenance. In SIGMOD Conference, 2001.

13. C. Hsu, M. Bouziane, L. Rattner, and L. Yee. Information resources management in
heterogeneous, distributed environments: A metadatabase approach. IEEE Trans.
Software Eng., 17(6):604–625, 1991.

14. R. Hull and R. King. Semantic database modelling: Survey, applications and re-
search issues. ACM Computing Surveys, 19(3):201–260, Sept. 1987.

15. B. K. Kahn and E. W. Lumsden. A user-oriented framework for data dictionary
systems. DATA BASE, 15(1):28–36, 1983.

16. S. Melnik. Generic Model Management: Concepts and Algorithms. Springer-Verlag,
2004.

17. E. Rahm and H. Do. On metadata interoperability in data warehouses. Technical
report, University of Leipzig, 2000.

18. R. Soley and the OMG Staff Strategy Group. Model driven architecture. White
paper, draft 3.2, Object Management Group, November 2000.

19. G. Song, K. Zhang, and R. Wong. Model management though graph transforma-
tions. In IEEE Symposium on Visual Languages and Human Centric Computing,
pages 75–82, 2004.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 176 – 191, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A MOF-Compliant Approach to Software
Quality Modeling

Xavier Burgués1, Xavier Franch1, and Josep M. Ribó2

1 Universitat Politècnica de Catalunya (UPC) c/ Jordi Girona 1-3 (Campus Nord, C6)
E-08034 Barcelona, Catalunya, Spain

{diafebus, franch}@lsi.upc.edu
2 Universitat de Lleida (UdL), C. Jaume II, 69 E-25001 Lleida,

Catalunya, Spain
josepma@eps.udl.es

Abstract. Software quality is a many-faceted concept that depends on the kind
of artifact to be measured, the context where measurement takes place, the qual-
ity framework used, and others. Furthermore, there is a great deal of standards,
white papers, and in general proposals of any kind related to software quality.
Consequently, a unified software quality framework seems to be needed to
compare, combine or select these proposals and to define new ones. In this pa-
per we propose a MOF-compliant approach for structuring quality models in
order to formalise software quality issues and deal with quality information
modelling. We propose two types of models: a generic model, situated in the
M2 MOF layer; and a hierarchy of reference models, defined in the M1 and M0
MOF layers. The generic model elements are derived from the UML meta-
model by specialization. Then, we can instantiate them to get reference models
that formalise (combinations of) existing proposals which may be further re-
fined for defining quality frameworks to be used in different experiences. Each
of these models is divided into three parts, namely fundamental concepts, met-
rics and context. We illustrate our proposal providing a multi-level reference
model in the context of collection libraries quality evaluation.

1 Introduction

Quality assessment and management (QA&M) plays currently a crucial role in all the
facets of software development. This means that not only the software process and the
system-to-be are targets of QA&M, but also subprocesses such as specification, de-
sign and testing, and software-related artifacts such as system requirements, specifica-
tions and software architectures. As a result, we may find a great deal of proposals
aiming at the study of QA&M issues in those contexts, so diverse in nature such as
software process assessment and improvement [32], analysis of data models like
UML class diagrams [18] or ER models [27], measurement of OO designs [6], and so
on. Furthermore, the tendency seems not to converge into more compact, general-
purpose frameworks but on the contrary, to provide new, specialized proposals.

All of these proposals share a core of common concepts, e.g. metrics, quality fac-
tor, etc., but it is not obvious to identify similarities and differences between them.
This difficulty hampers the understanding of the quality frameworks, their further ex-

 A MOF-Compliant Approach to Software Quality Modeling 177

tension or evolution, and their comparison when it becomes necessary to choose one
in a given context.

Several authors claim that ontologies, conceptual models or similar descriptions
are needed in order to precisely define the concepts, processes, languages and tools
related to software quality [24, 30]. The goal is the definition of a framework useful to
analyse the variety of approaches, to define new ones and to adapt the existing ones to
new contexts. As a result, it becomes necessary to work on the foundations, to obtain
a set of widely accepted general concepts with a clear structure to be used as the basis
of particular methods and tools.

In [5] we proposed a 3-level hierarchy of quality models. Each level was related to
a different abstraction degree: the generic model provided a universal unified frame-
work; reference models allowed the definition of operational frameworks, ready to be
used as the concepts coming from the generic model were instantiated; domain mod-
els fit in the specificities of concrete QA&M experiences and set a comfortable way
to deal with quality. This hierarchy was a good starting point for stating a quality
framework but some serious problems were identified:

• Our proposal was ad hoc, without being integrated into any existing and consoli-
dated metamodel, architecture or ontology. This was a serious drawback consider-
ing three different aspects: semantics of the models; reuse of existing concepts,
methods and tools; and dissemination of the approach.

• The frontier among reference and domain models was too fuzzy and arbitrary. In
fact, for some applications, we found that the last thing to refine was not the do-
main but other parts of the generic model, for instance the type of artifact itself or
the metrics to be used.

• We just allowed one level of reference and domain models. This was in fact a se-
rious limitation, since it was impossible to refine or combine models hampering
thus quality knowledge structure and reuse.

• We included in the generic model a dimension (the language dimension) that is not
present in all the approaches, unlike the other three dimensions that we consider.

• Our experiences were a few and then the proposal was still unstable. Once we ac-
quired more knowledge we discovered some minor flaws, specially in the generic
model.

In this paper we propose a conceptual framework for structuring quality models that
overcomes these drawbacks. The framework is presented in section 2. It is integrated
into the Meta Objects Facility (MOF) architecture [26] as an extension of the UML
metamodel [36], it supports a hierarchical structure of reference models without im-
posing any particular refinement order, it removes the language dimension and it has
been validated with a greater number of cases (i.e., proposals about quality available
in the literature). The core of the proposal is presented in sections 4 and 5. Previously,
section 3 provides a short summary about the MOF architecture and UML meta-
model. Section 6 provides the conclusions.

2 A Hierarchy of Quality Models

We present a framework for dealing with software quality that consists of a hierarchy
of two types of quality models:

178 X. Burgués, X. Franch, and J.M. Ribó

• Generic model. The root of the hierarchy. It introduces the fundamental concepts
that are present in every single approach to QA&M. “Quality model”, “artifact”
and “metrics” are some of these concepts. It is abstract enough to be used in sev-
eral software engineering activities: specification, design, development, certifica-
tion, selection, etc.

• Reference models. They provide particular interpretations of the generic model
fundamental concepts in a particular setting. As an example, a reference model
could be built up following the ideas of the ISO/IEC 9126 quality standard, part 1
[21] and incorporating metrics-related notions coming from the theory in [12, 37].
We may have different degrees of refinement which means that reference models
can be structured in hierarchies until we obtain leaves, which stand for reference
models that can be used in particular QA&M experiences. Also the hierarchy may
contain models that are not obtained by refinement but by composition, because
different models may focus on just one part of the generic model.

Although diverse, these two models are structured into three different parts:

• Fundamental concepts. It embraces the concepts and relationships that form the
quality models and system requirements about quality. The concepts therein stem
from general quality standards [20, 21] and widespread catalogues of quality fac-
tors and requirements [11, 25].

• Metrics. Here we define the types of metrics to be used to measure the items de-
fined by the model and to state the satisfaction of requirements. Classic proposals
[12, 37] and quality standards again [21] are the foundations of this part.

• Context. It has to do with the software domains which the quality models will be
attached to; the structure of artifacts to be measured; and the environment in which
they operate (a type of organisation, a particular one, a department, a project, etc.).
Domains may be structured as a taxonomy as proposed in [19, 8]. The artifacts
may be aggregations or compositions of others.

Figure 1 illustrates the evolution from the generic model to reference ones. It shows
also the recommended use of our framework. From the generic model, we obtain vir-
tually hundreds of reference models, one for each consolidated proposal that has been
defined in the literature for the concepts present in the generic model (we depict just
three in the figure). For instance, we get a reference model for the ISO/IEC 9126
standard, other for the software domains as defined in the INCOSE taxonomy, other
for the Stevens set of scales [34], and so on. The important thing is that each of these
reference models takes as few assumptions as possible, not compromising therefore
its use unnecessarily; in fact, a great deal of these reference models just refine one of
the three parts of the generic model sometimes even not completely.

These first-level reference models can then be refined to introduce details, as shown
in fig. 1. This allows to structure quality proposals in such a way that details are intro-
duced progressively, making understanding easier. A general strategy we have adopted
is to use first-level reference models to represent the general structure of the approach,
and second-level ones to indicate particular elements. Another strategy consists on us-
ing this refinement concept for distinguishing among normative or mandatory parts of
a proposal (defined at the first-level) from optional or recommended parts (defined at
lower levels). We present examples of both situations in section 5.

 A MOF-Compliant Approach to Software Quality Modeling 179

Once the target level of detail has been reached, we can combine the lower-level
reference models to obtain new ones embracing all the aspects of quality. This com-
bination can be made for several reasons: to put together widespread proposals for
further use, as we will show in section 5; to construct ad hoc frameworks for particu-
lar experiences; or to create a collection of reusable frameworks that can be used in
lots of quality-related experiences. Fig. 1 also illustrates this combination.

Fundamental concepts

Metrics

Context

Less refined

More refinedGeneric model Reference models

Fig. 1. A framework for constructing quality models

3 The MOF Architecture and the UML Metamodel

UML [36] is currently a de facto standard in object-oriented modeling. As it is a gen-
eral purpose notation, it has to be tailored to specific contexts, in particular to differ-
ent software domains. The extensions provide some clear advantages: the integration
of the domain in a standard framework, a potential usage by the software engineering
community and the existence of a large number of support tools. Moreover, integra-
tion to the widespread MOF metamodeling architecture [26] –adopted by OMG– is
also provided.

180 X. Burgués, X. Franch, and J.M. Ribó

Due to these advantages, many proposals to extend the UML metamodel in differ-
ent domains have come out in the last few years. Consider, just to mention a few,
SPEM [33], CWM [10], CORBA [9] and [35]. Our work is integrated in this UML
extension approach and, hence, it benefits from the above mentioned advantages.

The MOF metamodeling architecture consists of four layers: M0, M1, M2 and M3,
such that layer Mi contains instances of elements defined in Mi+1. M0 contains run-
time objects, M1 is the model level and contains the classes for M0 objects; UML
models are defined in M1. M2 is the metamodel level and contains elements used to
build models in M1 (e.g., Class, Association and Dependency). The UML metamodel
and other metamodels are defined in M2. Finally, M3 is the meta-metamodel level.
MOF is the meta-metamodel shared by all the metamodels defined in the OMG
framework. Its main contents are the essential elements of the UML metamodel (in
particular, the infrastructure library of the UML 2.0 metamodel is reused in the MOF
model definition [36]).

As mentioned in the introduction, in this paper we propose to extend the UML
metamodel with concepts aimed at the generation of quality models of software-
related artifacts. We want the result to be fully integrated in the MOF metamodeling
architecture and coherent with the standard UML extension mechanism in order to
end up with a UML-consistent result. There are two ways to tailor UML: (1) define a
so-called heavyweight extension, which provides a first-class metamodel extension
mechanism for extending the metamodel and (2) define a UML profile. While the first
approach is more expressive and comprehensible, the second one provides compati-
bility with UML modeling tools. Therefore, in our work we have adopted both of
them following the methodology defined in [13], which consists of two steps:

1. Proposal of a heavyweight extension of the UML metamodel, providing a properly
built metamodel.

2. Transformation of the previous extension into a UML profile. Since the extension
built in step 1 preserves the semantics of the original UML metamodel and since
all its metaelements are based on already existing UML metaelements, this trans-
formation can be done in a semi-automatic way using any of the methodologies
presented in [23, 36, 13].

4 A Generic Model for Quality as an Extension of the UML
Metamodel

As our generic model is an extension of the UML metamodel, its elements are meta-
classes and metaassociations at layer M2. Our target is the construction of a quality
metamodel which any reference model can be an instance of. Figure 2 shows the
package layout of the integration of the generic model into the UML metamodel and
figure 3 shows the model itself. Table 1 lists the UML metamodel elements from
which the generic model elements derive by specialization.

The elements are presented next. We structure the presentation into the three parts
enumerated in section 2. In fact, the three parts are also structured as packages, but
since this structure is not essential for the goal of the paper, we do not address this
issue.

 A MOF-Compliant Approach to Software Quality Modeling 181

Kernel

Dependencies

Association
Classes

Artifacts

GenericQuality
Model

<<merge>>

<<merge>>

<<merge>>

<<merge>>

<<merge>>

Fig. 2. Integration of the generic model into the UML metamodel

Fig. 3. The generic model

Table 1. Connection among the generic model and the UML metamodel

Generic model UML metamodel

Domain, Environment, Attribute (and heirs), Metrics Classifier

MeasurableArtifact Artifact

Scale, Unit Enumeration

QualityType DataType

Value, QualityStatement, AppliedQualityStatement ValueSpecification

QualityModel, AppliedQualityModel, AppliedQualityStatement,
Measurement, Influences

AssociationClass

182 X. Burgués, X. Franch, and J.M. Ribó

4.1 Context

Domain captures the knowledge about those aspects of MeasurableArtifacts for which
a quality model is required. The concept of “artifact” is utterly comprehensive, em-
bracing different things that can be as general as the notion of “office tool”, as spe-
cific as a “sorting algorithm”, or related not to the software itself but to software de-
scriptions and documentations as models or specifications. It is important to remark
that an artefact may belong to several domains. For instance, the quality of a geo-
graphical information system may be viewed from the point of view of information
systems and from the point of view of geographical software.

The class Environment represents the circumstances in which the domains are
used. It may define the kind of organization (for instance, a huge supermarket, a non-
governmental organization, ...), a kind of project (like a CMM level 3 one), etc.

Taking into account that the three classes have been defined as UML classifiers,
we can compose instances of these three elements and refine them, therefore we may
construct taxonomies of domains and packages of artefacts, we can tailor quality con-
cepts in each single department of an organization, etc. As a consequence, we may de-
fine in a reference model, for instance, that the reliability of a component is a combi-
nation of the reliability of its subcomponents.

4.2 Fundamental Concepts

A QualityModel will fit into a domain in a given environment (e.g., there will be a
quality model for groupware systems in medium-size companies and a quality model
for mail servers in ISPs). Thus, QualityModel classes of the reference models (in-
stances of the QualityModel metaclass of the generic model) will turn into association
classes between Domain and Environment classes. Please note that we are not arguing
about the adequacy and validity of the QualityModel, but just focusing on the con-
cepts which it stems from. As an artifact may belong to several domains and a domain
may be used in several environments, several quality models may be appliable to
each artifact. Quality models include quality Attributes (such as efficiency, reliability,
etc.). As Attribute is an heir of Classifier, we may organize them as a hierarchy,
which is the usual case in most proposals. Therefore, they can be Direct or Indirect;
indirect attributes depend on others. Attributes are not mutually independent and so
their influence on each other is also represented. Influences allows categorizing and
grading these dependencies (providing kind, intensity, etc.). The class QualityState-
ment represents quality requirements, constraints, criteria and other elements that
concern a quality model and that may be needed to use the model in an evaluation
process.

A quality model is applied on an artefact to obtain an AppliedQualityModel in
which its attributes will be evaluated. This concept is the cornerstone of a particular
QA&M experience. It allows for instance to obtain a quality model for a particular
mail server, ERP system, UML class diagram, or whatever. Quality statements over
an applied quality model are called AppliedQualityStatements and are the refinement
of the quality statements (e.g., “The page shall be downloaded in less than 5 secs.”) of
a particular quality model involving attributes from this model (e.g., throughput or re-
freshing time).

 A MOF-Compliant Approach to Software Quality Modeling 183

4.3 Metrics

The class Metrics represent possible methods to perform measurements of attributes
to find the value to assign. Metrics are mainly characterised by the category of their
Scale (which define their properties), their Unit of measurement and the QualityType
of their Values (that of course shall be compatible with the scale).

Measurement appears as the assignment of values to the attributes of the artifacts
under consideration by applying a particular method of measurement in the form of a
metric that applies to the attribute. It is possible for a given attribute to be measured
with different methods in different quality models. For this reason, it would have been
more natural to model this measurement as a ternary relationship between quality
models, artefacts and attributes, but since ternary associations are not supported by
the MOF at level M2 [26], we have decomposed them into binaries.

5 An Example: A Reference Model for Collection Libraries
Quality Framework

In this section we aim at building a reference model related to the evaluation of col-
lection libraries like JCF [1], STL [28] and LEDA [29]. Such a model would be useful
in some situations, remarkably when a library of this kind is necessary during the de-
velopment of an application; this is a particular case of the general problem of Com-
mercial Off-The-Shelf (COTS) component selection [14]. This reference model relies
on the combination of some standards, catalogues and other proposals. It is important
to remark that our goal in this section is to show how a realistic reference model,
which integrates well-known proposals made in the field of software quality, can be
defined as an instantiation of the generic model presented in the previous section. For
this reason, we are not arguing that the resulting model is the best one for its intended
purpose; this is beyond the scope of this paper and would deserve a thorough investi-
gation in its own. Partly also for the same reason, and partly for lack of space, the re-
sulting quality model is not fully complete, we have focused on the most relevant
parts of its structure and not in the details, for instance how to express the experimen-
tal procedures for metrics and how to validate them.

According to the guidelines outlined in the introduction, we adopt a strategy such
that reference models are fine-grained (i.e., each of them refines just those elements
directly implied by the approach) making easier their reuse in many contexts. The
general strategy is depicted at fig. 4. We decide to divide the experience into two
parts. In the first part we build a reference model for the general problem of COTS se-
lection, called COTS selection framework in the figure. This is built upon:

• The ISO/IEC 9126 standard, parts 1 (the quality model structure [21]) and 2 (pro-
posal of external metrics for software artifacts [22]). This standard already sets the
high level attributes (called characteristics and subcharacteristics in the standard) to
be measured. Otherwise, they should be set as the result of an analysis process like
GQM [2] or other similar goal-driven proposals.

• The NFR framework [7] for establishing different degrees of relationships among
quality factors.

184 X. Burgués, X. Franch, and J.M. Ribó

• Fenton’s metrics framework [12] for presenting metrics fundamental concepts.
• A commercial classification of COTS components coming from the Gartner con-

sulting group to define software domains of interest [15].

At the first level of the hierarchy, we provide separate refinements for each of the
parts (fundamentals, metrics and domain) of the generic model focusing on the gen-
eral layout of each proposal. The three resulting models stay at the M1 MOF layer,
with their elements obtained as instantiations of the M2 generic model; in particular,
each association in M2 induces an association or association class in M1.

In the second level we include concrete values for the concepts, i.e.: the quality
factors provided by the ISO/IEC 9126-1 (efficiency, suitability, …); the NFR type of
links (hurt, some, …); Fenton’s scales (nominal, ordinal, …) with simple types; and
the concrete elements of the Gartner hierarchy (CRM, ERP, DCM, …). The added
part of these models are at M0, which means that their elements are instances of the
former M1 reference models (which of course are preserved at this level).

In the third level we add more detail to the metrics part refining by means of the
ISO/IEC 9126-3 (including types, units, etc.). We did not include this part in the
former level again for enhancing reuse: we can propose other concrete metrics
starting from the level-two metrics-related model. Also, at this third level, we merge
the two level-2 reference models that refined the fundamental concepts part. Finally,
at the forth level, we join the three reference models for fundamental concepts,
metrics and context and we obtain the target COTS selection framework. This
reference model may be used as starting point for building proposals for supporting
COTS selection processes at any kind of software domain, such as ERP systems and
collection libraries.

The reference model for collection libraries is based on two basic manipulations.
On the one hand, the internal structure of the collection libraries shall be represented
in the reference model. This is done at the first two levels, by declaring the artifacts as
composable (M1) and then by defining a collection library as composed by
collections and algorithms, the former composed of data structures and operations
(M0). On the other hand, the COTS selection framework is specialized not only by
including this new second-level model but also by modifying the instances in M0 for
customizing to this domain. Once we have the model built, we evaluate particular
collection libraries such as JCF, STL and LEDA.

Let’s take next a closer look to the resulting models. We present directly the COTS
selection framework at fig. 5 (M1) and 6 (M0). We may observe the following:

• The inheritance hierarchy classifying attributes as direct and indirect is combined
in this particular model with the classification of quality factors in attributes1, sub-
characteristics and characteristics made by the standard ISO/IEC 9126. The refined
model reflects ISO/IEC’s directives concerning the hierarchy (see <<depend-
sOn>> associations): characteristics may be decomposed into subcharacteristics,
subcharacteristics into other subcharacteristics and attributes and, finally, attributes
may be decomposed into attributes.

1 Please do not be get confused with the general term “attribute” that we have introduced in the

generic model and the particular term “attribute” as defined in the ISO/IEC 9126-1 standard.

 A MOF-Compliant Approach to Software Quality Modeling 185

Generic model Reference models

FC

M

C

ISO/ IEC
9126-1
layout

M

C

FC

Types and
metrics

specialized

C

FC

M

COTS
selection

Complete
ISO/IEC
9126-1

M

C

FC

Fenton pro-
posal with

simple types

C

FC

M

Gartner
classifi-
cation

FC

ISO/IEC
9126-3
metrics

C

NFR
relation-

ships

M

C

ISO/IEC
9126-1 +

NFR

M

C

ISO/IEC
9126-3
metrics

Gartner
classifi-
cation

ISO/IEC
9126-1 +

NFR

FC

M

Composed
artifacts

FC

M

Set of
collections

COTS
framework
customised

to
collections
libraries

Measurement

JCF
evaluation

STL
evaluation

LEDA
evaluation

...

...

...

COTS
framework
customised

to ERP
systems

...

COTS
selection

framework

Fig. 4. General structure of the COTS selection reference model (FC: fundamental concepts;
M: metrics; C: context)

• Metrics will be classified as observations and formula depending on the way to ob-
tain attribute’s values (measuring or calculating).

• Quality types may be simple or enumerated. Simple ones will include integers,
strings, booleans and other frequently used types. There are also many situations in
which we must assign a value taken from an enumeration (ranks, labels, …)

• There will exist an object representing each kind of influence as defined in the
NFR framework (break, hurt, unknown, help and make). Analogously, each char-

186 X. Burgués, X. Franch, and J.M. Ribó

acteristic and subcharacteristic as defined by the ISO/IEC standard will be repre-
sented by an object of the appropiate class. Links corresponding to the extension of
the association dependsOn will reflect the decomposition of characteristics into
subcharacteristics defined by the standard. On the other hand, the extension of In-
fluences will take into account how the quality factors interact with each other. An
excerpt of these objects and links is shown at the top of fig. 6.

• The rest of fig. 6 shows how a similar use of objects and links is going to represent
software domains and categories defined by the Gartner group together with their
hierarchical relations and scales, types and their compatibility.

Fig. 5. Reference model for the COTS selection framework, M1 layer

Concerning the customization for the collections library case, fig. 7 summarizes
the changes in both levels.

At level M1, it is just required to declare a recursive association over Artifact to
represent the notion of artifact composition. At level M0:

 A MOF-Compliant Approach to Software Quality Modeling 187

name = BussinessApplications

 : SoftwareDomain

name = AppDevTools

 : SoftwareDomain

name = ApplicationDevelopment

 : SoftwareDomain

name = SoftwareInfrastructure

 : SoftwareDomain

name = AppDevGovernance

 : SoftwareDomain

name = DevInfrSoftw

 : SoftwareDomain

name = WebSiteDevTools

 : SoftwareDomain

«taxonomy» «taxonomy»

«taxonomy»«taxonomy»

name = efficiency

 : Characteristic

name = usability

 : Characteristic

name = resourceBehaviour

 : Subcharacteristic

name = timeBehaviour

 : Subcharacteristic

name = attarctiveness

 : Subcharacteristic
«dependsOn»

Kind = Hurt

 : NFR

<<dependsOn>>

<<dependsOn>>

(a) Instances for the ISO/IEC 9126-1 model

name = integer

 : Simple
name = boolean

 : Simple

name = string

 : Simple

name = nominal

 : Stevens
name = absolute

 : Stevens

name = interval

 : Stevens

name = ordinal

 : Stevens

name = ratio

 : Stevens

«compatible»

name = attrDegree

 : Enumerated

«compatible»

name = attractiveInteraction

 : Observation«values»

«properties»

(b) Instances for the taxonomy part of the model

(c) Instances for the metrics part of the model

Fig. 6. The reference model for the COTS selection framework, level M0

• A new type of value is introduced for measuring the efficiency of data structures
and algorithms using the big-Oh notation [3]. Correspondingly, the values for this
type are also introduced: O(1) or constant; O(n) or lineal; and so on.

• The structure of collection libraries is depicted at three levels: library; collections
and algorithms; data structures and operations.

• The ISO/IEC 9126-1 model is customized for this particular domain. For instance,
we show how the subcharacteristic Attractiveness disappears, because it does not
apply in this context according to its definition. The same happens with others.

• The metrics for measuring efficiency with the big-Oh notation also appear at M0.

188 X. Burgués, X. Franch, and J.M. Ribó

name = nominal

 : Stevens

name = ordinal

 : Stevens

«compatible»

«Artifact»
COTSComponent

CollectionLibrary

Algorithms

Collection

DataStructure

Operation

«Value»
NF-Value

BigOhValue

val = constant

 : BigOhValue

val = lineal

 : BigOhValue

«set»

name = attarctiveness

 : Subcharacteristic

comp

comp

(a) M1 layer (b) M0 layer

: COTS-Type

name = bigOh

Fig. 7. The COTS selection framework customised to the collection libraries domain

6 Conclusions

The work presented here models the domain of software quality (one of the six key
areas appearing at level 2 of CMM [32]) in a MOF-compliant way and overcoming
other limitations of our previous work [5] mentioned in the introduction. We have
collected the fundamental concepts that exist in this field considering the main issued
proposals and we have built a metamodel embracing this knowledge. Concrete pro-
posals may be derived from this metamodel to conform reference models to be used.
The main contributions of the proposal are:

• Theoretical framework. The most important aspects of software quality are inte-
grated into a single framework. This characteristic helps in providing a common
baseline for analyzing, situating and comparing quality-related frameworks.

• Integration with standards. The framework is compliant with the MOF architecture
and defined as an extension of the UML metamodel. This is a spread way of
defining metamodels as in [33, 10, 9, 35]. It allows the reuse of concepts (e.g.,
classifier), methods (e.g., metamodel extension methodologies) and tools (e.g., for
defining profiles) that are well know in the community. Dissemination of the
proposal is also ameliorated. As a drawback, the semantics of UML has not been
formalized yet. However, several groups are working in such formalization: (e.g.,
UML 2.0 Semantics Project - IBM, Technical University of Munich and Queen’s
University -, the precise UML group - www.puml.org -).

• Applicability. The proposal is highly structured, with a hierarchy of reference
models that allow to define quality proposals in fine-grained chunks and to put them
together as desired. In fact, we aim at constructing a catalogue of such chunks to be
able to define quality frameworks in an easy and flexible way. We are planning to
define the chunks as patterns making explicit the context of application, the prob-

 A MOF-Compliant Approach to Software Quality Modeling 189

lems forces they reconcile and the solution they propose. These patterns would be
helpful for dealing with quality in real development projects in an effective manner.

• Methodological guidance. We have identified some methodological guides in the
construction of quality frameworks. The scenario presented in section 2 and illus-
trated in section 5 is very common and the definition of levels in the hierarchy as
done in the example applies to the general case.

• Tool support. The generic model may be the root of a hierarchy of stepwise refined
models which may be developped following the above mentioned (or others)
methodological guides. It is possible to build a tool to support this developing
process taking care of the relationships between models and performing some cor-
rectness tests over new models with respect to the concept of correct instantiation.
As the generic model is an extension of the UML metamodel this tool may be built
on top of existing software able to deal with metamodeling.

Some other proposals have been proposed for dealing with software quality by means
of generic frameworks. An important approach is the work by Kitchenham et al. [24]
which defines a data model and uses it for storing experimental data. The model is not
intended to be a general framework but nevertheless it is an attempt to gather quality
information in a single model. More recently, there has been a joint effort in the Span-
ish and south-american community to produce an ontology of software quality ([16,
30]). However, this work is mainly focused on measurement. Our proposal is more
comprehensive than these approaches since it is aimed at embracing the huge variety
of concepts behind quality. In addition, these proposals do not provide integration
with the MOF architecture or UML metamodels and do not provide this notion of
stepwise refinement for building quality frameworks presented in this paper. Other
proposals that do rely on UML use it as a working notation in which to develop their
goal (e.g. defining metrics for databases or COTS components [4, 17] or evaluation
processes [31]), not with the aim of providing ontological knowledge.

References

1. K. Arnold, J. Gosling, D. Holmes. The Java Programming Language. Addison-Wesley,
3rd edition, 2000.

2. V. Basili. “Goal-Question-Metric Paradigm”. In Enciclopedya of Software Engineering”,
John Wiley, 1994.

3. G. Brassard, P. Bratley. Fundamentals of Algorithmics. Prentice-Hall, 1996.
4. A. L. Baroni, C. Calero, M. Piattini, F. Brito. “A Formal Definition for Object-Relational

Database Metrics”. In Proceedings of the 7th International Conference on Enterprise In-
formation Systems, Miami (USA), may 2005.

5. X. Burgués, X. Franch. “Formalising Software Quality using a Hierarchy of Quality Mod-
els”. In Proceedings of the 15th International Conference on Database and Expert Systems
Applications (DEXA’04), LNCS 3180, Zaragoza (Spain), Sept. 2004.

6. A. Burton-Jones, P. Meso. “How good are these UML diagrams? An empirical test of the
Wand and Weber good decomposition model”. In Proceedings 23rd International Confer-
ence on Information Systems (ICIS’02), 2002.

7. L. Chung, B. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in Software En-
gineering. Kluwer Academic Publishers, 2000.

190 X. Burgués, X. Franch, and J.M. Ribó

8. J.P. Carvallo, X. Franch, C. Quer, M. Torchiano. “Characterization of a Taxonomy for
Business Applications and the Relationships Among Them”. In Proceedings 3rd Interna-
tional Conference on COTS-Based Software Systems (ICCBSS’04), LNCS 2959, Redondo
Beach (CA, USA), Feb. 2004.

9. UML Profile for CORBA. OMG document formal/02-04-01. Available at omg.org
10. Common Warehouse Metamodel Specification. OMG document formal/2003-03-02.
11. D. G. Firesmith. “Using Quality Models to Engineer Quality Requirements”. Journal of

Object Technology, 2(5), 2003.
12. N. Fenton, S. Pfleeger. Software Metrics:A Rigorous Practical Approach. PWS, 1998.
13. X. Franch, J.M. Ribó. “A two-tiered Methodology for Metamodel Extension Applied to

UML 1.4”. Technical Report LSI-04-51-R, LSI-UPC, November 2004.
14. A. Finkelstein, G. Spanoudakis, M. Ryan. “Software Package Requirements and Procure-

ment”. In Proceedings of the 8th IEEE International Workshop on Software Specification
and Design (IWSSD), 1996.

15. Gartner Consulting. http://www4.gartner.com/Init. Last accessed November 2004.
16. F. García, F. Ruíz, M.F. Bertoa, C. Calero, M. Genero, L. Olsina, M. Martín, C. Quer, N.

Tondori, S. Abrahao, A. Vallecillo, M. Piattini. “Una Ontología de la Medición del Soft-
ware”. Informe Técnico UCLM DIAB-04-04-2, Febrero 2004.

17. M. Goulao, F. Brito. “Formalising Metrics for COTS”. In Proceedings of the 1st Interna-
tional Workshop of Models and Processes for the Evaluation of COTS components
(MPEC), held jointly with ICSE 2004.

18. M. Genero, G. Poels, M. Piattini. “Defining and Validating Measures for Conceptual Data
Model Quality”. In Proceedings 14th International Conference on Advanced Information
Systems Engineering (CAiSE’04), LNCS 2348, Riga (Latvia), June 2002.

19. R. Glass, I. Vessey. “Contemporary Application Domain Taxonomies”. IEEE Software,
12(4), 1995.

20. IEEE Standard 1061-1992. Standard for a software quality metrics methodology. 1992.
21. ISO/IEC Standard 9126-1 Software Engineering – Product Quality – Part 1, 2001.
22. ISO/IEC Standard 9126-2 Software Engineering – Product Quality – Part 2, 2003.
23. Y. Jiang, W. Shao, L. Zhang, Z. Ma, X. Meng, H. Ma. “On the Classification of UML’s

Meta Model Extension”. In Proceedings of the 7th UML International Conference, LNCS
3273, 2004.

24. B. Kitchenham, R. Hugues, S.G. Linkman. “Modeling Software Measurement Data”.
IEEE Transactions on Software Engineering, 27(9), 2001.

25. S. Keller, L. Kahn, R. Panara. “Specifying Software Quality Requirements with Metrics”.
System and Software Requirements Engineering – IEEE Computer Society, 1990.

26. MOF 2.0 Core Final Adopted Specification. Document ptc/03-10-04.
27. D.L. Moody. “Metrics for Evaluating the Quality of Entity Relationship Models”. In Pro-

ceedings of the 17th International Conference on Conceptual Modelling (ER’98), Singa-
pore, LNCS 1507, November 1998.

28. D.R. Musser, A. Saini. STL Tutorial and Reference Guide. Addison-Wesley, 1996.
29. K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric Comput-

ing. Cambridge University Press, 1999.
30. L. Olsina, M.A. Martín. “Ontology for Software Metrics and Indicators: Building Process

and Decisions Taken”. In Proceedings of Web Engineering - 4th International Conference
(ICWE), LNCS 3140, 2004.

31. M. Saeki. “Embeding metrics into Information Systems Development Methods: an Appli-
cation of Method Engineering Technique”. In Proceedings International Conference on
Advanced Information Systems Engineering (CaiSE03), LNCS 2681.

 A MOF-Compliant Approach to Software Quality Modeling 191

32. Software Engineering Institute (CMU). The Capability Maturity Model: Guidelines for
Improving the Software Process. Addison-Wesley, 1995.

33. Software Process Engineering Metamodel (SPEM).OMG doc. formal/2005-01-06
34. S.S. Stevens. “On the theory of scale types and measurement”. Science 103, 1946.
35. UML testing profile. OMG document ptc/04-04-02.
36. UML 2.0 Infrastructure Final Adopted Specification, document ptc/03-09-15 and UML 2.0

Superstructure Final Adopted Specification, document ptc/03-08-02, available at
http://www.uml.org/, last accessed March 2005.

37. H. Zuse. Framework of Software Measurement. De Gruyter, 1998.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 192 – 208, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Conceptual Modeling Based on Transformation
Linguistic Patterns

Isabel Díaz1,2, Juan Sánchez2, and Alfredo Matteo1

1 Universidad Central de Venezuela – Laboratorio TOOLS – Escuela de Computación,
Ciudad Universitaria, Facultad de Ciencias, Caracas 1051, Venezuela

{idiaz, amatteo}@kuaimare.ciens.ucv.ve
2 Universidad Politécnica de Valencia – Dpto. de Sistemas Informáticos y Computación,

Camino de Vera s/n, E-46022 Valencia, España
{idiaz, jsanchez}@dsic.upv.es

Abstract. Many object-oriented development approaches specify the system
functional requirements by means of use cases. During the requirements
analysis, these approaches generally agree on expressing the system behaviour
using two representations: the Object Model and the Interaction Model. The
Interaction Model development is subordinated to the Object Model
construction, which provides the former with the basic information of the object
classes. The Interaction Model contributes to identifying the class operations.
Although these models are closely linked and their development is supposed to
be iterative, in practice, there are no established mechanisms that guarantee the
consistency of both models throughout their construction. The Interaction
Model information is also under-used or underestimated in the Object Model.
Persistent connections between the analysis models and the Use Case Model are
not recognized. A framework to simultaneously construct the Object Model and
the Interaction Model from use cases is described in this paper. Its main
purpose is to strengthen the information exchange between the models so that it
is complementary and consistent. To fulfil this purpose, the framework is
centered on a transformation model based on linguistic patterns.

1 Introduction

The specification and analysis of software behaviour are two of the most important
activities in system development [1,2]. In the first phases of its life cycle, these
activities are determinant in understanding the system functionality. The behaviour
specification is a description of the functional requirements that shows the
information exchange established between the system and the elements in its
surroundings. Nowadays, most object-oriented software development approaches
specify system behaviour by means of the Use Case Model [3,4]. The analysis of the
behaviour specification describes the components that integrate the system, their
relationships and restrictions, and how these components exchange information to
provide the system with the specified functionality in the use cases. Generally, the
object-oriented software development approaches express the output of this activity
by means of the Object Model and the Interaction Model. Neither of these models is
sufficient by itself; they are complementary and must be used together for system

 Conceptual Modeling Based on Transformation Linguistic Patterns 193

design. However, in practice, the Interaction Model construction is a frequently
ignored activity. While the structural model is considered to be fundamental for the
system development, the dynamic model is often considered to be optional [5,6,7,8].
We believe that this situation originated from the high level of difficulty of these
models, especially for inexperienced modellers. Therefore, interaction modelling must
be promoted in order to take advantage of its potential during system development.

A specific framework, Metamorphosis, has been defined to achieve this objective.
The main purpose of Metamorphosis is to facilitate the Interaction Model construction
without playing down the Object Model. It places the dynamic representation at the
same level of importance as the system structural representation. The framework
assumes that the analysis models can be constructed simultaneously and iteratively,
supplementing each other. This is possible if the Interaction Model construction does
not depend on the Object Model information. Metamorphosis uses the Use Case
Model, the Object Model, and the Interaction Model as the principal artefacts to study
system behaviour. The construction of these models relies on the semantic and syntax
of the Unified Modeling Language (UML) [4]. Using the extension mechanisms that
this language provides, the UML metamodel of these artefacts has been enriched with
the information needed to establish connections between their elements.

The main goal of this paper is to describe how the Metamorphosis framework
identifies abstractions in the texts of the use cases and deduces elements of the
analysis models by means of transformation patterns. These patterns are based on the
linguistic information about the sentences of the use cases. Specifically, the action
transformation patterns describe how these sentences are converted into parts of an
Interaction Model and into parts of an Object Model. These patterns have been
specified to be automated and integrated with automatic software production
software. The paper has seven sections. Section 2 presents how the Metamorphosis
framework has been conceptualized and its transformation strategy. Section 3
describes the structure of the action transformation patterns and the function of its
elements. Section 4 shows the application process of these patterns. Section 5 presents
related works. The last two sections present our conclusions and the references.

2 Metamorphosis Transformation Strategy

Metamorphosis is a framework that has been developed to facilitate the conceptual
modelling of an object-oriented system in an automatic software production
environment [9]. The conceptual model is obtained by means of the use case
transformation. This section describes the models that participate in this
transformation and the strategy that is followed.

2.1 The Use Case Model

In Metamorphosis, the Use Case Model is the fundamental input to deduce the
Interaction and the Object Model. Each use case is considered as a behaviour unit that
is described by a text written in natural language. A use case shows the complete and
organized sequence of actions that the system must perform when interacting with the
actors in order to fulfil a certain goal. Metamorphosis assumes the UML UseCases

194 I. Díaz, J. Sánchez, and A. Matteo

Package concepts [4]. To guarantee the recognition of the linguistic properties of the
use case text, elements in this package have been extended and described in the so-
called Metamorphosis Use Case Linguistic Profile [9,10]. This profile is based on the
action concept, which is a fundamental element in the description of use cases. An
action can express: (i) a communication that is established between the actor and the
system to exchange information; (ii) an internal behaviour of the system, which
responds to the communication established with the actor. Special actions can also be
distinguished to allow conditioning, adding, or repeating actions or groups of them.

From the syntactic or grammatical perspective, an action is a use case sentence. A
use case is perceived as a text that consists of a sequence of sentences [11]. The
sentences may be simple or special. A simple sentence represents a communication or
behaviour action that can be described as a set of words, each of the which has a
syntactic category (i.e., adjective, verb, etc.). These words can also form groups,
according to the grammatical function that they fulfil in the sentence, configuring
phrase structures (i.e., noun phrase, prepositional phrase, etc.). Special sentences are
distinguished by having a predefined format that uses key words (i.e. 'INCLUDE' and
'REPEAT'). The simple sentences can be atomic or complex. Unlike the atomic
sentences, the complex sentences can be decomposed into clauses. Each clause is a
simple sentence that keeps the same object and the same verb as the original sentence.

In order to achieve a reasonable balance between documentation and
expressiveness, Metamorphosis assumes the application of only those style and
content guidelines that are mandatory to guarantee that the use cases fulfil their
purpose in the system development [12]. These guidelines are the following: (i)
sentences must be declarative, affirmative, and active; (ii) each sentence must have a
single subject and a single main verb; (iii) the main verb of the sentence must be
transitive, ensuring the presence of the direct object; and (iv) the sentence
terminology must be normalized, controlling the use of synonyms.

From the semantic perspective, a use case action can be expressed as a relationship
established between one or more semantic roles [13,14]. A sentence can be univocally
characterized by the semantic roles that it contains. Each role denotes an abstract
function performed by an element that participates in an action. This function is
defined independently from the syntactic structure of the sentence. These role
properties allow us to specify generic patterns, independent from the language that is
used to write the use cases. The roles used by Metamorphosis can be: (i) primary
roles, if they always participate in a transitive sentence such as agent (what/who
performs an action) and object (what/who undergoes an action); and (ii) secondary
roles, if they are not required by the verbal action and always appear linked to a
primary role. Some secondary roles are: destination (receiver/beneficiary of the
action), owner (what/who possesses), owned (possessed entity), state (entity status),
location (where an action takes place); and time (when the action occurs).

2.2 The Conceptual Model

The Metamorphosis Conceptual Model is expressed by means of an Object Model
and an Interaction Model [4]. The Object Model represents the system internal
components (objects/classes) and their relationships and restrictions. The purpose of
the Interaction Model is to show how these components exchange information to

 Conceptual Modeling Based on Transformation Linguistic Patterns 195

achieve the described functionality in the use cases. Interactions are the basic
elements to express the analysis of the specified behaviour. An interaction describes
the information exchange established between two or more instances to communicate
with each other [4]. In Metamorphosis, these instances are considered to be class
objects that describe the system internal composition. The classification proposed by
Jacobson is assumed (border, entity, and control classes) [3]. The information
exchange or messages among these instances represent operations of these classes.

The elements used by Metamorphosis to express the conceptual model have been
specified in two profiles: the Structure Profile and the Interaction Profile [15]. These
profiles are extensions of the UML Class Package and the UML Interaction Package,
respectively [4]. The notation is also UML 2.0 compliant. Specifically, sequence
diagrams are used to represent the interaction fragments.

If the system’s behaviour analysis is based on an action, the result is a structure
fragment and an interaction fragment. A structure fragment is a part of the Object
Model. It is formed by at least one class. This fragment is deduced from a use case
action. An interaction fragment is also an interaction that forms part of another
interaction [4]. It can be formed by one or more instances that interchange one or
more messages. An interaction fragment is derived from a use case action. The
integration all structure fragments and of all interaction fragments that are obtained
from all the use cases, allow the construction of the system Conceptual Model.

2.3 The Action Transformation Strategy

The most important activity of the Metamorphosis framework is the transformation of
actions. The complete transformation of a use case depends on the transformation of
each action that belongs to the use case. The action transformation strategy applied by
Metamorphosis is based on patterns. The purpose of the transformation patterns is to
capture transformation knowledge and reuse it suitably. Patterns specify the way that
actions are transformed. The pattern specification shows how an action is converted
into a structural fragment and into an interaction fragment [15]. The roles are used to
describe both the action and the fragments. The specification of a transformation
pattern is generic, domain-independent, and implementation-independent. The
patterns are also independent of the language used to write the sentences and their
syntactic structures. To obtain the desired structural and interaction fragments, a
transformation pattern must be applied. Thus, a sentence is transformed into specific
fragments. This requires knowing the syntactic structure associated to the roles that
participate in the sentence.

The action transformation patterns allow the identification of certain elements of
the system Conceptual Model (i.e. lifelines, classes, and messages). To identify other
elements and to verify the consistency of the Conceptual Model groups of actions
must be analyzed. Thus, the information generated for each transformed action must
be integrated. In addition, the information that can only be deduced through either a
partial or complete analysis of the use case must be incorporated into the obtained
fragment. For example, two transformation activities performed from the use case text
are: (i) to combine the interaction fragments that are deduced from each sentence of a

196 I. Díaz, J. Sánchez, and A. Matteo

use case until the interaction is completed; and (ii) to deduce the candidate parameters
of each message. Finally, the integration of the fragments deduced for each use case
allows the system Conceptual Model to be constructed. This task must resolve the
possible conflicts that are generated when all partial representations are combined.

3 Specification of an Action Transformation Pattern

An action transformation pattern is described in four parts. The first part is the pattern
heading which contains its identification and the action description that will be
transformed. The second part is the pattern body that is composed of the
transformation rules and the results obtained by its application. The third part is
dedicated to the role description used by the pattern. Finally, the fourth part is the
pattern foot, which contains observations about the pattern (this part won't be
described in this paper because it is not relevant). The elements that specify a pattern
are explained in this section and an example is presented.

3.1 The Pattern Heading

The pattern heading is composed of the following elements: the pattern name, the
action description, and the application context description of the pattern. Table 1
shows the simplified version of the heading of a Metamorphosis pattern.

(i) Name. It is the identification of a pattern that distinguishes it from the others.
The Going Downstairs name illustrates the action type and the transformation
solution that describes this pattern (Table 1).

(ii) Action description. It is a concise explanation about an action that must be
transformed by means of the specified pattern. Language natural is used to express
this description in order to facilitate its initial comprehension. The action is described
from a conceptual and semantic perspective.

(iii) Action context. It describes the canonical form of an action in terms of
semantic roles. The context indicates the roles that must be identified in an action so
that the transformation rules can be applied. It also establishes the frequency,
restrictions, and conditions of these roles. An action context is specified by means of:

 A name that distinguishes an action context from the others.
 A formula that allows determining if an action fulfils a context. An action context
(AC) is specified using a logic formula AC=<α, μ, ψ>, where α is a set of
variables that represent roles, μ is a set of auxiliary constants, and ψ is a set of
functions that are applicable to the AC terms. The formula of the Owning Chain
context uses the following action roles: agent, object, destination, state,
owner and owned (Table 1). BasicAction, Ownership and SetState are
Boolean functions. The application of the NumberOf function produces an integer
value. The use of the symbol "_" indicates the value absence of a variable.

 A graphic representation of the action context that describes its roles and the
relationships established among them. Its main purpose is to facilitate
comprehension of the action context. This graph shows the roles that participate in

 Conceptual Modeling Based on Transformation Linguistic Patterns 197

the context and its restrictions by means of a UML class diagram. To indicate that
the classes of this diagram represent roles, the <<role>> stereotype was
introduced. The graphic expression of this stereotype is a straight slash placed in
front of the role name ("|roleName"), as is suggested in [16]. The Owning Chain
diagram indicates that an only agent instance participates in the action context
(Table 1). However, in this context, two or more Ownership must be established.
The information of an action context diagram can be complemented with other
types of specifications (i.e. restrictions and properties).

 A description in natural language about the action context.

3.2 The Pattern Body

The pattern body supplies information about the expected solution. This solution is
the outcome of the action transformation into analysis model fragments. These
fragments express the action analysis from the dynamic and static perspectives.
Table 2 shows the pattern body whose heading is specified in Table 1 (the Going
Downstairs pattern). The elements that describe the pattern body are the following:

(i) Transformation Rules. They describe how the participants of an action context
are turned into elements of a fragment through the use of roles. These rules generate
both the dynamic fragment and the static fragment at the same time. The left side of a
rule corresponds to the roles used to specify the interaction fragment as well as the
structural fragment; i.e. initiator, bridge and script are fragment roles and are
localized on the left side of the rule (see Table 2). The right side of each rule shows
how to identify the fragment elements. To recognize these elements, a formula that
applies functions to action context roles is used.

For example, in order to identify the ith bridge of a fragment, the Kernel
function is applied to the jth owner in the action context. This function extracts the
most important constituent of the owner (in syntactic terms, this constituent is the
noun head used to owner). The result obtained when the Kernel function is applied
must be normalized. The Norm function expresses this result in its canonical form.
Another rule in Table 2 uses the difference function (~) that takes all the components
from the owner that does not belong to its Kernel. Thus, the ith attach is obtained
from the jth owner constituents. The signature of the script element is deduced by
a Sequence function. This function constructs a label with the verbalAction and
the previously normalized object.

(ii) Dynamic Model Fragment. When an action is transformed, an interaction
fragment is obtained. In Metamorphosis, the interaction fragments are specified by
means of a generic structure. This structure uses roles to represent several interaction
types and to add semantics to improve its comprehension [16]. The interaction
fragment generated from an action that satisfies the pattern context is described using:
a name that distinguishes one interaction fragment from the others; a graphic
representation that shows the element layout that participate in the interaction pattern.
These elements are represented by means of roles and a description in natural
language about the interaction fragment.

198 I. Díaz, J. Sánchez, and A. Matteo

Table 1. The heading of an action transformation pattern

NAME Going Downstairs

ACTION
DESCRIPTION

This pattern can be applied to an action that represents an internal behaviour of the
system. The action indicates a state change of a single system component. In order to
carry out this change, this component or entity is found by means of other entities that are
its owners. Each owner entity belongs to another owner entity until the relevant entity is
recognized. The action explicitly expresses the ownership relation between the entity that
will be changed and its owner entities.
Name Owning Chain

Formula ∀V,A,O,St,Or,Od:
∃n>1 / NumberOf(Ownership)=n ∧
BasicAction(verbalAction:V,agent:A,object:O,destination:_) ∧
(SetState(object:O,state:St)∨ SetState(object:O,state:_)) ∧
(∀i=1..n Ownershipi(owneri:Or,ownedi:Od) ∧
 owned1:O ∧ ownedi:owneri-1);

Graphic
Representation

|agent
|state [0..1]

|object

1

|ownershipOwning Chain AC

1 1
VerbalAction

2..*
{ordered}

|owner

|owned

1

1

1

1+ownership

+ownership

+owned

+owner

ACTION
CONTEXT

Description This context describes actions that have an active entity that initiates or
controls the action (the agent) and a passive entity on which such action falls (the
object). The action does not have an entity that fulfils the destination role (this
is indicated by the symbol "_"). The state change undergone by the object (as a
consequence of the action performed) may or may not have been explicitly expressed.
The action must have more than one Ownership relationship between an owner
entity and an owned entity. The NumberOf function is used to determine the number
of Ownership relationships that are present in the action. The first of these
relationships is established between the object and an owner entity. The remaining
Ownership relationships are established among entities such that an owner entity in
an Ownership is an owned entity in the following Ownership relationship. The
agent and object roles must participate only once in the action so that the pattern
can be applied. The state role is an attribute of the object role which may or may
not be present in the action. It must have two or more Ownership relationships
established in the action.

Table 2 describes the Domino Effect Interaction Fragment. This

representation can be obtained using the specified transformation rules. The
information contained in this representation is enriched with the semantics provided
by the UML elements [4]. For example, it can be observed that the messages are
synchronous. The execution of each message activates the execution of another
message; the execution of a message is not completed until the activated message has
finished. Other transformation patterns apply UML operators to specify message
concurrency, choice of alternative traces, or weak/strict sequencing of the messages.

(iii) Structural Model Fragment. It is a part of the system Object Model that is
deduced from an action. This part is described by means of a generic structure. Roles
are used to strengthen the semantics of this structure [16,17]. A structural fragment
has: a name that distinguishes it from the others; a graphic representation that shows

 Conceptual Modeling Based on Transformation Linguistic Patterns 199

the layout of the elements that participate in the interaction pattern and a description
in natural language about the interaction fragment.

A structural fragment can be obtained using the transformation rules specified by
the pattern. However, the deduction of a structural fragment is independent of the
generation of the interaction fragment corresponding to the same action. These
fragments can be obtained simultaneously or each one can be obtained separately at
different times. Although the structural and interaction fragments share information
that is obtained using the same rules, their deduction process can be carried out
independently. The consistency of the structural fragments and the interaction
fragments is guaranteed by the application of the same action transformation rules.

Because the structural fragment is generated in the context of an action, the
information presented can be incomplete. The fragment representation must be
complemented with the information obtained from other actions. To express this
limitation, the information that can be changed is introduced inside brackets. This can
happen with the multiplicity and the parameters of a structural fragment. Table 2
shows the Initiator-Performer Bridge Structural Fragment. The
information presented is enriched with UML elements [4]. Thus, the {optional}
constraint applied to the initiator class indicates that this class may or may not
participate in the fragment. This depends on the information that is required in the
model.

3.3 Role Description

In order to facilitate the comprehension of the transformation patterns, a role model
is also presented [16,17]. In this model, a role defines a subtype of a metamodel class
or a base metaclass. The roles specify the properties that a model element must
have in order to be part of a transformation pattern. The specialization with roles is
fulfilled from the Metamorphosis Interaction and Structure Profiles. This is
represented using a class diagram, but other specifications can be used to complement
this information.

Figure 1 presents a part of the role model corresponding to the Going Downstairs
pattern. The role model of the Initiator-Performer Bridge Structural

Fragment has the following characteristics. The bridge and performer represent
entity classes in the system domain. There are one or more bridge classes but only
a performer class can be contained in the structural fragment. initiator
represents a border class or a control class. If there is an initiator class in the
structural fragment, there is only one. The fragment has one or more attach
relationships. The character represents a class attribute. A class can have zero o
more explicitly specified attributes. Only a script operation participates in the
structural fragment.

The same role can represent several metaclasses in both the interaction fragment
and in the structural fragment. For example, the attach role is a type of association
relationship in Initiator-Performer Bridge Structural Fragment.
However, this role is a type of message in Domino Effect Interaction
Fragment. In addition, the same role can be used by several patterns, but it must
maintain its semantics when the role participates in the same fragment type.

200 I. Díaz, J. Sánchez, and A. Matteo

Table 2. The body of the Going Downstairs pattern

initiator agent

bridge[i] <Kernel(owner
k
)> NORM ∀i=1..(n-1) ∧ ∀k=(n-1)..1

performer <Kernel(owner
1
)> NORM

attach[i] Owner
k
~Kernel(owner

k
) ∀i=1..(n-1) ∧ ∀k=n..1

update Sequence(verbalAction,<object>
NORM,state)

character[i] <Kernel(object)NORM>
k
 ∀k=1..m ∧ GetState(object)<>"_"

TRANSFORMATION
RULES

script Sequence(<verbalAction>
NORM,<Kernel(object)>NORM)

Name Domino Effect Interaction Fragment

Graphic
Representation

:|initiator

|attach[1] ::::::::::: :::::::::::

::::|bridge[n] ::: :|bridge[1]:|bridge[i]:|bridge[n-1]

|attach[2]
|attach[i] |attach[n] |update

i: 1 .. n
n > 1

:|performer

DYNAMIC
MODEL
FRAGMENT

Description Three lifeline roles are used: (i) initiator is played by an instance
of an initiator class; (ii) bridge[i] is played by the ith bridge instance in
the set of bridges; and (iii) performer is played by an instance of a performer
class. The messages are synchronous. An initial message is sent by an initiator
instance to a bridge instance. The message attach relates a sender instance to a
receiver instance. This message induces the receiving instance to send another
message to another bridge instance and so on, until a bridge instance sends a
message to a performer instance. This message activates the update operation
that changes the performer instance state.
Name Initiator-Performer Bridge Structural Fragment

Graphic
Representation

STRUCTURAL
MODEL
FRAGMENT

Description The following roles denote three different types of object classes:
initiator, bridge and performer. These classes are entity classes except for
the initiator class. In the action context, one or more attributes can be assigned to
the performer class. character plays the role of these attributes. In addition, the
performer class has at least one operation. The script represents this operation,
which can have parameters. attach is a type of association relationship established
among the classes. Some or all these relationships can be aggregations and/or
compositions. In the action context, the multiplicity of the class relationships is 1 to 1.

Twenty-five transformation patterns have been specified so far. The actions of

these patterns correspond to simple sentences (atomic and complex) or special
sentences (see Section 2.1). The dynamic aspect of these patterns was validated
empirically. A validation strategy was designed in order to determine whether the
patterns generated the interaction fragments expected by expert analysts. This
experience also allowed us to both identify new patterns and to improve the specified

 Conceptual Modeling Based on Transformation Linguistic Patterns 201

FragmentClass

ClassOperation

1..*

Actor

BorderClass EntityClass

Init-Perf Bridge

bridge

initiator

attach

script

1..*

1

0..1

1

1..*

*

ControlClass

{xor}

FragmentParameter

*

parameter**

ROLES OF THE INITIATOR-PERFORMER STRUCTURAL FRAGMENT

StructuralFragment

*

1

FragmentRelationship

character
ClassAttribute *

1..*

1..*

{ordered}

METAMORPHOSIS STRUCTURE PROFILE

performer

{ordered}

Fig. 1. The role description of the Going Downstairs pattern (partial view)

patterns. A grammar that describes syntactic information of sentences written in
Spanish was defined to validate the patterns. In addition, a tool to automatically
obtain the interaction fragment from each sentence was developed. This tool was
integrated into a software automatic production environment [9]. Although the
obtained results have been positive, the validation strategy must be reinforced and
extended in order to prove the structural fragments of the specified patterns.

4 Application of an Action Transformation Pattern

To apply a transformation pattern to a particular sentence, this pattern must be
instantiated. This consists of assigning a grammatical expression to the semantic roles
used to specify each pattern. For example, the agent role may be linked to a noun
phrase and the owner role to a prepositional phrase that contains an "of" preposition.
At the instantiation level, the patterns are dependent on the language used to write the
use cases. A grammar can be used to specify this match.

The application of a transformation pattern assumes the action is a sentence that
fulfils the style and content guidelines indicated in Section 2.1. The sentence must
also contain the corresponding syntactic and semantic information (constituents/
phrases and semantic roles). This implies that: (i) the roles of the sentence have been
identified; and (ii) each role identified is linked with a phrase. Thus, the action can be
analyzed as a sentence from the syntactic perspective. The application of a pattern
obtains the structural and interaction fragments that correspond to a particular
sentence. This process is described in an example later on. The way how the resultant
fragments are integrated with other fragments previously obtained is also shown. The
sentence of the Table 3 will be used as an example. The information contained in this
sentence is presented also in Table 3.

Basically, the application process of any pattern can be performed in two steps.
The first step: to recognize the pattern that must be applied. It implies

determining which action context fulfils a sentence. The contexts specified by each
pattern are used for this purpose. A sentence can only fulfill only one context. There
is only one action context for each transformation pattern. The example sentence
satisfies the Owning Chain Context (see Table 1). Table 4 shows the formula

202 I. Díaz, J. Sánchez, and A. Matteo

evaluation of this context. Because the Owning Chain Context belongs to the
Going Downstairs pattern, this pattern must be applied to the example sentence.

Table 3. Example sentence

"The system verifies the deadline of the rental contract of each lessee of the real estate agency"

{ The (system)head }noun-phrase/subject(agent)
{ verifies }main-verb
{ [the (deadline)head] noun-phrase/direct-object(object/owner)

 [(of)((the)(rental contract)head)noun-phrase]of-prepositional-phrase(owned/owner)}
{ [of (each (lessee) head) noun-phrase] of-prepositional-phrase(owned/owner)

[(of)((the) (real estate agency) head) noun-phrase] of-prepositional-phrase(owned/owner) }

Table 4. Example of sentence context evaluation

"The system verifies the deadline of the rental contract of each lessee of the real estate agency"

NumberOf(Ownership)=3 ∧ SetState(object: 'the deadline',state:'_') ∧
BasicAction(verbalAction: 'verifies',agent: 'The system',
 object: 'the deadline',destination:'_') ∧
Ownership

1
(owner

1
: 'of the rental contract',owned

1
: 'the deadline') ∧

Ownership
2
(owner

2
: 'of each lessee',owned

2
: 'of the rental contract') ∧

Ownership
3
(owner

3
: 'of the real estate agency',owned

3
: 'of each lessee') ∧

owned
1
: 'the deadline' ∧ owner

1
:owned

2
 ∧ owner

2
:owned

3
;

The second step: to obtain the structural and interaction fragments. This

consists of applying the transformation rules of the identified pattern. When the
transformation rules of the Downstairs pattern are applied to the example sentence,
the followings fragments are obtained: Domino Effect Interaction Fragment
and Initiator-Performer Bridge Structural Fragment (see Table 2).
Figures 2 and 3 show the graphic representation of these fragments. The elements of
these fragments were obtained as follows:

(i) A border/control lifeline/class (initiator) whose name is extracted from the noun-
phrase head of the agent (System).

(ii) Two lifelines/classes (bridge roles): Real Estate Agency and Lessee. These
elements were recognized from the noun-phrase head of of-prepositional-phrases
(owner roles). The canonical form of each head was verified.

(iii) A lifeline/class (performer role): Rental Contract obtained from the noun-phrase
head of an of-prepositional-phrase (owner role). The head canonical form was
determined.

(iv) Two synchronous-messages/association-relationships (attach roles): of the and of
each. They are obtained using of-prepositional-phrases (owner roles) as follows:
the difference function (~) takes all the components from the Owner that does not
belong to its kernel.

 Conceptual Modeling Based on Transformation Linguistic Patterns 203

(v) A synchronous-message (update role): Verifies the dealine. It is deduced by a
Sequence function. This function constructs a label using information from the
verbalAction, object, and state roles.

(vi) An operation (script role): Verify deadline. It is deduced by a Sequence
function. This function constructs a label using information from the
verbalAction and object roles.

(vii) No attribute was identified (character role) because the object state was not
explicitly expressed in the example sentence (state role).

:System :Real Estate
Agency

of the

:Lessee

of each

:Rental
Contract

Verifies the
deadline

System

Lessee
(1) (1)

(1)

(1)

ofEach

Rental Contract

verifyDeadline

ofTheReal Estate Agency

Fig. 2. An example of an Interaction Fragment Fig. 3. An example of a Structural
Fragment

In order to deduce the conceptual model whose scope is a use case, the fragments

of each of their actions must be integrated. The integration process consists of
combining the fragments of an action with the partial representation obtained up to
the previous action. The fragment integration is carried out "action by action" in the
same order established by the action sequence of the use case. A partial representation
is the result of combining: (i) the fragments obtained from two actions; or (ii) a
fragment with a partial representation. The integration process must guarantee the
consistency (resolution of conflicts) and the completeness of the conceptual model.

Next, we are going to show how the fragments obtained from example sentence
(Figures 2 and 3) are integrated with the fragments deduced from another sentence
that belongs to the same use case. Table 5 presents a partial view of the action
transformation pattern applicable to sentences such as the following: "The system
registers the personal details of the lessee and the address of the property in the
rental contract". Figure 4 and Figure 5 present the fragments obtained when this
pattern is applied to the sentence.

:Rental

Contract

Registers the
personal details

:Property

Registers
address

par

:System :Leesse

Registers the personal
details of the lessee and
the address of the
property

(1) (1)

address
Property

Register(address)

(1)

(1)

Rental Contract

Register(persDetails, address)
personal details

Leesse

Register(persDetails)

Fig. 4. Another example of an Interaction
Fragment

Fig. 5. Another example of a Structural
Fragment

In order to obtain the partial representation of the conceptual model, two basic
rules are applied: (i) the fragment elements to be integrated that are not in the partial

204 I. Díaz, J. Sánchez, and A. Matteo

Table 5. Another action transformation pattern (partial view)

PATTERN NAME Concurrent Relief by the Right

DESCRIPTION This pattern can be applied to actions that represent an internal behaviour. The action
produces a change or makes a consultation of the properties of a system entity. This
entity sends concurrent messages to other entities in order to change or to consult their
properties. Grammatically, the action is a sentence that can be decomposed into two or
more clauses. Each clause keeps the agent, the verbalAction and the
destination of the object that has the complete action. The clause object can
be equal or different to the object of the other clause. Each clause always has a
single ownership relationship established between the object (the owned) and an
owner entity. The object of each clause may or may not be linked to a state
explicitly.
Name Distributed Action by the Right ACTION CONTEXT

Formula ∀V,A,O,V,Or,Od,S: ∃n>1 / NumberOf(Clauses)=n ∧
(∀i=1..n, Clausesi(verbalAction:V,agent:A,
 objeti:Oi,destination:D) ∧
 Ownershipi(owneri:Ori,ownedi:Odi) ∧
 (SetStatei(objeti:Oi,state:Si) ∨
 SetStatei(objeti:Oi,state:_)));

initiator agent

container <Kernel(destination)>
NORM

executor[i] <Kernel(owneri)>
NORM

 ∀i=1..n
activator Sequence(<verbalAction>

NORM,
 Ownership<objecti,owneri>) ∀i=1..n

update[i] Sequence(<verbalAction>NORM,<objecti>
NORM) ∀i=1..n

TRANSFORMATION
RULES

p[i] <Kernel(objecti)
NORM> ∀i=1..n

Name Pass on Batons INTERACTION
FRAGMENT Graphic

Representation
|container

|baton-1(|p1)

:::::::::::

:::::::::::

:::|relay-1 :::|relay-2 |relay-i |relay-n

par

|initiator
|activator(|p1,…,|pn))

|baton-2(|p2)

|baton-i(|pi)

|baton-n(|pn)

Name Container of Batons STRUCTURAL
FRAGMENT
 Graphic

Representation

|initiator
(1) (1)

∀i=1..n

The aggregation can
be by composition

|pi

|relay-i

|baton-i (|p i)

|container

|activator(|p1,|p2,…,|pn)

{optional}
It can be represented
as a boundary class
or a control class

 Conceptual Modeling Based on Transformation Linguistic Patterns 205

:Rental
Contract

Registers the
personal details

:Property

Registers
address

par

:System :Lessee

Registers the personal
details of the lessee and
the address of the
property

:Real Estate
Agency

of the

of eachVerifies the
deadline

(1) (1)

address
Property

Register(address)

(1)

(1)

Rental Contract

Register(persDetails,address)
personal details

Lessee

Register(persDetails)

(1) (1)

ofEach

Real Estate Agency

verifyDeadline

(1)

(1)

ofThe

Fig. 6. Interaction Model Fig. 7. Object Model

representation obtained up to that point are added to the partial representation with all
their properties (i.e. lifelines, association relationships, etc.); (ii) the fragment
elements to be integrated that are in the partial representation must be checked to
guarantee that the properties of these elements are kept. An integration conflict is
generated when the properties of the same element take a different value both in the
fragment to be integrated and in the partial representation. Depending on the type of
property, some rules are applied to resolve the conflict. For example, if the
multiplicity of a relationship established between classes is different, then the greatest
multiplicity is taken into account. This rule determines whether the element must be
modified or kept in the partial representation after the fragment integration. Some
conflicts can only be resolved by carrying out a thorough analysis of the overall use
case or system. This is the case of some class attributes and message or operation
parameters. The study of the integration conflicts are beyond the scope of this paper.

The result of integrating the fragments obtained from the sentences used as
examples are presented in Figures 6 and 7. To illustrate the integration process, it was
assumed that the action "The system verifies the deadline of the rental contract of
each lessee of the real estate agency" (Figures 2 and 3) is located in the use case after
the action "The system registers the personal details of the lessee and the address of
the property, in the rental contract" (Figures 4 and 5). Figure 6 shows the partial
representation obtained when the lifeline Real Estate Agency and the
messages described in Figure 2 are introduced. Figure 7 incorporates an association
relationship (ofEach) between the classes Rental Contract and Lessee with
the fragment represented in Figure 5. The class Real Estate Agency was also
incorporated as well as an association relationship (ofThe) between this class and
the class Lessee. The complete conceptual model of a use case can be achieved by
applying a similar strategy.

5 Related Works

In this paper, we have proposed a framework to simultaneously construct the Object
Model and the Interaction Model from textual descriptions of use cases. To the best of

206 I. Díaz, J. Sánchez, and A. Matteo

our knowledge, there is no other approach that proposes such a construction process.
However, there are some partially related approaches. The linguistic-oriented
approaches are based on the application of Natural Language Processing techniques
(i.e., parsers, grammars, semantic roles, etc.). These approaches are very effectives to
identify some primitives of the conceptual model [18,19,20]. However, the models
can not be obtained directly (intermediates models are required) and the participation
of the analyst is very necessary to complete them. The heuristic-oriented approaches
are based on the application of "step to step" procedures to construct a complete and
robust conceptual model [3,5,8]. The weaknesses of these approaches are the
strategies proposed to recognize the model primitives. Other approaches try to
achieve a balance between the linguistic and heuristic approaches [21,22]. These
approaches generate interaction models or structural models independently without to
establish links between them.

6 Conclusions and Further Work

This paper describes a framework created to obtain conceptual model fragments from
the sentences of a use case. This framework defines an automatic transformation
strategy based on patterns that use the linguistic information of use cases. This
strategy establishes persistent links among the use cases and the corresponding
conceptual fragments. The patterns register the knowledge regarding the action
transformation of use cases into conceptual model fragments. This knowledge is
captured as reusable and generic solutions. The patterns facilitate the study of the
correctness, completeness, and consistency of the designed transformations. They also
contribute to the documentation, creation, understanding, application, and
maintenance of this knowledge. In addition, the patterns are based on roles to provide
special meaning to the model elements and facilitate their recognition. The roles allow
the patterns to be independent from the language that is used to write the use cases.

The Metamorphosis transformation strategy can simultaneously generate both the
Object Model fragment and the Interaction Model fragment from each sentence of a
use case. However, the construction of a fragment is independent of the construction
of the other fragment. The consistency of the structural fragments and the interaction
fragments is guaranteed by the application of the same action transformation rules to
obtain the elements that are shared by both types of fragments.

Our work is currently oriented towards establishing a permanent validation strategy
of the transformation patterns for the purpose of guaranteeing its timely customization
and expansion. This involves identifying the new action contexts, designing their
corresponding fragments, and verifying that such correspondence is valid. The
definition of an evolution and integration strategy of the fragments is also required. It
seeks to guarantee the consistency when these models undergo changes as well as
guarantee the traceability between the different elements.

Acknowledgments

This work has been developed with the support of: (i) the project Destino Nº
TIN2004-03534, MEC, Spain; and (ii) the Council of Humanistic and Scientific
Development of the Central University of Venezuela (CDCH/UCV).

 Conceptual Modeling Based on Transformation Linguistic Patterns 207

References

1. Van Lamsweerde A.: Requirements Engineering in the Year 2000: A Research
Perspective, Proc. of the 22nd Conference on Software Engineering (ICSE'00), pp. 5-19,
ACM Press.

2. Nuseibeh B., Easterbrook S.: Requirements Engineering: A Roadmap, in Proceedings of
the 22nd Conference on Software Engineering (ICSE'00), Conference on The Future of
Software Engineering, pp. 37-46, ACM Press.

3. Jacobson I., Christerson M., Jonsson P., Övergaard G.: Object-Oriented Software
Engineering. A Use Case Driven Approach, Addison-Wesley, 1992.

4. Object Management Group: Unified Modeling Language: Superstructure Specification,
Version 2.0, August 2003, http://www.omg.org/uml.

5. Larman C.: Applying UML and Patterns: an Introduction to Object-Oriented Analysis and
Design and Iterative Development (3rd ed), Prentice-Hall, USA 2004.

6. Rosenberg D., Scott K.: Use Case Driven Object Modelling with UML: a Practical
Approach, Addison-Wesley Longman, Inc., USA, 1999.

7. Song I.-Y.: Developing Sequence Diagrams in UML, in A.R. Tawil, N.J. Fiddian & W.A.
Gray (Eds.), Proceedings of the 20th International Conference on Conceptual Modeling:
(ER'01), p.p. 368-382, Springer-Verlag, Berlin, 2001.

8. Hilsbos M., Song I.-Y.: Use of Tabular Analysis Method to Construct UML Sequence
Diagrams, in Proceedings of the 23th International Conference on Conceptual Modeling
(ER'04), pp. 740-752, Springer-Verlag, Berlin, 2004

9. Díaz I., Moreno L., Fuentes I., Pastor O.: Integrating Natural Language Techniques in OO-
Method, in Proceedings of the Sixth International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing'05), LNCS 3406, 560-571, Springer-
Verlag, 2005.

10. Rolland C., Ben-Achour C.: Guiding the Construction of Textual Use Case Specifications.
Data & Knowledge Engineering 25(1998), 125-160. Elsevier Science B.V.

11. Díaz I., Losavio F., Matteo A., Pastor O.: A Specification Pattern for Use Cases,
Information & Management, Vol. 41/8 (2004), pp. 961-975, Elsevier Science B.V.

12. Ben Achour C., Rolland C., Maiden N.A.M., Souveyet C.: Guiding Use Case Authoring:
Results of an Empirical Study, in Proceedings of the Fourth IEEE International
Symposium on Requirements Engineering (RE'99), pp. 36-43.

13. Gildea D., Jurafsky D.: Automatic Labeling of Semantic Roles, Computational
Linguistics, 28(3): 245-280, 2002.

14. Fillmore Ch.: The Case for Case. In Universals in Linguistic Theory, ed. By Bach &
Harms. New York: Holt, Rinehart & Winston. 1968.

15. Díaz I., Moreno L., Pastor O., Matteo A.: Interaction Transformation Patterns based on
Semantic Roles, in Proceedings of the 10th International Conference on Applications of
Natural Language to Information Systems (NLDB'05), LNCS 3513, pp. 239-250,
Springer-Verlag, Junio 2005.

16. France R., Kim D., Ghosh S., Song E.: A UML-Based Pattern Specification Technique,
IEEE Transactions on Software Engineering, Vol. 30, Nº 3, pp. 193- 206, March 2004,.

17. France R., Ghosh S., Song E., Kim D.: A Metamodeling Approach to Pattern-Based
Model Refactoring, IEEE Software, Special Issue on Model Driven Development, Vol. 20,
Nº 5, pp. 52- 58, September-October 2003.

18. Burg, J.F.M., van de Riet, R.P.: Analyzing informal requirements specifications: a first
step towards conceptual modeling. Proceedings on Applications of Natural Language to
Information Systems (NLDB’96). Amsterdam, The Netherlands, IOS Press. 1996.

208 I. Díaz, J. Sánchez, and A. Matteo

19. Flield, G., Kop, C., Mayerthaler, W., Mayr H., Winkler C., Weber Ch., Salbrechter A.:
Semantic Tagging and Chunk Parsing in Dynamic Modeling. Natural Language
Processing and Information Systems. LNCS 3136, pp. 421-426, Springer-Verlag, 2004.

20. Juristo, N., Moreno, A.M., López, M.: How to use linguistic instruments for object-
oriented analysis. IEEE Software, 17, 3, 80-89 (2000).

21. Feijs, L.M.G.: Natural language and Message Sequence Chart representation of use cases.
Information and Software Technology, 42, 633-647, 2000.

22. Mencl V.: Converting Textual Use Cases into Behaviour Specifications, Technical Report
2004/05. Charles University, Department of Software Engineering. Czech Republic.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 209 – 224, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Applying Modular Method Engineering to Validate
and Extend the RESCUE Requirements Process

Jolita Ralyté1, Neil Maiden2, Colette Rolland3, and Rébecca Deneckère3

1 CUI, University of Geneva, Rue de Général Dufour, 24, CH-1211 Genève 4, Switzerland
ralyte@cui.unige.ch

2 Centre for HCI Design, City University, Northampton Square, London EC1V OHB, UK
N.A.M.Maiden@city.ac.uk

3 CRI, University of Paris 1 – Sorbonne, 90 Rue de Tolbiac, 75013 Paris, France
{rolland, denecker}@univ-paris1.fr

Abstract. Configuring and applying complex requirements processes in
organisations remains a challenging problem. This paper reports the application
of the Map-driven Modular Method Re-engineering approach (MMMR) to a
research-based requirements process called RESCUE. RESCUE had evolved in
the light of research findings and client requests. The MMMR approach was
applied to model the RESCUE process, identify omissions and weaknesses, and
to reason about improvements to RESCUE that are currently being
implemented. Results have implications for both the scalability and
effectiveness of the MMMR approach and for innovative requirements
processes such as RESCUE.

1 Introduction

Establishing the requirements for software-based socio-technical systems remains a
challenge for many organisations. One reason for this is the increasing complexity of
the processes needed to establish such requirements effectively. Although some
robust processes are emerging, such as REVEAL [4], KAOS [16] and RUP [6], we
still lack tried-and-tested techniques for manipulating and adapting these requirements
processes so that they meet the needs and constraints of client organisations. This
paper reports the results of a collaboration between method engineering and
requirements engineering researchers to apply one formalism – the MAP formalism
[14] – to model and extend the RESCUE requirements process [10].

Our objectives for this work were two-fold. The RESCUE team wanted to validate
and extend the RESCUE process and improve its effectiveness in future requirements
engineering projects. The authors of the MAP formalism wanted to test the utility of
the map-driven method re-engineering (MMMR) approach [12] for verifying,
extending, customising and integrating a full-scale requirements process. RESCUE is
a complex and multi-disciplinary process that has been used to specify requirements
for several air traffic management systems [9; 10]. In spite of these successes the lack
of a formal representation of the process led to concerns about the completeness and
effectiveness of RESCUE. Therefore the MMMR approach was applied to achieve
three goals. Firstly, it was applied to verify the RESCUE process to discover gaps and
inconsistencies in the process. In the MMMR approach this was achieved by

210 J. Ralyté et al.

discovering missing and single strategies for achieving process intentions. Secondly it
was used to extend RESCUE by adding new strategies based on reported good
practice and academic research for scenario-based requirements processes. Thirdly,
the maps were used to enable local customization of RESCUE to meet client process
needs and constraints.

The remainder of this paper is in 5 parts. Section 2 describes the MMMR approach.
Section 3 describes the RESCUE process. Section 4 describes how we re-engineered
RESCUE using MMMR. Section 5 reports how RESCUE was extended using this re-
engineering work. The paper ends with a review of this work, and outlines future
work.

2 Map-Driven Modular Method Re-engineering (MMMR)

Our approach for method re-engineering uses the MAP formalism [14]. This section
briefly introduces this formalism and describes the Map-driven Modular Method Re-
engineering (MMMR) approach.

2.1 The Map Formalism

The MAP formalism provides a process representation system based on a non-
deterministic ordering of intentions and strategies. An intention Ii is a goal to be
achieved by the performance of an activity whereas a strategy Sij is an approach, a
manner to achieve an intention. Following the Map formalism, several strategies can
be provided by the process model to achieve each intention.

Another key element of a map is a triplet <Ii, Ij, Sij> named a section. A section
represents a way to achieve the target intention Ij from the source intention Ii

following the strategy Sij. Each section of the map captures the condition to achieve an
intention and the specific manner in which the task associated with the target intention
can be performed. This manner is called an Intention Achievement Guideline (IAG).

The arrangement of the sections in a map forms a labelled directed graph with
intentions as nodes and strategies as edges. The directed nature of the graph shows
which intentions can follow each other. Two types of progression guidelines,
Intention Selection Guideline (ISG) and Strategy Selection Guideline (SSG), help to
select the next intention and the next section respectively.

The process model represented in the form of a map has a modular structure; each
of its IAGs represents a more or less autonomous guideline which can be simple,
tactical or strategic with regard to its content, formality, granularity, etc. A simple
guideline may have an informal content and advise on how to proceed to handle the
situation in a narrative form. A tactical guideline is a complex guideline, which uses a
tree structure to relate its sub-guidelines. This guideline follows the NATURE process
modelling formalism [5], which proposes two different structures: the choice and the
plan. Each of its sub-guidelines belongs to one of these types of guideline. Finally, the
strategic guideline is a complex guideline using the MAP formalism. Therefore, the
map allows to represent methods in different levels of abstraction. An IAG associated
to one map section can also be represented by a map at a lower level of abstraction.

 Applying Modular Method Engineering to the RESCUE Requirements Process 211

2.2 The Process Model for Map-Driven Modular Method Re-engineering

We represent the process model of every method as a map with its associated
guidelines. As mentioned above, the map structure offers the re-engineered method a
high degree of modularity and provides means to evaluate this method, to decompose
it into method chunks, to enhance it by adding new strategies to achieve its intentions,
etc. As shown in Fig. 1, our MMMR process model is also represented as a map.

B y completeness
validation

By progression

Guided

By modification

By correction

Template-based

By decomposition

By aggregation

By elicitation
of alternatives

Start
By structural
analysis

By functional
analysis

Stop

Define a guideline

Define a section

B y completeness
validation

By progression

Guided

By modification

By correction

Template-based

By decomposition

By aggregation

By elicitation
of alternatives

Start
By structural
analysis

By functional
analysis

Stop

Define a guideline

Define a section

Fig. 1. Process Model for Map-driven Method Re-engineering

According to this map structure, re-engineering the process model of a method
requires us first to redefine it in terms of map sections and their guidelines. For this
reason, our process seeks to achieve two core intentions: Define a section and Define
a guideline and proposes a set of strategies to satisfy them. For example, there are two
strategies By structural analysis and By functional analysis to achieve the intention
Define a section. The Structural analysis strategy is recommended when the re-
engineered method does not provide the method engineer with a formally defined
process model but with a simple description of the product to construct. This strategy
uses a glossary of generic process intentions to support the discovery of method
intentions. On the other hand, the Functional analysis strategy should be used if the
method has a defined process model that is expressed in the form of steps and
recommended actions. This strategy helps to identify the method map sections from
these actions, and steps.

When a section is defined, the method engineer can either define the guidelines
associated to this section (to progress to the intention Define a guideline) or define
new sections (to repeat the intention Define a section).

The definition of the section guidelines consists of describing the IAG associated
with each section, the ISG associated to a set of sections having the same source
intention and different target intentions and the SSG associated to every set of parallel
sections. The definition of these guidelines is supported by two strategies: the
Template based strategy and the Guided strategy. The former provides a template for
every type of guideline and provides advice to experts whereas the latter helps
novices by providing more detailed recommendations.

212 J. Ralyté et al.

The definition of new sections based on the existing ones (Fig. 1) may be achieved
in four different ways, or manners: By decomposition of an existing section into
several ones, By aggregation of a set of sections into a new one, By elicitation of
alternative sections to a given one, i.e. having an alternative strategy or an alternative
source or target intention, and By progression strategy which helps to define a new
section allowing to progress in the method map from the existing one.

Modifications of the sections (decomposition, aggregation) imply the revision of
the associated guidelines if already defined. The Modification strategy guides the
method engineer to accomplish these transformations. In a similar manner, the
process of guidelines definition may imply the transformation of existing sections.
For example, the decomposition of an intention achievement guideline could lead to
decomposition of the corresponding section. Such transformations can be
accomplished following the Correction strategy.

The method re-engineering process ends with the Completeness validation
strategy. This strategy helps to verify if all of the guidelines associated to the map
sections have been defined. Due to space limitation we cannot present all of these
guidelines. However some of them will be further explained in section 4 when used to
re-engineer the RESCUE approach that we introduce in the next section.

3 Introduction to RESCUE

The RESCUE (Requirements Engineering with Scenarios for User-Centred
Engineering) process [9] supports a concurrent engineering process in which different
modelling and analysis processes take place in parallel. The concurrent processes are
structured into 4 streams shown in Fig. 2. Each stream has a unique and specific
purpose in the specification of a socio-technical system:

• Human activity modelling provides an understanding of how people work, in order
to baseline possible changes to it [17];

• System goal modelling enables the team to model the future system boundaries,
actor dependencies and most important system goals [18];

• Use case modelling and scenario-driven walkthroughs enable the team to
communicate more effectively with stakeholders and acquire complete, precise and
testable requirements from them [15];

• Requirements management enables the team to handle the outcomes of the other 3
streams effectively as well as impose quality checks on all aspects of the
requirements document [13].

Sub-processes during these 4 streams (shown in bubbles in Fig. 2) are co-ordinated
using 5 synchronisation stages that provide the project team with different
perspectives with which to analyse system boundaries, goals and scenarios. These 4
streams are supplemented with 2 additional processes. Acquiring requirements from
stakeholders is guided using ACRE [7], a framework for selecting the right
acquisition techniques in different situations.

 Applying Modular Method Engineering to the RESCUE Requirements Process 213

Fig. 2. The RESCUE process structure

Creativity workshops normally take place after the first synchronization stage, to
discover and surface requirements and design ideas that are essential for i* system
modelling and use case specification during stage 2. Stage 1 inputs to the workshops
include the system context model from the system goal modelling stream and use case
diagrams from the use case modelling stream, both shown in Fig. 2.

Scenarios walkthroughs to discover more complete requirements take place during
stage 4. Scenarios are generated and walked through using ART-SCENE, a web-
based scenario environment that was designed using one cognitive principle often
exploited during prototyping – that people recognise items, for example scenario
events generated by ART-SCENE, better than they recall them from memory [2]. For
each generated normal event and alternative course the facilitator guides stakeholders
to recognize, discover and document requirements.

Work and deliverables from RESCUE’s 4 streams are coordinated at 5 key
synchronisation points at the end of the 5 stages shown in Fig. 2, implemented as one
or more workshops with deliverables to be signed off by stakeholder representatives:

1. The boundaries point, where the team establishes first-cut system boundaries and
undertakes creative thinking to investigate these boundaries;

2. The work allocation point, where the team allocates functions between actors
according to boundaries, and describe interaction and dependencies between
these actors;

3. The generation point, where required actor goals, tasks and resources are
elaborated and modelled, and scenarios are generated;

214 J. Ralyté et al.

4. The coverage point, where stakeholders have walked through scenarios to
discover and express all requirements so that they are testable;

5. The consequences point, where stakeholders undertake walkthroughs of the
scenarios and system models to explore impacts of implementing the system as
specified on its environment.

Fig. 3. The RESCUE concept meta-model as a UML class diagram showing mappings between
constructs in the 3 model types

The synchronisation checks applied at these 5 points are designed using a
RESCUE meta-model of human activity, use case and i* modelling concepts
constructed specifically to design the synchronisation checks. It is shown in
simplified form in Fig. 3 – the darker horizontal lines define the baseline concept
mappings across the different models used in RESCUE. In simple terms, the meta-
model maps actor goals in human activity models to requirements in use case
descriptions and i* goals and soft goals. Likewise, human activities map to use cases,
and human actions to use case actions that involve human actors in use cases and
tasks undertaken by human actors in i* models. Human activity resources map to i*
resources and objects manipulated in use case actions, and actors in all 3 types of
model are mapped. The complete meta-model is more refined. Types and attributes
are applied to constrain possible mappings, for example use case descriptions and i*
models describe system actors, however only human actors in these models can be
mapped to actors in human activity models.

RESCUE was originally developed to support the scenario-driven specification of
requirements using ART-SCENE [11]. Streams such as use case modelling were
developed to provide direct inputs into ART-SCENE’s scenario generation tool, and
other streams such as activity modelling and goal modelled were added to improve
the completeness and correctness of the use case specifications. Other changes were
made in response to client requests as the process was rolled out on different projects.
At no time was RESCUE re-engineered systematically to improve its completeness,
to enable it to be customized to meet the needs of different clients or to support
effective integration with other processes with the RUP. Therefore, in the summer of
2004, a collaborative exercise to model and re-engineer RESCUE using MMMR was
undertaken.

Use case
1
m

0..1

1..2

Requirement
0..m
0..m

0..m

0..m

0..1
0..m

Goal/Soft goal
0..m
0..m

0..m

0..m

0..m
0..m

0..m
0..m

0..m

0..m

0..m

0..m
0..m

0..m

Depends on

Decomposes
into

Contributes
to

Goal

Human activity model Use case description i* system model

Action

Actor

Task

Actor

Activity

Action

Actor

Resource

Object

Resource

 Applying Modular Method Engineering to the RESCUE Requirements Process 215

4 Re-engineering RESCUE

The complexity of RESCUE meant that its process should be represented at different
levels of abstraction. The re-engineering activity started by defining the map at the
higher level of abstraction, then by detailing the IAG associated with each of its
sections as lower level maps.

4.1 Defining First Level RESCUE Map

As RESCUE is process-oriented, we apply the Functional analysis strategy (Fig. 1) to
re-engineer its process into a map. This strategy recommends to identify first the main
method intentions and the strategies proposed by the method to satisfy these
intentions, and finally, to order these intentions and strategies in the map.

Defining RESCUE map sections. The guideline associated to the Functional
analysis strategy recommends analysing the process steps to identify the key product
parts that are target products of these steps, and to couple them with some of the
generic intentions provided in our method base glossary representing the objective of
each step. Therefore, each method step is defined by one or more intentions. As
shown in Fig. 2, RESCUE is divided into five main stages. Based on these stages the
core intentions of the RESCUE map were identified as follows:

• The objective of the first RESCUE stage is to identify the boundaries of the system
under consideration and to approve them. We called this intention Agree on System
Boundaries. The RESCUE approach uses different models, such as human activity
model, context model and use case model, to achieve this objective. As a
consequence, we named the strategy that achieves this intention the Multi-
perspective modelling strategy.

• The second RESCUE stage is called work allocation. It is intended to deliver use
case specifications for each actor of the system. We called the corresponding
intention Specify Use Cases. The achievement of this stage is mainly based on
organisation of creativity workshops. Therefore we named the strategy Creativity
workshop driven.

• The third RESCUE stage results in the automatic scenario generation from the use
cases using ART-SCENE. Therefore, the name of the intention is Generate
Scenarios and the corresponding strategy is called With ART-SCENE.

• During the fourth RESCUE stage the stakeholders are invited to walk through the
generated scenarios to discover and express requirements so that they are testable.
As a result, the main intention of this stage is Specify Requirements and the
strategy is called With Scenario Walkthrough.

• Finally, the fifth RESCUE stage deals with requirement validation by analysing the
impact of scenario execution and requirements correction, and new requirements
acquisition and specification if necessary. Consequently, we could define two main
intentions: (1) Validate Requirements, which can be achieved by following the
Impact Scenario Analysis strategy and (2) Specify Requirements, which is achieved
by following the Feedback strategy.

• The RESCUE process ends by delivering the complete set of requirements
specifications. We called this strategy the Delivery strategy.

216 J. Ralyté et al.

The next step recommended by the guideline consists in ordering the identified
intentions and strategies in a process map. For every intention and one associated
strategy we have to identify the pre-conditions that should be satisfied in order to
reach the intention following this strategy. That is, we need to identify the product
necessary to achieve this intention (the required input product) and then to identify
which intention produces this product. For example, the achievement of the intention
Specify Use Cases using the Creativity workshop driven strategy requires as input
products the models that are obtained during the first process stage, that is by
achieving the intention Agree on System Boundaries. The intention Specify
Requirements requires as input product scenarios that are obtained by achieving the
intention Generate Scenarios. Furthermore, the intention Specify Requirements was
identified twice (in stages four and five), but it is evident that we put this intention in
the map only once. In a similar manner we arranged the identified intentions and
strategies in the map and we obtained the first version of the RESCUE map shown in
Fig. 4.

