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Preface

The 8th International Conference on Medical Imaging and Computer Assisted
Intervention, MICCAI 2005, was held in Palm Springs, California, USA, at the
Riviera Resort, October 26–29, 2005.

MICCAI has become a premier international conference with in-depth papers
on the multidisciplinary fields of medical image computing, computer-assisted
intervention and medical robotics. The conference brings together clinicians, bio-
logical scientists, computer scientists, engineers, physicists and other researchers
and offers them a forum to exchange ideas in these exciting and rapidly growing
fields.

The impact of MICCAI increases each year and the quality and quantity of
submitted papers this year was very impressive. We received a record 632 full
submissions (8 pages in length), an increase of 22% from 2004, from 36 different
countries and 5 continents (see fig. 2). Based on a decision of the MICCAI
board, this year’s conference employed a double-blind review procedure on a
trial basis. Our Program Committee was made up of 11 area chairs, each of
whom supervised the review of almost 60 papers. Four reviews were generated
for each paper from 262 reviewers and the area chairs. A final paper selection
meeting took place during two days in early June 2005 in Chapel Hill, North
Carolina. We are especially grateful to Elizabeth Bullitt, Polina Golland, David
Haynor, Rasmus Larsen, Greg Hager and Daniel Rückert, who attended this
meeting and helped us make the final selections. Martin Styner provided valuable
help with information management and the Web-site, and James Stewart is
acknowledged for reliable and timely support of the Web-based reviewing system.
We are grateful to everyone who participated in the review process; they donated
a large amount of time and effort to make these volumes possible and insure a
high level of quality. Because of the overall quality of the submissions and because
of the limited number of slots available for presentation, paper selection was
especially challenging. The MICCAI 2005 Program Committee finally accepted
236 full papers. The normal mode of presentation at MICCAI 2005 was as a
poster; in addition, 46 papers were chosen for oral presentation. All of the full
papers accepted are included in these proceedings in 8-page format. We also
accepted 34 short communications (2 pages) which were presented as posters
but not included in the proceedings.

The first figure below shows the distribution of the 236 full paper contribu-
tions by topic; the topics are defined by the primary keyword of the submission.
The second figure illustrates the distribution of full paper submissions (a total
of 632) by region.

We note that this year’s program included some new features, including a
session on Celullar and Molecular Imaging and Analysis. We hope that all who
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attended the 2005 meeting felt as we do that the program was both strong and
diverse, within the range of topics covered by MICCAI.

It was our pleasure to welcome this year’s MICCAI 2005 attendees to Palm
Springs. Sitting in lush farming land, Palm Springs does not conform to any
typical image of the desert, embodying a mix of Spanish Colonial and mid-
twentieth century modern styling. Ever since Hollywood stars first came here
in the 1930s, laying claim to ranch-style estates, holing up in elite hotels, and
enjoying the clean dry air and sunshine, Palm Springs has been a special place to
visit. We hope that the attendees, in addition to visiting the conference, took the
opportunity to enjoy the hospitality and amenities of the Riviera Resort, and
to explore the city, the desert region, and other parts of Southern California.
For those unable to attend, we trust that these volumes will provide a valuable
record of the state of the art in the MICCAI disciplines.

We also want to thank both our sponsors who are listed below and our two
keynote speakers, Profs. Scott Fraser from Caltech and Arthur Toga from UCLA
for excellent and stimulating lectures.

Finally, we note that this year a landmark event occurred in the life of
MICCAI, namely the formation of the Medical Image Computing and Computer-
Assisted Intervention Society (the MICCAI Society) which was officially an-
nounced on December 9, 2004. The main focus of the society is our annual
international conference series (www.miccai.org) which has become the premier
conference in the field of medical image computing and computer-assisted in-
terventions, including biomedical imaging and robotics. The society is governed
and administered by the MICCAI Board of Directors. The society will continue
to publish the proceedings of the annual MICCAI conference in a prestigious
scientific series. Having a paper accepted for publication in this series is highly
meritorious and on a par with publication in highly regarded peer-reviewed jour-
nals in the field. The society is negotiating with three journals in the field of
MICCAI themes, each to become “an affiliated MICCAI journal”. These jour-
nals will offer significant benefits to members, including sharply discounted rates
for paper subscriptions and access to on-line content. The society will continue
to develop, enrich, and maintain a dynamic website with exclusive content for
members (www.miccai.org).

We look forward to welcoming you to MICCAI 2006, to be held October 2–4,
2006 in Copenhagen, Denmark, and chaired by Mads Nielsen.

October 2005 James Duncan and Guido Gerig
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MICCAI Student Awards

Every year MICCAI awards outstanding work written and presented by students.
Both oral and poster presentations are eligible for the awards, and the awards
are presented to the winners in a public ceremony. Student awards at MICCAI
2003 and 2004 were sponsored by Northern Digital Incorporation (NDI), and
NDI will also be the sponsor for the MICCAI 2005 awards.

MICCAI 2003 Student Awards

Robotics: Hashimoto, Ryuji: A Transurethral Prostate Resection Manipulator
for Minimal Damage to Mucous Membrane

Segmentation: Pichon, Eric: A Statistically Based Surface Evolution Method for
Medical Image Segmentation: Presentation and Validation

Image Guided Therapy Surgery: DiMaio, Simon: Needle Steering and Model-
Based Trajectory Planning

Medical Image Analysis: Fillard, Pierre: Quantitative Analysis of White Matter
Fiber Properties Along Geodesic Paths

Medical Image Processing and Visualization: Arsigny, Vincent: Polyrigid and
Polyaffine Transformations: A New Class of Diffeomorphisms

MICCAI 2004 Student Awards

Image Segmentation and Processing: Dikici, Engin: Quantification of Delayed
Enhancement MR Images

Image Registration and Analysis: Perperidis, Dimitrios: Spatio-temporal Free-
Form Registration of Cardiac MR Image Sequences

Image Guided Therapy and Robotics: Stoyanov, Danail: Dense 3D Depth Re-
covery for Soft Tissue Deformation During Robotically Assisted Laparoscopic
Surgery

Image Simulation and Display: Valtorta, Davide: Dynamic Measurements of
Soft Tissue Viscoelastic Properties with a Torsional Resonator Device



Organization

Executive Committee

James Duncan (General Chair), New Haven, USA
Guido Gerig (Program Chair), Chapel Hill, USA
Christian Barillot, Rennes, France
Mads Nielsen, Copenhagen, Denmark
Terry Peters, London, Canada

Program Committee

Nicholas Ayache, Sophia-Antipolis, France
Elizabeth Bullitt, Chapel Hill, USA
Christos Davatzikos, Philadelphia, USA
Polina Golland, Boston, USA
Gregory D. Hager, Baltimore, USA
David Haynor, Seattle, USA
Leo Joskowicz, Jerusalem, Israel
Rasmus Larsen, Copenhagen, Denmark
Keith Paulsen, Hanover, USA
Daniel Rückert, London, UK
Ross Whitaker, Salt Lake City, USA

MICCAI Board

Alan Colchester (General Chair), Canterbury, UK
Nicholas Ayache, Sophia Antipolis, France
Christian Barillot, Rennes, France
Takeyoshi Dohi, Tokyo, Japan
James Duncan, New Haven, USA
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Székely, Gabor
Tannenbaum, Allen
Tao, Xiaodong
Tasdizen, Tolga
Taylor, Chris
Taylor, Russell
Tek, Huseyin
ter Haar Romeny, Bart M.
Terzopoulos, Demetri
Thiran, Jean-Philippe
Thirion, Bertrand
Tohka, Jussi
Tosun, Duygu
Troccaz, Jocelyne
Vaillant, Regis
van Assen, Hans
van Ginneken, Bram
Van Leemput, Koen
Vandermeulen, Dirk
Vermeer, Koen
Vetsa, Yethiraja Sampath K.
Vos, Frans
Vosburgh, Kirby
Vossepoel, Albert
Wai, Lionel C.C.
Wang, Jianzhe



XIV Organization

Wang, Yalin
Wang, Yongmei Michelle
Wang, Yuanquan
Warfield, Simon
Westin, Carl-Fredrik
Whitaker, Ross
Wildermuth, Simon
Williams, James
Wong, Wilbur C.K.
Wu, Chia-Hsiang
Wu, John Jue
Wu, Ziji
Wyatt, Chris
Xu, Xiaoyin

Xue, Zhong
Yan, Pingkun
Yang, Guang-Zhong
Yang, Jing
Yaniv, Ziv
Yoo, Terry
Yuan, Xiaohui
Yushkevich, Paul
Zeng, Jianchao
Zhao, Zheen
Zheng, Guoyan
Zhu, Chaozhe
Zou, Kelly
Zrimec, Tatjana



Table of Contents – Part II

Robotics, Image-Guided Surgery and Interventions

Sensor Guided Ablation Procedure of Left Atrial Endocardium
Hua Zhong, Takeo Kanade, David Schwartzman . . . . . . . . . . . . . . . . . . . 1

A Method to Evaluate Human Spatial Coordination Interfaces
for Computer-Assisted Surgery

M.A. Cardin, J.X. Wang, D.B. Plewes . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3D TRUS Guided Robot Assisted Prostate Brachytherapy
Zhouping Wei, Mingyue Ding, Donal Downey, Aaron Fenster . . . . . . . 17

Invisible Shadow for Navigation and Planning in Minimal Invasive
Surgery

Marios Nicolaou, Adam James, Benny P.L. Lo, Ara Darzi,
Guang-Zhong Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A Navigation System for Minimally Invasive CT-Guided Interventions
Markus Nagel, Gerd Schmidt, Ralf Petzold, Willi A. Kalender . . . . . . . 33

Passive Markers for Ultrasound Tracking of Surgical Instruments
Jeffrey Stoll, Pierre Dupont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Optimal Trajectories Computation Within Regions of Interest
for Hepatic RFA Planning

Caroline Villard, Claire Baegert, Pascal Schreck, Luc Soler,
Afshin Gangi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Effects of Latency on Telesurgery: An Experimental Study
Reiza Rayman, Serguei Primak, Rajni Patel, Merhdad Moallem,
Roya Morady, Mahdi Tavakoli, Vanja Subotic, Natalie Galbraith,
Aimee van Wynsberghe, Kris Croome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Novel Phantom-Less Spatial and Temporal Ultrasound Calibration
Method

Ali Khamene, Frank Sauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Electromagnetic Tracker Measurement Error Simulation and Tool
Design

Gregory S. Fischer, Russell H. Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



XVI Table of Contents – Part II

Compact Forceps Manipulator Using Friction Wheel Mechanism
and Gimbals Mechanism for Laparoscopic Surgery

Takashi Suzuki, Youichi Katayama, Etsuko Kobayashi,
Ichiro Sakuma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Spatial Motion Constraints for Robot Assisted Suturing Using Virtual
Fixtures

Ankur Kapoor, Ming Li, Russell H. Taylor . . . . . . . . . . . . . . . . . . . . . . . . 89

Contact Force Measurement of Instruments for Force-Feedback on a
Surgical Robot: Acceleration Force Cancellations Based on Acceleration
Sensor Readings

Shigeyuki Shimachi, Fumie Kameyama, Yoshihide Hakozaki,
Yasunori Fujiwara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Development of the Needle Insertion Robot for Percutaneous
Vertebroplasty

S. Onogi, K. Morimoto, I. Sakuma, Y. Nakajima, T. Koyama,
N. Sugano, Y. Tamura, S. Yonenobu, Y. Momoi . . . . . . . . . . . . . . . . . . . 105

Laparoscope Self-calibration for Robotic Assisted Minimally Invasive
Surgery

Danail Stoyanov, Ara Darzi, Guang Zhong Yang . . . . . . . . . . . . . . . . . . . 114

A Hand-Eye Robotic Model for Total Knee Replacement Surgery
Fanhuai Shi, Jing Zhang, Yuncai Liu, Zijian Zhao . . . . . . . . . . . . . . . . . 122

Robot-Assisted Image-Guided Targeting for Minimally Invasive
Neurosurgery: Planning, Registration, and In-vitro Experiment

R. Shamir, M. Freiman, L. Joskowicz, M. Shoham, E. Zehavi,
Y. Shoshan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Soft-Tissue Motion Tracking and Structure Estimation for Robotic
Assisted MIS Procedures

Danail Stoyanov, George P. Mylonas, Fani Deligianni, Ara Darzi,
Guang-Zhong Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Image Registration II

Mass Preserving Registration for Heart MR Images
Lei Zhu, Steven Haker, Allen Tannenbaum . . . . . . . . . . . . . . . . . . . . . . . . 147

Liver Registration for the Follow-Up of Hepatic Tumors
Arnaud Charnoz, Vincent Agnus, Grégoire Malandain,
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Wolfgang Wein, Barbara Röper, Nassir Navab . . . . . . . . . . . . . . . . . . . . . 303

Medical Image Computing - Atlases - Shape I

Lung Deformation Estimation and Four-Dimensional CT Lung
Reconstruction

Sheng Xu, Russell H. Taylor, Gabor Fichtinger, Kevin Cleary . . . . . . . 312

Automatic Parameter Optimization for De-noising MR Data
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Sensor Guided Ablation Procedure
of Left Atrial Endocardium
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Abstract. In this paper, we present a sensor guided ablation proce-
dure of highly motile left atrium. It uses a system which automatically
registers the 4D heart model with the position sensor on the catheter,
and visualizes the heart model and the position of the catheter together
in real time. With this system clinicians can easily map the motile left
atrium shape and see where the catheter is inside it, therefore greatly
improve the efficiency of the ablation operation.

1 Introduction

Recent years have witnessed an expanding need for percutaneous, endocardium-
based cardiac interventions, including ablation, injection, and device deployment.
These interventions are generally not focal, but rather involve a broad region of
endocardial anatomy. This anatomy is complex topographically, as well as motile.
Current modalities for real-time intraoperative endocardial imaging and naviga-
tion are highly inaccurate, which has been the cause of procedure inefficacy and
complications. In the present paper, we will focus on catheter ablation of left
atrial endocardium. This procedure is performed in an attempt to cure atrial
fibrillation, a common heart rhythm disorder. The left atrium has the attributes
noted above - complex topography and motility. At present, the ablation pro-
cedure is performed by attempting to ”register” preoperative four-dimensional
imaging data (derived from computed tomography) with two-dimensional in-
traoperative imaging data (derived from intracardiac echocardiography and flu-
oroscopy) using the mind’s eye. This is laborious, highly operator-dependent
(which prohibits dissemination) and inaccurate. To the clinician, the optimal
situation would be one in he/she were ”injected” into the operative environment
with automatic registration, such that endocardial intervention would be akin
to painting a wall (left atrial endocardium) with a brush (ablation catheter).
When painting a wall, complex topographical hurdles (eg. molding on the wall,
windows, light switches) are not a problem, because of real-time feedback pro-
vided by direct visualization of the paint target. Motion of the room could be
easily overcome by registering the motion of the room with that of the painter.

To realize such a goal, the system should be able to visualize the dynamic
shape of left atrium and together with real time updated catheter position.
Currently GE’s Litespeed CT scanner can provide up to 10 3D CT scan of
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heart during one cardiac cycle. Assuming the changes in shape of left atrium
repeat from one cardiac cycle to another, this one cycle heart scan is sufficient
to capture the dynamic shape of left atrium. With such CT scan (3D + time), we
can reconstruct a 4D heart shape model. Besides, currently available magnetic
tracking systems (CARTO and NOGA from Biosense) can track position of
catheter tip in real time synchronized with ECG signals. However the heart
model and magnetic tracking systems are working independently now. Our task
is to automatically register the magnetic tracking system with the 4D heart
model, and visualize the result to facilitate the ablation procedure.

In [1] a registration system (HipNav) of position sensors and CT/MRI scans
for bones has been introduced. In [2] 3D MRI models are built to navigate
in hearts. In our case we have to use a 4D model to represent motile heart
shape. Our registration problem then becomes 4D as well. [3] introduced a 4D
registration method for two MR image sequences. Our problem is also a 4D
registration but for 4D points and 4D surface models. In section 2 we will show
how to do a space time registration and in section 3 we will show experiment
results which validate our system’s correctness. Also we will discuss how we
can take advantage of this 4D property of both model and points to make the
registration even easier and more robust than 3D shape registration.

2 Sensor Guided Ablation Procedure

To register the heart model with the magnetic position sensor, we first need to
collect some points which are on the inner heart wall of left atrium with magnetic
tracking system. We call these points ”constraint point set”. Then our system
will find a transformation function F which aligns these points to the 4D heart
model so that all the points are on the inner heart wall of the model. We also
need to align the time axis. Next we will describe our method step by step.

2.1 4D Heart Model Reconstruction from CT

CT scan is proceeded one day before the operation assuming the heart shape
won’t change within one day. We use GE’s CT scanner which can generate a 3D
heart scan at every 10% of a cardiac cycle, and totally 10 3D CT scans for one
cardiac cycle. Left atrium is then segmented out manually. We extract the surface
model from the segmented CT data using Marching Cube(MC) algorithm. The
extracted surface should represent the inner heart wall. We remove the small
floating parts by discarding all triangles except those in the largest connecting
group of the model. Then we smooth the model based on geometry cues with an
implicit integration method [4].

Each 3D surface model extracted from CT data corresponds to a time t ∈
[0, 1) (suppose t = 0 is at the beginning of a cardiac cycle and t = 1 is at the
end of a cardiac cycle) in a cardiac cycle when the CT was scanned. In the rest
of the paper, we use C = {C0, C1, ..., Cn−1} to represent the 4D heart model,
n is the number of 3D models for one cardiac cycle. In our example we capture
a 3D CT scan at every 10% of a cardiac cycle, we can extract n = 10 surface
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(a) CT scan (b) Segmented CT (c) Model t = 0.0 (d) sModel t = 0.5

Fig. 1. CT scan and 4D Heart Model of a patient. It contains 10 3D models for one
cardiac cycle.

models C = {C0, C1, ..., C9} where each model Ci represents the heart shape at
time t = i/10, i = 0, 1, ...9. This process is shown in Figure 1.

2.2 Constraint Point Set Collection

At the beginning of the operation, the clinician needs to capture 20-30 points
spread on the inner heart wall with magnetic position sensor (Figure 2(b)).
During this step, another catheter with intracardiac echocardiography sensor,
which can generate 2D ultrasound images as shown in Figure 2(a) in real time,
is used to verify the touching of ablation catheter tip on the inner heart wall. The
magnetic tracking system can be setup to capture points at 10 evenly distributed
time spots within a cardiac cycle as the CT scan, so each captured point will
have a time coordinate of t = 0, 0.1, ..., 0.9. We group those points with same
time coordinates together (though they may be captured in different cardiac
cycles). Then all the recorded points can be organized into 10 groups: P =
{P0, P1, ..., P9}. P can be thought as a 4D point set.

2.3 Registration

Initial Registration. Space initial registration can be done in a coarse-to-
fine scheme. First a rough alignment can be found based on the orientation of

(a) Ultrasound Image (b) Captured Point Set

Fig. 2. Constraint Point Set. (a) Ultrasound image with the ablation catheter tip visible
in it. Clinicians can verify if the ablation catheter tip is touching the heart wall. (b)
A set of captured points (blue dots) at t = 0.0. They are not aligned with the heart
model yet.



4 H. Zhong, T. Kanade, and D. Schwartzman

C

P t

C

P t

(a) Before time alignment (b) After time alignment

Fig. 3. Time Alignment. Upper row represents models, lower row represents point
sets. x axis represents time. (a) Initial time alignment, we assume it’s simple one-
on-one correspondence. (b) The best correspondence scheme will be found after time
alignment.

the patient on the bed. This rough alignment can be further refined by some
points captured on some designated regions of the heart. These regions should
be easy to locate solely from ultrasound images, such as the entrance region of
pulmonary veins. Then we find an alignment so that these points are near the
same regions in the heart model as where we know they are captured. Other
information such as where the catheter enter the left atrium and some inside
points can also help to eliminate global alignment ambiguities. If we define the
registration error as the average distance from the real positions of constraint
points from their calculated positions, the initial alignment should be able to
reduce this error to approximate 10-20mm.

Time registration equals to a correspondence scheme S which tells for any
point set Pi in P which Cj in C is its correspondence according to time. We
know that we captured heart model C = {C0, C1, ..., C9} and points P =
{P0, P1, ..., P9} both at t = 0, 0.1, ..., 0.9. Ideally the time registration should
be Pi corresponds to Ci for any i. In reality, the heart model is synchronized to
ECG signal one day before the operation during CT scan, while the magnetic
tracking system is synchronized to ECG signal during the operation, and under
the operation conditions, sometimes the patient’s heart beat rate is not stable,
then this one-on-one correspondence of Ci with Pi may not be true. This prob-
lem will be more noticeable if we have more CT scans in one cardiac cycle in the
future, for example 100 3D models instead of 10. So time alignment is necessary
(Figure 3). For initial time registration, we just use the correspondence scheme
of Pi to Ci for any i ∈ [0, 9].

Space Registration. Under a given correspondence scheme S, the space reg-
istration is to find a transform function F (rotation and translation) for P so
that the average distance from each point in each transformed point set F (Pi)
to its corresponding model Cj is minimized. We use a modified Iterative Clos-
est Points [5] algorithm for space registration. Different from original ICP, here
during each iteration, when we try to find each constraint point’s nearest point
on the model, for any Pi, we only find nearest points from its corresponding
model Cj , called Pi near. And then we use P =

⋃
i Pi and its nearest point sets

Pnear =
⋃

i Pi near to find the transformation function for that iteration.
To accelerate, we use K-D tree structure for nearest neighbor searching. And

we add random perturbation of the registration result use it as a new initializa-
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tion and run the ICP again for multiple times to avoid local minimum. To reduce
side effects of outlier points, we use a trimmed ICP with 95% of the points [6].

Space Time Registration. Under a given space registration F , the corre-
spondence scheme can be decided by: for any Pi, Cj which has the least average
distance from all the points in F (Pi) to Cj is its corresponding model. But now
we fall into a dilemma: to register time, we need to know the space registration;
to register space, we need to know time registration (correspondence scheme).

To solve this problem, an EM algorithm is proposed assuming errors have a
gaussian distribution. We take the correspondence scheme S as a hidden vari-
able. The EM algorithm finds a space transformation function F and a time
correspondence scheme S that maximize the expectation of log likelihood of
p(F (P )|S, C). The probability p(F (P )|S, C) can be defined as

p(F (P )|S, C) =
∏

i

p(F (Pi)|Csi) =
∏

i

(exp(−||F (Pi), Csi||)) (1)

Here Csi is the corresponding model for Pi defined by scheme S. Each
p(F (Pi)|Csi) can be defined as an exponential function of the average distance
from every point in F (Pi) to model Csi, which is written as ||F (Pi), Csi||. With
this definition, the EM algorithm is:

Initial Alignment: We first use simple correspondence scheme of Pi to Ci, and
calculate a space registration based on this initial time registration (with the
help of other initial registration methods described before). This is our initial
space registration F 0.

E step: At iteration k, given the spatial registration of iteration k − 1: F k−1,
the probability of each possible correspondence scheme S can be calculated using
the following formula:

p(S|F k−1) = a−1p(F k−1(P )|S, C)prior(S) (2)

where a−1 is a normalization constant. p(F k−1(P )|S, C) is similar as the proba-
bility in Equation 1. prior(S) is the prior probability of each scheme S. We set
prior(S) to be very low or zero for schemes S that map Pi to a Cj where ||i− j||
is large. From now we use term p(S) to represent the probability in Equation 2.

M step: With p(S) known, we can find a F k that maximizes the expectation of
log likelihood:

arg max
F k

∑
S

p(F k(P )|C, S)p(S) (3)

Maximizing Equation 3 equals to minimizing a weighted distance function

arg min
F k

∑
S

m=10∑
i=1

||F k(Pi) − Csi||p(S).
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This distance function can be minimized similarly with our modified ICP algo-
rithm. Only difference is here we need to combine the P and its nearest point
set Pnear under different correspondence scheme S with weight p(S).

EM stops: when the registration improvement from F k to F k−1 is less than
a given threshold or a certain number of iterations has been reached whichever
becomes true first. Time registration S is then computed based on the final space
registration F k.

2.4 Visualization of Ablation Procedure

After registration, the heart model and catheter position can be displayed to-
gether in real time: input catheter position in magnetic tracking system coordi-
nate (x, y, z, t) will be transformed to model’s coordinate (F (x, y, z), S(t)). The
“beating” rate of the heart model is also synchronized with ECG signal from
patient. Clinicians can setup a virtual camera anywhere in the space to monitor
the whole ablation procedure. The procedure therefore is like a simple“painting
the room” job (Figure 4).

(a) (b) (c)

Fig. 4. Visualization (a) view of the catheter from inside left atrium. (b) view of abla-
tion sites(yellow) together with constraint points(blue). (c) view from outside the left
atrium.

3 Results and Discussion
3.1 Patient Data Test

To validate our system, we test it with a real patient’s data. The CT scan’s
resolution is 512 × 512 × 116 × 10 (X×Y×Z×time). Voxel size is X: 0.48mm
per voxel, Y: 0.48mm per voxel, Z: 0.625mm (or 1.25mm) per voxel, time: 10%
of a cardiac cycle(Figure 1). We use CARTO system by Biosense to track the
catheter position (1mm average error). CARTO can capture position at the
beginning of each cardia cycle. So here the points we have is P = P0(Figure
2(b)). We collect 76 constraint points to do the registration: for every location,
we recorded two points both at t = 0. Then the clinician proceeded the ablation
procedure without our system’s help and recorded all the ablation sites. Our
system then mapped where those ablation sites are based on registration. The
correctness of registration is verified by the clinician who knows where those
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(a) (b) (c)

Fig. 5. Patient data test (a) Initial alignment (intensionally deteriorated to test ro-
bustness). (b) Outside view of the registration result. Yellow points are ablation sites.
They are correctly mapped to the pulmonary veins entrance regions. (c) Inside view,
these points are right on the surface.

ablation sites should be mapped to. The registration error is: 1.6347mm. This
result may vary from case to case because of different heart shape and CT scan
quality. Results are shown in Figure 5.

3.2 4D Registration Versus 3D Registration

To fully exploit the information of a 4D heart model, we record constraint points
in such a way: we move the catheter to touch the heart wall, stay on the wall for a
cardiac cycle, and record all 10 positions p = {p0, ..., p9} at time t = 0, 0.1, ..., 0.9,
generally pi �= pj if i �= j because the heart is beating. We can call p a 4D point.
After we record one 4D point, we actually add one 3D point to each point set
Pi, i = 1 to 10. No extra efforts are necessary to capture one 4D point than a 3D
point. To demonstrate how 4D points can improve registration performance, we
did the following experiments. For a 4D heart model of a patient, we simulate the
collection of constraint points, both 4D points and 3D points (3D points are all
recorded on model C0). And we use a random transformation Fr to transform the
points away from the heart model. Fr has 0−30 degree of rotation and 0−20mm
of translation. Then we use our algorithm to find registration transformation F
which maps points back to the surface model. We define the error as the average
of ||v − F (Fr(v))|| for every vertex v of the heart model. The result is shown
in Figure 6. As we can see, 4D point registration achieves same registration
accuracy with fewer constraint points than 3D point registration in our test.
The spatial distribution of constraint point set is random but same for 3D and
4D points.

5 points 6 points 7 points 8 points 16 points
0

5

10

15

20

Er
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m
)

4D points

3D points

Fig. 6. Constraint point number vs registration error. For each item, we run the reg-
istration test for several times and the average error is shown here.
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3.3 Speed Performance

Usually 15-30 seconds are needed for clinicians to record one constraint point, 2
minutes or less are needed for registration. With the automatic registration and
visualization system, the whole procedure time can be greatly reduced.

4 Conclusion

In this paper, we described a new left atrial endocardium ablation procedure
with automatic 4D registration and visualization. Registration for static objects
(bones) can be thought as a subset of our registration problem. Promising results
have been shown. Although the registration problem is far from totally solved,
we believe 4D registration is the way we should go. In the future, we will focus
on more lab animal tests to further verify and quantify the accuracy of 4D
registration. Then more real patient tests will be done.
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Abstract. Computer assistance for breast conserving surgery requires a
guidance method to assist a surgeon in locating tumor margin accurately.
A wide array of guidance methods can be considered ranging from various
pictorial representations, symbolic graphical interfaces as well as those
based on other sensory cues such as sound. In this study, we present
an experimental framework for testing candidate guidance methods in
isolation or in combination. A total of 22 guidance approaches, based on
stereographic, non-stereographic, symbolic and auditory cues were tested
in a simulation of breast conserving surgery. Observers were asked to
circumscribe a virtual tumor with a magnetically tracked scalpel while
measuring the spatial accuracy, time and the frequency with which the
tumor margin was intersected. A total of 110 studies were performed with
5 volunteers. Based on these findings, we demonstrated that a single view
of the tumor with a stereo presentation in conjunction with an auditory
guidance cue provided the best balance of accuracy, speed and surgical
integrity. This study demonstrates a practical and helpful framework for
testing guidance methods in a context dependent manner.

1 Introduction

Increasing interest in alternatives to conventional surgery for cancer applications
has prompted a wide array of potential solutions, ranging from remote surgery
under image driven, laparoscopic or robotic manipulation [1], direct real-time
image guidance integrated into a more traditional surgical setting and the use of
pre-operative imagery to track surgical maneuvers based on some model of tumor
geometry [2][3]. Regardless of the approach, the need to integrate spatial infor-
mation into a surgical decision making framework poses significant challenges
to the engineer and the surgeon alike. This is particularly challenging when the
surgeon attempts to integrate virtual data seamlessly into their appreciation of
the surgical field. Ideally, one hopes to deliver the maximum amount of spatial
information to the surgeon without inducing fatigue or being overwhelmed by
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excessive data. As each surgical task poses differing challenges, this balance will
depend on the surgical context.

We have been exploring one such task which aims to integrate MRI infor-
mation for the purpose of breast conserving surgery (BCS). Our approach is
based on a segmented model of a breast tumor for resection which is coordi-
nated to the patient’s actual tumor location and geometry during surgery. The
surgical task of BCS is to ensure complete removal of all cancerous tissue while
sparing normal tissue. In this paper, we consider the challenge of creating a
surgeon-computer interface that achieves the desired goal of guiding the surgi-
cal maneuvers while not burdening the surgeon with excessive and potentially
distracting information.

Choices for surgical interfaces range from purely visual to those which at-
tempt to integrate other perceptual cues. In addition to the inclusion of stereo
presentation of visual data, other synthetic options include the use of tactile and
auditory cues along with symbolic directives which aim to lead the surgeon in
their task. These have the advantage of being used in isolation or in hybrid com-
bination with virtual imagery with the hope of improving information transfer.
However, it is often unclear which interface method or combination thereof is
most effective. In this work, we attempt to address this question and demonstrate
a surgical interface simulator which measures the efficacy of differing interfaces
in isolation or in hybrid combinations.

2 Method

A surgical platform was constructed which allowed reproducible positioning of a
tracking system (Figure 1(a)) in which a magnetic system was used to dynam-

(a) (b)

Fig. 1. a) Experimental setup showing the positioning table offering precise 6 DOF
positioning and orientation of the magnetic sensor. The mini-viewer seen on the left is
used in some of the various interface combinations, together with the LCD and CRT
monitors at the back. The modified scalpel containing another magnetic sensor is shown
on the bottom-right. b) Modified radio frequency scalpel that contains the magnetic
sensor.
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ically locate a scalpel with respect to the boundaries of a virtual “tumor”. The
object of the experiment was to move the tip of the scalpel in a well-defined tra-
jectory to simulate tissue cutting while recording the scalpel position. To achieve
this, a 2 mm catheter-based, 6 DOF magnetic tracking probe (Ascension Tech-
nology) was embedded in a modified scalpel (Figure 1(b)). The desired trajectory
was defined and fixed in space with another channel of the magnetic tracking
system. The specific task was to trace out a circular path of radius of 200 mm
while measuring the time taken to perform the task as well as the differences
in the actual scalpel path relative to the desired path (i.e. the virtual tumor
boundary). The operator was shown the “tumor” shape in various orientations
as defined by the surgical platform.

In this experiment, we studied a number of visual and synthetic interface
approaches. In the next, section we describe each of these approaches and the
rationale behind their choice.

2.1 Interface Options

There were a total of 6 interface options we considered for this study. While many
are possible, we chose these on the basis of our own experience and evidence from
previous literature.

Interface 1 - Visual model of the scalpel and the desired task are viewed from
a single viewport on a LCD monitor. This is shown in Figure 2(a) and represents
the simplest visual presentation of the combined tracking task and the scalpel
together. Motion of the scalpel is reflected by motion of the virtual scalpel in
this presentation.

Interface 2 - Visual model of the scalpel and the desired task are shown from
three orthogonal viewports together with a perspective rendering on the LCD
monitor. This is shown in Figure 2(b) and provides complete three-
dimensional presentation of the tracking task and the scalpel motions from three
orthogonal points of view and a single perspective viewpoint. This was the most
complex visual model we tested.

Interface 3 - A stereo presentation of the task on a CRT monitor with the
observer wearing optical shutter glasses (Stereographics) as shown in Figure 2(c).
By this means, the observer perceived a clear three dimensional perception of
the tracking task and the scalpel.

Interface 4 - In this case, we provided the observer with an auditory cue in
which the amplitude of a tone with constant frequency increased as the probe
approaches the tumor boundary. Another element of this sound guidance inter-
face is noted by a change in frequency when the scalpel was moved to a position
inside the tumor, indicating an error in resection. This interface is shown in
Figure 2(d).

Interface 5 - In this case, we generated a small, “navigation compass” viewport
which was presented on the LCD monitor. The compass operates to dynamically
point in a direction that the scalpel should move to approach the desired position
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(a) (b) (c)

(d) (e) (f)

Fig. 2. a) Interface 1: one viewport with axial view and virtual scalpel. b) Interface 2:
four viewports with axial, sagittal, coronal and a perspective view. c) Interface 3: stereo
visualization on CRT monitor. d) Interface 4: Sound guidance and other visualization
combination. e) Interface 5: Navigation compass. f) Interface 6: Navigation compass
on mini-viewer and modified scalpel.

in a plane corresponding to the plane of trajectory. If the tip of the scalpel was
found to be “above” the desired plane, the needle would increase in length.
Likewise if it was below the desired level, the needle would shrink. The interface
is shown in Figure 2(e). This was an attempt at a symbolic interface that was
not pictorial but still provided all directional information for surgical guidance.

Interface 6 - In this interface, we explored the effect of “perceptual discon-
tinuity” where the observer must constantly redirect their attention toward a
monitor to gather perceptual information and away from the surgical area. To
overcome this effect, we used a “mini-viewer” which shows the compass of in-
terface 5, but placed immediately beside the surgical field so that the user does
not need to look away from the surgical field when using it. This is shown in
Figure 2(f).

2.2 Volunteer Studies

These six interfaces were studied in isolation and in combination. Table 1 shows
the combinations of interfaces applied in this study. A total of 22 experiments
were performed with varying combinations thought to provide interesting com-
binations of guidance methods. Each of the 22 experiments was performed with
differing orientations of the virtual tumor, thus providing a diverse set of surgical
trajectories. The volunteers were asked to move the scalpel around the virtual
tumor boundary as accurately as possible. They were also informed not to move
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the scalpel to a point “inside” the tumor, as this would reflect a surgical error
corresponding to degrading the tumor margin for histology. They were also told
to complete the task as quickly as possible and that they were being timed. The
balance between speed and accuracy was left to the volunteer. This experiment
was repeated for five volunteers who were asked to complete all the experiments
in a single sitting. The order of experiments was determined randomly and a
total of 110 experiments were completed.

Each volunteer was asked to move the scalpel around the desired path assisted
by the interface combination for that experiment. The positional error, the total
time to encompass the path and the frequency with which the scalpel was found
to “cut into” the tumor were all measured.

2.3 Measures of Surgical Efficiency

For each experiment, the distance between the surgical path and the actual
tumor boundary was measured at all times with the magnetic trackers. The
positional error was evaluated as the closest distance between the tip of the
virtual scalpel and the virtual tumor boundary. From this data a root-mean-
square (RMS) distance error was determined. The time taken to complete the
task was also measured by providing a target on the virtual tumor boundary to
keep track of the state of progression of the virtual surgery. This target point
would advance on the circular path each time the closest point to the scalpel
tip would cross the previously determined target point, thus simulating a virtual
“cutting” of the tumor. The task was completed when the target point had swept
over all point locations on the circular path. We also recorded the fraction of
distance measurements that were positioned inside the virtual tumor. This error
was recorded whenever a part of the virtual scalpel was touching the virtual
tumor from the inside. It was recorded as a negative distance measurement to
the scalpel tip, as seen on Figures 3(a) and 3(b).
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Fig. 3. a) Typical positional error as a function of time for completion of experiment
16. The total time in seconds to complete the surgical task, RMS distance and fraction
of distance measurements taken inside the tumor are also shown. b) Surgical path
traced out by one volunteer in experiment 16.
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3 Results

For all experiments described in Table 1, the average RMS distance was calcu-
lated across all 5 volunteers for each experiment. In addition, the average time
to completion and the average percentage of distance measurements recorded
inside the tumor were also considered (Figure 4). We can see from these data
considerable variation in these parameters across each experiment. In general,
we see a slight advantage for experiment number 16 in which the mean value is

Table 1. The combination of interface studies in the virtual surgical task

Method of Guidance Experiment Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Single Viewport on LCD x x x x x x x x x x x x
Four Viewports on LCD x x x x x x
Stereo on LCD x x x x x x
Sound Guidance x x x x x x x x x x x
Compass on LCD x x x x x x x x
Compass on “Mini-viewer” x x x x x x x x
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Fig. 4. The RMS error (a), the time to complete the task (b) and the frequency with
which the scalpel cut into the tumor (c) versus the guidance method (see Table 1).
The variation is the standard error of each parameter for the five observers.
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minimized for RMS error and time. In addition, this same method also shows
a low value for the frequency with which the scalpel ventured inside the tumor.
However, in this latter case, experiments 9 and 18 also performed well. However,
methods 9 and 18 did not perform as well with regard to spatial error and time.

On the basis of these pilot data, we determined that the guidance method
tested in experiment 16 was the most successful approach. This guidance method
involved the combination of a one viewport with the additional support of 3D
stereography and auditory guidance. It is noteworthy that when the compass
was provided in the mini-viewer, there appeared to be no significant advantage
with regard to error and time but showed a slight benefit in terms of cutting
into the tumor.

4 Discussion

These studies demonstrate that there is an optimum combination of guidance
approaches for the guidance tasks presented in this paper. We note that providing
as much imaging information does not necessarily increase the ability of the user
to use this information. Furthermore, the use of stereo visualization was not
always seen to be helpful. Rather, we found that the use of stereo data needed
to be done in conjunction with other approaches to have a significant effect on
its overall utility. Another interesting finding is that the use of the navigation
compass did not contribute efficiently in improving the results. Furthermore,
the degradation from “perceptual discontinuity” was not evident in these data
as indicated by the use of the mini-viewer for the compass guidance as compared
to the compass presented on the monitor. This does not mean that the notion of
perceptual discontinuity was not operational in this study, but may reflect that
use of a compass guidance approach did not appear to offer much advantage. In
contrast, the use of an auditory cue was found to be of value when offered in
conjunction with visual cues.

These general observations are corroborated by the comments received from
volunteers while performing the experiments. They outlined that four viewports
generally added on the complexity of the task while not providing additional
support to improve performance. Volunteers would still resort to one or two
viewports to complete the task. In addition, the results reflect a general ap-
preciation of the sound guidance system, mainly for the evaluation of depth in
performing the task. Volunteers also mentioned the difficulty in using the nav-
igation compass, which is also reflected by it not having a large impact on the
accuracy data.

5 Conclusion

This experimental method has been developed to test the efficacy of varying
guidance methods for computer-assisted surgery. We tested a range of guidance
methods which have been chosen to represent appropriate and potentially use-
ful candidates for virtual surgical guidance. Our goal was to study the effect
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of combining guidance cues in a quantitative and controlled setting with the
objective of seeking approaches which maximized the accuracy and speed of an
intervention without burdening the user. We found, considerable variation in
the utility of these approaches and that stereo and auditory guidance appeared
to be a fruitful option. Clearly, other methods could have been chosen and this
same experimental platform can be used to evaluate these. In the future, we will
be using this approach to test other guidance methods with increased degree of
complexity as we move toward developing a computer assisted surgical methods
for breast conserving surgery.
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Abstract. This paper describes a system for dynamic intraoperative prostate 
brachytherapy using 3D ultrasound guidance with robot assistance. The system 
consists of 3D transrectal ultrasound (TRUS) imaging, a robot and software for 
prostate segmentation, 3D dose planning, oblique needle segmentation and track-
ing, seed segmentation, and dynamic re-planning and verification. The needle 
targeting accuracy of the system was 0.79 mm ± 0.32 mm in a phantom study. 

1   Introduction 

Transperineal prostate brachytherapy provides an improved alternative for minimal-
invasive treatment of prostate cancer [1]. Current prostate brachytherapy involves 
placing about 80 to 100 radioactive seeds (e.g. 125I or 103Pd) into the prostate based on 
a predetermined plan (pre-plan). A template with a rectilinear pattern of holes is used 
to guide the implantation needles, loaded with radioactive seeds, to be inserted into 
the prostate according to the pre-plan. The needle insertion into the prostate is carried 
out under two-dimensional (2D) transrectal ultrasound (TRUS) guidance [2]. With 
accurate placement of the seeds, the high dose of radiation is expected to be confined, 
essentially, to the prostate, dramatically limiting treatment-related complications by 
minimizing radiation to nearby organs, such as the bladder and rectum.  

However, it has been widely recognized that current prostate brachytherapy is still 
susceptible to variability. A dynamic intraoperative procedure, in which all steps are 
performed in one session, including planning, monitoring of prostate changes, dy-
namic re-planning, optimal needle insertion including oblique trajectories and auto-
matic seed localization in US images, will help to solve some of the problems with 
current prostate brachytherapy [3]. 

To achieve dynamic intraoperative prostate brachytherapy, we developed a 3D 
TRUS guided and robot assisted system with new software. In this paper, we describe 
the development of the system and the related algorithms, and report on the targeting 
accuracy and variability achievable with the system. 

2   Methods 

2.1   System Description 

Our prototype system (see Fig. 1) consists of a commercial robot, and a 3D TRUS im-
aging system including a B&K 2102 Hawk US system (B&K, Denmark) with a side-
firing 7.5MHz TRUS transducer coupled to a rotational mover for 3D imaging [4]. The 
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mover rotates the transducer about its 
long axis, while 2D US images are 
digitized and reconstructed into a 3D 
image while the images are acquired. 
A one-hole needle guide is attached to 
the robot arm, so that the position and 
orientation of the needle targeting can 
be changed as the robot moves. The 
robot and 3D TRUS coordinate sys-
tems are integrated with robot and 
image calibrations of the coordinate 
systems [5]. As a result, the robot can 
be controlled to target any point in 3D 
TRUS images, along any trajectory 
including oblique to avoid pubic arch 
interference (PAI). 

The software tools included in the system provide following functions: 

1. Semiautomatic prostate segmentation in 3D TRUS images: We used the Dis-
crete Dynamic Contour (DDC) method for semi-automatic prostate segmentation in 
3D TRUS images [6]. First, the 3D TRUS image of the prostate is re-sampled into 
slices using a rotational re-slicing method (Fig. 2(a)). Then, in an initial slice, four or 
more points are chosen on the boundary of the prostate to obtain an initial contour 
using a cardinal-spline (Fig. 2(b)). In the next step, the initial contour is refined using 
the DDC method to obtain a prostate-fitted contour in the initial slice (Fig. 2(c)). The 
refined prostate contour in the initial slice is then propagated to adjacent slices and 
refined until the prostate boundaries in all slices have been segmented. 

(a) (b) (c)

 

Fig. 2. Prostate segmentation. (a) Rotational re-slicing. (b) Initial slicing. (c) Refine the contour. 

2. 3D prostate dose planning: Real time dose calculation is performed using TG43 
formalism. Geometric optimization followed by simulated annealing is used to obtain 
the optimal dose distribution for pre-planning. The dose distribution is evaluated using 
dose volume histograms (DVH) for the delineated organs, as well as for the implant 
volume. The plan can be performed and displayed in 3D volume view, orthogonal 
planes view, transverse view, and needle rendered view. The user can switch on and 
off the contours, isodose curves, needles, etc., in order to view each separately, and 
obtain the dose at any point by simply clicking the mouse on the transverse image or 

 

Fig. 1. 3D TRUS guided and robotic assisted 
prostate brachytherapy system  
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by typing the coordinates. Dose volume histograms for different plans from the same 
patient or different DVH from the same plan can also be displayed for comparison. 

3. Oblique needle segmentation and tracking:  The aim of oblique needle segmen-
tation is to determine needle’s position and orientation, so that rapid dynamic re-
planning could be performed, based on the actual needle trajectory and seed locations 
to obtain an optimum 3D dose distribution within the prostate. The oblique needle 
segmentation algorithm includes six steps [7]: 1) pre-scan to obtain the image prior to 
the insertion of the needle; 2) live-scans to obtain the images as the needle is being 
inserted; 3) image subtraction to obtain a difference images between the pre-scan and 
live-scans; 4) thresholding to remove background noise (Fig. 3(a)); 5) further removal 
of spurious needle voxels to obtain the needle candidate voxels (Fig. 3(b)); 6) linear 
regression of needle candidate voxels to obtain the needle vector in 3D TRUS image 
coordinate system (Fig. 3(c)). 

 

(a)                                        (b)                                    (c) 

Fig. 3. Oblique needle segmentation procedure. (a) 3D difference map after the thresholding 
processing; (b) 3D difference map after the spurious needle voxels have been removed; (c) 3D 
difference map ready for final linear regression. Black regions are the needle candidate clusters. 

4. Automatic seed localization in 3D TRUS images: Automated seed localization is 
important for intraoperative evaluation of dose delivery, which permits the identification 
of under-dosed regions, need for remedial seed placement, and ensures that the entire 
prostate receives the prescribed dose. The automatic seed segmentation algorithm is 
composed of following five steps: 1) 3D needle segmentation to obtain the needle posi-
tion when implanting the seeds; 2) reducing the search space by volume cropping along 
the detected needle, as the implanted seeds are close to the needle; 3) non-seed structure 
removal based on model of orthogonal projections of the needle; 4) seed candidate 
recognition using 3D line segment detection; and 5) localization of seed positions using 
a peak detection algorithm described in [8] to localize the center of the seeds.  

2.2   System Evaluation 

To assess the performance of the 3D TRUS guided and robotic assisted system, we 
used tissue-mimicking prostate phantoms made from agar and contained in a Plexi-
glas box. A hole in the side allowed insertion of the TRUS transducer into the phan-
tom, simulating the rectum (Fig. 4). Each phantom contained of two rows of 0.8mm 
diameter stainless steel beads. The bead configurations formed a 4 4 4× × cm polyhe-
dron to simulate the approximate size of a prostate. These beads were scanned using 
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Fig. 4. The two different prostate 
phantom types with four different bead 
configurations were used for the needle 
targeting accuracy experiment. The 
needle entered from left-hand side, 
parallel to the x-axis, in each case.  

the 3D TRUS system, and the positions of these 
seeds were determined manually in 3D TRUS 
image coordinate system. Then, these positions 
were transferred into the robot coordinate 
system, and the robot was controlled to guide 
the needle to target these beads. The 
displacements between the preinsertion bead 
position and the needle tip after the needle has 
been inserted into the phantom were used to 
analyze the needle insertion accuracy. A 3D 
principal component analysis (PCA) was 
performed to analyze needle targeting accuracy. 
The elements in the covariance matrix used for 
PCA analysis are defined as:  
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where, ikx is the displacement between the mid-

dle of the pre-insertion bead and the needle tip. i 
and j represent the direction component (i.e., x, y 
or z), k is the target index (k = 1, 2, … , 8, i.e., for 
each bead, 8 targeting trials were performed) in 

each of four bead configurations as shown in Fig. 4. 
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placement in the ith component, and n = 8. Solving the determinant equation:    

| S - λI | = 0           (2) 

where I is the identity matrix. S is the covariance matrix, whose elements have been 
determined using Eq. (1). Eqs. (1) and (2) produce a third degree polynomial equa-
tion, with roots that are the eigenvalues of S, iλ (i = 1, 2, 3), and the corresponding 

normalized eigenvectors ui (i = 1, 2, 3). The eigenvalues give us the variance along 
the corresponding eigenvectors, with maximum variance occurring along the principal 
axis. The two other axes, orthogonal to the first and each other, account for the re-
maining variance, which is calculated as the corresponding eigenvalues of the covari-
ance matrix. The principal components, i.e., the orthonormal eigenvectors, ui, are not 
necessarily parallel to the image coordinate axes.  

Three-dimensional 95% confidence intervals were calculated for the eight bead 
locations for each bead configuration. We assumed that the needle targeted the origin 
of the coordinate system, and plotted the 95% confidence interval as an ellipsoid 
about the average needle position. The orientation and length of the ellipsoid axis 
were given by the eigenvectors and eigenvalues from the PCA. Because the variance 
is the square of the STD, the length of the 95% confidence interval in one direction 
along each of the principal axes, ui (i = 1, 2, 3), is given by:         

(i, j = 1, 2, 3) 

(1) 
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Fig. 5. An ellipsoid representing 95% confidence 
interval for needle targeting. The target locates at 
the origin of the coordinate system. The small dots 
are the real needle tip positions. 

 

2i ia λ=             (i = 1, 2, 3)               (3) 

where iλ is the eigenvalue of the covariance matrix. The equation of the resulting 

ellipsoid is then given by: 
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The ellipsoid equation was transformed back to the image coordinate system, and 
translated so that its center was at the average needle position relative to the preinser-
tion bead position. The displacements of the measured positions of the needle tip 
relative to the preinsertion bead positions at the origin were plotted for all eight tar-
geting attempts for each bead configuration along with the 95% ellipsoid intervals. 
The volume of 95% ellipsoid was calculated by: 

V = ∏
=

3

13

4

i
ia

π
                                                      (5) 

ai (i = 1, 2, 3) are the ellipsoid axis 
lengths determined by Eq. (3). 
Projections through the ellipsoid 
and needle data were also plotted. 

To assess the performance of 
the prostate segmentation algo-
rithm, we compared the algorithm 
segmented prostate with manual 
segmentation. Due to the robot’s 
high positioning and angulation 
accuracy, we used the robot as a 
“gold standard” to assess the per-
formance of the needle segmenta-
tion algorithm. We compared the 
results of algorithm segmentation 
to the values measured by the 
robot. 

3   Results 

Evaluation of the system showed that needle can be used to target positions in agar 
phantoms with a mean error of 0.79mm±0.32mm. The 3D 95% confidence ellipsoids 
(see Fig. 5) were found to have total volumes ranging from 0.54mm3 to 1.92mm3, 
depending on the location of the targets with respect to the ultrasound probe and in-
sertion distance. The size of the ellipsoid, representing the 95% confidence interval, 
describes the random errors of the needle targeting. The random error results from 
poorer resolution in the 3D scanning direction (Zi) due to insufficient sampling of 2D 
images and the poorer elevational resolution of the transducer. This image “blurring” 
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Fig. 8. Segmented needle. (a) Oblique sagittal view; 
(b) oblique coronal plane; (c) transverse view with a 
graphical 3D display of the needle targeting 
superposed on the view. 

 

Fig. 6. Segmented prostate in 3D TRUS 
image

 

Fig. 7. Surface rendered view of the pre-
plan with delineated organs 

would be exacerbated for the points farther 
away from the TRUS transducer, resulting 
the larger volumes for the targeting of the 
beads in the top row. Table 1 lists the 
widths of the 95% confidence intervals 
along the primary, secondary and tertiary 
axis for four different bead configurations. 

The distance between the intersection of 
a radial line with the algorithm segmented 
surface, and the intersection of the same 
radial line with the manually outlined  
surface, was used as the measure of the 
algorithm’s performance. Error analysis 
showed that the average difference between 
manual and the prostate segmentation 
algorithm boundaries was -0.20±0.28mm, 
the average absolute difference was 
1.19±0.14mm, the average maximum 
difference was 7.01±1.04mm, and the 
average volume difference was

 7.16%±3.45%. Figure 6 is an example of a 
segmented prostate in a 3D TRUS image. 
Figure 7 is an example of the 3D prostate 
dose planning tool showing a surface 
rendered view of a pre-plan with delineated 
organs and oblique needle targeting. 

The error for the needle segmentation 
algorithm in determining the needle tip 
position was 0.8mm when the 
insertion distance was greater 
than 15mm. The mean error in 
determining the needle 
orientation in the yaw and pitch 
orientations was 0.20° and 0.03° 
respectively. Figure 8 shows the 
result of the needle segmentation 
algorithm in a patient image 
obtained during a prostate 
cryotherapy procedure. 

The true-positive rate for the 
seed segmentation algorithm was 
100% for agar and 93% 

 for chicken phantoms. This is 
acceptable, because according to 
Lindsay et al [9], variation in 
D90 (the lower bound on the 
minimum dose delivered to any 
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Fig. 9. Localized seeds in 3D TRUS image 

90% of the target volume) due to 
inability to localize 5% of the seeds 
is negligible. The average distance to 
the manually segmented seeds was 
1.0 mm for agar and 1.7mm for 
chicken phantoms. The preliminary 
result for the segmentation time on a 
PC computer with dual AMD Athlon 
1.8GHz processor was 280 seconds 
for 14 seeds. This is too long for 
routine brachytherapy, and we are 
improving the seed segmentation 
method so that the segmentation 
time is limited to less than 1 minute. 
Figure 9 is an example of the result 
of the seed segmentation algorithm 
for localization of the seeds in the 
3D TRUS image. 

4   Conclusion 

Nath et al. has pointed out that the maximum difference between the needle tip and its 
planned target allowed in prostate brachytherapy is 5 mm [10]. Compared with our 
results from the phantom study, we concluded that with robotic assistance, the brachy-
therapy needle could be guided to accurately and consistently target any point identified 
in the 3D TRUS image along various trajectories including oblique. In addition, the 
software developed in this project provides various functions such as oblique needle 
segmentation and tracking, 3D dose planning, radioactive seed segmentation in 3D 
TRUS images, and dynamic re-planning, which are important for an intraoperative 
procedure. In the future, we will test our system in vivo, which will include realistic 
tissue deformation and mobility. We expect that the result of this work can provide a 
tool to achieve dynamic intraoperative prostate brachytherapy using 3D TRUS imaging 
and robotic assistance together with efficient segmentation software.  
 

Table 1. A description of the 95% uncertainty intervals for brachytherapy needle insertion 

Width of the 95% uncertainty 
interval (mm) 

Bead configuration Primary 
axis 

Secondary 
axis 

Tertiary 
axis 

Center of confi-
dence interval 

(mm) 

Ellipsoid 
volume 
(mm3) 

Top row, long pene-
tration (TRLP) 1.95 1.02 0.23 (-0.46,0.57,-0.98) 1.92 

Bottom row, short 
penetration (BRSP) 1.06 0.55 0.22 (0.38,-0.22,-0.44) 0.54 

Top row, short 
penetration (TRSP) 1.77 0.94 0.24 (0.03,0.49,-0.04) 1.68 

Bottom row, long 
penetration (BRLP) 1.38 0.60 0.19 (0.17,0.39,0.68) 0.66 
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Abstract. Depth estimation is one of the most fundamental challenges for 
performing minimally invasive surgical (MIS) procedures. The requirement of 
accurate 3D instrument navigation using limited visual depth cues makes such 
tasks even more difficult. With the constant expectation of improving safety for 
MIS, there is a growing requirement for overcoming such constraints during 
MIS. We present in this paper a method of improving the surgeon’s perception 
of depth by introducing an “invisible shadow” in the operative field cast by an 
endoscopic instrument. Although, the shadow is invisible to human perception, 
it can be digitally detected, enhanced and re-displayed. Initial results from our 
study suggest that this method improves depth perception especially when the 
endoscopic instrument is in close proximity to the surface. Experiment results 
have shown that the method could potentially be used as an instrument 
navigation aid allowing accurate maneuvering of the instruments whilst 
minimizing tissue trauma. 

1   Introduction 

Over the last decade, minimally invasive surgery (MIS) has attained great popularity 
and acceptance among surgeons and patients alike due to its improved cosmetic 
appearance, shorter rehabilitation, less pain and decreased hospital costs. However, 
MIS requires a higher degree of competency from the surgeon due to the presence of 
a number of constraints. Among them, vision is the primary element. The surgeon is 
required to reconstruct the 3D operative field and perform instrument navigation 
through the narrow monoscopic two-dimensional (2D) field of view provided by the 
endoscope.  The perceptual cues that a surgeon uses to navigate are complex, and it is 
well understood and documented in cue theory that a variety of cues are utilized in 
order to estimate depth. The visual system typically infers depth based on information 
relating to the posture of the eyes as well as visual patterns projected onto the retina 
[1]. The particular cues that foster the perception of depth have been widely 
investigated [2,3] and are often classified as primary (physiological) cues, such as 
binocular disparity, convergence, and accommodation, and secondary (pictorial) cues, 
such as linear perspective, elevation, shading and shadow, texture and texture 
gradients, and reference frames [1].  It is not well understood, however, how these 
cues are assimilated in MIS. This is because the majority of cues are subtle and 
difficult to detect in the operative environment presented to the surgeon. Furthermore, 
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there is a direct reduction in perceptual information that is available at any moment in 
time due to an ever-evolving surgical scene as a result of laparoscope translations and 
anatomical deformations. Ultimately, the monoscopic field-of-view provided by the 
laparoscope limits the 3D perception by presenting a scene onto 2D planes. It has 
been observed that surgeons tend to compensate for the lack of depth perception by 
developing new strategies such as groping forward and backward with instruments to 
gauge the relative depths of organs by touching them (Figure 1). The combined visual 
and haptic feedback helps to confirm the instrument position and orientation. This 
navigation approach, however, is not ideal particularly when undertaking delicate 
surgical maneuvers that require subtle control of instruments which must be 
performed slowly enough to avoid damaging the tissues in contact [4]. 

 

Fig. 1. Operative stills representing a collision sequence during MIS.  In this sequence, the 
surgeon advances the instrument into the vessel to establish position before straddling the 
vessel instrument to transect it. 

Currently, there is a constant requirement for surgery to become safer, particularly 
in the current climate of clinical governance. Practically, safety can be achieved by 
better training as well as by reducing the constraints set by the nature of MIS. 
Improving 3D visualization and ultimately facilitating instrument navigation and 
maneuvering should be a priority. Although advances in stereoscopic surgery aim to 
improve 3D perception, such systems have practical limitations with respect to their 
practical use as they tend to be extremely expensive and not widely available. For 
these reasons, it is useful to investigate other alternatives for conveying depth 
information and enhancing existing monocular visual cues. One of the primary cues 
that the visual system utilizes to infer depth is shadow [5]. Shadow can provide useful 
information about object shapes, relative 3D position, and surface characteristics 
within a scene [6,7,8,9]. Unfortunately, this visual cue is unavailable with MIS due to 
the coaxial alignment of the lens and light bundle of traditional rigid endoscopes. 
Under this setup, the operative field is generally shadowless [10]. It has been shown 
that inducing shadow by the introduction of a secondary light source within the 
surgical field improves endoscopic task performance [11]. The purpose of this paper 
is to introduce a new framework for improving depth perception for MIS by 
introducing a secondary light source. The unique feature of the proposed method is 
that it only casts a weak shadow of the laparoscopic instrument that is almost invisible 
under normal viewing conditions. During instrument maneuver, this “invisible 
shadow” is dynamically enhanced which introduces a strong depth cue from which 
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the distance between the instrument and tissue can be accurately determined. This 
naturally avoids the use of the instrument to “crash” on the tissue surface to gauge the 
3D relative position of tissue-instrument whilst maintaining normal laparoscope 
viewing condition when instrument depth cuing is not required.  

2   Materials and Methods 

To emulate the laparoscopic environment, a laparoscopic box trainer was used, within 
which a silicon based tissue surface model was placed. The surface was coated with 
silicone rubber mixed with acrylic to give it a specular finish that looks similar to wet 
tissue. The scene was illuminated primarily from the endoscope itself and a secondary 
light source was placed directly above the surface but away from the endoscope. The 
intensity of this source was carefully adjusted so as to cast a near invisible shadow to 
the surface to avoid any interference to the normal viewing condition. A laparoscopic 
instrument was held over the surface in different positions and the vertical distance 
from the tip to the surface was measured to the nearest half centimeter. A video 
stream of the instrument assuming each position was obtained from a camera within 
the endoscope and digitally stored for subsequent processing. Figure 1 outlines the 
main components used for dynamically enhancing the “invisible shadow” during 
instrument maneuver. 

 

Fig. 2. A schematic illustration of the shadow enhancement filter design to generate the 
computer enhanced shadow 

With this work, the shadow removal algorithm was based on the following four 
low level visual cues: intensity difference, intensity gain, angle between RGB vectors 
and color difference.  Intensity difference is the absolute difference between the 
current image and the statistical background image B(x,y) calculated from the peak 
PDF of each pixel, D(x,y)=|I(x,y)-B(x,y)| where D(x,y) is the filter output. The use of 
intensity difference is biased towards the extraction of shadows in bright regions. For 
shadows in darker regions, however, one has to rely on the relative intensity 
attenuation between I(x,y) and B(x,y), given by G(x,y)= | I(x,y)/B(x,y) |. Based on the 
property of shadow color invariance, two color filters working in the RGB space have 
also been adopted: 

( , )
I B

R x y
I B

•
=   



28 M. Nicolaou et al. 

 

where I and B are the RGB vectors of the background images. The final filter uses a 
color invariant model and addresses the limited color quantization steps: 
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where (Ri,Gi,Bi) and (Rb,Gb,Bb) are the RGB components of a given pixel of the 
current background [12].  

In order to evaluate the effect of shadow enhancement as an aid to depth 
perception, an experiment was devised comparing shadow enhanced to shadow 
unenhanced images. Ten volunteers with experiences in surgical imaging were 
recruited for this study. They were blinded to the aims of this study and asked to 
serially assess 36 images taken from the experimental setup described above on a 2D 
display. Each image showed part of laparoscopic instrument over a surface and the 
subjects were asked to estimate to the nearest half centimeter the vertical distance 
  

 

Fig. 3. (A) A series of raw images showing a laparoscopic instrument tip (T) as it approaches 
the silicon surface. (B) The same images following shadow (S) enhancement. Note the 5cm 
scaling aid to the left of each image (arrow). 
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from the tip of the instrument to the surface, with their answers recorded. The first 18 
images were raw images (similar to those shown in Figure 3A) taken from the 
endoscope, whereas the remainder images were obtained by applying the described 
shadow enhancement algorithm (Figure 3B). For a better appreciation of the scaling 
and perspective, a 5cm marker with 1cm graduations was placed directly onto the 
surface in line with the z-axis. 

To elucidate the underlying visual behavior of the users under normal and 
shadow enhanced viewing environments, gaze tracking was performed on all subjects 
performing the above task using a Tobii ET 1750 eye tracker. This is an infra-red 
video-based binocular eye-tracking system recording the position of gaze in the work 
plane (screen) at up to 38 samples per second with an accuracy of 1 degree across the 
work plane [13]. In this study the eye gaze data was analyzed qualitatively using the 
Clearview software (Tobii technology). 

3   Results  

To determine the perceptual accuracy, the absolute difference of the perceived 
distance of the tool-tip from the surface from the mean measured distance for all 
images for each subject was calculated. The mean difference for all subjects was 
1.36cm for raw and 1.02cm for shadow enhanced images indicating an improvement 
in depth perception after shadow enhancement. This difference, however, was not 
statistically significant (t-test p = 0.115). The results indicate that the users are able to 
gauge large relative instrument distance to the surface when there are secondary 
visual cues. When the instrument is close to the tissue surface, however, the visual 
cues appreciable by the user are diminished if dynamic shadow enhancement is not 
applied. For this study, when the distance between the instrument and tissue surface is 
within 1cm (see Figure 4) (a situation that is most critical for relying on  
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Fig. 4. Bar charts comparing the mean distance difference from reality perceived for raw and 
shadow enhanced images for each subject when the distance between the tool tip and tissue 
surface was set within 1cm  
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Fig. 5. An eye-gaze path demonstrating the fixations (white circles = fixations, yellow circle = 
first fixation, and white lines = saccades) recorded during the experiment. The effect of the 
“invisible shadow” enhancement to the accuracy of perceived tissue-instrument distance can be 
clearly demonstrated.  In (a) and (b), the actual distance of the instrument tip from the tissue is 
2cm and the subject whilst underestimating this to be 1cm in the raw image was able to 
estimate the exact distance correctly after shadow enhancement. In images (c) and (d) without 
shadow enhancement, the perceived distance was 2.5cm whereas by the use of shadow 
enhancement the perceived distance was 0.5cm, which is much closer to the ground truth. 

tactile distance ranging), the mean errors for this group of observers were 1.283 and 
0.709 (standard deviation 0.64 and 0.32) for raw and shadow enhanced images 
respectively (t-test p=0.020). This result was statistically significant. In addition, 
overall subjects were able to estimate depth faster from shadow enhanced images 
compared to raw images (5.8s versus 7.9s).  

Verbal assessment of the participants has shown that all of them admitted that the 
enhanced “invisible” shadow had significantly facilitated their perception of depth. 
When a shadow was not present, most subjects based their answer on the scale of the 
instrument tip to estimate its position in space. 
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Figure 5 demonstrates the effect of the enhanced “invisible shadow” on general 
visual behavior revealed through eye tracking. It is evident that in Figures 5(a) and 
(b), the apex of the shadow provides direct cuing for depth perception with the subject 
drawing a visual line between the apex and tool tip. The real distance in this image is 
2cm and the subject whilst underestimating to 1cm in the raw image was able to 
estimate the exact distance correctly after shadow enhancement. Figures 5(c) and (d), 
show a pair of images without and with “invisible shadow” enhancement when the 
instrument is in fact touching the surface. Without shadow enhancement, the 
perceived distance was 2.5 cm whereas by the use of shadow enhancement the 
perceived distance was 0.5cm, which is much closer to the ground truth. 

4   Discussions and Conclusions 

In this paper, we have demonstrated the effect of shadow on the accuracy of perceived 
tissue-instrument distance. One important feature of the algorithm is to cast an 
“invisible shadow” through the careful use of a secondary light source in a simulated 
laparoscopic environment. During instrument maneuver, this “invisible shadow” is 
dynamically enhanced which introduces a strong depth cue from which the distance 
between the instrument and tissue can be accurately determined. From a practical 
point of view, a faint shadow can theoretically be easily created by the introduction of 
a secondary light source through one of the accessory laparoscopic ports inserted 
during the procedure. The method naturally avoids the use of instrument to “crash” on 
the tissue surface, which is undesirable under delicate surgical maneuvers that require 
subtle control of the instruments to avoid damaging the tissues in contact. From both 
the objective and subjective assessment results of the study, it is evident that artificial 
shadow enhancement can be a useful aid for the perception of depth from 2D cues. 
Furthermore, the digital enhancement approach proved to be most effective when the 
instrument is in close proximity to a surface, which is the most critical time for 
enhanced instrument maneuver as in vivo mal-navigation at this level may lead to 
accidental injury to sensitive tissues.  
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Abstract. The purpose of our project was to develop a novel navigation
system for interventional radiology. Fields of application are minimally
invasive percutaneous interventions performed under local anaesthesia.
In order to reduce unintentional patient movements we used a patient
vacuum immobilization device. Together with the vacuum fixation and a
newly developed reference frame we achieved a fully automatic patient-
to-image registration independent from the tracking system. The combi-
nation of the software and a novel designed needle holder allows for an
adjustment of the needle within a few seconds. The complete system is
adapted to the requirements of the radiologist and to the clinical work-
flow. For evaluation of the navigation system we performed a phantom
study with a perspex phantom and achieved an average needle position-
ing accuracy of less than 0.7 mm.

1 Introduction

CT-guided minimally invasive interventions on human subjects are today an es-
tablished radiological procedure. Such interventions include percutaneous punc-
tures, biopsies, vertebroplasties and radio frequency ablations, as well as thera-
pies requiring the percutaneous advancing of a needle to a definite anatomical
position in the patient. CT-guided interventions allow the radiologist to work
rapidly with the greatest care and interest of the patient.

The exact placement of the needle in the patient requires a great deal of ex-
perience and considerable skills. A limiting factor is the time required to exactly
position a needle at the required anatomical site in the patient. Particularly with
interventions requiring a high degree of precision, where the incorrect position-
ing of the needle can lead to life-threatening complications, it is necessary to
repeatedly control and correct the position of the advancing needle within the
patient using CT control scans. This not only lengthens the entire intervention,
but also increases radiation exposure for the patient.

In practice, a number of different auxiliary needle positioning devices are
employed. For example, laser targeting devices attached to the gantry or tar-
geting devices which can be fixed directly to the patient [1,2]. However, none
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of these auxiliary devices permits simultaneous real-time control of the needle,
tremble-free needle advancement, and assistance for the implementation of an
access path as planned in the patient data. Since the early 1990s, computer and
robot-assisted navigation systems have been increasingly used as intervention
aids, leading the way for applications in neurosurgery and orthopedics. Appli-
cations in the area of interventional radiology are, on the other hand, very rare.
The Tirat Hacarmel company utilizes an electromagnetic localization system
(UltraGuide1000). This system has already been successfully employed for hep-
atic and renal punctures, as well as for radio frequency ablations [3]. Bale et al.
have employed an optical localization system for punctures and radio frequency
ablations [4]. Medical research shows a continuously growing interest in naviga-
tion systems for interventional radiology, as seen by the ever increasing number
of groups working on prototypes for needle positioning systems and robotic sys-
tems [5,6,7,8].

With CT-guided navigation systems, it is first necessary to register the pa-
tient according to the images acquired. For this purpose, a fixed reference point,
defined by a Dynamic Reference Frame (DRF), is rigidly attached to the pa-
tient. For navigation systems used in orthopedics, the DRF is firmly attached
to the bones by using surgical screws. For neurosurgical applications, stereotac-
tic frames are attached to the head to allow for the registration of the patient.
With minimally invasive interventions such as punctures and biopsies, the rigid
attachment of a DRF to the patient represents a problem due to the absence
of firm anatomic structures. One solution is to use skin markers which can be
positioned in combination with DRFs either directly on the patient’s skin, or
nearby. However, in this case patient movement would impair the precision of
registration or even render the registration useless. Since most minimally in-
vasive interventions are performed under local anesthesia, patient movement is
highly probable. A further difficulty with navigation systems is the guidance of
the physician during the 3D orientation of the instruments such as the puncture
needle along a planned access path. The orientation process must be fast, pre-
cise and simple. In order not to lengthen the entire interventional procedure, the
workflow of the navigation system needs to be adapted to the clinical procedure.

We will introduce a new navigation system to solve the problem of patient
movement and registration, at the same time enabling the fast, simple and precise
orientation of the needle along a planned trajectory. Additionally, the navigation
system is ideally matched to the clinical requirements and the clinical workflow.

2 Materials and Methods

2.1 System Overview and Architecture

The navigation system consists of an optical tracking system (Polaris, NDI,
Canada), a standard PC with touch screen as user interface and dedicated nav-
igation software (CAPPA IRad, CAS innovations, Germany), a needle holder,
a patient fixation vacuum device (BodyFixTM, Medical Intelligence, Germany)
and a reference frame (RF) developed in this work. The RF is attached with
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Fig. 1. Overview of the system architecture: CAPPA IRad (Input/Output, Processing,
GUI) and hardware (reference frame, needle holder, polaris, CT with workstation)

markers that can be detected automatically in CT images as well as with reflec-
tive markers detectable by optical tracking. For image acquisition the navigation
system is connected to a CT scanner (Sensation 64, Siemens Medical Solutions,
Germany). The system architecture and interface between the components used
are illustrated in Fig. 1.

The tracking system is used to localize the position of the reference frame
and the needle holder in the operating room. For this purpose, reflecting spheres
are fixed with a known geometry on both the reference frame and the needle
holder. The position of the needle holder is measured by the tracking system
relative to the reference frame in physical space. All necessary 3D coordinates
are transmitted from the Polaris to the PC by using the serial port. For the com-
munication of the CAPPA IRad System with the CT scanner we implemented a
DICOM network application providing verification, storage and query/retrieve
services to enable image transfer using a TCP/IP connection. The DICOM net-
work application is implemented as a background process and set up to receive
images as soon as CAPPA IRad is running. After receiving the images, these
can be visualized in multi planar reconstruction (MPR) views. We also used the
connection to send DICOM images back to the scanner for documentation of
performed steps.

2.2 Description of the System Components and Steps

Needle holder: The needle holder was constructed such that any medical tool
like biopsy syringes or needle hulls can be quickly attached and unmounted. The
needle holder itself is mounted at the end of a hydraulic arm. By moving the
hydraulic arm (6 DoF) which is mounted on the CT table, the needle holder
can be positioned near the patient. Two independent pivot joints on the needle
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holder enable the precise and fast alignment of the needle holder with the planned
surgical path, illustrated in Fig. 2.

Reference frame (RF) and image-to-patient registration: In order to
visualize medical instruments like the needle in the CT images of the patient,
an image-to-patient registration is necessary. For that the RF is positioned in
proximity to the planned entry point prior to the first CT scan. In addition to
the tracking markers, which are used as reference DRF to define the coordinate
system of the tracking system, we also placed CT markers in a known geometry
on the RF. During image acquisition, all CT markers at the frame must be
inside the field of view. After sending the images to the CAPPA IRad system,
an integrated marker detection algorithm in the navigation software finds the
CT markers in the patient’s data set and determines the marker centroids with
sub-voxel accuracy. The coordinates of the CT markers in the patient coordinate
system and the coordinates of the CT markers in the tracking system are used to
derive the registration matrix. After this step, the relation between the images
and the patient are fixed.

Patient fixation: We used the BodyFixTMto fixate the patient to reduce any
patient movements relative to the positioned RF. The BodyFixTMis a double
fixation device which consists of a vacuum bag, cushions and a pump. The patient
is fitted to the vacuum bag and the cushions are placed on the patient. The air
in the bag and in the cushions are exhausted by the pump. In that way the
patient is fixed securely to the bag. The fixation device is used successfully in
both radiation therapy for the reproducible positioning of the patient for beam
delivery [9] and for medical navigation and robotic systems [4].

Calibration of the needle: We implemented and evaluated two kinds of needle
navigation possibilities. The first method restricts the adjustment of the needle
holder according to the prior planned trajectory without visualizing the length
of the needle in the patient’s data set. The adjustment of the needle outside the
patient is visualized and the software only guides the radiologist to adjust the
needle holder. During the needle feed, graduated marks on the needle can be
used for depth information.

The second method requires a calibration of the needle to obtain the exact
needle length. For that, the radiologist holds the needle tip on a calibration point
on the RF. The 3D coordinates of the calibration point are known by the system.
A second DRF (needle DRF) is fixed above the needle and calibrated in a way
that the origin of the DRF is on top of the needle, as illustrated in Fig. 2. The
needle length is defined as the length of the vector between the calibration point
and the origin of the needle DRF. During the needle feed, the needle DRF is
moved with the needle. The exact position of the needle, especially the tip of
the needle, is visible in the patient’s data set on the screen.

Software and graphical user interface (GUI): The GUI is designed to allow
for an intuitive use of the navigation software. Transfer and loading of the images
from CT and registration work fully automatically: The planning module is kept
as simple as possible but contains comfortable planning features like oblique
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Fig. 2. Left: Calibration step. The length of the needle is calculated from the needle
DRF to the calibration point located at the frame. Middle, Right: The needle holder
with the two possible movements.

MPRs and accurate planning of trajectories with sub-voxel accuracy. It is also
possible to plan arbitrary oblique trajectories. The planning can be performed
with the mouse or by touch screen. The combination of the dedicated navigation
software and the needle holder allows for an accurate adjustment of the needle
according to the planned trajectory within a few seconds. For documentation,
screenshots containing information about the final needle position are created,
converted to DICOM images and finally sent to the PACS. After the intervention,
all images and patient data are removed from the CAPPA IRad system since
the local PACS is responsible for archiving and managing the image data.

2.3 Clinical Workflow

We analyzed the established clinical workflow of CT-guided, minimally invasive
interventions. Based on our investigations we were able to derive the navigation
workflow which consists of the following steps:

Preparation of the patient: The patient is placed on the CT bed and immobi-
lized with the BodyFixTMsystem. The RF is positioned close to the prospective
entry point. A field of view is determined to ensure that all CT markers are
inside the scanning area.

Importation of scanned images: After scanning, the images are sent from
the CT system to the navigation system. All images are internally checked by the
software to ensure consistency of patient data before visualization. Additionally,
the images are verified by the radiologist and stored on the system to allow for
a quick review during the intervention.

Preparation of trajectories: The radiologist defines a trajectory by setting a
target and an entry point using the touch screen or the mouse.

Calibration of the needle (optional): The radiologist calibrates the needle
used to obtain its length.
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Adjustment of the needle: The adjustment process of the needle with respect
to the planned trajectory is divided into two steps. First, the radiologist moves
the needle holder in vicinity to the planned entry point, assisted by the naviga-
tion system. The next step is the adjustment of the needle holder to adapt the
needle axis to the planned trajectory. The software gives the radiologist impor-
tant information on how to move the needle holder at the two joints to adjust
it within a few seconds.

Navigation of needle feed (optional): If the needle was calibrated, the
actual position of the needle tip is visible within the CT images of the patient
during the needle feed. By extracting information about the location of the needle
within the CT coordinates, the system proposes a small region for a control scan
in longitudinal direction.

Initiation of control scan: During the needle feed the radiologist is able to
initiate control scans and load the images into the navigation system. It is also
possible to continue the navigation in the images delivered by the control scan
or switch back to the images of the preparation scan.

Documentation: After the needle is at the final position, screenshots can be
taken and sent back to the PACS for documentation.

3 Phantom Test and Results

To evaluate the navigation system’s accuracy we designed a perspex phantom
with a base plate including 7 rods with tips, Fig. 3. The phantom was placed at
the CT table and the RF was positioned above the phantom with a distance of
15 cm from the base plate to the RF. After scanning the phantom we selected
the tips of the rods as targets in the planning step of the navigation software
and planned trajectories with lengths of 120 mm and 180 mm.

A standard biopsy needle (18G) was calibrated and adjusted so that the
needle tip was exactly on the top of the tips of the rods and the needle was
adjusted according to the planned trajectory. The navigation system calculates
the vector v between the current needle tip measured by the system and the
planned target point and the perpendicular l of the needle path to the target
point. The distance ε = |v| and the perpendicular κ = |l| were used to denote the
error of the misadjustment. The error includes the error of construction (needle
holder and RF), the image-to-patient registration error and the error caused by
the tracking system.

For every rod we measured 30 values respectively 15 for both planned tra-
jectory lengths (120 cm and 180 cm).

The resulting error ε of 105 measurements on 7 targets with a trajectory
length of 120 mm was 0.635 mm rms with 0.228 mm standard deviation. The
length of the perpendicular κ at this length was 0.481 mm with a standard
deviation of 0.211 mm. The 105 measurements at the same 7 targets but with a
trajectory length of 180 mm showed nearly the same results. The resulting error
ε was 0.604 mm rms with 0.217 mm standard deviation and the perpendicular
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Fig. 3. Perspex phantom study: The needle is exactly adjusted to the planned tar-
get (tip of rod) and the needle deviation denoted by the software is used as system
adjustment error

Table 1. Results of the phantom study

path length n rms (ε) rms (κ)
120 mm 105 0.635 mm ± 0.228 mm 0,481 mm ± 0.211 mm
180 mm 105 0.604 mm ± 0.217 mm 0,489 mm ± 0.204 mm

κ was 0.489 mm with a standard deviation of 0.204 mm. All measured values
are summarized in Table 1. The maximum measured deviation was 1.2 mm at a
path length of 120 mm.

4 Discussion

We presented a new navigation system to be used for minimally invasive percu-
taneous procedures in interventional radiology. The main focus of the system was
to support the radiologist during interventions and to provide a system which is
at the same time fully integrated into the clinical workflow. The TCP/IP net-
work connection of the navigation system with the CT scanner and the DICOM
protocol enables a manufacturer independent and comfortable image transfer
in both directions. By using the developed RF, a fully automatic, tracking sys-
tem independent patient-to-image registration was achieved. Unpredicted pa-
tient movements relative to the RF which could influence the image-to-patient
registration are minimized by the fixation. In that way risk related to patient
movements was minimal. The calibration allows any needle to be used regard-
less of the manufacturer. Biopsy syringes or needle hulls can be easily integrated
into the system during the intervention. With the combination of software and
needle holder it was possible to adjust the needle holder in accordance with a
prior planned trajectory. This process was fast and accurate. The needle feed is
visualized in the patient’s data set to verify the needle placement. This reduces
the number of control scans which would otherwise be necessary. In contrast
to conventional navigation systems or help devices, our navigation system was
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adapted to the requirements of the radiologist and therefore serves as an ideal
tool for various CT-guided percutaneous interventional procedures.

The first accuracy studies with a perspex phantom illustrated a repetitious
accuracy of less than 0.7 mm for two different path lengths (120 mm and
180 mm). The next step will involve a cadaver study prior to clinical evalua-
tion which has already been approved by an ethics commission.
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Abstract. A family of passive markers is presented by which the position and 
orientation of a surgical instrument can be computed from its ultrasound image 
using simple image processing. These markers address the problem of imaging 
instruments and tissue simultaneously in ultrasound-guided interventions. 
Marker-based estimates of instrument location can be used in augmented reality 
displays or for image-based servoing.  Marker design, measurement techniques 
and error analysis are presented. Experimentally determined in-vitro 
measurement errors of 0.22 mm in position and 0.089 rad in orientation were 
obtained using a standard ultrasound imaging system. 

1   Introduction 

While ultrasound imaging has traditionally been employed for diagnostic procedures, 
its use in minimally invasive interventions is growing. The advent of real-time 3D 
ultrasound is also likely to facilitate these procedures. For example, in cardiac surgery, 
ultrasound imaging can be used for beating-heart repair of internal defects [ 1].  

A challenge arises, however, due to the substantial difference in both impedance 
and absorption of biological tissues and instruments. Imaging systems designed to 
differentiate tissue types based on small changes in impedance are not well suited to 
imaging metal instruments. As a result, instruments produce image artifacts due to 
specular reflection and scattering, which obscure both the location and geometric 
details of the instrument. The instrument markers presented here address this problem 
by providing a means to easily estimate an instrument’s body coordinate frame from a 
single ultrasound image. Such estimates can be used to augment ultrasound images 
with precise instrument location or to register instruments with respect to a 
manipulating robot for image-based servoing.   

Alternate solutions to the instrument imaging problem include instrument 
modification, image processing techniques and the use of active markers. In 
instrument modification, several researchers have focused on altering instruments’ 
reflection characteristics to make them more visible [ 2]. This approach can involve 
the application of coatings or surface modifications to the instruments, which can add 
cost while not necessarily eliminating image artifacts. Image processing methods 
apply search techniques based on either actual instrument geometry or the geometry 
produced under ultrasound imaging [ 3]. This approach shows promise although the 
amount of processing involved may be tied to the complexity of the geometry. Other 
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work has focused on actively tracking instruments and ultrasound transducers using 
electromagnetic and optical sensors. Lindseth et al. report measurement accuracy of 
0.6 mm with optical tracking of the ultrasound scan head [ 4], and Leotta reported 
accuracy of 0.35 mm with electromagnetic tracking [ 5]. Merdes and Wolf reported a 
method for tracking an active ultrasound receiver mounted on a cardiac catheter [ 6]. 
They achieved a mean accuracy between 0.22±0.11 and 0.47±0.47 mm, depending on 
the distance between the catheter and the ultrasound transducer. Active tracking 
devices are more costly than passive ones. They also can require more complex 
calibration and can be more difficult to integrate with existing medical instruments.  

The solution presented here consists of passive markers which can be easily added 
to existing surgical instruments and require minimal calibration. The markers are 
constructed to possess two properties: (1) they appear clearly when imaged along with 
tissue regardless of instrument appearance, and (2) they are shaped such that their 
positions and orientations can be determined from a single image using simple image 
processing. 

In this paper, we assume that the instruments possess a cylindrical shaft over which 
the marker can be attached as shown in Figure 1. The cylindrical portion of the 
marker is used to determine the four degrees of freedom associated with the 
instrument shaft axis. The marker pattern is designed to indicate the location of the 
marker along the instrument shaft and the rotation of the marker about the shaft’s 
axis. The proposed markers are applicable to both 2D and 3D ultrasound. For 
simplicity of presentation, only the 2D case is considered here. 

These markers are similar to devices known as stereotactic frames, which have 
been studied extensively for imaging modalities such as CT and MRI [ 7][ 8]. A 
stereotactic frame consists of a shape that appears uniquely when imaged at various 
positions and orientations and is constructed of material easily seen in a particular 
imaging modality. 

The next section describes the proposed family of markers – their design, image 
processing and error analysis. The subsequent section presents an experimental 
evaluation of one possible marker shape and the paper concludes with a discussion of 
the results.   

2   Implementation 

The markers consist of two parts, a cylindrical sleeve that can be fit over the shaft of a 
surgical instrument and ridges of constant height and width fixed to the outer surface 
of the sleeve, as shown in Figure 1. The cylindrical shape allows the markers to fit 

 
(a) 

 
(b) 

Fig. 1. Two possible marker designs attached to a surgical grasping instrument 
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through access ports used in minimally invasive surgery. The ridges trace out 
prescribed paths on the sleeve’s surface, which, when imaged, indicate the marker’s 
position along and orientation about the cylinder’s axis. The family of markers is 
characterized by a variable number of ridges and a variety of ridge paths. These are 
together referred to as the marker pattern.   

The marker pattern must satisfy three constraints. First, each position along and 
rotation about the cylinder’s axis must correspond to a unique ultrasound image of 
marker pattern. Second, the error in position and orientation should be small. Third, 
the length of the marker pattern should be small since ultrasound imaging systems 
typically have a small field of view. Note that the marker body can extend beyond the 
marker pattern in order to make the instrument shaft visible. 

2.1   Marker Analysis 

If the relative position and orientation of the instrument and marker are known, the 
rigid body transformation, M

IT , relating the marker coordinate frame to the image-

based coordinate frame defines the instrument’s position and orientation relative to 
the ultrasound image. This transformation can be decomposed into two elements, 

 .M A M
I I AT T T  (1) 

As shown in Figure 2, transformation A
IT  relates an intermediate frame,A , located 

on the instrument shaft’s axis, with the image frame. This frame, determined in an 
initial processing step, serves to locate the axis of the instrument shaft in the image. 
The second transformation, ( , )M

AT t , defines the marker frame with respect to the 

shaft axis frame in terms of  and t , the rotation about, and the translation along, the 
shaft axis Ax . The entire length of the marker body can be used to estimate the shaft 

axis frame while the marker pattern is used to estimate  and t . 
Assuming the instrument shaft lies in the plane of the 2D ultrasound image, the 

marker body appears as a line of high pixel intensity. This line represents a thin strip 
along the surface of the marker facing the ultrasound transducer. The marker pattern 
appears as a sequence of bumps along the bright line produced by the body. 
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Fig. 2. Ultrasound image plane and coordinate systems Fig. 3. Marker pattern 
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The transformation A
IT  is estimated by fitting a line to the high intensity marker 

body image and selecting as the frame’s origin, IAr , one of the two points where this 

line intersects the image boundary. The frame’s x-axis, Ax  is selected to lie along the 

instrument’s shaft axis and its z-axis, Az  is taken to coincide with Iz , orthogonal to 

the image plane. Note that the axis Ax  is offset from the image line in the Ay  

direction by the known radius of the marker body. 
Transformation M

AT  is estimated from the bump locations associated with the 

imaged marker pattern. As shown in Figure 3, the Ax  coordinates of the n  bumps are 

combined in a vector 1 2, , ,
T

nl l l l . This vector is related to the marker pattern 

through  and t  by 

 

1 1

2 2

, 1

, 1
,

, 1n n

l t f

l t f
tu u

l t f

M M M
, (2) 

in which the components of the vector f  are functions describing the Mx  

coordinates of the marker ridges as functions of rotation angle θ  about Mx  . In this 

equation, t  is seen to be the magnitude of AMr , the vector describing the origin of 

marker frame M  with respect to shaft axis frame A , measured along Ax . 

