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Abstract. This paper describes a technique to approximately predict
the facial morphology after standardized orthognathic ostoetomies. The
technique only relies on the outer facial morphology represented as a
set of surface points and does not require computed tomography (CT)
images as input. Surface points may either be taken from 3D surface
scans or from 3D positions palpated on the face using a tracking sys-
tem. The method is based on a statistical model generated from a set
of pre- and postoperative 3D surface scans of patients that underwent
the same standardized surgery. The model contains both the variability
of preoperative facial morphologies and the corresponding postoperative
deformations. After fitting the preoperative part to 3D data from a new
patient the preoperative face is approximated by the model and the pre-
diction of the postoperative morphology can be extracted at the same
time. We built a model based on a set of 15 patient data sets and tested
the predictive power in leave-one-out tests for a set of relevant cephalo-
metric landmarks. The average prediction error was found to be between
0.3 and 1.2 mm at all important facial landmarks in the relevant areas of
upper and lower jaw. Thus the technique provides an easy and powerful
way of prediction which avoids time, cost and radiation required by other
prediction techniques such as those based on CT scans.

1 Introduction

In oral and maxillofacial surgery one of the major issues is the correction of
dentoskeletal deformities of the skull. The standard type of orthognathic surgery
is to advance the upper jaw and to push back the lower jaw. Its aim is to
establish a normal masticatory function along with an improvement in facial
esthetics [1]. To obtain true informed consent of the patient in orthognathic
surgery, the surgeon must effectively explain possible treatment outcomes to
the patient. Unfortunately, up to now the few existing methods to predict the
facial appearance changes that will result from orthognathic surgery are not
reliable and require 3D imaging [2]. Computed tomography (CT) scans are often
used as basic data for the prediction of the postoperative facial surface. Most
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Fig. 1. Example for a typical input data set: a preoperative face acquired from an
optical 3D sensor (a and b) with manually marked anatomical landmarks (a) and the
postoperative face one year after surgery (c) in which the upper jaw has been moved
forward and the lower jaw backwards.

of these methods try to model the soft tissue deformation with the aid of finite
element or spring models based on the planned surgical change of the underlying
bone structure. To date, there is little information available on the accuracy
of these predictions [3,4,5]. Commercial applications exist that allow geometric
deformations of photographs or scanned 3D models in order to plan the surgical
outcome but there is no quantitative validation on how realistic these predictions
are. It has been the aim of this study to introduce a new prediction approach
avoiding time, cost and radiation introduced by the CT scan and to evaluate the
accuracy of this approach. The presented method is based on a 3D statistical
model built from a set of 3D surface scans of different patients before and 12
months after the same type of orthognathic surgery (see Fig. 1). The variety
of preoperative facial morphologies as well as the corresponding postoperative
deformations are both captured in the model. The model can be fitted to the
face of a new patient whose facial morphology is partly known as a set of 3D
positions on the face which can either be digitally acquired by 3D surface scans
or from positions directly palpated using a tracking system. After this fitting
process the prediction can simply be extracted from the model.

We will present our statistical models in section 2 and how the model was
built from the given data in section 3. The model fitting algorithm is described
in section 4, followed by an evaluation in section 5.

2 Extended Shape Models

Cootes and Taylor first presented the idea of deformable statistical models [6] for
the purpose of image segmentation in 1992. The main assumption is that a class
of shapes can be described by a relatively small number of linear variations of
the average shape. Object shapes are described in a compact way as a vector of
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boundary point coordinates. A class of object shapes is modeled by an average
shape and a linear combination of vectors that describe the possible variations of
the shape compared to the average shape as deformation vectors. The model can
be easily deformed by changing the weights of the deformation vectors within a
limiting range keeping the shape always plausible, i.e. inside the given class of
shapes.

Technically the shape of an object is described as a point set Fi of S points
pij , j = 1 . . . S on the object surface, given N objects (i = 1 . . .N), in this
case preoperative facial morphologies from different patients. Assuming at this
point that a dense correspondence map between all shapes has already been
defined and all shapes are already aligned in space, then we can describe each
input shape as a vector xi by concatenating the x-, y- and z-coordinates of
the points, yielding a vector of dimension M = 3S. By applying an eigenvalue
decomposition [7] to the covariance matrix of these vectors we get a number of
eigenvalues λi with associated orthogonal eigenvectors vi. It can be shown that
there are at most N − 1 eigenvalues with λk > 0, if N < M [6]. By defining a
matrix V from the eigenvectors vk associated to these eigenvalues, each of the
input shape vectors xi as well as arbitrary anatomically plausible shapes x can
be described as a sum of the average shape vector x̄ plus a linear combination
of these eigenvectors with a weight vector b:

x = x̄ + Vb, V = (v1,v2, . . . ,vN−1), (1)

−3
√

λk < bk < 3
√

λk, k = 1 . . .N − 1

Since the eigenvalues are equal to the variance within the input data in direction
of the associated eigenvector, we can assume plausible shapes generated by a lin-
ear combination of weights that are constrained to a variation of three standard
deviations per eigenvector [6].