Start

Agree on System
Boundaries

Multi-perspective
modelling

Specify
Use Cases

Creativity workshop driven

Specify
Requirements

Validate
Requirements

Stop

With scenario
walkthrough

By delivery
strategy

Impact scenario analysis

Feedback
strategy

Generate
Scenarios

With
ART-ACENE

Start

Agree on System
Boundaries

Multi-perspective
modelling

Specify
Use Cases

Creativity workshop driven

Specify
Requirements

Validate
Requirements

Stop

With scenario
walkthrough

By delivery
strategy

Impact scenario analysis

Feedback
strategy

Generate
Scenarios

With
ART-ACENE

Fig. 4. First version of the RESCUE map

Following Fig. 1, the next step is to refine the obtained map sections by applying
different strategies or to define different guidelines associated to this map. Let us
refine the map first.

Refining the RESCUE map. Each intention in the RESCUE map should be
modelled at the same level of abstraction. The intentions described in the first level
RESCUE map represent the main products that are obtained by applying RESCUE.
However, the scenarios produced by achieving the intention Generate Scenarios are
only used as a means to specify requirements in a specification that is the main
achievement from RESCUE. Therefore, we merged the sections <Specify Use Cases,
Generate Scenarios, With ART-SCENE> and <Generate Scenarios, Specify
Requirements, With scenario walkthrough> by applying the Aggregation strategy
(Fig. 1) to obtain a new section <Specify Use Cases, Specify Complete Requirements,
With generated scenario walkthrough>.

 Applying Modular Method Engineering to the RESCUE Requirements Process 217

Start

Agree on System
Boundaries

Multi-perspective modelling

Specify
Use Cases

Creativity workshop
driven

Specify Complete
Requirements

Validate
Requirements

Stop
With generated
scenario walkthrough

By delivery
strategy

Impact scenario
analysis

Feedback
strategy

By delivery strategy

With synchronisation
workshop

With synchronisation
workshop

With
synchronisation
workshop

Start

Agree on System
Boundaries

Multi-perspective modelling

Specify
Use Cases

Creativity workshop
driven

Specify Complete
Requirements

Validate
Requirements

Stop
With generated
scenario walkthrough

By delivery
strategy

Impact scenario
analysis

Feedback
strategy

By delivery strategy

With synchronisation
workshop

With synchronisation
workshop

With
synchronisation
workshop

Fig. 5. The RESCUE map

The Progression strategy (Fig. 1) allowed us to add new sections to the RESCUE
map. Each RESCUE stage ends by synchronising the results of that stage. To describe
these synchronisations we added three new sections to the RESCUE map: (1) <Agree
on System Boundaries, Agree on System Boundaries, With synchronisation
workshop>, (2) <Specify Use Cases, Specify Use Cases, With synchronisation
workshop> and (3) < Specify Complete Requirements, Specify Complete
Requirements, With synchronisation workshop>.

In a similar manner we added a new section <Specify Complete Requirements,
Stop, By delivery strategy > that ends the RESCUE process after achieving the
intention Specify Complete Requirements. Fig. 5 depicts the obtained first-level
RESCUE map.

4.2 Defining Second Level Maps

Each IAG associated to the RESCUE map can also be defined as a map. Therefore,
we re-applied the map definition process as defined in our MMMR (Fig. 1). Because
of the lack of space, we do not describe how all of the second level maps were
developed. Fig. 6 illustrates the map representing the IAG associated to the section
<Start, Agree on System Boundaries, Multi-perspective modelling strategy> of the
RESCUE map (Fig. 5). According to this map, the requirements engineer has to work
with four artefacts – the human activity, context and use case models, and the system
requirements documentation, to define system boundaries. The RESCUE approach
provides several different ways to achieve the four corresponding intentions. For
example, there are two strategies, With light weight ethnography techniques and With
DFD techniques, to Model Human Activity. The Cross checking strategies allow to
validate the correctness and coherence of the obtained models.

Fig. 7 shows another example of the second level map, the IAG associated to the
RESCUE map section <Specify Use Cases, Specify Complete Requirements, With
generated scenario walkthrough>. The RESCUE team generates scenarios and
walking through them using ART-SCENE to discover requirements by using different
walkthrough techniques. Requirements are documented using the VOLERE shell.

218 J. Ralyté et al.

 Start

Model Human
Activity

With high weight
ethnography
techniques

Build
Context Model

By actor
identificationWith DFD

techniques

Build Use Case
Diagram

Actor-driven

Event-
driven

Cross checking Cross checking

Document
System Level
Requirements

With VOLERE shell

Through
acquisition
techniques

Cross checking

By propagation

Stop
With structured
documentation

With stage
report

With stage
report

By layering

Start

Model Human
Activity

With high weight
ethnography
techniques

Build
Context Model

By actor
identificationWith DFD

techniques

Build Use Case
Diagram

Actor-driven

Event-
driven

Cross checking Cross checking

Document
System Level
Requirements

With VOLERE shell

Through
acquisition
techniques

Cross checking

By propagation

Stop
With structured
documentation

With stage
report

With stage
report

By layering

Fig. 6. Second level RESCUE map: the IAG associated to the section <Start, Agree on System
Boundaries, Multi-perspective modelling strategy>

Whilst the first level map represents a more or less linear process, the second level
maps are richer and often provide several strategies to achieve each intention. The
progression guidelines are important in the second level maps. Given that, each map
describes multiple manners, or ways, to achieve an intention, it needs to provide as
much guidance as possible for selecting the right intention for each situation in
RESCUE. An SSG provides this guidance for each set of parallel sections, whilst an
ISG has to help the selection of the next intention to attain.

The definition of selection arguments plays an important role in strategies
selection. In order to better define strategy selection arguments we propose a set of
predefined attributes such as time, amount of resources, required domain knowledge,
user involvement, difficulty of management, etc., that are specialised according to the
nature of the strategies to compare. These attributes allow us to evaluate different
aspects of the corresponding strategies and to compare them. Table 1 illustrates the
comparison of four strategies allowing to attain the intention Discover Requirements
from the intention Produce Agreed Scenario (Fig. 7).

Table 1. Comparison of four strategies to achieve the intention Discover Requirements from
the intention Produce Agreed Scenario

Strategy selection attributes Distributed
workshop

Individual
walkthrough

Facilitated
workshop

Mobile
walkthrough

Elapsed time to discover requirements/per scenario 5 0.5 0.5 0.3
Amount of analyst resource needed 0 0 2 1
Level of domain knowledge required High High Low Medium
Level of user involvement needed High High High Low
Level of management commitment needed Low Medium High Low
Capability to handle complex systems Medium Low High Medium
Capability to handle innovative systems Medium Low High Low
Capability to handle unstable requirements High High High High
Requirements discovery rate/hour <8 <8 8-10 8-10
Number of VOLERE attributes discovered 5 5 5 5

 Applying Modular Method Engineering to the RESCUE Requirements Process 219

 Start

Produce Agreed
Scenario

Text generation with
ART-SCENE

By
validation

By agreement Discover
Requirements

By distributed
workshop

By individual
walkthrough

By facilitated
workshopBy mobile

walkthrough in
the work place

Post
workshop

Document
Requirements

With VOLERE shell

VOLERE Quality GATE keeper

Stop

Delivery

Refinement

Merging

Aggregation

Start

Produce Agreed
Scenario

Text generation with
ART-SCENE

By
validation

By agreement Discover
Requirements

By distributed
workshop

By individual
walkthrough

By facilitated
workshopBy mobile

walkthrough in
the work place

Post
workshop

Document
Requirements

With VOLERE shell

VOLERE Quality GATE keeper

Stop

Delivery

Refinement

Merging

Aggregation

Fig. 7. IAG associated to the section <Specify Use Cases, Specify Complete Requirements, With
generated scenario walkthrough>

5 Validation and Extension of RESCUE

In order to validate and extend the RESCUE process we explored all its second level
maps, including some not shown in this paper. In particular we sought to overcome
the weakness of single strategy intentions of RESCUE map and create and develop
new strategies to achieve intentions that only have one strategy in the current version

Text generation with
ART-SCENE

By validation

By agreement

By distributed
workshop

By individual
walkthrough

By facilitated
workshop

By mobile walkthrough
in the work place

Post
workshop

With VOLERE shell

VOLERE Quality
GATE keeper

Stop

Delivery

Refinement

Merging

Aggregation

Video Generation
with ART-SCENE

By hazard analysis
By pattern-based
generation

Discover
Requirements

Document
Requirements

By video walkthrough

By prototyping
the scenarios

Start

Explain
System

Produce Agreed
Scenario

Delivery

By explanatory
walkthrough

With manual
SOPHIST rulesWith automated

SOPHIST rules

Text generation with
ART-SCENE

By validation

By agreement

By distributed
workshop

By individual
walkthrough

By facilitated
workshop

By mobile walkthrough
in the work place

Post
workshop

With VOLERE shell

VOLERE Quality
GATE keeper

Stop

Delivery

Refinement

Merging

Aggregation

Video Generation
with ART-SCENE

By hazard analysis
By pattern-based
generation

Discover
Requirements

Document
Requirements

By video walkthrough

By prototyping
the scenarios

Start

Explain
System

Produce Agreed
Scenario

Delivery

By explanatory
walkthrough

With manual
SOPHIST rulesWith automated

SOPHIST rules

Fig. 8. The guideline IAG <(Use case specifications), Specify Complete Requirements with
generated scenario walkthrough > enhanced with new sections

220 J. Ralyté et al.

of RESCUE. For example, we considered possible new strategies to enhance the
complete requirements specification process captured in the map of Fig. 7.

Fig. 8 shows the new process map for requirements specification with new sections
and strategies shown in dashed edges. By systematically reviewing and walking
through the process map, we were able to consider each intention in turn, and
brainstorm new strategies for each intention. As a consequence, 9 new strategies and
one new intention were identified and modelled. The new intention, Explain System,
was generated and added to the map in response to questions about how the process
ended. Not all instances of the process result in documented requirements. Scenarios
can also be used as effective communication and explanation devices for a new
system, independent of their use to discover requirements. Hence the new intention
and an associated new strategy, By explanatory walkthrough, added to the process
map. An explanatory walkthrough exploits the narrative structure of a scenario to
describe and explain the future system’s behaviour, and other types of requirement
linked to that behaviour. It is an important component of a requirements review or
read through activity.

The remainder of this section is two parts. The first outlines new strategies added
to the Complete Requirements Specification map as a result of the process modelling
exercise. The second describes strategy selection arguments in tabular form to
demonstrate how to select between these new strategies.

5.1 New Strategies for Specifying Complete Requirements

Two new strategies, Video Generation with ART-SCENE and Discover Requirements,
by Video Walkthrough were designed to produce the agreed scenario and discover
requirements. Currently ART-SCENE scenarios are text-based. A text-based use case
specification is input to ART-SCENE to generate an interactive and structured
scenario that describes normal and alternative course events in text form. However,
recent extensions to ART-SCENE to support multi-media representation of scenarios
[19] have revealed new opportunities for video-based scenario walkthroughs. Initial
trials reveal that multi-media scenario representations provide more cues from which
stakeholders can discover and document requirements [19]. Therefore, the use case
specification will be extended with a video sequence that describes the normal
behaviour of actors to achieve their goals, and use case normal course events are
linked to episodes, such as an air traffic controller communicating with a pilot, in the
digital video. The ART-SCENE algorithm will still be used to generate alternative
courses for each normal course event that are now linked directly to one or more
digital video episodes, thus producing an agreed scenario in a video form. To discover
requirements, an enhanced version of ART-SCENE will enable stakeholders to
control and play a digital video of the normal course behaviour. Then, during the
playing of the video, stakeholders are prompted with alternative course questions in
text form, such as what if the pilot misunderstands the air traffic controller, in
response to which they can document new requirements using existing ART-SCENE
functions. We hypothesise that richer scenario representations will lead to more
complete requirements discovery.

The brainstorming session also surfaced 3 other strategies for discovering
requirements. One strategy, By pattern-based generation, recalled earlier research

 Applying Modular Method Engineering to the RESCUE Requirements Process 221

undertaken by the RESCUE team that is not currently implemented in ART-SCENE.
Alexander's original ideas of a pattern [1] focus on the interactions between the
physical form of the built environment and how this form inhibits or facilitates various
sorts of individual and social behaviour in it. The emphasis is on the characteristics of
the environment that might facilitate or inhibit action. A pattern captures the essentials
of a 'good design' that maximises characteristics that facilitate desirable actions over
those that inhibit these actions. Applied to socio-technical system design with ART-
SCENE, a pattern must capture the essential elements of the software system
(expressed as functional and non-functional requirements), and how the form of this
system facilitates and inhibits desirable individual or social behaviour (expressed
using the scenario). It captures good designs that have been shown to facilitate
desirable behaviour expressed in the scenario [8].

Based on the discovery of this strategy, we will extend ART-SCENE with 2 types
of pattern that guide the discovery and documentation of system requirements. Firstly,
we will develop and implement patterns that describe classes of solutions, expressed
as generic requirement statements, to classes of abnormal behaviour and state in the
environment, expressed as alternative courses that instantiate these classes.
Implementation of these patterns in ART-SCENE is tractable because scenario
alternative courses are generated automatically using classes of abnormal behaviour
and state. During a scenario walkthrough, the pattern is applied to recommend generic
requirements statements that describe what a system shall do avoid or mitigate against
the effects of a selected alternative course [15]. For example, an expected event not
occurring can be handled by the system in different manners – by re-requesting the
event, by undertaking some default action, or by assuming that the event has taken
place.

Secondly, we will develop and implement socio-technical system design patterns
that link sequences of events and actions that describe desirable future system use in
the environment, expressed as scenario normal courses, to system requirements
facilitate the desirable and inhibit undesirable behaviour. Consider the collect-first-
objective-last pattern reported in [8]. A person who interacts with a system using a
personal item should not leave the personal item behind. One design to achieve this is
to make the user reclaim the item before achieving their goal. This design can be
found in ATMs, metro barriers and secure access systems, and can be specified
computationally as a pattern to match in a scenario normal course. Again, we
hypothesise that implementing these 2 strategies for By pattern-based generation will
lead to the discovery of more complete and correct requirements.

Another discovered strategy for discovering requirements from an agreed scenario
was By hazard analysis. In simple terms, hazard analysis applies simple techniques,
such as checklists, to discover hazards associated with a new system. ART-SCENE’s
automatic generation of scenario alternative courses can also identify potential hazards
associated with a specified system. To implement a full hazard analysis strategy
within ART-SCENE we will extend its model of abnormal behaviour and state to
include a more complete set of hazard classes, then introduce generation settings that
will allow a requirements engineer to generate scenarios that are tailored for more
rigorous hazard analysis.

Finally, we introduced two new strategies based on techniques from the SOPHIST
group with which to document requirements. Goetz & Rupp [3] report 25 authoring

222 J. Ralyté et al.

rules from psychotherapy that assist in the analysis and quality assurance of
requirements expressed in text form. Examples of these rules include (6) Clarify the
modal operators of imperative (e.g. the use of should, shall, must etc) and (12)
Question nouns without references (e.g. reference to all users, or just certain user
groups or individuals). In RESCUE we can supplement its use of the VOLERE
requirements shell [13] with manual and automatic application of these 25 rules. The
manual strategy is now implemented through engineer training and guidelines in
ART-SCENE that advice on how to describe textual requirements. The automatic
strategy will be implemented using a new tool that will parse and invite re-writes of
the entered requirements specification to check each requirement against each of the
25 requirements authoring rules. Again, we hypothesise that these 2 strategies will
result in more correct and consistent documentation of requirements.

5.2 Strategy Selection

Adding new strategies enriches RESCUE but also makes it more difficult to
implement. Additional selection guidelines are needed to combine and/or select
between strategies to achieve one intention. To guide selection we have developed
new strategy comparison tables that define the predicted cost and benefit of adopting
one strategy over another according to strategy selection attributes. Table 2 compares
3 of the defined strategies for achieving the intention Discover Requirements from the
intention Product Agreed Scenario.

Table 2. Comparison of three new strategies to achieve the intention Discover Requirements
from the intention Produce Agreed Scenario

Strategy selection attributes Pattern-based
generation

Hazard
analysis

Video
walkthrough

Elapsed time to discover requirements/per scenario 0 0.5 0.5
Amount of analyst resource needed 0 (min) 2 0
Level of domain knowledge required Low High Medium
Level of user involvement needed None Low High
Level of management commitment needed Low Medium High
Capability to handle complex systems Low Medium Medium
Capability to handle innovative systems Low Low Low
Capability to handle dependencies on other system (or
inter-system dependencies)

Low Low N/A

Capability to handle unstable requirements Low N/A High
Requirements discovery rate/hour Unknown N/A <12
Number of VOLERE attributes discovered/requirement 2 N/A 5
Use case action specification rate/hour High Low

6 Conclusion

This paper reports a research-driven investigation of the MMMR approach to re-
engineer the RESCUE requirements process. Findings were relevant for RESCUE and
MMMR. Development of the process models revealed important omissions and single
strategy intentions in RESCUE that we resolved by adding new intentions and
strategies to the process models. This led us to re-investigate existing literature about

 Applying Modular Method Engineering to the RESCUE Requirements Process 223

scenario-driven requirements processes, and to undertake cost-benefit analyses of
RESCUE strategies that we will investigate through future RESCUE rollouts.

Existing process representations of RESCUE did not afford such analysis. The
MMMR process maps also gave the authors confidence that changes to RESCUE
were consistent with the existing process. The result was an agenda of improvements
to RESCUE and its software tools that we are currently implementing.

The paper also demonstrates the effectiveness of MMMR for modelling large-scale
requirements processes. Modelling intentions and strategies, rather than processes and
artefacts was tractable and cost-effective whilst still allowing the discovery of missing
or weak elements of the process. Moreover, thanks to the MAP formalism the
RESCUE process was transformed into a modular method: each RESCUE map
section represents a more or less autonomous process module. These modules can be
combined in different manners and reused in the construction of situation-specific
requirements engineering processes in order to meet the needs of client organisations.

The next stage of our collaboration will model RUP’s requirement processes [6] as
a basis for integrating RESCUE into RUP. Once RUP process maps have been
developed, we will merge intentions shared by RUP and RESCUE, add RESCUE
intentions to RUP process maps, and introduce RESCUE strategies for achieving
these shared intentions.

References

1. Alexander, C. (1979), ‘The Timeless Way of Building’, New York: Oxford University
Press.

2. Baddeley, A.D. (1990), ‘Human memory: Theory and practice’, Lawrence Erlbaum
Associates, Hove.

3. Goetz, R. & Rupp, C. (2003), ‘Psychotherapy for Systems Requirements’, Proceedings 2nd
IEEE International Conference on Cognitive Informatics, IEEE CS Press, p. 75-80.

4. Hammond, J., Rawlings, R. & Hall, A. (2001), ‘Will It Work?’, Proceedings 5th IEEE
International Symposium Requirements Engineering, IEEE CS Press, p. 102-109.

5. Jarke, M., Rolland, C., Sutcliffe, A. & Domges, R. (1999), ‘The NATURE requirements
Engineering’, Shaker Verlag, Aachen.

6. Leffingwell, D. & Widrig, D. (2000), ‘Managing Software Requirements: A Unified
Approach’, Addison-Wesley-Longman.

7. Maiden, N.A.M. & Rugg, G. (1996), ‘ACRE: Selecting Methods For Requirements
Acquisition’, Software Engineering Journal 11(3), p. 183-192.

8. Maiden, N.A.M., Cisse, M., Perez, H. & Manuel, D. (1998), ‘CREWS Validation Frames:
Patterns for Validating System Requirements’', Proceedings REFSQ98 Workshop.

9. Maiden, N.A.M., Jones, S.V. & Flynn M. (2003), ‘'Innovative Requirements Engineering
Applied to ATM’, Proceedings ATM (Air Traffic Management), Budapest, June 23-27.

10. Maiden, N.A.M., Jones, S.V., Manning, S., Greenwood, J. & Renou, L. (2004), ‘Model-
Driven Requirements Engineering: Synchronising Models in an Air Traffic Management
Case Study’, Proceedings CAISE’04, Springer-Verlag LNCS 3084, p. 368-383.

11. Mavin, A. & Maiden, N.A.M. (2003), ‘Determining Socio-Technical Systems
Requirements: Experiences with Generating and Walking Through Scenarios’',
Proceedings 11th International Conference on Requirements Engineering, IEEE CS Press,
p. 213-222.

224 J. Ralyté et al.

12. Ralyté, J. & Rolland, C. (2001), ‘An Approach for Method Re-engineering’. Proceedings
of the 20th International Conference on Conceptual Modeling (ER2001), LNCS 2224,
Springer, p. 471-484.

13. Robertson, S. & Robertson, J. (1999), ‘Mastering the Requirements Process’, Addison-
Wesley-Longman.

14. Rolland, C., Prakash, N. & Benjamen, A. (1999), ‘A multi-model view of process
modelling’. Requirements Engineering Journal, p. 169-187.

15. Sutcliffe, A.G., Maiden, N.A.M., Minocha, S. & Manuel, D. (1998), ‘Supporting Scenario-
Based Requirements Engineering’, IEEE Transactions on Software Engineering, 24(12), p.
1072-1088.

16. van Lamsweerde, A. (2004), ‘Goal-Oriented Requirements Engineering: A Roundtrip
from Research to Practice’, Proceedings 12th IEEE International Conference on
Requirements Engineering, IEEE CS Press, p. 4-7.

17. Vicente, K. (1999), ‘Cognitive work analysis’, Lawrence Erlbaum Associates.
18. Yu, E. & Mylopoulos, J.M. (1994), ‘Understanding “Why” in Software Process

Modelling, Analysis and Design’, Proceedings, 16th International Conference on Software
Engineering, IEEE CS Press, p. 159-168.

19. Zachos, K. & Maiden, N.A.M. (2004), ‘ART-SCENE: Enhancing Scenario Walkthroughs
with Multi-Media Scenarios’, Proceedings 12th IEEE International Conference on
Requirements Engineering, IEEE CS Press, p. 360-361.

Security Patterns Meet Agent Oriented Software
Engineering: A Complementary Solution

for Developing Secure Information Systems

Haralambos Mouratidis1, Michael Weiss2, and Paolo Giorgini3

1 School of Computing and Technology, University of East London, England
h.mouratidis@uel.ac.uk

2 Dept. of Computer Science, Carleton University, Ottawa, Canada
weiss@scs.carleton.ca

3 Dept. of Information and Communication Technology, University of Trento, Italy
paolo.giorgini@dit.unitn.it

Abstract. Agent Oriented Software Engineering and security patterns
have been proposed as suitable paradigms for the development of secure
information systems. However, so far, the proposed solutions are focused
on one of these paradigms. In this paper we propose an agent oriented se-
curity pattern language and we discuss how it can be used together with
the Tropos methodology to develop secure information systems. We also
present a formalisation of our pattern language using Formal Tropos.
This allows us to gain a deeper understanding of the patterns and their
relationships, and thus to assess the completeness of the language.

1 Introduction

Information systems security is definitely not a new topic, since its history starts
in the sixties [12]. Nevertheless, only recently more importance has been given
to information security, and it is considered now one of the main issues during
information systems development. This situation is the result of two main fac-
tors: (1) the wide usage of information systems by institutions, companies and
individuals, and, therefore, the storage of important information; and (2) the
increasing number of information systems security criminals such as hackers and
attackers. Research on the security of information systems has mainly focused
on the definition of security protocols, security mechanisms and other technical
solutions. Yet, it has been widely argued over the last few years that security
is not simply a technical issue, and that security solutions cannot be blindly
inserted into information systems, but security considerations need to be tightly
integrated with the development of information systems [14,4,10].

Following this argument, two software engineering paradigms, namely agent
oriented software engineering and security patterns, have been proposed (e.g., in
[8] and [13]) as promising paradigms for the development of secure information
systems. On the one hand, it has been argued [10] that agent oriented software

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 225–240, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

226 H. Mouratidis, M. Weiss, and P. Giorgini

engineering is one of the most natural ways of characterising security issues
in information systems, since characteristics, such as autonomy, intentionality
and sociality, provided by the use of agent orientation, allow developers first to
model the security requirements in high-level, and then incrementally transform
these requirements to security mechanisms. On the other hand, security patterns
capture design experience and proven solutions to security-related problems in
such a way that can be applied by non-security experts [13]. In addition, security
patterns introduce several layers of abstraction and thus help to close the gap
between security specialists and software engineers.

So far, the solutions proposed by these two paradigms are divided; that is,
they only consider either an agent oriented or a security pattern solution. We
believe that the integration of agent oriented software engineering and security
patterns represents an effective solution for the consideration of security issues
during the development stages of information systems. This is mainly due to the
appropriateness of an agent oriented philosophy for dealing with the security
issues that exist in a computer system and the appropriateness of patterns to
transfer security related knowledge to non-security specialists.

Secure Tropos [10] extends the agent oriented software engineering method-
ology Tropos [3] by providing a set of security-related concepts and processes to
allow developers to consider security issues throughout the development stages.
Secure Tropos supports three development stages: the early requirements anal-
ysis stage, in which the social issues related to the security of the system are
identified and analysed; the late requirements analysis stage, in which the tech-
nical issues related to the security of the system are identified and analysed; and
the architectural design stage, in which the architectural style of the system is
defined with respect to the system’s security requirements and the requirements
are transformed into a design. However the latter could be a very difficult task,
especially for a developer without knowledge of security, possibly resulting in
the development of a non-secure system. For this reason, we propose to comple-
ment secure Tropos with the use of security patterns. Security patterns capture
existing proven experience about how to deal with security problems during the
software development and they help to promote best design practices.

Building on our previous work [9,15] we introduce an approach for modelling
security issues in information systems using agent-oriented software engineering
and security patterns. Section 2 introduces the proposed security pattern lan-
guage. Section 3 discusses the formalisation of the pattern language. Section 4
describes how it can be applied, and Section 5 concludes this paper.

2 Security Pattern Language

Patterns by themselves are only point solutions, and they are usually organised
into pattern languages. A pattern language is a set of closely related patterns that
guide the developer through the process of designing a system [1]. As the patterns
from a pattern language are applied, each pattern suggests new patterns to be
applied that further refine the design, until no more patterns can be applied.

Security Patterns Meet Agent Oriented Software Engineering 227

Agency Guard

Agent Authenticator

SandboxAccess Controller

Agency Certification
Authority

ensure agent's identity

need to restrict access to the
agency's resources

agent not authenticated by a
trusted source

ensure validity of the key
used for authentication

refines

uses

run with minimal privileges

Fig. 1. Roadmap of the security pattern language

Since our aim is to integrate agent oriented software engineering and security
patterns, the pattern language should employ agent-oriented concepts, such as
intentionality, autonomy, sociality, and identity. Therefore, the structure of a
pattern should be described not only in terms of collaborations and the message
exchange between the agents, but also in terms of their social dependencies
and intentional attributes, such as goals and tasks. This allows for a complete
understanding of the pattern’s social and intentional dimensions.

We use the so-called Alexandrian format for organising each pattern [1].
The sections of a pattern are context, problem, solution, and consequences. Brief
descriptions of the problem and solution are put in boldface, followed by more
detailed discussions. The consequences are organised into benefits, liabilities, and
related patterns. Figure 1 provides a roadmap of our pattern language. The
directed links show dependencies between patterns, and point from a pattern to
the patterns that developers may want to consult next. It should also be stressed
that the patterns of the language have been identified from real implementations
of agent-based systems, and their initial versions have been workshopped at a
patterns conference [9] in order to validate and improve them.

2.1 Agency Guard

. . . a number of agencies exist in a network. Agents from different agencies
must communicate with each other, or exchange information. This involves the
movement of some agents from one agency to another, or requests from agents
belonging to one agency for resources belonging to another agency.

A malicious agent that gains unauthorised access to the agency can
disclose, alter or generally destroy data residing in the agency.

Many malicious agents will try to gain access to agencies that they are not
allowed to access. Depending on the level of access the malicious agent gains, it
might be able to shut down the agency, or exhaust the agency’s computational
resources, and thus deny services to authorised agents. The problem becomes
the more severe the more backdoors there are to an agency, enabling potential

228 H. Mouratidis, M. Weiss, and P. Giorgini

Fig. 2. Structure of the Agency Guard pattern

malicious agents to attack the agency from many places. On the other hand, not
all agents trying to gain access to the agency must be treated as malicious, but
rather access should be granted based on the security policy of the agency.
Therefore:
Ensure that there is only a single point of access to the agency.
When a Requester Agent wishes to gain access to an Agency (either to access
resources or move to this agency) its requests must be directed to an Agency
Guard, which grants or denies access requests according to the agency’s security
policy. The Agency Guard is the only point of access to the Agency, and cannot be
bypassed, meaning all access requests must go through it. In traditional terms,
the concept of an Agency Guard is referred to as a monitor [2].

The structure of the pattern in terms of the actors involved and their social
dependencies is shown in Figure 2 using the Tropos notation. Each circle rep-
resents an actor, and each dependency link between two actors indicates that
one actor depends on the other for some goal (oval), task (hexagon) or resource
(rectangle) to be achieved. Moreover, actors are analysed internally (internal
analysis is indicated within the dashed line circles) with the aid of means-end
links, which are used to indicate (alternative) means (goals/tasks) for reaching
a goal. For example, the Agency depends on the Agency Guard to Grant/Deny
Access to the Agency according to the Agency’s security policy.

Benefits:

– It is easier to secure a single point of access, rather than many backdoors.
– Only the Agency Guard needs to be aware of the security policy, and it is

the only entity that must be notified if the security policy changes.
– Being the single point of access, only the Agency Guard must be tested for

correct enforcement of the agency’s security policy.

Security Patterns Meet Agent Oriented Software Engineering 229

Liabilities:

– Requester Agents need to present all their credentials (including identity),
although they may only be required for some operations on the agency.

– A malicious Requester Agent may masquerade its identity.
– A single point of access to the agency can degrade the performance of the

agency (that is, its response time for handling access requests).
– The Agency Guard is a single point of failure. If the Agency Guard fails, the

security of the agency as a whole is at risk.
– We cannot prevent Requester Agents from attempting to circumvent the

Agency Guard. We, therefore, also need to log access requests.

Related patterns:

– Agent Authenticator – ensures the identity of the Requester Agent.

2.2 Agent Authenticator

. . . you are using Agency Guard to protect access to an agency or its resources.
To be allowed access, agents must be authenticated, that is, they must provide
information about the identity of their owners.

Many malicious agents will try to masquerade their identity when
requesting access to an agency.
If such an agent is granted access to the agency, it might try to breach the
agency’s security. In addition, even if the malicious agent fails to cause problems
in the security of the agency, the agency under attack will no longer trust the
agent impersonated by the malicious agent.
Therefore:
Authenticate agents as they enter the agency.
Requester Agents must be authenticated by the Agency. By authenticating the
agent, the Agency Guard ensures the agent comes from an owner trusted by the
Agency. Each Requester Agent’s owner and Agency have a pair of public/private
keys. The Agent Authenticator can authenticate the Requester Agent in two ways:
the agent can be digitally signed with its owner’s private key, or with the private
key of the Agency in which the agent resides. In order for the second approach
to work, mutual trust must be established between the sending and receiving
agencies (each Agency can be set up so it has a list of “trusted” agencies). If the
Agent Authenticator does not trust the Agency from which the agent originates,
it can reject the agent, or accept it with minimal execution privileges.

The structure of the pattern is shown in Figure 3.

Benefits:

– Since authentication concerns are dealt with in a single location, it is not
necessary to provide each agent with its own authentication mechanism.

230 H. Mouratidis, M. Weiss, and P. Giorgini

Fig. 3. Structure of the Agent Authenticator pattern

– The use of an Agent Authenticator ensures that Requester Agents are au-
thenticated, before they can request a resource from the agency.

– When implementing the system, only the Agent Authenticator must be ver-
ified for correct enforcement of the agency’s authentication policies.

Liabilities:

– The Agent Authenticator is a single point of failure. If it fails, the security
of the agency as a whole is at risk.

– The public key used to authenticate the Requester Agent may be invalid.
– This solution may be too restrictive, as it prevents agents that provide ser-

vices that the agency cannot provide itself, but cannot be authenticated,
from executing.

Related patterns:

– Access Controller – restricts access to the agency’s resources.
– Access Certification Authority – ensures validity of the public key used to

authenticate the Requester Agent.
– Sandbox – allows running an unauthenticated agent with minimal privileges.

2.3 Sandbox

. . . you are using Agent Authenticator to ensure the requester agent’s identity,
but the requester agent cannot be properly authenticated. This can be the case
either when the agent could not be authenticated, or if it has been authenticated
by an agency that the receiving agency does not trust.

An agency is most likely exposed to a large number of malicious agents
that will try to gain unauthorized access to it.

Security Patterns Meet Agent Oriented Software Engineering 231

Fig. 4. Structure of the Sandbox pattern

Although the agency will try to prevent access to those agents, it is possible that
some of them might be able to gain access to the agency’s resources. Thus, it is
necessary for the agency to operate in a manner that will minimise the damage
which can be caused by unauthorized agents gaining access. In addition, some
unauthorized agents might be allowed access by the agency in order to provide
services the agency’s agents cannot provide. Thus, the agency must be cautious
to accept such unauthorized agents without putting its security at risk.
Therefore:
Execute the agent in an isolated environment that has full control
over the agent’s ingoing and outgoing messages.
This solution prevents malicious agents from performing unauthorised opera-
tions. The agent is allowed to destroy anything within a restricted environment
(a Sandbox), but cannot touch anything outside. The concept is similar to the
Java security model, and the chroot environment in Unix. The Sandbox ob-
serves all system calls made by the agent, and compares them to the agency’s
policy. If any violations occur, the Agency can shut down the suspicious agent.

The structure of the pattern is shown in Figure 4.

Benefits:

– Agents not authorised but, nonetheless, valuable for the agency can be exe-
cuted without compromising its security.

– The agency can identify possible attacks (by observing the actions of the
agents in the Sandbox), and prevent them from occurring.

Liabilities:

– Some computational resources of the agency might be diverted to non-useful
actions, if non-useful agents are sandboxed.

– The use of a Sandbox introduces an extra layer of complexity.

No related patterns.

232 H. Mouratidis, M. Weiss, and P. Giorgini

Fig. 5. Structure of the Access Controller pattern

2.4 Access Controller

. . . you are using Agent Authenticator to ensure the requester agent’s identity.
Now you need to restrict access to the agency’s resources. Many different agents
can exist in an agency, which require access to the agency’s resources in order
to achieve their operational goals. However, they should be able to access only
specific resources.

Agents belonging to an agency might try to access resources that they
are not allowed to access.
Allowing this to happen might lead to serious problems such as the disclosure
of private information, or the alteration of sensitive data. In addition, different
security privileges will be applied to different agents. The agency should take
into account its security policy, and consider each access request individually.
Therefore:
Intercept all requests for the agency’s resources.
The agency uses an Access Controller to restrict access to each of its resources.
When a Requester Agent requests access to a resource, the request is directed to
the Access Controller, which then checks the security policy and decides whether
the access request should be approved or rejected. The access decision is then
forwarded to the corresponding Resource Manager.

The structure of the pattern is shown in Figure 5.

Benefits:

– The agency’s resources are used only by agents allowed to access them.
– Different policies can be used for accessing different resources.

Security Patterns Meet Agent Oriented Software Engineering 233

Liabilities:

– There is a single point of attack. If the Access Controller is compromised,
the system’s access control system fails.

No related patterns.

2.5 Agent Certification Authority

. . . you are using Agent Authenticator to authenticate agents coming to the
agency. Each agent has a certificate, which contains a public key. The agent
proves its identity by signing with its private key, which might come from the
agent’s owner or the agency that it currently resides. However, such a signature
is only valid, if the corresponding public key has been certified.

Malicious agents wishing to access the agency might try to authenti-
cate using invalid keys or keys that are not certified.
The agency should not authenticate such agents since they might endanger the
security of the agency.
Therefore:
Authenticate agents only if their public key has been certified by a
trusted certificate authority.
An Agent Certification Authority is used to certify the agent’s public key. The
Requester Agent sends a certification request to the Agent Certification Author-
ity. When the Agent Certification Authority receives the request, it verifies its
validity by checking when the request was generated, that the signed message
can be verified using the Requester Agent’s public key, and that the public key
of the agent is not already in use. If the request is valid, the Agent Certification
Authority generates a signed certificate that binds the public key to the agent.
Before actually sending the certificate to the agent, the Agent Certification Au-
thority creates an entry in its certification database. When the agent receives
the certificate, it can prove its identity by signing with its private key.

Fig. 6. Structure of the Agent Certification Authority pattern

234 H. Mouratidis, M. Weiss, and P. Giorgini

The structure of the pattern is shown in Figure 6.

Benefits:

– The validity of the Requester Agent’s public key is verified
– The Requester Agent’s claim that a public key belongs to its owner or to its

originating agency is verified.

Liabilities:

– Scalability is limited when too many Requester Agents try to obtain a veri-
fication of their public keys at once. This can be solved by having more than
one Agent Certification Authority. Different Agent Certification Authorities are
aware of each other and can route certificates between them if necessary.

No related patterns.

3 Formalising the Pattern Language

An important consideration in the development of a pattern language is to assess
its completeness. For this reason, in addition to the graphical representation, we
have developed a formalisation of the language. Patterns are formalized in terms
of the problems they address, and the solutions they offer. We consider a pattern
language to be complete, if the solutions proposed by the patterns contained
in the language address all the problems raised. It is important to note that
completeness can only be assessed with regard to a stated set of problems. As
new security problems are identified, the pattern language needs to be extended.

As the roadmap in Figure 1 illustrates, the patterns in a pattern language
are interconnected. The links indicate uses and refines relationships as defined
in [11]. Intuitively, uses can be interpreted in either one of two ways. Either
a particular problem is not addressed by a pattern, and the problem has to
be resolved by another pattern in the pattern language; or the application of
a pattern raises new problems that must be addressed by further patterns in
the pattern language. The basic idea underlying our formalization is to follow
the uses links between the patterns, and to record the problems addressed by
each pattern, as well as the new problems they raise. From this we can either
conclude that the application of our patterns helps establish security (that is,
that all security problems raised are resolved), or that we need to add more
patterns to our language in order to resolve the open problems. For a formal
definition of the uses relationship, and a proof that this approach allows us to
show the completeness of a pattern language see [13].

Our formalization of patterns is only a partial formalization. A full formaliza-
tion may not even be desirable, since patterns are meant to be human-readable
artifacts, and applying a pattern often requires adapting the pattern to the spe-
cific needs of a given context [1]. We, therefore, focus on the following sections
of a pattern: problem (addressed by this pattern), solution (how the problem is
addressed), and consequences (new problems raised). The solution is included

Security Patterns Meet Agent Oriented Software Engineering 235

in the formalization, since the application of a pattern results in elements being
added to the model, which other problem statements may refer to.

We use Formal Tropos (FT) [7] to describe problems and solutions. A FT
specification describes the relevant elements (actors, goals, dependencies, etc.)
of a domain and their relationships. The description of each of the elements is
structured into an outer and an inner layer. The outer layer is similar to a class
declaration. It associates a set of attributes with each element that define its
structure. There is also a set of predefined special attributes such as depender
and dependee. The inner layer expresses constraints on the lifetime of the
objects, given in a typed first-order linear-time temporal logic.

In passing, it should be noted that a solution that establishes security does
not necessarily imply that it is the best solution in terms of other system qual-
ities. Not included in our formalization are non-security softgoals such as com-
plexity. The contributions to non-security softgoals could be used to compare
alternative selections of patterns in terms of the quality of the overall solution
(i.e., the combined result of applying the patterns). We will incorporate the
formalization of non-security softgoals in our future work.

For reasons of space, we present only the formalization of the patterns related
to authentication and their relationships. However, the same principles can be
used to formalise the rest of the patterns. We present the problem addressed,
solution, and new problems introduced by each pattern. The formalization of
problems appear where they are first raised, and are referenced in later patterns.
Such an approach also proved helpful in ensuring that the description of problems
does not make use of any of the new model elements introduced by the solution,
but which were not part of the model before the pattern was applied.

To represent problems and solutions in FT we express them using global as-
sertions. These assertions are first-order predicate expressions over model com-
ponents. Problems are thus statements about the current model. If the assertion
holds true, the pattern is applicable. After applying the pattern, the solution
statement is asserted, possibly introducing new model elements, and the asser-
tion for the problem no longer holds. The new problems raised by a pattern are
assertions that enable the application of further patterns, until no more new
problems are raised. The three patterns whose formalization we will present are:
Agency Guard, Agent Authenticator, and Agent Certification Authority.

3.1 Agency Guard

This pattern states that RequesterAgents can access the agency from multiple
places via the GainAccessToAgency goal dependency. The formalization of the
problem (P1) specifies that a RequesterAgent can gain access to the agency by
exploiting multiple GainAccessToAgency dependencies in which it participates.
Solution S1 resolves this problem, as specified in the last clause of the assertion.
Problem P2 also introduces the notion of the owner of a RequesterAgent. In
essence, the formalization of P2 indicates that just ensuring that agents can
only access the agency through a single point does not ensure that the agents
are who they claim to be. This problem needs to be addressed separately.

236 H. Mouratidis, M. Weiss, and P. Giorgini

Problem: /* P1: A malicious agent can gain unauthorised access to the agency from
multiple places, not all of which provide the same level of security. */

∃ ra : RequesterAgent (∃ ga1, ga2 : GainAccessToAgency (ga1.depender = ra ∧
ga2.depender = ra ∧ ga1.dependee
= ga2.dependee))

Solution: /* S1: Ensure that there is only a single point of access to the agency. */

∀ ra : RequesterAgent (∀ ga1, ga2 : GainAccessToAgency (ga1.depender = ra ∧
ga2.depender = ra → ga1.dependee = ga2.dependee))

Consequences: /* P2: Agents can enter the agency by posing as another agent. */

∀ ar : AccessRequest (∃ ra : RequesterAgent (ar.dependee = ra ∧
ar.dependee.owner
= ra.owner))

3.2 Agent Authenticator

The pattern resolves problem P2. Solution S2 states that RequesterAgents signed
with the private keys of their owners (the DigitalSignature) can be authenticated
via the corresponding public keys. Thus, they can no longer masquerade as an-
other agent. However, this solution hinges on the fact that the agency knows the
valid public key of the RequesterAgent’s owner. But this is generally not the case,
as described by problem P3. In fact, a malicious agent may claim that its owner
is ra.owner = ao1, whereas, it is ar.dependee.owner = ao2. The formalization
introduces two new attributes: the key attribute of a RequesterAgent, and the
privateKey attribute to be associated with RequesterAgent owners.

Problem: /* P2: Agents can enter the agency by posing as another agent. */

Solution: /* S2: Agents must prove their identity. Agents are authenticated via their
own or their originating agency’s public keys. */

∀ ar : AccessRequest (∀ ra : RequesterAgent (ar.dependee = ra ∧
∀ ao : AgentOwner (ra.owner = ao ∧
∀ ds : DigitalSignature (ds.dependee = ra ∧

ra.key = ao.privateKey → ar.dependee.owner = ra.owner))))

Consequences: /* P3: The agent’s public key may not be valid or certified. A mali-
cious agent can exploit this by signing with its own private key. */

∃ ar : AccessRequest (∃ ra : RequesterAgent (ar.dependee = ra ∧
∃ ao1, ao2 : AgentOwner (ra.owner = ao1 ∧
∃ ds : DigitalSignature (ds.dependee = ra ∧

ra.key = ao2.privateKey ∧ ao1 �=ao2 ∧ar.dependee.owner = ao2))))

3.3 Agent Certification Authority

It is important to note that problem P3 is only stated in terms of the concepts
used in the Agent Authenticator pattern. Agent Certification Authority adds to

Security Patterns Meet Agent Oriented Software Engineering 237

these the concept of a PublicKeyCertificate. A PublicKeyCertificate is signed by a
trusted AgentCertificationAuthority. This proves that the publicKey of an agent
is, in fact, that of the agent’s owner. This publicKey can now be used to detect
invalid digital signatures of other agents masquerading as the same owner. The
application of this pattern does not introduce new security problems.

Problem: /* P3: The agent’s public key may not be valid or certified. A malicious
can exploit this by signing with its own private key. */

Solution: /* S3: Authenticate agents only if their public key is certified. */

∀ ra : RequesterAgent (∀ ao : AgentOwner (ra.owner = ao ∧
∀ aca : AgentCertificationAuthority (∀ pkc : PublicKeyCertificate (

pkc.dependee = aca ∧ pkc.depender = ra ∧
pkc.publicKey = ao.publicKey → ra.publicKey = ao.publicKey))))

3.4 Practical Value of the Formalisation

Although developers do not need to be aware of the formalisation when employ-
ing the proposed pattern language, its practical value cannot be underestimated.
It allows us to assess the completeness of our pattern language with regard to
its ability to establish security. We can observe that:

– Using the formalisation we show how the application of a given pattern
results in assertions being added to the model. These allow us to formally
reason about the security problems resolved by a given security solution.

– Formalisation leads to a deeper understanding of the patterns. We were able
to discover non-obvious problems with a given security solution and to detect
that there were patterns missing from the language to resolve them.

As an example of the former, consider the assertion made by solution S2
that the apparent initiator of an AccessRequest must equal the owner of the
RequesterAgent, if the request has been signed with the initiator’s private key.
This eliminates the possibility of one agent masquerading as another, and is
formalized as problem P2. As an example of the latter, an earlier version of the
pattern language did not include Agent Certification Authority. This pattern was
added as a means of dealing with invalid public keys, and problem P3 provides
a formal justification for this extension of the pattern language.

4 Applying the Language

To make it easier to understand the practical application of the pattern language,
we consider how the language was applied to the electronic Single Assessment
(eSAP) system case study first introduced in [10]. The eSAP case study involves
the development of an information system to support an integrated assessment
of the health and social care needs of older people in England. Due to lack of
space we cannot present the complete analysis here. The main secure goals of the

238 H. Mouratidis, M. Weiss, and P. Giorgini

eSAP system are: Ensure System Privacy, Ensure Data Integrity, and Ensure Data
Availability. These have been further decomposed [10] into secure tasks such as
Check Access Control, Check Authentication, and Check Information Flow.

According to secure Tropos, transforming security requirements to design
is not an easy task, and it becomes more difficult if attempted by developers
without much knowledge of security, which should be considered the norm rather
than the exception. For example, from the analysis of the eSAP system, it is
concluded that authentication and access control checks (amongst others) must
be performed in order for the system to satisfy the system’s secure goal Ensure
Data Privacy. The system should be able to authenticate any agents that send a
request to access information of the system, and the system must control access
to its resources. Therefore, the developer must identify the appropriate actors
(and their dependencies) to fulfil the above-mentioned security goals.

The proposed security pattern language can greatly help with the identifi-
cation of these actors without endangering the security of the system. Agency
Guard suggests a way of managing access to the eSAP system. Agent Authen-
ticator can be used to enforce the agency’s security policy. Agent Certification
Authority describes how to certify the public key of a requester agent. Access
Controller can be applied to perform access control checks. Sandbox is not ap-
plicable to the eSAP system. Not only does application of the patterns satisfy
the fulfilment of the goals, but it also guarantees the validity of the solution. To
apply a pattern, the developer must carefully consider the problem to be solved,
and the consequences that the application of each particular pattern will have
on the system. These consequences may introduce new problems that need to be
resolved by other patterns until no problems remain. Figure 7 shows a possible
use of the above-mentioned patterns in the eSAP system with respect to the
Obtain Care Plan Information goal of the Older Person.

Fig. 7. Application of the patterns

Security Patterns Meet Agent Oriented Software Engineering 239

We start by applying the Agency Guard pattern, which restricts access to the
agency to a single point. As shown in Figure 7, the Older Person becomes the
Requester Agent, the eSAP Agency corresponds to the Agency, and a new actor,
the eSAP Guard, is introduced to assume the role of the Agency Guard. Next we
apply the Agent Authenticator pattern to ensure the identity of the Older Person
agent (the Check Authentication subgoal of Ensure Data Privacy), and the Agent
Certification Authority pattern to ensure that the public key of the Older Person
is certified. In addition, the Access Controller pattern is applied to restrict the
Older Person’s access only to their resources, i.e., to their own medical records. In
this scenario, we assume that the Older Person should only be allowed to execute
as an authorised user, and as such the Sandbox pattern is not applicable.

5 Conclusions

In this paper we propose an approach for the development of secure informa-
tion systems that merges two important software engineering paradigms: agent
oriented software engineering and security patterns. We believe this represents
a suitable approach because agent orientation provides concepts such as au-
tonomy, sociality and trust suitable for modelling security issues in information
systems, whereas patterns complement agent orientation by transferring security
knowledge to non security application experts in an efficient manner.

Approaches similar to ours have presented in literature. Liu et al. [8] have
presented work to identify security requirements using agent oriented concepts.
Jürgens proposes UMLsec [4], an extension of the Unified Modelling Language
(UML), to include modelling of security related features, such as confidential-
ity and access control. The concept of an obstacle is introduced in the KAOS
framework [5] to capture undesirable properties of a system, and to define and
relate security requirements to other system requirements.

These approaches provide a first step towards the integration of security and
software engineering and have been found helpful in modelling security require-
ments. However, they only guide the developer through how security can be
handled within a certain stage of the development process. On the other hand,
the area of security patterns is also very active. For example, Schumacher [13]
applies the pattern approach to the security problem by proposing a set of pat-
terns, called security patterns, which contribute to the overall process of security
engineering; and Yoder and Barcalow [16] define architectural patterns for en-
abling application security. Fernandez and Pan [6] describe patterns for the most
common security models. The main problem of these existing pattern languages
is the lack of a framework to support the analysis of the security requirements
and determine precisely the context in which a pattern can be applied.

By contrast, our approach merges the advantages of both the agent oriented
and security patterns paradigms, by allowing developers to integrate a security
pattern language within the development stages of an agent oriented software
engineering methodology. This, in turn, allows developers to first analyse using
agent oriented concepts the security issues related to the environment of the

240 H. Mouratidis, M. Weiss, and P. Giorgini

system, and the system itself, identify a set of security requirements needed by
the system, and transform these requirements to a design that satisfies them
with the aid of security patterns. However, much more work is required, and
we plan to extend our pattern language to include more patterns to address
security-related issues such as the privacy of the agents’ information.

References

1. C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language: Towns, Build-
ings, Constructions, Oxford University Press, 1977.

2. E. Amoroso. Fundamentals of Computer Security Technology, Prentice-Hall, 1994.
3. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos and A Perini. TROPOS:

An Agent Oriented Software Development Methodology. Journal of Autonomous
Agents and Multi-Agent Systems, Kluwer, 8(3), 203–236, 2004.

4. J. Jürjens, UMLsec: Extending UML for Secure Systems Development, UML 2002,
LNCS 2460, 412-425, Springer, 2002.

5. A. Dardenne, A. van Lamsweerde and S. Fickas. Goal-directed Requirements Ac-
quisition, Science of Computer Programming, Special issue on the 6th International
Workshop of Software Specification and Design, 1991.

6. E. Fernandez and R. Pan. A Pattern Language for Security Models, Conference on
Patterns Languages of Programs (PLoP), 2001.

7. A. Fuxman, Formal Analysis of Early Requirements Specifications, MSc thesis,
University of Toronto, Canada, 2001.

8. L. Liu, E. Yu and J. Mylopoulos. Analyzing Security Requirements as Relationships
Among Strategic Actors, Symposium on Requirements Engineering for Information
Security (SREIS), 2002.

9. H. Mouratidis, P. Giorgini and M. Weiss. Integrating Patterns and Agent-Oriented
Methodologies to Provide Better Solutions for the Development of Secure Agent
Systems, Hot Topic on the Expressiveness of Pattern Languages, ChiliPloP, 2003.

10. H. Mouratidis, P. Giorgini and G. Manson. When Security meets Software Engi-
neering: A Case of Modelling Secure Information Systems. Information Systems
(in press).

11. J. Noble. Classifying Relationships between Object-Oriented Design Patterns, Aus-
tralian Software Engineering Conference (ASWEC), 1998.

12. J. Saltzer and M. Schroeder. The Protection of Information in Computer Systems.
Proceedings of the IEEE, 63(9), 1278-1308, September 1975.

13. M. Schumacher. Security Engineering with Patterns. LNCS 2754, Springer, 2003.
14. T. Tryfonas, E. Kiountouzis and A. Poulymenakou. Embedding Security Prac-

tices in Contemporary Information Systems Development Approaches, Information
Management & Computer Security, 9(4), 183–197, 2001.

15. M. Weiss. Pattern Driven Design of Agent Systems: Approach and Case Study.
Conference on Advanced Information Systems Engineering (CAiSE), LNCS 2681,
Springer, 2003.

16. J. Yoder, J. Barcalow, Architectural Patterns for Enabling Application Security,
Conference on Pattern Languages of Programs (PLoP), 1997.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 241 – 255, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Kuaba Ontology: Design Rationale Representation
and Reuse in Model-Based Designs

Adriana Pereira de Medeiros, Daniel Schwabe, and Bruno Feijó

Dept. of Informatics, PUC-Rio, Rua Marquês de São Vicente 225,
22453-900, Rio de Janeiro - RJ, Brasil

{adri, dschwabe, bruno}@inf.puc-rio.br

Abstract. This paper presents the Kuaba Ontology, a knowledge representation
model for Design Rationale described in an ontology definition language. The
representation of this model in a specific ontologies specification language,
such as OWL or F-Logic, allows attributing semantics to recorded Design
Rationale content, and defining rules that enable performing computable
operations to support the use of Design Rationale in the design process of new
artifacts. In addition, we propose to support the software design process through
the use of the semantic descriptions defined by formal models of the artifacts.
Representing Design Rationale using an ontology definition language and the
artifacts formal model, enables a type of software reuse at the highest
abstraction level, where rationales are re-employed in designing a new artifact.
This kind of reuse is possible in knowledge domains where there are formal
models describing the artifacts, in particular, in the Software Design domain.

1 Introduction

Designing a software artifact typically involves understanding the problem being
addressed, identifying possible solution alternatives, analyzing them, and deciding
which solutions will be used to construct the final artifact. The final products of this
process, the artifact and its specifications, represent but a fraction of the knowledge
employed by designers during the design process. They represent the final solution
chosen for the particular design problem, but do not represent, for instance, the
reasons that led the designers to choose that one among the other available
alternatives, and why the others were discarded. In other words, they do not capture
the Design Rationale (DR) that led to the artifact in question.

DR is the reasons behind design decisions. However a more complete definition is
proposed by J. Lee [1]: design rationales include not only the reasons behind a design
decision but also the justification for it, the other alternatives considered, the tradeoffs
evaluated, and the argumentation that led to the decision. In most cases the DR is not
adequately documented, which leads to requiring a high degree of verbal
communication among persons that must work with an artifact, in order to understand
the reasoning followed by the designer. For instance, this is fundamental when
maintaining a software artifact designed by another person, or when trying to reuse it
in the context of a new design. This is true even in the case of a single person, since in
many cases, over a longer period of time, the designer himself may not recall all the

242 A.P. de Medeiros, D. Schwabe, and B. Feijó

rationale he himself used in the design of a particular artifact. Therefore, recording the
DR during the design process is critical to allow its reuse.

There are several proposals in the literature for representing DR, such as IBIS [2],
PHI [3], QOC [4] and DRL [5]. Most of them are incomplete or informal, not
enabling machine-processable computations over the represented DR. Consequently,
it is not possible to guarantee that the representation is consistent and even that it does
actually provide some sort of explanation about the captured design. Furthermore,
when applying them to formally defined artifacts (such as software), their informality
prevents automatically taking into consideration alternatives prescribed by the design
methods, as well as incorporating their restrictions. In other words, it is not possible to
leverage the semantics of the artifact provided by the formal model that describes it.

For many knowledge domains, particularly in software design, there are formal
models that describe the artifacts and present semantic descriptions, which allow
reasoning over the artifacts being produced. In this paper, this special type of design
domain is called "model-based design". An example of such a formal model is the
UML specification language [6] used to describe a class diagram. A formally defined
DR representation may allow integrating the formal semantics of the artifacts being
designed, and allows automated computations over such representations. When such
representations are available in a distributed environment, it is possible to envisage
the collaboration between designers with semi-automated support, where DR
representations can be searched for, recovered and integrated during the process of
designing a new artifact. Such availability can therefore be the basis for collaborative
(and even participatory) design, among designers working with a given artifact.

The integration of different DRs is possible only if the following conditions are
satisfied: the artifacts are built from the same type of formal model (e.g. two UML
class diagrams); the DRs are used to represent the same domain of application (e.g. a
CD catalogue) and the DR of the artifacts is represented using the same (or
compatible) representation scheme(s) - e.g. an ontology vocabulary.

A semi-automated computational environment is being built to support designers
through processing of formal DR representations. This environment uses the formal
model for the artifact being designed to suggest design options at each step in the
design, and records the corresponding choices made by the designer, using a special
purpose description language that will be described later. Depending on the richness
of the formal model of the artifact being designed, the system may suggest new
alternatives, and also check the consistency of decisions made by the designer.
Theoretically, when formal semantics for the artifacts are available, fully automated
systems could be constructed to automatically synthesize artifacts, but this is neither
the approach nor the focus taken in this paper. We explicitly require human
intervention in defining design steps or operations in producing the final design.

Consider the following motivating example shown in Fig.1. This example shows
three design options defined by different designers to model the “Genre” information
item in an UML class diagram modeling a CD catalogue. In Fig.1-a, the designer
decided to model “Genre” as an attribute with multiplicity one or more. In Fig.1-b,
the designer decided to model “Genre” as a class that has an association with a CD
class, and in Fig.1-c another designer decided to model a “Category” information
item instead of “Genre" to represent the same kind of information. This designer
decided to model Category as a class with a self-relation of type aggregation to
represent the subcategory concept.

 Kuaba Ontology: DR Representation and Reuse in Model-Based Designs 243

Fig. 1. Design options to model Genre information item

Since these artifacts are described in the same formal model (UML), and refer to
the same domain (CD catalogues), a fourth designer could retrieve the DR
representations of these artifacts (for instance, in a distributed environment), and
integrate both rationales to design a new class diagram for this domain, reusing
existing (partial) solutions.

In this particular case, the fourth designer could consider the “Genre” and
“Category” information items to be really the same, and thus integrate the DR
representations for each. For instance, she may consider modeling “Category” as an
aggregation, but also taking the idea of allowing multiplicity one or greater, taken
from the other modeling alternative. Thus, this designer could incorporate into her
design the reasoning (arguments for and against each alternative considered) used by
the other designers, and add her own reasons as well, finally making her own
decisions.

This DR enables a type of reuse at the highest abstraction level, where rationales
are re-employed in designing a new artifact. Starting with an existing DR, the
designer can review and extend it, adding new alternatives or making different
choices with respect to already defined alternatives, generating a new DR. From this
point of view, both software maintenance and evolution can be considered as simply a
continuation of a previous design process, captured in a given DR.

This paper is a significant extension and expansion of [7], in which we approach
and exemplify the different uses of the Kuaba1 ontology to representing and reusing
DR. In the remainder of this paper, we first present a DR representation model for
software designs, using the Kuaba ontology. Next, we address the issue of how the
formal semantics of the artifacts being described can be integrated with the design
process, which seen as an instantiation process of the formal model for the artifact.
From this point of view, the richer the semantics of this formal model of the artifact,
the greater the degree of support automation that could be achieved. Next, we present
some scenarios of use for these DR representations, and the operations needed to
support their reuse when designing new artifacts. We conclude by discussing related
work and pointing out further work, and drawing some conclusions.

2 Kuaba: The Design Rationale Ontology

As previously mentioned, it is desirable to represent DR in a formally precise and
computable way. Ontologies are good candidates for this, since, as defined in [8], they
represent “an explicit specification of a conceptualization”. In other words, they are
knowledge representations, where a set of objects and their relationships are described
through a defined vocabulary.

1 “Kuaba” means “knowledge” in Tupy-guarany, the language of one of the native peoples in

Brazil.

244 A.P. de Medeiros, D. Schwabe, and B. Feijó

The Kuaba ontology describes a set of elements (classes, properties, relations and
constraints) that express the DR domain. Our objective in proposing this ontology is
to provide a vocabulary for DR described in an ontology definition language that
allows attributing semantics to recorded DR content, and defining rules that enable
performing computable operations and inferences on this content. The first version of
the ontology was created using the Web Ontology Language (OWL) [9]. The current
version is described in F-Logic [10] due to the availability of free inference engines.

The vocabulary described by Kuaba extends the argumentation structure of the
Issue Based Information System (IBIS), whose approach for DR is to register the
issues raised during design, the positions that address these issues and the arguments
against or in favor of these positions. The extension enriches this argumentation
structure by explicating the representation of the decisions made during design and
their justifications, and the relations between the argumentation elements and
generated artifacts. It consists also of integrating this argumentation structure with
descriptions of the produced artifacts, and with information about the design history
(when decisions were made, who made them, what design method was used, etc).
Fig. 2 shows the elements of the vocabulary defined by the Kuaba ontology, using the
UML notation to help visualization. Notice that such object oriented model is used
only as a suggestion of illustration of ontology vocabulary; some relations and
constraints were hidden to simplify the presentation.

Fig. 2. The elements of the Kuaba Ontology Vocabulary

Briefly described, the Kuaba ontology vocabulary represents the people involved
in a design activity and their respective roles. After defining the design method and
the activities that will be undertaken, the people involved in the design activity use
reasoning elements for organizing and recording their solution ideas about the artifact
that is being constructed. Similarly to IBIS, these reasoning elements represent the
design problems (questions) that the designer should deal with, the possible solution
ideas for these problems and the arguments against or in favor of the presented ideas.
In Kuaba some of these elements are described according to the formal model of the
artifact prescribed by the design method used. People involved in the artifact design

 Kuaba Ontology: DR Representation and Reuse in Model-Based Designs 245

make decisions about the acceptance or rejection of the solution ideas presented. Each
decision must have a justification that explains the “why” it was made. Justification is
always derived from one or more arguments presented during the design. The ideas
accepted during the design process originate artifacts that can be either atomic
artifacts or composite artifacts. All reasoning elements (Question, Idea and Argument)
and artifacts have a “is-version-of” relation, representing the fact that any one of them
may be based on an existing element. This element may be either part of a previous
version of this same artifact, and therefore the design is actually evolving it, or part of
a different design that is being reused in a new context.

Below we show a portion of the Kuaba ontology vocabulary shown in Fig. 2
expressed using F-Logic.

 // CONCEPTS --------------------

question::reasoning_element.

idea::reasoning_element.

reasoning_element[hasText->STRING; hasCreationDate->STRING;

 isInvolved->activity; suggests->>question;

 isPresentedBy->person;isIndicatedBy->formal_model].

question[hasType->STRING; isAddressedBy->>idea; hasDecision->>decision;

 isSuggestedBy->>reasoning_element; isVersionOf->question].

idea[address->>question; results->artifact;

 isConcludedBy->decision; isVersionOf->idea].

decision[isAccepted->BOOLEAN; hasDate->STRING; isMadeBy->>person

 concludes->idea; hasJustification->justification].

// ALGEBRAIC PROPERTIES OF RELATIONS (INVERSE) --------------------

FORALL X,Y X[address->>Y] <-> Y[isAddressedBy->>X].

FORALL X,Y X[concludes->>Y] <-> Y[isConcludedBy->>X].

2.1 Representing Reasoning Elements and Decisions

Normally, the first activity done by the designer in designing a software artifact is the
choice of design method or process that will be used to achieve the design. When the
designer chooses a design method or process, she indirectly determines the formal
model(s) (specification language) that will be used to describe the artifact. For
example, when a designer chooses the Unified Process [11] to achieve the artifact
design she indirectly determines the formal model defined by the UML to describe
this artifact.

The existence of a formal model for the artifact determines, to a great extent, the
questions and ideas that the designer can propose, since they are pre-defined by this
model. In this sense, designing an artifact according to the method amounts to a
stepwise instantiation of the formal model. Consider once again the motivating
example shown in Fig. 1; if the designer has chosen the Unified Process, the DR will
be expressed in terms of questions, ideas and arguments defined by the UML formal
model for class diagrams.

The DR representation usually begins with a general question that establishes the
problem to be solved. This general question can generate new questions that represent
new design (sub) problems related to the main problem. For each question presented

246 A.P. de Medeiros, D. Schwabe, and B. Feijó

the designers can suggest ideas, formulating possible solutions to the problem
expressed in the question.

According the UML formal model, the first problem to be solved in designing a
class diagram is the identification of its constituting elements. Applying the
vocabulary described by Kuaba, this results in instantiating the “Question” class with
the instance “What are the model elements?”. Fig. 3 shows a graphical representation
we have created to help visualizing instances of the Kuaba ontology, showing the
portion of the design regarding the alternatives to model “Genre” in the motivating
example (Fig.1-a and Fig.1-b). In this representation, the root node is an initial
question (represented as rectangles), “What are the model elements?”, which is
addressed by the ideas “CD”, “Genre” and “Name”, represented as ellipses. Notice
that these values are determined by the designer’s knowledge of the domain, or were
extracted from the DR of a previous phase, requirements elicitation, which is not
addressed in this paper.

Fig. 3. A portion of a DR representation regarding “Genre” in the motivating example (Fig. 1)

Once these first alternative ideas for the CD Catalogue model elements have been
established, the designer must decide how each one of them will be modeled using the
UML, to make up the final artifact, the class diagram. This next step is represented in
Fig. 3 by the “suggests” relation, which determines questions entailed by ideas –
“How to model CD?”, “How to model Genre?” and “How to model Name?”.

The possible ideas that address these questions are determined by the UML formal
model for class diagrams – elements can essentially be a class, an attribute, or an
association. Accordingly, the “Class” and “Attribute” ideas linked to the “How to
model Genre?” node are established as an instantiation of the UML formal model.
Strictly speaking, the designer should consider all the other alternatives proposed by
the UML, but for the sake of simplicity we have shown only these two. Since the
“Attribute” idea, in turn, must be associated with a “Class” according to the UML

 Kuaba Ontology: DR Representation and Reuse in Model-Based Designs 247

model, the question “Whose?” is suggested, which in turn will be addressed by the
idea corresponding to the class with that attribute it is. Similarly, the questions
“Minimum Multiplicity?” and “Maximum Multiplicity?” are also defined by the UML
model to be associated with the idea “Attribute”.

In this way, it is possible to envisage how the formal model “drives” the
instantiation of the Kuaba ontology recording the DR. This formal model can be used
by a support environment to suggest to the designer the possible Kuaba ontology
instances that must be defined at each step of the process. The designer has to choose
the desired alternative, and record the arguments for and against each option
(represented as dashed rectangles in Fig. 3). It is through the “Argument” element that
the designers can record the experiences and the knowledge that they are employing
in the artifact design.

In Fig.3, we also show the final decision made, indicating each alternative answer
to each question with an “A” (for accepted) or “R” (for rejected) label. Thus, the
example represents the fact that the designer decided to accept the “Attribute”
alternative to the question “How to model Genre?”, in detriment of the “Class”
alternative.

The acceptance or the rejection of an idea as a solution to a question is recorded by
the “Decision” element. Differently from IBIS, in our ontology the acceptance or
rejection of an idea is represented as a property of the relation between the elements
Question and Idea, as shown in Fig. 2. We consider that the acceptance or rejection of
an idea is not an intrinsic property of the “Idea” element, but must be defined with
respect to a certain “Question”, since the same idea can address more than one
question, and be accepted for one and nor for another.

The sub-graph of the DR made up of “Question” and “Ideas” is actually an
AND/OR graph [12] that can be seen as a goal decomposition of the root node, which
is always a “Question”. The “Question” class in the Kuaba ontology has a “type”
attribute, with possible values “AND”, “OR” and “XOR”. The value “XOR” indicates
that all ideas that address this question are mutually exclusive, meaning that only one
idea can be accepted as a solution to the question. The value “AND” indicates that the
designer should accept all ideas that address the question or reject all of them. Finally,
the value “OR” indicates that various ideas can be accepted as a solution to the
question. This kind of information allows us to define rules that can suggest decisions
about the acceptance or not of the proposed solution ideas. For example, the software
could suggest rejecting certain ideas based in the following rule: if an idea associated
with a question of type “XOR” is accepted by the designer, then all other ideas
associated to this question will be rejected. This rule is formulated in F-Logic as
follows:

FORALL Q, I1, I2, D1, D2 D2[isAccepted->>"false"]

 <- Q:question[hasType->>"XOR"; isAddressedBy->>{I1,I2};

 hasDecision->>{D1,D2}]

 AND D1:decision[isAccepted->>"true"; concludes->>I1:idea]

 AND D2:decision[concludes->>I2:idea]

 AND NOT (equal (I1,I2)).

Notice that, if the decision to reject the idea of modeling “Genre” as a class was the
first one made by the designer, a support system could apply the rule above, and

248 A.P. de Medeiros, D. Schwabe, and B. Feijó

automatically propose that the idea of modeling “Genre” as an attribute be accepted,
given that there are only two ideas associated with this question. At this point, the
designer also has the option of not accepting this suggestion, and revising the possible
answers to the original question “What are the model elements?”, rejecting “Genre”
altogether. In any case, the support environment can apply consistency rules defined
by the Kuaba ontology, as well as those expressed for the particular formal artifact
representation being used. Therefore, the order of accepting or rejecting an idea does
not affect the represented rationale.

2.2 Representing Artifacts

A useful part of a DR representation must associate the designed artifact itself, or its
components, to the corresponding design decisions that led to them being the way
they are. This integrates the artifact description with the DR description. In Fig. 2, this
is represented by the “Results” relation between “Idea” and “Artifact”.

An artifact corresponds to a final design solution, made up of a set of accepted
ideas in the DR representation. Therefore, in a DR representation every artifact must
be associated with at least one idea, and at least one of them must have been accepted.
Clearly, an artifact cannot be associated with an idea that was rejected.

In the Kuaba ontology vocabulary, artifacts are represented by two classes, Atomic
Artifact and Composite Artifact. For example, in the UML formal model a class can
be seen as an aggregation of attributes, and therefore an element modeled as a class
can be modeled as a composite element. This is the case, for example, of class “CD”
in Fig. 3. In Fig. 4 we show an example of an artifact representation after the
decisions shown in Fig. 3 have been made. In particular, notice that the “Genre”
element is represented as an Atomic Artifact, since the designer decided to model it as
an attribute of the CD class.

Fig. 4. Examples of Artifacts

3 Using the Representations of Design Rationale

As exemplified previously, representing DR in a more formal language and using the
artifact formal model permits us to assign semantics to recorded content, enabling
processing this content by computable operations. These operations, in turn, give
support to new scenarios of use of DR in model based designs of software artifacts.

Consider the scenario where a designer wishes to construct a class diagram to
represent information that will be used in a CD Store application. Since the online
stores domain is a common domain in software design, the designer decides to
perform a search for existing designs in a distributed environment, trying to find
similar artifacts, before she begins a new design. As a result, she finds two different

 Kuaba Ontology: DR Representation and Reuse in Model-Based Designs 249

class diagrams for the CD domain with their respective DR representations. After
receiving the search result and analyzing the artifacts found, the designer decides to
reuse these artifacts taking advantage of the knowledge already used by other
designers that is recorded in the available DR representations. In this scenario the
designer can reuse a found artifact in two ways. She can import its DR representation
and begin her design based on it; or she can integrate the DR representations of both
found artifacts to compose a more complete solution of design.

An example of the first type of reuse is the artifact evolution process, in which a
copy of a DR representation of the artifact is used as a starting point for the design,
and subsequently modified, generating a new artifact (the new version of the original
one). Incorporating a DR representation of an artifact means to import a set of already
defined reasoning elements into the design that is being performed. Imagine that the
designer had selected the first class diagram found and that in this diagram the author
had considered the “Genre” and “Record Label” information items, as Fig. 5 shows.

Fig. 5. Original Class Diagram

In this diagram the author decided to model the “Genre” information item as an
attribute of a CD class and the “Record Label” item as a class. Fig. 6 shows the
graphical representation of the reasoning elements incorporated into the new design,
after the designer has selected the first diagram found. These elements represent the
reasoning used by the author of the artifact to model the “Record Label” information

Fig. 6. Example of DR about the Record Label information item

250 A.P. de Medeiros, D. Schwabe, and B. Feijó

item in his class diagram. According to this DR representation, the author considered
the idea of designing “Record Label” as a class and the ideas of designing the
“Name” and “Phone” information items as attributes of this class.

Notice that the decisions made for the imported artifact design are not incorporated
to new design (there are no arrows labeled “A” and “R”). This reflects the fact of the
incorporation of an existing DR representation and its modification represents a new
design, or a design continuation, whose DR should also be recorded. In this new
design, new decisions should be made according to the new designer’s objectives,
although the decisions previously taken by the author of the imported DR can be
obtained from the DR representation of the original artifact.

In this first example we can suppose that, after analyzing the solution ideas
incorporated into the new design, the designer had access to the idea of designing
“Record Label” as an element of her class diagram, an idea that she had not
considered before. We can also assume that the designer decided to modify the DR
incorporated into her design including a new solution idea, the idea of designing the
element “Record Label” as an attribute of a CD class.

Observing the decisions shown in Fig. 7 we can conclude that the designer decided
to model the “Record Label” element as an attribute of the CD class and to reject the
solution ideas for the “Name” and “Phone” elements.

Fig. 7. DR for the new artifact, the “Record Label” attribute definition

Fig. 8 shows the design solution used by the designer after reasoning about the
design of the “Record Label” element.

To exemplify the second way of reusing artifacts, the reuse through integration of
existing DR representations, we will use the motivating example presented in section 1.
In this second form of reuse, the designer selects the three artifacts found by the
search service and, after analyzing the DR of these artifacts, she performs the
integration of their respective representations.

 Kuaba Ontology: DR Representation and Reuse in Model-Based Designs 251

Fig. 8. Newly designed artifact, the “CD” class definition

Fig. 9. Example of DR about the Category Element

Part of the DR of the first artifact selected by the designer is shown in Fig. 3.
Examining this DR, the designer verifies that the author of the select artifact decided
to model the “Genre” element as an attribute of the CD class after considering the use
of attribute multiplicity to model more than one genre for the same CD.

Continuing her analysis, the designer consults the DR of the third artifact found,
shown in Fig. 9, and verifies that the author of this artifact, instead of considering an
element “Genre” in the class diagram, considered the element “Category” and
decided to model this element as a class. Besides the “Category” element, the author
also decided to include the element “Subcategory” in his diagram to model the
concept of subcategories as an aggregation of the Category class.

Next, the designer establishes that the “Genre” and “Category” elements in each of
the DR representations are actually the same concept in the CD domain, and formally
specifies this identity so that a computational environment can integrate the reasoning

252 A.P. de Medeiros, D. Schwabe, and B. Feijó

elements related to them. After specifying the identity between these elements, the
designer defines that the representation of the second artifact (Fig. 9) will be used as
the basis for the integrated representation, and performs the integration of the DR
representations of the selected artifacts. Fig. 10 shows the graphic representation of
part of the DR that was recorded after the integration of the rationales exemplified in
figures 3 and 9.

Fig. 10. Example of integrated DR

Observing the DR integration result shown in Fig. 10, we can notice that the
solution idea “Attribute” that addresses the question “How to model Genre?” in Fig. 3
and all other questions, solution ideas and arguments represented there, were
automatically included in the sub-tree of the question “How to model Category?”.
With this integrated DR, the designer can begin her design evaluating the solution
ideas already used taking advantage of the experiences of other designers, expressed
in the arguments and decision justifications included in the DR. Based on this
knowledge, she can modify the DR obtained and make new decisions about how her
new class diagram will be designed.

The DR represented with the Kuaba ontology vocabulary could also be used in
scenarios that involve cooperation. We believe that the support operations necessary
for the reuse of DR in cooperation scenarios are the same operations necessary in the
scenarios presented previously. In other words, the operations just described can be
applied in exactly the same way when integrating partial solutions produced by team
members in a cooperative design effort. We will discuss the necessary operations on
DR representations next.

 Kuaba Ontology: DR Representation and Reuse in Model-Based Designs 253

3.1 Operations

The use of the DR representations requires different kinds of operations on the
recorded content. The explicit and semantic representation of DR in a language
formally defined and specifically designed for the description of ontologies, allows
these operations to be computable by engines to support the design of new artifacts.

The operations over DR representations can be grouped into queries, operations for
manipulating an existing DR representation and operations for integrating of two or
more DR representations (instances of the Kuaba ontology)

The first group allows formulating relevant questions about the design process and
about the produced artifact. For example, we can formulate questions such as “What
were the solution ideas considered during the Genre artifact design?”, “Why the
decision of designing the Genre artifact as an attribute was made?”, “Who presented
the solution idea adopted for the Genre artifact?”, or still “Is artifact X related to
artifact Y?” The queries are performed according to the relations semantics and
constraints defined by the Kuaba ontology vocabulary.

The operations for the manipulation of the existing DR representations are
basically the same operations necessary to represent the reasoning elements
(Question, Idea and Argument) produced by the designer during the design of a new
artifact. These operations involve the creation and destruction of instances of the
classes and properties defined in the Kuaba ontology. They are implemented in the
majority of available ontology manipulation tools, such as Protégé [13].

The operations for the integration of two or more DR representations involve more
specific treatments. These operations resemble the operations necessary to perform
ontology alignment [14]. However, the operations for the integration of the DR
representations defined in this work differ from the usual alignment operations, since
they involve matching instances of the same ontology (Kuaba) and not the matching
of taxonomies and instances defined in different ontologies. The types of operations
identified for the integration of two or more DR representations are: search, copy,
union and substitution.

Search operations allow the designer select which elements of the representations
considered for the integration will be included in the integrated representation. For
example, the designer could provide a question, and request that the search tool recover
only the ideas that have arguments in its favor that are answers to this question.

Union operations allow joining the reasoning elements described in the
representations considered in the integration to generate a new representation. These
operations should take into account the identity specifications and the definition of the
base representation previously defined by the designer. These operations can be
implemented in different ways, allowing the designer to determine how the union of
elements will be performed. One way would be to permit the designer to specify
which parts of the representations considered should be integrated. For example, she
could define the Question element that would be the root of the union of the
representations. Or still, to allow her to restrict the elements considered during the
integration, such as, for instance, requiring the union to consider only the ideas that
were accepted in their respective representations.

Finally, the substitution operations allow the designer substitute an element in one
representation by a corresponding element from another representation. This
operation can be used for example when the designer desires to use the DR of a single

254 A.P. de Medeiros, D. Schwabe, and B. Feijó

representation, but she desires to substitute one of its elements by an element
specified in the other representation.

Some of these operations make use of inference rules to automate part of the
designer work in recording the DR of the artifact that she is building.

4 Related Work

Procedural Hierarchy of Issues (PHI) extends IBIS by simplifying the relations among
issues by using the “serve” relationship only. In addition, it provides two methods to
deal with design issues: deliberation (to give answers to the issue) and decomposition
(to break down the issue into a variety of subissues). Differently the Kuaba ontology,
PHI does not represent explicitly the decisions made during design and its
justifications. Plus, it is not integrated with the artifacts descriptions and other
information about the design process.

The Potts and Bruns [15] model relates entities in existing software engineering
methods to IBIS-based deliberation. This model was extended by [16] in the creation
of the Decision Representation Language (DRL). Similarly to the Kuaba ontology, the
key difference from other DR representations, namely the integration with software
engineering methods, is achieved through derivation of artifacts from alternatives.
However, the Potts and Bruns model and the Kuaba ontology differ in the way they
use software engineering methods. In Potts and Bruns model, the generic model’s
entities are refined to accommodate a particular design method’s vocabulary for
deriving new artifacts. For example, a new entity specific to the used design method
is incorporated into the IBIS model. In Kuaba ontology the vocabulary of the design
method is used in the creation of instances of the reasoning elements (Question and
Idea), which allows to automate the generation of part of the values that would be
informed by the users during design.

Although the works presented in [17] and [18] approach DR specifically for
software engineering and focus on the (re)use of DR, they are not directly comparable
to our work because they do not address the integration of DR representations to
create new software artifacts. Furthermore, these works do not consider computable
operations as a support for the reuse of software artifacts.

5 Conclusions

In this paper we have proposed a new way of reusing artifacts in Software Design
domain. To permit a more effective reuse of DR, we have presented the use of the
formal models of artifacts to represent DR using the vocabulary defined in Kuaba
ontology. This vocabulary represented in a specific ontology specification language
allows formulating queries on the recorded DR and to define a set of rules and
operations to support the use of DR in designing new software artifacts.

One of the problems related to DR representation is the use of the formalism by the
people involved in design process. We believe that the use of formal models of
artifacts in a software development environment can facilitate the DR capture, since it
permits automating part of generation of DR representations. Therefore, the large
amount of data produced in DR representations of actual designs is significantly
hidden from the designer through the use of automated support.

 Kuaba Ontology: DR Representation and Reuse in Model-Based Designs 255

Our current research includes: the implementation of the operations defined in this
paper to validate the reuse of software artifacts through the integration of existing DR
representations; and the investigation of the use of the Kuaba ontology to represent
DR also in domains where there are no well defined formal models to describe
artifacts. The operations are being implemented using the Flora-2 language2 that
translates F-Logic into tabled Prolog code.

References

1. Lee, J.: Design Rationale Systems: Understanding the Issues. IEEE Expert Volume 12,
No. 13 (1997) 78-85

2. Kunz, W., Rittel, H. W. J.: Issues as Elements of Information Systems. Institute of Urban
and Regional Development Working Paper 131, Univ of California, Berkeley, CA, (1970)

3. McCall, R. J.: PHI: A conceptual foundation for design hypermedia. Design Studies,
No.12 (1) (1991) 30-41

4. MacLean, A. et al.: Questions, Options, and Criteria: Elements of Design Space Analysis.
Human-Comput. Interaction, No. 6 (3-4) (1991) 201-250

5. Lee, J., Lai, K.: What’s in Design Rationale. Human-Comput. Interaction, No. 6 (3-4)
(1991) 251-280

6. OMG: Unified Modeling Language Specification version 1.5. March (2003)
7. Medeiros, A. P., Schwabe, D., Feijó, B.: A Design Rationale Representation for Model-

Based Designs in Software Engineering. In Proceedings of the CAiSE'05 Forum, Porto,
Portugal, June (2005) 163-168

8. Gruber, T. R.: A Translation Approach to Portable Ontologies. Knowledge Acquisition,
No. 5 (1993) 199-220

9. W3C: OWL Web Ontology Language Overview. W3C Recommendation. February (2004)
10. Kifer, M., Lausen, G.: F-Logic: A Higher-Order Language for Reasoning about Objects,

Inheritance and Scheme. ACM SIGMOD May (1989) 134-146
11. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.

Reading, Mass.: Addison-Wesley, (1999) 463p
12. Nilsson, N.: Principles of Artificial Intelligence. Morgan Kaufman Publishers (1986) 476p
13. Noy, N. F. et al.: Creating Semantic Web Contents with Protégé-2000. IEEE Intelligent

Systems Vol. 16, No 2, Special Issue on Semantic Web, March/April (2001) 60-71
14. Doan, A. et al.: Learning to Map between Ontologies on the Semantic Web. In

Proceedings of the 11th World Wide Web Conference (WWW2002), Honolulu, Hawaii,
USA, May (2002)

15. Potts, C., Bruns, G.: Recording the Reasons for Design Decisions. In Proceedings of 10th
International Conference on Software Engineering, Singapore (1988) 418-427

16. Lee, J.: Extending the Potts and Bruns Model for Recording Design Rationale. In
Proceedings of the 13th International Conference on Software Engineering, Austin, TX
(1991) 114-125

17. Pena-Mora, F., Vadhavkar, S.: Augmenting Design Patterns with Design Rationale.
Artificial Intelligence for Engineering Design, Analysis, and Manufacturing (1996) 93-108

18. Burge, J., Brown, D. C.: Rationale Support for Maintenance of Large Scale Systems.
Workshop on Evolution of Large Scale Industrial Software Applications (ELISA),
ICMS’03, Amsterdam, NL (2003)

2 http://flora.sourceforge.net/

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 256 – 269, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Ontology Creation: Extraction of Domain Knowledge
from Web Documents

Veda C. Storey1, Roger Chiang2, and G. Lily Chen1

1 Department of Computer Information Systems, J. Mack Robinson College of Business,
Georgia State University, Box 4015, Atlanta, GA 30302
vstorey@gsu.edu, gchen@cis.gsu.edu

2 Information Systems Department, College of Business,
University of Cincinnati, Cincinnati, Ohio 45221-0211

roger.chiang@uc.edu

Abstract. Considerable research has gone into developing ontologies and
applying them to a variety of applications. The extraction of domain
knowledge for developing these ontologies is often performed on a manual
basis. The World Wide Web contains a wealth of knowledge about an
application domain; however it is embedded within web pages. This research
presents a methodology for semi-automatically extracting knowledge from the
World Wide Web and organizing it into domain ontologies. Initial semantics of
a target domain are provided by a set of keywords. From these, web pages are
identified that contain relevant information for the subject domain using search
engines. Web data extraction techniques are employed to extract information
from these web pages and infer how the information is related. Extracted
knowledge is then organized into a domain ontology. Testing of the
methodology on various application domains illustrates the feasibility of the
approach.

1 Introduction

The potential of ontologies as a way to gather and organize real world knowledge
about an application domain has made them popular and, potentially, very useful for a
variety of applications, including the Semantic Web, and other search engines projects
[1, 2]. Ontologies capture knowledge about an application domain but are often build
manually. The World Wide Web contains a great deal of domain knowledge;
however it is embedded within its web pages. It would be useful to develop a
methodology to extract and organize domain knowledge efficiently and effectively. If
this could be done for various application domains, then it would assist in the
automated or semi-automated creation of domain ontologies.

The objective of this research, therefore, is to: develop a methodology for
automatically extracting and organizing domain knowledge from web pages into
ontologies. To do so, web data extraction, concept identification and relationship
inferencing are applied. The contribution of the research is to provide a first step
towards developing a methodology for semi-automatically generating domain
ontologies. Then, the most recent knowledge of a particular domain would be readily
organized on-line. The intent of this research is to move one step forward to

 Ontology Creation: Extraction of Domain Knowledge from Web Documents 257

developing a generic method to achieve this goal. The research also provides insights
into the challenges of how knowledge is organized on websites and how it might be
heuristically extracted. The research should also serve as a step towards making
ontologies useful for the Semantic Web, and other applications.

2 Related Research

2.1 Ontologies

Ontologies are intended to be an effective way to capture and represent contextual
knowledge about the real world. An ontology is a way of describing one’s world and
generally consists of terms, their definitions, and axioms relating them [3] although
there are many different ways of defining ontologies [4]. Ontologies are found in
many areas including the semantic web, natural language processing and text
interpretation [5], data extraction, managing semantic heterogeneity [6], and
classifying relationships in conceptual database design [7, 8].

 A domain ontology generally consists of the terms that occur in some application
domain (e.g., auction, course scheduling, airline reservations, restaurant selection) and
the relationships among them [4]. Consider the following query:

“Who sells Bosendorfers in Atlanta?”

Searching an ontology for musical instruments reveals that this is a type of fine
piano. Therefore, one should search piano sales stores. However, commonly used
search engines such as www.google.com retrieve a multitude of results as shown in
Table 1.

Table 1. Google results based on query “Who sells Bosendorfers in Atlanta?”

Keywords No. Google
Hits

No. Relevant from
first 10

Bosendorfers Atlanta 73 5
Bosendorfers Atlanta grand (from WordNet) 67 8
Bosendorfers Atlanta grand model 49 9

Now, consider another query:

“Which writer won the Oscar for Best Screenplay in 1972?”

A search on Google retrieves tens of thousands of results as shown in Table 2. Of
those, 60-80 percent of the initial ten results are incorrect.

This query suggests that ontologies could be beneficial when identifying whether
two dissimilar words refer to the same entity. In the United States, for example,
“Oscar” can refer to “Academy Award.” This is common human knowledge, but not
machine knowledge. Searching an ontology for movies would reveal that “Oscar” is
often used as a synonym for “Academy Award.” A web search would, therefore, be
more effective if it incorporated such domain knowledge (as stored in an ontology)
that would automatically search websites containing both Oscars and Academy
Awards, even if only one of the two terms were used.

258 V.C. Storey, R. Chiang, and G.L. Chen

Table 2. Results retrieved from Google queries based on the query “Which writer won the
Oscar for Best Screenplay in 1972?”

Keywords No. Google Hits No. Relevant from
first 10

Which writer won the Oscar for Best
Screenplay in 1972

21,800 4

Writer Oscar Screenplay 1972 23,600 2

There are many reasons for developing an automatic domain knowledge generation
methodology as outlined below.

Knowledge Sharing: Domain ontologies should facilitate knowledge access and
sharing for both Semantic Web applications and on-line communities on a special
topic. For example, many people and organizations may post ideas, opinions,
suggestions, policies, history, etc. on tsunamis. A search on Google with tsunami as
the keyword yields over 22 million websites. Although this is a large number of hits,
people accessing websites might not have the same domain knowledge or
understanding of tsunamis. It is infeasible and impossible to manually create and
maintain a domain dictionary to support emerging Internet applications. Thus, an
evolving ontology would be very useful.

Semantic Information Retrieval: With the large number of web pages available for a
particular domain, it is beyond a human’s cognitive capability to search, retrieve,
read, and understand these web pages. Although search engines are useful tools to
partially solve this problem, search engines have almost reached their full potential to
further improve information search on the Internet. A semantic-oriented solution is
imperative to support semantic information retrieval. A domain ontology could
support as the mental and conceptual map of a particular topic, so that users can
conduct effective searches with the domain knowledge provided by the ontology. For
example, for a user who wants to search on “knowledge management,” it would be
useful if he or she could access an on-line ontology on this topic first.

Domain Knowledge Updating: An automatic approach to creating domain ontology
also provides additional benefits. For example, a domain ontology can evolve (grow
and update) along with the evolution of the Internet, because the Internet is the good
medium capturing changes and storing the most up-to-date information on most topics
and issues.

