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Abstract. In this paper we present a novel method for building a 4D statisti-
cal atlas describing the cardiac anatomy and how the cardiac anatomy changes
during the cardiac cycle. The method divides the distribution space of cardiac
shapes into two subspaces. One distribution subspace accounts for changes in
cardiac shape caused by inter-subject variability. The second distribution sub-
space accounts for changes in cardiac shape caused by deformation during the
cardiac cycle (i.e. intra-subject variability). Principal component analysis (PCA)
have been performed in order to calculate the most significant modes of variation
of each distribution subspace. During the construction of the statistical atlas we
eliminate the need for manual landmarking of the cardiac images by using a non-
rigid surface registration algorithm to propagate a set of pseudo-landmarks from
an automatically landmarked atlas to each frame of all the image sequences. In
order to build the atlas we have used 26 cardiac image sequences from healthy
volunteers. We show how the resulting statistical atlas can be used to differentiate
between cardiac image sequences from patients with hypertrophic cardiomyopa-
thy and normal subjects.

1 Introduction

The early diagnosis and treatment of cardiovascular diseases is crucial in order to reduce
mortality and to improve patients’ quality of life. Recent advances in the development
of magnetic imaging (MR) have enabled the acquisition of high resolution 4D cardiac
image sequences which describe the cardiac anatomy as well as function. The acqui-
sition of 4D cardiac image sequences drastically increases the amount of data to be
interpreted by clinicians. Therefore, applications assisting the automatic interpretation
of MR images are of high importance for increasing the clinical use of MR imaging.

A large number of approaches have been developed for the volumetric modeling
of the heart. A comprehensive review of these approaches can be found in Frangi et
al. [1]. Biomechanical models of the heart have been developed by combing surface
information and motion information [2] and by using a deformation model inspired by
continuum mechanics [3]. In contrast to these biomechanical models a number of re-
searchers have developed statistical models (e.g. Active Shape Models) of the cardiac
anatomy [4] [S]] and statistical models of the appearance of the heart (e.g. Active Ap-
pearance Models) [6] [7]. For example, Frangi et al. have presented an approach for
the construction of three-dimensional statistical shape models of the cardiac anatomy
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[8]. This approach eliminates the need for landmarking by using non-rigid registration
to propagate landmarks from an automated landmarked atlas to the rest of the images.
The resulting model includes the left and right ventricle. The approach developed by
Lotjonen et al. goes one step further: In this work, statistical shape models of the atria,
ventricles and epi-cardium from short-axis and long-axis MR images are constructed
and used for the segmentation of cardiac images [9]]. In addition a variety of methods
which model shape variability have been explored including PCA, ICA and LPD. How-
ever, in both cases the statistical shape models describe only the 3D cardiac anatomy
at a single time point and ignore the shape variation during the cardiac cycle. Although
cardiac modeling of the anatomy is relatively well investigated, very few attempts have
been made to build a computerized atlas which captures functional variability of the
heart across a group of subjects. Rao et al. suggested a framework for building an at-
las of the myocardial motion [10] by using tagged MR image sequences to calculate
the cardiac motion. Then, the calculated motion fields of different subjects are mapped
into the same coordinate system using a vector field transformation technique which
accounts for differences in the size, orientation and shape of the heart.

In this paper we present a novel method for building a 4D statistical atlas describing
the cardiac anatomy and how the cardiac anatomy changes during the cardiac cycle.
In previous work we developed 4D probabilistic atlases of the left ventricle, the my-
ocardium and the right ventricle describing the anatomy and function of a healthy heart
[L1]. While these probabilistic atlases contain information about the degree of vari-
ability at every voxel, statistical atlases provide additional information about the type
of variability. The key contribution of our work is the construction of 4D statistical
model of the heart that subdivides the distribution space of cardiac shapes into two
subspaces: One distribution space accounts for changes in cardiac shape due to defor-
mations throughout the cardiac cycle and the other distribution space accounts for the
changes in cardiac shape due to variability across the population. Furthermore, we have
used these statistical models to differentiate between cardiac image sequences from
patients with hypertrophic cardiomyopathy and normal volunteers.