In order to include the transition between pre- and postoperative morphology
into the model, we extended this original approach by adding the displacement
vector field from pre- to postoperative facial morphology as a second part of
the input vector: We assume at this point that preoperative and postoperative
surfaces have already been registered and that a dense correspondence between
them has been established. In other words, for each preoperative face point pij of
a patient Fi there is a corresponding postoperative point qij . The displacement
vector field between pre- and postoperative face can thus be defined as dij =
qij − pij . The definition of the vector xi is extended to contain the coordinates
pij first and then the displacement vector field dij , thus doubling the dimension
M of the vector to M = 6S.

3 Model Generation

3.1 Data Acquisition

3D surface scans of 8 female and 7 male patients were acquired with an optical
3D sensor (SCAN3D, 3D-Shape GmbH, Erlangen, Germany), both preopera-
tively and one year after the surgery in which the upper jaw was moved forward
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and the lower jaw backwards, both between 3 and 7 mm (e.g. see Fig. 1). The
postoperative scans were first rigidly registered to the preoperative scans as de-
scribed by Maier et al. [8]. On all pre- and postoperative faces several important
cephalometric landmarks were manually identified (see Fig. 1(a)).

3.2 Correspondence Mapping

A precondition for the statistical modeling is a dense correspondence between all
input shapes. A manual correspondence mapping which involves marking mutu-
ally corresponding points on all input data sets is only feasible for a small subset
of anatomical landmarks. Therefore several correspondence mapping algorithms
have been proposed in the past [9,10,11]. We applied our own approach [12] that
ensures smooth and dense correspondence mapping. It uses only moderate man-
ual interaction and is based on the multiple deformation of a template surface
to each of the input surfaces. The necessary non-rigid template-to-target regis-
trations are performed in three steps: first, an affine registration based on the
set of marked landmarks on both meshes [13] is performed, followed by second,
a 3D thin plate spline deformation [14] which brings the template to exact align-
ment with the target mesh at the landmark positions. Thirdly, for refinement,
a non-rigid iterative morphing approach is applied. It is based on four kinds of
springs attached to the vertices of the template triangle mesh that determine the
deformation of the template surface. Two of the springs minimize the surface dis-
tance to the target surface while the other two maintain the overall shape of the
template surface by minimizing changes in inter-vertex edge lengths and inter-
triangle edge angles compared to the original template surface. In each iteration
for each of the template vertices a deformation vector is calculated composed of
the four spring forces where each type of spring is weighted differently.

We applied the same technique for the inter-patient registration of a preop-
erative template face to each of the other faces and for the intra-patient regis-
trations of each pair of pre- and postoperative facial morphologies. As a result
all pre- and postoperative faces are described with the same mesh topology with
mutually corresponding vertices.

3.3 Alignment and Model Calculation

In order to compensate for translation and rotation differences in the given
data sets we applied an iterative Procrustes alignment [15], again based on the
manually marked landmark sets for each patient. At this point the model is
generated as described in section 2, including the displacement vector field to
the postoperative facial morphology into the shape vector.

4 Model Fitting and Prediction

The preoperative part of the generated model can be fitted to given data from
an arbitrary face. We assume that the data is given as a 3D set of points on the
unknown preoperative face. These may either be single point positions at known
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anatomical landmarks or whole point clouds on the face. The fitting process
thus involves the determination of a rigid transformation Tfit that transforms
the model coordinates into the target coordinate system and the shape parameter
vector bfit that deforms the model surface such that it optimally fits the given
point set. After the model-based deformation a further non-linear deformation
can be applied (section 4.2).

4.1 Model Fitting

We partly applied the fitting algorithm described by Blanz et al. [16]. The
method uses a linear matrix that maps the given vector x of model coordi-
nates onto a subset of points and applies a linear transformation, in our case
a rigid transformation that registers the model with the patient. Assuming the
correspondences from given points to model vertices are known, the shape pa-
rameter vector b which generates the model face (according to (1)) that best fits
the given points can be found in a closed solution by solving a linear equation
system after applying a singular value decomposition [7].

In this study we only used the set of predefined landmarks for model fitting for
which the corresponding vertices on the model surface are known. The approach
can be extended to include the whole preoperative facial morphology by starting
with an initial model fit defined by known landmarks. Correspondences for the
remaining vertices can then be acquired by projection onto the already fitted
model surface. Thus, the fitting can be iteratively refined.