2.2 Web Data Extraction and Web Mining

A number of techniques and methods have been proposed for extracting data and
concepts from the World Wide Web. Data extraction tools have been developed
based upon techniques from research in natural language processing, languages and
grammars, machine learning, information retrieval, database and ontologies [9].
Natural language processing (NLP) tools apply techniques such as filtering, part-of-
speech tagging, and lexical semantic tagging to build relationships between phrases
and sentence elements so that Web data extraction rules can be derived. Such

 Ontology Creation: Extraction of Domain Knowledge from Web Documents 259

extraction rules are based on syntactic and semantic constraints that help to identify
relevant information within a document. Representative tools are RAPIER [10], SRV
[11], and WHISK [12]. Ontology-based tools use the ontology to locate constants
present in the Web pages and to construct objects with them. The most representative
ontology-based Web data extraction tool was developed by the Brigham Young
University Data Extraction Group [13].

Web mining is the use of data mining techniques to automatically extract and
discover information from Web documents and services [14]. It is invaluable in
transforming human understandable Web content into machine understandable
semantics. Web mining research draws upon research from several areas including
databases, information retrieval, and artificial intelligence (AI), especially machine
learning and natural language processing. Web mining techniques can be applied to:
(1) automatically discover general patterns at individual websites and documents as
well as across multiple sites and documents, and (2) validate and/or interpret the
mined patterns. Web mining can be used to improve Web information extraction.
Web mining can be divided into three categories: Web content mining, Web structure
mining, and Web usage mining [15]. Web content mining is a form of text mining that
discovers interesting patterns from unstructured text and hypertext data. Research on
Web content mining can be used to detect co-occurrence of terms in texts. For
example, co-occurrences of terms in movie Web documents may show that “Oscar”
and “Academy Awards” are frequently mentioned together. Research on Web content
mining should be useful for the creation of domain ontologies by extracting domain
knowledge from Web documents.

2.3 Web Query Processing

Research on and interest in the Semantic Web has prompted studies that attempt to
apply ontologies, and other concepts from knowledge-based systems, natural
language processing, and information retrieval to make the processing of queries
more effective. One study focused on developing a Semantic Retrieval System to
support context-aware query processing on the web [18]. The system is based upon
query expansion and contraction, using lexicons such as WordNet [17] and ontologies
such as the DAML library (www.daml.org) to augment a query. The prototype
connects to search engines (Google and AlltheWeb) to execute the augmented query.
An empirical test of the methodology and comparison of results against those directly
obtained from the search engines demonstrate that the proposed methodology
provides more relevant results to users and shows that lexicons and ontologies
provide valuable, complementary sources of knowledge. However, the results
obtained are highly dependent upon the availability of good domain ontologies.

3 Ontology Construction Methodology

This section presents a methodology for semi-automatically extracting domain
knowledge from websites and organizing them into domain ontologies. An overview
of the methodology is given in Figure 1 and is explained below based upon an
application that deals with screenplays and Academy Awards.

260 V.C. Storey, R. Chiang, and G.L. Chen

Fig. 1. Overview of ontology web extraction methodology

Step 1: Identify Category of Website: There have been several attempts to categorize
the vast and diverse websites that exist on the World Wide Web. The classification
suggests that there is a degree of similarity of websites that belong to the same
category. Therefore, there is a higher-level (meta-level) organization of websites
based on type. In addition, content may be identified as similar based on the category
of the website. Referring to similarities within each category helps to identify
different domain processing. Categories include eduction, news, etc. The categories
from Xavier.edu are shown in Appendix A [16]. Two of them are:

1) commercial, the purpose of which is to sell products or services. The Internet
address often ends with .com

2) entertainment, where the purpose of the website is to entertain and provide
amusement. The Internet address often ends with .com or .org.

The web search intends to retrieve results from a certain category of website.
Specifically, for the screenplay application, it intends to retrieve information to
inform or entertain, and, therefore, aims to retrieve websites of type entertainment as
opposed to commercial sites. Then, the specific entertainment site within the domain
of “Movie” is searched. Under Movie, there are several subdomains, including
Awards, Characters, DVD, Genres, and History, as shown in Appendix D. Table 3
shows only the awards subdomain and the terms or concepts that are related to it. The
initial set of websites is generated to avoid random searching. The website
classification, shown in Table 2, is used because it provides some notion of context.
For example, the sites already identified as commerce sites will be searched for
“buying” applications. Those for entertainment are the most appropriate for the query
focusing on academy awards.

3. Crawl and scan Internet for
relevant web pages

4. Extract concepts

5. Analyze and cluster
extracted concepts

6. Construct domain
ontology

2. Specify target domain with
initial domain semantics

1. Identify category of
websites

 Ontology Creation: Extraction of Domain Knowledge from Web Documents 261

Table 3. Subdomains of entertainment domain “movie”

Subdomain Subdomain Term
Academy Awards Oscar
Golden Globe Awards

Awards

Screen Actor’s Guild Awards

Step 2: Specify target domain with initial domain knowledge: An initial set of domain
knowledge is expressed as a set of keywords that is used as the seed to identify
relevant websites from which to extract information (similar to the initial knowledge
for data mining). Another way to obtain an initial set of keywords is to process a
simple, representative query. For example, to develop an ontology for film/movies
and awards, one could start with a query such as “Which films won Oscars?” A
search on Google results in almost 230,000 hits. The first of these reveals “film,”
“academy award,” and “nomination” as common terms. The initial keywords are
given below.

Oscar, Academy Award, screenwriter, writer, best writing, adaptation
The initial set of keywords is used as the seed to identify relevant websites from

which to extract information. In this example, the keywords, “writer,” “Oscar,”
”academy award,” and “best screenplay” are used to start building an ontology for the
domain. This is shown in Table 4 where they are used with WordNet to start the
initial list of terms.

Table 4. Step 3: Extract keyworks from related webpages “movie, screenplay, oscar,
academy award” (Source: human input)

Query Terms Synonyms for Query Terms WordNet
Synonyms

Writer Screenwriter scriptwriter
Oscar Academy Award award, accolade, honor,

honour, laurels
Best Screenplay Best Writing, Adaptation and Best

Original Story
script, book, playscript

Step 3: Crawl and scan web pages: The relevant pages for the example are shown in
Table 5.

Table 5. Websites to crawl and scan

Website Description
http://www.oscars.org/academyawards/ Academy awards, Academy of Motion

Pictures Arts and Science
http://www.oscar.com/ Oscar awards and related information
http://www.filmsite.org/ Film information, including Oscar

awards

Step 4: Extract concepts: There are many approaches to extracting data from the web
[2]. This step involves extracting terms (nouns and verbs), their frequencies and

262 V.C. Storey, R. Chiang, and G.L. Chen

relationships (e.g., if one term appears in a sentence, another term also appears 50%
of the time). Relevant subset/superset relationships are identified by consulting the
online version of WordNet [17], www.cogsci.princeton.edu/~wn/) (a
comprehensive lexicon of the English language). This is a very important step;
because the quality of a domain ontology is determined by the extracted information.

This step identifies what kind of extracted information can best be used to create
domain ontologies. Based on the input-process-output model, this step generates input
(raw material, syntactical information) for the next step in inferring semantics
(domain knowledge). The steps for the concept extraction are given in Table 6.

Table 6. Concept extraction

General Steps Example
1) Open websites and analyze them Google produces 21,800 results for query
2) Analyze terms in navigation bars

1. top navigation bar
2. left side navigation bar
3. sub navigation bars

Oscar, Academy Award, screenwriter,
writer, best writing, adaptation

3) Add terms to domain ontology list

Step 5: Analyze and cluster extracted features: A content analysis of the extracted
concepts of the web pages is carried out. This involves feature analysis and clustering
methods. For each term (concept), other nouns and verbs to which they are related
are included

A content analysis of the extracted features is carried out. It includes identifying
how the various terms are connected to each other. This is shown in Table 7.

Table 7. Step 5: Extract keyworks from related webpage www.filmsite.org/
bestscreenplays2.html “Oscar Academy Award screenwriter writer best writing adaptation”

Terms Frequency Relationship
Oscar 31
Academy Award 5
To Win (all tenses) 101
To Nominate 11
Nomination 44
Oscar + Academy Award (O/AA) 1 Oscar – academy award
O/AA + Nominated 1 Oscar – academy award -- win
Writing 7
Screenplay 25
Screenplay + Writing 1 Screenplay—write
Adapted + Screenplay 2 Screenplay—adapt
Original + Screenplay 4 Screenplay—original
Best + Screenplay 11 Screenplay—best
Oscar+win 20 Oscar—win
Nomination + Oscar 20 Oscar—nomination
Nomination + Win 20 Nomination--win

 Ontology Creation: Extraction of Domain Knowledge from Web Documents 263

Step 6: Construct domain ontology: A domain ontology is constructed using the terms
and relationships identified. The ontologies presented in Appendix B and C are
organized by website type (commercial, news) with domain.

The steps in the methodology are summarized in Table 8.

Table 8. Steps in ontology creation methodology

Step Step
Name

Description Justification

1 Website
Category

Identify the category of website to
help identify target domain

Existing classifications of
websites exist; reduces
search space

2 Target
domain

Identify the target domain for
creating the ontology (manual
input).

The web is too large to
search blindly

2.1 Initial
semantics

Provide the initial semantics of the
target domain (i.e., a set of key
words)

Similar approach has been
used by research in web
mining

3 Web
search

Search for web pages for the
relevant information for the
application domain using search
engines

4 Extract Download the relevant web pages
4.1 Eliminate

unrelated
content

Scan the web pages and strip
unrelated contents using web data
extraction tools that eliminate non-
keywords and stop words

Stop words have been
effectively applied in
other, related research

4.2 Extract
features

Extract and analyze these extracted
feature (feature identification and
analysis) using feature extraction
and analysis tools

The purpose of application
domain ontologies is to
provide common terms of
the domain [4]

5 Cluster
feature

Arrange features as ontological
hierarchy using clustering
techniques

Standard procedure,
currently based upon
frequencies

6 Organize
ontologies

Organize the ontologies using the
XML structure or a relational
database structure for queries.

Takes advance of standard
technologies

4 Assessment

The methodology was tested on several domains. First the domain ontologies were
generated based upon the methodology presented above. Then, queries were
generated by application domain. Since the intended use of the ontologies is to assist
in processing such queries, testing was carried out by analyzing the number of
relevant web pages retrieved (out of the first 10) with and without the information that
would be available in the domain ontology. The results are summarized in Table 9.

264 V.C. Storey, R. Chiang, and G.L. Chen

Table 9. Results

Application
Domain

Testing Query Google
result without
ontology
terms

Google result
with ontology
terms

Education Which different universities
offer online degrees?

5 9

Sports-wear
Sales

What stores sell Nike shoes? 4 8

Music-Concerts When is U2 playing in
Atlanta?

2 9

The assessment provides some insights into both the challenges of the

development of domain ontologies; and the usefulness of domain ontologies for query
processing on the World Wide Web

1. The extraction of concepts from domains, when carried out systematically,
provided a number of useful terms. However, when the domain was not as closely
related, the number of occurrences of common terms went down drastically. For
example, websites that reported on the Oscars or Academy Awards contained
much overlap in terms. However, when extracting concepts from the more generic
“film” websites, there was more variation in the terms used.

2. There were generic websites, such as all airlines. However, for the specific,
related websites, such as Travelocity, there were new concepts and hence terms.

3. The websites contain a wealth of information on application domain concepts and
relationships.

4. Observations can be made on the format of the websites. There is a great deal of
commonality in websites of a certain category. Websites that belong to the same
type of classification tend to be designed with similar layouts and have a similar
“look and feel”. There are generic terms (shown Appendix B) that appear on
almost all websites of a certain category (e.g., all “commercial” websites have a
shopping cart, etc.). However, the websites may use synonyms (e.g. shopping
cart/basket/mycart or “plane/airfare/flight”), and differ in the exact term used.
This would make ontology domains very useful.

5. The use of the correct domain information can both decrease the number of hits
while increasing the relevancy.

5 Conclusion

A methodology for creating domain ontologies has been presented. The methodology is
based upon data extraction and other search techniques to take advantage of the terms
and concepts that are embedded within web pages. The methodology has been applied
to various application domains. The results are encouraging, with future research needed
to refine the methodology and to further test and apply the results. Further work is also
needed to augment the methodology to incorporate more sophisticated clustering
analysis and learning techniques. A prototype that implements the methodology needs

 Ontology Creation: Extraction of Domain Knowledge from Web Documents 265

to be developed that incorporates good natural language parsing techniques and, perhaps
interfaces with other lexicons or ontologies. The prototype could be integrated with
existing tools that enhance web query processing. Finally, the application of the research
to other domains is needed and further empirical assessment carried out, both to assess
the usefulness of the research and to provide insights into what further work is needed
on concept extraction from the web, domain ontology development, and domain
ontology applications to web query processing.

References

1. Chiang, R., Chua, E. H., Storey, V. C.: A Smart Web Query Engine for Semantic Retrieval
of Web Data," presented at Data and Knowledge Engineering Special Issue on
International Conference on Applications of Natural Language to Information Systems,
(NLDB '00), 2001.

2. Embley, D. W.: "Toward Semantic Understanding: An Approach Based on Information
Extraction Ontologies," presented at ACM International Conference Proceeding Series;
Proceedings of the fifteenth conference on Australasian database, Dunedin, New Zealand,
2004.

3. Gruber, T. R.: "A Translation Approach to Portable Ontology Specifications," Knowledge
Acquisition, vol. 5, pp. 199-220, 1993.

4. Weber, R.:"Ontological Issues in Accounting Information Systems," in Researching
Accounting as an Information Systems Discipline, S. a. A. Sutton, V, Ed. Sarasota, FL:
American Accounting Association, 2002.

5. Dahlgren, K.: "A Linguistic Ontology," International Journal of Human-Computer
Studies, vol. 43, pp. 809-818, 1995.

6. Kedad, Z., Métais, E.: "Dealing with Semantic Heterogeneity During Data Integration.,"
presented at Conceptual Modeling - ER'99, 18th Intl. Conference on Conceptual Modeling,
Lecture Notes in Computer Science 1728, Paris, France, 1999.

7. Bergholtz, M., Johannesson, P.: "Classifying the Semantics of Relationships in Conceptual
Modeling by Categorization of Roles," Madrid, Spain June 28-29 2001.

8. Storey, V. C.: Classifying and Comparing Relationships in Conceptual Modeling," IEEE
Transactions on Knowledge and Data Engineering, vol. forthcoming, 2005.

9. Laender, A. H. F., Ribeiro-Neto, B. A., Silva, A. S. d.,Teixeira, J. S.: "A Brief Survey of
Web Data Extraction Tools," ACM SIGMOD Record, vol. 31, pp. 84 - 93, 2002.

10. Califf, A. M. E., Mooney, R. J.: "Relational learning of pattern-match rules for information
extraction," presented at Proceedings of the sixteenth national conference on Artificial
intelligence and the eleventh Innovative applications of artificial intelligence conference
innovative applications of artificial intelligence, Orlando, Florida, 1999.

11. Freitag, D.: "Machine Learning for Information Extraction in Informal Domains," Machine
Learning, vol. 39, pp. 169 - 202, 2000.

12. Soderland, S.: Learning Information Extraction Rules for Semi-Structured and Free Text,"
Machine Learning, vol. 34, pp. 233 - 272, 1999.

13. Embley, D. W., Campbell, D. M., Jiang, Y. S., Ng, Y.-K., Smith, R. D., Liddle, S. W.,
Quass, D. W.: Conceptual-model-based data extraction from multiple-record Web pages,"
Data & Knowledge Engineering, vol. 31, pp. 227-251, 1999.

14. Etzioni, O.:"The World-Wide Web: Quagmire or Gold Mine?," Communications of the
ACM archive, vol. 39, pp. 65-68, 1996.

266 V.C. Storey, R. Chiang, and G.L. Chen

15. Kosala, R., Blockeel, H.:Web Mining Research: A Survey," SIGKDD Explorations, vol. 2,
pp. 1-15, 2000.

16. Xavier, http://www.xavier.edu/library/xututor/evaluating/
types_of_websites.cfm," vol. 2005.

17. Fellbaum, C.:Introduction," in WordNet: An Electronic Lexical Database. Cambridge,
Mass.: The MIT Press, 1998, pp. 1-19.

18. Burton-Jones, A., Storey, V.C., Sugumaran, V., and Purao, S., “A Heuristic-based
Methodology for Semantic Augmentation of User Queries on the Web,” Proceedings of
the 22nd International Conference on Conceptual Modeling (ER’03), Chicago, Illinois, 13-
16 October 2003, pp.476-489.

Appendix

Appendix A. Types of Websites summarized from Xavier.edu [16]

Type Purpose Example

Organizational The purpose of this type of website is to
advocate an individual's opinion or a group's
point of view. The Internet address often ends
with .org

www.w3.org

Commercial The purpose of this type of website is to sell
products or services. The Internet address
often ends with .com

www.amazon.com

Entertainment The purpose of this type of website is to
entertain and provide amusement. The Internet
address often ends with .com

www.people.com

Government The purpose of this type of website is to
provide information produced by government
agencies, offices, and departments. Usually,
information provided by government websites
is very reliable. The Internet address often
ends with .gov

www.firstgov.gov

News The purpose of this type of website is to
provide information about current events. The
Internet address often ends with .com

www.cnn.com

Personal The purpose of this type of website is to
provide information about an individual. The
Internet address has a variety of endings

www.billycorgan.com

Educational The purpose of this type of website is to
provide information about an educational
establishment. The Internet address ends in
.edu

www.gsu.edu

 Ontology Creation: Extraction of Domain Knowledge from Web Documents 267

Internet
Service
Provider

The purpose of this type of website is to
promote companies and services related to the
Internet. The Internet address ends in .net

www.virgin.net

Military The purpose of this type of website is to
provide information about the military. The
Internet address ends in .mil.

www.defenselink.mil

Appendix B. Ontology of websites of type “commercial”

Type General Specific

All Cart, Account, Wish List,
Help, Search, Register, Sign
In

Gift Certificates, New
Releases, Top sellers
Deals/Sales

 What’s New, New Releases,
Best Seller, Ordering
Information, (Find) Location
Browse, Used

Nonfiction, Fiction,
Childrens, Book Clubs

URL Top Column Left Column

Amazon

Welcome, Your Store, Books,
Apparel, Electronics, Toys &
Games, DVD, Tools &
Hardware

Categories: Books, Music,
DVD, electronics, Kids &
Baby, Home & Garden,
Gifts & Registries

BooksA
Million

Home, Books, Bargains,
Magazines, B-2_B,
FaithPoint, Audio, Hard-To-
Find, Joe Muggs

Editor’s Choice, Discount
magazine subscriptions,
Discount Card, Book
Preview Clubs, Store
Finder, Gift Certificates,
Gift Wrap, Online Gift
Delivery

Powells
Indep.

Browse selections, bestsellers,
sale, used, rare books,
technical, textbooks, kids, new

Categories: architecture,
art, astronomy.

Bookstore

Barnes
and
Noble

Books, Used & Out of print,
business & Technology, DVD
& Video, Music, Childrens,
Gifts, Games & Toys, Gift
Cards, Sale, Browse, Coming
Soon, Recommended, Book
Clubs

All Buy, Sell, Pay, Register,
Services

 Auction

eBay Buy, Sell, My eBay,
Community, Help

Categories – Antiques, art,
Books, Business,
Cameras…

268 V.C. Storey, R. Chiang, and G.L. Chen

All Flights, Hotels, Cars, Rail,
Vacations, Cruises, Travel,
Flight, Destination, Business,
About

Flight, flight hotel, hotel,
car, From, To, Airports,
Leave/Depart, Return
Adults, Minors, Seniors
Search Flights

Travelo-
city

Flights, Hotels, Cars, Rail,
Vacations, Cruises, Last
Minute Deals, Travel Info
Center, Flight Status,
destination, Business, About

Find me the best Priced
Trip, flight, hotel, car,
From, To, Compare
surrounding airports, Exact
dates, Depart, Return,
Adults, Minors, Seniors,
Track fares, Search
Flights, Need Ideas

Airline

Orbitz Quick Search, flights, hotels,
cars, cruises, vacations, my
trips, my account, deals, news
& guides, customer service

Flight, hotel, car, build
your trip Flight, flight
hotel, hotel, car, From, To
Compare surrounding
airports, Search one day
before and after, Leave,
Return, Travelers, Adults
Minors, Seniors, Track
fares, Explore destinations,
Search Flights

DVD

 Rhino

Store, music, dvd & video,
rhino t-shirts, collectibles,
ringtones,

New Releases, upcoming
releases, rhinos finest, gift
ideas, top sellers, contests,
quick shop, cds, dvd/video
rhino handmade, cellphone
tones and pix, boxed set,
vinyl, dual disc dvd-a,
sacd

 Warner
Bros.

Home, movies, television,
dvd, mobile, games, kids,
win!, music

New releases, family, tv on
dvd, classics, special
interest, sports

Appendix C. Ontology of websites of type “news”

Type General Specific
All News Search

Home
News, travel, sports

 URL Top Column Left Column
News CNN Search World, U.S. Weather,

Business, Sports, Politics,
Law Technology, Science
& Space, Health,
Entertainment, Travel,
Education, Special Reports

 Ontology Creation: Extraction of Domain Knowledge from Web Documents 269

 USA
Today

Search News, travel, money,
sports, life, tech, weather,
essentials, scores, news
briefs, people, today in the
sky, day in pictures, video,
archives, print edition,
subscribe, contact us

Appendix D. Breakdown of subdomains within domain of “movie”

Domain SubDomain Websites Terms

Academy Awards

Oscar

Golden Globe Awards

Awards

Screen Actor’s Guild
Awards

Character Etc. Etc.
Chats & forums
Contests
Cultures and Groups
Databases
Directories
DVD
Education
Film Festivals
Filmmaking
Genres
History
Home Video
Memorabilia
Multimedia
News and Media
Organizations
Personal Pages
Quotations
Release Schedules
Reviews
Screenwriting
Scripts
Series
Showtimes
Soundtracks
Studios
Theaters

Movie

Theory and Criticism

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 270 – 287, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Choosing Appropriate Method Guidelines
for Web-Ontology Building

Sari Hakkarainen1, Darijus Strasunskas1,2, Lillian Hella1, and Stine Tuxen1

1 Norwegian University of Science and Technology,
Sem Saelandsvei 7-9, NO-7491 Trondheim, Norway

2 Dept. of Informatics, Kaunas Faculty of Humanities,
Vilnius University, LT-44280 Kaunas, Lithuania

{sari, dstrasun, hella, stinemt}@idi.ntnu.no

Abstract. Ontology is a core component in semantic Web applications. The
employment of an ontology building method affects the quality of ontology and
the applicability of ontology language. An evaluation approach for ontology
building guidelines is presented. The evaluation is based on semiotic quality
framework, an evaluation scheme frequently applied for evaluating the quality
of conceptual models. The framework is extended with situational and
computational capabilities. A sample of ontology building method guidelines is
analyzed in general and evaluated comparatively in a case study at an oil
company in particular. Directions for further refinement of ontology building
methods are discussed.

1 Introduction

The vision for the next generation web is the semantic Web [2], where information is
accompanied by metadata about its interpretation, so that more intelligent and more
accessible information-based services can be provided. The core components in the
semantic Web and its applications will be the ontologies. An ontology can be seen as
an explicit representation of a shared conceptualization [11] that is formal [31], and
will encode the semantic knowledge and enable sophisticated information services.
The quality of a semantic Web application will be dependent on the quality of its
underlying ontology.

Even though tool support exists, the ontology building process still is a human
intensive labour. The analysis and design phases rely on human interpretation. In
practice, the biggest communication gap is observed between system designers and
end-users, e.g. domain experts. System designers use a terminology at the syntactic
level, often unfamiliar to the users. Similarly, the terminology used by the latter group
may be difficult for the former to understand. This is apparent when trying to
integrate different levels of abstraction - pragmatic, semantic and syntactic. Transition
from one level to another is not trivial.

The end product of ontology building is not always a homogeneous specification,
but loosely coupled ontology fragments focusing on different aspects. The co-
ordination of the process of modelling and integration of different views is possible
by the medium of common reference layer [26]. Ontology may be used as means to
abstract from different representation formats and to relate various fragments at

 Choosing Appropriate Method Guidelines for Web-Ontology Building 271

different abstraction levels. The quality of the interoperation and views management
will depend on the quality of the used ontology. The quality of the ontology will in
turn depend on factors such as 1) the appropriateness of the language used to
represent the ontology, and 2) the quality of the engineering environment, including
tool support and method guidelines for creating the ontology by means of that
language. Method guidelines can thus be seen as an important means to make
ontology building possible for a wider range of developers, e.g., not only a few expert
researchers in the ontology field but also companies wanting to develop an ontology
for internal or external use.

The objective is to inspect available method guidelines for Web-based ontology
specification languages and to apply and extend a modelling quality framework in
order to facilitate the choice of ontology building method based on requirements. The
approach is to adapt the modelling language appropriateness part of the semiotic
quality framework [18], define a computational framework for the analytic evaluation
of method guidelines, situate the weighted criteria and to conduct a trial case study.

The paper is organized as follows. In Section 2, related work is discussed. In
Section 3, the model for the evaluation is described and the computational extension
of the model is introduced. In Section 4, the ontology building guidelines are
evaluated and their means to achieve quality goals in general are analysed. In Section
5, the language and method guidelines are evaluated in an industrial case in particular.
Finally, in Section 6 conclusions are drawn and directions for future work and for
further refinement of ontology building methods are suggested.

2 Evaluating Modelling Approaches and Web-Ontologies

Related work for this paper comes from two sides: a) work on ontology representation
languages and methods for these, and b) work on evaluating conceptual modelling
approaches (i.e., languages, method guidelines, and tools). The intersection between
these two is limited; the work on ontology languages has contained little about
evaluation, and the work on evaluating conceptual modeling approaches has
concentrated on mainstream approaches for systems analysis and design. However,
the newer ontology languages are becoming mature enough to allow comparative
analysis, given a suitable instrument.

During the last decade, a number of ontology representation languages have been
proposed. The so-called traditional ontology specification languages include: CycL,
Ontolingua, F-logic, CML, OCML, Telos, and LOOM. There are Web standards that
are relevant for ontology descriptions in semantic Web applications, such as XML
and RDF. Finally, there are the newer Web ontology languages that are based on the
layered semantic Web architecture, such as OIL, DAML+OIL, XOL, SHOE, and
OWL. The latter are at the foci of this study.

There exist several methodologies to guide the process ofWeb-ontology building.
Usually, they describe an overall ontology development process yet not the ontology
creation itself. The methodologies primarily intend to support the processes of
knowledge elicitation and the management of the ontologies: [8] propose an evolving
prototype methodology with six states as ontology life-cycle and includes activities
related to project and ontology management, [28] propose an application driven

272 S. Hakkarainen et al.

ontology development process in five steps emphasizing the organisational value,
integration possibilities and the cyclic nature of the development process, [29]
propose a top-down approach for deriving domain specific ontologies from common
upper level ontologies and includes steps for requirements elicitation and for
implementing the derived ontologies, and [30] propose a general framework for the
ontology building process consisting of four steps including quality criteria for
ontology formalisation.

The above methodologies provide a life cycle in an overall ontology development
process [3, 7, 30] but only a few user guidelines for actually creating the ontology. In
order to increase the number, and the scale of practical applications of the semantic
Web technologies, the developers need to be provided detailed instructions and
general guidelines for the actual ontology creation. A limited selection of method
guidelines were found for the Web ontology specification languages, which are at the
foci of this study: [14] present a tutorial with method guidelines for making
ontologies in the representation language OWL by means of the open source ontology
editor Protégé, [5] present a user guide with method guidelines for making ontologies
in the representation language DAML+OIL, again by means of Protégé, and [22]
present method guidelines for making ontologies, independent of any specific
representation language.

Difficult aspects to control are the human factors that affect the quality of
ontology. Developer constructs an ontology based on individual interpretation of
reality and perception of high quality. The human factors influence the pragmatic use
of the ontology language in the construction process and in the resulting ontology.
The ontology construction process in Figure 1 is related to some ontology language
yet independent of any. The sequence of ontology building activities and the mapping
rules between the UoD and the ontology are important aspects in ontology building.
Currently, Web-ontology languages do not encompass explicit mapping between the
real world phenomena and the ontological constructs.

Fig. 1. Factors that affect a final ontology

A comprehensive evaluation of ontology languages was carried out in [27],
covering all the above mentioned languages except OWL. It also evaluates some tools
for ontology building: Ontolingua, WebOnto, WebODE, Protégé 2000, OntoEdit, and
OilEd. Similarly, [4, 10, 24] evaluate various ontology languages. These studies focus
on evaluating the languages and partly tools, not hands-on instructions or ontology

 Choosing Appropriate Method Guidelines for Web-Ontology Building 273

building guidelines. Given the argumentation above, such studies are targeting the
audience of highly skilled modelling experts rather than the wide spectrum of
potential developers of semantic Web applications.

In conceptual modelling there are, however, a number of frameworks suggested for
evaluating modelling approaches in general. For instance, the Bunge-Wand-Weber
ontology [32] has been used on several occasions as a basis for evaluating modelling
techniques, e.g. NIAM [33] and UML [23], as well as ontology languages in [4, 9].
The semiotic quality framework first proposed in [19] for the evaluation of conceptual
models has later been extended for evaluation of modeling approaches and used for
evaluating UML and RUP [15, 16]. This framework was also the one used in the
above mentioned evaluation of ontology languages and tools in [27]. The framework
suggested by [24] is particularly meant for requirements specifications, but is still
fairly general. There are also more specific quality evaluation frameworks, e.g. [1] for
process models, and [21, 25] for data and information models, respectively.

The semiotic quality framework [18] builds on an earlier framework [19]. The
early version distinguishes between three quality categories for conceptual models
(syntactic, semantic, and pragmatic) according to steps on the semiotic ladder [6]. The
quality goals corresponding to those categories are syntactic correctness, semantic
validity and completeness, and comprehension. The framework distinguishes between
goals and means to reach the goals, where, e.g., various types of method guidelines
are an example of the latter. In later extensions by Krogstie, more quality categories
have been added, so that the entire semiotic ladder is included, e.g., physical,
empirical, syntactic, semantic, pragmatic, social, and organizational quality. In this
work, the framework is used for evaluating something different, namely method
guidelines for ontology building.

3 Weighted Selection Criteria for Appropriateness Categories

The developers typically need instructions and guidelines for ontology creation in
order to support the learning and co-operative deployment of the semantic Web
enabling languages. [18] describes a model quality framework consisting of five
semiotic aspects of quality modelling languages. The framework is well-suited as an
evaluation instrument because it 1) distinguishes between goals and means separating
what to achieve from how to achieve, 2) is closely related to linguistics and semiotic
concepts, and 3) is based on a constructivist world-view, the framework recognizes
that models are build from interaction between the designer and the user. The main
model, see Figure 2. of the semiotic quality framework for language, here web-
ontology guideline evaluation is as follows.

A - Audience refers to the individual, Ai, organisational, As, and technical, At actors
who relate to the model. This includes human and artificial actors.
K - Participant knowledge is the explicit knowledge that is relevant for the audience
A. This is the combined knowledge of all participants in the project.
L - Language extension is what can be represented according to the graphical
symbols, vocabulary and syntax of the language; the set of all statements that may be
informal Li, semi-formal Ls, or formal Lf .

274 S. Hakkarainen et al.

M - Model externalization is the set of all statements in an actor’s model of a part of
a perceived reality written in a language L.
I - Social actor interpretation is the set of all statements which the externalized
model consists of, as perceived by the social audience Ai and As.
T - Technical actor interpretation is all the statements in the conceptual model L as
they are interpreted by the technical audience At.
D - Modelling domain is the set of all statements that can be stated about a particular
situation.

Fig. 2. Semiotic Quality Framework [18]

Five appropriateness categories in the framework are here adapted for ontology
building method guidelines. Selection criteria and coverage weight functions are
proposed accordingly. The case study [12, 13] suggested that numerical values could
be used for classification and thus qualify weighted selection techniques, such as the
[20] PORE methodology for evaluation. Adapting PORE, we define coverage weights
-1, 1 or 2 for each category in the sequel.

Let CF be an evaluation framework such that CF has a fixed set A of
appropriateness categories a. Each a is a quadruple <id, descriptor, C, cw>, where id
is the name of the category, descriptor is a natural language description, C is a set of
selection criteria c, and cw defines a function of S that return -1, 1, or 2 as coverage
weight, where S is a set of satisfied elements aicj in the selection criteria C of each
appropriateness category a in A. Intuitively, we define a number of selection criteria
alongside an associated coverage weight function for each category in the evaluation
framework. The appropriateness categories are as follows.

a1 – Domain appropriateness (DA) indicates whether the method guidelines address
representation of relevant facts. Ideally, D \ L = Ø, i.e. there are no statements in the
expected application domain that cannot be expressed in the target language, and one

 Choosing Appropriate Method Guidelines for Web-Ontology Building 275

should not be guided to express things that are not in the domain (limited number of
constructs). The former criterion means that a1c1 – the developer is guided to make
use of high expressive power whereas the latter means that a1c2 – there is a limited
number of modelling constructs that are generic, composable and flexible in
precision. The cw in Equation 1 holds for each modelling perspective a1p1– structural
(SP), a1p2 – functional (FP), a1p3 – behavioural (BP), a1p4 – object (OP), a1p5 –
communication (CP), and a1p6 – actor-role (AP).

.

.

.

 ,1

,1

,2

)(1

1

1

2111

2111

11

∅=
∈
∈

−
= ∨

∧

S

S

S

caca

caca

if

if

if

Scw (1)

a2 – Participant knowledge appropriateness (PKA) indicates whether the method
corresponds to what participant in the modelling activity perceive as a natural way of
working. Ideally, K I L \ L = Ø, that all the statements in the models of the languages
used by the participants are part of their explicit knowledge. The cw in Equation 2
return values based on that the method guideline a2c1 –usage of statements not in a
participant's knowledge should not be promoted, a2c2 – external representation should
be intuitive, and a2c3 – non-intuitive representations should be introduced carefully.

cw2 (S2) =
−1,

1,

2,

if

if

if

 0
 2

 S2 = 0.

< S2 ≤ 1.

< S2 ≤ 3.

 (2)

a3 – Knowledge externalization appropriateness (KEA) indicates whether the method
assists the participants in externalizing their knowledge. K I L \ K = Ø, i.e. there are
no statements in the explicit knowledge of the participant in the modelling activity
that cannot be expressed in the target language. This appropriateness focuses on how
relevant knowledge may be articulated in the language rather than what knowledge is
expressed. The cw in Equation 3 reflects on the implication of the two partial quality
goals of generality, a3c1 – the guidance to use the language should be as domain
independent as possible, and completeness, a3c2 – there is guidance for all possible
usages of the language.

.

.

.

 ,1

,1

,2

)(3

3

3

2313

2313

33

∅=
∈
∈

∨
∧

−
= S

S

S

caca

caca

if

if

if

Scw (3)

a4 – Comprehensibility appropriateness (CA) indicates whether participants are able
to comprehend the method guidelines. Ideally, L \ I = Ø, i.e. all the possible
statements of the language are understood by the participants using the method
guidelines. The cw in Equation 4 reflects if a4c1 – the described modelling constructs
are easily distinguished from each other, a4c2 – the number of constructs is reasonable
or organized in a natural hierarchy, a4c3 – proposed use of modelling constructs is
uniform for all the statements expressed in the target language, a4c4 – the guidance is
flexible in the level of detail in the target language, and a4c5 – separation of concerns
and multiple views is supported.

276 S. Hakkarainen et al.

cw4 (S4) =
−1,

1,

2,

if

if

if

0

1

3

< S4 ≤ 1.

< S4 ≤ 3.

< S4 ≤ 5.

 (4)

a5 – Technical actor interpretation appropriateness (TAIA) indicates whether the
method guidelines lend themselves to automated tool support or assist in support for
reasoning. Ideally, T \ L = Ø, i.e. all possible mechanisms in the technical participants
interpretation are supported by the target language. The cw in Equation 5 reflects on
the implication of the partial quality goals for automatic reasoning support in the
instructions provided for the target language, i.e. a5c1 – both formal syntax and
semantics are operational and/or logical, a5c2 – efficient reasoning support is provided
by executability, a5c3 – natural language reasoning is supported, and a5c4 –
information hiding constructs are provided enabling encapsulation and independent
components.

()

.

.

.

 ,1

,1

,2

)(5

5

5

45352515

45352515

55

∅=
∈
∈

∨∨
∨∨

−
= ∨

∧

S

S

S

cacacaca

cacacaca

if

if

if

Scw (5)

The selection criteria for the appropriateness categories above are exhaustive and
mutually exclusive in the categories a1, and a6, exhaustive in a5, whereas the set of
satisfied criteria S of the remaining categories may also be the empty list ∅ . The
coverage weight cw is independent of any category-wise prioritisation. Further, since
the intervals are decisive for the coverage weight they can be adjusted depending on
preferences of the evaluator and the stakeholder. However, when analysing different
evaluation occurrences the intervals need to be fixed in comparison, but may be used
as dependent variable.

4 Guidelines for Ontology Building – General Evaluation

The extended evaluation framework provides means to evaluate the development
perspectives of a methodological support instrument, independent on a particular
ontology language. Our method is illustrated in Figure 3, where two parallel tracks of
applying the semiotic quality framework provide guidance to what an evaluation
process may contain. Different levels of appropriateness highlight various aspects,
such as the modelled domain, the participants’ previous knowledge, or the extent to
which participants are able to express their knowledge.

Three method guidelines for semantic Web-based ontology languages are
categorized, namely Denker, 2003 [5], Knublauch et al., 2003 [14], and Noy and
McGuinness, 2001 [22]. They all support semantic Web applications and assume
RDF/XML notation rather than HTML or plain XML as the underlying Web standard.
The referenced Protégé20001 is an open-source ontology editor developed at Stanford
University and uses Java technology.

1 Hereafter abbreviated Protégé as in http://protege.stanford.edu/

 Choosing Appropriate Method Guidelines for Web-Ontology Building 277

Fig. 3. The approach for the ontology method guidelines evaluation

Denker, 2003. It is a user’s guide of the DAML+OIL plug-in for Protégé2000. The
ontology building method is based on DAML+OIL language and Protégé as the
ontology development tool. The ontology building process consists of three basic
steps; create a new ontology, load existing ontologies, save ontology. The creation
of new ontology consists of five types of instructions; define classes, properties
(slots), instances, restrictions, and Boolean combinations.

Comment. The method does not contain any explicit description of the development
process. However, the sequence of the sections in the documentation gives an
indication of how to create an ontology.

Knublauch et al., 2003. It is a tutorial that was originally created for the 2nd
International Semantic Web Conference. The ontology building method is based
on OWL language and assumes Protégé as the ontology development tool. The
ontology building process consists of seven iterative steps, namely determine
scope, consider reuse, enumerate terms, define classes, define properties, create
instances, and classify ontology.

Comment. The development activity requires some experience and foresight,
communication between domain experts and developers, and a tool that is both
comprehensible and powerful, including support for ontology evolution.

Noy and McGuinness, 2001. It is a general guide for building ontologies, called
Ontology Development 101. The ontology building method is language and
ontology development tool independent yet it uses Protégé in the examples.
The ontology building process consists of seven iterative steps, namely determine
the domain and scope of the ontology, consider reusing existing ontologies,
enumerate important terms in the ontology, define the classes and the class
hierarchy, define the properties of classes - slots, define the facets of the slots, and
create instances.

Comment. The method set three rules for development decisions: 1) there is no single
correct way to model a domain, 2) ontology development is necessarily an
iterative process, and 3) concepts in the ontology should be close to objects,
physical or logical, and to relationships in the domain of interest.

278 S. Hakkarainen et al.

Table 1. Weighting method guidelines according to appropriateness categories

Criteria (a) Category name Coverage (cw)
Explanation

DAML+OIL – Tutorial [5]
a1 Domain appropriateness - DA
p1 Structural perspective – Good description of the static structure of an
ontology. The main construct is thing in the class hierarchy.

2

p2 Functional perspective – No overview: no possibility to capture
neither processes nor information roles.

-1

p3 Behavioural perspective – Not intended to model the behaviour, no
explanation of states or transitions included.

-1

p4 Rule perspective – Partially: cardinality and static constraints. 1
p5 Object perspective – DAML+OIL subclass inherits superclass’
attributes.

2

p6 Communication perspective -- Does not cover modelling of work
processes or commitments between the participating actors.

-1

p7 Actor and role perspective – Mentions neither actor nor role directly,
but it describes properties, restrictions and instances.

1

a2 Participant knowledge appropriateness - PKA 1
Introduces statements that are not in a participant’s knowledge, unless he already has some
experience. Acquaintance with a tool gives advantages. Lacks support for inexperienced
users, e.g., the name for properties is called slots and not explained. Yet most part of the
main concepts are intuitive. Different concepts have different visualizations.

a3 Knowledge externalization appropriateness - KEA 1
The guideline is domain independent, but it does not give guidance to all relevant usages. It
lacks description of when to apply which construct, yet otherwise provides a good overview
of constructs. Has some limitations to externalize complex knowledge.

a4 Comprehensibility appropriateness – CA 1
The described modelling constructs are easily distinguished from each other, yet examples of
when to use which concept are missing. NL and graphical explanations and uniformity of
phenomena are used. The number of constructs is reasonable or organized in a natural
hierarchy. Proposed use of modelling constructs is uniform for all the statements. The
guidance is flexible in the level of detail. The tutorial contributes to comprehensibility, yet
not sufficiently.

a5
Technical actor interpretation appropriateness –
TAIA -1

None of the TAIA aspects are covered in the guideline.

OWL- tutorial [14]
a1 Domain appropriateness – DA
p1 Structural perspective – Good description of the static structure of
ontology. The main construct is thing in the class hierarchy.

2

p2 Functional perspective – No overview: no possibility to capture
neither processes nor information roles.

-1

p3 Behavioural perspective – Not intended to model behaviour, no
explanation of states or transitions included.

-1

p4 Rule perspective – Partially: cardinality and static constraints. . 1

p5 Object perspective – OWL subclass inherit superclass’ attributes� 2

 Choosing Appropriate Method Guidelines for Web-Ontology Building 279

Criteria (a) Category name Coverage (cw)
Explanation

p6 Communication perspective – Does not cover modelling of work
processes or commitments between the participating actors.

-1

p7 Actor and role perspective – Covers actor and role perspective to some
degree. Applied as relations and individuals in combination.

1

a2 Participant knowledge appropriateness – PKA 1
Introduces statements that are not in participant’s knowledge, which can be a problem for
inexperienced actors. The name for properties is slots, yet examples help inexperienced
users. Most of the main concepts are intuitive. Non-intuitive representations could have been
better described.

a3 Knowledge externalization appropriateness – KEA 2
The guideline is domain independent. Guidance to possible usages is given. It is describes
extensively the use of classes, properties, individuals, mapping and descriptions. There are
some concepts that are not possible to represent in the target language. Limitations to
externalize complex knowledge.

a4 Comprehensibility appropriateness – CA 2
The described modelling constructs are easily distinguished from each other and there is
uniformity of phenomena. The number of covered constructs is reasonable. Practical
examples of when to use which concept are provided, including graphical explanations. The
use of modelling constructs is uniform for all statements. The guidance is flexible in level of
detail. Separation of concerns is supported, yet not multiple views.

a5
Technical actor interpretation appropriateness –
TAIA

-1

None of the TAIA aspects are covered in the method guideline.

Ontology development 101 [22]
a1 Domain appropriateness – DA
p1 Structural perspective – A good description of the static structure of
an ontology: a formal explicit description of concepts in a domain of
discourse. Constructs arranged in a natural hierarchy.

2

p2 Functional perspective – No overview: no possibility to capture
neither processes nor information roles.

-1

p3 Behavioural perspective – Not intended to model behaviour, no
explanation of states or transitions included.

-1

p4 Rule perspective – Partially covered. Mentions how to use rule-based
systems to extract information from ontology. Cardinality and static
constraints are used. Rather than describing how to define rules in the
ontology, the tutorial assumes the ontology to be used by external
reasoning applications that create these rules.

1

p5 Object perspective – The class-subclass phenomenon is described
independent of language being different from classes and relations in
object-oriented programming.

2

p6 Communication perspective – Does not cover modelling of work
processes or commitments between the participating actors.

-1

p7 Actor and role perspective – Partially covered: Applied as relations
between classes and instances of classes.

1

a2 Participant knowledge appropriateness – PKA 2
Introduces some statements that may not be in a participant’s knowledge. Non-intuitive
concepts are introduced with a comprehensible description, often coupled with an
illustration. Covers where in the process the domain knowledge is placed. Alternatives are

280 S. Hakkarainen et al.

Criteria (a) Category name Coverage (cw)
Explanation

presented to some extent; participant can select a suitable representation. Eventually, the tool
and language will narrow down the choices. The abstract methodology does not describe nor
depend on any particular ontology language.

a3 Knowledge externalization appropriateness – KEA 2
The method guideline is domain independent. Extensive guidance to possible usages is
given. Gives a systematic overview of the different ontology components. Good description
of when and how to distinguish classes from properties. Some of the instructions might not
be sufficient when a participant need to represent this information using a tool.

a4 Comprehensibility appropriateness – CA 2
The described modelling constructs are easily distinguished from each other, including
illustrations. The number of constructs is reasonable. Use of modelling constructs is uniform
for all statements. It is flexible in level of detail. Separation of concerns and multiple views
are supported. Supports structured understanding of the ontology development process.

a1
Technical actor interpretation appropriateness –
TAIA 1

Formal syntax and semantics and reasoning are partially covered.

The general evaluation is summarized in Table 1. The table is in three parts, one
for each method guideline, where the columns are the evaluation criteria id, name and
coverage weight, and where every-other row describes in NL how the guideline
covers the criteria. In overall, the guidelines satisfy domain appropriateness (DA)
similarly, where none is complete in its coverage. This may be an indication of need
for further analysis of the target ontology languages. “Ontology Development 101” is
the most complete concerning participant knowledge appropriateness (PKA), whereas
“OWL- Protégé tutorial” is considered satisfactory concerning knowledge
externalization (KEA) and comprehensibility appropriateness (CA). Finally,
“Ontology Development 101” is the only method guideline partially supporting
technical actor appropriateness (TAIA).

5 Guidelines for Ontology Building – The edi Case

The case study is based on edi (engaging, dynamic innovation) which is a system
developed by a student project group [12]. edi is intended to support exchange of
business ideas between the employees within the oil company, which is an integrated
oil and gas company with business operations in 25 countries. At the end of 2002,
there were 17 115 employees in the company. The amount of information and
knowledge provided by the employees is rapidly increasing. Consequently, there is a
need for more effective retrieval and sharing of knowledge. The role of edi is to
provide a tool and encouragement for generating ideas, with the intention to enable
the staff to focus on the most relevant activities. edi shall create a connection-point for
communication and knowledge sharing between employees within various business
areas and with various competence, e.g., between domain experts in oil-drilling and
department managers. The plan is to utilize semantic Web technologies for that
purpose. Ontologies will support common access to information and enable
implementation of Web and ontology-based search. There will be participants of
different quality and knowledge that are experts on creativity.

 Choosing Appropriate Method Guidelines for Web-Ontology Building 281

edi requirements. The overall functional requirements for edi have been analysed.
Before the system can be developed a more thorough analysis needs to be conducted,
however. Further, a decision about the purpose of the ontology has to be enforced.
Information about the domain plays an important role in this process. It can be
gathered in many ways and unavoidably, there will be many different participants
involved in such a process; for instance end users, such as possible idea contributors
or managers in the edi network that evaluate ideas. A requirements specification
describes what the ontology should support, sketching the boundaries of the ontology
application, and list valuable knowledge sources. Furthermore, oil industry as a
business is in constant change, where globality makes the changes even more
complex. In overall, edi needs to have a high durability, be adaptable to changes in the
environment, be highly maintainable, and to have high reliability in order to secure
the investment. A careful analysis needs to be made early in the process that places
elaborate quality requirements on the ontology development environment.

Quality-based requirements. An ontology should be built in a way that support
automatic reasoning and provide basis for high quality Web-based information
services. An assumption is that a high quality engineering process assures high quality
end product. The quality of ontology building process depends on the environmental
circumstances under which the ontology is used. A model is expected to have high
degree of quality if it describes complete set of steps and instructions for how to arrive
at a model that is valid with respect to the domain and the language(s) it supports.

In the following, the quality requirements are categorized according to the
appropriateness categories in the extended evaluation framework. Metrics is proposed
for prioritising the appropriateness criteria adapting PORE methodology. The ontology
building guidelines are evaluated in a particular situation, based on the above edi
requirements. Importance of appropriateness category is calculated as follows.

Let R(CF) be a set of weighted requirements such that R has a fixed set RA of
categories ra, where categories in RA correspond with each category a in A of an
evaluation framework EF, i.e. RA = A, and a ∈ A, ra ∈ RA, and where ra is a triple
<id, descriptor, iw>, where id is the name of the appropriateness requirement
category, descriptor is a NL description of an appropriateness requirement, and iw
defines a function of I that returns 0, 3, or 5 as importance weight (see Equation 6)
based on priorities and policy of the company, where I is a set of importance-judged
elements ra in the selection criteria C of each category in RA.

,

essential, is satisfied. bemust

drecommende is satisfied, be should

optional, is satisfied, bemay

,5

,3

,0

)(

ra

ra

ra

if

if

if

Iiwra = (6)

The stakeholder prioritises the evaluation aspects according to the edi quality-based
requirements, where an importance weight (0, 3 or 5) is assigned to each
appropriateness category as in Equation 6. In table 2, the columns are the
appropriateness requirement category id, the name and the importance weight, where
every-other row represent a sub-column of a NL description of the requirement. In
overall, it can be observed that DA in average and TAIA are the most important
evaluation aspects for edi, whereas CA is the least important.

282 S. Hakkarainen et al.

Table 2. Weighted edi requirements on the SQF appropriateness categories

Req. id Requirement category name Importance
(iw)

Requirement description
ra1 Domain appropriateness – DA
p1 Structural perspective – Must be covered. 5

p2 Functional perspective – edi need not support this perspective. 0

p3 Behavioural perspective – It is recommended to support the
behavioural perspective, e.g., owner of an idea should be able to update
his contribution, i.e. change some state.

3

p4 Rule perspective – Must be supported. This enables representation of
constructs, such as a reply to the author if mandatory information is
missing in the idea.

5

p5 Object perspective – Users of edi should be registered, i.e. a hierarchy
of the different persons based on their position in the organisation. This
is typically covered by the, and is done by creating classes and
subclasses.

3

p6 Communication perspective – The main focus of the is the actors
cooperation within work processes through mutual commitments. For
edi we do not focus on actors reaching mutual commitments, but rather
automatic reasoning systems such as agents. Agents will play an
important part of the system, and the communication perspective must to
be covered to make this a realisation.

5

p7 Actor and role perspective – It is important that an actor, such as a
person that creates an idea, has a role, for example research officer. This
is necessary to distinguish between an idea delivered by a person that has
knowledge within the research area and those less familiar with the area.
Hence, the actor and role perspective must be supported in the edi case.

5

ra2 Participant knowledge appropriateness – PKA 3

The development of edi ontology will involve many participants which might have different
language models. The goal of participant knowledge appropriateness is that all statements in
the language models used by the participants are part of their explicit knowledge. It is not
essential to accomplish this to a full extent, since less experienced users do not have to
participate in the whole process. They can still contribute and pass on the unacquainted parts
to the experienced users, thus increasing participant knowledge appropriateness. On the
other hand it is possible to make less experienced participants contribute more by, for
example offering relevant courses they can attend.

ra3 Knowledge externalization appropriateness – KEA 3
It will be very difficult for an inexperienced user to know how to externalize knowledge
using a specific language. Therefore, a well written tutorial and perhaps some training most
likely are preferable to increase the developers’ knowledge externalizability
appropriateness.
ra4 Comprehensibility appropriateness – CA 0
Comprehensibility appropriateness implies that all possible statements of the language are
understood by the participants. No comprehensibility appropriateness is necessary to fulfil
to a full degree in this case. This is caused by the fact that everyone part of the development
process does not need to attend to the same degree. It is no problem that some people
attending have more experience than others, as this does not have to affect the overall
quality. One might use the knowledge of participants that have low understanding, assuming

 Choosing Appropriate Method Guidelines for Web-Ontology Building 283

Req. id Requirement category name Importance
(iw)

Requirement description
that there are others that have high degree of understanding. A language to support this is
important. There are many ways to increase comprehensibility. Descriptions, graphics, etc
are helpful to increase comprehensibility.
ra5 Technical actor interpretation appropriateness - TAIA 5
Technical actor interpretation appropriateness is a major requirement for the system. The
ontology must be understandable for agents, thus enabling efficient reasoning of the content.
This is one of the most important uses of the system.

Recall the coverage weights (-1, 1 or 2) expressing how well the tutorials satisfy
these evaluation criteria from Table 1. As the next step in the situated evaluation, the
importance weights in Table 2 are multiplied by the coverage weights into a total
weight tw. The individual products here are used as comprehensive feasibility rates
that motivate and guide the edi stakeholder’s assessment of method guideline. Thus
the total weights express how well the guidelines satisfy each evaluation aspect.

Finally, a total coverage weight tw is calculated for each ontology building method
guideline, as in Equation 7, where the sum of importance weights from Table 2
multiplied by the coverage weights from Table 1 is computed for all the categories.
Table 3 shows the results of the situated evaluation of ontology building method
guidelines based on their coverage of quality aspects and their importance for the edi
application. The results are used to facilitate the edi stakeholder’s final choice of
ontology building method guidelines.

∈∈

×=
RAra A,

)(
a

raai iwcwTw (7)

Table 3. Final evaluation of ontology building guidelines for edi case

DAML+OIL-
Tutorial

OWL-Tutorial Ontology
development 101

Criteria (a) Importance
weight (iw)

Coverage
weight
(cw)

Total
(tw)

Coverage
weight
(cw)

Total
(tw)

Coverage
weight
(cw)

Total
(tw)

DA-a1p1 5 2 10 2 10 2 10
DA-a1p2 0 -1 0 -1 0 -1 0
DA-a1p3 3 -1 -3 -1 -3 -1 -3
DA-a1p4 5 1 5 1 5 1 5
DA-a1p5 3 2 6 2 6 2 6
DA-a1p6 5 -1 -5 -1 -5 -1 -5
DA-a1p7 5 1 5 1 5 1 5
PKA-a2 3 1 3 1 3 2 6
KEA-a3 3 1 3 2 6 2 6
CA-a4 0 1 0 2 0 2 0
TAIA-a5 5 -1 -5 -1 -5 1 5

TwDAML+OIL Tutorial: 19 TwOWL

Tutorial:
22 TwOntDev101

:
35

284 S. Hakkarainen et al.

Apparently, some appropriateness levels help differentiating the guidelines better
than others in the edi context. PKA and TAIA both highlight one guideline as the most
feasible, whereas KEA, and CA highlight one as the least feasible. Together with
TAIA, DA is the appropriateness that (in average) covers least of what is expected.
Finally, even though the results in Table 3 indicate “Ontology Development 101”
being the most appropriate, it is considered not to be sufficient for edi. The application
is complex in nature, and therefore requires better coverage of DA, both in the target
language and TAIA in the guideline itself.

6 Concluding Remarks

An evaluation of three different method guideline documents for construction of
ontologies was conducted. The evaluation was instrumentalized using a framework
previously proposed for evaluating modelling approaches in general, e.g. as used in
[16] for evaluating UML. Evaluation was performed in two steps, one general
evaluation (i.e., their applicability for building ontologies in general) and one for a
particular case (i.e., how appropriate are these methods for ontology development
within the edi project). The major results are as follows:

− The framework showed potential for supporting the selection of method guidelines.
However, some adaptation was required in the interpretation of the various
appropriateness-categories as defined in the [18] framework.

− In both steps, the method “Ontology Development 101” [22] came out on top. This
was also the only method guideline, which was independent of the specific
representation language.

− Major weaknesses were identified for all the methods, reflecting the current
immaturity of the field of web-based ontology building.

The contribution of this paper is twofold: First, an existing evaluation framework was
tried out with other evaluation-objects than it has been used for previously; Second,
numerical values and metrics were incorporated to the evaluation framework for the
quality factors and thus qualification of weighted selection was enabled. The
industrial case study suggests the proposed evaluation of method guidelines is useful
in selection, quality assurance, and engineering of ontology building guidelines.

The concrete ranking of methods may be of limited use, as new ontology languages
and method guidelines are developed and the existing languages evolve and became
more mature. Nevertheless, it can be useful in terms of guiding the current and future
creators of such languages and their method guidelines. Drawing attention to the
weakness of current proposals, these can be mended in future proposals, so that there
will be higher quality languages and method guidelines to choose from in the future.
The underlying assumption here is that high quality method guidelines may increase
and widen the range and scalability of the semantic Web ontologies and applications.

The method of situated evaluation seems promising, yet a single case only
indicates applicability. In other words we have not shown general applicability nor
given substantial evidence of the feasibility of the metrics or of the situated
evaluation. An attempt to specialise the evaluation was also made in [17] using a
single case. The general evaluation framework is there used as theoretical background

 Choosing Appropriate Method Guidelines for Web-Ontology Building 285

for a feature analysis rather than as an observation instrument as here. Our study is an
attempt to situate the evaluation so that it supports re-use, simulation, and
maintenance as well as specialisation. As mentioned, the pragmatic merits of the
proposed metrics and method still remains to be substantiated.

There are other interesting topics for future work, such as supplementing the
theoretical evaluations with empirical ones as larger scale semantic Web applications
arise utilizing the empirical nature of [18], as well as evaluating more methods as they
emerge. Further possibilities are in investigating the appropriateness of the
formalisation quality criteria in the [30] Unified methodology as a complement to the
semiotic quality framework in order to conduct evaluation of the process oriented
methodologies that were out of scope of this study.

References

1. Becker, J., Rosemann, M., von Uthmann, C. Guidelines of Business Process Modeling. In
W. Aalst, J. Desel, A. Oberweis (Eds.): Business Process Management: Models,
Techniques and Empirical Studies. LNCS 1806, Springer-Verlag, Berlin. pp. 30-49, 2000.

2. Berners-Lee T, Handler J, Lassila O. The Semantic Web. Scientific American, May 2001.
3. Corcho, O., Fernández-López, M., Gómez-Pérez, A. Methodologies, tools and languages

for building ontologies: where is their meeting point?, Data and Knowledge Engineering,
46(1) pp. 41 – 64, 2003.

4. Davies, I., Green, P., Milton, S., Rosemann, M. Using Meta-Models for the Comparison of
Ontologies. In Proceedings of the 8th CAiSE/IFIP8.1 International Workshop on
Evaluation of Modeling Methods in System Analysis and Design (EMMSAD’03), Velden,
Austria, June 16-17, 2003.

5. Denker, G.: DAML+OIL Plug-in for Protégé 2000 – User’s Guide. SRI International AI
Center Report 7/8/03, 2003.

6. Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Han Oei, J.L., Rolland, C.,
Stamper, R.K., van Asche, F.J.M., Verrjin-Stuart, A., Voss, K. FRISCO - A Framework of
Information Systems Concepts. IFIP WG 8.1 Technical Report, 1997.

7. Fernández-López, M. Overview of Methodologies for Building Ontologies. In Benjamins,
V.R., Chandrasekaran, B., Gómez-Pérez, A., Guarino, N., Uschold, M. (Eds.):
Proceedings of the IJCAI-99 workshop on Ontologies and Problem-Solving Methods
(KRR5) Stockholm, Sweden, 1999.

8. Fernándes-Lopez, M., Gómez-Péres, A., Juriso, N. METHONTOLOGY: From
Ontological Art Towards Ontological Engineering. In Proceedings of AAAI-97 Spring
Symposium on Ontological Engineering. Stanford University, 1997.

9. Gemino, A., Wand, Y. Evaluating modelling techniques based on models of learning.
Communications of the ACM 46(10), pp. 79-84, 2003.

10. Gómez-Péres, A., Corcho, O. Ontology Languages for the Semantic Web. IEEE Intelligent
Systems, pp. 54-60, 2002.

11. Gruber, T.R. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2), pp. 199-220, 1993.

12. Hakkarainen, S., Hella, L., Tuxen, S.M., Sindre, G. Evaluating the quality of web-based
ontology building methods: a framework and a case study. In Barzdins, J. (ed.):
Proceedings of 6th International Baltic Conference on Databases and Information Systems
(Baltic DBIS’04), volume 672 of CSIT, pp. 451-466. University of Latvia, Riga, Latvia,
2004.

286 S. Hakkarainen et al.

13. Hakkarainen, S., Strasunskas, D., Hella, L., and Tuxen, S.M.. Classification of web-based
ontology building method guidelines: a case study. In Proceedings of the 10th
CAiSE/IFIP8.1 International Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design (EMMSAD’05), June 2005.

14. Knublauch, H, Musen, M.A., Noy, N.F. Creating Semantic Web (OWL) Ontologies with
Protégé. Tutorial at 2nd Intl. Semantic Web Conf., Sanibel Island Florida USA. October
20-23, 2003.

15. Krogstie, J. Using a Semiotic Framework to Evaluate UML for the Development of
Models of High Quality. In Siau, K. and Halpin, T. (eds.): Unified Modeling Language:
Systems analysis, design, and development issues. IDEA Group Publishing, 2001.

16. Krogstie, J. Evaluating UML Using a Generic Quality Framework. In Favre L (ed.): UML
and the Unified Process. IDEA Group Publishing, 2003.

17. Krogstie, J.and de Flon Arnesen, S. Assessing enterprise modeling languages using a
generic quality framework. In J. Krogstie, T. Halpin, and K. Siau (eds.), Information
Modeling Methods and Methodologies, number 1537-9299 in ATDR, chapter IV, pp. 63–
79. IDEA Group Publishing, 2004.

18. Krogstie J, Sølvberg A.. Information Systems Engineering – Conceptual modelling in a
quality perspective, Kompendiumforlaget, Trondheim, Norway, (2003).

19. Lindland, O.I., Sindre, G., Sølvberg, A. Understanding Quality in Conceptual Modeling.
IEEE Software, 11(2), pp. 42-49, 1994

20. Maiden, N.A.M., Ncube, C.: Acquiring COTS Software Selection Requirements. IEEE
Software, 15(2), pp 46-56, 1998.

21. Moody, D.L., Shanks, G.G., Darke, P. Evaluating and Improving the Quality of Entity
Relationship Models: Experiences in Research and Practice. In T. Wang Ling, S. Ram, and
M.-L. Lee (eds.): Proceedings of 17th International Conference on Conceptual Modelling
(ER ‘98), LNCS 1507, Springer-Verlag, Singapore, 1998.

22. Noy, N.F., McGuinness, D.L. Ontology Development 101: A Guide to Creating Your First
Ontology'. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05, March
2001.

23. Opdahl, A.L. and Henderson-Sellers, B. Ontological evaluation of the UML using the
Bunge-Wand-Weber model. Software and Systems Modelling (SoSyM) 1(1), pp. 43-67.
Springer, 2002.

24. Pohl, K. Three dimensions of requirements engineering: a framework and its applications.
Information Systems 19(3), pp. 243-258, 1994.

25. Schuette, R. Architectures for evaluating the quality of information models – a meta and
an object level comparison. In J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau, and E.
Métais (eds.): Proceedings of the 18th International Conference on Conceptual Modelling
(ER’99), Paris, France, LNCS 1728, Springer-Verlag, 1999.

26. Strasunskas, D. and Hakkarainen, S. Process of Product Fragments Management in
Distributed Development. In R. Meersman, Z. Tari, D. Schmidt et al (Eds.): Proceedings
of the 11th International Conference on Cooperative Information Systems (CoopIS'2003),
Springer-Verlag, LNCS2888, pp. 218-234, 2003.

27. Su, X. and Ilebrekke, L. Using a semiotic framework for a comparative study of ontology
languages and tools. In J. Krogstie, T. Halpin, and K. Siau (eds.): Information Modeling
Methods and Methodologies, number 1537-9299 in ATDR, chapter XIV, pages 278–299.
IDEA Group Publishing, 2004.

28. Sure, Y., Studer, R. On-To.Knowledge Methodology – Final Version. Institute AIFB,
University of Karlsruhe. September 26, 2002.

 Choosing Appropriate Method Guidelines for Web-Ontology Building 287

29. Swartout, B., Ramesh P., Knight, K., Russ, T.: Toward Distributed Use of Large-Scale
Ontologies. In Proceedings of Symposium on Ontological Engineering of AAAI. Stanford,
California, 1997.

30. Uschold, M. Building Ontologies: Towards a Unified methodology. In Proceedings of the
16th Conf. of the British Computer Society Specialist Group on Expert Systems.
Cambridge, UK, 1996.

31. Uschold, M., Gruninger, M. Ontologies: Principles, methods and applications. Knowledge
Engineering Review, 11(2), pp. 93-155, 1996.

32. Wand, Y., Weber, R. Mario Bunge’s Ontology as a formal foundation for information
systems concepts. In: Weingartner, P. and Dorn, G. (eds.): Studies on Mario Bunge’s
Treatise, Rodopi, Atlanta, 1990.

33. Weber, R., Zhang, Y. An analytical evaluation of NIAM’s grammar for conceptual schema
diagrams. Information Systems Journal 6(2), pp. 147-170, 1996.

Conceptual Model Based Semantic Web Services

Muhammed Al-Muhammed1, David W. Embley1, and Stephen W. Liddle2

1 Department of Computer Science
2 Rollins Center for eBusiness, Brigham Young University, Provo, Utah 84602, U.S.A

{mja47, embley}@cs.byu.edu, liddle@byu.edu

Abstract. To achieve the dream of the semantic web, it must be possi-
ble for ordinary users to invoke services. Exactly how to turn this dream
into reality is a challenging opportunity and an interesting research prob-
lem. It is clear that users need simple-to-invoke-and-use services. This
paper shows that an approach strongly based on conceptual modeling can
meet this challenge for a particular type of service—those that involve es-
tablishing an agreed-upon relationship, such as making an appointment,
setting up a meeting, selling and purchasing products, or establishing
employee job assignments. For these services, users can specify their re-
quests as free-form text and then interact with the system in a simple
way to complete the specification of a service request, if necessary, and
invoke the service. Our system uses a conceptual-model-based informa-
tion extraction ontology to (1) recognize the request and match it with
an appropriate ontology, (2) discover and obtain missing information,
and (3) establish agreed-upon, conceptual-model-constrained relation-
ships with respect to the desired service. The paper lays out our vision
for this type of semantic web service, gives the status of our prototype
implementation, and explains how and why it works.

Keywords: Services, semantic web services, service specification, service
invocation, conceptual-model-based services.

1 Introduction

In open and ever-growing environments such as the world wide web, the amount
of information and the number of services becoming available makes performing
tasks such as finding information and finding and invoking services of interest
quite challenging for web users. The semantic web along with personal software
agents and web service systems purport to offer a solution to this challenge. But
exactly how this solution will play out is still unclear.

In this paper we offer a unique approach to turn the vision of semantic web
pioneers (e.g. [1]) into reality for everyday tasks such as scheduling appointments,
selling, buying, making job assignments, and so forth. Our approach to this
challenge centers around a task ontology. A task ontology can be thought of as
having two component ontologies: (1) a domain ontology that defines concepts
in a domain of a task along with relationships among these concepts and (2)
a process ontology that defines generic processes for doing tasks. With a task
ontology in hand, we address the following fundamental problems.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 288–303, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Conceptual Model Based Semantic Web Services 289

1. Task Specification. The first key issue is how to allow users to request services.
We intend to let users assume the existence of an intelligent agent within
the system and specify their service requests textually in any way they wish.

2. Task Recognition. Given a service request, our system attempts to recognize
the specified task. This recognition process extracts information from the
service request and matches it against known domain ontologies to find the
proper task ontology for the service request.

3. Task Execution. Given a recognized task ontology and the information ex-
tracted from a service request, the system specializes the process ontology
within the recognized task ontology to perform the service. The specialized
process ontology has the ability to gather the information it needs by in-
teracting with the system or the user or both to obtain missing required
information. The specialized process ontology also has the ability to recog-
nize specified constraints and determine whether they are satisfied. There
may be a need to negotiate with users to relax task constraints when it is
apparent that it is not possible to complete the task given the current con-
straints. Finally, the specialized process ontology has the ability to establish
the necessary relationships to complete the service request.

Our contribution in this paper is to show that it is possible to build a sys-
tem to automate everyday tasks, such as scheduling appointments, buying and
selling, and making job assignments, whose invocation results in establishing
agreed-upon relationships in a domain ontology. Within this scope of services,
the system’s behavior is limited only by the richness of task ontologies, which
can be independently enriched by system specialists. Our approach contributes
to the vision of the semantic web in the sense that it offers the following sig-
nificant advantages. (1) The system allows for free-form task specification, and
thus, it does not impose any programming paradigm to specify tasks, nor does
it have a set of pre-specified tasks from which a user can choose. (2) The system
reasons about the request based on a task ontology and synergistically gathers
the information it needs to generate software capable of performing the task.

We present our vision for task-ontology-based services in three major parts:
task specification, which allows users to textually specify tasks (Section 2); task
recognition, which finds the domain of a specified task and specializes processes
to perform the task (Section 3); and task execution (Section 4). We give the sta-
tus of our prototype implementation along with future work we are considering
in Section 5, and we conclude with Section 6.

2 Task Specification

We explain task specification using an example. A typical usage of our approach
is to schedule appointments. We use a somewhat simplified version of the example
described by Berners-Lee, et al., in their vision paper, “The Semantic Web” [1].
In our example, a user of the semantic web wants to schedule an appointment
with a service provider—a dermatologist. The user does not have any particular
dermatologist in mind, but wants one that meets some constraints regarding

290 M. Al-Muhammed, D.W. Embley, and S.W. Liddle

appointment time, date, the location of the service provider, and the type of
insurance the service provider accepts.

To use our approach to accomplish this task, the user first specifies the task
by “simply” stating what needs to be done. Suppose the user states the following.

I want to see a dermatologist next week; any day would be OK for me,
at 4:00. The dermatologist should be within 5 miles from my home and
must accept my insurance.

Before this statement is made, our proposed system has no clue regarding the
domain of the task nor any clue regarding how it can be done. Therefore, this
specification needs to go through a task recognition step, which we discuss next.

3 Task Recognition

The objective of task recognition is to determine the domain of a specified task.
Our approach uses a task ontology to meet this objective. Therefore, we first
introduce the two components of a task ontology, namely a domain ontology and
a process ontology, respectively introduced in Sections 3.1 and 3.2. In Section 3.3,
we describe how our approach determines which task ontology to use, among the
many we assume exist.

3.1 Domain Ontology

A domain ontology specifies named sets of objects, which we call object sets or
concepts, and named sets of relationships among object sets, which we call rela-
tionship sets. Figure 1 shows a small part of a conceptual model representation
of a domain ontology for scheduling an appointment.1 The domain ontology con-
sists of concepts such as Date, Time, and Service Provider that can be used to
schedule appointments with service providers such as doctors and auto mechan-
ics. The conceptual model has two types of concepts, namely lexical concepts
(enclosed in dashed rectangles) and nonlexical concepts (enclosed in solid rect-
angles); it also provides for explicit concept instances (denoted as large black
dots). A concept is lexical if its instances are indistinguishable from their rep-
resentations. Time is an example of a lexical concept because its instances (e.g.
“10:00 a.m.” and “2:00 p.m.”) represent themselves. A concept is nonlexical if
its instances are object identifiers, which represent real-world objects. Dermatol-
ogist is an example of a nonlexical concept because its instances are identifiers
such as, say, “D1”, which represents a particular person in the real world who
is a dermatologist. We designate the main concept in a domain ontology by
marking it with “–> •” in the upper right corner. We designate the concept
1 In practice, we would need a much larger and richer ontology for service providers.

We have limited our ontology to those concepts needed in our running example,
plus a few more to explicitly illustrate concepts not needed for our sample task. We
indicate by having Auto Mechanic in our example, for instance, that there are many
more types of service providers.

Conceptual Model Based Semantic Web Services 291

Appointment in Figure 1 as the main concept because this domain ontology
is for making appointments. Figure 1 also shows relationship sets among con-
cepts, represented by connecting lines, such as Appointment is on Date. The
arrow connections represent functional relationship sets, from domain to range,
and non-arrow connections represent many-many relationship sets. For example,
Service Provider has Name is functional from Service Provider to Name (i.e. a
service provider has only one name), and Service Provider provides Service is
many-many (i.e. a service provider can provide many services and a service can
be provided by many service providers). A small circle near the connection be-
tween an object set O and a relationship set R represents optional, so that an
instance of O need not participate in a relationship in R. For example, the cir-
cle on the Appointment side of the relationship set Appointment has Duration
states that an instance of Appointment may or may not relate to an instance
of Duration (i.e. there need not be a specified duration for an appointment). A
triangle in Figure 1 defines a generalization/specialization with a generalization
connected to the apex of the triangle and a specialization connected to its base.
For example, Dermatologist is a specialization of Doctor.

The concepts in our domain ontology are augmented with data frames [2]. A
data frame describes the information about a concept. We capture the informa-
tion about a concept in terms of its external and internal representation, its con-
textual keywords or phrases that may indicate the presence of an instance of the

Appointment

Place

Insurance

Service Provider

Person

Name
Doctor

Pediatrcian

Service Description

Duration

Medical Service Provider

Auto Service Provider Auto Mechanic

Dermatologist

Address

Cost

Date

Time

has

is at

is on

has

provides

has

accepts

has
has

"IHC"

is with

is for

is at

is at

has

"DMBA"
->

Appointment

Place

Insurance

Service Provider

Person

Name
Doctor

Pediatrcian

Service Description

Duration

Medical Service Provider

Auto Service Provider Auto Mechanic

Dermatologist

Address

Cost

Date

Time

has

is at

is on

has

provides

has

accepts

has
has

"IHC"

is with

is for

is at

is at

has

"DMBA"
->

Fig. 1. Conceptual-model view of a domain ontology for appointments (partial)

292 M. Al-Muhammed, D.W. Embley, and S.W. Liddle

concept, operations that convert between internal and external representations,
and other manipulation operations that can apply to instances of the concept
along with contextual keywords or phrases that indicate the applicability of an
operation. Figure 2 shows sample (partial) data frames for the concepts Time,
Date, Address, Distance, Dermatologist, and Appointment. The Time data frame,
for example, captures instances of this concept that end with “AM” or “PM” (e.g.
“2:00 PM” and “2:00 p.m”). As Figure 2 shows, we use regular expressions to
capture external representations. A data frame’s context keywords/phrases are
also regular expressions (often simple lists of keywords/phrases separated with
“|”). For example, the Distance data frame in Figure 2 includes context key-
words such as “miles” or “kilometers”. In the context of one of these keywords,
if a number appears, it is likely that this number is a distance. The operations
of a data frame can manipulate a concept’s instances. For example, the Distance

Time
…
textual representation: ([2-9]|1[012]?):([0-5]\d)[aApP]\.?[mM]\.? | …
…
end

Date
 …
NextWeek(d: Date)
returns (Boolean)
context keywords/phrases: next week |
 week from now | …
end

Tomorrow (s: String)
returns (Date)
context keywords/phrases: tomorrow | next day | …
…
end

Address
…
DistanceBetween (a1: Address, a2: Address)
returns (Distance)
…
end

Distance
internal representation : real
textual representation: ((\d+(\.\d+)?)|(\.\d+))
context keywords/phrases: miles | mile | mi | kilometers | kilometer | meters | meter | …
…
LessThan(d1: Distance, d2: Distance)
returns (Boolean)
context keywords/phrases: less than | < | …
…
end

LessThanOrEqual(d1: Distance, d2: Distance)
returns (Boolean)
context keywords/phrases: within | not more than |
 ≤ | …
…
end

Dermatologist
internal representation: object id
…
context keywords/phrases: [Dd]ermatologist | skin
 doctor | …
…
end

Appointment
internal representation: object id
…
context keywords/phrases: appointment |
 want to see a[n]? | …
…
end

 Fig. 2. Some sample data frames (partial)

Conceptual Model Based Semantic Web Services 293

data frame includes the operation LessThan that takes two instances of Distance
and returns a Boolean. The context keywords/phrases of an operation indicate
an operation’s applicability, for example, context keywords/phrases such as “less
than” and “<” apply to the LessThan operation. A nonlexical concept such as
Dermatologist often only has context keywords or phrases. Figure 2 shows that
the Dermatologist data frame includes a regular expression which includes words
and phrases that could indicate the presence of the concept of a dermatologist.

3.2 Process Ontology

A process ontology describes an execution pattern in a domain. Figure 3 shows
our process ontology as specialized for scheduling appointments. We represent
process ontologies and specialized process ontologies as statenets [3], a represen-

@create

initialize

ready

@task-view complete

task-view, unsatisified-constraints = satisfy-contraints(task-view, task-constraints)

constraint satisfaction checked

task-view complete

missing information

task-view = get-from-system(task-view)
if (still missing values)
 task-view = get-from-user(task-view)

no missing information

unique satisfaction found

schedule-appointment(...)
report that the appointment is scheduled

unique satisfaction not found

report that the appointment cannot be scheduled
negotiation complete

@negotiation required

task-view = negotiate(task-view, unsatisfied contraints)

no constraint satisfaction

negotiation required

multiple constraints satisfaction
possibilities

unique constraint satisfaction

initial task-view ready

@process-ontology(domain-ontology)

task-view = create-task-view(domain-ontology)
task-constraints = create-task-constraints(task-view)

@create

initialize

ready

@task-view complete

task-view, unsatisified-constraints = satisfy-contraints(task-view, task-constraints)

constraint satisfaction checked

task-view complete

missing information

task-view = get-from-system(task-view)
if (still missing values)
 task-view = get-from-user(task-view)

no missing information

unique satisfaction found

schedule-appointment(...)
report that the appointment is scheduled

unique satisfaction not found

report that the appointment cannot be scheduled
negotiation complete

@negotiation required

task-view = negotiate(task-view, unsatisfied contraints)

no constraint satisfaction

negotiation required

multiple constraints satisfaction
possibilities

unique constraint satisfaction

initial task-view ready

@process-ontology(domain-ontology)

task-view = create-task-view(domain-ontology)
task-constraints = create-task-constraints(task-view)

Fig. 3. Process ontology specialized for scheduling appointments

294 M. Al-Muhammed, D.W. Embley, and S.W. Liddle

tation that lets us specify standard Event-Condition-Action (ECA) rules [4,5].
The statenet in Figure 3 is “specialized” from the general pattern in the sense
that (1) all but the two final actions (schedule and do not schedule) are parame-
terized by the domain ontology but otherwise fixed over all services for which the
system operates; and (2) given the domain ontology, the system can fully gener-
ate these two final actions. Thus, any specialized process ontology depends only
on the domain ontology. Significantly (and somewhat surprisingly), this means
that system developers need never write code for services of the type our system
handles; specifying domain ontologies is sufficient to fully specify the services.

In this section, we describe the ECA rules used to construct a process on-
tology and the execution pattern for the process ontology. We leave the details
of the subprocesses on which the process ontology depends to be discussed in
Section 4. As we shall see, all of these subprocesses are domain-independent.
Domain-independence is what makes it possible to automatically generate spe-
cialized process ontologies without having to write any code.

A process ontology consists of states, represented as rounded rectangles (e.g.
ready and initial task-view ready in Figure 3), and transitions, represented as
divided rectangles (e.g. the @create/initialize transition in Figure 3). In the
top part of a transition, we specify triggers, which are events or conditions
or both. Events are prefixed by “@” (read “at”); examples include @process-
ontology(domain-ontology) and @task-view complete, where the former is a pa-
rameterized event that triggers the transition when the event occurs, and the
latter is a non-parameterized event that triggers the transition when the task
view is complete. Actions appear in the bottom part of divided rectangles. The
actions in a particular transition execute when the trigger of the transition fires.
Examples include create-task-view(domain-ontology) and get-from-system(task-
view), which both invoke subprocesses in our system.

The general flow of the process ontology is as follows. Once triggered and
given a domain ontology, the process ontology invokes the subprocess create-
task-view(domain-ontology) to create a task-view, which is the part of a domain
ontology that matches with the user-specified task, and then invokes the subpro-
cess create-task-constraints(task-view) to find and list the applicable constraints
for the task. If all concepts in the task view that are required to have values
have already obtained their values from the user-given task specification, the
process ontology enters the task-view complete state; otherwise the process on-
tology obtains values for these concepts from system repositories using the sub-
process get-from-system(task-view) and obtains values from the user it cannot
obtain from system repositories using the subprocess get-from-user(task-view).
Next, the process ontology checks for constraint satisfaction using the process
satisfy-constraints(task-view, task-constraints) and enters the constraint satisfac-
tion checked state. If constraint satisfaction is unique (exactly one set of values
satisfies the constraints), no negotiation is necessary, so the process enters the
negotiation complete state; otherwise if there are multiple sets of values or if
there are no sets of values that satisfy the constraints, the process ontology en-
ters the negotiation required state. During the negotiation phase, the system and

Conceptual Model Based Semantic Web Services 295

user work together in an attempt to find a unique solution. If a unique solution
is found, the process ontology schedules the appointment; otherwise the process
ontology reports that the appointment cannot be scheduled.

3.3 Task Ontology Recognition

The task ontology recognition process selects from among potentially many do-
main ontologies deployed on the semantic web the (correct) domain ontology for
a task specification. The recognition process takes the set of available domain
ontologies and a task specification as input, and returns the domain ontology
that best matches with the task specification as output. The recognition process
works in two steps. First, for each domain ontology, the recognition process ap-
plies concept recognizers in the data frames to the task specification and marks
every concept that matches a substring in the task specification. Second, the
process computes a rank value for each domain ontology with respect to the
task specification and then selects the domain ontology that ranks highest.

When the recognition process executes for the domain ontology in Figure 1,
the data frames in Figure 2, and the task specification in Section 2, it produces
as output a marked-up ontology. In the case of our running example, the sys-
tem marks Appointment, Date, Time, Place, Insurance, and Dermatologist in
Figure 1. The concept recognizer in the data frame for Dermatologist recognizes
the constant value “dermatologist” in the task specification, and therefore the
concept Dermatologist is marked. Likewise, a recognizer in the NextWeek oper-
ation in the Date data frame recognizes “next week”; in the Time data frame
recognizes the constant value “4:00”; in the Appointment data frame recognizes
“want to see a”; in the Place data frame recognizes “my home”; and would, in
the Insurance data frame, recognize “insurance”; and therefore these concepts
are marked. The recognized substrings cover a large part of the task specifica-
tion; for our running example, we assume that no other ontology covers the task
specification as well and therefore that the system selects the Appointment task
ontology.

4 Task Execution

The process ontology is responsible for executing tasks. As mentioned in Sec-
tion 3.2, the process ontology invokes subprocesses that either execute the same
for all domain ontologies or can be automatically generated from any given
domain ontology. In this section we discuss these subprocesses and justify our
claim that all code needed to execute any service can be fixed in advance or
automatically generated.

4.1 Task View Creation

Task view creation takes a marked domain ontology as input and produces a
task view as output. Although not quite so simple because spurious object sets
may be marked, the process basically operates on its input as follows. It keeps

296 M. Al-Muhammed, D.W. Embley, and S.W. Liddle

Dermatologist Insurance

Appointment

Address

Person

Name

Date
Time

is at
is on

has

is with

is for

is at

is athas

->

accepts
Dermatologist Insurance

Appointment

Address

Person

Name

Date
Time

is at
is on

has

is with

is for

is at

is athas

->

accepts

Fig. 4. Task view for the task specified in Section 2

the main concept of the domain ontology (the concept marked with “–> •”),
all marked concepts, and all concepts that mandatorily depend on the main
concept. It prunes away all other concepts along with all their relationships as
well as any marked concepts considered to be spurious because they conflict with
other marked concepts in the sense that constraints of the ontology do not allow
both, and these other marked concepts rank higher in applicability to the task
specification. In addition, the process replaces generalization concepts by marked
specializations, if any, and replaces non-lexical concepts by lexical concepts when
there is a one-to-one correspondence. The derived sub-ontology, consisting of the
concepts and relationships among the concepts that remain, is called the task
view. Observe that this process is domain independent—it operates identically
for any defined domain ontology.

Referring to our running example, the resulting task view is in Figure 4. The
process does not prune Appointment because it is the main concept. It does
not prune Date, Time, Place, Insurance, and Dermatologist because they are
marked, and it does not prune Person, Name, and Service Provider because
they mandatorily depend on the main concept. Finally, the marked specializa-
tion Dermatologist replaces its generalization Service Provider, and the lexical
concept Address replaces the non-lexical concept Place with which it has a one-
to-one correspondence.

4.2 Task Constraint Creation

Given the task view and the operations in the data frames associated with the
concepts of a task view, the system generates any additional constraints imposed
on a task beyond those that are already part of the conceptual-modeling con-
straints of the task view. It then combines them with the constraints in the task
view to produce the full set of constraints. The result is a formal statement in
terms of predicate calculus that must be satisfied in order to service the request.

Task constraint creation operates as follows.

1. Get the Boolean operations implied by the task specification. The task-con-
straint-creation process finds all operations in the data frames whose rec-
ognizers match substrings in the task specification and whose return types
are Boolean. In our running example, the process finds the operator Nex-
tWeek(d: Date) because, as Figure 2 shows, it is Boolean and one of its

Conceptual Model Based Semantic Web Services 297

context phrases is “next week”, which appears in the task specification in
Section 2. Similarly, the process finds LessThanOrEqual(d1: Distance, d2:
Distance) based on recognizing “within”, “5”, and “miles” and recognizes
Equal(i1: Insurance, i2: Insurance) based on recognizing “insurance”.

2. Get constant values from the task specification that can serve as parameter
values of the Boolean operations. The data frames recognize and extract “5”
as a Distance and “4:00” as a Time. In our running example, we thus obtain
LessThanOrEqual(d1: Distance, “5”) and Time(“4:00”). 2

3. Get operations that depend on the task view and can provide values for pa-
rameters of the Boolean operations. For each Boolean operation, the process
considers the type(s) of the input parameter(s). If one or more input pa-
rameters has a type that does not match a concept in the task view, the
process tries to find an operation in the data frames whose input parame-
ter types are concepts in the task view and whose return type matches the
type of the input parameter; if successful, it replaces the input parameter
with this operation. Referring to our example, LessThanOrEqual(d1: Dis-
tance, “5”) has the input d1 of type Distance, which does not appear in
the task view. Since, however, Address does appear in the task view and
the operation DistanceBetween(a1: Address, a2: Address) returns a Dis-
tance, the task-constraint-creation process can do a substitution, yielding
LessThanOrEqual(DistanceBetween(a1: Address, a2: Address), “5”).

4. Get sources, within the task view, for values of Boolean operations. To de-
termine the source of values for the input parameters of the Boolean op-
erations, the process makes use of the relationships in the task view. For
example, the operation DistanceBetween(a1: Address, a2: Address) has two
input parameters of type Address. According to the relationships between
the concepts in the task view, Address is related to both Dermatologist and
Person. The process can therefore infer that the value of one of the ad-
dress parameters comes from a relationship in Dermatologist is at Address
and value of the other comes from a relationship in Person is at Address.
The process leaves any input parameter that it cannot determine as a free
variable. Because Insurance is related only to Dermatologist, the process de-
termines that the source of the value of one input parameter comes from
a relationship in Dermatologist accepts Insurance and leaves the other as a
free variable. Also, since the relationship set Dermatologist accepts Insur-
ance is many-many, the process binds the parameter i2 with the existential
quantifier to declare that any one value of i2 that satisfies the generated
predicate calculus statement ∃i2(Dermatologist(x)acceptsInsurance(i2) ∧
Equal(i1 , i2)) ∧ Insurance(i1) ∧ Insurance(i2)) is enough.

Figure 5 shows the resulting predicate calculus statement. Our objective,
as we continue, will be to provide values for free variables such that there is
one and only one appointment (i.e. one and only one value for the non-lexical
argument x0 in Figure 5). Before continuing, however, observe that the process
2 Note that Time(x) is a one-place predicate. Every object set in a domain ontology

is a one-place predicate, and every n-ary relationship set is an n-place predicate.

298 M. Al-Muhammed, D.W. Embley, and S.W. Liddle

Appointment(x0) is with Dermatologist(x1) ∧ Appointment(x0) is for Person(x2)

∧ Appointment(x0) is on Date(x3) ∧ Appointment(x0) is at T ime(“4 :00”)

∧ Dermatologist(x1) has Name(x4) ∧ Dermatologist(x1) is at Address(x5)

∧ ∃x(Dermatologist(x1) accepts Insurance(x) ∧ Insurance(x6) ∧ Equal(x, x6))

∧ Person(x2) has Name(x7) ∧ Person(x2) is at Address(x8)

∧ ...

∧ NextWeek(x3) ∧ LessThanOrEqual(DistanceBetween(x5 , x8), “5”)

∧ ∀x∀y(Person(x) is at Address(y) ⇒ Person(x) ∧ Address(y))

∧ ∀x(Person(x) ⇒ ∃≤1y(Person(x) is at Address(y)))

∧ ...

Fig. 5. Generated predicate calculus statement (partial)

that generates the predicate calculus statement is domain independent because
its algorithms are the same for all domains. The process makes use of only the
information provided by the task view and the associated data frames. Once
these are available, the process can discover constraints and produce a predicate
calculus statement using fixed algorithms that work for all domains.

4.3 Obtaining Information from the System

Given the predicate calculus statement in Figure 5, the system can generate a
query for the system’s appointment databases. Assuming that the appointment
database has a view definition that corresponds with its ontology, the genera-
tion of a relational calculus query is straightforward. We simply cut the predicate
calculus statement down to include only those relationship sets that appear in
the database’s ontological view. We also combine the relationship sets from the
database’s ontological view that are connected to the primary object set. For
our running example, the generated query is in Figure 6. In Figure 6 Appoint-
ment is with Dermatologist and is on Date and is at Time is the relationship
set obtained by combining Appointment is with Dermatologist, Appointment is
on Date, and Appointment is at Time; note that we do not also combine Ap-
pointment is for Person because this relationship set is not part of the stored
appointment database for making appointments—only available appointment
dates and times are in the database. Observe that given a predicate calculus
statement generated by the task-constraint-creation process and the ontological
view of the selected task ontology, the system can always generate this query;
thus, this query generation process is domain independent.