2 Building a 4D Statistical Atlas

Segmentation of Cardiac MR Image Sequences. The method developed by Lorenzo-
Valdés et al. [12] has been used to segment the image sequences. In this method the
first frame of each image sequence is segmented manually and then the segmenta-
tion is propagated to the subsequent frames using a non-rigid registration algorithm.
The images sequences are segmented into three anatomical structures: the left ventri-
cle, the myocardium and the right ventricle. After segmenting the image sequences,
shape based interpolation is used to resample the images to isotropic voxels of size
Imm X Imm X Imm.

Mapping the Image Sequences to the Same Spatio-Temporal Coordinate System.
The second stage in the construction procedure of the atlas is to use a spatio-temporal
registration method to align the image sequences into the same spatio-temporal co-
ordinate system. The registration method is similar to one which we have previously
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introduced [13] and has also been used for the construction of a probabilistic atlas of
the cardiac anatomy and function [[11]]. It uses a 4D mapping which has been resolved
into decoupled spatial and temporal components T;qt5q; and Tiepmporar TESPECtively.

The spatial transformation used is an affine transformation with 9 degrees of free-
dom which accounts for spatial differences caused by orientation, translation and scal-
ing. The temporal transformation consists of a global part which scales the image se-
quences to match the end-systolic and end-diastolic time points and a local part which
deforms the temporal characteristics of each image sequence to follow the same mo-
tion pattern with the reference image sequence. The local temporal transformation is
modeled by a free-form deformation using a 1D B-spline:

3
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where @ denotes a set of n; control points ¢; with a temporal spacing §; and B repre-
sents the 1-th basis function of the B-spline. The optimal spatial and temporal transfor-
mation is found by maximising a voxel based similarity measure, the normalized mutual
information (NMI). The NMI of two image sequences can be calculated directly from
the joint intensity histogram of the two sequences over their spatio-temporal domain of
overlap.

Building the Statistical Atlas of the Heart. After obtaining the spatio-temporal map-
pings, the segmented image sequences are transformed to the common spatio-temporal
coordinate system. Then, the transformed images are blurred with a Gaussian kernel
to compensate for low out-of-plane resolution of the images which results in signifi-
cant partial volume effects in the segmentation. In our approach we eliminate the need
for manual landmarking by using a method similar to the one introduced by Frangi et
al.[8]. In this method, a set of pseudo-landmarks are propagated from an automatically
landmarked atlas to all the frames of each image sequence.

Landmark Extraction and Propagation. After blurring the image sequences with
a Gaussian kernel, the marching cubes [[14] algorithm is used to generate a dense tri-
angulation (pseudo-landmarks) of the boundary surfaces of each anatomical structure
(the left ventricle, the myocardium and the right ventricle) of all the frames of each
image sequence. In order to perform any statistical analysis correspondence between
the pseudo-landmarks of each image needs to be established. This is achieved by using
a surfaced based registration method based on B-Splines. The end-diastolic frame of
the image sequence used as reference during the construction of the atlases is also used
as the reference surface in these registrations. After registering all surfaces, we use the
obtained transformations to propagate the pseudo-landmarks of the reference surface to
each frame.

Modeling Shape Variability. Let {qi;i = 0..np;k = 0..ny} denote n shapes
(n,, subjects with ny frames each). Each shape consists of m 3D landmarks, p; =
(p1j, P25, p35; 7 = 1....m). Each vector q;i will consist of the landmarks (p11, p21, P31,
D12, D22, P32, +eey Plms P2m, P3m ). The aim of the statistical analysis is to approximate
the distribution of the landmarks with a linear model of the form:
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q=49+%b @)

where q is the average landmark vector, b is the shape parameter vector of the model,
and @ is a matrix of eigen-vectors. The matrix @ is obtained by performing a principal
component analysis (PCA) to the covariance matrix C. During the principal component
analysis, the principal components of C are calculated as its eigenvectors ¢; and the
corresponding eigenvalues )\; are also calculated (such that \; < A;41).