4.2 Refinement Deformation

In order to perfectly fit the model surface to the given point set and consider
shape variances not captured in the statistical model, a non-linear deformation
can follow the fitting process described above. In this step a thin-plate spline
warping is applied to the fitted model face based on the known pairs of corre-
sponding landmarks between model and patient. In this way the preoperative
model face perfectly fits the patient face at the landmark positions.

4.3 Face Prediction

The above fitting process defines a shape parameter vector b and therefore a vec-
tor x that represents in its first half an approximation of the given preoperative
face. Since the displacement vector field to the postoperative face is stored in the
second part of the same vector (see section 2) and is therefore determined by the
same shape parameter vector according to (1), a prediction of the postoperative
facial morphology can now be acquired by adding this adapted displacement
vector field to the fitted preoperative face.

5 Evaluation Results

The evaluation was carried out in 15 leave-one-out tests. In each test one of the
15 data sets was defined as the test data set; the model was generated from the
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Fig. 2. Example for a prediction: A preoperative face of a patient (a) was landmarked
and the statistical model generated without this patient was fitted to these landmarks
as can be seen in (b). The actual postoperative outcome (c) one year after surgery can
then be compared with the prediction (d) produced by the model, both combined in
one image in (e).

14 remaining data sets and then tested against the test model (see example in
Fig. 2).

We used the manually marked anatomical landmarks on the test data set in
order to fit the model. The predicted postoperative face could then be compared
to the known postoperative face. We measured the prediction error at a subset
of the marked cephalometric landmarks:

– subnasale: point at the tip of the angle formed by colunella and upper lip
– labrale superior: most anterior point of the upper lip
– lb left and right: top of the cupid’s bow of the upper lip
– chelion left and right: points located at the labial commissure
– labrale inferior: most anterior point of the lower lip

Table 1. Statistical evaluation of the average absolute prediction error in mm at certain
anatomical landmarks from leave-one-out tests in 15 cases, compared to the maximum
displacement caused by the surgeries at these landmarks.

Landmark Mean SD Max Max.
actual

pogonion 1.2 1.2 3.8 8.5
submentale 1.0 1.1 3.4 7.5
labrale inferior 1.0 1.1 3.5 5.8
labrale superior 0.6 0.6 2.7 3.1
lb left 0.5 0.5 2.1 2.5
lb right 0.7 0.8 3.6 4.1
chelion left 0.8 0.5 1.9 2.6
chelion right 0.8 1.0 3.6 3.2
subnasale 0.3 0.4 1.6 2.3
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– submentale: most posterior point between lower lip and chin
– pogonion: most anterior point of the chin

Results are shown in Table 1: The measured average prediction errors over
all 15 cases at the landmarks with the greatest deviations (pogonion, submentale
and labrale inferior) were about 1.2 mm ± 1.2 mm with rare outliers below 4 mm
whereas the absolute displacements ranged from 2.3 mm to 8.5 mm. All other
landmark positions showed average prediction errors below 1 mm.

6 Conclusions and Discussion

We showed how statistical face models that include the shape change between
pre- and postoperative facial morphology can be successfully applied to predict
the postoperative facial morphology after orthognathic surgery from sparse 3D
data of a patient’s preoperative face. Although sophisticated nonlinear finite el-
ement modeling may be an appropriate alternative, there is no proof from the
current literature that these techniques generate valid predictions of the human
face. The presented method avoids time, cost and radiation associated with other
techniques that require a CT scan. It is fast and simple during application. The
fit and prediction is calculated within a few seconds after minimal manual inter-
action. Even based on a relatively small data base of 15 male and female cases,
the comparison between the real postoperative outcome of the facial surfaces
and the predicted surfaces revealed that the average differences were below 1.5
mm for landmarks placed on the relevant areas of upper and lower jaw. This new
type of prediction of the outcome of orthognathic surgery is favorable for several
reasons: differences between facial surfaces below 1.5 mm cannot be easily distin-
guished by the normal observer and the thickness of the facial soft tissue already
changes during the course of the day in this range. In addition, the facial surface
is influenced by changes of body weight and aging. Therefore, it will be difficult
to achieve a better prediction accuracy than the one shown in this study. Of
course, the application of the method is restricted to the kind of surgery and the
variability of facial morphologies covered in the data base. Thus, future work
will include increasing the data base to more patient data sets from different
types of surgeries, different ethnic groups and ages. The new method may also
find its application in plastic facial surgery where well standardized procedures
allow an accurate prediction by the proposed technique.
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