Execution of the generated query returns a set of partially filled-in interpre-
tations using the information extracted by the system. For example, the system

{< x1, x3, x4, x5, x > |
Appointment is with Dermatologist(x1) and is on Date(x3) and is at T ime(“4 :00”)

∧ Dermatologist(x1) has Name(x4) ∧ Dermatologist(x1) is at Address(x5)

∧ Dermatologist(x1) accepts Insurance(x)}

Fig. 6. Generated predicate calculus statement

Conceptual Model Based Semantic Web Services 299

might substitute D0 for x1 in Figure 5, “5 Jan 05” for x2, “Dr. Carter” for x4,
and so on, depending on the actual information extracted from relevant sources.
The meaning of this interpretation is that dermatologist D0, who is Dr. Carter
has an appointment available on 5 Jan 05, which is “next week” with respect to
our assumed execution date, 30 Dec 04.

4.4 Obtaining Information from a User

After generating partial interpretations, there will still be free variables that
need to be handled. In our example, the remaining free variables are x0, which
is the object we are trying to establish; x2, which is the person for whom the
appointment is being made; x6, which is the insurance in the request; x7, which
is the name of the person for whom the appointment is being made; and x8,
which is the address of the person for whom the appointment is being made.
We can establish the variable x0, which represents the appointment, if we can
obtain the remaining variables, which, of course, are exactly the ones we need
to obtain from the user.

When the system can recognize which free variables need values (equivalently,
which concepts need values), the process of obtaining values from the user is
domain independent. Thus, if a lexical concept C requires a value from the user,
the system can prompt the user with the standard phrase, “What is the C?”
For nonlexical concepts, the system can generate object identifiers, as needed.
For our running example, the system would ask: (1) “What is the Insurance?”,
(2) “What is the Name?”, and (3) “What is the Address?”. These may well
be understood in the context of the task being specified, but it is likely to be
better if the system can ask questions in context by verbalizing3 the context
with respect to the primary concept. In this case, for (2) the system would say,
“Appointment is for Person, and Person has Name. What is the Name?” and
for (3) would say, “Appointment is for Person, and Person has Address. What
is the Address?”. There is no context for the insurance other than the context
established in the statement of the task specification in Section 2, so for (1) the
system would just say, “What is the Insurance?”.

For our running example, we assume that the user responds by answering the
three questions as: (1) “IHC”, (2) “Lynn Jones”, and (3) “300 State St., Provo”.
Observe that if the user had originally added the sentence, “The appointment
is for my daughter, Lynn Jones; we live at 300 State St. in Provo; and my
insurance is IHC.” to the task specification in Section 2, then the system could
have extracted this information, and could have executed without asking the
user for additional information.

4.5 Constraint Satisfaction and Negotiation

At this point in the process, the system has one free variable, namely the non-
lexical object we are trying to establish (e.g., the Appointment). If there is only
3 Verbalization according to [6] and verbalization with respect to the model-equivalent

language for OSM [7] are examples of worked-out verbalizations that could be used
in our application.

300 M. Al-Muhammed, D.W. Embley, and S.W. Liddle

one interpretation that satisfies all the constraints, we are ready establish the
object and finalize the process. In our example, an interpretation can only be
satisfied if the dermatologist accepts IHC insurance and the distance between
the two addresses is less than 5 miles. Assuming this is the case, the system can
make the appointment for the user.

However, for the sake of further discussing constraint satisfaction and ne-
gotiation, suppose that the dermatologist accepts IHC insurance but that the
distance between the addresses is 6 miles. In this case, the interpretation does not
satisfy the constraints, and the system must either fail to make an appointment
or find a way to relax one or more constraints. One way to negotiate would be to
take a generated potential interpretation that does not satisfy the constraints,
display the constraints that are not satisfied, and ask the user what to do. Note
that this way of negotiating is fully independent of the domain, since the system
is able to identify and list each constraint that is not satisfied. For our running
example, the system might display the following (hopefully, sprinkled with a lot
more syntactic sugar than exemplified here):

The following constraint(s) are not satisfied:
LessThanOrEqual(DistanceBetween(“600 State St., Orem”, “300 State St., Provo”), “5”)

where DistanceBetween(“600 State St., Orem”, “300 State St., Provo”) = 6
What do you wish to do?

Unfortunately, the system is now beginning a free-form conversation, which it is
not in a position to handle. The system can, however, ask the user to edit the
task specification, giving looser constraints and then reentering it, by adding,
“Please respond by editing your task specification, giving constraints that can
be satisfied.” The user may, of course, not wish to edit the task specification, in
which case, the system reports that it cannot make an appointment satisfying
all the constraints.

To further discuss the possibilities, we next consider the system response if
there are two or more interpretations that satisfy all the constraints. In this
case, the system can respond by offering the alternatives and allowing the user
to select one. If there are many interpretations that satisfy all the constraints,
we must provide a way to control the potential overload on the user. In the worst
case, we can arbitrarily present any k possibilities, where k is small, and let the
user select one. As part of our future work, we can likely find ways to have the
system rank them, and then present the top-k to the user.

4.6 Process Finalization

At this point in the process, the system either has a single solution or has agreed
with the user that there is no solution. Hence, it is straightforward to know what
to do. What is interesting here is that although this code cannot be written in
advance because it does depend on the domain ontology, it can be generated
on-the-fly by code that can be written in advance.

In our example, we assume that the user replaces “5 miles” with “6 miles,”
and thus that there is a unique solution. Hence, the process ontology sched-
ules the appointment using the action schedule-appointment(“Lynn Jones”, ...).

Conceptual Model Based Semantic Web Services 301

 A7

 D0

 “4:00”
 “5 Jan 05”

 P100

 “Orem 600 State St.”
 “Provo 300 State St.”

 “Dr. Carter”
 “Lynn Jones”

 “IHC”
 “DMBA”

 NextWeek(“5 Jan 05”)
 Person(P100) is at Address(“300 State St., Provo”) ∧
 Dermatologist(D0) is at Address(“600 State St., Orem”) ∧
 LessThanOrEqual(DistanceBetween(“600 State St., Orem”, “300 State St., Provo”), “6”)
 ∃ x6 (Dermatologist(D0) accepts Insurance(x6) ∧ Equal(“IHC”, x6))

Fig. 7. The scheduled appointment

Figure 7 shows the scheduled appointment. As shown, appointment A7 is sched-
uled for person P100 whose name is “Lynn Jones”, with dermatologist D0 whose
name is “Dr. Carter” on date “5 Jan 05” at time “4:00” at address “600 State
St., Orem”. The process ontology notifies the user that the appointment is suc-
cessfully scheduled.

The subprocess schedule-appointment(...) is domain dependent because it
needs knowledge about what object sets should be filled in with which objects
in order to schedule an appointment. However, given the ontology and the values
for the free variables obtained from the unique interpretation created by this time
during the execution of the process ontology, the system can use this knowledge
to automatically generate code for this last part of the process. Observe that
this holds for any domain so long as the objective is to insert an object into an
object set of interest and then satisfy all applicable constraints. Thus, since this
is exactly the kind of service our system provides, it is always possible for the
system to generate the finalization step for any domain ontology.

5 Prototype Implementation Status and Future Work

The success of our conceptual-model-based, semantic-web-services system will
depend largely on its ability to successfully extract information from free-form
text specifications of desired services. Our long-standing work on information-
extraction ontologies [8] provides the basis for this component of our system.
Building on our work on information-extraction ontologies, we have implemented
an initial end-to-end prototype that accepts free-form text specifications; finds
an appropriate task ontology for the specification (if one exists); produces a task
view for the specification; determines whether there is missing information; and,
if not, establishes the primary object and thus performs the service. Our system
does not yet obtain and use task-specified functions; does not yet use its system
database to obtain values for free variables, and does not yet do negotiation.
Adding these features is part of our current work.

In the future, we expect to investigate more explicitly the boundaries of ap-
plicability. Should the system, for example, be required to handle more complex
cases? The system as currently envisioned does not, for instance, allow users to

302 M. Al-Muhammed, D.W. Embley, and S.W. Liddle

compose tasks nor to specify conditional or iterative tasks. As currently pro-
posed, a user can compose tasks only by specifying two successive tasks, e.g.
make an appointment with a dermatologist and then make an appointment for a
haircut. For conditional tasks, such as “if I can see Dr. Peterson within a week,
make an appointment with Dr. Peterson; otherwise make an appointment with
Dr. Carter,” the user would have to query the system to determine whether an
appointment could be made with Dr. Peterson within a week and then, depend-
ing on the answer, either make an appointment with Dr. Peterson or Dr. Carter.
Further, it is also not clear whether the system needs to handle complex task
specifications that would require the system to use natural language processing
or other techniques to disambiguate sentence structures or to resolve pronoun
references. As the system now stands, users would have to become used to its
limited ability to actually understand. Whether this is sufficient to be service-
able for the general public is not yet known, but there is reason to believe it
is, and there is reason to believe that this approach will be more widely accept-
able to ordinary users than systems that allow service selection [9] or require an
artificial, formalized subset of natural language [10].

6 Concluding Remarks

We have described a system that makes it possible for ordinary users to in-
voke services using form-free task specifications. As salient features, the system
strongly relies on (1) conceptual modeling, which forms the basis for both do-
main ontologies and process ontologies, (2) extraction ontologies, which allows
the system to obtain the information it needs to match user requests with an
appropriate domain ontology, and (3) domain-independent process ontologies
that can be automatically specialized for any given domain, which makes our
approach work across domains without need for manual configuration.

Acknowledgements

This work is supported in part by the National Science Foundation under grant
IIS-0083127 and by the Kevin and Debra Rollins Center for eBusiness at Brigham
Young University under grant EB-05046.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284 (2001) 34–43

2. Embley, D.W.: Programming with Data Frames for everyday Items. In Medley,
D., Marie, E., eds.: Proceedings of AFIPS Conference, Anheim, California (1980)
301–305

3. Embley, D.W., Kurtiz, B.K., Woodfield, S.N.: Object-Oriented Systems Analysis:
A Model Driven Approach. Yourdon Press, Englewood Cliffs, New Jersey (1992)

Conceptual Model Based Semantic Web Services 303

4. Widom, J., Ceri, S.: Active Database Systems. Morgan–Kaufmann, San Mateo,
California (1995)

5. Papamarkos, G., Poulovassilis, A., Wood, P.T.: Event-Condition-Action Rule Lan-
guages for the Semantic Web. In Cruz, I.F., Kashyap, V., Decker, S., Eckstein,
R., eds.: Proceedings of the first International Workshop on Semantic Web and
Databases (SWDB 2003), Humboldt-Universität, Berlin, Germany (2003) 309–327

6. Halpin, T.: Business rule verbalization. In: Proceedings of the 3rd International
Conference on Information Systems Technology and its Applications, Salt Lake
City, Utah (2004) 39–52

7. Liddle, S., Embley, D., Woodfield, S.: An active, object-oriented, model-equivalent
programming language. In Papazoglou, M., Spaccapietra, S., Tari, Z., eds.: Ad-
vances in Object-Oriented Data Modeling. MIT Press, Cambridge, Massachusetts
(2000) 333–361

8. Embley, D., Campbell, D., Jiang, Y., Liddle, S., Lonsdale, D., Ng, Y.K., Smith, R.:
Conceptual-model-based data extraction from multiple-record web pages. Data &
Knowledge Engineering 31 (1999) 227–251

9. Agarwal, S., Handschuh, S., Staab, S.: Surfing the Service Web. In: Proceedings of
the Second International Semantic Web Conference (ISWC2003), Sanibel Island,
Florida (2003) 211–226

10. Bernstein, A., Kaufmann, E., Fuchs, N.: Talking to the semantic web – a controlled
english query interface for ontologies. AIS SIGSEMIS Bulletin 2 (2005) 42–47

Automatically Grounding Semantically-Enriched
Conceptual Models to Concrete Web Services

Eran Toch, Avigdor Gal, and Dov Dori

Technion – Israel Institute of Technology,
Technion City, Haifa 32000, Israel

Abstract. The paper provides a conceptual framework for designing and exe-
cuting business processes using semantic Web services. We envision a world in
which a designer defines a “virtual“ Web service as part of a business process,
while requiring the system to seek actual Web services that match the specifi-
cations of the designer and can be invoked whenever the virtual Web service
is activated. Taking a conceptual modeling approach, the relationships between
ontology concepts and syntactic Web services are identified. We then propose a
generic algorithm for ranking top-K Web services in a decreasing order of their
benefit vis-á-vis the semantic Web service. We conclude with an extention of the
framework to handle uncertainty as a result of concept mismatch and the desired
properties of a schema matching algorithm to support Web service identification.

1 Introduction

Web services allow universal connectivity and interoperability of applications and ser-
vices, using well-accepted standards as UDDI, WSDL, and SOAP. Current Web ser-
vice standards focus on syntactic, operational details for implementation and execution
rather than semantic capabilities description. A recent development enables the spec-
ification of semantic Web services. The semantic Web [5] aims to extend the World-
Wide-Web by representing data on the Web in a meaningful and machine-interpretable
form. The semantic Web is based on a set of languages that provide well-defined se-
mantics and enable the markup of complex taxonomic and relations between entities on
the Web. Ontologies, commonly defined as specifications of a conceptualization, [20]
serve as the key mechanism for the semantic Web by allowing concepts to be globally
defined and referenced. A leading language for ontology modeling for the semantic
Web is the Web Ontology language (OWL) [9], providing a semantic markup for the
definition of concept classes, relationships among them, and their instances. Several
methods for annotating Web services with semantic metadata have been proposed. One
of the most prominent methods is OWL-S [3]. Based on OWL, it provides an ontology
for Web services, enabling a description of the service’s profile, process model and its
grounding - a mapping to the syntactic definition of the concrete Web service.

We envision a world in which some Web services have semantic descriptions, while
others are only syntactically defined (using WSDL, for example). In particular, design-
ers can define a “virtual” Web service as part of their business processes. An execution
engine is required to look for actual Web services that match the specifications of the
designer and can be invoked whenever the virtual Web service is activated. The design

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 304–319, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Automatically Grounding Semantically-Enriched Conceptual Models 305

of semantic Web services can be an iterative process, starting from rough design, and
gradually refine the design based on feedback from some mechanism that grounds the
semantic Web service to some existing Web services.

It is the aim of this paper to provide a framework for a model-driven design using
semantic Web services. Taking a conceptual modeling approach, relationships between
ontology concepts and syntactic Web services are identified. We then propose a generic
algorithm for ranking top-K Web services in a decreasing order of their benefit vis-á-vis
the semantic Web service. We conclude with a discussion on extending the framework
to handle uncertainty that stems from concept mismatch and the desired properties of a
schema matching algorithm to support Web service identification.

The main contribution of this work is twofold. At the conceptual level, we introduce
a method for designing business processes as a composite set of Web services. At the
algorithmic level, we provide a generic algorithm for ranking concrete Web services
with respect to their suitability in fitting a semantic Web service description, in effect
offering a model-driven approach for service-oriented computing. The semantic Web
service serves as a conceptual model. Rather than generating a code out of the model,
the model is implemented by locating and invoking existing services. It is worth noting
that the concrete Web services are not necessarily annotated with semantic meta-data,
and may be described as WSDL documents, reflecting the current state of affairs. Fi-
nally, we discuss the characterization of requirements for a schema matching algorithm
should satisfy to qualify for interfacing with the Semantic Web.

The rest of the paper is organized as follows. Section 2 presents the model and
formally defines the problem. The use of ontologies in ranking Web services is given
in Section 3, followed by an algorithm for the matching process (Section 4). Section 5
discusses an extension to support semantic heterogeneity. Section 6 contains a related
work. The paper concludes with a summary and future work (Section 7).

2 Model and Problem Definition

In this section, we provide a formal definition of the two main elements of our model,
namely Web services (Section 2.1) and Semantic Web services (Section 2.2). We con-
clude with a formal introduction of the problem at hand (Section 2.3).

2.1 Web Services

Web services are loosely coupled software components, published and invoked across
the Web. Several XML-based standards ensure the regulation of discovery and the in-
teraction of Web services. In particular, UDDI allows Web services to be discovered
through a keywords search. A Web Services Description Language (WSDL) document
describes the interface and communication protocol of Web services. In this paper, we
use restricted WSDL definition, ignoring namespaces, faults handling, and communi-
cation issues. Therefore, a Web service is a quadruple, WS = (T,M,O,A), where:

– T is a finite set of types. A type can be primitive (e.g., integer) or complex, de-
scribed by an XML schema.

– M is a finite set of messages. Each message is defined by a name and a type, t ∈ T .

306 E. Toch, A. Gal, and D. Dori

– O is a finite set of operations provided by the service.
– A : M,R → O is a finite set of assignments, each of which assigns a set of mes-

sages in {m1,m2, ...,mn} ∈M and R = {input,out put} to an operation o ∈O. Each
message can serve as either an input or an output of the operation.

Current Web service architecture suffers from several limitations. In particular, al-
though Web services are designed to provide distributed interoperability among appli-
cations, lack of semantic definition of these applications make the automatic integration
and discovery of Web services a difficult task.

2.2 Semantic Web Services

Applying the advances of the Semantic Web to Web services, resulted in OWL-S [3].
OWL-S is a language for specifying Web service ontology, based on OWL, which aug-
ments current Web services architecture with semantic metadata. It provides a set of
markup language constructs for describing the properties and capabilities of Web ser-
vices, facilitating the automation of Web service tasks, including automated discovery,
execution, composition and interoperation. An OWL-S ontology includes three sec-
tions, namely a profile ontology (what the service does), a process-model ontology
(how it works) and a grounding ontology (how it can be used). The profile ontology ex-
tends the UDDI language, providing semantic annotation for the parameters the service
accepts and provides, as well as general information describing the service.

We use as a case study, a semantic Web service named Book Price. The service re-
ceives a book title and a currency, locates the book’s information, retrieves a price quote
for it and convert it into a desired currency.1 Figure 1 provides a visual illustration of the
service using OPM/S [15], which serves as a modeling and visualization method for se-
mantic Web services. OPM/S is an extension of Object-Process Methodology (OPM) -
a conceptual object-oriented and process-oriented modeling language that supports the
semantic Web [13,14]. OPM/S models are composed of two entity types, namely ser-
vices (represented as ellipses), and parameters that pass between (and possibly modified
by) services, represented as rectangles. Semantics is annotated by tagging the entities
with their ontological concepts in the upper-left corner of the entity.

The Book Price service returns the price of a book given its name and a desired
currency. The service is composed of three atomic services, namely Book Finder, Price
Finder, and Currency Converter. Book Finder receives a book name and produces the
book information, if the book was found. Price Finder returns the book price in dol-
lars, and Currency Converter converts the price to the desired currency. The example
illustrates our notion of designing semantic Web services as an iterative process. In par-
ticular, note that the output of Book Finder is a rather fuzzy term of Book Info. As we
will show later, this term is grounded in an ontology, yet it leaves the designer some ma-
neuvering space. The designer has no particular preference at this time as to the exact
form of Book Info, as long as it can serve as an appropriate input to Price Finder.

The process-model is defined as a workflow of processes, each being a quadruple
PR = (IN,OUT,E,P), where IN is a set of input parameters, OUT is a set of output
parameters, E is a set of the process effects and P is a set of preconditions. Processes

1 Available at: http://www.mindswap.org/2004/owl-s/services.shtml

Automatically Grounding Semantically-Enriched Conceptual Models 307

Fig. 1. Book-Price Service

Fig. 2. The AKT Portal Ontology, visualized in OPM

can be atomic or composite. Atomic processes are invoked in a single step and can be
mapped directly to a WSDL operation. Composite processes, in contrast, represent a
complex structure of processes. Formally, a composite process augments the process
structure described above with a set of subprocesses (either atomic or composite), exe-
cuted according to a certain control construct (such as parallel, sequential, conditioned,
etc). For instance, the three subprocesses of the Book Price Service are executed se-
quentially starting from the top process. The last section of the OWL-S ontology is the
grounding ontology. It provides a mapping between the atomic processes to the WSDL
definition of the concrete Web service.

308 E. Toch, A. Gal, and D. Dori

Elements of the profile and process-model sections, such as input and output ele-
ments, can be mapped to concepts in accompanying ontologies or to primitive XML
datatypes. To illustrate this mapping, we use the AKT portal ontology [1], visualized in
Figure 2 using OPM The Book Info parameter object in the semantic Web service (Fig-
ure 1) is mapped to a Book concept, described in the ontology. Given an ontology with
a set of concepts C, the function tag : IN∪OUT ∪E ∪P→C∗, maps a parameter to its
underlying set of concepts. A closer look at the portal ontology reveals the relationships
between the Book concept to other concepts. The Book concept is a specialization of
the Publication concept. Publication is characterized by Location, Date and Title, and
is a specialization of Information Bearing Object.

2.3 Problem Definition

Web service discovery is a process, in which a Web service is matched based on given
specifications. In this work we focus on specifications that are given as semantic Web
services. Given an atomic process PR and a set OP = {OP1,OP2, ...OPp} of operations
within WSDL-described Web services, let ρPR = (�PR,OP) be a partial order of op-
erations, representing their relative fit for implementing PR. Therefore, if OPi �PR OPj

then OPj is better suited to be executed as an implementation of PR than OPi. Typically,
ρPR may not be known in advance and currently a manual intervention on a grand scale
may be required to ensure a selection of a suitable Web service.

In an attempt to automate the process and avoid gross errors in the discovery pro-
cess, we propose the ranking of the best top-K suitable Web services, rather than pro-
viding a single Web service. Formally, given a process PR, a domain ontology ON, and
a set OP = {OP1,OP2, ...,OPp} of available Web services, we wish to generate a ranked
mapping OP ′ =

{
OP(1),OP(2), ...,OP(k)

}
of K Web services such that:

– ∀i < j ≤ k OPj �PR OPi, and
– ∀k < l OPl �PR OPk.

3 Web Service Ranking Using Ontologies

This section provides a conceptual ontology-based model for Web service ranking. Sec-
tion 3.1 describes context classes and mark vectors, which are the primary tools for con-
ceptual analysis of semantic Web services. Section 3.2 describes the method of ordering
results of queries for Web services. Section 3.3 provides a detailed example.

3.1 Classification into Context Classes

We start our conceptual analysis by observing that ontologies provide a natural ranking
mechanism that can be derived from the semantics of ontological constructs. Given a
concept c ∈ C, annotated as the “anchor” concept, all concepts in C can be classified
into one of four context classes, as follows:

Exact. Concepts that have identical semantic meaning,including c itself and its prop-
erties. OWL provides relations such as equivalentClass to define concept equiva-
lence.

Automatically Grounding Semantically-Enriched Conceptual Models 309

Table 1. Classification of Semantic Relations to context classes

Context Class OWL relations
Exact direct mapping, owl:equivalentClass, owl:equivilantProperty,

owl:sameIndividualAs, owl:ObjectProperty, owl:DatatypeProperty
Specific owl:subClass, owl:intersectionOf, owl:oneOf, individual,

{x|∀c ∈ Speci f ic,x = Ob jectProperty(c)∨ x = DatatypeProperty(c)}
General owl:unionOf, super-class, inverse(property), class-of

{x|∀c ∈ General,x = Ob jectProperty(c)∨ x = DatatypeProperty(c)}
Negation owl:complementOf, owl:disjointWith

General. Concepts that supply higher-level context. For instance, the Publication con-
cept is a super-class of the Book concept and therefore falls under the category of
General with respect to Book.

Specific. Concepts that provide a more specific context. Book belongs to the Specific
class of Publication.

Negation. Concepts which have explicit contradicting meaning. For instance, in OWL,
if class c1 disjointWith class c2, then an instance of c1 cannot be an instance of c2.

While this classification is not new, careful attention should be given to properties,
to which actual instance values are attached. Recall that our goal is to rank Web ser-
vices according to their adequacy for the task at hand. Therefore, parameters from the
semantic Web service description should be mapped to input and output messages of
operations. Whenever a parameter is not grounded in a property element of an ontology,
we should translate this grounding in terms of properties. Therefore, a class is repre-
sented by a subset of its properties, while a relation is represented by a subset of the
properties of the class(es) with which it is associated. We should emphasize that this is
not generally true, and such simplification is needed due to the simple format of WSDL.

Table 2. Mark vectors and their classifications

Exact General Specific Negation Ranking Category
1 1 1 0 ACCURATE

1 1 0 0
1 0 1 0
1 0 0 0 CONTEXT-LESS

0 1 1 0 CONTEXT-ONLY

0 1 0 0
0 0 1 0
0 0 0 1 INVERSE

0 1 0 1 UNCERTAIN

0 0 1 1
0 1 1 1
1 0 0 1
1 1 0 1
1 0 1 1
1 1 1 1
0 0 0 0 EMPTY

310 E. Toch, A. Gal, and D. Dori

If a concept is mapped to a certain context class, its properties (both object properties
and datatype properties) are added to the corresponding context class.

Given an ontology with a set of concepts C, there are 2n− 1 interesting combina-
tions of concepts from C, ranging from individual concepts to a set of all concepts.
Any such combination C′ ⊆ C is a possible CNF query to a Web service search en-
gine. Let the response to such query be all Web services for which these concepts
are considered relevant by the search engine. For example, given a query C′ ⊆ C,
Woogle [12] returns all Web services for which all concepts in C′ appear in their WSDL
description.

Given a concept c ∈C, a query C′ ⊆C can be mapped to a vector mark = (e,g,s,n)
of binary variables, representing the context classes Exact, General, Specific and Nega-
tion, respectively. A variable is assigned with a value of 1, if exists c′ ∈ C such that c′
belongs to the relevant context class of c. We now consider the AKT portal ontology
(Figure 2) for some examples. Assuming the anchor concept is Book, then the queries
{Book} and {Book∧ ISBN} are mapped to the mark vector (1,0,0,0) since they contain
concepts from the exact context class. The query {Book∧ ISBN∧Title} contains both
Exact concepts (Book and ISBN) and a General concept (Title). Hence, it is mapped to
the vector (1,1,0,0).

Table 2 provides the complete mark vectors set. The right column groups the vectors
into 5 ranking categories according to the matching pattern derived from the vector.
For instance, the ACCURATE category contains results that originate from both direct
mapping concepts and context concepts. Thus, it has the potential to produce results
with high accuracy. The CONTEXT-LESS category contains results that originated from
direct mapping concepts only, without a match to supporting context concepts.

3.2 Ranking of Mark Vectors

The ranking of Web services relies on ranking of mark vectors, based on the marginal
benefit of the concepts that form the vector. Each context class has a different contri-
bution to the vector. For instance, a concept that belongs to the General class provides
context to the query and potentially increases its precision. On the other hand, concepts
that belong to the Negation class may lead to erroneous results. A partial order be-
tween mark vectors is proposed in Figure 3. Mark vectors of the ACCURATE category
are ranked higher than any other category, because their compatible queries contain
both exact and contextual concepts. Specifically, it is considered more accurate than
vectors of the CONTEXT-LESS and CONTEXT-ONLY categories. However, no order is
determined between CONTEXT-LESS and CONTEXT-ONLY categories. Order between
vectors within a category is relevant to the ACCURATE and CONTEXT-ONLY categories,
and it is based on the weighted sum of matching concepts. The three top classes repre-
sent positive queries, those originating from direct and contextual concepts. The three
bottom classes represent negative queries, which will retrieve empty, unfavorable or
doubtful results. Queries which are assigned to the same mark vector may have an in-
ternal ranking between them, according to the number of concepts that form the query.
If C1 and C2 are two queries, and the number of concepts in C1 is higher than the num-
ber of concepts in C2, then C1 is considered more precise and therefore it is ranked
higher.

Automatically Grounding Semantically-Enriched Conceptual Models 311

Context-Less
(1,0,0,0)

Inverse
(0,0,0,1)

Uncertain
{(0,1,0,1), (0,0,1,1), (0,1,1,1), (1,0,0,1),

 (1,1,0,1), (1,0,1,1), (1,1,1,1)}

Context-Only

(0,1,1,0)

(0,0,1,0) (0,1,0,0)

Accurate

(1,1,1,0)

(1,0,1,0) (1,1,0,0)

Fig. 3. Partial Order between Mark Vectors

3.3 Example

Consider the Book Price Service, as described in Figure 1, and the AKT portal ontology
(Figure 2). To ground the first atomic process of the service - Book Finder - we describe
the output parameter, Book Info, using a set of concepts from the portal ontology. The
set C will be defined as all elements of the ontology (including properties), and the
anchor concept is defined as Book. The context classes for Book are defined as follows:

– Exact = {Book, ISBN}
– Speci f ic = φ
– General = {Publication,Title,Date,Location, IsAuthoredBy, IsOwnedBy . . .}
– Negation = φ

The next step is to build a set of queries C′ ⊆ C. For instance, the following list
contains a subset of the conjunctive normal form queries that can be constructed from
concepts of C, and their compatible mark vector:

{Book} ,{Book∧ ISBN} ⇒ (1,0,0,0)
{Book∧ ISBN∧Publication},{Book∧ ISBN∧Publication∧Title}. . . ⇒ (1,1,0,0)

312 E. Toch, A. Gal, and D. Dori

adding concepts to the query can potentially increase its precision (and decrease its
recall). Therefore, each query in the list is ranked higher than the subsequent query
on its left hand side. Furthermore, queries that are assigned to mark vectors of the
ACCURATE class are ranked higher than ones of the CONTEXT-LESS class. Figure 4
describes the outcome of executing the queries through the Woogle search engine [12]
on real Web services. The dashed circles represent sets of services that were retrieved
using a single query. For instance, the following services were returned in response to
the {Book} query: Travel SerkoA , K4THotel, Neil Finn Travel, Barnes & Noble Quote
Service and Book Info Service. These services belong to two different domains: the
travel domain, where the word Book is used in the context of booking a flight, and
the publication domain, which is the one we need. Intersection of this set with the set
induced by {ISBN}, results in a subset of the previous set. It is worth noting that the
Book Info Service, which is the only service that answers the requirements, is retrieved
by the query {Book∧ ISBN∧Publication∧Title}. This query is ranked higher than
{Book∧ ISBN}, so the final ranking will be:

Book Info Service≺PR Barnes & Noble Quote Service≺PR Neil Finn Travel . . .

4 Generic Ranking Algorithm

We now present a generic ranking algorithm that takes as input an atomic process PR,
a domain ontology ON, and a set of WSDL-described operations OP , and returns a
set of operations OP ′, which are ranked according to their capability of implementing

Travel
SerkoÂ ®

K4THotel

Barnes &
Noble Quote
Service

Book Info
Service

HK ID
CheckDigit

SalesRank
and Price

Neil Finn
Travel

ISBNbook

title author

Fig. 4. Matching Results for the BookFinder Process

Automatically Grounding Semantically-Enriched Conceptual Models 313

PR. The basic idea behind the algorithm is to infer affinity between a process and each
operation, and use it as a measure for ranking. Affinity is derived from the mappings be-
tween process parameters (p1, p2, ..., pk) and operation messages (m1,m2, ...,mn). Such
a mapping, as presented in Section 3, is provided through the ontological concepts,
associated with parameters. Figure 5 visualizes this notion for parameter p1. p1 is rep-
resented by concepts C1 and C2, which are directly mapped to message m1.

An implicit assumption in the ensuing discussion is that two operations that take
the same parameters as input perform the same intended activity. Researchers have
argued against this assumption [32]. Therefore, we provide a motivation for keeping
it in this specific context. According to the model, the behavior of a semantic Web
service is expressed using composite processes. Such flexibility allows a designer to use
atomic processes for constructing composite ones. Therefore, one can assume that PR
is sufficiently simple, or else it would be designed as a composite process and be further
decomposed into atomic processes. While “sufficiently simple“ is a vague metric, we
assume that the output variance of such processes is limited, implying that the interface
of the operation is sufficient for matching purposes. Moreover, Web service designers
who wish external programs to use their proposed Web services are expected to develop
simple, well-documented processes, again supporting our assumption.

The basic idea behind the algorithm is to use the underlying ontologies to produce
a contextual matching of parameters, as defined in Section 3. The algorithm analyzes
the semantic relationships between concepts and produces a ranking of the parameter
matching results, which is reflected later in a ranking between the operations.

The algorithm iterates through all the parameters of a process PR, extracting the
concepts related to that parameter. A mapping is established by procedure MatchMes-
sages between each parameter and each operation message. The mapping is an assign-
ment Mapping : (message, parameter)→ [0,1], assigning a matching score to each
message-parameter pair. The overall ranking of the operation set is calculated by the
function score(OP), which is described below. Finally, a ranking between the opera-
tions is established according to the matching score.

An important aspect of the algorithm is the use of related concepts. The set Concepts
holds concepts, extracted from the ontology. Each concept is tagged with its relation to

Pr

p1

p2

p3

OP 1

m1

m2

m3

OP 2

m' 1

m'2

m'3

C 1

C 2

Fig. 5. Mapping between semantic processes and WSDL operations

314 E. Toch, A. Gal, and D. Dori

Algorithm 1 Rank Operations

Input: PR, ON, OP =
{

OP1,OP2, ...,OPp
}

Output: OP ′ =
{

OP(1),OP(2), ...,OP(k)

}
Mappings← φ
Messages← ⋃

OPi∈OP A−1(OPi)
for all paremeter ∈ PR do

for all c ∈ concept(parameter) do
Concepts← (c,“direct“)
Concepts← (related(c,ON), rtype)

end for
ParameterMapping←MatchMessages(Concepts,Messages)
Mappings←Mappings∪ (parameter,ParameterMapping)

end for
for all OPi ∈ OP do

OP ′ ← OP ′ ∪OPi

for all OP(j) ∈ OP ′ do
OP(j) �PR OP(i) ⇔ score(OP(j))≥ score(OP(i))

end for
end for

the original concept (i.e., the concept to which the parameter is tagged). For example,
in the BookPrice process definition (Figure 1), the parameter Book Info is mapped di-
rectly to the concept Book of the AKT portal ontology (Figure 2). We define the concept
Book as a semantic anchor within the ontology, and it is tagged with the direct tag. The
related(c,ON) function retrieves a list of concepts which are related to the anchor con-
cept in the ontology ON and tags each concept according to its semantic relation type
(rtype) to the anchor object.

After characterizing the concepts according to their semantic relation, MatchMes-
sages is called in order to compute a matching score between the parameter and each
of the available messages. The core of MatchMessages is elaborated in Section 3. Ba-
sically, it produces a mapping between the set of concepts, representing the OWL-S
process parameter set, and each set of messages, specified in the interface of the WSDL
operations. A precondition of the existence of any semantic correspondence between
the message and the parameter is data-type equivalence between the two. The function
MatchDataType compares the types of the parameters of the corresponding concepts to
be matched. For instance, if the primitive type of the direct-mapping concept of the pa-
rameter is xsd:string and the primitive type of the message is xsd:float, then the message
cannot match the parameter.

If the message passed the data-type test, the procedure applies a virtual matching
function, GenericMatch, in order to calculate the similarity between each concept and
each message. The abstract function can be implemented using string matching, lin-
guistic similarity or schema matching techniques.2

2 See [18,29,25,11] for examples of matching methods.

Automatically Grounding Semantically-Enriched Conceptual Models 315

The last stage of the algorithm involves the ranking of the operations according to
their overall matching score. An operation OP(j) is ranked higher than operation OP(i)
if it has a higher or equal score. The calculation is defined as follows:

score(OP) =
1

|Parameters| ∑
pr,m∧A(m)=op

Mapping(pr,m)wpr ·∏
pr

h(OP, pr)

h(OP, pr) =

⎧⎨
⎩

1 if pr is mapped by at least one message m ∈ OP,
such that Mapping(pr,m) > 0

0 otherwise

The function averages the matching scores (Mapping) for each message that par-
ticipate in some assignment A and each of the process parameters (pr ∈ Parameters).
Parameter importance is specified using a weight wpr, which is associated with each
parameter. To omit operations that have only a partial mapping to the process, we use
h to assign a value of zero whenever the mapping of the operation does not supply a
corresponding message for each of the process parameters.

5 Web Services and Schema Matching

Schema matching is the task of matching between concepts describing the meaning
of data in various data sources (e.g. database schemata, XML DTDs, HTML form tags,
etc.). As such, schema matching is recognized as one of the basic operations required by
the process of data integration [7]. Due to its cognitive complexity [8], schema match-
ing has traditionally been performed by human experts [22]. As the automation level of
data integration increases, the ambiguity inherent in concept interpretation is becoming
a major obstacle to effective schema matching. For obvious reasons, manual concept
reconciliation in dynamic environments (with or without computer-aided tools) is inef-
ficient and at times close to impossible. Introduction of the Semantic Web vision [5] and
shifts toward machine-understandable Web resources and Web services have underlined
the pressing need for automatic schema matching.

Attempting to address these data integration needs, several heuristics for automatic
schema matching have been proposed and evaluated in the database community (e.g.,
see [4,10,21,16,26,31,18]). However, as one would expect, recent empirical analysis has
shown that there is no single dominant schema matcher that performs best, regardless
of the data model and application domain [17], and such schema matcher may never be
found. Finally, due to the unlimited heterogeneity and ambiguity of data, none of the
existing heuristics can find optimal mappings for many pairs of schemata.

Bearing these observations in mind and striving to some robustness in the match-
ing process, an approach studied in [2,17,24] suggested to generate not one, but K
top-ranked mappings, examining them (either iteratively or simultaneously) until a suf-
ficiently effective mapping is found. In this work, we adopt this research direction and
aim at extending Web service ranking to support imprecise matching. Observe that an
operation that implements PR fully is expected to have corresponding input and out-
put messages, which have the same semantics in spite of name differences. Therefore,

316 E. Toch, A. Gal, and D. Dori

matching an ontology concept with a Web service input and output parameter may carry
with it a degree of uncertainty. As a simple example, consider the concept Title. This
concept may be matched (by one or another matching algorithm) with a concept Book
Title, and assigned a similarity of 0.5. Title belongs to its own Exact context class, and
therefore the e variable in the marks vector should be assigned a non-negative number.
A natural extension to the approach presented in this work, to support the uncertainty
that stems from partial mappings, can be done by allowing each variable in the marks
vector to accept values in [0,1], corresponding to the similarity measure as determined
by the matching algorithm(s) of choice. Such a change entails a revision in the partial
order among different marks vectors, as given in Figure 3. We defer this extension to
an extended version of this work.

Even though ontology languages such as OWL provide a formal set of constructs
and relations, the construction of semantic Web services and ontologies may vary sig-
nificantly among designers. This difference, which may be due to the methodologies,
conventions, purposes and even the “style“ the designers exhibit, can greatly affect the
results of the algorithm described in this work. Therefore, an analysis of the way on-
tological knowledge is modeled and understood by humans is necessary. Specifically,
research of the implications of different relations in ontological languages such as OWL
is relevant to our work. Emerging works in this issue include [6] and [30], but further
research is needed in this field.

6 Related Work

Our work presents an approach for grounding descriptions of semantic (possibly vir-
tual) Web services, which exhibit a rich conceptual model, with physical (possibly not
semantic) Web services, through their flat WSDL description. In this section we dis-
cuss other efforts that tackle similar problems. Paolucci et al. [28] proposed a method
for matching semantic Web services. The work uses the OWL-S profile ontology as
a method for describing the capabilities of services, and proposes an algorithm that
matches service requesters and advertisers. The work requires the availability of full se-
mantic description of both service requester and service advertiser in order to perform
the matching. Furthermore, it requires a common ontology, or at least two connected
ontologies. Klein et al [23] have used process ontology in order to match between ser-
vices. The work proposes an indexing schema for services in order to promote efficient
matching of services. Similar to [28], [23] requires services to be semantically anno-
tated and indexed before matching can be executed. Our work differs primarily in the
problem definition - we are concerned with grounding services to WSDL descriptions,
not with matching semantic Web services. We demonstrate that a major contribution
to a matching process can be made even if ontology exists only for one side of the
match.

A prominent example of an architecture that supports dynamic composition of Web
services is Proteus [19]. Proteus suggests an information mediating approach towards
building dynamic compositions of Web services. It exhibits a multi-level architecture,
which includes wrapping existing data sources with Web services, locating Web ser-
vices through attribute search, building dynamic integration plans and efficiently exe-

Automatically Grounding Semantically-Enriched Conceptual Models 317

cuting the services using compression techniques. However, this approach requires Web
services to be manually annotated, using a specialized ontology, in order to be reused.

METEOR-S [29] is a framework for annotating WSDL descriptions with semantic
metadata. It provides a framework for semi-automatic mapping between WSDL ele-
ments and ontological concepts. The matching algorithm is based on linguistic match-
ing at the single concept level which is enhanced with schema-based matching between
the XML schema specification of WSDL elements and the ontological structure. Our
work differs in the direction of matching and in its nature. While the matching algorithm
used in METEOR-S takes as input a WSDL document and matches it to an ontology,
our proposed algorithm performs the opposite task: it takes an ontology-powered con-
ceptual model and tries to match it with WSDL documents. This difference has consid-
erable implications on the algorithm. While METEOR-S is basically a schema match-
ing algorithm, our approach acknowledges the rarity of rich XML schemas in WSDL
documents. The lack of such schemas is compensated for by projecting the ontological
knowledge onto keyword queries.

Our work is also related to efforts for developing matching algorithms for non-
semantic Web services. Woogle [12] is a search engine for Web services. A similar goal
is shared by [27], which uses a different algorithm. Woogle accepts keyword queries
and returns results according to information in WSDL documents, including message
parameters. Our proposed framework is complementary to that of Woogle in the type
of queries it accepts. Our algorithm decomposes conceptual models into keywords and
then uses a generic algorithm in order to match the keywords. Woogle can be used as
an implementation for the latter task.

7 Conclusion

This paper describes a conceptual framework for designing composite business pro-
cesses using semantic Web services, grounding them with existing (either semantic or
other) Web services. A designer defines a rough draft of a semantic Web service to be
searched. The system then searches for existing Web services that match the specifica-
tions and ranks them according to their fit with the proposed process design. Modeling
languages such as OPM/S can be used for rapid specification of semantic Web service.

We use ontologies as the main vehicle for conveying semantics and utilize onto-
logical constructs in the ranking process. We then propose a possible extension of the
framework to handle poor Web service specifications and semantic heterogeneity. An
extended version of this work will include a fully specified methodology for designing
composite business processes in an environment with varying levels of semantic spec-
ifications. Other extensions of this work include efficient algorithmic solutions to the
ranking problem, using pruning and indexing.

Acknowledgement

The work of Gal and Dori was partially supported by TerreGov, a European Commis-
sion 6th Framework IST project and the Technion Fund for the Promotion of Research.

318 E. Toch, A. Gal, and D. Dori

References

1. The akt reference ontology. http://www.aktors.org/publications/ontology/, 2002.
2. A. Anaby-Tavor. Enhancing the formal similarity based matching model. Master’s thesis,

Technion-Israel Institute of Technology, May 2003.
3. A. Ankolekar, D.L. Martin, Z. Zeng, J.R. Hobbs, K. Sycara, B. Burstein, M. Paolucci, O. Las-

sila, S.A. Mcilraith, S. Narayanan, and P. Payne. DAML-S: Semantic markup for web ser-
vices. In Proceedings of the International Semantic Web Workshop (SWWS), pages 411–430,
July 2001.

4. J. Berlin and A. Motro. Autoplex: Automated discovery of content for virtual databases.
In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors, Cooperative Information
Systems, 9th International Conference, CoopIS 2001, Trento, Italy, September 5-7, 2001,
Proceedings, volume 2172 of Lecture Notes in Computer Science, pages 108–122. Springer,
2001.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American, May
2001.

6. Abraham Bernstein, Esther Kaufmann, Christoph Bu”rki, and Mark Klein. How similar
is it? towards personalized similarity measures in ontologies. In 7. Internationale Tagung
Wirtschaftsinformatik, February 2005.

7. P.A. Bernstein and S. Melnik. Meta data management. In Proceedings of the IEEE CS
International Conference on Data Engineering. IEEE Computer Society, 2004.

8. B. Convent. Unsolvable problems related to the view integration approach. In Proceedings
of the International Conference on Database Theory (ICDT), Rome, Italy, September 1986.
In Computer Science, Vol. 243, G. Goos and J. Hartmanis, Eds. Springer-Verlag, New York,
pp. 141-156.

9. M. Dean, G. Schreiber, F. van Harmelen, J. Hendler, I. Horrocks, M. McGuinness, P.F. Patel-
Schneider, and S. Stein. OWL web ontology language reference. Working draft, W3C,
March 2003.

10. A. Doan, P. Domingos, and A.Y. Halevy. Reconciling schemas of disparate data sources:
A machine-learning approach. In Walid G. Aref, editor, Proceedings of the ACM-SIGMOD
conference on Management of Data (SIGMOD), Santa Barbara, California, May 2001. ACM
Press.

11. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies
on the semantic web. In Proceedings of the eleventh international conference on World Wide
Web, pages 662–673. ACM Press, 2002.

12. Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang. Simlarity search
for web services. In VLDB, pages 372–383, 2004.

13. D. Dori. Object-Process Methodology - A Holistic Systems Paradigm. Springer Verlag, 2002.
14. D. Dori. Visweb - the visual semantic web: unifying human and machine knowledge repre-

sentations with object-process methodology. VLDB, 13(2):120–147, 2004.
15. D. Dori, E. Toch, and I. Reinhartz-Berger. Modeling semantic web services with opm/s a

human and machine-interpretable language. In Third International Workshop on Web Dy-
namics, WWW 2004, New York, 2004.

16. N. Fridman Noy and M.A. Musen. PROMPT: Algorithm and tool for automated ontology
merging and alignment. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), pages 450–455, Austin, TX, 2000.

17. A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi. A framework for modeling and
evaluating automatic semantic reconciliation. VLDB Journal, 2004. to appear.

18. A. Gal, G. Modica, H.M. Jamil, and A. Eyal. Automatic ontology matching using application
semantics. AI Magazine, 2004. to appear.

Automatically Grounding Semantically-Enriched Conceptual Models 319

19. Shahram Ghandeharizadeh, Craig A. Knoblock, Christos Papadopoulos, Cyrus Shahabi,
Esam Alwagait, José Luis Ambite, Min Cai, Ching-Chien Chen, Parikshit Pol, Rolfe R.
Schmidt, Saihong Song, Snehal Thakkar, and Runfang Zhou. Proteus: A system for dy-
namically composing and intelligently executing web services. In ICWS, pages 17–21, 2003.

20. T.R. Gruber. A translation approach to portable ontology specifications. Knowledge Acqui-
sition, 5(2):199–220, 1993.

21. B. He and K. Chen-Chuan Chang. Statistical schema matching across Web query interfaces.
In Proceedings of the ACM-SIGMOD conference on Management of Data (SIGMOD), pages
217–228, San Diego, California, United States, 2003. ACM Press.

22. R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective. In Pro-
ceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 51–61. ACM Press, 1997.

23. Mark Klein and Abraham Bernstein. Towards high-precision service retrieval. IEEE Internet
Computing.

24. G. Koifman, A. Gal, and O. Shehory. Schema mapping verification. In H. Davulcu and
N. Kushmerick, editors, Proceedings of the VLDB-04 Workshop on Information Integration
on the Web, pages 52–57, Toronto, Canada, August 2004.

25. J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with Cupid. In Pro-
ceedings of the International conference on very Large Data Bases (VLDB), pages 49–58,
Rome, Italy, September 2001.

26. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In Proceedings of the IEEE CS Interna-
tional Conference on Data Engineering, pages 117–140, 2002.

27. Mourad Ouzzani and Athman Bouguettaya. Efficient access to web services. IEEE Internet
Computing, 8(2):34–44, 2004.

28. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. Semantic
matching of web services capabilities. In International Semantic Web Conference, pages
333–347, 2002.

29. A. Patil, S. Oundhakar, A. Sheth, and K. Verma. Meteor-s web service annotation framework.
In Proceedings of WWW 2004, pages 553–562, New York, NY, May 2004.

30. M. Andrea Rodrı́guez and Max J. Egenhofer. Determining semantic similarity among entity
classes from different ontologies. IEEE Trans. Knowl. Data Eng., 15(2):442–456, 2003.

31. P. Rodriguez-Gianolli and J. Mylopoulos. A semantic approach to XML-based data inte-
gration. In Proc. of the International Conference on Conceptual Modelling (ER’01), pages
117–132, Yokohama, Japan, 2001. Lecture Notes in Computer Science, Springer-Verlag.

32. A.M. Zaremski and J.M. Wing. Specification matching of software components. ACM Trans-
actions on Software Engineering and Methodology, 6(4):333–369, 1997.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 320 – 336, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Transforming Web Requirements into Navigational
Models: AN MDA Based Approach

Pedro Valderas, Joan Fons, and Vicente Pelechano

Department of Information System and Computation, 46022 Cami de Vera s/n,
Technical University of Valencia, Spain

{pvalderas, jjfons, pele}@dsic.upv.es

Abstract. Model Driven Architecture (MDA) is being adopted as a new
development strategy. MDA is based on both the definition of models at
different levels of abstraction and the application of consecutive
transformations in order to obtain code from these models. However, little
methodological support is provided to both define and apply model-to-model
transformations. In this work, we introduce a strategy based on graph
transformations that allow us to automate the derivation of the navigational
model of the OOWS method from early requirements specifications, by
following an MDA-based development process. In order to define and apply the
graph transformations the Attributed Graph Grammar tool is used. In addition,
due to the OOWS PIM-to-Code transformation capabilities, we show how this
strategy allows us to obtain prototypes of web applications from early
requirements specifications.

1 Introduction

Model Driven Architecture (MDA) [8] is being adopted by a significant number of
proposals that provide support for software development. MDA introduces a
development process where three basic models are proposed: computation-
independent models (CIMs) that focus on the requirements of the system, platform
independent models (PIMs) that describe the system using high-level constructs that
hide the necessary details of particular platforms, and platform specific models
(PSMs) that are created from the PIM models by including specific platform details.
Besides the specification of these models, MDA proposes that a set of consecutive
transformations should be applied in order to transform these models into code.
However, MDA does not specify any concrete technique for building software from
models. In this sense, in the web applications development area, little methodological
support is provided to both define and apply model-to-model transformations.

In this work, we introduce a strategy that is based on graph transformations in
order to define and automatically apply model-to-model transformations. This
strategy has been used to automate the derivation of the navigational model of the
OOWS method [2] (PIM model) from the OOWS requirements model (CIM model).
In order to do this, we use the Attribute Graph Grammar tool [6] that allows us to
easily define and apply graph transformations. In addition, due to the OOWS PIM-to-
Code strategy capabilities, the automatic transformation between the OOWS CIM and
PIM models allows us to directly obtain web application prototypes from the CIM

 Transforming Web Requirements into Navigational Models 321

model where the early requirements of the web application are described. In this way,
the contribution of this work is twofold:

− We provide a precise way to automatically perform model-to-model
transformations. This contribution allows us to provide a fully MDA approach that
supports automatic model transformation.

− We provide a mechanism to obtain fully operative web Application prototypes from
a requirements model.

This paper is organized as follows: Section 2 presents a brief overview of the work
related to MDA and web engineering. Section 3 presents the OOWS method
development process based on MDA. Sections 4 and 5 present an overview of the
OOWS requirements model and the OOWS navigational model respectively. Section
6 proposes a strategy to automatically perform a model-to-model transformation
between these two models. Section 7 explains how web prototypes are obtained from
the OOWS navigational model. Finally, conclusions are presented in Section 8.

2 MDA and the Web Engineering

In the context of web engineering, many different methods, some partly or fully based
on UML [1] (see e.g. OOHDM [15], UWE [16], WSDM [17], OO-H [18], WebML
[19]) and others based on more formal foundations (see e.g. WIS [20]), have been
proposed for the specification of web applications. These methods provide analysts
with a development process where several models are built to capture the different
aspects (such as information, navigation and functionality) of a web application.

All these approaches can be easily adapted to fit the Model Driven Architecture.
However, few works have been published where this adaptation is explicitly
explained. OO-H proposes in [21] the definition of different models following the
MDA standard in order to reduce the gap between software architectures and web
application design. In [22] a behavioural semantics has been included within
OOHDM to develop a valid PIM for MDA. Although these approaches focus on
MDA model definitions (PIM model especially), model transformations are not
explicitly presented. This work introduces guidelines and tools to both define and
automatically perform a CIM to PIM transformation.

3 OOWS: AN MDA-Based Method for Web Application
Development

This section presents a brief overview of the OOWS method [2] that follows the
MDA proposal (see Figure 1). In the Computation-Independet Model (CIM), the early
requirements of a web application are described. To do this, we define first a
hierarchy of tasks that allows us to identify the tasks that users must achieve. Next,
we describe these tasks from the interactions that users require of the web application.

Once the CIM model is defined, the OOWS PIM model is derived from the task-
based CIM model by applying what MDA calls a model-to-model transformation. In
the Platform Independent Model (PIM), OOWS proposes the definition of several

322 P. Valderas, J. Fons, and V. Pelechano

models which describe the different aspects of a web application. The system static
structure and the system behaviour are described in three models (class diagram and
dynamic and functional models) that are borrowed from an object oriented software
production method called OO-Method [10]. The navigational aspects of a web
application are described in a navigational model [2].

Finally, we obtain code from the PIM models by performing what MDA call an
automatic transformation [8]. The OOWS PIM model provides all the information
needed for obtaining fully operative web application prototypes by means of
automatic code generation [3]. This prototype is implemented by following a three-
tier architecture. The information and functionality (Application and Persistence tier)
of the web application is generated by the OlivaNova tool [4] from the OO-Method
models (structural and behavioural model). The navigational structure (Presentation
tier) of the web application is generated by the OOWS case tool following directives
specified in design templates [2].

Fig. 1. The MDA-based OOWS method

This paper presents a strategy that allows us to automate the derivation of the PIM
navigational model from the task-based CIM model. Information about how the PIM
structural and behavioural models are obtained from a requirements specification is
explained in [14]. In order to more easily understand the presented model-to-model
transformation we introduce first a (necessary) brief overview of the task-based CIM
model and the PIM navigational model. Finally, we introduce the OOWS strategy for
obtaining code from the navigational model which allows us to obtain web
application prototypes from early requirements specifications.

4 The CIM: A Task Description for the Early Requirements
Specification

In the OOWS CIM model, the early requirements of a web application are described
by: (1) identifying the set of tasks that users must perform and (2) describing these
tasks from the system-user interaction.

 Transforming Web Requirements into Navigational Models 323

Fig. 2. Task taxonomy of the web sale application

4. 1 Task Identification

To identify tasks, we propose the
construction of a task taxonomy
taking a statement of purpose
that describes the goal for which
the application is being built, as
the starting point.

To define the task taxonomy,
the statement of purpose is
considered as the most general
task. As the statement of purpose
defines the general requirements
of the system, these require-
ments can be grouped by means
of semantic and/or functional
relationships. They can also be grouped by analyst/stakeholder experience. This
allows us to obtain an initial set of general tasks. These general tasks can be refined to
obtain more specific ones until a group of elementary tasks are obtained. An
elementary task is defined as a task that when divided into subtasks involves either
the user or the system, but not both. In addition, we propose to enrich this taxonomy
by indicating temporal relationships among tasks. To do this, we have used the
relationships introduced by the CTT approach (ConcurTaskTree) [9].

Figure 2 shows a partial view of the task taxonomy that we obtain from the
statement of purpose of a web application for the sale of audiovisual and
bibliographic products (CDs, DVDs and books). In order to easily identify the
elementary tasks they are circled with a thicker line. The user’s needs that are
described in the statement of purpose have been grouped into two tasks: Purchase
Products and Information Management. The Purchase Products task is refined into
the See Shopping Cart elementary task and the Send Purchase Order task. From the
Send Purchase Order task, consecutive refinements are applied until the task
taxonomy of Figure 2 is obtained. Furthermore, according to the temporal
relationships defined in the task taxonomy (see arrows of Figure 2) the Select
Products task must always be performed before the Checkout task ([]>> Enabling
relationship [9]). In addition, during the Select Products task the user can suspend it
(resuming it after) to see the state of his/her shopping cart (<|, Suspend/Resume
relationship [9]). Finally, the Search Product task must be always performed before
the Add Product to Shopping Cart elementary task ([]>> Enabling relationship [9]).

4.2 Task Description: Activity Diagrams and Interaction Points

Once the task taxonomy is built, elementary tasks are described to define how user
can achieve them. To do this, we extend traditional description where user and system
actions are described by indicating explicitly when (at which exact moment) the
interaction between user and system is performed. In this way, we introduce the
concept of interaction points (IP). In each IP, the system provides the user with

324 P. Valderas, J. Fons, and V. Pelechano

information that is related to an entity1. Moreover, access to operations can also be
provided. In this sense, with both the information and the operations the user can
perform several actions: he/she can select information (as a result the system provides
the user with new information) and he/she can activate an operation (as a result the
system carries out an action).

To perform descriptions of this kind, we propose a graphical notation based on
UML activity diagrams [1] (see Figure 3). Each node (activity) represents an IP (solid
line) or a system action (dashed line). Furthermore, the number of information
instances2 that the IP includes (cardinality) is depicted as a small circle in the top right
side of the primitive. Finally, each arc represents (1) a user action (selection of
information or operations) if the arc source is an IP or (2) a node sequence if the arc
source is a system action. Figure 3 shows the description of the Search CD
elementary task (the shaded numbers are not part of the notation). According to
Figure 3: (1) The CD Search task starts with an IP where the system provides the user
with a list (cardinality *) of music categories. (2) The user selects a category. (3) The
task continues with an IP where the system informs about the CDs of the selected
category. Depending on the user action there are two ways (A and B) to continue with
the task: A) (4a) The user selects a CD. (5a) The task ends with an IP where the
system provides the user with a description of the selected CD. B) (4b) The user
selects a search operation. (5b) The system performs a system action which searches
the CDs of an artist. (6b) Since the search result is a list of CDs it is shown in the IP
where the full list of CDs is previously shown. Then the task continues in point 3.

Fig. 3. CD Search elementary task

As we can see, details about the information exchanged between the user and the
system are not described (we just indicate the entity to which the information is
related). To do this, we propose a technique based on information templates that is
introduced next.

Describing the system data. The information that must be stored in the system is
defined by means of a template technique that is based on data techniques such as the
CRC Card [23]. We propose the definition of an information template (see Figure 4)

1 Abstraction of any object of the real world that belongs to the system domain (e.g. client,

product, invoice, etc.).
2 Given a system entity (e.g. client), an information instance is considered to be the set of data

related to each element of this entity (Name: Joseph, Surname: Elmer, Telephone Number:
9658789).

 Transforming Web Requirements into Navigational Models 325

for each entity identified in the description of a task. In each template we indicate an
identifier, the entity and a specific data section. In this section, we describe the
information in detail by means of a list of specific features associated to the entity.
For each feature we provide a name, a description and a data type. In addition, we use
these templates to indicate the information shown in each IP. For each feature we
indicate the IPs where it is shown (if there is any). To identify an IP we use the
notation: IP (Entity, Cardinality).

According to the template in Figure 4, the information that the system must store
about a CD is (see the specific data section): the CD title, the artist name, the front
cover and the price that are shown in the IP (CD,1) and the IP (CD,*)3; the recording
year, some comments about the CD and the list of songs that are shown only in the IP
(CD,1); and finally, the times that a CD has been bought and the client profiles that
usually purchase it which are not shown in any IP.

Fig. 4. An information template

Task descriptions allow us to define a computation-independent view of the system
(CIM model). Following the MDA strategy, a platform-independent view (PIM
model) must be obtained from the CIM model.

5 The PIM: The Navigational Model

The OOWS navigational model is represented by a directed graph (which defines the
navigational structure) whose nodes are navigational contexts and its arcs denote
navigational links (see Figure 5A). A navigational context (represented by a UML
package stereotyped with the «context» keyword) defines a view on the class diagram
that allows us to specify an information retrieval. A navigational link represents
navigational context reachability: the user can access a navigational context from a
different one if a navigational link between both has been defined.

A navigational context is made up of a set of navigational classes that represent
class views over the classes of the class diagram (including attributes and operations).

3 IPs defined in the Search CD elementary task, see Figure 3.

326 P. Valderas, J. Fons, and V. Pelechano

Each navigational context has one mandatory navigational class, called a manager
class and optional navigational classes to provide complementary information of the
manager class, called complementary classes. All navigational classes must be related
by unidirectional binary relationships, called navigational relationships that are
defined upon an existent relationship in the class diagram. Figure 5B shows the CD
navigational context which is made up of the manager navigational class (CD) and a
complementary navigational class (Artist). These classes are related by means of a
navigational relationship. This navigational context provides the user with the CD
title, the artist’s name, the recording year, the songs, the front cover, the price and
some commentaries about the CD (navigational classes attributes). In addition, the
user can invoke the Add_to_Cart functionality to add the CD to the shopping cart
(manager class operation).

Fig. 5. The OOWS navigational model for the web sale application

Moreover, for each context, we can also define: (1) Search filters that allow us to
filter the space of objects that retrieve the navigational context. The CD navigational
context allows the user to find all the CDs of a specific artist (see search filter in
Figure 5B). (2) Indexes that provide an indexed access to the population of objects.
Indexes create a list of summarized information allowing the user to choose one item
(instance) from the list. This selection causes this instance to become active in the
navigational context. The CD navigational context provides the user with a list of
CDs where the CD title, the artist name, the price and the cover are shown (see index
in Figure 5B).

6 From Task Descriptions to the OOWS Navigational Model

In this section, we present a strategy based on graph transformations that allow us to
automatically derive the OOWS navigational model from task descriptions. This
strategy is divided into two main stages:

 Transforming Web Requirements into Navigational Models 327

1. Definition of mapping rules: We must identify the set of mappings between
the source-model primitives and the target-model primitives that allow us to
achieve the model-to-model transformation. Section 6.1 introduces a graph
technique to define mapping rules.

2. Application of mapping rules: Once mapping rules are defined (by means of
graph transformations) they must be applied into the source model in order to
obtain the target model. Section 6.2 introduces a strategy based on the AGG
tool [6] that allows us to automatically apply graph transformations.

6.1 Graph Transformations: Defining the Mapping Rules

Graph transformations are specified using transformation systems. Transformation
systems rely on the theory of graph grammars [12]. A transformation system is
composed of several transformation rules. A rule is a graph rewriting rule equipped
with negative application conditions and attribute conditions [13]. Figure 6 illustrates
how a transformation system is applied to a graph G: when (1) a Left Hand Side
(LHS) matches into G and (2) a Negative Application Condition (NAC) does not
match into G (3) the LHS is replaced by a Right Hand Side (RHS). G is transformed
into G′. All elements of G not covered by the match are considered as unchanged. All
elements contained in the LHS and not contained in the RHS are considered as
deleted. To add more expressiveness to transformation rules, variables may be
associated to attributes within a LHS. These variables are initialized in the LHS and
their value can be used to assign an attribute in the expression of the RHS. An
expression may also be defined to compare a variable declared in the LHS with a
constant or with another variable. This mechanism is called attribute condition.

Fig. 6. A transformation system

We have chosen a graph transformation technique because it is (1) Visual: every
element within a graph transformation based language has a graphical syntax; (2)
Formal: a graph transformation is based on a sound mathematical formalism
(algebraic definition of graphs and category theory) and enables verifying formal
properties on represented artifacts; (3) Seamless: it allows representing manipulated
artifacts and rules within a single formalism.

328 P. Valderas, J. Fons, and V. Pelechano

Fig. 7. Graph transformation rules

In order to derive the OOWS navigational model from a task description we have
defined a set of transformation rules. Due to space constraints, we only present two
representative rules that can be seen in Figure 7. The rest of rules are identified in [5].
The rule of Figure 7A says that when an IP (LHS) is found it must be transformed
into a Navigational Context with its Manager Navigational Class (RHS). However,
this rule is not applied if the IP provides access to another IP that provides the user
with information about one instance of the same entity (NAC). These cases are
handled by the rule of Figure 7B whose RHS defines in the target graph a
Navigational Context with its Manager Navigational Class and an Index (index
attributes are defined by other rule). In addition, the variable x that has been defined
in the IPs of the LHS of both rules, gives the name to the Navigational Context and
the Navigational Class included in the RHS.

6.2 Automatically Applying Graph Transformations

Once mapping rules have been defined by means of graph transformations they must
be applied into the source model (in our case a task description) in order to transform
it into the target model (in our case an OOWS navigational model). To do this
automatically, we propose the use of the Attribute Graph Grammar (AGG) tool [6].

The AGG tool allows us to automatically transform a source graph into a target
graph by applying graph transformations. We just need to load the source graph into
the AGG tool, introduce the definition of the graph transformations and then, the
system automatically applies the rules to obtain the target graph.

However, models are not always defined as graphs. For instance, the OOWS CIM
and PIM models are not graphs. In these cases, in order to fully automate the model-
to-model transformation by means of the AGG tool [6] several steps must be fulfilled
(see Figure 8): (1) First, the source model must be represented as a correct AGG
graph. (2) Next, this graph is loaded in the AGG tool and the graph transformations
are applied. Once transformation is finished, the obtained graph represents the target
model. (3) Finally, the this final graph must be translated into the correct target
modelling language.

Next, we present a strategy to automatically achieve these steps. It has been used to
allow the automatic derivation of the OOWS navigational model from task
descriptions.

 Transforming Web Requirements into Navigational Models 329

Fig. 8. MDA transformation steps

Obtaining an AGG Graph from Task Descriptions. To automate the
transformation of a task description into an AGG graph we propose a strategy based
on translating XML documents. On one hand, the CIM model should be specified in
an XML document (Figure 9A shows a partial view of the XML specification of the
task description presented in this work). This XML specification is built by means of
XML elements that are defined from the task elements presented in Section 4. On the
other hand, the AGG system also uses XML to store its graphs by means of four XML
elements: the NodeType and EdgeType elements that allow us to specify which kind
of nodes and edges can be defined in the graph; and the Node and Edge elements that
allow us to define the graph. The NodeType and EdgeType elements are defined by
means of a name and a set of graphical representation properties. The Node and Edge
elements are defined by means of a name, a set of attributes and a type. The type is a
reference to a previously defined NodeType or EdgeType element. Figure 9B shows a
partial view of an XML AGG graph.

As Figure 9 shows, we obtain an XML AGG graph from an XML task description
by means of an XSL transformation [11]. This transformation is performed by
following the next steps (see Figure 10):

(1) We transform the task taxonomy into an AGG graph: First, tasks are transformed
into graph nodes. Next, refinement and temporal relationships define graph
edges. Although the task taxonomy is basically used to identified elementary
tasks we represent the whole taxonomy as a graph to extract (during the
transformation process) navigational semantics from the temporal relationships.

(2) Each activity diagram is represented as an AGG graph: IPs and System Actions
are transformed into graph nodes. Activity diagram’s arcs define graph edges.

(3) These defined AGG graphs are joined into a single graph: each node that
represents an elementary task is connected to the node that represents the initial
IP or System Action of the activity diagram that describes this task.

(4) Information templates are represented as AGG graphs: We define a graph node
for each information template. Next, each template’s entity feature is represented
as a node which is connected to the corresponding template node.

(5) Finally, these new AGG graphs are connected to the graph obtained in point 3:
each node that represents an entity feature is connected to the node that represents
the IP where it is shown.

Figure 10 shows the graphical representation of the AGG graph that we obtain by
applying the XSLT transformation into the task description presented in this work.

330 P. Valderas, J. Fons, and V. Pelechano

Fig. 9. Translation of XML documents

Graph Transformations on the AGG tool. AGG (Attributed Graph Grammars tool)
[6] can be considered to be a genuine programming environment based on graph
transformations. It provides 1) a programming language enabling the specification of
graph grammars and 2) a customizable interpreter enabling graph transformations.
AGG was chosen because it allows the graphical expression of directed, typed and
attributed graphs (for expressing specifications and rules). It has a powerful library
containing notably algorithms for graph transformation, critical pair analysis,
consistency checking and application of positive and negative conditions.

Figure 11 shows a snapshot of the AGG user interface. Frame 1 is the grammar
explorer. Frames 2, 3 and 4 enable to specify sub-graphs composing a production: a
negative application (frame 2), a left hand side (frame 3) and a right hand side (frame
4). The host graph on which a production will be applied is represented in frame 5.

 Transforming Web Requirements into Navigational Models 331

Fig. 10. Representation of a task description by means of an AGG graph

Fig. 11. AGG user interface

Obtaining an OOWS Navigational Model from an AGG Graph. When the AGG
system transformation is finished, a graph that represents an OOWS navigational
model is obtained. This graph is made up of a set of nodes and edges defined from the
OOWS metamodel elements. These elements have been explained in Section 5.

332 P. Valderas, J. Fons, and V. Pelechano

Fig. 12. An OOWS specification represented by means of an AGG graph

Fig. 13. An OOWS XML specification and the OOWS case tool

Figure 12 shows a partial view of the OOWS graph that has been obtained from the
CIM model of the “Web Sale” application after applying the full set of transformation
rules. According to this figure, two navigational contexts are defined: the CD
navigational context and the Cart navigational context. On one hand, the CD
navigational context is made up of a manager class (with some attributes and an
operation) and a complementary class (with an attribute). An index and a search filter
are also defined in this navigational context. On the other hand, the Cart navigational
context is made up of the manager class with an attribute and an operation (with its
parameters). A link is defined between both contexts.

The OOWS XML document can be loaded by our OOWS case tool. This tool
provides us with a graphical representation of navigational specifications. Figure 13B

 Transforming Web Requirements into Navigational Models 333

shows the OOWS tool after loading the OOWS XML document obtained from the
graph shown in Figure 12. On the upper side we can see the navigational structure
section. This figure shows the contexts (CD and Cart) resulting from the example
described in the paper. A link relationship between both contexts is also defined. On
the lower side we can see the context definition section where the CD navigational
context definition is shown. This section shows both the navigational classes that
made up the navigational context and the search mechanisms (indexes and filers). In
order to see the definition of other navigational context we just need to select it by
clicking on the navigational context in the navigational structure section.

7 Generating a Web Application Prototype from the PIM Model

Starting from the navigational model, a web application prototype can be
automatically generated by the OOWS case tool. This prototype is made up of a group
of connected web pages that define the web application user interface for navigating,
visualizing the data and accessing to the web application functionality. Presentation
aspects such as colours, sizes or fonts are not considered in the prototype
construction. In later stages, presentation guidelines should be applied in order to
satisfy client presentation requirements and obtain the final web application. We show
an example of how web pages are obtained from the navigational model presented in
this work (see Figure 5). Web pages are presented after applying a default
presentation guideline.

A web page is created for each navigational context in the navigational map. Each
web page is responsible for retrieving the specified information in its navigational
context by requesting it from the application tier (which is generated by the
OlivaNova tool [4]). Furthermore, for each index defined in a context, an additional
web page that provides the user with a list of instances with the specified information

Fig. 14. Web page generated from the index defined in the CD navigational context

334 P. Valderas, J. Fons, and V. Pelechano

Fig. 15. Web Page for the CD context

(in the index definition) is implemented. Figure 14 shows the web page generated
from the index of the navigational context CD (see Figure 5B).

Selecting one of these indexed instances (using the title of the CD as the link
attribute), the web page shows all the information specified in the context. The web
page of Figure 15 presents the CD context. It shows the CD title, the artist’s name, the
recording year, the songs, the front cover, the price and some commentaries about the
CD (see CD context definition in Figure 5B).

The strategy that we apply to generate web pages (see Figures 14 and 15 as an
example) divides them into two logical areas:

− The information area presents the specific system view defined by a context. This
area is located at the right side of the web pages (see box number 1).

− The navigation area provides navigation meta-information to the user, in order to
improve some aspects of the quality (usability) of the final application [7]:
• Where the user is (see box number 2). It is stated which is the web page that

is being shown to the user currently.
• How the user reached this context (see box number 3). It is shown the

navigational path that has been followed to reach that page.
• Where the user can go (see box number 4). A link to each navigational page

where the user can access appears in this area.
• Which filters can be used by the user (see boxes number 5). If the context

has defined any filter mechanism, it is shown in this logical area.

8 Conclusions

A strategy to automate model-to-model transformation following the MDA approach
has been introduced in this work. This strategy has been used to automate the CIM-to-
PIM transformation of the OOWS method. In this sense, two goals have been
achieved.

 Transforming Web Requirements into Navigational Models 335

• The derivation of the OOWS navigational model (PIM) from the OOWS
requirements model (CIM) has been automated by means of graph transformations.
First, the CIM model is represented as a graph. Next this graph is transformed into
an OOWS graph by means of the AGG tool. Finally, the OOWS graph is translated
into an OOWS navigational model by means of an XML translation. This
contribution allows us to provide a fully MDA approach that supports automatic
model transformation.

• Furthermore, the PIM-to-Code strategy followed by the OOWS method lets us
obtain web prototypes automatically from the CIM model. These prototypes are
valuable tools to help users understand the captured requirements.

Finally, this proposal has been put into practice successfully in the development of
small and medium-size web applications, including the DSIC Department Web Site
(http://www.dsic.upv.es), the OOMethod Group Web Site (http://oomethod.dsic.
upv.es) and the web application of the Development Cooperation Center (http://www.
upv.es/ccd).

References

1. Object Management Group. Unified Modeling Language (UML) Specification Version 2.0
Final Adopted Specification. www.omg.org, 2003.

2. J. Fons, V. Pelechano, M. Albert, and O. Pastor. Development of Web Applications from
Web Enhanced Conceptual Schemas. In Workshop on Conceptual Modeling and the Web,
ER'03, volume 2813 of Lecture Notes in Computer Science. Springer, 2003.

3. R. Quintero,V. Pelechano, O. Pastor, J. Fons, Aplicación de MDA al Desarrollo de
Aplicaciones Web en OOWS, pp. 379 - 388, Jornadas de Ingeniería de Software y Base de
Datos (JISBD), VIII, 2003 - November, Alicante (Spain), 84-668-3836-5, 2003.

4. OlivaNova Model Execution System. CARE Technologies (www.care-t.com).
5. P. Valderas. Capturing Web Application Requirements. Spanish. Technical report, DSIC,

Technical University of Valencia, February 2005. http://oomethod.dsic.upv.es.
6. The Attributed Graph Grammar System v1.2.4. http://tfs.cs.tu-berlin.de/agg/. 2004
7. L. Olsina: Metodologia Cuantitativa para la Evaluacion y Comparacion de la Calidad de

Sitios Web. PhD thesis, Facultad de Ciencias Exactas de la Universidad Nacional de La
Plata (1999) In spanish.

8. Object Management Group. Model Driven Architecture (MDA). www.omg.org/mda,
2004.

9. F. Paternò, C. Mancini and S. Meniconi, 1997. “ConcurTaskTrees: a Diagrammatic
Notation for Specifying Task Models”, In Proceedings of INTERACT’97, Chapman &
Hall, 362-369.

10. O. Pastor, J. Gómez, E. Insfran, V. Pelechano. The OO-Method Approach for Information
Systems Modelling: From Object-Oriented Conceptual Modeling to Automated
Programming. Information Systems 26 (2001) 507-534

11. XSL Tranformtations (XSLT) v. 1.0. http://www.w3.org/TR/xslt.
12. G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph

Transformation. World Scientific, Singapore (1997)
13. H. Partsch, R. Steinbruggen: Program Transformation Systems. ACM Computing Surveys

15,3 (September 1983), 199–236.

336 P. Valderas, J. Fons, and V. Pelechano

14. E. Insfrán, O. Pastor and R. Wieringa, Requirements Engineering-Based Conceptual
Modelling. Journal "Requirements Engineering" (RE), March 2002. 7(2): p. 61-72.
Springer-Verlag. ISSN: 0947-3602 (printed version) ISSN: 1433-010X (electronic
version).

15. D. Schwabe, G. Rossi, and S. Barbosa. Systematic Hypermedia Design with OOHDM. In
ACM Conference on Hypertext, Washington, USA, 1996.

16. N. Koch. Software Engineering for Adaptive Hypermedia Applications. PhD thesis,
Ludwig-Maximilians-University, Munich, Germany, 2000.

17. O. De Troyer and C. Leune. WSDM: A User-centered Design Method for Web sites. In
World Wide Web Conference, 7th International Conference, WWW'97, pages 85,94,
1997.

18. J. Gómez, C. Cachero, O. Pastor. Extending an Object-Oriented Conceptual Modelling
Approach to Web Application Design. Kista, Stockholm June 2000. CAiSE'2000, LNCS
1789, Pags 79-93.

19. S. Ceri, P. Fraternali, A. Bongio. Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites. In: Proc. of the 9th International World Wide Web
Conference, WWW9, Elsevier (2000) 137-157.

20. K.-D. Schewe and B. Thalheim. Conceptual modelling of web information systems. Data
and Knowledge Engineering, 2005.

21. S. Meliá, C. Cachero, J. Gómez. Using MDA in Web Software Architectures. 2nd
International Workshop on Generative Techniques in the Context of MDA. Anaheim,
California. USA. October 2003.

22. H. Albrecht. Model Driven Architecture with OOHDM. International Workshop on Web
Engineering (IWWOST) 2004. Munich. Germany. Pp 1-10.

23. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object–Oriented Software.
Prentice–Hall, 1990.

Accelerating Workflows with Fixed
Date Constraints

Martin Bierbaumer, Johann Eder, and Horst Pichler

Institute for Informatics-Systems, University of Klagenfurt, Austria
{bierbaumer, eder, pichler}@uni-klu.ac.at

Abstract. Workflow systems execute workflows and assign work items
to the work list of participants. As work lists usually hold multiple work
items, participants have to decide which work item to handle next. When
selecting a specific work item other work items must be postponed, which
will in succession delay their appendant workflows. This may lead to
disproportionately increased execution durations and turn around times
if fixed-date constraints are defined on succeeding tasks. We propose a
probabilistic method which assists the participant when deciding which
work item to handle next, with the intention to decrease turnaround
times and to avoid time-related escalations, by providing information
about the delay to expect when postponing tasks.

Keywords: Workflow management systems, time management, time
plans, process monitoring and tracking.

1 Introduction

Workflow systems execute workflows and assign tasks or work items to partic-
ipants according to activities defined in a workflow model, i.e. an activity is
assigned if all preceding activities are finished. Participants use a work list to
manage the work items assigned to them. Usually, they have to decide which
work item to handle next. The decision to work on a particular work item im-
plicitly holds the decision to postpone every other work item in the work list.
This may have grave effects on the execution duration of the workflows to which
these postponed work items belong. Common policies for this decision prob-
lem, like first-in first-out (FIFO) or earliest-deadline-first, may be suboptimal
because they do not take into account that a) the postponement of a task may
not immediately delay a workflow due to eventually existing buffer times, and
b) even a slight postponement may lead to a disproportionately high delay due
to fixed-date constraints on succeeding tasks (e.g. ’a task must be finished until
the 1st of a month’).

Consider the workflow JobPosting to announce open positions of a big com-
pany in the local newspaper, as visualized in Fig. 1: A department initializes
the process by generating a claim. At first the claim will be forwarded to the
personnel division where it is prepared for further processing. Then the claim is
validated by the personal manager. After this, a job offer for the open position

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 337–352, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

338 M. Bierbaumer, J. Eder, and H. Pichler

Worklist for Mr. Smith Sunday, May 8th 2005
ID Task Process Received

34848 prepare JobPosting1 May 6th 2005
34856 create JobPosting2 May 7th 2005

Prepare
Claim

Validate
Claim

Create
Job Offers

6 days 5 days 2 days
Mail

Job Offer

1 day

fdc: 14th of a month

Finish
Job Offer

3 days

Fig. 1. Scenario1: job posting workflow

is created. Then the offer is mailed to the newspaper. Finally the job offer is
finished (filing, notification of departments, etc.). The expected duration in days
is displayed on top of each task. Additionally, as the newspapers special ”Job &
Career” edition appears only once a month (on each 15th) a corresponding fixed-
date constraint (fdc) has been defined on the last activity mail, demanding that
it must be finished on the 14th of a month. Currently, on Sunday May 8th 2005,
Mr. Smith, employed in the companies personnel division, has two work items
from two different JobPosting-processes in his work-list. For sake of simplicity,
we assume that every day is a working day, Saturdays and Sundays included.

Scenario 1.a) According to the FIFO-policy, suggested by the work-list
client, he starts to execute the first work item, the task prepare of process Job-
Posting1, which will presumably take 6 days. Although the execution of prepare
starts immediately, the job offer will, according to the expected task durations,
not appear in the May-issue, as the mail-task will presumably be finished on May
21st and the process will be finished at May 24th. Unfortunately, the decision to
execute prepare first implicitly postpones the execution of his second work item,
the task create of process JobPosting2, for 6 days, to May 14th. create can be
finished on May 16th and the next step mail on May 17th. Thus the job offers of
the second process will, presumably, also not appear in this month special issue.

Scenario 1.b) If Mr. Smith had chosen to execute the second work-item
first, the mail-task of process JobPosting2 could have been finished on time,
until May 11th. Thus the FIFO-policy unnecessarily delays the second process
for 30 days. Although this decision postpones the first work-item prepare, the
JobPosting1 process will not be delayed, as it will also end at May 24th (which is
the same end date as in Scenario1). Due to the fixed-date constraint defined on
mail, enough buffer time exists to compensate the postponement! The scenarios
demonstrate that an intelligent and predictive selection of work-items can help
to decrease the turn-around times of processes.

In this paper we introduce a method which exploits knowledge about the
workflow structure and time properties, to assist workflow participants when
deciding which work item to handle next, in order to decrease turnaround times
and to avoid time-related escalations, by providing information about the delay
to expect when selecting or postponing tasks.

The paper is structured as follows: In Section 2 we present related work.
Section 3 introduces the probabilistic timed workflow model. In Section 4 we

Accelerating Workflows with Fixed Date Constraints 339

examine the relationship between delay and postponement and introduce delay
tables. In Section 5 we add the notion of probabilistic delay tables in order to
deal with conditional workflow execution, including a presentation of structural
workflow transformations [9]. Section 6 explains how to interpret probabilistic
delay tables by using delay time histograms. Finally Section 7 concludes the
paper with a brief outlook on our future research topics.

2 Related Work

When dealing with time management it seems to be straightforward to apply
existing and extensively examined techniques from related areas (like project
management) on workflows. Unfortunately some complex issues originating from
workflow modelling and instantiation complicate this intention [2,13]. For in-
stance workflow systems typically do not compute schedules due to the partial
knowledge they have about the execution of their processes and the impossibility
to know the actual flow at decision points at process instantiation time.

Several publications introduced methods which cope with these workflow spe-
cific problems, e.g. [4,5,7,11,12]. They propose the calculation of time plans which
define execution intervals for each activity in a workflow, such that deadlines will
not be violated. The concepts presented are inspired by PERT and CPM charts
which are commonly used in project management. But all of them suffer from
the uncertainty about time and branching information which arise when tasks
are executed conditionally. Some newer publications already utilize stochastic
information which are used for performance analysis [1,10] or scheduling issues
[3]. We dealt with this problem by introducing probabilistic time management
as described in [6].

How to handle different types of time constraints is explained in [7,11]. Al-
though most of the above mentioned publications deal with similar time related
problems, as far as we know, currently no publication exists which examines
the relation between postponement and delay. The approach presented in this
paper follows the basic motivation of [8]: to assist the workflow participant with
supportive work-list tools.

3 Probabilistic Timed Workflow Model

We define a full-blocked workflow model that we use in the rest of this paper.
Workflows are represented as directed acyclic graphs (see Figures 1, 3 and 5).
Edges determine the execution sequence of nodes, thus a successor can start
if its predecessor(s) are finished. A node is identified by a unique name and
can be of type activity (represented by boxes), which corresponds to individual
tasks of a business process, or a control node of type start, end, and-split|join
or or-split|join. Conditional branches are augmented with statistically weighted
branching probabilities (defined by estimations or empirically generated values
from the workflow log). Routes after an and-split will be processed concurrently.

340 M. Bierbaumer, J. Eder, and H. Pichler

They will be synchronized at the according and-join, which does not proceed un-
til all predecessor nodes are finished. After an or-split only one route, depending
on a run-time evaluated condition, will be selected. The corresponding or-join
proceeds if one predecessor node is finished (the one on the route selected at
the or-split). A workflow model is full-blocked if the graph is restricted to proper
nesting of splits and joins. Therefore and-structures and or-structures may be
nested, but must not overlap (according to the conformance-class declaration in
[14]).

N designates the node named N and N.type yields the type of the node.
M → N designates an edge between two nodes M and N , and pM→N yields the
branching probability for edges going out from or-splits. N.Pred defines the set
of adjacent predecessor nodes and N.Succ defines the set of adjacent successor
nodes.

Additionally, time properties have to be defined during the modelling process
of the workflow. Each node N is augmented with the expected duration N.d in
an arbitrary time unit like hours or days. Control nodes like start or end usually
have a duration of 0. The workflows overall execution duration is limited by a
workflow deadline δ, which is defined as a time value relative to the start of the
workflow (note that the definition of δ is compulsory!).

Additionally the execution of a node can be constrained to certain dates by
a fixed-date constraint. Although it is basically possible to assign a fixed-date
constraint to either the start or the end of a node, we restrict our explanations to
the end of a node (to avoid the need of describing analogous concepts). A fixed-
date constraint fdc(N, F) expresses that the end of node N can only occur on
certain dates specified by the fixed-date object F , where F.valid(Date) returns
true if the arbitrary date is valid for F. F.next(Date) and F.prev(Date) return
the next and previous valid dates after Date. Assume that a fixed-date object f
may for example be defined as a list of valid dates f = (12th of March, 17th of
June, 25th of September) or as an expression like f = every 3rd sunday starting
with 6th of September.

4 Calculation of Delay

4.1 Earliest Possible End

Based on the workflow structure and time properties, it is possible to calculate
the earliest possible end (EPE) for each node, relative to the start time of the
workflow. It depicts the earliest possible point in time an activity may end, de-
fined by the sum of durations of preceding nodes. The calculation of EPEs starts
from the current node Cur with the current time now. Additionally, as and-joins
demand that every preceding node must be finished before the execution can be
continued, the EPE of an and-join is determined by the maximum EPE of all ad-
jacent preceding nodes. For this we define the operation maxPredEPE(N) for
a node N , which yields the maximum EPE of all predecessors if N is an and-join
or the EPE of the single predecessor otherwise. The EPE of every node, which

Accelerating Workflows with Fixed Date Constraints 341

Algorithm 1 Calculation of Earliest Possible End Times
1: Cur.epe := now + Cur.d
2: for every N succeeding Cur in forward top. order do
3: N.epe := maxPredEPE(N) + N.d
4: if if fdc(N, f) ∈ FDC then
5: N.epe := f.next(N.epe)
6: end if
7: end for

is a transitive successor of the current node Cur, is calculated as described in
algorithm 1. How to deal with EPEs for or-joins is explained in section 5.

Consider the workflow from scenario 1 with Cur = prepare and now = may8
(depicting the current time: 8th of May 2005) with the EPEs: prepare.epe =
may14, validate.epe = may19, create.epe = may21 and mail.epe = may22. Ac-
cording to the fixed-date constraint defined on mail, the EPE must be shifted to
the next valid date adhering to fdc(mail,14th of a month), yielding mail.epe =
jun14. Then we calculate finish.epe = jun17. Finally, as control nodes like
End have a duration of 0, the earliest possible end of the workflow is End.epe =
jun17.

There are two special cases to consider: a) As f may define a finite set of
fixed dates, it may yield no valid next date at f.next(N.epe). Then the user or
an administrator must be informed that a future deadline or fixed-date violation
will (presumably) occur, and a further delay due to a postponement of Cur
has to be avoided. b) Due to and-structures many activities may currently be
executed in parallel. Thus more than one current activity Cur may exist. In
this case all current activities must be initialized as in line (1). The algorithm
still works, as due to the full-blocked structure of the workflow graph all parallel
routes will be joined at a succeeding and-join. Additionally, some participants
may already have started to execute their current tasks. In this case the duration
of the node must be adapted by applying Cur.d = Cur.d - (now - Cur.start),
where start denotes the actual start time of the nodes execution.

4.2 Delay Tables

A postponement designates the shift of the execution of an activity, which is ready
to be executed by a participant, to a later point in time. A delay is generated
if due to a postponement the earliest possible end of the workflow (= End.epe)
would be increased.

In our running example with now = may8 and Cur = prepare we addi-
tionally define an overall workflow deadline of δ = 90, therefore the workflow
(or the node End) must be finished until now + δ = aug6. The examination
of dependencies between delay and postponement must start at the last node.
One can see, that the workflow can not end before End.epe = jun17 and must
not end after now + δ = aug6. Thus, the following can be stated (for End): if
it is not postponed the workflow will not be delayed and end at jun17, if it is
postponed by 1 day the workflow will be delayed by 1 day and end at jun18,

342 M. Bierbaumer, J. Eder, and H. Pichler

and so on. Finally we can state, that if it is postponed by 50 days the workflows
will be delayed by 50 days and end at aug6. A further postponement will lead
to a violation of the workflow deadline now + δ = aug6.

Based on this knowledge it is possible to define a relation between a delay
deadline (d) and a delay time (t), where t is the delay of the workflow to expect,
if the end of the node is postponed to d. This relation is captured in the delay
table (DT). To query delay tables we introduce the operation delay time selection,
which yields the delay time for a given delay deadline.

Definition 1 (Delay table, DT). A delay table N.dt for a node N is a set of
tuples (d, t) describing the delay time t to expect if N ends at the delay deadline
d. Furthermore a delay table is called valid if each t and each d is unique in the
set. The operation y = selectT (dt, x) applied on a valid delay table selects the
delay time y for a delay deadline x, such that:

y =
{

z if ∀(d, t) ∈ dt, where x ≥ d: z ≤ t
∞ if ∀(d, t) ∈ dt: x > d

The valid DT of End is End.dt={(jun17,0),(jun18,1),(jun19,2), +++,(aug6,
50)}. The +++ between two tuples (d1, t1),+++,(dn, tn) symbolize that the
set holds additional tuples (di, ti), such that di = di−1 + 1 and ti = ti−1 + 1
for 1 > i > n. The operation selectT yields the delay time for a given delay
deadline. If no tuple with the requested delay deadline exists, the delay time of
the tuple with the next greater delay deadline is selected: e.g. selectT(End.dt,
jun21) = 4 states that the workflow will be delayed by 4 days if the node End
ends at jun21. The explicit definition of a result of ∞ is necessary as a point in
time may be selected which is greater than the maximum delay time in the DT.
If postponed to that point in time a workflow deadline violation would occur:
e.g. selectT(End.dt, sep21) = ∞ states that if it ends at sep21 the workflow
deadline will be violated.