In terms of the vector l , the constraint that each position along, and rotation about, 
the cylinder’s axis corresponds to a unique ultrasound image of marker pattern can be 
expressed as  

 1 1 2 2 1 1 2 2, , 0 , , [0 2 ),l t l t t t t . (3) 

Combining (2) and (3) gives the constraint in terms of ( )f θ , 

 ( ) ( )1 2f f au aθ θ− ≠ ∀ ∈ℜ . (4) 

By (2), a marker pattern must possess at least two ridges ( 2n ) to provide a unique 
solution for  and t . By (4), the curves describing these two ridges must differ. For 
markers with more than two ridges, (2) is overdetermined providing the means to 
reduce measurement error. For marker patterns satisfying (4), solutions for θ  and t  
can be found by the following procedure. First note that t  can be expressed explicitly 
in terms of  by 

 /Tt u l f n . (5)  

The error vector ( )l f tu  can be expressed solely in terms of  using (5) and its 

minimum norm solution corresponds to , 

 
0 2

arg min ( )
Tu l f

l f u
n

.                           (6) 
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2.2   Error Analysis  

The resolution of the marker depends fundamentally on the error in measuring the 
individual components of l . This error arises from four sources: random noise, finite 
image resolution, marker manufacturing defects, and misalignment between the image 
plane and instrument shaft. Since noise and image resolution involve the imaging 
system, they are assumed to affect all elements of l  equally and are treated as one error 
source. While manufacturing defects can cause unevenly distributed error, for simplicity 
they are treated here as noise affecting all elements equally. Distortion of l  caused by 
misalignment of the instrument in the image plane is assumed to be small, due to both 
the length of the instrument shaft and the narrow width of the ultrasound image. 

Error estimates in t and θ  based on measuring the components of l  can be 
obtained by first linearizing (2) about a nominal angle, 0 . 

 
0 0

0 0 0 0( ) ( )
f f

l tu f f u
t

. (7) 

Least squares solutions for t and θ  are given by the pseudoinverse of  0( )f u  as  

 ,
T T

T T

b f u
t l b u f

b u f f
 (8) 

 ,
T T

T T

c f u
l c f u

c f u u
 (9) 

The linearized error estimate for t and θ  is given by multiplying the error factors 
Tb b u and Tc c f , respectively, by the standard deviation of the error in the 

components of l . The error factors are functions of the nominal angle 0θ . 

Marker pattern length corresponds to the total range of values in ( )f θ .  As can be 

seen in (8) and (9), design changes, such as increasing the number of ridges (ie. 
increasing u ) or increasing the ridge slope, f , can reduce the error factors. Such 
changes, however, also increase the marker pattern length. As a result, there exists a 
tradeoff in marker design between the stated design constraints of minimizing 
measurement error and minimizing pattern length. 

3   Example 

Figure 4 depicts one possible marker pattern (also shown in Figures 1b and 3) 
consisting of three ridges described by sine waves of equal amplitude, but with phase 
lags of 2 /3  and displacement offsets of , 

 
2 4

sin , sin , sin 2
3 3

T

f . (10) 
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This choice of ( )f  is such that 3( )Tu f  for all . Consequently, the 

dependence of t  on  in (5) is eliminated yielding the explicit solution,   

 3( ) /Tt u l n  (11) 

and the expression for  simplifies to 

 
0 2

arg min ( )l f tu .     (12) 

The pattern parameters are 3.48α = mm and 9.02β = mm resulting in a pattern 

length of 25 mm. Here, β  is selected to ensure minimum separation of the ridges.  

Using (8) and (9), the error factors for t  and θ  are 0.58 and 0.23 rad/mm, 
respectively.  A plot of theoretical error factors for a variety of other lengths, obtained 
by varying , is shown in figure 5.  

The marker’s cylindrical body is constructed with plastic by a rapid prototyping 
process. This enables shallow grooves to be located precisely on the outer surface, in 
which 1 mm diameter hollow plastic tubing is glued to form the ridges. Marker 
dimensions are as follows: body inner diameter 5mm, body outer diameter 7 mm, and 
overall marker diameter 8mm. 

3.1   Experimental Evaluation 

Two imaging experiments were performed to determine the example marker’s 
accuracy and verify its predicted error factor.  Images were generated using a 3.5 
MHz 2D ultrasound probe (Analogic, Peabody, MA). The scan head was mounted to 
a linear micrometer stage over a tank filled with degassed water. A rotational 
micrometer was fixed to the side of the tank, and a 5mm diameter stainless steel rod, 
simulating the shaft of a surgical instrument, was attached such that it extended into 
the imaging plane and could rotate about its axis. The markers were then placed on 
the rod for imaging. The complete test apparatus is shown in figure 6. 
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In all experiments, ultrasound images were analyzed offline in Matlab (Mathworks, 
Natick, MA). Images were initially filtered with a Gaussian kernel to remove high 
frequency noise. Surface contours were then obtained via threshold edge detection, 
super-sampled by cubic interpolation, and filtered to smooth the bumps.  An example 
surface contour is shown in Figure 7.  Analysis required an average of 0.047 sec. per 
image (21 Hz) on a Pentium 4, 3.5 Ghz desktop. 

The first experiment established the error in the components of l  at a variety of 
image regions.  At each region, the scanhead was translated randomly 20 times within 
a 15 mm range along the marker’s axis while the marker rotation angle was held 
constant.  The locations of bumps in image coordinates were compared to the 
corresponding scan head positions recorded by micrometer. A line was fit to the data 
to determine the image resolution in pixels/mm, and the standard deviation from this 
line was taken as the error in components of l . At depths of 20 to 80 mm and ±40mm 
horizontally from center, error in the components of l  ranged from ±0.20 to ±0.40 
mm, increasing with distance from the transducer focal depth of ~60 mm. 

The second experiment determined the marker’s accuracy. Images were taken of 
the marker at a random set of 100 angles ( 0 2  rad) and positions across the width 
of the image (~80 mm).  Actual marker angle and scan head position were recorded 
by micrometer. The errors in t and θ  were taken as the standard deviation of the 
difference between measured values and actual values. Finally, actual errors in t and 
θ  were compared with predictions based on the error in the components of l  and the 
marker’s error factors defined by (8)-(9). 

Error in the components of l  was found to be ±0.33 mm at a depth of 70 mm. At  
this depth, the marker showed measurement errors in t  and θ  of ±0.22 mm and 
±0.089 rad. Based on the marker error factors, predicted measurement errors are 
±0.19 mm and ±0.077 rad.   

4   Discussion 

The experimental results show that the example markers have comparable accuracy to 
other methods of tracking instruments. They also confirm the marker error analysis by 

stage

scan head

marker

 
 

Fig. 6. Test apparatus Fig. 7. Ultrasound image of a marker showing 
surface contour (line) and bump locations 
(arrows) 
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showing a small difference between actual and predicted measurement errors. Higher 
image resolutions and higher probe frequencies will likely lower the error in the 
components of l  and thereby increase marker accuracy. 

The results also verify that marker analysis can be accomplished with simple image 
processing.  More sophisticated approaches, such as physics-based techniques, may 
produce further reductions in error.  

The family of markers proposed in this paper is also amenable to 3D ultrasound 
imaging. In particular, it removes the constraint of 2D imaging that the instrument 
shaft be aligned with the image plane. Since the 3D analysis will be comparable to the 
2D approach, the marker accuracy demonstrated with 2D images will likely be the 
same for 3D images which possess the same error in the components of l . 

In conclusion, the markers presented have been shown to be a simple, cost-
effective, and accurate approach to image-based instrument guidance.  
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Abstract. Percutaneous radiofrequency ablation has become a frequent-
ly used technique for the treatment of liver cancers, but still remains very
difficult to plan. In this paper, we propose a robust method to delineate
on the skin of a 3D reconstructed patient the zones that are candidate
for an insertion, because they allow a safe access to the tumor without
meeting any organ, and to compute automatically within these zones an
optimal trajectory minimizing the volume of necrosis covering the tumor.

1 Introduction

Radiofrequency ablation (RFA) of liver tumors is a relatively recent technique,
that has been increasingly used in the past few years. The percutaneous pro-
cedure has proved its effectiveness, relative safety and predictability. It has the
advantage to be minimally invasive, that means lighter operations and shorter
hospital stays, becoming a good option for unresectable cases or small tumors.

This approach consists in inserting a probe through the skin towards the
tumor, and causing coagulative necrosis of the tumor by heating the tissues
surrounding the probe’s tip above 60◦C thanks to an ionic agitation due to the
principle of microwave. The success of such an operation closely depends on the
choice of an optimal strategy for the insertion of the RF probe through the skin,
even though this choice remains very difficult for a physician, who can only rely
on 2D slices acquired from CT scan or MRI.

Our long term objective is to elaborate a complete tool for patient-specific
treatment planning, surgeons training, and even robotically assisted interven-
tions, including all steps from the 3D reconstruction of the acquired images to
simulation and assistance, including image analysis, 3D modeling, 3D interac-
tion, haptics and virtual reality, augmented reality, automatic planification, and
robotics. In this paper, we will only focus on one part of this work, currently in
progress, concerning the automatic planification of an appropriate strategy for
needle placement, and detail our first encouraging results.

After a brief state of the art in Section 2, we will expose our new method
in Sections 3 and 4. Then we will discuss the results, report the few remaining
problems of our approach, and give perspectives for our future works.
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2 Previous Works

2.1 General

First of all, our work is based on an abundant literature about RFA, explain-
ing widely the profile of candidate patients, the principle and the effects of the
process, existing devices and usual treatment strategies, the nature of possible
complications, the reasons why complications or failure may occur and the oc-
curring rates, and the procedures that improve the treatment, for hepatic or
other tumors, and for percutaneous, open, or laparoscopic procedures [1,2,3,4].

In addition to a need from radiologists, our project also takes its motivations
from works proving how an important part of the success of an intervention was
played by the training and experience of the surgeons [5]. That is why a realistic
training simulator can be very useful in the formation of novices. Moreover, it
has been underlined that an volumic view improved the success rates [6], so we
think that helping the radiologists in having a better visualization, and even
providing him an assistance for the treatment planning can be of valuable help.

In computer science, many works have been focused on simulations of cancer
treatments, a few ones concerning RFA, or cryotherapy that has a lot of common
points. Most of the developments use finite elements methods, reproducing the
thermic exchanges within the teated area [7,8]. However, this approach has the
drawback to be quite slow, whereas one of our objectives is to have a low-cost and
transportable solution, working on a common laptop. Treatment planning has
been less studied for RFA, but there are close works in neurosurgery, where we
find comparable objectives: destroying tumors and damaging as less surrouding
tissue as possible, even if the constraints are not the same [9].

2.2 Basis of Our Works

The tool we are developping is based on works, presented a few years ago, about
automatic 3D reconstruction of slices from enhanced spiral CT scans with 2 mm
cuts acquired from patients with liver metastases [10]. The software detects,
delineates and reconstructs automatically their liver, pathologies, and surround-
ing organs. It produces realistic and manipulable 3D scenes representing the
anatomy of the patients.

Then, we added the possibility to perform simulations of RFA [11], based
upon the characteristics of the Berchtold HITT needle. A user of the simula-
tor can add virtual probes into the 3D scene of the patient’s organs, and then
freely manipulate them. During a simulation, the lesion zone is estimated and
simulated as a simple mesh representing the 60 ◦C isosurface, most of the time
approximated as being a simple spheroid, that is deformed when necessary to
simulate the heat-sink effect caused by large vessels.

First attempts were also leaded to perform an automatic treatment planning
for RFA [12]. We proposed an algorithm able to find automatically a secure
trajectory for the needle, covering the whole tumor plus an additional security
margin while minimizing the damages on healthy cells and avoiding other organs.
The first part of this algorithm finds the minimal spheroid containing the tumor
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given a fixed trajectory for the needle, and computes its volume. The second
part is based on a classic minimization method, the Downhill Simplex algorithm
[13], and tries to find the smallest minimal spheroid by varying a set of parame-
ters corresponding to the needle’s position and orientation. To avoid organs, we
simply return a penalty volume for candidate trajectories that would meet an
organ, in order to eliminate this candidate. With this method, we managed to
obtain satisfying results in terms of volume, with acceptable computation times.

However, a few problems still remained. The major of them was that we
observed that this approach was quite dependent on the initial position from
which the process was launched. Two phenomena were involved. The first one
was due to the Downhill Simplex method we use, that is known to be sensitive to
local minima. The second one was due to the way we avoid organs: it leads the
minimization process to be bounded into a zone delimited by the surrounding
presence of organs. Then, if the initial position was located within such an area,
the minimization process was not able to cross the virtual boundary, and was
limited to the minimum of the considered area. Due to these problems, the
planning could not be really considered as being fully automatic, as it depended
on the initial data determined by the user. As we wanted it to be fully automatic,
we tried to find ways to solve these problems. That is the main purpose of this
paper, and we describe in next section the solutions we propose.

3 Determination of the Candidate Zones for Needle
Insertion

The algorithm we propose acts in 3 phases. The first one is the delimitation of
the zones of the skin where a needle can be inserted and reach the target without
meeting an organ. Let us describe this phase more in detail.

3.1 Simplified Algorithm

If we consider the tumor as a visualization point, we have to solve a visibility
problem. All the points that are visible from the tumor point of view without
being hidden by any organ are candidates. Of course, the tumor cannot be
considered as a single point of view, because it has a volume, but we’ll explain
later how we can extend the proposed algorithm. For simplicity and computing
efficiency, we do not consider all the points of the surface of the skin, but only the
triangles of the mesh. One triangle is considered as visible if every point in this
triangle is visible, hidden otherwise. That means that if one triangle belongs to
the accessibility zone, any needle insertion in this triangle that reaches the tumor
(tumor considered as a point) will not collide any organ. Then we only have to
determine the visibility of each skin’s triangle from the tumor. To do this, we
place a camera at the point of view, and compute 6 views of the scene, each one
corresponding to one face of an imaginary projection cube around the tumor. If
one triangle is hidden by an organ (except liver), there will be at least one view
in which it will be detected. Triangles not detected as hidden are visible.
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3.2 Algorithm Taking into Account Tumor’s Volume

Let’s now consider the whole tumor volume. We will say that a triangle is visible
from the tumor if it is visible from at least p% of its voxels. In practice, we
will only consider triangles that have a 100% visibility, in order to ensure that
the whole tumor is reachable from the zone without any obstructing organ. To
compute the 100% visible triangles, we could launch the previous algorithm from
each tumor’s voxel, considering it as the projection cube. In order to optimize
the algorithm, we only examine external voxels of the tumor. Among them, we
only compute the views corresponding to faces adjacent to other external voxels.
On Fig.1 the considered faces in the tumor are drawn in thick. For each view,
if a triangle is hidden we eliminate it from the list of candidates, that will be
called the 100% zone. An example of the 100% zone is shown on left of Fig.2.

The time taken to determine the 100% zone mainly depends on the number
of tumor’s external voxels, as seen in Table 1, but it is not the only influencing
factor, as can be seen comparing cases 2 and 3, and cases 4 and 5, where the
number of tumor’s external voxels are quite the same but times are different. The
complexity of the scene and the skin’s mesh have a reduced but not insignificant
influence on the execution time. We can see for instance in cases 1 and 2 that,
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Fig. 1. Computation of the candidate zones on the skin

Fig. 2. Left: example of a computed 100% zone (in transparent with a thick border,
1 c.c.); Right: example of computed optimal trajectories for each of the 3 c.c. of the
100% zone (here in opaque with a thick border)



Optimal Trajectories Computation Within Regions of Interest 53

Table 1. Execution times for the computation of candidate zones in 5 cases. The
number and surfaces of the obtained zones can be found on Table 2.

case # nb. of tumor’s nb. of skin’s nb. of other execution
external voxels triangles organs triangles time (s)

1 220 2106 207257 43
2 401 2055 150187 63
3 417 2062 185509 74
4 1198 2074 141285 186
5 1120 1953 171401 175

the execution time is barely the same, showing that a large number of triangles
compensates for a small number of voxels. In cases 4 and 5, the number of skin’s
triangles seems to make the difference and to lengthen the process. Times are
computed with a Pentium 4 with 1,5 GHz and 768 Mo RAM and a Radeon 8500.

4 Candidate Optimal Trajectory for Each Zone

After the computation of each connected component, the goal is to launch the
minimization algorithm in each component in order to compare the respective
minima and choose the best one. In previous works, we used to choose randomly
an initial position of the needle, and launch the minimization process. When a
candidate trajectory collided an organ, the volume of the lesion was artificially
increased. Here, for the second phase, we will use a quite similar approach.

On a first idea, we tried to launch the minimization from a randomly chosen
triangle of the connected component. The results were satisfying for small, con-
vex zones. But in larger zones, the algorithm often fell into local minima. We
decided to add an initialization phase, to bring the initial position closer to the
minimum. We make a quick estimation of the burnt volume for the barycentre of
each candidate triangle, with the tip of the needle placed in the centre of the tu-
mor’s bounding box (not axis-aligned). Then we compare the obtained volumes
and initialize the needle in the position of the smallest one. If the initial position
corresponds to the good valley, the needle will reach the good minimum.

On Table 2 we can see the difference between the obtained minima, with or
without initialization phase. In this table, we only mentioned connected compo-
nents containing more than one triangle, because we consider zones with only
one triangle as being too risky (too closely surrounded by organs). We can see
on Fig.2 the result of this process for the three 100% zones obtained in case #4.

We observe that the initialization phase is more or less efficient according
to the size of the region. The bigger the region is, the more the minimization
with initialization can improve the result: we notice that we obtain an average
gain of -0.213 mL for zones larger than 10 cm2, whereas we obtain no gain (or
infinitesimal) for smaller zones. This is probably because in large regions there
are more local minima in which the process could fall, and starting the process
in the appropriate valley prevents more often from a wrong convergence. When
the zone is small, the method provides approximately the same result in volume.
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Table 2. Results of the minimization for each candidate zone, for 5 patient cases, with
and without initialization. Last column: objective to reach.

case connected size of the without init. with init. theor.
# component # component min. vol. time min. vol. time min. vol

(cm2) (mL) (s) (mL) (s) (mL)
1 1 234,4 3,588 12 3,067 13 2,730
2 1 1,1 7,227 18 7,222 16

2 1,6 7,180 12 7,180 12
3 2,2 6,888 13 6,859 13 6,830
4 2,3 7,532 8 7,534 8
5 12,0 7,698 12 7,596 12
6 92,0 7,070 15 7,073 13

3 1 3,2 5,823 11 5,837 7
2 5,0 5,846 10 5,827 8
3 5,2 5,740 12 5,739 12
4 150,6 3,858 26 3,831 14 3,059

4 1 4,3 13,707 16 13,751 11
2 10,8 12,270 15 11,960 13
3 28,1 10,610 16 10,618 14 8,876

5 1 12,0 13,698 20 13,678 13
2 79,0 11,841 19 11,805 13
3 162,9 10,216 18 9,301 20 9,304

Concerning execution time, we noticed that the minimization process itself
converges faster when the needle is previously positioned. If we add initialization
and minimization times the total time sometimes increases, but in most cases
does not exceed the time witout initialization. We even have an average gain of
-2.41s. In conclusion, we think that the initialisation is always useful: for large
regions it allows to provide a sizeable better volume, in other cases it speeds up
the process.

On this table, we also mentioned in the last column the theoretical minimal
covering volume that could be reached if the surrounding organs were not taken
into account, that can be seen as a goal: for each case, this volume is written
in front of the best candidate trajectory. This value is computed thanks to an
exhaustive sampling method. Most of the time, this theoretical minimal volume
doesn’t correspond to a possible needle insertion point, but we can see that we
manage to find a very close result within authorized areas, with an average of
only +0.57 mL, i.e. +11.52% of the theoretical values, that is encouraging.

5 Discussion

Until now, we always considered the optimal trajectory as being the one provid-
ing a minimal volume of burnt tissue, that was the aim of this work. However,
we have to notice that a radiologist would not always make the same choice.
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First of all, we did not take into account some additional constraints, such as
the length of the needle, or the level of risk. Sometimes, the trajectory is good,
but impossible to reproduce in practice. To solve these problems, we plan to
eliminate triangles being too far from the tumor, and to add an extra margin
around organs, except bones that can usually be safely approached by the nee-
dle, in order to eliminate unfeasible insertion points from candidates. An other
solution would be to compute a “risk level” for every candidate triangle, and to
give triangles with a high risk level a penalty when performing the minimiza-
tion. The strength of the penalty could be chosen by the radiologist, from 0
to 100% penalty, the latter leading to a total elimination of the risky insertion
points.

Another criterion that could be taken into account is the distance between
the chosen entry point and the tumor, as in some cases a radiologist may prefer
a more direct insertion. But in some other cases, if the tumor is located close
to the capsule, the radiologist would choose a trajectory including a portion of
healthy liver tissue instead of a direct access to avoid a possible hemorrhage.
Many other criteria like these ones can be cited, and the planning process would
benefit if they were included in the process. That is why we plan to work on the
integration of these numerous and not always quantifiable constraints.

We also plan to find ways to include those various informations into the
interface, in order to help the radiologist if he wants to choose himself among
the possible trajectories or even among the proposed insertion zones. The major
problem is the amount of necessary information that would be added to the vi-
sualization area. To avoid an overload of the visual information, that is very rich
yet with the view of the volumic data, we are currently studying the approach
of using haptic interfaces for the materialization of extra information.

Finally, we would also like to try to speed up the process. At first, we consid-
ered the idea to eliminate very small regions, for instance < 5cm2, that would
sometimes reduce significantly the computation time. But we decided to keep
them because for some cases a very optimal solution could be found in one of
those very small regions, and according to radiologists the small size of a region
is not really a problem to reproduce. Moreover, as we plan to couple our method
with a robot [14], trajectories in these zones can easily be reproduced.

6 Conclusion

In this paper, we presented an algorithm that automatically computes an optimal
needle trajectory, for the planning of a RFA intervention. This algorithm first
selects the possible entry zones on the skin, i.e. the zones from which we can
reach the tumor without meeting any organ, then computes for each zone the
trajectory minimizing the volume of the necrosis zone covering the whole target.

In the future, we plan to improve the algorithm by integrating other criteria
in the planning process, as the minimization of the volume is sometimes not the
only factor that is taken into account by radiologists to consider a trajectory as
optimal, always keeping in mind the reproducibility of the proposed trajectory.
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Abstract. The paper is concerned with determining the feasibility of
performing telesurgery over long communication links. It describes an
experimental testbed for telesurgery that is currently available in our
laboratory. The tesbed is capable of supporting both wired and satellite
connections as well as simulated network environments. The feasibility
of performing telesurgery over a satellite link with approximately 600 ms
delay is shown through a number of dry and wet lab experiments. Quan-
tative results of these experiments are also discussed.

1 Introduction

The use of minimally invasive surgical systems for performing remote surgery
(telesurgery) has the potential to significantly improve healthcare in remote com-
munities and provide cost effective services. While robot-assisted on-site mini-
mally invasive surgery (MIS) has became a routine procedure, there has been
very little experience gained so far in remote teleoperations of robotic MIS sys-
tems [1]-[5]. Our aboratory is currently developing and testing new infrastracture
to investigate the feasibility of telesurgery over wired and satellite communica-
tion links. This work concentrates on the following issues: 1) development of an
appropriate testbed; 2) dry lab experiments to evaluate the effects of communi-
cation latency; 3) determination of tasks that are appropriate for telesurgery; 4)
wet lab experiments in the presence of different amounts of latency; 5) determi-
nation of the type and amount of training required for telesurgery.

It is well known that delays and disturbances in communication links can
severely degrade the quality of teleoperation. However even approximate limits
on such operations are currently not known. The experiments conducted in our
Telesurgery Research Laboratory at CSTAR are aimed at addressing some of the
issues related to telesurgery over large distances. In this paper, we present results
that provide a quantitative evaluation of the effect of latency on the performance
of telesurgery using both dry lab and wet lab (animal) experiments.
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2 Experimental Setup

The experimental setup consists of the following two major units: a teleoperation
capable ZEUSTM robotic MIS system [1] with both the surgeon’s console and
the surgical robot located in our laboratory and a communication network with
its monitoring equipment.

A redundant dedicated communication link consisting of three different
modalities has been established with the help of Bell Canada and Telesat Canada.
These include a wired link via Halifax with a roundtrip delay of 64 ms, a satel-
lite link with a roundtrip delay of 580 ms, and a software simulated delay link
through a local switch. The network design provides considerable flexibility for
expansion and redeployment, sufficient redundancy and graceful degradation in
case of communication failures. The setup has been found to be suitable for both
dry and wet lab experiments as described below.

2.1 Telesurgery Unit

The ZEUSTM robotic MIS system has been designed using a master-slave phi-
losophy as described in [1] with the master (surgeon’s console) and the slave
(surgical robot located in the operating room) comprising completely separate
units that are both IP capable. The surgical robot at the patient side contains
three robotic arms, two of which are used to manipulate laparoscopic surgical
intruments while the third holds an endoscopic camera. The latter provides a 2D
view of the surgical area inside the patient. All three arms are controlled from
the surgeon’s console. The arms are controlled remotely through a sequence of
packet-oriented digital commands from the surgeon’s console, and are delivered
through a standard 100 base T ethernet network connection. The surgeon’s con-
sole has two 5 degrees-of-freedom “arms” that are used by the surgeon to manip-
ulate the two robotic arms at the patient side that are connected to laparoscopic
surgical tools. The endoscopic camera unit at the patient side is controlled from
the surgeon’s console. The surgeon also has a view of a video stream provided
by a color video camera located at the patient side.

An additional unit described in [1] allows the telesurgery system to operate in
UDP/IP mode thus avoiding time-outs due to large delays. The unit is designed
to lock the operation of the robot if the packet loss in the communication network
becomes unacceptably high.

The video signal from the endoscopic camera in compressed by an encoder
to preserve bandwidth. The encoder introduces a 100 ms processing delay. The
image is restored into the original video format at the surgeon side by means of a
decoder. An additional function of the encoder/decoder is to enable one to vary
the effective transmission bandwidth utilized by the system. This is because
most of the bandwidth resource is consumed by the videotraffic. Two sets of
encoders and coders are used to provide redundancy. Both the surgeon and the
patient sides are equipped with IP compatible Polycom ViewStations allowing
lower quality video and audio interaction between the two sides. This link is also
used to convey instructions from the surgeon to the remote side (such as turn
on/off ultrasound scalpel, etc.).
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2.2 Networking

The general network configuration is shown in Fig. 1. All individual devices are
connected to each other using a standard IP interface. This enables the sys-
tem to be easily deployed, be readjusted or be augmented by new tools. Signals
from all devices are collected and multiplexed by aswitch, creating a single data
stream directed by a router. The networking hardware is fully redundant on
both sides. The system automatically chooses between switches to obtain the
most reliable link. The total bandwidth provided by Bell amounts to 10 Mbps
which is sufficient for transmitting all of the necessary signals with a high level
of priority. Routers on each side can be connected in different ways to emulate
different modalities of the deployment. The first possibility it to connect through
a dedicated computer equipped with the NetDisturb software [2]. This modality
can be used for the purpose of training and testing of the system under a great
variety of simulated conditions. The software allows one to isolate particular net-
work parameters to study their influence on the setup performance. The second
option includes a wired high quality, low latency (approximately 65 ms round
trip)connection which loops from London to Halifax and back. Coupled with
the delay in the codecs, this is roughly equivalent to a 200 ms round trip delay.
Finally, a Telesat satellite link can also be included in the loop, providing a link
with a variable time delay of approximately 600 ms round trip with some jitter
and packet losses. Inclusion of such a segment is a substantial contribution since
no such experiments have been reported in the literature. A protocol of switch-
ing between the wired and satellite loops has been agreed upon between the
involved parties and the switching itself has been routinely used during actual
experimentation.
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Fig. 1. Network configuration

2.3 Experiments

We have conducted numerous experiments to evaluate the performance of the
system. In contrast to previously reported feasibility experiments [1],[3]-[6], we
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have conducted a number of trials that provide more quantative information
about such important parameters as completion time and quality of surgery.
In this paper, we focus our attention on the dry lab experiments while briefly
reporting the results of the wet lab experiments which are still ongoing and will
be reported in detail at another time.

2.4 Dry Lab Experiments

The robotic exercises were designed to simulate typical surgical maneuvers.
These involved object grasping and precise placement, object steering, and curved
needle manipulation using the laparoscopic tools manipulated by the robot arms.
We did not simulate more complex tasks such as knot tying or precise suture
placement. Due to the technical limitations of the ZEUS robotic system, such
complex tasks are quite difficult to complete even without any latency thus re-
sulting in a very ’noisy’ data set. The following exercises were evaluated:

1. Pick up a cone with the left hand. Place in a circle. Return the cone to
its original position with the right hand. Pass it back and forth six times.
Repeat this procedure four times for one data set.

2. Pick up a 6-0 suturing needle with the left hand. Maneuver the needle to
enter at the left dot and exit from right dot. Retrieve the exiting needle with
the right hand. Hand over the needle to the left hand and repeat six times.
Repeat this procedure four times for one data set.

3. Pick up a ring with the left hand, grasping the ring at the black line. Maneu-
ver the ring with both hands so that the right hand only holds it at the black
line. Do not drop or let the ring touch the surface during the maneuver. Pass
the ring back and forth four times. Repeat this procedure eight times for one
data set.

4. Pick up a rod with the left hand. Pass the rod through three hoops without
touching the hoops. Pass it back and forth through the hoops four times.
Repeat this procedure three times for one data set;

Four test subjects with no previus experience (students with science back-
grounds) were assigned to complete the surgical exercises. These subjects had
dayly access to the robotic system and has performed the exercises five days per
week over a period of four months. Therefore, they were continuously exposed
to the system and had the opportunity to learn and adapt to the system.

The group performed the surgical exercises at latencies from 0 to 1 s, in
increments of 100 ms. At each latency, each subject completed four data sets for
each exercise. Additionally, the subjects performed the exercises with random
delays between 0 to 1 s at the end of the training period. Task completion times
and error rate were recorded for all exercises.

The delay in the network was controlled by the NetDisturb software. For
each delay, the completion time and a number tally of errors for the maneuver
were recorderd and later plotted as a function of delay. It was observed that a
relatively small number of repetitions of the same maneuver led to a reduction
of task completion times due to learning. It was also found that the effect of
delay is not pronounced until the round trip time exceeds 400 ms.



Effects of Latency on Telesurgery: An Experimental Study 61

2.5 Wet Lab Experiments

The wet lab experiments were designed to conduct an internal mammary artery
(IMA) takedown on a pig using the ZEUSTM Telesurgical System. The procedure
was divided into two 45 min. segments each using a different C-STAR network
asset. The first segment used the Halifax loop (64 ms roundtrip delay) and the
second used the satellite (537 ms round trip delay). Following each segment, the
length of the IMA dissected was measured and the surgeon’s skills were assessed
according to the “Objective Structured Assessment of Technical Skills” sliding
scale. During the first segment, 3.5 cm of the IMA was dissected, and in the
second segment, 4.5 cm of the IMA was dissected. The surgeon was able to
perform at both latencies with fluid instrument movements, maximum efficiency
and no inadvertent damage to the tissue.

3 Experimental Results

A few representative results of the dry lab experiments described above are
shown in Fig. 2. It shows the completion time for different experiments as a
function of the delay. The experiments were conducted by a group of inexperi-
enced users who were asked to repeatedly conduct the experiments starting from
a negligible delay and then with delay increasing by 100 ms for each new set of
runs. Solid lines in Fig. 2 illustrates the effect that we call long-term learning.
This type of learning has to do with improving performance through repeating a
task a number of times. The effect of long term learning remains with the partici-
pant over the whole period of experiments (just over three months). The gradual
decline in completion time upto about 300 ms delay can thus be explained by
this long-time learning. This figure also indicates that the minimum amount of
training needed to properly perform simple tasks can be achieved over relatively
short periods of time, equivalent to 3-4 weeks of one hour a day, three times a
week training period.

This point can be further verified by comparing the results with incremental
and random delay distribution. The latter was performed under random delays
that were unknown to the users. The experiments were conducted after all the
users had gained significant experience in manipulating the robot thereby reduc-
ing the effect of any long-time learning. The curves clearly show that delays of
upto 300 ms do not have any significant impact on the performance of teleoper-
ation tasks. Further increase in the delay gradually degrades the performance.
However, one can conclude that it is possible to perform simple tasks with delays
as high as 800 ms with a high level of accuracy. Overall it can be concluded that
it is possible to perform basic surgical tasks in a simulated environment with
delays as large as 800 ms with moderate training.

The results shown in Fig. 3 illustrate the effect we refer to as short-term
learning. This phenomenon was observed experiments with random delays that
are unknown to the operator. Each task was performed a number of times and
it can be seen from the figure that the perfomance improved significantly at the
second attempt. This indicates that the operator adapted to a particular delay
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Fig. 2. Dependence of the completion time on the delay. The delay was gradually
increased from 0 ms to 600 ms with 100 ms increments solid lines, or chosen at
random, dashed lines.
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and his/her performance is optimized for this delay. However, once the delay
changes, the skills acquired are no longer applicable and the operator has to
adapt to a new delay. The skills acquired are therefore helpful only for a short
period of time.

4 Heuristic Mathematical Model

While one cannot expect that a simple and accurate mathematical description
of telesurgery can be developed, it is reasonable to explore the applicability of
some basic models, based on Fitts’ law [9] or feedback control.

The crossover model [7]-[8] with one pole the open loop transfer function:
G (s) = ωc/s exp (−sτD) and the unity feedback is widely accepted as a model
for a human operated control system. In essence, this is the simplest possible
model which reflects the following fundamental properties of a human operator:
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Decision is based on some sort of information feedback; the human operator is
able to react only to relatively slow changes in stimuli limited by the so-called
crossover frequency ωc, and there is some delay τD between an observation and
the reaction of the motor system.

In the absence of the delay τD = 0, the model gives a simple estimate of
the task completion time for moving an object over a distance A and placing
it onto a target of width W : Tc = 1/ωc ln(2A/W ) if the task can be consid-
ered complete when the position of the target is in the range A ± 0.5W . This
result agrees with Fitts’ law [9]. In the presence of a delay, one can distinguish
three different regimes of operation: for relatively small delays, the exponential
approach to the target remains, albeit the time of completion may be reduced
; for intermediate delays the system maintains stability; however, the approach
to the target becomes oscillatory which, in turn, increases the completion time.
For large delays the system becomes unstable or even chaotic [10].

While the model is simple and describes the main features concerning the
human operator, it does not reflect such features as learning due to repeated
practicing and adaptation to the delay during a single run of an experiment. We
suggest the following generalization. The open-loop network is a series connec-
tion of a time-varying gain KD(t, τD), a time-varying crossover frequency gain
1/τh(t, τD), and the delay term. The variable gain represents short-term learn-
ing: decreasing the gain is equivalent to slowing the operation. It is assumed that
at the initial stage of the movement, the human operator estimates the delay τD

and adjusts the gain to avoid oscillatory movement. We suggest simple models
of the dynamics of time delay estimation and gain adjustment as follows:

τD = τD0+(τ∗
D − τD0) exp

(
− t

τa

)
, KD = KD0+(K∗

D − KD0) exp
(

− t

τa

)
(1)

This model reflects the fact that it takes a certain amount of time τa to acquire
the necessary information about the delay, possible errors in the delay estimation,
τ∗
D �= τD, and that there is some initial guess about the delay in the network.

The variation in the parameter τh (τD, N) reflects the long-term learning (i.e.
learning over a number N of repetitions of the same maneuver). During one run
of the experiment, it remains constant but from run to run it may change due to
a training process. It is reasonable to assume that the time needed to complete
a task decreases from some level τh0 to a level of the best possible performance
τ∗
h . It is suggested that the task completion time decreases according to a power

law N−α [7].

5 Concluding Remarks

Preliminary results of the experiments indicate that telesurgery over long com-
munication links is possible. It has been found that the maximum tolerable delay
is approximately 600 ms. This allows operations to be performed over wired links
that cover most of continental Canada as well as through a one hop satellite link
which allows for a much wider coverage. While there was some degradation in
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task completion times, it was shown experimentally that this was within tol-
erable limits. It was shown that the completion time complies with the basic
Fitts’ law. The results also show that significant improvement in performance
can be achieved with proper training. However, additional work is required to
quantify the effect of learning and to determine the maximum tolerable delay.
Furthermore, an investigation of the quality of the communication channel on
performance also needs to be performed.
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Abstract. This paper introduces a novel method for ultrasound cali-
bration for both spatial and temporal parameters. The main advantage
of this method is that it does not require a phantom, which is usually
expensive to fabricate. Furthermore, the method does not require exten-
sive image processing. For spatial calibration, we solve an optimization
problem established by a set of equations that relate the orientations of a
line (i.e., calibration pointer) to the intersection points appearing in the
ultrasound image. The line orientation is provided through calibration
of both ends of the calibration pointer. Temporal calibration is achieved
by processing of the captured pointer orientations and the corresponding
image positions of intersection along with the timing information. The
effectiveness of the unified method for both spatial and temporal calibra-
tion is apparent from the quality of the 3D reconstructions of a known
object.

1 Introduction and Background

Ultrasound imaging systems are being widely used in many interventional and
radiation therapy applications. In these applications, ultrasound probe is usually
instrumented with a tracking sensor (either magnetic or optical) or an articu-
lated arm providing the estimates of position and orientation (i.e., pose) of the
probe at all times. A calibration process has to establish the transformation
from an anatomical location appearing in the ultrasound image to the coordi-
nate system established by the external tracking device. This is referred to as
spatial calibration. Furthermore, the exact timing at which the ultrasound image
is captured has to be synchronized to the positional information read from the
external tracking system. This is referred to as temporal calibration. The cumula-
tive accuracy of tracking system and calibration parameters dictates the fidelity
of the overall system to quantify anatomical locations in the desired coordinate
system. A tracked ultrasound imaging system can be used to bring anatomical
location and surgical instruments or the iso-center of a radiation beam into the
same coordinate system [2,4]. Another application is to compound 3D ultrasound
volumes for visualization and quantification [8].
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Ultrasound spatial calibration methods have widely been investigated in the
literature. There are varieties of geometrical phantoms proposed in the literature
mainly to facilitate the calibration procedure. Phantoms with sparse set of wires
are proposed in [1,3]. In these procedures, intersection points of the wires are
being imaged and are related to the known 3D position of the same point in
the phantom. In [9], the proposed phantom has a special shape with known
control points, which is then used to relate the local coordinate system of the
phantom to that of the tracking system. In [2], a Z-shaped based phantom is used
reduce the scan time and to facilitate the process of establishing correspondences
between features in the ultrasound image and that in the phantom. In [6], a more
sophisticated phantom is used, which combines strings and fiducials.

The main problem in using a phantom is that first the manufacturing of an
accurate phantom is expensive and second no matter how accurate the phantom
is, its position (or local coordinate system) has to be determined in the tracking
system either by attaching another sensor to the phantom at the some exact
position or to use control points on the phantom as beacons for registration. In
either case the accuracy of the phantom is bound to the accuracy of the tracking
system. In [7], authors propose a single-wall phantom that is very easy to use and
does not require establishing any correspondences. The equation of the wall has
to be determined in the tracking device coordinate system. Furthermore, a spe-
cial holder has to be used for scanning procedure. The number of images required
for this calibration process is rather high. In [5], authors propose a calibration
method that does not require a phantom. A calibrated pointer tip is placed into
the ultrasound beam. The traces of the pointer tip in the image and the three-
dimensional locations acquired with the tracking system are collected and used
to compute calibration parameters. The drawback of this approach is that it is
very hard to pinpoint the exact position at which the pointer enters the plane.
This is mostly because of the beam width of the ultrasound imaging system.
This effect makes the whole process inaccurate in determining the calibration
parameters, specifically regarding translation in the direction perpendicular to
the ultrasound plane.

Our proposed method is inspired by the method described in [5]. However,
we address the shortcomings of the previous method. Furthermore, we add an
essential piece for estimating the temporal lead/lag between tracking information
and ultrasound frame. In contrast to [5], we use a line pointer instead of a
“point pointer”. I.e., we formulate the problem, in a way that we only require
the direction of a tracked pointer in 3D and not the location of pointer tip.
Therefore, as long as the pointer intersects the ultrasound plane, we are acquiring
valid information for the calibration process.

2 Ultrasound Calibration

Conventional ultrasound imaging systems provide real-time two dimensional ar-
ray of pixels (i.e., I(u, v)) refreshed at the frequency of fus. Real-time optical,
magnetic, or mechanical tracking devices are used to map ultrasound images
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taken from various positions into a global coordinate system. Let us denote the
world coordinate system of the tracking device as W, and the coordinate sys-
tem of the sensor i as Si. Tracking device provides homogenous transformation
matrices WTSirelating the sensor coordinate Si to the world coordinate system
W with certain refresh frequency of ftr. Spatial calibration parameters can be
presented as the combination of a homogenous scaling matrix Ts and a trans-
formation matrix Tc. In order to map any point in the ultrasound image plane
(i.e., Pu = [u, v, 0, 1]�) to the world coordinate system the following matrix
multiplication chain has to be computed:

P t
w =W Tt

S0
TcTsP

t
u, (1)

where the scaling factors in horizontal and vertical directions are built into Ts =
diag(sx, sy, 0, 1), and it is assumed that the ultrasound probe is instrumented
with the tracking sensor number 0. Furthermore, time dependency is denoted
by t. Sampling interval is usually dictated by δt = 1

fus
. Temporal calibration

(synchronization) process is to infer TS0 at time nδt (n is an integer) from the
samples available at the time intervals of 1

ftr
. The synchronization is dominated

by inherent delays, which exist in both ultrasound image formation and tracking.
Therefore, the temporal calibration parameter is a single number τ representing
the delay, which is usually much larger than the sampling interval of either
ultrasound or tracker. For the case where the sampling frequency is identical
(i.e., fus = ftr) perfect synchronization can be achieved. However, in the case
where the sampling frequencies are not identical, the time discrepancy varies in
the range of τ ± min( 1

fus
, 1

ftr
).

2.1 Phantom-Less Calibration

A calibration procedure that does not require a phantom is proposed in [5]. In
this approach, a secondary tracked coordinate system (i.e., S1) is considered. The
pointer is in fact a known fixed coordinate Pp within such a coordinate system.
By carefully placing the pointer tip into the ultrasound beam and recording both
the trace of the point in the image P i

u and the coordinate transformation of the
sensor attached to the pointer, one can establish the following relationship:

W Ti
S1

Pp =W Ti
S0

TcTsP
i
u, (2)

Therefore, the spatial calibration procedure can be thought of as an opti-
mization process finding eight parameters (i.e., six for translation and rotation
and two for the scaling) lumped into matrices Tc and Ts, as follows:

{T̃c, T̃s} = arg min
[Tc,Ts]

∑
i

∣∣∣∣[WTi
S1

Pp −W Ti
S0

TcTsP
i
u]3
∣∣∣∣2 (3)

where operator [ . ]3 converts homogenous to Euclidian coordinates by dropping
the fourth element, and || . || represents Euclidian norm. The main problem with
this approach is that it is very hard to make sure that the pointer tip is exactly
in the ultrasound plane. The trace of the pointer observed within the ultrasound
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(a) (b)

Fig. 1. (a) depicts the calibration method, which requires exact placement of the
pointer tip in the ultrasonic plane. (b) shows our new method that only requires inter-
section anywhere along the pointer.

image is poorly resolved. Furthermore, the width (elevational thickness) of the
ultrasound beam is not infinitesimally small, the lower bound of the error in
determining the position of the pointer tip is half of the beam width.

2.2 Proposed Phantom-Less Calibration Method

The proposed phantom-less calibration method addresses the problem of the
method discussed in section 2.1. Two or more points on the calibration stylus
(pointer) are assumed to be known. In this way, the orientation of the calibration
pointer is known. We denote the coordinates of these points as Pp0 and Pp1 in
the coordinate system of the tracker sensor S1 attached to the pointer. If we
position the stylus in a way that it intersects the ultrasound beam, we have the
following equation:

W TS1(Pp0 + λ
Pp1 − Pp0

|Pp1 − Pp0 |
) =W TS0TcTsPu, (4)

where λ is an unknown real number with in [0 1]. In order to omit the unknown
factor λ, equation 4 can e re-written as follows:

[L01]x
[
W TS0TcTsPu −W TS1Pp0

]
3 = 03×1, (5)

where the operator [ . ]x converts a vector to a skew symmetric matrix, and 03×1
represents a null point. Furthermore, L01 is the normalized vector within the
world coordinate system, which is connecting the points Pp0 and Pp1 with L01 =
W RS1 [Pp1 ]3−W RS1 [Pp0 ]3

||[Pp1−Pp0 ]3|| . WRS1 is the 3 × 3 rotation matrix imbedded in W TS1 .
Finally if the measurements are done for various points i, a similar relationship
as in equation (3) can be established to solve for calibration parameters:
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{T̃c, T̃s} = arg min
[Tc,Ts]

∑
i

∣∣∣∣[Li
01]x

[
WTi

S0
TcTsP

i
u −W TS1Pp0

]
3

∣∣∣∣2 (6)

The difference between equations (3) and (6) is the matrix [Li
01]x, which spec-

ifies the direction of the pointer and relaxes the constraint of exact intersection
of the pointer tip with the ultrasound plane.

2.3 Calibration Workflow

The calibration can be divided into three processes. First is the pointer cali-
bration, during which the coordinates of two points along the stylus have to be
determined accurately within the coordinate system of the sensor attached to
the stylus. In the second step, the spatial calibration acquisition is done. The
pointer is placed into multiple positions within the ultrasonic beam, preferably
using a grid guide that is well spread over the ultrasound image plane. The 6DOF
sensor readings along with the 2D coordinates of the intersection points on the
image is recorded and used for recovering the spatial calibration parameters. The
third process is for temporal calibration. During this step, we continuously move
the pointer while keeping it intersecting the ultrasound plane. We record 2D
coordinates of the pointer trace within the ultrasound image, 6DOF coordinates
of the pointer sensor,and the corresponding time stamps. These recordings are
then used to recover the (semi) constant delay between the magnetic pose and
the ultrasound image acquisition.

Pointer Calibration. Pointer tip calibration can be performed by fixing the tip
of the pointer and rotating the pointer about the fixed point. For two distinctive
poses of the pointer (e.g., WT0

S1
and WT1

S1
), we have W T0

S1
Pp =W T1

S1
Pp.

Therefore, the pointer tip is simply:

[Pp]3 = (W R0
S1

−W R1
S1

)−1(W t0
S1

−W t1
S1

). (7)

where R is the rotation matrix and t is the translation vector embedded in
homogenous transformation matrix T. For more robust and accurate solution
and to avoid degeneracy in equation 7 more than two poses (e.g., n) should be
used. In this case, we select any combination pair of points, and solve a least
squares problem using matrix manipulations, as follows:

[Pp]3 = (RR�RR)−1RR�tt (8)

where RR = [. . . |W Ri
S1

−W Rj
S1

| . . .], and tt = [. . . |W ti
S1

−W tj
S1

| . . .], and
(i, j) is a combination pair from [1, n].

Spatial Calibration. For the spatial calibration, we first overlay an equi-
distant grid of points onto the ultrasound image plane. The user’s task is to
intersect the pointer with the ultrasound plane in a way that the grid points are
lined up with the trace of the pointer in the image. In order to avoid degeneracy
in the solution of equation (6), it is required the user change the orientation of
the pointer from one grid point to another. At each grid point, the coordinates
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Table 1. (a) Pointer calibration results, (b) extracted spatial calibration parameters

Point x y z
Pp0 (mm) -58.644 -1.1899 -11.371
Pp1 (mm) 34.800 6.6530 -9.1214

Calib. x y z
Trans. (mm) 27.891 21.967 -62.082
Rot. (deg) -47.038 -70.526 -44.386
Scale 0.187 0.196 -

(a) (b)

of the grid and the pose of the sensors attached to the pointer and ultrasound
probe are saved. It is desirable that the user performs the acquisition in the
vicinity of the workspace, where the final measurements are done specially in
the case, where magnetic trackers are used. This ensures that magnetic tracker
readings are as consistent as possible. Furthermore, it is better to change the
pose of the ultrasound probe as the user select different grid point to account
for possible variations in magnetic readings and minimize the bias in the results
by perturbing the measurement error.

Temporal Calibration. We assume that tracker and ultrasound acquisition
frequencies are known. What remains unknown is the inherent delay that exists
between the two processes. In order to measure this delay, the user holds the
pointer intersecting the ultrasound plane in a perpendicular fashion. The user
should periodically move the pointer in horizontal or vertical direction back
and forth, while the ultrasound probe is steady. During the motion, both the
ultrasound images and the pose of the pointer sensor are recorded together with
the time stamps. We then process the recorded images and extract the bright
points (in pixels) representing the pointer intersections. The dominant direction
of the point in the image (in pixels) and dominant translation parameter of the
sensor (in millimeters) are then used to recover the delay. Let us assume the
dominant direction of image point movement is in horizontal direction (i.e. r(t),
where t is time) and the dominate translation is in x direction (i.e., x(t)). The
delay can be computed using the following equation:

τ = arg max
(
F−1

{
F{r(t)}F∗{x(t)}
|F{r(t)}F∗{x(t)}|

})
(9)

where F and F−1 represent Fourier and inverse Fourier transforms, respectively,
and (∗) denotes the complex conjugate operation.

3 Experimental Results

We performed a series of tests in order to verify the performance of the proposed
calibration process. Performance measures are considered to be the amount of
residual error in the optimization process for the calibration parameters and
the quality of three dimensional compounding of the tracked B-plane images.
In this experiments , we used images acquired by a SONOLINE Elegra ultra-
sound (Siemens Medical Solutions, Issaquah, WA) with a 50HDPL40 probe.
As tracking device, we used a MicroBird magnetic tracking system (Ascension,
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(a) (b) (c)

Fig. 2. (a) depicts the ultrasound image with projected grid pattern, (b) shows the
discrepancy between the pointer intersection according to the tracking system and its
trace in the image, (c) the discrepancy is minimized after the calibration process.

(a) (b) (c)

Fig. 3. (a) depicts the compounded volume with overlaid B-plane, (b) shows the volume
from another view and (c) is the photograph of the actual clay model.

Burlington, VT). We prepared a 10cm stainless steel rod as the pointer. We
attached a magnetic sensor to the middle of the rod ,sharpened and calibrated
both ends using the method described in section 2.3. The standard deviations of
the end points in the world coordinate system were 0.9501mm and 0.6068mm.
The estimated coordinates of the end points are listed in Table 1(a). We acquired
calibration data as explained in section 2.3. By assuming nominal scaling for the
ultrasound image, and relaxing the orthonormality constraints of the rotation
matrix, we found an estimate of the calibration parameters in a closed-form
fashion using various measurements through equation (5). The results were then
used as initial values for the optimization in equation (6). We used Levenberg-
Marquardt method to solve the non-linear optimization problem. The residual
error of the optimization process was 0.8913 mm. Figure 2 (b) shows the intersec-
tion of the virtual pointer and the ultrasound plane with arbitrary calibration pa-
rameters.There is a clear discrepancy between the virtual and real intersections.
Figure 2 (c) shows a good match after computing the correct calibration param-
eters. The temporal calibration delay was computed to be about 96 milliseconds.
The refresh rates of the magnetic tracker and ultrasound device were 60 and 30
Hz, respectively. Since the frequencies were not synchronized up to 16 millisecond
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variable time discrepancy exists between image and tracked pose. Figures 3 (a)
and (b) show reconstruction of the clay head, depicted in Figure 3 (c), using the
real-time compounding method described in [4]. The reconstruction is performed
by sweeping the B-plane axially from head to neck. Figure 3 (a) shows the re-
construction overlaid by a B-plane in sagittal orientation. Matching outlines in
B-plane and reconstruction confirm the fidelity of the calibration parameters.

4 Summary and Conclusion

Calibration is essential for a tracked ultrasound system. In this paper, we propose
a robust phantom-less calibration approach. With this method, one can extract
both spatial and temporal calibration parameters in a unified way. During spatial
calibration, no image processing is needed. Some image processing is required
for temporal calibration. Main advantage of the method is minimizing the user
dependency during the acquisition of the data for spatial calibration. The new
approach relies on the orientation of the tracked pointer instead of the exact tip
position. Reconstruction of clay model illustrates the quality of the calibration.
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Abstract. Developing electromagnetically (EM) tracked tools can be very time 
consuming. Tool design traditionally takes many iterations, each of which re-
quires construction of a physical tool and performing lengthy experiments. We 
propose a simulator that allows tools to be virtually designed and tested before 
ever being physically built. Both tool rigid body (RB) configurations and refer-
ence RB configurations are configured; the reference RB can be located any-
where in the field, and the tool is virtually moved around the reference in user-
specified pattern. Sensor measurements of both RBs are artificially distorted ac-
cording to a previously acquired error field mapping, and the 6-DOF frames of 
the Tool and Reference are refit to the distorted sensors. It is possible to predict 
the tool tip registration error for a particular tool and coordinate reference frame 
(CRF) in a particular scenario before ever even building the tools. 

1   Introduction 

Optimal design of new electromagnetically (EM) tracked tools requires determining 
the quantity, relative position, and pose of sensors on tools and the corresponding 
coordinate reference frames (CRFs). Design is a tedious and time consuming process; 
to optimize a tool experimentally it takes many design iterations; for each it is neces-
sary to build the tool, collect data, and perform error analysis. We propose a simulator 
that allows arbitrary tool rigid body (RB) configurations and arbitrary CRF configura-
tions of any number of sensors to be virtually positioned in user-specified patterns and 
distorted according to a model of a previously acquired measurement distortion error 
map. This predicts the tool tip registration error for a particular tool with respect to a 
patient-mounted CRF in a particular scenario before ever building the physical tools.  

This work spans two distinct fields related to Image Guided Surgery (IGS). First is 
tool design and optimization. There appears to be no analytical work directly related 
to EM tool design, but there has been in depth analysis of optically tracked tool de-
sign. The primary work in this field is presented in a series of papers by Fitzpatrick, 
West, and Maurer, the most recent of which being [1] and [2]. The second key field is 
EM tracker characterization and calibration, where there has been much work so this 
summary is far from exhaustive. Tracker characterization involves measurement of 
the tracking errors with respect to a ground truth reference; recent work describing 
this can be found in [3] and [4]. Calibration, which takes characterization information 
to make a model of the measurement distortion has been presented in many papers, 
including [5] and [6]. In this work, we adapted the formulation of [7], which specifi-
cally modeled Aurora tracker’s distortion. 
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2   Measurement Error Modeling 

It is important to be able to map the measurement error in a distorted measurement 
field of an EM tracker; such a mapping is essential for understanding how error is 
affected by the environment and for modeling the distortion and further error analysis. 

2.1   Measurement Error Assessment  

Sensor measurement distortion is assessed by collecting a large quantity of measure-
ments from the EM tracker along with corresponding reference measures from a 
ground truth. In our trials, the NDI Optotrak optical tracking system (OTS) is used as 
a reference for the NDI Aurora EM tracking system (EMTS); the Optotrak has an 
accuracy that is about one order of magnitude better than that of the Aurora and is 
effectively immune to field distortion. The EM sensors are moved throughout the 
working volume of the Aurora and simultaneously tracked with the EMTS and OTS. 
By registering the EM sensors to this OTS RB and optically tracking Aurora, it is 
possible to know the ground truth position and orientation (pose) of each sensor. Ref-
erence measurements are then compared to EMTS measurements for the same time 
step to obtain the measurement error’s position and orientation components. Position 
error is simply the translation required to align the ideal reference position to the 
distorted EMTS position. Orientation error is defined as a Rodriguez vector that cor-
responds to the magnitude, θ , and axis of rotation, ω , required to align the OTS 
reference to the EMTS measurement. The errors are mathematically represented as 

3
pos measured ideale p p      and 3

orie  . 
 

(1) 

2.2   Polynomial Modeling of Measurement Error 

The detailed error mapping is used to generate a model that estimates a sensor’s 
measurement error at a given position and orientation in the workspace of the charac-
terized environment. Bernstein polynomials are used as the basis for these distortion 
models. In general, nth order Bernstein polynomials are defined for 0 i n≤ ≤  by 
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Extending Bernstein polynomial models for measurement error in 3D measurement 
space where the six error values from (1) are interpolated, for each value we have 
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(3) 

The model in (3) is sufficient if the measurement error of the EM system being 
modeled is independent of the orientation of the sensors. However, this is not a valid 
assumption for many tracking system; in particular, this is not valid for the Aurora 
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system and the sensor orientation must be accounted for. The following algorithm 
accounts for both position-related and orientation-related measurement error: 

• Choose a set of basis orientations vectors for which the polynomials in (3) will be 
generated. They should be evenly distributed as the example shown in Fig. 1. 

 

Basis orientation vectors (14): 
1 0 0 
0 1 0 
0 0 1 
0.57735 0.57735 0.57735 
-0.57735 0.57735 0.57735 
0.57735 -0.57735 0.57735 
-0.57735 -0.57735 0.57735 
-1 0 0 
0 -1 0 
0 0 -1 
-0.57735 -0.57735 -0.57735 
0.57735 -0.57735 -0.57735 
-0.57735 0.57735 -0.57735 
0.57735 0.57735 -0.57735 

 

Fig. 1. Basis orientations along which distortion models are created when using 14 basis vec-
tors. Measurements are interpolated between these to determine relative contributions of each. 

• For each measurement, determine the closest three base orientation vectors that 
enclose the z-axis of the measured sensor reading, in , inside of a spherical trian-

gle defined by 1 2 3, ,  and b b b  as shown in Fig. 2. Determine the corresponding 

areas of each of the three spherical triangles; these that are directly proportional 

to the weighting of a particular base vector’s contribution, ,i bw , to the error. 

• Calculate the Bernstein coefficients. For each base orientation, there are six sets 
of coefficients in (4) to solve for: X, Y, Z, Rx, Ry, Rz. 
o Normalize the measured positions to fit inside a unit cube. 
o Build the six sets of equations in Ax b≈  form to solve in the least squares 

(LS) sense for each base vector and dimension being interpolated, 

0,0,0
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 Where, wi,b is the weight of the ith data point for the bth basis vector and 
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o Solve for 6m*(n+1)3 coefficients in the LS sense using singular value de-
composition (SVD), where m is the number of basis orientations. 
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Fig. 2. Spherical interpolation techniques determine the relative contributions of the three 
closest orientations to a sensor’s measurement error (and vice versa for model generation) 

3   Tool Tracking Simulation 

Contrary to the more traditional application of modeling field distortion so that  
measurements can be compensated in real-time (which is also a feature of our  
software), we are focused on simplifying tool design by removing the necessity to 
construct and test each physical tool in each environment of interest. The method is 
similar to compensation methods, but sensor measurements are artificially distorted 
rather than corrected. 

3.1   Calculating Measurement Distortion 

For a given position and orientation error at a given simulated sensor pose we have 
the distorted sensor position and orientation as 

distorted actual posp p e= +    and  (6) 

1
distorted error actualR R R−=  ,  where  ˆ (3)errorR e SOωθ−= ∈  . (7) 

Where, ( )ˆ (3)skew soωθ ωθ= ∈  and 
orie ωθ=  is the Rodriguez vector representing 

the axis and angle of the estimated orientation error. 
The above equations require the estimated measurement distortion for a given sen-

sor pose, 
pose  and 

orie . The process for determining the error is very similar to that of 

generating the distortion model; the error is calculated as  

3
6

, ,
1 0 0 0

( , , ) ( ) ( ) ( )
n n n

posb n n n
b i j k i j k

orib i j k

e
e x y z w c B x B y B z e

.

 

(8) 

Where, the values for b correspond to one of the three closest basis orientations as 
described earlier and wb corresponds to the contribution of each basis orientation. 
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Fig. 3. Residual error for 1025 sensor measurements compensated for with a model generated 
an using independent data set of 1025 sensors as a function of polynomial order and angular 
resolution. An order of zero represents the original measurement error with no compensation. 

3.2   6-DOF Frame Fitting 

The frames { }1 2, , , nF F F  represent the known position and orientation of n sensors 

with respect to the given RB frame of reference (i.e. a frame centered at a tool tip and 
aligned with a pointer shaft). Since sensor frames for the Aurora are only specified in 
5 DOF, they can be represented as ( ),i i iF n p= . 

De-meaned values of sensor positions are necessary to compute the optimal rota-
tional alignment of an RB configuration to the corresponding measurements. These 
values are the measurements in the RB frame with the position of the center of gravity 
(CG) in the RB frame subtracted off. The best rigid point cloud to point cloud rotation 
that aligns the sensor RB configuration to the measurements is found in the LS sense.  

Weighted orientations are treated the same way as the demeaned points; the 
weighting factor, w, keeps the position and orientation contributions balanced. The 
method is a modified version of that presented in [8], with the modification being the 
addition of orientations as just mentioned. Two variables are defined in (9); X repre-
sents the configuration of the rigid body’s sensors with respect to its own frame  
(denoted by subscript RB), and Y represents the corresponding positions and  
orientations for the actual sensor measurements  (denoted by subscript Meas). 
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(9) 

Where, n represents the number of sensors, p represents the mean position of the 

measurement set, 
in  represents the unit vector pointing along the z-axis of the given 

sensor, w represents the weighting of the orientation measurements relative to the 
position measurements. This weight was analytically determined and experimentally 
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Fig. 4. Tool tracking scenario of where a tool 
is measured with respect to a coordinate refer-
ence frame (CRF). This is critical for IGS 
applications where a surgical tool is tracked 
with respect to a patient-fixed reference. 

confirmed to be a function of the relative position and orientation accuracy of the 
tracker. In the environment present in our lab, a weight of w=100 is satisfactory. 

Using the notation in [8], two variables are defined as  

( ,1:3)T
iq X i=     and    ( ,1:3)T

iq Y i′ =     for    i={1,…,2n} . (10) 

Using the variables in (10), the matrix H is calculated as  

1

n
T

i i
i

H q q
=

′= . (11) 

The best rigid rotation in the LS sense that aligns the tool configuration to the 
measurements is determined by taking the SVD of H and calculating R where, 

TH U V= Λ     and       TR VU=  . (12) 

The optimal translation that aligns the RB with the measurements is then given by 

*Meas RBv p R p= −  . (13) 

3.3   Tool Tracking 

The primary contribution of this method 
is that it allows for simulated tracking of 
a tool with respect to a reference body 
and determining the relative tracking 
error. The frame transformations of 
interest are detailed in Fig. 4, the ‘^’ and 
the dotted lines indicate approximate, 
measured transformations. 

The important transformation from 
Fig. 4 is that of the tool with respect to 
the patient-fixed reference frame. It is 
defined as 

( ) 1ˆ ˆ ˆTool
CRF CRF ToolF F F

−
=  . 

(14) 

4   Simulation Software 

The above algorithms have been incorporated into a single program that allows for 
data collection, frame fitting, real-time measurement compensation, and tool simula-
tion; Fig. 5 displays the GUI for the simulator. The software takes a tool configuration 
and reference configuration from user-specified files or native NDI SROM formats. 
The reference is virtually placed at its commanded pose and the tool is placed with 
respect to the reference. Sensor locations in the base frame of the EM tracker are 
determined based on the RB configuration and are distorted based upon the polyno-
mial model of the error for the chosen environment from  (8). Tool RBs are refit to 
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Fig. 5. GUI front end for simulation software. Allows for 
simulated tracking of pre-defined tools with respect to pre-
defined references in a given characterized environment. 

the distorted sensor readings as in (12) and (13); tracking error is the relative change 
in frame transformation between the reference and the tool. 

The software can be run in three modes. The first mode, ‘Single Point’ mode, 
places the two RBs at the specified poses and outputs the relative tracking error. In 
‘Range of Motion’ mode, the reference is fixed in a pose selected by the user, and the 
tool is moved in the specified range of positions and orientations with respect to the 
reference. This represents a tool being moved about a patient-fixed CRF. Finally, in 
‘Input Data’ mode, the program accepts a text file with arbitrarily specified positions 
and orientations for both the tool and the reference. For all modes, summary statistics 
are displayed on the screen and results from each trial can be logged to file. 

4.1   Tool Design Using Simulator 

The simulator proves to be a very helpful tool for design of EM tracked instruments 
because a tool’s performance can be gauged without ever even building it; this allows 
for a very large quantity of trials. In general, the tool design procedure is as follows: 

1. Generate a CRF design (skip this step if one is already available) 
2. Simulate the CRF design in the appropriate environment with respect to the 

EMTS base. Many different environments can be used for the experiments. 
3. Analyze the results and 

decide if design satisfies 
requirements. If Yes, 
continue; if No, return 
to step 1. 

4. Generate a Tool design 
and simulate with re-
spect to the CRF. 

5. Analyze the results and 
decide if design satisfies 
requirements. If Yes, 
continue; if No, return 
to step 4. 

6. Build the reference and 
tool and compare the 
results. 

5   Discussion 

A new tool for design of electromagnetically tracked instruments is presented here. It 
allows for rapid prototyping and design of EM tracked tools without the necessity to 
physically build and experiment with many different designs. This allows for the 
prospect of faster design of higher quality tracked instruments. Initial experiments 
show that the polynomial model, when used for measurement compensation, produces 
a very accurate representation of the data. The RMS residual error for a mildly dis-
turbed data set that began with RMS errors of 2.30mm and 0.45o was below 0.20mm 
and 0.05o for a 6th order model with 14 basis orientations.  
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To get a better idea of how representative the measurement distortion model really 
is, it was applied to an independent set of sensor measurements with know reference 
measurements; the results are shown in Fig. 3. Realistically, it appears that we can 
expect the model to decrease the residual error by a factor of about two. Fortunately, 
the minimum residual error occurs at a lower order model (1st or 2nd order), so the 
quantity of data required for generation of the model can be reduced to make collec-
tion reasonable for a given practical environment such as an operating room. The 
compensation results are quite good, and therefore, we can expect the simulator to 
produce realistic distortions since it based off of the same model. Thus far, the proce-
dure has been used successfully to help design instruments and references for ENT 
surgery including a head-mounted CRF, endoscope, pointer, and tissue shaver. Fur-
ther results and more detail of these methods are available in [9].  
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Abstract. This paper reports evaluation of compact forceps manipula-
tor designed for assisting laparoscopic surgery. The manipulator consists
of two miniaturized parts; friction wheel mechanism which rotates and
translates forceps (62×52×150[mm3 ], 0.6[kg]), and gimbals mechanism
which provides pivoting motion of forceps around incision hole on the ab-
domen (135×165×300[mm3 ], 1.1[kg]). The four-DOF motion of forceps
around the incision hole on the abdomen in laparoscopic surgery is real-
ized. By integration with robotized forceps or a needle insertion robot, it
will work as a compact robotic arm in a master-slave system. It can also
work under numerical control based on the computerized surgical plan-
ning. This table-mounted miniaturized manipulator contributes to the
coexistence of clinical staffs and manipulators in the today’s crowded
operating room. As the results of mechanical performance evaluation
with load of 4 [N], positioning accuracy was less than 1.2 [deg] in pivot-
ing motion, less than 4 [deg] in rotation of forceps, less than 1.2 [mm] in
longitudinal translation of forceps. As future works, we will modify mech-
anism for sterilization and safety improvement, and also integrate this
manipulator with robotized forceps to build a surgery assisting robotic
system.

1 Introduction

Today, as a means of minimally invasive surgery, laparoscopic surgery is widely
performed. Surgeons cut small holes on the abdomen to insert laparoscope and
forceps, and conduct all operations inside the abdominal cavity. Small incisions
damage patients much less than conventional laparotomy, and patients can get
relief from postoperative pain or medication. This patient-friendly technique,
however, is rather difficult and cannot be applied to all cases, mainly because the
limited degrees of freedom (DOF) of forceps eliminate the dexterity of surgeons
(Fig.1(a)). Surgeons must take special training for laparoscopic surgery.

Responding to these issues, surgery-assisting robotic manipulators are devel-
oped. Some of them are clinically applied and show their availability [1,2]. Those
new systems have provided surgeons with technologically advanced hand skills,

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 81–88, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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and enabled higher-quality and more precise operation, that could not be real-
ized in the conventional laparoscopic surgery. Meanwhile, the large size of them
caused problems. Some robotic systems require larger room and are difficult to
install into conventional crowded operating theater. As the operation space above
the patient’s abdomen is occupied by the manipulator arms, clinical staffs have
troubles to observe the patient and have danger of collision with manipulators.
Thus, a new compact surgery-assisting robotic system is required [3].

We have developed a compact forceps manipulator using “friction wheel
mechanism” (FWM) [4] and gimbals mechanism (Fig. 1(b)). In the former study,
a prototype was manufactured, and feasibility was shown as a forceps manipula-
tor [5]. At the same time, some problems emerged. The rotational speed of ultra-
sonicmotor varied depending on various factors, that is, the motor we adopted
for actuation was unstable, being affected by temperature and load, so that the
motion of forceps was also unstable under the open-loop controlling system [6].
In the recent presentation [7], we reported mechanical implementation of minia-
turized ultrasonic motors with rotary encoder into the mechanically-modified
prototype, and reported evaluation of basic performance using feedback control
system. Positioning accuracy of the gimbals mechanism was less than 0.6 [deg],
and that of friction wheel mechanism was less than 0.2 [mm] in translation and
1 [deg] in rotation.

In the former studies, the accuracy was measured as a static positioning de-
vice without load. Thus, in this study, we measured and evaluated static position
accuracy with load of 4 [N]. In section 2, we introduce the configuration and
mechanism of our compact forceps manipulator. Experimental apparatus and
evaluation results are shown in section 3. We discuss the results of performance
evaluation in section 4. Conclusions are presented in section 5.

2 System Configuration

We adopted following two mechanisms to realize four-DOF motion of forceps
required in laparoscopic surgery(Fig.1(a)); “Friction wheel mechanism” (FWM)
provides the rotation around the forceps shaft and translation along the shaft
(number (1) and (2) in Fig.1(b)). Gimbals mechanism realizes the pivoting mo-
tion to determine the direction of the forceps (number (3) and (4) in Fig.1(b)).
The dimension of the FWM is 62×52×150[mm3] and the weight was 0.6[kg].
Those of gimbals mechanism are 135×165×300[mm3] and 1.1[kg]. We mount this
manipulator near the incision hole using multiple joint arm (ex. Iron intern(R) [8]
or Point setter [9]). This is because mechanisms and actuators should be mounted
near the operating field so that they require less torque or force [3].

Friction wheel mechanism (FWM) consists of three titled idle rollers and
outer case (Fig. 2(a)). Three idle rollers around the forceps shaft travel spirally
on the surface of shaft when outer case rotates (Fig. 2(b)) [10]. A couple of
FWMs with opposite tilting angle (like right-handed screw and left-handed one)
hold the forceps shaft(Fig. 2(c)). When they rotate in the same direction, the
shaft held statically by rollers rotates around its longitudinal axis (Fig. 3(a)).
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Fig. 1. System configuration, (a) In laparoscopic surgery, forceps have only four degrees
of freedom; two for rotation(1) and insertion(2) of forceps, two for pivoting motion(3)(4)
around the incision hole. (b) Friction Wheel Mechanism provides two motions of (1)
and (2). Gimbals mechanism realizes the rotational motions of (3) and (4).

(b)
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mechanism
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Forceps
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(a)

Diameter : 34[mm]
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roller

Idle
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Tilting
angle

Fig. 2. Friction wheel mechanism, (a) a FWM has three rollers (arrow). (b) Rollers
travel spirally on the surface of shaft. That motion can be divided into axial translation
along the shaft and rotation around the shaft. (c) We combine two different spiral
motions to realize rotation and translation.

Alternatively, when they rotate in the opposite direction, rollers travel on the
shaft spirally and rotational motion is cancelled by rotational component of each
spiral motion, so that forceps moves along its axis (Fig. 3(b)). The tilting angle
was set at 30 [deg] in this study. We used hollow-shaft ultrasonic motors with
rotary encoder (custom order, Fukoku, Japan) to drive the outer case of FWM
for miniaturization of the system. The resolution of the rotary encoder was 0.2
[deg/pulse].

Gimbals mechanism provides pivoting motion, two rotational motions around
the mutually-perpendicular axes. It is to be noted that pivot center of this ma-
nipulator is not located at the incision hole, but at the intersectional point of two
axes. As for a surgery assisting robot for laparoscopic surgery, “remote center
of motion (RCM)” mechanism should be mounted to bind the rotational center
of manipulator at the incision hole (ex,[11,12]). However, as we reported in [5],
it is not always necessary. This was because abdominal muscle under anesthesia
gets flaccid and manipulator does not damage the abdominal wall by driving the
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Fig. 4. New prototype

forceps. We used geared DC servomotors (ENC-185801, Chiba Precision Co.,Ltd,
Japan) for actuation. The reduction gear ratio was 1/576. The resolution of the
rotary encoder was 0.36[deg/pulse]. The prototype is shown in Fig. 4.

3 Evaluation Experiments

We conducted mechanical performance evaluation of our forceps manipulator.
In the former studies, we conducted performance evaluation without any load
[5,6,7]. Thus, in this study, we applied a load of 4[N], that was equivalent to the
one third weight of Japanese male liver.

We measured working range and positioning accuracy of each axis (pitch
and roll motions in gimbals mechanism, rotation and longitudinal translation of
forceps in FWM) with load. Motion of manipulator was recorded using digital
microscope (VH-7000C, KEYENCE, Japan), and working range and positioning

Rotation(+)

Rotation(-)

Rotation(+) Rotation(-)

Forceps
shaft

Weight

Pitch(+)

Pitch(-)

Roll(+)
Roll(-)

Translation(+)

Translation(-)

Forceps 
shaft

250[mm]

(a) (b) (c)

Thread

Fig. 5. Experimental setup, (a) Forceps were initially set in the vertical position to
measure the motion of gimbals mechanism and the translation. Input direction is de-
fined as shown here. (b) In the evaluation of rotation, forceps were set horizontally. (c)
We measured the rotational positioning accuracy of forceps when forceps were pulling
up the weight.
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accuracy were measured by its accompanying utility software. Each measurement
was repeated for twelve times. In order to reduce the measuring error, maximum
and minimum values were eliminated, and the average and standard deviation
of other ten values were calculated. Positive value in positioning error means
that manipulator overruns beyond the input command, and negative means that
it does not reach the goal. The definition of +/- input direction is shown in
Fig. 5. As the initial setting, the forceps were set vertically in the evaluation of
gimbals mechanism and translation of forceps (Fig. 5(a)), and horizontally in
rotation (Fig. 5(b)). The distance between the weight and the center of gimbals
mechanism was 250 [mm].

3.1 Gimbals Mechanism

Working range of gimbals mechanism was measured. No decrease of working
range was shown (Table. 1). Positioning accuracy of the gimbals mechanism was
measured at every 5 [deg] from −30 [deg] to +30[deg]. Measurement results are
shown in Fig.6, comparing the results of evaluation without load [7]. Accuracy
was less than 1.2 [deg] in pitch and roll motions.

3.2 Friction Wheel Mechanism (FWM)

As for the working range, FWM has no mechanical limitation, and the load did
not limit the working range (Table. 1).

Before measuring the positioning accuracy, we evaluated the separation of
rotation and translation. Because rotation and translation of forceps are gener-
ated by combining a couple of spiral motions, if each spiral motion differs from
each other because of machining error, rotational error occurs in translation
and translational error occurs in rotation [7,13]. Thus we measured the motion
error beforehand and added compensation factor. When 45 [mm] translation
command (that corresponds to 5 revolutions or 1800[deg] rotation of friction
wheel) was input, forceps rotated 14.3 [deg]. This means that the difference of
rotational traveling distance between FWMs is 14.3 [deg]. Thus we applied two
coefficients; 1 - (14.3 / 1800) to longer traveling one, and 1 + (14.3 / 1800) to
shorter traveling one.

Positioning accuracy of FWM was measured at every 45 [deg] from −180
[deg] to +180[deg] in rotation, and at every 20[mm] from −80 [mm] to +80[mm]

Table 1. Results of Working Range Evaluation

Working Range
with load w/o load

Pitch [deg] −35.0 – +37.0 −35.0 – +37.0
Roll [deg] ± 180.0 ± 180.0

Rotation [deg] no limitation no limitation
Translation [mm] no limitation no limitation
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Fig. 6. Positioning accuracy of gimbals mechanism, (a) Pitch, (b)Roll

-4

-3

-2

-1

0

1

2

3

4

-180 -135 -90 -45 0 45 90 135 180

P
o
si

ti
o
n
in

g
 e

rr
o
r 

[d
eg

]

Input angle [deg]

w/o load
with load

(a)

-0.5

0.0

0.5

1.0

1.5

-80 -60 -40 -20 0 20 40 60 80

P
o
si

ti
o
n
in

g
 e

rr
o
r 

[m
m

]

Input value [mm]

w/o load
with load

(b)

Fig. 7. Positioning accuracy of friction wheel mechanism, (a) Rotation, (b) Translation

in translation. The diameter of the forceps was 5 [mm], thus the torque applied
by the weight was 10 [mNm]. Results are shown in Fig. 7. The accuracy was less
than 4 [deg] in rotation of forceps, less than 1.2 [mm] in longitudinal translation.

4 Discussion

4.1 Working Range and Positioning Accuracy

Working range of gimbals mechanism and FWM did not affected by the load of
4 [N]. As for the roll motion of gimbals mechanism and rotation and translation
of FWM, they have no mechanical limitation to realize wide range of motion.
However, we can think mechanical limitation is desirable to ensure the safety in
the case of malfunction. Some kind of safety mechanism should be implemented
without wasting the advantages of gimbals mechanism and FWM.

As for the positioning accuracy of gimbals mechanism, it decreased as the
input value increased. However, results showed the relative small standard devi-
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ation and high repeatability, thus high positioning accuracy will be realized by
adding offset into input command depending on the load.

Positioning accuracy of FWM also decreased, especially in the rotation of
forceps. This would be because the friction force between idle roller and forceps
shaft to hold the forceps is smaller than external force by the load. Though we
used stainless steel for idle rollers and shaft from the viewpoint of future washing
and sterilization in the current prototype, we have to consider other materials
to strengthen the friction force.

4.2 Future Works

We have following plans as near-term future works.
1. We will measure the dynamic response characteristics with/without load.

The dynamic characteristics must be known to drive this manipulator smoothly
as a slave robotic arm in a master-slave system.

2. As a related work, we evaluated the tilting angle of idle rollers in FWM [15].
In that study, FWM with rollers of 45 [degree] tilting angle showed higher speed,
torque and force, and did not show any decrease in the positioning accuracy,
comparing with those of 30 [degree], those were used in this study. Thus we will
replace the FWMs with new ones.

3. Sterilization-compatible mechanism should be implemented for the clinical
application. We will use “separation method” that separates sterilized and non-
sterilized part via transmission part [14].

5 Conclusion

In this study, we evaluated the compact forceps manipulator using gimbals mech-
anism and FWM. As the results of experiments applying 4[N] load, positioning
accuracy of the gimbals mechanism was less than 1.2 [deg], and that of friction
wheel mechanism was less than 4 [deg] in rotation and 1.2 [mm] in translation.

This manipulator can work as a compact robotic arm to manipulate vari-
ous kinds of forceps, ex. wire-driven bending forceps [16], bending forceps using
linkage mechanism [17], and laser surgical tool [18], or rigid laparoscope can
be manipulated with this system. In other words, this manipulator can be a
common platform for robotized forceps. Thus we are going to integrate vari-
ous surgical instruments with this manipulator to use robotized sophisticated
surgical equipments.
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Spatial Motion Constraints for Robot Assisted
Suturing Using Virtual Fixtures

Ankur Kapoor, Ming Li, and Russell H. Taylor

Dept. of Computer Science, Johns Hopkins University

Abstract. We address the problem of the stitching task in endoscopic
surgery using a circular needle under robotic assistance. Our main focus
is to present an algorithm for suturing using guidance virtual fixtures
(VF) that assist the surgeon to move towards a desired goal. A weighted
multi-objective, constraint optimization framework is used to compute
the joint motions required for the tasks. We show that with the help of
VF, suturing can be performed at awkward angles without multiple tri-
als, thus avoiding damage to tissue. In this preliminary study we show the
feasibility of our approach and demonstrate the promise of cooperative
assistance in complex tasks such as suturing.

1 Introduction

The benefits of Minimally Invasive Surgery (MIS) over conventional open surgery
are well known, however, the surgeon faces the challenge of limited and con-
strained motion as well as loss of direct visualization. These factors make the
simple act of suturing probably the most difficult and time consuming of all MIS
tasks. For these reasons, robotic assisted MIS has gained increasing popularity
during the last decade. As shown in [1] by Ruurda et al. there is a significant
improvement in time needed per stitch with robotic assistance even for experi-
enced surgeons. Hubens [2] reaches a similar conclusion for standardized surgical
tasks performed by inexperienced surgeons. To further augment the surgeon’s
ability to manipulate the surgical instruments using robotic system in a confined
environment, various techniques have been proposed in literature. In [3] the sur-
geon’s view is enhanced by 3D vision. Kitagawa et al. [4] provide force feedback
through sensory substitution to achieve suture results that are closer to ideal
conditions. It is important to note that in the various surgical systems described
above the surgical procedures are still performed by surgeon; the robotic device
merely follows the human commands. Estimation of distances and angles with
a “key hole” view provided by endoscopic cameras becomes difficult and time
consuming for surgeons. Consequently, the suturing motion is often realized by
multiple trials that extend the operating time as pointed out by Ruurda et al.
[1]. This indicates that a robotic assistant system that uses surgeon’s intelli-
gence for high level cognition tasks and at the same time fills the gap in sensory
perception by providing motion guidance will be useful.

Different techniques [5,6,7,8] have been proposed to provide interaction modes
in which the surgeon shares the control of the robot with the computer process.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 89–96, 2005.
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The goal of the computer process is to provide anisotropic motion behavior to
the surgeon’s motion command besides filtering out tremor and disturbance to
enhance precision and stability. Li and Taylor [9] extended Funda’s work [10]
to generate virtual fixtures (VF) to assist the surgeon to manipulate surgical
tools in a complex work space environment, in which anatomical constraints are
automatically generated from 3D medical images.

The suturing task was observed and analyzed as performed in training videos.
This task involves the following steps 1) (Select) Determine a suitable entry and
exit point for the suture needle leaving sufficient room from the edge to be
approximated. 2) (Align) Grasp the needle, move and orient it such that the
tip is aligned with the entry point. 3) (Bite) Entry and exit “bites” are made
such that the needle passes from one tissue to be approximated to the other. 4)
(Loop) Create a suture loop to tie a knot. 5) (Knot) Secure the knot under proper
tension. Previous works have focuses on steps 4 and 5 and used a shuttle device to
address the issue of manipulation of curved needle. Kang and Wen [11] and Nagy
et al. [12] have focused on the knot tying aspects of suturing. Both of them use
tele-manipulation with haptic feedback to perform these tasks. Nageotte et al.
[13] have presented a kinematic analysis of the entrance and exit bites involved
in stitching task. In this work we describe our recent approach to VF that can
combine guidance with forbidden regions relative to features on the target and
its application to the task of stitching.

2 Methods

In this work we address the align and bite steps of the suturing process described
above, where the primary challenges are manipulation of curved needle under
non-ideal haptic using a robot with complex kinematics. In the align step, the
goal is to move the robot to align the position and orientation of the suture
needle such that it pierces the tissue correctly, at the same time minimizing
extraneous motion of the needle and robot. The goal of the bite step is to move
the needle tip from entry point to the exit point with minimum damage to the
tissue through which the needle passes.

2.1 Constrained Control Algorithm Overview

For this work, we assume that the robot is holding the needle and the needle
tip and target have been registered in the robot coordinate system. The outline
of the algorithm is as follows: 1) Obtain the incremental motion desired by
the user through force sensor, joystick or master 2) Formulate a set of linear
constraints based on current robot state and specified task 3) Use the robot
and task instantaneous kinematics to generate a quadratic program with linear
constraints. The general form of the program is

arg minΔq ‖W (Δx − Δxd)‖,
s.t. HΔx ≥ h, Δx = JΔq

(1)

where Δq is the desired incremental motions of the joint variables, Δxd, Δx
are the desired and the computed incremental motions of the task variables
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in Cartesian space, respectively. J is the Jacobian matrix relating task space
to joint space. W is a diagonal matrix for weights selected so that the errors
of critical motion elements are close to zero, while errors in other non-critical
motions simply stay as low as possible within tolerances allowed by the constraint
set. 4) Solve the quadratic program for the incremental joint motion, which is
used to move the robot. We would like to note that the constraints of step 3
might not be linear such as the distance function. In such cases we use a linear
approximation, which allows us to utilize the structure of least squares problem
with linear constraints, and solve the quadratic program in time frames suitable
for robot control. We have used the Lawson and Hanson’s algorithm as presented
in [14].

2.2 Modeling of Task

We assume that the entry and exit points are known in the robot coordinate
frame. These could be specified by surgeon using an optical marker tool to indi-
cate points in space or by using a computer vision system to determine suitable
points on the surface based on distance from the edge to be approximated and
transferred to the robot coordinate frame (Reader is refered to [15] for a general
purpose toolkit for computer vision).For the purpose of this work we use a point
based registration method using Optotrak. We shall denote pi as the position of
the origin of frame {i} with respect to world coordinates, where {i} is any one
of the frames shown in Figure 1.

x̂

x̂

x̂

x̂

ŷ

ŷ

ŷŷ

ẑ
ẑ

ẑ ẑ{w} {r}

{e}

{n}

Force
Sensor

Suture Needle

Custom Needle
Holder

Fig. 1. Custom needle holder,
needle and assigned frames

Align Step. We now present a strategy that
could be used for the align step with the follow-
ing substeps. (Substep 1) First the needle tip is al-
lowed to move in a straight line such that the nee-
dle tip coincides with the desired entry point; at
the same time its orientation is allowed to change
only about an axis such that this motion will re-
sult in the tangent at needle tip being coincident
with the normal to the surface at the entry point.
(Substep 2) In the next substep the orientation
of the normal to the needle plane is allowed to
change, such that the needle plane coincides with
line joining entry and exit points. Assistance is
provided by not allowing any motion of needle
tip or the tangent at the needle tip. (Substep 3)

Once the desired orientations are reached we allow the surgeon to penetrate the
tissue by a small distance, (Substep 4) followed by motion constraints that would
let the surgeon bring the tangent at needle tip to coincide with the desired entry
direction without changing the plane normal and tip position. The align step is
completed once the desired orientation is reached, which is computed using the
entry and exit points specified by the surgeon and the needle radius. In all these
substeps only those motions that bring the needle closer to the desired position
and orientation are allowed.
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The above sequence of substeps ensures that the needle tip (cutting point) is
normal to the tissue surface at the time of piercing the tissue. This is particularly
favorable for hard tissue such as muscle as it makes the optimal use of the cutting
point of needle. In case of soft tissue, the surgical needles used do not have a
sharp cutting point. Thus in order to reduce the number of substeps and hence
the time, an alternate strategy in which the substeps are to align needle tip
directly with desired direction instead of surface normal and skiping the last two
substeps could be used. For the remainder of this paper, we shall focus on the
former approach. For our algorithm, the later approach can be considered as a
special case of former.

Moreover, for the current work we ignore the deformation in the tissue. For
the future we want to extend this approach by regarding the deformation and
updating the targets accordingly.

Bite Step. (Substep 5) Once the entry and exit points are determined, and the
radius of needle is known, it easy to see that the trajectory of the needle tip that
would cause minimum damage to the tissue lie on a circle with entry and exit
points as points on a chord and with radius equal to needle radius. To ensure
sufficient depth of penetration in the tissue we ensure that the needle plane is
parallel to the line joining entry and exit points and the surface normal at entry
point. In this step our constraint motion algorithm permits only those motions
that satisfy these constraints.

2.3 Algorithm Implementation

In our approach the required VF constraints for each substep are analyzed and
broken into a combination of one or more of basic constraints.

Center Line
of wound

Ideal Path

Radius of
Center of
Rotation

Suture

EntryEntryExit
PointPoint

Tissue surface

Surface
Normal

Direction

Substep 2

Substep 4

Substep 5

Fig. 2. Ideal path of needle tip for
minimal tissue tear is a circle with
the same radius as the suture needle
and centered at needle center

We make use of the common structure be-
tween the different substeps and construct
generalized constraints that take desired
target into consideration. Furthermore we
utilize the sequential nature of the task
to switch between different substeps. The
switch could be triggered when the error
between the current value and target de-
creases below a threshold. We now describe
a method to compute H and h in the in-
equality subject function of (1) correspond-
ing to one of basic constraints, then we show
how we can combine then together to form
the desired VF behavior. We use MOVE (and
ROTATE) for the constraint of moving along a
desired direction (or rotate about a desired

direction). We use the name STAY (and MAINTAIN) for a VF designed to maintain
a desired position (or orientation). We denote signed error for target by δ, its
translational part by δp and the rotation component by a Rodriguez vector δr.
Since the angles are small, we can approximate the Rodriguez vector by Euler
angles.
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STAY Constraint. We are given a desired target point pd
i in some frame {i}.