The aim of our statistical analysis is to identify what changes in the cardiac anatomy
occur due to the cardiac cycle and what changes occur due to shape variation across the
population. Therefore, we want to use principal components analysis (PCA) to find the
estimate of two subspaces of the overall distribution. In order to achieve this we perform
two separate principal component analysis. The covariance matrices for the total shape
distribution is given by:

Np n f
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where ny is the number of frames of each image sequence, n, the number of images
sequences and q is the mean shape.
The covariance matrix of the shape differences occurring due to the cardiac cycle is
given by:

Np nf

Cwithin = ql qlk - ql) (4)
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where q; is the mean for the subJect 1 (the image sequences contain the same number of

frames since they are registered in the temporal domain) and qik is the shape of frame

k of subject i.

The covariance matrix which described the shape differences occurring across the
population is given by:

C Ly r 5
between ny ;(ql q) (ql Q) ( )
where, as in eq. ] n,, is the number of image sequences and g is the total mean.

In order to find the principal components of each subspace the eigen values and vec-
tors of each covariance matrix (eq. Hand [ are calculated. A similar decomposition
of the total distribution to subspaces has been used by Costen et al. for the automatic
extraction of the face identity-subspace [15]. New shape examples can be generated by
varying the parameters b of equation [2I Assuming that the distribution of the data fol-
lows a multidimensional Gaussian distribution (this assumption has some limitations),
the variance of the ¢th parameter of b across the training set is given by \;. If we apply
limits in the variation of b; such that b; < £3+/)\; we ensure the generated shape is
similar to those contained in the training class.

3 Results

Materials. In order to produce the atlas we have acquired 26 untagged MR image
sequences from healthy volunteers. The images have been acquired using a Siemens
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Sonata 1.5T scanner using TrueFisp pulse sequence in a form of a series short-axis
images. Seven of the images were acquired using retrospective gating acquisition while
the rest were acquired using prospective gating acquisition. One of the image sequences
was selected to be the reference subject of the spatio-temporal registration. Care was
taken to ensure that the reference subject was a normal representative of the population.
The reference subject had in-plane resolution of 192 x 256 with pixel size of 1.48 x
1.48mm and a slice thickness of 10mm (which is the typical pixel size used in these
acquisitions). After the shape based interpolation the slice thickness was reduced to
Imm. The images covered the entire left-ventricle form base to apex.

Statistical Model of the Variability Across Subjects. These models describe the sig-
nificant changes in the shape of the left ventricle, the myocardium due to subjects’
different heart shape. Figure [T] shows the three most significant modes of variation for
the left ventricle (a) and the myocardium (b). For the left ventricle, the three most sig-
nificant modes of shape variation describe the differences in the size of the left ventricle
(mode 1), the variation of the position of the apex of the heart (mode 2) and the elonga-
tion of the apex of the heart (mode 3). For the myocardium, the three most significant
modes of variation describe the size of the myocardium (mode 1), the thickness of the
myocardium (mode 2) and the direction of the myocardium long-axis (mode 3). In or-
der to describe 90% of the shape variability of the inter-subject distribution subspace
13 (of 26) modes of shape variation are required.