As the relation between d and t in End.dt is linear, we call it a linear DT. To
calculate the always linear DT of an end node we use the following operation:
End.dt = linearDT(End.epe,now + δ).

Definition 2 (Calculate linear DT). A linear DT dt, delimited by a lower
bound lb and an upper bound ub, is generated as follows: dt = linearDT (lb, ub) =
{(d, t) | ∀d : lb ≤ d ≤ ub, t = d− lb}, where |dt| = ub− lb + 1.

For nodes, which are to be executed in a sequence, the DT of a predecessor node
is calculated by subtracting the duration of the successor from the DT of the
successor:

Definition 3 (Subtract scalar from DT). The scalar k is subtracted from a
DT dt1 resulting in a DT dt2 as follows: dt2 = dt1−k = {(d−k, t) | (d, t) ∈ dt1}.
Therefore finish.dt = End.dt - 0 and mail.dt = finish.dt - finish.d (see also Fig. 2).
As a fixed-date constraint fdc(mail,f) exists, the end of mail may only occur on
valid dates, defined by the fixed-date object f=14th of a month. Thus the delay
deadlines must be adjusted using the previous function of the fixed-date object.

Accelerating Workflows with Fixed Date Constraints 343

jun14
jun15
+++
aug3

0
1
+
50

mail.dt

jun14
jul14

0
30

mail.dtaggD

jun17
jun18
+++
aug6

0
1
+
50

End.dt=
finish.dt

jun13
jul13

0
30

create.dt

jun11
ju11

0
30

validate.dt

jun6
jul6

0
30

prepare.dt jun14
jun14

jul14
jul14

jul14

0
1
*

30
31
*

50

mail.dtadj

calculation direction

Fig. 2. Delay tables for Scenario1

Definition 4 (Adjust delay table to fixed-date object). A delay table dt
is adjusted to a fixed date object f , resulting in a delay table dt′, as follows:
dt′ = adjust(dt, f) = {(f.prev(d), t) | (d, t) ∈ dt}.
The operation yields the mail.dtadj = (adjust(mail.dt,f))={(jun14,0),(jun14,1),
*** ,(july14,30),(july14,31), *** , (july14,50)}. The *** between two tuples
(d1, t1),***,(dn , tn) symbolize that the set holds additional tuples (di, ti), such
that di = d1 and ti = ti−1 + 1 for 1 > i > n. As one can see this operation
results in an invalid DT with multiple identical delay deadlines (but different
delay times). In order to receive a valid DT we have to remove all tuples with
identical delay deadlines, but the one with smallest delay time. To achieve this
the operation delay deadline aggregation must be applied on mail.dtadj.

Definition 5 (Delay deadline aggregation). The operation aggD(dt1)yields
an aggregated delay table dt2, such that dt2 = aggD(dt1) = {(x, minT (dt1, x)) |
(x, t) ∈ dt1}; where y = minT (dt1, x) selects the minimum delay time y for a
delay deadline x of the delay table dt1, such that ∀(x, t1) ∈ dt1: y ≤ t1 must
hold.

Now we apply aggD on the intermediary DT mail.dtadj: mail.dtaggD =
aggD(mail.dtadj) = {(jun14,0),(jul14,30)}, which is interpreted as: if mail ends
at a date ≤ jun14, the delay will be 0; if it ends a date jun14 < date ≤ jul14
the delay will be 30. And the next possible end, according to the fixed-date
constraint, is aug14. But if mail would end at aug14, the workflow deadline
would be violated. Thus the last allowed delay deadline (or end time) is jul14.
The operation which combines aggD and adjust is defined as follows:

Definition 6 (Apply fixed-date object on delay table). The fixed-date
object f is applied on a delay table dt1 yielding a delay table dt2, such that
dt2 = applyFDC(dt1, f) = aggD(adjust(dt1, f)).

Afterwards we proceed by subsequently subtracting the durations create.d=2
and validate.d=5, finally yielding prepare.dt={(jun6,0),(jul6,30)}. The DT of the
current activity prepare can be used to answer participant-questions like ”By how
many days will the workflow be delayed if the end of prepare is postponed to
jun25?”. The answer is selectT(prepare.dt, jun25) = 30: ”The delay will be pre-
sumably be 30 days!”. And for selectT(prepare.dt, aug8) = ∞ the answer would
be: ”A deadline violation will occur!”. The DT may also be used to inform the
participant (Mr. Smith) that he may postpone the end of prepare to jun6 with-
out delaying the workflow, which is defined by the tuple with a delay time of 0.

344 M. Bierbaumer, J. Eder, and H. Pichler

4.3 Calculation of DTs for And-Splits

We adapt the example, as visualized in Fig. 3: The company decides that the
management’s staff unit must be informed about every claim. Additionally
a fixed-date constraint is attached to the new activity check (which takes
1 day), as the staff unit team only meets every 3d monday (starting with
may 9th) to discuss and check new claims. Assume that the semantics of
finish is now: finally the job offer and the claim are finished together (fil-
ing, notification of departments, etc.). Again Cur=prepare, now=may8 and
δ=90. At first the EPEs must be calculated according to the algorithm
presented in Section 4.1: Start.epe=may8, prepare.epe=may14, AS.epe=may14,
validate.epe=may19, create.epe=may21, mail.epe=jun14, check=may30,
AJ.epe=jun14, finish.epe=jun17 and End.epe=jun17. The EPE of the new
activity check has been adjusted to the next valid date may30 (= may9 +
3weeks) according to its fixed-date constraint. And the EPE of the and-split
AJ is equal to the maximum EPE of its predecessors (mail and check), which is
mail.epe.

The calculation of DTs starts with the initialization of the last node End.dt =
linearDT(End.epe,now + δ), followed by the subsequent calculation of finish.dt
and AJ.dt (see also Fig.4). The DTs of nodes which are predecessors of an
and-split are calculated like nodes in a sequence: mail.dt = AJ.dt – AJ.d and
check.dt = AJ.dt – AJ.d. Since AJ.d=0, their DTs are equal to AJ.dt. For the up-
per parallel route we refer to the calculations of Scenario1, as the DTs are equal.
For the single node check of the second route we have to apply its fixed-date
constraint applyFDC(check.pdt,every 3d monday starting with may9)), resulting
in check.dtfdc (to save some space we did not show the intermediate results
check.dtaggD and check.dtadjust).

Before combining DTs of and-split successors, their durations must be sub-
tracted (resulting in an intermediate dt′): validate.dt’={(jun6,0),(jul6,30)} and
check.dt’ = {(may29,0),(jun19,6),(jul10,27)}. To combine two DTs the opera-
tion delay table conjunction, which is a combination of the operations merge
and aggT , has to be applied.

Definition 7 (Merging two delay tables). The operation merge(dt1,dt2) ap-
plied on two delay tables dt1 and dt2, results in a delay table dt as follows:
dt = merge(dt1, dt2) = {(d,t) | d ∈ D, selectT(dt1,d) �= ∞, selectT(dt2,d) �= ∞,

Prepare
Claim

Validate
Claim

Create
Job Offers6 days

5 days 2 days
Mail

Job Offer

1 day fdc1: 14th of a month

Finish
Job Offer

3 days
AJ

Check
Claim fdc2: every 3d Monday,

 starting with may9

1 dayAS

Fig. 3. Scenario2: and-structure

Accelerating Workflows with Fixed Date Constraints 345

may30
jun20
jul11

0
6

27

check.dtFDCcheck.dt' jun17
jun18
+++
aug6

0
1
+
50

finish.dt
= End.dt

jun6
jul6

0
30

validate.dt'

...
may29
jun19
jul10

0
6

27

may29
jun6

jun19
jul6

0
6

30
30

AS.dtmerge
may29

jun6
jul6

0
6

30

prepare.dt
= AS.dtaggT

jun14
jun15
+++
aug3

0
1
+
50

mail.dt
= check.dt
= AJ.dt

jun14
jul14

0
30

mail.dtFDC

Fig. 4. Delay tables for Scenario2

t = max(selectT(dt1,d),selectT(dt2,d))}, where D = {d1 | (d1,t1) ∈ dt1 } ∩
{d2 | (d2,t2) ∈ dt2}.
The merge-operation AS.dt = merge(validate.dt’,check.dt’ selects the greatest
delay time (as all routes are processed in parallel) for every possible delay dead-
line, which is accomplished as follows: first a set D which holds all delay deadlines
of both sets is generated, which is for our example D={may29,jun6,jun19,jul6,
jul10}. Then for every delay deadline in D the selectT -operation is applied on
both DTs and the maximum of the results is selected, which is 0 for may29, 6 for
jun6, 30 for jun19 and 30 for jul6: AS.dtmerge = {(may29,0),(jun6,6),(jun19,
30), (jul6,30)}. The delay deadline jul10 has been filtered out by the condition
maxT(dt1,d) �= ∞ as maxT(validate.dt,jul10) = ∞. The intermediate DT is in-
valid as it holds two tuples with equal delay times. To receive a valid DT it is
necessary to remove the tuple with the earlier delay deadline by applying the
delay time aggregation.

Definition 8 (Delay time aggregation). The operation aggT (dt1) yields an
aggregated delay table dt2, such that dt2 = aggT (dt1) = {(maxD(dt1, x), t) |
(x, t) ∈ dt1}; where y = maxD(dt1, x) selects the maximum delay deadline y for
a delay time x of the delay table dt1, such that ∀(d1, x) ∈ dt1 : y ≥ d1.

According to this AS.dtaggT = aggT (AJ.dtmerge) = {(may29,0),(jun9,6),
(jul9,30)}. And finally, due to AS.d = 0, the DT of the current activity prepare
is prepare.dt = AS.dtaggT – 0. Based on the operations merge and aggT we
define the delay table conjunction.

Definition 9 (Delay table conjunction). The delay table conjunction dt =
dt1 ∧ dt2 applied on two delay tables d1 and d2 yields a delay table dt, such that
dt = aggT (merge(dt1, dt2)).

Proposition: The conjunction is commutative and associative as dtA ∧ dtB =
dtB ∧dtA and (dtA∧ (dtB ∧dtC)) = ((dtA∧dtB)∧dtC). Thus it can be extended
to any number of DTs: dt1 ∧ ... ∧ dtn =

∧n
i=1 dti.

5 Calculation of Probabilistic Delay

One fundamental core problem has not been addressed so far: in workflows with
or-splits many different execution routes (also called instance types) are possible.

346 M. Bierbaumer, J. Eder, and H. Pichler

Prepare
Claim

Validate
Claim

Create
Job Offers6 days

5 days 2 days

Finish
Job Offer

3 days
AS AJ

Check
Claimfdc2: every 3d monday, starting with may9

1 day

Mail
Job Offer

1 day

fdc1: 14th of a month

95%

5%

OJ

Assign
HeadHunt

7 days

OS

Fig. 5. Scenario3: or-structure

Consider the workflow in Fig. 5: The company decides to assign a head hunter
for open high-management positions, instead of advertising in the newspaper.
Selection of and negotiation with a head hunter takes about 7 days. According to
past experiences about 5% of all job offers address high-management positions.
No fixed-date constraint is assigned to this task. In this graph two instance types
can be identified, as two different execution sequences of activities and nodes are
possible: the first one via activity assign and the second one via activity mail.
Note that different instance types are only produced if the graph contains or-
structures (after and-splits all nodes will be executed unconditionally).

5.1 Unfolding the Graph

When calculating the EPEs a problem arises at or-joins: OJ.epe can not be
determined unambiguously, as the EPE depends on the path executed prior to
OJ . Which one this will be, is unknown at the current node Cur. The only thing
we can tell is, that it is likely that the route via assign will be executed with
a probability of 5% and the route via mail with a probability of 95%. As the
algorithm to calculate EPEs demands exactly one EPE per node, we developed
the following solution.

At first we unfold the workflow, in order to split up different instance types.
[9] developed a backward unfolding procedure, which successively applies basic
transformation operations on an originally block-structured graph. A transfor-
mation operation results in a new workflow graph, which is semantically equal to
the old one, based on the notion of equivalence of tasks and identical execution
order. The result of the backward unfolding procedure is a graph where every
or-join has been moved to the end.

Fig. 6 shows the unfolded version of the graph from Fig. 5. Three basic
transformation operations have been applied to move the or-join to the end of
the workflow: first the or-join has been moved over the and-join, which resulted
in a duplication of nodes and edges succeeding the or-join. The second and third
operation moved the node over the activity finish and end node towards the
end of the workflow. It is important to notice that the possible order of node-
execution is equal to the one in the original graph. A backward unfolded graph
will have as many end-nodes as possible routes through the graph exist, which
is one for each instance type. Furthermore, as synchronizing or-joins have been
moved to the end, it enables us to calculate exactly one earliest possible end

Accelerating Workflows with Fixed Date Constraints 347

1

Prepare
Claim

Validate
Claim

Create
Job Offers

6 days

5 days 2 days

Finish1
Job Offer

3 daysAS

Check
Claim

1 day

Mail
Job Offer

1 day
95%

5% Assign
HeadHunt

7 days

OS
AJ1 OJ1

AJ2 OJ22
Finish2

Job Offer

3 days

fdc1: 14th of a month

fdc2: every 3d monday, starting with may9

Fig. 6. Unfolded workflow graph

Algorithm 2 Calculation of execution probabilities
1: Cur.x = 1
2: for every successor N of Cur in forward top. order do
3: if P ∈ N.Pred and P.t = or-split then
4: N.x = P.x ∗ pP→N

5: else if N.type = and-join then
6: N.x = minimum of all P.x, P ∈ PredN

7: else
8: N.x = P.x, P ∈ PredN

9: end if
10: end for

time for each node, by applying the algorithm of section 4.1. For further details
on graph transformations see [9].

5.2 Calculation of Execution Probabilities

As mentioned above, the calculation of DTs starts at the end node of a graph,
but in the unfolded graph multiple end nodes have to be considered. Therefore
the initial DTs of end-nodes must be weighted according to their execution
probability, in relation to the current activity Cur. This can be accomplished
by calculating the execution probability dependent on predecessor execution
probabilities and the type of nodes. For this we have to traverse the graph in
a forward topological order starting with the current node (see algorithm 2).
As the current node will be executed in any case, its execution probability is
initialized with Cur.x = 1. The calculation finally yields End1.x = 0.05 and
End2.x = 0.95, which means, that starting from the current node Cur, the end-
node End1 will be executed with a probability of 5% and the end-node End2
with a probability of 95%. The sum of probabilities of all end nodes must be 1.

5.3 Probabilistic Delay Tables

With the unfolded graph and execution probabilities for end-nodes it is possible
to calculate a set of probabilistic delay tables (PDTs) for the current node, which
can be queried in several ways. Each node N of an unfolded graph can hold
multiple weighted DTs, one for each end-node that is reachable from N (or each
possible instance type starting from N), which are stored in the set N.PDT.

348 M. Bierbaumer, J. Eder, and H. Pichler

Definition 10 (Set of Probabilistic Delay Tables, PDT). The set of prob-
abilistic delay tables N.PDT of a node N is a set of tuples (e, p, dt), where dt is
a delay table, e is the end-node from which dt originated and p is the execution-
probability of the end-node.

For the PDT-calculation algorithm the operations defined on DTs must be
adapted to set-based PDT-operations. Details will be explained in the subse-
quent section, along with the calculation of PTDs for our running example:

Definition 11. Operations on PDTs

– Subtract scalar: PDT - k = {(e,p,dt-k) | (e,p,dt) ∈ PDT}
– Apply fixed-date constraint: applyFDC(PDT,f) = {(e,p,applyFDC(dt)) |

(e,p,dt) ∈ PDT}
– Conjunction: PDT1 ∧ PDT2 = {(e,p,dt1∧dt2) | (e,p,dt1) ∈ PDT1, (e,p,dt2)
∈ PDT2}.

Proposition: The conjunction is commutative and associative as PDTA ∧ PDTB

= PDTB ∧ PDTA and (PDTA ∧ (PDTB ∧ PDTC)) = ((PDTA ∧ PDTB) ∧
PDTC). Thus it can be extended to any number of PDTs: PDT1 ∧ ... ∧ PDTn

=
∧n

i=1PDTi.

5.4 Calculation of PDTs

Before calculating the PDTs, the graph must be unfolded and or-joins must be
deleted, followed by the forward calculation of execution probabilities and EPEs,
resulting in: End1.epe=jun2, End2.epe=jun17, End1.x=0.05 and End2.x=0.95.
The calculation of PDTs is again performed in a backward topological order,
where the PDT of each node is determined according to its node type (see
algorithm 3 and Fig. 7). Note, that we use the intermediary N.PDT ′ for each
node N , which contains the PDT after fixed-date adjustment and subtraction
of node duration.

The algorithm starts with the initialization of all end-nodes End1 and End2 as
defined in line 2 of the algorithm: Endi.PDT = { (Endi, pi, linearDT(Endi.epe,
now + δ))}. The PDT of an end-node contains exactly one tuple with a reference
to the originating end-node Endi (in this case the node itself), the execution
probability of this end-node Endi.x, and the initial linear delay table, calculated
as linearDT(Endi.epe, now + δ). Since no fixed-date constraint on Endi exists
(line 9), the intermediary PDT is calculated as Endi.PDT’ = Endi.PDT - Endi.d
(line 12). Due to Endi.d = 0, this results in Endi.PDT’ = Endi.PDT.

In the next iteration the PDT of the preceding node is determined. Since
finishi is no end-node and no and-split, the PDT is calculated as union of all
successor-PDT’ (line 7). As finishi has only one successor, the PDTs are equal:
finishi.PDT = Endi.PDT’. Then the duration of finishi.d = 3 is subtracted,
yielding finishi.PDT’ (line 12).

The calculation of PDTs for nodes between finishi and OS are calculated
analogously. As for each node only one possible route to an end-node has to be
considered the union-operation always results in a set with one tuple. At mail

Accelerating Workflows with Fixed Date Constraints 349

check.PDT

may30
may31
+++
aug3

0
1
+
65

AJ1.PDT'
= AJ1.PDT
= finish1.PDT'

jun14
jun15
+++
aug3

0
1
+
50

mail.PDT

jun14
jun15
+++
aug6

0
1
+
50

AJ2.PDT'
= AJ2.PDT
= finish2.PDT'

End2, 0.95

End1, 0.05

End2, 0.95

may30
may31
+++
aug3

0
1
+
65

End1, 0.05

may30
may31
+++
aug3

0
1
+
65

assign.PDT

End1, 0.05

jun14
jun15
+++
aug3

0
1
+
50

End2, 0.95

check.PDTFDC

may30
jun20
jul11

0
21
42

End1, 0.05

check.PDT'

may30
jun20
jul11

0
6

27

may29
jun19
jul10

0
6

27

End2, 0.95End2, 0.95

may29
jun19
jul10

0
21
42

End1, 0.05

mail.PDTFDC

End2, 0.95

jun14
jul14

0
30

mail.PDT'

End2, 0.95

jun13
jul13

0
30

may23
may24
+++
jul27

0
1
+
65

assign.PDT'

End1, 0.05

End2, 0.95

may29
jun6

jun19
jul6

0
6

30
30

AS.PDTmerge create.PDT
= OS.PDT'
= OS.PDT

may23
may24
+++
jul27

End1, 0.05

End2, 0.95

jun13
jul13

0
30

validate.PDT
= create.PDT'

may21
may22
+++
jul25

0
1
+
65

End1, 0.05

End2, 0.95

jun11
jul11

0
30

validate.PDT'
may16
may17
+++
jul20

0
1
+
65

End1, 0.05

End2, 0.95

jun6
jul6

0
30

End1, 0.05

may16
may17
+++

may28
may29
may30

jun6
jun7
+++
jun19
jun20

jun27
+++
jul9

jul10

0
1
+
12
13
21
*

21
22
+
34
42
*

42
+
54
55

End2, 0.95

may29
jun6
jul6

0
6

30

prepare.PDT
= AS.PDTagg'
= AS.PDTagg

End1, 0.05

may14
may15
may16
+++

may28
may29

jun6
jun7
jun8
+++
jun19
jun27
jun28
+++
jul9

jul10

0
1
2
+
12
13
21
22
23
+
34
42
43
+
54
55

0
1
+
65

jun2
jun3
+++
aug6

0
1
+
65

finish1.PDT
= End1.PDT'
= End1.PDT

End1, 0.05

jun17
jun18
+++
aug6

0
1
+
65

finish2.PDT
= End2.PDT'
= End2.PDT

End1, 0.05

Fig. 7. Calculation of probabilistic delay tables for Scenario3

Algorithm 3 PDT calculation
1: for all nodes N in a backward topological order do
2: if N.type = end then
3: N.PDT={(N, N.x, linearDT(N.epe, now + δ))}
4: else if N.type = and-split then
5: N.PDT =

∧
S.PDT ′, ∀S ∈ N.Succ

6: else
7: N.PDT =

⋃
S.PDT ′, ∀S ∈ N.Succ

8: end if
9: if ∃fdc(N, f) ∈ FDC then

10: N.PDT ′ = applyFDC(N.PDT, f) − N.d
11: else
12: N.PDT ′ = N.PDT − N.d
13: end if
14: if N = Cur then
15: return
16: end if
17: end for

the fixed-date constraint has to be applied before subtracting the duration (line
10), yielding the same DT as in scenario 2.

So far, each determined PDT holds exactly one tuple: e.g. assign.PDT’ =
{(e,p,dt)} states that the delay information stored in dt originates from the end-
node e=End1, which has an execution probability of p=0.05. The or-split OS has
two successors, therefore check.PDT = assign.PDT’ ∪ mail.PDT’ (line 7). This
results in a set with two tuples holding information about two different delay
tables which originate from two different end-nodes (with different execution
probabilities). Thus we can state, that the number of tuples in the PDT of a
node is equal to the number of instance types containing this node. The same can
analogously be stated for the node check, as it also has two successors leading

350 M. Bierbaumer, J. Eder, and H. Pichler

to two different end-nodes. We proceed with the calculation of validate.PDT’
(subtract duration) and check.PDT’ (apply fdc and subtract duration)

At the and-split a PDT-conjunction has to be applied on successor-PDTs:
validate.PDT’ ∧ check.PDT’. The PDT-conjunction basically applies a regu-
lar DT-conjunction on all DTs with identical end-node references (they be-
long to the same instance type). Therefore it consists of two steps: 1) first it
merges all DTs, which originate from the same end-node, into one DTmerge (see
PDTmerge in Fig. 7). 2) Subsequently, to remove duplicate delay times, it ag-
gregates each intermediate DTmerge by applying an aggregation on each DT.
Note that PDTmerge and PDTagg are displayed for illustration issues only, as
according to its definition the PDT-conjunction does not produce intermediate
results. Finally, the PDT for the current activity prepare is calculated.

6 Interpretation and Application

PDTs are used to generate information about the delay to expect for a workflows
if a participant postpones the end of his current task to a given date. The answer
to the question ”What is the expected delay, if the end of prepare is postponed
to june1?” can no longer yield an ambiguous result, as the PDT of prepare holds
two DTs with different weights. Therefore we introduce (cumulated) delay time
histograms.

Definition 12 (Delay Time Histograms). The cumulated delay time his-
togram N.CDTHx for a node N and a date x, based on the delay time histogram
N.DTHx = {(Σp,selectT(dt,x)) | (e,p,dt) ∈ N.PDT}, is a set of tuples (ci,ti)
such that ci =

∑
tj≤ti

pj , where (pi,ti) ∈ I.

The DTH contains one tuple with delay time and probability for each DT in
the PDT, selected for a given delay deadline x: prepare.DTHjun1 = {(0.05,21),
(0.95,6)}. The expression Σp aggregates tuples with equal delay times by adding
up their probabilities. For the CDTH the probability values of the DTH are
cumulated in increasing order of delay times: prepare.CDTHjun1 = {(0.95,6),
(1.0,21)} . It is interpreted as ”With a probability of 95% the maximum delay
will be 6 days, and with a probability of 100% the maximum delay will be 21
days!”. For huge PDTs containing hundreds of weighted DTs, answers like the
ones above will be of no use for the participant. Therefore we introduce the
selection for a defined certainty (minimum probability).

Definition 13 (Selection of probabilistic delay time). t = selectPT(N,x,c)
selects the maximum delay time t for a delay deadline x and a given minimum
probability c, such that ∀(ci,ti) ∈ N.CDTHx, where ci ≤ c: ti ≥ t.

Thus selectPT(prepare,jun1,0.9) = 6: ”The maximum delay will be 6 days (with
a 90% certainty)!”. As the workflow participant should not be confused with
probability values, the minimum certainty should be configured as a fixed work-
list parameter. The selectPT-operation can now be used to generate a presorted
work list, which proposes an execution order of work items where the overall sum

Accelerating Workflows with Fixed Date Constraints 351

of delay times is significantly reduced, compared to for instance a FIFO-strategy.
The examination of these algorithms is subject of ongoing work. Nevertheless a
necessary prerequisite is, that the workflow system features a time management
component, which performs the above explained calculation algorithms based on
empirical data from the workflow log. Additionally the work-list must be enabled
to invoke this algorithms on demand and to represent the results accordingly.

7 Conclusions and Future Work

We proposed a method which aims at assisting workflow-participants in their de-
cisions to select work-items to be executed next. This method is based on delay
tables, containing probabilistic information about the delay to expect when the
execution of a task is postponed to a certain date. They are calculated by utiliz-
ing the structure of the workflow, augmented with empirical information about
expected execution-durations and branching-probabilities. A suggested execu-
tion sequence will decrease turnaround times, avoid time-related escalations and
subsequently save costs.

Currently, we investigate how to include duration-distributions for activities,
as scalar duration values are to imprecise in a realistic administrative workflow
scenario. Another research objective is to cope with the complexity explosion
due to unfold-operation, by adapting the algorithm in order to work with still
folded (and non-full-blocked) graphs. Furthermore we proceed with our investi-
gations on optimization algorithms for presorted work lists. The integration of
probabilistic time management into workflow environments is subject of ongoing
research.

References

1. W. M. P. van der Aalst and H. A. Reijers. Analysis of discrete-time stochastic
petrinets. In Statistica Neerlandica, Journal of the Netherlands Society for Statis-
tics and Operations Research, Volume 58 Issue 2, 2003.

2. C. Bussler. Workflow Instance Scheduling with Project Management Tools. In 9th
Workshop DEXA’98. IEEE Computer Society Press, 1998.

3. G. Baggio and J. Wainer and C. A. Ellis. Applying Scheduling Techniques to
Minimize the Number of Late Jobs in Workflow Systems. In Proc. of the 2004
ACM Symposium on Applied Computing (SAC). ACM Press, 2004.

4. C. Bettini, X. X. Wang, and S. Jajodia. Temporal reasoning in workflow systems.
Distributed and Parallel Databases, 11(3), May 2002.

5. C. Combi and G. Pozzi. Temporal conceptual modelling of workflows. In Proc. of
the Int. Conf. on Conceptual Modeling (ER 2003). LNCS 2813. Springer, 2003.

6. J. Eder and H. Pichler. Duration Histograms for Workflow Systems In Proc. of the
Conf. on Engineering Information Systems in the Internet Context 2002, Kluwer
Academic Publishers, 2002.

7. J. Eder and E. Panagos. Managing Time in Workflow Systems. In Workflow
Handbook 2001. Future Strategies INC. in association with Workflow Management
Coalition, 2000.

352 M. Bierbaumer, J. Eder, and H. Pichler

8. J. Eder, W. Gruber, M. Ninaus, and H. Pichler Personal Scheduling for Workflow
Systems. LNCS 2678, Springer Verlag, 2003.

9. W. Gruber Modeling and Transformation of Workflows with Temporal Constraints.
Akademische Verlagsgesellschaft, Berlin, 2004.

10. M. Gillmann, G. Weikum, and W. Wonner. Workflow management with service
quality guarantees. In Proc. of the 2002 ACM SIGMOD Int. Conf. on Management
of Data. ACM Press, 2002.

11. O. Marjanovic, M. Orlowska. On modeling and verification of temporal constraints
in production workflows. Knowledge and Information Syst., 1(2), 1999.

12. E. Panagos and M. Rabinovich. Predictive workflow management. In Proc. of
the 3rd Int. Workshop on Next Generation Information Technologies and Systems,
Neve Ilan, Israel, June 1997.

13. S.Sadiq, O. Marjanovic, and M. E. Orlowska. Managing Change and Time in
Dynamic Workflow Processes. In International Journal of Cooperative Information
Systems. Vol. 9, Nos. 1 & 2. March - June 2000.

14. Interface 1: Process Definition Interchange - Process Model. Workflow Management
Coalition Specification. Document number TC00-1016-P.

Workflow Data Patterns:
Identification, Representation and Tool Support�

Nick Russell1, Arthur H.M. ter Hofstede1,
David Edmond1, and Wil M.P. van der Aalst1,2

1 School of Information Systems, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{n.russell, a.terhofstede, d.edmond}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology,

P.O.Box 513, NL-5600 MB Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. Workflow systems seek to provide an implementation vehicle
for complex, recurring business processes. Notwithstanding this common
objective, there are a variety of distinct features offered by commercial
workflow management systems. These differences result in significant
variations in the ability of distinct tools to represent and implement
the plethora of requirements that may arise in contemporary business
processes. Many of these requirements recur quite frequently during the
requirements analysis activity for workflow systems and abstractions of
these requirements serve as a useful means of identifying the key com-
ponents of workflow languages. In this paper, we describe a series of
workflow data patterns that aim to capture the various ways in which
data is represented and utilised in workflows. By delineating these pat-
terns in a form that is independent of specific workflow technologies and
modelling languages, we are able to provide a comprehensive treatment
of the workflow data perspective and we subsequently use these patterns
as the basis for a detailed comparison of a number of commercially avail-
able workflow management systems, workflow standards and web-service
composition languages.

1 Introduction

There are a series of concepts that apply to the representation and utilisation
of data within workflow systems. These concepts not only define the manner in
which data in its various forms can be employed within a business process and
the range of informational concepts that a workflow engine is able to capture
but also characterise the interaction of data elements with other workflow and
environmental constructs.

� This work was partially supported by the Australian Research Council under the
Discovery Grant “Expressiveness Comparison and Interchange Facilitation between
Business Process Execution Languages”.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 353–368, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

354 N. Russell et al.

Detailed examination of a number of workflow tools and business process
modelling paradigms suggests that the way in which data is structured and
utilised within these tools has a number of common characteristics. Indeed these
characteristics bear striking similarities to the Workflow Patterns [2] and Design
Patterns [5] initiatives in terms of their generic applicability, except in this case
they refer specifically to the data perspective [7] of workflow systems and the
manner in which it interrelates with other workflow perspectives.

The use of a patterns-based approach for illustrating data-related concepts in
workflow systems offers the potential to describe these constructs in a language-
independent way. This ensures that the patterns identified have broad applica-
bility across a wide variety of workflow implementations. It provides the basis
for comparison of data-related capabilities between distinct products and offers
a means of identifying potential areas of new functionality in workflow systems.
In this paper we focus on workflow technology but the results identified apply
to any process-aware information system (PAIS).

1.1 Background and Related Work

Interest in workflow systems has grown dramatically over the past decade and
this has fuelled the development of a multitude of both commercial workflow
engines and research prototypes each with unique features and capabilities. De-
spite attempts by industry bodies such as the Workflow Management Coalition
(www.wfmc.org) and the Object Management Group (www.omg.org) to provide
standards for workflow management systems, there is limited adoption by com-
mercial vendors. Perhaps the most notable shortcoming in this area is the absence
of a common formalism for workflow modelling. A number of possible candidates
have been considered from the areas of process modelling and general systems
design including Petri-Nets [1], Event-Driven Process Chains (EPCs) [11] and
UML Activity Diagrams [4] although none of these have achieved broad usage.

Data modelling in the context of workflow systems is an area that has re-
ceived particularly scant attention. Many of the significant workflow modelling
proposals and prototypes take a uniform approach to data representation and
utilisation. In ADEPT [9], all data elements are assumed to be represented by
global workflow variables. MENTOR [13] proposes that data flow is modelled
via Activity Diagrams linked to the control-flow perspective represented in the
form of State Charts. WASA [8] assumes that data is characterised in the form
of data containers which are passed between workflow activities although the
later WASA2 project [12] supports a more varied range of data objects by lever-
aging underlying CORBA services. INCAs [3] is one of the few initiatives which
proposes a broader range of data representations and interaction facilities.

One of the major impediments to a generic modelling technique is the broad
range of offerings that fall under the “workflow umbrella” [6] – ranging from un-
structured groupware support products through to transaction-oriented produc-
tion workflows – and the inherent difficulty of establishing a conceptual frame-
work that is both suitable and meaningful across the entire range of offerings.
The recent Workflow Patterns initiative [2] has taken an empirical approach

Workflow Data Patterns: Identification, Representation and Tool Support 355

to identifying the major control-flow constructs that are inherent in workflow
systems through a broad survey of process modelling languages and software of-
ferings. The outcomes of this research were a set of twenty patterns characterising
commonly utilised process control structures in workflow systems together with
validation of their applicability through a detailed survey of thirteen commercial
workflow products and two research prototypes. It is interesting to note that this
work has directly influenced tool selection processes, commercial and open-source
workflow systems, and workflow standards (see www.workflowpatterns.com for
details). This paper adopts an approach similar to that in [2] although in this
case, the focus is on the data perspective. One significant advantage of a patterns-
based approach is that it provides a basis for comparison between software offer-
ings without requiring that they share the same conceptual underpinnings. This
paper aims to extend the previous work on Workflow Control Patterns to the
data perspective. It identifies 40 data patterns that recur in workflow systems
and describes a selection of these in detail1. It also examines their use across six
major workflow products, standards and web service composition languages.

2 Workflow and Data Concepts

2.1 Workflow Structure

Before we describe the data perspective in detail, we first present a standard
set of definitions for the various components of a workflow system that we will
utilise throughout this paper. A workflow or workflow model is a description
of a business process in sufficient detail that it is able to be directly executed
by a workflow management system. A workflow model is composed of a number
of tasks which are connected in the form of a directed graph. An executing in-
stance of a workflow model is called a case or process instance. There may be
multiple cases of a particular workflow model running simultaneously, however
each of these is assumed to have an independent existence and they typically
execute without reference to each other. Each invocation of a task that executes
is termed a task instance. A task instance may initiate one or several task in-
stances when it completes. This is illustrated by an arrow from the completing
task to the task being initiated e.g. in Figure 1, task instance B is initiated
when task instance A completes. A task corresponds to a single unit of work.
Four distinct types of task are denoted: atomic, block, multiple-instance and
multiple-instance block. We use the generic term components of a workflow to
refer to all of the tasks that comprise a given workflow model. An atomic task is
one which has a simple, self-contained definition (i.e. one that is not described in
terms of other workflow tasks) and only one instance of the task executes when
it is initiated. A block task is a complex action which has its implementation
described in terms of a sub-workflow. When a block task is started, it passes
control to the first task(s) in its corresponding sub-workflow. This sub-workflow
executes to completion and at its conclusion, it passes control back to the block
1 Readers seeking a comprehensive description of all 40 patterns are referred to [10].

356 N. Russell et al.

use(M)

subworkflow

D

workflow

task

multiple instance taskblock task
pass(M)

def var M

 case

BA

C

YX Z

E

Fig. 1. Components of a workflow

task. E.g. block task C is defined in terms of the sub-workflow comprising tasks,
X, Y and Z. A multiple-instance task is a task that may have multiple distinct
execution instances running concurrently within the same workflow case. Each
of these instances executes independently. Only when a nominated number of
these instances have completed is the task following the multiple instance task
initiated. A multiple-instance block task is a combination of the two previous
constructs and denotes a task that may have multiple distinct execution in-
stances each of which is block structured in nature (i.e. has a corresponding
sub-workflow). The control flow between tasks occurs via the control channel
which is indicated by a solid arrow between tasks. There may also be a distinct
data channel between workflow tasks which provides a means of communicating
data elements between two connected tasks which is illustrated with a broken
(dash-dot) line. The control and data channels may be combined. Where data
elements are passed along a channel between tasks, this is illustrated by the
pass() relation, e.g. in Figure 1 data element M is passed from task instance C
to E. The definition of data elements within the workflow is illustrated by the
def var variable-name phrase. Depending on where this appears, the variable
may have task, block, case or workflow scope indicating the level at which the
data element is bound. The places where a given data element can be accessed
are illustrated by the use() phrase. In the case of workflow, case and block level
data elements, these may be passed between tasks by reference (i.e. the location
rather than the value of the data element is passed). This is indicated through
the use of the & symbol e.g. the pass(&M) phrase indicates that the data element
M is being passed by reference rather than value.

2.2 Data Characterisation

The patterns presented in this paper are intended to be language independent
and do not assume a concrete syntax. In the absence of an agreed workflow

Workflow Data Patterns: Identification, Representation and Tool Support 357

model, the aim is to define them in a form that ensures they are applicable
to the broadest possible range of workflow systems. As such, we use informal
diagrams throughout this paper for illustrating workflow execution instances.
The aim of these diagrams is to illustrate the scope of workflow data and the
manner in which it is passed between various workflow components. They do
not have a formal semantics for the control-flow perspective.

From a data perspective, there are a series of characteristics that occur re-
peatedly in different workflow modelling paradigms. These can be divided into
four distinct groups: data visibility, which relate to the definition and scope of
data elements and the manner in which they can be utilised by various com-
ponents of a workflow process; data interaction, which focus on the manner in
which data is communicated between active elements within and outside of a
workflow; data transfer, which consider the means by which the actual transfer
of data elements occurs between workflow components and describe the vari-
ous mechanisms by which data elements can be passed across the interface of a
workflow component; and data-based routing, which characterise the manner in
which data elements can influence the operation of other aspects of the workflow,
particularly the control flow perspective.

These characteristics are examined in detail in Section 3 and between them,
they form the basis for the identification of 40 patterns relevant to the data per-
spective of PAIS. As validation of the broad applicability of the patterns iden-
tified, their occurrence is examined in three major workflow engines (Staffware,
WebSphere MQ and COSA), a case handling system (FLOWer), a web service
composition language (BPEL4WS) and a workflow standard (XPDL). The re-
sults of these evaluations are presented in Section 4.

3 Data Patterns

3.1 Data Visibility

Within the context of a workflow engine, there are a variety of distinct ways
in which data elements can be defined and utilised. Typically individual data
elements are bound to a specific workflow construct (e.g. a task or a block) and
this binding defines the scope in which the data element can be accessed. More
generally, it also influences the way in which the data element may be used e.g.
to capture production information, to manage control data or for communication
with the external environment. Eight data visibility patterns have been identi-
fied. The second of these, Block Data, is discussed subsequently in further depth.
Lines 1 to 8 of Table 1 provide a complete listing of the data visibility patterns.

Pattern 2 (Block Data)
Description. Block tasks (i.e. tasks which can be described in terms of a cor-
responding sub-workflow) are able to define data elements which are accessible
by each of the components of the corresponding sub-workflow.
Example. All components of the sub-workflow which define the Assess Invest-
ment Risk block task can utilise the security details data element.

358 N. Russell et al.

multiple instance task

B

 workflow

A

subworkflow

D

def var N

use(M,N) use(M,N)use(M,N)

block task

task

 case

YX Z

def var M

C
use(M)

E

Fig. 2. Block level data visibility

Motivation. The manner in which a block task is implemented is usually defined
via its decomposition into a sub-workflow. It is desirable that data elements
available in the context of the undecomposed block task are available to all of
the components that make up the corresponding sub-workflow. Similarly, it is
useful if there is the ability to define new data elements within the context of the
sub-workflow that can be utilised by each of the components during execution.

Figure 2 illustrates both of these scenarios, data element M is declared at the
level of the block task C and is accessible both within the block task instance
and throughout each of the task instances (X, Y and Z) in the corresponding
sub-workflow. Similarly data element N is declared within the context of the
sub-workflow itself and is available to all task instances in the sub-workflow.
Depending on the underlying workflow system, it may also be accessible at the
level of the corresponding block task.
Implementation. The concept of block data is widely supported by workflow
systems and all but one of the offerings examined in this survey which supported
the notion of sub-workflows2 implemented it in some form. Staffware allows sub-
workflows to specify their own data elements and also provides facilities for
parent processes to pass data elements to sub-workflows as formal parameters.
In WebSphere MQ, sub-workflows can specify additional data elements in the
data container that is used for passing data between task instances within the
sub-workflow and restrict their scope to the sub-workflow. FLOWer and COSA
also provide facilities for specifying data elements within a sub-workflow.
Issues. A major consideration in regard to block-structured tasks within a work-
flow is the handling of block data visibility where cascading block decompositions
are supported and data elements are implicitly inherited by sub-workflows. As
an example, in the preceding diagram block data sharing would enable a data
element declared within the context of task C to be utilised by task X, but
2 BPEL4WS which does not directly support sub-workflows is the only exception.

Workflow Data Patterns: Identification, Representation and Tool Support 359

if X were also a block task would this data element also be accessible to task
instances in the sub-workflow corresponding to X?

Solutions. One approach to dealing with this issue adopted by workflow tools
such as Staffware is to only allow one level of block data inheritance by default
i.e. data elements declared in task instance C are implicitly available to X, Y and
Z but not to further sub-workflow decompositions. Where further cascading of
data elements is required, then this must be specifically catered for. COSA allows
a sub-workflow to access all data elements in a parent process and provides for
arbitrary levels of cascading3, however updates to data elements in sub-workflows
are not automatically propagated back to the parent task.

3.2 Data Interaction

Data interaction patterns capture the various ways in which data elements can
be passed between components in a workflow process and how the characteristics
of the individual components can influence the manner in which the trafficking of
data elements occurs. Of particular interest is the distinction between the com-
munication of data between components within a workflow engine as against
the data-oriented interaction of a workflow component with some form of infor-
mation resource or service that operates outside of the context of the workflow
engine (i.e. in the external environment).

In total, 18 data interaction patterns have been identified – six of these relate
to data interaction between internal workflow components and the remaining
twelve describe the various situations where data interaction can occur between
a workflow component and the external environment. The complete listing of
these patterns is presented in lines 9 to 26 of Table 1. In this section, we describe
two internal and one external data interaction patterns in detail.

Pattern 9 (Data Interaction between Tasks)

Description. The ability to communicate data elements between one task in-
stance and another within the same case.

Example. The Determine Fuel Consumption task requires the coordinates de-
termined by the Identify Shortest Route task before it can proceed.

Motivation. The passing of data elements between tasks is a fundamental as-
pect of workflow systems. In many situations, individual tasks execute in their
own distinct address space and do not share significant amounts of data on a
global basis. This necessitates the ability to move commonly used data elements
between distinct tasks as required.

Implementation. All workflow engines examined support the notion of passing
parameters from one task to another however, this may occur in a number of
distinct ways depending on the relationship between the data perspective and
control flow perspective within the workflow. There are three main approaches
as illustrated in Figure 3.

3 Although more than four levels of nesting are not recommended.

360 N. Russell et al.

use(X)

C

use(Y)use(X)use(X,Y)

task

A B
pass(X)

C

A
use(X,Y)

C
use(Y)

def var X
def var Y

Global Shared Data
pass(X,Y) B

use(X)

Integrated Control and Data Channels

use(Y)use(X,Y)

task

pass(Y)A

Distinct Control and Data Channels

pass(Y)

Global Data Store

task

B

Fig. 3. Approaches to data interaction between tasks

– Integrated control and data channels – where both control flow and data
are passed simultaneously between tasks utilising the same channel. In the
example, task B receives the data elements X and Y at exactly the same
time that control is passed to it. Whilst conceptually simple, one of the
disadvantages of this approach to data passing is that it requires all data
elements that may be used some time later in the workflow process to be
passed with the thread of control regardless of whether the next task will
use them or not. E.g. task B does not use data element Y but it is passed to
it because task C will subsequently require access to it.

– Distinct data channels – in which data is passed between workflow tasks via
explicit data channels which are distinct from the process control links within
the workflow design. Under this approach, the coordination of data and con-
trol passing is usually not specifically identified. It is generally assumed that
when control is passed to a task that has incoming data channels, the data
elements specified on these channels will be available at task commencement.

– Global data store – where tasks share the same data elements (typically via
access to globally shared data) and no explicit data passing is required. This
approach to data sharing is based on tasks having shared a priori knowledge
of the naming and location of common data elements. It also assumes that
the implementation is able to deal with potential concurrency issues that
may arise where several task instances seek to access the same data element.

Most of the offerings examined adopt the third strategy. Staffware, FLOWer,
COSA and XPDL all facilitate the passing of data through case-level data repos-
itories accessible by all tasks. BPEL4WS utilises a combination of the first and
third approaches. Variables can be bound to scopes within a process definition
which may encompass a number of tasks, but there is also the ability for mes-
sages to be passed between tasks when control passes from one task to another.
WebSphere MQ adopts the second mechanism with data elements being passed
between tasks in the form of data containers via distinct data channels.
Issues. Where there is no data passing between tasks and a common data
store is utilised by several tasks for communicating data elements, there is the

Workflow Data Patterns: Identification, Representation and Tool Support 361

potential for concurrency problems to arise, particularly if the case involves
parallel execution paths. This may lead to inconsistent results depending on the
task execution sequence that is taken.
Solutions. Concurrency control is handled in a variety of different ways by
the offerings examined in Section 4. FLOWer avoids the problem by only allow-
ing one active user or process that can update data elements in a case at any
time (although other processes and users can access data elements for reading).
BPEL4WS supports serialisable scopes which allow compensation handlers to be
defined for groups of tasks that access the same data elements. A compensation
handler is a procedure that aims to undo or compensate for the effects of the
failure of a task on other tasks that may rely on it or on data that it has af-
fected. Staffware provides the option to utilise an external transaction manager
(Tuxedo) within the context of the workflow cases that it facilitates.

Pattern 12 (Data Interaction – to Multiple Instance Task)
Description. The ability to pass data elements from a preceding task instance
to a subsequent task which is able to support multiple execution instances. This
may involve passing the data elements to all instances of the multiple instance
task or distributing them on a selective basis.
Examples. The New Albums List is passed to the Review Album task and one
task instance is started for each entry on the list. Each of the Review Album task
instances is allocated a distinct entry from the New Albums List to review.
Motivation. Where a task is capable of being invoked multiple times, a means
is required of controlling which data elements are passed to each of the execution
instances. This may involve ensuring that each task instance receives all of the
data elements passed to it (possibly on a shared basis) or distributing the data
elements across each of the execution instances on some predefined basis.
Implementation. There are three potential approaches to passing data ele-
ments to multiple instance tasks as illustrated in Figure 4. As a general rule,
it is possible either to pass a data element to all task instances or to distribute
one item from it (assuming it is a composite data element such as an array or a
set) to each task instance. Indeed the number of task instances that are initiated
may be based on the number of individual items in the composite data element.
The specific approaches are as follows:

– Instance-specific data passed by value – this involves the distribution of a
data element passed by value to task instances on the basis of one item of
the data element per task instance (in the example shown, task instance B1
receives M[1], B2 receives M[2] and so on). As the data element is passed
by value, each task instance receives a copy of the item passed to it in
its own address space. At the conclusion of each of the task instances, the
data element is reassembled from the distributed items and passed to the
subsequent task instance.

– Instance-specific data passed by reference – this scenario is similar to that
described above except that the task instances are passed a reference to a

362 N. Russell et al.

use(M)

use(*M)

use(*M) use(*M[2])

B3

B

use(*M[3])

B2

B1

instances

use(*M)

use(*M)

use(*M)

B3

Passed by Value
Shared Data Storage var M:

Shared Data Passed by Reference

multiple instance task

A

instances

C

A
array M:

..

.....

.....

.....1

4
3
2

A
use(*M)

task

task

pass(M) pass(M) C
task
use(M)

instances

pass(&M)

pass(&M) pass(&M)

task

C
use(*M)

task

multiple instance task

task

multiple instance task

pass(&M)

Instance−Specific Data

use(M[2])

Instance−Specific Data

2

B1
use(*M[1])

Passed by Reference

use(M[3])
3

2B

B

B
use(M[1])

1

Fig. 4. Data interaction approaches for multiple instance tasks

specific item in the data element rather than the value of the item. This
approach obviates the need to reassemble the data element at the conclusion
of the task instances.

– Shared data passed by reference – in this situation all task instances are
passed a reference to the same data element. Whilst this allows all task
instances to access the same data element, it does not address the issue of
concurrency control should one of the task instances amend the value of the
data element (or indeed if it is altered by some other workflow component).

FLOWer provides facilities for instance-specific data to be passed by reference
whereby an array can be passed to a designated multiple instance task and
specific sub-components of it can be mapped to individual task instances. It also
allows for shared data elements to be passed by reference to all task instances.
Issues. Where a task is able to execute multiple times but not all instances
are created at the same point, an issue that arises is whether the values of data
elements are set for all execution instances at the time at which the multiple
instance task is initiated or whether they can be fixed after this occurs but prior
to the actual invocation of the task instance to which they relate.
Solutions. In FLOWer, the Dynamic Plan construct allows the data for indi-
vidual task instances to be specified at any time prior to the actual invocation
of the task. The passing of data elements to specific task instances is handled
via Mapping Array data structures. These can be extended at any time during
the execution of a Dynamic Plan, allowing for new task instances to be created

Workflow Data Patterns: Identification, Representation and Tool Support 363

“on the fly” and the data corresponding to them to be specified at the latest
possible time.

Pattern 16 (Data Interaction – Environment to Task – Pull-Oriented)

Description. The ability of a workflow task to request data elements from
resources or services in the operational environment.

Example. The Determine Cost task must request cattle price data from the
Cattle Market System before it can proceed.

Motivation. Workflow tasks require the means to proactively seek the latest
information from known data sources in the operating environment during their
execution. This may involve accessing the data from a known repository or in-
voking an external service in order to gain access to the required data elements.

Implementation. Distinct workflow engines support this pattern in a variety
of ways however these approaches divide into two categories: explicit integration
mechanisms, where the workflow system provides specific constructs for access-
ing data in the external environment and implicit integration mechanisms, where
access to external data occurs at the level of the programmatic implementations
that make up tasks in the workflow process and is not directly supported by
the workflow engine. Interaction with external data sources typically utilises
interprocess communication (IPC) facilities provided by the operating system
facilities such as message queues or remote procedure calls, or enterprise appli-
cation integration (EAI) mechanisms such as DCOM, CORBA or JMS.

Staffware provides two distinct constructs that support this objective. Au-
tomatic Steps allow external systems to be called (e.g. databases or enterprise
applications) and specific data items to be requested. Scripts allow external pro-
grams to be called either directly at system level or via system interfaces such as
DDE (dynamic data exchange) to access required data elements. FLOWer utilises
Mapping Objects to extract data elements from external databases. COSA has
a number of Tool Agent facilities for requesting data from external applications.
XPDL and BPEL4WS provide facilities for the synchronous request of data from
other web services. In contrast, WebSphere MQ does not provide any facilities
for external integration and requires the underlying programs that implement
workflow tasks to provide these capabilities where they are needed.

Issues. One difficulty with this style of interaction is that it can block progress
of the requesting case if the external application has a long delivery time for the
required information or is temporarily unavailable.

Solutions. The only potential solution to this problem is for the requesting case
not to wait for the requested data (or continue execution after a nominated time-
out) and to implement some form of asynchronous notification of the required
information. The disadvantage of this approach is that it complicates the overall
interaction by requiring the external application to return the required infor-
mation via an alternate path, necessitating the workflow to provide notification
facilities.

364 N. Russell et al.

3.3 Data Transfer Patterns

Data transfer patterns focus on the manner in which the actual transfer of data
elements occurs between one workflow component and another. These patterns
serve as an extension to those presented in Section 3.2 and aim to capture the
various mechanisms by which data elements can be passed across the interface
of a workflow component.

The specific style of data passing that is used in a given scenario depends
on a number of factors including whether the two components share a common
address space for data elements, whether it is intended that a distinct copy of an
element is passed as against a reference to it and whether the component receiv-
ing the data element can expect to have exclusive access to it. These variations
give rise to seven distinct patterns as listed in lines 27 to 33 of Table 1. In this
section, we describe one pattern in detail – Data transfer by value - incoming.

Pattern 27 (Data Transfer by Value – Incoming)
Description. The ability of a workflow component to receive incoming data
elements by value relieving it from the need to have shared names or common
address space with the component(s) from which it receives them.
Example At commencement, the Identify Successful Applicant task receives
values for the required role and salary data elements.
Motivation. Under this scenario, data elements are passed as values between
communicating workflow components. There is no necessity for each workflow
component to utilise a common naming strategy for the data elements or for
components to share access to a common data store in which the data elements
reside. This enables individual components to be written in isolation without
specific knowledge of the manner in which data elements will be passed to them
or the context in which they will be utilised.
Implementation. This approach to data passing is commonly used for commu-
nicating data elements between tasks that do not share a common data store or
wish to share task-level (or block-level) data items. The transfer of data between
workflow components is typically based on the specification of mappings between
them identifying source and target data locations. In this situation, there is no
necessity for common naming or structure of data elements as it is only the data
values that are actually transported between interacting components.

WebSphere MQ utilises this approach to data passing in conjunction with
distinct data channels. Data elements from the originating workflow task in-
stance are coalesced into a data container. A mapping is defined from this data
container to a distinct data container which is transported via the connecting
data channel between the communicating tasks. A second mapping is then de-
fined from the data container on the data channel to a data container in the
receiving task. BPEL4WS provides the option to pass data elements between
activities using messages – an approach which relies on the transfer of data
between workflow components by value. XPDL provides more limited support
for data transfer by value between a block task and sub-workflow. As all data
elements are case level, there is no explicit data passing between tasks.

Workflow Data Patterns: Identification, Representation and Tool Support 365

3.4 Data-Based Routing

Whereas other groups of patterns focus on characteristics of data elements in
isolation from other workflow perspectives (i.e. control, resource, organisational
etc.), data-based routing patterns aim to capture the various ways in which data
elements can interact with other perspectives and influence the overall operation
of the workflow. Constructs such as pre-conditions, post-conditions, triggers and
splits are characterised by these patterns and seven of them have been identified
as listed in lines 34 to 40 of Table 1. We do not discuss these patterns in detail
here and interested readers are referred to [10] for more details.

4 Evaluation of Existing Workflow Products

This section presents the results of a detailed evaluation of support for the 40
workflow data patterns by six workflow systems, standards and web service com-
position languages. A broad range of offerings were chosen for this review in order
to validate the applicability of each of the patterns to the various types of tools
that fall under the “workflow umbrella” [6]. Specific tools and languages evalu-
ated were Staffware Process Suite v9, WebSphere MQ Workflow 3.4, FLOWer
3.0, COSA 4.2, XPDL 1.0 and BPEL4WS 1.1. A three point assessment scale
is used with “+” indicating direct support for the pattern, “+/–” indicating
partial support and “–” indicating that the pattern is not implemented. Specific
rating criteria have been devised and are detailed in [10].

Lines 1 to 8 indicate the various levels of data construct visibility supported
within the tools. As a general rule, it can be seen that individual products tend
to favour either a task-level approach to managing production data and pass
data elements between task instances or they use a shared data store at case
level. The only exception to this being COSA which fully supports data at both
levels. A similar result can be observed for workflow and environment data with
most workflow products fully supporting one or the other (Staffware being the
exception here). The implication of this generally being that globally accessi-
ble data can either be stored in the workflow product or outside of it (i.e. in
a database). XPDL and BPEL4WS are the exceptions although this outcome
seems to relate more to the fact that there is minimal consideration for global
data facilities within these specifications. Lines 9 to 14 list the results for in-
ternal data passing. All offerings supported task-to-task interaction and block
task-to-sub-workflow interaction4. The notable omissions here were the general
lack of support for handling data passing to multiple instance tasks (FLOWer
being the exception) and the lack of integrated support for data passing between
cases. Lines 15 to 26 indicate the ability of the workflow products to integrate
with data sources and applications in the operating environment. WebSphere
MQ, FLOWer and COSA demonstrate a broad range of capabilities in this area.
XPDL and BPEL4WS clearly have limited potential for achieving external inte-
gration other than with web services. Lines 27 to 33 illustrate the mechanisms
4 BPEL4WS being the exception given its lack of support for sub-workflows.

366 N. Russell et al.

Table 1. Support for Data Patterns in Workflow Systems

Nr Pattern S
ta

ff
w
a
re

W
e
b
S
p
h
e
re

F
L
O
W

e
r

C
O
S
A

X
P
D
L

B
P
E
L
4
W

S

1 Task Data – +/– +/– + – +/–

2 Block Data + + + + + –

3 Scope Data – – +/– – – +

4 Folder Data – – – + – –

5 Multiple Instance Data +/– + + + + –

6 Case Data +/– + + + + +

7 Workflow Data + + – +/– +/– –

8 Environment Data + +/– + + – +

9 Data Interaction between Tasks + + + + + +

10 Data Interaction – Block Task to Sub-workflow + + +/– +/– + –

11 Data Interaction – Sub-workflow to Block Task + + +/– +/– + –

12 Data Interaction – to Multiple Instance Task – – + – – –

13 Data Interaction – from Multiple Instance Task – – + – – –

14 Data Interaction – Case to Case +/– +/– +/– + +/– +/–

15 Data Interaction – Task to Env. – Push + +/– + + + +

16 Data Interaction – Env. to Task – Pull + +/– + + + +

17 Data Interaction – Env. to Task – Push +/– +/– +/– + – +/–

18 Data Interaction – Task to Env. – Pull +/– +/– +/– + – +/–

19 Data Interaction – Case to Env. – Push – – + – – –

20 Data Interaction – Env. to Case – Pull – – + – – –

21 Data Interaction – Env. to Case – Push +/– +/– + + – –

22 Data Interaction – Case to Env. – Pull – – + + – –

23 Data Interaction – Workflow to Env. – Push – +/– – – – –

24 Data Interaction – Env. to Workflow – Pull +/– – – – – –

25 Data Interaction – Env. to Workflow – Push – +/– – – – –

26 Data Interaction – Workflow to Env. – Pull + + – + – –

27 Data Transfer by Value – Incoming – + – +/– +/– +

28 Data Transfer by Value – Outgoing – + – +/– +/– +

29 Data Transfer – Copy In/Copy Out – – +/– – +/– –

30 Data Transfer by Reference – Unlocked + – + + + +

31 Data Transfer by Reference – Locked – – +/– – – +/–

32 Data Transformation – Input +/– – +/– – – –

33 Data Transformation – Output +/– – +/– – – –

34 Task Precondition – Data Existence + – + + – +/–

35 Task Precondition – Data Value + – + + + +

36 Task Postcondition – Data Existence +/– + + – – –

37 Task Postcondition – Data Value +/– + + – – –

38 Event-based Task Trigger + +/– + + – +

39 Data-based Task Trigger – – + + – +/–

40 Data-based Routing +/– + +/– + + +

Workflow Data Patterns: Identification, Representation and Tool Support 367

used by individual workflow engines for passing data between components. Gen-
erally this occurs by value or by reference. There are two areas where there is
clear opportunity for improvement. First, support for concurrency management
where data is being passed between components – only FLOWer and BPEL4WS
offered some form of solution to this problem. Second, the transformation of
data elements being passed between components – only Staffware provides a
fully functional capability for dealing with potential data mismatches between
sending and receiving components although its applicability is limited. Lines 34
to 40 indicate the ability of the data perspective to influence the control per-
spective within each product. FLOWer demonstrates outstanding capability in
this area and Staffware, WebSphere MQ and COSA also have relatively good
integration of the data perspective with control flow although each of them lack
some degree of task pre and postcondition support. Similar comments apply to
XPDL which has significantly more modest capabilities in this area and com-
pletely lacks any form of trigger support. BPEL4WS would also benefit from
better pre and postcondition support and lacks data-based triggering.

Through these evaluations a number of insights have been gained in relation
to the current level of data support in workflow systems. Current workflow mod-
elling techniques centre on the capture of control-flow and offer minimal support
for documenting data requirements. This difficulty extends into workflow design
tools which typically provide fragmented facilities for incorporating data require-
ments in workflows. There is little support for multiple instance tasks in current
tools (which provide for true task parallelism) and where it exists, the level of
data support is minimal. There also appears to have been little learnt from the
database field and the evaluations revealed limited support for data persistence
and concurrency handling in the tools examined.

5 Conclusion

This paper has identified 40 new workflow data patterns which describe the
manner in which data is defined and utilised in workflow systems. The main
contribution of this work is that it is the first systematic attempt to provide a
taxonomy of data usage in workflow systems in a technology-independent man-
ner. Validation of the applicability of these patterns has been achieved through a
detailed review of six workflow systems, standards and web service composition
languages. The results of this review indicate that the data patterns identified
are applicable not only to workflow systems but that they are also of relevance
to process-aware information systems more generally.

Evaluation of pattern support in current tools gives a valuable insight into
the operation of workflow systems and the data patterns identified have a num-
ber of practical uses. First, they provide an effective foundation for training
workflow designers and developers. Second, they provide a means of assessing
tool capabilities and are particularly useful in tool evaluation and selection exer-
cises (e.g. tender evaluations). Finally, they offer the basis for vendors to identify
functionality gaps and potential areas for enhancement.

368 N. Russell et al.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, 2003.

3. D. Barbara, S. Mehrotra, and M. Rusinkiewicz. INCAs: Managing Dynamic Work-
flows in Distributed Environments. Journal of Database Management, 7(1):5–15,
1996.

4. M. Dumas and A. ter Hofstede. UML Activity Diagrams as a Workflow Specifica-
tion Language. In M. Gogolla and C. Kobryn, editors, Proceedings of the Fourth
International Conference on the Unified Modeling Language (UML 2001), LNCS
2185, pages 76–90, Toronto, Canada, 2001. Springer.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, USA, 1995.

6. D. Georgakopoulos, M.F. Hornick, and A.P. Sheth. An Overview of Workflow Man-
agement: From Process Modeling to Workflow Automation Infrastructure. Dis-
tributed and Parallel Databases, 3(2):119–153, 1995.

7. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Archi-
tecture and Implementation. Thomson Computer Press, London, UK, 1996.

8. C.B. Medeiros, G. Vossen, and M. Weske. WASA: A Workflow-Based Architecture
to Support Scientific Database Applications. In N. Revell and A.M. Tjoa, editors,
Proceedings of the 6th International Workshop and Conference on Database and
Expert Systems Applications (DEXA), pages 574–583, London, UK, 1995. Springer.

9. M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes of
Workflows Without Losing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

10. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Data Patterns (Revised Version). Technical Report FIT-TR-2004-01, Queensland
University of Technology, Brisbane, Australia, 2004. http://www.bpmcenter.org.

11. A.-W. Scheer. ARIS - Business Process Modelling. Springer, Berlin, Germany,
2000.

12. G. Vossen and M. Weske. The WASA2 Object-Oriented Workflow Management
System. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD
1999), pages 587–589, Philadelphia, Pennsylvania, USA, 1999. ACM Press.

13. D. Wodtke, J. Weissenfels, G. Weikum, and A. Kotz-Dittrich. The Mentor Project:
Steps Towards Enterprise-Wide Workflow Management. In S.Y.W. Su, editor, Pro-
ceedings of the 12th International Conference on Data Engineering (ICDE 1996),
pages 556–565, New Orleans, Louisiana, USA, 1996. IEEE Computer Society.

Actor-Oriented Design of Scientific Workflows�

Shawn Bowers1 and Bertram Ludäscher2

1 UC Davis Genome Center
2 Department of Computer Science, University of California, Davis

{sbowers, ludaesch}@ucdavis.edu

Abstract. Scientific workflows are becoming increasingly important as a unify-
ing mechanism for interlinking scientific data management, analysis, simulation,
and visualization tasks. Scientific workflow systems are problem-solving envi-
ronments, supporting scientists in the creation and execution of scientific work-
flows. While current systems permit the creation of executable workflows, con-
ceptual modeling and design of scientific workflows has largely been neglected.
Unlike business workflows, scientific workflows are typically highly data-centric
naturally leading to dataflow-oriented modeling approaches. We first develop a
formal model for scientific workflows based on an actor-oriented modeling and
design approach, originally developed for studying models of complex concurrent
systems. Actor-oriented modeling separates two modeling concerns: component
communication (dataflow) and overall workflow coordination (orchestration). We
then extend our framework by introducing a novel hybrid type system, separat-
ing further the concerns of conventional data modeling (structural data type) and
conceptual modeling (semantic type). In our approach, semantic and structural
mismatches can be handled independently or simultaneously, and via different
types of adapters, giving rise to new methods of scientific workflow design.

1 Introduction

Scientific workflows are quickly becoming recognized as an important unifying mech-
anism to combine scientific data management, analysis, simulation, and visualization
tasks. Scientific workflows often exhibit particular traits, e.g., they can be data-
intensive, compute-intensive, analysis-intensive, and visualization-intensive, thus cover-
ing a wide range of applications from low-level “plumbing workflows” of interest to Grid
engineers, to high-level “knowledge discovery workflows” for scientists [11]. Conse-
quently, workflows steps can have very different granularities and may be implemented
as shell scripts, web services, local application calls, or as complex subworkflows.

A scientific workflow system is a problem-solving environment that aims at simpli-
fying the task of “gluing” these steps together to form executable data management and
analysis pipelines. While current systems permit the creation of executable workflows,
conceptual modeling and design of scientific workflows has been largely neglected. Un-
like business workflows, scientific workflows are typically highly data-centric, naturally
leading to dataflow-oriented modeling approaches, while business workflow modeling

� This work supported in part by NSF/ITR 0225673 (GEON), NSF/ITR 0225676 (SEEK),
NIH/NCRR 1R24 RR019701-01 (BIRN-CC), and DOE DE-FC02-01ER25486 (SDM).

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 369–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

370 S. Bowers and B. Ludäscher

is dominated by control, event, and task-oriented approaches [17], making them less
suitable for the modeling challenges of scientific workflows.

This paper addresses three important problems in scientific-workflow design and
engineering. First, in existing systems it is often unclear what constitutes a scientific
workflow, and there are few if any abstract models available to describe scientific work-
flows. (By abstract model, we mean a model for scientific workflows analogous to data
models in database management.) Second, existing systems do not support the end-to-
end development of scientific workflows, in particular, design methods and frameworks
for the early stages of conceptual design do not exist. And third, in scientific workflow
systems such as KEPLER [11] that aim at providing a unified environment where work-
flows and their components can be shared and reused, mechanisms do not exist that
support the discovery, reuse, and adaptation of existing workflows and components.

To address these issues, we first develop a formal model for scientific workflows
(Section 3) based on an actor-oriented modeling approach, originally developed for
studying complex concurrent systems [9]. A benefit of actor-oriented modeling is that
it separates two distinct modeling concerns: component communication (dataflow) and
overall workflow coordination (a.k.a. orchestration). We then extend this framework
by introducing a novel hybrid type system, separating further the concerns of conven-
tional data modeling (structural data type) and conceptual modeling (semantic type).
The separation of types facilitates the independent validation of structural and seman-
tic type constraints and offers a number of benefits for scientific workflow design and
component reuse. Structural and semantic types can also be explicitely linked in our ap-
proach, using special (hybridization) constraints. These constraints can be exploited in
various ways, e.g., to further propagate and refine known (structural or semantic) types
in scientific workflows, or to infer (partial) structural mappings between structurally
incompatible (but semantically compatible) workflow components.

Based on our formal model, we also introduce a number of basic modeling primi-
tives that a workflow designer can apply to evolve a formal scientific workflow design in
a stepwise, controlled manner (Section 4). The different modeling primitives give rise
to distinct design strategies, including task-driven vs. data-driven, structure-driven vs.
semantics-driven, and top-down vs. bottom-up. Two important design primitives are ac-
tor replacement and adapter insertion. Both primitives, when combined with the hybrid
type system, yield powerful new component discovery and adaptation mechanisms.

2 Preliminaries: Business vs. Scientific Workflows and KEPLER

The characteristics and requirements of scientific workflows partially overlap those of
business workflows. Historically, business workflows have roots going back to office
automation systems, and more recently gained momentum in the form of business pro-
cess modeling and business process engineering [2,16,18]. Today we see influences of
business workflow standards in web-service choreography standards. Examples include
the Business Process Execution Language for Web Services (BPEL4WS)1, a merger

1 http://www-128.ibm.com/developerworks/library/specification/
ws-bpel/

Actor-Oriented Design of Scientific Workflows 371

of IBM’s WSFL and Microsoft’s XLANG, as well as ontology-based web-service ap-
proaches such as OWL-S2. When analyzing the underlying design principles and exe-
cution models of business workflow approaches, a focus on control-flow patterns and
events becomes apparent, whereas dataflow is often a secondary issue.

Scientific workflow systems, on the other hand, tend to have execution models that
are much more dataflow-oriented. Examples include academic systems such as KE-
PLER [11], Taverna [15], and Triana [12], and commercial systems such as Inforsense’s
DiscoveryNet, Scitegic’s Pipeline-Pilot, and National Instrument’s LabView. With re-
spect to their modeling paradigm and workflow execution models, these systems are
closer to visual dataflow programming languages for scientific data and services than
to the more control-flow and task-oriented business workflow systems, or to their early
scientific workflow predecessors [13,1].

The difference between dataflow and control-flow orientation can also be observed
in the underlying formalisms. For example, visualizations of business workflows often
resemble flowcharts, state transition diagrams, or UML activity diagrams, all of which
emphasize events and control-flow over dataflow. Formal analysis of workflows usually
involves studying their control-flow patterns [8,5]. Conversely, the underlying execu-
tion model of current scientific workflow systems usually resembles dataflow process
networks [10], having traditional application areas in digital signal processing and elec-
trical engineering. Dataflow-oriented approaches are applicable at very different levels
of granularity, from low-level CPU operations found in processor architectures, over
embedded systems, to high-level programming paradigms such as flow-based program-
ming [14]. Scientific workflow systems and visualization pipeline systems can also be
seen as dataflow-oriented problem-solving environments [7] that scientists use to ana-
lyze and visualize their data.

Actor-Oriented Workflow Modeling in KEPLER. The KEPLER scientific work-
flow system is an open-source application, with contributing members from various
application-oriented research projects. KEPLER aims at developing generic solutions
to the process and application-integration challenges of scientific workflows. Figure 1
shows a snapshot of KEPLER running a bioinformatics scientific workflow.

KEPLER extends the PTOLEMY II system, developed for modeling heterogeneous
and concurrent systems and engineering applications, to support scientific workflows.
In KEPLER, users develop workflows by selecting appropriate components called “ac-
tors” (e.g., from actor libraries or by wrapping web services as actors) and placing them
on the design canvas, after which they can be “wired” together to form the desired
workflow graph. As shown in Figure 1, workflows can also be hierarchically structured.
Actors have input ports and output ports that provide the communication interface to
other actors. Control-flow elements such as branching and loops are also supported.
A unique feature of PTOLEMY II (and thus of KEPLER) is that the overall execution
and component interaction semantics of a workflow is not buried inside the compo-
nents themselves, but rather factored out into a separate component called a director.
PTOLEMY II supports a large number of different directors, each one corresponding to
a unique model of computation. Taken together, workflows, actors, ports, connections,
and directors represent the basic building blocks of actor-oriented modeling.

2 http://www.daml.org/services/owl-s/

372 S. Bowers and B. Ludäscher

Fig. 1. A bioinformatics workflow in KEPLER: the composite actor (center) contains a nested
subworkflow (upper right); workflow steps include remote service invocation and data transfor-
mation; and the execution model is enforced by a director (green box)

3 A Formal Model of Actor-Oriented Scientific Workflows

This section further defines actor-oriented modeling and its application to scientific
workflows. We describe a formal model for scientific workflows and a rich typing sys-
tem for workflows and workflow components that considers both structural and seman-
tic types. We also briefly describe the use of directors for specifying workflow com-
putation models, which simplifies the task of defining workflows within KEPLER and,
along with the typing system, can facilitate the reuse of workflow components.

3.1 Actor-Oriented Hierarchical Workflow Graphs

Workflow Graphs. An actor-oriented workflow graph W = 〈A,D〉 consists of a set
A of actors representing components or tasks and a set of dataflow connections D con-
necting actors via data ports. Actors have well defined interfaces and generally speak-
ing, unlike a software agent, are passive entities that given some input data, produce
output data (according to their interface). Actors communicate by passing data tokens
between their ports.

Ports. Each actor A ∈ A has an associated set ports(A) of data ports, where each
p ∈ ports(A) is either an input or output, i.e., ports(A) = in(A) ·∪ out(A) is a disjoint
union of input ports and output ports, respectively. We can think of ports(A) as the
input/output signature ΣA of A, denoted A :: in(A) −→ out(A).3

3 We may also distinguish par(A) ⊆ in(A), the parameter ports of A, distinct from “regular”
data input ports, and used to model different actor “configurations”.

Actor-Oriented Design of Scientific Workflows 373

Dataflow Connections. Let in(W) =
⋃

A∈A in(A) be the set of all of input ports of
W ; the sets out(W) and ports(W) are defined similarly. A dataflow connection d ∈ D
is a directed hyperedge d = 〈o, i〉, simultaneously connecting n output ports o =
{o1, . . . , on} ⊆ out(W) with m input ports i = {i1, . . . , im} ⊆ in(W). Intuitively, we
can think of d = 〈o, i〉 as consisting of a merge step merge(d) = o that combines data
tokens from the output ports o, and a distribute step distrib(d) = i that distributes the
merged tokens to the input ports i.4

A dataflow connection d = 〈{o1}, {i1}〉 between a single output port and a single

input port corresponds to a directed edge o1
d−→ i1. In general, however, we represent

d as an auxiliary connection node having n incoming edges from all output ports o ∈ o
and m outgoing edges to all input ports i ∈ i. Dataflow connection d ∈ D is called
well-oriented, if it connects at least one output and one input port. In this way, a directed
dataflow dependency between ports is induced.

Workflow Abstraction and Refinement. Abstraction and refinement are crucial mod-
eling primitives. When abstracting a workflow W , we would like to “collapse” it into a
single, composite actor AW (hiding W “inside”). Conversely, we might want to refine
an actor A by further specifying it via a subworkflow WA, thereby turning A into a
composite actor with WA “inside” (cf. Figures 1 and 3). In both cases, we need to make
sure that the i/o-signature ΣA of the composite actor matches the i/o-signature ΣW of
the contained subworkflow.

Let W = 〈A,D〉 be a workflow. The free ports of W are all ports that do not
participate in any data connection, i.e., freeports(W) := {p | for all d ∈ D : p /∈ d}. A
workflow designer might not want to expose all free ports externally when abstracting
W into a composite actor AW . Instead the i/o-signature is often limited to a subset ΣW

of distinguished ports.

Composite Actors. A composite actor AW is a pair 〈W, ΣW 〉 comprising a subwork-
flow W and a set of distinguished ports ΣW ⊆ freeports(W), the i/o-signature of W .
We require that the i/o-signatures of the subworkflow W and of the composite actor
AW containing W match, i.e., ΣW = ports(AW).

Hierarchical Workflow Graphs. A hierarchical workflow W = 〈A,D, Σ〉 is defined
like a workflow graph, with the difference that actors might be composite. Inductively,
subworkflows can be hierarchical, so that any level of nesting can be modeled. For
uniformity, we also include the distinguished i/o-signature Σ of the top-level workflow.

3.2 Models of Computation

Following the paradigm of separation of concerns, the actor-oriented workflow graphs
introduced above only specify communication links (dataflow) between components or
tasks (represented by actors), and—in the case of hierarchical workflows—their nesting
structure via composite actors. However, the workflow execution semantics or model of

4 The semantics of merging and distributing tokens through dataflow connections is a separate
concern that is deliberately left unspecified. Instead, this execution semantics is defined sepa-
rately via directors.

374 S. Bowers and B. Ludäscher

computation is deliberately left unspecified. In PTOLEMY II a new modeling primitive
called a director is used to represent the particular choice of model of computation [9].

Thus, we can extend our definition of workflow (graph) W to include a model of
computation by means of a director M , i.e., W = 〈A,D, Σ, M〉. In the case of the
unspecified merge/distribute semantics of a data connection node d = 〈o, i〉 above, a
director M may prescribe, e.g., the merge semantics to be one of the following: non-
deterministic (the token arrival order is unspecified by M); time-dependent and deter-
ministic (tokens are merged according to their timestamps); or time-independent and
deterministic (e.g., “round robin” merging of tokens, or “zipping” together tokens from
all input ports, creating a single record token). Similarly, different distribution seman-
tics may be prescribed by M : deterministic copy (replicate each incoming token on all
outputs); deterministic round robin (forward a token to alternating outputs); or nonde-
terministic round robin (randomly choose an output port).

More generally, a model of computation specifies all inter-actor communication
behavior, separating the concern of orchestration (director) from the concern of actor
execution. The PTOLEMY II system comes with a number of directors including:

– Synchronous Dataflow (SDF): Actors communicate through data connections cor-
responding to queues and send or receive a fixed number of tokens each time
they are fired. Actors are fired according to a predetermined static schedule. Syn-
chronous dataflow models are highly analyzable and have been used to describe
hardware and software systems.

– Process Network (PN): A generalisation of SDF in which each actor executes as
a separate thread or process, and where data connections represent queues of un-
bounded size. Thus actors can always write to output ports, but may get suspended
(blocked) on input ports witout a sufficient number of data tokens. The PN model
of computation is closely related to the Kahn/MacQueen semantics of process net-
works.

– Continuous Time (CT): Actors communicate through data connections, which rep-
resent the value of a continuous time signal at a particular point in time. At each
time point, actors compute their output based on their previous input and the ten-
tative input at the current time, until the system stabilizes. When combined with
actors that perform numerical integration with good convergence behavior, such
models are conceptually similar to ordinary differential equations and are often
used to model physical processes.

– Discrete Event (DE): Actors communicate through a queue of events in time.
Events are processed in global time order, and in response to an event an actor is
permitted to emit events at the present or in the future, but not in the past. Discrete
event models are widely used to model asynchronous circuits and instantaneous
reactions in physical systems.

3.3 Structural and Semantic Typing of Scientific Workflows

The formal model described above separates the concerns of component communica-
tion (dataflow connections) from the overall model of computation (a.k.a. orchestra-
tion), imposed by the director. This separation achieves a form of behavioral polymor-
phism [9], resulting in more reusable actor components and subworkflows. In a sense,

Actor-Oriented Design of Scientific Workflows 375

the actor-oriented modeling approach “factors out” the concern of component coordi-
nation and centralizes it at the director.

As mentioned in Section 2, scientific workflows are typically data-oriented. The
modeling primitives so far, however, have been agnostic about data types. We introduce
a novel hybrid type system for modeling scientific data that separates structural data
types and semantic data types, but allows them to be explicitly linked using hybridiza-
tion constraints.

Structural Types. Let S be a language for describing structural data types. For exam-
ple, S may be one of XML Schema, XML DTD, PTOLEMY II’s token type system, or
any other suitable data model or type system for describing structural aspects of data
such as the relational model, an object-oriented data model, or a programming language
type system (e.g., a polymorphic Hindley-Milner system).

Any port p ∈ ports(W) may have a structural data type s = dt(p), where s ∈ S is
a type expression constraining the allowed set of values that the port p can accept (for an
input port p ∈ in(W)) or produce (for an output port p ∈ out(W)). When using XML
Schema as S, e.g., the structural data type of a port is a concrete XML Schema type
such as xsd:date or any user-defined type. If S is the relational model, s describes
the tuple or table type of p.

Semantic Types. LetO be a language for expressing semantic types. By this we mean,
in particular, suitable logics for expressing ontologies. For example, O might be a de-
scription logic ontology (expressed, e.g., in OWL-DL).

Any port p ∈ ports(W) may have a port semantic type C = st(p), where C denotes
a concept expression overO. For example, C1 = st(p1) might be defined as

MEASUREMENT � ∀ITEMMEASURED.SPECIESOCCURRENCE (C1)

indicating that the port p1 accepts (or produces) data tokens that are measurements
where the measured item is a species occurrence (as opposed to, e.g., a temperature).5

In addition to port semantic types, any actor A ∈ A may also be associated with an
actor semantic type, categorizing the overall function or purpose of A.6

Well-Typed Workflows. Structural and semantic types facilitate the design and imple-
mentation of workflows by constraining the possible values and interpretations of data
in a scientific workflow W . Another advantage is that the scientific workflow system
can validate data connections. For example, if the workflow designer connects two ports

p1
d−→ p2 with structural types s1 = dt(p1) and s2 = dt(p2), the system can check

whether this connection satisfies the implied subtype constraint s1 � s2. Similarly,
for semantic types C1 = st(p1) and C2 = st(p2), the system can check whether the
implied concept subsumption C1 � C2 holds.

3.4 Hybrid Types for Scientific Workflows

Structural and semantic types can be considered independently from one another. For
example, a workflow designer might start by modeling semantic types and only later in

5 We note that terms within a concept expression may be from distinct ontologies.
6 Typically the vocabularies chosen for semantic port types and semantic actor types are disjoint,

with the former denoting “objects” and the latter denoting “actions” or “tasks”.

376 S. Bowers and B. Ludäscher

the design process be concerned with structural types (cf. Section 4). Conversely, when
reverse-engineering existing executable workflows, structural types might be given first;
and only later are semantic types introduced for the purpose of facilitating workflow
integration.

Treating semantic and structural types independently offers a number of benefits,
and is primarily motivated by the desire to easily interoperate legacy workflow compo-
nents and components created by independent groups within KEPLER. Decoupling the
structural and semantic aspects of workflow types facilitates the use of more standard
and generic structural data types, while still allowing the specific semantic constraints
of the data to be expressed. Also, one can provide or refine semantic types without
altering the underlying structural type, can search for all components having a partic-
ular semantic type (regardless of the structural type used), and can provide multiple
semantic types for a single component (e.g., drawn from distinct ontologies).

An additional feature of hybrid types is the ability to not only independently con-
sider structural and semantic types, but also interrelate them by a constraint mechanism
called hybridization. Thus, in general, a hybrid type has three (optional) components,
the structural type, the semantic type, and the hybridization constraint.

Formally, let H be a language of (hybridization) constraints, i.e., linking structural
and semantic type information. We express constraints from H in logic, thus requir-
ing that structural and semantic types are expressed in a logic formalism as well. For
structural types this means that for any s ∈ S and any logic query expression e(x̄)
over the set inst(s) of instances of s, we can evaluate e(x̄) on a particular data instance
I ∈ inst(s), returning a list7 of variable bindings [x̄ | I |= e(x̄)], i.e., those parts of I
that satisfy the query e(x̄).8

For example, given the structural (relational) type s1 = r(site, day, spp, occ) and
the above semantic type C1, the following constraint α1 “hybridizes” s1 and C1:

∀xsite, xday, xspp, xocc ∃y : r(xsite, xday, xspp, xocc) −→
MEASUREMENT(y) ∧ ITEMMEASURED(y, xocc)∧
SPECIESOCCURRENCE(xocc)

(α1)

Here, the left-hand side of the implication corresponds to a query expression e(x̄) that
extracts the item being measured from a relational measurement record. The right-hand
side of the implication asserts the existence of a MEASUREMENT y whose ITEMMEA-
SURED xocc is a SPECIESOCCURRENCE. Note that a hybridization constraint such as
α1 can be seen as a “semantic annotation” of the data structure s1 (the left-hand side of
the constraint) with a concept expression (the right-hand side of the constraint).

Exploiting Hybrid Types. By interlinking the otherwise independent structural and
semantic type systems, additional inferences can be made. Consider a data connection

d that connects two ports p1
d−→ p2 having incompatible structural types s1 = dt(p1)

and s2 = dt(p2), i.e., where s1 is not a subtype of s2, denoted s1 �� s2. Given (hy-
bridization) constraints α1 and α2 that map parts of s1 and s2 to a common ontology,
one can indirectly identify structural correspondences between parts of s1 and s2 by

7 We consider variable binding lists to accomodate order-sensitive data models such as XML;
for unordered models a set of bindings can be returned.

8 Here, x̄ = x1, . . . , xn denotes a vector of logical variables.

Actor-Oriented Design of Scientific Workflows 377

“going through the ontology.” Technically, this approach is achieved by a resolution-
based reasoning technique called the chase.9

Exploiting I/O-Constraints. Moreover, for an actor A ∈ A, a set Φio of i/o-constraints
may be given, inter-relating the input and output ports of A. For example, an i/o-
constraint can be used to define (or approximate) how values of output ports can be
derived from values of input ports. Such a (partial) specification of an actor can be
used to propagate hybridization constraints themselves through one or more actors. As-
sume that p1 ∈ in(A) has the structural type s1 = r(site, day, spp, occ) from above,
and p2 ∈ out(A) has a structural type s2 = r′(sp, oc),10 and that the following i/o-
constraint ϕio is given:

∀xsite, xday, xspp, xocc : r(xsite, xday, xspp, xocc) −→ r′(xspp, xocc) (ϕio)

Using the i/o-constraint ϕio, we can now propagate the above constraint α1 “through”
the actor A by applying ϕio. We are currently exploring reasoning procedures for prop-
agation that handle a variety of i/o-constraint operations including aggregration, union,
and group-by constructs. In this simple example, by applying the propagation proce-
dure, we would obtain a (hybridization) constraint α2 for the output port p2 of A:

∀xsp, xoc ∃y : r′(xsp, xoc) −→
MEASUREMENT(y) ∧ ITEMMEASURED(y, xoc)∧
SPECIESOCCURRENCE(xoc)

(α2)

Summary. Given the various extensions described above, we can now define a typed
workflow W = 〈A,D, Σ, M, Φ〉 to also include a set of constraints Φ. More precisely,
Φ = 〈ΦS , ΦO, ΦH, Φio〉 consists of a set ΦS associating structural types from S to
ports in W , ΦO associating semantic types from an ontologyO to actors and ports, ΦH
linking structural and semantic types of ports, and finally Φio, specifying i/o-constraints
of actors.

4 Design and Implementation of Scientific Workflows

This section presents a collection of design primitives to support workflow engineering
(workflow conceptual design to implementation). Each primitive corresponds to a basic
operation over the formal model for actor-oriented scientific workflows. Primitives are
described as transformations that return the result of applying an operation to a work-
flow. Workflow engineers can repeatedly apply these primitives, e.g., via the KEPLER

graphical user interface, to create their desired scientific workflow (see Figure 2).
Based on the primitives, we identify design strategies to help guide workflow engi-

neers as they develop scientific workflows (see Figure 2). Each strategy emphasizes cer-
tain primitives within a larger design process. For example, a particular design method
may be divided into a set of phases, and each phase may be guided by a certain strategy.

In this section, we also outline an approach to help automate the implemention of
workflow designs. Our approach leverages hybrid typing to refine a workflow into an
implemented version by repeatedly applying specific design primitives.

9 For an early version of our approach, see [4].
10 The structural types s1 and s2 are disconnected (unless an i/o-constraint is given), so one

cannot assume the values (or types) of the input match the values (or types) of the ouput.

378 S. Bowers and B. Ludäscher

W0 t
W1

W2

Wm

Wn

…

t

t

Workflow
Design

Workflow
Implementation

Top-Down

Bottom-Up

Input Driven

Output Driven
Structure Driven

Semantic Driven

Task Driven
Data Driven

Fig. 2. Workflow engineers evolve workflows by applying design primitives (left), shown as trans-
formations t; and primitives are grouped to form design strategies (right)

4.1 Scientific Workflow Design Primitives

Basic Actor-Oriented Design Primitives. Figure 3 summarizes the basic actor-
oriented modeling primitives. In particular, we include primitives to: introduce new
actors and dataflow connections into workflows (transformation t1); add input and out-
put ports to actors (transformation t2); refine port structural types (transformation t3);
group (abstract) a portion of a workflow into a composite actor (transformation t4);
define an actor as a composite (transformation t5); create dataflow connections (trans-
formation t6); and assign a director to a workflow (transformation t7). For structural
datatype refinement (transformation t3), we require the “refined” datatype to be a sub-
type of the existing structural type. Although not shown in Figure 3, we also assume a
transformation that “generalizes” structural types (structural type abstraction) requiring
introduction of appropriate structural supertypes.

Semantic Typing Primitives. Figure 4 summarizes the semantic (hybrid) typing prim-
itives. The first two transformations t8 and t9 refine actor semantic types and input and

Basic Transformations Starting Workflow Resulting Workflow

t1: Entity Introduction
(actor or data connection)

t2: Port Introduction

t6: Dataflow Connection

t4: Hierarchical Abstraction

t5: Hierarchical Refinement

t3: Datatype Refinement
(s’ s, t’ t) s′

t7: Director Introduction

Resulting Workflow

ss t t t′

Fig. 3. Actor-oriented design primitives summarized as transformations where actors are repre-
sented as solid boxes; ports as triangles; dataflow connections as circles; composite actors as
dashed boxes; and directors as solid (green) boxes

Actor-Oriented Design of Scientific Workflows 379

Extended Transformations Starting Workflow Resulting Workflow

t8: Actor Semantic Type
Refinement
(T′ T)

T

t11: I/O Constraint
Strengthening
(ψ → ϕ)

t9: Port Semantic Type
Refinement
(C′ C, D′ D)

C

t13: Adapter Insertion

T′

t10: Annotation
Constraint Refinement
(α′ → α) s

Cα1

ψ

t14: Actor Replacement f f′

t15: Workflow Combination
(Map)

t12: Dataflow Connection
Refinement

…f1

f2

f1…
f2

ϕ

Resulting Workflow

D C′ D C D′

t
Dα2 α′1

t
D α2

s
C α1

t
Dα′2

s
C

Fig. 4. Additional primitives to support scientific-workflow design and implementation, where
adapters are shown as solid, rounded boxes

output port semantic types, respectively. Semantic-type refinement requires the intro-
duction of subconcepts, i.e., to refine an actor semantic type T to T′, the constraint
T′ � T must hold. Refining the semantic types of an actor results in specializing the
actor’s operation. For instance, by refining an input-port semantic type, we further limit
the kinds of objects an actor can process. And similarly, by refining an output-port se-
mantic type, we further limit the kinds of objects that can be produced by an actor.

Often, actor and port semantic type refinements are performed together. For exam-
ple, consider the following series of refinements (each consisting of individual actor
and port semantic type refinements):

1. DATAMATRIX → [ANALYSIS] → RESULTSET

2. PHYLOGENETICMATRIX → [PHYLOGENETICANALYSIS] → PHYLOGENETICTREE

3. NEXUSMATRIX → [CLADISTICANALYSIS] → CONSENSUSTREE

The first refinement states that the semantic type of an actor is ANALYSIS, consisting
of an input port of semantic type DATAMATRIX and output port of semantic type RE-
SULTSET. Here, ANALYSIS, DATAMATRIX, and RESULTSET represent general con-
cepts. The second refinement provides more details concerning the actor semantic type,
which also influences the input and output port semantic types. The third refinement
provides semantic types specific to a particular implementation of an analysis, again
influencing the input and output port semantic types.