This gives signed error as δ = [pi − pd
i , 0]t. We require that after incremental

motion due to input, the position be as close as possible to the target point. This
requires that ‖δp+Δpi‖ ≤ ε1 where ε1 is a small positive number that defines the
size of the range that can be considered as the target. To gain computational
efficiency we would like to solve a quadratic program with linear constraints.
Thus, we linearize the above constraint by considering projections of δp + Δpi

on a finite set of lines through target point. These can be written as
[

cαicβj , cαisβj , sαi, 0, 0, 0
]t

(δ+Δx)≤ε1; i=1,··· ,n; j=1,··· ,m.

where cαi=cos 2πi
n ; cβj=cos 2πj

m ; sαi=sin 2πi
n ; sβj=sin 2πj

m

(2)

Then we set H ∈ �6×mn and h ∈ �mn as

H =

⎡⎢⎢⎢⎣
−cα1cβ1, −cα1sβ1, −sα1, 0, 0, 0

···
−cα1cβm, −cα1sβm, −sα1, 0, 0, 0

···
−cαncβ1, −cαnsβ1, −sαn, 0, 0, 0

···
−cαncβm, −cαnsβm, −sαn, 0, 0, 0

⎤⎥⎥⎥⎦ , h =

⎡⎢⎣−ε1
...

−ε1

⎤⎥⎦− Hδ (3)

ε1

δp
δp

ΔpiΔpi

δp + Δpi

δp + Δpi

pd
i

pipi

u
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l̂

ε2
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i

Π

L
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Fig. 3. Geometric relation for (a) STAY and
(b) MOVE

MOVE Constraint. We are given a
desired line L(s) = L0 + l̂ ·s in some
frame {i}. We require that the posi-
tion after incremental motion due to
input be as close to the line as possi-
ble. If pc

i is the closest point on the
line to the current position, then the
signed error is δ = [pi − pc

i , 0]t. We
define ui as the projection of pi −pc

i

on a plane Π that is perpendicular
to the line. Our requirement is that
‖ui‖ be close to zero. If R denotes a
rotation matrix that would transform a vector in plane Π to world coordinates,
then any unit vector in plane Π with O (Figure 3) as origin can be written in
world coordinate frame as R

[
cos γ, sin γ, 0

]t .
Like before we approximate by considering only a finite set of vectors, and

our constraint can be written as[[
R
[

cγi, sγi, 0
]t
]t

, 0, 0, 0

]t
(δ+Δx)≤ε2; cγi=cos 2πi

k ; sγi=sin 2πi
k ; i=1,··· ,k (4)

We can set H ∈ �6×k and h ∈ �k as,

H =

[
−
[
R
[

cγ1, sγ1, 0
]t]t

, 0, 0, 0
···

−
[
R
[

cγk, sγk, 0
]t]t

, 0, 0, 0

]
, h =

[
−ε2· · ·−ε2

]
− Hδ (5)

The construction of H and h for MAINTAIN and ROTATE follow the same lines,
and uses the later three columns of matrix H corresponding to three rotational
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components in Δx. We refer the reader to [16] for further details on contruction
of matrix H for different constraints. A combined constraint can be applied to
a same frame or to different frames. For the case of different frames we con-
sider Jacobian corresponding to each frame and the inequality subject function
is of the form (6a) where Ji(q) is the Jacobian matrix that maps Cartesian ve-
locities of frame {i} to joint space. For the case of same frame the inequality
subject function of (1) is of the form (6b) where subscript p and r denotes the
translational and rotational constraints respectively.⎡⎣H1 0

. . .
0 Hk

⎤⎦⎡⎣J1(q)...
Jk(q)

⎤⎦Δq ≥
⎡⎣h1...

hk

⎤⎦ (6a)
[
Hp

Hr

]
J(q)Δq ≥

[
hp

hr

]
(6b)

3 Materials

As a preliminary test bed (Figure 4) we have used a Johns Hopkins Univer-
sity Steady-Hand robot [17], which is equipped with a custom needle holder
and a 6-DoF force-torque sensor (ATI Nano43 F/T transducer) mounted on the
tool handle. For these experiments we have selected a 3/8 circle 30mm cutting
needle from Ethicon (needle diameter 1mm). The Optotrak (Northern Digital
Inc, Waterloo, CA) infrared optical position tracking system was used for robot
calibration.Our control algorithm is independent of manipulator type and in-
put form a joystick or a master robot can easily replace the force input to the
controller. The phantom to mimic the tissue is contructed by dissolving 4% by
weight of agar in distilled water, maintaing this solution at 90 degC for one hour
and solidifying the solution by rapidly cooling it to −20 degC.

4 Experiments

We performed three sets of experiments; The first set was computer simulation
to check the feasiblity of motion given the constraints and robot kinematics. The
second set was experiments with the robot. We recoreded the encoder reading
of the robot joints and used direct kinematics of the robot to verify our algo-
rithm by measuring the errors between the ideal target path and that followed
by the robot. Figure 5 show the errors between actual and ideal robot motion as

Entry
Exit

Tissue
Phantom

Force
Sensor

Needle

Substep 1Substep 1 Substep 2 Substep 2

Substep 3 Substep 4 Substep 5Substep 5

Fig. 4. (left) Experimental Setup, Insert: Path of needle (right) Phantom being sutured
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Fig. 5. The magnitude of error in needle tip with respect
to ideal path as measured by robot encoders

Table 1. The error in
ideal and actual points as
measured by OptoTrak

Entry Exit
Robot 0.6375 0.7742
Manual - 2.1

measured with robot encoders and kinematics for different substeps. The values
(εi in equations 3 and 5) for positional and angular tolerance were selected as
0.5mm and 0.25 deg. The diameter of the needle was 1mm. The last set of ex-
periments were a demonstration of our algorithm using a phantom tissue. Since
the phantom is opaque, the measurements available are the entry and exit points
of the needle. Table 1 presents the differences between the user specified targets
and the actual ones as measured by an optical tool. As expected the errors mea-
sured by Optotrak are higher than measured by encoders alone, because this
represents the overall accuracy of the system, which also includes errors arising
from calibration of the needle and accuracy of Optotrak (0.1mm). The resid-
ual calibration errors are appear as errors in the entry point errors in Table 1
above. Average errors for free hand suturing as performed by four users (5 trials
each), using the same needle holder and without robot assistance, are presented
in Table 1. We believe that robot assistance can improve accuracy especially
in constrained environment such as that of endoscopic surgery. Moreover, robot
assisted motions did not require multiple trials and large undesirable movements
of tissue, which is often the case in free hand suturing. Figure 4 shows the pro-
gression of different substeps for one of the trials. The insert in Figure 4 shows
the phantom with a portion cut out so that the actual path taken by the needle
is visible, the entry and exit points are 13.5mm apart. As seen in the Figure 4
we have selected an angle that places limits on performing the suture manually,
to emphasize the ability of our algorithm to assist in non-favorable orientations.

5 Conclusion

Endoscopic surgery presents a constrained working environment for surgeons,
and the surgeons must deal with the realities of long instruments and awkward
angles. In this paper we have implemented the constrained control for performing
“align” and “bite” steps, given a surface, entry and exit points. Using guidance
virtual fixtures we provide assistance to the surgeon allowing only those motions
of the needle that are feasible and move the needle towards the desired goal. This
helps realize the stitching motion without multiple trials and large undesirable
movements of tissues involved. This formulation can be extended to include
additional constraints such as collision avoidance and anatomy-based constraints
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[9]. We plan to extend these results by integrating vision to take into account
deformation and also add force feedback. We are also working on implementing
this algorithm for control of a high dexterity snake-like robot [18] geared towards
long and slender anatomy such as throat.
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Abstract. For delicate operations conducted using surgical robot systems, sur-
geons need to receive information regarding the contact forces on the tips of 
surgical instruments. For the detection of this contact force, one of the authors 
previously proposed a new method, called the overcoat method, in which the 
instrument is supported by sensors positioned on the overcoat pipe. This 
method requires cancellation of the acceleration forces of the instrument/holder 
attached to the overcoat sensor. In the present report, the authors attempt to use 
acceleration sensors to obtain the acceleration forces of the instrument/holder. 
The new cancellation method provides a force-detection accuracy of approxi-
mately 0.05-0.1 N for a dynamic response range of up to approximately 20 Hz, 
compared to approximately 1 Hz, which was achieved by using acceleration 
forces based on the theoretical robot motion.  

1   Introduction 

In laparoscopic surgery, a surgeon operates using specially designed instruments 
through ports formed in the patient’s abdomen. This technique reduces surgical dam-
ages to the patient’s body and results in a shortened recovery period. However, the 
surgeon is significantly constrained with respect to the loss of direct visual informa-
tion and manual operations. Surgical robot systems such as the da Vinci system and 
the Zeus system have substantially reduced these constraints. However, at present, 
haptic feedback is not provided by these systems. Although surgeons are able to view 
tissue deformation as a measure of external force, this type of visual compensation is 
limited to elastic materials and is not suitable for bone structure or suture materials.  

A great number of studies have been conducted, though the references are omitted 
here,  in order to investigate 1) the tactile force, 2) the grasping force of the forceps, 
and 3) the tip end force of the instrument, in combination with a) the effect of force 
feedback on the surgeon’s skills as well as the development of b) force sensors, c) a 
man-machine interface and d) bilateral controls. The present report concerns the de-
velopment of b) force sensor equipment for use on a slave robot for sensing the 3) tip 
end force of the instrument. 

Taylor [1] pointed out that the friction force between the instrument and the trocar 
may limit sensitivity of the external force detection. Madhani [2] reported a vital 
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Fig. 1. Basic principle of overcoat method. 
Force sensors support instrument. 

method for estimating the tip force from the motor torques that drive a multiple-
degree-of-freedom forceps. Although this system was tested on a master slave system, 
the force feedback was reported to give the operator annoyance. Seibold [3] installed a 
six-axis force sensor to the end of a forceps, but reported that precise sensing is diffi-
cult with respect to forces in the direction of the shaft, which include the pulling force 
for the gripping jaws of the forceps. 

 One of authors [4] proposed a new method, called the overcoat method, in which 
the instrument is supported by force sensors that are located on the inner face of the 
overcoat pipe, as shown in Fig.1. The overcoat sensing system accepts most types of 
instruments. In addition, this system allows measurement of the external force acting 
on the tip of the surgical instrument attached to the slave robot in laparoscopic robotic 
surgery and is free from the frictional forces generated on the trocar.  

 The main concern regarding the overcoat method is the construction of the force 
sensors. In our first attempt [4], three-axis force sensors were placed on the outside of 
the abdomen and were driven at semi-static speed. This structure provided only a 
short sensing range of force magnitude. In our second stage attempts [5],[6], in order 
to provide higher speed of the instrument motion, the acceleration force derived from 
the instrument mass was compensated with the acceleration force due to the robot 
motion. However, the obtained dynamic response was only up to approximately 1 Hz. 
This poor response is a result of the robot arm motion. Robot has inherently character 
frequency. Main character frequency of industrial robot is around from several Hz to 
20 Hz. The robot used as test equipment has the character frequency of approximately 
7 Hz. Low-pass filtering of 2Hz yields a measuring system response of around 1 Hz. 

For detecting delicate changes of 
contact force and for applying the 
overcoat method to a robot that has 
such rigidity as that of industrial robot, 
we have to improve the dynamic 
response of the force measurement 
system. 

Recently, small acceleration sensors 
have become available. The present 
report describes an attempt to improve 
the response characteristic of the 
measurement system by means of 
direct measurement of the accelera-  
tion of the instrument mass for com-
pensating  the acceleration force.  

2   Theory of Force Measurement 

Feedback Force Components. The goal of the present study is to provide force 
feedback to the fingertips of the surgeon. So, three orthogonal force components act-
ing on the tip end of the instrument are measured herein. 

Outline of the Overcoat Method.  Fig.1 shows the basic principle of the overcoat 
method. A number of sensors that are installed inside the overcoat pipe support the 

 



 Contact Force Measurement of Instruments for Force-Feedback on a Surgical Robot 99 

 

Fig. 2. Test trajectories for point “R” 

instrument/holder that contains the instrument, the driving mechanisms and the hold-
ers for the instrument. The overcoat pipe is inserted into a trocar and is handled by a 
slave robot hand. In actual construction, the instrument shaft is inserted into an inner 
pipe and the force sensors are arranged between the inner pipe and the overcoat pipe. 
The mass of the instrument/holder and its acceleration make up the acceleration force. 
If the acceleration force can be subtracted 
from the force measured by the overcoat 
force sensors, then the force acting on the tip 
end of the instrument can be detected. 

Coordinate System and Force Balance.  
Fig.2 shows the shaft of the instrument and 
the X, Y, Z coordinate system fixed on the 
ground. As shown in Fig.2, in the present 
report, the shaft direction of the instrument 
will be oscillated. For the expression of 
forces, let us introduce new coordinate axes 
and fix them to the instrument so as that the z 
axis coincides with the shaft of the in-
strument, the x axis is set parallel to the 
ground plane at the starting position of the instrument and the x, y and z coordinates 
form an orthogonal coordinate system, as shown in Fig.5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Test setup of the overcoat sensing system 

Let us define the following:  fe (fx,fy,fz) is the detected force that acts on the tip end 
of the instrument, f (fsx,fsy,fsz) is the force sensed by the overcoat sensors, mi is the 
mass of the instrument/holder, i

 is the motional acceleration of the center of gravity 
of the instrument/holder, m  is the mass of the overcoat sensor frame, s is the mo-
tional acceleration of the gravity center of the overcoat sensor frame, and g is the 
gravitational acceleration. The force balance of the instrument/holder is as follows:  
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Fig. 4. Overcoat sensor. (top); inner part 
that is set on the inside Bz: bending beams 
for x, y and z forces, of abdomen, Bix, Biy, 
Bz: bending beams for x, y and z directional 
forces, (bottom); outer part, Box, Boy, bend-
ing beams for x, y and z forces. 

fe + f  + mi i + g  + m s + g = 0, 

a i= i + g , a s= s + g. 
(1) 

Here, the accelerations a i(aix,aiy,aiz)  and a s (asx,asy,asz) are to be measured directly 
using acceleration sensors. 

3   Experimental System 

Experimental System. Fig.3 shows anoverview of the experimental system. The 
system is composed of a six-axis slave robot, the overcoat sensor, an instru-
ment/holder and a trocar (commercial 
item) supported by a universal joint 
mechanism. The base frame of the 
overcoat sensor is attached to the robot 
hand through a universal joint for adjusting 
miss-alignment between the overcoat 
sensor pipe axis and the robot hand rota-
tional axis. 

Overcoat Sensor. The overcoat sensor 
consists of three stainless pipes: an inner 
pipe, through which the instrument is 
inserted, a force sensor pipe, to which 
deflectable beams are attached for strain 
gauges, and an outer pipe (overcoat pipe), 
which covers the sensor pipe. The inner 
pipe has an inner diameter of 5.5 mm, and 
the outer pipe has an outer diameter of 10 
mm. Fig.4 (top photograph) shows the 
inner part of the sensor pipe. Here, the 
outer pipe is removed. The 0.5-mm-thick 
sensor pipe has two sets of parallel deflec-
tion beams for the force component fsxi and 
that for the fsyi, as well as a deflection beam 
structure for allowing displacement by fsz 
in the shaft direction. Fig.3 (bottom photograph) shows the outside sensor part that is 
placed on the outside of the abdomen. This sensor part has three sensor components. 
Each sensor component has a set of two parallel bending plates for sensing each force 
component. The three sensor components for the fsxo, fsyo and fsz directional forces are 
stacked one-by-one inside the sensor in a box shape. 

The overcoat sensor has five outputs fsxi, fsyi, fsxo, fsyo and fsz. The x and y compo-
nents are summed as fsx = fsxi + fsxo and fsy = fsyi + fsyo using a computer. The masses of 
the outer sensor frames, onto which parallel bending plates are fixed, are 120.4 g for 
fsx, 85.7 g for fsy, and 10.7 g for fsz, respectively. The sensors have the linearity ap-
proximately 5% for 10 N and the resolution smaller than around 0.02N, as low pass 
filtered signals. 
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Fig. 7. Low-pass filter system 

Trocar and Instrument/Holder.   A commercially available trocar for an instrument 
shaft diameter of 10 mm was attached to a universal joint mechanism. The design of 
instrument/holder mechanisms is one of the future subjects. To test the overcoat 
method, we have to assume the instrument/holder mass. So, the authors made a sim-
ple holder in which a commercial and hand operate forceps is installed and the open-
close motion of the jaws of forceps is driven by a geared motor (back side of the 
plate) that has larger power than the required one, as shown in Fig.5. The total weight 
of the trial instrument/holder is approximately 350g. So, the authors attached a model 
weight (400g ≅ 350g) to the inner pipe, as shown in Fig. 6. Authors expect now that 
the weight of instrument/holder may have around 500g. In this case, as and ai become 
equal (, and it will be expressed as as (asx,asy,asz)). 

 
 

 

Fig. 5. An example of the instrument/holder 
setup 

Fig. 6. Acceleration sensors and weight that 
represents the instrument/holder 

Acceleration Sensor and Low Pass Filters.  A two-directional acceleration sensor 
ADXL202E (Analog Devices Co.) was used as an acceleration sensor. The sensor has 
the outer dimensions of approximately 5mm×5mm×2mm and a cross-axis sensitivity 
of approximately 2%. For three-directional sensing, two sensors are arranged as 
shown in Fig.6. 

The sensor outputs were passed through 
Low-Pass Filter (LPF) system, as shown in 
Fig. 7. The LPF generally gives a phase sift to 
the signal. Calculation must be performed for 
several output signals. So, we used filters that 
have almost the same characteristic for each 
of the signal passes. The acceleration sensor 
has two types of output signal; analog type 
and pulse width modulation (PWM) type. 
PWM type was selected in consideration of 
noise mixing in signal transmission. In order 
to obtain a smooth analog signal, a 2nd-order 
Butterworth LPF (approximately 50 Hz) was used, as shown in Fig. 7. The LPF for 
the outputs of the force sensors were adjusted to those of the acceleration sensors, in 
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order to obtain almost the same characteristic. The above-mentioned values depend 
on the nominal values of the R C electric parts, and so have the same accuracy. 

Slave Robot.  The slave robot is a type of six-axis serial linkage. The rotation rigidity 
around the first axis of the robot arm is low, and its character frequency is approxi-
mately 7-8 Hz which is in the character frequency range of typical industrial robot. 

4   Experimental Results 

Experimental Trajectories of the Robot Hand.  The robot hand point “R” was 
driven sinusoidally in two trajectories “a” and “b”, as shown in Fig.2. The starting 
position of the instrument shaft is inclined 30° from X-Y plane and is parallel to the 
Z-Y plane. Trajectory “a” exists on a plane parallel to the Z-Y plane and has an 
oscillation of (u sin(2 ft), f: frequency) for an amplitude (u = 50 mm in circular arc) 
around the trocar point “T”. Trajectory “b” has the same oscillation as that of trajec-
tory “a”, but the swing axis exists on a plane parallel to the Z-Y plane. We can easily 
observe the motional acceleration effect in trajectory “a” and the gravitational accel-
eration effect in the trajectory “b”. 

 
Data Acquisition and Procession.  All of the input signals were reset to zero at the 
starting position of the trajectories. The force and acceleration by each sensor were 
measured three times for both trajectories “a” and “b” at a speed 0.5 Hz without load-
ing the tip end of the instrument, i.e., fx = fy = fz = 0. 

In canceling the acceleration forces, we have to consider the cross-axis sensitivity 
of the acceleration sensor. Therefore, the overcoat force sensor outputs fsx, fsy, and fsz 
were cancelled through the following expression: 

 (fx, fy, fz)
T (fsx, fsy, fsz)

T – K((ax,ay,az)
T - c T) , 

K=

−
−

−−

4504.00651.00081.0

0249.04120.00242.0

0182.00626.06360.0

,  c=(0.0021,-0.0166,0.0035).  
(2) 

Here, the diagonal coefficients of the matrix “K” correspond to the masses of each 
directional sensor, and the other values show the effects of the cross-axis sensitivity. 
The constant “c” corresponds to the offset of the acceleration sensor outputs. 

The constants “K” and “c” are calculated using a regression for each force direction 
x, y and z, for each data corresponding to the three measurements for both trajectories 
“a” and “b”, under the condition fx = fy = fz = 0. The 18 sets of constants are averaged 
to obtain the constants shown in Eq. (2). 

The diagonal constant referring to the x direction on the matrix “K” shows that the 
mass in the x direction is approximately 0.636 Kg. This value differs from the meas-
ured mass, i.e., (0.400 + 0.120 = 0.520 Kg/0.636 Kg), and the same method yields 
0.486 Kg/0.412 Kg for y and 0.411Kg/0.450Kg for z, respectively. These values ex-
ceed the expected accuracy, which is smaller than 10%. Poor accuracy with regard to 
the x directional data, will also be shown later. 
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Fig. 10. Detected force amplitude for hand starts 
oscillating severely no-contact condition, i.e. 
measurement error 
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Fig. 8. Example of force cancellation on 
trajectory “b”.  fsx; force sensor output, asx; 
acceleration sensor output, fx, fy, fz; detected 
forces, Afsx,Aasx: amplitude of fsx, asx for 
frequency subscript 7-8:7-8Hz, subscript 0.5:0.5Hz, 
K11:11 component of matrix K. 

Fig. 9. Force amplitude/frequency analysis by 
FFT for the data shown in Fig.8 

Measurement Errors. As the worst case, which shows the largest error in the de-
tected forces, Fig.8 shows the force component fsx for trajectory “b” and the detected 
forces fx, fy, and fz that should be zero. Fig.9 shows the results of  FFT analysis for the 
same data of the forces fsx, fx, fy and fz. Fig.9 shows that the amplitude of the signal fsx 
in the frequency ranges of up to approximately 20 Hz is almost canceled by the accel-
eration forces.  

As shown in Fig.8, the 
accelerationsensor output asx follows 
the force fsx without phase lag of the 
signal, even though the robot and 
with large amplitude after approxi-
mately 9 seconds. However, the 
large amplitude of the resonance  
frequency of 7-8 Hz gives the largest 
error for the detected force fx. In Fig. 
8, the four arrows indicate two types 
of  amplitude Afsx, Aasx for the force 
fsx and the acceleration asx, and for 
frequency 0.5 Hz and 7-8 Hz, 
respectively. The ratio (amplitude 
Afsx7-8 of the force fx at a frequency 
7-8 Hz) /(amplitude Afsx0.5 of the 
force fx at a frequency of 0.5 Hz) is 
approximately 1.3 times of that 
(Aasx7-8 /Aasx0.5) of the acceleration 
asx. This makes the detected force errors large. This is a future problem that must be 
solved in order to improve fine force detection. 
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Fig.10 shows the detected forces fx, fy, and fz for trajectories “a” and “b”, and for 
three measurements. The amplitude of the detected force for no-contact condition 
corresponds to the measurement error of the system. The amplitude of the force is in 
the range of approximately 0.05-0.1 N, for every kind of the forces. 

5   Conclusion  

In order to feed back the contact force of a surgical instrument to the surgeon in a 
laparoscopic surgical robot system, the overcoat method has been previously pro-
posed by one of authors. This method requires cancellation of the acceleration force 
of the instrument/holder. In the present study, the authors attempted to use accelera-
tion sensors to estimate the acceleration forces of the instrument/holder, and the fol-
lowing results were obtained. The cancellations performed using the acceleration 
sensors can provide a force-detection accuracy of approximately 0.05-0.1 N for a 
dynamic range of up to approximately 20 Hz.  

The cancellation method examined herein improved the dynamic response range to 
20 Hz from 1 Hz by using robot motion for calculating the acceleration of the instru-
ment/holder. 
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Abstract. Percutaneous Vertebroplasty (PVP) is an effective and less
invasive medical treatment for vertebral osteoporotic compression frac-
tures. However, this operative procedure is quite difficult because an
arcus vertebra, which is narrow, is needled with accuracy, and an op-
erator’s hand is exposed to X-ray continuously. We have developed a
needle insertion robot for Percutaneous Vertebroplasty. Its experimental
evaluation on the basic performance of the system and needle insertion
accuracy are presented. A needle insertion robot is developed for PVP.
This robot can puncture with accuracy and an operator does not need
to be exposed to X-ray. The mechanism of the robot is compact in size
(350 mm × D 400 mm × H270 mm, weight: 15 kg) so that the robot
system can be inserted in the space between C-arm and the patient on
the operating table. The robot system is controlled by the surgical navi-
gation system where the appropriate needle trajectory is planned based
on pre-operative three-dimensional CT images. The needle holding part
of the robot is X-ray lucent so that the needle insertion process can be
monitored by fluoroscopy. The position of the needle during insertion
process can be continuously monitored. In vitro evaluation of the sys-
tem showed that average position and orientation errors were less than
1.0 mm and 1.0 degree respectively. Experimental results showed that
the safety mechanism called mechanical fuse released the needle hold-
ing disk properly when excessive force was applied to the needle. These
experimental results demonstrated that the developed system has the
satisfactory basic performance as needle insertion robot for PVP.

1 Introduction

Percutaneous Vertebroplasty(PVP) is an effective treatment for vertebral osteo-
porotic compression fractures (Figure 1). In this technique, the surgeon inserts
one or two bone biopsy needles into fractured vertebral body, and injects semi-
liquid plastic cement called bone cement into the vertebral body through the
needle. After injection the bone cement hardens, the vertebra is stabilized. In
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this treatment technique, it is one of the most important procedure that the sur-
geon inserts needle into vertebra precisely. Because the spinal cord and nerves
exist through the vertebra, if the surgeon injures nerves by the needle, it will
cause critical accidents such as a partial paralysis of the patients. The surgeon
must insert needles along appropriate trajectory that locates in a narrow space
of pedicle of arch of vertebra. Thus, surgeons must have considerably high skill
and experiences in order to control the position of needle. When the needle is
inserted percutaneously, the surgeon uses X-ray fluoroscopy to confirm the po-
sition of needle resulting in continuous exposure of surgeon’s hand to X-ray. A
new engineering assistance is required to improve the reliability, accuracy, and
safety of this procedure.

Fig. 1. Percutaneous Vertebroplasty

In order to improve the above-
mentioned subject, we have developed a
needle insertion robot for PVP (Figure
2)[1]. Cleary et al. developed needle inser-
tion robot for nerve and facet blocks un-
der X-ray fluoroscopy[2]. Compared with
robot for nerve and facet blocks, the robot
for PVP must generate larger insertion
force to make the needle penetrate cor-
tical bone of vertbra. On the other hand,
the size of the robot must be compact. In
this report, design of the developed nee-
dle insertion robot for percutaneous vertebroplasty, its experimental evaluation
on the basic performance of the system and needle insertion accuracy are pre-
sented. The positioning accuracy of the robot itself was evaluated and the safety
mechanism in case of excessive applied force was also tested. Finally, accuracy
of needle insertion of the robot under image guidance was evaluated using a
vertebra model.

2 Materials and Methods

Design of the Needle Insertion Robot

The developed robot has the following features:

1. The robot is rigid enough to generate required needle insertion force.
2. The robot is compact so that the robot system (needle positioning mecha-

nism, needle insertion and rotation mechanism) can be inserted in the space
between C-arm and the patient on the operating table. We have also de-
veloped an X-ray lucent operating table made of carbon reinforced fiber
materials (Mizuho Ltd., Japan).

3. The needle holding part of the robot is X-ray lucent so that the needle
insertion process can be monitored by fluoroscopy (Figure 3).

4. The position and orientation of the needle can be adjusted with five degrees
of freedom in three-dimensional space.
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5. The robot system is controlled by the surgical navigation system where the
appropriate needle trajectory is planned based on pre-operative three dimen-
sional CT images.

6. The safety mechanism that avoid injury of the patient by the needle when
excessive force is applied to the needle due to malfunction of the system.

The needle insertion robot is shown in Figure 2. The robot consists of three
parts: 1) Rough positioning mechanism, 2) Accurate positioning mechanism, 3)
Puncture mechanism. The rough positioning mechanism does not have any actu-
ator. It has only electro-magnetic brake to fix two joints. (X, and Y in Figure 4).
It positions the accurate positioning mechanism and puncture mechanism in
two-dimensional plane parallel to the operation bed surface. One actuated trans-
lational positioning mechanism is used to position the mechanism in z direction
shown in Figure 4.

The accurate positioning mechanism has four degrees of freedom for deter-
mination of orientation and position of the puncture mechanism: two DOF for
to perpendicular translational motions (±10 mm in s[1] and s[2] direction shown
in Figure 4) and two DOF for rotating motions around two axis intersecting
with each other at right angle (±30 degrees in α and ±5 degrees in β shown in

Fig. 2. Developed Needle Insertion
Robot

Fig. 3. C-arm X-ray image of the robot
which has radiolucent

Fig. 4. Robot Mechanism
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Figure 4). R-guide was used to realize the rotation for α axis, and remote center
of motion mechanism consisting of two linear actuation mechanism was used to
reduce the thickness of the mechanism[3].

The puncture mechanism inserts the needle into the patients (shown as s[3]
in Figure 4) and rotates the needle in reciprocal manner with amplitude of 120
degrees. The stroke and resolution of the needle insertion mechanism are 110
mm and ±0.2 mm respectively (Figure 4). The holder is a plastic disk fixed to
cylindrical part made of stainless steel that is rotated by a DC motor. Inner
diameter of the cylinder is 52 mm. We can observe the position of needle by
intra operative X-ray fluoroscopy through the cylinder. Surgeon can monitor
the position of the tip of the needle during needle insertion process. It also
has a force/torque sensor to measure the force applied on the robot during
needle insertion. It is reported that the axial force during needle insertion to
human vertebra preserved under formalin fixation. And it is reported that the
forces did not exceed 25 N when feed rate of the needle was 0.05-0.5 mm/s.
We designed the needle insertion mechanism to generate up to 60 N of axial
force.

Fig. 5. Left: Normal setting, Right: Situation of
Needle comes off by Mechanical Fuse

This robot has safety mech-
anism, called ”Mechanical Fuse”
(Figure 5). The needle was
fixed on the disk plate. The
holder grasps the disk with
four contacting parts supported
by springs as shown in Fig-
ure 6. When unexpected exces-
sive force is applied to a nee-
dle, the disk comes off from the
holder to avoid possible damage
to the patient.

The entire mechanism was designed to be fixed to the operating table. The
size of the entire mechanism was 350 mm × D 400 mm × H270 mm, and its
weight was 15 kg. It can be inserted in the space between C-arm of the patient
on the operating table as shown in Figure 7.

Fig. 6. Mechanism of the Mechanical Fuse Fig. 7. The robot can be installed
between a patient and C-Arm X-
Ray Equipment
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Description of Control System

Next, control system is shown in Figure 8. The system consists of the following
three devices: 1) Needle Insertion Robot, 2) Navigation System([4]), 3) Optical
Position Sensor (Optotrak, NDI, Canada). The robot is connected the navigation
system by LAN cable (TCP/IP). And the navigation system is connected with
an optical Position Sensor by serial cable (RS232C). The navigation system
sends the position and orientation data to the robot. The robot drives the target
position and orientation using this data by software.

Fig. 8. Total System

Evaluation of Needle Positioning Accuracy

In this study, three experiments were conducted. First experiment is accuracy
evaluation of the robot positioning ability. Target values in robot coordinate
system were input to the robot and errors between target values and real values
which were measured with a position sensor (Polaris, NDI, Canada) placed at
the needle insertion mechanism. The errors were evaluated for various points
and orientations in the range of motion of the robot.

Second experiment was evaluation of the Mechanical Fuse. The needle was
hold by a material-testing instrument with force sensor. The force was applied
along the needle and from the direction perpendicular to the needle. The force
applied to the needle when the disk came off from the holder was recorded.

Fig. 9. Polyurethane Vertebra Phantom

Third experiment is evaluation of
needle insertion accuracy as a en-
tire system including positioning er-
rors due to needle insertion robot, sur-
gical navigation system, and optical
position sensor using a vertebra model
(Sawbones, Pacific Research Labora-
tories, USA). (Figure 9). Three di-
mensional computer model of the ver-
tebra model was obtained based on its
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CT data. The surface registration was used for surgical navigation [5,6,7,8]. The
total errors between target values and determinate needle positions were mea-
sured by comparing the planned positions of the needle insertion mechanism and
measured position data obtained by the optical position sensor. CT data after
the needle insertion was also obtained to identify the difference between the ac-
tual needle trajectory and needle insertion plan for one case of the experiments.

The operation with this robot has three stages. At first stage, rough position
is set manually. Second, accurate position is set automatically by interaction
with the navigation system. Third, needle is inserted to a vertebra.

3 Results

Accuracy Evaluation of the Robot Positioning

Accuracy evaluation is performed on each axis. Result is shown in Table 1. All
axes are satisfied requested specifications. However, errors of axis X and Z are
somewhat large.

Next, target values in a robot coordinate system are inputted the robot.
Result is shown in Table 2. In this case, all axes are satisfied requested specifi-
cations, too.

Evaluation of the Mechanical Fuse

Force along the insertion direction larger than 50 N made the disk came off the
holder. Needle holding disk came off when force larger than 3 N was applied at the
tip of the needle perpendicular to the needle direction. To simulate the possible
situation in clinical setting, position of the vertebra model after initial needle
insertion was shifted purposely by manual. The needle came off by mechanical
fuse successfully. When a vertebra model is moved suddenly, the needle came off
from the robot, too.

Evaluation of Puncture in a Vertebra Model

The target value is set by the navigation system with CT image of pre-operation.
The position and orientation errors before and after contacting the model were
shown in Table 3. The contact of the needle was detected by the force sensor
signals from the system.

X-ray images of one vertebra model used in the experiments were obtained
by CT to identify the position of holes created by the needle. The position and
trajectory of the needle insertion was evaluated as the center of the respected

Table 1. Accuracy evaluation result of each axis (n=)

X (n=15) Y (n=15) Z (n=12) α (n=36) β (n=27)
0.54 mm 0.09 mm 0.80 mm 0.25 deg 0.41 deg
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Table 2. Accuracy evaluation result of multiple axes

Ave. SD Max. Err.
X[mm] (n=675) -0.437 0.325 -1.197
Y[mm] (n=900) -0.158 0.197 -0.675
Z[mm] (n=1428) -0.540 0.361 -1.476
α[deg] (n=2448) 0.122 0.0448 0.230
β[deg] (n=279) 0.138 0.0661 0.364

Table 3. Result of Puncture Experiment

Average Error ± SD Maximum Error Minimum Error
Pre-Puncture Position [mm] 0.80 ± 0.29 1.13 0.31

(n=10) Orientation [deg] 0.06 ± 0.08 0.21 0.00
Contact Position [mm] 0.81 ± 0.40 1.51 0.41
(n=8) Orientation [deg] 0.20 ± 0.26 0.80 0.03

volume due to needle insertion. The difference between the planned position and
the entry point of the needle at the surface was 0.21 mm and the orientation
error was 0.9 deg.

4 Discussion

The developed robot is compact enough to be set in the space between C-arm and
operating table, while being able to generate required force for needle insertion to
vertebra. It can insert 10 G needle into porcine vertebra sample with surrounding
tissue and skin (data not shown.) Thus, it can generate enough force for PVP.

In accuracy evaluation, the robot is satisfied requested specifications (error
less than 1 mm). The reason that errors of axis X and Z are somewhat large is
mechanism of X-axis for small size. We used a remote center of motion mech-
anism consisting of two linear actuation mechanisms to reduce the thickness of
the mechanism placed in the space between the C-arm of the fluoroscopy and
operating table. This deteriorates positioning accuracy of the robot. However,
since required positioning accuracy was satisfied as a whole. The system has
enough positioning accuracy for PVP.

The Mechanical Fuse functioned as designed. For further validation of the
mechanical fuse, experiments simulating possible disturbances observed in ac-
tual clinical situations to confirm the safety of the system. In addition to the
mechanical safety measures, we have to develop the software to stop the system
when the abnormal needle force is detected in the embedded force sensors in the
system.

In total system error evaluation experiments, average of error is satisfied
requested specifications (position error less than 1 mm and orientation error
less than 1 deg). However, there was a case of the error exceeding required
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specification. We have to investigate the possible causes of errors to reduce the
total positioning accuracy. Another possible factor not evaluated in the present
study is the slip of the needle tip at the contact to the cortical bone. When
the surface of the vertebra is inclined, the needle may slip from the appropriate
insertion position. Thus the appropriate needle insertion plan must be designed
to reduce the possibility of needle slip based on the geometrical information of
the vertebra. Although the system can be inserted into the space between the C-
arm and patient on the operating table, the system must be further miniaturized
for ease of operation for easier setting and operation. We will analyze the cause
of errors and optimize the mechanical design.

5 Conclusion

We have developed a needle insertion robot for Percutaneous Vertebroplasty.
Its experimental evaluation on the basic performance of the system and needle
insertion accuracy is presented. This robot can puncture with accurate and an
operator does not need to be exposed to X-ray. The mechanism of the robot
is compact in size (350 mm × D 400 mm × H270 mm, weight: 15 kg) so that
the robot system can be inserted in the space between C-arm of the patient on
the operating table. The position and orientation of the needle can be adjusted
with five degrees of freedom in three-dimensional space. The robot system is
controlled by the surgical navigation system where the appropriate needle tra-
jectory is planned based on pre-operative three-dimensional CT images. The
needle holding part of the robot is X-ray lucent so that the needle insertion pro-
cess can be monitored by fluoroscopy. The position of the needle during insertion
process can be continuously monitored. In vitro evaluation of the system showed
that average positioning and orientation errors were less than 1.0 mm and 1.0 de-
gree respectively. Experimental results showed that the safety mechanism called
mechanical fuse released the needle holding disk properly when excessive force
was applied to the needle. These experimental results demonstrated that the de-
veloped system has the satisfactory basic performance as needle insertion robot
for PVP.
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Abstract. For robotic assisted minimal access surgery, recovering 3D soft tis-
sue deformation is important for intra-operative surgical guidance, motion 
compensation, and prescribing active constraints. We propose in this paper a 
method for determining varying focal lengths of stereo laparoscope cameras 
during robotic surgery. Laparoscopic images typically feature dynamic scenes 
of  soft-tissue deformation and self-calibration is difficult with existing ap-
proaches due to the lack of rigid temporal constraints. The proposed method is 
based on the direct derivation of the focal lengths from the fundamental matrix 
of the stereo cameras with known extrinsic parameters. This solves a restricted 
self-calibration problem, and the introduction of the additional constraints im-
proves the inherent accuracy of the algorithm. The practical value of the method 
is demonstrated with analysis of results from both synthetic and in vivo data 
sets. 

1   Introduction 

With the maturity of master-slave robotic manipulators, the clinical applications of 
minimally invasive surgery (MIS) are rapidly advancing. Robotic assistance provides 
enhanced instrumental control and intuitive 3D manipulation of the operating field, 
and advanced systems can include image guidance, motion compensation and active 
constraints. For MIS involving large soft tissue deformation, intraoperative guidance 
with patient specific anatomy presents a significant challenge and reliable 3D recon-
struction of soft-tissue deformation in situ is essential [1].  The prerequisite of this for 
optical methods, however, is accurate and robust camera calibration. Existing research 
has shown that after calibration and feature correspondence, it is possible to perform 
real-time 3D reconstruction of soft tissue deformation with stereo laparoscope cam-
eras [2]. 

Thus far, preoperative calibration for robotic assisted MIS is generally achieved 
with a calibration object [3] based on the assumption that during the operation the in-
trinsic parameters of the laparoscope remain fixed. This, however, is not true for 
complex procedures as for example in thoracoscopic surgery, where parameters such 
as the focal length may change in order to optimize the surgical field-of-view. In such 
cases, frequent recalibration of the laparoscope is not feasible and in situ self-
calibration is the only practical way forward. Hitherto, self-calibration has received 



 Laparoscope Self-calibration for Robotic Assisted Minimally Invasive Surgery 115 

 

extensive interest in computer vision and most existing techniques assume a rigid 
world, which can be viewed from a number of different positions [4]. For  
continuously deforming scenes, however, such temporal constraints are invalid and 
only inter-stereo epipolar geometry can be used to derive camera parameters. Hartley 
[5] has shown that the focal lengths of the stereo camera can be extracted from the 
fundamental matrix by using Singular Value Decomposition (SVD) and a number of 
other techniques based on the same constraint have also been developed [6,7]. Brooks 
et al. [8] demonstrated that in a typical stereo configuration, the problem is degenerate 
for cameras with different focal lengths [9]. Strum [10] subsequently provided a  
detailed analysis for deriving matching focal lengths of the cameras based on epipolar 
geometry, and outlined the potential singularities when variable focal lengths were 
used [11].  

It has been recognized that the above methods are susceptible to noise in the prox-
imity of singularities. Frahm et al [12] proposed a method based on known rotations 
between views and using one epipole for embedding the unknown translations. Earlier 
work by Stein [13] and McLaughlin et al [14] also used partial knowledge of rotation 
to restrict the problem. These techniques, however, are not specifically designed for 
stereo camera setups and can result in complex formulations with additional degener-
ate configurations. Whilst for many vision systems critical motion can be avoided 
through appropriate setups, this is not the case for stereo laparoscopes where the cam-
era arrangement is on a much smaller scale to assist the 3D perception of the surgeon. 
The purpose of this paper is to develop a parameterization scheme for the intrinsic pa-
rameters of the stereo laparoscope based on the epipolar constraint with known intrin-
sic parameters. This simplifies the traditional self-calibration to an over determined 
problem with respect to focal lengths. We demonstrate that the problem is solvable 
with a minimum of two correspondences and the stability of the algorithm to different 
noise levels can be further improved by using a robust estimator. The practical value 
of the technique is demonstrated with both numerical simulation and in vivo robotic 
assisted MIS data.  

2   Methods 

2.1   Stereoscopic Laparoscope Model 

It is assumed in this study that the stereo laparoscope cameras follow the standard 
pinhole model, with which  the mapping of a point [ ]TX Y Z W=M in projec-
tive 3D space onto the corresponding image point [ ]Tx y w=m can be described 
up to a scale by a matrix multiplication with homogeneous coordinates:  

~m PM  (1) 

where ~  denotes equality up to scale. The matrix P  is the camera’s projection matrix 
and may be decomposed into the intrinsic and extrinsic camera parameters: 

|P K R RC
 (2) 

The camera orientation and position with respect to a reference coordinate system are 
expressed by a rotation matrix R  and a translation vector t RC ,  where C  is the 
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location of the optical center. The upper triangular matrix K  encompasses the focal 
length, f , skew, s , aspect ratio, , and the image coordinates of the principal point, 
[ ],u v : 

1

f s u

f vK

 

(3) 

Without a loss of generality, the camera matrices for the stereoscopic laparoscope can 
be represented with the following equation by taking the left camera as the reference 
coordinate system: 

|P K I 0 and |P K R t  (4) 

The inherent relationship between the left and right camera frames is described by the 
epipolar geometry, which is algebraically encapsulated by the fundamental matrix, F  
[15]. The fundamental matrix is a rank two matrix, defined up to scale and thus it has 
seven degrees of freedom. Its dependency on the camera parameters can be expressed 
as: 

1 1F K t R K K EKT T

 
(5) 

where [.]́  is used to denote a skew symmetric matrix and E  is the essential matrix 
defined by the rotation and translation between the cameras [15]. For corresponding 
image points (points which are projections of the same 3D world point), F  can be 
used to express the constraint: 

0m FmT

 (6) 

Given sufficient corresponding points (eight or more for a unique solution) the fun-
damental matrix can be determined from Eq. (6) and this is the basic knowledge about 
the camera geometry, which can be directly obtained from the images.  

2.2   Self-calibration with Varying Focal Lengths 

Without prior knowledge about the cameras, Eq. (5) is governed by 15 unknowns, and 
the seven degrees of freedom of the fundamental matrix are insufficient to provide a 
solution for the camera parameters from a single pair of stereo images. In robotically 
assisted MIS, however, it is feasible to calibrate the stereoscopic laparoscope before 
the procedure. Therefore, the knowledge about the initial extrinsic and intrinsic pa-
rameters of the cameras can be used to simplify Eq. (5) for deriving a solution for the 
varying focal length problem. By assuming all parameters except for the focal lengths 
are known, Eq. (5) can be written as:  

11 12 13

21 21 13

31 31 13

(1,1, ) (1,1, )

e e e f

diag f diag f e e e f

e f e f e ff

EF

 

(7) 
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For computing %F  based on Eq. (6), the coordinates of the corresponding image points 
are normalized by the known intrinsic parameters to %m  and m  [15]. Since the 
knowledge of the essential matrix is also available from the initial calibration, Eq. (7) 
yields a bilinear equation with respect to the focal length for each point  
correspondence: 

21 31 13 23 33

11 21 12 22

xy e xw e f wx e wy e f ww e ff

xx e xy e yx e yy e  
(8) 

It is evident that the above equation can be solved from a minimum of two correspon-
dences. But in practice, the problem is likely to be over determined and may be solved 
in a least-squares sense. The minimum solution required is important, however, to ro-
bust estimation schemes such as the random sampling consensus (RANSAC) ap-
proach [15], which outperform linear methods in the presence of noise. We have 
therefore used an approach analogous to the RANSAC estimation of the fundamental 
matrix using the minimum solution obtained from Eq. (8). With the proposed tech-
nique, inliers are determined using the first-order approximation to the geometric re-
projection error: 

2

2 2 2 2

1 2 1 2

i i

i
i i i i

m Fm

Fm Fm F m F m

T

T T

 

(9) 

The number of samples used in the robust estimation is determined adaptively and 
once the desired solution is determined, Eq. (9) is used as a cost function to refine the 
estimated focal lengths by using the Levenberg-Marquardt algorithm. With the pro-
posed framework, incremental changes of the known extrinsic parameters, as well as 
shifts of the principal points, can also be incorporated in the minimization procedure.  

It can be shown that the practical critical motion (extrinsic configuration of the ste-
reo cameras for which the solution is degenerate) for the proposed method is when the 
optical axis are parallel. This configuration is a generic singularity for most existing 
methods, which results in a reduced version of the fundamental matrix so that Eq. (8) 
cannot be solved. In practice, however, the stereo laparoscope is always setup with a 
small vergence angle to assist stereoscopic fusion of the surgeon with the left and 
right visual channels. Although this naturally avoids the singularity problem, it is im-
portant to note that the cameras can be in proximity of the degeneracy. 

2.3   Numerical Validation and In vivo Experiment 

To assess the general performance of the proposed method, particularly in the vicinity 
of the singular configuration, a synthetic test data set was used. In this experiment, the 
left and right cameras started from a degenerate position with parallel image planes 
with optical axes as shown in Fig. 1. We varied the vergence angle,θ , from zero with 
increasing steps up to ten degrees. In this configuration, the problem can be unstable 
[8] as the 33e  element of the essential matrix is zero, and therefore there is a single 
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Fig. 1. (a) A schematic illustration of the setup used for synthetic simulation. (b) An example 
stereo view of the calibration grid used for deriving the ground truth data. 

linear solution for Eq. (8) when only two correspondences are available. For numeri-
cal validation, a total of 100 random 3D points in the viewing volume in front of the 
cameras were used, and the projection of each point in the image planes was cor-
rupted by additive zero mean Gaussian noise with standard deviation varied from zero 
to two pixels. The effect of error with known extrinsic parameters was analyzed also 
by corrupting the known vergence angle and baseline with zero mean Gaussian noise 
with standard deviation varying from zero to two in units of degrees and millimeters, 
respectively. We performed a total of 100 trials for each noise level and the mean es-
timation was used for final analysis. 

For in vivo validation of the proposed technique, a surgical procedure with the 
daVinci™ surgical robot was used. The ground truth of the calibration data was ob-
tained by using a planar grid method [17] before the insertion of the laparoscope into 
the patient. The proposed algorithm was used to intraoperatively compute the focal 
length of the stereo system. Image correspondences were obtained by using a variant 
of the stereo feature matching algorithm described by Pilu [18]. With this experiment, 
the focal lengths of the cameras were altered during the procedure in order to validate 
the proposed method. The ground truth parameters were recalculated immediately af-
ter the change of parameters by removing the stereo laparoscope out of the patient for 
recalibration. 

3   Results 

In Fig. 2, we demonstrate the overall performance of the proposed method as the 
cameras rotate about their own vertical axis forming a vergence angle. Fig. 2 (a) 
shows the results of solving Eq. (8) by using a least-squares-method (LSM), whereas 
Fig. 2 (b) shows the corresponding results by using the robust algorithm. It is evident 
that in the presence of noise, the robust algorithm clearly out-performs LSM and it re-
tains a good accuracy in the vicinity of degeneracy. 

In Fig. 3, the effects of noise in the known extrinsic parameters are analyzed for 
the proposed calibration method by varying stereo vergence angle. It is evident that 
the algorithm performed well in the presence of significant errors in the baseline and 
rotation angles. Similarly to Fig. 2, the algorithm is also relatively robust in the 
neighborhood of the singular camera configuration. 

(b) (a) 
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Fig. 2. Average percentage errors in focal length estimation by varying vergence angle near the 
singularity point with noise corrupted synthetic data.  (a) Results with least-squares solution us-
ing SVD, and (b) results with the proposed robust algorithm.  

 
 

Fig. 3.  Percentage errors in focal length estimation w.r.t. noise in the known extrinsic parame-
ters of (a) vergence angle, (b) baseline 

The results obtained from in vivo experiment are listed in Fig. 4. For the calcula-
tion of the ground truth calibration data, the intrinsic accuracy of the method had a 
pixel reprojection error of 0.12 pixels, and a reconstruction error of 0.78 mm. Fig. 4 
(b) demonstrates the estimated focal lengths over the acquired video sequence, 
where the solid lines correspond to the ground truth data. It is clear from Fig. 4  
that after the change in camera focal length, the algorithm is able to reliably  
quantify the shift involved. For providing a detailed statistical analysis of data, Fig. 
5 illustrates the standard deviation of focal length estimation for the left laparoscope 
camera before and after the change in focal length. The shaded region outlines the 
standard deviation of the derived focal length value in every 0.4s window of the 
video sequence. The variance in the estimation is dominated by the accuracy of  
feature matching in the stereo pair, which can vary for images with many  
specular highlights or significant motion blurring from caused instrument or tissue  
movement.  

 

(b) (a) 

(b) (a) 
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     (a)     (b) 

Fig. 4.  In situ calibration results for a robotic assisted MIS video where the ground truth is 
shown as a solid red line. Columns (a) and (b) show the changes in focal length during the op-
eration. The circular and square markers represent the estimations of the focal lengths of the left 
and right cameras, respectively.  

 

      (a)     (b) 

Fig. 5.  The standard deviation of focal length estimation for the left stereo laparoscope camera 
before (a) and after (b) focal length change (the estimation window was set to be 0.4s)   

4   Discussion and Conclusions 

In this paper, we have proposed a practical method for intra-operatively determining 
the varying focal length of stereo laparoscopes. The validity of the method has been 
demonstrated on both synthetic and in vivo data. The results indicate the high  
accuracy obtained despite the near singular arrangement of the cameras. The perform-
ance of the algorithm against noise of the known extrinsic parameters, suggests that it 
may be possible to fully calibrate the system in different surgical procedures by using 
a prior estimate of the camera parameters. Thus far, approaches to self-calibration 
typically involve temporal constraints over rigid multi-view geometry. Due to  
extensive deformation of the soft tissue, constraints can only be enforced across  
two-view inter-stereo epipolar geometry for robotic MIS procedures. The proposed 
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method represents a first step towards active calibration of changing camera parame-
ters during surgery, and the results derived have shown the robustness of the tech-
nique in proximity of the generic degeneracy and against noise influence.  
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Abstract. This paper presents a hand-eye robotic model for total knee 
replacement (TKR) surgery. Unlike existent robot assisted TKR surgery, the 
proposed model is a surgical robot that combines with a movable hand-eye 
navigation system, which would use the full potential of both computer-assisted 
systems. Without using CT images and landmark pins in the patient’s bones, it 
can directly measure the mechanical axis with high precision. This system 
provides a new approach of the minimally invasive surgery. Experiment results 
show that the proposed model is promising in the future application. 

1   Introduction 

Total knee replacement (TKR) surgery is a common orthopaedic procedure to replace 
damaged articular surfaces of the knee with prosthetic implants.  To fit the prosthesis, 
each of the knee bones (tibia, femur and patella) should be cut to a specific shape to 
mate the mounting side of the corresponding prosthesis component. To ensure normal 
functionality of the knee, all components must be placed onto the bones with high 
precision. For this aim, we must consider both the bone axes and the mating surfaces 
between the bone and prosthesis [1].  

During the operation, traditionally, a complex jig system composed of cutting 
blocks, alignment rods, etc., is used to help the surgeon to estimate the geometry of the 
bones and select the appropriate size and location of the components. The accuracy of 
this process relies on the surgeon’s individual experience. Besides, the traditional 
jig-based systems also introduce several sources of inaccuracy in alignment of the 
prosthetic components [2]. The limitations of traditional knee surgery have prompted 
the research for a more accurate and repeatable system for TKR. 

The rapid development of robotics provides a new approach to improve the surgery 
quality. Due to the rigid nature of bone, it is relatively easy to image in computed X-ray 
tomography (CT) and X-ray fluoroscopy [3]. So orthopaedics suits for robotic 
assistance. Moreover, robot assisted TKR can enhance the quality of the bone cuts and 
require less time for surgery [2]. 
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1.1   Related Work 

There are already commercially available surgical robots for joint replacement surgery, 
such as ROBODOC [4] and CASPAR [5]. Both systems adapted industrial robots for 
surgical task and were initially aimed at hip replacement. Unfortunately, they still 
require additional surgery to preimplant fiducial markers. ROBODOC recently started 
using an anatomical registration procedure [6]. Researchers in Imperial College, 
London developed a “hands-on” robot, called Acrobot, for TKR surgery [1]. 
Intraoperatively, the surgeon guides the special-purpose robot, which is mounted on a 
gross positioning device. Acrobot uses active constraint control to constrain the motion 
of the cutter to a predefined region, and thus allows the surgeon to safely cut the knee 
bones with high precision. Nevertheless, all the above systems need to take plenty of 
CT images for registration.  

The technology of knee replacement is evolving, changing, and improving. Laskin 
and Richard [7] described some new techniques and concepts in TKR, especially 
Minimally Invasive Surgery (MIS). A good approach for MIS is the use of a CT-free 
image-guided system, which usually based on optically tracked surgical tools with a 
visual display of the bone models to aid in the positioning and alignment of tools. 
Aesculap Inc. has developed Unveils OrthoPilot, which is the industry's first CT-free 
navigation system for orthopedic surgery and has been routinely used in orthopaedic 
surgery [8]. Other commercialized systems include BrainLab’s (BrainLab, Germany), 
Stryker Leibinger’s (Leibinger, Germany), and PiGalileo (PLUS Orthopedics USA, 
Inc.). These navigation systems, however, while helping to improve accuracy, should 
not be moved during the operation, which greatly constrains the field of view of the 
optic sensors. In brief, we call such system as static navigation system. More recently, 
DiGioia et al. provided rich review of these relevant technologies in [9]. 

1.2   Contributions of This Paper 

In this paper, we propose a hand-eye robotic model for TKR surgery. In this model, 
both the optic sensors and the cutting tool are fixed on the end-effecter/gripper of a 
surgical robot, which can be moved freely to anywhere within the capability of the 
robot. Thus, we combine the surgical robot and navigation system together, which 
would use the full potential of both computer-assisted systems. As the navigation 
system can move while the robot gripper is moving, we call it a movable navigation 
system. The remainder of this paper decomposes as follows. Section 2 recalls the target 
problem in TKR surgery. Then the proposed model is presented in detail in section 3. 
Section 4 describes how to use the proposed model for TKR surgery. Some 
experiments on performance test are conducted in section 5.  

2   Problem Formulation 

Let’s revisit the target problem in TKR surgery. Shown as Fig. 1(a), the normal 
mechanical axis of the leg is formed by a straight line starting from the center of the 
femoral head B, passing through the center of the knee joint O and ending at the center 
of the ankle C. The transverse axis passing through the joint is parallel to the floor when 
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     (a)                        (b)                                                 (c)                                 (d) 

Fig. 1. Main task of TKR surgery. (a) Restoration of the mechanical axis. (b) Surface of the bone 
to be cut. (c) Femoral positioning and measure. (d) Tibia positioning and measure. 

one stands. The angle θ between the normal mechanical axis OB and the axis of the 
femur canal OA is about 5o~ 9o [10]. The aim of TKR surgery is to restore the normal 
mechanical axis and create a joint plane, which is vertical to the mechanical axis, while 
sacrificing minimal bone stock and maximizing collateral ligament. Thus, shown in 
Fig. 1(b), five planes on the distal femur (plane 1-plane 5) and one plane on tibia (plane 
6) must be cut to fit on prosthesis components. Therefore, there are mainly two tasks in 
the TKR surgery: one is the precise measurement of the mechanical axis and the other 
is the accurately milling of the fitting plane. The former task is especially dependent on 
the accuracy of the navigation system. 

Unfortunately, the mechanical axis is not directly measurable by the surface of the 
femoral, tibia, or deforming joint. For example, present methods of measuring OB 
firstly figure out the axis of the femur canal OA, and then make a rotational alignment 
of 5o~ 9o. This kind of alignment heavily depends on the experience of the surgeons. 

3   Techniques of the New Model 

In this paper, we propose a flexible hand-eye robotic model, in which the navigation 
system can directly measure the mechanical axis without using CT images or other 
indirect ways. In contrast to previous navigation system for orthopaedic surgery, which 
uses static navigation system, a hand-eye, special-purpose robot, called WATO, has 
been built for a movable navigation and operation in TKR surgery. Besides, the cutting 
tool is fixed on the end-effecter of the robot, which would use the full potential of both 
computer-assisted systems. 

3.1   System Configuration 

The WATO is a 6-DOF industrial robot (MOTOMAN) with the cutting tool and a pair 
of CCD cameras attached on the end-effecter. After the stereo rig is precisely 
calibrated, we mount an infrared filter on each camera. Thus, we get an infrared 
stereovision system, see Fig. 2. In order to make precise measuring on the bone, some 
infrared positioning devices, such as infrared marker and infrared probe, are developed. 
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3.2   Positioning and Measuring in the Surgery 

Positioning and measuring are the most important and difficult technology in TKR 
surgery. Traditional mechanical guidance relies heavily on an individual surgeon’s 
experience with a given jig system. CT-based image-guidance system has greatly 
promoted the measure in robot assisted 
TKR surgery. However, early approach 
requires an additional surgery to implant 
several metal pins into the bone and the 
later developed noninvasive anatomical 
registration method is time-consuming. 

In WATO system, neither CT models 
nor metal markers on the patient’s bone are 
needed. Instead, an infrared guide system is 
used which consists of a binocular vision 
system and its associated infrared 
marker/probe. Several special infrared 
emitters are embedded in the infrared 
probe, whose 3-D coordinates can be 
detected by the binocular vision system. 
After the infrared probe calibration, the 
position of the probe tip relative to those 
diodes can be obtained. Therefore, when 
the probe picks up a space point, the position of infrared diodes can be detected and 
then the position of the probe tip. To build femoral and tibia coordinate system, 
surgeons are requested to detect some physiological marks on patient’s bone by probe. 
Fig. 2 shows a probe that was used in WATO system. Similar to infrared probe, the 
infrared marker also consists of some infrared emitters and is clamped on the distal 
femur or tibia. According to the relationship between the marker and the bone, the 
motion of the bone can be monitored by the vision system. We will explain it in detail in 
the following.  

Femoral measure. Sufficient surgical exposure is needed to fix the infrared marker, 
surgeons instead of robot complete this procedure. After surgical exposure, we clamp 
an infrared marker on the distal femur, see Fig. 2.  

In the jig-based surgery, see Fig. 1(a), a baseline axis AO  is first measured by 
inserting a T-rod into the femoral canal. Then they can restore the mechanical axis 
BOC  by adjust AO  5o~ 9o. In WATO system, however, the axis BOC  can be 
acquired directly. Shown as Fig. 1(c), 

1P  is the center of the femoral head, 
2P  is the 

center of intercondylar fossa, 
3P  is the epicondylus medialis, and

4P  is the epicondylus 

lateralis. With the infrared marker clamped on the femur, the surgeon manually flexes 
and abducts the entire leg (which is able to rotate only about the femoral head) through 
substantial arcs, while the hand-eye navigation system observing the position of the 
infrared marker. As the detected positions of the infrared emitters are on a sphere 
whose center is also the center of the femoral head, then we can obtain the coordinate of 

1P . It is important that the surgeon must take special care during the pivot motion with 

the femur and not to move the pelvis, which would invalidate the pure rotation. This 

Fig. 2. WATO Experimental System 
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approach is inspired by the work of Kienzle et al. [2]. Meantime, the coordinates of 

2P ,
3P  and 

4P  can be obtained by infrared probe. Straight line 
1 2PP  is equivalent to the 

mechanical axis BOC in Fig. 1(a). Take the center of intercondylar fossa 
2P  as the 

origin, 
1 2PP
uuuuv

 as the direction of Z  axis, the cross product of the vectors 
3 4P P
uuuuv

and 
1 2PP
uuuuv

 

as the direction of X  axis. Then one can obtain the direction of Y axis by cross product 
of Z  axis and X axis. Thus, the femoral coordinate system 

2P - XYZ is constructed. 

We denote the rigid transformation between the femoral coordinate system and the 
camera coordinate system with the couple ( , )fc fcR t , and then we have 

3 4 1 2 1 2 3 4 1 2 1 2 2[ , ( ), ],fc fcR P P PP PP P P PP PP t P= × × × =
uuuuv uuuuv uuuuv uuuuv uuuuv uuuuv uuv

                   (1) 

The transformation from camera to gripper ( , )cg cgR t can be obtained by hand-eye 

calibration [11] in advance and the transformation from gripper to robot base 
( , )gr grR t can be computed from the recorded gripper pose. After constructing femoral 

coordinate system, we can obtain the relationship ( , )fr frR t between the femur and the 

robot coordinate system by 

0 1 0 1 0 1 0 1
fr fr gr gr cg cg fc fcR t R t R t R t

=                         (2) 

Therefore, any point ( , , )T
f f fx y z in the femoral coordinate system can be transformed 

to the coordinate ( , , )T
r r rx y z in robot base as 

( , , ) ( , , )T T
r r r fr f f f frx y z R x y z t= ⋅ +                                 (3) 

In making surgical plans, a planning software is used to interactively decide 
prosthesis size according to the sampled data of individual patient’s femur. Then the 
placement of the prosthesis and cutting quantity could be estimated automatically. All 
the data in femoral coordinate system are transformed to the data in robotic coordinate 
system, then the robot are controlled to perform bone resection with special designed 
cutting tool. 

Tibia measure. Similar to femoral positioning, as shown in Fig. 1(d), surgical 
exposure of the tibia is made by surgeons in advance and then the infrared marker is 
clamped onto the distal tibia. Since the mechanical axis passes through the center of the 
knee joint and ends at the center of the ankle, tibia coordinate system must be 
constructed in accordance with this axis. Firstly, the positions of the physiology 
fiducial mark of malleolus medialis and malleolus lateralis are sampled by using 
infrared probe. We assume that the mid-point of the two points is the center of ankle 
joint. In the similar way, surgeons can obtain the position of 1/3 part on the tuberculum 
intercondylare mediale (

2P ) and tuberositas tibiae (
3P ). Define the plane 

1 2 3PP P  

formed by tuberculum intercondylare mediale, center of ankle and tuberositas tibiae. 
We define the direction of vector 

2 1P P
uuuuv

 as the direction of Z  axis. The line in plane 



 A Hand-Eye Robotic Model for Total Knee Replacement Surgery 127 

 

1 2 3PP P  which is perpendicular to Z  axis is defined as the direction of X  axis. Then 

Y  axis is the cross product of Z and X  axis. So we have constructed tibia coordinate 
system. After constructing tibia coordinate system, we can obtain the relationship 
between the two coordinate systems of tibia and infrared marker. When the infrared 
marker is combined with the tibia, the pose monitoring and resection of it are similar to 
the way of femur. 

3.3   Visual Servoing in the Surgery 

In the surgery, the milling track of the cutting tool can be planned in advance. However, 
in conventional system, patient is not fixed completely during the whole operation. 
Consequently, when unwanted micro-movements of the leg occurs during robotic 
surgery, the surgical plan must be re-designed, which is time-consuming. In order to 
deal with this problem, the traditional method is trying to fix the patient’s leg and an 
alarming device is mounted on the patient’s leg. For example, in ROBODOC TKR 
system [6], bony spiculas are fitted into the femur and tibia to guarantee the patient’s 
leg unmovable. However, in TKR surgery, it often requires a different flexion angle of 
the knee in order to find an optimal pose for operation. Once the patient’s leg is fixed 
completely, the surgeons will have some trouble in operation especially in an 
emergency. All the above disadvantages constrain the applications of such systems. 

The above problems have been solved in WATO system when we fix the infrared 
markers onto the bones. During the surgery, the passive markers are constantly 
monitored by the cameras, so does the associated femur or tibia coordinate system. In 
this way, a position-based visual servoing system [12] comes into being. In CASPAR 
system, the movement of the leg is also monitored by an infrared camera system [5], 
however, it is based on a static navigation system. When the navigation system keeps 
tracking the position and orientation of the infrared marker (or the bone), the movement 
of the bone will not affect the bone resection, which guarantee a safe operation. 
Besides, as the position-based visual servo in the system needs only simple stereo 
computation, it performs much faster than that of registration between CT model and 
the patient’s bone. The refresh time of the visual servoing system is less than 0.2 
second, which can fulfill the surgical requirement. 

4   System Operation 

To apply our model to TKR surgery, the basic steps are as follows. 

Preoperative procedures 

1. Mount two cameras and the cutting tool (a milling cutter) on the 
end-effector/gripper of the robot (see Fig. 2). Calibrate the stereo rig (camera 
calibration) and the transformation relationship between the robot gripper and the 
stereo rig (hand-eye calibration). 

2. Mount an infrared filter on each camera. Calibrate the infrared probe using the 
stereo rig and find the 3-D position of the probe tip in the probe coordination 
system. 

3. Carry out the sterilize process. 
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Surgical procedures 

1. Immobilize the pelvis using specially designed fixtures and clamped the infrared 
markers onto the distal femur. Find the center of the femoral head using the 
method described in section 3.2. 

2. Use the infrared probe to determine the coordinate of the physical fiducial marks 
on the distal femur in order to construct the femur coordinate system. 

3. Use planning software to interactively decide the prosthesis size and placement. 
4. Use the robot to guide the surgical cuts for placement of the femoral component. 
5. Clamp the infrared marker on the tibia and use the similar method as that of femur 

to construct the tibia coordinate system. 
6. Use the robot to guide the surgical cuts for placement of the tibia component. 

5   Performance Test of the Navigation System 

The hand-eye navigation system is the most distinctive part in the proposed model. In 
this section, we test the performance of the navigation system with two different 
measurement schemes. First, a fixed infrared marker was used to test the calibration 
accuracy of the stereo rig and the hand-eye relationship. In the second test, we use a 
calibrated infrared probe to sample the crossings of a chessboard, which will test the 
positioning accuracy of the infrared probe, see Fig. 4. 

 

(a) 

 

(b)  

Fig. 3. Results of the first test. (a) Mean error of the three 
translation components; (b) Mean error of the three rotation 
components. 

Fig. 4. Positioning test with 
the infrared probe 

In the first test, the robot gripper is randomly moved to 30 different positions to 
observe a static infrared marker and each recorded gripper pose is denote as 

( , , , , , )i i i i i i iP X Y Z RX RY RZ= , i=1,2,…,30; repeat the test for 20 times. , ,i i iX Y Z  are 
the translation components and , ,i i iRX RY RZ  are the three pose angles of robot 
gripper. Then camera motion 

jB ( j=1,2,…,29) between frame i and frame i+1 can be 
calculated according to pose of the infrared marker. Then, from the basic equation of 
robotic hand-eye relationship 

0 0j jA X X B= [11], where 
0X  is the relation between 

robotic gripper and cameras, the gripper motion 
jA  can be obtained. Notice that 

1i i jP P A+ = , we can obtain a sequence of calculated robotic positions 
1iP+

% . We compare 
the translation part and rotation angle of 

1iP+  with that of
1iP+

%  respectively. Shown as 
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Fig. 3, the mean error is illustrated in solid line, in which mean error of the translation 
part is 0. 58 mm, the standard deviation is 0.44 mm, while rotation angle is 0.19 degree 
and 0.17 degree respectively. 

In another test, a calibrated infrared probe is used to sample the crossings of a 
chessboard, where the real distance d between crossings is known. The distance 
between crossings that calculated from the 3-D coordinates sampling by the probe is d’. 
Here, the coordinates sampled by the probe are all in the camera coordinate system. We 
randomly move the chessboard to 10 locations with different translation and orientation 
while keeping the cameras or the robot gripper static. In each location, 40 pairs of 
crossings are sampled. To qualify the results, we take RMS of the error ||d-d’||. The 
mean error is 0.40 mm. 

From the experimental results, we can see that a goal of less than 0.6 mm of 
translational error and less than 0.2 degree of rotational error is achievable, which 
means that WATO can fulfill the requirement of the TKR surgery. 

6   Summary and Future Work 

A new robot assisted surgical model (WATO) is proposed for TKR in this paper. 
Unlike existent solutions, WATO is a surgical robot that combines together with a 
movable, hand-eye navigation system. Without using CT images and landmark pins in 
the patient’s bones, WATO can directly measure the mechanical axis with high 
precision, which affords a new approach for the development of the minimally invasive 
surgery. Experimental results show that WATO is promising in the future application.  

However, there are still some places to be improved. The present infrared marker 
needs too much surgical exposure to fix on the femur, which increases the invasiveness 
of the procedure. So, we need to design more efficient clamps to fix the infrared 
marker. In addition, as the proximity of the camera to the cutting tool, some 
splash-guard and vibration control mechanism should be considered in the future.  
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Abstract. This paper present a novel image-guided system for precise
automatic targeting in keyhole minimally invasive neurosurgery. The sys-
tem consists of a miniature robot fitted with a mechanical guide for nee-
dle/probe insertion. Intraoperatively, the robot is directly affixed to a
head clamp or to the patient skull. It automatically positions itself with
respect to predefined targets in a preoperative CT/MRI image following
an anatomical registration with a intraoperative 3D surface scan of the
patient facial features. We describe the preoperative planning and reg-
istration modules, and an in-vitro registration experiment of the entire
system which yields a target registration error of 1.7mm (std=0.7mm).

1 Introduction

Precise targeting of tumors, lesions, and anatomical structures with a probe or
a needle inside the brain based on preoperative CT/MRI images is the standard
of care in many keyhole neurosurgical procedures. The procedures include tumor
biopsies, catheter insertion, deep brain stimulation, aspiration and evacuation of
deep brain hematomas, and minimal access craniotomies. Additional procedures,
such as tissue and tumor DNA analysis, and functional data acquisition, are
rapidly gaining acceptance and also require precise targeting. These minimally
invasive procedures are difficult to perform without the help of support systems
that enhance the accuracy and steadiness of the surgical gestures.

Four types of support systems for keyhole neurosurgery are currently in use:
1. stereotactic frames; 2. interventional imaging systems; 3. navigation systems,
and; 4. robotic systems. Stereotactic frames provide precise positioning with a
manually adjustable frame rigidly attached to the patient skull. These exten-
sively used frames provide rigid support for needle insertion, and are relatively
accurate and inexpensive (< 1mm, USD 50K). However, they require preopera-
tive implantation of frame screws, head immobilization, and manual adjustment
during surgery. They cause patient discomfort and do not provide real-time vali-
dation. Interventional imaging systems produce images showing the actual needle

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 131–138, 2005.
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position with respect to the predefined target [1,2,3]. Their key advantage is that
they account for brain shift. A few experimental systems also incorporate optical
real-time tracking and robotic positioning devices. However, their nominal and
operational costs are high and their availability is very limited. Furthermore,
brain shift is a secondary issue in keyhole neurosurgeries.

Navigation systems (e.g., Medtronic, USA and BrainLab, Germany) show in
real time the location of hand-held tools on the preoperative image onto which
targets have been defined [4,5,6]. Augmented with a manually positioned tracked
passive arm (e.g., Phillips EasyTaxisTM), they also provide mechanical guidance
for targeting. While these systems are now in routine clinical use, they are costly
(USD 250K), require head immobilization and maintenance of line-of-sight for
tracking, and additional time for registration and manual arm positioning.

Robotic systems provide frameless stereotaxy with a robotic arm that au-
tomatically positions itself with respect to a target defined in the preoperative
image [7,8,9,10]. Registration between the image and the intraoperative situa-
tion is done by direct contact or with video images. Two floor-standing com-
mercial robots include NeuroMateTM (Integrated Surgical Systems, USA) and
PathFinderTM (Armstrong HealthCare, UK). Their advantages are that they
are rigid, accurate, and provide a frameless integrated solution. However, since
they are bulky, cumbersome, and costly (US 300K), they are not commonly used.

2 System Overview and Protocol

We are developing a novel image-guided system for precise automatic targeting
of structures inside the brain that aims at overcoming the limitations of existing
solutions [11]. The system automatically positions a mechanical guide to sup-
port keyhole drilling and insertion of a needle or probe based on predefined entry
point and target locations in a preoperative CT/MRI image. It incorporates the
miniature MARS robot (Mazor Surgical Technologies) [12,14], originally devel-
oped for orthopaedics, mounted on the head immobilization clamp or directly
on the patient skull via pins (Fig. 1). Our goal is a robust system for keyhole
neurosurgical procedures which require clinical accuracy of 1–1.5mm.

The key idea is to establish a common reference frame between the preop-
erative CT/MRI image and the intraoperative patient head and robot locations
with an intraoperative 3D surface scan of the patient’s facial features. Once this
registration has been performed, the transformation that aligns the planned and
actual robot targeting guide location is computed. The robot is then automat-
ically positioned and locked in place so that its targeting guide axis coincides
with the entry point/target axis.

The system hardware consists of: 1) the MARS robot and its controller; 2) a
custom robot mounting base, targeting guide, and registration jig; 3) an off-the-
shelf 3D surface scanner, and; 4) a standard PC. MARS is a 5 × 8cm2 cylinder,
250–gram six-degree-of-freedom parallel manipulator with workvolume of about
10cm3 and accuracy of 0.1mm. It operates in semi-active mode; when locked, it
is rigid and can withstand lateral forces of up to 10N [13]. The adjustable robot
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Fig. 1. The MARS robot mounted on the skull

mounting jig attaches the robot base to either the head immobilization frame
or to skull-implanted pins. The system software modules are: 1) preoperative
planning; 2) intraoperative execution; 3) surface scan processing; and 4) three-
way registration. This paper describes the first and last modules.

The surgical protocol is as follows. A preoperative marker- and frame-less
CT/MRI image of the patient is acquired. Next, with the preoperative planning
module, the surgeon defines on the image the entry points and target locations,
and determines the robot mounting type (head clamp or skull) and the desired
robot location. Intraoperatively, guided by a video-based intraoperative module,
the surgeon places the robot approximately in its planned location. When the
robot is mounted on the head frame, the robot base is attached to an adjustable
mechanical arm affixed to the head clamp. When mounted on the skull, two
4mm pins are screwed under local anesthesia on the skull and the robot mount-
ing base is attached to them. Next, the registration jig is placed on the robot
mounting base and a surface scan showing both the patient forehead and the
registration jig is acquired. The registration jig is then replaced by the robot with
the targeting guide on it, and the registration module automatically computes
the offset between the actual and the desired targeting guide orientation. It then
positions and locks the robot so that the actual targeting guide axis coincides
with the planned needle insertion trajectory. On surgeon demand, the system
automatically positions the robot for each of the predefined trajectories.

3 Preoperative Planning

The preoperative planning module inputs the CT/MRI image and geometric
models of the robot, its workvolume, and the targeting guide. It automatically
builds from the CT/MRI image the face surface and extracts four landmarks
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Fig. 2. Preoperative planning module screens

near the eyes to be used later for coarse registration. The module allows in-
teractive visualization of the CT/MRI slices and the face surface, and enables
the surgeon to define entry and target points and visualize the resulting needle
trajectories (Fig 2a). Based on the surgeon-defined entry and target points, and
the robot mounting mode (on the skull or on the head clamp), the module com-
putes a suggested preferred approximate robot base placement and its range.
The computed robot base placement is such that the needle trajectories are at
the center of the robot work volume. Placements away from it are assigned a
score based on how far they are from the robot work volume center. The results
are graphically shown to the surgeon (Fig 2b), who can then select the approxi-
mate actual position to satisfy clinical criteria, such as avoiding placements near
the cranial sinuses, temporal muscle, or emissary vein. The output includes the
surgical plan (entry and target points), the approximate robot base placement,
and the patient face surface mesh and landmarks.

The algorithm for computing and rating the robot placements proceeds as
follows. A needle trajectory is associated with a coordinate frame whose z axis
is aligned with the needle axis and points towards the target. For each point on
a uniform 5 × 5mm2 grid of possible robot base placements over the skull, the
rigid transformation that aligns the targeting guide z axis, held by the robot in
its home position, with the needle trajectory axis, is computed based on Horn’s
closed-form solution. The robot base location is then computed by composing the
fixed transformation from the targeting guide to the robot top, and the transfor-
mation from the robot top to the robot base. The resulting robot transformation
is scored against the robot home position based on their distance.

4 Registration

The three-way registration module computes the transformation that establishes
a common reference frame between the preoperative CT/MRI, the robot mount-
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Fig. 3. In-vitro experimental setup

ing base, and the intraoperative patient situation. Two transformations are com-
puted to this end: CT/MRI to intraoperative patient face and robot mounting
base to intraoperative patient face. The module inputs the intraoperative surface
scans of the registration jig and of the patient’s face, and four eye landmarks
from the 3D surface scan processing module.

The transformation between the face surface scanner cloud of points and
the corresponding CT/MRI surface is performed by first computing a coarse
correspondence between them from the extracted landmark eye points in both
datasets. This correspondence is then refined with robust Iterative Closest Point
(ICP) registration [15], which is performed between a small (1,000–3,000) subset
of the surface scan points and the CT/MRI points on the face/ear surface.

The transformation between the robot mounting base and the patient face
is performed with a custom-designed registration jig. The registration jig is a
75×75mm2 base with a wide-angled tetrahedron of 9mm height that is placed on
the robot mounting base (Fig 3a). It is designed so that all four planes can be seen
from a wide range of scanning viewpoints, with sufficient area for adequate scan
sampling. To facilitate plane identification, all pairwise plane angles are different.
The registration jig model is matched to the surface scanner data as follows.
First, we compute a Delaunay triangulation of the registration jig scanner cloud
of points. Next, the normals of each mesh triangle are computed and classified
into five groups according to their value: four groups correspond to each one of
the planes of the registration jig, and one to noise. A plane is then fitted to the
points in each of the groups, and four points, corresponding to the intersection
between any three planes, are computed. The affine transformation between
these four points and the corresponding ones in the model is then computed.
Finally, an ICP rigid registration on the plane points is computed to further
reduce the error. The actual robot mounting base location with respect to the
preoperative plan is determined from this transformation, and from it and the
robot characteristics, the targeting guide location.



136 R. Shamir et al.

5 Experimental Results

We have implemented a complete hardware and software prototype of the pro-
posed system and designed an in-vitro registration experiment to validate it. In
earlier work [11], we measured the accuracy of the MRI/surface scan registra-
tion by acquiring 19 pairs of MRI/3D surface scans of the first two authors with
different facial expressions – worried or relaxed, eyes open or closed. The MRI
scans are 256 × 256 × 200 pixels3 with voxel size of 0.93 × 0.93 × 0.5mm3 from
which 100,000-150,000 face surface points are extracted. The surface scans were
obtained with a laser scanner (Konica Minolta Vivid 910, USA – accuracy of
0.1mm or better). The registration RMS error was 1.0mm (std=0.95mm) com-
puted in 2 secs, which is adequate and compares favorably with [16].

In this in-vitro registration experiment of the entire system, we manufac-
tured the registration jig, a positionable robot mounting base, and a precise
stereolithographic phantom replica of the outer head surface of the second au-
thor from an MRI dataset (Fig 3). Both the phantom and the registration
jigs include fiducials for contact-based registration. The phantom is attached
to a base with a rail onto which slides a manually adjustable robot mounting
base.

To verify the accuracy of the three-way registration algorithm, we used an
optical tracking system (Polaris, Northern Digital, Canada – 0.3mm accuracy)
to measure the relative locations of the phantom and the registration jig. Their
spatial location was determined by touching with a calibrated tracked pointer
the phantom and registration jig fiducials. The phantom and the registration jig
were scanned with a video scanning system (Optigo200, CogniTens – 0.03mm
accuracy). We then computed two registration chains (Fig 4), and measured the

registration jig
surface

face
surface

surface
face

registration jig
surface

registration jig
fiducials

fiducialstargets
face

targets
registration jig

fiducials
face
fiducials

phantom/scanner

ROBOT BASE

robot/tracker

SURFACE SCANNER

OPTICAL TRACKERPHANTOM (MRI)

robot/scanner

phantom/tracker

Fig. 4. Registration chains for in-vitro experiment. Each box corresponds to an in-
dependent coordinate system. The location of the phantom targets with respect to
the robot base origin is computed once via the surface scanner (phantom/scanner and
robot/scanner transformations) using the face and registration face surfaces, and once
via the optical tracker (phantom tracker and robot/tracker transformations) using the
registration jig and the face fiducials. By construction, the phantom and the MRI are
in the same coordinate system.
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Table 1. In-vitro registration results (in mm) of five experiments. The 2nd and 3rd
are the surface scanner phantom and robot base surface registration errors. The 4th
and 5th column are the fiducial tracker phantom and registration jig registration errors
(both FRE – Fiducial Registration Error – and TRE – Target Registration Error for a
target at about 150mm from the mounting base. The 6th column is the error between
the target scanner and tracker fiducial locations.

Set phantom/scan robot/scan phantom/tracker robot/tracker Error
RMS (std) RMS (std) FRE (TRE) FRE (TRE) (std)

1. 0.45 (0.16) 0.31 (0.22) 0.50 (0.61) 0.71 (0.68) 2.71
2. 0.46 (0.17) 0.28 (0.20) 0.50( 0.61) 0.71 (0.68) 1.85
3. 0.46 (0.17) 0.25 (0.13) 0.22 (0.53) 0.65 (0.69) 1.31
4. 0.46 (0.18) 0.34 (0.27) 0.22 (0.53) 0.65 (0.69) 1.09
5. 0.44 (0.14) 0.21 (0.08) 0.76 (0.79) 0.73 (0.73) 1.49
Avg. 0.46 (0.17) 0.28 (0.18) 0.44 (0.62) 0.67 (0.69) 1.69 (0.7)

location error of phantom targets with respect to the robot mounting base as
computed by the surface scanner and the optical tracker.

Table 1 shows the results of five experiments. The Target Registration Er-
ror (TRE) is 1.7mm, which is close to the desired clinical goal. It includes the
positional error tracked pointer tip, estimated at 0.5mm (this can be improved
with a more accurate measuring system). In addition, we measured the accu-
racy of the registration between the real faces and the CogniTens scans, taken
several months apart, as we did in the earlier experiment. The RMS error is
0.7mm (std=0.25mm), which shows that registration based on facial features
is accurate and stable over time. We also measured the accuracy of the robot
and registration jig mounting with the optical tracker by putting on and off 10
times the registration jig and measuring the fiducial offset location. The FRE
is 0.36mm (std=0.12mm), which is within the measuring error of the optical
tracker.

6 Conclusion

We have described a system for automatic precise targeting in minimally inva-
sive keyhole neurosurgery that aims at overcoming the limitations of the existing
solutions. The system, which incorporates the miniature parallel robot MARS,
will eliminate the morbidity and head immobilization requirements associated
with stereotactic frames, eliminate the line-of-sight and tracking requirements of
navigation systems, and provide steady and rigid mechanical guidance without
the bulk and cost of large robots. This paper presents the preoperative planning
and registration modules, and the first results on an in-vitro registration experi-
ment. It establishes viability of the surface scan concept and the accuracy of the
location error of phantom targets with respect to the robot base to 1.7mm, which
is close to the required 1–1.5mm clinical accuracy in many keyhole neurosurgical
procedures.
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Abstract. In robotically assisted laparoscopic surgery, soft-tissue motion track-
ing and structure recovery are important for intraoperative surgical guidance, 
motion compensation and delivering active constraints. In this paper, we pre-
sent a novel method for feature based motion tracking of deformable soft-tissue 
surfaces in totally endoscopic coronary artery bypass graft (TECAB) surgery. 
We combine two feature detectors to recover distinct regions on the epicardial 
surface for which the sparse 3D surface geometry may be computed using a 
pre-calibrated stereo laparoscope. The movement of the 3D points is then 
tracked in the stereo images with stereo-temporal constrains by using an itera-
tive registration algorithm. The practical value of the technique is demonstrated 
on both a deformable phantom model with tomographically derived surface ge-
ometry and in vivo robotic assisted minimally invasive surgery (MIS) image  
sequences. 

1   Introduction 

Recent advances in robotic assisted Minimally Invasive Surgery (MIS) for performing 
micro-scale tasks using motion scaling and miniaturized mechanical wrists have made 
it possible to perform closed-chest cardiothoracic surgery on a beating heart. This ap-
proach minimizes patient trauma and avoids certain adverse effects associated with 
cardiopulmonary bypass. In practice, deformation of the epicardial surface due to car-
diac and respiratory motion can impose significant challenges to delicate tasks such 
vessel anastomosis. The use of mechanical stabilizers can effectively remove most of 
the bulk motion, but residual tissue deformation remains significant in most cases. For 
intraoperative guidance and applying image guided active constraints to avoid critical 
anatomical structures such as nerves and blood vessels, it is necessary to develop 
complementary techniques for accurate 3D surface structure reconstruction and mo-
tion estimation in situ [1].  

The determination of tissue deformation can be approached with a number of ap-
proaches that involve intraoperative imaging such as endoscopic ultrasound, or mo-
tion sensors such as mechanically or optically based accelerometers [2,3]. Marker 
based techniques have been proposed, but they involve suturing or projecting fiducals 
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onto the heart surface [4,5]. Region based tracking of natural epicardial regions has 
also been investigated using monocular video sequences [6], but only for recovering 
2D image motion. Since robotic assisted MIS procedures typically involve a pair of 
miniaturized stereo cameras, detailed 3D motion and structure recovery from the ste-
reo laparoscope with image registration was recently proposed [7,8]. The major ad-
vantage of these methods is that they do not necessitate additional modification to the 
existing MIS hardware, but computationally they require complex computer vision 
algorithms inferring dense 3D correspondence which is often an ill-posed problem. 
Existing research has shown that sparse sets of well known feature correspondences 
can be used as ground control points to enforce additional constraints and increase the 
inherent accuracy and robustness of dense stereo techniques [9]. Furthermore, the in-
tegration of other visual cues such as shading and specular reflectance and their tem-
poral characteristics in response to soft-tissue deformation can further improve the 
practical value of optically based methods. 

The purpose of this paper is to introduce a method for inferring precise 3D struc-
ture and motion for a set of sparse salient features on the soft-tissue surfaces during 
robotic assisted MIS procedures. With a calibrated stereo laparoscope, a combination 
of landmarks is used to provide robust performance in the presence of specular reflec-
tions. The temporal behavior of each landmark is then derived by using constraints in 
the stereo video sequence. Detailed validation of the proposed method was performed 
on both a phantom model with known geometry and in vivo robotic assisted MIS data. 

2   Methods 

2.1   Salient Landmarks on the Epicardial Surface 

Traditionally, the identification of salient landmarks is usually achieved with edge or 
corner features for sparse stereo matching and motion tracking. For robotically as-
sisted MIS, these features can be unstable and prone to errors due to the homogeneity 
of surface texture and the presence of specular highlights, which can cause clustering 
of high frequency features on the specular boundary. In the context of wide-baseline 
stereo matching, Matas et al. [10] defined maximally stable extremal regions (MSER) 
based on thresholding the image intensity to create connected components with local 
minima. The use of MSER landmarks has a number of desirable properties as they are 
invariant to monotonic changes in illumination. Furthermore, if they are detected by 
starting from the lowest intensity (MSER-), they can implicitly avoid specular reflec-
tions. It can also be shown that on MIS cardiac surfaces, MSER- generally corre-
sponds to physically meaningful texture details such as superficial blood vessels or 
small tissue bruising. 