Statistical Model of the Variability Across the Cardiac Cycle. These models de-
scribe the most significant changes in the shape of the left ventricle and the myocardium
which occur due to the cardiac cycle. Figure 2] shows the three most significant modes
of variation of the left ventricle (a) and the myocardium (b). For the left ventricle, the
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Fig. 1. The significant modes of variation across subjects of (a) left ventricle and (b) my-
ocardium. Animations of all the atlases and also of atlases of the right ventricle can be found
at: http:/www.doc.ic.ac.uk/"dp1/Research/Statistical Atlases/
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Fig. 2. The significant modes of variation across the cardiac cycle of (a) left ventricle and (b)
myocardium

three most significant modes of variation (fig. 2(a)) describe the differences in the vol-
ume of the left ventricle during the cardiac cycle (mode 1), the twisting of the heart
during the contraction phase (mode 2) and the changes in the position of the apex of
the left ventricle and also the position of the papillary muscles (mode 3). For the my-
ocardium, the three most significant modes of variation (fig.2(b)) describe the changes
in the size of the left ventricle and the thickening of the myocardium, the twisting of the
myocardium during the contraction phase (mode 3) and the movement of the cardiac
wall (mode 3). In order to describe 90% of the shape variability of the intra-subject
distribution subspace 16 (of 468) modes shape variation are required.

4 Classification Using the 4D Statistical Atlas

In this section we demonstrate a possible use of the statistical atlases for the classifica-
tion of cardiac data. We used the above statistical models to classify cardiac data from
normal volunteers and patients with hypertrophic cardiomyopathy (a condition in which
the myocardium has an excessive thickening). In order to perform this classification we
have excluded six subjects from the model (i.e. the model has been constructed from
only 20 healthy subjects) and we have acquired MR image sequences from 8 patients
with hypertrophic cardiomyopathy. The same processing steps for the registration and
pseudo-landmark extraction and propagation were used for these image sequences as
for ones used for the construction of the statistical models (see section [2)). Then, for
each image sequence the mean surface (over the cardiac cycle) was calculated. These
mean surfaces were projected into the shape space of the statistical models. Figure [3]
shows the projections of the subjects’ myocardium to the space of the across population
atlas (a) and across cardiac cycle atlas (b) . We clearly see from the distribution of the
data that a simple classifier will enable the correct differentiation between normal and
hypertrophic subjects.
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Fig. 3. Projection of the myocardium to the space of the (a) across the subjects atlas and (b) across
the cardiac cycle atlas (the circles on the figures are the subjects with hypertrophic cardiomyopa-
thy while the stars the normal ones)

Table 1. Accuracy of the classification using the statistical model of the myocardium describing
changes in the anatomy due to the cardiac cycle (model A), due to inter-subject variation (model
B) and a combination of both

Model A {Model B(Model A and B
Normal 83% 100% 100%
Hypertrophic cardiomyopathy|| 100% | 87.5% 87.5%

In order to classify the data we used a k-weighted NN-classifier. A leave one out ex-
periment was performed. The first 4 principal components were employed when using
the statistical atlas describing the cardiac shape variability due to cardiac cycle, while
the second and the third principal components were employed when using the statistical
atlas describing the inter-subject shape variability. In this case, the first principal com-
ponent was not used in the classification since it describes the size of the myocardium in
the base to apex direction. Furthermore, the combination of these principal components
(from both models) were also used for data classification. The classification results are
reported in table [T

5 Conclusions

In this paper we presented a novel method for building a 4D statistical atlas describing
the cardiac anatomy and how the cardiac anatomy changes during the cardiac cycle.
Contrary to probabilistic atlases, the statistical atlases provide not only information re-
garding how much variability exists in the data but also what the variability is. In order
to build the atlas we have used 26 cardiac image sequences from normal volunteers. The
method separates the distribution space of the cardiac shape into two subspaces. One
distribution subspace accounts for the changes in cardiac shape caused by inter-subject
variability. The second distribution subspace accounts for the changes in cardiac shape
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caused by deformation in the cardiac cycle (i.e. intra-subject variability). Principal com-
ponent analysis (PCA) has been performed in order to calculate the most significant
modes of variation of each distribution subspace. Moreover, our method eliminates the
need for manual landmarking of the cardiac images by using a non-rigid registration
algorithm to propagate landmarks from an from an automatically landmarked to each
image. We have also demonstrated a possible use of the statistical atlases by using them
to differentiate between cardiac image sequences from patients with hypertrophic car-
diomyopathy and normal subjects.
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