Primitives t10 and t11 are used to refine hybridization constraints and i/o-constraints,
respectively. Like with semantic types, both hybridization constraint refinement and i/o-
constraint strengthening specialize existing hybridization constraints and i/o-constraints
(shown as the implications α′ → α and ψ → ϕ in Figure 4).

380 S. Bowers and B. Ludäscher

Similar to the structural type refinement operation, each semantic type refinement
operation is assumed to have a corresponding version for abstraction (i.e., generaliza-
tion of types).

Extended Primitives for Dataflow Connections. It is often convenient to “loosely”
connect actors through dataflow connections and then give the details of the connec-
tion later as the workflow becomes more complete. The dataflow-connection refinement
(transformation t12) provides two approaches for specifying the details of such a con-
nection. The first (shown as the first resulting workflow for the refinment in Figure 4)
splits a dataflow-connection node d into two separate dataflow-connection nodes d1 and
d2 such that:

merge(d1) ∪ merge(d2) ≡ merge(d) and distrib(d1) ∪ distrib(d2) ≡ distrib(d)

The second refinement transforms a dataflow-connection node d into an actor node A,
which is constructed from d as follows: (1) each port p in merge(d) generates a new
port p′ that is added to in(A); (2) a new dataflow-connection node is created to connect
the ports p and p′; (3) a new port p′′ is created and added to out(A); and (4) merge(d)
is assigned the singleton set {p′′}.

Although not shown in Figure 4, we assume both versions of dataflow-connection
refinement have corresponding generalization primitives.

Primitives for Adapter Insertion. The adapter insertion primitive (transformation t13)
is used to insert special actors called adapters between incompatible dataflow connec-
tions. We focus on adapters for situations in which a connection contains a semantic or
structural incompatibility.

A semantic adapter is used to align input and output port connections that do not
satisfy the subconcept typing constraint. We consider two cases for semantic adapter
insertion. In the first case, an output port with semantic type C is connected to an input
port with semantic type D. We assume that C and D are incompatible such that the
constraint C � D does not hold. For example, let C and D be defined as follows.

C ≡ MEASUREMENT � ∀ITEMMEASURED.SPECIESOCCURRENCE

D ≡ MEASUREMENT � ∀ITEMMEASURED.SPECIESRICHNESS

The first actor produces data containing species’ occurrence measurements and the
second actor consumes data containing species’ richness measurements. The seman-
tic types are not compatible because SPECIESOCCURRENCE is not a subconcept of
SPECIESRICHNESS. In general, however, richness data can be obtained from occur-
rence data through a simple conversion, namely, by summing occurrrence.

In this case, one may choose to insert a semantic adapter between the two actors.
Conceptually, the adapter provides a data conversion that can reconcile the semantic
differences between the two actors. Typically the input and output semantic types of
a semantic adapter will be assigned the corresponding actor output and input, respec-
tively. A semantic adapter can also have a more general input semantic type (e.g., a
semantic type C′ � C) and a more restrictive output semantic type (e.g., D′ � D).

A structural adapter is similar to a semantic adapter, but is used to reconcile incom-
patible structural types found in data connections (as opposed to incompatible semantic
types). Within KEPLER, users can determine whether connections are created that are

Actor-Oriented Design of Scientific Workflows 381

C
f

D

C′
f ′

D′

general
replacement

C
f

D

C′
f ′

D′

unsafe
replacement

C
f

context-sensitive
replacement
(“wiggle room”)

D′C′ D

C
f

D′′C′′ D

C C′
D D′

C,C′ overlap (e.g., C C′)
D,D′ overlap (e.g., D D′)

C C′′ (e.g., C′ C′′)
D D′′ (e.g., D′ D′′)

Fig. 5. Semantic type constraints for general, unsafe, and context-sensitive replacement

semantically or structurally incompatible. Incompatible types can be fixed by: (1) in-
serting an appropriate adapter; (2) modifying the data connection; or (3) abstracting
and/or refining the problem types.

Primitives for Actor Replacement. The actor replacement primitive (transition t14)
is used to “swap” one actor in a workflow with another actor. We use standard object-
oriented inheritance rules [6] to determine when a particular actor replacement is appro-
priate. Figure 5 shows three simple cases: the general case of safe replacement (shown
on the left), unsafe replacement (shown in the middle), and context-sensitive replace-
ment (shown on the right). For general replacement, an actor A1 can be replaced by
another actor A2 if the following conditions hold: 11

1. A2 has an input (output) port for each of A1’s input (output) ports12;
2. A2’s actor semantic type is a subconcept of A1’s actor semantic type;
3. A2’s input port types are equivalent or more general than A1’s; and
4. A2’s output port types are equivalent or more specific than A1’s.

As shown in Figure 5, unsafe replacement occurs when the semantic (or structural)
port types do not satisfy the above conditions. However, unsafe replacement may still
be considered appropriate when the replacement is taken in context. That is, the gen-
eral form of unsafe replacement (the middle case of Figure 5) may become safe when
the surrounding data connections are considered. We call this case context-sensitive
replacement, as shown in Figure 5, the input and output semantic (and structural) re-
placement rules are determined by the semantic (and structural) types of corresponding
data connections.

Primitives for Combining Workflows. The workflow combination primitive (trans-
formation t15) is used to assemble two or more workflows into a single “conglomerate.”
To be combined, the input and output structural and semantic types of the separate
workflows must be combatible. The most specific input types of the separate workflows
are used as the combined-workflow input types; and the most general output types of
the separate workflows are used as the combined-workflow output types. Combining

11 Note that in general we also require the i/o-constraint f ′ of the replacement to imply the i/o-
constraint f of the original actor (i.e., f ′ → f).

12 Here, A2 may contain more output ports than A1, and possibly more input ports so long as
the “extra” ports are not required. As future work, we are also more generally considering
matching aggregrations of ports.

382 S. Bowers and B. Ludäscher

similar workflows is useful for cases where multiple algorithms exist to perform a sim-
ilar function, e.g., to perform multiple multivariate statistics over the same input data.

The workflow combination primitive is similar to the higher order function
map :: [a] -> (a -> b) -> [b], which returns the result of applying a func-
tion to each element of a list. In particular, the workflow combination primitive
can be viewed as a variant Map :: a -> [(a -> b)] -> [b] that takes a value
v and a list of functions f1, f2, ..., fn, and returns a list containing the values
f1(v), f2(v), ..., fn(v).

4.2 Strategies for Workflow Design

As shown in Figure 2 (and similar in spirit to [3]), we define high-level design strategies
that emphasize specific transformation primitives. The strategies can be used to describe
design methods where at each stage, a particular strategy (a point in the design space of
Figure 2) is applied. The design strategies are defined as follows.

– Task-Driven Design: Workflow engineers focus on identifying the conceptual actors
of a workflow. This strategy can involve defining actor ports, semantic types, struc-
tural types, associations, and i/o-constraints along with hierarchcial refinements and
replacements to convert abstract actors to implemented versions.

– Data-Driven Design: Wofkflow engineers focus on identifying the input data and
dataflow connections of workflows. Dataflow connections may be elaborated using
refinement.

– Semantic-Driven Design: Workflow engineers focus on specifying the semantic
types of the workflow. The engineer may start with a “blank” workflow topology
containing basic actors and dataflow connections, and identify the appropriate se-
mantic types, adding concepts and roles to ontologies as needed.

– Structure-Driven Design: Like semantic-driven design, but for structural types.
– Input-Driven Design: Workflow engineers focus on identifying the input of a work-

flow, and design from “left to right,” i.e., from the input side to the output side of
the workflow.

– Output-Driven Design: Like input-driven design, but focus on data products first.
– Top-Down Design: Workflow engineers focus on refining actors and dataflow con-

nections. The engineer may begin with a single empty workflow and iteratively
apply hierarchical and dataflow connection refinement.

– Bottom-Up Design: Workflow engineers focus on abstraction of actors and dataflow
connections. The engineer may first define specific parts of a workflow and iteratively
abstract the workflow using hierarchical abstraction to connect the various parts.

Different workflow design methods apply in different situations. We have found
that the process of re-engineering existing applications into workflows often starts with
top-down, structure driven strategies. But, when scientists develop new workflows (e.g.,
new analyses as opposed to “re-engineered” ones), a mix of semantic, input, and output
strategies are used.

4.3 From Design to Implementation of Scientific Workflows

Here we outline an approach that leverages hybrid typing, replacement rules, and
adapter insertion to help automate the task of finding appropriate actor implementations

Actor-Oriented Design of Scientific Workflows 383

for workflow specifications. We assume there is a repository R of semantically typed
actors and workflows. We use the term abstract actor to refer to actors that cannot be ex-
ecuted (i.e., without implementations) and concrete actor to refer to executable actors.
R may consist of abstract or concrete actors, composite actors, and entire workflows.
The following steps sketch the approach for finding implementations of a workflow W :

1. if W is a concrete workflow, output W
2. select an abstract actor AT ∈ A that has an actor replacement AC ∈ R
3. let W ′ be the workflow that results from replacing AT by AC

4. if W ′ has an incompatible dataflow connection, insert an abstract adapter
5. repeat with W := W ′

The basic idea of the approach is to define a search space such that each node repre-
sents a workflow and transitions between nodes are defined using steps 2-4 above. The
procedure for finding implementations of W is to navigate the search space (e.g., using
a breadth-first or depth-first search algorithm) looking for nodes that represent concrete
workflows. In the transitions (steps 2-4) defined above, we replace individual abstract
actors in a workflow with valid replacements from the respository. When a concrete
actor is inserted that violates a semantic or structural typing rule, we also insert an ab-
stract adapter actor, which can also be replaced (in subsequent steps). In general, for
a given worfklow W there may be many associated concrete workflows, depending on
whenever an abstract actor can be replaced by more than one repository element. The
user may wish to combine some or all of the resulting workflows using the workflow
combination primitive.

5 Summary

This paper extends our previous work by describing a formal model of scientific work-
flows based on actor-oriented modeling and design. The approach facilitates conceptual
modeling of scientific workflows through a novel hybrid type system, and by provid-
ing a set of primitive modeling operations for end-to-end scientific workflow develop-
ment. Our approach can also support the conceptual and structural validation of scien-
tific workflows, as well as the discovery of type-conforming workflow implementations
via replacement rules and by inserting appropriate semantic and structural adapters for
workflow integration. Much of this work is currently implemented within the KEPLER

system, and we are currently extending KEPLER with semantic propagation and addi-
tional reasoning techniques to further exploit hybrid types.

References

1. A. Ailamaki, Y. E. Ioannidis, and M. Livny. Scientific Workflow Management by Database
Management. In Proc. of SSDBM, pages 190199, 1998.

2. G. Alonso and C. Mohan. Workflow Management Systems: The Next Generation of Dis-
tributed Processing Tools. In Advanced Transaction Models and Architectures. 1997.

3. C. Batini, S. Ceri, and S. Navathe. Conceptual Database Design: An Entity-Relationship
Approach. Benjamin/Cummings, 1992.

384 S. Bowers and B. Ludäscher

4. S. Bowers and B. Ludascher. An Ontology-Driven Framework for Data Transformation in
ScientificWorkflows. In Proc. of the Intl. Workshop on Data Integration in the Life Sciences
(DILS), volume 2994 of LNCS, pages 116. Springer, 2004.

5. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual Modelling ofWorkFlows. In Object-
Oriented and Entity-Relationship Modelling Conference (OOER), volume 1021 of LNCS,
pages 341354. Springer, 1995.

6. G. Castagna. Covariance and contravariance: conflict without a cause. ACM Transactions on
Programming Languages and Systems (TOPLAS), 17(3), 1995.

7. K. W. B. H. Wright and M. J. Brown. The Dataflow Visualization Pipeline as a Problem
Solving Environment. In Virtual Environments and Scientific Visualization. Springer, 1996.

8. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workflows. Ph.D. Thesis, Queensland University of Technology, 2002.

9. E. A. Lee and S. Neuendorffer. Actor-oriented Models for Codesign: Balancing Re-Use and
Performance. In Formal Methods and Models for Systems. Kluwer, 2004.

10. E. A. Lee and T. M. Parks. Dataflow process networks. Proc. of the IEEE, 83(5):773801,
1995.

11. B. Ludascher, I. Altintas, D. H. Chad Berkley, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and
Y. Zhao. Scientific Workflow Management and the Kepler System. Concurrency and Com-
putation: Practice and Experience, Special Issue on Scientific Workflows, 2005. to appear.

12. S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang. Triana: A Graphical Web Service Com-
position and Execution Toolkit. In Proc. of the IEEE Intl. Conf. onWeb Services (ICWS).
IEEE Computer Society, 2004.

13. J. Meidanis, G. Vossen, and M. Weske. Using Workflow Management in DNA Sequencing.
In Proc. of CoopIS, pages 114123, 1996.

14. J. P. Morrison. Flow-Based Programming: A New Approach to Application Development.
Van Nostrand Reinhold, 1994.

15. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood, T. Carver, K.
Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, 20(17):30453054, 2004.

16. W. van der Aalst and K. van Hee. Workflow Management: Models, Methods, and Systems
(Cooperative Information Systems). MIT Press, 2002.

17. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):551, 2003.

18. M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design, and Application
of workflow-driven Process Information Systems. Logos Verlag, Berlin, 2004.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 385 – 400, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Blueprints and Measures for ETL Workflows

Panos Vassiliadis1, Alkis Simitsis2, Manolis Terrovitis2,
and Spiros Skiadopoulos2

1 University of Ioannina, Dept. of Computer Science, Ioannina, Hellas
pvassil@cs.uoi.gr

2 National Technical University of Athens, Dept. of Electrical and Computer Eng.,
Athens, Hellas

{asimi, mter, spiros}@dbnet.ece.ntua.gr

Abstract. Extract-Transform-Load (ETL) workflows are data centric
workflows responsible for transferring, cleaning, and loading data from their
respective sources to the warehouse. Previous research has identified graph-
based techniques that construct the blueprints for the structure of such
workflows. In this paper, we extend existing results by explicitly incorporating
the internal semantics of each activity in the workflow graph. Apart from the
value that blueprints have per se, we exploit our modeling to introduce rigorous
techniques for the measurement of ETL workflows. To this end, we build upon
an existing formal framework for software quality metrics and formally prove
how our quality measures fit within this framework.

1 Introduction

All engineering disciplines employ blueprints during the design of their engineering
artifacts. Modeling in this fashion is not a task with a value by itself; as [1] mentions
“we build models to communicate the desired structure and behavior of our system …
to visualize and control the system’s architecture … to better understand the system
we are building … to manage risk”.

In this paper, we discuss the constructing entities and the usage of blueprints for a
particular category of database-centric software, namely, the Extract-Transform-Load
(ETL) workflows. ETL workflows are an integral part of the back-stage of data
warehouse architectures, where data are (a) collected from the operational sources, (b)
cleansed (to remove any noise or inconsistencies), (c) transformed (so that they
syntactically comply with the schema of the warehouse tables) and finally, (d) loaded
to the target warehouse tables. Out of the aforementioned benefits of modeling,
control of the system’s architecture and risk management are of particular importance.
For example, we would like to answer questions like:

- Which attributes/tables are involved in the population of a certain attribute?
- What part of the scenario is affected if we delete an attribute?
- How good is the design of my ETL scenario? Is variant A or variant B better?

Previous research has provided some results towards the aforementioned tasks. The
work of [9, 11] provides conceptual modeling techniques for ETL. In [10] we have
presented a first attempt towards a graph-based model for the definition of the ETL
scenarios. The model of [10] treats ETL scenarios as graphs. Activities and data stores

386 P. Vassiliadis et al.

are modeled as the nodes of the graph; the attributes that constitute them are modeled
as nodes too. Activities have input and output schemata and provider relationships
relate inputs and outputs between data providers and data consumers. Nevertheless,
what is missing from previous efforts is a full model of the semantics of ETL
workflows and a rigorous framework for the measurement of our design artifacts.

In this paper, we significantly extend previous works to capture the internals of the
workflow activities in sufficient detail. We make use of a logical abstraction of ETL
activity semantics in the form of LDL++ programs [14]. The approach is not
unrealistic: in fact, in [12] the authors discuss the possibility of providing extensible
libraries of ETL tasks, logically described in LDL. On the basis of this result, it is
reasonable to assume the reusability of these libraries. In this paper, we extend the
graph of [12] by incorporating the internals of the activity semantics to the graph. To
this end, we provide a principled way of transforming LDL programs to graphs, in a
way that gracefully complements the model of [10, 12]. The resulting graph, which is
called Architecture Graph can provide sufficient answers to what-if and dependency
analysis in the process of understanding or managing the risk of the environment.

Moreover, another question can also be answered: “How good is my design?”. The
community of software engineering has provided numerous metrics towards
evaluating the quality of software designs [4]. Are these metrics sufficient? In this
paper, we build upon the fundamental contribution of [2] that develops a rigorous and
systematic framework that classifies usually encountered metrics into five families,
each with its own characteristics. These five families are size, length, complexity,
cohesion and coupling of software artifacts. In this paper, we develop specific
measures for the Architecture Graph and formally prove their fitness for the rigorous
framework of [2].

In a nutshell, our contributions can be listed as follows:

− an extension of [10] to incorporate internal semantics of activities in the
architecture graph;

− a principled way of transforming LDL programs to the graph, so that the latter
can be explored both at the granular (i.e., attribute) level of detail and at
different levels of abstraction;

− a systematic definition of software measures for the Architecture Graph, based
on the rigorous framework of [2].

This paper is organized as follows. In Section 2, we present the graph model for
ETL activities. Section 3 discusses measures for the introduced model. In Section 4,
we present related work. Finally, in Section 5 we conclude our results and provide
insights for future work. The reader is encouraged to refer to the long version of this
paper [13] for all the proofs and several technical issues, omitted from this paper for
lack of space.

2 A Generic Model of ETL Activities

The purpose of this section is to present a formal logical model for the activities of an
ETL environment. We start with the background constructs of the model, already
introduced in [10, 12]. Then, we move on to extend this modeling with formal
semantics of the internals of the activities.

 Blueprints and Measures for ETL Workflows 387

In order to formally define the semantics of ETL workflow, we can use any
3GL/4GL programming language (C++, PL/SQL etc.). We do not consider the actual
implementation of the workflow in some programming language, but rather, we
employ LDL++ [14] in order to describe its semantics in a declarative nature and
understandable way. LDL++ is a logic-programming, declarative language that
supports recursion, complex objects and negation. Moreover, LDL++ supports
external functions, choice, (user-defined) aggregation and updates. LDL was carefully
chosen as the language for expressing ETL semantics. First, it is elegant and has a
simple model for expressing activity semantics. Second, the head-body combination is
particularly suitable for relating both (a) input and output in the simple case, and, (b)
consecutive layers of intermediate schemata in complex cases. Finally, LDL is both
generic and powerful, so that (large parts of) other languages can be reduced to the
Architecture Graph constructs that result from it.

2.1 Preliminaries

In this subsection, we introduce the modeling constructs of [10, 12] upon which we
will subsequently build our contribution. In brief, the basic components of this
modeling framework are:

− Data types. Each data type T is characterized by a name and a domain, i.e., a
countable set of values. The values of the domains are also referred to as
constants.

− Attributes. Attributes are characterized by their name and data type. For
single-valued attributes, the domain of an attribute is a subset of the domain of
its data type, whereas for set-valued, their domain is a subset of the powerset
of the domain of their data type 2dom(T).

− A Schema is a finite list of attributes. Each entity that is characterized by one
or more schemata will be called Structured Entity.

− Records & RecordSets. We define a record as the instantiation of a schema to
a list of values belonging to the domains of the respective schema attributes.
Formally, a recordset is characterized by its name, its (logical) schema and its
(physical) extension (i.e., a finite set of records under the recordset schema). In
the rest of this paper, we will mainly deal with the two most popular types of
recordsets, namely relational tables and record files.

− Functions. A Function Type comprises a name, a finite list of parameter data
types, and a single return data type.

− Elementary Activities. In the framework of [12], activities are logical
abstractions representing parts, or full modules of code. An Elementary
Activity (simply referred to as Activity from now on) is formally described by
the following elements:

- Name: a unique identifier for the activity.
- Input Schemata: a finite list of one or more input schemata that receive

data from the data providers of the activity.
- Output Schemata: a finite list of one or more output schemata that

describe the placeholders for the rows that pass the checks and
transformations performed by the elementary activity.

388 P. Vassiliadis et al.

- Operational Semantics: a program, in LDL++, describing the content
passing from the input schemata towards the output schemata. For
example, the operational semantics can describe the content that the
activity reads from a data provider through an input schema, the
operation performed on these rows before they arrive to an output
schema and an implicit mapping between the attributes of the input
schema(ta) and the respective attributes of the output schema(ta).

- Execution priority. In the context of a scenario, an activity instance must
have a priority of execution, determining when the activity will be
initiated.

− Provider relationships. These are 1:N relationships that involve attributes with
a provider-consumer relationship. The flow of data from the data sources
towards the data warehouse is performed through the composition of activities
in a larger scenario. In this context, the input for an activity can be either a
persistent data store, or another activity. Provider relationships capture the
mapping between the attributes of the schemata of the involved entities. Note
that a consumer attribute can also be populated by a constant, in certain cases.

− Part_of relationships. These relationships involve attributes and parameters
 and relate them to their respective activity, recordset or function to which
 they belong.

Based upon the previous constructs, already available from [12], we proceed with
their extension towards fully incorporating the semantics of ETL workflow in our
framework. To this end we introduce programs as another modeling construct.

− Programs. We assume that the semantics of each activity is given by a
declarative program expressed in LDL++. Each program is a finite list of
LDL++ rules. Each rule is identified by an (internal) rule identifier. We
assume a normal form for the LDL++ rules that we employ. In our setting,
there are three types of programs, and normal forms, respectively:

(i) intra-activity programs that characterize the operational semantics, i.e.,
the internals of activities (e.g., a program that declares that the activity
reads data from the input schema, checks for NULL values and populates
the output schema only with records having non-NULL values),

(ii) inter-activity programs that link the input/output of an activity to a data
provider/consumer,

(iii)side-effect programs that characterize whether the provision of data is an
insert, update, or delete action. Due to lack of space, we discuss side-
effect rules in detail in the long version of this paper [13].

− Regulator Relationships. A regulator relationship in a safe rule is an
equality/inequality relationship between two terms, i.e., of the form term1
term2, such that neither of them appears in the head of a rule. In terms of the
architecture graph, the regulator relationship is represented (a) by a node for
each of the terms, (b) by a node representing the condition , and (c) by two
edges among the node of the condition and the nodes of the term. The
direction of the edges follows the way the expression is written in LDL (i.e.,
from the left to right). Regulator relationships are used in order to capture the
selection conditions and joins that take place in an LDL program.

 Blueprints and Measures for ETL Workflows 389

We assume that each activity is defined in isolation. In other words, the inter-
activity program for each activity is a stand-alone program, assuming the input
schemata of the activity as its EDB predicates. Then, activities are plugged in the
overall scenario that consists of inter-activity and side-effect rules and an overall
scenario program can be obtained from this combination.

Intra-activity programs. The intra-activity programs abide by the following rules:

1. All input schemata are EDB predicates.
2. All output schemata appear only as IDB predicates. Furthermore, output

schemata are the only IDB predicates that appear in such a program.
3. Intermediate rules are possibly employed to help with intermediate results.
4. We assume non-recursive admissible programs. The safety of the program is

guarantied by the requirement for admissibility, which is a generalization of
stratifiability [3]. An admissible program does not contain any self-referential
set definitions or any predicates defined in terms of their own negations.

Inter-activity programs. The inter-activity programs are very simple. There is
exactly one rule per provider relationship, with the consumer in the head and the
provider in the body. The consumer attributes are mapped to their corresponding
providers either through the synonym mechanism or through explicit equalities. No
other atoms or predicates are allowed in the body of an inter-activity program; all the
consumer attributes should be populated from the provider.

Consumer_input(a1,…,an) <- provider_output(a1,…,am), m ≥ n

2.2 Incorporating Activity Semantics in the Architecture Graph

The focus of [10, 12] is on the input-output role of the activities instead of their
internal operation. In this section, we extend the model of those works by translating
the formal semantics of the internals of the activities to graph constructs, as part of the
overall Architecture Graph. We organize this discussion as follows: first, we consider
how individual rules are represented by graphs for intra-activity and inter-activity
programs. The interested author can find a discussion about side-effect programs in
the long version of this paper [13]. Then, we discuss how the programs of activities
are constructed from the composition of different rules and finally, we discuss how a
scenario program can be obtained from the composition of the graph representations
of individual programs.

Intuitively, instead of simply stating which schema populates another schema, we
trace how this is done through the internals of an activity. The programs that facilitate
the input to output mappings take part in the graph, too. Any filters, joins or
aggregations are part of the graph as first-class citizens. There is a straightforward
way to determine the architecture graph with respect to the LDL program that defines
the ETL scenario.

Intra-activity rules. Given the program of the activity as a stand-alone LDL++
program, we introduce the following constructs, by default:
− A node for the activity per se.
− A node for each of the schemata of the activity and a node for the activity

program. Part-of edges connect the activity with these components.
− A node for each rule, connected through a part-of relationship to the program node

of the activity.

390 P. Vassiliadis et al.

If we treat each rule as a stand-alone program, we can construct its graph as
follows:

− We introduce a node for each predicate of the rule. These nodes are connected to
the rule node through a part-of relationship. The edge of the head predicate is
tagged as ‘head’ and the edges of the negated literals of the body are tagged as
‘¬’. Functions are treated as predicates. A different predicate node is introduced
for each instance of the same predicate (e.g., in the case of a self-join). Such nodes
are connected to each other through alias edges. In the long version [13], we detail
the parts of the last cases that require extra attention.

− We introduce a node for each variable of a predicate. Part-of relationships connect
these nodes with their corresponding predicates.

− For each condition of the form Input attribute = Output attribute (or its equivalent
presence of synonyms in the output and input schemata), we add a provider edge.
Here, we assume as input (output) attributes, attributes belonging to predicates of
the rule body (head). A provider relationship is thus, an edge from the body
towards the head of the rule.

− For relationships among input attributes (practically, involving functions and
built-ins), a regulator edge is introduced.

R06: sk.a_in1(pkey,suppkey,date,qty,cost)<-
 dsa_ps(pkey,suppkey,date,qty,cost).

R07: sk.a_in2(pkey,source,skey)<-
 lookUp(l_pkey,source,l_skey),pkey=l_pkey,skey=l_skey,

source=1.
R08: sk.a_out(pkey,suppkey,date,qty,cost,skey)<-
 add_sk1.a_in1(pkey,date,qty,cost),
 add_sk1.a_in2(pkey,source,l_skey).

R09: dollar2euro.a_in(skey,suppkey,date,qty,cost)<-
 sk.a_out(pkey,suppkey,date,qty,cost,skey).

Fig. 1. LDL++ for a small part of a scenario

Inter-activity rules. For each recordset of a scenario, we assume a node representing
its schema. For simplicity, we do not discriminate a recordset from its schema using
different nodes. For each intra-activity rule (between input-output schemata of
different activities and/or recordsets) there is a simple way to construct its
corresponding graph: we introduce a provider edge from the input towards the output
attributes.

Observe Fig. 1. Activity SK (Surrogate Key assignment) takes as input the data
from a recordset DSA_PS(PKey,SuppKey,Date,Qty,Cost), and obtains a globally
unique surrogate key SKey for the production key PKey, through a lookup table
LookUp(PKey, Source, SKey); in this example, we consider that data originate from
source 1. Then, the transformed data are propagated to another activity dollar2euro
that converts the dollar values of attribute cost, to Euros (only the input schema of
this activity is depicted). The rules R06, R07 and R09 are inter-activity rules: they
describe how the input schemata of the activities are populated from their providers.

 Blueprints and Measures for ETL Workflows 391

Activities and recordsets can both play the role of provider, as one can see. Rule R08
is an intra-activity rule. Fig. 2 depicts the architecture graph for this example. The
grey area concerns the intra-activity program; the rest concern the inter-activity
program rules. Solid arrows depict provider relationships, dotted arrows depict
regulator relationships and part-of relationships are depicted with simple lines.

pkey

suppkey

date

qty

cost

DSA_PS

R06 head

SK

Program

R08

a_in1 a_out d2e.
a_in

R09

pkey

suppkey

date

qty

cost

l_key

source

l_skey

lookup

R07 head

a_in2

pkey

source

skey

=

=

1

head head

pkey

suppkey

date

skey

cost

skey

suppkey

date

qty

cost

cost

Fig. 2. Architecture graph for the example of Fig. 1

Deriving the graph of an activity program from the graphs of its rules.
Combining the graphs of the rules of an activity is straightforward. Recall that so far,
we have created the graph for each rule, considering each rule in isolation. Then, the
graph for the overall activity is as follows:

− The nodes of the new graph comprise all the nodes of the rule graphs. If the same
predicate appears to more than one rule, we merge all its corresponding nodes
(i.e., the predicate node and all its variables). In the case where more than one
instance of the same predicate exists in one rule, we randomly select one of these
occurrences to be merged with the nodes of other rules.

− The edges of the new graph are all the edges, of the individual rules, after the
merging takes place.

392 P. Vassiliadis et al.

− All edges are tagged with the rule identifier of the rule they belong to. Through
part of relationships and edge tagging, we can reconstruct the graphs of the
individual rules, if necessary.

Deriving the graph of a scenario program from the graphs of its components.
The construction of the graph for the scenario program is simple.

− First, we introduce all inter-activity and side-effect rules. We merge all multiple
instances of the same recordset and its attributes. The same applies with the input
and output schemata of an activity. We annotate all edges with the rule identifier
of their corresponding rule.

− Then, intra-activity graphs are introduced too. Activity input and output schemata
are merged with the nodes that already represent them in the combined intra-
activity/side-effect graph. The same applies to activity nodes, too. No other action
needs to be taken, since intra-activity programs are connected to the rest of the
workflow only through their input and output schemata.

Once again, the reader is encouraged to refer to the long version of this paper [13],
where we handle several issues omitted here due to lack of space. Specifically, these
issues involve updates, aggregation, negation, functions and self-join queries.
Moreover, the possibility of zooming in/out the Architecture Graph is also provided in
[13]. The latter is a most useful interactive facility, necessary for avoiding the
information overload due to the potentially high volume of detailed information at the
attribute level, as described in this section.

3 Measuring the Architecture Graph: A Principled Approach

One of the main roles of blueprints is their usage as testbeds for the evaluation of the
design of an engineer. In other words, blueprints serve as the modeling tool that
provides answers to the questions “How good is my design?” or “Between these two
designs, which one is better?”. In other words, one can define metrics or, more
generally, measurement tests, to evaluate the quality of a design. In this section, we
will address this issue, for our ETL workflows, in a principled manner.

There is a huge amount of literature devoted in the evaluation of software artifacts.
Fenton proves that it is impossible to derive a unique measure of software quality [6].
Rather, measurement theory should be employed in order to define meaningful
measures of particular software attributes. A couple of years later, Briand et al.,
employ measurement theory to provide a set of five generic categories of measures
for software artifacts [2]:

− Size, referring to the number of entities that constitute the software artifact.
− Length, referring to the longest path of relationships among these entities.
− Complexity, referring to the amount of inter-relationships of a component.
− Cohesion, measuring the extent to which each module performs exactly one

job, by evaluating how closely related are its components.
− Coupling, capturing the amount of interrelationships between the different

modules of a system.

 Blueprints and Measures for ETL Workflows 393

Systems and their modules are considered to be graphs with the nodes representing
their constituent entities and the edges representing different kinds of
interrelationships among them (Fig. 3). The definition of these categories is generic,
in the sense, that depending on the underlying context, one can define his own
measures that fit within one of the aforementioned categories. In order to be able to
claim fitness within one of the aforementioned categories, there is a specific list of
properties that the proposed measure must fulfill. For example, the size of a system
modeled as a graph S(E,R) is a function Size(S) that is characterized by the
properties: (a) nonnegativity, i.e., Size(S)≥0; (b) null value; E=∅ Size(S)=0; and
(c) module additivity, i.e., if a system S has two modules m1 and m2, then Size(S) =
Size(m1) + Size(m2). The last property shows that adding elements to a system
cannot decrease its size (size monotonicity). For instance, the size of the system in
Fig. 3 is the sum of the sizes of its two modules m1 and m2. The intuition here is that if
the size of a certain module is greater than the size of another, then we can safely
argue that the former is comprised of more entities than the latter.

A

B

C D

E

G
F

IN OUT

X

Y

R

m1 m2

Fig. 3. A modular system graph containing two modules

Another important observation, found in both [6] and [2], is that measurement
theory imperatively demands that a measure describes an intuitively clear concept,
i.e., there is a clear interpretation of what we measure. This should be coupled with
clear procedures for determining the parameters of the model and interpreting the
results.

In this paper, we propose a set of measures that evaluate our ETL blueprints and
stay within the context of the measures proposed in [2]. Our fundamental concern, for
defining our measures is the effort required (a) to define and (b) to maintain the
Architecture Graph, in the presence of changes. Therefore, the statements that one
can make, concerning our measures characterize the effort/impact of these two phases
of the software lifecycle.

First, we identify the correspondence of the constructs of the Architecture Graph to
the concepts of [2]. In [2], a system S is a graph S=(E,R), where E is the set of
elements of the system and R is the set of relationships between the elements. A
module m is a subset of the elements (i.e., the nodes) of the system (observe that a
module is defined only in terms of nodes and not edges). In general, modules can
overlap. However, when the modules partition the nodes in a system, then this system
is called a modular system, MS. The authors distinguish two categories of edges: (a)
the intermodule edges that have end points in different modules and (b) the
intramodule edges that have end points in the same module. In terms of our modeling:

394 P. Vassiliadis et al.

− The architecture graph G(V,E) is a modular system.
− Recordsets and activities are the modules of the graph. The nodes of the graph

involve attributes, functions, constants, etc. All kinds of relationships are the
edges of the graph.

− The system is indeed modular, i.e., there are no elements (nodes) that do not
belong to exactly one module (activity or recordset).

− Inter-activity and side-effect rules result in intermodule edges. All the rest of
the relationships result in intramodule edges.

− The union of two interacting activities can be defined: it requires merging the
input/output nodes (attribute/schemata) connected by provider relationships.

3.1 Measures

Next, we define our measures. Due to lack of space, the proof of fitness within the set
of properties of [2] for each measure can be found in [13]. We strongly encourage the
reader to read the correctness proofs as they offer a deeper comprehension of the
nature of the measures that we propose.

Size. Size is a measure of the amount of constituting elements of a system. Therefore,
it can be considered as a reasonable indicator of the amount to define the system. In
our framework, we adopt the number of nodes as the measuring rule for the size of the
Architecture Graph; thus, the size of the architecture graph G(V,E) is given by the
formula Size(G) = card(V).

Length. Length is a measure that refers to the maximum length of “retransmission” of
a certain attribute value. Length measures the longest path that we possibly need to
maintain if we make an alteration in the structure of the Architecture Graph. For
example, this could involve the deletion of an attribute at the source side. Then, the
length characterizes how many nodes in the graph we need to modify as a result of
this change (practically involving the nodes corresponding to this particular attribute,
within the workflow).

In [10] the authors define the (transitive) dependency of a node as the cardinality of
the (transitive closure of) provider relationships arriving at this node. To define the
length of path from a module m backwards to the fountains of the graph, we use the
maximum of its transitive dependency measure for the attributes of its output
schemata. We avoid cycles in the graph by special treatment of side-effects [13].
Thereby, the length of a module m is given by the formula:

Length(m)= max{transitive_dependency(i)}, i∈output_schemata(m).

The length of the graph is defined as the maximum length over all its modules m:

Length(G)= max(Length(mj))

Observe the reference example of Fig. 1. Although it does not depict a complete
graph, the length of the depicted subgraph is 3, since the maximum length of its
modules is 3 (input schema of activity $2E).

Complexity. Complexity is an inherent property of systems; in our case, complexity
stands to the amount of interconnection of constituent entities of the Architecture
Graph. This is an indicator of maintenance effort in the presence of changes. The

 Blueprints and Measures for ETL Workflows 395

more complex a system is the more amount of maintenance effort is expected to be
required in the case of changes. Briand et al. [2] indicate that the properties of
complexity focus on edges, thus, our function for complexity concerns the edges of
the graph G(V,E) at the most detailed level. Again, we distinguish module from
system complexity.

We define the overall degree of a module to be the overall number of edges of any
kind (i.e., provider, part-of, etc) among its components, independently of direction.
We count inter-module provider edges as half for each module. Then,

Complexity(m) = |Eintramodule| + 0.5*|Eintermodule|

The complexity of the architecture graph G(V,E) is defined as the summary of the
complexities of all the modules of the graph (i.e., recordsets and activities).

Complexity(G) = overall_degree(G)=|E|

Cohesion. A commonly agreed upon property of modular software is that each
module ideally performs exactly one job. Cohesion is the measure employed to assess
the extent to which the modules of a system abide by this rule. In our case, we can
exploit the peculiarities of our setting to assess the cohesion of our ETL workflows.

ETL operations can largely be classified in two categories. Each activity in our
model performs one of two tasks: (a) filtering, meaning that a certain criterion is
applied over the employed data in order to block those that do not pass the test and (b)
transformation, meaning that a certain function is applied in order to generate some
new value in the workflow. Both these tasks involve regulator relationships among
the involved attributes and the functions/built-in selectors (=, ≤, etc.) of the activities.
Therefore, the amount of regulator relationships should be a good indicator of the
cohesion of a system. Moreover, we impose two extra requirements that we consider
reasonable: (a) the more functions/built-ins employed, the less cohesive the module is
(i.e., it is assumed/expected to perform more than one job) and (b) if more attributes
are involved in regulator relationships, cohesion increases. In the sequel, we will refer
to functions and built-ins as functionality nodes.

Before giving the formal definition, we will present the intuition of our proposed
measure. Due to requirement (a), we need the inverse of the number of employed
functionality nodes. Also due to the requirement (b) we need a measure analog to the
number of attributes involved in a regulator relationship. Since Briand et al. [2]
require cohesion to be normalized within a range [0…max], we need to normalize the
number of attributes involved with the total number of attributes. To simplify things
we measure only input and output attributes. Still, we count an input/output attribute
as functionality-related even if it is not directly involved in a regulator relationship,
but transitively dependent (or responsible) with an internal attribute that is involved.

In Fig. 3, we depict providers with solid lines and regulators with dotted lines. The
input attribute A of module m2 is involved in a regulator relationship transitively
(through attribute C), whereas the attribute G is directly involved in a regulator
relationship. Now, we are ready to define cohesion for our modules and system.

OUT)(IN*F

F_OUTF_IN
)Cohesion(m

+
+

= ,

396 P. Vassiliadis et al.

where F is the number of functions of the module, IN (OUT) is the number of input
(output) attributes of the module, and F-IN (F-OUT) is the number of functionally-
related input (output) attributes of module m.

Cohesion(G) = avg(cohesion(mi)), for all the modules mi of G

Cohesion for the module m2 of Fig. 3 takes the value of (1+1)/1*5=0.4.

Coupling. In our framework, coupling captures the amount of relationship between
the attributes belonging to different recordsets or activities (i.e., modules) of the
graph. Briand et al. [2] indicate that the properties of complexity focus on intermodule
edges, thus our function for complexity concerns the provider edges of the graph
G(V,E) that start from an output node of a module and terminate to an input node of
another module. Thus, we define the coupling of a graph G(V,E) as the sum of
incoming and outgoing provider edges of each activity or recordset. This summary of
edges for a certain module is called local degree according to the terminology we
introduced in [10]. Thus, coupling is given by:

Coupling(G) = ilocal_degree(mi), for all the modules mi of G

In the reference example of Section 2, the coupling of the activity SK is 13, i.e., the
total number of its incoming and outgoing provider relationships.

3.2 Example

In order to demonstrate the usage of our proposed metrics, we present an exemplary
scenario, implemented in three different ways. For each of these implementations we
measure the different properties that we have proposed and discuss the observed
phenomena.

The scenario involves the propagation of data from the product suppliers table
DSA_PS(PKEY,SUPPKEY,DATE,QTY,COST) towards the table DW_V1(PKEY,

SUM_COSTS) with the obvious semantics. Three operations need to take place
between the two data stores: (a) a selection involving dates after 1/1/2004, (b) a
second selection test involving only quantities greater than zero and (c) a summation
of costs per product key. In the first scenario, we employ a different activity for each
of the operations, with the activities connected serially. In the second scenario, we
have merged the two filters in a single activity. In the third scenario, the selections are
performed in parallel, the results are then joined and subsequently aggregated. The
graph representation of the scenarios is partially depicted in Fig. 4, where the abstract
representation of each scenario is shown in the upper part of each column and the part
of the detailed representation is depicted in the lower part. We omit part-of
relationships and details higher than the schema level for reasons of space and
presentation. In the figure, we refer to attribute SUPPKEY as SUPP for lack of space.
The metrics for each scenario are depicted in the tables 1- 3 and refer to the depicted
graphs (with very small discrepancies from the overall graphs).

The observation of these measures reveals that the second scenario outperforms all
the others in all categories. This is due to the fact that by merging the selections in a
single activity, all provider relationships among modules are shortened. The same
applies, of course, for the size of the graph. In terms of individual measures, we can
observe the following:

 Blueprints and Measures for ETL Workflows 397

• Size has obvious results, simply due to the number of attributes in the input and
output schemata of the activities.

• The length is a clear indication of the maximum reproduction path of a datum
and, obviously, no major differences are observed.
The complexity and cohesion of the second scenario are quite impressing.
Ideally, for reasons of maintainability, we would appreciate a scenario with low
complexity and high cohesion. The complexity of the second scenario is
significantly lower than any other alternative, since, obviously, fewer activities
and fewer operations are performed. Although the combined selection activity
has the same cohesion with the two individual ones (by a simple application of
the formula), the overall cohesion drops due to the smaller number of involved
activities. Thus, the cohesion of the second scenario is noticeably higher than the
other two. Also, the fact that the cohesion of the combined activity remains the
same is not surprising: although two selections are performed, the number of
attributes involved increases, so the fraction remains stable.

Table 1. Measures for Scenario 1, involving a linear composition of three activities

 Size Length Complexity Cohesion Coupling
DSA_PS 6 0 7.50 - 5

1 14 2 24.00 0.10 10
2 14 4 24.00 0.10 10

sum 14 7 20.75 0.29 7
DW_V1 3 8 3.00 - 2
Overall 51 8 79.25 0.16 34

Table 2. Measures for Scenario 2, where selections are merged

 Size Length Complexity Cohesion Coupling
DSA_PS 6 0 7.50 - 5

 16 2 28.00 0.10 10
Sum 14 5 20.75 0.29 7
DW_V1 3 6 3.00 - 2
Overall 39 6 59.25 0.19 24

Table 3. Measures for Scenario 3, where selections are performed in parallel

 Size Length Complexity Cohesion Coupling
DSA_PS 6 0 7.50 - 5

1 14 2 24.00 0.10 10
2 14 2 24.00 0.10 10

join 20 4 36.50 0.07 15
sum 14 7 20.75 0.29 7
DW_V1 3 8 3.00 - 2
Overall 71 8 115.75 0.14 49

398 P. Vassiliadis et al.

Sc
en

ar
io

 1

Sc
en

ar
io

 2

Sc
en

ar
io

 3

D

SA
_P

S
1

2

D
W

_V
1

D

SA
_P

S
D

W
_V

1

D
SA

_P
S

1 2

D

W
_V

1

P
K

E
Y

SU

P
P

D

A
T

E

Q
T

Y

C
O

ST

D
SA

_P
S

1.
IN

1.
O

U
T

2.
IN

2.
O

U
T

.I
N

T
E

M
P

A
G

G

T
E

M
P

> C

> 0

su
m

V
1

P

K
E

Y

SU
P

P

D
A

T
E

Q
T

Y
C

O
ST

D
SA

_P
S

.I
N

.O
U

T

.I
N

T
E

M
P

A
G

G

T
E

M
P

> C

su
m

> 0

V
1

=

P
K

E
Y

SU
P

P
D

A
T

E

Q
T

Y

C
O

ST

D
SA

_P
S

2.
IN

2.
O

U
T

.I
N

T
E

M
P

A
G

G

T
E

M
P

> C

> 0 su
m

J.
IN

1,
2

J.
O

U
T

=

1.
IN

1.
O

U
T

=

V
1

F
ig

. 4
. E

qu
iv

al
en

t s
ce

na
ri

os
 f

or
 th

e
pr

op
ag

at
io

n
of

 d
at

a
fr

om
 a

 d
at

a
so

ur
ce

 to
 th

e
w

ar
eh

ou
se

 Blueprints and Measures for ETL Workflows 399

• he coupling is clearly a subset of the complexity measure: by isolating
only provider relationships, we clearly see that module interconnections are
lowest when the second scenario is employed.

Finally, we can easily observe (both by visualization and measurement) that there
exist attributes that should not participate in the workflow, either in the first place
(e.g., attribute SUPPKEY) or after their corresponding selections have taken place (e.g.,
attributes DATE and COST).

4 Related Work

There are several efforts that present systems tailored for ETL tasks [7, 8]. The main
focus of these works is on achieving functionality, rather than on modeling the
internals or dealing with the software design or maintenance of these tasks.
Concerning the conceptual modeling of ETL, [9] and [11] are the first attempts that
we know of. The former approach employs UML as a modeling language whereas the
latter introduces a generic graphical notation. Still, the focus is only on the conceptual
modeling part. As far as the logical modeling of ETL is concerned, in [10, 12] the
authors present a graph-based model and an extensible template-based mechanism to
define ETL workflows. As already mentioned, in this paper, we extend this model by
incorporating the internals of the activity semantics to the graph (more extensions,
e.g., updates, can be found in [13]).

Concerning related work on software measurement, we have already mentioned the
fundamental works that have guided our approach. Fenton [6] gives the fundamentals
of measurement theory and the way they should applied in the case of measuring
software artifacts. Briand et al. [2] present the overall framework for defining our
particular measures. The particular contribution of this paper is that it gives the
principles for defining large categories of software measures. In our case, we prove
that the proposed measures fit within the context given by [2]. There is an extensive
discussion of software metrics in [4] and an interesting discussion of this area in [5].

5 Conclusions

In this paper, we construct the blueprints for the structure ETL workflows by mapping
both their inter-connection and their internal semantics to a graph, which we call the
Architecture Graph. The Architecture Graph constitutes the blueprint over which we
can perform further analysis for the structure of such a workflow. The first of our
contributions involves extending existing results by capturing the internal semantics
of each activity in the workflow. We employ the LDL language in order to capture the
semantics of ETL activities and we have provided a principled way of transforming
LDL programs to the graph. Apart from the value that blueprints have as modeling
constructs, we can also exploit them in order to introduce rigorous techniques for the
measurement of ETL workflows. To this end, we have built upon the formal
framework of [2] and provide software measures to quantify the size, length,
complexity, cohesion and coupling of ETL workflows. Several issues omitted in this
paper for lack of space, can be found in [13].

Research can be continued in more than one direction. We need an extra step, in
order to link our results to the control flow of the graph. Precise algorithms for the

T

400 P. Vassiliadis et al.

evaluation of the impact of changes in the Architecture Graph can also be devised.
New metrics can also be discovered, if they appear to reveal properties not covered
here. Finally, the usage of the Architecture Graph in all phases of the software
lifecycle (e.g., testing) can also be evaluated.

Acknowledgments

This work is partially supported by the European Commission and the Greek Ministry
of Education through the EPEAEK Program.

References

1. G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

2. L.C. Briand, S. Morasca, V.R. Basili. Property-Based Software Engineering Measurement.
In IEEE Trans. on Software Engineering, 22(1), Jan 1996.

3. S. Ceri, G. Gottlob, L. Tanca. Logic Programming and Databases. Springer-Verlag, 1990.
4. R.R. Dumke. Software Metrics: a subdivided bibliography. Available at http://irb.cs.uni-

magdeburg.de/sw-eng/us/bibliography/bib_main.shtml
5. N.E. Fenton, M. Neil. Software metrics: roadmap. ICSE - Future of SE Track 2000. pp.

357-370, 2000.
6. N. Fenton. Software Measurement: A Necessary Scientific Basis. In IEEE Trans. on

Software Engineering, 20(3), March 1994.
7. H. Galhardas, D. Florescu, D. Shasha and E. Simon. Ajax: An Extensible Data Cleaning

Tool. In Proc. ACM SIGMOD Intl. Conf. on the Management of Data, pp. 590, Dallas,
Texas, 2000.

8. V. Raman, J. Hellerstein. Potter's Wheel: An Interactive Data Cleaning System.
Proceedings of 27th International Conference on Very Large Data Bases (VLDB’01), pp.
381-390, Roma, Italy, 2001.

9. J. Trujillo, S. Luján-Mora. A UML Based Approach for Modeling ETL Processes in Data
Warehouses. In Proc. 22nd Intl. Conference on Conceptual Modeling (ER 2003), pp. 307-
320, Chicago, IL, USA, October 13-16, 2003.

10. P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Modeling ETL Activities as Graphs. In Proc.
4th Intl. Workshop on Design and Management of Data Warehouses (DMDW’02), pp. 52–
61, Toronto, Canada, 2002.

11. P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Conceptual Modeling for ETL Processes. In
Proc. 5th ACM Intl. Workshop on Data Warehousing and OLAP (DOLAP), pp. 14–21,
McLean, Virginia, USA, 2002.

12. P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis. A Framework for the Design of
ETL Scenarios. In Proc. 15th Conf. on Advanced Information Systems Engineering
(CAiSE '03), pp. 520-535, Klagenfurt/Velden, Austria, June, 2003.

13. P. Vassiliadis, A. Simitsis, M. Terrovitis, S. Skiadopoulos. Blueprints for ETL workflows
(long version). Available through http://www.cs.uoi.gr/~pvassil/ publications/
2005_ER_AG/ETL_blueprints_long.pdf

14. C. Zaniolo. LDL++ Tutorial. UCLA. http://pike.cs.ucla.edu/ldl/, December 1998.

Vague Sets or Intuitionistic Fuzzy Sets for
Handling Vague Data: Which One Is Better?

An Lu and Wilfred Ng

Department of Computer Science,
The Hong Kong University of Science and Technology,

Hong Kong, China
{anlu, wilfred}@cs.ust.hk

Abstract. In the real world there are vaguely specified data values in
many applications, such as sensor information. Fuzzy set theory has been
proposed to handle such vagueness by generalizing the notion of member-
ship in a set. Essentially, in a Fuzzy Set (FS) each element is associated
with a point-value selected from the unit interval [0,1], which is termed
the grade of membership in the set. A Vague Set (VS), as well as an Intu-
itionistic Fuzzy Set (IFS), is a further generalization of an FS. Instead of
using point-based membership as in FSs, interval-based membership is
used in a VS. The interval-based membership in VSs is more expressive
in capturing vagueness of data. In the literature, the notions of IFSs and
VSs are regarded as equivalent, in the sense that an IFS is isomorphic
to a VS. Furthermore, due to such equivalence and IFSs being earlier
known as a tradition, the interesting features for handling vague data
that are unique to VSs are largely ignored. In this paper, we attempt
to make a comparison between VSs and IFSs from various perspectives
of algebraic properties, graphical representations and practical applica-
tions. We find that there are many interesting differences from a data
modelling point of view. Incorporating the notion of VSs in relations,
we describe Vague SQL (VSQL), which is an extension of SQL for the
vague relational model, and show that VSQL combines the capabilities
of a standard SQL with the power of manipulating vague relations. Al-
though VSQL is a minimal extension to illustrate its usages, VSQL allows
users to formulate a wide range of queries that occur in different modes
of interaction between vague data and queries.

1 Introduction

Fuzzy set theory has long been introduced to handle inexact and imprecise data
by Zadeh’s seminal paper in [1], since in the real world there is vague information
about different applications, such as in sensor databases, we can formalize the
measurements from different sensors to a vague set. In fuzzy set theory, each
object u ∈ U is assigned a single real value, called the grade of membership,
between zero and one. (Here U is a classical set of objects, called the universe
of discourse.) In [2], Gau et al. point out that the drawback of using the sin-
gle membership value in fuzzy set theory is that the evidence for u ∈ U and

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 401–416, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

402 A. Lu and W. Ng

the evidence against u ∈ U are in fact mixed together. In order to tackle this
problem, Gau et al. propose the notion of Vague Sets (VSs), which allow us-
ing interval-based membership instead of using point-based membership as in
FSs. The interval-based membership generalization in VSs is more expressive
in capturing vagueness of data. However, VSs are shown to be equivalent to
that of Intuitionistic Fuzzy Sets (IFSs) [3,4,5,6] in [7]. For this reason, the in-
teresting features for handling vague data that are unique to VSs are largely
ignored.

In this paper, we attempt to make a more detailed comparison between
VSs and IFSs from various perspectives of algebraic properties, graphical rep-
resentations and practical applications. We find that there are many interesting
features of VSs from a data modelling point of view. Essentially, due to the
fact that a VS corresponds to a more intuitive graphical view of data sets, it
is much easier to define and visualize the relationship of vague data objects.
The classical nulls representing incompleteness can be viewed as a special case
of a vague set and then generalized to vague data. In addition, we show that
the notions of crisp and imprecision in vague data can be captured by interval
relationships.

We further incorporate the notion of VSs in relations and describe Vague
SQL (VSQL), which is an extension of SQL for the vague relational model. We
show that VSQL combines the capabilities of standard SQL with the power of
manipulating vague relations. We refine the notion of degree of similar equality
(SEQ) defined in [8] for comparing data values in order to process the vague
selection predicates used in VSQL. Although VSQL is a minimal extension
to illustrate its usages, VSQL allows the users to formulate a wide range of
queries that occur in different modes of interaction between vague data and
queries.

The main contributions of this paper are fourfold. First, we examine in more
diversified ways, the notions of VSs and IFSs, which has so far not been done
in the literature and leads to the undermining of the development of VSs. Sec-
ond, we study the relationships between vague memberships and nulls in VSs
and present the crisp and the imprecision orders. Third, we discuss the similar-
ity measure between vague values and sets. Finally, we propose VSQL in order
to gain more expressive power to formulate queries involving vague informa-
tion. We classify the interactions between queries and data in four modes and
demonstrate how the queries arising in different modes can be formulated using
VSQL.

The rest of the paper is organized as follows. Section 2 presents some basic
concepts related to VSs and IFSs. We also briefly discuss some ways of mea-
suring vagueness in practice. In Section 3, we discuss the representations and
the graphical view of nulls in VSs. In Section 4, we present the median and the
imprecision membership of VSs and the crisp and the imprecision order in VSs.
In Section 5, we discuss the similarity of vague values and sets. In Section 6,
we propose VSQL, which is powerful enough to retrieve the data of a specified
degree of vagueness. In Section 7 we offer our concluding remarks.

Vague Sets or Intuitionistic Fuzzy Sets for Handling Vague Data 403

2 Vague Sets and Intuitionistic Fuzzy Sets

In this section, we introduce some basic concepts related to Vague Sets (VSs) and
Intuitionistic Fuzzy Sets (IFSs). We illustrate that the graphical representation
of VSs is more intuitive in perceiving vague values.

2.1 Basics

Let U be a classical set of objects, called the universe of discourse, where an
element of U is denoted by u.

Definition 1. (Fuzzy Set) A fuzzy set A = {< u, μA(u) > |u ∈ U} in a uni-
verse of discourse U is characterized by a membership function, μA, as follows:
μA : U → [0, 1].

Definition 2. (Vague Set) A vague set V in a universe of discourse U is
characterized by a true membership function, αV , and a false membership func-
tion, βV , as follows: αV : U → [0, 1], βV : U → [0, 1], and αV (u) + βV (u) ≤ 1,
where αV (u) is a lower bound on the grade of membership of u derived from the
evidence for u, and βV (u) is a lower bound on the grade of membership of the
negation of u derived from the evidence against u.

Suppose U = {u1, u2, . . . , un}. A vague set V of the universe of discourse
U can be represented by V =

∑n
i=1[α(ui), 1 − β(ui)]/ui, where 0 ≤ α(ui) ≤

1 − β(ui) ≤ 1 and 1 ≤ i ≤ n. In other words, the grade of membership of
ui is bounded to a subinterval [αV (ui), 1 − βV (ui)] of [0, 1]. Thus, VSs are a
generalization of FSs, since the grade of membership μV (u) of u in Definition 1
may be inexact in a VS. The idea of membership generalization via an interval
has actually proposed earlier as Intuitionistic Fuzzy Sets (IFSs) [3,4] as follows:

Definition 3. (Intuitionistic Fuzzy Sets) An intuitionistic fuzzy set A =
{< u, μA(u), νA(u) > |u ∈ U} in a universe of discourse U is characterized
by a membership function, μA, and a non-membership function, νA, as follows:
μA : U → [0, 1], νA : U → [0, 1], and 0 ≤ μA(u) + νA(u) ≤ 1.

As we can see that the difference between VSs and IFSs is due to the def-
inition of membership intervals. We have [αV (u), 1 − βV (u)] for u in V but
< μA(u), νA(u) > for u in A. Here the semantics of μA is the same as with
αV and νA is the same as with βV . However, the boundary (1 − βV) is able to
indicate the possible existence of a data value, as already mentioned in [7]. This
subtle difference gives rise to a simpler but meaningful graphical view of data
sets. We now depict a VS in Fig. 1 and an IFS in Fig. 2 respectively. It can
be seen that, the shaded part formed by the boundary in a given VS in Fig. 1
naturally represents the possible existence of data. Thus, this “hesitation region”
corresponds to the intuition of representing vague data.

We will see more benefits of using vague membership intervals in capturing
data semantics in subsequent sections. The choice of the membership boundary
also has interesting implications on modelling relationship between vague data.

404 A. Lu and W. Ng

0
1 ()

V
u

0
()

V
u

0
u

()
V

u

1 ()
V

u

Fig. 1. Membership Functions of a VS

0
u

)(u
A

)(u
A

)(
0

u
A

)(
0

u
A

Fig. 2. Membership Functions of an IFS

2.2 Algebraic Operations

In this subsection, we present the basic operations of VSs and IFSs, which include
complement, containment, equal, union, intersection, and so on. The details of
most operations related to VSs can be consulted from [2].

Definition 4. (Complement) The complement of a vague set V is denoted by
V ′ and is defined by

αV ′(u) = βV (u),
1− βV ′(u) = 1− αV (u).

Definition 5. (Containment) A vague set VA is contained in another vague
set VB , VA ⊆ VB , if and only if,

αVA(u) ≤ αVB (u),
1− βVA(u) ≤ 1− βVB (u).

Definition 6. (Equal) Two vague sets VA and VB are equal, written as VA =
VB, if and only if, VA ⊆ VB and VB ⊆ VA; that is

αVA(u) = αVB (u),
1− βVA(u) = 1− βVB (u).

Definition 7. (Union) The union of two vague sets VA and VB is a vague set
VC , written as VC = VA ∪ VB , whose true membership and false membership
functions are related to those of VA and VB by

αVC (u) = max(αVA (u), αVB (u)),
1− βVC (u) = max(1 − βVA(u), 1− βVB (u)) = 1−min(βVA(u), βVB (u)).

Definition 8. (Intersection) The intersection of two vague sets VA and VB

is a vague set VC , written as VC = VA ∩ VB, whose true membership and false
membership functions are related to those of VA and VB by

αVC (u) = min(αVA(u), αVB (u)),
1− βVC (u) = min(1− βVA(u), 1− βVB (u)) = 1−max(βVA(u), βVB (u)).

As a comparison, we present the counterpart operations for IFSs [3].

Vague Sets or Intuitionistic Fuzzy Sets for Handling Vague Data 405

Definition 9. If A and B are two IFSs of the set U , then
Ā = {< u, νA(u), μA(u) > |u ∈ U},
A ⊆ B iff ∀u ∈ U, μA(u) ≤ μB(u) and νA(u) ≥ νB(u),
A = B iff ∀u ∈ U, μA(u) = μB(u) and νA(u) = νB(u),
A ∪B = {< u, max(μA(u), μB(u)), min(νA(u), νB(u)) > |u ∈ U}, and
A ∩B = {< u, min(μA(u), μB(u)), max(νA(u), νB(u)) > |u ∈ U}.

2.3 Measurements of Vagueness in Practice

We now discuss some ideas of how to measure memberships of VSs and IFSs.
There is actually no consensus in the interpretation of what a membership grade
means in the literature [9].

In [10], Bilgiç and Türkşen present a review of various interpretations of the
fuzzy membership function and the ways of obtaining a membership function.
VSs also share similar interpretation of membership grades. For example, the
vague predicate “John is tall” is given by an interval in the unit interval, [0.6,0.8].
There are several possible views on how to measure the membership:

Likelihood view: 60-80% of a given population declares that John is tall.
Random set view: 60-80% of a given population describes “tall” as an

interval containing John’s height.
Similarity view: John’s height is away from the benchmark object which

is truly “tall” to the degree 0.2-0.4. Here if we assume a benchmark example
of “tall” is 250cm with the full degree [1,1], then John’s height is away from
250cm to the degree 0.2-0.4 means his height is between (1 − 0.4) × 250 and
(1− 0.2)× 250cm, that is, 150-200cm.

For IFSs, we may have the following interpretations:
Likelihood view: 60% of a given population declares that John is tall while

20% does not. (Another 20% is neutral.)
Random set view: 60% of a given population describes “tall” as an interval

containing John’s height while 20% does not. (Another 20% is neutral.)
Similarity view: The same as in the VS case.
The following is a more detailed example which helps to understand the

collection of vague data, as well as IFS data.

Example 1. In a sensor database application, suppose in a testing region we
have a set of ten sensors {S1, S2, . . . , S10}. We then obtain ten corresponding
measurements, {20, 22, 20, 21, 20, -, 20, 20, -, 20} at a certain time t. Here “-”
means that the sensor data is not reachable/accessible at time t. (i.e. we have
six 20, one 21, one 22 and two missing values.) Now, we formalize the results
to a vague set Vt as follows. There are six occurrences of 20, but two values (21
and 22) are against it. There are also two missing values (neutral), thus the true
membership α is 0.6 and the false membership β is 0.2 (i.e. 1-β = 0.8). Thus, we
obtain the vague membership value [0.6,0.8] for 20. Similarly, we obtain the vague
membership value [0.1,0.3] for 21 and [0.1,0.3] for 22. Combining these results,
we have the VS, Vt = [0.6,0.8]/20+[0.1,0.3]/21+[0.1,0.3]/22. Equivalently, we
have the IFS, At = {< 20, 0.6, 0.2 >, < 21, 0.1, 0.7 >, < 22, 0.1, 0.7 >}.

406 A. Lu and W. Ng

The above example also indicates that, using a VS is more natural than an
IFS for merging fuzzy objects. For example, suppose we merge three fuzzy values
0.4/u, 0.5/u and 0.6/u. We can then directly obtain the vague value [0.4, 0.6]/u,
which means that the lower bound of the membership of u is the minimum of
the fuzzy membership, 0.4, and that the upper bound is the maximum of the
fuzzy membership, 0.6. However, by using the intuitionistic fuzzy value we have
< u, 0.4, 0.4 >, which is much less intuitive.

3 Relationships Between VS Memberships and Nulls

In this section, we discuss how VSs capture different notions of incompleteness.
We need to define an empty vague set first.

Definition 10. (Empty Vague Set) A vague set V is an empty vague set, if
and only if, its true membership function α = 0 and false membership function
β = 1 for all u. We use ∅V to denote it.

It is worth mentioning that ∅V can be regarded as the generalization of the
empty set in the ordinary set theory, which is not the same empty concept as
defined in [2]. In [2], a vague set V is empty, if and only if, its true membership
function α and false membership function β are both 0, which means that we
have no information about whether the corresponding object belongs to the
vague set or not. However, our definition of empty vague set means that we
know exactly that no object belongs to the empty vague set. Furthermore, we
define empty vague value, or simply empty value, as [0, 0] (i.e. α = 0, 1−β = 0).

We first review the three kinds of classical null values and the crisp value,
which are represented in Fig. 3 and then generalize them to the vague domain
as shown in Fig. 4.

1. Unknown (UNK) represents that the value (a classical data object) exists
but is unknown at the represent time. In crisp sets, all memberships of
objects are assumed as [1,1], which can be regarded as a special case of

i
u

1 ()uv
()uv

1 () 1

() 1

u
v
u

v

V

ui

1 () 0

() 0

u
v
u

v

Fig. 3. Classical Nulls in a VS

i
u

1 ()uv
()uv

1 ()uv

()uv

V

V

Fig. 4. Generalized Nulls in a VS

Vague Sets or Intuitionistic Fuzzy Sets for Handling Vague Data 407

A Crisp
Value

A Vague
Value

UNK
UNKV

NI
NIV

DNE=DNEV

Fig. 5. Relationships between Various Cases of Nulls

VSs. For example, it may not be known at the present time the AGE of an
EMPLOYEE in an employee relation. We can view UNK in the form of a
VS by V =

∑n
i=1[1, 1]/ui, which means that each object ui ∈ U (1 ≤ i ≤ n)

may “totally” belong to the vague set V. The UNK is represented as the
horizontal lines such that αV (ui) = 1− βV (ui) = 1 in Fig. 3.

2. Does Not Exist (DNE) presents that “the value is inapplicable”. For example,
if Tom has not married, the SpouseName of Tom in an employee relation
is denoted as DNE. We can view DNE in the form of a VS, V, as given by
V =

∑n
i=1[0, 0]/ui (1 ≤ i ≤ n), which means that we are sure that ui does

not belong to the vague set and the evidence is totally against it, that is,
αV (ui) = 0 but βV (ui) = 1. Thus, we obtain the empty vague set ∅V . The
DNE is represented as the horizontal line as shown in Fig. 3.

3. No Information (NI) represents that “no information is available for the
values”, i.e. it is either UNK or DNE. For example, it is not known if an
EMPLOYEE has got married or not when there is no data in STATUS. The
NI is represented as horizontal lines of UNK and DNE in Fig. 3.

The above null values are limited to the crisp sets which contain classical
data objects. We now generalize the notions of UNK and NI to VSs as follows.
Note that such a generalization has no effect on DNE which is still the U-axis.

1. Generalized UNK (UNKV) represents that memberships can be vague values
but are unknown at the represent time. We can view UNKV as any possible
VS such that, ∀ui ∈ U , αV (ui) ∈ (0, 1] and βV (ui) ∈ (0, 1], as shown in Fig.
4, i.e. the shaded area excluding the DNE line (excluding the U -axis) but
including the UNK line.

2. Generalized DNE (DNEV) is the same as DNE.
3. Generalized NI (NIV) is the region of NIV which includes the DNE line

and the UNKV region as shown in Fig. 4.

Based on the above discussion, we use Fig. 5 to illustrate the relationships
between various cases of nulls discussed so far.

4 Relationships Between VS Memberships

In this section, we discuss the following relationships of vague membership values
(vague values for short) in VSs: crisp and imprecision. Remarkably, there are no

408 A. Lu and W. Ng

1

(1)/2
m

Fig. 6. Median Membership of a VS

1

1i

Fig. 7. Imprecision Membership of a VS

such meaningful relationships based on IFS membership values. We also show
two lattices arising from the crisp and the imprecision orders.

In order to compare vague values, we need to introduce two derived mem-
berships for discussion.

The first is called the median membership, Mm = (α + 1 − β)/2, which
represents the overall evidence contained in a vague value and is shown in
Fig. 6. It can be checked that 0 ≤ (α + 1 − β)/2 ≤ 1. In addition, the vague
value [1,1] has the highest Mm, which means the corresponding object totally
belongs to the VS (i.e. a crisp value). While the vague value [0,0] has the lowest
Mm which means that the corresponding object totally does not belong to the
VS (i.e. the empty vague value).

The second is called the imprecision membership, Mi = (1 − β − α), which
represents the overall imprecision of a vague value and is shown in Fig. 7. It can
be checked that 0 ≤ (1−β−α) ≤ 1. In addition, the vague value [a, a](a ∈ [0, 1])
has the lowest Mi which means that we know exactly the membership of the
corresponding object (i.e. a fuzzy value). While the vague value [0,1] has the
highest Mi which means that we know nothing about the membership of the
corresponding object.

Suppose x and y are two vague values defined for a certain object u such
that x = [αx, 1 − βx], y = [αy, 1 − βy]. We then have the following crisp order
and the imprecision order relating the x and y membership intervals, which are
analogous to the “degree of truth” and the “amount of knowledge” in [11].

Definition 11. (Crisp Order and Imprecision Order) Let x and y are two
vague values defined for a certain object u. We say x is less crisp than y, denoted
as x ≤c y, if αx ≤ αy and 1 − βx ≤ 1 − βy. We say x is less imprecise than y,
denoted as x ≤i y, if αx ≥ αy and 1− βx ≤ 1− βy.

It is straightforward to check that ≤i and ≤c are two orthogonal concepts.
For example, [0.7, 0.9] ≤c [0.8, 0.9] but [0.7, 0.9] �≤i [0.8, 0.9]. On the other
hand, [0.7, 0.9] ≤i [0.6, 0.9] but [0.7, 0.9] �≤c [0.6, 0.9]. The other interesting
relationships between the crisp order and the imprecision order, and the three
interval relationships of precedence, overlap and contain are depicted in Fig. 8.

The relationship between the crisp and imprecision order, and the median
and the imprecision memberships is as follows.

Vague Sets or Intuitionistic Fuzzy Sets for Handling Vague Data 409

x is contained by y.

x
1

x

y
1

y

x
1

x x
1

x

y
1

y y
1

y

x c y x i y
x precedes y. x overlaps y.

Fig. 8. Interaction between Crisp and Imprecision Order, and Precedence, Overlap and
Contain Relationships

1. If x ≤c y, then Mm(x) ≤ Mm(y), but not vice versa.
2. If x ≤i y, then Mi(x) ≤Mi(y), but not vice versa.

We now use ∧ and ∨ for c-meet and c-join under ≤c, and ⊗ and ⊕ for i-meet
and i-join under ≤i. We define [αx, 1−βx]∧[αy , 1−βy] = [min{αx, αy}, min{1−
βx, 1−βy}] and [αx, 1−βx]∨ [αy , 1−βy] = [max{αx, αy}, max{1−βx, 1−βy}].
We define [αx, 1 − βx] ⊗ [αy, 1 − βy] = [min{αx, αy}, max{1− βx, 1 − βy}] and
[αx, 1 − βx] ⊕ [αy, 1 − βy] = [max{αx, αy}, min{1 − βx, 1 − βy}]. It is easy to
check that the crisp order ≤c induces a complete lattice by using ∧ and ∨.
Under the crisp order, [0,0] is the bottom (⊥c), and [1,1] is the top (!c). On the
other hand, the imprecision order ≤i induces a complete semi-lattice by using
⊗ and ⊕. It should be noted that i-join is not defined when max{αx, αy} >
min{1−βx, 1−βy}, since the join result is not a valid interval. From now on, we
restrict our discussion to the i-join that gives rise to valid intervals as a result.
Under the imprecision order, [0,1] is the top (!i), but there is no bottom for the
semi-lattice.

Theorem 1. The following statements are true.

1. If x ≤i y, then{
x ≤i (x ∧ y) ≤i y;
x ≤i (x ∨ y) ≤i y.

{
(x ∧ y) ≤c x ≤c (x ∨ y);
(x ∧ y) ≤c y ≤c (x ∨ y).

{
x⊗ y = y;
x⊕ y = x.

2. If x ≤c y, then{
x ≤c (x⊗ y) ≤c y;
x ≤c (x⊕ y) ≤c y.

{
(x⊕ y) ≤i x ≤i (x ⊗ y);
(x⊕ y) ≤i y ≤i (x⊗ y).

{
x ∧ y = x;
x ∨ y = y.

As an example, we discretize [0,1] to the granularity of 0.1 unit for α and
1 − β and show in Fig. 9 a complete lattice induced by the crisp order, which
is along the crisp dimension, and a complete semi-lattice induced by the impre-
cision order, which is along the imprecision dimension. The distance between
two adjoining elements is 0.1. For example, it can be checked that [0.3,0.4] ∧
[0.1,0.7] = [0.1,0.4], and [0.3,0.4] ∨ [0.1,0.7] = [0.3,0.7] in the crisp dimension.
It can also be checked from Fig. 9 in the imprecision dimension that, [0,0.6] ⊗
[0.4,0.8] = [0,0.8], and [0,0.6] ⊕ [0.4,0.8] = [0.4,0.6]. However, [0,0.1] ⊕ [0.2,0.3]
is undefined, and there is no Greatest Lower Bound (GLB) for these two vague
values in the imprecision lattice. The lattice size is exponential to the square of
the discretization on the unit membership interval.

410 A. Lu and W. Ng

[0,0]

[0,0.1]

[0.1,0.1]

[0,0.2]

[0.1,0.2]

[0,0.3]

[0.1,0.3]

[0,0.4]

[0.2,0.2]

[0.1,0.4]

[0,0.5]

[0.2,0.3]

[0.1,0.5]

[0,0.6]

[0.2,0.4]

[0.1,0.6]

[0,0.7]

[0.2,0.5]

[0.1,0.7]

[0,0.8]

[0.2,0.6]

[0.3,0.3]

[0.3,0.4]

[0.4,0.4]

[0.3,0.5]

[0.1,0.8]

[0,0.9]

[0.2,0.7]

[0.4,0.5]

[0.3,0.6]

[0.1,0.9]

[0.2,0.8]

[0.4,0.6]

[0.3,0.7]

[0.5,0.5]

[0.1,1]

[0.2,0.9]

[0.4,0.7]

[0.3,0.8]

[0.5,0.6]

[0.2,1]

[0.3,0.9]

[0.5,0.7]

[0.4,0.8]

[0.6,0.6]

[0.3,1]

[0.5,0.8]

[0.4,0.9]

[0.6,0.7]

[0.4,1]

[0.6,0.8]

[0.5,0.9]

[0.7,0.7]

[0.5,1]

[0.7,0.8]

[0.6,0.9]

[0.6,1]

[0.8,0.8]

[0.7,0.9]

[0.7,1]

[0.8,0.9]

[0.8,1]

[0.9,0.9]

[0.9,1]

[1,1]

Imprecision

CrispO

c

Ti[0,1]

Tc

Fig. 9. Complete Imprecision Semi-Lattice and Complete Crisp Lattice

5 Similarity Measures of VSs

In this section, we discuss a similarity measure between two VSs, which is based
on the median membership and the imprecision membership.

We now let x and y be two vague values to some u ∈ U such that x =
[αx, 1− βx], y = [αy, 1− βy]. We define ΔMm as the difference between median
memberships, which is given by ΔMm = |(αx + 1 − βx) − (αy + 1 − βy)|/2 =
|(αx − αy) − (βx − βy)|/2, such that 0 ≤ ΔMm ≤ 1. We define ΔMi as the
difference between imprecision memberships, which is given by ΔMi = |(1 −
βx−αx)− (1−βy −αy)| = |(αx−αy) + (βx−βy)|, such that 0 ≤ ΔMi ≤ 1. We
define the similarity measure between two vague values x and y as follows:

Definition 12. (Similarity Measure between Two Vague Values)

M(x, y) =
√

(1−ΔMm)(1−ΔMi)

=

√
(1− |(αx − αy)− (βx − βy)|

2
)(1 − |(αx − αy) + (βx − βy)|).

We extend the similarity measure from two vague values to two vague sets.

Definition 13. (Similarity Measure between Two Vague Sets) Let X
and Y be two vague sets, where

X =
n∑

k=1

[αX(uk), 1− βX(uk)]/uk; Y =
n∑

k=1

[αY (uk), 1− βY (uk)]/uk.

The similarity measure between the vague sets X and Y can be evaluated as
follows:

M(X, Y) =
1
n

n∑
k=1

M([αX(uk), 1− βX(uk)], [αY (uk), 1 − βY (uk)])

Vague Sets or Intuitionistic Fuzzy Sets for Handling Vague Data 411

=
1
n

n∑
k=1

√
(1−ΔMm,k)(1−ΔMi,k)

=
1
n

n∑
k=1

√
(1− |(αX(uk)− αY (uk))− (βX(uk)− βY (uk))|

2
) ·

√
(1− |(αX(uk)− αY (uk)) + (βX(uk)− βY (uk))|).

The following theorem illustrates some good features for similarity measure
between vague sets, which follows from Definition 13.

Theorem 2. Let X and Y be two vague sets. The following statements are true.

1. The similarity measure is bounded, i.e., 0 ≤M(X, Y) ≤ 1.
2. M(X, Y) = 1 if and only if X = Y .
3. M(X, Y) = 0, if and only if, all the vague values in X and Y are (i) [0, 0]

and [1, 1], or (ii) [0, 1] and [a, a], where 0 ≤ a ≤ 1.
4. The similarity measure is commutative, i.e., M(X, Y) = M(Y, X).

6 Vague Relations and VSQL

In this section, we propose VSQL in order to gain more expressive power to
formulate queries involving vague information. We classify the interactions be-
tween queries and data in four modes and demonstrate how the queries arising
in different modes can be formulated using VSQL.

6.1 Vague Relations

Definition 14. (Vague Relation) Let U = {U1, . . . , Um} be a collection of
universes of discourse. Let Dom(Ai) be the domain corresponding to the at-
tribute Ai. We define Dom(Ai) = {V | V is a V S of Ui}. A vague tuple
t = (a1, a2, . . . , am) over a relation scheme, R = {A1, A2, . . . , Am}, is an ele-
ment in Dom(A1)×Dom(A2) × · · · ×Dom(Am). A vague relation r over R is
a subset of Dom(A1)×Dom(A2)× · · · ×Dom(Am).

Unlike classical and fuzzy relations, in vague relations, Dom(Ai) is a set
of vague sets. Vague relations can be considered as an extension of classical
relations (all vague values are [1, 1]) and fuzzy relations (all vague values are
[a, a], 0 ≤ a ≤ 1), which can capture more information about vagueness.

Consider the vague relation r over Product(ID, Weight, Price) given in
Table 1. In r, Weight and Price are vague attributes. The attribute ID is crisp,
where values are presented as the usual atomic values. The first tuple in r
means the product with ID=1 has the weight of [1, 1]/10 and the price of
[0.4, 0.6]/50 + [1, 1]/80.

6.2 Similar Equality

In this subsection, we extend the notion of similar equality (SEQ) defined in [8]
for comparing data values to deal with selection predicates in VSQL.

412 A. Lu and W. Ng

The degree of similar equality (SEQ) of vague relations defined below can
be used as a vague similarity measure to compare elements of a given domain.
Suppose tp and tq are two tuples in a relation r.

Definition 15. (Degree of Similar Equality) The degree of similar equality
of two vague tuples tp and tq on the attribute Ai in a vague relation is given by:

SEQ(tp[Ai], tq[Ai]) =
1
n

n∑
k=1

√
(1−ΔMm,k)(1−ΔMi,k)

=
1
n

n∑
k=1

√(
1− |(αtp[Ai](uk)− αtq [Ai](uk))− (βtp[Ai](uk)− βtq [Ai](uk))|

2

)
·

√
(1− |(αtp[Ai](uk)− αtq [Ai](uk)) + (βtp[Ai](uk)− βtq [Ai](uk))|).

The degree of similar equality of two vague tuples tp and tq on attributes
X = {A1, . . . , As} (X ⊆ R) in a vague relation is SEQ(tp[X], tq[X]) =
min{SEQ(tp[A1], tq[A1]), . . . , SEQ(tp[As], tq[As])}.

6.3 VSQL

There have been some studies which discuss the topic concerning fuzzy SQL
queries in fuzzy databases [12,13] which only cater for true membership (or we
can say they combine true membership and false membership together). We now
describe the extensions of VSQL to standard SQL. The VSQL is powerful enough
to retrieve any set of items of any degree of vagueness.

Data Definition Language. The syntax of VSQL allows users to define se-
mantic domains using the CREATE DOMAIN command as follows:

CREATE DOMAIN <domain name> <data types>.
The command is similar to the SQL standard statement that declares a

domain. In Vague SQL DDL, attributes constraints for vague data and vague
data definitions are added to the standard DDL. By using the keyword VAGUE,
the attributes which store vague data are specified. For example, we define a
vague domain SCALE as follows:

CREATE DOMAIN SCALE VAGUE INTEGER.

Table 1. A Vague Relation r

ID Weight Price
1 [1,1]/10 [0.4,0.6]/50+[1,1]/80
2 [1,1]/20 [0.8,0.9]/100+[0.6,0.8]/150
3 [1,1]/20 [1,1]/100+[0.7,0.9]/150
4 [1,1]/10+[0.6,0.8]/15 [1,1]/80+[0.6,0.8]/100
5 [0.6,0.8]/10+[1,1]/15+[0.6,0.8]/20 [0.6,0.8]/80+[1,1]/100

Vague Sets or Intuitionistic Fuzzy Sets for Handling Vague Data 413

Vague Data Definition. Vague data to be used in VSQL DML are defined
in VSQL DDL. Vague data are defined by specifying the table and attribute in
which they are used. As an example, we define the vague data for the attribute
“Weight” in Table 1.

CREATE VAGUE DATA ON SCALE(4) AS light = [1,1]/0 + [0.8,1]/10
+ [0.7,0.9]/20 + [0.6,0.8]/30 + [0.5,0.7]/40 + [0.4,0.6]/50 + [0.3,0.5]/60 +
[0.2,0.4]/70 + [0.1,0.3]/80 + [0,0.2]/90 + [0,0]/100.

CREATE VAGUE DATA ON SCALE(4) AS middle = [0,0]/0 + [0.1,0.3]/10
+ [0.3,0.5]/20 + [0.5,0.7]/30 + [0.7,0.9]/40 + [1,1]/50 + [0.7,0.9]/60 +
[0.5,0.7]/70 + [0.3,0.5]/80 + [0.1,0.3]/90 + [0,0]/100.

CREATE VAGUE DATA ON SCALE(4) AS heavy = [0,0]/0 + [0,0.2]/10
+ [0.1,0.3]/20 + [0.2,0.4]/30 + [0.3,0.5]/40 + [0.4,0.6]/50 + [0.5,0.7]/60 +
[0.6,0.8]/70 + [0.7,0.9]/80 + [0.8,1]/90 + [1,1]/100.

Table Definition. An example of Vague SQL DDL is shown as follows. Here
SCALE(4) means the value of “Weight” is a 4-digit vague integer.

CREATE TABLE Product (ID INTEGER(8) NOT NULL, Name CHAR(16)
NOT NULL, Weight SCALE(4), Size SCALE(8), Price SCALE(8)).

Data Manipulation Language. The expression of a basic VSQL query is
given as follows:

SELECT <lists of attributes> [ANY|ALL] [ASC|DESC] FROM <lists of
vague relations> WHERE <extended predicates>.

An attribute list is a list of attributes similar to the usual one, except that
it provides us with an option that an attribute can be associated with a vague
domain.

In Vague SQL DML, vague data can be used for many kinds of operator such
as predicates, and the like. An example of Vague SQL DML is shown as follows.

Query: “Find the products which are heavy.”
VSQL: SELECT ID, Weight, Price FROM Product WHERE Weight=heavy.
Here “heavy” is a vague set as mentioned above. Following the FROM key-

word is a comma separated list of all relations used in a query. A typical form
of a semantic comparison is: <attribute> <comparator> <attribute>.

6.4 VSQL Modes

We consider that data vagueness can occur in both relations and query expres-
sions. Thus, we develop VSQL and allow users to formulate a wide range of
vague queries that occur in different modes of interaction between the data and
the queries. We classify our VSQL Modes as shown in Fig. 10. We now show the
power of VSQL in formulating queries in these modes.

Mode I (Crisp Data, Conventional SQL). The first mode concerns only
conventional region of SQL usages, where data values and VSQL are both crisp
(i.e. no vague data involved). This mode is no different from the classical re-
lational databases and therefore VSQL is downward compatible to SQL. For

414 A. Lu and W. Ng

Crisp

I (Crisp Data,
Conventional

SQL)

II (Vague
Data,

Conventional
SQL)

III (Crisp
Data, VSQL)

IV (Vague
Data, VSQL)

Vague Data

Vague
Queries

Fig. 10. The four modes of VSQL

example, Table 2 represents a classical relational table in which all data are
crisp. The query (Q1) falls into this region.

(Q1) “Find the products which are equal to 20 kg.”
SELECT * FROM Product WHERE Weight = 20.
Thus, we obtain the answers given in Tables 4.

Mode II (Vague Data, Conventional SQL). The second mode concerns
the scenario that data values are vague but queries are conventional. We allow
classical SQL statements referencing vague tables to be formulated. For example,
Table 3 represents a vague relational table where Weight and Price data are
vague. (The vague data “light”, “middle” and “heavy” are defined in Section
6.3.) We now formulate the query (Q2) as below.

(Q2) “Find the products which are equal to 20 kg.”
SELECT * FROM Product WHERE Weight = 20.
We first transform 20 into the VS [1,1]/20, and then determine the SEQ

between the “Weight” values in r2 (also in the form of VSs) and [1,1]/20. For
example, for the tuple with ID = 4 in r2 given in Table 3, according to Definition

Table 2. A Crisp Product Relation r1

ID Weight Price
1 10 50
2 20 100
3 20 150
4 50 200
5 80 350

Table 3. A Vague Product Relation r2

ID Weight Price
1 light [1,1]/50
2 light [0.6,0.8]/100
3 [1,1]/20 + [0.5,0.6]/50 [0.5,0.9]/150
4 middle [0.8,0.9]/200
5 heavy [0.7,1]/350

Table 4. Answer for (Q1)

ID Weight Price
2 20 100
3 20 150

Table 5. Answer for (Q2)

ID Weight Price Rank

3 [1,1]/20 + [0.5,0.6]/50 [0.5,0.9]/150 0.967
1 light [1,1]/50 0.624
2 light [0.6,0.8]/100 0.624
4 middle [0.8,0.9]/200 0.617
5 heavy [0.7,1]/350 0.551

Vague Sets or Intuitionistic Fuzzy Sets for Handling Vague Data 415

Table 6. Answer for (Q3)

ID Weight Price Rank

5 80 350 0.624
4 50 200 0.587
2 20 100 0.551
3 20 150 0.551
1 10 50 0.536

Table 7. Answer for (Q4)

ID Weight Price Rank

5 heavy [0.7,1]/350 1
4 middle [0.8,0.9]/200 0.750
1 light [1,1]/50 0.591
2 light [0.6,0.8]/100 0.591
3 [1,1]/20 + [0.5,0.6]/50 [0.5,0.9]/150 0.578

15, we obtain SEQ(t4[Weight], [1, 1]/20) = SEQ(middle, [1, 1]/20) = 0.617. Then
we rank the tuples by this SEQ value and obtain the answer given in Table 5.

Mode III (Crisp Data, Vague SQL). The third mode concerns the scenario
that data values are crisp but SQL is vague. For example, we have the query
(Q3) in Table 2 as follows.

(Q3) “Find the products which are heavy in weight.”
SELECT * FROM Product WHERE Weight = heavy.
We first transform the “Weight” values in r1 into VSs, and then determine

the SEQ between the “Weight” values and the VS “heavy”. For example, for the
tuple with ID = 2 in r1 given in Table 2, we obtain SEQ(t2[Weight], heavy) =
SEQ([1, 1]/20, heavy) = 0.551. Then we rank the tuples by this SEQ value and
obtain the answer given in Table 6.

Mode IV (Vague Data, Vague SQL). In the fourth mode, both data values
and SQL are vague. We have the query (Q4) as follows.

(Q4) “Find the products which are heavy in weight.”
SELECT * FROM Product WHERE Weight = heavy.
We first determine the SEQ between the “Weight” values in r2 and the VS

“heavy”. For example, for the tuple with ID = 4 in r2, we obtain SEQ(t4[Weight],
heavy) = SEQ(middle, heavy) = 0.750. Then we rank the tuples by this SEQ

value and obtain the answer given in Table 7.

7 Conclusions

We have examined the two known generalizations, VSs and IFSs, of FSs. VSs are
based on an interval-based membership and thus more expressive in capturing
vagueness of data and the notions of IFSs and VSs are regarded as equivalent,
in the sense that an IFS is isomorphic to a VS. We compare VSs and IFSs by
their notions, algebraic properties, practical applications, and most importantly,
the graphical representations of vague data objects.

Although VSs and IFSs are equivalent by basic definition, we show through-
out the paper VSs allow for a more intuitive graphical representation of vague
data, which facilitates significantly better analysis in data relationships, incom-
pleteness, and similarity measures. When measuring vagueness in practice, we
have showed by example that using a VS is more natural than using an IFS,

416 A. Lu and W. Ng

especially for merging fuzzy objects. Using the interval memberships defined in
VSs, we study the interactions of vague membership values and present the in-
teresting relationships of crisp order and imprecision order. We also discuss the
similarity measures between vague data.

In order to retrieve vague data by the well-established database query lan-
guage, we incorporate the notion of vagueness into the relational data model and
demonstrate how VSQL can be employed to formulate a wide range of queries
arising from four modes of query/data interaction. We are still investigating op-
timization and processing techniques for vague queries. This also relies on the
development of efficient indexing schemes for vague data.