In this paper, a combination of MSER- regions and the traditional gradient based 
image features [11] is used for salient landmark selection. The use of different feature 
descriptors can provide added robustness [12], which is necessary in the presence of 
occlusions and specular highlights as encountered in cardiac MIS procedures. We as-
sociate a measurement region (MR) around each landmark for computing the dissimi-
larity metrics. The MR is a rectangular window for corner features and an ellipse that 
bounds the convex hull of the component for MSER- regions.  
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2.2   Stereo Feature Matching 

To recover 3D measurements from a stereoscopic laparoscope, the correspondence of 
landmarks of the stereo pair needs to be determined. There are many algorithms for 
matching sparse feature sets, and in this work we used the method proposed by Pilu 
[13] for combining proximity and similarity measures to discriminate between poten-
tial matches. For each feature type, we build a cost matrix with row entries corre-
sponding to features in the left image and columns for the right image. Each entry of 
the cost matrix depicts how well respective features correspond to each other by using 
the following dissimilarity measure:  

22

22

( 1)

22

ijij rC

ijCost e e  
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In Eq. (1), r  is the Euclidian distance between features,  and μ are sensitivity control 
parameters set to the values suggested in [13], and ijC is the normalized cross correla-
tion (NCC) between the measurement regions of features i and j . When matching 
MSER-, we used the largest MR for computing correlation. The algorithm makes use 
of the properties of Singular Value Decomposition (SVD) of the cost matrix to at-
tenuate matrix values for poor matches. Once corresponding points are determined, 
3D points on the epicardial surface can be inferred by using the centre of mass of the 
MSER- as a reference. By calibrating the camera before the MIS procedure, the epi-
polar constraint can be introduced to the proximity cost. Calibration is also important 
to the intrinsic accuracy of the proposed technique as otherwise the recovered 3D 
points will be ambiguous up to a projective transformation if just using the deter-
mined stereo correspondences for estimating the camera matrices. 

2.3   Temporal Tracking Using Stereo Constraints 

Once the stereo correspondence is established, we used temporal motion tracking of 
salient features to iteratively update their temporal positions in 3D space by using 
both stereo frames. This extends the Lucas-Kanade (LK) [15, 16] registration algo-
rithm for incorporating the inter-stereo epipolar constraint. The goal of the LK tracker 
is to align a reference image template ( )T x  with an image region subject to the 
squared pixel difference, given a warping function ( ; )W x p  of arbitrary complexity 
and p  parameters. The algorithm starts with an initial estimate of the warping pa-
rameters p  and iteratively computes an update term p  until convergence below a 
predefined threshold p . The error function e  used for minimizing the modified 
stereo LK tracker is defined as: 

22
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x

x p p x x p p x
 

(2) 

where ( ( ; ))I W x p  and ( ( ; ))J W x p  are the images transformed by the respective warp-
ing function. The error function can be linearized by taking the first order Taylor ex-
pansion about p , such that the partial derivative with respect to p  can be deter-
mined by using the chain rule. Setting the partial derivative to zero and solving for 

p  yields a least-squares solution (constants are ignored), we have: 
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Where I  and J  are the warped image gradients of each stereo channel, /W p  is 
the Jacobian of each warping function and 1H  is the inverse of the Hessian matrix: 
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The motion parameterization used in this is study is based on a pure translation model 
for each feature, which incorporates terms for the vertical and horizontal motion in 
the reference image, and an additional term for disparity changes in the stereo pair. 
More complex models can readily be incorporated into the proposed framework (for 
further details consult the study by Baker et al [16]) but the increased search space 
may have an adverse effect on the actual system performance [6]. Furthermore, it has 
been demonstrated that for small inter-frame motion, the use of translation tracking 
alone can be sufficient [11]. 

2.4   Experimental Design 

The proposed method was implemented in C++ on a standard desktop PC with a Pen-
tium IV 2.4 GHz CPU and 512 Mb RAM, running the Windows XP operating system. 
In the current implementation, initialization took 0.5s (mostly for MSER detection) 
after which the algorithm processed 320×288 images at 11 frames per second (fps). 
With further optimization real-time performance can be achieved. 

 
 

Fig. 1. The cardiac phantom model used for validating the proposed technique (a) image of the 
heart model showing the visual and geometrical fidelity of the model and (b) CT slice for three 
levels of deformation and 3D renditions of reconstructions from the respective CT series 

(a) (b) 
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To validate the proposed method, a scaled simulation environment was created 
with a phantom heart model shown in Fig. 1 (a). A stereo rig mounted on a Stäubli 
RX60 robotic arm with six degrees of freedom (DOF) and repeatability accuracy of 
±0.02mm. The phantom model was created using thixotropic silicone mould rubber 
and pre-vulcanized natural rubber latex with rubber mask grease paint to achieve a 
specular appearance and high visual fidelity. The deformable silicone surface was 
mounted onto a piston mechanism with controllable injection levels to simulate the 
heart beat motion in a reproducible manner. The precise phantom model geometry 
was recovered at seven discrete heart beat simulation levels using a Siemens Soma-
tom Sensation 64 CT scanner with slice thickness of 0.6mm, an example CT slice and 
3D rendition of a reconstruction are shown in Fig. 1 (b). 

For in vivo analysis, data from robotic assisted cardiac surgery carried out with a 
daVinci™ surgical system (Intuitive Surgical, CA) was used. The cameras of the 
stereoscopic endoscope were hardware synchronized by using a proprietary FPGA 
device designed by this institution. The stereo cameras were calibrated before the pro-
cedure using a planar calibration object [17].  The proposed method was used to de-
tect and then track landmarks on the epicardial surface after the positioning of a me-
chanical stabilizer. Since, ground truth data for the 3D structure and motion of the 
soft-tissue cannot be easily obtained for robotic procedures, we used the motion of 
landmarks on the epicardial surface to determine the respiratory and cardiac motion as 
a means of qualitative analysis. 

3   Results 

The phantom heart model described above was used to generate an image sequence of 
50 frames, with each frame showing consecutive deformation of the heart associated 
with the CT data. The setup was devised so that the resultant inter-frame pixel motion  
 

 
 

Fig. 2. Phantom model experiment for evaluating reconstruction accuracy of stereo feature 
tracking (a) the average and standard deviation of error in millimeters for feature correspon-
dences in each experimental frame (b) the number of features actively tracked at each frame of 
the sequence 

(a) (b) 
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Fig. 3. Example stereoscopic image pairs of robotic assisted totally endoscopic coronary artery 
bypass surgery used for the in vivo analysis in this study 

 

 

Fig. 4. Results for in vivo robotic assisted MIS (a) the recovered 3D coordinates in the left cam-
era reference system for a landmark tracked through 1500 video frames at 50 fps (b) power 
spectral analysis clearly identifies the heart beat and respiratory frequencies in the 3D motion 

 

Fig. 5. Principal component analysis of the recovered motion signal indicating the decoupled 
cardiac motion component 

(a) (b)
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did not exceed 15 pixels, which was consistent with observations from in vivo data for 
consecutive frames. Metric error was measured as the distance between the recon-
structed 3D point and the point on the CT reconstructed surface along the ray back-
projected from the left camera. In Fig. 2, we demonstrate the reconstruction accuracy of 
stereo correspondence obtained with the proposed technique. Not all features are suit-
able for temporal tracking, and initial outliers were rejected depending on the correla-
tion threshold. This results in fewer features being tracked over the entire period but im-
proves the overall accuracy by ensuring that only consistent landmarks are considered. 
With the proposed framework additional landmarks may be introduced at any stage. 

The in vivo performance of the algorithm is assessed with a robotic assisted totally 
endoscopic coronary artery bypass graft (TECAB) as shown in Fig. 3. In Fig. 4, it is 
evident that the recovered motion clearly captures the coupled deformation of the 
epicardial surface due to cardiac as well as respiratory motion. It is worth noting that 
the graph shown in Fig. 4 illustrates the surface motion as projected onto the x , 
y and z  axes of the camera coordinate system.  Within this figure, the power spec-

trum of each of the motion components is also provided, which illustrates the domi-
nant frequencies derived from the proposed algorithm. In Fig. 5, we show the decoup-
led motion component indicating only the cardiac motion by using a localized 
principal component analysis (PCA) cardiac/respiratory decoupling technique. 

4   Discussion and Conclusions 

In this paper, we have proposed a practical method for determining soft-tissue defor-
mation for robotic assisted MIS from a set of landmarks. We have used a combination 
of landmarks including MSER- regions and the traditional gradient-based image fea-
tures for ensuring robust system performance. Results from the phantom model have 
demonstrated the accuracy of 3D reconstruction that can be achieved and analysis of 
in vivo robotic assisted MIS data has further demonstrated the clinical value of the 
proposed technique. With the current implementation, features occluded by the in-
struments or tissue effects such as bleeding are detected through correlation and epi-
polar geometry thresholds and set as outliers in the tracking process. The introduction 
of new features or labeling lost features as occluded and performing subsequent 
searches with statistical motion models can be used improve the tracking process. 
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Abstract. This paper presents a new algorithm for non-rigid registra-
tion between two doubly-connected regions. Our algorithm is based on
harmonic analysis and the theory of optimal mass transport. It assumes
an underlining continuum model, in which the total amount of mass is
exactly preserved during the transformation of tissues. We use a finite
element approach to numerically implement the algorithm.

1 Introduction

Image registration is the process of generating a common geometric frame of ref-
erence between two or more image datasets. This technique is especially useful
in the context of medical image processing. A successful registration technique
allows for the integration of pre-operative information with intra-operative imag-
ing to improve image-guided surgery and therapy. For example, in brain surgery
where craniotomy is performed, the ventricles in the brain may be compressed
due to pressure changes. A surgical plan based on pre-surgical images must there-
fore be updated accordingly to reflect these shape deformations. There have been
numerous algorithms proposed for non-rigid registration. See [9] for a detailed
review and the references therein. Our method employs optimal mass transport,
and therefore belongs to the category of warping algorithms based on continuum
and fluid mechanics. The approach may be formulated as an energy minimiza-
tion problem. We should point out that our methodology may not be suitable
under circumstances where the mass preservation assumption is invalid, such as
the matching of two different perspective projections of a spatial object.
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In the work of [5,11], an algorithm was presented for finding an optimal
warping function between two simply-connected domains, or more specifically
two rectangular regions. The assumption was that the mass is preserved at all
points in the image domain. However, this is not always the case. Sometimes, the
mass preserving (MP) assumption is valid only in parts of the two images. The
specific example we have in mind concerns two magnetic resonance (MR) images
of the heart taken at different times in the cardiac cycle, but corresponding to the
same spatial position. Indeed, during the cycle, the MP assumption is valid in the
myocardium, but not in the ventricles where the volume of blood varies from time
point to time point. With this key example in mind, we will derive an algorithm
for extending previous approaches to two doubly-connected domains, based on
harmonic analysis and a Finite Element Method (FEM). Here, we treat image
intensity as tissue mass density, due to the fact that in MR images intensity is
related to proton density, thus related to mass density. After registration, image
intensity (mass density) can change, but the total amount of mass (mass density
times area or the integral of intensity) preserves.

We now outline the contents of this paper. In Section 2, we give a brief
review of the optimal mass transport problem and a general gradient descent
solution. In Section 3, we summarize the approach for finding an optimal MP
mapping between two doubly-connected domains. In Section 4, we illustrate
the proposed algorithm using a pair of heart MR images. Finally, in Section 5,
we summarize the contribution of this paper and discuss some possible future
research directions.

2 Background on Optimal Mass Transport

The Monge-Kantorovich Problem (MKP) is concerned with the optimal way
of moving certain amount of mass from one domain into another. The total
amount of mass remains constant in this process. It has been widely studied in
various fields such as econometrics, fluid dynamics, transportation, and image
retrieval [7]; see [6] and the references therein. In this paper, we will consider
only 2D problems. Accordingly, let Ω0 and Ω1 be domains of R2, having smooth
boundaries. On each domain Ωi, we assume that there exists a positive mass
density function μi, i = 0, 1. It is further assumed that the same total amount
of mass is associated with the two domains.

We will be considering a class of diffeomorphisms u from Ω0 to Ω1 which
satisfy the “Jacobian equation” in the form of

μ0 = |Du|μ1 ◦ u, (1)

where |Du| is the determinant of the Jacobian of u, and ◦ represents the compo-
sition of functions. Equation (1) is an infinitesimal form of the mass preservation
(MP) constraint. We are interested in finding an MP mapping u which differs
minimally from the identity. To this end, we introduce the L2 Kantorovich–
Wasserstein penalty functional on u ∈ MP, defined as:
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M [u] :=
∫

Ω0

‖u(x) − x‖2μ0(x)dx (2)

This functional places a penalty on the distance the map u moves each bit of
material, weighted by the material’s mass. The resulting distribution of material
is constrained to be the given density μ1. The “optimal” mapping ũ is the one
that minimizes functional (2), and is the “cheapest” way of transporting mass
from one domain into the other. An energy term penalizing intensity change can
also be added, please refer to [5].

Theoretical results [2,3] show that there is a unique minimizer ũ ∈ MP , and
that this minimizer is characterized as being the gradient of a convex function w,
i.e., ũ = ∇w. There have been a number of algorithms proposed for solving this
problem, e.g. linear programming [6], which is the most popular one. However,
the linear programming approach has a high computational complexity. In the
method presented here, we use a gradient descent approach to solve for the opti-
mal transport problem, based on the equivalent problem of polar factorization.
Here we will briefly describe the procedure; for mathematical details we refer
the reader to [5].

The first step of the method is to construct an initial MP mapping. For two
rectangular regions, the initial mapping can be found by solving a family of 1D
problems unsing simple numerical integration. Assume the two domains have
shapes of Ω0 = [0, A0] × [0, B0] and Ω1 = [0, A1] × [0, B1], respectively. Assume
further that the initial mass preserving mapping has the form of u0(x, y) =
(a(x), b(x, y)). Since both μ0 and μ1 are positive everywhere, it is easy to solve
u0 = (a(x), b(x, y)) from the following equations:∫ a(x)

0

∫ B1

0
μ1(η, y)dydη =

∫ x

0

∫ B0

0
μ0(η, y)dydη

a′(x)
∫ b(x,y)

0
μ1(a(x), ρ)dρ =

∫ y

0
μ0(x, ρ)dρ. (3)

The second step is to find the minimizer ũ of the energy functional (2), using
an iterative approach. In [5], it is shown that the evolution of u should have the
following form in order to satisfy the mass preserving constraint:

ut =
2
μ0

Du∇⊥�−1div
[
(u − id)⊥

]
, (4)

where ⊥ rotates a vector by π/2 in the counterclockwise direction, �−1 denotes
the inverse of Laplacian, and id stands for the identity map. It can be shown
that the optimal mapping ũ is a curl-free vector field [5].

3 Mass-Preserving Registration Between Two
Doubly-Connected Domains

In the previous section, we briefly described the approach for solving the trans-
port problem between two rectangular regions. However, this approach cannot
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be applied on doubly-connected regions (i.e. an annular region) without some
modifications. The main difficulty comes from the construction of an initial MP
mapping u0 between two irregular doubly-connected domains. In this section,
we present an algorithm which constructs such a mapping by using harmonic
parametrization. In this approach, the two domains are first harmonically pa-
rameterized, then the initial MP mapping u0 is constructed by solving a 1D
transport problem along one harmonic coordinate, followed by a family of 1D
transport problems along the other harmonic coordinate.

3.1 Harmonic Parametrization

Here we sketch the steps for constructing an analytic function fh = uh + ivh for
the harmonic parametrization. Similar techniques have been applied for measur-
ing tissue thickness [10], for colon surface visualization [4], and for parametriza-
tion of ventricular regions of the heart [8].

Assume we have a triangulated doubly-connected domain Σ, which has an
inner boundary denoted by σ0 and an outer boundary denoted by σ1 as shown
in Figure 1. First, we want to construct uh, which is the real part of f . It is
assumed that uh satisfies

�uh = 0
with uh(σ0) = 0 and uh(σ1) = 1 (5)

The Laplace equation can be solved by using standard FEM techniques [4].
A cut C is then found from σ0 to σ1 by following the gradient of uh from an
arbitrary point x0 ∈ σ0 to another point x1 ∈ σ1. The cut C and two original
boundaries σ0 and σ1 form a new closed and oriented boundary B for the domain,

B : x0
σ0→ x0

C→ x1
σ1→ x1

−C→ x0

The boundary condition of the imaginary part vh can be then prescribed by,

vh(ζ) =
∫ ζ

ζ0

∂v

∂s
ds =

∫ ζ

ζ0

∂u

∂n
ds

according to the Cauchy-Riemann equations. Inside the cut surface, vh is found
as the solution of Laplace’s equation �vh = 0.

Fig. 1. A doubly-connected domain Σ with two boundaries
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Fig. 2. Harmonic parametrization of a heart image

Once the analytic function fh = uh + ivh is constructed, a curvilinear har-
monic polar coordinate system is defined by taking uh as one coordinate axis and
vh as the other. The coordinate uh can be thought of as a curvilinear “radius”
and vh as the “angle”. By scaling uh and vh by a constant, vh can be made to
run from 0 to 2π. Figure 2 shows such a parametrization on a heart MR image
without involving the ventricle area.

3.2 Finding the Initial Mapping u0

By performing harmonic parametrization, the first doubly-connected domain
(Ω0, μ0) is cut and mapped onto a rectangular region (Ωh

0 , μh
0) via a harmonic

(conformal) mapping fh
0 = uh

0 + ivh
0 . If we define the mass density μh

0 by

μh
0 = |Dfh

0 |−1μ0, (6)

then the mapping from Ω0 to Ωh
0 is mass-preserving. Similarly, the second

doubly-connected domain (Ω1, μ1) is mapped onto another rectangular region
(Ωh

1 , μh
1 ) via fh

1 = uh
1 + ivh

1 . Here, μh
1 is taken to be

μh
1 = |Dfh

1 |−1μ1. (7)

The remaining task is to find an MP mapping from (Ωh
0 , μh

0) to (Ωh
1 , μh

1 ). Since
Ω0 and Ω1 are now rectangular regions, we can use the algorithm presented in
Section 2 to find an initial MP mapping uinit between them. This process can be
illustrated by the following diagram.

� � �(Ω0, μ0) (Ωh
0 , μh

0 ) (Ωh
1 , μh

1 ) (Ω1, μ1)
fh
0 = uh

0 + ivh
0 fh

1 = uh
1 + ivh

1uinit

The resulting initial mapping u0 is the composition of fh
0 , uinit and (fh

1 )−1,
so that

u0 = (fh
1 )−1 ◦ uinit ◦ fh

0 . (8)

Compositions of MP mappings and inverses of MP mappings are also MP map-
pings. Thus u0 is and MP mapping, since fh

0 , fh
1 and uinit are.
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3.3 Finding the Minimizer ũ

The equation we use to evolve u is the same as for rectangular regions. The finite
element method (FEM) is used to solve the Poisson equation (the �−1 part of
equation (4)) on a triangulated irregular domain.

In the evolution equation of u (equation (4)), we use an upwinding scheme
for computing Du. For all other derivatives, we use a Least Mean Square (LMS)
method to numerically implement the spatial derivatives. For example, assume
that a given point (x0, y0) has N neighbors (xi, yi), i = 1...N , and a function
Φ is defined such that Φ(xi, yi) = Φi for i = 0...N . It is easy to show that the
derivatives of Φ should satisfy(

Φx

Φy

)
= (AT A)−1AT

⎛⎝ Φ1 − Φ0
...

ΦN − Φ0

⎞⎠ , (9)

where A is the position difference matrix given by

A =

⎛⎝ x1 − x0, y1 − y0
...

xN − x0, yN − y0

⎞⎠ . (10)

A time step was chosen as in [5] to make the algorithm stable.

4 Example

We illustrate the procedure outlined above on two 256 × 256 MR images of the
heart acquired on a GE scanner. Referring to Figure 3, we show the diastolic
(Figure 3(a)) and systolic (Figure 3(b)) time points of the cardiac cycle.

The black regions in Figure 3 (c) and (d) are two multi-connected domains,
corresponding to the heart muscle and other tissues in which we use image
intensity as the mass density. Uniform mass densities could also be used, in
which case mass preservation becomes a simple area preservation constraint.
These regions were chosen as natural candidates to apply an MP deformation
(in contrast to the left ventricle in which the change is too drastic to sensibly
apply the procedure). Harmonic parametrization is first done on each domain
(as shown in Figure 2 for the diastolic image), and an FEM-based L2 MKP is

(a) diastolic phase (b) systolic phase (c) the mask of (a) (d) the mask of (b)

Fig. 3. Two heart MR images and their segmentation results
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Fig. 4. The deformed grid on the systolic heart image

Fig. 5. Morphing movie for two heart images in Figure 3

then solved between the two domains to find the correspondence. Figure 4 shows
the deformed grid. We can also create a morphing video to show the deformation
of the first image into the second. Figure 5 shows some key frames in the video.

5 Conclusions
In this note, we extended the methodology for applying MP registration [5] to a
pair of doubly-connected domains. For an L2 version of the problem, a gradient
descent algorithm is proposed to solve the problem iteratively. Harmonic analysis
is employed in this approach for constructing an initial MP mapping. If the radius
of the inner boundary is small enough, the inner boundary can be considered
as a single landmark. In this sense, we have solved for MP registration on two
domains with a pair of corresponding landmarks. This technique can also be
extended into multi-connected domains (corresponding to multiple landmarks).

In the present work, the pure L2 Kantorovich-Wasserstein functional is pro-
posed as the similarity measure. A modified energy functional penalizing the
intensity change can also be implemented [12]. Other types of distance mea-
sures, e.g. minimizers of the Dirichlet energy integral, can also be combined
with a mass preservation constraint [1]. We plan to implement these ideas in
some future work.
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Abstract. In this paper we propose a new two step method to register
the liver from two acquisitions. This registration helps experts to make
an intra-patient follow-up for hepatic tumors.

Firstly, an original and efficient tree matching is applied on differ-
ent segmentations of the vascular system of a single patient [1]. These
vascular systems are segmented from CT-scan images acquired (every
six months) during disease treatement, and then modeled as trees. Our
method matches common bifurcations and vessels. Secondly, an estima-
tion of liver deformation is computed from the results of the first step.

This approach is validated on a large synthetic database containing
cases with various deformation and segmentation problems. In each case,
after the registration process, the liver recovery is very accurate (around
95%) and the mean localization error for 3D landmarks in liver is small
(around 4mm).

1 Introduction

Motivations: Liver Tumors Follow-Up: The main purpose of our work is to
make an intra-patient follow-up of tumors (see our previous work [2]). This task
is difficult since the liver is a highly deformable organ. Thus, tumor matching
relies on the liver deformation. To estimate this deformation, we propose to
compute a deformation field from reliable landmarks and then extrapolate it
to a dense field. It is a well-known result that the most reliable landmarks to
estimate deformations sustained by the liver are provided by its vascular network
[3,4,5,6,7]. We use our iterative tree matching algorithm on the vascular system,
to match common bifurcations and edges (see [1] for more details). Thus, each
match provides a displacement vector. From this sparse data a dense deformation
field is built.

Proposal: The remainder of this paper is organized as follows. We briefly recall
related methods to solve the problematics of our approach to compare and to
justify our approach. Then, we summarize our iterative oriented tree matching
(detailed in [1]). The next part describes the registration algorithm. The last
section deals with the validation protocol and demonstrates the efficiency of this
global approach (localization error reduced from 20mm to 4mm).

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 155–162, 2005.
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2 Related Works

Matching: Related works propose algorithms to match and/or register vascular
systems (brain, liver and, in a similar manner, lung airways). Generally, veins
are modeled as graphs computed from segmented images and skeletons [8]. Some
authors use tree structure notions in their algorithms to register a tree with an
image [3] or two trees [4]. Other approaches match structures (nodes and vessels),
but use general graph matching methods [5,6,9] or specific methods like subtree
isomorphism [7] which do not take segmentation problems into account.

The oriented tree matching problem is more specific than graph matching
because the structure is oriented and the path that connects two nodes is unique.
Moreover, it cannot be considered as an oriented subtree isomorphism problem
because of the segmentation errors. Indeed, the segmentation process can miss
some vessels (edges). This implies a (virtual) pruning on both trees (for example
an edge in a tree could be represented by several successive edges on the other
tree) and thus the tree topology differs between acquisitions.

In our previous work [1], vascular systems are modeled as trees. Then, tree
vertices are matched using a cost function that takes possible segmentation errors
into account. Our algorithm does not focus on the best solution (given two edge
sets to match) but on the most likely solutions which are updated during the
process.

Vector Field Interpolation: Several methods exist to produce a deforma-
tion vector field from sparse displacements : the method in [10] is based on the
computation of the optical flow. Another approach uses krigging [11] or con-
siders the deformation field as a derivate of a potential scalar map modeled by
Green’s function [12]. A generalization of scalar splines to vector interpolation
is proposed in [13] to estimate displacements.

Our first time method is simpler and less computive consuming than previ-
ously cited ones. Indeed liver deformations are less complicated than generalized
flow fields (no vortex for instance). Our method is decribed in section 4 and its
efficiency which is encouraging is discussed in section 5.

3 Iterative Tree Matching Technique

This section describes how we build correspondences among common structures
in the vascular system. Skeletons computed from segmented vascular systems can
be represented as oriented trees. The orientation symbolizes blood circulation
flow. Nodes represent bifurcations and edges correspond to vessels between two
bifurcations. Furthermore in our algorithm, some geometric attributes are added
to the vessels (3D positions, radius, path).

Vascular trees segmented for a patient follow-up represent the same vascular
system and our goal is to find common bifurcations and to register them. How-
ever, their topology and 3D positions may differ due to segmentation errors and
deformations applied to them. The main challenge consists in using tree topology
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Fig. 1. [Left] A large deformation case is pruned at 20% (% of branch area randomly
removed in both trees). [Center] The figure shows the result of our oriented tree
matching, good matches are represented by light gray arrows and represent 91% of
all nodes and wrong matches by dark gray arrows. [Right] The figure shows the tree
registration after the process.

to detect deformations, and in parallel, geometric information to detect topology
problems.

The idea of our algorithm [1] is to search for the best tree matching start-
ing from roots (vascular system entrance). Since possibilities are numerous, we
propose to generate and select the most relevant solutions. The algorithm starts
by studying the root match and updates selected solutions while it explores and
finds other possible matches in both trees. This means that some solutions se-
lected at a given process step can be eliminated later if they become less relevant.
The relevance of the solutions is evaluated at each step using a quality match
criteria. We show in [1] that this algorithm matches 90% of common nodes on
standard deformation and pruning. An example is shown in Fig. 1 and other
results are shown on Tab. 2. For more information on this topic, please refer to
our previous paper [1] in which this method is described and validated.

4 Registration

The previous step provides us with a match set which represents a deformation
vector field. We explain here how we extrapolate it to a dense field in order to
predict the liver deformation.

The matching provides us with a vector deformation Ti = P ′
i − Pi in each

correspondence point (bifurcation) (P ′
i ,Pi). Our method extrapolates this vector

flow to yield deformation vectors in each point inside the liver. To compute the
deformation TM , we use Voronoi cells Vi = {P ∈ R3 : ‖P − Pi‖ ≤ ‖P − Pj‖,
∀j �= i}. The extrapolated deformation TM in a point M �= Pi is defined by :

TM =
1

volume(SM )
×
∑

i

volume(Vi ∩ SM ) × Ti (1)

where SM is a sphere centered on M and of radius d = min
i

‖M − Pi‖. This

deformation is a linear combination of surrounding bifurcation displacements.
The impact of each displacement is correlated with its influence zone (Vi ∩SM ).
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Fig. 2. [Left] The figure shows two color points P1 (black) and P2 (white), their
associated Voronoi cell V1 and V2. The circles Si are defined using the distance d

from Mi to the closest point Pi. [Right] The figure shows the result of our color
interpolation.

To speed up the process,the displacement field is computed on a regular
subsampled liver. Then, we use a trilinear interpolation to extend the results
to whole liver. A 2D example with color interpolation of two points (white and
black) is illustrated on Fig. 2.

5 Experiments and Validation

To validate this registration algorithm, it is necessary to have a large patient
database. However, we lack multi-acquisitions of the same patient mostly be-
cause the time between two acquisitions is long as it is imposed by the disease
treatment (around 6 months). This is why our real patient database is not suf-
ficient to provide a clinical validation of our method. However, a real case is
studied at the end of this paper and results are encouraging for the future.

At the moment, we have tested our algorithm on a large synthetic database.
Even if synthetic cases differ slightly from real cases (deformations and segmen-
tation problems are simulated), working with a synthetic database has some
advantages. It allows to test many configurations and to have a gold standard,
so that we can estimate the algorithm efficiency. In this section, we present how
we build this database and obtain our results.

5.1 Creating Virtual Patient

To test and validate our algorithm, we worked on synthetic deformation applied
on a liver and its hepatic vascular system. The liver model has been extracted
from the Visible Man image which voxel resolution is 0.33 × 0.33 × 1mm (cf.
The Visible Human Project of NLM) with a segmentation that provides us an
accurate quality model.

To simulate deformations, we use the minimally invasive hepatic surgery
simulator prototype developed at INRIA [14]. This simulator provides a realistic
deformation model for the liver and its vascular system. It uses complex biome-
chanical models, based on linear elasticity and finite element theory, including
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Fig. 3. The EPIDAURE surgery simulator is used to simulate liver and vascular sys-
tem deformations. [Left] Volumetric model with the portal vascular system. [Center]
Portal and sus-hepatic vascular system of Visible Man [Right] Portal vascular system
is randomly pruned to lose approximately 40% of its branches. Lost branches appear
in light gray.

anisotropic deformations. Thanks to a discussion with surgeons, we try to ren-
der realistic deformations by simulating pressure applied on the liver (breathing,
patient positions, etc). The left of Fig.5 shows an example of an applied defor-
mation.

To simulate segmentation errors, we have pruned random tree branches. Since
segmentation errors are mostly observed on small vessels, the probability to lose
small vessels is greater than to lose large ones. A database of 600 patient follow-
up cases has been generated from 5 types of deformations and 5 pruning steps
(0,10,20,30,40 %) with, on each step, 20 randomly generated prunings.

5.2 Results on a Virtual Patient

Matching: In our previous paper [1], we have demonstrated the efficiency and
robustness of our matching algorithm on standard deformations. An average of
90% of all possible matches was found in the 600 different cases, even with large
pruning. The process is fast and matches 380 nodes in 10 minutes on a 1GHz
PC. Fig. 1 shows an example of a matching process where we obtain an efficiency
of 91% for a standard deformation case.

Fig. 4. [Left] Portal vascular system before the deformation estimation. [Center]
Perfect match between both portal trees. [Right] Portal vascular system after the
registration.
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Table 1. Deformation results on deformation n 5 : All distances are in millime-
ters. The liver similarity is vol(L1∩L2)

vol(L1∪L2) with Li the liver area. Before the registration,
the liver similarity is 72.3% and the mean displacement distance between livers is 22.7
± 10.3 . With a perfect registration, these distances (errors) should be equal to 0 and
liver similarity to 100%.

% pruning portal system portal & sus-hepatic system
error similarity error similarity

0-0 3.0 ± 2.0 95.4 2.3 ± 1.8 96.4
10-10 3.2 ± 2.1 94.9 2.5 ± 1.9 96.0
20-20 3.9 ± 2.6 93.9 2.8 ± 2.0 95.6
30-30 4.6 ± 3.1 92.4 3.3 ± 2.6 94.4
40-40 5.0 ± 3.3 92.5 3.8 ± 2.8 94.0
50-50 5.6 ± 3.5 91.3 4.5 ± 3.1 92.7

Table 2. Matching and deformation results: Each vascular system of these five
configurations has been pruned at 20%. The sensitivity (S) is the number of correct
found matches among the number of perfect solution matches (here 165 nodes). The
efficiency (E) is the number of correct found matches among the number of found
matches (correct and incorrect). The average distance between same points in the liver
are shown before registration (references), after the deformation estimated from our
matching and after a deformation estimated from a perfect matching.

cases S E references found matches perfect matches
error similarity error similarity error similarity

def1 98.8 90.4 9.9 ± 4.2 84.1 1.5 ± 1.3 97.0 1.3 ± 1.2 97.3
def2 95.5 87.1 28.9 ± 13.6 73.3 4.9 ± 4.2 94.2 4.4 ± 3.4 94.2
def3 98.2 86.9 22.9 ± 11.8 67.8 3.2 ± 2.0 96.0 3.3 ± 2.2 95.6
def4 96.0 87.1 19.7 ± 9.8 75.9 3.5 ± 2.5 95.3 3.3 ± 2.3 95.5
def5 96.1 87.1 22.7 ± 10.3 72.3 4.2 ± 3.0 93.6 3.9 ± 2.6 93.9

Fig. 5. [Left] Liver and its tumors before the deformation estimation. [Center] Liver
and its tumors after the registration. [Right] Details on liver superimposition after
the registration.
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Deformation Field: Here, we test the registration robustness only. Thus,
the estimation is computed from a perfect matching. Firstly, we study the
registration estimated from portal vascular system matches with different level of
pruning. Secondly, we improve the estimation by adding the sus-hepatic vascular
system analysis. Table 1 shows the results of these experiments. The synthetic
deformation on the volumetric mesh gives us the true displacement inside the
liver. Thus we compare this displacement with the one estimated from the de-
formation field by studying the distance between matching 3D landmarks. We
compute a mean and a standard deviation on the distance between the corre-
sponding points. According to surgeons, results are sufficient to permit a tumor
follow-up: the mean error to localize a 3D point in the liver is 5.6 mm in the worst
case and our registration estimation is robust against the pruning of data. Results
are better when the sus-hepatic analysis is added to the process. However, the
gain (about 1 mm) appears small compared to the 10 additional minutes neces-
sary to match the vascular system. Fig. 4 shows the vascular system registrations
estimated from a perfect matching on the case number 5 with a 20% pruning.

6 Conclusion

The purpose of this paper was to present a new robust method to register the
liver between two CT/MRI acquisitions using the segmented vascular systems.
This registration provides us a powerful tool for the follow-up of hepatic tumors.
It is easier to match tumors after this registration despite the disease evolution.
Thanks to the synthetic database automatically generated by the INRIA simu-
lator, we have tested numerous configurations. These different cases allow us to
gain in robustness.

Currently, we are improving the liver deformation by testing another vector
flow extrapolation. Moreover we are taking the liver surface into account to
better estimate the deformation close to the surface (generally far from the
vascular system). In parallel, we have started tests on a real patient database
with very encouraging results (Fig. 6) and we plan to provide surgeons with a
new tool for automatic diagnosis of liver tumor evolution.

Fig. 6. [a]Real patient where the vascular system has been matched whose vertex
matches are represented by black arrows. [b]Deformation field computed from matches.
[c,d]Tumors before and after registration.
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Abstract. Image similarity measures for registration can be considered
within the general context of joint intensity histograms, which consist
of bin count parameters estimated from image intensity samples. Many
approaches to estimation are ML (maximum likelihood), which tends to
be unstable in the presence sparse data, resulting in registration that
is driven by spurious noisy matches instead of valid intensity relation-
ships. We propose instead a method of MAP (maximum a posteriori)
estimation, which is well-defined for sparse data, or even in the absence
of data. This estimator can incorporate a variety of prior assumptions,
such as global histogram characteristics, or use a maximum entropy prior
when no such assumptions exist. We apply our estimation method to de-
formable registration of MR (magnetic resonance) and US (ultrasound)
images for an IGNS (image-guided guided neurosurgery) application,
where our MAP estimation method results in more stable and accurate
registration than a traditional ML approach.

1 Introduction

The evaluation of intensity similarity between two images for the task of image
registration can be framed in the general context of joint intensity histograms,
for a wide variety of similarity measures including correlation, correlation ratio,
mutual information and others [12]. In this context, the task of similarity eval-
uation is to calculate the relevant similarity measure based on an estimate of
the joint intensity histogram. Thus, the quality of image similarity evaluation is
dependent on the quality of joint histogram estimation.

Histogram estimation can be considered in the context of statistical param-
eter estimation, where the parameters to be estimated are the bin counts of
the joint histogram. A variety of estimation techniques have been presented in
the literature, the majority of which are variants of ML (maximum likelihood)
estimation [6]. The hallmark of ML estimators is that they become unstable in
the presence of sparse image data, and are undefined in the absence of image
data. As such, ML estimators perform poorly in the presence of sparse data,
tending to latch onto spurious, noisy matches despite the variety of techniques
designed to improve their performance such as Parzen windowing, partial volume
interpolation, robust ML estimation, etc.
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In this article, we present a method of joint histogram estimation based on
MAP (maximum a posteriori) parameter estimation. In contrast to ML estima-
tion, MAP histogram estimates are well-defined in sparse data or even in the
complete absence of data by a prior distribution over histogram bins. As such,
MAP histogram estimates are not subject to instability as are ML estimates.
Furthermore, MAP estimation provides a principled way incorporating prior in-
formation in terms of the number of samples required to obtain a valid histogram
estimate. As a result, one can bias histogram estimates such that if the number
of samples is insufficient, the MAP estimate will favor a benign prior unlikely to
lead to spurious matches.1

In practical terms, our method involves pre-populating joint histogram bin
counts before the arrival of data, according to an estimate of number of samples
M required for valid joint histogram estimation. This pre-population constitutes
our prior belief as to the joint histogram, which is gradually outweighed as
data samples are added. This general approach is known to stabilize probability
estimates of infrequently observed events [10], but it is not commonly used to
stabilizing image similarity estimates for registration.

Our MAP estimation method was developed for the purpose of on-line non-
linear registration of MR (magnetic resonance) and US (ultrasound) imagery in
the context of an IGNS (image-guided neurosurgery) application. This is a de-
manding registration task for the following reason: the joint intensity relationship
between MR and US imagery is noisy, multi-modal and highly non-stationary
(i.e. varying with spatial location), thus computing image similarity for registra-
tion requires a sophisticated similarity measure such as MI (mutual information)
with a high degree of parameterization. At the same time, precise nonlinear regis-
tration requires evaluating similarity within small local image windows, meaning
a relatively large number of histogram parameters must be estimated from a rel-
atively small number of intensity samples. A principled method of histogram
estimation is therefore needed to overcome the problem of sparsity. Preliminary
results based on stereotactic ground truth are promising, indicating a greater
degree of registration stability and accuracy when based on MAP as opposed to
ML histogram estimation.

2 Methods for Dealing with Sparsity

Sparsity in histogram estimation is a problem touched on by many authors,
although rarely in the framework of statistical parameter estimation. Here we
present some common approaches histogram estimation, particularly for the pur-
pose of dealing with data sparsity:

Parzen windowing: Parzen windowing [15], involves smoothing histograms
with a Parzen window kernel, often a Gaussian. Parzen windowing has the draw-
back of populating histogram estimates with fictitious samples, and does not gen-
erally converge to the true histogram estimate with increased sample size. To
1 We stress here that we refer not to MAP estimation for registration, but the estima-

tion of the joint histogram used to evaluate similarity given a fixed image alignment.
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see this, consider the case in which the joint intensity histogram is completely
contained in a single histogram bin. Using Parzen windowing, this histogram
will always contain a smoothed peak, regardless of the amount of image data.

Coarse histogram binning: Coarse histogram binning reduces the number of
parameters to be estimated from a limited amount of data [16]. Coarse histogram
binning in itself is not sufficient to deal with sparsity, however, as the coarser
the histogram quantization, the more impoverished the histograms become for
the purpose of registration. In addition, even highly quantized histograms can
suffer from undersampling given small local window sizes. Finally, the question
of an optimal quantization scheme is difficult and task dependent.

Probabilistic Segmentation of Before Registration: A new approach
which serves to reduce problems with sparse intensity histogram estimation is
to compute histograms based on probabilistically labeled images [2]. Here, his-
tograms are based on low-dimensional probability distributions, resulting in bins
that are non-zero. Although seemingly well suited to it’s purpose, such an ap-
proach requires the extra step of probabilistic data segmentation, which in our
experience tends to blur out local structures in favor of global segmentation.

Weighting Local Histograms with Global Intensity Relationships:
Weighting local histograms with global intensity relationships has been touched
on by several authors [9,7,4,8,14], suggesting agreement that a means of dealing
with sparsity is to populate histograms based on other sources of relevant infor-
mation. The drawback with considering global histograms is that they do not
generally reflect local intensity relationships, as in the case of MR and US modal-
ities (See Figure 1), and can result in inappropriately biased estimates. That
being said, our method of MAP estimation can be used to bias local histogram
estimates using a variety of prior information within the principled context of
statistical parameter estimation, allowing incorporation of global histogram in-
formation when relevant and providing other options when it is not.

3 MAP Histogram Estimation

The majority of techniques have difficulty with local histogram estimation be-
cause they are based on ML estimation, which becomes increasingly unstable
in the presence of sparse data. In practical terms, this results in registration
that tends latch onto spurious incorrect matches as data sparsity increases. To
deal with this instability, we propose MAP estimation with a maximum entropy
prior, which tends to produce strong matches only when justified by sufficient
intensity samples.

3.1 Maximum Likelihood vs. Maximum a Posteriori

The task of estimating a local histogram for the purpose of registration is one of
estimating a set of K discrete bin frequency counts θ = {θ1, . . . , θK}. The goal
in histogram estimation is to determine the values of θ that maximize p(θ|I), the
conditional probability of θ given the image data I. By Bayes rule, the following
equality holds:
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p(θ|I) =
p(I|θ)p(θ)

p(I)
. (1)

For the purpose of statistical parameter estimation, p(I) is constant as image
data I is constant, p(I|θ) naturally takes the form of a multinomial distribution,
and p(θ) and p(θ|I) are Dirichlet distributions [6].

There are two significantly different methods of estimating p(θ|I): ML and
MAP. We advocate the MAP strategy, as it provides a principled mechanism for
explicitly incorporating prior information in the form of the number of intensity
samples M required for valid estimation.

ML Estimation: ML estimation is based on the assumption that p(θ) is con-
stant. Under this assumption, we seek an estimate θML such that:

θML = argmax
θ

{ p(I|θ) }. (2)

Here, to maximize p(θ|I), it suffices to maximize the term p(I|θ), which is known
as the likelihood, hence the name maximum likelihood estimation. In ML esti-
mation, histogram bin counts θ are simply set to counts of intensity data I,
optionally processed with Parzen windowing, etc.

MAP Estimation: MAP estimation does not treat all histograms as equally
probable, and p(θ) is not constant. In particular, certain histograms are more
probable than others, based on prior assumptions we may have regarding θ, and
we seek an estimate θMAP such that:

θMAP = argmax
θ

{ p(I|θ)p(θ) }. (3)

It can be shown that as the number of intensity samples I approaches infinity,
both ML and MAP estimation converge to the same optimal histogram estimate
of θ [6]. In intuitive terms, this is because the prior distribution p(θ) of the MAP
approach becomes swamped by p(θ|I). Being swamped with intensity data is
hardly a problem in histogram estimation however, particularly when attempting
to calculate similarity for the purpose of localized deformation [11]. It is precisely
in the case of sparse data samples I that the difference between ML and MAP
estimation is most telling. MAP estimation allows the incorporation of a prior
distribution p(θ) as to the value of θ in the absence of data I. In the presence
of sparse data, i.e. an image window I with insufficient samples to estimate the
histogram, we would like estimation to default to our expectation as to the true
histogram values, or at least a benign histogram θ that is not likely to result in
spurious, noise-driven matches.

In general, p(θ) could be based on a variety of prior assumptions, i.e. the global
histogram approach, although the global histogram may not be representative of
local intensity relationships, as in the case of MR/US registration. In the absence
of constraints, we follow the rule of maximum entropy [5] and suggest a uniform
prior - in the case of undersampling, the uniformly-weighted histogram is adverse
to making a strong decision regarding registration, and the effect of spatial neigh-
borhood constraints will dominate. In the case where the number of intensity sam-
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Fig. 1. The image intensity relationship between MR and US image modalities is multi-
modal and non-stationary, i.e. varying spatial position. The upper left image is a 2D
slice from T1-weighted MRI brain volume, and the upper right image is a corresponding
US image slice. Correspondence was determined via a stereotactic positioning of the
US probe relative to the volume coordinate system. The white circles overlaying the
image indicate local regions within which local likelihood histograms p(US|MR) are
calculated. The smaller images along the bottom are likelihood histograms, where the
vertical axis is MR intensity and the horizontal axis is US intensity. The histograms
corresponding to local regions are indicated by arrows, and the larger histogram in the
bottom right is the global histogram. It can be seen that the statistical likelihood pixel
relationship is non-stationary, as it varies significantly with spatial location. In addition,
local likelihood relationships are significantly different from the global likelihood.

ples is significant, the uniform prior will be outweighed by evidence and valid reg-
istration will occur. The intuition is that M should be set according to the number
intensity samples required to obtain a valid histogram estimate, which is related
to a number of factors such as noise, the number of histogram bins to be estimated,
etc. Our MAP estimation approach can be summarized as follows:

MAP Histogram Estimation:
1) Generate an estimate as to the number of intensity samples M required

to obtain a valid estimate of the histogram bins.
2) Pre-populate histogram counts according to M , either uniformly or ac-

cording to other sources of prior information.

4 Deformable MR to US Registration

We developed our MAP estimation method for the purpose of deformable reg-
istration of MR and US imagery in the context of an IGNS application, where
the goal is to update a detailed pre-operative 3D MR volume of the brain used
in intervention planning with real-time US gathered inter-operatively, in order
to reflect brain shift that occurs once the dura lining has been entered. With
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Fig. 2. A plot of mean displacement vector registration error vs. the degree of uniform
prior incorporated MAP estimation. The error for a 9-point displacement field drops
by a factor of 1.6 as the joint histogram pre-population is increased from M=0 to M=5
samples per bin. Note that when M=0, MAP and ML estimation are equivalent. The
error is high for low M , as the posterior is dominated by spurious local MI maxima.
Error reaches a minimum at M = 5 samples per histogram bin, after which point it
rises slightly as the elastic prior begins to dominate the posterior.

both the US probe and the patient’s head registered rigidly via a stereotactic
tracking apparatus, the task becomes one of updating the 3D MR volume based
on non-linear registration with 2D US slices.

For the purpose of validation, we have compiled a database of US slices taken
inter-operatively. To test registration, we focus on recapturing the deformation
relative to stereotactic ground truth. US image structure is due to the reflection
of acoustic waves at the boundaries of structures of differing density, and is an
inherently noisy and difficult image modality to work with, due to speckle noise,
signal attenuation artifacts such as acoustic shadows, etc. Figure 1 illustrates
how the joint intensity relationship between MR and US varies to a large degree
with spatial position.

In order to model nonlinear brain shift, we are interested in recovering a field
of displacement vectors T = {ti} mapping fixed points in the MR image to their
displacements in the US image. Adopting a Bayesian strategy as in [3], we formu-
late registration as a posterior probability over T given the images to be matched:

p(T|US, MR) ∝ p(US|T, MR)p(T). (4)

The Bayesian formulation requires specification of the terms p(US|T, MR)
and p(T) which are referred to as the likelihood and prior, respectively. In reg-
istration, the likelihood is the data term serving to evaluate similarity between
images US and MR given T, and the prior serves to incorporate regularization
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constraints on T independent of image information, such smoothness, elasticity,
etc. The strength of Bayesian registration is that the likelihood and prior terms
can be be changed to suit the registration task at hand without altering the
overall formulation.

For our purposes, we choose to model p(US|T, MR) using the MI (mutual in-
formation) of intensities. The MI is a widely-used measure of statistical intensity
similarity based on information theory [15,1]. Many excellent references exist re-
garding the details of MI calculation [11]. Alternatively, we could have adopted
the correlation ratio approach of [13] based on intensity and gradient images or a
learning based similarity measure as in [7]. In order to model nonlinear deforma-
tion, we choose to model p(T) using an elastic prior between pairs of neighboring
deformation vectors in T. The final Bayesian posterior is of the form:

p(T|US, MR) ∝ exp{α

N∑
i

(MI(US|ti, MR) − MImax) − β

N,N∑
i,j

d(ti, tj)}, (5)

where MImax is the maximum MI achievable using a 25x25 bin joint histogram,
N is the number of vectors in T, d(ti, tj) represents an elastic prior energy
between ti and tj, and α = 5 and β = 2 are empirically determined parameters
that balance the relative strengths of the likelihood and prior terms.

For experimentation, we attempt to recover the known transform T between
US and MR image pairs. Given a fixed local window size, we compare the
result of registration T using ML and MAP estimation. The number of joint
histogram bins used is 25x25=625 and the local window size is 43x43=1849
pixels. Optimization of the posterior in (5) was achieved via gradient ascent from
100 random seeds, and the best solution, i.e. the deformation field maximizing
equation (5) was used in the result analysis. Random seeds were generated by
perturbing vectors ti to random displacements within a 25 pixel radius of the
known transform. The resolution of registration was 1mm per pixel.

Figure 2 shows the impact of MAP estimation on registration error, as the de-
gree of prior pre-population in the joint histogram is increased. Here we see that
with little or no histogram pre-population, i.e. ML estimation, poor histogram
estimates result in unstable, inaccurate registration.

5 Conclusion

In this article, we presented a principled means of estimating joint intensity his-
tograms for the purpose of similarity calculation in the presence of sparse image
data. Given the number of intensity samples M required to reliably estimate in-
tensity histograms, we proposed a MAP estimation method based on a uniform
prior histogram. The advantage of this method is that histogram estimates only
result in strong matches when sufficient evidence exists to justify them, i.e. when
the number of intensity samples is sufficiently high. In the case of undersampling,
histogram estimates will default to a benign prior histogram that is unlikely to
result in strong false matches. Traditional ML estimation, on the other hand,
tends to produce strong false matches in the case of undersampling, which can
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throw off registration. Practically, our method is simple to implement, where
histogram bin counts are pre-populated by M uniformly distributed samples
prior to estimation, representing the prior assumption of MAP estimation. We
expect that MAP histogram estimation will result in improved registration in
other methods of similarity calculation based on histograms, such as correlation,
correlation ratio, etc. Future work will involve further clinical validation, testing
with other similarity measures, and determining of an optimal degree of prior
information M to incorporate given the images to be registered.
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Abstract. Real-time three-dimensional ultrasound (RT3D US) is an ideal 
imaging modality for the diagnosis of cardiac disease.  RT3D US is a flexible, 
inexpensive, non-invasive tool that provides important diagnostic information 
related to cardiac function.  Unfortunately, RT3D US suffers from inherent 
shortcomings, such as low signal-to-noise ratio and limited field of view, 
producing images that are difficult to interpret.  Multi-modal dynamic cardiac 
image registration is a well-recognized approach that compensates for these 
deficiencies while retaining the advantages of RT3D US imaging.  The clinical 
application of multi-modal image registration methods is difficult, and there are 
a number of implementation issues to be resolved.  In this work, we present a 
method for the rapid registration of RT3D US images of the beating heart to 
high-resolution magnetic resonance (MR) images.  This method was validated 
using a volunteer image set.  Validation results demonstrate that this approach 
can achieve rapid registration of images of the beating heart with fiducial 
landmark and registration errors of 1.25 ± 0.63 and 1.76 mm respectively.  This 
technique can potentially be used to improve the diagnosis of cardiac disease by 
augmenting RT3D US images with high-resolution MR images and to facilitate 
intra-operative image fusion for minimally invasive cardio-thoracic surgical 
navigation. 

1   Introduction 

Cardiovascular disease is the most frequent cause of death by disease in North 
America and accounts for the death of more Canadians than any other disease.  Early 
diagnosis of heart failure is essential for successfully addressing the underlying 
diseases and/or causes, and the prevention of further myocardial dysfunction and 
clinical deterioration. 
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The ability of MRI to be employed in a dynamic mode allows cardiologists to 
acquire high quality images of cardiac anatomy that assist diagnosis, yet it is an 
expensive procedure that may not yield all of the relevant diagnostic information.  
Echocardiography, also used to diagnose cardiac disease, is a flexible, inexpensive, 
non-invasive tool.  However, the cardiac images produced are of lower quality and the 
small field of view (FOV) makes it difficult for the cardiologist to mentally place 
abnormal cardiac structures and congenital defects in the proper clinical context, which 
increases the risk of misdiagnosis.  While both real time echocardiography and 
dynamic MRI are routinely used in the diagnosis of cardiac disease, there is no 
mechanism to easily integrate information from both image sets in order to take 
maximum advantage of both modalities.  Techniques currently used to examine the 
heart provide valuable information, but do not represent the complete picture of cardiac 
health.  It is therefore important for the cardiologist to dynamically relate the images 
generated from US studies to dynamic MR images from the same patient.  We believe 
that ability to correlate real time echocardiography images with previously acquired 
dynamic 3D MR images would be a significant contribution to the diagnosis of cardio-
vascular abnormalities and to interventional and minimally-invasive cardiac surgery. 

While existing literature outlines procedures and methods for multi-modal image 
registration [1, 2, 3], these approaches have mainly been used in neurosurgical 
applications [4, 5] and abdominal interventions [6].  These methods show promising 
results, however these techniques are insufficient to meet the demands of real time 
cardiac image registration.  To account for the periodic motion of the beating heart, 
image registration must be performed very rapidly.  The lower quality of the US 
images of the heart makes the realization of a fast, robust US-MR image registration 
technique difficult.  

In this paper, we present a method for the rapid registration of RT3D US images 
with dynamic 3D MR images.  This method integrates electrocardiogram (ECG) 
signals and a spatial tracking system with a commercially available US machine.  
Compared to the existing methods for fusing RT3D US with dynamic 3D MR images, 
our technique is the first to simultaneously address the issues of image acquisition, 
image processing timing constraints, and the motion of the beating heart. 

2   Methods 

In medical image registration one approach for modeling the beating heart is to 
represent the heart as a deformable model [7].  A major concern relating to this 
approach for real time 3D US-MR image registration is the associated computation 
time.  For the method to operate in real time, the entire process (image acquisition, 
processing and visualization) must be completed at least 20 times per second.  
Accounting for time lag due to image acquisition and visualization, for real time image 
integration to be possible, image registration must be completed in 20-50 ms.  If a 
deformable model is used, then the integration process requires substantially more 
computation time, because additional registration parameters need to be adjusted and 
optimized [8].  Therefore, the use of a deformable model to represent the heart is not a 
suitable choice in this case.  To meet these strict time constraints we propose a 
registration method that employs a rigid-body transformation between US and MR 
images.  
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2.1   Rigid-Body Representation 

During cardiac diagnosis and surgery planning the heart remains relatively fixed with 
respect to the thoracic cage between dynamic 3D MRI and RT3D US examinations.  
Breath-holding is employed during both MRI and US acquisitions to ensure that 
organ motion is due solely to the beating heart, and not a combination of the beating 
heart and patient respiration.  Although the shape and size of the heart differs at 
different phases in the cardiac cycle, it is reasonable to assume that the overall pattern 
of shape and size variation does not change beat-to-beat.  This assumption is 
especially true in the case of diagnosis where there is no significant change in heart 
rate or blood pressure.  We further observe that if we subdivide the cardiac cycle into 
discrete cardiac phases, the US and MR images acquired at the same moment in the 
cardiac cycle represent the same physical heart features.  Given these observations, it 
is straightforward to represent the registration for each pair of the US and MR frames 
of the same cardiac phase with a rigid-body transformation. 

Furthermore, if we consider any two pairs of US and MR images in different 
phases, the non-rigid transformation between the two MRI frames is the same as that 
for the two US frames, because they represent the same physical heart deformation 
between the two cardiac phases.  Aligning any pair of MRI and US frames 
automatically aligns the other sets of frames. 

These observations imply that a single rigid-body transformation between the MR 
images and US images can be used to rapidly register the image sets. 

2.2 Registration Method 

To register RT3D US images with 4D MR images we track the US probe using a 
Polaris optical tracking system (OTS) (NDI, Waterloo, Canada) while simultaneously 
recording ECG signals.  One major advantage of using US imaging systems lies in the 
flexibility of image acquisition.  During a cardiac examination, the operator has the 
freedom to position/orientate the US probe in any manner to obtain the necessary 
views of the heart.  Since the position and orientation of US probe is continuously 
tracked with the Polaris OTS, the tracking information can be used to register the US 
images to the world coordinate system (WCS).   

ECG signals are employed to temporally align the US and MRI frames.  Dynamic 
3D MRI frames are often acquired with a fixed sampling rate, whereas the sampling 
rates for US systems vary with any on-the-fly adjustments made to the FOV by the 
operator.  This difference in sampling rates implies that the US and MRI frames will 
not in general be temporally synchronized.  To overcome this difficulty, we utilize 
ECG signals to phase-stamp the US images with timing information derived from the 
ECG signals.  The MR images are temporally interpolated, and using this phase data, 
US and MR images with coincident cardiac phases are identified.  The US images are 
transformed into the WCS and the US and MR images are registered together.  
Recognizing that there will be sampling errors in the ECG signal, the tracking system, 
and variations in the heart rate between MRI and US acquisitions, it is necessary to 
perform a final ‘fine-tuning’ of the registration to ensure optimal spatial and temporal 
alignment. 



174 X. Huang et al. 

 

In order to fine-tune the registration result, the transformation matrix generated by 
the registration procedure is used as the starting position/orientation for a mutual 
information (MI) registration method [9], which further optimizes the registration with 
respect to seven parameters: translations (x, y, z), rotations (θx, θy, θz) and time (t). 

2.3   Registration Procedure 

Based on the above considerations and the analysis of cardiac diagnostic and planning 
problems, we outline the following procedures for real time image registration.  Our 
approach involves two steps: 1) a pre-registration step and 2) a real-time registration 
step (Figure 1).  The steps for the registration procedure are as follows: 
 
Step 1. Pre-registration before procedure (diagnosis/planning):  
Pre-operative 
1. acquire dynamic 3D MR images (gradient echo T1-weighted imaging sequence 

with a voxel size of 1.5 mm3 [10]) at different phases over one cardiac cycle 
Immediately prior to procedure 
2. acquire a 3D US image (denoted US1) recording the US probe’s tracking 

information (
1USWCST ← ) and the ECG signal at some cardiac phase 

3. the MR images are temporally interpolated and based on the ECG information ( 1̂t ) 
the MR image with the closest cardiac phase is identified (denoted mr1) 

4. the two image sets are manually registered together, generating a temporary 
transformation matrix, 

11 USmrT ←  

5. using 
11 USmrT ←  as the starting point, the two image sets are registered together using 

a MI registration method, optimizing the positional, rotational and temporal 
variables (x, y, z, θx, θy, θz, t) to obtain 

11 USMRT ← .  We use the notation MR1 to 

denote the optimal aligned MR image corresponding to US1 
6. finally, using the following relation, the pre-registration transformation WCSMRT ←  is 

calculated 

( ) 1

111

−
←←← = USWCSUSMRWCSMR TTT                     (1) 

 
Step 2: Real-time registration during procedure: 
1. acquire an intra-operative RT3D US image (denoted US2), recording the probe 

tracking information (
2USWCST ← ) and ECG signal 

2. use the ECG signal to estimate the cardiac phase, 2̂t , corresponding to US2 

3. derive a ‘near-optimal’ transformation, 
22 USmrT ← , using the following equation 

222 USWCSWCSMRUSmr TTT ←←← =                 (2) 

where WCSMRT ← is the initial position/orientation estimated from the pre-registration 

procedure, and 
2USWCST ← is the US to WCS calibration transformation for US2 and 

mr2 denotes the MR image interpolated based on the ECG information ( 2̂t )   
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4. using 2̂t  as the cardiac phase and 
22 USmrT ←  as the starting position/orientation, 

register the two image sets together using a MI registration method and generate 
the final transformation, 

22 USMRT ← , where MR2 denotes the optimal interpolated MR 

image corresponding to US2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The proposed method is a two-step registration procedure.  The first step, pre-
registration, involves registering pre-operative dynamic 3D MR images to RT3D US images at 
an arbitrary point in the cardiac cycle.  This step is performed while the patient is on the 
OR/examination table.  The second step, real-time registration, is performed during the 
procedure and involves acquiring RT3D US images augmented with both ECG signals and 
spatial tracking information.  A series of these ‘augmented’ RT3D US images are continuously 
acquired and registered with the pre-operative dynamic 3D MR images to provide accurate, real 
time image registration. 

3   Experimental Results 

In this experiment, 20 dynamic 3D MR images of one cardiac cycle, acquired on a 
1.5T GE CVi scanner (GE Medical systems, Milwaukee) and 14 RT3D US images, 
acquired on a Phillips SONOS 7500 real time US machine, from the same volunteer 
were registered together.  The image sets were temporally aligned, and then spatially 
registered using a MI registration algorithm.  This method was able to achieve image 
registration within 1 second. 
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The registration was visually satisfactory in all image pairs (see Figure 2), but it is 
not a trivial task to perform a quantitative validation, since the ground truth is 
unknown.  We discuss below two methods used to evaluate the registration accuracy: 
1) a landmark-based method, and 2) an average transformation method.   

 

 

Fig. 2. Registration between RT3D US and dynamic 3D MR images.  (a) orthogonal slices of 
the US volume of the beating heart; (b) the MRI volume of the beating heart;  (c) the overlay of 
the two image sets after registration. 

3.1   Landmark Based Validation 

Anatomical landmarks within the heart were used to evaluate the registration 
accuracy. Five such landmarks, the mitral annular septal site (MASS), mitral valve 
(MV), anterior tricuspid valve (ATV), septal tricuspid valve (STV) and the coronary 
sinus (CS), were identified in both the US and MR images by six observers and the 
landmark (or fiducial) localization error (FLE) and fiducial registration error (FRE) 
were determined.  The FLE is defined as the error in locating the landmarks (i.e. the 
distance of the localized landmark from the “forever unknown” actual landmark 
location) [11] and is approximated by the average of the landmark locations for the 
six observers.  The FRE is defined as the root mean square (RMS) distance between 
landmarks in the US image after registration and the corresponding homologous 
landmarks in the MR image.  In this experiment the FLE and the FRE were 1.25 ± 
0.63 and 1.76 mm respectively. 

3.2   Average Transformation Based Validation 

Since the heart beats periodically there should be little variation between the resultant 
registration transformations of all cardiac phases.  Using this assumption it is 
reasonable to approximate the average transformation over all cardiac phases as the 
“ground truth” transformation.  We evaluate the registration accuracy by using the 
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average distance error, which is defined as the average of displacement error at the 
eight vertices of a hypothetical cube centered with the bounding box of a data volume 
[8]. The side of the cube is 100 mm. We compute the average distance error from the 
average transformation for each registration of the paired images at the same cardiac 
phase. Compared to the average transformation of all cardiac phases, the average 
distance error is 0.86 ± 0.40 mm (mean ± SD). While this result is smaller than the 
values represented in the landmark-based method, it is nevertheless reasonable 
considering the FLE previously reported. 

4   Discussion and Conclusion 

In this paper we presented a method for the rapid registration of RT3D US and dynamic 
3D MR images of the beating heart.  This technique will improve the ease and accuracy 
of cardiac disease diagnosis, as well as aid in surgical planning and guidance.  

We employed image data of a volunteer’s beating heart to validate the proposed 
method with encouraging results. In the future we plan to investigate more effective 
approaches to preprocessing US images and develop a more robust registration 
method to improve the registration accuracy and speed. 

This method can also be employed to register real-time dynamic 2D US images with 
dynamic 3D pre-operative CT/MR images and other multi-modal dynamic images, and 
has the potential to be used in other clinical applications such as liver and lung 
surgeries, where the organs are subject to approximately periodic respiratory motion. 

This method was validated using volunteer data to yield a registration accuracy of 
1.76 mm.  This method will provide real-time high quality image guidance for cardiac 
disease diagnosis and surgical planning by improving interpretation of images of the 
beating heart.  We also expect this work to lead to the development of a novel cardiac 
diagnostic US device that can output real-time high quality cardiac images, fused with 
high-resolution anatomical information.  This device will retain all the merits of 
conventional US system, and will also have applicability for the guidance of intra-cardiac 
interventions by improving interpretation of images acquired from various cardiac US 
modalities (trans-thoracic, trans-esophageal and intra-cardiac echo techniques). 

Acknowledgements  

The authors thank Dr. Xiaping Yuan for her help in data acquisition and image 
processing. We also acknowledge the financial support from the Canadian Institute of 
Health Research (CIHR), Natural Sciences and Engineering Research Council of 
Canada (NSERC), the Ontario Research & Development Challenge Fund (ORDCF), 
the Canada Foundation for Innovation (CFI), and the Ontario Innovation Trust (OIT). 

References 

1. Makela, T., Clarysse, P., Sipila, O., Pauna, N., Pham, Q.C., Katila, T., Magnin, I.E., A 
review of cardiac image registration methods, IEEE trans. on Med. Imag., 21(9):1011-
1021, 2002. 



178 X. Huang et al. 

 

2. Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J., Medical image registration, Phys. 
Med. Biol., 46:R1-R45, 2001. 

3. Maintz, J.B., Viergever, M.A., A survey of medical image registration, Med. Image Anal., 
2: 1-36, 1998. 

4. Gobbi, D.G., Comeau, R.M., Peters, T.M., Ultrasound/MRI overlay with image warping 
for neurosurgery. MICCAI 2000, LNCS 1935, 106–114, 2000. 

5. Lindseth, F., Kaspersen, J.H., Ommedal, S., Langø, T., Unsgaard, G., Hernes, T.A.N., 
Multimodal image fusion in ultrasound-based neuronavigation: improving overview and 
interpretation by integrating preoperative MRI with intraoperative 3D ultrasound, 
submitted to Computer Aided Surgery, 2002. 

6. Kaspersen, J.H., Sjølie, E., Wesche, J., Asland, J., Lundbom, J., Odegard, A., Lindseth, F., 
Three-dimensional ultrasound-based navigation combined with preoperative CT during 
abdominal interventions: a feasibility study, Cardiovasc Intervent Radiol, 26:347-356, 
2003. 

7. Wierzbicki M., Drangova M., Guiraudon G., Peters T., Validation of dynamic heart 
models obtained using non-linear registration for virtual reality training, planning, and 
guidance of minimally invasive cardiac surgeries, Medical Image Analysis 8:387-401, 
2004. 

8. Shekhar, R., Zagrodsky, V., Mutual Information-based rigid and nonrigid registration of 
ultrasound volumes, IEEE Trans. on Medical Imaging, 21(1):9-22, 2002. 

9. Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W., PET-CT image 
registration in the chest using free-form deformations, IEEE Transactions on Medical 
Imaging, 22(1): 120 - 128, 2003. 

10. Moore, J., Drangova, M., Wierzbicki, M., Barron, J., Peters, T., A high resolution dynamic 
heart model based on averaged MRI data, MICCAI 2003, LNCS 2878, 549-555, 2003. 

11. Fitzpatrick, J.M., West, J.B., Maurer, Jr. C.R., Predicting error in rigid-body point-based 
registration, IEEE Trans. Med. Imaging, 17:694-702, 1998. 



 

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 179 – 187, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Learning Best Features for Deformable Registration  
of MR Brains*  

Guorong Wu1, Feihu Qi1, and Dinggang Shen2 

1 Department of Computer Science and Engineering, 
Shanghai Jiao Tong University, Shanghai 200030, China 

{grwu, fhqi}@cs.sjtu.edu.cn  
2 Section of Biomedical Image Analysis, Department of Radiology, 

University of Pennsylvania, Philadelphia, PA 19104  
Dinggang.Shen@uphs.upenn.edu 

Abstract. This paper presents a learning method to select best geometric fea-
tures for deformable brain registration. Best geometric features are selected for 
each brain location, and used to reduce the ambiguity in image matching during 
the deformable registration. Best geometric features are obtained by solving an 
energy minimization problem that requires the features of corresponding points 
in the training samples to be similar, and the features of a point to be different 
from those of nearby points. By incorporating those learned best features into 
the framework of HAMMER registration algorithm, we achieved about 10% 
improvement of accuracy in estimating the simulated deformation fields, com-
pared to that obtained by HAMMER. Also, on real MR brain images, we found 
visible improvement of registration in cortical regions.  

1   Introduction 

Deformable registration is very important for medical image analysis. So far, various 
methods have been proposed [1-7], either based on feature matching or intensity simi-
larity. HAMMER registration algorithm [8] uses an attribute vector, instead of only 
intensity, as a signature of each point, for reducing the ambiguity in correspondence 
matching during the image registration procedure. Each attribute vector includes im-
age intensity, edge type and a number of geometric moment invariants (GMIs) calcu-
lated in certain neighborhoods for reflecting the anatomy around that point. However, 
GMIs are calculated from the fixed sizes of neighborhood around each point at each 
resolution, regardless of whether this point is localizing in the complicated cortical 
regions or in the simple uniform regions. Thereby, it might be difficult to obtain the 
distinctive GMIs for every image point, by using identical neighborhood size for the 
whole image.  

Recently, in computer vision area, Kadir and Brady [9] studied the implicit rela-
tionship between scale and saliency, and found that scale is intimately related to the 
problem of determining saliency and extracting relevant descriptions. They also pro-
posed an effective method to detect the most salient regions in image, by considering 
the entropy of local image regions over a range of scales, in order to select regions 
with highest local saliency in both spatial and scale spaces. Based on [9], Huang et al 
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[10] proposed to align images under arbitrary poses, by finding the correspondences 
between salient region features. Although best features have been studied for active 
shape models [11, 12], however, to our knowledge, it seems that no previous non-
rigid registration method considered the relationship between scale and saliency and 
used this relationship to guide image matching and correspondence detection during 
the deformable registration procedure.  

This paper presents a learning-based method to compute GMIs from the best 
scales, for significantly reducing the ambiguity in image registration. Each image 
location will have its own best scale to calculate its GMIs, and simultaneously best 
scales are made smooth spatially. It is required that, for each point, its GMIs com-
puted from its best-scale neighbor be similar across the corresponding points in the 
training samples, and also be different from GMIs of nearby points in all training 
samples. Entropy used in [9] is adopted here to measure this requirement, and the best 
scales are obtained by solving an energy minimization problem. Finally, by incorpo-
rating those best-scale GMIs into the original HAMMER algorithm, we achieved 
about 10% improvement in estimating the simulated deformation fields, compared to 
that obtained by HAMMER.  

2   Method 

2.1   Attribute Vector with Best Scales 

Attribute vector is defined for each point x in the image I, and it is designed as dis-
tinctive as possible, in order to distinguish this point from others in its neighborhood, 
Nx. In HAMMER registration algorithm [8], each attribute vector includes edge type, 
image intensity, and GMIs. GMIs are computed from a spherical neighborhood 
around point x, with radius of Sx that is identical at all image locations. Images, i.e., 
brain MR images, are usually spatially complicated, thus different regions usually 
need features computed from its best scale Sx [9], to distinguish itself from others. For 
example, for brain MR images, the point x in cortical regions requires a different best 

scale Sx to compute the distinctive GMIs G (Sx), compared to the points in uniform 
regions. Therefore, it is significant to obtain a best scale Sx for each image point x, 
based on particular image content around that point. 

A machine learning based method is proposed to select best scales in the template 
space, in order to capture the distinctive attributes for robustly establishing corre-
spondences. Three criteria are used to select best scales. First, the GMIs of a point x, 
computed from the best-scale neighborhood, should be different from the GMIs of the 
nearby points in its neighborhood Rx, thereby this point x can be easily recognized. 
Second, the resulted GMIs of a point x should be statistically similar to the GMIs of 
its corresponding points in training samples, if a set of training samples is available. 
Third, the selected best scales should be spatially smooth.  

Entropy of GMIs is used to measure the above requirements, by following an idea 
of using entropy for salient region detection [9]. Thus, the first criterion requires that 
the entropy of GMIs in the neighborhood Rx, E1(x,Sx), be maximized, and the second 
criterion requires that the entropy of GMIs over the corresponding points in training 
samples, E2(x,Sx), be minimized. Entropy can be computed from the histograms of 
GMIs [9]. The third criterion requires that the differences between Sx and scales Sy of 
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its small neighborhood rx, 2
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x , be minimized. Therefore, we can 

obtain best scales for all image points, by using a gradient-based algorithm to mini-
mize the following cost function: 

                            ( )2 31
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x

x x x  (1) 

where  and  are two weights. Notably, if there is no training samples available, then 
we just use the best scale selection method [9], with spatial smoothness constraint,  to 
compute the best scales based on the template image itself.  

A learning-based method for selecting the best scale Sx can be summarized next: 

• Select a set of brain samples, such as 18 brains we used.  
• Use a linear registration algorithm [13] to linearly align those samples to a se-

lected template, thereby obtaining the linearly aligned brain samples.  
• Use HAMMER algorithm [8] to register template with each linearly aligned 

brain sample, thereby obtaining the correspondences of each template point in 
any brain samples. 

• For each template point x and their corresponding points in training samples, 
compute their GMIs of different scales Sx, from the linearly aligned brains.   

• Determine best scales for all template points jointly, by minimizing the cost 
function in equation (1).  

For increasing the robustness of registration, the registration algorithms are usually 
implemented in a multi-resolution fashion [8]. Thus, we need to select best scales 
separately for each resolution, by performing the same best-scale selection method at 
each resolution.  

Smooth maps of best scales are obtained, from fine to low resolutions, as shown in 
Fig 1 with the smallest scale (radius) 4 and the largest scale 24. The resulted best 
scales are actually adaptive to the brain anatomy, such as small scales selected in rich 
edge regions like cortex, and scales increased gradually from exterior to interior brain 
regions with the largest best scales selected for the uniform regions like white matter 
(WM) region. Notably, in low resolution, even a small best scale on cortex will cap-
ture a large region in the fine resolution (Fig 2), thereby providing the possibility of 
distinguishing between precentral and postcentral gyri. Also, since the registration 
algorithm is implemented in a multi-resolution fashion, the registration results from 
low and middle resolutions will make the two images approximately aligned, thereby 
local features, based on small best scales selected for cortex, can be used to refine the 
registration in cortex during the high-resolution registration stage. Fig 2 shows the 
best scales selected for seven points on ventricular corners, sulcal roots, gyral crowns, 
and putamen boundary, in three different resolutions, respectively. For convenience, 
both low and middle resolution images have been upsampled to the same size of high 
resolution image. The size of circle denotes the value of the best scale. Also, best 
scales ranged from 4 to 8 are displayed by solid circles, best scales ranged from 8 to 
15 displayed by densely-dashed circles, and best scales over 15 displayed by sparsely-
dashed circles.  

Advantages of using best-scale GMIs. By employing a learning-based best scale 
selection method described above, we can use adaptive scale to compute GMIs for 
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each point, thus making it distinctive among its neighboring points as well as similar 
to its correspondences in other brains. For example, for a template point on sulcal root 
in Fig 3(a), as indicated by the cross, it is similar to its true correspondence indicated 
by the asterisk and the false correspondence indicated by the dot in subject (Fig 3(b)), 
if local image content is compared. Therefore, by measuring the similarities of this 
template point with all points in the subject image (Fig 3(b)) by the attribute vectors 
computed from neighborhoods of fixed scale (or size) such as Sx=3,4,7 used for low, 
middle, and high resolution images in HAMMER algorithm, it is not easy to establish 
correct correspondences, since multiple peaks are existing in the similarity map, as 
color-coded and shown in Fig 3(c). Red represents the most similar points, which 
include the false correspondence indicated by the dot in Fig 3(b). Importantly, by 
using our learning-based best scale selection method, we can determine the best scales 
for this template point at different image resolutions (i.e., Sx=7,14,8, respectively for 
low, middle and high resolutions), and further obtain for this template point all GMIs 
computed from different resolution images using the selected best scales. The best 
scales selected in low and middle resolutions (7x4=28, 14x2=28) actually correspond 
 

24

High resolution Mid resolution Low resolution 

4

Corresponding template MR slice  

Fig. 1.  Best scales selected for the image at three different resolutions, and further color-coded 
according to the color bar on the right. This figure is best viewed with color. 

Low resoluteion Mid resoluteion High resoluteion  

Fig. 2. Best scales of seven selected points in three different resolutions. For convenience, the 
low and middle resolution images (b,c) were zoomed to the same size of the original image. 
Here, best scales ranged from 4 to 8 are displayed by solid circles, best scales ranged from 8 to 
15 displayed by densely-dashed circles, and best scales over 15 displayed by sparsely-dashed 
circles. This figure is best viewed with color. 
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(b) Subject 

(c) Similarity map by using 
fixed scales 

(d) Similarity map by using 
adaptive scales

(e) Neighborhoods extracted from
template with different scales 

(a) Template 

*

 

Fig. 3. Advantages of using adaptive scales to compute GMIs for correspondence detection. 
The similarity of a template point indicated by the cross in (a), is compared to any point in the 
subject (b), by respectively using GMIs with fixed scales (c) and with learned adaptive scales 
(d). The color-coded similarity map in (d) indicates distinctive correspondences, compared to 
the similarity map in (c) which has multiple peaks, with one peak corresponds to the false 
correspondence which is indicated by the dot in (b). This figure is best viewed with color. 

(b) Subject(a) Template  (c) By fixed scales (d) By best scales  

Fig. 4. Similar performances of using fixed scales and learned best scales for distinguishing 
some brain points, such as ventricular corners. The point in (b), as indicated by black cross, is a 
detected correspondence of the point in (a), by comparing the GMIs of either fixed scales or 
learned best scales. The red denotes similar, and blue denotes different. This figure is best 
viewed with color. 

to big regions around this template point in the fine resolution, such as big circled 
images in the right panel of Fig 3. Thus, by using new attribute vectors, we can easily 
distinguish this template point from two candidate points in Fig 3(b), which has been 
clearly demonstrated by a color-coded similarity map in Fig 3(d). 
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Although it is possible to distinguish correspondences for many brain points even 
using the GMIs with a fixed scale, it may be less distinctive, compared to the method 
of using learned best scales. Fig 4 shows an example of detecting correspondences in 
subject image (Fig 4(b)), for a template point in Fig 4(a). According to a color-coded 
similarity map in Fig 4(c), the method of using fixed scales to compute GMIs can 
distinguish corresponding points, while it is less distinctive, compared to our method 
of using learned best scales, as indicated by a color-coded similarity map in Fig 4(d).  

2.2   Image Registration by Matching Best-Scale Attributes  

All image registration strategies developed in HAMMER algorithm [8], such as defi-
nitions of attribute vector similarity and energy function, and hierarchical driving 
point selection, are adopted by our registration algorithm, except using best-scale 
GMIs to replace the fixed-scale GMIs for image matching. Notably, the best scale for 
each location is determined in the template space, thus it is easy to compute GMIs for 
each template point by using the pre-calculated best scale. However, for subject im-
age, it is not direct to use appropriate best scales to compute GMIs, since subject is in 
its own space. To overcome this problem, we will first align the subject to the tem-
plate space by a linear registration algorithm [13], and then compute in advance the 
GMIs of all scales (used in the template space) for each subject point. When matching 
two template and subject points during the deformable registration procedure, we use 
the particular GMIs included in the attribute vector of the template point as standard 
and take the corresponding GMIs from the subject point, to measure their similarity. 
For saving time to compute GMIs of all possible best scales for each subject point, we 
limit the number of scales used as best scales, such as selecting best scales from a 
small set of scales {i| i =4*j, j=1,2,3,…,6}.  

HAMMER algorithm selects the initial driving points at sulcal roots, crown gyri, 
and certain areas of strong boundary, and then gradually adds more driving points 
according to a simple criterion. Here, we adopt the saliency definition in [9], and 
similarly define the salient measure for each brain point as follows. Given the best 
scale Sx for a point x, its salient measure can be defined by the entropy of GMI vec-
tors in its neighborhood Nx, i.e. E1(x,Sx), multiplied by a weight that penalizes self-
similarity of E1(x,Sx) around the best scale Sx [9]. Notably, the definition of E1(x,Sx) is 
the same as that in equation (1). 

3   Results 

The proposed method has been evaluated by both real and simulated MR brain images 
with comparison of HAMMER algorithm [8]. All experiments are performed in PC 
(Pentium 4, 3.0GHz), by using the same set of parameters.  

3.1   Experiment on Real MR Brain Images 

The proposed registration algorithm has been used to register 18 brain images, and the 
results by our method are further compared with those by HAMMER algorithm. The 
average brain produced from 18 normalized brains by our method is visually very 
similar to that obtained by HAMMER algorithm. However, when we further check 
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individual registration results, we find the visual improvement by our method in the 
areas such as cortical regions, although two methods perform equally well on most 
parts of brain regions. Fig 5 shows two examples, which compare the template with 
the results obtained by both methods, indicating that our method can align cortical 
regions more accurately. 

3.2   Experiment on Simulated Brain Images 

Simulated data is used to quantitatively evaluate the performance of our method. Our 
simulated data is created by using an elastic warping method [14] to warp a selected 
brain to be similar to five real brains, respectively, thereby obtaining five simulated 
brains that are actually five deformed versions of the selected brain. Besides, the re-
gions of precentral gyrus  and superior temporal gyrus  have been manually labeled in 
this selected brain, thereby the labels of these two regions can be warped together by 
the same deformation fields during the simulation procedure. Thus, by using our pro-
posed registration method, we can estimate deformations between the selected brain 
and each of its deformed brains, and further bring two labeled regions in the simulated 
brains to the original space of the selected brain. Then, we can measure the overlay 
degree of the labeled regions. Our method achieves average overlay percentage 
88.29%, which is very close to that by HAMMER algorithm on the same dataset 
(88.48%). The average volume error by our method is 5.18%, while it is 6.67% by 
HAMMER; this indicates 28.8% of volume error reduction by our method. Moreover, 
we compare the deformations estimated by our method with those simulated, thus 
obtaining a histogram of estimation errors as shown by red bars in Fig 6. This result is 
compared with that obtained by HAMMER algorithm, whose histogram of estimation 
errors is shown as blue bars in Fig 6. Obviously, the result obtained by our method is 

 g p y

(a) Model (b) By HAMMER       (c) By proposed method   

Fig. 5. Visual improvement in registering some brain images by the proposed method, particu-
larly in the cortical regions circled. 
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Fig. 6. Performances of estimating simulated deformations by our method (red) and by 
HAMMER algorithm (blue). The average error is 0.98 mm by our method, and 1.09 mm by 
HAMMER algorithm, which indicates 10.1% of improvement by our method. 

much better, since its histogram is shifted to left, i.e., small errors. The average de-
formation error is 0.98mm by our method, and 1.09mm by HAMMER, indicating 
10.1% of improvement by our method. 

4   Conclusion 

We have presented a learning based method to adaptively select best-scale GMIs for 
different image locations, thereby achieving higher registration accuracy by incorpo-
rating the selected best-scale GMIs into the HAMMER registration framework. Our 
learning method requires simultaneously the similarity of corresponding points in the 
training samples and the difference of a point to its nearby points, in terms of GMIs. It 
further requires the spatial smoothness of best-scale map. All of these requirements 
are formulated by a single entropy-based energy function, thereby solved by an en-
ergy optimization method. Importantly, our learning method can also be used to learn 
best features from others, i.e., wavelet-based features [15].  
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Abstract. An essential goal in medical image registration is, the for-
ward and reverse mapping matrices should be inverse to each other, i.e.,
inverse consistency. Conventional approaches enforce consistency in de-
terministic fashions, through incorporation of sub-objective cost function
to impose source-destination symmetric property during the registration
process. Assuming that the initial forward and reverse matching matrices
have been computed and used as the inputs to our system, this paper
presents a stochastic framework which yields perfect inverse consistency
with the simultaneous considerations of the errors underneath the regis-
tration matrices and the imperfectness of the consistent constraint. An
iterative generalized total least square (GTLS) strategy has been devel-
oped such that the inverse consistency is optimally imposed.

1 Introduction

One of the most desirable properties for registration is inverse consistency or
source-destination symmetry in which the correspondence is one-to-one and also
unambiguous. Consistent transformations maintain the topology of the register-
ing pair. This is important in medical image registration for generating biologi-
cally meaningful results [1]. The inverse consistent constraint has been enforced
with other information such as image intensity and geometric characteristics to
become part of the optimization criterion in medical image registration [1] or
to act as a sub-objective cost function in point set matching [3]. Since the in-
verse consistency in the latter case is only part of the metric which needs to be
minimized, the resulting transformation matrices are, in general, not perfectly
inverse consistent. Furthermore, all the above approaches solve the transforma-
tions in a deterministic nature, meaning that the stochastic properties of these
matrices are not considered.

We propose a stochastic framework for registration problems which generates
perfect source-destination symmetric mapping between the data sets. Instead of
imposing inverse consistency in a deterministic and imperfect sense, we enforce
the inverse consistent property optimally with the systematic considerations of
the stochastic uncertainties of the input forward and reverse transformation
matrices to achieve perfect source-destination symmetry. The adoption of the
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Generalized Total Least Square(GTLS) technique [6] allows simultaneous con-
siderations of the errors in the input transformation matrices and the inverse
consistent constraint during a post-registration fitting process to solve a set
of new forward and reverse transformations iteratively until they are perfectly
inverse to each other. This framework can be used with any registration algo-
rithms which have already shown their validity in establishing forward/reverse
mappings for different matching problems.

2 Inverse Consistency in Medical Image Registration

2.1 Discrete Nature of the Information Sources

Due to the discrete nature of data, either the point representation or the digital
medical image of the biological objects and the discrete optimization process,
correspondences extracted from conventional registration algorithms are always
ambiguous, i.e., the forward and reverse mapping is not consistent. Fig.1(g) and
(j) show 2 simple 1D examples to illustrate the point: An and Bn are discrete
version of the original continuous signals A and B which B is shifted to right
by 0.5s from A=sin(x). Ac and Bc are the reconstructed signals for registration.
Notice that Ac and Bc on the above examples are unable to represent the original
signals perfectly due to the inadequate sampling rate of An and Bn. Conventional
optimization processes initialize one way to start climbing the hill (the matching
criteria curve), e.g. from left to right. In Fig.1(h), the possible forward and
reverse registration results would be an ambiguous pair (-1.1,-0.5) instead of
the ground truth pair (-0.5,0.5). In Fig.1(k), the matching criteria curves give a
consistent pair (-1,1), however, it is not the ground truth transformation1.

2.2 Deterministic Inverse Consistent Constraint

One typical scheme to incorporate inverse consistency for registration is to assign
a cost metric ECons for the inverse consistent property as part of the matching
cost function E, i.e., E = ESim + ECons where ESim measures the similarity
(i.e. image intensity and geometrical properties) between the data sets. Since
the consistency is only part of the overall cost function, the optimal solution to
Equ. 1 in general would not produce the perfect source-destination symmetry
one desires.

Moreover, this type of formulation didn’t consider the underlying stochastic
uncertainties such that the forward transformation T12 and the reverse trans-
formation T21 are solved in deterministic nature in order to get a one-to-one
consistent mapping (consistent correspondence), i.e.,

T12 ∗ T21 = I. (1)

1 It should be noticed that inverse consistency can always be automatically achieved if
the registering pair is continuous (Fig.1(a),(b)) or the digital signal is sampled under
very high sampling rate such that the original continuous signal can be perfectly
reconstructed (Fig.1(d),(e)).
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 1. Column 1 and 4: Ac and Bc are the registering pair reconstructed from An

and Bn which are the sampled version of A and B respectively (in (a): Ac=A, Bc=B).
Column 2 and 5: the blue curve (NMIf) shows the forward matching criteria (regis-
tering Bc to Ac) while the red one (NMIr) for registering Ac to Bc. Column 3 and 6:
The combined matching criteria curve (NMIc) from the forward and reverse registra-
tion process, here the combination is simple addition. NMI is the normalized mutual
information [5].

2.3 Role of Inverse Consistency in Registration

In one dimensional, imposing inverse consistency deterministically means the
hill climbing process should be in pairwise nature: (1,-1)...(8,-8) for the testing
signal over the reference signal. Equivalently, there would be a new matching
criteria curve that is a combination of the forward and reverse matching criteria
curve. The simplest way is to have a non-weighted linear combination [4], which
is equivalently a simple addition, as shown column 3 and 6 in Fig.1. Here, a
critical rule for combining the forward and reverse matching criteria curves un-
der a deterministic sense is that they should be combined in the corresponding
transformation position, i.e. the NMIf value at 0.5 translation have to combine
with the NMIr value at 0.5 translation also. In fact, deterministic consistency
will only give better registration results if a new peak closer to the ground truth
is formed as shown in Fig.1(i), which the transformation pair corresponding to
optimum will be around (-0.8,0.8) instead of (-1.1,-0.5) and also closer to the
ground truth (-0.5,0.5).