References

1. Zadeh, L.A.: Fuzzy sets. Information and Control 8 (1965) 338–353
2. Gao, W.L., Danied, J.B.: Vague sets. IEEE Transactions on Systems, Man, and

Cybernetics 23 (1993) 610–614
3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20 (1986) 87–96
4. Atanassov, K.T.: More on intuitionistic fuzzy sets. Fuzzy Sets and Systems 33

(1989) 37–45
5. Atanassov, K.T., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets

and Systems 31 (1989) 343–349
6. Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications (Studies in

Fuzziness and Soft Computing). Springer-Verlag Telos (1999)
7. Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and

Systems 79 (1996) 403–405
8. Lu, A., Ng, W.: Managing merged data by vague functional dependencies. In

Atzeni, P., Chu, W.W., Lu, H., Zhou, S., Ling, T.W., eds.: ER. Volume 3288 of
Lecture Notes in Computer Science., Springer (2004) 259–272

9. Dubois, D., Ostasiewicz, W., Prade, H.: Fuzzy sets: History and basic notions. In
Dubois, D., Prade, H., eds.: Fundamentals of Fuzzy Sets, the Handbooks of Fuzzy
Sets Series. Kluwer Academic Publishers, Boston, MA (2000) 195–230

10. Bilgiç, T., Türkşen, I.B.: Measurement of membership functions: Theoretical and
experimental work. In Dubois, D., Prade, H., eds.: Fundamentals of Fuzzy Sets,
the Handbooks of Fuzzy Sets Series. Kluwer Academic Publishers, Boston, MA
(2000) 195–230

11. Fitting, M.: Kleene’s logic, generalized. J. Log. Comput. 1 (1991) 797–810
12. Bosc, P., Pivert, O.: Sqlf: A relational database language for fuzzy querying. IEEE

Transactions on Fuzzy Systems 3 (1995) 1–17
13. Nakajima, H., Sogoh, T., Arao, M.: Fuzzy database language and library - fuzzy

extension to sql. In: Proc. Second IEEE Int. Conf. on Fuzzy Systems. (1993)
477–482

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 417 – 432, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Semantic Approach to Query Rewriting
for Integrated XML Data

Xia Yang1, Mong Li Lee1, Tok Wang Ling1, and Gillian Dobbie2

1 School of Computing, National University of Singapore
{yangxia, leeml, lingtw}@comp.nus.edu.sg

2 Department of Computer Science, The University of Auckland, New Zealand
gill@cs.auckland.ac.nz

Abstract. Query rewriting is a fundamental task in query optimization and data
integration. With the advent of the web, there has been renewed interest in data
integration, where data is dispersed among many sources and an integrated
view over these sources is provided. Queries on the integrated view are
rewritten to query the underlying source repositories. In this paper, we develop
a novel algorithm for rewriting queries that considers the XML hierarchy
structure and the semantic relationship between the source schemas and the
integrated schema. Our approach is based on the semantically rich Object-
Relationship-Attribute model for SemiStructured data (ORA-SS), and
guarantees that the rewritten queries give the expected results, even where the
integrated view is complex.

1 Introduction

Many query rewriting algorithms have been developed for answering queries using
views in relational databases and in mediators. When answering queries using views,
the objective is to find efficient methods to answer a query using a set of materialized
views over the database, instead of accessing the database itself [5, 14, 16, 17].

In data integration, many systems construct a global or mediated schema from
numerous heterogeneous data sources [6, 13, 18]. Users issue queries on the global
schema, and the system will rewrite the query to the local sources. Each local source
may not necessarily contain all the information needed to answer the query. Partial
results from various local sources are combined to produce the result for the query.

When integration is carried out over XML repositories, query rewriting algorithms
need to take into consideration the hierarchical structure of XML schemas. This gives
rise to structural conflicts which need to be resolved during the rewriting process [22].
XML schemas such as DTD and XML Schema lack the semantic information
necessary for schema integration and query rewriting. Although proposals have been
put forth to augment DTD and XML Schema with information such as keys [2], and
functional dependencies [10], their semantics remain limited.

In this paper, we describe a rewriting algorithm for integrated views over XML
repositories. The proposed algorithm utilizes the ORA-SS model [11] which provides
the necessary semantic information to produce expected answers even when the
integrated view is complex. In contrast to the work in [12] which describes how
relational databases can be integrated into an XML global schema, we assume that the

418 X. Yang et al.

local sources are XML repositories. XML schemas are first transformed to ORA-SS
schemas with enriched semantics [3]. An ORA-SS integrated schema can be obtained
using the algorithm in [21]. Compared to existing global-as-view approaches which
incorporate the integrated view definition in the unfolding process, our approach uses
a mapping table that is created during the integration process to rewrite queries. We
also use a query allocation table to find groups of local schemas that together can
answer a user query. When a query is decomposed to subqueries on the local
schemas, the subqueries for each group of local schemas are composed, and answers
from the composed queries are combined to give the expected results.

The rest of the paper is organized as follows. Section 2 reviews the ORA-SS
model. Section 3 describes the mapping table and the query allocation table. Section 4
gives the details of the proposed query rewriting algorithm. Section 5 compares our
approach with related work and we conclude in Section 6.

2 ORA-SS Model

Our rewriting algorithm employs the ORA-SS model which is a semantically rich
data model designed for semistructured data [11]. This model distinguishes between
objects, relationships and attributes. An object class in the ORA-SS model is similar
to the concept of an entity type in an ER model. An object class may be related to
other object classes through a relationship type. Attributes are properties, and may
belong to an object class or a relationship type. An attribute of an object class or
relationship type in an ORA-SS schema may be represented as an attribute or sub-
element in XML document. The main difference between the ORA-SS model and the
ER model is that the ORA-SS model has a tree-like structure, which is more suitable
for XML data. The nesting of the objects is reflected directly in the ORA-SS model.
Other concepts that can be modeled in ORA-SS diagrams and not in ER diagrams
include the ordering of elements and attributes, and fixed and default attribute values.
An algorithm to translate XML schemas to the ORA-SS Schema Diagram is given in
[3]. Note that user input may be needed to identify some semantics such as attributes
of relationship types.

<project jno=”j01”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity>500</quantity>
 </supplier>
 </part>

</project>

project

partjno

pno supplier

sno

jp,2,1:n,1:n

jps,3,1:n,1:n

quantity
jps

Fig. 1(a). An XML document Fig. 1(b). ORA-SS schema of document in Fig. 1(a)

Fig. 1 shows an XML document and the corresponding ORA-SS schema diagram.
Object classes “project” and “part” are denoted by labeled rectangles. The label
“jps,3,1:n, 1:n” denotes a ternary relationship type “jps” involving object classes
“project”, “part” and “supplier”, with parent cardinality 1:n and child cardinality 1:n.

 A Semantic Approach to Query Rewriting for Integrated XML Data 419

That is, parts in a project may have one or more suppliers and a supplier can supply
one or more parts to one or more project. Labeled circles denote attributes, and filled
circles indicate identifiers. Attributes with labeled edges are relationship type
attributes. For example, “jno” is an attribute of object class “project”, while “quantity”
is an attribute of relationship type “jps”. Details on ORA-SS can be found in [11].

3 Mapping Table and Query Allocation Table

The proposed query rewriting algorithm utilizes two constructs: a mapping table and a
query allocation table. A mapping table is created when an integrated schema is
derived from the local schemas. This table contains the mappings from the integrated
schema to the local schemas. We use the path-to-path mapping defined in [4]. The
path from the root to the object class or attribute is captured in the mapping, so that
one can tell the context of the object class or attribute. This will differentiate object
classes and attributes with the same labels but different paths.

Fig. 2. S12345 is the integrated schema of local schemas S1, S2, S3, S4 and S5

Table 1. Mapping table for integrated schema S12345 in Fig. 2

Integrated schema Local schema

S12345/museum S1/museum, S3/museum, S5/museum
S12345/museum/mname S1/museum/mname, S3/museum/mname,

S5/museum/mname
S12345/museum/painting S1/museum/painting, S2/painting, S4/artist/painting
S12345/museum/painting/pname S1/museum/painting/pname, S2/painting/pname,

S4/artist/painting/pname
S12345/museum/painting/artist S2/painting/artist, S4/artist

S12345/museum/painting/artist/aname S2/painting/artist, S4/artist/aname

S12345/museum/sponsor/funds S3/museum/funds, S5/museum/sponsor/funds

… …

 S1 S2 S3 S4

S5 S12345

painting

pname artist

museum

artist
mname

aname

funds

fno

ma,2,1:n,1:n
mf,2,1:n,1:n

museum

painting

mname

pname artist

aname

sculpture

sname
artist

aname

artist

aname

sponsor

sname funds

fno

mp,2,1:n,1:1 ms,2,1:n,1:1 ma,2,1:n,1:n

mo,2,1:n,1:n

pa,2,1:n,1:n sa,2,1:n,1:n of,2,1:n,1:n

artist

painting
aname

pname

pa,2,1:n,1:n

museum

mname sculpture

sname artist

aname

sponsor

sname funds

fno

ms,2,1:n,1:1
mo,2,1:n,1:n

sa,2,1:n,1:n of,2,1:n,1:n

museum

painting
mname

pname

mp,2,1:n,1:1

420 X. Yang et al.

Consider Fig. 2 where schema S12345 is an integration of the local schemas S1, S2,
S3, S4, and S5. Table 1 shows a subset of the mapping table generated during the
integration process. The first column of the mapping table gives the path from the root
to each object class or attribute in the integrated schema; the second column shows
the local schema id and the path to the equivalent object classes or attributes in the
local schemas. When the mapping is not one-to-one, XQuery functions or user-
defined functions are given in the second column

A query in XQuery format has two main parts: the first part contains the selection
conditions, and the second part describes how the result is restructured. A query
allocation table stores the selection condition paths and the return result paths of a
query, as well as the local schemas where the data for these paths can be found.
Details on the construction of the query allocation table are given in Section 4.1.

4 Query Rewriting

In this section, we will present our approach to rewrite a query on the integrated
schema to query the local data sources. Partial information from various local data
sources may need to be combined to produce the results of the user query. There are
four steps in the proposed algorithm:

Step 1. Build the query allocation table.
Step 2. Group local schemas to form join groups that answer the user’s query.
Step 3. Decompose user query to subqueries on the local sources.
Step 4. Compose subqueries for local schemas in a join group.

4.1 Build Query Allocation Table

A query allocation table (QAT) consists of a selection condition table and a return
result table. The path of each selection condition and the return result is inserted into
the selection condition table and the return result table respectively. The associated
schemas identified from the mapping table are inserted into the corresponding rows.
Two special cases need to be considered which can be treated as two rules.

Case 1: If a path corresponds to a branch in an ORA-SS schema with n (n>1)
relationship types, it must be split into n subrows, one for each relationship type.
Any attributes of an object class or a relationship type will appear in the row with
their object class or relationship type.

Case 2: If a path contains "//" or "/*/" and does not contain any recursive relationship
type, then the row that stores the original is retained and rows are created to store
the expansion of each path. An expanded path that contains more than one
relationship type is handled using Case 1. If "//" or "/*/" involves some recursive
relationship type, then “//” or “/*/” will not need to be expanded.

Note that recursive relationship types are represented in the ORA-SS schema
diagram by using reference arrow to point to some ancestor in the same path. These
cases identify the relationship types involved in the query so that they can be handled
properly and the results returned are expected and correct. This also highlights the
advantage of using ORA-SS schema diagrams to distinguish between binary and

 A Semantic Approach to Query Rewriting for Integrated XML Data 421

n-ary relationship types and treat them properly in the algorithm. For example, n-ary
relationship types should not be split into n-1 binary relationship types in the query
allocation table.

Fig. 3. S1234 is the integrated schema of S1, S2, S3 and S4

Example 1: Consider the schemas in Fig 3, where schema S1234 is an integrated
schema of schemas S1, S2, S3, and S4. We issue query Q1 on the integrated schema
to retrieve information about projects and their parts, and which supplier supplies the
part to the project. Table 2 shows the query allocation table for query Q1. We note
that the relationship type among project, part and supplier is a ternary relationship
type. Hence, in the return result table, the path “/project/part/supplier” is not split into
two paths. Since the local schema S4 does not model this ternary relationship type, it
is not associated with this path. This prevents the retrieval of wrong results by joining
the sources in S3 and S4.

Query Q1: for $j in /project
 return <project> {$j/jno}
 {for $p in $j/part
 return <part>{$p/pno}

{for $s in $p/supplier return {$s}} </part>}
</project>

Table 2. Query Allocation Table for Query Q1

Selection Condition Table: Empty
Return Result Table:

/project/jno S1, S2, S3
/project/part/pno S1, S2, S3
/project/part/supplier S1, S2,

Example 2: Let us now consider Fig. 2, and the query Q2 on the integrated schema
S12345, which retrieves the names of artists that have works in a museum with name
“field”. The query allocation table is shown in Table. 3. The aim of QAT is to find the
join groups. Since the rewritten queries will need to refer to the user query on the
integrated schema, the QAT does not need to contain the details of selection

project

partjno

pno supplier

sno

jp,2,1:n,1:n

jps,3,1:n,1:n

quantity

jps
supplier2

sno

ps,2,1:n,1:n

 S1 S2 S3 S4 S1234

project

partjno

pno supplier

sno

jp,2,1:n,1:n

jps,3,1:n,1:n

quantity

jps

project

supplierjno

sno part

pno

js,2,1:n,1:n

jps,3,1:n,1:n

quantity
jps

project

part

jno

pno

jp,2,1:n,1:n

part

pno

supplier

sno

ps,2,1:n,1:n

422 X. Yang et al.

conditions such as “field” in Q2. Note /museum//aname is expanded into two XPath
expressions /museum/painting/artist/aname and /museum/sculpture/artist/aname each
of which are further split into two paths because of the binary relationship types. The
path “/museum//aname” is retained and rows for each expansion of this path are
inserted in the QAT.

Query Q2: for $m in /museum[mname=”field”],$a in distinct-values($m//aname)
 return <artist> {$a} </artist>

Table 3. Query Allocation Table for Query Q2

Selection Condition Table :
/museum/mname S1, S3, S5

Return Result Table:
/museum//aname S3
/museum/painting S1
painting/artist/aname S2, S4
/museum/sculpture S5
sculpture/artist/aname S5

4.2 Identify Local Sources to Answer User Query

Next, we need to determine which local schemas must be combined to get the
expected results. These groups of local schemas are called join groups. The local
schemas in each join group must contain all the paths required for the selection
condition and must have at least one path for the result.

Algorithm GenerateJoinGroups scans the query allocation table (QAT) to find the
join groups. Lines 1-5 create an ordering on the local schemas based on the rows in
which they first occur in the QAT and store the ordered list in lt. A local schema is
low in the ordering if it first occurs in the top row and high in the ordering if it first
occurs in the bottom row of the QAT. Lines 6-31 use a stack to find the join groups.
The local schemas are considered based on the ordering in the list lt from lowest to
highest. Initially the lowest local schema is pushed onto the stack, and the next
schema to be pushed onto the stack is the next lowest that occurs in a different row.
When the schemas on the stack cover all the selection condition paths in the QAT, we
output them as a join group. The top schema is popped off the stack, and the
algorithm goes on to find the next schema which could contribute to the user query.
The algorithm scans the schemas in the order of lt, so there is no duplication or
missing join groups.

Example 3: Consider the schemas in Fig. 4. The attribute “location” in S12345 is a
combination of the attributes “address” and “postal code” in S5. The query Q3
retrieves the year and title of the books that were written by “Tom” in the year
“2000”. The corresponding query allocation table is shown in Table 4.

Algorithm GenerateJoinGroups first looks at the first row “/book/author” in the
Selection Condition Table, and adds S1, S2, S3 in the list lt. Then it checks the second
row “/book/year”, and adds S4 in the list lt. Thus, the lt has local schema order as S1,
S2, S3, and S4. After the order is computed, S1 is first pushed on the stack, and S2 is

 A Semantic Approach to Query Rewriting for Integrated XML Data 423

then considered. Since it does not add any extra paths, it is not pushed on the stack.
S3 is considered and because it does cover extra paths, it is pushed on the stack.
Together S1 and S3 cover all the path information in the QAT, so {S1, S3} is output
as a join group. S3 is then popped off the stack, S4 is considered. Together S1 and S4
cover all the path information, and {S1, S4} is output as a join group. {S2, S4} and
{S3} are output after that.

Note that {S2, S3} is not a join group, because although they cover all the path
information in the selection condition table of the QAT, S2 does not cover any more
path information that S3 does not cover and consequently would not add new answers
to the result of the query. Note that {S3} is a join group, even though {S1, S3} is also
a join group. The result from the rewritten query in {S1, S3} can return the result as
Q2, while {S3} can return the partial result which has missing information of the title
of book.

The final result is found by taking the union of all the answers from the different
join groups. Given that the relationship type information is captured in the ORA-SS
model, the union can be based on the relationship type information. For each
relationship type, we take the deep union [23], that is, we take the union of the objects
if and only if all of their ancestors are the same.

__
Algorithm GenerateJoinGroups
 Input: Query allocation table qat;
 Output: join groups
1. create an empty list lt;
2. for i=1 to num_of_row of qat
3. for j=1 to num_of_schema_id of row i
4. if schemaij is present in the rowi and not
in list lt
5. add schemaij to list lt;
6. n=the number of local sources in qat;
7. create an empty stack st;
8. for i=1 to n from lt
9. {
10. if schemai is not in the top row in qat
11. break;
12. push schemai on the stack st;
13. if schemai is present in all rows of qat
14. {
15. Output {schemai};
16. st=null;
17. continue;
18. }
19. for j=i+1 to n if schemaj occurs in the rows,
which the other schemas in st do not occur in, and
schemaj does not occur in all the rows that the top
element of st occurs in
20. {
21. push schemaj on the stack st;
22. if (the local schemas in st has included all the
path information in qat)
23. {

424 X. Yang et al.

24. output all the schemas in the stack st
split by”,” in a “{}”;
25. pop the top schema off the stack st;
26. }
27. }
28. if (j= =n and st has included all the path in-
formation of the selection condition table and at least
one result in return result table)
29. output all the schemas in the stack st split by”,”
in a “{}”;
30. st=null;
31.}

Fig. 4. S12345 is the integrated schema of local schemas S1, S2, S3, S4, S5

Query Q3: for $b in /book where $b/author=”Tom” and $b/year=”2000”
 return <result> {$b/year/text()} {$b/title/text()} </result>

Table 4. Query Allocation Table for Query Q3

Selection Condition Table:

/book/author S1, S2, S3
/book/year S3, S4

Return Result Table:

/book/year S3, S4
/book/title S1

4.3 Decompose User Query to Subqueries on Local Sources

This step decomposes the user query into queries on the local schema based on the
join groups. Subqueries are composed to compute the answers in the same join group
in Step 4. Hence, in addition to retrieving the data required by the user query, we also
need the data necessary to join the parts of the answers from different local schemas
together. We call the classes that are necessary for joining the parts of answers as join

 S1 S2 S3 S4 S5 S12345

book

isbn author year title

publisher

name location

+book

isbn author title
+

book

isbn author
+

book

isbn author year
+

book

isbn year

publisher

name address

book

isbn

postal code

 A Semantic Approach to Query Rewriting for Integrated XML Data 425

object classes. The key of the join object class is used for testing the equivalence
when joining the subqueries.

A join object class depends on the semantics of the schema. We have 3 cases:

Case 1: For a join group, if there are n paths in the QAT from different local schemas
with a common ancestor in the user query, then the least common ancestor in the user
query is a join object class. An object class O is the least common ancestor of paths
P1 and P2, if O is an object class that occurs in both P1 and P2, and O does not have
any descendant object class that also occurs in P1 and P2.
Case 2: For a join group, if the paths in the QAT are from different local schemas, and

there is an object class that is the end of one path and the start of the other path,
then this intermediate object class is a join object class.

Case 3: For a join group, if two attributes of the same relationship type in a user query
are from different local schemas, then all the object classes involved in this
relationship type are join object classes.

Example 4: Recall Example 3 and the join group {S1, S3}. S1 provides “/book/title”,
“/book/author” and S3 provides “/book/year”, “/book/author”. To answer the query
Q3, the subqueries from S1 and S3 need to be composed using the key of their least
common ancestor i.e. the key “isbn” of the join object class “book”.

We first consider the case where the local schemas are projections of the integrated
schema. The rewritten query for a local schema will effectively be a projection of the
user query with the join object class identifier included in the return part of the
rewritten query. The rewritten query can be derived as follows:

1. For every path in the let part, for part, where part and return part of the user
query, retain the path if it exists in the local schema.

2. Add the path to any join object class identifiers that are relevant to this local
schema in the join group being considered.

When the local schemas are not projections of the integrated schema, the query
will need to be rewritten based on the local schema structure. We will first describe
how to rewrite a user query for a local schema where the subquery on the local
schema returns only one object class or attribute. Then we discuss how to rewrite a
user query for a local schema where the subquery on the local schema returns many
object classes or attributes.

4.3.1 Subquery Returns Only One Object Class or Attribute.
We have two cases. The first case is for queries involving one object class or attribute,
while the second case is for queries involving more than one object class.

Case A1. Queries involve one object class or attribute
An object class in an integrated schema can originate from either an object class or an
attribute in a local schema, or it can be derived from object classes and attributes in
one local schema.

Case A1-i. Integrated object class originates from a source object class.
When an integrated object class is mapped to an equivalent object class from a

local schema, but the path from the root to the equivalent object class is different,

426 X. Yang et al.

variable bindings in the for clause or let clause are changed according to the mapping
table that specifies the path of the equivalent source object class.

Example 5: Consider the schemas in Fig. 2. Query Q4 on the integrated schema S12345

retrieves all the information on the object class “funds”, which is in path
“/museum/sponsor/funds”:

Query Q4: for $f in /museum/sponsor/funds
 return <result> {$f} </result>

Based on the mapping table, we have S12345/museum/sponsor/funds:
S3/museum/funds, S5/museum/sponsor/funds. This indicates that the query can be
rewritten to query local sources S3 and S5. The rewritten query on source S5 will be
the same as Q4, while the query on S3 will be as follows:

Query Q4_S3: for $f in /museum/funds
 return <result> {$f} </result>

Case A1-ii. Integrated object class originates from an attribute.
An object class can also originate from an attribute, because a concept can be

expressed as an attribute in one schema, and as an object class in another schema.
When rewriting such queries, variable bindings in the for clause or let clause are
changed according to the mapping table that specifies the path of the equivalent
attribute; the equivalent object class is created in the return clause with the attribute
as an attribute of this object class.

Example 6: The following query is on the integrated schema S12345 of Fig. 2. Query Q
5 retrieves the information of artists of the painting with pname “hero”.

Query Q5: for $p in /museum/painting
 where $p/pname=”hero”

 return <result> {$p/artist} </result>

Query Q5 will be rewritten for S2 and S4. Since schema S2 (see Fig. 2) models
“artist” as an attribute of the object class “painting”, Query Q5_S2 will compute the
information for artist on local schema S2:

Query Q5_S2: for $p in /painting
 where $p/pname=”hero”

return <result> <artist> <aname> {$p/artist/text()} </aname>
</artist> </result>

Case A1-iii. Integrated object class or attribute originates from a set of object classes
(attributes) or vice versa.

When one object class (attribute) in the integrated schema is the combination of
many object classes (attributes) of another local schema or vice versa, XQuery or
user-defined functions can be used to substitute the path in the user query.

Example 7: Consider the schemas in Fig. 4. Query Q6 retrieves the publisher location
of the book with isbn “7-5053-4849-3/TP.2370” on the integrated schema S12345:

Query Q6: for $b in /book
 where $b/isbn=”7-5053-4849-3/TP.2370”
 return <result>{$b/publisher/location}</result>

 A Semantic Approach to Query Rewriting for Integrated XML Data 427

Q6 will be rewritten on S5. The mapping in the mapping table shows that
S12345/book/publisher/location:string-join((S5/book/publisher/address/text(), S5/
book/publisher/postalcode/text()),“ ”). We assume that the attribute “location” is
expressed by the address followed by a space and the postal code. The query on S5 is
shown in Query Q6_S5. It combines the address and postal code by the XQuery
functions from the mapping table. The rewritten query on S5 will be:

Query Q6_S5: for $b in /book
 where $b/isbn=”7-5053-4849-3/TP.2370”

 return <result> <location> {string-
join(($b/publiser/address/text(),

 $b/publisher/postalcode/text()),” ”)}</location> </result>

Case A2. Query involves more than one object classes
When the number of object classes in the query path is more than one, we need to

consider the structural relationship type between the object classes. There are two
cases: (1) object classes are swapped in the integrated schema, and (2) siblings in a
local schema are mapped to ancestor and descendent in the integrated schema.

Case A2-i. When object classes in the integrated schema are swapped in the hierarchy
compared to the local schema, the path in the subquery needs to be rewritten based on
the path of the local schemas.

Example 8: The following query on the integrated schema S12345 in Fig. 2 retrieves all
the “museum” which have the paintings by artist “David”.

Query Q7: for $m in /museum where $m/painting/artist/aname=”David”
 return<museum>{$m/mname/text()}</museum>
The join groups are {S1, S2} and {S1, S4}. In join group {S1, S4}, the join object

class is painting for S4. The projection subquery on S4 is:

Query Q7_S4’: for $p in /painting where $p/artist/aname=”David”
 return<painting>{$p/pname}</painting>

The path expression in the where clauses are changed to the corresponding object
class (attributes) by using /../. The rewritten query on S4 is:

Query Q7_S4: for $p in/artist/painting where $p/../aname=”David”
 return <painting>{$p/pname}</painting>

This query needs to be joined with the subquery for S1 to get the final result.

Case A2-ii. When two object classes have an ancestor-descendant relationship type in
the integrated schema, but they are siblings in the local schema, then the least
common ancestor of these object classes must be used as binding variables to connect
them. The related path in the where and return clause must be revised based on the
structure of the local schemas.

Example 9: In Fig. 5, students work for projects, and students have their labs. The lab
also has coordinators. Consider the query Q8 on the integrated schema S123, which
retrieves a project lab coordinator where pno is “p01”.

Query Q8: for $p in /project where $p/@pno=”p01”
 return <result>{$p/student/lab/coordinator}</result>

428 X. Yang et al.

The join groups are {S1, S3} and {S2, S3}. The return clause in Q8 shows that the
query path is from $p to lab. In order to rewrite the query for schema S1, the
algorithm looks for the nearest ancestor node that is common to both project and lab.
Student is then bound to the variable in the for clause as follows:

Query Q8_S1: for $s in /student where $s/project/@pno=”p01”
 return <result>{$s/lab/@lno}</result>

This query needs to join with the subquery for S3 to get the final result.

Fig. 5. S123 is the integrated schema of local schemas S1, S2, S3

4.3.2 Subquery Returns Many Object Classes or Attributes
Chen et al. in [3] introduce an algorithm for the automatic generation of XQuery view
definitions for ORA-SS views, focusing on the view definitions for hierarchical
structures of XML. Due to space limitations we do not cover this case in this paper
except to note that their algorithm can be used to rewrite such queries.

4.4 Compose Subqueries for Join Group

When joining subqueries on local schemas in the same join group, the identifier of the
join object classes must be tested for equivalence.

We start by considering the basic case where the same object attributes are from
different local schemas. To compose subqueries from these local schemas in join
groups, the clauses for, where, and return are combined together with the join
condition equivalence test inserted in the where clause.

We allow the return results to have missing information. The parent object will not
be removed from the return result if it has a missing child. For each return object or
attribute, the join equivalence condition test related to this return object or attribute is
nested in the appropriate part of the query.

Example 10: Consider the schemas in Fig. 4. and query Q9 that retrieves year and
title of the books that were written by “Tom” in year “2000” and retrieves the
publisher name if the book’s publisher location is Singapore.

Query Q9: for $b in /book where $b/author=”Tom” and $b/year=”2000”
 return<result>{$b/year/text()} {$b/title/text()}{
 for $p in $b/publisher

 where contains ($b/publisher/location/text(),”Singapore”)

 S1 S2 S3 S123

student

project lab

pno lno

sno
sl,2,1:n,1:n

sp,2,1:n,1:n
project

student

lab

pno

lno

sno

sp,2,1:n,1:n

sl,2,1:n,1:n

project

student

lab

pno

lno

sno

sp,2,1:n,1:n

sl,2,1:n,1:n

coordinator

name

lc,2,1:n,1:n

lab

coordinator

name

lno

lc,2,1:n,1:n

 A Semantic Approach to Query Rewriting for Integrated XML Data 429

 return<publisher> {$b/publisher/name} </publisher> }
</result>

The join groups are {S1, S3, S5}, {S1, S4, S5}, {S2, S4, S5} and {S3, S5}. We
show the query example for the join group {S1, S3, S5}. The user query is
decomposed into subqueries on the local schemas S1, S3, and S5. The join object
class is “book” for these local schemas. The subqueries on S1, S3 and S5 are shown
below:

Query Q9_S1: for $b in /book
 where $b/author=”Tom”
 return <result> {$b/isbn/text()} {$b/title/text()} </result>
Query Q9_S3: for $b in /book

 where $b/author=”Tom” and $b/year=”2000”
 return <result> {$b/isbn/text()} {$b/year/text()} </result>
Query Q9_S5: for $b in /book
 where contains ($b/publisher/address/text(),”Singapore”)

 return<result>{$b/isbn/text()}
 <publisher>{$b/publisher/name} </publisher></result>

The composition of the subqueries for local schemas S1, S3 and S5 are as follows:
for $b1 in doc(“S1.xml”)/book, $b3 in doc(“S3.xml”)/book
where $b1/author=”Tom” and $b3/author=”Tom” and $b3/year=”2000”
and $b1/isbn=$b3/isbn
return <result>{$b3/year/text()} {$b1/title/text()}

{for $b5 in doc(“S5.xml”)/book
where contains ($b5/publisher/address/text(),”Singapore”) and
$b5/isbn=$b1/isbn

return<publisher>
{$b5/publisher/name}<publisher>}</result>

Note that although the join object class for S1, S3 and S5 is book, the equivalence
tests are on separate lines in the rewritten query. This is because we allow parent
information to be returned even when a child object class is missing.

5 Comparison with Related Work

Amman et al. in [1] propose a mediator architecture for querying and integrating
XML data sources. Their global schema is described as an ontology, which is
expressed in a light weight conceptual model. Similar to our algorithm, their method
also finds join groups, where the local sources of the join groups can together
compute the results for the user query. However, the limitation in [1] is that a query
cannot return nested structures.

Lakshmanan and Sadri in [8] propose an infrastructure for interoperability among
XML data sources. Mapping rules are created to map the items in local schemas to a
common vocabulary. They also address the query processing and optimization in the
system. For query processing, they differentiate between inter-source query and intra-

430 X. Yang et al.

source query, which query across local schemas and within one local schema
respectively. Consistency conditions are used to optimize inter-source queries. One
limitation of this work is that when results from local schemas are joined, the join
variable is limited to the lowest common ancestor of nodes.

Yu and Popa in [22] introduce an algorithm for answering queries via a target
schema. The algorithm uses target constraints that are used to express data merging
rules. The mappings from the integrated schema and local schemas are tree to tree.
Generating such mappings is expensive, especially when the XML sources are
complicated.

The models that are utilized in the works [1, 8, 22] cannot specify whether a
relationship type is binary or n-ary and do not distinguish between attributes of object
classes and attributes of relationship types from the local XML sources. The lack of
such semantic information may lead to the retrieval of wrong results as the following
example illustrates.

Example 11: Recall Example 1 where only S1 and S2 will be considered for the
query Q1. Since the works in [1, 8, 22] cannot distinguish between binary or n-ary
relationship types, they will join the sources from S3 and S4 to get the result, which is
not correct for the user query. The example below highlights the problem for the
attributes and n-ary realtionship. For simplicity, schemas S3 and S4 are omitted here.
Let the data source for S1 be X1, and the data source for S2 be X2 as shown in
Table 5. Table 6 shows the results for query Q1 that are retrieved by our algorithm
and the methods in [1, 8, 22].

We observe that the results returned by the query rewriting method in [1, 8, 22]
contain the project with jno “j01” has part “p01”, which is supplied by suppliers with
sno “s01” and “s02”. This violates the local data sources X1 and X2, where the
project with jno “j01” has part “p01” is only supplied by suppliers with sno “s01”.
This is because the methods in [1, 8, 22] treat the relationship type between part and
supplier as a binary relationship type, instead of the intended ternary relationship type
involving project, part, and supplier. They treat the quantity as the attribute of part in
S2, so when they find the part with pno “p01” has quantity “100” in X1, and has
quantity “200” in X2, they will combine them to make the final result. This leads to
the wrong answer returned. In contrast, our algorithm takes the XML hierarchy
structure into consideration and retrieves the correct answers.

Table 5. Data sources for S1 and S2 in Fig. 3

X1: X2:
<project jno=”j01”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity> 100 </quantity>
 </supplier>
 </part>
</project>

<project jno=”j02”>
 <supplier sno=”s02”>
 <part pno=”p01”>
 <quantity> 200 </quantity>
 </part>
 </supplier>
</project>

 A Semantic Approach to Query Rewriting for Integrated XML Data 431

To summarize, our algorithm differs from existing works in the following ways:

1. We treat binary and n-ary relationship types differently. Treating an n-ary
relationship type as n-1 binary relationship types gives wrong results.

2. We treat attributes of object classes and attributes of relationship types differently
in the QAT and when we compose the sub queries of the local sources.

3. Our algorithm takes the XML hierarchy structure into consideration when doing
the rewriting.

Table 6. Results retrieved by our algorithm and [1, 8, 22]

Results obtained by our proposed
algorithm

Result obtained by [1, 8, 22]

<result>
 <project jno=”j01”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity> 100 </quantity>
 </supplier>
 </part>
 </project>
 <project jno=”j02”>
 <part pno=”p01”>
 <supplier sno=”s02”>
 <quantity> 200 </quantity>
 </supplier>
 </part>
 </project>
</result>

<result>
 <project jno=”j01”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity> 100 </quantity>
 </supplier>
 <supplier sno=”s02”>
 <quantity> 200 </quantity>
 </supplier>
 </part>
 </project>
 <project jno=”j02”>
 <part pno=”p01”>
 <supplier sno=”s01”>
 <quantity> 100 </quantity>
 </supplier>
 <supplier sno=”s02”>
 <quantity> 200 </quantity>
 </supplier>
 </part>
 </project>
</result>

6 Conclusion and Future Work

In this paper, we have introduced a semantic approach to rewrite queries for
semistructured data integration. A user’s queries on the integrated schema are
rewritten to query the local sources. When XML repositories are integrated there may
be semantics that are not expressed explicitly, and without the necessary semantics it
is possible to misinterpret the meaning of the data and combine the results from
different local schemas to give unexpected results. Our algorithm uses the ORA-SS
model to describe the schemas of the local data sources and the integrated schemas.
This allows us to distinguish between binary and n-ary relationship types, attributes of
object classes and attributes of relationship types, and in turn treat these cases
differently in our rewriting algorithm.

432 X. Yang et al.

References

1. B. Amann, C. Beeri, I. Fundulaki, M. Scholl. Querying XML sources using an Ontology-
based Mediator. CoopIS, 2002.

2. P. Buneman, S. Davidson, W. Fan, C. Hara, W.C. Tan. Keys for XML. WWW
Conference, 2001.

3. Y. Chen, T.W. Ling, M.L. Lee. Automatic Generation of XQuery View Definitions from
ORA-SS Views. ER, 2003.

4. S. Cluet, P. Veltri, D. Vodislav. Views in a Large Scale XML Repository. VLDB, 2001.
5. O.M. Duschka, M.R. Genesereth. Answering Recursive Queries Using Views. ACM

PODS, 1997.
6. L. Haas, D. Kossmann, E. Wimmers, J. Yang. Optimizing queries across diverse data

sources. VLDB, 1997.
7. A. Halevy. Theory of Answering Queries Using Views. ACM SIGMOD Record 29(4),

2000.
8. L.V.S. Lakshmanan, F. Sadri. Interoperability on XML Data. ICSW, 2003.
9. M.L. Lee, T.W. Ling, W.L. Low. Designing Functional Dependencies for XML. EDBT,

2002.
10. A. Levy. Logic-Based Techniques in Data Integration. Logic based artificial intelligence,

1999.
11. T.W. Ling, M.L. Lee, G. Dobbie. Semistructured Database Design, ISBN: 0-387-23567-1,

Springer, 2005.
12. I. Manolescu, D. Florescu, D. Kossman. Answering XML queries over heterogeneous data

sources. VLDB, 2001.
13. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, et al. The TSIMMIS project:

Integration of heterogeneous information sources. Journal of Intelligent Information
Systems, 1997.

14. K. Passi, E. Chaudhry. A Global-to-Local Rewriting Querying Mechanism using Semantic
Mapping for XML Schema Integration. ODBASE 2003.

15. K. Passi, L. Lane, S.Madria, Bipin C. Sakamuri, M. Mohania, S. Bhowmick. A Model for
XML Schema Integration. EC-Web, 2002.

16. R. Pottinger, A. Levy. A Scalable Algorithm for Answering Queries Using Views. VLDB,
2000.

17. M. Stonebraker. Implementation of integrity constraints and views by query modification.
ACM SIGMOD, 1975.

18. Xyleme. A dynamic warehouse for XML Data of the Web. IEEE Data Engineering
Bulletin, 2001.

19. H.Z. Yang, P.A. Larson. Query Transformation for PSJ-queries. VLDB, 1987.
20. X. Yang. Global Schema Generation and Query Rewriting In XML Integration. MSc

thesis, National University of Singapore, 2005.
21. X. Yang, M.L. Lee, T.W. Ling. Resolving Structural Conflicts in the Integration of XML

Schemas: A Semantic Approach. ER 2003.
22. C. Yu, L. Popa. Constraint-Based XML Query Rewriting for Data Integration. SIGMOD

2004.
23. P. Buneman, A Deutsch, W.C. Tan. A deterministic model for semistructured data.

Workshop on Query Processing for Semistructured Data and Non-Standard Data Formats,
1998.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 433 – 448, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Taxonomy of Inaccurate Summaries and Their
Management in OLAP Systems

John Horner and Il-Yeol Song

College of Information Science and Technology, Drexel University,
Philadelphia, PA 19104

(jh38, song)@drexel.edu

Abstract. Accurate summarizability is an important property in OLAP systems
because inaccurate summaries can result in poor decisions. Furthermore, it is
important to understand and identify the potential sources of inaccurate summa-
ries. In this paper, we present a taxonomy of inaccurate summary factors and
practical rules for handling them. We consolidate relevant terms and concepts
in statistical databases with those in OLAP systems and explore factors that are
important for measuring the impact of erroneous summaries. We discuss these
issues from the perspectives of schema, data, and computation. This paper con-
tributes to a comprehensive understanding of summarizability and its impact on
decision-making. Our work could help designers and users of OLAP systems
reduce unnecessary constraints caused by imposing rules to eliminate all sum-
marizability violations and give designers a means to prioritize problems.

1 Introduction

Data warehouses contain large sets of subject oriented, integrated, historical, and rela-
tively static data used for strategic decision making. Because data warehouses are
typically magnitudes larger than operational systems, they typically contain many ag-
gregate summaries of base data. Thus, accurate summaries are necessary to ensure
that the decisions based on them are sound.

Summarizability refers to the property of whether performing an aggregate opera-
tion will result in an accurate result. Martyn [1] describes three design criteria neces-
sary for all database systems, consisting of correctness, efficiency, and usability, and
argues that data correctness is of utmost importance. Lenz and Shoshani [2] also ar-
gue that summarizability in online analytic processing (OLAP) is an important prop-
erty because violating this condition can result in erroneous conclusions and deci-
sions. Shoshani [3] further argues that it is important for OLAP systems to borrow
some areas of statistical database systems, such as strict classification hierarchies and
the distinction between summary data from attributes.

Prior research in both statistical databases and OLAP has explored numerous con-
ditions that could result in erroneous summarizations. However, the issues are dis-
persed throughout the literature in OLAP systems and statistical databases and have
not been consolidated into a comprehensive taxonomy of issues that could result in
inaccurate summaries. These analyses have focused on identifying the existence of er-
roneous summaries, rather than the impact on decision making. We note that the type

434 J. Horner and I.-Y. Song

of query and proximity of the summary outputs to decision points also affect the im-
pact of inaccurate summaries. Furthermore, not all issues can be eliminated and
methods for eliminating the problems can restrict number and types of queries that
can be entered. It is therefore important to identify the factors that could lead to inac-
curate summaries and approaches to manage them.

In [4], we analyze various causes of non- and semi- additive data in OLAP sys-
tems, and suggest rules for identifying and managing these data. This paper expands
our earlier work on additivity and look beyond simply identifying the existence of ag-
gregate summary problems.

In this paper, we present a taxonomy of inaccurate summary factors and practical
rules for handling them. The primary contributions of this paper are as follows: first,
our taxonomy of inaccurate summaries is comprehensive in that (1) we cover them
from the perspectives of schema, data, and computation, and (2) we consolidate rele-
vant terms and concepts in statistical databases with those in OLAP systems. Sec-
ond, we suggest metadata that can be used to identify schema, data, and computa-
tional problems and suggest how to use this metadata to detect the impact that an
invalid summary may have on a decision. Third, we present practical rules that can be
used to quickly identify problems that have the potential to impact decisions:

Our paper is organized as follows: Section 2 describes relevant literature. Section
3 details a comprehensive taxonomy of summarizability issues in OLAP systems.
Section 4 examines how these issues influence decision-making. Section 5 suggests
techniques for managing summarization problems. Finally, Section 6 concludes our
paper.

2 Background and Related Literature

Data warehouses are typically conceptualized as facts and dimensions, whereby facts
are measures of interest, and dimensions are attributes used to browse, select, group,
and aggregate measures of fact tables. Attributes that are used to aggregate measures
are labeled classification attributes, and are typically conceptualized as hierarchies.
An example of a classification hierarchy is the time dimension, upon which measures
can be aggregated from the lowest level of granularity, dates, into progressive higher
months, quarters, and years. For example, a profit measure may be aggregated from
the daily profit to the monthly, quarterly, or yearly profit.

Typically, data is aggregated along multiple hierarchies, summarizing data along
multiple dimensions. For example, a summary may show the total sales in the year
2004 at all branch locations in Pennsylvania. In this case, the sales measure is rolled
up along the time dimension and location dimension. Because of the enormous size
of the data sources, operations are performed to summarize measures in a meaningful
way. The typical OLAP operations include Roll-up, Drill-down, Slice, Dice, Pivot-
ing, and Merging.

Data are most commonly aggregated using the SUM operator in OLAP systems
[5]. Measures can be classified based on whether they can be meaningfully added
along hierarchies in various dimensions. Specifically, measures are classified as non-
additive, semi-additive, or fully-additive, whereby a measure is:

 A Taxonomy of Inaccurate Summaries and Their Management in OLAP Systems 435

• fully-additive if it is additive across all dimensions;
• semi-additive if it is only additive across certain dimensions; and,
• non-additive if it is not additive across any dimension.

Previous research on summarizability has focused on three primary areas. The first
is identifying problems that could lead to summarizability problems [2, 3, 4]. The
second focus is on defining methods for eliminating issues that could result in inaccu-
rate summaries [6, 7]. The final focus is on making these problems visible through
conceptual models [7, 8, 12].

Classifying measures based on the number of dimensions along which they can be
aggregated is useful for making visible where inaccuracies may occur. However, this
classification scheme does not give insight into the reason why measures are not addi-
tive, nor does it focus on problems that could result using other aggregate operators.
In our previous work [4], we analyzed the reasons why certain attributes were not ad-
ditive along certain dimensions, and distinguished between temporally and categori-
cally semi-additive measures.

Lenz and Shoshani [2] take a broader look at the problem of erroneous summaries,
and identify issues that are applicable to various aggregate operations. They describe
three necessary conditions for summarizability, including disjointness, completeness,
and type compatibility. Lehner, Albrecht, and Wedekind [6] suggest normal forms for
multi-dimensional databases that can be used to guarantee summarizability. The fo-
cus of their research is to ensure that a broad range of schemas can be designed to
meet both the completeness and disjointedness summarizability conditions specified
by Lenz and Shoshani [2]. Hüsemann, Lechtenbörger, and Vossen [7] also suggest an
approach for designing data warehouses that avoids aggregation anomalies. The ap-
proaches of both Lehner et al. and Hüsemann et al. focus on eliminating all possible
aggregation anomalies through normal forms.

Tryfona et al. [8] suggest incorporating summary properties into the conceptual mod-
eling of data warehouses. Specifically, they note that measures should be classified as
stock, flow, or value per unit because different properties behave differently with differ-
ent summary functions. Additionally, they note that object properties, including strict-
ness and completeness should also be modeled. By incorporating this information into
the model, potential problems can be made apparent at the conceptual level.

Shoshani [3] notes that OLAP systems and statistical databases are quite similar,
and compares the work done in both areas. He argues that data warehouses should
include a statistical object data type. Furthermore, he states that this statistical object
data type should support the semantics, operations, and physical structure of the
multi-dimensional space, and must also manage metadata of the category values and
hierarchical associations.

In our paper, we expand upon this research by creating a comprehensive taxonomy
of issues that could result in summarizability violations.

3 Taxonomy of Inaccurate Summaries

In OLAP systems, inaccurate summaries have typically been categorized based on both
the number of hierarchies that measures could be aggregated, as is the case with label-
ing measures as additive, semi-additive, non-additive. In the statistical database (SDB)
community, the terms Flow, Stock, and Value per Unit are used to classify summariza-

438 J. Horner and I.-Y. Song

instruments. And, computational inaccuracies refer to problems related to inappro-
priately computing aggregates summaries, such as those that could result from sum-
ming measures of intensity, summing data snapshots, or using the mean to find the
central tendency of log-normally distributed data. Figure 1 summarizes the taxonomy
in a UML class diagram and Table 2 depicts our taxonomy of potential summarization
problems.

3.1 Schema Level

Inaccurate summaries can result when the structure of the classification hierarchies
does not meet certain necessary conditions. Specifically, problems can result from
non-strict and incomplete hierarchies, and can occur at the level of either micro-data
or macro-data. Micro-data refers to base data, while macro-data refers to schema
objects.

A strict hierarchy refers to a classification hierarchy whereby each object at a
lower level belongs to only one value at a higher level. Non-strict hierarchies can be
thought of as many-to-many relationships between a higher level of a hierarchy and a
lower level. Lenz and Shoshani [2] refer to strict hierarchies as disjointed, and note
that disjointedness of category-attributes is a necessary condition for summarizability.
In order to test for disjointedness, or hierarchy strictness, it is necessary to examine
the semantic knowledge of the micro-data or test the actual data. They describe
students being assigned to a single department as an example of disjointedness;
whereas, if students could be assigned to multiple departments, the disjointedness
property would be violated. The non-strict hierarchy in Figure 2 depicts a situation
where at the schema level, the student object rolls up only to one higher level object,
Department, but at the micro-data level, an individual student could be assigned to
more than one department. If each student has values for tuition_paid associated with
them, then the payments associated with these students may be counted more than
once.

S1 S3S2 S4

D2D1

Student

Department EngineeringComputer Science

Fig. 2. Non-strict Hierarchy

In order to ensure that dimensional hierarchies are complete, it is necessary that
they satisfy two conditions. All lower level members must belong to one higher level
object, and that object must consist of those members only. We will refer to these
different types of incomplete hierarchies as Orphaned-incomplete, which will include
hierarchies where lower level records are stored, but are not associated with parents.
Omitted-incomplete include hierarchies where records are not stored in the database.

 A Taxonomy of Inaccurate Summaries and Their Management in OLAP Systems 439

S1 S3S2 S4

D2D1

Student

Department EngineeringComputer Science

Orphaned: No Parent
There is an applicable parent

S5

Parent Ommitted:
Not Stored

S6

Not Applicable:
No parents are applicable

Not Applicable

Fig. 3. Three Cases of Incomplete Hierarchy

Additionally, we will also differentiate null values that occur when there are no ap-
plicable parents. We label these missing values as Not Applicable-incomplete. In the
student-department example, there are three situations where the hierarchy does not
meet the completeness property. First, it is possible that a student was stored in the
database, but their department was not stored in the database. Second, it is possible
that the student existed and was assigned a department, but was not stored in the data-
base. Finally, it is possible that the student is not and should not be assigned a de-
partment, as may be the case with non-matriculated students. In any case, aggregat-
ing the data along this hierarchy will be incomplete. Figure 3 depicts an incomplete
hierarchy of the three cases.

Thus far, we have looked at situations where one dimensional category is rolled up
to a single dimensional category (i.e. student rolled up to department). Multiple path
hierarchies consist of hierarchies where a lower level category can be aggregated to
more than one higher level category. In situations lower level instances are associated
with more than one parent which are located in different dimensional attributes. In
some cases, instances can only have one parent; while in other cases, instances can
have parents in multiple different attributes. For example, Hurtado and Mendelzon
[9] describe an example data warehouse schema, whereby an international organiza-
tion keeps track of shops, which have a parent in either state or province, depending
on their country. It is legal to aggregate the sales in a select set of states with those in
a select set of provinces. However, if a child has parents in both of the selected at-
tributes, then erroneous summaries can result.

This situation could be further complicated if these parents are part of different het-
erogeneous dimensions. This situation could happen in multiple data marts. Data
marts can be tied together using drill-across techniques when dimensions linked to the
facts are either exactly the same or perfect subsets of each other. Abelló, Samos, and
Saltor [10] argue that completely conforming dimensions unnecessarily restricts the
usage of drill across. They argue that it is possible to drill-across different fact tables if
there are derivation, generalization, association, or flow relationships among the
related dimensions. While it may be possible to relate fact tables that do not share
dimensions, drilling across non-conformed dimensions could result in inaccurate sum-
maries. Abelló et al. [10] note that dimensions evolve over time, and new schemas can
be linked to older schemas through flow relationships. However, semantic relation-
ships may differ at different times. For example, in [4], we describe how the depend-
ency between area code and location was eliminated, making it possible to misinterpret
comparison queries between facts stored before and after the dependency changed.

440 J. Horner and I.-Y. Song

3.2 Data Level

Imprecise, biased, and inconsistent data may result in erroneous summaries. This is
especially true when some measures stored in data warehouses are derived from
measurement instruments. Measurement instrument is a term used to describe the
method used to collect the base data. Measurement instruments can be physical in-
struments (e.g. thermometers, photometers, GPS systems, registers, bar-code scan-
ners), or they can be methods for collecting data (e.g. census surveys, inventory
counts).

Regardless of the medium used to collect the data, all measurement instruments
have some imprecision associated with them. Imprecision refers to the exactness or
reliability of the data collected from a measurement instrument. Bias is a measure of
the systematic offset or shift of data collected from a measurement instrument. If the
values captured are persistently lower than the data in the real world, then the meas-
urement instrument is considered to be negatively biased. Alternatively, if the cap-
tured data are persistently higher than the real world value, the measurement instru-
ment is positively biased.

Inconsistency occurs when the method used to record data changes because the
physical instruments used to record the data were changed, the software used to cap-
ture the data changed, or the procedure used to record or capture the data was altered.
Aggregating data that was collected using different measurement instruments (includ-
ing process changes) can result in erroneous summaries. And, data collected with one
measurement instrument may not be comparable with data collected using a different
measurement instrument. Unless changes are recorded, decision makers may come to
the conclusion that there were changes in the data; when, in fact, the differences were
only a result of the measurement instrument.

3.3 Computation Level

Computational inaccuracies are problems that are related to using aggregate operators
that are not appropriate for the data, or aggregating data with differing units.
Rafanelli, Bezencheck, and Tinini [11] classify three types of meta-data that are con-
sidered relevant to summarizability, including the aggregation function (count, sum
average etc.), the summary type (real, non-negative integer, etc.), and the
phenomenon described by the statistical object (population, income, etc.).
Computational problems occur when there is an illegal or problematic interaction
between these different components. Specifically, an issue arises when summary
objects cannot provide meaningful summaries of the phenomenon described by the
statistical object using certain aggregate operators. Several types of computational
problems are described below.

Lenz and Shoshani [2] distinguish between stock and flow measurements. Meas-
ures that can be characterized as stock measurements, such as inventory levels or
bank account balances, are typically non-additive across the time dimension, meaning
that these measures cannot be aggregated using the summation operator unless
grouped by time. We named these measures temporarily non-additive [4]. Certain
stock levels such as measurements of intensity, and pre-aggregated averages, maxi-
mums, and minimums, cannot be meaningfully added regardless of the elements by

 A Taxonomy of Inaccurate Summaries and Their Management in OLAP Systems 441

which these measures are grouped [5], [4]. While stock levels cannot be aggregated
using the sum operator, all other aggregate operators can be used to aggregate stock
measures. Other measures cannot meaningfully be aggregated using either the sum
or average operator, such as measures of direction [4].

Certain measures cannot be meaningfully aggregated regardless of the aggregate
operator. It is not mathematically permissible to aggregate values that have different
units. In a scientific context, an example would be attempting to aggregate a measure
of distance with a measure of mass. And, it is not permissible to aggregate two dif-
ferent measures of distance with different units unless the data are translated into a
common unit. In a data warehousing context, basket counts cannot always be mean-
ingfully aggregated because these measures aggregate items with different units. We
named these measures categorically non-additive [4]. For example, a basket-count
may aggregate 1 telephone with 3 packs of bubble-gum for a total of 4 items. In this
case, the data are translated into similar units based on an abstraction hierarchy,
whereby both bubble-gum and telephones are products. As we discuss in [4], certain
basket-counts may be meaningful if there is a low level of abstraction necessary to
translate the items into similar units.

In [5], Kimball and Ross note several types of measures that are inherently non-
additive. They state that percentages and ratios, such as gross margin, are non-
additive, and therefore, when designing systems, both the numerator and denominator
should be stored in the fact table. Additionally, they note that it is important to re-
member when summing a ratio, it is necessary to take the ratio of the sums and not
the sums of the ratios. In other words, the numerator and denominators should first be
aggregated separately using the sum operator, and then the totals should be divided,
yielding the appropriate ratio values.

4 Measuring the Influence of Inaccurate Summaries

Incorrect summaries can result if instances of measures are incorrect, not counted, or
counted more than one time in an aggregate summary. It is not always possible to
automatically identify and record sources of summarization problems, since many
problems are derived from imprecise business process, measurement instruments, or
human errors. Therefore, it is important to identify the influence that the erroneous
results that may not be eliminated during the design process will have on decision
making.
We note that not every summarizability violations may lead to inaccurate decisions.

Some problems are insignificant, and would have no effect on the decision process;
while others are quite significant and could result in severe mistakes. Eliminating all
possible inaccurate results can be overly restrictive and effortful; alternatively, ignor-
ing the potential for inaccuracies could lead to serious errors. One approach without
making the system less restrictive is to identify summarization problems in conceptual
models [12], [8]. While modeling issues is useful for depicting the existence of a
problem, it does not show the influence that an issue may have on the decision-
making process. The influence of inaccurate summaries on decisions can be classi-
fied along two dimensions, extent and impact. Whereby,

442 J. Horner and I.-Y. Song

• the extent refers to how many decisions will be affected by a particular issue; and,
• the impact refers to the degree to which an issue will affect a particular decision.

The extent of inaccurate summaries refers to the scope of decisions that are af-
fected by an inaccurate summary. It is not possible to precisely predict the extent of a
summarizability issue because the exact queries that will be run against a schema
cannot be precisely known ahead of time. The impact of inaccurate summaries is
even more difficult to identify or estimate due to many important factors. In this paper
we briefly discuss a way of estimating the extent of inaccurate summaries.

The extent of summarizability problems can be measured performing an analysis
on the types of queries affected. To ensure a comprehensive analysis, each measure
should be analyzed along each hierarchy using all aggregate functions. And, potential
sources of biased, missing, or duplicate data, such as those described in Section 3,
should be noted. Following this process of identifying all possible sources of errone-
ous data will be time consuming, but there are several ways to facilitate the process.
One suggestion is to automate the process of identifying problems. Grumbach and
Tininini [13] suggest a method of tracking numerical dependencies and using meta-
data to automatically aggregate data that are not necessarily complete. Hurtado and
Mendelzon’s [9] method of using summarization constraints using metadata can also
facilitate the process of making the extent of inaccurate summaries visible.

Queries on data warehouses can be classified according to the decisions they are
intended to support. Specifically, queries can be categorized into exploratory queries,
comparison queries, and benchmark queries. Exploratory queries are used to get a
general idea of the data. Comparison queries are used to compare distinct sets of data
from the system, comparing summaries from different groups. And Benchmark que-
ries are used to compare sets of data against a specified benchmark. The type of que-
ries affects both the impact that an erroneous summary will have on a decision and the
approach for managing the problem. Examples of benchmark queries, comparison
queries, and exploratory queries are shown in Figure 4, 5, and 6, respectively.

How many of our branch stores met the profit goal of $5,000,000 last year?

Which regions of the country have cancer rates that are greater than one in a million?

Which programs have not shown a profit in two out of the previous five years?

Fig. 4. Benchmark Queries

Are electronics sales more profitable than appliance sales?

Which region of the country has had the most new customers during the previous six
months?

Are there more cases of influenza this year than the average number of cases during the
 previous 10 years?

Fig. 5. Comparison Queries

 A Taxonomy of Inaccurate Summaries and Their Management in OLAP Systems 443

How are the sales in North America doing?

How many people have contracted the HIV virus during the past year?

Fig. 6. Exploratory Queries

With comparison analysis, the impact of erroneous summaries will be most appar-
ent if the bias of one group of data is different from the bias of another group. For
example, if both appliance sales and electronics sales are positively biased by the
same amount, comparisons between the two will not affect the decision, even though
the data are inaccurate. However, if the total sales displayed for appliance sales is
positively biased and the total sales for electronics is not, then an inaccurate decision
could result if the bias is significant enough to change which group was more
profitable.

In both benchmark and comparison analyses, erroneous decisions may be made if
the error associated with the aggregate summary cause the displayed value to be on a
different side of the decision cut-point than the true value. In exploratory analyses,
there may not be any definable decision points at all.

In a sense, OLAP queries can be conceptualized as a type of informal statistical
test. Statistical tests are used to determine whether groups are different from each
other or a benchmark, and use the error to identify whether the output is reliable at a
certain significance level. When running statistical tests, rigorous rules for identify-
ing significance are needed. These rules are based on the probability of an output be-
ing incorrect based on the characteristics of the dataset. In data warehousing, it is also
important to identify the reliability of an output, and similar considerations should be
given to identifying whether the error renders an output insignificant for a given test.

5 Managing Inaccurate Summaries

In this section we suggest an approach that can be used to minimize and identify the
impact that inaccurate aggregate summaries will have on a given query. We also sug-
gest techniques and metadata that can be used to automatically detect and display
their effect on analyses.

5.1 Schema Level

Much of the work on summarizability has focused on either structuring data ware-
houses in a manner that eliminates the potential for structural violations to occur or
making the violations apparent through conceptual modeling. These techniques are
useful for eliminating many inaccurate summaries from occurring or impacting deci-
sions. However, there are many situations where systems are not optimally structured
or conceptual models are not consulted. In these situations, it is important to make
the impact of structural violations apparent at query time.

Scripts can be run that count the number of times a value is included in a summary.
This value can be used to identify orphaned incomplete data or duplicate data result-
ing from non-strict and alternate path hierarchies. Eder, Koncilla, and Mitsche [14]

444 J. Horner and I.-Y. Song

Table 3. Managing Schema Problems

Type Queries Impacted Management

Non-strict

Any query that rolls-up to the parent
level of a non-strict hierarchy will be
affected only if the lower level values
are counted more than one time in the
query

Run scripts at query time to identify the
number times measures are counted in the
summary and identify the total value of any
duplicated values.

Incomplete:
Orphaned

Any query that aggregates parents of
orphaned data will be impacted only if
the orphaned values are associated
with measures.

Routinely run scripts to identify the extent
of orphaned data and the value of the asso-
ciated measures.

Incomplete:
Not

Applicable

Any query where it is important to
distinguish whether a value is miss-
ing, orphaned, or not applicable

Use a not-applicable code when there is not
an appropriate dimension member, rather
than leaving the cell null.

Incomplete:
Missing

Any query with missing data can sig-
nificantly impact queries, especially
when data are systematically missing

Attempt to identify reasons for missing data
and extrapolate the impact of the data that
were not captured.

Changing
Schema

Dependen-
cies

Comparison queries that compare
temporally dissimilar groups of data

Identify and track all hierarchical depend-
ency changes in metadata.

Alternate
Path Hierar-

chies

Merge queries will be inaccurate if
data are counted multiple times.

Comparison queries may count a sin-
gle measure in more than one group.

Run scripts at query time to identify
whether measures are counted in multiple
groups or multiple times in a single group.

Heteroge-
neous Di-
mensions

Drill-across queries where the dimen-
sions are not perfectly conformed

Dimensions should be conformed if signifi-
cant inaccurate summaries result from het-
erogeneous dimensions.

describe the applicability of using regression, correlation, Fourier transforms, and
principal component analysis to identify sharp changes in the structure of data ware-
houses. Specifically, they explore the use of these outlier detection algorithms for
identifying hierarchical members that split, merge, change, or have moved. When in-
accurate summaries result from heterogeneous dimensions, we recommend that Kim-
ball and Ross’ [5] suggestion of the conforming the dimensions be followed. Table 3
shows our suggestions for managing schema problems.

5.2 Data Level

Inaccurate summaries could significantly affect decisions in both business applica-
tions and in scientific database applications. Typical sources of errors include units,
capture biases, errors due to capturing frequencies of stream data, etc. When the
method used to capture and record measures changes during the history of data collec-
tion, the resultant data can be affected. Therefore, it is important to make heterogene-
ous measurement instruments visible to decision-makers. To reduce the likelihood of

 A Taxonomy of Inaccurate Summaries and Their Management in OLAP Systems 445

Table 4. Managing Data Problems

Type Queries Impacted Management

Biased

Any exploratory query that aggre-
gates biased measures Compari-
son queries where the groups are
biased in different directions

Track the positive or negative bias associated
with each measure, method, or measurement in-
strument.

Imprecise
Any query where the aggregate
value is close to a decision point

Display the level of precision associated with a
summary. Indicate the likelihood that an aggre-
gate value is significantly above or below that
value.

Inconsis-
tent

Comparison queries that aggregate
measures captured using dissimilar
methods or measurement instru-
ments

Store method code indicating to track how a par-
ticular measure was captured. Also, track how
the dimensional members were captured.

erroneous conclusions based on these summaries, each different measurement instru-
ment should be stored in metadata along with the associated measures. When aggre-
gate queries are run, these metadata should be accessed. And, if there are multiple
measurements within a single sub-cube or among different sub-cubes, then there is the
potential that the measurement instrument affected the aggregate results.

When biases are known, the strength, direction, and extent of the bias should be
stored in metadata. These metadata should then be accessed to adjust data based on
these biases. There are several likely sources of bias, including data being duplicated,
missing, or inaccurate. Queries that pull biased data should automatically adjust the
data to eliminate the bias. We distinguish between three types of biases: missing, du-
plicate, or shifted.

Often, biases in a data set, however, cannot be precisely known. In these cases, it
is also important to track the precision associated with the measurements. These pre-
cision values can be used to display a summary output that displays a range of values
that could be representative of the true value, rather than a single imprecise value.

The impact of the imprecision and bias must be identified if decisions are going to
be based off of these results. The total bias and imprecision should be combined to
determine the offset and error associated with a summary. This information can then
be used to measure the impact that these issues will have on a decision. Data prob-
lems can occur from imprecise, biased, or inconsistent data. To manage these prob-
lems, we suggest storing the error and offset for values associated with each meas-
urement instrument. The method used to capture the data should be stored and used
to distinguish among values captured using different processes or systems. Table 4
summarizes our suggestions for managing data issues.

5.3 Computation Level

Computational problems may impact decisions, especially when the violations are not
apparent to the decision maker. Aggregating basket counts may result in an erroneous
summary if dissimilar items are counted together. Averages performed on non-
normally distributed data may give an incorrect perception of the central tendency.

446 J. Horner and I.-Y. Song

And when specific rules are prescribed for aggregating data, erroneous decision may
be made if these rules are not apparent to the decision-maker.

All measures have associated units, such as dollars, degrees, inches, or product
types. The units must always be stored in metadata. It is best to store the units as a
dimensional field or in a conformed dimension called Unit in the data warehouse. The
Unit dimension should have also necessary conversion rules. Aggregate operations
cannot be performed on measures with differing units unless they can be converted
into a common unit. It is also important to check inter-set heterogeneity in compari-
son queries. The greatest impact will occur when the heterogeneity of the units is not
apparent to persons performing the query. This type of error may occur if a single
measure stores currency with multiple financial units that have near one-to-one ex-
change rates.

If queries are found to have data with more than one different unit, they must be
transformed into similar measures. In cases where units can be assimilated computa-
tionally, this can be done automatically by storing conversion units in meta-data or in
Unit dimension. Analysts will be able to aggregate the data by simply choosing the
units for the data.

Many other computational problems result from performing illegal operations, and
therefore should not be permitted. Systems should track whether fields are fractions,
measures of direction, and stock values; and, queries that attempt to improperly ag-
gregate these data should be prohibited. Table 5 depicts our specific suggestions for
managing computation problems.

Table 5. Managing Computation Problem

Type Queries Impacted Management

Queries aggregating measures
with heterogeneous units that
appear to have similar units are
most likely to be misinterpreted

Units for all measures should be stored in meta-
data and in a conformed dimension; scripts
should be run at ETL stage or query time to
convert units if heterogeneous units exist. Que-
ries should be grouped by the units so that no
summaries will aggregate measures with differ-
ent units.

Illegal
Operations

Queries aggregating measures
that are derived from fractions,
such as Gross Margin Return
on Investment (GMROI)

When using the sum operator, fractions should
be aggregating by taking the quotient of the
sums, rather than the sums of the quotients.

Type
Compatibility

Sum Queries that aggregate
snapshots of stock measures.
Any query that aggregates data
using an inappropriate aggre-
gate operator, such as measures
of direction.

Appropriate aggregate operators for each meas-
ure should be stored in metadata.

Statistical
Requirements

Aggregations that are used for
statistical calculations that have
specific requirements

Show alerts when aggregate summaries are
based on very limited number of instances.
Analysis tools should show distribution of data
and descriptive statistics for the summaries.

 A Taxonomy of Inaccurate Summaries and Their Management in OLAP Systems 447

6 Conclusions

In this paper, we presented a taxonomy of inaccurate summary factors and practical
rules for handling them. We discussed these issues from the perspectives of schema,
data, and computation. We proposed several methods that can be used to identify
problems based on the type of queries that will be run. Finally, we suggested meta-
data and practical rules that can be used to manage inaccurate summaries.

We note that not all summarization problems can be eliminated from OLAP sys-
tems. Furthermore, methods for eliminating and managing summarization problems
can be effortful. Therefore, it is important to prioritize problems based on how likely
they are to impact decisions.

The following heuristic rules can be used to quickly identify problems that have
the potential to impact decisions:

This paper contributes to a comprehensive understanding of summarizability and
their impact on decision-making. Identifying source of errors and learning how to
manage them can reduce unnecessary effort of imposing overly restrictive rules to
eliminate all summarizability violations. Our paper gives designers a means to man-
age and prioritize inaccurate summary problems.

 Follow design guidelines wherever possible
Conforming dimensions and making dimensions orthogonal is an important
step to reducing the likelihood for misinterpretation of aggregate summaries.

 Identify inconsistencies
Beware of aggregating data that has been collected through different meth-
ods or collection instruments. It is also important to identify measures that
are collected using the same method that are coded differently.

 Link all measures to their corresponding units
The units of all measures should be stored either in the data warehouse or in
metadata. Additionally, if the units associated with measures are part of a
hierarchy, the associated hierarchy should also be stored. Measures should
only be aggregated with measures that have similar units.

 Make imprecision and bias visible
Where it is not advantageous to completely eliminate the potential for inac-
curate summaries, systems should allow decision-makers to make more in-
formed decisions by making error and offset values accessible through links
to visual or tabular outputs.

 Track the dimensions along which measures are non-additive and non-
summarizable

OLAP systems should then display alerts or prevent queries that attempt to
improperly summarize these measures.

 Make computational assumptions and operations visible
OLAP tools often hide the computational aspects of aggregating data, such
as rounding rules, equations, and statistical assumptions. This information
should be directly accessible through OLAP tools so analysts can quickly
and easily identify potential computational problems.

448 J. Horner and I.-Y. Song

References

1. Martyn, T.: Reconsidering Multi-Dimensional Schemas. SIGMOD Record. Vol. 33, No. 1.
ACM Press. New York, NY (2004) 83 – 88.

2. Lenz, H-J. and Shoshani, I.: Summarizability in OLAP and Statistical Data Bases. Ninth
Int’l Conf. on Scientific and Statistical Database Management (1997) 132-143.

3. Shoshani, A.: OLAP and Statistical Databases: Similarities and Differences. Proc. of the
sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
Tucson, Arizona (1997) 185 – 196.

4. Horner, J., Song, I.-Y., and Chen, P.: An Analysis of Additivity in OLAP Systems.
DOLAP’04, Washington, DC, USA (2004) 83-91.

5. Kimball, R. and Ross, M.: The Data Warehouse Toolkit: Second Edition. John Wiley and
Sons, Inc. (2002).

6. Lehner, W., Albrecht, J. and Wedekind, H.: Normal Forms for Multidimensional Data-
bases. Proc. of the 10th International Conference on Scientific and Statistical Data Man-
agement (SSDBM’98), Capri, Italy (1998) 63-72.

7. Hüsemann, B., Lechtenbörger, J., and Vossen, G.: Conceptual Data Warehouse Design.
Proc. of International Workshop on Design and Management of Data Warehouses (2000) 6

8. Tryfona, N., Busborg, F., and Borch Christiansen, J.: StarER: A Conceptual Model for
Data Warehouse Design. DOLAP ’99, Kansas City, MO, USA (1999) 3-8.

9. Hurtado, C and Mendelzon, A.: OLAP Dimension Constraints” ACM PODS 2002, Madi-
son, WI, USA (2002) 169-179.

10. Abelló, A. Samos, J., and Saltor, F.: On Relationships Offering New Drill-across Possi-
bilities. DOLAP ’02. McLean, VA, USA (2002) 7-13.

11. Rafanelli, M., Bezencheck, A., and Tininini, L.: The Aggregate Data Problem: A System
for their Definition and Management. SIGMOD Record. Vol. 25, No. 4 (1996) 8-13.

12. Trujillo, J., Palomar, M. Gomez, J., and Song, I.-Y.: Designing Data Warehouses with OO
Conceptual Models. IEEE Computer. Vol. 34, No 12. (2001) 66-75.

13. Grumbach, S., Tininini, L.: On the Content of Materialized Aggregate Views. ACM
PODS, Dallas, TX, USA (2000) 47-57.

14. Eder, J., Koncilia, C. Mitsche. D.: Automatic Detection of Structural Changes in Data
Warehouses. DaWaK (2003) 119-128.

XCM: Conceptual Modeling
for Dynamic Domains

Luis González Jiménez

Department of Business and Economics,
Universidad de La Rioja, Cigüeña, 60, 26004 - Logroño, Spain

Abstract. ERM remains the tool of choice for conceptual data model-
ing. It relies on entities and relations to model the domain of interest
and so does essentially (differences in notation and terminology aside)
object oriented modeling. Consistently with this perspective, prevailing
“temporal models” are based on facts and their associated valid and
transaction times, rather than events and the corresponding occurrence
times. Arguably the approach is, in both cases, inadequate for design
independent modeling of dynamic (i.e., time-varying) domains and pos-
sibly complicates the definition of the system’s behavior.

This paper puts forward an alternative, XCM, that purports to be
richer and more domain-oriented, specially where history and forecast-
ing support requirements arising from the temporal nature of the domain
of interest are concerned, and that may have a positive influence in other
aspects of conceptual modeling.

Keywords: Conceptual Modeling, Entity-Relationship Model, Tempo-
ral Databases.

1 Introduction and Motivation

Despite the popularity of Object Oriented Modeling (OOM), the Entity Rela-
tionship Model (ERM) [3] remains the most widely used conceptual data model.
Arguably, its success derives in large measure from its application to the speci-
fication and design of relational databases, so far the most common in practice.
Though the ERM has often been revisited, few modifications have gained wide-
spread acceptance, notably its extended version which introduces the category
concept for the representation of specialization and generalization [5].

Prominent among the motivations behind many proposed extensions to the
ERM is the need to incorporate into database design in general [22] and con-
ceptual data modeling (CDM) in particular [9] the requirements that arise from
the temporal nature of the domain of interest.

From an ontological perspective, existing temporal data models are based
on the concept of fact, rather than on the idea of event. It is assumed that the
domain of interest is best contemplated along the axis of time as a succession of
states. States have extent over time. Facts (about objects) are true for an interval
of time. The (instantaneous) occurrence of events results in facts becoming or
ceasing to be true. Hence, events and states are duals: states can be represented

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 449–464, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

450 L. González Jiménez

by their delimiting events and events are implied by states. The usual approach
is to “timestamp”– with valid times (indicating when was a fact true in reality),
transaction times (that tell when was a fact current in the database) or both– en-
tities, relations and attributes of either [13,14]. This approach is consistent with
the ERM’s ontology. According to Chen’s seminal paper “The entity-relationship
model adopts the more natural view that the real world consists of entities and
relationships” and “an entity is a ‘thing’ which can be distinctly identified. A
specific person, company, or event is an example of an entity.” [3]. That is, the
ERM’s ontology does not tell things that are (entities proper) from things that
happen (events). Nor does it consequently differentiate relations among entities
from those associating them to events or relating events to one another.

ERM adopts the more natural view of a static world. However, dynamic do-
mains are the rule rather than the exception and CDM should provide the means
to model time and time-varying information in a natural way. Fact-based models
do not provide those means because the way ordinary people look at a changing
domain is not in terms of “what is the period of time within which this fact was
true?”; rather, it is in terms of “when did this happen?”. Tellingly, none of the
proposals for temporal extension to the ERM surveyed in [9] involves the addi-
tion of the event either as a new construct or as a variety of those constituting
the ontology of the ERM. This does not mean that the notion of event is absent
from requirements engineering and high-level system design. Event and other
dynamic concepts – action, activity, state transition, and process – are central
in goal and agent-oriented models (e.g.: KAOS [4], RML [10], TROPOS [2,6], or
AOR [20]) and in (Event-Condition-Action) business rules conceptual modeling
[15,21]. However, events are rarely modeled as persistent data objects and are
frequently identified with state changes or with actions.

Indeed, the notion that domain dynamics may very well be captured in terms
of states, state transitions and processes (leading from one state to another) is
pervasive [16]. XCM takes a slightly different approach to the matter. The prob-
lem at hand may be considered from two angles. First, how to model a changing
domain and what happens within it, regardless of time. Second, how to incorpo-
rate into the model a measure of “temporal support”, so that information about
the domain’s past and, if necessary, about its future may be provided by the IS.
Research in temporal databases is essentially if not exclusively concerned with
the second angle. On the other hand, XCM (where CM stands for conceptual
modeling) begins by considering the problem from the first angle and comes up
with a different perception of the domain. The latter is a view of a dynamic world
and should arguably be closer to users and domain experts (collectively referred
to hereinafter as “the domain observer”) view of the world. The departing point
for this purpose is to redefine the concept of entity so as to exclude events and to
do so while differentiating between events and their effect on the state (likewise,
from XCM’s perspective, actions are not events, though they may prompt them
to happen). This rather finer point has its merits. In [19] discrete processes are
described as sequences of states (periods of inactivity) and events (changes in
the state), while continuous processes are bounded by their initiation and cessa-

XCM: Conceptual Modeling for Dynamic Domains 451

tion. Through differentiation of events and state changes, XCM allows to model
non-atomic events causing more than one state change or no change at all. In
addition and by considering that certain events (not associated with entities’
lifespan) may have a deferred and/or time-bound effect on the state, it allows
to model events’ aftereffect. Finally, defining states as fully derived from events
makes possible, at least at a conceptual level, to model continuous change.

2 Theoretical Foundations

As already noted, Chen’s paper [3] states that: “An entity is a ‘thing’ which can
be distinctly identified.” Because the two propositions things exist and things
happen are true in reality, yet the things about which either proposition is true
are different, Chen’s claim may be reformulated in the following terms:

Definition 1. An entity is a thing that exists (independently) and has duration.
An event is a thing that happens (independently) and is instantaneous. Relation-
ships are associations among entities, events or both. Relations between entities
exist (and last), while those among events or between entities and events are
instantaneous. To avoid any ambiguity, the latter will always be referred to as
instantaneous relations, while those associating entities will be referred to just
as relations.

Consistently withDefinition1, the following three axioms may be formulated.

Axiom 1. The state of the domain of interest at an instant may be described,
at a certain level of abstraction, by the existing entities and relations among
entities, and the values of their attributes.

Entities attributes represent features of the former that the domain’s observer
considers relevant excluding markers of their association with other entities (for-
eign keys, FK).

Relations represent associations among entities which may or may not in-
clude, in addition to markers of the participating entities (FK), attributes rep-
resenting relations’ features relevant to the observer.

For the sake of clarity, let us elaborate a bit on the implications of the second
paragraph of Axiom 1. XCM considers that, for conceptual data modeling
purposes, the possibility of mapping relations to entities’ attributes (as FK)
should be ignored. Data objects representing relations would contain all the
relevant information including both, which ones are the associated entities and
the relation’s descriptors (attributes that are not foreign keys) if any.

Axiom 2. The state of the domain is subject to the following classes of changes:

1. appearance of a new entity;
2. disappearance of an entity;
3. an entity’s attribute (FK excluded) takes value (for the first time);
4. change in the value of an entity’s attribute (FK excluded);
5. appearance of a new relation;

452 L. González Jiménez

6. a relation’s attribute takes value (for the first time);
7. change in the value of a relation’s attribute; and
8. disappearance of a relation.

Axiom 3. The original domain state is a vacuum and any subsequent state is
the result of the accumulation of state changes.

It is now possible to define events in a very precise fashion.

Definition 2. An event is an instantaneous burst of activity involving entities,
either actively or passively. Events may or may not result in perceptible changes
to the state, but state changes always result from events. On the other hand,
(occurred) events are not themselves subject to changes because the past cannot
be altered.

Events always have an effect on the state because if anything happens, some-
thing necessarily changes, temporarily or for good. Definition 2 does not con-
tradict this claim. It is possible that an event is both, perceptible and relevant
(by and to the domain’s observer), while its effect on the domain is not per-
ceptible, irrelevant or both. On the other hand, an event may cause more than
one change to the state, and the same state change may be caused by different
(types of) events (e.g., the balance of a customer may change as a result of a
sale, a payment or a rebate).

Definition 2 also states that events are instantaneous. Yet, macroevents (or
processes) are defined in [8] as events with duration; that is, events that occur
over an interval of time. This contradiction is only apparent. XCM assumes that
macroevents do not exist, events being instantaneous by definition. Rather they
are chains of events and the states that obtain in between, or events whose effect
on the domain is either or both, deferred and limited to a known time period.
For instance, assume that a train has its departure today at 9:30 p.m, it travels
overnight non-stop and is expected to reach its destination tomorrow at 9:30 a.m.
How many events occur (and when as measured with a discrete time scale)? To
answer this question it is necessary to define the precision of time measurements;
i.e., the basic time unit (or granule [8]). If time is measured in minutes, there are
720 instants between today at 9:30 p.m. and tomorrow at 9:30 a.m., and that
is the maximum number of events that may be defined. Yet, to know what has
happened and what is happening (and with more exactitude than that which is
provided by minutes), a much smaller number of events are necessary:

– A first option is to make do with two events: departure (event time: today
at 9:30 p.m.) and arrival (event time: tomorrow at 9:30 a.m.); in between
these two events, the train is travelling.

– The second option involves just one event: departure (event time: today at
9:30 p.m.). A second time magnitude that may be either “travelling time” (12
hours) or “arrival time” (tomorrow at 9:30 a.m.), will respectively indicate
the time-bound or deferred effect.

Both options preserve the “instantaneous nature”, but the second one in-
volves the use of foreseen information, while the first one does not.

XCM: Conceptual Modeling for Dynamic Domains 453

Let us leave aside for the moment the possibility of making forecasts and
turn to the domain observer and wonder what he or she may be interested in.
Essentially: in the current state of the domain, in its past states and in what has
happened in it. Possibly, if the observer is willing to have information about what
has occurred, he or she will also want to know when did it happen. Likewise, with
few exceptions, past states will be interesting only if accurately located in time.

Based on this admittedly loose description of the possible information inter-
ests of a domain observer the following definition may be formulated.

Definition 3. Historical information may be defined as data (either raw or
processed) about events occurred in the domain at a point in time or within a
period of time, about state changes caused by occurred events, or about the state
of the domain at a given point in time in the past. Consistently, it may be said
that a database provides history support (HS) if it can supply the necessary flow
of data for the hosting information system to produce historical information.

XCM follows the basic principle that states are the result of accumulated
state changes and these are the consequence of events. Databases designed and
implemented to comply with conceptual data models written in accordance with
this basic principle should yield historical information as above defined. This
claim is substantiated in Section 3.2.

Let us now go back to the possibility of forecasting (see Figure 1). Obviously,
the future cannot be foretold, yet it may be foreseen. Foreseeing and forecasting,
as used herein, are meant to include, besides more or less educated guesses on
the future, the planning or scheduling of events and changes in the state. In the
real world, future events and state changes as such do not exist. Forecasts do.
These will later on be proved either right, partially right or completely wrong.

The following definition will be useful to discuss the possible interests of the
observer in this regard.

Definition 4. Forecasts may be defined as data whose contents are predictions
by the observer of the domain in the form of:

1. delayed and/or time-bound state changes caused by occurred events; and
2. foreseen events (and their effect on the state which may be immediate, but

also delayed and/or time-bound).

Definition 5. Forecasting information may be defined as forecasts (raw or
processed) as already defined, together with data about the (expected) state of the
domain at a given point in time in the future. Consistently, it may be said that
a database provides forecasting support (FS) if it can supply the necessary flow
of data for the hosting information system to produce forecasting information.

3 XCM Model and Graphical Notation

This Section defines XCM’s morphology and syntax, assuming that:

1. the database time scope contains the domain’s history and foreseen future
(see Figure 1);

454 L. González Jiménez

Fig. 1. DB’s time scope for total HS and FS

Fig. 2. Events’ Classes and State-components

2. history and forecasting support are required for the whole domain of interest;
and

3. the continuous model of time applies.

The first two assumptions imply that the database must contain the records
of all the events occurred or expected to occur within the indicated time scope
(shown in Figure 1), including the time of their occurrence, and that every
single change suffered by the state during that period must be derivable from
recorded events.

How to adapt XCM when either or all of above conditions do not hold shall
be briefly discussed in Section 3.3.

Figure 2 shows the essence of XCM’s morphology and syntax. In particular,
it depicts the two classes of events that will be defined, and their rapport to the
state components: entities and relations.

3.1 Events: Classes and Defining Features

XCM assumes events to belong to either of the two classes defined below. Essen-
tially, they differ in how they modify the state of the domain. To fully appreciate
the significance of their configuration and properties, it is important to note that

XCM: Conceptual Modeling for Dynamic Domains 455

the state (as defined in Axiom 1) at a given point in time will be derived from
data objects representing events of these two classes.

Definition 6. Entity-lifespan delimiting (ELD) events are those whose
effect on the state is either

1. the appearance in the domain of a new entity, including its attributes’ values
if they are both, constant (i.e., they take values only once) and known at that
moment (“birth attributes”); or

2. the disappearance from the domain of an entity.

XCM models ELD events (Figure 3) according to the definition above and
with the following defining features:

– Both classes of ELD events (appearance and disappearance) associated with
any given entity will be modeled as one single data object.

– The attributes (entity) lifespan starting time (LST) and lifespan ending time
(LET) are event occurrence times that indicate respectively the points in
time at which an entity appeared or disappeared (from the domain of in-
terest). LET will usually be an optional attribute because its value will
not be known beforehand. For obvious reasons, it shall always hold that
LST < LET .

– Neither the LST nor the LET can be used as identifiers (primary keys). ELD
events should be identified by the same attribute as the derived entity.

– Entities resulting (derived) from ELD events are part of the state within the
timeframe thus delimited (by LST and LET) and only within it may they
be part to non-ELD events (defined below).

– For every instance of an ELD event such that LST ≤ t and LET > t or null,
an instance of the associated entity is part of the state at t, and the values
of the entity’s birth attributes are the values of the same attributes in the
ELD event (derivation does not require proper computation).

– By definition, ELD events cannot participate in relations, either instanta-
neous or otherwise.

Definition 7. Non ELD events are those whose effect on the state is any
change or changes other than those caused by ELD events or that do not alter
the state of the domain. State changes caused by events of this class may be
limited in time and will be either instantaneous or deferred.

XCM models non-ELD events (Figure 4) consistently with above definition
and with the following defining features:

– The attribute event occurrence time (EOT) indicates the point in time when
a non-ELD event has occurred or is expected to occur (second type of forecast
enumerated in Definition 4). In principle, the EOT is an identifier (or
primary key). This is theoretically (hence conceptually) possible as far as
the continuous model of time applies and it is assumed that no two events
may happen exactly at the same point in time. However, this possibility
(identification by the EOT) poses some problems that will be elaborated on
at the end of this section.

456 L. González Jiménez

Fig. 3. ELD event

Fig. 4. Non-ELD events and derivation

– If the effect of a non-ELD event is either deferred, time-bound or both (first
type of forecast enumerated in Definition 4), attributes indicating the as-
sociated time magnitudes must be added. Hence, the attributes starting and
ending valid times (SVT and EVT) respectively indicate the points in time
where the effect (or one of several effects) of a non-ELD event on the state
will or is expected to take place (SVT) and cease to take place (EVT). For
instance, an item price established through an instance of the event SELL-
ING PRICES UPDATE (Figure 4) will be valid only for the period of time

XCM: Conceptual Modeling for Dynamic Domains 457

bounded by the values of the event’s SVT and EVT. The temporal rela-
tions between EOT, SVT and EVT are extremely important and will also
be discussed at the end of this section.

– Data objects representing non ELD events will provide the data required
for derivation of the values of entities’ postbirth attributes (e.g., the ITEM
selling price in Figure 4) and of existing relations and values of their at-
tributes (for instance STOCK and its two descriptors, quantity and unit cost
in Figure 4). More often than not, derivation in this case will be complex
and require actual computation. Not only nor mainly because of the tem-
poral constraints on the event’s validity, but because the same event may
affect more than one entity or relation and these may in turn be affected by
different (types of) events. In the case of Figure 4, the stock of an item at
a particular store and at a certain point in time would be computed adding
all the quantities of the item purchased for the store and deducting the item
quantities sold at that store. Computation of the unit cost would require,
for each stock, adding the quantities of the associated item bought within
the period [t− 29 days, t] for the associated store, tallying the corresponding
amounts (quantity times price), and dividing the total resulting amount by
the total resulting quantity.

– Consistently with Definition 1, non ELD events may only participate in
instantaneous relations. For instance, in the running example (Figure 4)
there cannot exist a relation linking PURCHASE and STOCK, but it would
be valid one associating PURCHASE to another non-ELD event like PAY-
MENT (not included in the schema of the figure).

Besides the defining characteristics enumerated above for each class of events,
both ELD and non-ELD events have the following properties in common:

– Attributes of events are always constant (i.e., non-derived).
– Notwithstanding errors correction and foreseen data update, within the DB

time scope data objects associated to events cannot be deleted or modified.
– Foreseen events will be modeled in exactly the same way as occurred events.

However, their occurrence times (EOT, LST or LET, as applicable) will be
greater than the current time.

– When suitable, both classes of events may be represented using complex con-
structs. Namely, supertype/subtype hierarchies and combinations of strong
and weak components.

To close this section, a brief discussion on the temporal features of non-
ELD events is befitting. Figure 5 will be illustrate the analysis of the different
possibilities regarding the order of precedence of the three time magnitudes
associated with these events plus the transaction time, defined in this context as
the point in time when the event is registered in the database. Numbers in the
figure indicate different temporal orders relative to the EOT.

Let us assume that delayed update is not legal, so that the transaction time
(TT) of an event has to be either equal or earlier (smaller) than the event’s
occurrence time (EOT).

458 L. González Jiménez

Fig. 5. Relations between occurrence, valid and transaction times

The first “basic” order is that of occurred events (TT = EOT , number 2
in Figure 5) whose effect on the state is not time bound (they have no EVT)
nor deferred (SV T = EOT , number 4 in Figure 5). This order corresponds to
events that are not forecasts and the SVT should be omitted.

The second “basic” order encompasses occurred events whose effect is de-
ferred (number 5 in Figure 5, SV T > EOT) and/or time-bound (number 6
in Figure 5, EV T > SV T or, if the event has no SVT, EV T > EOT). These
events are forecasts of the first type enumerated in Definition 4 and there is
something to be noted for those with EVT. Assume that the value of an event’s
EVT is t ; further assume that the value of an entity’s postbirth attribute is de-
rived from it (e.g., the ITEM selling price in the case of Figure 4). At t, unless
there is another event (of the same type and associated to the same entity) such
that SV T ≤ t and EV T > t, the value of the entity’s postbirth attribute will be
null. There is nothing wrong with this because it mirrors reality, but it should
be taken into account when modeling business rules.

These two “basic” orders pose no problems as far as consistency with the
configuration and features discussed in this section is concerned.

Foreseen events provide the third case of temporal order (number 1 in Figure
5, TT < EOT). These events may, in addition, have deferred and/or time-bound
effects on the state (numbers 5 and 6 in Figure 5).

This third possibility creates a small difficulty. The EOT takes a foreseen
value until the event actually occurs, hence it is subject to changes (resulting in
either anticipation or delay of the occurrence time). This causes a problem of
data integrity since the EOT identifies non-ELD events (in principle). The safest
and easiest solution is to use in this particular case an alternative identifier. In
addition it must be noted that in the case of events that always begin as forecasts,
the second “basic” order with EOT = time of making the forecast is possibly
more adequate and does not entail inconsistency problems.

Finally, there is a fourth case, indicated by number 3 in Figure 5 (SV T <
EOT). This possibility does not exist in the physical world: events that have
not yet happened cannot have any effect on the state. However, this case may
arise, for instance, in the context of business transactions (e.g., a pay-rise given
on March applicable as of the first of January); actually, in an extreme case, it

XCM: Conceptual Modeling for Dynamic Domains 459

might also happen that EV T < EOT . This temporal order creates the same
sort of consistency problems that delayed update does. If delayed update is legal
(i.e., events with EOT < TT are valid), then the current state may not be fully
known (by the system hosting the database). Likewise, if SV T < EOT , then
the current state at t ∈ [SV T, EOT) is not fully described. It is unrealistic to
assume that delayed update may be completely barred, it should be addressed
when modeling queries (e.g., giving indication to users that the information
provided may be not up-to-date) and business rules, and so should this fourth
case.

3.2 Derivation of the State and HS Provided

The following table summarizes the morphology of XCM data objects.

Class Temporal attributes Attributes Foreign Keys (of)
ELD event LST, LET Non-derived None
Non ELD event EOT, SVT (optional), Non-derived Participating entities,

EVT (optional) other non-ELDE
Entity Any (optional) Derived None
Relation Any (optional) Derived Associated entities

Let us now recall and elaborate a little on the assumptions formulated at the
beginning of this Section 3:

1. the database time scope contains the domain’s history and foreseen future,
i.e., every single event (ELD and non-ELD) occurred or expected to occur
since the origin until the horizon is registered in the DB;

2. the continuous model of time applies, i.e., all the time magnitudes in the
database – EOT, LST, LET, SVT and EVT – are positive real numbers.