3 Stochastic Inverse Consistency in Medical Image
Registration

3.1 Stochastic Inverse Consistent Constraint

As we have stated above, the discrete nature of the information source makes the
matching criteria drive to incorrect maximum, simply combine them determin-
istically will not be an optimal way to utilize the information from the forward
and reverse process. In this paper, we are arguing that one should model inverse
consistency stochastically with the simultaneous consideration of the underlying
stochastic uncertainties within the forward and reverse transformation matrices
and hence the imperfectness of the inverse consistent constraint, i.e,
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(T12 + ET12) ∗ (T21 + ET21) = I + Ri (2)
ET12 = |T12 − T−1

21 | ET −1
12

= |T21 − T−1
12 | (3)

We adopt a simple absolute difference approach for ET12 and ET21 (ET21 is ob-
tained from ET −1

12
, which will be explained later) to model the stochastic error

properties of the transformation matrix T12 and T21
2 respectively since the for-

ward and inverse of the reverse transformation has already set up a loose upper
bound of the error. Ri is the error imposed on the imperfectness of the inverse
consistent constraint3. Under this formulation, we can provide more flexibility
on imposing source-destination symmetry between the forward and reverse reg-
istration processes, without compromising accuracy.

To further simplify our current error model, we assume all the elements in
the error matrices have zero mean and are independent to each other. These
matrices will be involved in building the error equilibration matrices for the
Generalized Total Least Solvers in the following section.

3.2 GTLS Formulation

As the stochastic property are not the same for every entry and some of the
entries are error free, in order to solve the problem while considering all the
errors simultaneously, a Generalized Total Least Square (GTLS) [6] approach is
adopted. Consider a overdetermined system of linear equations

AX ≈ B A ∈ Rm×n, B ∈ Rm×d and X ∈ Rn×d, m � n + d (4)

If the first n1 column in A is error free, A can be partitioned into [A1, A2] where
A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and n = n1 + n2. A GTLS solution of (4) is any
solution of the set ÂX = A1X1+Â2X2 = B̂. Â = [A1, Â2] and B̂ are determined
such that Range(B̂) ⊆ Range(Â) and ‖ R−T

D [�Â2, �B̂]R−1
C ‖F =‖ R−T

D [A2 −
Â2, B2 − B̂]R−1

C ‖F is minimal where RD ∈ Rm×m and RC ∈ R(n2+d)×(n2+d)

are the given equilibration matrices such that the errors on R−T
D [A2, B]R−1

C are
equilibrated, i.e. uncorrelated with zero mean and same variance.

Our objective is to solve the fitting transformation matrices under the consid-
eration of the errors in the transformation matrices and the source-destination
symmetric constraint simultaneously by making use of the GTLS property. No-
tice that the last row of the affine transformation matrix is actually error free. By
making use of this property, the transformation matrices can be first transposed
and permuted to fit the GTLS formulation:

Q12 = T T
12 ∗ P Q21 = T T

21 ∗ P (5)

invQ12 = (T−1
12 )T ∗ P invQ21 = (T−1

21 )T ∗ P (6)

2 In this paper we test on the 4-by-4 affine transformation matrices, in theory, we
can also enforce the stochastic relationship on non-rigid deformation. Notice that we
didn’t apply our model on rigid transformation due to the orthonormality issue.

3 We simply assume all the entries in Ri have the same stochastic uncertainty and set
it as �r, i.e., Ri ∈ R4×4 with all the entries equal to �r.
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P = P14 ∗ P24 ∗ P34, P14 =

⎛⎜⎜⎝
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞⎟⎟⎠ P24 =

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠ P34 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ (7)

Q12 will be a 4-by-4 matrix with the form:

Q12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 T12(1, 1) · · · T12(3, 1)

0 T12(1, 2)

.

.

.

0

.

.

.
. . .

.

.

.

1

.

.

. · · · T12(3, 4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Q21 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 T21(1, 1) · · · T21(3, 1)

0 T21(1, 2)

.

.

.

0

.

.

.
. . .

.

.

.

1

.

.

. · · · T21(3, 4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

So the first column of Q12 and Q21 is error free and suit the form of the GTLS
approach stated before. Hence the GTLS formulation of our stochastic inverse
consistent model becomes:[

Q12
invQ21

]
X ≈

[
I
I

] [
invQ12

Q21

]
Y ≈

[
I
I

]
(9)

The optimal forward and reverse transformation T ∗
12 and T ∗

21 are obtained by
performing the permutation and transpose on the GTLS solutions X and Y :

T ∗
21 = (P ∗ X)T T ∗

12 = (P ∗ Y )T (10)

Apart from the input transformation matrices, the error properties are also
necessary to specify the GTLS formulation. The error matrices EQ12 , EinvQ12

for Q12, invQ12 are derived as the same in Equ.(3) i.e.,

EQ12 = |Q12 − invQ21| EinvQ12 = |Q21 − invQ12| (11)

and the first column is dropped as the first column of Q12 is error free. The error
matrices EinvQ21 and EQ21 transformation matrix are formed respectively by:

EinvQ21 =
(1 − α)

α
∗ EQ12 EQ21 =

(1 − α)
α

∗ EinvQ12 (12)
where α is the weighting on the error of the forward transformation matrix T12:

α =
voxel size of I1

voxel size of I2
or α =

# of points in point set 2
# of points in point set 1

(13)

So by imposing the above relationship, the registration result with a higher res-
olution testing image or point matching result with more points in the testing
point set will be trusted more. While in this paper we use this simple assumption
to model the weighting function between the error on forward and reverse reg-
istration results from two images under different resolutions. More complicated
way can be investigated and would be one possibility of our future work.

The error equilibration matrices RC and RD are obtained from the Cholesky
decomposition of the error covariance matrices C and D, where C = ΔT Δ,

D = ΔΔT , Δ =
[

EQ12 Ri

EinvQ21 Ri

]
. Δ represents the stochastic property of the

error in solving X in Equ.(9), while Δ matrix in solving Y is
[
EinvQ12 Ri

EQ21 Ri

]
.
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3.3 Inverse Consistency by Iterative GTLS Solution

After defining the GTLS model for fitting the transformation matrix based on
our stochastic source-destination symmetric model, we set up the whole iterative
process from the registration results T12 and T21 in order to extract both the
forward transformation matrix T ∗

12 and the reverse transformation matrix T ∗
21

which are inverse of each other. The input for the iteration process is Q12, Q21,
invQ12, invQ21 in Equ.(5) and (6).[

Q
(0)
12

invQ
(0)
21

]
X(0) ≈

[
I
I

] [
invQ

(0)
12

Q
(0)
21

]
Y (0) ≈

[
I
I

]
(14)

with the corresponding stochastic property in the noise data:[
E

(0)
Q12

Ri

E
(0)
invQ21

Ri

]
and

[
E

(0)
invQ12

Ri

E
(0)
Q21

Ri

]
(15)

the ’0’ in the brackets is the number of iteration and the solved X(0) and Y (0)

are:
X(0) = P−1 ∗ (T (1)

21 )T Y (0) = P−1 ∗ (T (1)
12 )T (16)

so (X(0))−1 = invQ
(1)
21 and P ∗ (X(0)) ∗ P = Q

(1)
21 (17)

(Y (0))−1 = invQ
(1)
12 and P ∗ (Y (0)) ∗ P = Q

(1)
12 (18)

The corresponding error matrices for the transformation matrices are also up-
dated during the iteration, i.e., getting E

(1)
Q12

, E
(1)
Q21

, E
(1)
invQ12

, E
(1)
invQ21

by Equ.(11)
and (12) to fit the input matrices of the GTLS solvers as the transformation
errors should be smaller during the iteration (closer to the ground truth) while
the error matrix Ri for the source-destination symmetric constraint is fixed as
the initial input stochastic consistent model is kept unchanged. So all the com-
ponents for the GTLS solvers are updated and the process can be repeated until

||(P ∗ X(n))T ∗ (P ∗ Y (n))T − I||F < threshold (19)
and the GTLS solution matrices will be:

T ∗
21 = (P ∗ X(n))T T ∗

12 = (P ∗ Y (n))T (20)

4 Experiments and Discussion

We have applied our stochastic inverse consistent model on registration of point
sets which representing the human brain in Fig.2. Feature points are selected
from the brain image to act as the testing point set, then a non-rigid mapping,
Gaussian radial basis functions was applied on it to form the reference point set.
Different degree of gaussian noise and different proportion of outliers are added
to both point sets in the experiment. The Robust point matching algorithm
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(a) (b) (c) (d) (e)

Fig. 2. (a):Brain image with the extracted point set (the testing point set). (b),(c):
Testing point sets (blue circle) and the reference point sets (black cross). (b) small defor-
mation, noise level = 2SD. (c) large deformation, outlier proportion = 0.5. (d):Forward
wrapping results: small deformation, outlier proportion = 0.1. (e):Reverse wrapping re-
sults: large deformation, noise level = 4SD. Color convention for all the results shown
in the figure: forward process - red:T12, green:T ∗

12, blue:T −1
21 , reverse process - red:T21,

green:T ∗
21, blue:T −1

12 . The 2nd and 3rd row are the results for small deformation and
large deformation respectively. Column 1 to 3 are the results for different noise level,
column 4 to 6 are for different proportion of outliers. Column 1 and 4 are the errors
computed as sum of squared distance (SSD) between the points in the warped testing
point set and the reference point set for forward process while column 2 and 5 are for
reverse process. Column 3 and 6 are the consistency error computed as ‖ T12∗T21−I ‖F

for the input and ‖ T ∗
12 ∗ T ∗

21 − I ‖F for the GTLS output.

RPM [2] is run on the pair of point sets to obtain the forward and reverse trans-
formation matrices for our system. The position error of the points is computed
as the sum of squared distance (SSD) between the points in the warped testing
point set and the reference point set for the evaluation of the transformations
obtained. We also compare the error on consistency by ‖ T12 ∗ T21 − I ‖F . As it
is expected, our stochastic inverse consistent model generates a perfect source-
destination symmetric registration results from the input forward and reverse
transformation matrices which are inconsistent in nature.

Moreover, our GTLS solutions will produce results those will always better
than the worst and sometimes be the best as shown in column 1 and 2 in Fig.2.
Actually proper modelling of individual element of the error matrices, their re-
lationship within the matrix and also the interrelation among the error matrices
will be the potential mean to improve the registration results through consis-
tency so that the GTLS solutions always yield the best results. This modelling
is depended on the actual data and also the corresponding matching criteria
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Fig. 3. Column 1: two different PD-weighted MRIs. Row 1 and 2 are the forward
and reverse registration results. Forward results - red:T12, green:T ∗

12, blue:T −1
21 , reverse

results - red:T21, green:T ∗
21, blue:T −1

12 . White: contour of the unregistered testing image
overlay the reference image.

which is very complicated and will be investigated in our future work. In real
registration problem, ground truth is not available and the complicated input
image or point data make it very difficult to determine the forward or reverse
transformation is superior than the other. Hence our stochastic inverse consistent
model can always produce better result in terms of robustness. Fig.3 shows the
registration results for 2 PD-weighted MRIs. The inconsistency of the forward
and reverse process is shown in the figures by the red and blue contours. T ∗

12
and T ∗

21 is in-between their inputs and also perfectly inverse to each other. In
addition, the observable registration errors in T12 and T21 from the red contours
are not appeared in our GTLS solutions which show that the stochastic model
produce better registrations.

5 Conclusion

We presented a novel framework for modelling inverse consistency stochastically,
by simultaneously considering the stochastic uncertainties on both of the trans-
formation matrices and the source-destination symmetric constraint through
the Generalized Total Least square fitting from the transformation matrices
obtained after the registration process. With our stochastic inverse consistent
model, source-destination symmetry can be enforced perfectly with the consid-
eration of any other similarity constraints. This work is supported by HKRGC
CERG Grant HKUST6151/03E.
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Abstract. We propose a novel incremental surface-based registration
technique that employs the Unscented Kalman Filter (UKF) to register
two different data sets. The method not only reports the variance of the
registration parameters but also has significantly more accurate results in
comparison to the Iterative Closest Points (ICP) algorithm. Furthermore,
it is shown that the proposed incremental registration algorithm is less
sensitive to the initial alignment of the data sets than the ICP algorithm.
We have validated the method by registering bone surfaces extracted
from a set of 3D ultrasound images to the corresponding surface points
gathered from the Computed Tomography (CT) data.

1 Introduction

Registration is a crucial step in applications of medical imaging in computer-
assisted surgery. Two general methods for registration are intensity-based and
feature-based approaches [1]. The former uses the intensity of two images or vol-
umes of the targeted anatomy to calculate the registration parameters by using
a variety of similarity measures, such as the mutual-information or normalized
correlation. The latter, extracts corresponding geometric features in order to
perform the registration. In the feature-based registration technique, if corre-
sponding points between two data sets are available, then one could easily find
the registration parameters by employing the closed-form solution provided by
Horn [2]. However, the problem becomes more challenging when the correspond-
ing points between the two cloud of points are unknown. In this case the most
widely used registration method is the Iterative Closest Points (ICP) algorithm
[3]. But the ICP algorithm is very sensitive to the initial alignment of data sets
and easily gets trapped in a local minimum. Recently, Ma [4] has proposed a
novel approach for estimating the registration parameters and visualizing the
error distribution by using the Unscented Particle Filter (UPF). While excellent
registration results are reported for a small size of data set (24 points), the algo-
rithm converges very slowly due to the employment of 5000 particles. The need
to employ a large number of particles makes this algorithm practically impossi-
ble to run for large data sets. The Particle Filtering is a powerful method when
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one is dealing with a nonlinear process or model corrupted by a non-Gaussian
random noise. In the case of the Gaussian distribution assumption for the noise
distribution, one could significantly reduce the computation time by using the
Unscented Kalman Filtering (UKF), while achieving similar registration perfor-
mance. Due to the significantly small computational requirements of the UKF
algorithm in comparison to the UPF algorithm, it is possible to apply the UKF
technique to large data sets.

In this paper, we propose a novel incremental registration algorithm based
on the Unscented Kalman Filtering. It is shown that the proposed registration
algorithm is less sensitive to the initial alignment and is more accurate than the
ICP method. Finally, the robustness and accuracy of the proposed technique is
examined by registering a 3D ultrasound data set of a Scaphoid bone surface to
the corresponding 3D Computed Tomography (CT) data.

2 Method

2.1 Unscented Kalman Filter Registration

In 1960, R. E. Kalman published his famous paper describing a recursive and
incremental solution to the discrete data linear filtering problem [5]. Since that
time the Kalman Filtering (KF) has been the subject of research with several
applications, specifically in the navigation and target tracking area [6]. The KF
addresses the state vector estimation, x ∈ �n, of a discrete time control process
model governed by a linear equation:

xk = Axk−1 + wk−1, (1)

from the observation model which is a linear function as well:

zk = Cxk + vk, (2)

where A and C are defined by the system dynamics, zk ∈ �m is the observation
vector at time k, wk and vk represent the process and the observation noise
at time k, respectively, and are independent Gaussian random vectors with dis-
tributions N (0, W) and N (0, V) respectively. The KF algorithm estimates the
state vector by minimizing the mean square error. This estimation is optimum
if the process and the observation models are defined by linear equations, and
the process and the observation noises are independent Gaussian random vari-
ables. However, in a general case, the process and the observation models can
be governed by non-linear equations:

xk = F(xk−1,wk−1), (3)
zk = H(xk,vk). (4)

In this case the KF estimation of the state vector is not optimum anymore. There
are two well known solutions for dealing with nonlinearities in the process or the
observation model. As a first solution, the non-linear function in the observation
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or process model can be linearized around a good initial guess, using the first
order Taylor approximation, and then the KF algorithm is used to estimate
the state vector. This method is called Extended Kalman Filtering (EKF) [6].
However, to use the EKF, one needs to have the first derivative of the nonlinear
functions (Jacobian Matrix) for linearization. Finding the Jacobian matrix is
usually cumbersome and makes the algorithm complicated.

As a second approach, one could use the true non-linear models and approx-
imate the distribution of the state random variable rather than approximating
the non-linear process or observation model. This method, called the Unscented
Kalman Filtering (UKF) [7], uses the true non-linear models to approximate the
distribution of the state or observation vector with the Gaussian distribution by
using a set of deterministically chosen sample points. These sample points com-
pletely capture the true mean and covariance of the Gaussian random variables,
and when propagated through the true non-linear system, accurately capture
the posterior mean and covariance to the third-order of Taylor series expansion
for any nonlinearity. The EKF algorithm, in contrast, only achieves first-order
of Taylor series expansion accuracy, with the same order of complexity as that
of the UKF algorithm [8]. Once distributions of the state and the observation
vectors are estimated, one could easily estimate the state vector by using the
KF technique.

The problem of estimating the state vector becomes more challenging by
assuming that the observation and the process noise have non-Gaussian distri-
butions. In this situation, where one is dealing with the system governed by
nonlinearity functions and distorted by a non-Gaussian noise, the Particle Filter
algorithm is used to estimate the state vector [9].

2.2 Incremental Registration Algorithm Based on UKF

Since we would like to estimate rigid transformation parameters which register
a cloud of data set (register data set) to the desired data set (model data set),
the state vector contains three rotational (θx, θy, θz) and three translational (tx,
ty, tz) parameters. We assume that the scale factors between two data sets are
known. Therefore, the state space model can be defined as follows:

xk = xk−1 + N (0, Wk), (5)

where, xk = [tx, ty, tz, θx, θy, θz ]T ∈ �6 and Wk is the covariance matrix of the
zero-mean Gaussian random vector. This covariance matrix allows the algorithm
to move from a poor initial estimate to the successively better ones. However,
the process noise variances should be small values, since the state vector (trans-
formation parameters) is time invariant.

The observation model is defined as follows:

y1:k = R[θx,θy,θz](t[tx,ty,tz] + u1:k) + N (0, Vk), (6)

where R is an Euler rotation matrix about x, y and z axes, respectively, and
t is a translation matrix along x, y and z coordinates. Furthermore, uk is the
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kth registering point in the register data set and yk is its corresponding point in
the model data set; However, these correspondence points are unknown and we
have used the well-known nearest-neighbor approximation method proposed by
Besl and Mckay [3] for finding the correspondences. Finally, it is assumed that
the observations are stimulated by a zero-mean Gaussian random vector with
the covariance matrix of Vk. This assumption can be verified by the following
argument: Since the data sets’ points are not accurately extracted because of
the calibration and segmentation errors, it is logical to assume that they are
degraded by a zero-mean uniformly distributed and independent random vector
noise with a specific variance in each dimension. In the sequel, for simplicity,
it is assumed that the variance of the noise is the same in each dimension;
however in the reality they might be different. Also, different modality data sets
have different uniformly distributed random noise vector characteristics. Hence,
by assuming that the registration parameters (rotation matrix and translation
vector) between two data sets are known, one can write:

y + ny = R(t + u + nu), (7)

where ny = [n1y, n2y, n3y]T and nu = [n1u, n2u, n3u]T are zero-mean indepen-
dent uniformly distributed random vectors in the two data sets with covariance
matrices of σ2

yI and σ2
uI (I3×3 is the identity matrix), respectively. y + ny is

the selected point in the model data set and u + nu is its correspondence in the
register data set. Equation (7) can be simplified as:

y = R(t + u) + Rnu − ny = R(t + u) + n, (8)

where n = Rnu − ny, is a random vector with three components. The first
element of n can be written as:

n1 = r11n1u + r12n2u + r13n3u + n1y, (9)

where r11, r12 and r13 are the first row components of the rotation matrix R.
Using central limit theorem, it is easy to show that, with a good approximation,
n1 has a Gaussian distribution with the mean of zero and the variance of:

σ2
n1

= r2
11σ

2
u + r2

12σ
2
u + r3

13σ
2
u + σ2

y = σ2
u + σ2

y. (10)

In the same way, it can be verified that the two other components of n have the
variance of σ2

u + σ2
y as well. Considering that the components of n are statisti-

cally independent, by a good approximation, n can be considered as a zero-mean
independent Gaussian random vector with the covariance matrix of (σ2

u + σ2
y)I.

Since the defined observation model is governed by a non-linear function dis-
torted by a Gaussian observation noise, we have employed the UKF algorithm
for estimating the registration parameters as follows:

In the first iteration, the state vector is initialized to zero, and only one
random point is selected from the register data set. Next, the state vector is
used to transfer the selected point to the model data set. Then the closest point
in the model data set to the transferred selected point is transferred back to
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the register data set using the inverse of the transformation matrix represented
by the state vector. The distance between this point and the original selected
point is used to update the state vector and its covariance by using the UKF
algorithm. The procedure is iteratively repeated by incrementally adding more
points from the register data set to the algorithm in the next iterations.

3 Results

Two sets of experiments are performed to validate the accuracy of the pro-
posed registration method. In addition, the registration results of the proposed
method are compared to the well-known ICP algorithm. In the first experiment,
a set of known random transformations are applied to a cloud of points and the
proposed algorithm is employed to register the original point cloud to the trans-
formed one. This experiment shows the performance of the proposed algorithm
where there is no ultrasound calibration or segmentation error involved. In the
second experiment, the point cloud representing the bone surface extracted from
3D ultrasound data is registered to its corresponding surface points extracted
from the mesh data generated by segmenting CT images. This experiment shows
the degradation of the registration parameters caused by segmentation and cal-
ibration errors.

3.1 Two Point Clouds Registration

By using the ultrasound calibration and segmentation methods proposed in [10],
the 2D ultrasound images of a phantom Scaphoid bone surface are transferred
to the 3D real-world coordinates. Then a set of random transformations are ap-
plied to the 3D ultrasound point cloud, and for each transformation, registration
parameters are estimated between the original point cloud and the transferred
one. For constructing the 3D ultrasound data set, 280 points of the bone surface
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Fig. 1. Error distributions for 50 UKF registrations; standard deviations are 2.6◦ ×
10−8, 2.7◦ ×10−7 and 9.5◦ ×10−9 for x, y and z axis rotation errors, and 6.8×10−5mm,
1.4×10−6mm and 5.3×10−5mm for the x, y and z axis translation errors, respectively.
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Fig. 2. Registration of model and registered data sets using ICP and our proposed
method with the same initial conditions (units are in millimeters)

from 14 ultrasound images are selected. By drawing from the uniform distri-
bution U(±10mm, ±10mm, ±10mm, ±10◦, ±10◦, ±10◦), 50 random transforma-
tions are generated and each transformation is applied to the 3D ultrasound
point cloud to construct the model data set. Next, the proposed registration
method is used to register the original data set (register data set) to the model
data set. The distribution of the rotation and translation errors are shown in
Figure 1. As expected, the variance and the mean of errors are very small (al-
most zero), since there is no calibration or segmentation errors in the data sets.
For the same set of data and initial conditions, the registration results for the
ICP algorithm and our proposed registration method are compared as well. The
same uniform distribution mentioned above is used to generate the initial con-
ditions. Figure 2 shows the registration result for the ICP algorithm and the
proposed registration method for one of the simulations. It is seen that the
proposed method’s performance is significantly higher than that of the ICP al-
gorithm. On average, the maximum distance error using the ICP registration
algorithm is 1.5mm, whereas this error reduces to 0.8mm using the proposed
registration method.

3.2 CT to Ultrasound Registration

In this experiment the constructed 3D ultrasound cloud is registered to the
bone mesh surface, extracted from the CT data. Here, the two data sets have
different number of points and are extracted from different imaging modali-
ties, therefore containing different inherent calibration and segmentation errors.
At first the 3D ultrasound data is manually aligned to the CT mesh using
the fiducial points mounted on the Scaphoid bone. We were able to align two
data sets manually within the range of 2mm fiducial registration error. Then
a set of random transformations are applied to the 3D ultrasound point cloud,
and for each transformation, registration parameters are estimated between the
CT mesh data and the transferred 3D ultrasound points. The 3D ultrasound
data set is constructed by selecting 450 points from the bone surface within 30
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ultrasound images. Obviously, due to the uncertainty caused by the thickness
of the bone response in each ultrasound image, these points are just approx-
imations to the location of the bone within these images. As before, 45 ran-
dom transformations are produced by drawing from the uniform distribution
U(±10mm, ±10mm, ±10mm, ±10◦, ±10◦, ±10◦) and each transformation is ap-
plied to the randomly selected 3D ultrasound points. Then the proposed reg-
istration method is employed to register the transformed 3D ultrasound point
cloud to the CT mesh data set. The distribution of the rotation and transla-
tion error of the estimated transformation parameters are shown in Figure 3.
For the similar data sets and the same initial conditions, the registration re-
sult for the ICP algorithm and the proposed registration method is compared in
Figure 4. As shown, the proposed method registers the two data sets much
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Fig. 3. Error distributions for 45 UKF registrations; standard deviations are 0.022◦,
0.018◦ and 0.1◦ for x, y and z axes rotation errors, and 0.26mm, 0.32mm and 0.008mm
for the x, y and z axes translation errors, respectively.

(a) (b)
Fig. 4. Comparison of the proposed method to ICP: a) The black star points represent
the bone surface extracted from the ultrasound images, overlaid on the 3D surface
mesh extracted from CT using UKF; b) Surface registration error (units are in mm).
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more accurately than the ICP algorithm which is trapped in a local minimum.
Figure 4(b) shows the distance error histogram between the 3D ultrasound points
cloud and the corresponding CT data set after registration. The maximum and
the root mean square distance errors using the ICP algorithm are 6mm and
3.7mm, respectively, whereas these errors reduce to 1.4mm and 0.31mm using
the UKF method.

4 Discussion and Conclusions

A novel incremental surface-based registration technique based on the UKF is
proposed. It is shown that the proposed method accurately registers the bone
surface points extracted from the 3D ultrasound images to the ones from CT
images. This method offers notable advantages to the other approaches such as
the ICP and UPF algorithms. The proposed registration method not only is less
sensitive to the initial guess or alignment, but also is significantly more accurate
than the ICP algorithm as shown in Section 2. Moreover, against the UPF al-
gorithm, the proposed registration method has less limitation on the size of the
registration points due to the significantly less computational complexity. On
the average, the complexity of the proposed method is O(N2), N is the number
of points in the register data set, while the complexity of the ICP algorithm and
the UPF registration method with P particles, in the best case, are O(N log N)
and O(PN2), respectively. In the future, further simulations and experiments
will be performed to validate the UKF algorithm and its capture range under
different measurement noise conditions.
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Abstract. Dynamic contrast-enhanced 4-D MR renography has the potential for 
broad clinical applications, but suffers from respiratory motion that limits 
analysis and interpretation. Since each examination yields at least over 10-20 
serial 3-D images of the abdomen, manual registration is prohibitively labor-
intensive. Besides in-plane motion and translation, out-of-plane motion and 
rotation are observed in the image series. In this paper, a novel robust and 
automated technique for removing out-of-plane translation and rotation with 
sub-voxel accuracy in 4-D dynamic MR images is presented. The method was 
evaluated on simulated motion data derived directly from a clinical patient’s 
data. The method was also tested on 24 clinical patient kidney data sets. 
Registration results were compared with a mutual information method, in which 
differences between manually co-registered time-intensity curves and tested 
time-intensity curves were compared. Evaluation results showed that our 
method agreed well with these ground truth data.  

1   Introduction 

Single kidney glomerular filtration rate and split renal function can be measured by 
gadolinium-enhanced MR renography. Despite the fact that the kidney is a 3-D organ, 
most previous animal and clinical studies have been restricted to serial 2-D MRI data 
[1]. With three-dimensional magnetic resonance renography [2, 3], 3-D MR 
acquisitions are recorded repeatedly for at least 4 minutes after intravenous injection 
of a low dose of gadopentetate dimeglumine. In this context, image analysis  
of perfusion images aims to construct representative time-intensity curves from 
specified regions of interest such as the renal cortex, medulla, and collecting system. 
When patients cannot hold their breath reproducibly during perfusion data acquisition, 
accurate computation of time-intensity curves becomes complicated because of image 
misalignment over time. In an earlier study [2], three-dimensional registration and 
segmentation of all images were performed separately for each kidney by two 
investigators. For each case, manual registration and segmentation required 
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approximately 2-3 hours at the workstation. For clinical applications, this workload is 
prohibitively time- and labor-intensive. Therefore, automated and semi-automated 
image registration techniques to correct respiration motion are of great clinical 
interest. There has been little work related to the registration of dynamic renal 
perfusion MRI data in which registration in time series is restricted in 2-D plus time 
and in-plane motion only [1, 4, 5]. Automated full 3-D serial image registration 
remains an unsolved problem especially in the context of internal organs [6-9]. We 
propose a novel fully automated four-dimensional (3-D plus time) MRI renography 
registration framework based on wavelet and Fourier transforms (WTFT). First, a 
preprocessing of denoising is employed using edge-preserving anisotropic diffusion; 
secondly, an edge detection is implemented using a 3-D overcomplete dyadic wavelet 
expansion; thirdly, based on the previous edge images, a 3-D registration is applied 
using the Fourier transform; then an existing sub-voxel registration scheme, which 
was extended to 3-D, is used to refine the registration results. Our method was 
quantitatively evaluated by phantom studies as well as on 24 clinical data sets 
compared with manually registered ground truth. WTFT was also compared with an 
existing 3-D mutual information based registration method. 

2   Methodology 

2.1   Anisotropic Diffusion 

If edge detection is applied directly on the original serial 3-D images, the edges 
caused by noise prevent the registration process from achieving accuracy. Therefore, 
we needed to apply a denoising process before edge detection. Here, we have applied 
a computationally efficient denoising filter based on anisotropic diffusion previous 
developed by Duan et al. [10]. 

  
(a) (b) 

Fig. 1. The effect of anisotropic diffusion comparison (coronal view): (a) original image; (b) 
processed image 

2.2   Wavelet Edge Detection 

Due to the gadopentetate dimeglumine perfusion process, intensities of serial images 
change with time, therefore, it is unreliable to use intensity images directly. Instead, 
we can use edge information which is preserved fairly well in the serial 3-D image 
volumes. Compared with gradient and 3-D Sobel edge detection, wavelet transforms, 
which can also be used for edge detection, provide smooth and strong edge detection 
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results. One way of implementing a multi-dimensional discrete dyadic transform is to 
use a filter bank scheme with separable wavelet bases [11]. Since the research in this 
paper focuses on three-dimensional processing, we used a three-dimensional discrete 
dyadic transform. We selected the modulus at level 2 for registration. A comparison 
of the three different edge detection methods is shown in Figure 2. 

   
           (a)            (b) (c) 

Fig. 2. A sample slice (coronal view) to compare different edge-detection methods: (a) 
gradient; (b) 3-D Sobel; (c) 3-D over-complete dyadic wavelet transform modulus 

2.3   Fourier Based Registration 

Using edge images acquired from previous step, a 4-D registration framework was 
accomplished by considering the first frame the reference as a 3-D object; the 
following 3-D frames were registered to the first one. Our work utilized a 3-D motion 
correction method based on the Fourier transform. The procedure can lead to an 
unsupervised 3-D rigid body registration method. One of the benefits of the method is 
that it makes use of all available information instead of limited features from the 
images. This makes the procedure very robust. Let ( , , )f x y z be a 3-D volume data, 

and let ( , , )g x y z be a translated and rotated version of ( , , )f x y z , then 

 ( , , ) ( )g x y z f Rx t= +  (1) 

where 3t R∈ is a translation vector, and (3)R SO∈ is a rotation matrix. 

The three-dimensional Fourier transform is defined as:  

 

2 [ ][ ( , , )] ( , , ) x y zj w x w y w zf x y z f x y z e dxdydzF . 
 (2) 

According to the property of the Fourier transform, 

 
2 [ ][ ]( , , ) [ ]( , , ) x y zj w x w y w z R t

x y z x y zg w w w R f w w w eF F  (3) 

and 

 
[ ]( , , ) [ ]( , , )x y z x y zg w w w R f w w wF F . 

 (4) 

From above equations, we can see that the estimation of rotation has been decoupled 
from the estimation of translation. Thus the first estimation of R  should be 
implemented before the estimation of t . In three dimensional spaces, the rotation 
cannot be expressed in polar or spherical coordinates, in which case it would  
be reduced to a translation and be estimated by phase-correlation [8] as in the  
2-D case. In other words, whereas rotation in 2-D space can be completely expressed 
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by one angle, in order to represent a rotation in 3-D space, three angles are  
needed (Euler’s rotation theorem). Rodrigues’ rotation formula is adopted, which 
gives an efficient method for computing the rotation matrix (3)R SO∈  

( 3 3 1(3) , ,det 1TSO R R R R is a group of the 3-D special orthogonal 
matrices) corresponding to a rotation by an angle ψ ∈ R about a rotation axis 

specified by the unit vector 
3( , , )x y z . Then R is given by 

 

2

2

2

cos (1 cos ) (1 cos ) sin sin (1 cos )

sin (1 cos ) cos (1 cos ) sin (1 cos )

sin (1 cos ) sin (1 cos ) cos (1 cos )

x x y z y x z

z x y y x y z

y x z x y z z

R

ψ ω ψ ω ω ψ ω ψ ω ψ ω ω ψ

ω ψ ω ω ψ ψ ω ψ ω ψ ω ω ψ

ω ψ ω ω ψ ω ψ ω ω ψ ψ ω ψ

+ − − − + −

= + − + − − + −

− + − + − + −

      (5) 

Since any unit vector in 3-D space can be expressed by two angles ( , )θ φ , the 

rotation axis unit vector can be calculated by three angles ( , , )θ φ ψ : 

 cos cos , sin cos , sinx y zω θ φ ω θ φ ω φ= = = . (6) 

Since the kidney is a fairly symmetric object in 3-D, if we use the same method in 
Lucchese’s work [7], which is mainly designed for binary images, the solution of the 
rotation axis is not unique because the intensity projection from different directions 
may be equal to the projection on the rotation axis. Furthermore, projection loses the 
information in the spatial domain, where the intensity profile along a fixed direction 
would provide extra information to find the rotation axis. Instead of three steps, in this 
context, only two steps were applied: rotation matrix, R , estimation and translation 
vector, t , estimation. 

Step1. Recovering the rotation matrix 
By using the relationship between the Fourier transform magnitudes in equation(4)
and to avoid the effects of aliasing introduced by rotation to the energy minimization 
procedure, we use the energy term as  

 2
[ ]( , , ) [ ]( , , )x y z x y z x y zE g w w w Rf w w w dw dw dwF F  (7) 

and the optimum rotation axis and rotation angle can be recovered by 

 
, ,

, , arg min E  (8) 

The minimization problem in equation (8) can be efficiently solved by the Quasi-
Newton Method [12]. 

Step2. Recover translation vector.  
After the rotation estimation, the rotational version of f, Rf, is calculated. Thus, the 
translation vector can be easily recovered by a phase-correlation technique: 

 
[ ]( , , ) [ ]( , , )
[ ]( , , ) || [ ]( , , ) |

x y zj w w w tx y z x y z

x y z x y z

g w w w Rf w w w
corr e

g w w w Rf w w w
F F *

| F F
  (9) 

where * denotes complex conjugate and denotes vector dot product. The inverse 
Fourier transform of the right-hand side of equation (9) is the Dirac impulse function. 
So the translation vector can be trivially found by finding the position of that impulse 
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function. According to the rotation and translation estimation, an aligned image from 

( , , )g x y z to ( , , )f x y z can be denoted as ( , , )g x y z and ( , , )f x y z , whose spectrum are 

( , , )x y zF w w w and ( , , )x y zG w w w .
 

2.4   Subvoxel Refinement in Frequency Domain 

Based on the integer voxel translation estimation and correction, a subvoxel refining 
process can be used to make more accurate registration results. A 2-D subpixel 
registration method put forward by Stone et al. [9] was extended to a 3-D framework 
in this article for the first time. The method requires integer voxel accuracy because it 
can only correct subvoxel misalignment.  

From the property of the Fourier transform,  

 
y

0 0 0(2 / )( )
0 0 0[ ( , , )] x y zj N w x w y w zG f x x y y z z FeF  (10) 

i.e. 

 0 0 0(2 / )( )/ x y zj N w x w y w zF G e .  (11) 

In other words, the phase of /F G  should be a plane in the ( , , )x y zw w w space. 

Therefore, the subvoxel registration problem can be converted into a 3-D plane fitting 
problem, which can be solved by least square fitting. For any voxel in 
the ( , , )x y zw w w space, in theory, the following equation holds: 

 
0 0 0( / ) (2 / )( )x y zphase F G N w x w y w z .  (12) 

Using matrix representation, the above equation is equivalent to  

 0 0 0
2 ( / )T

x y zw w w x y z phase F G
N

.  (13) 

Equation (13) can be solved by pseudo inverse methods or singular value 

decomposition for the subvoxel translation vector [ ]0 0 0, ,
T

x y z . 

In both Fourier registration and subvoxel refinement process, a 3-D window is 
applied, which is recognized for eliminating the spurious introduction of high-
frequency spectral energy due to the boundary effects [9]. We tried Blackman, Hann, 
and Tukey windows (r=0.5, which is r is the ratio of taper to constant sections), and 
we found that Blackman window worked the best for this dynamic renal data. 
Although in some time frames, when contrast agent intake is maximum and kidney 
boundaries are not clear, inner structures and outside edges surround the kidney, such 
as part of liver edges, will help the registration process.    

3   Experiments and Results 

3.1   Simulated Clinical Study 

Based on a manually registered 4-D MR renography data set, a simulated data set 
with dimension [77 97 40 20] and voxel resolution 1.66mm x 1.66mm x 2.5 mm was 
generated by translating and rotating the kidney. Simulated motions included head to 
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feet (HF) translation, left to right (LR) translation, anterior to posterior (AP) 
translation and rotation (Rot) with respect to three different axes, represented in terms 
of ( , , )θ φ ψ , where ( , )θ φ defined the axis of rotation; ψ  the angle of the rotation along 

that axis (Table 1).   
The estimated errors in translation and rotation are shown in Figure 3. Translation 

estimation errors were lower than 1.4 voxels in all the directions with mean value 
0.53± 0.47, 0.51±0.46, and 0.60±0.41 in x, y, and z direction respectively; for 
rotation, except for one case, the errors in the two angles representing the rotation axis 
were less than 0.5 degrees, and the errors in rotation angle were less than 2.5 degrees 
with mean value 0.003±0.003, 0.07±0.26, and 1.14±0.72 degrees in ( , , )θ φ ψ .  

Table 1. Simulated Motion for Each Time Frame (T) 
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Fig. 3. Clinical phantom study results: (a) translation error; (b) rotation error 

3.2   Clinical Evaluation  

In order to evaluate the performance of our algorithm (WTFT) clinically, our 
algorithm was applied to 12 clinical patient datasets (24 kidneys in total), with manual 
registration and segmentation as ground truth. All datasets consisted of at least 41 3-D 
acquisitions, where each 3-D dataset comprised 40 interpolated partitions of 2.5 mm 
thickness, with inplane matrix of 256 and inplane voxel size 1.66 x 1.66 mm. After 
registration, the cortex, medulla, and collecting system were differentiated by 
applying manual segmentation labels on the first frame, assuming following frames 
were been correctly registered. The time-intensity curves of cortex, medulla, and 
collecting systems were calculated based on manual registration treated as ground  
 

T Motion T Motion T Motion 
1 Baseline 8 LR(-1.66mm)+(90,0,5) 15 HF(3.32mm) 
2 AP(-2.5mm)+(0,90,-9) 9 AP(2.5mm) 16 AP(5.0mm) 
3 LR(3.32mm)+(90,0,-2) 10 Baseline 17 Baseline 
4 HF(6.64mm) 11 HF(1.66mm) 18 HF(-4.98mm) 
5 (0,0,-4) 12 HF(-1.66mm) 19 Baseline 
6 HF(-6.64mm) 13 Baseline 20 LR(-4.98mm) 
7 Baseline 14 LR(6.64mm)   
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Fig. 4. Average intensity curves for one of the data sets using manual registration, WTFT, and 
mutual information registration 
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Fig. 5. Boxplot for RMS evaluation of the time-intensity curves generated from WTFT (A) and 
MI (B) methods. ‘ct’ stands for cortex; ‘md’ stands for medulla; ‘cs’stands for collecting 
system. (a) left kidneys, (b) right kidneys. 

Table 2. Significance values for Left and Right cortex, medulla and collecting systems for pairs 
of two methods 

Left Kidney Right Kidney 
P 

Cortex Medulla CollSys Cortex Medulla CollSys 
WTFT/MI <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 

truth and our automatic registration method. As a comparison, the time-intensity 
curves based on Viola-Wells Mutual Information (MI) [13, 14] were also calculated. 
In Figure 4, results from the three registration methods are shown for each kidney 
structure. Qualitatively, time-intensity curves based on WTFT registration are much 
closer to the ground truth than MI. To quantitatively evaluate the performance, root 
mean squared (RMS) relative errors of time-intensity curves between automatic 
registration methods, WTFT or MI, and ground truth were calculated and are shown 
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in Figure 5. From the box-plot, the relative errors based on our WTFT method are 
much smaller than the MI methods in terms of average and standard deviation of 
RMS measurements. However, we note that both automated registration methods 
performed best for cortex but lower agreement for the collecting systems. The average 
errors for cortex, medulla and collecting systems in WTFT method were 
3.24%±1.41%, 5.31%±2.19%, and 8.23%±3.35% respectively for the left and 
3.99%±2.23%, 5.67%±4.13%, and 9.26%±5.94% for the right. Evaluation of the 
statistical differences of results from the two registration methods was performed at 
the significance level 0.05 with a Wilcoxon signed rank test for paired data. 
Significance values for the three tissue types for each pair of registration methods are 
reported in Table 2. Small p values (below 0.0005) indicate a significant statistical 
difference between the methods. From box plot, we can see WTFT had lower mean 
and smaller standard deviation compared with MI, so WTFT statistically performed 
better than MI. 

4   Conclusion 

In this paper, we proposed a novel fully automated four-dimensional MRI renography 
registration framework based on over complete dyadic wavelet and Fourier transform 
(WTFT), which was tested in terms of automation, robustness, and accuracy. 
Simulated motion studies and clinical evaluation studies were used to evaluate the 
new method. Comparison between different edge detection methods and comparison 
between WTFT and mutual information (MI) were performed to illustrate the 
effectiveness of the proposed scheme. An edge-preserving anisotropic diffusion 
operator was also introduced as a denoising method. Experimental results showed 
accurate registration results when compared to manual registration, by expert 
radiologists. 
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Abstract. This paper deals with the modeling of a vascular C-arm to
generate 3D augmented fluoroscopic images in an interventional radi-
ology context. A methodology based on the use of a multi-image cali-
bration is proposed to assess the physical behavior of the C-arm. From
the knowledge of the main characteristics of the C-arm, realistic models
of the acquisition geometry are proposed. Their accuracy was evaluated
and experiments showed that the C-arm geometry can be predicted with
a mean 2D reprojection error of 0.5 mm. The interest of 3D augmented
fluoroscopy is also assessed on a clinical case.

1 Introduction

In order to guide tools during the procedure, the interventional radiologist uses
a vascular C-arm to acquire 2D fluoroscopy images in real time. Today, 3D X-ray
angiography (3DXA) is widely available on modern vascular C-arms. Such 3D
images are recognized as being of a daily clinical usefulness for the planning and
follow-up of the treatment of cerebral pathologies [1]. One next step is to leverage
the high-resolution volumetric information provided by 3DXA to complement
fluoroscopy images and ease the tool guidance. This requires registering 3DXA
with fluoroscopy images, for any orientation of the C-arm.

Image-based registration [2] was investigated to match MRA with Digital
Subtracted Angiography (DSA) images. Though providing accurate registration,
such methods require the injection of contrast agent for the reference 2D image.
Furthermore, their computation time together with the manual interaction nec-
essary to initiate the registration [3] still hampers their wide integration in an
ever tighter medical workflow.

Using 3DXA, both images to register are acquired on the same machine. Reg-
istration can be deduced from a model of the C-arm, based on the information
provided in real-time by the system sensors, such as the C-arm angles. The a
priori model in [4] does not accurately fit the acquisition geometry, due to slight
mechanical deformations undergone by the C-arm. More sophisticated models
have been proposed in [5,6]. Though encouraging with regards to the precision
of the registration, these works proved that the a priori model was not accurate
enough to render the effective mechanical behavior of the C-arm.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 214–222, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this paper, an a posteriori model of the C-arm motion is built through a
series of measurements relying on vision-based methods. The aim is twofold: on
one hand improve the quality of the registration and on a second hand effectively
render the mechanical behavior of the C-arm, including mechanical deformations.

2 The Vascular C-Arm

2.1 The C-Arm and Its Sensors

During a clinical procedure, the C-arm can be oriented in any incidence that the
physician reckons as the best suitable for the treatment (Fig. 1). The orientation
is classically described by two anatomical angles: α = cranio-caudal (CC) and β
= right/left anterior orientation (RAO/LAO). Furthermore, the imager can be
translated to adjust its distance to the X-ray tube (Source to Image Distance,
or SID). The SID and the α and β angles are measured in real time by sensors.

2.2 The Acquisition Geometry

The C-arm can be modeled as a pinhole camera by a projection matrix M,
relating any 3D point X to its corresponding projection q in the acquired image:

q = MX with M = IE =

⎡⎣ f 0 u0
0 f v0
0 0 1

⎤⎦ [R|T]

The intrinsic parameters I describe the projection parameters from the X-ray
tube to the 2D view: (u0, v0) is the principal point and f is the focal length in
pixels (square pixels); the extrinsic parameters E define the orientation R and
position T of the acquisition system in a world coordinate system.

2.3 The Predictive C-Arm Model

Model-based approaches [4,5,6] all aim at estimating the intrinsic and extrinsic
parameters, thus building up the M matrix. The intrinsic parameters (u0, v0)
are assumed constant while f directly depends on the SID.

1EE −1
0D=

α axe
worldR

α β 0

I1 E 1M 1== I E0 0 0

SID

Position 1

α axe

β axe

:= = α =20 β= 0

M

Position 0 :

axeβ

Fig. 1. The vascular C-arm in two different orientations. The change in the acquisition
geometry M is given by the rigid motion D, expressed in the world coordinate frame.
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The extrinsic parameters are assumed to be known in a reference position,
which is straightforward. To compute them in a different orientation, the rigid
motion D of the C-arm is modeled as a function of the α and β angles (Fig. 1).
Dumay [4] modeled D as made of two independent rotations around the α and
β axes respectively. Both axes were assumed to be orthogonal and to intersect.
Kerrien [5] showed that this does not exactly hold and proposed to calibrate
the axes. Cañero [6] compared 4 models with growing complexity, starting from
Dumay’s model, that significantly improved the accuracy of the registration.

Still, the C-arm bears slight mechanical bendings that impair the accuracy
of the previous models. Reliable and independent measurements of intrinsic and
extrinsic parameters should help understand these deformations. Next section
describes how such measurements can be made.

3 Robust Estimation of the Acquisition Geometry

3.1 Classical Geometric Calibration

The projection matrix M is classically estimated through the minimization of
the reprojection error Er on a set of 3D markers (Xi):

Er(M) =
1
n

n∑
i=0

||MXi − qi||2

where n is the number of detected markers (qi) in the image. In practice, we use
a phantom called "helix phantom" which is made of a hollow Lucite cylinder
in which lead markers are inserted according to an helicoidal pattern. Although
the estimated projection matrix is known with a sub-pixel reprojection error,
its decomposition into intrinsic and extrinsic parameters is known to be unsta-
ble.The statistical noise affecting this measurement prevents us from computing
independent and reliable intrinsic and extrinsic parameters.

3.2 Multi-image Calibration

To reduce the statistical noise, calibration can be repeated with varying extrin-
sic parameters and fixed intrinsic parameters. Thereby, the inter-dependence
between both sets of parameters is reduced, so that reliable intrinsic parameters
are estimated. In [7], the camera is moved around the calibration target. In our
case, there is no valid reason to believe the intrinsic parameters do not depend
on the C-arm orientation. As a result, for a given C-arm orientation, N images
of the helix phantom are taken, with the phantom being moved in both rotation
and translation between each image acquisition. This step is called multi-image
calibration. The common intrinsic parameters I and N extrinsic parameters (Ei)
are then estimated simultaneously by minimizing the residual reprojection error
Rm on the N images, using Levenberg-Marquardt algorithm:

Rm =
1
N

N∑
i=0

Er(Mi) with Mi = IEi (1)
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3.3 Per-Axis Analysis

Our medical institution is equipped with a vascular C-arm mounted with the
latest generation of flat panel detectors (INNOVA 4100 – GE Healthcare, Buc,
France), thus bearing no geometrical distortions. The pixel size is 0.2 mm.

Experimental values showed that 30 images were enough to obtain a stable
estimation of the intrinsic parameters. More, bootstrap techniques showed that
the precision of the intrinsic parameters was always better than 2.5 pixels.

The Intrinsic Parameters. The multi-image calibration was used to study
how the intrinsic parameters varied when the C-arm was rotated around either
the α axis or the β axis, with a fixed SID (1180mm). For each axis, 5 orientations
were chosen: Pα = {(α, β) | β = 0 & α ∈ [−40◦, −20◦, 0◦, 10◦, 20◦]} and Pβ =
{(α, β) | α = 0 & β ∈ [−90◦, −40◦, 0◦, 40◦, 90◦]}. For each orientation, a multi-
image calibration was performed using N = 30 images.

The focal length remained almost constant whatever the orientation of the
C-arm. Figure 2.a shows the measurements made on (u0, v0), the shorter lines
being related to the α rotation. Given the 2.5 pixels precision of the method,
no definite change of the intrinsic parameters could be observed except for u0
which clearly presents a smooth variation during a rotation around the β axis.
This imprecision also explains why the curves do not intersect for α = β = 0.

The Extrinsic Parameters. The multi-image calibrations also provide N ex-
trinsic matrices E for each orientation in the Pα and Pβ sets (see eq. 1). These
parameters are stable, since estimated with stable intrinsic parameters. A subset
of images, one per orientation, was taken with a common helix phantom position,
thereby providing a subset of extrinsic matrices, one per orientation, expressed
in the same coordinate system.

The orientation common to both sets was chosen as the reference position
(α = β = 0). Following [5], the rigid motion D of the C-arm was computed by
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Fig. 2. Mechanical deformations. Left: Variations of (u0, v0). Right: factor λ.

Table 1. Per-axis rotation parameters

α β
C [x,y,z] (mm) φ (◦) C [x,y,z] (mm) φ (◦) θerr(◦)

mean [1.75 0.53 -29.04] 0.48 [0.72 4.86 -0.04 ] 0.06 0.26
std [0.33 0.17 1.20] 0.30 [0.90 0.67 0.003] 0.02 0.18
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compositing extrinsic parameters (see also Fig. 1). For analysis purpose, D was
expressed as:

D = [Rθ | T ] = [Rθ | (Id − Rθ)C + ΔT ] (2)

where Rθ is a rotation of angle θ and axis ν, C is the closest point to the
origin on the axis of rotation, and ΔT is a residual translation, proportional to
ν: ΔT = λν.

A per-axis basis analysis of the rigid motions D is reported in table 3.3: the
stability of the rotation axis is verified through statistics on the position of C
and by computing the angular deviation φ of ν with respect to its average value.
The difference θerr observed between the computed θ and the sensor data is also
very small. The norm of ΔT is below 0.2 mm for the α axis. On the opposite,
it cannot be neglected for the β axis: provided that ΔT = λν, figure 2 displays
the variation of λ according to the angle β. As a conclusion, the rotation model
is valid for the C-arm motion around the α axis, but not for β which requires a
further translation parallel to the rotation axis.

3.4 Conclusion

The multi-image calibration is an accurate method to determine reliable intrin-
sic and extrinsic parameters. A per-axis analysis unveiled a variation of the u0
intrinsic parameter and an important residual translation during a β rotation.
These may be interpreted as respectively a physical change of the relative posi-
tion between the X-ray tube and the flat panel, and a global mechanical bending
of the C-arm under its own weight in lateral positions. Such effects are taken
into account in two models described in the next section.

4 Predictive Models of the C-Arm Acquisition Geometry

4.1 Description

The aim in modeling the C-arm acquisition geometry is to be able to predict,
for any orientation (α, β) of the C-arm, the acquisition geometry:

Mα,β = Iα,βEα,β

The extrinsic parameters Eα,β are recovered by modeling the rigid motion im-
parted to the C-arm to move from a reference orientation (α = β = 0) to (α, β).
Under the hypothesis that the α and β motions are independent, this rigid mo-
tion is a composition of two rigid motions: Dα around the α axis, and Dβ around
the β axis:

Eα,β = E0DαDβ

where E0 = [R0|T0] are the extrinsic parameters in the reference orientation.
According to the above measurements, Dα is a rotation of angle α, read

on the sensor, and parameterized by an axis vector νa and a fixed point Ca.
Dβ is a rotation of angle β, read on the sensor, and parameterized by an axis
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Table 2. Reprojection error in pixels for the matrices predicted by both models. The
mean error for model Mf was 2.37 pixels (std=1.48). The mean error for model Mm

was 2.31 pixels (std=1.31). The pixel size is 0.2 mm.

α (◦) -28.8 -28.8 -28.8 -8.8 -8.8 -8.8 -8.8 -8.8 -0.3 -0.3 -0.3 -0.3 -0.3 19.1 19.1
β (◦) -40.4 1.3 40 -90.4 -39.1 0.1 41.1 79.8 -90.4 -39.6 0.4 41.2 80.3 -19.3 0.1

Mf 5.81 3.43 5.61 1.93 1.90 2.24 2.59 2.24 1.20 1.27 1.28 1.38 1.60 1.83 1.25
Mm 3.63 3.44 6.10 1.47 1.72 2.25 2.26 3.20 1.59 1.39 1.28 1.26 1.66 2.19 1.25

vector νb and a fixed point Cb associated to a translation along νb of amplitude
λ. Provided the general function shape in figure 2.b, second- and third-order
polynomials were tested to model the parameter λ as a function of β. The latter
gave better results: λ =

∑3
i=0 λiβ

i.
The intrinsic parameter v0 is constant, and the focal length f only depends

on the SID. The models are described considering a fixed SID, allowing the
assumption that f is also constant. According to the above experiments, u0
varies as a function of β. Figure 2.a suggests the shape of a low-order polynomial.
Again third-order polynomial proved best: u0 =

∑3
i=0 μiβ

i.
Thereby a model was built to render the mechanical properties of the C-arm.

This model, denoted Mm, is parameterized by the vector:
φm = {R0,T0;va,Ca;vb,Cb,(λi)i=0..3;(μi)i=0..3,v0, f}

A second model was considered, only differing from Mm by considering u0 is
also constant, thereby assuming intrinsic parameters are constant. The model is
denoted by Mf and is parameterized by:

φ f = {R0,T0;va,Ca;vb,Cb,(λi)i=0..3;u0,v0, f}

4.2 Calibrating the Models

Model Mf . Since intrinsic parameters are constant, a classical multi-image
calibration can be performed, with a moving C-arm and a fixed helix phantom
as in [7]. One image was acquired for every orientation in Pα and Pβ . The only
difference with section 3.2 is that the N extrinsic parameters are replaced by the
components of φf modeling the extrinsic parameters. Images of the fixed helix
phantom were also taken for C-arm orientations outside Pα and Pβ for validation
purpose. The orientations of this test set are provided in table 2.
Model Mm. Due to the varying intrinsic parameter u0, one multi-image acqui-
sition has to be made for each orientation in Pα and Pβ . These come in addition
to the same acquisition as for Mf , necessary to manage the extrinsic parameters.
This results in the same type of acquisition as made in section 3.3 to study the
extrinsic parameters. Again, a global cost function could be designed and mini-
mized but the relatively small influence of the intrinsic parameters compared to
that of the extrinsic parameters leads to poorly optimized intrinsic parameters.
As often in numerical optimization, we found the adequate cost function to be
the weighted sum of two residuals:

R = Rf + γ
∑

(α,β)∈Pα∪Pβ

Rm(Mα,β)
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where Rf is the residual of the classical multi-image calibration as for the Mf

model, and Rm is the residual of our multi-image calibration, as described in
section 3.2. γ was fixed at 1000, to balance the influence of both terms on R .

5 Validation – Application to 3D Augmented Fluoroscopy

The limitations of fluoroscopy are well known: contrast medium has to be in-
jected repetitively to visualize the vessels, its image quality is reduced compared
to DSA, and finally, it does not provide 3D information. The real-time super-
imposition of fluoroscopic images with pre-operative 3DXA images could poten-
tially overcome some of these limitations. We call this clinical application “3D
augmented fluoroscopy”. The various validation studies that follow were targeted
to such an application. As a result, the reprojection error was chosen as the figure
of merit to evaluate our models.

5.1 Comparison of the Models

Both Mf and Mm models where calibrated as described above. For each orien-
tation (α, β) in the test set, the matrix Mα,β predicted by each model was built
up and its reprojection error computed. Results are reported in table 2.

Each model presents a mean reprojection error of about 2.5 pixels which
represents 0.5 mm of error in the image plane (pixel size=0.2 mm). In both
cases, the error was below this average error in 84% of the test orientations.
This precision is sufficient for many medical applications and in particular for
3D augmented fluoroscopy. No major differences could be noted between the
models. Indeed, in Mf , nothing prevents the coupling effect between intrinsic
and extrinsic parameters from counteracting the error made when assuming u0
is constant.

5.2 Evaluation of 3D Augmented Fluoroscopy

Phantom experiment. A silicon phantom of the cerebral vasculature was in-
jected with a contrast medium and a 3DXA was acquired. Then, one fluoroscopy
image was taken for each test orientation in table 2. 3D augmented views were

Fig. 3. 3D augmented fluoroscopy on phantom dataset. Left: fluoroscopic image of the
phantom; right: superposition of the 3DXA onto the fluoroscopic image.
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Fig. 4. 3D augmented fluoroscopy on a clinical case with model Mm: Comparison of
contrast-enhanced fluoroscopy (left) and 3D augmented fluoroscopy width blending
(middle) and surface (right) views. Only the main vessels are shown and the guide wire
was manually overlined in black.

generated, using model Mm, to allow a visual assessment of the local reprojection
error to complement the above global statistics. In Fig.5.2 an augmented image
is shown for α = 8.8◦ and β = 41.1◦. The precision of this position is 0.45 mm
(see table.2) which, from a visual standpoint, corresponds to a perfect fit.

Patient Data. A patient underwent an endovascular treatment for an aneurysm.
A 3DXA was acquired and fluoroscopy images were captured under an oblique
orientation (α = 2◦, β = −82◦) while the micro-catheter was moved up to the
aneurysm. The SID (1070 mm) used during the procedure was different from the
SID used to calibrate the models (1180 mm). Therefore, the focal length given
by the models was updated as f + (1070 − 1180)/sp where sp = 0.2mm is the
pixel size.

Visual assessment of 3D augmented views indicated a very accurate match
on the region of medical interest, i.e. around the aneurysm. Compared to flu-
oroscopic images (Fig.5.2 left), the augmented images (Fig.5.2 middle & right)
present a higher image quality and ease the assessment of the tool position within
the 3D vascular anatomy in real time. Furthermore, the surface view (Fig.5.2
right) allows to better analyze superimpositions of vascular structures and can
dramatically help the radiologist to understand the vascular bifurcations. Thus,
3D augmented fluoroscopy can make micro-catheter navigation and tool deploy-
ment easier.

6 Conclusion

A robust calibration method for the intrinsic and extrinsic parameters of a vascu-
lar C-arm was proposed and evaluated. Thereby, some mechanical characteristics
of the C-arm were assessed and realistic models were built, including slight de-
formations of the system. These models were evaluated as being able to predict
the acquisition geometry for any C-arm orientation with a mean 2D reprojection
error of 0.5 mm. This accuracy enables many medical applications such as 3D
augmented fluoroscopy. A clinical case showed that 3D augmented fluoroscopy
has the potential to facilitate the classical navigation of the radiologists.
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Abstract. Statistical atlases built by point distribution models (PDMs) using a
novel hybrid 3D shape model were used for surface reconstruction. The hybrid
shape model removes the need for global scaling in aligning training examples
and instance generation, thereby allowing the PDM to capture a wider range of
variations. The atlases can be used to reconstruct, or deformably register, the sur-
face model of an object from just two to four 2D x-ray projections of the object.
The methods was tested using proximal and distal femurs. Results of simulated
projections and fluoroscopic images of cadaver knees show that the new instances
can be registered with an accuracy of about 2 mm.

1 Introduction

Variations of a shape in a population can be described using a statistical shape model
(SSM). The point distribution model (PDM) proposed by Cootes et al. has been shown
to be very successful in applications modeling anatomical objects.

In this paper, we propose a hybrid 3D shape model which can be used in a PDM
framework. We show how to use the hybrid shape model and the resulting PDM to
reconstruct the surface model of an object from a set of 2D x-ray projections using
intensity-based registration techniques.

Methods for reconstructing 3D surfaces by a PDM usually use the PDM in a simple
way, requiring a global scale factor to align the training examples and to correct the
surface model generated by a PDM. The problem of global scaling is that, because the
scaling changes the original shapes, so the PDM is actually constructed from altered
shapes. The use of the hybrid shape model removes the need of global scaling, therefore
the PDM can capture a wider range of variations. Nonetheless, traditional PDM still
has good variability given enough training examples are used. Fleute et al. [4] used a
PDM for the reconstruction using the segmented contours of the 2D projections. Yao
[7] used a PDM with tetrahedral meshes with intensity-based registration. Benameur et
al. [1] used an edge-based method for registering 2D projections with the surface model
generated by a PDM.

2 Shape Modeling and Atlas Building

A shape model should be able to describe both global (overall) characteristics and local
(detail) characteristics of a shape. The hybrid shape model used in the present work ex-
plicitly modeled both characteristics. The global characteristics were described by a set
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of connecting inscribed spheres – in-spheres – contained within the bounding surface
of the shape. The local characteristics were described by parameterizing a surface with
respect to each in-sphere.

2.1 Global Model

The global model here, as is the case for Blum’s medial-axis description [2], uses in-
spheres. One problem with medial-axis models, in general, is that a slight change in
a shape can result in a very different set of medial axes. Instead of putting inscribed
circles into a 2D shape (or in-spheres in 3D) that satisfy the medial constraints, one can
instead fit in-spheres so that they take up the space inside the shape as much as possible.
A crucial difference between the medial-axis description and the global model here is
that spheres in the former may overlap, whereas in-spheres here serve as constraints
on how subsequent in-spheres are positioned and sized. A given shape that is globally
modeled by k in-spheres can be parameterized by k four-component tuples of the form
(ci, ri), where ci and ri are respectively the center and radius of the ith in-sphere.
Figure 1 shows the global model of a proximal and distal femur.

Fig. 1. Global model of the reference femur

2.2 Local Model

The local model parametrically represents the surface of a given shape around each
in-sphere in the global model. In this work the parameterization was done by system-
atically shooting rays from the center of each sphere. Each ray had a parameter that
represented the distance of the surface from the center of the sphere. Ideally the rays
should be uniformly distributed on a sphere; this is only possible with the Platonic
solids, but the rays would not be dense enough to capture the relevant details of the
surface to be modeled. Nonetheless, approximation by a geodesic dome is sufficient.
We used the octahedron and subdivided it such that it approximates a sphere with 1026
vertices and 2048 triangles. These vertices can then be used as directions of rays that
emanate from the center.

Suppose that, for a given in-sphere, n rays are produced. The local model of the
shape’s surface is derived from the intersections of the rays with the surface. This is
done in two stages; first, the length of the rays are found and then a polygon is con-
structed from the tips of the rays. A set L consisting of n distances suffice to parame-
terize the shape.
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2.3 Merging the Global and Local Model

If a given shape is represented by k in-spheres, then it would be parameterized by k
tuples of the form (ci, ri,Li), where ci and ri are the center and radius of the i-th
sphere, and Li is the n-dimensional set of ray lengths that describes the local shape.
Each tuple can be used to reconstruct a mesh using the triangulation of the subdivided
octahedron, in which the mesh describes part of the shape. The entire shape can be
recovered by combining these meshes.

2.4 Building a Shape Atlas

Given a set of training examples, one of them, Mref was selected as the reference
example, and its shape parameter, yref , was determined. For a new training exam-
pleMi, an affine transformation was performed with the reference example, such that
Mref ≈ Taffine(Trigid (Mi)), where T (·) is a transformation. This affine transfor-
mation was used on the in-spheres locations of the reference example, so that they
become the initial guess for the in-sphere location of the new training example. The
in-sphere description is then determined in the same sequential order of the reference
example. For the alignment, the only rigid part of the transformation is used. The local
model of the new training example can be calculated after aligning it with the refer-
ence example, and the shape parameter yi forMi is now determined. Mathematically,
S−1(yref ) ≈ Taffine(S−1(yi)).

With the shape parameters of all the training examples known, a hybrid statistical
shape atlas was generated using principal component analysis (PCA) [3]. PCA reduces
the dimension of the shape parameter from thousands to ŷ, whose dimension has only
a few values, such that ŷ = C(y), and y ≈ C−1(ŷ).

The hybrid shape model provides a method for parameterizing a shape, which can
be denoted as functions S(·) and S−1(·), such that for a given a shapeM that is repre-
sented as a triangle mesh:

y = [(c1, r1,L1), . . . , (ck, rk,Lk)]T = S(M) (1)

M′ = S−1(y) (2)

whereM′ is a retriangulated version ofM.

3 Shape Reconstruction

Given data from a surface that is not one of the training examples, the parameters can
be optimized to best match the given data, such that a model for this surface is recon-
structed. This process also includes registration, because the given data is under some
coordinate system that is different from the coordinate system of the atlas. Therefore
the reconstruction gives the shape parameter ŷ, a rotation R and translation t, such that
the mesh S(C−1(ŷ)) transformed by TR,t(·) is the best match to the given data.

The given data may be of various forms. The two most important forms for or-
thopedic applications are when the data are 3D points obtained from the surface of an
anatomical object, and when the data are 2D projections of an anatomical object. As for
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2D/3D rigid registration, a crucial component of reconstruction is the use of an appro-
priate similarity measure that can be used to compare the given data with an instance
generated from the atlas. In other words, the reconstruction is essentially a minimiza-
tion problem, that some error measure is minimized by using some values of ŷ R, and
t. Here we address the reconstruction using a few 2D projections.

Given a set of calibrated 2D projections (i.e., the projection geometry for each pro-
jection, and the relative poses of the projections are known) the reconstruction was done
in an iterative manner in two steps. First, starting with the mean shape (ŷ = 0) and an
initial estimate of the pose, an intensity-based registration [6] was performed so that
a similarity measure [5] between the digital reconstructed radiographs (DRRs) of the
shape, and the given projections, was optimized. By fixing the resulting transforma-
tion, the similarity measure was further optimized using the dimension-reduced shape
parameter, which was done using a non-gradient-based optimization technique. By re-
peating these steps, the shape of the given surface was determined. Because we focus
on orthopedic application, we used gradient correlation as the similarity measure. For
the optimization of the shape parameter, we used the downhill simplex method.

Note that the shape atlas only provides a surface mesh, not an image volume that
is required for DRR generation. To simulate an image volume using the surface mesh,
one can intersect the mesh with a set of parallel planes. The result would be a contour
of the shape, represented by line segments. Guided by the local surface normals, these
segments were “grown” inward to simulate the thickness of the cortical bone in a real
CT slice.

4 Experiments

The shape model was tested using 20 dry human femurs. CT scans were acquired for
each femur, using an (x, y) pixel size varying from 0.50 to 0.65 mm and a slice thickness
of 1.25 mm. The resolution of the CT volumes was 512× 512, comprised from 380 to
400 slices. Left femurs were mirrored to produce only right-femur shapes. The surface
meshes were computed from the CT volumes. The proximal and the distal femurs were
treated separately.

In building and testing the atlas a leave-one-out approach was used, i.e., 19 femurs
were used for training the atlas and the remaining one was used for testing the atlas.
The dimensions of the shape parameters were about 6620 and 5180 for the proximal
and distal femur; after performing PCA they were reduced to 9 and 7, with a cumulative
variance of 85.9± 0.4%, and 86.1± 0.5%, respectively.

RMS error was used for quantifying the error in the reconstruction of a surfaceM,
which can be defined as the sum of the distances between all the mesh vertices ofM,
and the reconstructed shape:

RMS Error(ŷ, R, t) =
√ ∑

m∈M
‖m− closest(m, TR,t(S(C−1(ŷ)))‖2/|M| (3)

where |M| is the number of mesh vertices inM. Note that a rigid transformation has
already been performed forM in the simulation, so the RMS error contains not only
the error in the shape, but also the error in the registration.
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Retrospective analyses show that the atlases were capable of describing the left-
out femurs with mean RMS error±SD for the proximal and distal femur was 0.84 ±
0.17 mm and 0.70± 0.15 mm from 3D surface data.

4.1 Reconstruction from 2D Projections

Both simulated and cadaver data were used for testing.
For simulated data, reconstruction was done with two, three, and four images using

all proximal and distal femurs. The view angle difference was approximately 15◦, 60◦,
and 90◦ for reconstruction with two images, 15◦, 30◦, and 45◦ with three and four
images. 2D projection images of the left-out femurs were simulated by DRRs with a
resolution of 512 × 512. The mean initial pose error was normally distributed with
zero mean and SD of 5◦ and 10 mm. Each set was done with and without calibration
error. The calibration error included the error in finding the x-ray source location of
the fluoroscope (in-plane SD = 0.25 mm, out-of-plane SD = 0.9 mm), and the relative
orientation between projections (SD = 0.5◦, 0.2 mm).

Two human cadaver knees with soft tissues intact were used in this study. The distal
femurs were implanted with seven fiducial markers, such that they could be used to
provide ground truth for the pose of the femur from the fluoroscopic images (OEC
9800, General Electric, USA). The knees were flexed in nine or ten positions, with
three images of about 45◦ view angle difference for each position. CT scans with the
same resolution of the dry bones were performed to determine the 3D models of the
femurs, and the locations of the fiducial markers.

Table 1. Simulation of reconstruction using 2D projections for the proximal femur. All errors are
in mm. Note that the histograms contain cases that were failed.
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Proximal Femur No Error With Error Number
Mean SD Failure Mean SD Failure of cases

2 images (all) 1.80 0.45 0.9% 2.03 0.54 2.9% 490
3 images (all) 1.70 0.34 0.0% 1.89 0.45 0.5% 432
4 images (all) 1.66 0.34 0.0% 1.76 0.45 0.0% 512
2 images, 90◦ 1.73 0.37 0.0% 1.80 0.39 0.0% 152
3 images, 45◦ 1.66 0.32 0.0% 1.79 0.38 0.0% 145
4 images, 45◦ 1.61 0.34 0.0% 1.69 0.43 0.0% 229
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Table 2. Simulation of reconstruction using 2D projections for the distal femur. All errors are in
mm. Note that the histograms contain cases that were failed.
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Distal Femur No Error With Error Number
Mean SD Failure Mean SD Failure of cases

2 images (all) 1.55 0.46 0.8% 2.34 0.82 40.4% 532
3 images (all) 1.46 0.40 0.2% 1.99 0.70 15.0% 513
4 images (all) 1.42 0.40 0.5% 1.70 0.56 5.8% 399
2 images, 90◦ 1.42 0.39 0.8% 2.20 0.82 44.4% 133
3 images, 45◦ 1.36 0.35 0.0% 2.09 0.82 8.3% 133
4 images, 45◦ 1.31 0.34 1.3% 1.57 0.50 1.3% 76

Table 3. Reconstruction from sets of three 2D projections of the distal femur of the two cadaver
knees. Errors are in mm.

Mean RMS Error SD n Failure
Femur 1 1.95 0.55 171 6.9%
Femur 2 1.72 0.25 190 0%

The average time taken for reconstruction with two, three, and four images were
4.5, 6, and 8 minutes. Table 1 and 2 summarize the overall simulation results, and also
the setting which produced the best results (4 images at 45◦). A mean RMS error of
over 4 mm was considered a failure. As a reference, reconstruction of a femur phantom
using 60 surface points had an mean RMS error of 1.35 mm for the proximal femur,
and 1.34 mm for the distal femur.

5 Discussion

The error of reconstruction using 2D images were about 2 mm, which is impressive
because atlas-based reconstruction, or non-rigid registration, is a difficult problem. The
use of more images significantly improved the accuracy. For both the proximal and
distal femur, best results were obtained by using four images with view angles that
were 45◦ apart. The cadaver results were better than the simulation with errors, which
means that the actual calibration errors were likely not as high as we simulated.
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Figures 2 and 3 show the average error for the proximal and distal femurs. In both
cases, the error was extracted from a set of four test cases registered with four images at
45◦ apart. These particular sets were chosen as they had a relatively high error, so they
better illustrate the most problematic cases. In the proximal femur, the femoral head
is the most stable, with very small errors except around the fovea capitis. The greater
trochanter, the lesser trochanter, and the medial/posterior side were not accurately re-
constructed. In the distal femur, most error occurred around the intercondylar notch.
An explanation for the higher error in these regions is that they can only be seen in one
viewing angles, and for some parts like the tip of the greater trochanter and the inter-
condylar notch, they are hardly visible, so they could only be inferred indirectly from
the atlas simultaneously with other regions.

Although the atlases were capable of generating left-out femurs with a mean error of
under 1 mm, the error of the actual reconstruction was much higher. This does not imply
that the deduced shape parameters are not optimal, as pose error is also included in the
RMS error. Furthermore, the RMS errors reported here were only slightly higher than

Fig. 2. Average error occurred in a proximal femur reconstructed by 2D images. The error was
extracted from a set of four test cases registered with four images and 45◦ apart, and with cali-
bration error.

Fig. 3. Average error occurred in a distal femur reconstructed by 2D images. The error was ex-
tracted from a set of four test cases registered with four images and 45◦ apart, and with calibration
error.



230 T.S.Y. Tang and R.E. Ellis

(if not comparable to) errors reported in the literature of intensity-based registration
using the original CT scan.

In summary, we have shown that a PDM generated using our hybrid shape model
can be used for registration using 2D x-ray projection with good accuracy, with the best
results using four projections in 45◦ difference. The only human intervention needed in
the process of the reconstruction was the specification of the initial pose estimate.
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Abstract. In this paper we present a novel 3D/2D registration method, where 
first, a 3D image is reconstructed from a few 2D X-ray images and next, the 
preoperative 3D image is brought into the best possible spatial correspondence 
with the reconstructed image by optimizing a similarity measure. Because the 
quality of the reconstructed image is generally low, we introduce a novel 
asymmetric mutual information similarity measure, which is able to cope with 
low image quality as well as with different imaging modalities. The novel 
3D/2D registration method has been evaluated using standardized evaluation 
methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray im-
ages of two spine phantoms [1], for which gold standard registrations were 
known. In terms of robustness, reliability and capture range the proposed 
method outperformed the gradient-based method [2] and the method based on 
digitally reconstructed radiographs (DRRs).  

1   Introduction 

In image-guided therapy, preoperative three-dimensional (3D) computed tomography 
(CT) or magnetic resonance (MR) images and models of anatomical structures, ob-
tained by image segmentation, serve for preoperative planning and simulation, and as 
“background” shown on the monitor in the treatment room onto which models of 
surgical instruments or of radiation beams are projected. The link between a preopera-
tive 3D image and intraoperative physical space of the patient is established by regis-
tration of the preoperative image either directly to the patient or to intraoperative 
images of the patient. When two-dimensional (2D) images are acquired intraopera-
tively the pre- to intraoperative image registration is called 3D/2D registration. In the 
last decade, different 3D/2D image registration methods have been proposed. The 
segmentation-based 3D/2D registration methods [3-6] minimize the spatial distance 
between positions of corresponding geometrical features that have previously been 
extracted from pre- and intraoperative images. The drawback of these methods is that 
intraoperative segmentation errors propagate to errors in registration. Intensity-based 
3D/2D registration methods [7-10] rely on image intensities or intensity gradients of 
pixels and voxels. The most popular intensity-based 3D/2D registration method opti-
mizes the similarity measure calculated from overlapping CT-based digitally recon-
structed radiographs (DRRs) and X-ray images [7-10]. Intensity-based 3D/2D regis-
tration methods are considered to be more accurate than segmentation-based methods 
but slower due to time consuming calculation of DRRs. Hybrid methods combine 
elements of segmentation- and intensity-based methods with the purpose to achieve 
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the speed of segmentation-based methods and the accuracy of intensity-based meth-
ods [2, 11, 12]. From validation results provided by the authors of intensity-based and 
hybrid methods and from a recent comparison study of van de Kraats  et al. [1], it is 
obvious that some of these methods are highly accurate when registering a CT image 
to two or more X-ray images. However, their capture ranges are rather small and they 
are not robust enough. Besides, 3D/2D registration of MR to X-ray images remains a 
challenging problem.   

In this paper we propose a novel 3D/2D image registration method which first re-
constructs a 3D image from a few 2D X-ray images and then matches this image to 
either a CT, MR, or 3DRX pre-operative image. The quality of a 3D image, recon-
structed from a small number of 2D images will definitively be low. The similarity 
measure applied in such a registration should therefore be able to cope, among others, 
with low image quality of one image as well as with differences in imaging modalities. 
For this purpose we introduce a novel and powerful similarity measure, which we call 
asymmetric multi-feature mutual information measure. The measure is based on the 
multi-feature mutual information measure, recently proposed by Tomaževi  at al. [13]. 

2   Asymmetric Multi-feature Mutual Information  

Let the two images to be registered be denoted as floating image A and reference 
image B and represented by vector functions za(x) and zb(x) of position x in image 
space, respectively. Each vector function z(x) is comprised of values of K image fea-
tures, z(x)=(z1(x),…, zK(x)). Let, for a given spatial transformation T, SM denote the 
similarity measure between corresponding feature sets za(x) and zb(T(x)). Registration 

seeks the spatial transformation T̂  that maximizes SM 

)))((),((maxargˆ xTxSMT ba
T

zz= . (1) 

Let the values of za(x) and zb(x) be the observed values of vectors of random variables 
Za and Zb, respectively. In terms of entropy, multi-feature mutual information (MMI) 
[13], which represents a generalization of the widely used single-feature mutual in-
formation criteria [14, 15], is defined as  
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where H(Za), H(Zb) and H(Za,Zb) are entropies of vectors of random variables 
Za=(Za1,…,ZaK), Zb= (Zb1,…,ZbK) and (Za,Zb)=(Za1,…, ZaK,Zb1,…,ZbK), respectively. In 
general, entropy of a K-dimensional random variable Z, Z=(Z1,…,ZK) is defined as  
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−=−=
1

),...,(log),...,(...)(log)()( 11
z z

KK

K

zzpzzpppH
z

zzZ . (4) 



 Reconstruction-Based 3D/2D Image Registration 233 

 

As for single-feature mutual information, the multivariate probability distributions 
p(za), p(zb) and p(za,zb) can be estimated from joint histograms [16]. Unfortunately, 
even in case of two features, the four-dimensional histogram h(za,zb), will probably be 
so sparse that a meaningful estimation of p(za,zb) will become practically impossible. 
For this reason, Tomaževi  et al. [13] proposed to decompose the floating and the 
reference image features into a basic feature i(x) and additional features v(x), i.e. 
za(x)=(ia(x),va(x)) and zb(x)=(ib(x),vb(x)). For the purpose of registering a preoperative 
image to a reconstructed image we propose that only one vector function, say za(x), is 
divided, resulting in za(x)=(ia(x),va(x)). Using the known property of entropy [17] that 

 )),...,,,...,(()()( 111 kKkkk ZZZZZHZHH +−+=Z , (5) 
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where H(Zb) is the entropy of Zb, and H(Va|Ia) and H(Va,Zb|Ia) are entropies of Va and 
VaZb under the condition Ia, respectively. We call this similarity measure the asym-
metric MMI (AMMI). Assuming that distributions of Zb, Va|ia and VaZb|ia are normal, 
and knowing the distribution p(ia) and covariance matrices Σzb, Σva|ia and Σvazb|ia, en-
tropy H(Zb) and conditional entropies H(Va|Ia) and H(Va,Zb|Ia) may be defined by  
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Covariance matrices Σva|ia and Σvazb|ia, are estimated for every feature value ia. This 
approach requires much fewer samples than the estimation through high dimensional 
histograms. Moreover, in the case of AMMI, a one-dimensional histogram h(ia) is 
needed to estimate the probability distribution of the basic feature. With a one-
dimensional histogram more samples become available for estimation of an individual 
covariance matrix. Entropies H(Zb), H(Va|Ia) and H(Va,Zb|Ia), estimated by Eqs. 7 and 
8 are monotonically increasing functions of variances of random variables Zb, Va|ia 
and VaZb|ia, respectively.  The condition that random variable Zb, and conditional 
random variables Va|ia and VaZb|ia are normally distributed will, generally, not be 
fulfilled in practice. Nevertheless, Eqs. 7 and 8 may be used to estimate entropies 
needed to calculate AMMI as long as the real, but unknown entropies are also mono-
tonically increasing functions of variances of Zb, Va|ia and VaZb|ia.  

3   Experiments 

The proposed method has been evaluated and compared to the gradient-based method 
of Tomaževi  at al. [2] using publicly available image data [1]. The image dataset 
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comprised 2D fluoroscopic X-ray images and 3D 3DRX, CT and MR images of two 
defrosted segments of a vertebral column. The first vertebral column consisted of 
three thoracolumbar vertebrae bodies while the second segment comprised five tho-
racic vertebrae bodies. Some soft tissue was still present around both segments. The 
2D fluoroscopic images were obtained with a clinical 3DRX system (Integris 
BV5000, Philiphs Medical System, Best, The Netherlands). A set of 100 X-ray im-
ages was acquired for each spinal segment in 8 seconds run of 180 degrees rotation 
around the imaged object. For each vertebral column, a 3DRX image was recon-
structed from a set of 100 X-ray images using a filtered back-projection reconstruc-
tion technique [18]. The two CT-images were acquired with a clinical 16-detector-
row multi-slice CT scanner (MSCT, Philips Medical System, Best, The Netherlands). 
The MR images were obtained with a clinical 1.5 Tesla MR scanner (Gyroscan NT, 
Philips Medical System, Best, The Netherlands) using a sagittal 3D turbo spin echo 
acquisition and turbo factor of 29, TR/TE of 1500 ms/90 ms. The MR images were 
corrected with the retrospective intensity inhomogeneity correction method based on 
information minimization [19]. The ground truth registration between 3DRX images 
and 2D projection images was established in the process of creating 3DRX images, 
while the gold-standard registration between CT and MR images with 2D fluoro-
scopic images was obtained by 3D/3D rigid registration of CT and MR images to 
corresponding 3DRX images using the mutual information maximization registration 
method [16]. Eight volumes of interest (VOIs), each containing a whole vertebra body 
and less than a quarter of neighboring vertebrae, were manually determined on 3DRX 
image volumes. VOIs in CT and MR images corresponding to 3DRX VOIs were 
defined by the gold standard registration. Examples of fluoroscopic, 3DRX, CT, and 
MR images of a VOI are shown in Fig. 1. 

 

Fig. 1. Fluoroscopic (left) and transversal (top row) and lateral planes (bottom row) of corre-
sponding VOIs taken from 3DRX (second column), CT (third column) and MR volumes (right 
column) 

The gradient-based method was implemented as in [2]. The 2D X-ray images were 
blurred with a Gaussian kernel of 0.5 mm, the 3D images were isotropically resam-
pled to 0.96 mm voxel sizes by linear interpolation, while the threshold to extract 
bone edges from VOIs was set to 18 for 3DRX and CT images and 15 for MR im-
ages. 3DRX and CT VOIs were registered to 3 X-ray images while MR VOIs were 
registered to 11 X-ray images because of the larger difference in modalities. The 
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angle between each of the 3 (11) image views was approximately 60° (15°). For the 
novel method, the 3D image of a whole spinal segment was reconstructed from the 
same 3 and 11 X-ray images by the SART reconstruction method [20]. The sizes of 
reconstructed 3D images were 128x128x128 and 128x188x128 image elements for 
the first and second spinal segment, respectively, with isotropic spatial resolution of 
0.63 mm. The preoperative 3D image was taken as the floating image A and the re-
constructed image as the reference image B. Both feature sets za(x) and zb(x), charac-
terizing the preoperative and reconstructed image, respectively, consisted of image 
intensity i(x) and image intensity gradient v(x) features, i.e. za(x)=(ia(x),va(x)) and 
zb(x)=(ib(x),vb(x)). To reduce sensitivity to image noise and non-isotropic image ac-
quisition, the gradients of all 3D images were obtained after convolving 3D intensities 
with a Gaussian. Kernel scales of 0.5 mm and 0.35 mm were applied to the original 
3D images and 3D reconstructed images, respectively. The AMMI similarity measure 
(Eq. 6) was used to measure the match between za(x) and zb(T(x)). Image intensity of 
the preoperative (floating) image ia(x) was the only feature whose probability distribu-
tion was estimated by using one-dimensional histogram h(ia) of intensity values. A 
histogram, having 64 bins was used to assure statistical power. Assuming normal 
distribution of Zb, Va|ia and VaZb|ia, the multivariate probability distribution p(zb) was 
estimated through the covariance matrix Σzb, while the distributions p(va|ia) and 
p(va,zb|ia) were estimated through conditional covariance matrices Σva|ia and Σvazb|ia, 
respectively, for every intensity value ia. Powell’s optimization method [21] was used 
in both methods to optimize the given similarity measure for six rigid-body transfor-
mation parameters (tx, ty, tz, ωx, ωy, ωz).  

Both 3D/2D registration methods were evaluated using the standardized evaluation 
methodology of van de Kraats et al. [1]. The evaluation methodology uses the mean 
target registration error (mTRE) to measure the distance of a VOI position from the 
gold standard before and after registration. The positions of all image elements in a 
VOI were used as target points. For evaluating the capture range and robustness of a 
3D/2D registration method, van de Kraats et al. [1] provided 200 starting positions for 
each VOI. The 200 starting position were randomly generated around the gold stan-
dard position in such a way that the distance from gold standard measured by mTRE 
was uniformly distributed in the interval of 0-20 mm. For each of 3DRX, CT or MR 
modalities 1600 registrations to X-ray images (reconstructed images) were thus per-
formed, 200 per each of the 8 VOIs. Each registration was considered successful, if 
mTRE after registration was lower than 2 mm. The registration error was defined as 
mTRE of all successful registrations, while the capture range was defined as the dis-
tance from gold standard for which the registration had proved to be successful in at 
least 95% of all cases.  

4   Results and Conclusion 

The registration errors, capture ranges and percentages of successful registrations for 
both methods and different modalities are shown in Table1. The novel method is a 
little less accurate, has a somewhat larger capture range, especially for MR to X-ray 
registrations and is much more robust that the gradient-based method. Fig. 2 shows 
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Table 1. Mean TREs, capture ranges and percentage of successful registrations for the gradi-
ent-based (GBM) and reconstruction-based (RBM) methods  

Views Modality 
 

mTRE (mm) Capturing 
range (mm) 

Successful 
registrations 

(%) 
  GBM RBM GBM RBM GBM RBM 
3DRX 3 0.19 0.33 7 9 68% 89% 
CT 3 0.32 0.37 7 7 63% 78% 
MR 11 0.50 0.67 2 7 23% 84% 
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Fig. 2. Registration results of 3DRX (first row) and CT VOIs (second row) to 3 X-ray images 
and MR VOIs to 11 X-ray images (third rows). Scatter diagrams of displacements before and 
after registration for the gradient-based method (GBM) (left column) and the reconstruction 
based method (RBM) (middle column), and the proportions of correct registrations (right  
column). 
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the results in more detail. The results are in the form of scatter diagrams of displace-
ments (mTRE) before and after registration and proportions of successful registrations 
(convergence) with respect to the initial displacement. For all modalities the proposed 
reconstruction-based method was successful in a significantly larger number of regis-
trations than the gradient-based method. As expected, the proportion of successful 
registrations fell with the extent of initial displacement.  

The proposed novel approach to 3D/2D registration based on 3D integration of 2D 
information is general and does not make any constraints on the modalities and 
anatomies involved in the registration. The experimental results show that the pro-
posed method outperforms the gradient-based method with respect to capture range 
and proportion of correct registrations. 
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Abstract. Accurate 3D/2D vessel registration is complicated by issues of image 
quality, occlusion, and other problems. This study performs a quantitative 
comparison of 3D/2D vessel registration in which vessels segmented from 
preoperative CT or MR are registered with biplane x-ray angiograms by either 
a) simultaneous two-view registration with advance calculation of the relative 
pose of the two views, or b) sequential registration with each view. We 
conclude on the basis of phantom studies that, even in the absence of image 
errors, simultaneous two-view registration is more accurate than sequential 
registration. In more complex settings, including clinical conditions, the relative 
accuracy of simultaneous two-view registration is even greater.  

1   Introduction 

The objective of 3D/2D registration is to align spatial data to projective data. Given a 
3D model and its 2D projection, 3D/2D registration determines the pose (orientation 
and position) of the model at which its 2D image was taken. This paper discusses the 
registration of 3D vessels, segmented preoperatively from computed tomographic 
(CT) or magnetic resonance (MR) images, to biplane, x-ray angiograms.  

The driving clinical problem is the Transjugular Intrahepatic Portosystemic Shunt 
(TIPS) procedure, which creates a channel between the portal and hepatic veins [1]. 
We are currently developing an image-guided system for this procedure. One of the 
major challenges has been achieving accurate 3D/2D registration under conditions in 
which the x-ray angiograms are noisy and contain severe projection overlap (Fig. 1).  

Several groups have described effective methods of 3D/2D vascular registration 
[2,3,4,5]. The purpose of the current paper is not to evaluate a specific registration 
metric, but rather to compare the efficacy of simultaneous, two-view registration with 
sequential registration. This issue has received little attention, although one paper 
notes in passing that simultaneous, two-view registration appears more effective than 
single-view registration [6]. However, no quantitative assessment or detailed analysis 
was provided. 

This study uses phantom and clinical data to evaluate accuracy in registering a 
presegmented, 3D vessel model to biplane fluoroscopic images under two conditions. 
In the first, the relationship between cameras capturing the two views is determined in 
advance and the 3D model is registered simultaneously to the two views. In the 
second, the 3D model is registered sequentially and independently to each view.   
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Fig. 1. Sample AP (left) and lateral (right) portograms used in the TIPS procedure. Note the 
thickness of the vessels and the projection overlap. 

We conclude that the simultaneous approach is more accurate than the sequential 
approach even under ideal conditions. In the presence of image errors, the difference 
between the performance of the two methods increases. Although this report employs 
a particular registration metric [5], the findings in regard to sequential/simultaneous 
registration should be applicable to 3D/2D registration methods using other metrics.  

2   Methods 

2.1   Phantom Studies 

The purpose of the phantom studies was to evaluate registration accuracy under 
conditions of known ground truth and varying image quality. All tests were performed 
in blinded fashion, with the individual performing the registration unaware of the 3D 
pose of the vessels until after study completion. 

Simulated angiograms were created by generating projections of four different 
portal venous trees, each segmented from the CT or MR of a different patient, and 
each containing 7-15 vessels. The fields of view ranged from 9° to 16.5°, and the 
relative angle between the two views ranged from 80° to 90°, with arbitrary 
placement and rotation of the 3D model within the imaged field. Two sets of 
pseudoangiogram pairs were generated for each of the four vascular models, using 
different model poses and different combinations of camera intrinsics. For each 3D 
vessel point, a circle was projected upon the view-plane with radius calculated using 
the vessel radius and rules of projection geometry. Using a combination of buffers and 
summing image intensities, the generated images simulate angiograms with vessel 
overlap (Fig. 2). 

For simultaneous registration, the operator was given the camera intrinsics and the 
relationship between the two views, and registration was performed on both views 
simultaneously, giving one set of registration matrices for each view. For sequential 
registration, the operator was given each view’s camera intrinsics and registration was 
performed individually, also giving one set of registration matrices for each image. 
Single-view registrations are independent and the order in which they are carried out 
unimportant. Both AP and lateral views were registered in order to make a complete 
comparison with results of simultaneous registration. The initial estimate of 3D model 
pose was up to 16° off and up to 65 mm away from the actual position of the model.  

Portal 
Vein 
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3D/2D registration was performed using a metric that optimizes a view-plane based 
disparity measure based on the iterative closest point algorithm between the 3D vessel 
skeletons and the skeletons of the vessel projections seen on angiograms [5]. Three 
different phantom studies were performed: 

1) Ideal case pseudoangiograms: Registrations of the 8 image pairs with their 
respective 3D models were evaluated under conditions of projection overlap, but 
without added noise and with perfect one-to-one correspondence between vessels of 
the 3D model and their projections on pseudoangiograms. Fig. 2 illustrates a 
perspective projection of the 3D model and its AP and lateral pseudoangiograms. 

2) Noisy pseudoangiograms: This study was identical to the one above, but with 
Gaussian noise of standard deviation 2.5 added to the pseudoangiograms. The 
addition of noise both obscures smaller vessels and can confuse the determination of 
vessel skeletons (Fig. 3).  

3) Noisy pseudoangiograms without one-to-one vessel correspondence: This study 
was identical to the two above, but with the deletion of 3-8 branches from the 3D 
model. This situation provides a partial simulation of the actual clinical condition, in 
which a noisy x-ray angiogram can show vessels that the 3D model does not. 
Similarly, the 3D model may contain vessels that are not visible in the angiogram. 

Registration accuracy was measured by comparing the location of each point in the 
3D model following registration with its known location during synthetic image 
 

 
 

Fig. 2. An example of ideal-case simulated pseudoangiograms (gray), AP (left) and lateral 
(right). Also shown is a perspective projection of the 3D segmented vasculature (red). 

    

Fig. 3. Simulated angiograms with added noise. Vessels have the same pose as shown in Fig. 2 



242 C. Pathak et al.  

 

generation. Mean 3D point placement errors were calculated for each case during 
each study. One result was reported per case when simultaneous registration was 
employed, and two results were reported per case (one each for Anterior-Posterior 
(AP) and Lateral images) when sequential registrations were employed. 

2.2   Clinical Studies 

A comparison of simultaneous and sequential two-view registration was also 
performed on three clinical cases using AP and lateral angiographic images obtained 
during TIPS procedures. Preoperative images of the 3D liver vasculature were 
acquired by CT (a Siemens Somatom Plus system was used with collimation 
0.56x0.56x2.5 mm) or MR (on a Siemens MagicVision 1.5T system with collimation 
0.86x0.86x3 mm). Voxel size was variable, but around 1.5x1.5x3 mm. 

Extraction of the portal venous tree from 3D image data involved 3 steps: 
definition of a seed point, automatic extraction of an image intensity ridge 
representing the vessel’s central skeleton, and automatic determination of vessel 
radius at each skeleton point [7]. Vessels are represented as sets of 4-dimensional 
points with an (x,y,z) spatial position and an associated radius.  

A Siemens Neurostar biplane digital angiographic unit was used to obtain x-ray 
angiograms as biplane views, separated by approximately 90˚. The fields of view 
ranged from 8.7° to 16.5°. Images were captured and stored as 8-bit 884x884 pixel 
images. Fig. 4 shows sample clinical images. 
 

                     
 

Fig. 4. AP (left) and lateral (right) abdominal angiograms obtained intra-operatively. Note the 
noisiness of the data and the significant projection overlap induced by wide-diameter vessels.  

For patient studies, the relationship between the two fluoroscopic views was 
calibrated using a Plexiglas phantom containing a known arrangement of 5 mm 
diameter metallic spheres. The projection matrix for each view was calculated by 
taking an x-ray image of the phantom and minimizing the distance between observed 
pixel coordinates and ideal projection of each control point [8]. Intrinsic camera 
parameters were calculated using the same phantom.  

Validation of Registration Results 
The evaluation of clinical results is difficult since ground truth is unknown. 
Registration accuracy was estimated in these cases by reconstructing into 3D, a point 
that could be identified in both AP and lateral views, and comparing the location of 

Portal 
Vein 
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this reconstructed 3D point to that of its corresponding point in the 3D model 
following registration. One subject (‘Patient 1’ in Table 2) had a metal clip in the liver 
as a result of previous surgery, and this clip was visible in the preoperative CT and on 
both projection views. The same subject also had 2 vessel branch-points that, with the 
help of an expert radiologist, could be associated on the AP and lateral projection 
views. Patients 2 and 3 had 3 and 2 vessel branch-points, respectively, that could 
similarly be associated on the AP and lateral views.  

3   Results 

3.1   Phantom Studies 

For each test case, registration errors are presented for ideal pseudoangiograms, noisy 
pseudoangiograms and noisy pseudoangiograms without one-to-one vessel 
correspondences. For each of these pseudoangiogram pairs, accuracy is reported for 
simultaneous, sequential AP, and sequential lateral registrations.  

Addition of noise to the image obscures small vessels and distorts vessel shape, 
making an accurate registration harder. The lack of one-to-one vessel correspondence 
is another source of error. For example, the image on the left in Fig. 5 shows a 
trimmed 3D model registered with the pseudoangiogram. On the right, the model has 
all branches present. The dark curves identify the position of previously deleted 
branches, thus highlighting the error.  

       

Fig. 5. Registration difficulties in presence of noise and without one-to-one correspondence 

Vessel registration errors for the phantom studies, presented in Tables 1 and 2 and 
Fig. 6, 7 and 8, are calculated as described in section 2.1. 

3.2   Clinical Studies 

Table 3 contains the registration accuracy data for the clinical trials, calculated  
as detailed in section 2.4. For patient 1, the registration error given is the mean of  
the error over three points - a surgical clip and two vessel branch-points. For patients 
2 and 3, the mean registration error for 3 and 2 branch-points, respectively, is 
presented. 
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Table 1. Registration errors for phantom studies for the ideal and noisy pseudoangiograms. 
Errors are in mm and are presented in the ‘mean (maximum)’ format.  

Ideal pseudoangiograms  Noisy pseudoangiograms  
Sequential 

Registration 
Sequential 

Registration 
Case 

 
AP Lateral 

Simult- 
aneous 
Regn. AP Lateral 

Simult- 
aneous 
Regn. 

1 1.1 (2.1) 1.1 (2.1) 0.3 (0.6) 4.3 (4.8) 0.7 (1.7) 0.5 (1.9) 

2 3.1 (3.9) 1.1 (2.0) 0.3 (0.6) 2.1 (3.6) 1.1 (2.0) 0.7 (1.1) 

3 1.0 (2.2) 0.3 (0.5) 0.3 (0.5) 1.4 (2.0) 5.0 (5.5) 0.9 (1.2) 

4 2.8 (2.9) 3.7 (4.1) 0.7 (0.9) 6.3 (6.9) 1.3 (1.4) 1.0 (1.2) 

5 3.1 (5.3) 1.1 (1.5) 0.2 (0.2) 1.7 (2.2) 1.7 (2.2) 1.1 (1.6) 

6 4.1 (4.2) 3.8 (5.3) 0.2 (0.2) 2.0 (4.4) 1.9 (3.8) 1.0 (2.6) 

7 0.6 (1.0) 0.6 (1.0) 0.2 (0.2) 8.2 (9.2) 3.4 (4.5) 1.1 (1.4) 

8 0.5 (1.0) 1.0 (1.7) 0.4 (0.6) 2.3 (3.8) 4.9 (6.1) 0.6 (0.7) 

Table 2. Phantom registration errors in mm for noisy pseudoangiograms without one-to-one 
correspondence  

Noisy pseudoangiograms without 1-to-1 correspondence 

Sequential Registration Case 
 

AP Lateral 
Simultaneous 
Registration 

1 1.1 (2.9) 1.9 (2.2) 0.5 (1.1) 

2 3.4 (5.5) 1.1 (2.0) 1.1 (2.3) 

3 1.4 (4.5) 6.8 (7.0) 1.0 (1.4) 

4 5.3 (7.4) 5.0 (6.9) 1.0 (1.5) 

5 7.3 (8.2) 6.0 (6.9) 1.2 (2.0) 

6 3.8 (5.4) 7.7 (8.7) 1.1 (2.9) 

7 8.7 (9.3) 8.0 (8.8) 0.8 (1.4) 

8 1.2 (1.9) 4.2 (6.8) 0.6 (0.9) 

Table 3. Registration errors in mm for clinical trials. Errors are in ‘mean (maximum)’ format. 

Patient 
Sequential 

Registration 
Simultaneous 
Registrations 

1 6.1 (7.2) 1.9 (2.12) 
2 5.5 (9.6) 2.6 (3.7) 
3 4.0 (4.8) 2.4 (2.5)           
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Fig. 6. Mean registration errors for the 
phantom studies with ideal angiograms 

 
Fig. 7. Mean registration errors for the 
phantom studies with noisy angiograms 

 

Fig. 8. Mean errors for phantom studies with noise and without one-to-one correspondence  

4   Discussion and Conclusion 

This paper compares the accuracy of simultaneous and sequential two-view 
registration in both phantom and clinical images of abnormal hepatic vasculature. The 
magnitude of the error we report for sequential-view registration is larger than the 1-2 
mm error generally described in the literature [3,4,5]. Almost all prior studies 
evaluating 2D-3D vessel registration accuracy have used noiseless images, thin 
vessels, and one-to-one vessel correspondence, however. As shown by Figure 1, the 
images generated during TIPS are often of low quality and many vessels are thick - 
the main branch of the portal vein may be over 1 cm wide. Thick vessels increase 
projection overlap and complicate both centerline and branch-point definition. The 
difficulty of accurate 2D-3D registration is thus high in this actual clinical situation.  
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The current study details the behavior of the two registration methods with changes 
in image quality. Even under ideal conditions, one might expect simultaneous two-
view registration to perform superiorly since with single-view registration, translation 
of an object along the depth axis produces relatively little change on projection. 
Simultaneous use of two orthogonal views allows each registration to correct the 
depth estimate of the other. Our phantom studies confirm this hypothesis, with 
improvement of accuracy by simultaneous registration even under ideal conditions.  

The difference between the two approaches becomes more pronounced under 
conditions of noise and lack of one-to-one vessel correspondence – factors 
incorporated both in our phantom studies and in clinical data. Indeed, in two of the 
three clinical cases, the error in simultaneous registration was more than twice the 
magnitude of the error for sequential registration. This finding may result from the 
ability of one view to compensate for regional ambiguities in the other.  

We conclude that simultaneous, two-view registration produces significantly 
more accurate results than sequential view registration. These findings should be 
applicable to a variety of 2D-3D registration metrics, and are of interest to those 
involved in the guidance of endovascular surgery. 
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Abstract. Voxel based non-rigid registration of images involves finding
a similarity maximising transformation that deforms a source image to
the coordinate system of a target image. In order to do this, interpo-
lation is required to estimate the source intensity values corresponding
to transformed target voxels. These interpolated source intensities are
used when calculating the similarity measure being optimised. In this
work, we compare the extent and nature of artefactual displacements
produced by voxel based non-rigid registration techniques for different
interpolators and investigate their relationship to image noise and global
transformation error. A per-voxel similarity gradient is calculated and
the resulting vector field is used to characterise registration artefacts
for each interpolator. Finally, we show that the resulting registration
artefacts can generate spurious volume changes for image pairs with no
expected volume change.

1 Introduction

A common step in medical image processing is the application of voxel based reg-
istration techniques to 3D image volumes. Non-rigid registration is increasingly
used to produce displacement fields that, with the emergence of deformation
based morphometry [1] [6], have been used to provide data for further analysis.
For example, the transformations estimated by registration can be used to gen-
erate Jacobian determinant maps in order to estimate volume changes [2] [6] [9].
Clearly, errors during non-rigid registration can lead to artefacts in the resulting
transformations or in subsequent data. This implies a need to characterise the
extent and nature of such artefactual displacement.

When registering images, interpolation of intensities at non-grid locations
plays a part in the generation of artefacts and this has been the subject of a va-
riety of previous studies [11] [21] [10] [7] [13] [23] [15]. It is possible, for example,
to study interpolators in spectral terms in order to determine how close they
are to the ideal low pass filter [11]. Generalised interpolation is described in [21]
� The authors would like to thank Dr Nick Fox and the Dementia Research Centre for

their aid in this study.
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where interpolators are assessed using approximation theory and according to
performance. A review of the literature on interpolator performance in various
image processing tasks is given in [10] where the kernels and spectral properties
are described. In the context of registration, interpolators have been been stud-
ied in a variety of ways. It is possible to assesses interpolators for artefacts by
identifying local optima in the similarity metric under known misregistrations
[23]. The effect of grid alignment under misregistration on joint histogram dis-
persion is investigated in [15] to demonstrate how optima in the similarity metric
can be created (linear and partial volume interpolation). Mutual information in
particular has been shown [12] to be less susceptible to false local optima using
partial volume interpolation in comparison with linear and nearest neighbour
interpolation during rigid registration.

Previous work on registration artefacts has, as far as we are aware, focused on
rigid and affine transformations where local optima in the similarity metric are
identified as a single affine parameter varies. Non-rigid registration, however,
can generate small localised displacements suggesting an increased chance of
artefact. An example could be a sharp contrast boundary, blurred by a linear
interpolator, being sharpened by local (artefactual) contraction. In this paper we
characterise interpolation artefacts in non-rigid registration. We show that the
gradient of the similarity metric can be used to indicate the degree of artefacts.
We have also assessed the effects of noise and global registration error in non-
rigid registration. Finally, using repeat MR scans for 11 subjects, we demonstrate
that non-rigid registration can generate spurious volume change where they are
not expected.

2 Methods

Theoretically, registering an image pair created by sampling the same under-
lying continuous signal at different locations should produce no displacement.
This can only occur if the constraints of the sampling theorem are met and the
interpolator used has ideal spectral properties (uniformly one in pass-band and
zero elsewhere). Thus, the departure of the registration from the ideal behaviour
(zero displacement) can be used to measure the extent of interpolation arte-
facts. In most non-rigid registration algorithms the course of the registration is
determined by the gradient of the similarity metric. Thus, the gradient of the
similarity metric provides an alternative measure to characterise interpolation
artefacts. In particular, this measure is independent of the particularities of any
non-rigid registration algorithm such as the representation of the displacement
field. In this paper the similarity metric investigated is the sum of squared dif-
ferences (SSD).

Similarity Gradient. Many non-rigid registration algorithms rely on the min-
imization of a similarity measure like sums of squared differences using gradient
descent techniques [4] [22] [14]. Let S and T be the images to be registered such
that S is the interpolated source image and T is the target image. For a current
transformation estimate f , from T to S, the SSD is calculated using a set of grid
locations xi in image T and their transformed locations f(xi) in image S.
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SSD =
1
n

n∑
i=1

(S(f(xi))− T (xi))2

where the S(f(xi)) and T (xi) represent the intensities at the corresponding lo-
cations in S and T . Generally, S(f(xi)) represents an interpolated intensity. The
chain rule can be used to derive the SSD gradient with respect to displacements
of individual voxels

∇SSD =
∂(SSD)

∂S
∇S|f(xk) =

2
n

(S(f(xk))− T (xk))∇S|f(xk) (1)

The estimate for the source image gradient ∇S|f(xk) is obtained using central
differences from the transformed source image S(f(xi)).

Interpolators. In this paper we investigated four different interpolators: Linear,
piece-wise continuous cubic (PCC) spline [8,16], cardinal spline (based on a cubic
B-Spline kernel) [24] and a sinc-based interpolator that was apodised using a
width 12 Hanning window and was renormalised [20].

3 Results

We have used simulated and real data to assess non-rigid registration artefacts.
In addition we have used data from a routine clinical study to assess non-rigid
registration artefacts by estimation of global volume changes.

Simulated Data. For our simulations we used a 2D slice from the Montréal
Neurological Institute (MNI) simulated MR image [5] to create a second image
with sample locations offset by half a pixel in the x direction. This was done by
applying a linear phase shift to the Fourier spectrum of the original image so
that, as far as possible, both images have the same spectral content. Using the
global transformation of a half voxel shift along the x axis and each of the inter-
polators, the SSD gradient field was calculated for the simulated image pair. The
magnitudes of the field are shown in figure 1 as a cumulative frequency curves
for each interpolator. If the cumulative frequencies for an interpolator reach high
percentiles quickly, the SSD gradient magnitudes tend to be low indicating a low
artefact potential. Figure 1 shows a clear order for the interpolators from best
to worst as : sinc, cardinal, PCC then linear.

For comparison, the images were registered using a non-rigid registration al-
gorithm [17]. The magnitudes of the resulting displacements are shown as cumu-
lative frequencies in the left of figure 1. The clear separation of the interpolators
is preserved and their order matches that shown by the SSD gradient. However,
the cumulative frequency curves for the displacements appear smoothed relative
to those for the SSD gradient, something that can be explained by the intrinsic
smoothness of displacement fields represented by B-splines [17].

Separate experiments were conducted to determine the robustness of the
relative ordering of the interpolators with respect to noise. The order of the
interpolators remained stable until high SNR values are reached (≈ 12). Beyond
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Fig. 1. Left: Cumulative frequency curves showing the distribution of magnitudes for
the SSD gradient fields evaluated from the simulated MR image pair using each of the
interpolators. Right: Cumulative frequency curves for the displacement fields obtained
by registering the same images.
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Fig. 2. A graph to show the effect of global registration error on the 75th percentile
of the SSD gradient field. The horizontal axis shows the shift used as the global trans-
formation estimate when calculating the SSD gradient. A shift of 0.5 voxels represents
the ’true’ transformation.

this point the linear interpolator performs best, something that can be explained
by the relatively high degree of blurring it performs.

The effect of global misregistration was tested by varying the transformation
estimate in equation (1). The size of the SSD gradient field, represented by its
75th percentile, is plotted against the applied shift in figure 2 where, for example,
it can be seen that at an applied shift of 0.6, an error in the global transformation
of a tenth of a voxel, there is little to distinguish the sinc, PCC and cardinal
interpolators.
Real Data. To assess non-rigid registration artefacts in real data, two T1
weighted volumes were used that were acquired from a single subject on the
same day. They were acquired on a 3T Intera system (Philips Medical Systems,
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Best, The Netherlands) using an MP-RAGE sequence with an acquired resolu-
tion of 0.937×1.15×1.2mm3 reconstructed to 0.9375×0.9375×1.2mm3 voxels.
A single rigid registration was carried out using a linear interpolator to obtain
an estimate for the global transformation prior to calculating the SSD gradient
field.

Each of the grids for the real images, after global transformation, varies in
its alignment relative to the other. This contrasts with the simulated images for
which the relative grid alignment is uniform at all locations. Because the differ-
ences between interpolators are clearer where the image grids are misaligned, an
’interpolation map’ was created showing the distance from each globally trans-
formed target voxel to the nearest source voxel. High values in the interpolation
map indicate regions where the interpolation plays a more significant role.

The statistics of the SSD gradient were calculated where the brain region
intersected the interpolation map thresholded at 75%. Figure 3 shows part of
the resulting cumulative frequencies. Again, this correlates very well with the
displacements generated from a non-rigid registration of the volumes (figure
3, right). The order of performance of the interpolators is well preserved. In
both cases, the sinc and cardinal interpolators are however hard to distinguish,
although both of these perform better than the PCC interpolator which in turn
out-performs the linear interpolator.

Clinical Data. A common clinical application of non-rigid registration that
could be affected by artefacts is the identification of volume differences between
two sets of images. Recently, the use of transformations and their Jacobian
determinants has been a useful tool in such volumetric approaches [2] [6] [9].
To test the effect of artefacts on volume change estimation a separate experi-
ment was carried out using images from 11 subjects. All subjects were scanned
twice on the same day using a 1.5T Signa Unit (GE Medical Systems, Mil-
waukee) with an IR-prepared spoiled GRASS sequence (TE, 6.4ms; TI, 650ms;
TR 3000ms; Bandwidth 16KHz; 256x256x124 matrix; 240x240x186-mm FOV).
Non-uniformity was corrected using N3 [19].
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Fig. 3. Left: Cumulative frequency curves for the SSD gradient magnitudes derived
using 2 acquired volumetric images. Each curve corresponding to a particular choice
of interpolator. Right: The same curves for the displacement fields generated by regis-
tering the MR volumes.
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Fig. 4. Left: Volume changes generated by cardinal and linear based registrations for
all 22 registrations (forward and reverse). Right: Volume consistency: Values of CV

calculated per subject for each of the linear (red) and cardinal (green) interpolators.

The departure of each registration from an expected zero volume change
can be used to assess artefacts. The pairs were registered using the free-form
deformation algorithm [17] in each direction producing ’forward’ and ’reverse’
transformations for both the linear and cardinal interpolators. The global volume
change in the brain region was estimated for each transformation by integrating
its Jacobian determinant (Figure 4 left). The mean volume changes were -0.22%
and -0.11% for linear and cardinal interpolators respectively. A t-test showed this
difference to be significant (t = 12.5, p = 0.01 gives critical value of t = 2.5/2.8
for 1/2 tailed tests). The volume changes were also highly correlated (r2 = 0.97).

Given previous interest in registration consistency [18] [3], an estimate of
volume change consistency was also calculated as a separate artefact measure. If
DFR represents the product of the forward and reverse volume changes then a
measure of volume consistency CV (symmetric for expansions and contractions)
was defined as CV = | log(DFR)|. CV should be zero for registrations that are
truly volume consistent and higher values indicate increasing volume inconsis-
tency. The values for all subjects are shown on the right of figure 4 which shows
clearly better volume consistency for registrations using cardinal interpolation.
Near identical results were obtained by evaluating the volume change directly
from the composition of the forward and reverse transformations.

4 Discussion

In this paper we have shown how artefacts in non-rigid registration can be as-
sessed using spectrally similar images the gradient of the similarity metric. Using
SSD, the relative performance of different interpolators was assessed under ’ideal’
conditions (’true’ global transformation, zero noise) and under the effect of global
misregistration and noise. This work has focused on interpolation artefacts in
non-rigid registration while previous studies have concentrated on rigid and/or
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affine registration. The relative performance of the interpolators as indicated
by the SSD gradient compares favourably with that indicated by the results of
registration. The metric investigated here was SSD although we recognise that
other metrics can be more appropriate depending on the circumstances. If in-
tensity based measures (e.g. canonical cross correlation) are used, for example
with single modality images of the same subject acquired months apart, then
the method presented can be readily extended. Information theoretic measures
(e.g. Mutual Information) are often used for inter-modality registrations, in this
case the definition of the similarity gradient (for example whether it has an ana-
lytic or numeric representation) will depend on how the measure is implemented.
Registrations using an optimisation method other than first order gradient de-
scent would require a modified version of an artefact estimator. For example,
the Hessian should be a better estimator if second order descent is used.

In general, the results suggest that, for images with a reasonable noise level
and a sufficiently accurate global registration step, there appears to be benefit
in using more sophisticated interpolators (e.g. cardinal) over simpler ones (e.g.
linear). The noise level also needs to be quite high before before interpolators
become comparable in terms of artefact whereas a reasonably small global reg-
istration error can nullify the benefit of using a sophisticated interpolator. The
results based on clinical data showed a significant difference between the volume
changes generated by linear and cardinal interpolators. The high correlation of
their volume changes indicates the degree to which image content determines
artefactual effects. If the inter or intra-subject volume differences in a study are
sufficiently small then the results can be affected by the choice of interpolator
with the ability to discriminate groups better served by the use of a more so-
phisticated interpolator. Our results suggest that the use of the cardinal over the
linear interpolator could mean a potentially shorter interval between scans in a
longitudinal study or the use of fewer subjects in a cross-sectional study. Our
results also show that registrations are more volume consistent using a cardinal
interpolator compared to a linear interpolator.
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Abstract. The need for non-rigid multi-modal registration is becom-
ing increasingly common for many clinical applications. To date, how-
ever, existing proposed techniques remain as largely academic research
effort with very few methods being validated for clinical product use. It
has been suggested by Crum et al. [1] that the context-free nature of
these methods is one of the main limitations and that moving towards
context-specific methods by incorporating prior knowledge of the under-
lying registration problem is necessary to achieve registration results that
are accurate and robust enough for clinical applications. In this paper,
we propose a novel non-rigid multi-modal registration method using a
variational formulation that incorporates a prior learned joint intensity
distribution. The registration is achieved by simultaneously minimizing
the Kullback-Leibler divergence between an observed and a learned joint
intensity distribution and maximizing the mutual information between
reference and alignment images. We have applied our proposed method
on both synthetic and real images with encouraging results.

1 Introduction

Non-rigid multi-modal image registration in medical applications has become
increasingly important to physicians in recent years. The fusion of complimentary
image information has been shown to be particularly beneficial to physician’s
diagnosis. Furthermore, new imaging techniques such as molecular imaging pose
a huge demand for multi-modal image registration in order to show functional,
anatomical, and/or molecular image information in a single fused image.

Multi-modal image registration is a challenging problem. It has been strongly
influenced by the introduction of an information theoretic similarity measure,
the well-known mutual information (MI), into the medical registration domain
in 1995 [2, 3]. Amongst others, MI has been applied successfully to rigid as
well as non-rigid multi-modal registration of medical images. Surveys regard-
ing this topic have also been published recently [4, 5]. Nevertheless, drawbacks
of MI became apparent especially when the underlying transformation is not
originated from a low dimensional parameter space, i.e. for non-parametric or
non-rigid transformation models. Both the non-convexity of MI and an uncon-
strained transformation model make non-rigid multi-modal image registration a
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very challenging problem. Extensive research along this direction has been per-
formed in recent years including variational formulations using advanced regular-
izers [6, 7], and local similarity maximization [6, 8]. Most non-rigid multi-modal
registration work proposed so far focuses on methods that do not consider the un-
derlying context of the registration such as the intensity mapping relationship of
the class of images to be registered, statistics of modalities to be registered, and
other prior information about the registration problem. It has been suggested
by Crum et al. [1] that the context-free nature of these non-rigid registration
methods is one of the main limitations for them to be clinically useful and that
moving towards context-specific methods by incorporating prior knowledge of
the underlying registration problem is necessary to achieve accurate and robust
registration results.

In the case of rigid multi-modal image registration several approaches have
been proposed to use prior information during optimization [9, 10, 11]. Leventon
and Grimson were the first to use a prior learned joint intensity distribution [9],
where the registration is obtained by maximizing the log likelihood of the im-
ages to be registered. Zöllei et al. showed that this method makes some implicit
assumptions about the desired solution which do not always hold [12]. Chung et
al. found empirically that the minimization of the Kullback-Leibler (KL) diver-
gence between an observed and a learned joint intensity distribution is superior
to maximizing the log likelihood [10, 11]. For non-rigid multi-modal image reg-
istration, however, very few work has been published so far. In [6], Hermosillo et
al. proposed a supervised non-rigid registration algorithm using ML. Although
KL divergence has been used in context-free non-rigid registration work [13],
context-specific non-rigid multi-modal registration using KL divergence, to the
best of our knowlege, has not been reported to date.

In this paper, we propose a variational formulation that incorporates prior
knowledge by minimizing the KL divergence between an observed and a learned
joint intensity distribution. In addition to the KL divergence term, our formu-
lation also incorporates a regularization term that regularizes the displacement
field and a term that maximizes the MI between reference and alignment images.
Our work can be seen as an extension to the variational formulation work by
Hermosillo et al. [6].

The outline of the paper is as follows. Section 2 describes the proposed
method, the derivatives used for the optimization process, and its implementa-
tion. In Section 3, experiments on both synthetic and real images are presented
to validate the proposed method. We conclude in Section 4 with a discussion
and future developments.

2 Description of Method

2.1 Registration by Driving Mutual Information with Prior
Knowledge

In order to non-rigidly match images from two different modalities, several strate-
gies have been proposed in the past. Generally speaking, there are two categories
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of solutions available. The first approach, studied extensively in recent years, con-
siders maximizing one or multiple similarity measures defined on both reference
and alignment images such as intensity, gradient, edges, landmarks, shapes, and
so on. The second approach uses prior knowledge obtained from pre-registered
trained data to get a solution that is more meaningful in the clinical context.
Our proposed method combines both perspectives into a unified formulation by
simultaneously encouraging the observed joint intensity distribution to resem-
ble the expected joint intensity distribution learned a priori and maximizing a
similarity measure. This can be intuitively understood as guiding a context-free
similarity measure by prior knowledge.

We define our combined registration framework as the minimization of the
following cost functional

J (u) = α IMI(u) + (1− α) IKL(u) + λR(u), α ∈ [0, 1], λ ∈ IR+ (1)
û = argminJ (u),

where u is a displacement field, R defines regularization or smoothing on u,
and λ is a positive constant that decides the amount of regularization. IKL

measures the KL divergence between observed and learned data, and IMI de-
notes an expression for MI of the observed data. Here, we realize the role that
prior knowledge plays. A displacement field that maximizes MI is being steered
by prior information to achieve accurate alignment. The factor α controls the
amount of guidance through prior knowledge. For α = 0 the registration problem
is solely based on the prior information. For α = 1 the registration is defined as
the classical optimization of MI without any prior information. For α ∈ (0, 1), the
maximization of MI is driven by clinical context in the form of prior knowledge
captured by the minimization of the KL divergence.

This prior knowledge can be acquired in several ways and has become more
accessible recently. One can use the expert knowledge of a physician who manu-
ally aligns the images or one can leverage the fused imaging data acquired using
the dual-modality (PET/CT, SPECT/CT), also known as hybrid, scanners. The
latter provide extensive amounts of pre-registered data, which is very important
for avoiding patient specific training data. In order to increase robustness, one
may learn a joint density distribution that represents a mean prior information
of n pre-aligned images. But it has to be examined carefully as most scanners
cannot correct the misalignment due to organ movement.

2.2 Derivative of Kullback-Leibler Divergence and Mutual
Information

In the following we will refer to the two images that are to be registered by the
functions f1 : Ω ⊂ IRn �→ IR and f2 : Ω ⊂ IRn �→ IR. The images are registered by
retrieving the underlying displacement field. Given the images, a displacement
field can be modeled by a mapping u : Ω �→ Ω. Without loss of generality, we
can denote f1 as the reference image and f2 as the alignment image during the
registration process.
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We indicate by po
1(f1), po

2(f2) and po
u(f1, f2) the marginal and joint intensity

distributions estimated from f1(x) and f2 (x + u(x)) respectively. p�(f1, f2) is an
estimate for the joint intensity distribution of the training data. In practice, the
distributions are estimated by using a non-parametric Parzen window estimator
with a Gaussian as the windowing function.

We incorporate prior knowledge by minimizing the KL divergence between
observed and trained data. The KL divergence for a given displacement field u
can be expressed as:

IKL(u) =
∫

Ω
po
u(i1, i2) ln

po
u(i1, i2)

p�(i1, i2)
dx (2)

where i1 = f1(x) and i2 = f2 (x + u(x)). The MI-based objective function is
defined as the negate MI between the reference image and the alignment image
transformed by u and can be expressed as:

IMI(u) = −
∫

Ω
po
u(i1, i2) ln

po
u(i1, i2)

po
1(i1)p

o
2(i2)

dx, (3)

We notice that MI can be viewed as the KL divergence between the observed
joint density and the product of the observed marginals, whereas in IKL the
product of the marginal densities is replaced by the prior knowledge learned
from training data. Note that we use the negate of the MI here to define a cost.

The minimum of (1) can be found by means of variational calculus. We may
descend the gradient of the combined functional with respect to the displacement
field. The gradient of (1) is defined as,

∇uJ = α∇uIMI + (1 − α)∇uIKL + λ∇uR (4)

The gradient of MI has been derived by Hermosillo et al. in [6]. To derive the
gradient of the KL divergence, we use the definition for a non-parametric Parzen
density model. After some manipulation, ∇uIKL can be written as follows,

∇uIKL = − 1
N

[(
∂2p

o
u(i1, i2)

po
u(i1, i2)

− ∂2p
�(i1, i2)

p�(i1, i2)

)
∗Gσ

]
(f1(x), f2(x + u(x))

·∇f2(x + u(x)). (5)

Here, Gσ is a two-dimensional Gaussian with standard deviation σ, ∂2 is the
partial derivative of a function with respect to its second variable, and N is a
normalizing constant. We immediately notice the term ∂2po

u(i1,i2)
po
u(i1,i2)

− ∂2p�(i1,i2)
p�(i1,i2) as

the comparison function of our registration method. This comparison function
is evaluated repeatedly during the registration. In fact, alignment is achieved
by continous adjustments of the joint intensity model until it resembles the
learned joint intensity distribution. Furthermore, this assessment shows the cen-
tral difference of our KL-based approach from the ML approach in [6], where
the observed joint intensity distribution remains static.
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2.3 Implementation

Variational calculus allows us to compute the minimizing displacement field by
descending along the gradient ∇uJ . We get the classical gradient flow:

ut = −∇uJ
u(·, 0) = u0

(6)

with u0 being a suitable initial guess for the displacement field. In this paper,
we use a Tikhonov model for regularization, i.e. R[u] = 1

2

∫
Ω |∇u(x)|2 dx. Its

gradient expression is: ∇uR[u] = div
(

R′[u]
|∇u| ∇u

)
= div(∇u) = Δu, where Δ

denotes the Laplace operator. Starting from an initial guess, we will follow a
gradient descent strategy to find a solution for (1). In order to recover a larger
class of deformations, to decrease computational cost, and to avoid irrelevant
extrema of the non-convex functional, we pursue a coarse to fine scheme, i.e.
consecutively smoothing and subsampling the images.

3 Experiments

Phantom Registration. The following phantom images were created to point
out the importance of using context-specific information. Figure 1 visualizes an
ambiguous setting for non-rigid registration. A circle is registered non-rigidly to
another one that is of different intensity. However, its location is chosen such
that there is an overlap with two other circles, a smaller and a larger circle, in a
joint image. This setup suggests that there are at least two eqivalent optima for a
context-free distance measure to align the circles. We compare two methods, i.e.
minimizing (1) with α = 1 and α = 0 respectively. We train that the circle should
align to the small circle. The MI method, α = 1, finds an optimum in registering
to the big circle, Figs. 1(d) and 1(e), whereas the KL approach, α = 0, registers
to the small circle, Figs. 1(f) and 1(g). Note that using the KL approach, we
could also train the algorithm to align to the big circle.

T1 - T2 MRI Registration. We tested the KL method (α = 0) on a simu-
lated T1/T2 MRI brain data set acquired from the Brain Web Simulated Brain

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. (a) reference image (512x512), (b) alignment image, (c) difference image, (d)
image (b) aligned using MI criterion only, (e) retrieved displacement field for (d), (f)
image (b) aligned using prior information only, and (g) retrieved displacement field
for(f)
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(a) (b) (c) (d) (e) (f)

Fig. 2. (a), (b) Training slices for T1-T2, (c) reference image, (d) alignment image, (e)
edge map of unregistered T2 slice superimposed on T1 slice, and (f) registered result

Database [14]. The coronal slices, Fig. 2(a) and 2(b), were used for training
whereas registration was performed on the sagittal slices, Fig. 2(c) and 2(d).
The T2 image has been deformed by an artificially created displacement field.
This experiment shows the strength of training joint intensity distributions that
are used successfully for non-rigid registration.

SPECT - CT Registration. Our next experiment is performed on two cor-
responding slices of a SPECT/CT data set acquired by a Siemens Symbia T2
SPECT/CT hybrid scanner. We generate our prior knowledge from those two
slices and deform the SPECT slice by an artificial displacement field. MI (α = 1)
and KL (α = 0) are compared for performance and the final registration results
are visualized in Fig. 3. Since we have the ground truth, we computed the dif-
ference between the warped SPECT images and the original image for visual
evaluation. From the difference images we notice that although we are using a
multi-resolution strategy, the MI-based approach gets trapped in an irrelavant
local minimum possibly due to its insensitivity to local deformation. This exper-
iment demonstrates the potential benefit of incorporating prior knowledge for
registration in clinical applications.

PET - CT Registration. Our last experiment describes a PET/CT regis-
tration from clinical practice involving a visual evaluation by an expert. The
imaging data acquired from a 70 year old male patient with multiple lesions
in the lung and was acquired by a Siemens Sensation 10 (CT) and a Siemens
Ecat 926 (PET). The PET was acquired 6 days after the CT. According to the

(a) (b) (c) (d)

Fig. 3. (a) Edge map of CT slice overlayed on SPECT slice as acquired from scan-
ner, (b) deformed SPECT difference image, (c) SPECT difference image for MI based
approach, (d) SPECT difference image for KL based approach
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(a) (b) (c) (d) (e) (f)

Fig. 4. Blended PET/CT images showing (a) training data, (b) misaligned slices, (c)
misaligned slices (zoomed), (d) pure MI registration (zoomed), (e) pure KL registration
(zoomed) (e) combined result (zoomed), 40% MI and 60% KL

evaluation of an expert physician, only parts of the volume were registered accu-
rately by a preceding manual fusion. For our experiment, we trained on two slices
that have been classified as good registration and performed our approach on a
misaligned slice. Figure 4 shows a collection of overlayed CT and corresponding
PET images. In addition to a strong misalignment of the cardiac ventricle, an
alignment deficit in the contours of the liver, the mediastinum and the thorax
can be seen in Fig. 4(b). Figures 4(d) and 4(e) show the results for both the pure
MI- (α = 1) and the pure KL-based (α = 0) registration, whereas Fig. 4(f) illus-
trates the registration result for our combined approach (α = 0.4). The physician
evaluated the combined approach as the most accurate one among all three reg-
istration results due to its accuracy not only in the alignment of the heart but
also in the matching of the thoracic, mediastinal and hepatical (liver) outlines.

4 Discussion and Conclusion

We presented a novel approach to non-rigid multi-modal image registration by
using prior information. The proposed framework allows flexible adjustment for
the available quality of prior knowledge. Preliminary experiments on syntheti-
cally created phantoms and on real MRI, SPECT/CT, and PET/CT data show
that prior knowledge can be crucial for retrieving the correct underlying dis-
placement field. In addition, we have shown that our method has improved
performance over a context-free registration. Future directions of research in-
clude the extension of our approach to 3D, an adaptive selection of the steering
parameter α across different levels of resolution, and an investigation of a more
comprehensive training data representation, which goes beyond using the mean
joint intensity distribution. In order to confirm the robustness and the accu-
racy of this approach for multi-modal datasets, a more complete qualitative and
quantitative experimental study must be carried out.
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Abstract. An approach to deformable registration of three-dimensional
brain tumor images to a normal brain atlas is presented. The approach
involves the integration of three components: a biomechanical model of
tumor mass-effect, a statistical approach to estimate the model’s param-
eters, and a deformable image registration method. Statistical properties
of the desired deformation map are first obtained through tumor mass-
effect simulations on normal brain images. This map is decomposed into
the sum of two components in orthogonal subspaces, one representing
inter-individual differences, and the other involving tumor-induced de-
formation. For a new tumor case, a partial observation of the desired
deformation map is obtained via deformable image registration and is
decomposed into the aforementioned spaces in order to estimate the
mass-effect model parameters. Using this estimate, a simulation of tumor
mass-effect is performed on the atlas to generate an image that is more
similar to brain tumor image, thereby facilitating the atlas registration
process. Results for a real and a simulated tumor case indicate signifi-
cant reduction in the registration error due to the presented approach as
compared to the direct use of deformable image registration.

1 Introduction

Deformable registration of normal brain images into a common stereotactic space
makes possible the construction of statistical atlases that are based on collective
morphological, functional, and pathological information [1]. Similar atlases con-
structed from tumor patients’ images can act as tools for optimal planning of
therapeutic and neuro-surgical approaches that deal with tumors by statistically
linking functional, and structural neuroanatomy to variables such as tumor size,
location, and grade to the surgical or treatment approach and outcomes [2,3,4,5].

A major hurdle preventing the construction of such brain tumor atlases is the
unsuitability of currently available deformable registration methods for adapt-
ing a tumor-bearing image to the stereotactic space of a normal neuro-anatomy
atlas image. This is due to the substantial dissimilarity between the two images
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resulting from topological differences, tissue death and resorption, the confound-
ing effects of edema and tissue infiltration, and severe deformation in the vicinity
of the tumor beyond natural anatomical variability.

To account for topological differences between the atlas and the patient’s
images, Dawant et al. [4] proposed the introduction of a tumor “seed” in the
atlas image and relied on image features to drive the registration. Bach Cuadra
et al. [5] extended this idea with the use of a radially symmetric model of tumor
growth. The lack of a physically realistic model of tumor-induced deformation,
as well as the approximate determination of the seed location results in limited
accuracy of these approaches for large tumor cases. Kyriacou et al. [2] used a
biomechanical model of the deformation caused by tumors to register images of
tumor patients to anatomical atlases. However, this approach was only imple-
mented in 2D and relied on a computationally expensive regression procedure
to solve the inverse problem of estimating the tumor location in the atlas.

In order to register brain tumor images to a normal anatomical brain atlas,
here we present an approach that requires the integration of 3 components. The
first, is a biomechanical 3D model for the soft-tissue deformation caused by
the bulk tumor and peri-tumor edema. This model is implemented using the
finite element (FE) method and is used to generate a number of examples of
deformed brain anatomies due to tumors starting from normal brain images.
The second component is a statistical model of the desired deformation map
which approximates this map via the sum of two components in orthogonal
subspaces with different statistical properties. For any particular tumor case that
should be registered to the atlas, a partial observation of the desired deformation
map is obtained via a deformable image registration method, which is the third
component of the presented approach. Based on the constructed statistical model
of the deformation, this partial observation is used to estimate the corresponding
mass-effect model parameters that would have produced such a deformation.
Finally, the desired deformation is obtained by applying the mass-effect model
to the atlas image and the use of deformable image registration to match it to
the subject’s image. Details of the proposed approach are presented in Sect. 2.

In Sect. 3, we demonstrate our approach on real and simulated tumor cases,
and we show that the registration error decreases significantly with our approach
compared to the direct use of a readily available image registration method. The
paper is concluded with a discussion of future work in Sect. 4.

2 Methods

The proposed approach is explained with the aid of Fig. 1. The subject’s brain
BSD includes regions TSD (bulk tumor), and possibly DSD (peri-tumor edema).
The main goal of the deformable registration problem is to find the homeomor-
phism χf : BA\TA → BSD\TSD which maps points with coordinates XA in the
atlas image to points with coordinates XSD in the subject image. Another goal
is to identify TA, which corresponds to brain tissue that is no longer present in
the subject’s image (died or invaded by tumor).
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Fig. 1. Illustration of the deformation maps involved in the proposed approach. χf

is the map from the atlas to a subject’s tumor-bearing image. Regions TSD and DSD

denote the bulk tumor and edema regions in the subject’s images, and TA, DA are the
corresponding regions in the atlas. χc is the mapping from the atlas to the subject’s
image before tumor mass-effect simulation (BS is not known for non-simulated cases),
and χd is that obtained through the simulation of tumor mass-effect. Simulating the
tumor mass-effect on the atlas results in χa and a deformed atlas image which can
then be registered to the deformed subject’s image through χb.

If an accurate model of the deformation induced by the tumor is available,
it can be used to simulate this deformation in the atlas and obtain χa, followed
by the application of deformable image registration to get χb, and therefore
χf = χb ◦ χa. A model of the mass-effect caused by tumor growth is described
in Sect. 2.1. Estimates of region TA as well as the other parameters affecting the
model’s behavior, such as the extent of peri-tumor edema and the mass-effect of
the bulk tumor, are still needed in order to apply this approach. Here, we solve
this inverse estimation problem by exploiting the statistical dependency between
χf and the mass-effect model parameters. Although an approximation of χf

obtained by the direct application of deformable image registration is incorrect
in and around the tumor (region MA in Fig. 1), the pattern of this deformation
outside that region can guide the estimation of the tumor model parameters. In
Sect. 2.2, we explain the collection of the statistics on χf = χd ◦ χc through
tumor mass-effect simulations on images of normal subjects. Estimation of the
mass-effect model parameters is explained in Sect. 2.3.

2.1 Tumor Mass-Effect Model

This model is initialized with a 3D normal brain image (free of tumor) and it
produces an estimate of the deformation due to the mass-effect of a simulated
tumor. We explain the model by assuming that it is applied to the atlas image,
although as explained later, the model may also be applied to other normal
images for statistical training.
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Fig. 2. Illustration of a tumor mass-effect simulation and the associated displacement
maps. Upper row (left to right): atlas image, normal subject’s MRI with an introduced
small tumor, and resulting image after simulation of tumor mass-effect. Lower row
(Left to right): displacement map uc, displacement map χd − XS , displacement map
uf , and displacement map ud.

With the assumption that the mass-effect is due to the bulk tumor and
the peri-tumor edema only, regions TA and DA are defined in the undeformed
(normal) atlas image. These correspond to the bulk tumor and peri-tumor edema
regions in the deformed atlas at the end of the simulation. Although these regions
are highly variable for different tumor cases and are not known in general, here for
tractability, we assume that TA and DA are spherical and concentric with center
ct and radii rt and rd respectively. It is important to note that this does not
restrict our approach to dealing with spherical tumors only since final simulated
tumors need not be spherical (see Fig. 2) and also these regions are later refined
through the deformable image registration component of our approach.

Brain tissue swelling due to edema is restricted to white matter in DA and a
volume expansion of 250% is used. Swelling is simulated by analogy to thermal
expansion. We further assume that the expansive force of the bulk tumor may be
approximated with a pressure P normal to the boundary of TA [6]. With these
assumptions, appending the necessary boundary conditions at the falx cerebri
and the brain surface [7], and using the material constitutive model suggested
in [8] for brain tissues, a mechanical problem is formulated and solved using
the FE method. More details on this tumor mass-effect model can be found
in [9]. The model parameters are collectively referred to by Θ ≡ (ct, rt, rd, P ).
The values of these parameters are not known for a real tumor case, but are
estimated using the statistical model of the deformation explained next.

2.2 Statistical Model Training

The goal of this step is to create a statistical model for the deformation χf that
will aid in the estimation of Θ for a particular tumor image. First, the defor-
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mation maps χci , i = 1, .., ns between the atlas and MRI images of ns normal
subjects are obtained using a deformable image registration approach [10]. Sim-
ulations of the mass-effect of tumor growth are then conducted for each subject
i for values Θj , j = 1, .., nm covering a range of the model parameters to produce
the deformations χdi,j , i = 1, .., ns, j = 1, .., nm.

A problem preventing the collection of statistics on χdi,j directly is that
the domains of these maps are different for different values of i and j. This
precludes the point-to-point comparison of these deformation maps. To overcome
this problem, for all tumor model simulations, regions TAj and DAj are defined
in the atlas space based on Θj and mapped to each subject’s space via χci , i =
1, .., ns. Next, for XA ∈ BA\TAj , i = 1, .., ns, j = 1, .., nm, we define

udi,j (XA) ≡ χfi,j (XA)− χci(XA) = χdi,j (χci(XA))− χci(XA) (1)
uci(XA) ≡ χci(XA)−XA (2)

ufi,j (XA) ≡ χfi,j (XA)−XA = uci(XA) + udi,j (XA). (3)

For different i = 1, .., ns, but the same j = 1, .., nm, the domains of udi,j are the
same. An example of a tumor model simulation and the involved displacement
maps is shown in Fig. 2.

We construct discrete versions of the displacement maps uci and udi,j by
sampling their cartesian components for all voxels in the atlas in BA\MA to
yield vectors U ci and Udi,j respectively. Assuming that U ci , i = 1, .., ns are in-
dependent realizations of a Gaussian random vector, principal component anal-
ysis (PCA) is applied to these vectors to yield the mean μc and the matrix Vc
whose columns are eigenvectors corresponding to the first mc principal compo-
nents (mc ≤ ns − 1). Next, we compute the component of Udi,j in the subspace
orthogonal to the columns of Vc as

U ′
di,j

= Udi,j −VcVc
T Udi,j . (4)

We further assume that, for each j, U ′
di,j

, i = 1, .., ns are independent realizations
of a Gaussian random vector and we perform PCA on these vectors to yield the
mean μdj and the matrices Vdj whose columns are eigenvectors corresponding to
the first mdj principal components (mdj ≤ ns−1). Now, we can approximate the
discrete displacement map Uf between the atlas and a subject with a simulated
tumor with parameters Θj , j = 1, .., nm as follows:

Uf ≈ μc + Vca + μdj + Vdj bj . (5)

The vectors a and bj each follows a a Gaussian distribution with decorrelated
components, with that of bj denoted by fj(bj).

2.3 Statistical Estimation

Given an approximate deformation map χ̃f (between a real tumor patient’s
images and the atlas) obtained by the direct use of deformable image registration,
the goal of the methods presented here is to obtain an estimate Θ̂ of the tumor
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model parameters. The displacement map ũf defined in a similar manner to
eqn. 3 is also discretized over all the atlas voxels in BA\MA and represented by
a vector Ũf . Owing to the orthogonality of Vdj to Vc for all j, we can compute
the component of this displacement that is caused by the tumor by projection
as

Ũd = Ũf − μc −Vcã, (6)

where ã = VT
c (Ũf −μc). The likelihood of having Ũd be generated with tumor

model parameters Θj is defined as Lj ≡ fj(b̃j), where b̃j = VT
d,j(Ũ d−μd,j), for

j = 1, .., nm. We estimate the tumor model parameters as

Θ̂ = (
nm∑
j=1

LjΘj)/(
nm∑
j=1

Lj) (7)

3 Experiments and Results

Results of applying the approach described above are reported here for two cases.
The first is an MRI of patient with a glioma and a large region of peri-tumor
edema. The second is a simulated tumor image obtained by applying the mass-
effect model described in Sect. 2.1 to an MRI of a normal subject. All images
used are T1-weighted MRI. The atlas image dimensions are 256x256x198 and a
voxel size of 1x1x1mm. Other images used are of dimensions 256x256x124 and
voxel size 0.9375x0.9375x1.5mm.

The FE tumor mass-effect model simulations are the most computationally
intensive step of the presented approach. In order to make the statistical training
step tractable, we performed tumor simulations on ns = 20 MRI brain images
of normal subjects. For each subject nm = 64 simulations were performed with
2 values of each of the six model parameters covering the range expected for the
real tumor case. The parameter values were rt ∈ {3, 5}mm, rd ∈ {20, 27}mm,
P ∈ {2, 5}kPa and corners of a cube in the atlas for the simulated tumor center
locations. For the results reported here, all principal components of the displace-
ment U c were retained and we used mdj = 1, j = 1, .., nm.

Fig. 3. Results of applying the proposed approach to register the real tumor case to the
atlas. Left to right: Atlas image, subject’s image, warped atlas image in the subject’s
space with the use of deformable registration directly between the two images, and the
warped atlas image in the subject’s space with the use of the proposed approach.
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Table 1. Deformable registration error statistics for landmark points in the real tumor
(RT) and simulated tumor (ST) cases. For each case, the errors are provided for the
direct deformable image registration to the atlas (No Model), and the registration using
the approach described in this paper (with Model). 21 landmark points were used for
RT and 25 were used for ST.

Minimum Mean Maximum Standard Deviation
RT no Model, mm 1.06 8.70 24.87 6.19
RT with Model, mm 0.47 3.69 7.19 1.83
ST no Model, mm 2.54 6.39 10.91 2.62
ST with Model, mm 0.61 3.90 7.79 2.01

In Fig. 3, the result of applying our approach to the real tumor subject is
demonstrated. With the use of deformable registration to directly register the
(normal) atlas image to the subject’s MRI, the warping result is innaccurate
in the tumor area. Gray matter from the right cingulate region and adjacent
cortical CSF in the atlas were stretched to match the intensity of the tumor
and the surrounding edema in the patient’s image. The estimated tumor model
parameters were ĉt=(109, 86, 126), r̂t=3.9mm, r̂d=24mm and P̂=3.55kPa.

In order to quantitatively assess the improvement in the registration accuracy
due to the proposed model, 21 landmark points were selected around the tumor
area in the subject and corresponding points were identified by an expert in the
atlas. The point coordinates were mapped through the resulting transformation
with direct deformable registration and with our approach and the results are
presented in Tab. 3. The maximum error was reduced by 71% by the use of our
approach while the mean error was reduced by 57.6%.

Similar deformable registration experiments were performed for a simulated
tumor case based on an MRI scan of a normal subject. The simulation pa-
rameters were ct=(106, 86, 128), rt=4.5mm, rd=21mm and P=4.5kPa. Using
the approach described above, the estimated values of these parameters were
ĉt=(109, 85, 128), r̂t=4.1mm, r̂d=23mm and P̂=3.6kPa. To evaluate the regis-
tration error in this case, 25 points were selected arbitrarily in the area around
the simulated tumor, and their corresponding coordinates (found through χd◦χc

which is available in this case) were computed in the atlas image and treated
as ground truth. The errors for the direct deformable registration and that ob-
tained by the proposed approach are also presented in Tab. 3. The maximum
error was reduced by 29% using the proposed approach and the corresponding
average error was reduced by 39%.

4 Discussion and Future Work

We introduced an approach for deformable registration of atlas to brain tumor
images. The approach utilizes a 3D biomechanical FE model of tumor-induced
deformation to introduce and simulate the tumor in the atlas followed by the
use of a readily available deformable image registration approach. To solve the
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inverse problem of determining the model parameters, we proposed a statistical
approach that relies on the decomposition of the desired deformation map into
the sum of two maps defined on the same domain, but with different statistical
properties that are learned via PCA from a number of training samples. These
maps are modeled via two orthogonal subspaces which allows the estimation of
the tumor model parameters via projection of a rough estimate of the required
deformation map on the subspace representing tumor induced-deformation.

The results of applying the proposed approach on a real tumor case and
a simulated one indicate significant reduction in the registration error. These
experiments should be regarded as a proof-of-concept study. More validation
experiments are need to asses the viability of the proposed approach for a variety
of tumor cases of different grades, types and sizes. In addition, the sensitivity of
the statistical estimator of the model parameters to the number of used principal
components and the number of training samples also will be investigated.
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Abstract. Tagged Magnetic Resonance Imaging (MRI) is currently the
reference MR modality for myocardial motion and strain analysis. NMI-
based non rigid registration has proven to be an accurate method to
retrieve cardiac deformation fields. The use of αMI permits higher dimen-
sional features to be implemented in myocardial deformation estimation
through image registration. This paper demonstrates that this is feasi-
ble with a set of Haar wavelet features of high dimension. While we do
not demonstrate performance improvement for this set of features, there
is no significant degradation as compared to implementing the registra-
tion method with the traditional NMI metric. We use Entropic Spanning
Graphs (ESGs) to estimate the αMI of the wavelet feature vectors WFVs
since this is not possible with histograms. To the best of our knowledge,
this is the first time that ESGs are used for non rigid registration.

1 Introduction

Tagged magnetic resonance imaging (MRI) is a well established technique used to
obtain regional information about the deformation of the left ventricle (LV)[1,2],
and thus potentially help to diagnose cardiovascular diseases. Basically, this tech-
nique consists in perturbating the magnetization of the myocardium in a specified
spatial pattern at end-diastole. These perturbations appear as dark stripes or
grids when imaged immediately after application of the tag pattern. Since the
myocardium retains knowledge of this disturbance, the dark grids experience the
same deformation the heart does as it contracts, allowing local strain parameters
to be estimated.

Several methods have been proposed to retrieve LV deformation field: op-
tical flow [3,4], Harmonic Phase (HARP) MRI [5,6], tag detection and track-
ing [7,8,9,10] and image registration [11,12]. The use of registration to estimate
cardiac motion has proven to overcome many drawbacks existent on previous
approaches.

The use of αMI permits higher dimensional features to be implemented in
myocardial deformation estimation and registration problems. In this paper,
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we aim to evaluate the performance of αMI based registration methods with
respect to gold standard measurements and with respect to NMI based image
registration. Specifically, we use Haar wavelet coefficients at each pixel as feature
vectors (FVs) and ESGs to estimate the αMI of these vectors.

This paper is organized in six sections. Section 2 explains how to estimate car-
diac deformation fields by using image registration. In this section, the concept
of αMI and its estimation by using ESGs is also presented. Section 3 describes
the dataset used for the experiments. Results are presented in Section 4 and
discussed in Section 5. Finally, the conclusions can be found in Section 6.

2 Method

The registration algorithm we used, is based on the method originally developed
by Rueckert et al. [13] for detection of cancerous lesions in contrast enhanced
MR breast images. We modified this algorithm by replacing NMI with αMI
computed from Wavelet Feature Vectors (WFVs). The main problem derived
from using vectors instead of intensity values, is that the curse of dimensionality
forbids the use of histograms for probability density function (pdf) estimation.
Therefore, in order to compute the αMI of these vectors, we used kNN graph
estimators which completely bypass pdf estimation [14].

2.1 Motion Estimation

To track cardiac motion throughout multiple time frames we used Multilevel
Free Form Deformations (MFFDs) as suggested by Schnabel et al. [15], where
the transformation T(u, t) is represented as the sum of a series of local FFDs:

T(u, t) =
t∑

p=1

Tp
local(u, t) (1)

Thus, the motion estimation starts registering the first two frames of the se-
quence I(x, 0) and I(x, 1), and a single FFD is obtained. Then, for the next
frame I(x, 2), a new FFD is added and the frame is registered to I(x, 0) taking
as initial transformation the one obtained for I(x, 1). This process is repeated for
the remaining frames I(x, t) in the cardiac cycle. Once all the frames are regis-
tered to the first one, the MFFD consists of N FFDs that model the myocardium
deformation.

2.2 Similarity Measure

To recover the deformation field at time t, the image I(x, t) is registered to
I(x, 0) by optimizing some cost function. Let Is and It be random variables
representing the source and target image, with pdfs ps(Is) and pt(It) respectively.
Let pst(Is, It) represent the joint pdf of Is and It. The α mutual information
(αMI) of Is and It is defined as:
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Fig. 1. kNN graphs for a set of 200 points in the plane and k=5. (a) Uniform distri-
bution (SD=1). (b) Gaussian distribution (SD=1).

αMI = Dα(pst(Is, It) ‖ ps(Is)pt(It))

=
1

α− 1
log
∫

pα
st(Is, It)p1−α

s (Is)p1−α
t (It)dIsdIt. (2)

When α→ 1, αMI converges to the standard (Shannon) MI

MI =
∫

pst(Is, It) log
(

pst(Is, It)
ps(Is)pt(It)

)
dIsdIt. (3)

According to Equation (2), αMI can be interpreted as a measure of dependency
between variables Is and It, which is expected to be maximum at registration.

2.3 αMI Estimation

Given a set Z = {z1, . . . , zn} of n vectors in Rd, the k-Nearest Neighbor Graph
(kNN Graph) is formed by the points zi and the edges with their k nearest points
Nk,i(Z). This graph belongs to a particular class of graphs known as Entropic
Spanning Graphs (ESGs), whose relationship to alpha entropy is described in
[14]. Figure 1 shows two examples of kNN graphs for different distributions.

Let Is and It be two images from which the sets of feature vectors Zs =
{zs1, . . . , zsn} and Zt = {zt1, . . . , ztn} have been extracted. kNN graphs allow
for estimating αMI between these images as [16]

α̂MI =
1

α− 1
log

1
nα

n∑
i=1

k∑
p=1

(
‖eip(zsi, zti)‖√‖eip(zsi)‖ ‖eip(zti)‖

)2γ

, (4)

where ‖eip(zsi, zti)‖ is the distance from the point (zsi, zti) ∈ R2d to its p-nearest
neighbor in {zsj, ztj}j �=i, and ‖eip(zsi)‖ (‖eip(zti)‖) is the distance from the point
zsi ∈ Rd, (zti ∈ Rd) to its p-nearest neighbor in {zsj}j �=i({ztj}j �=i).

In this work we used α = 0.5, γ = 2, n 
 1000 (it depends on the LV area),
k = 4 and ε = 0.1, the maximum allowed error between a point and its nearest
neighbor.
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2.4 Feature Vectors

There are many possible feature vectors (FV) to be used in αMI based tech-
niques. In this work, in order to obtain the feature vector corresponding to the
point x0, we applied the Discrete Wavelet Transform (DWT) to decompose the
image I(x) into four subimages ILL(x),ILH(x), IHL(x) and IHH(x). Then, we
defined the FV of point x0 by taking the corresponding wavelet coefficients as:

z = [ILL(x) ILH(x) IHL(x) IHH(x)] (5)

This paper is not focused on finding the optimal feature for this particular ap-
plication, but on evaluating the effect of introducing spatial information into the
objective function. Therefore, for a first approach, we chose Haar wavelet coef-
ficients owing to its well known ability for edge detection and simplicity. This
basis was expected to perform well defining tags in MRI images and thus good
for guiding the registration process.

3 Materials

3.1 Dataset

Two tagged 2D sequences were acquired with a GE Genesis Signa 1.5T MRI
scanner. A cine breath-hold sequence with a SPAMM grid tag pattern was used,
with imaging being done at end expiration. The in-plane image resolution was
1.56mm×1.56mm. Cardiac cycle was sampled by acquiring a total of 16 frames.
However, only images from End of Diastole (ED) to End of Systole (ES) (sys-
tolic phase) were used in the experiments due to our interest on evaluating
deformation during heart contraction. The length of this cardiac cycle segment
is 5 frames.

3.2 Manual Measurements

In order to assess the method performance in tracking myocardial motion, tag-
intersection points were marked manually in each frame by two observers in two
independent sessions. For each sequence, 22 points were chosen to be tracked, and

(1) (2) (3) (4) (5)

Fig. 2. Gold standard point positions in each frame from ED to ES for one of the
sequences used in this work
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thus 110 (22×5) points were marked. Gold-standard measurements were derived
for each tag-intersection point by taking the average of the measurements made
by the observers. Figure 2 shows the gold-standard landmarks for each frame in
sequence A.

4 Results

The mean error between the gold standard points and the corresponding po-
sitions assessed by the observers was calculated. Table 1 shows the intra and
interobserver variabilities of manual landmarking.

The deformation field of the myocardium was calculated with the method
explained in Section 2. The resulting transformations were then applied to the
gold standard pointset at ED to map these points to each phase. The mean
error between these mapped points and the actual positions according to the
gold standard was calculated. Figure 3 shows this error from ED to ES. With
both methods, subpixel accuracy was obtained for all the phases in patient A
and for the two first phases in patient B. Figure 4 shows the initial frames of
both sequences, along with an arrow plot showing the displacement field in the
myocardium during systole.

Table 1. Accuracy of manual measurements. Bias and standard deviation of the dif-
ferences, corrected for repeated measurements, between manual and gold standard
measurements

Observer A Observer B Observer A and B
Bias (mm) 0.01 0.06 0.03
SD (mm) 0.35 0.31 0.29

(a) (b)

Fig. 3. Mean error in landmark correspondence between the gold-standard position
and the position of the landmarks in end-diastole after being transformed through the
computed deformation field. Results for the different registration metrics is provided.
(a) Patient A. (b) Patient B.
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(a) (b) (c) (d)

Fig. 4. Displacement of myocardium points during heart contraction by using non-rigid
registration for sequence A (top row) and sequence B (bottom row). (a) ED frame. (b)
ES frame. (c) Motion field close-up obtained by using αMI. (d) Motion field close-up
obtained by using NMI.

5 Discussion

In this paper we have applied an ESG estimation of αMI for myocardial motion
estimation. The results show low mean error values with respect to the gold
standard measurements, which demonstrate that this method allows retrieving
cardiac motion fields accurately.

For this particular application, and according to Figure 3, the use of NMI
seems to give better results. However, the standard deviations of the errors are
high, and therefore these differences are statistically not significant. A possible
explanation for these differences may derive from the feature definition. In this
work we have used Haar wavelet coefficients because of their well known ability
for edge detection, which was expected to perform appropriately in detecting
tag borders. However, Haar basis presents a lack of invariance to translation and
rotation which can be corrected by using ”cycle spanning” or complex wavelets.
Haar basis also has an inherent lack of sensitivity to edge deformations which
dominate the deformation feature space. Regarding this matter, a smoother basis
like Daubechies or Curvelets might have better potential.

Another explanation for the differences with respect to NMI, is that estimat-
ing αMI in multidimensional spaces may introduce more local minima in the
error surface than conventional NMI. Thus, the lower accuracy may arise as a
consequence of using a local optimization like the downhill method used in this
work. Finally, the image resolution of MRI may justify some of the disagree-
ment between measurements. ESGs allow to estimate αMI accurately when the
number of FVs used to calculate the graph is large. Given that the in-plane
resolution is 1.56mm×1.56mm and that only the LV was considered, less than
1000 points were available for αMI estimation.
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Figure 4 shows a good agreement between estimated displacements fields of
each metric for sequence B. For sequence A, there was clearly a different result
in the lower-right portion of the image. The frame at ES for this patient shows
completely vanished tags and poor image quality in the part of the myocardium
where the motion field is altered. Therefore, it could be hypothesized that the
incorporation of spatial features into the objective function makes the results
more dependent on the presence of such features in the target and source images.

With respect to the extension of this work to the three dimensional case,
the main drawback is that ESGs are computationally expensive. However, many
algorithms have been developed to compute graphs in an approximated manner,
allowing a significant speed up of the graph construction.

6 Conclusions

Entropic spanning graph estimation of αMI has been applied for non rigid reg-
istration for the first time and has proven to retrieve myocardial deformation
fields accurately. Although the results were quite satisfactory, even lower errors
have been obtained with NMI. However, the observed differences were statisti-
cally not significant and further research needs to be done to fully understand
the reason of this behavior. ESGs offer an increased flexibility in the kinds of
features one can use for these types of problems, and further research needs to
be done regarding this matter.
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Abstract. Robust 3D point registration is difficult for biomedical surfaces, es-
pecially for roundish and approximate symmetric soft tissues such as liver, 
stomach, etc. We present an Iterative Optimization Registration scheme (IOR) 
based on Hierarchical Vertex Signatures (HVS) between point-sets of medical 
surfaces. HVSs are distributions of concatenated neighborhood angles relative 
to the PCA axes of the surfaces which concisely describe global structures and 
local contexts around vertices in a hierarchical paradigm. The correspondences 
between point-sets are then established by Chi-Square test statistics. Specifi-
cally, to alleviate the sensitivity to axes directions that often affects robustness 
for other global axes based algorithms, IOR aligns surfaces gradually, and in-
crementally calibrates the directions of major axes in a multi-resolution manner. 
The experimental results demonstrate IOR is efficient and robust for liver regis-
tration. This method is also promising to other applications such as morpho-
logical pathological analysis, 3D model retrieval and object recognition.  

1   Introduction 

Automatic and robust registration between 3D images is very important for medical 
image analysis. Three main purposes of this kind of registrations are: (1) Compare 
two organ shapes of the same patient in different periods for diagnosis. (2) Register 
tissue across individuals for physiological analysis. (3) Match 3D data of patients with 
anatomical atlas for shape representation [1]. The possible primitives of 3D shape 
registration include points, lines, curves, facets and surfaces [2]. Usually, point regis-
tration is also a key step to construct statistical deformable models [3].  

The majority of the previous work dealing with 3D point-set registration came 
from the computer vision community. Most of them were based on shape matching. 
For example, a well-known method called “Iterative Closest Point” was proposed by 
Besl and Mckay [4]. It provides a general solution for registration by minimizing the 
distances between the nearest neighbors in an iterative procedure.  However, the 
process is computationally expensive. Cyr and Kamal generated a number of typical 
sample 2D views from the 3D models and matched them against a given view [5]. 
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Sundar et al. encoded the topological information of 3D shapes in the form of a skele-
tal graph and matched them for registration [6]. Modal matching technique performs 
point registration between objects by their eigenmodes [7,8]. It provides a global to 
local description of shape deformation; however, the technique requires very expen-
sive calculation for eigenmodes. 

Another common approach for point-set registration is to match distinctive local 
features between surface points such as geometric invariants [9]; these often fail be-
cause of insufficient local information and different viewpoint that radically alter 
local feature appearance. Some authors resorted to stochastic approaches to let the 
registration process be immune to noise and small deformations. Belongie and Malik 
[10] introduced a 2D “shape context” which described the coarse distribution of 
shape with respect to a given point. This descriptor offers a globally discriminative 
characterization. Yamany et al. [11] presented a “surface signature” to capture the 
surface curvature information seen from certain points. Chin [12] proposed a “point 
signature” to describe the structural neighborhood of a point on the 3D surface. Sta-
tistics of the distance and relative angles are collected to characterize feature points.  

However, these distributions cannot capture the location of the features and they 
are not always able to provide sufficiently distinctive information to achieve one-to-
one point registration. This problem is more severe in medical/biomedical image 
analysis. Usually, shapes of biomedical tissues are very different from those of the 
man-made objects such as chairs, buildings, cars and aircrafts, etc., investigated in 
most computer vision applications. There exist large classes of nature objects in bio-
medical applications that are smooth, rounded, curved, and sometimes approximately 
symmetric such as livers, heart lenticels, stomachs and kidneys. Vertices on these 
kinds of organ surfaces frequently share similar geometric features, which often 
makes local geometric based matching fail. 

In this paper, we propose an idea prompted by [11] and [12] to register point-sets 
defined in segmented biomedical sense data, especially for blobby and approximate 
symmetric soft tissues.  The shapes of these tissues often differ from each other 
through some form of non-linear deformations. The challenge posed by such models 
is that it is frequently difficult to define landmarks or to obtain salient geometric fea-
tures from the surfaces. We present an intuitively simple but very effective and robust 
feature descriptor called “Hierarchical Vertex Signature” (HVS) for describing the 
distribution of shape structures in the context of a surface point. Our proposed de-
scriptor captures both global and local structures of the 3D surface from the point of 
view of any vertex by associating each vertex with a probability distribution of angles 
between vectors linking pairs of vertices and the major axes of the organs. Registra-
tion is then carried out based on the similarity between vertices on different surfaces. 
Our approach is different from [11] and [12] in: (1)We calculate angles relative to 
global axes (PCA axes) while they estimate angle values relative to local surface 
normals. Therefore, our method is more robust to noise and more insensitive to sur-
face smoothness. More importantly, the extension of the relative angles (RAs) defined 
in a global canonical frame makes HSV has the ability to indicate orientation of a 
point relative to the whole surface. (2) We construct 1D signature for each point while 
both of them employ 2D signature feature images so our method is more efficient and 
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the similarity comparison is more intuitive and accurate. (3) Our proposed signature is 
hierarchically defined in different neighborhood field of the vertex; therefore, it pro-
vides both local and global shape descriptions around a vertex. (4) Last but not least, 
we design an Iterative Optimization Registration scheme (IOR) to calibrate the global 
axes of surfaces continuously and in turn adjust the vertices’ signatures. This proce-
dure effectively alleviates the sensitivity of HVS to the major axes of the objects 
being matched that may be ambiguous across individuals. 

The rest of the paper is organized as follows.  We present the definition of the Hi-
erarchical Vertex Signature (HVS) and describe the Iterative Optimization Registra-
tion (IOR) scheme in section 2. Experimental results in a liver database are shown in 
section 3, and we conclude the paper in section 4. 

2   Method 

2.1   Hierarchical Vertex Signature (HVS) in Canonical Coordinate Frame  

We treat the coordinates of the points on a 3D shape as random variables. Three prin-
cipal components (PCs) 1u to 3u  are calculated from their covariance matrix C . They 

are used to build up a canonical PCA coordinate frame. Suppose there are N  vertices 

on the surface, for each vertex iv , 1−N  spoke vectors jivv  are derived. A Relative 

Angle (RA) )( ij vθ is defined between the jth  spoke vector of iv  and the first principal 

axis. Two base-planes 12Π ( 0.2 =i
T ve )and 13Π ( 0.3 =i

T ve ) are formed, where 2e and 

3e are the second and the third eigenvectors of C  respectively. They are employed as 

reference planes to extend )( ij vθ from [ ]π,0  to [ ]ππ ,− . Furthermore, RAs are normalized 

to π2~0 .  For sake of paper space, please refer to our previous paper [14] to get the 
accurate formulation of )( ij vθ .  

Now what we want is investigating the distribution of these RAs in the different 
fields of the vertex's neighborhood. The neighborhood relationship can be constructed 
from the triangular meshes of surfaces. There are many standard algorithms to build 
triangular meshes for an unorganized point-set such as [13]. Actually, the strict defini-
tion and exact connectivity of the meshes are not necessary for our method. Please 
refer to [14] for the neighborhood construction. After obtain the neighborhood map of 
the point-set, the distributions of the relative angles in different fields of neighbor-
hood are concatenated to form a Hierarchical Vertex Signature (HVS) for a given 
surface point (ordered from near neighborhood fields to distant neighborhood fields). 
Obviously, in this way, each HVS contains hierarchical shape description around a 
vexel in a concise form. Since the RAs are calculated with respect to the major axes of 
the organ, it captures the topological information of a point on a surface. We treat 
HVSs as sufficient and salient shape descriptors to register vertices between tissue 
surfaces. In practice, stochastic methods are employed to evaluate samples of HVSs, 
and histograms are constructed by counting how many samples fall into certain sized 
bins. Relative angles are rounded depended on the number of the histogram bins. 
Promisingly, HVS has the following properties:  
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(1) Invariance: One of the basic characteristics of angles is that they are invariant to 
scale and rigid motions. In addition, since the RAs are defined in the global ca-
nonical reference frame, they are translation and rotation invariant. Therefore, 
HVS can be directly employed for point registration without normalization. 

(2) Robustness: As a bonus of stochastic methods, HVS is insensitive to noise, un-
smoothness, small perturbations and points missing of organ surface, which are 
inevitably existed in 3D biomedical volumes recorded by different modalities.  

(3) Efficiency: After obtaining the neighborhood map of a point-set, the complexity 
of HVS extraction is )( 2NO . The neighborhood map can be established and 
stored in advance prior to real-time registration.    

(4) Hierarchy: HVS is a piecewise curve concatenated from the distributions in 
different neighborhood fields of a point. It expresses the local features of a  
surface when the layer of field is small, and represents the global shape when 
the layer becomes large. The last piece of HVS (See Fig.3) represents the 
distribution of the overall surface and provides a detailed and compact 
description of the global shape context. Therefore, we can claim that HVS 
captures both local and global spatial information around a given vertex in a 
hierarchical paradigm. 

2.2   Iterative Optimization 3D Point-Set Registration (IOP) Based on HVSs 

Our hypothesis is that HVSs of the correspondence pairs on tissue surfaces should be 
similar so the best matching distributions lead us to the most suitable point for regis-
tration. That is, we postulate that the HVSs associated with a pair of corresponding 
points possess the same theoretical form, even though they may be subjected to some 
forms of distortion and noise. As HVSs are represented as bins, it is natural to use 
Goodness-Of-Fit 2χ  test to measure the dissimilarity factor df between points:  

[ ]
=

−
=′

π2

0

2''''

)(*)(

)(*)()(*)((
),(

k llik

jljkilik
ji

vSvp

vSvpvSvp
vvdf  (1) 

where v and v′ are points in sample and target point-sets respectively. kp is probability 
value of the k th bin, and lS is the vertex number in the l th field. The range of df  is 
[0,1], and the best registration result is achieved by searching for a point on the target 
surface which has the minimum df with a given point on the sample surface. 

We observe that very close vertices in dense point-sets may have similar global 
RA distributions, but they have large differences between local structures (see the 
first piece of the distribution curve in Fig. 4).  However, local distributions col-
lected in the small neighborhood fields may contain much uncertainty and noise so 
they are not as robust as the global ones. Intuitively, HVSs of coarse point-set 
should be more distinctive since the vertices are sparse and distant so the spoke 
vectors of neighbors may not have similar orientations. Here, we propose an Itera-
tive Optimization Registration scheme (IOR) for multi-resolution point-sets to per-
form accurate and robust registration in a hierarchical manner. The flowchart of IOS 
is elaborated in Fig. 1.  
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Fig. 1. The flowchart of the iterative optimization scheme for 3D point registration 

Our approach consists of two main nested iterative schemes: resolution iteration 
and transformation iteration. During the resolution iteration, the registration  
begins with the coarsest point-sets 1 and the correspondence searching is conducted 
in the range of the whole surface. After finding *M  corresponding pairs and obtain-
ing a rough alignment between surfaces by affine transformation, registration 
moves to denser sampling (higher resolution) data. At this stage, since the basic 
correspondence is established, the search range for a given vertex is limited to a 
small region. As we have mentioned, RAs are calculated relative to the global coor-
dinate frame, slight deformation of shapes may change orientations of major axes 
and accordingly influence the distributions of surface points. To achieve robust 
registration, a transformation iteration is designed specifically to correct and 
adjust the PCA axes continuously for the target point-set based on its affine trans-
formation (AI). The consistency of major axes improves significantly the matching 
of the corresponding HVSs match (See Fig. 2). In the transformation iteration, at 
least 10% of the best corresponding pairs are selected which are approximately 
evenly distributed over the surface. The affine transformation matrix is calculated in 
a minimum error sense by: 

1))(( −′⋅′′⋅= TT VVVVA  (2) 

                                                           
1  Please note that too much sub-sampling may make the blobby surface hard to find rotations. 
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3   Experiments and Results 

We have implemented IOR using C++ on PCs (1.8 G CPU, 1G memory), and tested 
it in a liver image database. Each liver volume is defined by 20-30 CT slices. Livers 
are roundish and approximately symmetric soft tissues which frequently cause other 
registration techniques to fail. Imaging and analysis of the livers are also challeng-
ing due to potentially significant deformations among individuals and the lack of 
well-defined boundaries in the associated CT images. The shapes of the livers used 
in this work are semi-automatically segmented from the CT volumes. It has taken 5 
minutes to generate the neighborhood map for the densest point-sets (1474 points). 
HVS extraction and point registration between two surfaces have taken less than 1 
minute. The transform iteration usually converged after 3~5 iterations. Three differ-
ent resolution point-sets (98, 370 and 1474) have been used for the evaluation by 
evenly sub-sampling the dense surfaces points. Fig. 2 shows an example of the 
alignment process between the PCA axes of the aligning livers during the lowest 
resolution point-set registration. The accuracy rates of the established point  
correspondence between the 12 livers used in the experiment and a sample are plot-
ted in Fig. 2(d). The ground truth used here has been established in advanced by 
radiography specialists.  
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Fig. 2. (a-c) Alignment between PCA axes and affine transformation between the sample (yel-
low meshes) and the target surfaces (green meshes), red, blue and black axes are 1u , 2u and 3u . 
(d) Accuracy rates comparison of point correspondence in different transformation iteration. 

To demonstrate the highly discriminate ability of HVSs, in figure 3, we show the 
established point correspondences between a few selected vertices on the liver sur-
faces. For better visualization, the surfaces are rendered by standard method. The 
HVSs of point A and its registration partner A' are plotted in Fig. 3(b), 5 neighbor-
hood fields and 72 bins are used. It is not difficult to discover that the resulting regis-
tration is visually correct, and their profiles of the HVSs match rather well. To verify 
that the distributions of corresponding points indeed follow the same theoretical func-
tion, we overlap the HVSs of the registration partners of point B on 14 liver surfaces, 
using 3 neighbor fields and 72 bins (Fig. 3c). The shapes of the curves are highly 
consistent.   
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Fig. 3. (a) Point-set registration result (b) Overlapping HVSs of A and A'. (c) Overlapped 
HVSs of 14 corresponding points of B.  
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Fig. 4. (a) 12 vertices (pink dots) which have the lowest df with a sample vertex (yellow dot) 
(b) overlapping HVS curves of these vertices (Green curve is the distribution of sample vertex). 

In Fig. 4a, we mark 12 vertices that have the lowest df value with a sample vertex. 
We can find that the vertices which have the most similar HVS distributions converge 
near the neighborhood of the sample vertex. The overlapping HVSs of these 12 verti-
ces are plotted in Fig. 4b.  The plots show high consistency in the global shapes (the 
last pieces of curves) but have large discrepancies in local structures, especially in the 
first neighbor field (the first piece of curves).  

4   Conclusion 

It is a fundamental yet still an open problem in computer vision to match two  
point-sets. In this paper, we propose a 3D point-set registration scheme for blobby 
biomedical objects. The angles (RA) of the spoke vectors derived from a vertex  
relative to PCA axes are defined and the concatenated distributions of the RAs in the 
different neighborhood fields around a vertex are used to describe a Hierarchical 
Vertex Signature (HVS). HVS has many good characteristics such as invariance, 
robustness and hierarchy. It is also computation efficient. We have also proposed an 
iterative optimization registration scheme (IOR) in which the directions of major axes 
if the surfaces are calibrated incrementally according to affine transformation  
alignment between multi-resolution point-sets. The experiments indicate that our 
algorithm produces robust registration results for deformable organs such as the liver. 
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The proposed techniques of registration and the establishment of 3D point correspon-
dences are applicable to many other applications such as morphological or pathologi-
cal analysis, 3D model retrieval and 3D object recognition. 
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Abstract. Optimal port placement is a delicate issue in minimally in-
vasive endoscopic surgery, particularly in robotically assisted surgery. A
good choice of the instruments’ and endoscope’s ports can avoid time-
consuming consecutive new port placement. We present a novel method
to intuitively and precisely plan the port placement. The patient is reg-
istered to its pre-operative CT by just moving the endoscope around
fiducials, which are attached to the patient’s thorax and are visible in its
CT. Their 3D positions are automatically reconstructed. Without prior
time-consuming segmentation, the pre-operative CT volume is directly
rendered with respect to the endoscope or instruments. This enables the
simulation of a camera flight through the patient’s interior along the
instruments’ axes to easily validate possible ports.

1 Introduction

Ideal port placement is one of the key issues in minimally invasive endoscopic
surgery, particularly in robotically assisted surgery. The optimal choice of the
instruments’ ports provides full access to the whole operation region as well as
adequate surgeon dexterity. This can avoid time-consuming new port placement,
which is a strain on every patient.

In the current clinical work flow, the surgical staff selects all ports by palpa-
tion of external anatomic landmarks, primarily based on their previous experi-
ence. However, if these external landmarks do not correspond to the individual
internal anatomy of each patient, a misplacement of ports can occur. Several
methods have been proposed to improve and automate the optimal placement
of ports [1,2,3,4]. They all have two major disadvantages: 1) They rely on the
time-consuming manual or semi-automatic segmentation of pre-operative imag-
ing data from CT or MRI, which is essential to reconstruct models of any involved
anatomy, e.g. ribs, heart, and soft tissue. These 3D models are used to automat-
ically compute the port locations. 2) They lack a practical and accurate way to
transfer the planned port locations to the operating room, which is achieved by
registering the patient to the pre-operative data.

In any case, the patient registration process is based on matching anatomical
or artificial landmarks, which are visible on both the patient and its CT data.
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Adhami and Coste-Maniere use the end effectors of the da Vinci telemanipulator
to point to fiducials, which are attached to the patient [1]. Due to their shape and
intensity, the fiducials can be segmented automatically in the CT data. Intra-
operatively, they move the robot arm’s end effector to every single fiducial in
order to get its position in the robot coordinate frame. This is a time-consuming
and unnatural task. Similarly, Selha et al use the sensor of an additional elec-
tromagnetic tracking system [3] as a pointing device. However, they base their
registration on anatomical landmarks. Both electromagnetic tracking and the
use of anatomical landmarks introduce an inherent imprecision when determin-
ing corresponding landmarks.

We propose a fast, practical, and easy method to register the CT data to the
patient. Spherical CT visible self-adhesive fiducials are stuck on the patient’s
skin. They are segmented automatically in its CT data. Intra-operatively, instead
of pointing to the fiducials, we only move the tracked endoscope around the
fiducials and acquire a set of images from differing, but arbitrary poses. To
simplify the acquisition process, not all fiducials need to be seen by the camera
in a single image. By automatically detecting the fiducials in these images, we
reconstruct their 3D positions in the tracking (=world) coordinate frame. Point
based registration methods enable us to match them with the CT data. For port
placement, the surgical staff simply moves the tracked instruments or endoscope
to the positions where it wishes to place their corresponding ports. A virtual
camera is placed on top of the instruments’ end effectors or the endoscope’s
camera center. It is able to simulate a flight through the patient’s interior by
rendering the CT volume as it would be seen by the endoscope. In this natural
way, optimal port placements can easily be identified without prior segmentation
of patient’s anatomy or any tedious pointing device. Our method is applicable
to any tracked endoscope, no matter whether it is tracked by an optical tracking
system, a mechanical one such as da Vinci, or any other tracking system.

In order to reconstruct the 3D positions of the fiducials, the endoscope’s
pose and intrinsic parameters need to be determined. This is achieved by a one-
time hand-eye calibration, as described in section 2. In section 3, we present
our algorithms for 3D reconstruction and patient registration. Further details on
the provision of volume rendering for port placement can be found in section 4.
Our conducted experiments on a thorax phantom are described in section 5. We
conclude in section 6 with an evaluation of our presented methods and a short
outlook on future research.

2 Calibration of the Endoscope

For our application, the endoscope camera is rigidly attached to a sensor, e.g.
to a marker target seen by an optical tracking system or an actuated robot arm
as for da Vinci. The main purpose of calibrating the endoscope is to model
the transformation of a 3D world point onto the camera’s 2D image plane,
so the projection of a fiducial onto the endoscope’s image can be reproduced
mathematically.
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In detail, a point Xw in the world frame is first transformed into the sen-
sor frame by wTs, from where it is transformed into the camera frame by sTc,
and finally mapped onto the image plane by the camera’s calibration matrix K.
The transformation wTs can be directly received from the tracking system. The
rigid transformation sTc from sensor to camera coordinate frame and the in-
trinsic camera parameters stored in K need to be computed once. Additionally,
the rather large radial and tangential lens distortion of endoscopes needs to be
corrected for.