Let [to, th] be the DB time scope (Figure 1). The state of the domain at a
given point, t ∈ [to, th], may be described by the existing entities and relations
among entities, and the values of their attributes (Axiom 1). All of which results
from events (of both classes) occurred on or before t and whose effect on the state
is valid in t. The latter applies for non-ELD events with either or both, starting
and ending valid times and for derivation of relations (from non-ELDE events)
which is subject to the associated entities’ existence (i.e., relations’ existence
may depend indirectly on ELD events).

Derivation of the entities existing at t is straightforward: there is one and
only one for each ELD event such that LST ≤ t and LET is greater than t or
null; and the value of their “birth attributes”is derived as already indicated (see
Figure 3).

In all other cases, derivation will follow a set of derivation rules (DR), which
are static business rules (as opposed to dynamic or Event-Condition-Action,
ECA, business rules [1,12]) that have to be defined and that embody the ef-
fect of non-ELD events on the state. Whether DR are modeled as part of the
data-objects definitions (in the data dictionary), as independent objects (busi-
ness rules to be precise), or combining both alternatives (e.g., as business rules if

460 L. González Jiménez

they may vary over time or across the domain and as part of the data-objects de-
finitions otherwise), should be decided taking into consideration domain’s char-
acteristics, observer’s requirements and mappability to design components.

It must be noted that there are two general constraints that apply for deriva-
tion (and, hence, need not be explicit in derivation rules’ definitions):

– to derive the state at t, only those non-ELD events occurred on or before t
are relevant and

– in application of the entity existence constraint, only relations associating
entities that exist at t have to be derived, likewise only attributes of entities
and relations existing at such time must be derived.

Specific DR may be very diverse, however, there are some basic “metarules”
(or rules to be complied with when formulating derivation rules). Namely:

– DR rules must identify clearly:
• the derived element: entity postbirth attribute, relation (existence, ex-

pressed as foreign keys’ values), or relation descriptor (derivation of two
or more elements associated with the same data object may be expressed
in one single rule);

• the non-ELD event type or types that determine the value of the derived
element, let us call these event types the sources for derivation;

• constraints, temporal (if they have starting and/or ending valid times)
and otherwise on the members of the determinant set(s) of events, which
are constraints-compliant subsets of the sources.

– DR will also state unambiguously how to compute each instance of the de-
rived element in terms of the determinant at any point in time (provided it
is part of the DB timescope):
• if the derived element is an entity’s attribute or relation’s descriptor, the

rule will define a mathematical formula for computation of the attribute‘s
value as a function of the values of one or more attributes of the events
in the determinant set(s);

• if the derived element is a relation (existence and foreign keys’ values),
the rule will specify what attribute of which event in the determinant
set(s) yields the value of each foreign key making up the relation; con-
sistently, the specified event attributes must be identifiers of the related
entities.

– Precisely to avoid ambiguity, DR should be formal. However, it makes sense
to accompany rules’ formal definitions with their expressions in natural lan-
guage. The latter would be ‘intentional rules’ and the former ‘operational
rules’ as defined in [15], not as different classes of (implementation-free) rules,
but as alternative expressions (informal and formal), formulated with differ-
ent approaches (business context/processes), that belong in two different
stages of IS analysis (intentional/operational). In the normal course of the
conceptual modeling stage of a project, intentional rules would be elicited
and analyzed and later on redefined in formal form.

– Finally, derivation rules can and should always be declarative.

XCM: Conceptual Modeling for Dynamic Domains 461

A database designed and implemented to comply with a conceptual model
thus defined would fulfill the first two assumptions formulated at the beginning
of this Section 3 and satisfy Definitions 3 and 5. The information provided
by the database would include all the events occurred during the time interval
[to, th], and the states at any point in time within the interval.

3.3 Partial Forecasting and History Support

For a database to provide total HS and FS the three assumptions at the beginning
of this Section 3 have to be met. However, the third assumption cannot hold
in practice because, for implementation purposes, the continuous model of time
is not feasible, available clocks being able to provide but a discrete measure of
time. On this matter, for non-critical systems the discrete model would seem
to be sufficiently precise. Within this frame, it would be a matter of domain’s
observer preferences (i.e., requirements) what granularity(ies) should be used.
However, use of the discrete model poses two problems:

– Non-ELD events should be identifiable by their occurrence time (EOT), and
it is evident that only the continuous model guarantees that the EOT is a
candidate key.

– In addition, chronological ordering of events occurred at the same granule
may be required.

Both problems can be solved using a complex timestamp for the EOT that
expresses both the absolute and the relative occurrence times. The latter being
relative to other events occurred within the same granule (month, day, hour,
etcetera).

A second limitation refers to the possible existence of a DB time-lower bound
that is beyond the beginning of domain’s history (so that the first assumption
does not hold either). For design and implementation purposes, this possibility
should be taken for granted. Unless it is the first information system that is
being developed, events occurred within the domain from its very beginning will
be irrelevant if not unavailable. In addition, once the system is in operation,
vacuuming capabilities (for the periodical physical removal of historical data in
a disciplined manner) [18] will be required. Unless this limitation is treated as a
logical design problem, the conceptual model has to be modified as follows:

– the modeled DB should be assumed to contain all the required information
about the initial state: existing entities and relations, and values of their
attributes as at the point in time constituting the DB time-lower bound;

– the modeled DB must also be assumed to contain:
• non-ELD events occurred before the DB time-lower bound but with

starting and/or ending valid times greater than it, and
• ELD events for entities that are part of the initial state;

– finally, derivation rules have to be defined taking into account the additional
information included in the DB.

462 L. González Jiménez

Concerning the second assumption, more often than not, the preferences of
the domain’s observer regarding history support will not be homogeneous across
the domain. For instance, the observer may be interested in the clinical history of
a patient and in his/her current personal data but not in his/her personal history
(previous addresses, phone numbers, etcetera). Likewise, the required forecasting
support (FS) will vary, both as regards the time scope and the covered domain
area. Limited FS poses no problem as far as the discussed model is concerned.
Limited domain coverage for HS purposes may be solved, at least in part, by
allowing deletion of ELD events for entities that do not require HS, and/or
modification of their attributes if no HS is required for the derived entities’
attributes. Likewise, binary relations without descriptors may be excluded from
the derivation mechanism as long as temporal consistency is preserved and if no
HS/FS is required or if they are not subject to changes. Further simplification
of the model would require allowing further updates (modification of attributes’
values and/or deletion of data objects) of the initial state, of non-ELD events,
or both. In this case, it might be better to use the alternative discussed in [7]
(REERM, Reenhanced Entity Relationship Model), a precursor of XCM better
suited when HS requirements are very limited.

4 Summary and Directions

In addition to a natural (i.e., closer to observer’s perception) way of modeling
dynamic domains, XCM provides the constructs and the syntax to smoothly
incorporate history and forecasting support requirements. Moreover, XCM may
have a positive influence in other aspects of CDM. For instance, working si-
multaneously and interactively on and with a list of events and another one of
entities should improve elicitation and analysis of information about the domain.
So would likely do to work with event clusters instead of entity clusters. A unit
(department, division, etcetera) within an organization is usually concerned with
a certain set of events, while entities tend to be “transversal”, to be present in
events concerning different units.

On first acquaintance, XCM may seem a bit awkward to apply in practice.
Two considerations should be made in this regard. First, it has to be noted that,
more often than not, domains are strongly dynamic. This implies that the differ-
ent types of events (of the non-ELDE class) that occur in the domain outnumber
by far the types of entities present and, in addition, the number of instances of
the former is also much bigger. Second, observers of such domains will possibly
have a stronger interest (which should translate into requirements) on infor-
mation about events than on information about states (and in the latter case,
some degree of HS and FS should be expected to be required). Where these
two conditions hold, XCM is better and easier to apply than the usual (fact-
based) approach and facilitates conceptual modeling in general, which also en-
compasses implementation-free definition of the IS behavior, including dynamic
(Event-Condition-Action, ECA, [1,12]) and static (consistency, [11]) business
rules, (concept-based) queries [17] and use-cases.

XCM: Conceptual Modeling for Dynamic Domains 463

References

1. Assche, F. Van, Layzell, P.J., Loucopoulos, P. and Speltincx, G. 1988. Informa-
tion Systems Development: a Rule-Based Approach. Journal of Knowledge Based
Systems (September): 227-234.

2. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A. 2004. TRO-
POS: An Agent-Oriented Software Development Methodology. Journal of Au-
tonomous Agents and Multi-Agent Systems: 203-236.

3. Chen, P.P. 1976. The Entity-Relationship Model Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1): 9-36.

4. Dardenne, A., van Lamsweerde, A. and S. Fickas. 1993. Goal-Directed Require-
ments Acquisition. Science of Computer Programming, 20: 3-50.

5. Elmasri, R., Hevner, A., and Weeldreyer, J. 1985. The Category Concept: An
Extension to the Entity-Relationship Model. Data Knowledge Eng., 1(1): 75-116.

6. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P. 2004.
Specifying and Analyzing Early Requirements in Tropos. Requirements Engineer-
ing, 9(2): 132-150.

7. González Jiménez, L. 2005. REERM: Reenhancing the entity-relationship
model. Data & Knowledge Eng, In Press, Corrected Proof, Available online
13 June 2005, (http://www.sciencedirect.com/science/article/B6TYX-4GCWY60-
1/2/5468b3374f3b31d93773e68fc0cc3d25).

8. Gregersen, H. and Jensen, C.S. et al (eds.). 1998. The Consensus Glossary of Tem-
poral Database Concepts - February 1998 Version. In O. Etzion, S. Jajodia, and S.
Sripada (eds.), Temporal Databases: Research and Practice, LNCS 1399, Springer-
Verlag: 367-405.

9. Gregersen, H. and Jensen, C.S. 1999. Temporal Entity-Relationship Models - A
Survey. IEEE Transaction on Knowledge and Data Engineering, 11(3): 464–497.

10. Greenspan, S., Mylopoulos, J. and Borgida, A. 1986. A requirements modeling
language and its logic. Information Systems, 11(1): 9-23.

11. Herbst, H., Knolmayer, G., Myrach, T., Schlesinger, M. 1994. The Specification of
Business Rules: A Comparison of Selected Methodologies. In A.A. Verrijn-Stuart,
T. W. Olle (eds.), Methods and Associated Tools for the Information System Life
Cycle, Elsevier:29-46.

12. Herbst, H. 1996. Business Rules in Systems Analysis: a Meta-Model and Repository
System. Information Systems, 21(2): 147-166.

13. Jensen, C.S. and Snodgrass, R.T. 1994. Semantics of Time-Varying Information.
Information Systems, 19(4): 33-54.

14. Jensen, C.S., Soo, M.and Snodgrass, R.T. 1994. Unifying temporal data models
via a conceptual model. Information Systems, 9(7): 513–547.

15. Kardasis, P. and Loucopoulos, P. 2004. Expressing and organising business rules.
Information and Software Technology, 46(11): 701-718.

16. Mylopoulos, J. 1998. Information Modeling in the Time of the Revolution. Infor-
mation Systems, 23 (3/4): 127-155.

17. Owei, V. and Navathe, S.B. 2001. Enriching the conceptual basis for query for-
mulation through relationship semantics in databases. Information Systems, 26(6):
445-475.

18. Skyt, J., Jensen, C.S. and Mark, L. 2003. A foundation for vacuuming temporal
databases. Data and Knowledge Engineering, 4(1): 1-29.

19. Sowa, J.F. 2000. Knowledge Representation: Logical, Philosophical, and Compu-
tational Foundations. Brooks Cole Publishing Co.

464 L. González Jiménez

20. Wagner, G. 2003. The Agent-Object-Relationship metamodel: towards a unified
view of state and behavior. Information Systems, 28(5): 475-504.

21. Wan-Kadir, W. M. N. and Loucopoulos, P. 2004. Relating evolving business rules
to software design. Journal of Systems Architecture, 50(7): 367-382.

22. Wu, Y., Jajodia, S. and Wang, X.S. 1998. Temporal Database Bibliography Update.
In O. Etzion, S. Jajodia, and S. Sripada (eds.), Temporal Databases: Research and
Practice, LNCS 1399, Springer-Verlag: 338-366.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 465 – 482, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Precise Modeling and Verification of Topological
Integrity Constraints in Spatial Databases: From an

Expressive Power Study to Code Generation Principles

Magali Duboisset1, François Pinet1, Myoung-Ah Kang2, and Michel Schneider2

1 Cemagref, Clermont Ferrand, France
{magali.duboisset, francois.pinet}@cemagref.fr

2 Laboratory of Computer Science, Modeling and System Optimisation (LIMOS),
Blaise Pascal University, Clermont Ferrand, France

{kang, schneider}@isima.fr

Abstract. Recent works underline that the integration of topological
relationships into the Object Constraint Language (OCL) is an important field
of investigation. The final goal is to provide an expressive language adapted to
precisely model alphanumerical and topological constraints. In order to reach
this goal, the present paper focuses on the integration of the 9 Intersection
Method (9IM) into OCL. We show that this OCL+9IM language is especially
suitable for the specification of topological constraints implying composite
spatial objects. The expressive power of the language is also studied from a
spatial point of view, and the SQL code generation from OCL+9IM expressions
is considered. An important validation is related to the use of the language in
the context of agricultural information systems.

1 Introduction

The specification of topological integrity constraints in spatial databases is an
important task. Indeed, the challenge is to specify precisely the topological
relationships between spatial objects but also to help to maintain databases consistent
in identifying objects that don’t verify the specified topological relationships.

The formalization of spatial relationships is an active research field and numerous
works deal with the recognition of pertinent topological relationships. The core
models in this domain are the Calculus Based Model (CBM) [5], the 9-Intersections
Method (9IM) [9] and the Region Connection Calculus (RCC) [6]. All these
approaches satisfy the requirements that they provide a sound and complete set of
topological relationships between two spatial objects. These topological relationships
have a wide range of applications. In the context of databases, CBM has been
integrated into the Structured Query Language (SQL) of PostGres [4], and 9IM
constitutes the basis of Oracle Spatial SQL [14].

In parallel of the spatial relationships definition, an interesting investigation field is
related to the modeling of topological integrity constraints in databases. The purpose
of these constraints is to check the quality of spatial data and to monitor the
consistency of information. This paragraph gives an example of concrete database-
oriented topological constraints; it is based on the consistency between database

466 M. Duboisset et al.

associations and spatial data. In the conceptual model of figure 1, each town hall
building is associated to a town by the relationship “postal_code”. In practice, this
association corresponds to a foreign key in the relational database physical schema.
This is illustrated by the corresponding physical schema of figure 2. An interesting
topological integrity constraint could be “each town hall building b associated to a
town t (by postal_code) must be spatially inside t”. For example, in figure 2, the
buildings b2 and b3 are associated (by the foreign key) to the town named “Issoire”,
and consequently the geometry of the buildings b2 and b3 must be inside the
geometry of the town “Issoire”.

buiding_id:String

street_address:String

geometry:Region

1..*

contains

1..1

is_inside
Town

town_code:Integer

town_name:String

town_hall_buildings_number:Integer

geometry: Region

1..1 1..*

postal_code

Town_Hall_Building

Fig. 1. “Town hall building” example

Town_Hall_Building

building_id street_address

b1

14, rue Victor Hugob2

town_code

63170

63500

Town

town_code town_name

63170 Aubière

town_hall_buildings_number

1

b3

3, rue Gambetta

63500
63500 Issoire 2

16, rue Victor Hugo

Fig. 2. Instance example of the “town hall building” physical schema

Currently specific mechanisms to describe topological constraints are often used in
the object-oriented formalisms dedicated to spatial database design. In [1,10,11,15],
the topological constraints are usually represented by a special relationship in class
diagrams that describe database conceptual schemas. In these propositions, binary
relationships are drawn between two classes in order to define that two types of data
must verify a specific topological integrity constraint. This method is illustrated in
figure 1 by the relationship “contains...is_inside” between town hall building
and town classes; according to the multiplicity, this example indicates that: a) a town
hall building is inside one town and b) a town contains one or several buildings
composing a town hall. This relationship is not an association of the database; in fact,
it corresponds to a topologic constraint. This type of relationships can be useful to
express end-user basic constraints but it remains too limited to specify numerous real
topological integrity constraints notably topological constraints depending on
database associations. For instance, the “town hall building” constraint presented in
the paragraph below, cannot be expressed by this type of modeling because the “town
hall building” constraint depends on the association “postal_code” (i.e. there exists
a specific topological relationship between a town hall building and a town if these
two objects are associated by postal_code).

 Precise Modeling and Verification of Topological Integrity Constraints 467

Thus, the non-ambiguous formalization of concrete topological constraints requires
a specific database-oriented constraint language. Consequently, this paper underlines
the needs to use an expressive formal language to describe precisely topological
constraints and to generate automatically reliable constraint checking mechanisms
inside databases. From a practical point of view, it is relevant to use only one
language to express both topological and purely alphanumerical constraints. Thus, the
main idea presented in this paper is to adapt an existing constraint language in order
to offer the capability to express topological constraints.

At present, the constraint language par excellence is the Object Constraint
Language (OCL) [12,17]. It is an important part of the Unified Modeling Language
(UML) which is the standard formalism for information systems design, accepted
both by the industrial domain and the scientific community. OCL has been originally
developed by IBM and the standard is currently maintained by the Object
Management Group. A growing number of information system designers use this
constraint language in complement of their class diagram models. Moreover, OCL
provides the capability to express easily constraints on database associations by using
the concept of “navigation”. OCL is suitable for information systems engineers and is
especially dedicated to formal constraints specification without side effects.
Moreover, several theoretical and practical tools have been developed to convert an
OCL constraint into a SQL query that checks if the OCL constraint is satisfied or not.
OCL is a language especially dedicated to the constraints modeling and consequently,
it is really easier for database designers to write integrity constraints in OCL than to
write directly the corresponding SQL queries; in fact, OCL provides means to
naturally describe constraints. For all these reasons, and as mentioned in [10], it
seems important to precisely study the integration of spatial features into OCL in
order to specify topological constraints.

A final goal of the work proposed in the present paper is to allow designers to
specify topological constraints in OCL, independently of the platforms, and then to
generate equivalent integrity checking mechanisms into different relational DBMS. In
this context, another advantage of OCL is that it can be considered as a platform
independent language. Indeed, all OCL specifications are expressed at a conceptual
level i.e. the same specification level as the one presented in figure 1.

An important approach to characterize topological relationships rests on the 9-
Intersection Method. Thus, this paper aims at extending OCL with 9IM. The paper is
organized as follows. After a short overview of OCL (section 2), we propose the
integration of the 9IM into OCL. We show that the produced language is especially
suitable for the checking of topological relationships on composite spatial objects
(section 3). We also assess the expressive power of OCL with 9IM from a topological
point of view (section 4). An existing software named OCL2SQL has been extended
in order to provide a reliable code generation tool dedicated to produce database
triggers from topological constraints written in OCL with 9IM (section 5). An
important validation of the works is related to the use of the language in the context of
agricultural information systems (section 6).

2 Overview of OCL

The Object Constraint Language provides a framework for precisely defining
constraints on a UML model in a formal way. OCL is textual and integrates several

468 M. Duboisset et al.

concepts issued from classical object-oriented languages. OCL is used to specify
invariant i.e. a condition that “must be true for all instances of a class at any time”
[17]. The examples presented in this section are based on figure 1.

Example 1. The following constraint specifies that the attribute named
town_hall_buildings_number must be lower than 100.

 context Town inv:

 self.town_hall_buildings_number < 100

In this example, self denotes an instance of the Town class i.e. the class declared in
the “context”. The OCL constraint must be “true” for each Town instance (i.e. each
self).

Example 2. OCL provides a functionality to count the number of instances. For
example, the next expression specifies the following invariant: “the number of towns
is lower or equal than the number of town hall buildings”.

 Town.allInstances()->size() <=
 Town_Hall_Building.allInstances()->size()

The allInstances function returns a collection containing all the instances of a
class. For example, “Town.allInstances()” returns the collection containing all
Town instances. The “->size()” function returns the elements number of a
collection.

Example 3. More complex constraints can be built by using navigations along the
associations between classes. In figure 1, the UML association “postal_code” is
used in order to link Town_Hall_Building with Town. The next constraint
illustrates the use of navigation in OCL by defining that for each Town instance I, the
town_hall_buildings_number attribute is equal to the number of
Town_Hall_Building instances associated to I by “postal_code”. For instance,
in figure 2, the town_hall_buildings_number attribute value of the town
“Issoire” is equal to 2 because two buildings (b2 and b3) are associated to “Issoire”.

 context Town inv:

 self.town_hall_buildings_number
 = self.Town_Hall_Building->size()

Thus, self notation represents an instance of the Town class and the expression
“self.Town_Hall_Building” returns a collection containing all the
Town_Hall_Building instances associated to self by the relationship
“postal_code”. The function “->size()” returns the size of this collection.

Example 4. Universal and existential quantifiers are denoted in OCL by forAll and
exists. The logical implication can be expressed by implies. The next expression
exemplifies these functionalities by specifying that each town has a proper town code.
Let t1 and t2 be two towns. If t1 and t2 are not the same town then their town
codes must be different.
 Town.allInstances->forAll(t1,t2|
 t1< >t2 implies t1.town_code< >t2.town_code)

 Precise Modeling and Verification of Topological Integrity Constraints 469

3 Integrating 9IM into OCL

3.1 Overview of 9IM

In 9IM, the classification of topological relationships is based on the intersection of
the boundaries, the interiors and the exteriors of two spatial objects [9]. Each spatial
object can be a point, a line or a simple region. The result of the intersection may be
empty (∅) or not (¬∅). A°, ∂A and A⎯ denote the interior, the boundary and the
exterior of a spatial object A. Each topological relationship between two spatial
objects A and B is represented by a 3×3 matrix; each matrix corresponds to a
combination of intersections between A°, ∂A, A⎯ and B°, ∂B, B⎯ :

 A° ∩ B° A° ∩ ∂B A° ∩ B⎯

M = ∂A ∩ B° ∂A ∩ ∂B ∂A ∩ B⎯

 A⎯ ∩ B° A⎯ ∩ ∂B A⎯ ∩ B⎯

There are 29 = 512 theoretical matrixes for two spatial objects but inconsistent
matrixes can be removed i.e. matrixes corresponding to impossible cases. For
instance, there are only 8 possible matrixes for two simple regions i.e. 8 possible
relationships (see figure 3) [9].

A, disjoint, B A, contains, B A, inside, B A, equal, B

A, meet, B A, covers, B A, coveredBy, B A, overlap, B

BA B

B
B BA

A

A A

A A

A

B B

B

Fig. 3. 8 possible topological relationships between two simple regions [9]

3.2 OCL9IM

In this section we propose to integrate into OCL, the 8 relationships described in
figure 3. We also propose to use the OCL set-based operations to decompose

470 M. Duboisset et al.

composite geometries. We call the extended language, OCL9IM. The purpose is to
enable database designers to model precise topological constraints on a database
schema modeled with UML. In this paper, we investigate the integration of
relationships between regions.

Definition 1. Region abstract model
A simple region is a closed connected point set without hole in a 2-dimensional space
R2. A composite region is a set CR = {R1 , ... , Ri , ... , Rn} where Ri is a simple region
also called “part” of CR. We define that: ∀i≠j, Ri° ∩ R°j =∅.

Definition 2. Database schema with regions
The minimal set of concepts required to model a database conceptual schema with
regions in UML is composed of the following entity-relationship notations: firstly,
classes with attributes, and secondly, associations with multiplicities. An object
identifier of a class C is the smallest set of attributes that identifies uniquely an
instance of C. In this paper, the attribute names of an object identifier appear
underlined in classes. Each attribute has a type; Region is the simple region type and
Set(Region) is the composite region type. If a class C contains an attribute a having
the type Region or Set(Region), C is a spatial class and a is a geometry attribute.

Definition 3. OCL9IM

The language OCL9IM is OCL in which 8 new operations are integrated; one operation
for each 9IM topological relationship on regions. The general form of these
operations is: A->topo_relationship(B)

Thus, topo_relationship can be: disjoint, contains, inside, equal,
meet, covers, coveredBy, overlap. We define that A and B are the parameters of
the operations. The type of A and B must be Region. These operations return true or
false (a boolean) depending on whether the topological relation between A and B is
true or false.

Example 5. Considering the constraint example presented in introduction: “each town
hall building b associated to a town t must be spatially inside t” (see figure 1 and 2).
This constraint can be easily expressed in OCL9IM as follows.
 context Town_Hall_Building inv:
 self.geometry->inside(self.Town.geometry)

The constraint must be satisfied for each Town_Hall_Building instance (denoted
by self). The expression “self.Town” returns the Town instance associated to self
by “postal_code”.

Definition 4. The 9IM relationships integrated into OCL require non-composite
regions. But a composite region can be viewed as a set of regions. Thus, we define
that in OCL9IM, standard set-based OCL operations can be applied on a composite
region in order to “decompose” it into several simple regions. Then, it becomes
possible to apply the 9IM relationships on the produced simple regions (i.e. the parts).
Thus, standard set-based OCL operations such as size, forAll, exists or select
[12,17] can be applied on each attribute having the Set(Region) type.

The general syntax is: geometry_attribute->set_based_operation(...)

 Precise Modeling and Verification of Topological Integrity Constraints 471

In fact, it becomes possible to check topological relations involving composite
geometries by integrating the eight 9IM relationships into OCL and in using the
standard OCL operations on sets. For instance, in the conceptual model of figure 4,
the geometry attributes of the Downtown_Buildings_Lot class and of the
Downtown_Area class have the Set(Region) type. In other words, each of these
attributes stores a composite region. Consequently, as presented in definition 4, set-
based OCL operations can be applied on these attributes. This is illustrated by the
next constraint (based on figure 4).

Fig. 4. “Downtown building lot” example

Example 6. Let L be a downtown building lot and let D be a downtown area. If L and
D are associated by “belongs_to” then for each part b of L, there must exist a part d
of D such as (b is inside d) or (b is covered by d). This constraint is written as follows
in OCL9IM.

 context Downtown_Building_Lot inv:
 self.geometry->forAll(b| self.Downtown_Area.geometry->
 exists(d| b->inside(d) or b->coveredBy(d)))

geometry attributes have the Set(Region) type and consequently, b and d have the
Region type.

As presented in example 7, we can, also specify the number of parts implied in a
topological relationship.

one downtown area
(composed of two
simple regions)

two downtown
buildings lots

Downtown_Buildings_Lot

buildings_lot_name:String

geometry:Set(Region)

1..* 1..1

Downtown_Area

town_name:String

geometry:Set(Region)
belongs_to

buildings_lot_id: Integer town_id: Integer

472 M. Duboisset et al.

Example 7. This constraint uses the relationship “each part of A meets two parts of B”.
 context Class_1 inv:

 self.A->
 forAll(A_i| Class_2.allInstances()->forAll(I| I.B->
 select(B_j| A_i->meet(B_j))->size() = 2))

The Class_1 (resp. Class_2) has an attribute named A (resp. B). The type of the
attributes A and B is Set(Region). In the example, the OCL operation
“B->select(c)” returns all elements (i.e. all parts) of the B attribute value that
satisfy the condition c.

3.3 OCL9IM+ADV

In order to facilitate the specification of constraints on composite geometries, we
propose to integrate into OCL9IM, new operations based on the adverb model (ADV)
presented in [3]. The ADV method provides interesting concepts to express easily and
intuitively topological relationships between two composite regions. It offers the
possibility to add an adverb to each of the 8 classical relationships presented in
section 3.1. The logic-based semantics of the 7 adverbs proposed in [3] and an
example of their use are presented in table 1. In this table, topo_relationship denotes a
9IM relationship between two simple regions (disjoint, contains, inside, equal, meet,
covers, coveredBy, overlap). topo_relationshiprev is the converse relationship of a
topo_relationship, in the case of contains/inside and covers/coveredBy. For the other
relations, topo_relationshiprev = topo_relationship.

Moreover, 9IM+ADV denotes the relationships on composite regions that it is
possible to express by adding each of the seven presented adverbs to each of the eight
9IM relationships.

Definition 5. OCL9IM+ADV

We define OCL9IM+ADV as follows. The language OCL9IM+ADV integrates new
operations into OCL9IM. The general form of these operations is:

A->topo_relationship(“adverb”,B)

Thus, topo_relationship can be: disjoint, contains, inside, equal, meet,
covers, coveredBy, overlap. The correct values for the “adverb” parameter are:
“mostly”, “mostlyRev”, “completely”, “partially”, “occasionally”,
“entirely”, “never”. The type of A and B must be Set(Region). These
operations return true or false (a boolean) depending on whether the 9IM+ADV
topological relation between A and B is true or false. If A or B is a set which contains
no element, the operation returns false.

Example 8. The constraint of example 6 can be expressed more directly in
OCL9IM+ADV without using forAll and exists operators.
 context Downtown_Building_Lot inv:
 self.geometry->inside(“mostlyRev”,self.Downtown.geometry) or
 self.geometry->coveredBy(“mostlyRev”,self.Downtown.geometry)

 Precise Modeling and Verification of Topological Integrity Constraints 473

Table 1. Semantics of the seven adverbs [3]

4 Detailed Study of Expressive Power

We show in the previous section that the integration of 9IM into OCL provides a
language enabling designers to specify relationships on composite regions. An
important work is to study precisely the expressive power of OCL9IM and OCL9IM+ADV.
In other words, what is precisely the set of relationships that the proposed languages
can distinguish? Firstly, we compare the expressive power of OCL9IM and OCL9IM+ADV
(section 4.1). In a second step, we investigate a method to evaluate the expressive
power of the proposed languages (sections 4.2).

4.1 Expressivity Comparison Between OCL9IM and OCL9IM+ADV

ADV provides an excellent abstraction for designers in order to specify topological
constraints implying composite regions. We demonstrate in this section that all
OCL9IM+ADV expressions can be rewritten into OCL9IM without semantic loss. In fact,
we show that OCL9IM and OCL9IM+ADV have exactly the same power of expression.

Logic-based semantics of the seven adverbs Examples with meet
mostly - A mostly topo_relationship B
j 1..m, i 1..n | Ai, topo_relationship, Bj

mostlyrev - A mostlyrev topo_relationship B
i 1..n, j 1..m | Ai, topo_relationship, Bj

completely - A completely topo_relationship B
(j 1..m, i 1..n | Ai, topo_relationship, Bj
(i 1..n, j 1..m | Bj, topo_relationshiprev, Ai)

partially – A partially topo_relationship B
i 1..n, j 1..m | Ai, topo_relationship, Bj
(r 1..n, s 1..m | Ar, disjoint, Bs
 Ar, topo_relationship, Bs)

occasionally - A occasionaly topo_relationship B
i 1..n, j 1..m | Ai, topo_relationship, Bj

entirely - A entirely topo_relationship B
i 1..n, j 1..m, | Ai, topo_relationship, Bj

 Bj, topo_relationshiprev, Ai

never - A never topo_relationship B
i 1..n, j 1..m, | Ai, topo_relationship, Bj

 A

B
A

A

A
B

A A

 A
B
A

 A
B

B

B

B

B

B

 A
B

B
A

 A B

B A
 A B

B

A

 A

 A B

474 M. Duboisset et al.

Table 2. OCL9IM+ADV to OCL9IM. A and B have the Set(Region) type.

mostly – A->topo_relationship(“mostly”,B) can be rewritten as follows:
B->forAll(B_j|A->exists(A_i|A_i->topo_relationship(B_j)))
mostlyrev - A->topo_relationship(“mostlyRev”,B) can be rewritten as follows:
A->forAll(A_i|B->exists(B_j|A_i->topo_relationship(B_j)))
completely - A->topo_relationship(“completely”,B) can be rewritten as follows:
B->forAll(B_j|A->exists(A_i|A_i->topo_relationship(B_j))) and
A->forAll(A_i|B->exists(B_j|B_j->topo_relationshiprev(A_i)))
partially - A->topo_relationship(“partially”,B) can be rewritten as follows:
A->exists(A_i|B->exists(B_j|A_i->topo_relationship(B_j))) and
A->forAll(A_r|B->forAll(B_s|A_r->topo_relationship(B_s) or
A_r->disjoint(B_s)))
occasionally - A->topo_relationship(“occasionally”,B) can be rewritten as
follows:
A->exists(A_i|B->exists(B_j|A_i->topo_relationship(B_j)))
entirely - A->topo_relationship(“entirely”,B) can be rewritten as follows:
A->forAll(A_i|B->forAll(B_j|A_i->topo_relationship(B_j) and
B_j->topo_relationshiprev(A_i)))
never - A->topo_relationship(“never”,B) can be rewritten as follows:
A->forAll(A_i|B->forAll(B_j|not A_i->topo_relationship(B_j)))

Theorem 1. OCL9IM ⊂ OCL9IM+ADV. All constraints expressed in OCL9IM can be also
expressed in OCL9IM+ADV.

Demonstration. Trivial. OCL9IM+ADV is based on OCL9IM. OCL9IM+ADV simply adds
new operations to OCL9IM. All constraint expressions that belong to OCL9IM also
belong to OCL9IM+ADV.

Theorem 2. OCL9IM+ADV ⊂ OCL9IM. All constraints expressed in OCL9IM+ADV can be
also expressed in OCL9IM.

Demonstration (Sketch). An expression using a 9IM+ADV operation of OCL9IM+ADV

can be rewritten in an expression of OCL9IM using 9IM operations and OCL set-based
operations. See table 2. This mapping is based on a conversion between the logic-
based specification of table 1 and OCL expressions. Indeed, this conversion becomes
possible thanks to the integration of 9IM into OCL and to the use of set-based OCL
operations on geometries, as defined in section 3.2.

Corollary. OCL9IM ≡ OCL9IM+ADV

The expressive powers of OCL9IM and OCL9IM+ADV are equivalent.

4.2 n×m Matrix Approach

An approach to enumerate relationships between composite regions is described in
[4]. The main principle of this approach is to consider a n×m matrix where n is the
parts number of a composite region A, and m is the parts number of a composite
region B; the rows of the matrix correspond to the parts of A and the columns of the
matrix correspond to the parts of B. The matrix describes all relationships between
parts of A and parts of B. More precisely, a topological scene is represented by means
of a matrix in which the element in position (i,j) gives the relationship between the
i-th row’s simple region and the j-th column’s simple region. Figure 5 and table 3
exemplify this type of matrixes.

 Precise Modeling and Verification of Topological Integrity Constraints 475

In OCL9IM, the parts of a composite region cannot be named or numbered as in the
n×m matrixes, but it is possible to define the number of rows or columns implied in a
specific topological relationship i.e. the number of parts of A or B that are implied in a
specific 9IM relationship. For instance, as presented in the matrix of table 3, two parts
of A (i.e. two rows) are implied in the “meet” relationship and one part of A (i.e. one
row) is implied in the “overlap” relationship.

A1A1

A2A2

B2B2

B1B1B1

Fig. 5. A topological configuration between two composite regions A and B

Table 3. The n×m topology matrix for the composite regions of Figure 5 (O=overlap, M=meet)

B1 B2

A1 M M
A2 M O

Theorem 3. Let A and B be two composite regions. The number of parts of A (resp.
B) that are implied in a specific 9IM relationship with parts of B (resp. A) can be
defined in OCL9IM. The general form of the OCL9IM constraint describing this parts
number is presented in definition 6.

Definition 6. The general form of the OCL9IM expression describing for each
relationshipp, the number of parts of A that are implied in relationshipp with B is the
following.

A->select(part_of_A | B->exists(part_of_B |
part_of_A->relationship1(part_of_B)))->size() = s1

 and
 ...

A->select(part_of_A | B->exists(part_of_B |
part_of_A->relationshipp(part_of_B)))->size() = sp

 ...
 and

A->select(part_of_A | B->exists(part_of_B |
part_of_A->relationshipz(part_of_B)))->size() = sz

A and B have the Set(Region) type. For example, A and B can be
“self.geometryA” and “self.association.geometryB”.

relationshipp is a 9IM relationship operation name (disjoint, contains,
inside, equal, meet, covers, coveredBy, overlap) and sp is the corresponding
parts number for the p-th relationship. A and B can be inverted in the OCL expressions,
in order to describe the number of parts of B that are implied in a 9IM relationship with

476 M. Duboisset et al.

parts of A. Notice that topological relationships between parts of a same composite
region can be also considered when A and B have the same attribute value.

5 Code Generation

An important challenge is to reduce the gap between the conceptual description of
constraints and their implementation inside a spatial database. Thus, a goal of the
works proposed in the present paper is to enable designers to specify topological
constraints in OCL independently of the platforms, and then to generate equivalent
integrity checking mechanisms into different relational DBMS. This is the reason why
we set up an extension of the tool named OCL2SQL to translate OCL9IM constraints
into database triggers. The corresponding architecture is schematized in figure 6.
OCL9IM is a platform independent language allowing the expression of constraints at a
high abstraction level.

Indeed, we extended an existing tool named OCL2SQL in order to produce a
topological integrity checking mechanism in spatial databases. The open source
OCL2SQL program is a powerful generator [7,8]; it offers the capability to generate
automatically from an OCL expression c, a SQL query selecting all data that don’t
satisfy c. Once integrated inside a database trigger (on data insertion, deletion and
update), the query provides guards that guarantee the consistency of databases.
Indeed, when a data modification occurs, the trigger checks if the generated SQL
query returns tuples; if it’s not the case then the update is accepted, else the data
modification is rejected. By this technique, it becomes impossible to insert data that
violate a constraint.

We extended the standard conversion rules of OCL2SQL in order to translate
OCL9IM constraints into Spatial SQL.

OCL2SQL Generator + Spatial Extension

SQL queries/triggers for Oracle Spatial,
used to check automatically constraints

Other platforms (PostGIS,
MySQL…)

UML Class
Diagram (XMI)

Metadata related to
the geographic

attributes

Topological
constraints in OCL

Fig. 6. From the topological constraints specification to integrity checking mechanisms.
Metadata are related to information on geographic data (coordinate system...). OCL2SQL has
been developed by [7,8].

 Precise Modeling and Verification of Topological Integrity Constraints 477

5.1 Code Generation from OCL9IM Constraints Implying Simple Regions

We included the 9IM operations into OCL2SQL by adding the new proposed OCL
syntax and by providing in a first step, the automatic generation for the Spatial SQL
supported by Oracle. To be able to generate code for a specific DBMS, a direct
mapping between the 9IM operations of OCL9IM and SQL operations must be
possible. For example, concerning the relationships between two simple regions, we
defined the possible mapping for Oracle SQL [14] and OpenGIS SQL [13] (table 4).

Table 4. Mapping rules from OCL9IM operations to Oracle Spatial SQL and OpenGIS SQL

OCL9IM Oracle Spatial SQL OpenGIS SQL
disjoint not ANYINTERACT Disjoint(A, B)
contains CONTAINS Relate(A, B, ‘111FF1FF1’)

inside INSIDE Relate (A, B, ‘1FF1FF111’)
equal EQUAL Equals(A, B)
meet TOUCH Touches(A, B)

covers COVERS Relate(A, B, ‘111F11FF1’)
coveredBy COVEREDBY Relate(A, B, ‘1FF11F111’)

overlap OVERLAPBDYINTERSECT Overlaps(A, B)

In table 4, the within OpenGIS predicate includes equal, coveredBy and inside of
9IM. It can’t be used for the mapping of the inside OCL9IM predicate. covers and
coveredBy are also not defined in OpenGIS SQL. Thus we use the OpenGIS predicate
relate. It takes as input a pattern matrix representing the set of acceptable values for
the DE-9IM matrix (Dimensionally Extended 9IM) [13] for the two geometries on
which it is formulated. The pattern matrix consists of a set of 9 pattern-values, one for
each cell in the matrix. “F” means that the intersection for the cell is null, “1” that it is
not null.

Example 9. Converting the constraint of example 5 into Spatial SQL. Firstly, a
mapping between conceptual models of figure 1 and physical database schemas must
be achieved. The corresponding physical schema is:

Town(town_code,town_name,town_hall_buildings_number,geometry)
Town_Hall_Building(building_id,street_address,geometry,
#town_code)

At the physical schema level, the geometry attribute type is Region in the two
tables. The OCL9IM constraint of example 5 can be translated into Spatial SQL as
follows (the queries select data that don’t satisfy the constraint).

Oracle Spatial SQL:
select * from Town_Hall_Building self, Town T
where T.town_code = self.town_code
and not (MDSYS.SDO_RELATE(self.geometry, T.geometry,
'mask=INSIDE querytype=WINDOW')= 'true');

OpenGIS SQL:
select * from Town_Hall_Building self, Town T
where T.town_code = self.town_code
and not Relate (self.geometry, T.geometry, ‘1FF1FF111’) = 1;

478 M. Duboisset et al.

5.2 Code Generation from OCL9IM Constraints Implying Composite Regions

The use of attributes having the Set(Region) type in UML diagram can simplify the
modeling of composite regions at a conceptual level [2,10,15]. However, as presented
in this subsection, it is not straightforward to handle attributes having a
Set(Region) type in relational physical schemas with SQL. Concerning the
composite regions, we can consider two main types of physical schemas: one in
which a spatial class is mapped into one table, and one in which a spatial class is
mapped into two tables.

1) Mapping one spatial class with one table. If the target DBMS supports the
Set(Region) type, a first method is to convert each spatial class of the conceptual
model into only one table in the database; this table corresponds to the class itself and
each composite geometry is stored in one geometry attribute value. In this case, the
type of the geometry attribute of the physical schema is Set(Region). Example 10
illustrates this type of physical schemas. This possibility is interesting but the storage
of all the parts of a composite region in the same attribute could lead to practical
difficulties notably concerning the access of the different parts in SQL. For example,
in considering this data structure, writing a SQL query to compute the area of the
smallest part of a composite region is difficult for the database users. This SQL query
implies the use of a decomposition operation [13]. For these reasons, we don’t
investigate this first mapping in our work, and we advocate the use of the second
mapping (i.e. from a spatial class to two tables).

Example 10. Mapping one spatial class with one table. In using this type of
conversions, the physical database schema of the conceptual model presented in
figure 4 is:

Downtown_Area(town_id,town_name,geometry)
Downtown_Buildings_Lot(buildings_lot_id,buildings_lot_name,
geometry,#town_id)

The type of the geometry attributes is Set(Region).

2) Mapping one spatial class with two tables. A spatial class of the conceptual
model is converted into two tables in the physical schema of the database. The first
table is the class itself. Each tuple of the second table stores a part of the regions.
Thus, it becomes possible to easily reach every part of composite geometries with
SQL thanks to the “part” table. Example 11 illustrates this type of physical schemas.
We implemented into OCL2SQL the mapping rules related to the translation of the
set-based OCL operations into SQL Spatial, in the case of the use of these operations
on a composite region attribute. To understand this method, the application of these
mapping rules to an attribute of “self” is illustrated in table 5. The techniques used for
these mapping rules are similar to the ones used for the standard implementation of
“forAll”, “exists” and “select” in the original version of OCL2SQL.

 Precise Modeling and Verification of Topological Integrity Constraints 479

Table 5. Using set-based OCL operations to decompose a composite geometry: mapping rules
from OCL9IM to Oracle Spatial SQL and example of application to an attribute of “self”.
Physical database schema for composite spatial data: T(t_id,...), T_Part(part id,

geo_part, #t_id). The e function translate an OCL expression into SQL.

OCL: self.composite_geo_attrib->forAll(x|bool_exp_with_x)
SQL: select * from T where not
 (not exists(select part_id from T_Part
 where T_Part.t_id=T.t_id
 minus
 select part_id from T_Part where e(bool_exp_with_x)))
OCL: self.composite_geo_attrib->exists(x|bool_exp_with_x)
SQL: select * from T where not
 (exists(select part_id from T_Part
 where T_Part.t_id=T.t_id
 intersect

select part_id from T_Part where e(bool_exp_with_x)))
OCL: self.composite_geo_attrib->select(x|bool_exp_with_x)
SQL: select * from T where not
 (select part_id from T_Part
 where T_Part.t_id=T.t_id
 minus
 select part_id from T_Part where not e(bool_exp_with_x))

Example 11. Mapping one spatial class with two tables. In using this type of
conversions, the physical database schema of the conceptual model presented in
figure 4 is as follows.
Downtown_Area(town_id,town_name)
Downtown_Area_Part(part_id,geo_part,#town_id)
Downtown_Buildings_Lot(buildings_lot_id,buildings_lot_name,
#town_id)
Downtown_Buildings_Lot_Part(part_id,geo_part,#buildings_lot_id)

The geo_part attribute type is Region. In using the mapping rules, the OCL9IM

constraint of example 6 can be translated into SQL as follows.

Oracle Spatial SQL:
select * from Downtown_Buildings_Lot self where not(
not exists (select part_id from Downtown_Buildings_Lot_Part
DBL_Part_1 where
DBL_Part_1.buildings_lot_id=self.buildings_lot_id
minus select part_id from Downtown_Buildings_Lot_Part DBL_Part_2
where exists(select part_id from Downtown_Area_Part DA_Part_1
where DA_Part_1.town_id=self.town_id
intersect select part_id from Downtown_Area_Part DA_Part_2 where
MDSYS.SDO_RELATE(DBL_Part_2.geo_part, DA_Part_2.geo_part,
'mask=INSIDE querytype=WINDOW')= 'true' or
MDSYS.SDO_RELATE(DBL_Part_2.geo_part, DA_Part_2.geo_part,
'mask=COVEREDBY querytype=WINDOW')= 'true');

OpenGIS SQL:
select * from Downtown_Buildings_Lot self where not(
not exists (select part_id from Downtown_Buildings_Lot_Part
DBL_Part_1 where
DBL_Part_1.buildings_lot_id=self.buildings_lot_id minus

480 M. Duboisset et al.

select part_id from Downtown_Buildings_Lot_Part DBL_Part_2 where
exists(select part_id from Downtown_Area_Part DA_Part_1
where DA_Part_1.town_id=self.town_id intersect
select part_id from Downtown_Area_Part DA_Part_2 where
Relate(DBL_Part_2.geo_part, DA_Part_2.geo_part, ‘1FF1FF111’)=1
or Relate(DBL_Part_2.geo_part, DA_Part_2.geo_part,
‘111F11FF1’)=1;

The conversion from OCL9IM+ADV to Spatial SQL can be also considered by
translating OCL9IM+ADV constraints into OCL9IM constraints (see section 4.1).

6 Case Study in Agriculture

A first version of the spatial extension of the OCL2SQL code generator has been
developed for Oracle Spatial. This first version allows the automatic generation of
Spatial SQL queries from OCL9IM constraints. In order to validate the spatial
extension of OCL2SQL, a final goal is to use it in the Cemagref institute, during the
iterative development process of an agricultural information system integrating a
spatial database. Information of this database must be exported toward other systems,
and consequently it is really important to avoid data inconsistencies before exporting
information. Thus, in order to validate the development of this project, the purpose is
to check with this tool, if the different beta versions of this system under-construction
produce inconsistencies in the associated spatial database. The checking process is
schematized in figure 7.

Beta-Version Development

Application Test + Integrity Constraints Checking

Integrity Constraint Expressed in OCL9IM

Translation from OCL9IM to
Spatial SQL

Errors and
Inconsistency

Reports

Fig. 7. Example of development process with OCL9IM

The purpose of the information system is to monitor agricultural spreading of
sludge, and the associated database stores the traceability of agricultural practices.
Indeed, in agriculture, the sewage sludge spreading is considered as a good way to
recycle waste issued from sewage plants; this technique consists in depositing sludge
directly on fields. This type of low cost practices gives the possibility not only to
recycle waste, but also to fertilize the ground. In spite of its numerous advantages, the
sewage sludge spreading must be monitored in order to avoid ground and waterway
pollution. Indeed, too intensive practices could lead to an environmental deterioration.
This could affect: a) areas that are close to the location where sewage sludge has been
spread, and b) extended areas including hydrographical networks. This is the reason
why a specific regulation has been defined e.g. for each farm, allowed spreading areas
must be defined in order to indicate precisely where sewage sludge could be spread
without risk. To facilitate the monitoring of these activities, farms have to record
areas where spreading had finally been carried out. The concentration of sewage must

 Precise Modeling and Verification of Topological Integrity Constraints 481

also be carefully monitored and governmental institutions usually organize ground
analysis in different locations. The final version of the information system will store
all data related to the management and the monitoring of agricultural spreading
practices. The main spatial data on which constraints can be applied concern: allowed
spreading areas, parcels where spreading had finally been carried out, locations where
the ground analysis is applied.

7 Conclusion and Perspectives

To sum up, the present paper proposes the integration of 9IM into OCL, in order to
define precisely topological constraints in databases. We show that the produced
language named OCL9IM is especially suitable for the modeling of topological
constraints on composite spatial objects (section 3.2).

In order to simplify the syntax of these constraints, we also introduce OCL9IM+ADV

which corresponds to the integration of 9IM+ADV into OCL (section 3.3). We show
that it’s easier to express constraints on composite objects with OCL9IM+ADV than with
OCL9IM. Nevertheless, OCL9IM and OCL9IM+ADV have exactly the same expressive
power (section 4.1). In other words, the integration of 9IM into OCL also provides the
possibility to express the 9IM+ADV relationships.

Section 4.2 studies a method to delimitate the expressive power of OCL9IM from a
topological point of view. The first proposition presented in this section opened up a
new field of investigation related to the refinement of the OCL9IM expressive power
study.

An important final goal is to enable designers to specify topological constraints in
OCL9IM independently of the platforms, and then to generate equivalent integrity
checking mechanisms into different relational DBMS (section 5). We extended
OCL2SQL in order to translate OCL9IM constraints into Spatial SQL. From a general
point of view, OCL2SQL is a very interesting and flexible open source tool to
experiment new database-oriented extensions of OCL.

Several first tests of Spatial SQL code generation have yielded very good results
for the DBMS considered in our works (Oracle Spatial). An important validation of
the works is related to the use of OCL9IM during the development of agricultural
information systems in the Cemagref institute (section 6).

This paper focuses on topological relationships between regions. In the future, we
will generalize the proposed approach in order to also consider topological
relationships between different types of geometries (points, lines, regions with holes).
In order to reach this goal, we will study the comparison between our approach and
the interesting model presented in [16]. Indeed, the authors of [16] propose unified
semantics based on spatial intersection and spatial difference operations, in order to
define relationships implying spatial composite objects having different spatial types.
These works consider not only binary relationships but also n-ary relationships.
Moreover, [18] is another reference to consider in the field of spatial relationships
between heterogeneous set of geometries. These works provide different topological
predicates for this type of relationships. Concerning the code generation tool, the
current target platform is Oracle Spatial but other DBMS will be considered (PostGIS
for instance). Another important field of investigation is also related to the
development of a specific tool to help end-users to write easily OCL9IM constraints.

482 M. Duboisset et al.

References

1. Borges, K., Laender, A., Clodoveu, D.: Spatial Data Integrity Constraints in Object
Oriented Geographic Data Modeling. In: Proc. of the Int. Symposium on Geographic
Information System. ACM Press. USA (1999) 1-6

2. Brodeur J., Bédard Y., Proulx M.J.: Modelling Geospatial Application Databases using
UML-based Repositories Aligned with International Standards in Geomatics. Proc. of the
Int. ACM Symposium on Advances in Geographic Information Systems, USA (2000) 39-
46

3. Claramunt C.: Extending Ladkin’s Algebra on Non-convex Intervals towards an Algebra
on Union-of Regions. Proc. of the Int. ACM Symposium on Advances in Geographic
Information Systems, USA (2000) 9-14

4. Clementini E., Di Felice P., Califano G.: Composite Regions in Topological Queries.
Information Systems, Vol.20(7). (1995) 579-594

5. Clementini E., Di Felice P., Oosterom P.: A Small Set of Formal Topological
Relationships For End-User Interaction, Int. Symposium on Advances in Spatial Databases
(SSD’93), Singapore (1993) 277-295

6. David A. Randell, Zhan Cui, Anthony G. Cohn: A Spatial Logic based on Regions and
Connection, Int. Conference on Principles of Knowledge Representation and Reasoning
(KR'92), USA (1992) 165-176

7. Demuth B., Hußmann H.: Using UML/OCL Constraints for Relational Database Design.
Proc. of the Conference on the Unified Modelling Language, USA (1999) 598-613

8. Demuth B., Hußmann H., Loecher S.: OCL as a Specification Language for Business
Rules in Database Applications. Proc. of the Conference on the Unified Modelling
Language, USA (2001) 104-117

9. Egenhofer M., Franzosa R.: Point-Set Topological Spatial Relations. Int. Journal of
Geographical Information Systems, Vol.5(2). (1991) 161-174

10. Friis-Christensen A., Tryfona N., Jensen C.: Requirements and Research Issues in
Geographic Data Modeling. Proc. of the Int. ACM Symposium on Advances in
Geographic Information Systems, USA (2001) 2-8

11. Kösters G., Pagel B., Six H.: GIS-Application Development with GeoOOA. Int. Journal of
Geographical Information Science, Vol.11(4). (1997) 307-335

12. OMG: Unified Modeling Language: OCL, version 2.0. OMG Specification
13. OpenGIS: Simple Features Specification for SQL. OpenGIS Specification
14. Oracle Corp: Oracle Spatial: User’s Guide and Reference. Oracle Documentation
15. Parent C., Spaccapietra S., Zimanyi E.: Spatio-Temporal Conceptual Models: Data

Structures + Space + Time. Proc. of the Int. ACM Symposium on Advances in Geographic
Information Systems, USA (1999) 26-33

16. Price R., Tryfona N., Jensen C.: Modeling Topological Constraints in Spatial Part-Whole
Relationships. Proc. of the Int. Conference on Conceptual Modeling (ER’01), Japan (2001)
27-40

17. Schmid B., Warmer J., Clark T.: Object Modeling with the OCL: The Rationale Behind
the Object Constraint Language. Springer Verlag (2002) 281p

18. Zhong Z., Jing N., Chen L., Wu Q.: Representing Topological Relationships Among
Heterogeneous Geometry-Collection Features. Journal of Computer Science and
Technology, Vol.19(3). (2004) 280-289

Topological Relationships Between Complex
Lines and Complex Regions

Markus Schneider1,� and Thomas Behr2

1 University of Florida,
Dept. of Computer & Information Science & Engineering,

Gainesville, FL 32611, USA
mschneid@cise.ufl.edu

2 Fern Universität Hagen, Praktische Informatik IV,
58084 Hagen, Germany

thomas.behr@fernuni-hagen.de

Abstract. Topological relationships between spatial objects in the two-
dimensional space have been investigated for a long time in a number of
disciplines like artificial intelligence, cognitive science, linguistics, and
robotics. In the context of spatial databases and geographical information
systems, as predicates they especially support the design of suitable query
languages for spatial data retrieval and analysis. But so far, they have only
been defined for simplified abstractions of spatial objects like continuous
lines and simple regions. With the introduction of complex spatial data
types in spatial data models and extensions of commercial database sys-
tems, an issue arises regarding the design, definition, and number of topo-
logical relationships operating on these complex types. This paper first
introduces a formally defined, conceptual model of general and versatile
spatial data types for complex lines and complex regions. Based on the well
known 9-intersection model, it then formally determines the complete set
of mutually exclusive topological relationships between complex lines and
complex regions. Completeness and mutual exclusion are shown by a proof
technique called proof-by-constraint-and-drawing.

Keywords: Topological predicate, topological constraint rule, proof-by-
constraint-and-drawing, complex spatial data type, 9-intersection model.

1 Introduction

For a long time, the study of topological relationships between objects in two-
dimensional space has been a multi-disciplinary research issue involving dis-
ciplines like artificial intelligence, cognitive science, geographical information
systems (GIS), linguistics, psychology, robotics, spatial database systems, and
qualitative spatial reasoning. From a database and GIS perspective, their de-
velopment has been stimulated by the necessity of formally defined topological
predicates as filter conditions for spatial selections and spatial joins in spatial
query languages and as a support for spatial data retrieval and analysis tasks.
� The first author was partially supported by the National Science Foundation under

grant number NSF-CAREER-IIS-0347574.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 483–496, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

484 M. Schneider and T. Behr

Topological relationships like overlap, inside, or meet describe purely qualita-
tive properties that characterize the relative positions of spatial objects and are
preserved under affine transformations. A restriction and shortcoming of current
topological models is that topological relationships have so far only been deter-
mined for simplified abstractions of spatial objects like simple lines and simple
regions. Simple lines are one-dimensional continuous features embedded in the
plane with two end points, and simple regions are two-dimensional point sets
topologically equivalent to a closed disc. Unfortunately, these simple geometric
structures are insufficient to cover the variety and complexity of geographic re-
ality. Universal and versatile type specifications are needed for (more) complex
spatial objects that can be leveraged in many different applications. With re-
gard to complex lines, we permit arbitrary, finite collections of one-dimensional
curves, i.e., spatially embedded networks possibly consisting of several disjoint
connected components, as line objects (e.g., to model the ramifications of the
Nile Delta). With regard to complex regions, the two main extensions relate to
separations of the exterior (holes) and to separations of the interior (multiple
components). For example, countries (like Italy) can be made up of multiple
components (like the mainland and the offshore islands) and can have holes (like
the Vatican). Hence, a first goal of this paper is to give a formal definition of
spatial data types for complex lines and complex regions.

With the integration of complex spatial data types into spatial type systems
from a formal perspective as well as into GIS and spatial extension packages of
commercial database systems from an application perspective, an issue arises
regarding the design, definition, and number of topological relationships operat-
ing on these complex types. This is of interest simply from a theoretical point
of view but has especially impact on the aforementioned disciplines and on spa-
tial selections and spatial joins. Hence, a second goal is to explore and derive
the possible topological relationships between all combinations of complex spa-
tial data types. In this paper, we show the derivation mechanism for complex
lines and complex regions on the basis of the well known 9-intersection model.
For this purpose, we draw up collections of constraints specifying conditions
for valid topological relationships and satisfying the properties of completeness
and exclusiveness. The property of completeness ensures a full coverage of all
topological situations on the basis of the 9-intersection model. The property of
exclusiveness ensures that two different relationships cannot hold for the same
two spatial objects.

The remainder of the paper is organized as follows: Section 2 discusses re-
lated work on complex lines, complex regions, and topological relationships.
Section 3 formalizes the spatial concepts of complex lines and complex regions.
Section 4 explains our general strategy, called the Proof-By-Constraint-And-
Drawing Method, for deriving topological relationships from the 9-intersection
model. As an example, Section 5 identifies all topological relationships between
complex lines and complex regions. Finally, Section 6 draws some conclusions
and discusses future work.

Topological Relationships Between Complex Lines and Complex Regions 485

2 Related Work

In the past, numerous data models and query languages for spatial data have
been proposed with the aim of formulating and processing spatial queries in
databases and GIS [7]. Spatial data types (see [10] for a survey) like point, line, or
region provide fundamental abstractions for modeling the structure of geometric
entities, their relationships, properties, and operations. A few models [1,8,9,10]
have been developed towards complex spatial objects. All these approaches allow
multiple object components. In some approaches object components are allowed
to intersect [1,9]. Some approaches are based on a finite geometric domain [8,10]
whereas we define our data types in the infinite Euclidean plane.

Topological predicates have so far only been determined for simple object
structures like continuous lines and simple regions. An important approach for
characterizing them rests on the so-called 9-intersection model [3], which lever-
ages point set theory and point set topology [6] as its formal framework. For
example, a complete collection of 19 mutually exclusive topological relation-
ships has been determined between a simple line and a simple region [4]. The
model is based on the nine possible intersections of boundary (∂A), interior (A◦),
and exterior (A−) of a spatial object A with the corresponding components of
another object B. Each intersection is tested with regard to the topologically
invariant criteria of emptiness and non-emptiness. The topological relationship
between two spatial objects A and B can be expressed by evaluating the well
known intersection matrix in Table 1. For this matrix 29 = 512 different configu-
rations are possible from which only a certain subset makes sense depending
on the definition and combination of spatial data types. For each combina-
tion of spatial types this means that each of its predicates is associated with
a unique intersection matrix so that all predicates are mutually exclusive and
complete with regard to the topologically invariant criteria of emptiness and
non-emptiness.

Table 1. The 9-intersection matrix⎛
⎝ A◦ ∩ B◦
= ∅ A◦ ∩ ∂B
= ∅ A◦ ∩ B−
= ∅

∂A ∩ B◦
= ∅ ∂A ∩ ∂B
= ∅ ∂A ∩ B−
= ∅

A− ∩ B◦
= ∅ A− ∩ ∂B
= ∅ A− ∩ B−
= ∅

⎞
⎠

Surprisingly, topological predicates have so far not been defined on complex
spatial objects. So far, two works [2,5] have given a definition of topological re-
lationships between two more complex regions. But either their region definition
only allows sets of disjoint simple regions without holes [2] or only single simple
regions with holes [5]. The results are also problematic in the sense that they
either depend on the number of components or on the number of holes.

3 Complex Lines and Complex Regions

This section defines the underlying spatial data model for our topological predi-
cates. We strive for a very general, abstract definition of complex lines and com-

486 M. Schneider and T. Behr

� � �� � �

Fig. 1. Examples of a complex line object (a) and a complex region object (b)

plex regions (see Figure 1) in the Euclidean plane R
2. Our formal framework

are basic concepts of point set theory and point set topology [6]. The task is to
determine those point sets that are admissible for complex line (Section 3.1) and
complex region (Section 3.2) objects. The definitions we give contribute to an
“unstructured” object definition which solely determines the point set of a line
or region. Due to space restrictions, we do not identify structural components.
But a complex line represents a spatially embedded network possibly consisting
of several connected components, and a complex region represents a multi-part
region possibly with holes. For both spatial data types we specify the topological
notions of boundary, interior, exterior, and closure since these notions are later
needed for the specification of topological relationships.

3.1 Complex Lines

Before we start with a definition for complex lines (Figure 1a), we need a few
definitions of some well-known and needed topological concepts. We assume the
existence of the Euclidean distance function d : R

2 × R
2 → R with d(p, q) =

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2. With the notion of distance, we
can now proceed to define what is meant by a neighborhood of a point in R

2.

Definition 1. Let q ∈ R
2 and ε ∈ R

+. The set Nε(q) = {p ∈ R
2 | d(p, q) < ε} is

called the open neighborhood of radius ε and center q. Any open neighborhood
with center q is denoted by N(q). �

We are now able to define the notion of a continuous mapping which preserves
neighborhood relations between mapped points in two spaces of the plane. Hence,
the property of continuity of this mapping ensures the maintenance of the closure
and connectivity of the mapping domain for its image. These mappings are also
called topological transformations and include translation, rotation, and scaling.

Definition 2. Let X ⊂ R and f : X → R
2. Then f is said to be continuous

at a point x0 ∈ X if, given an arbitrary number ε > 0, there exists a number
δ > 0 (usually depending on ε) such that for every x ∈ Nδ(x0) ∩ X we obtain
that f(x) ∈ Nε(f(x0)). The mapping f is said to be continuous on X if it is
continuous at every point of X. �

For a function f : X → Y and a set A ⊆ X we introduce the notation
f(A) = {f(x) |x ∈ A}. Definition 2 enables us to give an unstructured definition
for complex lines as the union of the images of a finite number of continuous
mappings.

Topological Relationships Between Complex Lines and Complex Regions 487

Definition 3. The spatial data type line is defined as

line = {L ⊂ R
2 | (i) L =

⋃n
i=1 fi([0, 1]) with n ∈ N0

(ii) ∀ 1 ≤ i ≤ n : fi : [0, 1] → R
2 is a continuous mapping

(iii) ∀ 1 ≤ i ≤ n : |fi([0, 1])| > 1}
We call a value of this type complex line and the image of a continuous mapping
continuous line. �

The first condition also allows a line object to be the empty point set (n = 0
in Definition 3). The third condition avoids degenerate line objects consisting
only of a single point.

The boundary of a complex line L is the set of its end points minus those
end points that are shared by several continuous lines. The shared points belong
to the interior of a complex line. Based on Definition 3, let E(L) =

⋃n
i=1{fi(0),

fi(1)} be the set of end points of all continuous lines. We obtain

∂L = E(L)− {p ∈ E(L) | card({fi | 1 ≤ i ≤ m ∧ fi(0) = p}) +
card({fi | 1 ≤ i ≤ m ∧ fi(1) = p}) �= 1}

Let L �= ∅. It is possible that ∂L is empty (e.g., if L is a closed continuous line).
The closure L of L is the set of all points of L including the end points. Therefore
L = L holds. For the interior of L we obtain L◦ = L − ∂L = L − ∂L �= ∅, and
for the exterior we get L− = R

2 − L, since R
2 is the embedding space.

3.2 Complex Regions

Regions are embedded into the two-dimensional Euclidean space R
2 and modeled

as special infinite point sets. We briefly introduce some needed concepts from
point set topology in R

2.

Definition 4. Let X ⊆ R
2 and q ∈ R

2. q is an interior point of X if there
exists a neighborhood N such that N(q) ⊆ X. q is an exterior point of X if
there exists a neighborhood N such that N(q) ∩X = ∅. q is a boundary point
of X if q is neither an interior nor exterior point of X. q is a closure point of
X if q is either an interior or boundary point of X.

The set of all interior points of X is called the interior of X and is denoted
by X◦. The set of all exterior points of X is called the exterior of X and is
denoted by X−. The set of all boundary points of X is called the boundary of
X and is denoted by ∂X. The set of all closure points of X is called the closure
of X and is denoted by X.

A point q is a limit point of X if for every neighborhood N(q) holds that
(N − {q}) ∩ X �= ∅. X is called an open set in R

2 if X = X◦. X is called a
closed set in R

2 if every limit point of X is a point of X. �

It follows from the definition that every interior point of X is a limit point
of X . Thus, limit points need not be boundary points. The converse is also true.
A boundary point of X need not be a limit point; it is then called an isolated
point of X . For the closure of X we obtain that X = ∂X ∪X◦.

488 M. Schneider and T. Behr

Fig. 2. Examples of possible geometric anomalies of a region object

It is obvious that arbitrary point sets do not necessarily form a region. But
open and closed point sets in R

2 are also inadequate models for complex regions
since they can suffer from undesired geometric anomalies (Figure 2). A complex
region defined as an open point set runs into the problem that it may have
missing lines and points in the form of cuts and punctures. At any rate, its
boundary is missing. A complex region defined as a closed point set admits
isolated or dangling point and line features. Regular closed point sets [12] avoid
these anomalies.

Definition 5. Let X ⊆ R
2. X is called a regular closed set if, and only if,

X = X◦. �

The effect of the interior operation is to eliminate dangling points, dangling
lines, and boundary parts. The effect of the closure operation is to eliminate cuts
and punctures by appropriately supplementing points and to add the boundary.

For the specification of the region data type, definitions are needed for
bounded and connected sets.

Definition 6. (i) Two sets X, Y ⊆ R
2 are said to be separated if, and only if,

X ∩ Y = ∅ = X ∩ Y . A set X ⊆ R
2 is connected if, and only if, it is not the

union of two non-empty separated sets. (ii) Let q = (x, y) ∈ R
2. Then the length

or norm of q is defined as ||q|| =
√

x2 + y2. (iii) A set X ⊆ R
2 is said to be

bounded if there exists a number r ∈ R
+ such that ||q|| < r for every q ∈ X. �

We are now able to give an unstructured type definition for complex regions:

Definition 7. The spatial data type region is defined as

region = {R ⊂ R
2 | (i) R is regular closed

(ii) R is bounded
(iii) The number of connected sets of R is finite}

We call a value of this type complex region. �

A region object can also be the empty object (empty set). Let F =
⋃n

i=1 Fi

be a non-empty region with faces {F1, . . ., Fn}. Then the boundary of F is given
as ∂F =

⋃n
i=1 ∂Fi (�= ∅), and the interior of F is given as F ◦ =

⋃n
i=1 F ◦

i =
F − ∂F (�= ∅). Further, we obtain F = ∂F ∪ F ◦ = F and F− = R

2 − F =
R

2 − F (�= ∅).

Topological Relationships Between Complex Lines and Complex Regions 489

4 The Proof-by-Constraint-and-Drawing Method

An apparently promising approach to deriving topological relationships is to
leverage the component view of a spatial object. But research on region objects
in this direction reveals that considering components leads to rather complicated
and impractical models. We demonstrate this by first considering two simple
regions A and B with n and m holes, respectively. If we take into account the
regions A and B without holes and call them A∗ and B∗, respectively, the total
number of topological relationships that can be specified between A∗ and its
holes with B∗ and its holes amounts to (n + m + 2)2 [5]. It has also been shown
in [5] that this number can be reduced to mn + m + n + 1. The problems of
this approach are the dependency on the number of holes and the resulting large
number of topological relationships.

We are confronted with a similar problem if we take another strategy and
have a look on the topological relationships between two complex regions A and
B with n and m faces, respectively, possibly with holes. Each face of A is in
relationship with any face of B. This gives us a total of 8n·m possible topological
configurations if we take the eight topological relationships between two simple
regions with holes, as they are specified in [11], as the basis. As a result, the
total number of relationships between the faces of two complex regions depends
on the numbers of faces, is therefore not bounded by a constant, and increases
in an exponential way. This approach is obviously not manageable and thus not
acceptable.

Hence, the comparison of structural components of the objects with respect
to their topological relationships does not seem to be an adequate and efficient
method. Often, such a detailed investigation is not desired and thus even un-
necessary. For instance, if two regions intersect (according to some definition),
the number of intersecting face pairs, as long as it is greater than 0, is irrelevant
since it does not influence the fact of intersection. Consequently, the analysis of
topological relationships between two complex spatial objects requires a more
general strategy.

Our strategy is simple and yet very general and expressive. Instead of ap-
plying the 9-intersection model to point sets belonging to simple spatial objects,
we extend it to point sets belonging to complex spatial objects. Due to the spe-
cial features of the objects (point, linear, areal properties), the embedding space
(here: R

2), the relation between the objects and the embedding space (e.g., it
makes a difference whether we consider a point in R or in R

2), and the employed
spatial data model (e.g., discrete, continuous), a number of topological configu-
rations cannot exist and have to be excluded. For each pair of complex spatial
data types, our goal is to determine topological constraints that have to be sat-
isfied. These serve as criteria for excluding all impossible configurations. The
approach taken employs a proof technique which we call Proof-By-Constraint-
And-Drawing. It starts with the 512 possible matrices and is a two-step process:
(i) For each type combination we give the formalization of a collection of topo-

logical constraint rules for existing relationships in terms of the nine inter-
sections. For each constraint rule we give reasons for its validity, correctness,

490 M. Schneider and T. Behr

and meaningfulness. The evaluation of each constraint rule gradually reduces
the set of the currently valid matrices by all those matrices not fulfilling the
constraint rule under consideration.

(ii) The existence of topological relationships given by the remaining matrices
is verified by realizing prototypical spatial configurations in R

2, i.e., these
configurations can be drawn in the plane.

Still open issues relate to the evaluation order, completeness, and minimality
of the collection of constraint rules. Each constraint rule is a predicate that is
matched with all intersection matrices under consideration. All constraint rules
must be satisfied together so that they represent a conjunction of predicates. To
say it in other words, constraint rules are all formulated in conjunctive normal
form. Since the conjunction (logical and) operator is commutative and associa-
tive, the evaluation order of the constraint rules is irrelevant; the final result is
always the same.

The completeness of the collection of constraints is directly ensured by the
second step of the two-step process provided that spatial configurations for all
remaining matrices can be drawn.

The aspect of minimality addresses the possible redundancy of constraint
rules. Redundancy can arise for two reasons. First, several constraint rules may
be correlated in the sense that one of them is more general than the others, i.e.,
it eliminates at least the matrices excluded by all the other, covered constraints.
This can be easily checked by analyzing the constraint rules themselves and
searching for the most non-restrictive and common constraint rule. Even then
the same matrix can be excluded by several constraint rules simultaneously.
Second, a constraint rule can be covered by some combination of other constraint
rules. This can be checked by a comparison of the matrix collection fulfilling all
n constraint rules with the matrix collection fulfilling n − 1 constraint rules. If
both collections are equal, then the omitted constraint rule was implied by the
combination of the other constraint rules and is therefore redundant. In this
paper, we are not so much interested in the aspect of minimality since our goal
is to identify the topologically invalid intersection matrices (predicates) so that
the valid matrices remain.

5 Topological Relationships for the Complex
Line/Complex Region Case

Leveraging the proof technique developed in the last section, we develop con-
straint rules for the identification of all topological relationships between a com-
plex line and a complex region. In the following, we assume that A is a non-empty
object of type line and B is a non-empty object of type region.

Lemma 1. The exteriors of a complex line and a complex region always inter-
sect with each other, i.e.,

A− ∩B− �= ∅

Topological Relationships Between Complex Lines and Complex Regions 491

Proof. We know that A ∪A− = R
2 and B ∪B− = R

2. Hence, A− ∩B− is only
empty if either (i) A = R

2, or (ii) B = R
2, or (iii) A ∪ B = R

2. The situations
are all impossible, since A, B, and hence A∪B are bounded, but the Euclidean
plane R

2 is unbounded. �

Lemma 2. The interior of a complex region always intersects the exterior of a
complex line, i.e.,

A− ∩B◦ �= ∅

Proof. Assuming that this constraint rule is wrong. Then A− ∩ B◦ = ∅, and
we can conclude that A ⊇ B◦. From this we obtain that ∀ p ∈ B◦ ∃ ε ∈ R

+ :
Nε(p) ⊆ B◦ ⇒ Nε(p) ⊆ A. This leads to a contradiction since ∀ p ∈ B◦ ∀ ε ∈
R

+ : Nε(p) �⊆ A. �

Intuitively, a line object as a one-dimensional, linear entity cannot cover a
region object, which is a two-dimensional, areal entity.

Lemma 3. The interior or the exterior of a complex line intersects the boundary
of a complex region, i.e.,

A◦ ∩ ∂B �= ∅ ∨ A− ∩ ∂B �= ∅

Proof. We know that ∂B �= ∅ and that hence R
2 ∩ ∂B �= ∅. Since A◦ ∪

∂A ∪ A− = R
2, we obtain that (A◦ ∪ ∂A ∪ A−) ∩ ∂B �= ∅. This leads to

A◦ ∩ ∂B �= ∅ ∨ ∂A ∩ ∂B �= ∅ ∨ A− ∩ ∂B �= ∅. Since ∂A is a finite point set
and ∂B is an infinite point set, either ∂A ⊂ ∂B or ∂A ∩ ∂B = ∅. This means
that the constraint rule A◦ ∩ ∂B �= ∅ ∨ A− ∩ ∂B �= ∅ must hold. �

Lemma 4. The interior of a complex line intersects at least one part of a com-
plex region, i.e.,

A◦ ∩ ∂B �= ∅ ∨ A◦ ∩B◦ �= ∅ ∨ A◦ ∩B− �= ∅

Proof. We know that A◦ ∪ A− = R
2 and that ∂B ∪ B◦ ∪ B− = R

2. Since
only non-empty object parts of both objects are taken into account, we obtain
A◦ ∩ R

2 = A◦ ∩ (∂B ∪ B◦ ∪ B−) �= ∅. This statement is equivalent to the
constraint rule. �

Lemma 5. If the boundary of a complex line intersects the interior of a complex
region, also its interior intersects the interior of the complex region, i.e.,

(∂A ∩B◦ �= ∅ ⇒ A◦ ∩B◦ �= ∅)
⇔ (∂A ∩B◦ = ∅ ∨ A◦ ∩B◦ �= ∅)

Proof. Without loss of generality, let p ∈ ∂A ∩ B◦. Since p ∈ B◦, an ε ∈ R
+

exists such that Nε(p) ⊂ B◦. Fixing such an ε, and because a continuous curve
with an infinite number of points starts in p, we obtain that Nε(p) ∩ A◦ �= ∅.
This leads to the conclusion that A◦ ∩B◦ �= ∅. �

Lemma 6. If the boundary of a complex line intersects the exterior of a complex
region, also its interior intersects the exterior of the complex region, i.e.,

492 M. Schneider and T. Behr

(∂A ∩B− �= ∅ ⇒ A◦ ∩B− �= ∅)
⇔ (∂A ∩B− = ∅ ∨ A◦ ∩B− �= ∅)

Proof. The argumentation is analogous to the argumentation for the constraint
rule in Lemma 5. �

Lemma 7. If the boundary of a complex line intersects the boundary of a com-
plex region, also its exterior intersects the boundary of the complex region, i.e.,

(∂A ∩ ∂B �= ∅ ⇒ A− ∩ ∂B �= ∅)
⇔ (∂A ∩ ∂B = ∅ ∨ A− ∩ ∂B �= ∅)

Proof. The boundary of a region B is a line object L whose components are all
closed curves. Hence, this line object only consists of interior points (L = L◦).
Without loss of generality, let P be an endpoint of the boundary of A located
on L. From P exactly one curve of A starts or ends. Either P divides a curve of
L into two subcurves, or P is endpoint of more than one curve of L. Hence, in
P at least two curves of L end. Since the curve of A can coincide with at most
one of the curves of L, at least one of the curves of L must be situated in the
exterior of A. �

An evaluation of all 512 3× 3-intersection matrices against these seven con-
straint rules with the aid of a simple test program reveals that 43 matrices satisfy
these rules and thus represent the possible topological relationships between a
complex line and a complex region. The matrices and their geometric interpre-
tations are shown in Table 2. Between a simple line and a simple region we
can distinguish 19 topological relationships [3]. These topological predicates are
contained in the 43 general ones and correspond to the matrices 2-4, 7, 11-13,
15-17, 28, 30, 31, 35-37, 39, 41, and 42, respectively.

Finally, we can summarize our result as follows:

Theorem 1. Based on the 9-intersection model, 43 different topological rela-
tionships can be identified between a complex line object and a complex region
object.

Proof. The argumentation is based on the Proof-By-Constraint-And-Drawing
method described in Section 4. The constraint rules, whose correctness has been
shown in Lemmas 1 to 7, reduce the number of the 512 possible intersection
matrices to 43 matrices. The ability to draw prototypes of the corresponding 43
topological configurations proves that the constraint rules are complete. �

Table 2 in the Appendix shows for each topological predicate a prototypical
configuration as a drawing.

6 Conclusions and Future Work

In this paper we have given a very general definition of spatial data types for
complex lines and complex regions in the two-dimensional Euclidean space on
the basis of point set theory and point set topology. Further, we have developed

Topological Relationships Between Complex Lines and Complex Regions 493

a proof technique called Proof-By-Constraint-And-Drawing which enables the
derivation of a complete collection of mutually exclusive topological relationships
between all combinations of complex spatial data types. We have demonstrated
this mechanism by deriving all 43 topological relationships between a complex
line and a complex region.

Future work will relate to the derivation of topological predicates for all other
combinations of complex spatial data types. Further, the efficient implementation
of the large numbers of predicates that have to be expected will be another topic.

References

1. E. Clementini and P. Di Felice. A Model for Representing Topological Relationships
between Complex Geometric Features in Spatial Databases. Information Systems,
90(1-4):121–136, 1996.

2. E. Clementini, P. Di Felice, and G. Califano. Composite Regions in Topological
Queries. Information Systems, 20(7):579–594, 1995.

3. M. J. Egenhofer and J. Herring. Categorizing binary topological relations between
regions, lines, and points in geographic databases. Technical Report 90-12, National
Center for Geographic Information and Analysis, University of California, Santa
Barbara, 1990.

4. M. J. Egenhofer and D. Mark. Modeling Conceptual Neighborhoods of Topo-
logical Line-Region Relations. Int. Journal of Geographical Information Systems,
9(5):555–565, 1995.

5. M.J. Egenhofer, E. Clementini, and P. Di Felice. Topological Relations between
Regions with Holes. Int. Journal of Geographical Information Systems, 8(2):128–
142, 1994.

6. S. Gaal. Point Set Topology. Academic Press, 1964.
7. R. H. Güting. An Introduction to Spatial Database Systems. VLDB Journal,

3(4):357–399, 1994.
8. R. H. Güting and M. Schneider. Realm-Based Spatial Data Types: The ROSE

Algebra. VLDB Journal, 4:100–143, 1995.
9. OGC Abstract Specification. OpenGIS Consortium (OGC), 1999. URL:

http://www.opengis.org/techno/specs.htm.
10. M. Schneider. Spatial Data Types for Database Systems - Finite Resolution Ge-

ometry for Geographic Information Systems, volume LNCS 1288. Springer-Verlag,
Berlin Heidelberg, 1997.

11. M. Schneider. A Design of Topological Predicates for Complex Crisp and Fuzzy
Regions. Int. Conf. on Conceptual Modeling, pp. 103–116, 2001.

12. R. B. Tilove. Set Membership Classification: A Unified Approach to Geometric
Intersection Problems. IEEE Trans. on Computers, C-29:874–883, 1980.

494 M. Schneider and T. Behr

Appendix

Table 2. The 43 topological relationships between a complex line and a complex region

Matrix 1⎛
⎝ 0 0 1

0 0 0
1 1 1

⎞
⎠

Matrix 2⎛
⎝ 0 0 1

0 0 1
1 1 1

⎞
⎠

Matrix 3⎛
⎝ 0 0 1

0 1 0
1 1 1

⎞
⎠

Matrix 4⎛
⎝ 0 0 1

0 1 1
1 1 1

⎞
⎠

Matrix 5⎛
⎝ 0 1 0

0 0 0
1 0 1

⎞
⎠

Matrix 6⎛
⎝ 0 1 0

0 0 0
1 1 1

⎞
⎠

Matrix 7⎛
⎝ 0 1 0

0 1 0
1 1 1

⎞
⎠

Matrix 8⎛
⎝ 0 1 1

0 0 0
1 0 1

⎞
⎠

Matrix 9⎛
⎝ 0 1 1

0 0 0
1 1 1

⎞
⎠

Matrix 10⎛
⎝ 0 1 1

0 0 1
1 0 1

⎞
⎠

Matrix 11⎛
⎝ 0 1 1

0 0 1
1 1 1

⎞
⎠

Matrix 12⎛
⎝ 0 1 1

0 1 0
1 1 1

⎞
⎠

Matrix 13⎛
⎝ 0 1 1

0 1 1
1 1 1

⎞
⎠

Matrix 14⎛
⎝ 1 0 0

0 0 0
1 1 1

⎞
⎠

Matrix 15⎛
⎝ 1 0 0

0 1 0
1 1 1

⎞
⎠

Matrix 16⎛
⎝ 1 0 0

1 0 0
1 1 1

⎞
⎠

Topological Relationships Between Complex Lines and Complex Regions 495

Matrix 17⎛
⎝1 0 0

1 1 0
1 1 1

⎞
⎠

Matrix 18⎛
⎝1 0 1

0 0 0
1 1 1

⎞
⎠

Matrix 19⎛
⎝1 0 1

0 0 1
1 1 1

⎞
⎠

Matrix 20⎛
⎝1 0 1

0 1 0
1 1 1

⎞
⎠

Matrix 21⎛
⎝1 0 1

0 1 1
1 1 1

⎞
⎠

Matrix 22⎛
⎝1 0 1

1 0 0
1 1 1

⎞
⎠

Matrix 23⎛
⎝1 0 1

1 0 1
1 1 1

⎞
⎠

Matrix 24⎛
⎝1 0 1

1 1 0
1 1 1

⎞
⎠

Matrix 25⎛
⎝1 0 1

1 1 1
1 1 1

⎞
⎠

Matrix 26⎛
⎝1 1 0

0 0 0
1 0 1

⎞
⎠

Matrix 27⎛
⎝1 1 0

0 0 0
1 1 1

⎞
⎠

Matrix 28⎛
⎝1 1 0

0 1 0
1 1 1

⎞
⎠

Matrix 29⎛
⎝1 1 0

1 0 0
1 0 1

⎞
⎠

Matrix 30⎛
⎝1 1 0

1 0 0
1 1 1

⎞
⎠

Matrix 31⎛
⎝1 1 0

1 1 0
1 1 1

⎞
⎠

Matrix 32⎛
⎝1 1 1

0 0 0
1 0 1

⎞
⎠

496 M. Schneider and T. Behr

Matrix 33⎛
⎝1 1 1

0 0 0
1 1 1

⎞
⎠

Matrix 34⎛
⎝1 1 1

0 0 1
1 0 1

⎞
⎠

Matrix 35⎛
⎝1 1 1

0 0 1
1 1 1

⎞
⎠

Matrix 36⎛
⎝1 1 1

0 1 0
1 1 1

⎞
⎠

Matrix 37⎛
⎝1 1 1

0 1 1
1 1 1

⎞
⎠

Matrix 38⎛
⎝1 1 1

1 0 0
1 0 1

⎞
⎠

Matrix 39⎛
⎝1 1 1

1 0 0
1 1 1

⎞
⎠

Matrix 40⎛
⎝1 1 1

1 0 1
1 0 1

⎞
⎠

Matrix 41⎛
⎝1 1 1

1 0 1
1 1 1

⎞
⎠

Matrix 42⎛
⎝1 1 1

1 1 0
1 1 1

⎞
⎠

Matrix 43⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠

Author Index

Al-Muhammed, Muhammed 288
Anido-Rifón, Luis 96
Atzeni, Paolo 160

Behr, Thomas 483
Bernstein, Philip A. 160
Bierbaumer, Martin 337
Bowers, Shawn 369
Burgués, Xavier 176

Caeiro-Rodŕıguez, Manuel 96
Cappellari, Paolo 160
Chang, Elizabeth 79
Chen, G. Lily 256
Chiang, Roger 256

de Medeiros, Adriana Pereira 241
Deneckère, Rébecca 209
Derntl, Michael 112
Dı́az, Isabel 192
Dillon, Tharam S. 79
Dobbie, Gillian 417
Dori, Dov 304
Duboisset, Magali 465
Dumas, Marlon 63

Eder, Johann 337
Edmond, David 353
Embley, David W. 288

Feijó, Bruno 241
Feng, Ling 79
Fons, Joan 320
Franch, Xavier 176

Gal, Avigdor 304
Giorgini, Paolo 225
González Jiménez, Luis 449

Hainaut, Jean-Luc 144
Hakkarainen, Sari 270
Hella, Lillian 270
Hoppenbrouwers, S.J.B.A. 128
Horner, John 433

Kang, Myoung-Ah 465

Lee, Mong Li 417
Liddle, Stephen W. 288
Ling, Tok Wang 417
Llamas-Nistal, Mart́ın 96
Lu, An 401
Ludäscher, Bertram 369

Magnani, Matteo 31
Maiden, Neil 209
Matteo, Alfredo 192
Mc.Brien, Peter 31
Montesi, Danilo 31
Motschnig-Pitrik, Renate 112
Mouratidis, Haralambos 225

Ng, Wilfred 401

Oussalah, Mourad 16

Pelechano, Vicente 320
Pichler, Horst 337
Pinet, François 465
Proper, H.A. (Erik) 128

Rajugan, R. 79
Ralyté, Jolita 209
Reinhartz-Berger, Iris 1
Ribó, Josep M. 176
Rizopoulus, Nikos 31
Rolland, Colette 47, 209
Russell, Nick 63, 353

Sadou, Nassima 16
Sánchez, Juan 192
Schneider, Markus 483
Schneider, Michel 465
Schwabe, Daniel 241
Simitsis, Alkis 385
Skiadopoulos, Spiros 385
Soffer, Pnina 47
Song, Il-Yeol 433
Storey, Veda C. 256
Strasunskas, Darijus 270

Tamzalit, Dalila 16
ter Hofstede, Arthur H.M. 63, 353

498 Author Index

Terrovitis, Manolis 385
Toch, Eran 304
Tuxen, Stine 270
Tzitzikas, Yannis 144

Valderas, Pedro 320
van der Aalst, Wil M.P. 63, 353

van der Weide, Th.P. 128
Vassiliadis, Panos 385

Weiss, Michael 225
Wohed, Petia 63

Yang, Xia 417

	Frontmatter
	Specific Approaches
	Conceptual Modeling of Structure and Behavior with UML -- The Top Level Object-Oriented Framework (TLOOF) Approach
	How to Manage Uniformly Software Architecture at Different Abstraction Levels
	Schema Integration Based on Uncertain Semantic Mappings

	Process Modeling and Views
	Combining Intention-Oriented and State-Based Process Modeling
	Pattern-Based Analysis of the Control-Flow Perspective of UML Activity Diagrams
	A Three-Layered XML View Model: A Practical Approach

	Conceptual Modeling in eLearning
	Modeling Group-Based Education
	Learning Process Models as Mediators Between Didactical Practice and Web Support

	Managing Models and Modeling
	A Fundamental View on the Process of Conceptual Modeling
	How to Tame a Very Large ER Diagram (Using Link Analysis and Force-Directed Drawing Algorithms)
	A Multilevel Dictionary for Model Management
	A MOF-Compliant Approach to Software Quality Modeling

	Requirements and Software Engineering
	Conceptual Modeling Based on Transformation Linguistic Patterns
	Applying Modular Method Engineering to Validate and Extend the RESCUE Requirements Process
	Security Patterns Meet Agent Oriented Software Engineering: A Complementary Solution for Developing Secure Information Systems

	Ontologies
	Kuaba Ontology: Design Rationale Representation and Reuse in Model-Based Designs
	Ontology Creation: Extraction of Domain Knowledge from Web Documents
	Choosing Appropriate Method Guidelines for Web-Ontology Building

	Web Services and Navigational Models
	Conceptual Model Based Semantic Web Services
	Automatically Grounding Semantically-Enriched Conceptual Models to Concrete Web Services
	Transforming Web Requirements into Navigational Models: AN MDA Based Approach

	Aspects of Workflow Modeling
	Accelerating Workflows with Fixed Date Constraints
	Workflow Data Patterns: Identification, Representation and Tool Support
	Actor-Oriented Design of Scientific Workflows
	Blueprints and Measures for ETL Workflows

	Queries and OLAP Summaries
	Vague Sets or Intuitionistic Fuzzy Sets for Handling Vague Data: Which One Is Better?
	A Semantic Approach to Query Rewriting for Integrated XML Data
	A Taxonomy of Inaccurate Summaries and Their Management in OLAP Systems

	Temporal and Spatial Modeling
	XCM: Conceptual Modeling for Dynamic Domains
	Precise Modeling and Verification of Topological Integrity Constraints in Spatial Databases: From an Expressive Power Study to Code Generation Principles
	Topological Relationships Between Complex Lines and Complex Regions

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