To compute all unknowns, a classical hand-eye calibration approach is taken
[5,6,7]. Therefore, a flat checkerboard pattern is placed arbitrarily. The tracked
camera performs a series of n motions. At the pause of each motion, the camera
acquires an image of the pattern and the pose of the attached sensor is recorded.
Having at least two motions (rotations around distinguished axes) or three poses,
respectively, the offset sTc along with the camera’s intrinsic parameters and
distortion coefficients can be computed as follows:

First, the intrinsics, distortion coefficients, and camera poses in the pattern
coordinate frame (pT

1
c . . . pT

n
c : the transformations from pattern to camera co-

ordinate frame) are computed using the gold standard algorithms for camera
calibration [8,9].

Second, the rigid offset between sensor and camera is computed. All trans-
formations involved during a single motion from pose i to pose j can be seen
on figure 1(a). The camera motions can be easily computed from previous re-
sults. Analogous, the sensor motions can be received from the recorded poses.
To compute sTc, the following so-called hand-eye equation needs to be solved:

∀i = 1 . . . n, j = 1 . . . n, i �= j : sTc
iT j

s = iT j
c sTc (1)

This can be achieved by decomposing the involved matrices, as described by
Tsai/Lenz and others [5,6,7].

(a) Involved coordinate frames and trans-
formations during hand-eye calibration

(b) 3D reconstruction based on epipolar
geometry

Fig. 1. The principles of hand-eye calibration and epipolar geometry
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3 Automatic 3D Reconstruction for Patient Registration

For patient registration, three essential steps are required: 1) All fiducials must
be segmented in the CT volume to determine the positions of their centroids. 2)
Their positions in the tracking coordinate frame need to be reconstructed using
the images, which are acquired by the calibrated endoscope camera and show
the fiducials. 3) The resulting point sets need to be matched in order to register
the patient to its CT data set.

The automatic segmentation of the fiducials in the CT volume can be
achieved by using standard image processing techniques based on threshold-
ing, filling, morphology, and subtraction [10,11]. The centroids of all segmented
fiducials can be computed very precisely by weighing their associated voxel in-
tensities and incorporating partial volume effects.

For finding the 3D positions of the fiducials in the tracking coordinate frame,
two iterations are performed for each image i containing an arbitrary number m
of fiducials. First, the 2D positions xi

1 . . . xi
m of all visible fiducials are extracted

automatically after undistortion of the image. Similar techniques as for the seg-
mentation of the CT data are used, which also incorporate edge detection and
color information of the fiducials and patient’s skin [11]. Second, the proper-
ties of epipolar geometry are applied to reconstruct their 3D positions[9,12], as
illustrated on figure 1(b).

Next, all 2D point pairs corresponding to the same 3D point are used to
optimally reconstruct the 3D point. For all 2D points, their associated projection
rays r1...rs are constructed, which intersect the camera center Cr = ct

i
w and the

point’s projection onto the image plane Pr = cR
i
w(X i

c)k + ct
i
w, where cR

i
w =

(wRi
c)

T and ct
i
w = −(wRi

c)
T

wtic. They can be represented using the camera
center Cr as starting point and a directional unit vector dr:

rr = Cr + λrdr = Cr + λr
Pr − Cr

‖Pr − Cr‖ (2)

The associated midpoint Xw can be computed, which is closest in average to all
s rays. Therefore, following overdetermined system of linear equations has to be
minimized:

s∑
r=1

‖Cr + λrdr −Xw‖2 (3)

As stated by Sturm et al, this linear least squares problem may be solved using
the Pseudo-inverse [13]. Finally, these results can be further improved by using
the Levenberg-Marquardt iteration to minimize following equation:

s∑
r=1

∥∥∥∥K [sRc|stc]
[

(wRs)r (wts)r

0 1

] [
Xw

1

]
−
[

xr

1

]∥∥∥∥2

(4)

After the reconstruction of all 3D points from their associated 2D points, they
need to be matched with the points segmented in the CT data set. Therefore, the
correct point correspondences need to be identified and the transformation from
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the CT coordinate frame into the world coordinate frame, where the patient is
registered in, needs to be computed. This can be done by a distance-weighted
graph matching approach along with a point based registration algorithm [14,15].
Finally, the patient’s CT volume is registered in the same coordinate frame as
the patient.

4 Volume Rendered Port Placement

Once the CT volume is registered to the patient, it can be visualized with respect
to any tracked instruments, overlaid onto the real images of the endoscope,
displayed simultaneously with the real endoscopic images [16], or even be used
to extend the endoscopic images to improve the surgeon’s orientation. In our
case, the CT volume is directly rendered as it would be seen by virtual cameras
put in front of the tracked instruments or by the real endoscope camera. This
can be used for placing the instruments and endoscope or their corresponding
ports, respectively, in an optimal way. By virtually moving the camera in and
out the volume along the instruments’ or endoscope’s main axes the surgeon can
intuitively verify, whether the current poses of the instruments and the endoscope
are ideal to reach the whole operating region.

For rendering the volume, pre-defined transfer functions are offered to assign
specific colors and opacities to certain image intensities, which can be modified
interactively to the surgeon’s needs. This makes it easy to realistically visualize
only the anatomy, which is essential for the success of the intervention, e.g. for
cardiac surgery the bones, aorta, heart, and other main arteries such as the left
and right arteria mammaria interna, which were contrasted for CT. To provide
a fast and though detailed visualization during port placement in real time, our
volume renderer is using the graphic card’s GPU (graphical processing unit) to
perform the computations for 3D texture mapping.

Utilizing this approach of direct volume rendering without prior segmenta-
tion and generation of polygonal 3D models of the patient’s anatomy saves a
noticeable amount of time for planning the ports and leaves the control to the
surgical staff during port placement.

5 Experimental Results

For our experiments we used a 30 degrees laparoscope tracked by an optical
tracking system, which has a root mean square error of 0.53 millimeters for the
viewing axis and 0.32 millimeters for the other axes when tracking retroreflec-
tive markers. We implemented two classical hand-eye calibration methods by
Tsai/Lenz and Daniilidis [5,6]. Tsai and Lenz combine two QR decompositions
to determine the translation and rotation, whereas Daniilidis uses dual quater-
nions and a single singular value decomposition.

The intrinsic and extrinsic camera parameters were estimated from 32 frames.
For hand-eye calibration, 3 to 32 endoscope poses and all possible motions be-
tween them were used to estimate the transformation from sensor to camera,
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cials measured directly in the video

Fig. 2. Experimental reconstruction and augmentation error

resulting in 30 transformation matrices. To validate these matrices, the posi-
tions of 9 retroreflective spherical markers were reconstructed from 6 endoscopic
images. These reconstructions were compared to the measurements of the op-
tical tracking system. The average distance of the reconstructed points to the
measurements of the tracking system was computed for each transformation ma-
trix. As visualized in figure 2(a), a typical hand-eye calibration incorporating 10
to 25 poses gave errors between 1.4 and 2 millimeters. The described hand-eye
calibration is done off-line, so above results remain valid for a long period of
time and only need to be verified every now and then.

To determine the augmentation error during port placement, 13 CT visible
spherical fiducials with a diameter of 4 mm were attached to a plastic tho-
rax phantom containing a heart model. After a CT scan and segmentation of
all fiducials, the phantom was placed arbitrarily. The 3D positions of 4 fidu-
cials were reconstructed automatically by moving the tracked endoscope around
them, using 3 to 4 images from differing poses for each fiducial. The other 9 fidu-
cials were just used later for validating the augmentation from many different
viewing directions, so in practice they are not needed. Next, the CT-to-tracking
transformation of the 4 fiducials was computed.

Having the sensor-to-camera and CT-to-tracking transformations as well as
intrinsic camera parameters and distortion coefficients, the endoscopic images
can be undistorted and the CT volume can be augmented on them. To verify
the augmentation, the distances of all 13 fiducials from the real images to a
semi-transparent augmentation in an orthogonal view were measured. An aver-
age error of 2.6 mm could be determined. This is fully sufficient for a precise
port placement. We also compared our automatic 3D reconstruction method to
a pointer based approach. Therefore, a pointing device tracked by the optical
tracking system was used to record the positions of the 4 fiducials. Again, the
CT-to-tracking transformation was computed and used for the augmentation.
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(a) Real (b) Augmented (c) Virtual

Fig. 3. 3 visualization modes for the same endoscope pose: 3(a): Real camera image,
3(b): Transparent augmented view outlining fiducials, ribs, and heart (the virtual green
contours correctly match the white fiducials in the video image), 3(c): Purely virtual
view, which can be used for port placement to move the camera in and out

With this method, we only achieved an average error of 3.2 mm, i.e. our method
almost systematically performs better than the pointer based one. The compar-
ison is visualized in figure 2(b).

A port placement application was implemented offering three visualization
modes, as displayed on figure 3. In the first mode, the undistorted real endoscopic
image is displayed. The second mode additionally augments the volume on the
phantom in a half-transparent mode, so the accuracy of the overlay can be
verified by the surgeon. In a third purely virtual mode the surgeon can switch
the endoscope optics from 30 degrees to 0 degrees and move the camera in and
out the volume along the endoscope’s main axis to validate a possible port. The
augmentation of a 512×512×444 CT volume and undistortion of the camera
frames with a resolution of 800×600 pixels was achieved in real time (15 fps).

6 Conclusion

In this work we addressed and solved two substantial problems of current ap-
proaches dealing with the improvement and automation of port placement: Time-
consuming segmentation of patient’s anatomy and inadequate patient registra-
tion. Moreover, our technique not only supports the surgeon during port place-
ment, it also enhances the endoscopic images by undistortion. Besides the track-
ing system used to determine the endoscope’s pose no further tracking system
is needed. We reckon that our technique can supplement the current clinical
work flow easily, because we keep it simple and still leave the control to the
surgeon during port placement. Apart from the pre-operative attachment of 4
fiducials to the patient and a short and intuitive intra-operative patient registra-
tion procedure we do not alter the conventional clinical work flow. Our method
can be applied to any minimally invasive endoscopic procedure provided that
pre-operative patient data is available.

This method is more precise than the usual method of pointing the robot or
hand-held endoscope/instrument to each fiducial. It also fits more smoothly into
the surgical work flow, as it only requires the surgical staff to move the endoscope
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camera over the patient’s body. Our work does not address organ deformations
and motions caused by the insufflation of carbon dioxide and respiratory as well
as cardiovascular effects. In this sense, the system only provides an approximative
result and relies on the surgeon’s expertise for further considerations of possible
deformations.
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Abstract. We present a new algorithm to register 3D pre-operative
Magnetic Resonance (MR) images with intra-operative MR images of
the brain. This algorithm relies on a robust estimation of the defor-
mation from a sparse set of measured displacements. We propose a new
framework to compute iteratively the displacement field starting from an
approximation formulation (minimizing the sum of a regularization term
and a data error term) and converging toward an interpolation formula-
tion (least square minimization of the data error term). The robustness
of the algorithm is achieved through the introduction of an outliers rejec-
tion step in this gradual registration process. We ensure the validity of
the deformation by the use of a biomechanical model of the brain specific
to the patient, discretized with the finite element method. The algorithm
has been tested on six cases of brain tumor resection, presenting a brain
shift up to 13 mm.

1 Introduction

1.1 Image-Guided Neurosurgery

The development of intra-operative imaging systems has contributed to improv-
ing the course of intracranial neurosurgical procedures. Among these systems,
the intra-operative magnetic resonance scanner offers the possibility to acquire
full brain MR images in less than 4 minutes.

Intra-operative measurements show that the deformation of the brain is an
important source of error that needs to be considered. Indeed, imaging the brain
during the procedure makes the tumor resection more effective, and provides
additional guidance for the complete resections in critical brain areas. However,
even if the intra-operative MR scanner provides significantly more information
than any other intra-operative imaging system, it is not clinically possible to
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acquire image modalities like diffusion tensor MR, functional MR or high reso-
lution MR images in a reasonable time during the procedure.

Non rigid registration algorithms provide a way to overcome the
intra-operative acquisition problem: instead of a time consuming acquisition of
images during the procedure (dt-MRI, f-MRI or high resolution MRI), the intra-
operative deformation is estimated based on fast acquisition of intra-operative
images. This transformation is then applied to match the pre-operative images
on the intra-operative data.

1.2 Non-rigid Registration for Image-Guided Surgery

Simplified biomechanical linear models have been used to interpolate the full
brain deformation based on the measure of surface displacements (brain, ven-
tricles). Audette [1] measured the visible intra-operative cortex shift using a
laser range scanner. Ferrant [2] extracted the full cortex and ventricles surfaces
from intra-operative MR images. These interpolation-based registration meth-
ods however suffer from a decrease of accuracy when reaching internal structures
far from the measured surface.

These models are introduced through the energy minimization formulation
of the registration problem as a regularization component. In 1998, Yeung [3]
showed impressive registration results on a phantom using an energy minimiza-
tion formulation combining ultrasound speckle tracking with a mechanical finite
element model. Rohr et al. [4] combined elastic regularization with an improved
block matching (BM) algorithm relying on relevant anatomical landmarks and
taking into account the anisotropic matching error. In 2001, Rexilius [5] com-
bined feature point correspondences with a finite element biomechanical model
in an approximation formulation to capture brain shift.

2 Method

We have developed a patient-specific registration algorithm to measure the brain
deformation based on two images acquired before and during the brain surgery.
This algorithm can be decomposed into three main parts. The first part consists
in building a biomechanical model specific to the patient corresponding to his
position in the open-magnet scanner. The second part is the block (or template)
matching computation for selected blocks. The third part is the new iterative
hybrid solver which alternates an energy minimization step with an outlier re-
jection step.

In addition, we address the problem of discriminant information distribution
in the images (known as the aperture problem in computer vision) to make the
registration process dependent on the spatial distribution of the information
given by the structure tensor (see Section 2.1 for definition).

In the following section, we propose a description of the algorithm sequence,
making a distinction between off line (before the first MR acquisition to be
registered) and on-line computations.
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2.1 Pre-operative MR Image Processing

Segmentation. We use the Brainvisa software1 to automatically segment the
brain in the pre-operative images (see Figure 1, B). The tumor segmentation is
manually delineated by the physician for the pre-operative planning.

Rigid Registration. An initial intra-operative MR image is acquired at the
very beginning of the procedure, before opening the dura-mater. This image
is used to compute the rigid transformation between the two positions of the
patient in the pre-operative image and the intra-operative image.

Biomechanical Model. The patient-specific brain tetrahedral mesh is build
from the previous segmentation using the GHS3D mesher [6]. The mesh gener-
ated has an average number of 1700 vertices (the surface mesh is displayed on
figure 1, B), which shows to be a reasonable trade-off between the number of
degrees of freedom and the number of matches.

We rely on the finite element theory and consider a quasi-incompressible linear
elastic constitutive equation to characterize the mechanical behavior of the brain
parenchyma: E = 694Pa and ν = 0.45. Even if CSF is incompressible, the CSF is
free to flow between the ventricles and the subarachnoid space. We thus assume
very soft and compressible volumes for the ventricles: E = 10Pa and ν = 0.05.

A B C D

Fig. 1. Illustration of the pre-operative processes. (A) pre-operative image. (B) seg-
mentation of the brain and mesh generation (we only represent the surface mesh for
visualization convenience). (C) Structure tensor visualization as ellipsoids (zoom on
the square area), the color encodes the fractional anisotropy. (D) Example of a sparse
displacement field computed with the block matching (BM) algorithm (5 % of the total
voxels are selected as blocks centers). Color encodes displacement.

Block Selection. The relevance of a displacement estimated with a block
matching (BM) algorithm depends on the presence of highly discriminant struc-
tures in this block. We use the variance of the block to measure its relevance, and
only select a fraction of all potential block positions based on this criterion. In
addition, we introduce the notion of prohibited connectivity between two block
centers to prevent two selected blocks to be too close from each other. We ob-
tained best results using the 26 connectivity, preventing two distinct blocks of
7× 7× 7 voxels to share more than 42% overlapping voxels.

1 http://www.brainvisa.info/
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Computation of the Structure Tensor. We consider the normalized struc-
ture tensor Tk defined in the image I at position Ok by:

Tk =
G ∗ (∇I(Ok))(∇I(Ok))T

trace [G ∗ (∇I(Ok))(∇I(Ok))T ]
(1)

Where G defines a convolution kernel (chosen constant in a block). Considering
the classical ellipsoid representation, the more the underlying image resembles to
a sharp edge, the more the structure tensor elongates in the direction orthogonal
to this edge (see Figure 1, C).

2.2 Block Matching Algorithm

The block matching (BM) algorithm makes the assumption that a global defor-
mation results in translation for small parts of the image: considering a block
B(Ok) in the reference image centered in Ok, and a similarity metric between
two blocks M(Ba, Bb), it consists in finding the positions O′

k that maximize the
similarity:

arg max
O′

k

[M (B (Ok) , B (O′
k))] (2)

In our algorithm, the BM is performed once and only in the sgmented brain, thus
restricting the displacements to the intra-cranial area (see Figure 1, D). Con-
sidering the mono-modal (MR-T1 weighted) nature of our registration problem,
the correlation coefficient appears as a natural choice for the similarity measure.

2.3 Iterative Hybrid Algorithm

The approximation problem can be formulated as an energy minimization, com-
posed of a mechanical and a matching (or error) energy:

Wapprox = UT KU︸ ︷︷ ︸
Mechanical energy

+ (HU −D)T S(HU −D)︸ ︷︷ ︸
Matching energy

(3)

with:

– U the displacement vector (of mesh vertices), of size 3n, with n number of
vertices.

– K the mesh stiffness matrix of size 3n× 3n.
– H is the linear interpolation matrix in tetrahedra of size 3p× 3n.
– D the block-matching computed displacement vector of size 3p, with p num-

ber of matched points. Note that HU−D defines the estimated displacement
error vector.

– S is a block-diagonal matrix composed of 3 × 3 sub-matrices Sk = α
p ckTk.

The influence of a block thus depends on two factors:
1. the value of the coefficient of correlation (ck): the better the correlation

is (coefficient of correlation closer to 1), then the higher the influence of
the block on the registration will be.
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2. The direction of matching with respect to the tensor of structure (Tk):
we only consider the matching direction co-linear to the orientation of
the intensity gradient in the block.

The 1
p factor is used to make the global matching energy independent of the

number of selected blocks.

The approximation formulation however entails a systematic error: the final dis-
placement of the brain mesh is a trade-off between the pre-operative rest position
and the BM positions. An alternative approach is the interpolation formulation.
The problem is turned into a mechanical energy minimization under the con-
straint of minimum data error, formalized with the Lagrange multipliers stored
in the vector F̃ as:

W̃interp = UT KU + F̃T HT S (HU −D) (4)

However, when some of the BM displacements are outliers, the minimization of
Equation 4 may lead to unrealistic deformations.

Therefore, we propose a new iterative formulation of the registration problem:{
Fi ⇐ KUi

Ui+1 ⇐
[
K + HT SH

]−1 [
HT SD + Fi

] (5)

which first solves the approximation problem (Equation 3) and gradually con-
verges toward the interpolation solution (Equation 4). Equation 5 is iterated
until the displacement modifications are smaller than a threshold. At each itera-
tion, outliers are rejected, such that we get a more robust and unbiased estimate
of the displacement. Note that H , S and D thus have to be recomputed at each
iteration i.

Outlier Rejections. We introduced a robust block-rejection step based on a
least-trimmed squares (LTS) estimator [7]. The LTS rejects a fraction of the total
blocks based on an error function ξk measuring for block k the error between
the current mesh displacement and the matching target:

ξk =
‖Sk [(HU)k −Dk]‖

λ ‖(HU)k‖+ 1
(6)

Dk, (HU)k and [(HU)k −Dk] respectively define the BM displacement, the
current mesh-induced displacement and the current displacement error for block
k. λ is a parameter of the algorithm tailored to the error distribution on matches.
With such a cost function, the rejection criterion is more flexible with points that
account for larger displacements. In practice, this parameter was set to 0.5 for
all our registrations. Although the least trimmed squares estimator is a robust
estimator up to 50% of outliers [7], we experienced that a cumulated rejection
representing 25% of the total initial selected blocks is sufficient to reject every
significant outlier. The last parameter remaining in the algorithm is the matching
stiffness α. We chose a matching stiffness α = trace(K)

n , reflecting the average
vertex stiffness (note that this value does not depend on the number of vertices
used to mesh the volume), so that at least half of the displacement is already
recovered after the first iteration step.
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Algorithm 1 Registration scheme
1: Get the number of rejection steps nR from user
2: Get the fraction of total blocks rejected fR from user
3: for i = 0 to nR do
4: Fi ⇐ KUi

5: Ui+1 ⇐ [
K + HT SH

]−1 [
HT SD + Fi

]
6: for all Blocks k do
7: Compute error function ξk

8: end for
9: Reject fR

nR
blocks with highest error function ξ

10: Recompute S, H, D
11: end for
12: repeat
13: Fi ⇐ KUi

14: Ui+1 ⇐ [
K + HT SH

]−1 [
HT SD + Fi

]
15: until Convergence

Implementation Issues and Time Constraint. We developed a parallel
version of the algorithm, reducing the computation time from 162 to 25 seconds
on an heterogeneous group of 15 PCs.

3 Results

3.1 Experiments

We evaluated our algorithm using the same parameters on 6 pairs of pre and
intra-operative2. Figure 2 presents the results for the slice showing the largest
displacement, in depth results can be seen on: http://splweb.bwh.harvard.
edu:8000/pages/ppl/oclatz/registration/results.html. The quantitative
accuracy of the algorithm has been evaluated by a medical expert selecting
54 corresponding feature points in the registration result image and the intra-
operative image. This landmark-based error estimation has been performed on
every image for 9 different points. Figure 3 shows the distribution of the
landmark-based registration error as a function of the displacement of the tis-
sue (left) and of the distance to the tumor (right). The average error on the 54
landmarks (0.75 mm) indicates that this algorithm is valuable for image guided
therapy. The error however tends to increase in the area close to the tumor (right
graph, Figure 3). We can observe that the quality of the brain segmentation has
a direct influence on the deformed image, for example patient 3 of Figure 2 had
a brain mask eroded on the frontal lobe which induces a missing part in the
registered image. The deformation field however does not suffer from the mask
inaccuracy, since the brain segmentation is not directly used to guide the reg-
istration. The assumption of local translation assumed in the block-matching

2 256 × 256 × 58 slice (0.86 mm, 0.86 mm, 2.5 mm) acquired with the 0.5 T open
magnet system of the Brigham and Women’s hospital.



Hybrid Formulation of the Model-Based Non-rigid Registration Problem 301

A B C A B C

Fig. 2. Result of the non rigid registration of the pre-operative image on the intra-
operative image for the 6 patient of our dataset. For each patient, column A shows
the pre-operative image, column B shows the result of the registration and column
C shows the intra-operative image (target image). The algorithm could recover large
displacements (#5), and demonstrates robustness in presence of large resection (#4).
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Landmark-Based Evaluation of the Registration Error as a Function 
of the Distance to the Tumor  
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Fig. 3. Measure of the registration error for 54 landmarks. (Left) as a function of the
initial arror. (Right) as a function of the distance to the tumor margin. Characteristic
figures: average displacement = 3.77 mm, maximum displacement = 13.18 mm, average
error = 0.75 mm, maximum error = 2.50 mm.

algorithm seems to be well adapted to the motion of the brain parenchyma. It
somehow shows limitations for ventricles expansion (patient 4 and 6 of Figure 2)
or collapse (patient 5 of Figure 2), where the error is approximately between two
and three millimeters.

3.2 Conclusion

We presented in this article a new registration algorithm designed for robust non-
rigid registration of intra-operative MR images. The algorithm has been moti-
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vated by the concept of using robust estimators to gradually move from an ap-
proximation to an interpolation formulation of the non rigid registration problem.

The results obtained with the six patients demonstrate the applicability of
our algorithm to clinical cases. This method seems to be well suited to capture
the mechanical brain deformation based on a sparse and noisy displacement
field, limiting the error in critical regions of the brain (such as in the tumor
segmentation). The remaining error may be due to the limitation of the linear
elastic model.

In the future, we wish to adapt multi-scale methods to our problem, to com-
pute near real-time deformations.
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Abstract. We present a framework for rigid registration of a set of
B-mode ultrasound images to a CT scan in the context of Radiother-
apy planning. Our main focus is on deriving an appropriate similarity
measure based on the physical properties and artifacts of ultrasound. A
combination of a weighted Mutual Information term, edge correlation,
clamping to the skin surface and occlusion detection is able to assess
the alignment of structures in ultrasound images and simulated slices
generated from the CT data. Hence a set of ultrasound images, whose
relative transformations are given by a magnetic tracking device, can be
registered automatically to the CT scan. We validated our methods on
neck data of patients with head and neck tumors and cervical lymph
node metastases.

1 Introduction

Overview. Registration of ultrasound images to three-dimensional tomographic
modalities such as CT and MRI is receiving a lot of attention in the past few
years. On one hand, many intra-operative procedures, especially in neurology
and orthopedics, can be guided with ultrasound while integrating pre-operative
information from CT/MRI. On the other hand, data fusion for diagnosis and
treatment planning can improve the outcome as well.

In the particular application of radiation treatment planning for inoperable
head and neck cancer the identification of metastatic neck lymph nodes is manda-
tory for the correct target volume delineation. This can be achieved with a re-
ported accuracy of 80-95% using high-frequency ultrasound [1]. However, the tar-
get volume definition is done on individual slices of a planning CT scan. In direct
comparison with ultrasonography, diagnostic CT was equally predictive in reveal-
ing lymph node size, but performed worse in depicting internal nodal architecture,
leading to a lower sensitivity and specificity than ultrasonography [2]. As in plan-
ning CTs for radiotherapy contrast medium is usually omitted, their diagnostic
properties are particularly poor. Therefore, transferring the diagnostic informa-
tion from ultrasound onto the CT data could yield a more precise treatment.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 303–311, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In general, registration of multimodal data is especially desirable if they
provide complementary information. At the same time, this complementary na-
ture hampers image-based registration algorithms, which try to align structures
present in both modalities. In our work, we will try to overcome some of these
problems for ultrasound-CT registration.

Related Work. Due to the very different characteristics of ultrasound imag-
ing with respect to CT / MRT, a lot of research has been carried out on using
features extracted from the ultrasound images, in order to align them with cor-
responding structures in other modalities. Possible anatomical features comprise
vessels [3,4], bone surfaces [5], organ surfaces [6]. Pure intensity-based registra-
tion has been performed mainly for 3D ultrasonic data. Roche et al. [7] use an
adapted correlation ratio similarity measure in order to register the ultrasonic
data simultaneously to both the intensity and the gradient information of a MRI
scan. A registration involving an automatic mapping of MR and Ultrasound data
to Vessel probability values and successive registration of this information is pro-
posed in [8]. Using a CT data of a kidney, where the intensity values are enhanced
with strong edges from the gradient, a registration with freehand 3D ultrasound
is performed in [9]. Voxel-based registration of MRA scans with Power Doppler
ultrasound has been evaluated in [10].

2 Methods

2.1 Simulation from CT

Instead of a realistic simulation of ultrasound, we need an intelligent and efficient
intermediate representation of the CT data at arbitrary cut-planes, such that an
iterative registration can be performed in an acceptable time. These slices have
multiple components containing intensity, gradient and edge information, which
are used to derive various parts of a similarity metric, so that the correspondence
of anatomy contained therein with structures in 2D B-mode ultrasound images
can be determined.

In our approach, first the three-dimensional gradient vector values are com-
puted from the CT data set by convolution with a sobel filter cube. They are
stored in a 4-channel volume together with the original voxel intensity. The in-
terpolated slices contain four channels as well. For each pixel, the 4-vector is
computed from the volume using trilinear interpolation. In the first channel of
the slice, the original CT intensity is stored. The 3D gradient vector is scalar mul-
tiplied with each of the vectors indicating the horizontal and vertical slice plane
directions, respectively. The resulting values, corresponding to the 2D gradient
of the CT intensity within the slice, are stored in the second and third channel.

The 2D slice gradient values are then used to perform Canny edge-detection
on the slice data, storing the result in the fourth channel. The most time-
consuming steps within the Canny algorithm for 2D images are the computation
of the 2D gradients, as well as filtering them with a sufficiently large Gaussian
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kernel for smoothing. As we compute the 2D gradients directly from the pre-
computed 3D gradient values, we do not need to run a 2D filtering for gradient
computation. In addition, those gradients are very smooth, as they originate
from a three-dimensional Sobel filter using a 27-neighborhood. This makes fur-
ther Gaussian filtering unnecessary. The two remaining steps for the Canny al-
gorithm, non-maxima suppression and hysteresis thresholding, can be performed
each in one traversal of the 2D slice. The horizontal gradient is weighted with
a user-defined factor between 0 and 1, as the ultrasound data tends to show
mainly vertical edges.

Thus we are able to construct intermediate slices from the CT data at esti-
mated transformations of the US scan plane in very little time1. The individual
components of the slice pixels are then used to compute a similarity metric with
the ultrasound data.

2.2 Occlusion Handling

If an ultrasonic pulse hits bony structures, all image intensities in the ultrasound
image further along the specific ray are occluded, and mainly determined by
noise. Therefore, all ultrasound intensity values on a ray below such an occlusion
should be disregarded in the registration method. In our implementation, we
scan the US image from bottom to top, updating the variances for all ultrasonic
pulse rays. Where they exceed a threshold (which is easily determined in the
user interface), the first pixel to be considered is defined. Thus, our Region of
interest Ω is expressed by the following equations:

Ω = {(x, y) | (y < ytop) ∧ (y ≥ b(x))} (1)

b(x) = min y

∣∣∣∣∣∣1y
y−1∑
i=0

U(x, y)2 −
(

1
y

y−1∑
i=0

U(x, y)

)2

< σ2
y (2)

By applying a median filter on the bottom function b(x), discontinuities are
removed before defining the ROI. In addition, we discard all pixels which are
located above ytop = 9

10sizey, as we observed that the anatomy is highly com-
pressed there due to the probe pressure on the patients skin. This compressed
region is very distinct from the remaining anatomical structures, its size (3.6mm)
being consistent on all data we obtained from patients (figure 1). This ROI def-
inition is similar to the ones used in [8] and [9].

2.3 Similarity Measure

Based on both the physical properties of the imaging modalities, as well as
the visible appearance of their images, we developed several components for a
similarity measure, which can in turn be weighted to form a cost function value
with respect to the transformation parameters.
1 1.1ms for a 1282 pixel slice, interpolated from a 5122 · 100 CT/gradient volume, on

an AMD Opteron 2.4 Ghz machine.
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Fig. 1. Two ultrasound images with ROI (red lines) and target, corresponding CT
slices, edges from CT, and overlay in 3D. The physical image size is 4 × 4cm.

Skin Surface Clamping. In the compressed fraction of the ultrasound image,
the interpolation from CT is done with 6 times the vertical scaling (figure 1 on
top). As result, the interface between skin and air always has to be within that
region, producing a large vertical gradient in the interpolated slice. When all
vertical gradient pixels are summed to t, high and low thresholds th, tl can be
defined in order to decide if the skin surface lies inside, outside or close to the
compressed region:

f(t) =

⎧⎨⎩ 1 if t > th
0 if t < tl

(t− tl)/(th − tl) otherwise

⎫⎬⎭ ; S0 = 3f(t)2 − 2f(t)3 (3)

A cubic polynomial is used instead of the linear rise in order to avoid disconti-
nuities. Used as a cost function component, S0 penalizes transformations which
are physically impossible, as the patients skin is always on top of the ultrasound
images.

Edge Alignment. As we have detected the edges in the simulated images, we
would like to derive a similarity estimate based on the distance to edge structures
in the ultrasound images. The straight-forward approach would be to 1) compute
an edge-detection for the ultrasound images, 2) compute a 2D distance map for
those edges and 3) sum over the distance map values at the locations indicated
by the edges of the simulated data. Steps 1) and 2) need to be performed once
for each ultrasound slice, while 3) establishes a similarity metric and thus has
to be computed for each simulated slice during pose estimation.

However, due to the very different nature of CT and ultrasound data, de-
tected edges do not correspond in general. We therefore propose to skip the edge
detection from ultrasound data, instead using the original ultrasound intensity
just as indicator for edges.

Given a binary edge image, the distance of an image point x to the edge
structures Y = {yi} is d(x) = mini |x − yi|. Instead of the euclidian distance,
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we can also express the proximity to edges by using a Gaussian expression, which
allows us to adjust the sensitivity of the cost function value with respect to the
distances, using σ2:

d(x) = max
i

exp− (x− yi)2

σ2 (4)

Taking into account that we do not have precise edge information, a proximity
value can be defined as

d(x) =
∑

i

pi exp− (x− yi)2

σ2 (5)

where pi ∈ [0 . . . 1] is the probability for the image pixel yi being an edge. Assum-
ing that the ultrasound image intensity directly scales with the edge probability,
a two-dimensional proximity function p(x) can be computed by just convoluting
the ultrasound image with a large gaussian kernel. The similarity measure com-
ponent arises from this as S1 = (pe − p)/σp, where p is the mean of all values in
the proximity image, pe the mean of just the pixels at locations where an edge is
present in the simulated image, and σp the standard deviation of the proximity
image values.

Statistical Correspondence. Different tissues in the anatomy cause different
scattering characteristics for ultrasonic waves. Higher scattering in turn causes
a larger portion of the ultrasound pulse to be reflected back to the transducer,
resulting in higher intensities in the ultrasound image. It is therefore applica-
ble to assess the statistical dependance of the CT intensities, which classify the
tissue according to the X-Ray attenuation property, with the intensity in the
ultrasound image. We therefore use Mutual Information on the CT and ultra-
sound intensities. The Normalized Mutual Information term uses the entropies
of the combined and individual images, which are computed with the Shannon
entropy from probability distributions of the image intensities:

NMI(U, S) = 2− 2H(U, S)/(H(U) + H(S))

H(U) = −
∑

j

pu(j) log pu(j); H(S) = −
∑

i

ps(i) log ps(i)

H(U, S) = −
∑

i

∑
j

p(i, j) log p(i, j)

Here U denotes an ultrasound image, and S the corresponding simulated image,
i.e. the slice interpolation of CT attenuation values. The probability distributions
can be estimated using histogram information from the images:

pu(i) =
1

nΩ
|{(x, y) ∈ Ω|U(x, y) = i}| (6)

ps(j) =
1

nΩ
|{(x, y) ∈ Ω|S(x, y) = j}| (7)

p(i, j) =
1

nΩ
|{(x, y) ∈ Ω|U(x, y) = i ∧ S(x, y) = j}| (8)
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Here we assume that each intensity value is mapped into one histogram bin,
and nΩ = |Ω| is the number of pixels in the region of interest. An equivalent
formulation for constructing the probability distribution from a histogram can
be written using a binary count function cu

pu(i) =
1

nΩ

∑
(x,y)∈Ω

cu(x, y, i); cu(x, y, i) =
{

1 if U(x, y) = i
0 otherwise

}
(9)

Due to the various physical effects in ultrasound imaging, both the chance that
an image intensity reflects the anatomy, as well as the Signal to Noise Ratio
(SNR), decrease with the distance from the ultrasound transducer. Thus we
would like to give more emphasis on image pixels which are closer to the probe,
i.e. with higher y values. In our approach, we introduce an integer weighting for
assembling the distribution:

p′u(i) =
1

n′
Ω

∑
(x,y)∈Ω

(y + c0)cu(x, y, i) (10)

n′
Ω =

nx−1∑
x=0

ytop−1∑
y=b(x)

(y + c0) (11)

Every intensity value is inserted y + c0 times into the histograms and the joint
histogram. For c0 → ∞ the original Mutual Information notation is obtained.
Our weighted Mutual Information component NMI ′ of the similarity measure
is assembled by inserting all used ultrasound slice images and the corresponding
simulations into one histogram, as it increases the statistical significance of the
derived entropy terms.

Cost Function. The final similarity measure from a set of n ultrasound slices
{Ui} and their CT simulations {Si} is

cf = w0
1
n

n∑
i=1

S0(Ui, Si) + w1
1
n

n∑
i=1

S1(Ui, Si) + w2NMI ′({Ui}, {Si}) (12)

2.4 Registration

In order to manually navigate the stack of ultrasound images to the desired
position within the CT data, the user picks a reference slice k, whose position
and orientation is changed by left-multiplication with a rigid transformation
matrix. At the same time, all other transformations are updated in order for the
relative locations to stay fixed, as they originate from the tracker.

For automatic registration, a non-linear optimization method maximizes the
cost function cf iteratively with respect to the parameters of a rigid transfor-
mation (6 DOF, translation and Euler angles), which is initialized with zero and
affects the location of all slices. We used three optimization schemes: simple hill
climbing, Powell-Brent and an exhaustive hill climbing. The latter one evaluates
all combinations of [forward, keep, backward] for all parameters, using the best
result of all 36 = 729 evaluations as estimate for the next iteration.
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3 Results

Three head and neck cancer patients with metastatic lymph node involvement
were thoroughly examined with a 11 MHz linear array ultrasound probe. The im-
ages were recorded using a frame grabber card, while an Ascension
microBIRDTMmagnetic tracking sensor provided the spatial encoding. A set of
3-10 slices from the right carotid artery of each patient was picked for registra-
tion. Figure 1 depicts two slices from the first patient alongside the registered
CT data.

A ground truth registration pose was established with manual registration
by the physician. This could be done with an estimated precision of 1mm in the
first data set, as the calcifications in the carotid artery (figure 1) represented
good anatomical landmarks.

In order to evaluate the robustness and accuracy of the automatic regis-
tration, 200 registrations were launched from initial transformations randomly
displaced up to 5mm/5◦ in each parameter around the ground truth pose. The
following table denotes both the root mean squared (RMS) error in the transla-
tional and rotational components, as well as the target registration error (TRE)
for the lymph node (figure 1) picked as target. This evaluation was done for all
three used optimization schemes on the data of patient 1.

trans. rot. TRE iterations time
Hill Climbing 1.2mm 3.7◦ 2.0mm 242 3s
Powell-Brent 1.0mm 2.8◦ 1.8mm 4 8s

Exhaustive H.C. 0.8mm 2.5◦ 1.2mm 189 144s

All optimization methods are able to converge precisely to the ground truth
registration, so that the registered data can be used reliably for therapy planning.
To do so, the slices from the original CT data set, which are used to outline

Fig. 2. Left: Overlay of registered ultrasound images, a slice from the CT data set, and
CT volume rendering. Right: Volume rendering of compounded 3D ultrasound.
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the target volume, are visualized together with the registered ultrasound slices
and optionally volume rendering of both the CT and a 3D ultrasound volume
spatially compounded from the tracking data (figure 2).

4 Conclusion

We developed methods which allow automatic registration of a set of ultra-
sound slices to a CT scan, despite the very difficult characteristics for reg-
istration of both modalities. The similarity metric is derived from the physi-
cal properties of ultrasound imaging, rather than from the particular anatomy
used in our experiments. Therefore the algorithms are also applicable on any
other part of the human body scanned with an external ultrasound probe.
The registration is performed within a few seconds, and is therefore capable
of supporting real-time applications, such as intra-operative navigation, as well.
We evaluated our methods in the context of radiotherapy for head and neck
cancer, where the use of registered data is beneficial for the treatment
planning.
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Abstract. Four-dimensional (4D) computed tomography (CT) image 
acquisition is a useful technique in radiation treatment planning and 
interventional radiology in that it can account for respiratory motion of lungs. 
Current 4D lung reconstruction techniques have limitations in either spatial or 
temporal resolution. In addition, most of these techniques rely on auxiliary 
surrogates to relate the time of CT scan to the patient’s respiratory phase. In this 
paper, we propose a novel 4D CT lung reconstruction and deformation 
estimation algorithm. Our algorithm is purely image based. The algorithm can 
reconstruct high quality 4D images even if the original images are acquired 
under irregular respiratory motion. The algorithm is validated using synthetic 
4D lung data. Experimental results from a swine study data are also presented. 

1   Introduction 

In radiation oncology, 4D CT is one technique that can account for respiratory motion 
during treatment planning. 4D CT may allow for the reduction of target volume 
margin to achieve increased tumor dose and decreased normal tissue dose [1]. While 
the radiation dose to the patient may be an issue, particularly if multiple 4D datasets 
are considered, in general the CT dose will be much less than the treatment dose 
delivered during radiation therapy. 4D CT may also be used to investigate the motion 
correlation between the internal tumor and external fiducials such as skin markers. 
The tumor position could then be estimated during the treatment by tracking the 
external fiducials. With sufficient 4D CT datasets, a respiratory model might also be 
constructed to parameterize the respiratory motion. 

Most 4D lung reconstruction algorithms reported in the literature can be grouped 
into the following two approaches. The first approach requires controlling the 
patient’s breath during image acquisition [2]. The respiratory cycle is divided into 
several phases (usually 7-11). The respiration is halted in each phase while a 3D CT 
volume is taken. A related technique is to use breathing tracking strategies such as 
active breathing control [3], [4], [5] to monitor the patient’s breath at each phase. The 
4D data acquired by this method has high spatial resolution, but very poor temporal 
resolution. This low temporal resolution limits its usefulness in analyzing the 
anatomical motion.  
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The second approach does not try to monitor or control the patient’s breath. The 
patient is allowed to breath freely on the CT table [2], [7]. The table is moved in small 
increments and a continuous free CT scan is taken at each table position to cover at 
least one complete respiratory cycle. Some external devices may be used during the 
scan to synchronize the CT scanning time with the respiratory phase [6], [7]. After 
image acquisition, all the free scan images are sorted into a sequence of 3D volumes 
according to their respiratory phase and table positions. This method has high 
temporal resolution at each table position. The major problem with this method is that 
respiratory motion is not completely repeatable, so the time stamp of the free scan 
image may not correlate well with the regular respiratory motion. In such a case, the 
image quality of the 3D data reconstructed at each respiratory phase will be very poor. 
It is usually very difficult to stitch these 3D volumes together into a 4D dataset. 

Unlike prior methods, we propose a new 4D lung reconstruction method that has 
good temporal resolution and high reconstruction quality. In addition, our method 
does not rely on any external gating / tracking devices to synchronize the time of CT 
scan and the respiratory phase. Therefore problems caused by the discrepancy 
between the respiratory motion and the auxiliary surrogates are avoided. 

2   Method 

The outline of our 4D CT lung reconstruction method is as follows. First, a reference 
3D CT volume is obtained under a long breath hold. Next, a continuous scan is taken 
at every table position to obtain a series of 2D images, while the patient is breathing 
freely. The 2D image series at every table position covers at least one complete 
respiratory cycle. Using deformable registration, each 2D image is registered to the 
reference volume to estimate the displacement field of the 2D image with respect to 
the reference volume. The respiration signal is extracted from the displacement field 
of each 2D image. This respiration signal is used to synchronize the 2D image series 
to the respiratory cycle at every table position. After the synchronization, the 
displacement field for the entire lung volume at every selected respiratory phase is 
reconstructed, interpolated and smoothed. The 4D lung images are reconstructed by a 
deformable transformation of the reference volume for the entire respiratory cycle. 

2.1   Registration of 2D Image to Reference CT Volume 

To calculate the deformation of the 2D image with respect to the reference volume, 
we divide the 2D image into small overlapping disk regions, and register each of the 
small regions piece by piece to the reference volume. The local registration algorithm 
is based on minimizing the Zero Mean Sum of Squared Differences (ZSSD) between 
a small region in the 2D image and a corresponding one in the reference volume. 
Quadratic transformation is used to model the deformation between the two regions. 
As a result, thirty parameters are estimated while the objective function is optimized. 
The details of the local registration are described in [8]. 
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Since the registrations are performed at 
each local region, there is no guarantee 
that all the local registrations converge 
correctly. A global regularization of the 
registrations is necessary to remove 
outliers. In an example shown in Fig. 1, 
the regions are partially overlapped on 
each other. Since pixel p is included in all 
the disk regions A0, A1 and A2, the 
deformation of pixel p can be calculated 
from every one of these regions. As 
shown in equation (1), the final 
deformation of pixel p is the weighted 
average of all deformations obtained from 
the overlapped regions. 

=
k

kkkk jidjiwcrjid ),(),(),(ˆ  
(1) 

where dk is the pixel displacement obtained from the kth
 region;  d  is the weighted 

average of the displacement; rk is a function of the registration error of kth region. rk 
will be assigned a large value for small registration error, and vice versa. rk will be 
zero if the registration error of a region is above a threshold. ck is a function of the 
registration consistency in the overlapping area between the current region k and the 
previously registered region. ck will be large if the consistency is high, otherwise ck  
will be small. ck will be zero if the difference between current registration results and 
the previous registration results is too large. The assumption is that the results from 
previous registrations are more likely to be correct, because they are the weighted 
averages of many local registrations. wk is a Gaussian window function that is 
centered on the center of region k,  allowing the registration results of central pixels 
to have larger weight. As a result, Equation (1) filters out failed and bad 
registrations, and assigns large weight to good registrations. Unlike other registration 
techniques going from coarse to fine resolution, this registration goes from local to 
global. The algorithm iteratively propagates its local registrations, allowing the 
regions without enough local texture to be correctly estimated. This is an advantage 
over the spline-based registration [9] methods that rely on the local information of 
the control points. This procedure also makes the displacement field of the whole 
lung very smooth. 

The region-based algorithm assumes the pixels of the region to have approximately 
the same type of motion. It is necessary that all the pixels in the region are lung 
pixels. If the region includes other pixels such as heart pixels (Fig.2 (b)), the 
registration is prone to fail, because the selected deformation models cannot explain 
the pixel motion of the analysis window. For the same reason, the region cannot have 
chest wall pixels (Fig.2 (a)), nor can the region have pixels from both the left and 
right lungs (Fig.2 (c)). Therefore, accurate lung segmentation is necessary before the 
registration, and the left and right lungs should be separated in the 2D images. 

 

Fig. 1. Propagation of local registration 
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Fig. 2. Undesired regions: (a) both lung pixels 
and chest-wall pixels are included; (b) both 
lung pixels and heart pixels are included; (c) 
both left and right lungs are included (d) non-
lung pixels are included 

Fig. 3. The result of lung segmentation. Note 
that (a) the blood vessels are preserved; (b) 
the heart and chest-wall are removed; (c) the 
left and right lungs are separated; and (d)  the 
marginal pixels are removed from the heart-
lung boundary. 

We adopted the techniques of Hu [10] to automatically segment the lungs in the 2D 
image. Base on their work, morphological closing is executed on the lung area to keep 
the small to middle blood vessels in the lungs. Extra margin is also introduced in the 
heart-lung boundary to exclude the artifact caused by the cardiac motion. The result 
of lung segmentation is shown in Figure 3. 

2.2   Four-Dimensional Lung Reconstruction 

After all the 2D images are registered to the preoperative lung volume, the average 
deformation of each image with respect to the reference volume is calculated, yielding 
a 3D motion vector. For the images taken at the same table position, a sequence of 
motion vectors is obtained. This vector sequence can be used as the respiration signal 
to synchronize the 2D image series at different table positions. It is assumed that there 
is no phase difference of respiratory motion in the craniocaudal direction. Since the 
tumor’s respiratory motion is limited in a few centimeters, this assumption is valid. 
As a result, the two sequences of motion vectors at two adjacent table positions can be 
correlated to synchronize the scanning time at the two table positions with respect to 
the respiratory phase. The correlation is calculated using the following formula: 

( )S x x y y z z
j

k j k k j k k j k
k

N

= ′ + ′ + ′+ + +
=

−

arg max Δ Δ Δ Δ Δ Δ
0

1
 (2) 

where N is the total number of frames to be correlated; ( Δ Δ Δx y zk k k, , ) is the average 

deformation of the kth 2D image at the a table position;  ( Δ Δ Δ′ ′ ′x y zk k k, , ) is the average 

deformation for the kth image at another table position; S is the number of frame shift 
between the two image sequences. By repeating this procedure at all table positions, 
all the 2D images can be synchronized.  

Using principal component analysis, the principal axis of the motion trajectory can 
be obtained. By projecting the average motion on the principal axis, the one-
dimensional respiration signal can be extracted. Fig. 4 shows the extracted respiration 
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Fig. 4. Respiration signal at two adjacent table positions extracted from swine study. The 
vertical axis is normalized respiratory phase and the horizontal axis is time in frame number. 

signals of two CT fluoroscopy image series obtained in a swine study at two adjacent 
table positions with an interval of 4mm. It can be observed that the CTF scan time of 
the two sequences was different with respect to the respiratory cycle. The two dots on 
the peaks of the respiration signals show the result of synchronization. 

After all the 2D image series are synchronized, the 4D lung can be reconstructed by 
sorting the 2D images. As mentioned in Section 2, the 2D images come from different 
respiratory cycles. Since the respiratory motion is not completely reproducible, the 
direct 4D reconstruction by sorting the 2D images can result in very poor image 
quality. Especially in the coronal and sagittal views, fuzzy edges are usually observed.  
In response to this problem, we reconstruct the displacement field of the lung volume. 
In section 2.1, the displacement field of each 2D image has already been calculated 
from the deformable registration.  Each 2D image has also been assigned to a 
respiratory phase. We generate a displacement field for the entire lung volume by 
combining the displacement fields of 2D images according to the table position and 
respiratory phase. The resulting displacement field of the reference volume may not be 
smooth because it is obtained from different respiratory cycles. However, the 
displacement field can be smoothed. We use the cubic B-spline [9] to smooth and 
interpolate the displacement in the cranial-caudal direction to obtain a very smooth 
displacement for the reference volume. As a result, the 3D volume at any respiratory 
phase can be computed from a deformable transformation of the reference volume. 

3   Experimental Results 

We used synthetic 4D data to validate the algorithm. The synthetic 4D data was 
generated from two lung volumes obtained at the end of inspiration and the end of 
expiration respectively. The two lung volumes were registered at Siemens Corporate 
Research using 3D/3D deformable registration. The displacement field between the 
two volumes was interpolated along the time axis such that the trajectory of each 
pixel is a 3D curve in space instead of a straight line [11]. The resulting 4D data was 
used as the ground truth to validate the reconstruction algorithm. The synthetic 2D 
free scan image series was obtained by sampling the 4D data at the selected table 
position. With the 2D image series and the lung volume at the end-of-expiration as the 
reference volume, we ran the algorithm to recover the lung deformation. The pixel 
size of both the preoperative CT volume and the 2D images was 0.7422mm. The slice 
thickness of the preoperative CT volume was 1.25mm, and 3.75mm for the synthetic 
2D free scan images. The results were first compared to the ground truth to validate 
the deformable 2D/3D registration. 
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Fig. 5. Displacement magnitude of a CT 
fluoroscopy image with respect to the 
reference CT volume in mm 

Fig. 6. Magnitude of reconstruction error in 
mm 

 
Fig. 5 shows the deformation magnitude of a 2D image taken at the end-of-

inspiration, when the 2D image has the largest deformation with respect to the 
reference CT volume. As shown in Fig. 6, most of the poor registrations happen on 
the boundary pixels of the lung. This problem has three causes. First, for the region-
based algorithm, the registration accuracy is usually higher for the pixels near the 
center of the analysis window. The boundary pixels of lung are usually far from the 
center of the analysis window. Second, the boundary pixels (especially the boundary 
pixels near the top of image) have larger deformation than the average. Third, and 
perhaps most importantly, the areas near the lung boundary often have very little 
texture information, which may not be enough for the local image registration. 

 

Fig. 7 shows the average 
reconstruction error of the lung pixels 
compared to the average lung 
deformation. The maximum average 
error is 0.6mm. For the respiratory 
phase with large respiratory motion, 
the average registration error is below 
5% of the average lung deformation. 

The algorithm was also tested on 
the data collected from a swine study 

as part of an approved animal protocol. This study was done at Georgetown 
University Medical Center on a Siemens Volume Zoom four-slice CT scanner. The 
reference volume was obtained at the end-of-expiration using a 1 mm slice thickness. 
While the animal was mechanically ventilated, for the image acquisition the ventilator 
was stopped and the animal was temporarily paralyzed to minimize any breathing 
artifacts. The 2D image series were acquired using CT fluoroscopy with a sample rate 
of 6Hz and a slice thickness of 4mm.  Ten 2D image series were acquired. Fig. 8 and 
Fig. 9 show the reconstruction results at the end-of inspiration which is the respiratory 
phase of the maximum deformation with respect to the reference volume. As shown 
in the figures, the reconstruction result of our algorithm is much smoother compared 
to the standard image sorting method. 

 

Fig. 7.  Average reconstruction error vs. average 
displacement in mm 
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Fig. 8. Sagittal view of 4D reconstruction 
Left image: image sorting method Right 
image: our method 

Fig. 9. Coronal view of 4D reconstruction Top 
image: image sorting method Bottom image: 
our method 

4   Discussion and Conclusions 

This paper presents a new methodology to reconstruct the 4D lung image. The 
temporal resolution of the method is high and the reconstruction provides good 
quality images. Based on a synthetic CT data set, the average reconstruction 
/registration error is under 5% of the average lung deformation, which is less than or 
equal to 0.6mm of respiratory motion. Results from a swine study also showed good 
correlation. 

The algorithm is automated and software based. The algorithm does not need any 
auxiliary surrogates to synchronize the CT scan with the respiratory phase. The 
image reconstruction quality of the algorithm is very high even under irregular 
respiratory motion. The drawback of the algorithm is that it is time consuming. It 
takes about 5 minutes to register each 2D image to the reference volume. If 
improved processing speed is needed, the algorithm can be implemented on a 
parallel processing machine. 

Although the algorithm was only tested on the synthetic data of the single slice CT 
and in one swine study, it can be easily extended for use with multi-slice CT. Since 
multi-slice CT allows the local region registration to have more texture information,  
it is expected to see higher accuracy and better robustness of the algorithm. 
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Abstract. This paper describes an automatic parameter optimization
method for anisotropic diffusion filters used to de-noise 2D and 3D MR
images. The filtering process is integrated into a closed-loop system where
image improvement is monitored indirectly by comparing the character-
istics of the suppressed noise with those of the assumed noise model at
the optimal point. In order to verify the performance of this approach,
experimental results obtained with this method are presented together
with the results obtained by median and k-nearest neighbor filters.

1 Introduction

High-resolution MR images are often affected by noise, causing undesired inten-
sity overlapping of represented tissues, making its posterior segmentation and
classification difficult. Traditional linear filters, such as mean or Gaussian filters,
commonly used to reduce the noise, do not consider the boundaries originated
from regions with different intensities, producing smoothing of these edges and
suppression of sharp details. As a result, the produced images are blurred and
diffuse.

Anisotropic diffusion filters overcome these shortcomings by adjusting the
smoothing (diffusion) strength to the boundaries, thus reducing the noise while
preserving edges. The anisotropic diffusion approach arose from the use of the
Gaussian filter in multi-scale image analysis [1]. Perona and Malik [2] modified
the isotropic diffusion equation (Eq. 1) by making the diffusion coefficient term
c(x̄,t) a function of the magnitude of the gradient of the image intensity,

∂

∂t
I(x̄, t) = div (c (x̄, t)∇I(x̄, t)) (1)

where I(x̄,t) stands for the processed image at time t, x̄ = (x, y, z) the space
coordinates, t the iteration step (time) and ∇I the image gradient.

The diffusion coefficient was defined as a monotonically decreasing function
c(x̄,t)=f(|∇I(x̄, t)|) of the gradient, which becomes small when the magnitude of
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the gradient is large and approaches one when the gradient is close to zero. Per-
ona and Malik [2] proposed two such diffusion functions, PMAD1 and PMAD2.

c1 (x̄, t) = exp−
( |∇I (x̄, t)|

k

)2

c2 (x̄, t) =
1

1 +
(

|∇I(x̄,t)|
k

)2 (2)

Gerig et al. [3] introduced a discrete anisotropic (non-linear) diffusion algorithm
for de-noising MR images. Other diffusion functions were reported by Black et
al. [4] and Weickert [5]. Weeratunga et al. [6] assessed the de-noising performance
of several diffusion functions using medical and non-medical images. Suri and
Wu [7] give an overview of current trends and outlook on future development of
the anisotropic diffusion field.

The main parameters which control the behavior of the smoothing process
in anisotropic diffusion are the number of iterations (it) and the diffusion factor
k (Eq. 2), which determines the level of gradient intensity where diffusion is
at its maximum. For de-noising applications, the diffusion factor needs to be
adjusted according to the noise level. The noise is usually estimated with some
statistical methods that determine global characteristics (e.g. Black et al. [4]
used the median absolute deviation), or by hand-picking some homogeneous
areas and measuring the local variance. The number of iterations determines
how many times the smoothing process is repeated. This parameter is often
adjusted manually but it can also be done using an auto-stop criterion. In the
latter case, the program can consider the number of pixel (voxel) modifications
which occurred between the last two iterations to stop execution [4]. Either way,
selecting an appropriate set of parameters is generally quite complicated and
time-consuming.

In this work, an iterative method is presented that automatically adjusts
these two main parameters. In contrast to previous approaches the estimation of
the noise level is only used to determine the initial value of k. The optimization
of the parameter k is driven by the feedback output from an evaluation method
until a maximum response is reached. The novel evaluation method estimates
indirectly the improvement of the image by analyzing the suppressed information
and comparing its characteristics with those expected at the optimum. This is
repeated several times for different values of it. The best combination of the
two parameters, according to the evaluation method response, is then selected
to finally process the image. Figure 1 shows a diagram of the method described
here. The following sections will explain in detail our method and will present
achieved experimental results.

2 Method

The three basic modules of the automatic iterative system proposed here are the
de-noising filters, the evaluation method and the adjustment rules (Fig. 1). The
de-noising filters module contains several anisotropic diffusion functions for data
processing (e.g., PMAD2) as well as a set of anisotropic diffusion filters modeled
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Fig. 1. Diagram of the automatic anisotropic filter system

after Nordström’s [8] biased anisotropic formulation (e.g., PMAD2 bias). All
the filters use a regularized (smoothed) version of the gradient to estimate the
position of the edges [5] which should not be smoothed by the anisotropic filtering
process.

The key component of the system, the evaluation module, gives feedback on
image improvement or degradation during processing. Unlike other techniques,
such as image compression, de-noising techniques do not have access to un-
corrupted reference images to minimize the error between the reference and
the processed image. Also, since this method is used for pre-processing, the
only information available to it is that contained in the source image and that
obtained during processing, so that no a priori anatomical knowledge is used to
process the image. These conditions were set to keep the method as flexible and
independent as possible.

MR images can be seen as the combination of the intensity information of
the examined tissues and the noise generated during the measurement. After
processing an MR image with an ideal filter configured using ideal parameters,
the processed image would be perfectly clean of noise and only contain tissue
information. Hence, the residual image, obtained by subtracting the source image
from the processed one (Fig. 2), would consist only of the noise of the source
image. The evaluation method takes advantage of this residual information to
analyze the characteristics of the suppressed noise.

The characteristics of the noise for magnitude MR images are sufficiently
known and therefore used as reference. In this case, the noise has a Rice dis-
tribution and its strength is homogeneous across the entire data set [9]. The
closer the parametrization of k and it is to optimum, the more the residual im-
age will approximate the characteristics of the initial noise. The images on the
bottom row of Figure 2b were obtained by processing the image using succes-
sively increasing k values. The great variation in texture between the left and
the right image suggest that either the source image needed more filtering or it
was strongly smoothed and some anatomical structure have started to emerge in
the residual image. The image in the middle was obtained using near-optimum
parameters.
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Fig. 2. Residual information used to monitor the noise reduction; a) diagram; b) pro-
cessed (top) and residual images (bottom). The three pairs correspond to slightly
smoothed (left), near optimally smoothed (middle) and heavily smoothed MR images
(right).

Fig. 3. a) Diagram of the evaluation method; b) results of the local variance (top)
and from the histogram (bottom) modules. The three images correspond to slightly
smoothed (left), near optimally smoothed (middle) and heavily smoothed MR images
(right).

The evaluation method consists of three modules (Fig. 3a). The first one is
a local variance operator which produces a picture of the noise, measuring the
variance within a 3x3 (3x3x3) local region every third pixel (voxel). The local
variance image is normalized to prevent bias during subsequent operations. The
second module is a histogram which extracts the distribution information of
the variance image. The results are smoothed with a low-pass filter to prevent
discontinuities. The third module is an evaluation function of the histogram
results which considers the maximum height, the width and the symmetry of the
histogram to produce a noise reduction index. The evaluation function formula
is shown in Equation 3.
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Fig. 4. a) Histogram characteristics considered by the evaluation function module; b)
results of the evaluation function

Its first term H represents the maximum value of the histogram. The inverse
of the Full-Width at Half-Maximum (FWHM) and the inverse of the Full-Width
at 20%-Maximum (FW20%M) terms are indicators of the variance dispersion,
and the two exponential terms are functions of the histogram symmetry based
on the right and left Half-Widths at 50% (HWHM) and at 20% (HW20%M) of
the maximum (Fig. 4a). This evaluation function yields large values when the
histogram function is close to a large and narrow Gaussian-type curve, reflecting
a homogeneous distribution of the local variance values. Figure 4b shows the
results of the evaluation function after evaluating part of the parameters interval
(it=1 to 25, k=1.838 to 26.290).

Mp = H ∗
(

1
FWHM

)
∗
(

1
FW20%M

)
∗ (3)(

1− exp
(
− (SymmFWHM)3

0.2

))
∗
(

1− exp
(
− (SymmFW20%M)3

0.2

))
where:

SymmFWHM =
LeftHWHM

RightHWHM
if LeftHWHM ≤ RightHWHM

SymmFWHM =
RightHWHM

LeftHWHM
if LeftHWHM > RightHWHM

SymmFW20%M =
LeftHW20%M

RightHW20%M
if LeftHW20%M ≤ RightHW20%M

SymmFW20%M =
RightHW20%M

LeftHW20%M
if LeftHW20%M > RightHW20%M

The pairs diffusion factor-number of iterations corresponding to the ridge
values are considered to be close to optimum parameter configurations because
the response corresponds to a homogeneous distribution of the local variance.
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The adjustment rules module was implemented to avoid evaluating each com-
bination of parameters on the surface while searching for the optimum. This
search is greatly simplified if each parameter is analyzed independently. It is
more convenient if the continuous variable k is optimized first while the discrete
variable it is kept constant (represented as white lines in Fig. 4b). The optimum
k value of each sample it is obtained through a successive approximation scheme
which determines the new k based on its current and previous values and on the
corresponding results produced by the evaluation function. This optimization
is repeated several times with different it values. From the optimum k values
obtained, the median k value and its respective number of iterations are used
for the final filtering of the image.

3 Results

In order to evaluate the method proposed here, several real and simulated data
sets were processed (Fig. 5). For evaluation, three corrupted 3D data sets with
increasing noise intensity were generated. These data sets represent different
overlapping intensity levels between the tissue types cerebrospinal fluid, gray
and white matter. The reference image, taken from the Montréal Neurological
Institute (MNI) database [10], was an averaged T1-weighted image of 27 scans
of the same individual. Rician noise was added following the equation:

I =
√

((I0 + n1(σ))2 + (n2(σ))2) (4)

where I0 is the original image and n1 (σ) and n2 (σ) are two independent 3D
images with zero-mean Gaussian-distributed noise. The standard deviations used
to produce three noisy data sets were σ=9.16, 13.75 and 18.33.

These data sets were processed with the automatic method using the second
Perona-Malik function PMAD2 (c2 in Eq. 2) and its biased implementation
PMAD2 bias [8]. The same data sets were also processed using a median filter
(1 iteration) and a k-nearest neighbor (kNN) filter with k=14 (3 iterations). In
all cases, the data were processed using a 26 neighborhood. The PMAD2 filter
approximated the original image quite well, although it failed to reduce some
speckle noise (Fig. 5e). The kNN filter also gave good results (Fig. 5f), although
not as smooth as those of the anisotropic filter.

The experimental results were evaluated together with the corrupted data
using the original MNI data set as reference. The evaluation was done using the
mean-absolute error (MAE), the root-mean-square error (RMSE), the signal-
to-noise ratio (SNR), the peak-signal-to-noise ratio (PSNR) and the structural
similarity index (SSIM) [11]. Figure 6 summarizes the obtained results. As can
be seen there, the automatic parameterization of the second Perona-Malik func-
tion (PMAD2) gave the lowest errors (MAE and RMSE) and the greatest ra-
tios (SNR, PSNR and SSIM). The biased implementation of the same filter
(PMAD2 bias) gave comparable results to the k-nearest neighbor filter. Results
obtained using the median filter were consistently inferior. The computing time
for the MNI data set (181x217x181) was 47 min using a 2.6 GHz Pentium-4
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Fig. 5. a) Real MR image; b) after automatic filtering; c) reference MNI image; d)
MNI image corrupted with Rician noise (σ=18.33); e) results from the anisotropic
filter (PMAD2) using the parameters obtained with the automatic method (it=10,
k=10.94); f) results from the k-nearest neighbor (kNN) filter

Fig. 6. Experimental results obtained comparing the original MNI data set with the
corrupted and processed images
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CPU. Each iteration took 1.8 seconds during the iterative optimization (using
only 10 transaxial layers) and 33 seconds during the final filtering.

4 Discussion

The proposed evaluation function used to evaluate the filtering results is based
on the characteristics of the expected noise model and therefore enables the
implementation of a closed-loop system to automatically optimize the diffusion
filter parameters. The obtained results, when compared to those obtained with
median and k-nearest neighbor filters, indicate that our method is not only vi-
able but also produces better results. In future work, we intend to incorporate
adaptive versions of the diffusion filters into the de-noising filters module. These
filters will locally adjust the global diffusion factor value according to the time
(number of filter iterations) and to the local homogeneity of the image. In ad-
dition, we plan to optimize the behavior of the evaluation method according
to the Rician noise model. We expect that these measures further increase the
robustness and performance of the method.

Acknowledgment. The authors want to thank the German academic exchange
service (DAAD) for financial support (reference no. A/02/11312). Thanks are
also due to Alejandro Rodón for language editing.

References

1. Witkin, A.: Scale-space filtering. In: In Int. Join Conf. Artificial Intelligence. (1983)
1019–1022

2. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
IEEE Trans. In Pattern Analysis and Machine Intelligence 12 (1990) 629–639

3. Gerig, G., Kikinis, R., et al: Nonlinear anisotropic filtering of mri data. IEEE
Transactions on Medical Imaging 11 (1992) 221–232

4. Black, M., Sapiro, G., et al: Robust anisotropic diffusion. IEEE Trans. Image
Processing 7 (1998) 421–432

5. Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI. Teubner (1998)
6. Weeratunga, S., Kamath, C.: A comparison of pde-based non-linear anisotropic

diffusion technologies for image denoising. In: Image Processing: Algorithms and
Systems. Algorithms and Systems II (2003)

7. Suri, J.S., Wu, D., et al: A comparison of state-of-the-art diffusion imaging tech-
nologies for smoothing medical/non-medical image data. In: Pattern Recognition.
Algorithms and Systems II (2002)

8. Nordström, N.: Biased anisotropic diffusion - a unified regularization and diffusion
approach to edge detection. In: 1st European Conf. on Comp. Vision. (1990) 18–27

9. Sijbers, J.: Signal and Noise Estimation from MR Images. Phd. thesis, University
of Antwerp (1998)

10. Collins, D., Neelin, P., Evans, A., et al: Automatic 3d registration of mr volumetric
data in standardized talairach space. J Comput Assist Tomogr 18 (1994) 192–205

11. Wang, Z., Bovik, A., Sheikh, H.: Structural similarity based image quality as-
sessment. In: Digital Video Image Quality and Perceptual Coding. Marcel Dekker
series in Signal Processing and Communications (2004)



Towards a Dynamic Model of Pulmonary
Parenchymal Deformation: Evaluation

of Methods for Temporal Reparameterization
of Lung Data

Tessa A. Sundaram, Brian B. Avants, and James C. Gee

University of Pennsylvania, Philadelphia PA 19104, USA

Abstract. We approach the problem of temporal reparameterization of
dynamic sequences of lung MR images. In earlier work, we employed
capacity-based reparameterization to co-register temporal sequences of
2-D coronal images of the human lungs. Here, we extend that work to
the evaluation of a ventilator-acquired 3-D dataset from a normal mouse.
Reparameterization according to both deformation and lung volume is
evaluated. Both measures provide results that closely approximate nor-
mal physiological behavior, as judged from the original data. Our ulti-
mate goal is to be able to characterize normal parenchymal biomechanics
over a population of healthy individuals, and to use this statistical model
to evaluate lung deformation under various pathological states.

1 Introduction

The lung is a highly elastic organ composed of fibers connecting the large airways,
intricate vasculature and pulmonary interstitium. Pathological processes that
affect the lung typically alter the normal mechanical properties of lung tissue,
and manifest as observable changes in lung morphology and function. Magnetic
resonance (MR) imaging and other structural imaging modalities can be used to
capture in vivo deformation of the lung between sequential images by harnessing
the power of non-rigid registration algorithms, [1,2,3,4,5].

One of the challenges in evaluating the respiratory dynamics of multiple indi-
viduals lies in achieving temporal correspondence between physiologically similar
points of the respiratory cycle. We refer to this process of establishing temporal
correspondence as reparameterization. Solutions have been proposed that include
extending the B-spline framework used to perform pairwise registrations to si-
multaneous spatio-temporal image matching, as well as applying translation and
scaling in the temporal domain as a precursor to non-rigid registration in the
spatial domain, [6,7].

We extend the technique of combining capacity-based reparameterization
with shape and intensity averaging to establish a temporal correlation between
sequences of lung images from different individuals, [8]. In earlier 2-D experi-
ments, capacity was defined as the cross-sectional area of both lungs computed
from coronal slices, and computed via interactive level-set segmentation, [9]. The
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data used in those experiments were acquired from human volunteers instructed
to breathe slowly and deeply. Imaging was performed at a regular time interval;
however, a consistent volume increment was not guaranteed between successive
images in the sequence. One limitation of this study was computing lung capac-
ity from 2-D lung MR images containing both a cross-section of parenchyma and
portions of large blood vessels. In addition, there is inherent uncertainty associ-
ated with matching anatomy moving perpendicularly to the imaging plane.

In light of these confounding issues, we further investigate the reparameter-
ization problem using 3-D whole-lung data. We evaluate the feasibility of two
different interpolation techniques for the purposes of 1) reconstructing physio-
logically appropriate lung configurations between acquired images, and 2) using
these reconstructions to establish temporal correspondences between sequences
from different individuals. The latter aim lends itself to the construction of dy-
namic atlases of the normal lung, which is the ultimate goal of this research. We
examine two approaches: direct shape averaging and interpolation of sequen-
tial images based on deformation computed within our non-rigid registration
framework [10], and volume-based reparameterization via linear interpolation.
We evaluate each method by comparing the expected total lung capacity (TLC)
with the capacity in the reconstructed images. We also evaluate the methods by
comparing the expected deformation between anatomies to the achieved defor-
mation after reparameterization.

The goal of reparameterization is to establish a standard physiologic time
axis between individuals who breathe at different rates and whose lungs undergo
unique degrees of deformation. By developing this temporal correspondence be-
tween individuals, we can construct a dynamic atlas of normal parenchymal
deformation and subsequently evaluate the lung motion of patients against this
statistical norm.

2 Methods and Materials

2.1 Murine Data

The dataset used in these experiments was acquired using mechanical ventila-
tion of a normal mouse weighing approximately twenty-six grams. First, tracheal
cannulation of the anesthetized mouse was performed. The mouse was then con-
nected to a small animal ventilator (FlexiVent, SCIREQ, Quebec, Canada) and
mechanically ventilated at a rate of 120 breaths per minute. Four volumetric
MR images were acquired using a 4.7T animal imaging system (Biospec 47/40,
Bruker BioSpin, Karlsruhe, Germany) at the following physiologic time points:
end-expiration, mid-inspiration, end-inspiration and mid-expiration. The first
time point was duplicated to produce a dataset of five time points over a single
murine breath (figure 1).

2.2 Method Summary

In these experiments we employ a variational registration algorithm with a lin-
ear elastic prior to quantify lung motion captured in serial image sequences, by
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Fig. 1. Results of the reparameterization algorithm. Deformation of the murine lungs
over one complete, reconstructed respiratory cycle (inspiration followed by expiration).
Times are given in normalized units as described in the text. Odd images are original
acquisitions, and are labeled with the appropriate physiologic phase of respiration;
even images are intermediate images reconstructed from the anatomies at adjacent
time points in the cycle.

registering sequential pairs of images I and J and examining the resulting dis-
placement fields, [5]. We impose the linear elastic behavior of the image via a
finite element mesh constructed over the domain of I. In related work, the orig-
inal registration algorithm has been modified to yield the diffeomorphic fluid
deformation framework which is assumed in this paper, [10]. The diffeomorphic
component requires that the solution to the registration be continuous, differen-
tiable and invertible. When combined with the fluid framework and approached
from the Eulerian perspective, the total deformation between fixed image I and
moving image J is considered to be a composition of incremental transforma-
tions, each of which is diffeomorphic.

First, we perform pairwise registration between consecutive images using our
fluid registration algorithm. The resulting set of deformation fields, {u1, · · · ,u4},
reveals not only the motion of the lungs between successive images, but also the
change in volume between each image pair through the total Jacobian of the
field, J =

∫ |J(ui)|dx (here, J is the Jacobian matrix and Ω is the domain of
the lung segmentation). By construction, Ai+1, the capacity of the lungs at the
next time, is equal to

∫
Ω
|J(ui)|dx.

Lung volumes are estimated via segmentation with the region competition
mode of ITK-SNAP, [9], an open-source, level set implementation of 3-D geodesic
active snake segmentation, [11]. The segmentations are not post-processed in
any way; the trachea and large vessels traveling between the heart and lungs are
omitted from the calculation of lung tissue volumes. The large pulmonary arteries
and veins appear as regions of high intensity within the pulmonary parenchyma,
and are consistently excluded from the segmentations.

Total lung capacity is estimated at each of the five time points during the
respiratory cycle, and shown in figure 2a. The plot demonstrates that the vol-
ume of the murine lungs follows a parabolic path during respiration, which is in
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Fig. 2. (left) Trend of TLC during a single ventilator-dependent breath in a healthy
mouse. (right) Comparison of normalized TLC in original image data to volume- and
deformation-based interpolated images over the same breath. Note that the recon-
structed anatomies bear TLC values that fall along the expected physiologic trend.

agreement with both the input to the ventilator as well as the expected pattern
of respiration typically observed during tidal (passive) breathing via spirome-
try, [12]. The capacities computed from the original image data are subsequently
used to evaluate the images reconstructed with our interpolation techniques.

2.3 Deformation-Based Reparameterization

We employ a shape and intensity averaging algorithm that computes an average
anatomy by performing a simultaneous, symmetric registration of two images
I and J , [13]. The registration simultaneously determines the diffeomorphism
from I to J and J to I; the latter simulates a temporal path which can be
sampled at specific intervals. The symmetric energy of the pairwise averaging
problem is

Πsym(I, J) = inf
v1

inf
v2

∫ 1

0
{‖v1‖2L + ‖v2‖2L + (‖v1‖2L − ‖v2‖2L)2 +∫

Ω

Π∼(I ◦ φ1(X), J ◦ φ2(x)) dΩ} dt,

where vi represents the speed and trajectory of the image voxels as they move
through the Eulerian reference frame, Π∼ is the contribution of the similar-
ity to the overall objective function, and X and x are the coordinate systems
of I and J , respectively. Integration of vi gives the flow φi in time, which
can be used to map between the coordinate systems of I and J . Specifically,
φ1 pulls image I into the space of image J , while φ2 provides the inverse
mapping of image J into the space of image I. The symmetric solutions to
the registration are given by I ◦ φ1 and J ◦ φ2, and the shape and inten-
sity average of images I and J is represented by 1

2 (I ◦ φ1 + J ◦ φ2). In our
experiments, this anatomical mean at time tj represents the average respira-
tory deformation between the lung configurations at times ti and ti+1 (where
ti < tj < ti+1).
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The effect of this approach is to reparameterize the image sequence by defor-
mation, in order to reconstruct the lungs at intermediate configurations between
the originally acquired images. The interpolated images are evaluated by calcu-
lating TLC at the intermediate times tj and comparing them to the observed
trend of lung capacity. In addition, the deformation between reconstructed lung
configurations is also evaluated with respect to the deformation between the
original anatomy.

2.4 Capacity-Based Reparameterization

Since the deformation between successive images at i and i + 1 is small in this
ventilator-assisted dataset, we define our capacity-based reparameterization to
be a linear scaling of the deformation between successive images. For example, Vj ,
the reconstructed image between Vi and Vi+1 (or images I and J , respectively),
can be written as

Vj = Vi+α =
1
2
( Vi ◦ αφ1 + Vi+1 ◦ (1 − α)φ2 ),

where α represents the desired capacity fraction between the image pair. Setting
α = 0.5 produces the anatomic configuration with an estimate of the average
TLC between the known lung configurations.

2.5 Validation

TLC is computed at each of the five time points in our 3-D image sequence and
shown in figure 2. We reconstruct deformation- and capacity-based (α = 0.5)
anatomic averages between sequential pairs of images (figure 1). The results
are evaluated by comparing the capacities Aj of the successive average lung
configurations Vj to the trend observed in the original data (figure 2).

In order to effectively validate the physiologic relevance of our two repa-
rameterization schemes, we first generate a synthetic data sequence by densely
sampling the inspiratory phase of our original dataset. This sequence of twelve
images over the inspiratory phase of respiration is generated by shape interpo-
lation between end-expiratory and end-inspiratory image volumes EE1 and EI,
and serves as synthetic data from a second individual (“mouse” B) whose lung
deformation we wish to correlate with that of our original individual (mouse A).
Furthermore, we compute a third sequence of twelve images between EE1 and
EI via volume reparameterization (“mouse” C). Lung capacities for sequences B
and C are shown in figure 3a). Since the synthetic data was produced from the
original respiratory endpoints, we have a ground-truth estimate against which
to evaluate our method. However, since the trends of TLC in sequences B and
C are not identical to that in mouse A, we are not artificially imposing a correct
outcome by using this approach.

We normalize TLC to [0, 1] such that capacity at end-inspiration becomes 1
and capacity at end-expiration becomes 0. We also normalize imaging time to
[0, 1] such that EE1=0, EI=0.5 and EE2=1. This enables us to make meaningful
comparisons between individuals whose tidal volumes and breathing times will
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Fig. 3. (left) Comparison of normalized TLC from the original data (mouse A)
with that from the deformation-based (B) and volume-based (C) interpolations.
(right) Comparison of normalized deformation observed in the original data and the
deformation- and capacity-based synthetic sequences. The dotted boxes highlight the
anatomies with deformation coincident to that at MI and ME in mouse A.

naturally vary within some normal limits. Using the synthetic data, we attempt
to reconstruct (via deformation- and volume-reparameterization in mice B and
C, respectively) the anatomy that corresponds to the mid-inspiratory anatomic
configuration of mouse A. First, we locate the image pair in sequence B whose
normalized capacities are adjacent to the desired capacity in mouse A. Then, we
compute the deformation-based average of this pair, and evaluate the capacity
in this reconstructed image. It may be necessary to compute a set of shape
interpolants between the adjacent images in order to find the best match to
the target image. Additionally, we compare this deformation-based mean to the
volume-based average estimated from the capacities of the two image neighbors
in sequence C. This analysis is similarly performed for the mid-expiratory lung
configuration in mouse A (figure 3a).

We also evaluate our reparameterization methods based on the expected
deformation from a specific respiratory endpoint required to achieve a desired
anatomic configuration. In this case, the total deformation over the entire breath
is normalized such that 0 represents EE1, 0.5 the deformation required to arrive
at EI and 1 the cumulative deformation to return to EE2 (figure 3b). Deformation
is computed as the total magnitude of the gradient of the displacement field di-
vided by the size of the image domain. First, we sum the incremental deformation
pairwise between the original image volumes in mouse A. Next, we sum the in-
cremental deformation computed pairwise between the synthetic image volumes
in sequences B and C. The deformation required to deform the end-expiratory
anatomy to the mid-inspiratory and mid-expiratory time points in mouse A is
compared to the corresponding deformation in sequences B and C (figure 3b).

3 Results

Figure 2 compares the normalized capacity in the original data to those in the
pairwise averages computed by our two interpolation techniques. Both methods
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produce virtually identical results, differing by 0.01 in the capacity estimates
at normalized times t = 0.125 and t = 0.875 and by 0.001 in the estimates at
t = 0.375 and t = 0.625. The error between the expected and achieved capacities
was approximately 0.007 at t = 0.125 and t = 0.875 and 0.03 at t = 0.375 and
t = 0.625.

The discrepancy in normalized TLC between the synthetic sequences com-
puted via deformation- and capacity-based interpolation is approximately 0.002-
0.03 per interpolant. However, the average configuration between the anatomies
adjacent to the mid-inspiratory (open square) and mid-expiratory (open circle)
configurations has a capacity within 0.0004 when computed by either method
(figure 3a). The expected normalized lung capacity at MI was 0.281, while the
reconstructed anatomy at MI had a capacity of 0.294. The computed normalized
capacity at ME was 0.252.

Evaluation of both interpolation methods with respect to deformation is sum-
marized in figure 3b. The corresponding mid-inspiratory and mid-expiratory
anatomic configurations among sequences A-C are enclosed in the dotted boxes.
The error in normalized deformation to arrive at MI is approximately 0.001,
while the corresponding error to reach ME is approximately 0.025. The discrep-
ancy between the deformation- and capacity-based approaches is approximately
0.003 at MI and 0.008 at ME. In addition, the closest image pair providing the
matching deformation at MI and ME is the same image pair used to compute the
deformation- and capacity-based average anatomies based on normalized TLC
in figure 3a. This further validates the physiological basis of our approach.

4 Discussion and Future Work

We present an evaluation of two approaches toward the temporal reparame-
terization of dynamic lung data. Comparable results are achieved using both
deformation-based shape and intensity averaging and volume-based linear scal-
ing. The parenchymal deformation in this whole-lung mouse dataset is more
uniform compared to that observed in 2-D data used in earlier experiments.
In addition, the deformation between successive images is small, since the tidal
volume in this animal is only around 0.2 ml. As a result, we plan to evaluate
these methods on additional volumetric datasets acquired with non-zero and
non-constant settings for positive end-expiratory pressure (PEEP).

Future analysis will also be extended to data acquired with breath-holding,
since human imaging is typically not conducted with mechanical ventilation.
Application of the techniques presented in this paper is not restricted to data
acquired with ventilatory assistance; however, validation of the methods is aug-
mented by the regular pattern of respiration imposed by the ventilator.

The ultimate goal of this research is to use temporal correspondences be-
tween individuals to provide comparisons of the biomechanical perturbation of
the lung during respiration. Mechanics can be evaluated by computing finite
strain over the respiratory cycle, and investigating regional variations in tis-
sue character within as well as between individuals. By establishing temporally
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coincident anatomic points between individuals, it will be possible to assess
the degree and distribution of strain required for these individuals to arrive at
physiologically similar points in their respective respiratory cycles. Furthermore,
various pulmonary pathologies are known to affect the mechanical properties of
the lung tissue, and these changes can be quantified using the model described.
Our work motivates the construction of dynamic atlases of normal lung motion,
which will not only provide a statistical representation of normal parenchymal
deformation but also a metric against which to evaluate changes introduced by
the development and progression of pulmonary diseases.
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Abstract. Respiratory organ motion is a key problem in proton therapy
and in many other treatments. This paper presents a novel retrospective
gating method for 4D (dynamic 3D) MR imaging during free breath-
ing to capture the full variability of respiratory organ deformation. In
contrast to other imaging methods, a constant breathing depth or even
strict periodicity are not assumed. 3D images of moving organs can be
reconstructed for complete respiratory cycles by retrospective stacking of
dynamic 2D images using internal image-based gating. Additional noise
reduction by combining multiple images significantly increases the signal-
to-noise ratio. The resulting image quality is comparable to breath-hold
acquisitions. Although the method was developed for proton therapy
planning, the new possibilities to study respiratory motion are valuable
to improve other treatments and to assess gating techniques, which rely
on stronger assumptions about the breathing pattern.

1 Introduction

Respiratory organ motion is a complicating factor in proton therapy and other
treatments. Especially for dynamic dose delivery, exact knowledge of organ mo-
tion and its influence on the dose distribution is crucial. The aim of the proposed
method was to provide realistic 4D data (dynamic 3D images) of organ motion
for the evaluation of dose delivery methodologies in proton therapy and for the
assessment of external gating techniques. Existing 4D imaging methods are lim-
ited to strongly simplified breathing patterns or achieve only modest spatial or
temporal resolutions. In this paper we present a novel method that can capture
the full variability of organ motion. The method, which is applicable to any
organ affected by respiratory motion, will be shown for the liver as an example.

The main component of liver motion is a cranio-caudal shift, usually in the
range of 0.5-2.5 cm for quiet breathing [1,2]. As quantified in [2], the liver ad-
ditionally shows motion in anterior-posterior (1-12mm) and left-right direction
(1-3mm) as well as non-rigid deformations (up to 2 cm). The breathing pattern
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may vary within short time scales in amplitude, frequency and shape. To cap-
ture this variability, we use MR Imaging. In contrast to CT, volunteers are not
exposed to ionizing radiation and the orientation of the scanned slices can be
chosen freely. Nevertheless, some gating methods are common for MR Imaging
and CT, and therefore 4DCT is also considered in the following summary.

MR Imaging techniques are constantly evolving, but the required trade-off
between resolution, acquisition speed and signal-to-noise ratio still prevents a
detailed examination of organ motion in real-time. Dynamic 3D MR sequences
like Fast Field Echo Planar Imaging (FFE-EPI) applied in [3] achieve high acqui-
sition frequencies, but suffer from a reduced image quality and resolution if large
regions like the lung or the liver are scanned. To overcome this trade-off, there
are two main approaches, here denoted as breath-hold imaging and slice stack-
ing. Breath-hold imaging uses static 3D volumes at different breathing depths
determined for example with a stretch transducer [2] or a standard MR naviga-
tor [4]. One problem is that subjects may not be able to hold their breath for
long periods like 40 s [4]. Additionally, breath-hold images do not capture how
the organ is deformed during motion. Even if the breath-hold positions lie in
the range of free breathing, the hysteretic organ deformation between inhalation
and exhalation cannot be captured [3].

For slice stacking, one or a few 2D slices are scanned during a number of
breathing cycles. Frames from these 2D sequences are retrospectively stacked
to 3D images. The slice stacking methods found in the literature apply various
gating methods, which use for example the tidal lung volume [5], infrared markers
placed on the abdomen [6,7] or the abdominal skin detected in CT images [8].
In [7], an alternative internal gating method was proposed, which assumes a
constant breathing amplitude.

To the author’s knowledge, all gating methods that are currently used make
strong assumptions on the regularity of the respiratory motion and parameterize
this motion with a one-dimensional phase. Although respiration clearly shows
a repetitive character, which is also exploited in this work, a reduction of the
respiratory organ deformation to one parameter neglects all residual variability
and may be a too coarse approximation in some cases. The purpose of the pro-
posed imaging method is to overcome this issue and to reconstruct accurate 4D
images from free-breathing sequences in an improved quality.

2 Methods

2.1 Data Acquisition

We propose an imaging method, which follows the slice stacking approach and
captures the respiratory motion using free-breathing 2D MR images. In contrast
to all techniques presented above, we use sagittal slices. This allows to track
vascular structures during complete breathing cycles with minimal out-of-plane
motion. Another advantage of this slice orientation is the reduction of blood flow
artifacts in the liver region due to the beating of the heart.
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Fig. 1. (a) Navigator slice N0. Regions 1-3 are considered for gating in Sect. 2.2.
(b) Schematic acquisition sequence.

To illustrate the 4D reconstruction, we start with a 2D image sequence of a
dedicated slice called the navigator slice N0 (Fig. 1). Patient instruction ensures
that this sequence captures a variety of different breathing depths. The aim is to
reconstruct complete 3D images for all navigator frames in a complete breathing
cycle. Therefore we need to acquire and identify fitting 2D images all across the
liver. However, distant slices acquired during different breathing cycles are not
directly comparable to the navigator slice. Different motion in distant slices can
either reflect the relative motion in these regions or a change in the breathing
pattern. To establish a relation between distant slices, we acquire pairs of slices,
each pair containing the navigator slice, which is used for gating, and a data
slice (Fig. 2a). The navigator slice stays at the same position for every pair p,
whereas the position of the data slice is shifted across the liver. Each pair of
slices is scanned for a certain time (Fig. 2b). The data and navigator frames of
pair p acquired at times t1 and t2 are denoted Dp,t1 and Np,t2 . N0,t is the pure
navigator sequence, which is acquired twice as fast as the pairs of slices.

The 2D images were acquired on a 1.5T Philips Intera whole body MR
system (Philips Medical Systems, Best, NL) with a Steady State Free Precession
sequence, SENSE factor 1.7 and halfscan, 192x192 pixel and 1.8x1.8mm2 in-
plane resolution, flip angle 70◦, TR=3.1ms, 175ms acquisition time per frame,
with a coil array consisting of four rectangular elements. For pairs of slices,
navigator and data frames were acquired alternately. At each of 30 slice positions
we acquired 150 data frames and 150 navigator frames with 6mm slice thickness
and 3 mm overlap, yielding 3mm through-plane resolution.
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Fig. 2. Acquisition scheme. (a) Pairs of slices consisting of data slices Dp and a common
navigator slice Np. (b) Schematic acquisition sequences for two pairs of slices.
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2.2 Internal Gating

To find matching 2D images, which can be stacked together to a 3D image, we
propose an internal gating method based on the navigator images. This internal
gating is less error-prone than external gating, which may fail to derive the
accurate state of the organ from an external signal. To describe the proposed
method, we consider a navigator frame N0,i acquired at time i, for which a
matching data frame D1 is searched. N0,i−1 and N0,i+1 are the neighboring
navigator frames of N0,i, whereas a candidate frame D1,j is embraced by the
navigator frames N1,j−1 and N1,j+1 (Fig. 3). The proposed comparison is based
on the assumption that the frames N0,i and D1,j show the same respiratory state,
if the preceding navigator frames as well as the subsequent navigator frames are
sufficiently similar. Thus, only navigator frames, which show the same slice of the
liver, are compared to find fitting data frames. Therefore, different amplitudes
or phase shifts at distant slices have no negative influence.

There are various possible similarity measures to compare the navigator
frames. The evaluated options range from a simple sum of squared intensity
differences to more sophisticated measures like the Mahalanobis distance in the
eigenspace of the navigator frames. Since the goal is accurate slice fitting, a nat-
ural approach is to compare the position of prominent vascular structures and
thus to directly quantify shift errors. This approach was chosen in the following
and confirmed by the results. Figure 1a shows the three regions in the navigator
frames that were considered in the presented example. The position of these
regions was determined by template matching based on normalized cross cor-
relation. Note that the apparent 2D translation detected by template matching
may differ from the actual liver deformation, which in general has also an out-of-
plane component. However, a similar apparent motion of all considered regions
in both the preceding and the following navigator frames strongly indicates that
the actual 3D deformation is similar as well.

To compare frames, we define a cost function c(i, j), which should be small
if the navigator frame N0,i and the data frame D1,j show the same respiratory
state. Therefore, we require that each region r is at a similar position in the
two preceding navigator frames N0,i−1, N1,j−1 and in the subsequent navigator
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Fig. 3. (a) Navigator frame N0,i, for which a matching data slice D1,j is searched in
sequence (b) by comparing the neighboring navigator frames
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frames N0,i+1, N1,j+1. The following cost function sums up the vectorially added
deviations of the considered regions in the preceding navigator frames ΔXr

−1 and
the deviations in the subsequent navigator frames ΔXr

+1. With coordinate axes
in anterior-posterior and cranio-caudal direction, xr

i and yr
i are the coordinates

of region r at time i. With P the number of tracked regions we define

c(i, j) =
P∑

r=1

∥∥ΔXr
−1 + ΔXr

+1

∥∥ =
P∑

r=1

∥∥∥∥(xr
j−1 − xr

i−1
yr

j−1 − yr
i−1

)
+
(

xr
j+1 − xr

i+1
yr

j+1 − yr
i+1

)∥∥∥∥. (1)

Compared to the simple Euclidean distance, the vectorial displacements capture
the actual motion more consistently and proved to be more robust. The best
matching data frame D1,j∗ for a given navigator frame N0,i is found at time

j∗ = arg min
j

c(i, j) . (2)

For the navigator frame N0,i, the best matching data frames from each pair
of slices Dp,j∗ , p = 1, 2, 3, . . ., are combined to a 3D stack. Such a stack is recon-
structed for every navigator frame N0,i, N0,i+1, N0,i+2, . . . in an entire breathing
cycle to obtain a complete 4D data set with the temporal resolution of the pure
navigator sequence N0 (5.7Hz).

2.3 Noise Reduction

The acquired images show a considerable amount of noise due to their short
acquisition time and high spatial resolution. To improve the 4D reconstruction, a
straight-forward noise reduction was applied. The developed gating method was
used to find not only one but several frames showing possibly similar respiratory
states. These frames were averaged, which artificially prolonged the acquisition
time of the resulting image. Assuming additive noise, an averaging over M frames
reduces the variance of the noise by a factor of M . The number of frames that can
be averaged is limited by the duration of the acquisition session. In the presented
example, the acquisition time was 30min and five frames were averaged.

3 Results and Evaluation

The proposed imaging method was performed for six healthy volunteers. A 4D
data set of a male volunteer is used to illustrate the method in the following. For
comparison, Fig. 4a shows three cuts through a breath-hold image close to re-
laxed exhalation. A 3D image reconstructed from 30 free-breathing images using
the proposed method is shown in Fig. 4b. The blood vessels and liver boundaries
exhibit no major discontinuities. Note that Fig. 4b shows the reconstructed 3D
image that is most similar to the breath-hold image. However, the free-breathing
image looks different from the breath-hold image, because the latter cannot cap-
ture the shape of the moving organ, which undergoes a hysteretic deformation
between inhalation and exhalation. Figure 4c shows the same free-breathing
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(b) Reconstruction from
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Fig. 4. Orthogonal cuts through 3D images of the right liver lobe

image with additional noise reduction as discussed in Sect. 2.3. The signal-to-
noise ratio is remarkably improved and the resulting images achieve the quality
of breath-hold acquisitions. The averaging of several images did not introduce
significant blurring, which indicates that the number of acquisitions at each posi-
tion was sufficient and enough similar frames were found. The darkband artifact
through the dome of the liver can be shifted by proper shim adjustment.

In addition to the visual assessment of the reconstructed data sets, which
showed well fitting 3D images, a rigorous validation is desirable but not straight-
forward. However, the proposed frame matching algorithm can be tested exper-
imentally to evaluate the plausibility of the 4D data. To test if matching data
frames are found, a leave-one-out experiment was performed. A sequence of nav-
igator frames N1 and data frames D1 (288 frames in total) at 3 cm distance was
considered. For each data frame D1,i in this sequence, the best matching data
frame D1,j was searched among the remaining frames (i �= j) according to the
cost function c(i, j) defined in Eq. (1). The similarity of the selected data frame
D1,j∗ to the “ideal” left-out frame D1,i was quantified as the deviation of four
selected regions within D1 (Fig. 5) determined by template matching based on
normalized cross correlation. While the respiratory motion ranged up to 11mm
in this example, the resulting mean deviations of the considered regions were in
the range of 0.3-0.4mm, which is less than half a voxel (0.9 mm).

4 Discussion and Outlook

The developed technique allows for the reconstruction of 4D data sets show-
ing the detailed deformation of an organ during free breathing including the
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Fig. 5. Leave-one-out experiment. (a) The data frame D1,j∗ (found by navigator com-
parison) is compared to the “ideal” left-out frame D1,i. (b) Mean error and its standard
deviation for four regions.

hysteretic deformation between inhalation and exhalation. As opposed to other
4D imaging techniques, no strict assumptions on the regularity of the respira-
tory motion such as constant breathing depth or even periodicity are made. This
allows to better study the intra-subject as well as the inter-subject variability of
respiratory motion and to analyze these variations statistically. Provided that a
sufficient amount of raw data was acquired, 4D data sets can be reconstructed
for arbitrary amplitudes, frequencies and shapes of the breathing pattern.

Evaluation experiments have shown that the proposed gating method accu-
rately finds fitting 2D images with minimal deviations based on the dedicated
navigator slice, even if the considered slices are several centimeters apart. A
gating scheme with overlapping pairs of neighboring slices as an alternative but
would likely lead to error propagation from one overlapping pair to the next one.

For a rigorous validation of the proposed method, either experiments with
a realistically deformable phantom or an in silico simulation of the entire data
acquisition chain are possible. The second option will be investigated in the
future work, for example to determine the maximum viable distance between a
data slice and the navigator slice.

A common limitation for all slice stacking methods is that only breathing
cycles can be reconstructed, for which all necessary frames were captured across
the liver. If particularly deep breathing is only acquired at some of the slice
positions, the method fails to reconstruct a complete 4D data set. This issue was
addressed by instructing the volunteers to intentionally breath deeply during
parts of each acquisition, which ensured that a variety of breathing depths was
captured at each slice position.

Another observed issue was the drift of the exhalation position during the ac-
quisition of most data sets. This drift ranged up to 7mm in one case. On the one
hand, this issue is aggravated by the long total acquisition time of half an hour
in our studies. But on the other hand, the problem of variation beyond a regular
breathing cycle is simply ignored by other 4D imaging approaches and can now
be addressed specifically with the proposed method. Drift and other irregulari-
ties are recognized and handled by the internal gating technique. One possibility
to alleviate the impact of organ drift is to change the acquisition sequence. The
applied procedure selects a slice and completely captures its dynamic behavior
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before moving to the next spatial position. An interleaved sequence, which goes
back and forth through all slices, would increase the probability that we acquire
sufficient data for a complete 4D reconstruction before a major drift occurs.

Despite the discussed limitations, the obtained results demonstrate the po-
tential of the proposed method for 4D imaging in surpassing quality. The tech-
nique is applicable to any organ that undergoes respiratory motion like the lung
or the kidneys and can be implemented using a standard MR scanner without
additional equipment. Although the proposed method was developed for proton
therapy planning, the new possibilities to study realistic respiratory motion are
valuable to improve many other techniques, first of all conventional radiation
therapy planning. Other particularly interesting applications are the evaluation
and the comparison of gating techniques that inherently rely on stronger assump-
tions about the respiratory motion. Furthermore, generic motion data, which is
not patient specific, is useful for the evaluation of dose delivery methodologies
and anatomical simulations or for advanced applications like model-based seg-
mentation or tracking. Numerous research projects in these fields may profit
from a more accurate and more reliable 4D imaging using the proposed method.
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Abstract. We present here a method that aims at defining a surface-
based coordinate system on the cortical surface. Such a system is needed
for both cortical localization and intersubject matching in the framework
of neuroimaging. We propose an automatic parameterization based on
the spherical topology of the grey/white matter interface of each hemi-
sphere and on the use of naturally organized and reproducible anatomical
features. From those markers used as initial constraints, the coordinate
system is propagated via a PDE solved on the cortical surface.

1 Introduction

In the context of inter-subject brain data matching and localization, most meth-
ods deal with 3-dimensional images and consider the problem as a registration
one, known as spatial normalization (e.g. [7]). Nevertheless there is great inter-
est in analyzing data projected on the cortical surface [6]. The three-dimensional
space does not provide any information about cortical organization. In this con-
text, matching cortical surfaces implies facing several problems, the main one
being the lack of an implicit coordinate system, such as the voxel grid in 3 di-
mensions. Instead of defining spatial normalization as a registration process, we
can approach it in terms of localization. Few methods aim at building a surface
referential by parameterizing the cortical surface in a reproducible way [6,16,5].
The method presented in [6] relies on the mapping of the cortical surface to a
sphere. Resulting surfaces are aligned using a convexity measure, without any
information on the cortical organization. In [16], the method presented allows
a parameterization of the cortical surface from a geometric atlas, using a few
anatomical constraints, but implying a deformation of the cortex, and a manual
registration of the markers. Both methods require a warping of the surface to a
sphere, which implies distortion on the shape and the distances on the surface.

In this framework, we propose here a method to automatically provide an
anatomically meaningful parameterization, based on the definition of invariant
and organized anatomical features, and which does not require any warping of
the surface [4]. The paper is organized as follow : in section 2 we present the
cortical anatomy theories we based our method on. Section 3 presents the method
itself. Result and discussion are then detailed in section 4.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 344–351, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Anatomical Background

The major problem in studying human brains is the great inter-subject variabil-
ity. The pattern of a sulcus, even a major one, can have a different shape or
different topology from one brain to another. One of the reasons of this vari-
ability is thought to be the result of the cortex folding process [11,2,16,14]. To
provide invariant features, we have to understand the sulci organization over the
cortical surface [8,16,14]. In [16], a geometric model of the cortical surface is
proposed, which suggests an orthogonal organization scheme of main sulci. The
idea of defining a geometric model of the cortical surface was introduced by [15].
In [13], a new approach is proposed to explain the sulci organization: the sulcal
roots model. A key idea of this model is that the spatial stability of the deep
sulcal cortex is greater than that of a superficial image of the sulci. This point led
us to consider not only sulci, but deeply buried subparts of sulci as well, in order
to generate the most generic set of anatomical features possible. The previous
model provides this information: indivisible units, the so-called sulcal roots, cor-
responding to the first folding locations during antenatal life. This model raised
the hypothesis of the presence of two major orthogonal directions of anatomi-
cal organization in the cerebral cortex. Figure 1 shows the some folding process
results. Considering that and the spherical topology of each hemisphere led us
to define a longitude/latitude coordinate system. Each sulcal root is surrounded
by two meridians and two parallels of this gyral organization.

Although each sulcal root defines a cross point between longitude and lati-
tude coordinates, several sulcal roots may be aligned on one sulcus, as shown in
figure 1. The resulting fold defines then one coordinate, either meridian or par-
allel. Cortical folds corresponding to this criteria are thus considered as stable
and reproducible markers. A consequence is that from the sulci point of view,
sulcal roots are ”specialized” in one coordinate. Hence, if a fold is considered to
be a longitude constraint, it cannot and will not be used as a latitude constraint.

a) b) c)

e)d)

Fig. 1. Meridian/parallel organization around the sulcal roots. a) fœtal stage, b-e)
different results of the folding process [13].
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The correlation between sulcal-based representation and gyral-based repre-
sentation has been established by [2]. In this context, sulci are considered as
indicators of the meeting lines buried in the fold’s depth between the two neigh-
boring gyri. To define each gyrus borders, a set of sulci has been chosen, thought
to be reliable and reproducible through individuals. In our work, a comparable
process has been done. To obtain a reliable coordinate system over the cortical
surface, we need to define some anatomical markers, present in every brain. The
goal is to provide a generic set of those markers, which can be used as landmarks
on every nonpathological mature brain. The next section details the choice of
such constraints, and the algorithm used to obtain a parameterization of the
whole cortical surface.

3 Method

The outline of our method is to automatically build a complete parameteriza-
tion, in a longitude/latitude manner, starting from a few anatomical markers
and propagating a coordinate system from those original constraints over the
whole cortical surface of each hemisphere. All processings presented below are
performed on the original cortical surface. Brains shown in figures are inflated
for visualization purpose only.

3.1 Anatomical Markers

The first step of our method is the selection of anatomical markers. As explained
above, a set of sulci, considered to be reproducible, can be defined. The set we
built up is approximatively the same than the one used for the gyral-based rep-
resentation in [2]. From MR anatomical images, a preprocessing stage provides a
triangulation of the cortex hemisphere endowed with a spherical topology [9,10],
corresponding to the interface between the gray and the white matter. From
those images, an automatic recognition process provides the identification of the
main sulci [14] (see figure 2).

At this stage of the process, the set of markers is chosen. To have a complete
longitude/latitude coordinate system, two poles and an origin meridian are re-
quired. Latitude will be propagated from one pole to another, and longitude from
one side of the origin meridian to another [1]. The poles are chosen as defined in
[12]. One is the Insula. This area is the first folding zone appearing during the
human brain growth. The other is an extension of the projection of the Corpus
Callosum. The origin meridian is the one corresponding to the Central Sulcus.
Indeed, this fold is one of the most stable sulci across individuals, and almost
links the two poles together.

The sulci 3D representation is then used to get the projection of the bottom
sulcal line on the cortical surface [2] of the set of sulci selected before, as shown
in figure 2.

The diffusion process needs a complete origin meridian, i.e. linking one pole to
another. The Central Sulcus projection is extended, using the shortest geodesic
distance between the poles and the extremities of the sulcus projection.
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Fig. 2. Illustration of the main steps of the coordinates propagation: (A) Right
hemisphere with all its sulci (each color represents a label). (B) Set of chosen con-
straints for latitude. (C) Constraints projection on smoothly inflated cortical mesh.
(D) Resulting latitude coordinates (All visualizations made with free package Brain-
visa/Anatomist - http://brainvisa.info).

Once we have defined the whole constraints set, including poles and origin
meridian, each projection is attributed a constant longitude (meridians) or lati-
tude (parallels). As we want an homogeneous spreading of the coordinates over
the cortical surface, attention must be given to the coordinates values attributed
to the constraints. A last step consists in removing some small branches of the
projected sulci, in order to guaranty that each connected component is a simply
connected object for the mesh topology.

3.2 Coordinates Propagation

The aim of the parameterization is to obtain a global coordinate system that
complies with the initial anatomical constraints. To get such a result, we prop-
agate the coordinates from the constraints. Markers are used as sources of a
surfacic heat-equation diffusion process [1] that drives the propagation of both
longitude and latitude over the whole hemisphere surface. Equation 1 shows a
continuous heat diffusion process, where ∂I(−→r ,t)

∂t represents the heat diffusion on
the surface, t the time, ∇2 the laplacian operator and K a constant conduction
parameter.
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∂I(r, t)
∂t

= K∇2I(r, t) (1)

As we are on a discrete domain, we use a finite element method to estimate
∇2I [3] and get the iterative numerical scheme shown in equation 2 :

I(r, t + Δt) = I(r, t) + ΔtK∇̂2I(r, t), (2)

where ∇̂2I(r, t) is a local estimate of the laplacian at time t. Stability is reached
when ∇̂2I(r, t) → 0. As presented in [3], ∇̂2I is defined on each node of the
surface mesh as a weighted sum of the nodes neighbours, taking into account the
local geometry of the surface. Longitude and latitude are propagated separately,
in an iterative process. First, the surface is initialized with the contraints and
their mean value on the rest of the surface. The process then starts, iteratively
updating the value at every node of the surface, except on the constraints, defined

Fig. 3. Results of the coordinates propagation on six different brains. (Top row) Con-
straints for longitude and (second row) latitude. Resulting diffusion (constraints and
isoparameter lines) for longitude (third row) and latitude (bottom row).
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as constant heat sources. The result is obtained once the stability is reached, i.e.
when ∇̂2I → 0, leading to an homogeneous distribution of the coordinates values
between the constraints.

4 Results and Discussion

We tested our algorithm on six nonpathological mature brains, taken from the
ICBM database. Figure 3 shows the initial constraints we used and the resulting
coordinate system, on the six brains. An exemple of detailed result is shown on
figure 4.

The experiment led on 6 different brains shows a good behavior of the co-
ordinate propagation. As we see on figure 4, iso-density lines of the coordinates
system follows the global geometry of the surface, and locally complies with the
anatomical constraints, included as axes over the surface. Coordinates are ho-
mogeneously spred all over the surface, between the constraints. Figure 5 shows
in detail how the parameterization complies with the markers.

Fig. 4. Global obtained coordinate system on a right hemisphere, with resulting iso-
density lines and latitude and longitude constraints

Fig. 5. Iso-density line complying with a sulcus projection. (left) Zoom on propagation
result done without any constraint. (right) Propagation done with constraint, complying
with the constraint (superimposed in red in both cases).
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One of the problems we encounter is that parallels and meridians are prop-
agated separately from each other. Because of this, we cannot guarantee theo-
retically the unicity of coordinate couples, although this problem can only be
local.

We also must be aware of the influence of the inacurracy of some steps of our
process, e.g. the automatic sulci recognition.

Currently, anatomical markers are subparts of reproducible sulci. A great
improvement of our method would be the refinement of the definition of the
markers, to match the sulcal roots model the best we could. That means we must
be able to have a projection of sulcal roots. Such a process needs an important
work on cortical anatomy, and is being studied at the moment.

5 Conclusion and Further Work

In this paper, we defined a process that aims at implementing an orthogonal
coordinate system on every cortical surface. This parameterization relies on the
theoretical orthogonal organization of the sulci. The algorithm used gives a global
parameterization of the surface, that complies with anatomical markers.

From this work, several lines of research arise: refinement of the anatomical
features used, the guarantee of the unicity of the parameterization which we are
currently trying to solve by coupling the diffusion of longitude and latitude, and
validation in a neuroimaging experimental context.

Our work could be also extended to a functional description of the surface,
based on cortical folds. Other future applications are surface morphometry, or
localization for the integration of modalities such as EEG and MEG.
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Abstract. We describe a novel multiresolution parametric framework to
estimate transparent motions typically present in X-Ray exams.
Assuming the presence if two transparent layers, it computes two affine
velocity fields by minimizing an appropriate objective function with an
incremental Gauss-Newton technique. We have designed a realistic sim-
ulation scheme of fluoroscopic image sequences to validate our method
on data with ground truth and different levels of noise. An experiment
on real clinical images is also reported. We then exploit this transparent-
motion estimation method to denoise two layers image sequences using a
motion-compensated estimation method. In accordance with theory, we
show that we reach a denoising factor of 2/3 in a few iterations without
bringing any local artifacts in the image sequence.

1 Introduction

X-Ray fluoroscopic image sequences are widely used by cardialogists during
interventional exams. Since radiation is kept as low as possible to protect the
patient’s health, the images are corrupted with a large amount of noise and must
be processed. We are concerned with motion-compensated temporal filtering,
which requires reliable motion estimation [1]. It is however difficult to directly
apply motion estimation methods defined for video sequences to X-Ray images,
since the image formation process is ruled by the phenomenon of transparency.

Unlike in usual video images, there is no occlusion in the image when an
organ covers another but a grayvalue addition. The principle of brightness con-
sistancy of points along their trajectories is in particular no longer valid. Motion
estimation methods for X-Ray images have to explicitly tackle the transparency
issue.

If some work have tried to directly extend usual motion estimation strategies
to the transparency case [2], most of them model transparency in the spatial
domain using the fundamental equation introduced by Shizawa and Mase [3],
or its discrete version developed in [4]. The latter states that, if one considers
the image sequence I as the superposition of two layers I1 and I2 (I = I1 + I2),
respectively moving with velocities v1 = (v1x, v1y) and v2 = (v2x, v2y), we have:

r(x, y, v1, v2) = I(x + v1x + v2x, y + v1y + v2y, t− 1) + I(x, y, t + 1)
− I(x + v1x, y + v1y, t)− I(x + v2x, y + v2y, t) = 0 (1)

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 352–360, 2005.
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It implicitly assumes that v1 and v2 are constant over time interval
[t − 1, t + 1]. Even if the hypothesis of constant velocity remains problematic
at a few specific instants of the heart cycle, Eq.(1) allows reliable estimations
most of the time since the temporal velocity variations are usually reasonably
smooth. This approach can be extended to n layers by considering n + 1 im-
ages while extending the motion invariance assumption. We will focus on the
two-layer case, but it is straightforward to extend our work to n-transparent
layers.

This paper is organized as follows. In Section 2, we describe a parametric
estimation method based on an efficient multiresolution minimization. Experi-
mental results are given in Section 3 on realistic synthetic and real X-Ray images.
We develop in Section 4 a motion-compensated denoising method for image se-
quences involving transparency. Finally, Section 5 contains concluding remarks.

2 Global Parametric Estimation

2.1 Transparent Motion Constraint with Parametric Models

A first category of methods estimate motions in transparency in the frequency
domain [5], but these techniques have then to assume that the motion is constant
over a large time interval (dozen of frames) and are therefore unapplicable to
clinical image sequences involving time-variant movements.

To compute the velocity fields by solving equation (1) in the space domain,
we have to minimize

J(v1(.), v2(.)) =
∑

(x,y)∈�
r(x, y, v1(x, y), v2(x, y))2 (2)

where r(x, y, v1(x, y), v2(x, y)) is given by Eq.(1) and � denotes the image grid.
Several methods have been proposed to solve this problem, making different

assumptions on the velocity fields. The more flexible the hypothesis on the
motions, the more accurate the estimations, but also the more complex the al-
gorithm. Thus, a compromise has to be reached between measurement accuracy
on the one hand and robustness to noise, computational load and sensitivity to
the program tuning on the other hand.

In [6], dense velocity fields are computed by adding a regularization term to
(2), allowing local motion variations to be correctly estimated at the price of
a high sensitivity to noise and complex computations. On the contrary, strong
assumptions on the velocities are made in [7] by considering v1 and v2 constant
on blocks of the image (and therefore accounting for a limited range of motions),
to allow fast and robust motion estimation. In [4], the velocities are decomposed
on a B-spline basis, so that this method can account for complex motion, while
staying relatively tractable. However, the structure of the basis has to be carefully
adapted to every particular situation and the computational load becomes high
if fine measurement accuracy is needed.

We propose instead to represent the velocity fields with 2D polynomial mod-
els, which can account for the considered motions (heart beating, lungs dilation,



354 V. Auvray, J. Liénard, and P. Bouthemy

diaphragm translation), while requiring a few parameters for each layer. We be-
lieve that affine models describe the anatomic movements accurately enough, at
least within a given area, while keeping the model simple to handle both the
transparency issue and the high level of noise in the images. Our framework
would also work with higher-order polynomial models, such as quadratic ones,
if needed.

Hence, the velocity vector at point (x, y) for the layer i is given by:

vix(x, y) = ci,1 + ai,1.x + ai,2.y and viy(x, y) = ci,2 + ai,3.x + ai,4.y (3)

Criterion (2) becomes a function of 12 parameters for the whole image:

J(θ1, θ2) =
∑

(x,y)∈�
r(x, y; θ1, θ2) with θi = (ci,1, ci,2, ai,1, ai,2, ai,3, ai,4) (4)

2.2 Multiresolution Transparent Motion Estimation

If the velocity magnitudes were small, we could consider a linearized version of
(4), and then minimize it using an efficient iterative minimization scheme.

Since large motions can occur in practice, we introduce a multiresolution
incremental framework exploiting Gaussian pyramids of the three consecutive
images. At its coarsest level L, motions are small enough to allow for a minimi-
sation using the conjugate gradient algorithm applied to the objective function
(4) once linearized, which supplies first estimates of the two motions, denoted
(θ̂L

1 , θ̂L
2 ).

At the level L−1, we initialize (θL−1
1 , θL−1

2 ) with (θ̃L−1
1 , θ̃L−1

2 ) where c̃L−1
i,k =

2ĉL
i,k (k = 1, 2) and ãL−1

i,l = âL
i,l (l = 1, 4). We then write θL−1

i = θ̃L−1
1 + ΔθL−1

i ,
and we minimize the objective function J(θ1, θ2) with respect to ΔθL−1

i , once
J is linearized around (θ̃L−1

1 , θ̃L−1
2 ). This incremental Gauss-Newton method is

then iterated through the successive resolution levels until the finest one.

2.3 Initialisation with a Simplex Algorithm

Such a minimization scheme is efficient and fast, however it is also sensitive
to the initialization, especially since we are dealing with medical X-ray images
involving low contrast and high noise.

We resort to the downhill simplex method to provide an appropriate initial-
ization at the level L. This minimization technique can be applied to nonlinear
functions. For a function defined on a space of dimension n, it selects n + 1
samples. In our case, to minimize J in the 12-dimensional space of the affine
motion parameters, it will involve 13 samples of parameters. At each iteration,
it substitutes for the sample corresponding to the highest value of J a new sam-
ple found on a line perpendicular to the hyperplane containing the other n test
points [8].

Computational load is limited since we use the simplex algorithm at the
coarsest image resolution only.
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3 Results of Transparent Motion Estimation

3.1 Image Simulation Process

Image Modeling. To synthetize images representative for X-Ray exams, we
have modeled an imaging system as shown on Fig.1. The anatomy A attenuates
the input dose Rin to give Rout = Rin.A. A part of the input radiation is also
scattered, which is modeled by adding to Rout a part of a large low-pass version
of Rout: S = s.RLP

out (s ranging from 10 to 50%). A Poisson quantic noise typical
for radiation is added. Finally, the X-photons are converted into grayscale levels
on the receiver screen, which has a given Modulation Transfer Function MTF .

Transparent Image Sequence Generation. To reproduce configurations
typical of cardiac exams, we have formed one layer by taking a real image of
an abdominal exam where the spine and ribs are visible, and the second layer
with an X-Ray image of the heart (displayed on Fig.2).

To build the attenuation maps of these two images, we have inverted the chain
described on Fig.1. We have thus transformed the grayscale image into the X-
photonic image, compensated for the scatter, and inferred the attenuation maps
from the dose used during the exams. Since we cannot invert the noise operator,
we have chosen high radiation exams guaranteeing nearly noise-free images.

The two attenuation images were moved with the simulated velocity field and
multiplied to generate the anatomy corresponding to the superposition of the two
layers. A fluoroscopic acquisition was simulated following the image formation
process given in Fig.1 to get realistic X-Ray images with two transparent layers
undergoing known motions. Finally, to work with additive transparency instead
of multiplicative one, we applied a log operator to the composite image.

Fig. 1. Image formation model Fig. 2. Real X-Ray images used as lay-
ers for the image sequence generation

3.2 Results on Generated Examples

We have generated 250 image sequences of three frames as described above, the
abdominal layer undergoing a translation and the heart layer an affine motion.
The motion parameter values are randomly chosen while ensuring a displacement
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Table 1. Mean estimation errors in pixels for the proposed framework, with different
noise levels and scatter rate, with or without MTF addition (see main text)

NoMTF MTF

Noise 10 20 10 20

No scatter 0.30 0.55 0.49 2.09

20% scatter 0.36 0.76 0.71 2.84

50% scatter 0.38 1.27 1.04 4.54

at each pixel in the range of −8 to 8 pixels. The images are coded on 12 bits,
and their mean value is typically 500.

The estimation framework runs in 5 seconds for 288 ∗ 288 images on a
Pentium IV (2.4 GHz and 1 Go). Tab.1 contains the mean estimation errors
on the velocity vectors for different noise levels (standard deviation of σ = 10 or
σ = 20 grayscale values), scatter rate and with or without MTF simulation.

The estimations are quite satisfactory if we do not take the MTF into account.
Even with a large scatter rate, the mean velocities errors are below 1 pixel.
However, the motion estimation method seems sensitive to the correlated noise
introduced by the MTF. For images corresponding to a moderate radiation level
(noise with σ = 10), the estimations remain reliable. Nevertheless, for a higher
noise level which may be encountered in real images (σ = 20 and 20% scatter,
50% scatter being a quite extreme situation in practice), the velocities are af-
fected by a mean error of about 2.5 pixels. This would imply some extention of
the method to handle MTF effects in highly noisy situations.

3.3 Results on Clinical Image Sequences

We have also carried out experiments on real medical image sequences. X-Ray
medical image sequences usually involves several layers as a whole, but only one
or two layers at a time within delimited areas. The segmentation of the image
into areas corresponding to two-layers-configurations is beyond the scope of this
paper.

Therefore, we have selected a part of a cardiac fluoroscopic sequence corre-
sponding to a two-layer transparency case. It represents an area of about 5cm
x 5cm on the right of the heart, and was acquired at 30 Hz. Let us point out
that these fluoroscopic exams are usually carried out without contrast media
injection.

Two frames of this sequence are displayed on Fig.3 along with two computed
transparent motion fields. The heart (appearing dark here) is beating on the
right of the images over a static background corresponding to the spine and ribs.
The bright tissues of the lungs are following the heart motion, so that an observer
perceives only two “motions”, one corresponding to the static background and
the other to the group “heart+lungs”. The magnitude of the motion over a cycle
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Fig. 3. Top: From left to right: Images at time instants 1 and 8 of the real fluoroscopic
image sequence, anatomical moving regions. Bottom: computed velocities of the mobile
layer with our parametric transparent motion estimation method during the diastole
(at time 6), and during the systole (at time 13).

is 25 pixels. The images have a low contrast and are corrupted by an important
noise (σ 
 20).

The estimated affine motion models are coherent with the movements ob-
served on the sequence: the background is static (and therefore the correspond-
ing velocity field is not plotted in Fig.3) and the (affine) motion of the heart
matches the anatomic truth. Its magnitude is correctly decreasing in the lungs
area with the distance to the heart.

The images are noisy, low contrasted and contain complex movements. More-
over, the motion is not perfectly constant over three consecutive images, which
does not impair the estimation here. Even in this complicated situation, the
proposed transparent motion estimation framework supplies convincing results.

4 Motion-Compensated Image Sequence Denoising with
Transparency

4.1 Filtering Approach

Fluoroscopic images are acquired at a very low radiation level so that they
need to be denoised to be tractable for the clinician. Their high aquisition rate
(typically 30 Hz) is favourable to temporal filtering, whereas spatial filtering is
difficult since noise correlation is very perceptible at such a high frame rate.

A direct application of motion-compensated temporal filter for video images
(such as those reviewed in [9]) is impossible since it would require to have first
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separated the layers, which is a complex process. Instead, we propose a motion-
compensated temporal filter adapted to transparent images. Rewriting (1) as:

I(x, y, t + 1) = I(x + v1x, y + v1y, t) + I(x + v2x, y + v2y, t)
− I(x + v1x + v2x, y + v1y + v2y, t− 1) (5)

we can note that, if the velocities v1 and v2 are available, the image at time
t + 1 can be predicted from the two previous images. If the estimated velocities
are accurate enough, the predicted image Î(x, y, t + 1) is supposed to match the
observed image I(x, y, t+1) except for the noise realizations, thus providing the
means to smooth out the noise.

4.2 Recursive Filtering Method

We adopt a temporally recursive linear filter technique specified as follows:

Ĩt+1(x, y) = α(t).Ît+1(x, y) + (1 − α(t)).It+1(x, y) (6)

Let us note (σ2
Ĩ ,t

)t∈N the noise variance of the successive denoised images. From
Eq.(5), we can infer that the noise variance of the predicted image equals
σ2

Ĩ,t−1
+ 2σ2

Ĩ,t
, so that (6) implies:

σ2
Ĩ,t+1 = α(t)2σ2

Ĩ,t−1 + 2.α(t)2σ2
Ĩ ,t

+ (1− α(t))2σ2
I (7)

with σ2
I the variance of the original noise. α̂(t) = σ2

I/(σ2
Ĩ,t−1

+ 2.σ2
Ĩ,t

+ σ2
I )

guarantees the smallest σ2
Ĩ,t+1

. With this setting of α(t), the sequence (σ̂2
Ĩ ,t

)t∈N

has two positive fixed points: a repulsive one 0 and an attractive one 2/3.

4.3 Denoising Results

We have applied the proposed denoising scheme to 100 image sequences gener-
ated as explained in subsection 3.1, with MTF simulation and a scatter rate of
20%. Since we can in practice estimate the noise in the original images from ac-
quisition parameters, we can recursively compute α̂(t) for an optimal denoising.
Our temporal filter used these settings of α̂(t) (reported in Tab.2 with the theo-
retical denoising factor σ̂2

Ĩ,t
/σ2

I ) and the velocities estimated by the transparent
motion estimation method of Section 2.

The difference between denoised and original image sequences is quite notice-
able if visualized in a live manner at 30 Hz, but cannot be efficiently highlighted
from two printed frames. Therefore, we rather present our simulation results
in Tab.2. No local artifacts are observed on the denoised images: constrasts
are preserved because of the motion compensation and no noise coloration nor
structural artifacts have appeared.
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Table 2. Noise reduction for a transparent image sequence with two layers. Theo-
retical values compared with experiments for different radiation configurations (MTF
simulation and 20% scatter).

Frame t n 0 1 2 3 4 5 6 7 8

Theoretical α̂(t) 0.250 0.286 0.315 0.324 0.329 0.331 0.332 0.333 0.333

values σ̂2
Ĩ,t

/σ2
I 0.750 0.714 0.685 0.676 0.670 0.669 0.668 0.667 0.667

Simulations (σI = 10) σ2
Ĩ,t

/σ2
I 0.653 0.648 0.659 0.661 0.655 0.655 0.657 0.655 0.657

Simulations (σI = 20) σ2
Ĩ,t

/σ2
I 0.670 0.667 0.670 0.668 0.670 0.668 0.669 0.672 0.671

5 Conclusion

We have designed a novel and efficient multiresolution parametric framework
to estimate transparent motions for two layers by using affine motion models.
We have generated realistic X-Ray image sequences to assess the performance
of our method with an available ground truth. The results on medium-level
radiation images are quite satisfactory, and the performance smoothly decreases
with higher noise and scatter unless the MTF effect is incorporated. Experiments
on real clinical image sequences were also reported with convincing results.

An application of this method for temporal denoising transparent image se-
quences with two moving layers was also presented. Preliminary experiments
have shown that we can reach in a few iterations a denoising factor of 2/3 with-
out adding any local artifacts in the denoised image sequences.

We now plan to extend our method to handle the MTF effect and to carry out
more experiments on real X-ray image sequences. We also plan to tackle the ”dis-
tributed two-layer configuration”. The proposed method will then be applicable
if we can segment the image in its different regions of two layer configuration.
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Abstract. Computed tomography angiography (CTA) is an established
tool for vessel imaging. Yet, high-intense structures in the contrast im-
age can seriously hamper luminal visualisation. This can be solved by
subtraction CTA, where a native image is subtracted from the contrast
image. However, patient and organ motion limit the application of this
technique. Within this paper, a fully automated intensity-based nonrigid
3D registration algorithm for subtraction CT angiography is presented,
using a penalty term to avoid volume change during registration. Visual
and automated validation on four clinical datasets clearly show that the
algorithm strongly reduces motion artifacts in subtraction CTA. With
our method, 39% to 99% of the artifacts disappear, also those caused by
minimal displacement of stents or calcified plaques. This results in a bet-
ter visualisation of the vessel lumen, also of the smaller vessels, allowing
a faster and more accurate inspection of the whole vascular structure,
especially in case of stenosis.

1 Introduction

Computed tomography angiography (CTA) is an established minimally invasive
tool for imaging most major and also smaller vessels in the body [1]. Since its
introduction more than 10 years ago, ongoing development of CT modalities re-
sulted in shorter image acquisition time, a better spatial resolution and improved
volume coverage.

New scanning protocols create an increasing amount of data, requiring a
change in the way CTA studies are visualised and interpreted. Four main vi-
sualisation techniques are currently in use: multi- or curved planar reformat,
maximum intensity projection (MIP), shaded-surface display and volume ren-
dering [1,2]. Multiplanar or, preferably, curved planar reformat provides the most
comprehensive cross-sectional luminal assessment, but extensive user interaction
is required to accurately select the vessel of interest. Also, curved planar refor-
mat can display only a single vessel at a time. MIP, shaded-surface display and
volume rendering are true 3D visualisation methods, where the user can assess

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 361–368, 2005.
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the whole vessel tree simultaneously. Using modern computer graphics hardware,
high-resolution real-time interaction is possible. 3D methods render an in-depth
view of the CT data, not only of the contrast-enhanced vessel tree, but of other
structures as well. The presence of high-intense entities, like bone, heavy cal-
cification or endoluminal stents can seriously hamper the luminal visualisation
and/or require time-consuming manual editing [3].

This problem can be solved by recording a native image immediately before
contrast administration. The native image is subtracted from the contrast im-
age, resulting in a difference image that only visualises the contrast agent, which
is since long the standard procedure in 2D DSA. The quality of the difference
image is often deteriorated by motion-related artifacts due to patient or organ
motion, especially when stents or calcified plaques are present in the vessel of
interest. As proposed by several authors, this problem can be overcome by reg-
istration of the native to the contrast image. Most authors apply a rigid [4,5] or
piecewise rigid [3,6] approach, which is often limited to correcting for intra-slice
deformations only. However, those approaches can not remove motion artifacts
caused by inter-slice motion or require prior selection and/or segmentation of
the individual objects of interest.

In this paper, we present a fully automated intensity-based nonrigid 3D regis-
tration algorithm for subtraction CT angiography. A B-spline deformation mesh
is used to calculate the local deformation in every voxel, using maximisation of
mutual information of corresponding voxel intensities as similarity criterion [7].
By gradually increasing the number of mesh control points during optimisation,
the deformation evolves from coarse to fine and becomes more and more local.
A volume conservation penalty term is introduced to prevent physically impos-
sible or improbable deformations, such as plaque shrinkage or enlargement. A
similar approach was presented by Rohlfing et al. [8], but without proper val-
idation. Also, we apply the registration to more difficult datasets containing
severe artifacts near the vessel tree. Registration quality is evaluated based on
a quantitative measurement of motion artifacts in the subtraction image. Both
the automated measure and visual inspection consistently confirm the ability
of our nonrigid registration scheme to create quasi artifact-free subtraction CT
angiography images, especially in the presence of high intense structures such as
bone, plaques, and stents.

2 Methods

2.1 Deformation Model

The nonrigid deformation is modelled by a B-spline deformation mesh [9,10].
A grid of mesh control points is positioned over the image. To model a more
global deformation, the grid spacing is large, yielding a coarse mesh with few
control points. A fine mesh has a small grid spacing and many control points,
allowing a more local deformation. This approach allows a gradual refinement
of the deformation mesh by decreasing the grid spacing.
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2.2 Cost Function

The proposed cost function Ec = Es + ωpEp consists of a similarity measure
Es and a penalty term Ep, using ωp to modulate the influence of the penalty
term. The similarity measure is the driving force behind the registration pro-
cess and aims to maximise the similarity between the two images. As the con-
trast agent introduces local intensity differences between the images to be reg-
istered, similarity measures assuming identical intensity levels for correspond-
ing structures, are inappropriate. Therefore, mutual information, which models
the statistical dependence between the native and contrast image, is chosen [7].
The penalty term Ep is based on the Jacobian determinant, which models local
compression or expansion, and penalises volume change. The volume penalty
is Ep(μ) = 1

V

∫
V (Jg(r; μ)− 1)2 dr, with Jg(r; μ) the Jacobian determinant at

location r for transformation parameters μ and V the image volume.

2.3 Algorithm

A multiresolution optimisation algorithm is adopted [10], using 5 multiresolution
stages. The algorithm gradually evolves from a coarsely sampled deformation
mesh acting on downsampled images to a dense mesh at full image resolution.
In stages one and two, the image is downsampled to half the original size, while
stages 3 to 5 are calculated at full resolution. Initially, a B-spline mesh spacing
of 64 voxels is used, that gradually decreases to 32, 16 and finally 8 voxels in
stages 2, 4 and 5 respectively. The multiresolution approach increases process-
ing speed by performing the initial calculations on subsampled data. Moreover,
gradually decreasing the grid spacing will first recover more global deformations
and progressively advance to finer deformations, thus avoiding local optima and
creating a more realistic deformation field.

2.4 Validation Measure

Ideally, validation of medical image processing software should be performed by
medical doctors on clinical applications. During the development of the algo-
rithm, however, this is not always feasible. For a quick and reproducible eval-
uation of the influence of several registration settings an automated validation
measure was developed. An automated measure also avoids intra-observer vari-
ations and the influence of the visualisation settings, thereby concentrating on
the registration quality. The measure models image artifacts in the difference

(a) (b) (c) (d)

Fig. 1. Example of a (a) native and (b) contrast image, and the resulting difference
image with (c) rigid and (d) nonrigid registration. In (c), the dark and bright motion
artifacts are clearly visible, whereas they have almost completely disappeared in (d).
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Table 1. Overview of the intensity differences between the structures of interest in
subtraction CT images (in HU)

Contrast Soft Tissue Vessel Plaque
Native 0 300 > 300
Soft Tissue 0 0 300 > 300
Vessel 0 0 300 > 300
Plaque > 300 <−300 < 0 0

image. In the neighbourhood of the vessel, three important structures can be
expected: soft tissue, vessel and high intense structures like calcified plaques
or metal stents. An illustrative image is shown in Figure 1, and the expected
intensities of these structures in the native, contrast and difference image are
given in Table 1. For example, plaque voxels in the native image correctly reg-
istered to plaque voxels in the contrast image will yield an intensity difference
of 0 Hounsfield units (HU) in the difference image. Plaque voxels incorrectly
registered to soft-tissue in the contrast image will yield an intensity difference
smaller then −300 HU, thus causing distinct dark artifacts.

For perfectly aligned datasets, only intensities on the diagonal of the table
would appear in the difference image. The accepted intensities all lie in the
range 0 → 300 HU. Due to tissue and contrast density fluctuations, noise and
the partial volume effect, the actual intensity will differ from the expected one,
especially along the upper limit. Therefore, we assume all voxels with intensity
<−100 HU in the difference image to be misaligned. Misregistration also induces
bright artifacts in the subtraction image, but these can not be distinguished from
true enhanced vessel voxels. However, because of the volume preserving penalty,
the number of voxels in the low and high intensity artifacts will be about the
same. Hence, we define a region of interest (ROI) consisting of all voxels with
intensity > 100 HU in the native image (i.e. calcified regions or stents) and
intensity >−500 HU in the post-contrast image (to exclude air) and count the
fraction of voxels in this ROI with a value <−100 HU in the difference image
(i.e. dark appearing subtraction artifacts) to measure local misregistration in
high-intense regions.

2.5 Visualisation

Besides the computed validation measure, we also performed visual inspection
of the registered images. To obtain optimal results for the volume renderer,
we simultaneously applied an intensity window to the transformed native image
(−50→ 1000 HU) and the contrast image (100→ 1000 HU), showing only voxels
that fall inside the specified window in both images. Finally, in the difference
image, the intensities are clipped to (−50→ 400 HU).

3 Experiments

The registration algorithm was applied to 4 datasets. P1 shows a healthy thoracic
aorta, P2 and P3 show stented iliac arteries. P4 pictures a patient with an
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Table 2. Dimension, voxelsize and reg-
istration time for the different image
datasets

Data- Dimensions Voxelsize Time
set (voxels) (mm) (h:m:s)

P1 [91 136 411] 0.742 × 0.5 3:05:20
P2 [158 187 261] 0.702 × 1.0 2:14:08
P3 [114 177 144] 0.682 × 0.8 0:24:24
P4 [221 129 151] 0.742 × 1.0 2:49:48

Table 3. Influence of the volume pre-
serving penalty on the artifact reduction
(compared to rigid registration)

ωp P1 P2 P3 P4
0 98.93% 72.83% 29.89% 80.17%

0.01 98.92% 67.94% 27.17% 91.29%
0.1 98.67% 70.64% 32.02% 92.06%
1 99.05% 73.09% 38.53% 95.23%
10 98.98% 75.21% 39.42% 92.01%
100 97.51% 74.68% 38.56% 94.60%

(a)

(b) (c) (d)

Fig. 2. (a,b) Axial slice of the highly calcified area at the aortic bifurcation of dataset
P4; (c,d) sagittal slice of dataset P2 picturing a stent. These difference images show
severe motion artifacts in case of rigid registration (a,c), appearing as dark and light
areas near the vessel boundary. After nonrigid registration (b,d), the artifacts largely
disappear.

aneurysma in the aorta abdominalis and heavy calcifications. An overview of
the different datasets is given in Table 2.

The influence of the volume penalty on the artifact reduction is shown in
Table 3. The artifact reduction is expressed as the artifact fraction after non-rigid
registration compared to artifact fraction after rigid registration. The minimal
remaining artifact fraction is 0.21%, 9.04%, 11.56% and 0.46% for P1, P2, P3
and P4 respectively. For visual inspection, we displayed the difference image
slice by slice and in a volume renderer, allowing real-time interaction with the
data. This inspection confirmed the results obtained by the validation measure.
Figure 2 shows some representative slices of the difference image obtained with
rigid and nonrigid registration. A volume rendering of all four datasets is shown
in Figure 3.
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(a) P1, rigid (b) P1, nonrigid (c) P2, rigid (d) P2, nonrigid

(e) P3, rigid (f) P3, nonrigid (g) P4, rigid (detail) (h) P4, nonrigid (detail)

Fig. 3. Volume rendering of subtraction CT image for the different datasets using
rigid and nonrigid registration. Nonrigid registration substantially reduces the motion
artifacts. E.g., in (g), plaque artifacts obscure the stenosis at the bifurcation, whereas
in (h) the narrowing is clearly visible.

4 Discussion

4.1 Artifacts

It is immediately clear from Figures 2-3 and Table 3 that nonrigid registration
substantially reduces motion artifacts in the difference image. Artifacts caused
by bone and calcified plaques almost disappear completely, enabling 3D visual-
isations, like volume rendering or MIP, to picture only the vessel lumen. This
might strongly reduce reading time, as the radiologist can get a clear overview
of the whole vessel. For example, in Figure 3(g), plaque artifacts obscure the
stenosis at the bifurcation, requiring a slice-by-slice or planar reformat visuali-
sation for proper diagnosis. In Figure 3(h), the narrowing is immediately clearly
visible. The artifact reduction also allows the visualisation of smaller vessels,
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which otherwise would have not been discernable from the background noise, as
can be seen in Figure 3(b).

Stent artifacts are also strongly reduced, although they are not removed com-
pletely. Due to the high attenuation difference between metallic stents and the
surrounding tissue, stents will not only cause motion artifacts in the difference
image, but also generate metal or streak artifacts in the native and contrast
enhanced images. Especially in multi slice spiral CT, the appearance of these
artifacts depends on small patient displacement and the x-ray tube starting an-
gle [6]. Therefore, they can not be removed completely, as can be seen in Figures
3(d), 3(f) and 2(d).

4.2 Calculation Time

Depending on the size of the dataset, registration takes from 0.5 to 3 hours on
a 2.8 Ghz Pentium 4 processor. For diagnostic clinical use, calculations can be
performed off-line and therefore timing is not critical. If emergency or inter-
ventional applications are sought, several approaches are possible to reduce the
calculation time. If timing is crucial, a trade-off of registration quality for regis-
tration time can be made using less multiresolution stages. Our experience shows
that the larger artifacts mostly disappear after the first two stages, allowing a
reduction of the required processing time down to 5 to 30 minutes. However, the
final stages are necessary to cancel out smaller artifacts. A second possibility to
speed up the registration is the manual selection of a smaller region of interest,
thus reducing the size of the dataset to be registered. Also, some improvements
might be made to the algorithm itself. For instance, the registration could be
constrained to only account for the regions in and surrounding the vessel tree
by prior crude segmentation of the original images.

4.3 Volume Preserving Penalty

The contrast agent introduces intensity differences between the native and the
contrast enhanced images. Without a volume preserving penalty, the algorithm
would be tempted to reduced these differences by increasing the plaque volume,
especially when using a fine mesh. However, if the volume weigh ωp is too high,
the mesh will be too stiff to allow registration whatsoever. Using a sub-optimal
volume penalty worsens the registration and fails to correct some smaller motion
artifacts. This effect was most clear in datasets P1 and P4, while datasets P2
and P3 always showed some artifacts near the stents. Table 3 indicates that the
optimal value of the volume weigh ωp is rather independent of the acual datasets
under study. Therefore, we propose a volume weight of ωp = 1.

5 Conclusion

In this paper, we showed that nonrigid registration can substantially reduce the
artifacts in subtraction CT angiography, allowing for a clear 3D view of the vas-
cular structure, also in the presence of calcified plaques and stents. We presented
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a quantitative validation of registration quality by evaluating the number of vox-
els that correspond to dark appearing artifacts in the difference image. Currently,
the biggest concern of the algorithm is the calculation time, impeding real-time
or emergency diagnostic use.
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Abstract. In Emission Tomography imaging, respiratory motion causes
artifacts in lungs and cardiac reconstructed images, which lead to misin-
terpretations and imprecise diagnosis. Solutions like respiratory gating,
correlated dynamic PET techniques, list-mode data based techniques
and others have been tested with improvements over the spatial activity
distribution in lungs lesions, but with the disadvantages of requiring ad-
ditional instrumentation or discarding part of the projection data used
for reconstruction. The objective of this study is to incorporate respi-
ratory motion correction directly into the image reconstruction process,
without any additional acquisition protocol consideration. To this end,
we propose an extension to the Maximum Likelihood Expectation Max-
imization (MLEM) algorithm that includes a respiratory motion model,
which takes into account the displacements and volume deformations
produced by the respiratory motion during the data acquisition process.
We present results from synthetic simulations incorporating real respira-
tory motion as well as from phantom and patient data.

1 Introduction

Respiratory motion during the data acquisition process leads to blurred images,
making difficult an accurate diagnosis, planning and following. For instance, mis-
localizations of lesions in the fusion of positron emission tomography (PET) and
computerized tomography (CT) have been found [1]. Similarly, significant tumor
motion has been reported in others studies (e.g. [2,3]) as well as significant vol-
ume increase of lung lesions in images reconstructed without respiratory motion
compensation [4].

To our knowledge, motion correction in Emission Tomography (ET) has been
seldom investigated in the literature. Current methods can be classified in four
main categories: post-processing, Multiple Acquisition Frame (MAF), sinogram
data selection based on detected motion, and sinogram correction.

– Post-processing methods are based on transformations performed either in
projection-space (e.g [5]) or in image-space (e.g. [6]). However, the motion
models used in projection-space are too simplistic (e.g. global scaling), and
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the transformations applied in image-space do not consider the true effects
of motion on the acquired data.

– The MAF-based methods consist on regrouping the projections in smaller
subsets according to the detected motion (either online or offline motion
detection). Then, image reconstruction of each subset is performed indepen-
dently followed by a realignment of the images. These approaches present the
inconvenient that the signal-to-noise ratio increases for images reconstructed
from smaller subsets of projections.

– Sinogram data selection based on motion detection, also known as gating, has
been used to compensate for motion correction in ET [4]. Gating techniques
have shown improvements, contributing to a better quantification of lesions.
However, they require extra hardware or specific data acquisition modes and
they discard part of the acquired projection data.

– Sinogram correction methodologies act directly on the projection data by
repositioning the lines-of-response (LOR) when the motion is known [7,8].
However, these approaches are only applicable to rigid motions and require
to deal with motion-corrected LOR’s that may fall in non-valid positions,
which decreases their practical interest.

The purpose of this paper is to describe a reconstruction algorithm that al-
lows for a retrospective respiratory motion correction that operates directly over
the complete projection data, without the need of additional acquisition proto-
cols or discarding of data. To that end, we propose an extension to the MLEM
reconstruction algorithm in which a motion model is plugged. We consider not
only displacements but also local deformations.

The next sections present the methodology and results from phantom data
and synthetic simulations incorporating real respiratory motion. For patient
data, a preliminary approach of respiratory motion modelling and results of
its use with the proposed motion correction methodology are also presented.

2 Method

2.1 Maximum Likelihood Expectation Maximization

First introduced in emission tomography by Shepp and Vardi [9], the MLEM
algorithm is based on a Poisson model for the emission process. For a given
emission element b the number of emissions fb follows a Poisson law with mean
λb. Besides, the projection matrix R (or called by some authors system matrix
or transition matrix ) gives the probability that a certain emission from voxel b
is detected by the detector d (called dexel hereafter). Furthermore, the number
of detections from dexel d (i.e., pd) can be expressed in terms of the number of
emissions fb, pd =

∑
b fbRdb. This latter expression is important since it states

the relationship between detections and emissions through the system matrix
values. Later, this fact will be exploited in the motion correction step.

We are interested to find the mean value λ from the set of projections p. This
can be done by searching the maximum likelihood of getting a set of measures p
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given an image λ (i.e., λ̂ = arg maxλ[P (p|λ)]). It can be shown (see [9] for more
details) that λ̂ can be found by means of an iterative algorithm

λ<K+1>
b =

λ<K>
b∑
d Rdb

∑
d

pdRdb∑
b′ λ<K>

b′ Rdb′
(1)

where pd stands for the number of detections of dexel d, λb is the mean number
of emissions from voxel b, Rdb is the probability that a particle emitted from
voxel b is detected by the dexel d and K stands for the iteration number.

2.2 Incorporating Motion Correction into the MLEM Algorithm

We incorporate motion correction into the MLEM algorithm through the pro-
jection matrix R. We estimate the new contribution RC

db of a voxel under motion
b to every dexel d.

Let us consider a continuous motion modeled by the spatial transformations
ϕt : R3 �→ R3, where ϕt(m) denotes the position of point m at time t. This
motion is observed from time t = 0 to t = T .

We first discretize this motion into a discrete set of spatial transformations
ϕi, i = 0 . . .N , the transformation ϕi being valid from t = ti to t = ti+1. RC

db

expresses then the weighted sum of the contributions Ri
db of deformed voxels

ϕi(b) to d:
RC

db =
∑

i

wiR
i
db (2)

The weights wi = (ti+1 − ti)/T allow to take into account the kinetic of the
motion: wiT represents the duration where ϕt can be effectively approximated
by ϕi.

2.3 Computation of System Matrix Terms

The voxels that contribute to a dexel d are assumed to intersect a 3-D line that
stemed from d. Let us denote by ldb the length of the intersection of this line
with the emission element b. We thus define the contribution of b to d by

static: Rdb =
ldb∑
d′ ld′b

dynamic: Ri
db =

lidb∑
d′ lid′b

. (3)

In the static case, we model the emissions elements as spheres inscribed in the
voxel space, which facilitates the calculation of Eq. (3): see Fig. 1a. The sum-
mation in each denominator of Eq. (3) acts as a normalization term.

If no deformations can be assumed for emission elements b during their mo-
tion, we could still have used the intersection of a line with a sphere for the
computation of the contribution Ri

db. However, this will not be realistic. Indeed,
it has been shown that the displacements in the thorax (due to the respiratory
motion) present a non-linear and a non-homogeneous behavior [3]. Thus, we
have to consider also the deformations of b. When under motion, the emission



372 M. Reyes et al.

l db

d

b

ϕ( )

l db
i

b
i

d

(a) (b)

Fig. 1. The contribution of an emission element b to a dexel d represented by a dotted
line is defined by the intersection (continuous line) of (a) a sphere with a line (static
case) or (b) an ellipsoid (a deformed sphere) with a line (dynamic case)

element b will deform into ϕi(b), i = 0 . . .N . As a first order approximation, a
deformed sphere is an ellipsoid. The contribution of b at state i to d, i.e. ϕi(b), is
then similarly defined as the length intersection of the line d with this ellipsoid
(see Fig. 1b).

The study of the matrix ∇ϕi allows to estimate the ellipsoid. Let us consider
the singular value decomposition (SVD) of matrix ∇ϕi, that is ∇ϕi = UΣV T ,
where U and V are square and orthogonal matrices and Σ = diag(λ1, λ2, λ3),
with λj , (j = 1, 2, 3) the singular values of ∇ϕi. It turns out that the columns of
U are the eigenvectors of∇ϕi∇ϕi

T , and also give the preferred local deformation
directions, while the λj are related to the magnitude of the deformations in the
direction of the eigenvectors.

The modellization of the emissions elements as spheres that translate and
deform locally into ellipsoids according to a known transformation, represents a
novel contribution in this work. Furthermore, computations of the system matrix
elements are faster than using classical methods of dexel-voxel intersection.

Since a dexel is defined by the path travelled by a single (e.g. SPECT) or
by a pair of photons (e.g. PET), the method is independent of the type of ET
modality, and thus can be used without further modifications.

2.4 Estimation of the Respiratory Motion

In practice, unless extra devices are used to measure the breathing pattern, the
respiratory motion (transformation ϕ) is generally unknown.

A first approach to estimate this motion consisted in registering a known
respiratory motion model on the data to be reconstructed. To build this model,
two MRI images of a volunteer were acquired at breath holding in expiration
and inspiration and then non-rigidly registered. This provides us with a volumic
displacement vector field (DVF) u. Transformations Φi(m) are then given by
Φi(m) = m + i/Nu(m).

To adapt the transformation Φi to a patient, we first create an average image
of the expiration and inspiration states (to simulate a non-corrected reconstruc-
tion) that is affinely registered against the non-corrected reconstructed patient’s
image. This provides us with an affine transformation T . We compose then the
transformations to obtain ϕi = T ◦ Φi ◦ T−1.
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Though this method is by no means a robust method, it provides a first
insight of the results that can be achieved by using such an approximative
model with the proposed motion correction technique. Further improvements are
needed to assure a good estimation of the patient’s respiratory motion model.

3 Results

3.1 Simulated Data

We simulated respiratory motion in a SPECT study of lungs. For this, we used
the thorax phantom NCAT (NURBS-based cardiac torso) [10], to which a small
lesion of 15 mm diameter was added. The model was then deformed with N ϕi

transformations, estimated from a known real respiratory motion transforma-
tion Φ. Sinograms were then computed for each time state using the SimSET
(Simulation System for Emission Tomography) library and combined into one
single sinogram by a weighted sum.
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Fig. 2. Image reconstruction without motion correction (a) and with motion correction
(b). The corrected profile (dashed line) show a close relationship with the reference
profile (continuous line) in comparison with the non-corrected one (dotted line) (c).

Fig. 2 shows the reconstructed image with and without motion correction.
As described in the literature, the lesion appears larger in the non-corrected
reconstruction. A visual comparison of the intensity profiles (Fig. 2(c)) shows
a good agreement between the motion-corrected reconstruction and the ground
truth.

Two figures of merit were used to measure quantitatively the performance
of the method, namely the coefficient of variability CV = σ(lesion)/μ(lesion)
where μ(lesion) and σ(lesion) denote the average and the standard devia-
tion of the intensity values over the lesion, and the contrast recovery CR =
μ(lesion)/μ(background) [11]. For the reference volume CR and CV values are
5.80 and 0.14 respectively. The non-corrected volume presents CR and CV values
of 3.20 and 0.13 respectively. After motion correction the CR value increased to
4.40 while the CV value remained in 0.13. From these results, it can be concluded
that in the lesion area, noise properties are not affected by the motion correction.
Higher CR values are found for the corrected cases in comparison with the non-
corrected one (27±4% of increment), which demonstrates the deblurring effect
of the motion correction.
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3.2 Phantom Data

A phantom made of three spheres filled with 99mTc, having a concentration
of 85μCi/ml each and of 1.8, 3.2 and 1.3 cm diameters (Inserts numbers 1, 2
and 3 respectively) was acquired with a Millenium-VG SPECT camera. Five
data acquisitions were performed, and for each acquisition, the phantom was
translated 1 cm in the axial direction. By combining the sinograms, we simulate
the acquisition of a moving phantom. Finally, one single acquisition of duration
five times longer was performed in the reference position, to serve as ground
truth.

Reconstructed volumes had dimensions 1283 voxels with voxel size of 4.42
mm. Fig. 3 shows the corrected and non-corrected reconstructed volumes and
the intensity profiles for insert number two.
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Fig. 3. Axial translations of spherical sources during an ET study. Without motion
correction (a), after motion correction (b) and the intensity profiles of reference, non-
corrected and corrected volumes for insert number two (c).

For each insert, volume, CR, CV , Volume Error (VE), Volume Precision
(VP), Centroid Error (CE) and Centroid Precision (CP) measurements were
calculated to assess the quality of the motion correction in phantom data. VE
and VP are defined as the relative error between the reference and non-corrected
volumes and between the reference and corrected volumes, respectively. CE and
CP are defined as the distance between reference and non-corrected centroids
and between reference and corrected centroids, respectively. CR ratios are pre-
sented as CRc (corrected contrast recovery ) over CRnc (non-corrected contrast
recovery). Similarly for CV , we have CVc/CVnc (see Table 1). From Table 1 and
Fig. 3 it can be seen that the motion correction method yields corrected volume
size, spheres positions and improved contrast and noise properties.

Table 1. Results of motion correction for phantom data

Insert VE VP CE (cm) CP (cm) CRc/CRnc CVc/CVnc

1 350% 5,8% 2.0 0.16 2.2 0.58
2 125% 1% 1.96 0.21 1.62 0.89
3 166% 8% 1.85 0.21 2.57 0.48
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3.3 Patient Data

Five patients, one lesion each, were used to test the methodology of motion
correction in patient data. For each of them, image reconstruction with and
without motion correction was performed. Gaussian regularization with filter
full-width at half maximum (FWHM) of 8.5 mm every three iterations were set
as main parameters. The reconstructed images had dimensions 1283 with voxel
size of 4x4x4 mm3.

Table 2. Results of motion correction for patient dataset. The labels stand for: Non-
corrected (NC), corrected (C), lateral (LR), anterior-posterior (AP) and cranial-caudal
(CC).

Patient Volume Displacement (mm) CR CV
(C/NC) LR AP CC NC C NC C

1 0.95 2.00 3.20 3.20 4.78 5.42 0.22 0.23
2 0.64 2.60 3.60 5.10 5.04 6.06 0.24 0.20
3 0.98 0.30 2.62 4.23 7.47 7.49 0.26 0.22
4 0.86 0.45 1.20 1.74 3.66 3.90 0.18 0.16
5 0.77 2.50 0.60 2.33 4.92 5.70 0.09 0.09

From results presented in Table 2, it can be first noticed a volume reduction
ranging from 2% to 36% after motion correction. Quantitative measures indicate
improvements in contrast recovery after motion correction, which demonstrates
the ability of the proposed method to compensate the blurring effects in the
lesion area and its spatial activity distribution. Improvements in noise level are
less significative. However, we did not find increases in noise level due to motion
correction.

4 Conclusion

During an emission tomography study, induced motion due to patient breathing
can lead to artifacts in the reconstructed image. This can produce less accu-
rate diagnosis and more important, incorrect radiotherapy planning [3,4]. We
have presented a methodology to correct for respiratory motion in the image
reconstruction step. The method accounts for a respiratory motion model that
takes place in the computation of each term of the system matrix, and takes
into account displacements and deformations experienced by the voxels during
respiratory motion.

The method was implemented in a parallel framework and tested with simu-
lated, phantom and patient data. For simulated and phantom data, the results
show the ability of the proposed method to compensate for motion, render-
ing images with improved spatial intensity distributions and corrected lesions’s
shapes. For patient data, we have addressed the problem when no information
about the patient’s breathing cycle is available. As a first approach, we have used
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a respiratory motion model created by adapting a known model to the patient’s
anatomy. Although this method lacks of robustness, we are convinced that this
first approach yields images with lesser respiratory motion effects than those
reconstructed without motion correction. Improvements of the figures of merit
were found after motion correction, and volume reduction and lesions displace-
ments are likely to occur according to findings of previous studies [3].

Some further improvements and work in progress consider the inclusion of
breathing and anatomy subject variability into the respiratory motion model
estimation (i.e. transition from an individual respiratory motion model to a
statistical one) and validation of the proposed motion correction method against
a ground truth (e.g. gating).
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Abstract. Fast retrieval using organ shapes is crucial in medical image
databases since shape is a clinically prominent feature. In this paper,
we propose that 2-D shapes in medical image databases can be indexed
by embedding them into a vector space and using efficient vector space
indexing. An optimal shape space embedding is proposed for this pur-
pose. Experimental results of indexing vertebral shapes in the NHANES
II database are presented. The results show that vector space indexing
following embedding gives superior performance than metric indexing.

1 Introduction

Content-based retrieval in medical image databases is critically dependent on
efficient indexing techniques. There are two common indexing techniques: vector
space indexing, and metric space indexing. If a feature has well defined coordi-
nates, then vector space indexing techniques are used. If the feature does not
have coordinates, then metric space indexing techniques are applicable.

In this paper, we propose techniques for efficient indexing of shape for 2-D
medical image databases. We show that the 2-D shape space can be embedded
in a vector space in such a way that the vector space metric best approximates
the partial Procrustes distance in the shape space. With the optimal embedding,
shapes can be indexed by classical vector space indexing techniques. We provide
experimental results that compare the performance of the embedding strategy
versus metric trees and show that the embedding strategy gives superior results.

All experiments reported in this paper use images from the NHANES II
database. NHANES II has about 17,000 spine x-ray images. Spine disease is often
manifest as osteophyte, which is bony prominence along the vertebral boundary.
Because osteophyte changes the shape of the vertebra, retrieval by vertebral
shape is important to NHANES II. Indexing vertebral shape in NHANES II is
our main application.

The vertebrae are segmented using a dynamic programming template match-
ing algorithm [11]. The output of this algorithm is a fixed set of m points placed
on the vertebral boundary in a homologous manner. These points may be taken
as landmarks along the boundary. By “shapes of vertebrae” we mean the shapes
of these “landmark” points.

This paper draws on indexing theory and shape space theory – two theories
that are quite different. In the limited space of this paper, we have opted to treat
indexing rather briefly and present the shape embedding in more detail.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 377–384, 2005.
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2 Literature Review

The literature on shape analysis is vast. We briefly mention some of the related
work. Shape descriptors may be boundary based or region based. For boundary
based descriptors, Fourier and wavelet descriptors [9], scale space techniques
[6], and shape matching techniques [2,7] are used. For region based description,
different moment invariants [9] are used. When landmarks are available, the
shape of the landmarks are described as elements of an appropriate shape space.
We refer the reader to [3,4] for a complete discussion.

For indexing, we note that classical indexing structures for vector spaces are
in [10], while classical indexing structures for metric spaces are in [1].

3 Indexing for Content-Based Retrieval

Content-based retrieval uses range queries and nearest neighbor queries. In a
range query, the user has an example image with a feature u and asks the
database to retrieve all images with features v, such that d(u, v) ≤ T for some
threshold T . Here d() is a metric in the feature space. A nearest neighbor query
asks for k nearest neighbors to the example u according to the metric d. We
concentrate on the nearest neighbor queries in this paper.

Queries can be answered by a linear search through the database. Indexing
trees refer to techniques that can speed up the search by organizing the database
into hierarchical trees. A brief, relevant summary of indexing is as follows:

1. Indexing hierarchically partitions the feature space and creates a cover for
each partition. The covers are arranged in a tree; each node of the tree
representing a cover.

For vector space features, the covers are cubes with sides perpendicular
to the coordinate axis [10]. For metric spaces, the covers are metric spheres.
All leaf nodes point to the data that are contained in its cover.

2. Retrieval starts from the root node and proceeds by testing whether the
cover at a node intersects the metric sphere defined by the query. If a node
passes this node test, then the procedure is applied to the children of the
node. If the node fails the node test, then the entire subtree rooted at the
node is rejected since its children cannot contain any data that intersect the
query sphere.

3. One performance measure for indexing trees is the average number of node
tests per query. This measures the computation cost during retrieval. A
theoretical expression for the performance was derived in [12].

4. The performance of an indexing tree becomes poor if its nodes increasingly
survive the node test. In [12], we proposed a greedy algorithm that traverses
and eliminates inefficient nodes.

In [8], we reported an algorithm that optimally eliminates nodes. The
algorithm is a dynamic program over all possible node eliminations. We call
these procedures tree adaptation procedures since they adapt the tree to the
data distribution.
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4 Shape Spaces and Shape Queries

4.1 Configuration, Preshape, and Shape Space

As mentioned in section 1, vertebrae in NHANES II are segmented by an algo-
rithm that gives a set of m points along the boundary. Representing each point
as a complex number, every boundary can be considered as an element of Cm,
the complex vector space of dimension m. Cm is the configuration space. Two
boundaries zi, zj ∈ Cm have the same shape if there exists a translation, rota-
tion, and (non-zero) scaling that aligns them, i.e. if there exist complex numbers
t, μ, with μ �= 0, such that zi = μzj + 1mt, where 1m = (1 · · · 1)T . Here t is the
translation and μ = reiθ is scaling by r and rotation by θ.

Following Kendall [4], we first consider only the action of scale and transla-

tion. For every z ∈ Cm, define z̃ = z− 1
m 1T

mz

|z− 1
m 1T

mz| to be the preshape of z. Then, z̃ is
simply z translated so its center of mass is at the origin and scaled so that the
resulting scale is unity. All shapes that differ only by translation and scaling are
mapped to the same preshape. The preshape space is the set of all preshapes,
and is easily seen to be the unit sphere in the configuration space Cm.

The map z → z̃ from configurations to preshapes factors out translation
and scaling. To get shape, it remains to factor out rotation. Suppose that a
configuration z has preshape z̃. Rotating z by θ gives the configuration zeiθ

which has the preshape z̃eiθ. It is easy to show that z̃eiθ = eiθ z̃. Thus, all
configurations that have the same shape as z fall on the one dimensional orbit
of z̃ in the preshape space defined as z̆ = {eiθz̃}. The orbit z̆ is the shape of z.

Since each orbit is a shape, the set of all orbits is the shape space. Kendall
showed that the shape space of m landmarks is a complex projective space of
complex dimension m− 2. This is a non-Euclidean manifold.

The different spaces and relations between them are illustrated in figure 1.
Shape space has many natural metrics. The specific one we use is the partial

Procrustes metric dP (zi, zj). It is defined as the minimum Euclidean distance
between the preshape of zi and the orbit of the preshape of zj :

dP (zi, zj) = inf
θ
‖ z̃i − eiθ z̃j ‖ .

C
m

One set
of landmarks

Orbit under
translation 
and Scaling

Pre-shape Space

Each orbit
maps to a
point

Shape Space

Orbit under
rotation

Each orbit
maps to a
point

Fig. 1. Preshape and Shape Spaces
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4.2 Metric Shape Indexing

Because shape spaces are curved manifolds and the partial Procrustes distance
is non-Euclidean, one obvious choice for indexing shapes is to use metric index-
ing trees. Specifically, we use hierarchical clustering with the partial Procrustes
metric to cluster shapes in a tree. Greedy node elimination and optimal tree
adaptation are used to further increase the efficiency.

As mentioned in section 1, an alternative is to embed the shape space into a
vector space and use vector space indexing. We discuss this next.

5 Shape Embedding

Let zk be one of n configurations in the database, and let z̃k and z̆k be its
preshape and shape. Recall that the preshape space is a unit sphere in Cm

and that the only variation left in the preshape space is rotation. Hence, it is
reasonable to consider choosing one point on the preshape orbit of z̆k to represent
z̆k. That is, we choose the preshape with a particular orientation (yet to be
determined) as the shape embedding. This is our key idea and is illustrated in
figure 2.

Suppose we embed z̆k as the point on the preshape orbit that is given by
[zk] = eiθk z̃k for some θk. This embedding gives a Euclidean shape distance:

ds([zi], [zj]) = ‖[zi]− [zj]‖, (1)

where, ‖ ‖ is the usual Euclidean norm in Cm. In general, this shape distance will
be different from the partial Procrustes distance, and we would like to choose
an embedding such that the difference between them is as small as possible.

One measure of the difference between dP and ds is

J =
∑

i

∑
j

| d2
s([zi], [zj])− d2

P (zi, zj) |. (2)

We would like to choose embeddings [z1] = eiθ1 z̃1, [z2] = eiθ2 z̃2, · · ·, or alter-
natively, choose the angles Θ = (θ1, θ2, · · · , θn) such that J is minimized as a
function of Θ. From now on we will write J as J(Θ) explicitly showing depen-
dence on Θ. We now derive an algorithm for minimizing J(Θ).

Pre-shape Space Shape Space

Orbit under
rotation Each orbit

maps to a
point

Shape re-embedded
in its pre-shape orbit

Cm
Euclidean 
space

Fig. 2. Shape Embedding in Preshape Space



Optimal Embedding for Shape Indexing in Medical Image Databases 381

The first step is to show the following proposition:

Proposition 1: A Θ minimizes J(Θ) if and only if it minimizes

J1(Θ) =
∑

i

∑
j

d2
s([zi], [zj ]). (3)

Proof: First note that ds([zi], [zj]) is the Euclidean distance between two fixed

point [zi] and [zj] on the preshape orbits of z̃i and z̃j . But dP (zi, zj) is the shortest
distance between preshape orbits of z̃i and z̃j . Thus, ds([zi], [zj ]) ≥ dP (zi, zj),
and therefore | d2

s([zi], [zj]) − d2
P (zi, zj) |= d2

s([zi], [zj]) − d2
P (zi, zj). Note that

the d2
P (zi, zj) term is independent of Θ and can be dropped from J(Θ), giving

J(Θ) =
∑

i

∑
j

d2
s([zi], [zj ]) = J1(Θ).

To proceed further, a simple algebraic manipulation of J1(Θ) gives:

J1(Θ) =
∑

i

∑
j

ds([zi], [zj ])2 = 2n
∑

i

‖ [zi]− 1
n

∑
j

[zj ] ‖2.

As a brief aside, consider a second objective function

H1(Θ, μ) = 2n
∑

i

‖ [zi]− μ ‖2. (4)

The minimizing μ of H1 is known in the shape space literature as the procrustean
mean size-and-shape of the preshapes z̃i. Conditions for a unique procrustean
mean size-and-shape are given in [5]. Loosely speaking, a unique μ exists if the
distribution of z̃i is not too broad. In practice this condition almost always holds
and a unique μ exists. We assume this to be the case and we have

Proposition 2: If H1(Θ, μ) has a minimizer (Θ∗, μ∗), Θ∗ minimizes J1(Θ).

Proof: For any fixed Θ, because [zi] are in the vector space Cm, and ‖ ‖ is
the usual Euclidean norm, the function H1(Θ, μ) has a unique minimum with
respect to μ, and the minimum is given by μ∗ = 1

n

∑
j [zj ]. Thus,

min
μ

H1(Θ, μ) = 2n
∑

i

‖ [zi]− 1
n

∑
j

[zj ] ‖2 = J1(Θ).

It follows that if H1(Θ, μ) has a minimizer (Θ∗, μ∗), Θ∗ also minimizes J1(Θ).
To obtain the optimal embedding, we minimize H1(Θ, μ) by alternately up-

dating Θ and μ as follows:

1. Initialize Θ[0] = (0, · · · , 0), and μ[0] = 1
n

∑
k[zk].

2. Update Θ[l] = argΘ min H1(Θ, μ[l−1]), where Θ[l] = (θ[l]
1 , · · · , θ[l]

n ) is given by

θ
[l]
k = arg z̃k

∗μ[l−1], (5)

where, z̃k
∗ is the complex conjugate transpose of z̃k.
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Calculate μ[l] = argμ min H1(Θ[l], μ). This is given by

μ[l] =
1
n

∑
k

[zk] =
1
n

∑
k

eiθ
[l]
k z̃k. (6)

3. Terminate if a fixed point is reached (i.e. if (Θ[l], μ[l]) = (Θ[l−1], μ[l−1])).
Else, go to 2.

Let the terminating (Θ[l], μ[l]) be denoted by (Θ̂, μ̂). Then, the optimal em-
bedding is given by [zk] = eiθ̂k z̃k = z̃k

∗μ̂
‖z̃k

∗μ̂‖ z̃k for all k.

5.1 Vector Space Indexing of Shape

Following optimal embedding, the embedded shapes can be indexed by any of
the classical vector space indexing techniques. We choose to index by a kd-tree
[10]. After embedding, shape similarity retrieval is carried out by using the ds

shape metric of equation (1).

6 Experiments

At the moment, a total of 2812 boundaries have been segmented. Each boundary
is a consistent set of 34 landmarks.

We first evaluated the closeness of the embedding distance ds to the partial
Procrustes distance dP . Recall that the optimal embedding was obtained by
minimizing the absolute difference between d2

s and d2
P for all pairs of data in

the database. To measure the similarity between the two we calculated fraction
squared difference FSD = |d2

s([zi], [zj ]) − d2
P ([zi], [zj ])|/d2

P ([zi], [zj]) as well as
the fractional difference FD = |ds([zi], [zj]) − dP ([zi], [zj ])|/dP ([zi], [zj]). A set
of 1000 vertebrae were randomly chosen from the database and the FSD and FD
were calculated for all pairs of vertebrae from this set. The average and standard
deviation of the FSD and FD are given in Table 1. From the table, it is clear
that the Euclidean distance following embedding is very similar to the partial
Procrustes distance.

We also compared the relative ranking of vertebrae according to the em-
bedded Euclidean distance and the partial Procrustes distance. From the set of
1000 vertebrae used in the above experiment, 100 vertebrae were chosen as query
vertebrae. For each query vertebra, the set of 20 nearest vertebrae was found
according to the partial Procrustes distance dP and the embedded Euclidean
distance ds. For 98 of 100 queries the sets of nearest neighbors were identical,
and for 2 queries they differed by a single image.

Table 1. Mean and Variance of FSD and FD of pairs from a set of 1000 vertebrae

Quantity Mean Var.
FSD 9.19 × 10−4 2.09 × 10−6

FD 4.59 × 10−4 5.21 × 10−7
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Fig. 3. Indexing performance comparison for (a) 5, (b) 10, and (c) 20-nearest neighbors

Finally, the 2812 shapes were randomly sampled into sets of size 434, 902,
1654 and 2812. Each set was indexed for shape with metric and vector indexing
trees. The metric tree was used in its raw form, and to improve its performance
also after greedy node elimination and optimal node elimination. Each vertebral
shape in the database was used as query and 5, 10 and 20-nearest neighbor
vertebral images were retrieved. The average number of node tests per query
were recorded and expressed as a fraction of the total number of database points
and plotted. Figure 3a-c show the results. From the figures, it is clear that

Fig. 4. Shape query samples
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in all cases the kd-tree outperforms the raw metric tree. Further, except for the
small database of 434 images and 20-nearest neighbors, the vector space indexing
outperforms metric indexing with adaptation. Also, since the average number
of node tests as a fraction of database size decreases with database size, kd-tree
indexing has sub-linear complexity with respect to database size.

Three illustrative sample queries are given in figure 4. The left most image
in each row is the query image and the successive images are the retrieved
neighbors ranked in increasing shape distance from the query. The first query
has an osteophyte near the top left corner. The other two have an osteophyte
near the bottom left corner.

7 Conclusion

We proposed an embedding technique that optimally embeds shapes into a vector
space. This allows the use of vector space indexing techniques for fast retrieval.
Experiments show that the embedding does not significantly alter the metric or
the nearest neighbor queries. Further, shape indexing efficiency using a kd-tree
is significantly higher compared to the raw metric tree. It remains higher even
when the metric tree is adapted.
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Abstract. In functional neurosurgery, there is a growing need for accu-
rate localization of the functional targets. Since deep brain stimulation
(DBS) of the Vim thalamic nucleus has been proposed for the treatment
of Parkinson’s disease, the target has evolved toward the globus pallidus
and subthalamic nucleus (STN) and the therapeutic indications have
enlarged to include psychiatric disorders such as Tourette syndrome or
obsessive compulsive disorders. In these pathologies, the target has been
restrained to smaller functional subterritories of the basal ganglia, re-
quiring more refined techniques to localize smaller and smaller brain
regions, often invisible in routine clinical MRI. Different strategies have
been developed to identify such deep brain targets. Direct methods can
identify structures in the MRI itself, but only the larger ones. Indirect
methods are based on the use of anatomical atlases. The present strategy
comprised a 3D histological atlas and the MRI of the same brain spec-
imen, and deformation methodology developped to fit the atlas toward
the brain of any given patient. In this paper, this method is evaluated
in the aim of being applied to further studies of anatomo-clinical cor-
relation. The accuracy of the method is first discussed, followed by the
study of short series of Parkinsonian patients treated by DBS, allowing
to compare the deformed atlas with various per- and post-operative data.

1 Introduction

Since Deep Brain Stimulation (DBS) has been proposed for the first time for the
treatment of tremor [1], the precise localization of the target has proved to be
a crucial condition for the success of this therapeutic approach. Nowadays, this
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technique is used for the treatment of Parkinsonian patients, the subthalamic
nucleus (STN) being the optimal target [2], that provides significative clinical
benefit to the patient. The STN is a very small biconvex lens-shaped central
grey nucleus oriented obliquely with reference to the three anatomical planes. In
addition to playing a role in the pathophysiology of Parkinson’s disease, the STN
is also considered as being involved in the development of non motor diseases such
as obsessive compulsive disorders [3]. In such pathologies, it is believed that a
non motor portion of the STN could receive associative and limbic information
from the associative and limbic portions of the external globus pallidus. It is
thus more and more important to being able to localize with a high degree of
precision not even the STN and the other nuclei of the basal ganglia, but also
the topography of their functional subdivision into sensorimotor, associative and
limbic territories.

With the progressive development of magnetic resonance (MR) imaging tech-
niques, MR based methods have been developed for targeting the STN in indi-
vidual patients [4] but the resolution of the sequence used (T2-weighted) is not
precise enough and electrophysiological and clinical per-operative testing still
remain necessary. Also, contrast in an MR image is related to relaxation times,
a property which does not reflect systematically the histological structure of the
nervous tissue. Different strategies have been developed to identify deep brain
targets. Direct methods can identify structures in the MRI itself, but only the
larger ones. Indirect methods are based on the use of anatomical atlases. To
obtain a detailed cartography of the basal ganglia of a given patient, the only
possible strategy is to adapt an histological atlas to the patient MR image. Var-
ious histological atlases have been developed in the past. With printed atlases
[5,6,7], atlas-MR adaptation is to be done mentally by the atlas user. In [8], the
authors recently proposed a method in which a digitized version of the Schal-
tenbrand & Wahren (SW) atlas [7] is linearly coregistered interactively with the
patient MR image. A similar technique [9] was previously applied to an atlas of
the thalamus [6].

One motivation of the present work was to propose a tool allowing a better
anatomical identification of the STN target. Our strategy was twofold. On the
one hand, a three-dimensional (3D) anatomical atlas based on both histological
and MR data of a postmortem brain specimen was constructed. Histological data
were used to draw accurate contours of basal ganglia structures and functional
territories. MR data were used to generate anatomically relevant 3D surfaces of
these different structures by means of data fusion and contour optimization. On
the other hand, image processing techniques were developed with which atlas
surfaces could be deformed on an automatic basis onto any given patient’s MR
acquisition and could be sliced along any orientation. The most similar to the
present study is [10] but it relied on the SW atlas, the contours of which are
spatially inhomogeneous. In other methods there was no anatomical atlas but
data acquisition through information learning [11,12,13,14].

In this article, basal ganglia histological mapping of Parkinsonian patients
treated by DBS, achieved by automatic atlas deformation, is compared with
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various per- and post-operative data. Precisely, cross-evaluation is performed
with per-operative electrophysiological recordings and with anatomical localiza-
tion of therapeutic contacts obtained with an already published and clinically
validated method [8].

2 Material and Methods

2.1 Atlas Construction

A human brain obtained at autopsy from body donation was submitted to T1-
and T2-weighted MRI sequences 36 hours after death. After brain extraction,
the left hemisphere was fixed in formalin solution for 24 hours, cut into 1.5-
cm-thick frontal blocks that were fixed for 8 days and cut into 70-micron-thick
frontal sections on a freezing microtome. Photographs of the frozen blocks were
taken every ten sections. The 800 sections obtained were collected serially. One
series of sections (every tenth section) was Nissl-stained. Another adjacent se-
ries was immunostained for calbindin. Contours of cerebral regions of the basal
ganglia (striatum, globus pallidus, substantia nigra, subthalamic nucleus) and
of their functional subterritories (sensorimotor, associative, limbic) and some re-
lated structures (thalamus, bed nucleus, pedunculopontine nucleus) were delim-
ited on the basis of histological and immunohistochemical staining. Photographs
of the frozen sections were aligned by using fiducial markers to obtain a geometri-
cally consistent 3D cryo-block which was registered with the T1-MR and T2-MR
sequences. Each histological section was registered onto the corresponding cryo-
section, compensating for histological processing distortions, thus providing 3D
histo-blocks. All registrations were performed by applying the same automatic
intensity-based method to a region of interest centered on the basal ganglia. Trac-
ing of the contours was optimized by confronting all co-registered atlas data. 3D
consistency of atlas structures was also optimized at this stage. Such contours
were considered as the best estimate of the actual 3D geometry of the atlas brain.
Surfaces were generated from these serial contours, yielding a true 3D atlas of
the basal ganglia which could be sliced in any orientation (e.g. an AC-PC based
plane or an oblique surgical trajectory) [15].

2.2 Atlas Deformation

The histological 3D atlas was adapted onto the brain of a given patient by
automatic registration of the patient’s T1-weighted MR image with the atlas
post-mortem T1-weighted MR image, following a hierarchical framework. First,
a global registration was computed, consisting in a rigid transform completed by
an isotropic scaling factor. On the atlas MR image, an Region of Interest wasq
extracted once and for all, embbeding the basal ganglia of the left hemisphere
(dorso-ventral limits: corpus callosum, pons; medio-lateral limits: mid-sagittal
plane, Sylvian fissure; antero-posterior limits: corpus callosum). This ROI was
automatically extracted on the globally registered patient MR image, both for
the left and right hemispheres. Then non-rigid (affine) registration was performed
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between atlas ROI and patient ROIs, yielding two transformations which were
used to map the atlas independantly on the two hemispheres of the patient’s
brain. All registrations were performed by an iconic robust multiscale block
matching algorithm using correlation as similarity measure.

2.3 Evaluation

Qualitative evaluation of the deformation was first performed by constructing av-
erage normalized images. Then, evaluation was performed on two retrospective
series of data related to Parkinsonian patients treated by DBS. The first se-
ries (six patients) consisted in pre-operative T1-weighted (3D IR-FSPGR) MR
images, used for targeting in stereotactic conditions, and in per-operative micro-
electrode recordings interpreted by an electrophysiologist. The second series (ten
patients) consisted in post-operative T1-weighted MR images and in clinical out-
come obtained by stimulation of the definitive therapeutic contacts (each elec-
trode comprises four contacts which can be tested and selected post-operatively
on the basis of their therapeutic efficacy).

3 Results

3.1 Atlas Construction

Fig. 1 summarizes the different steps of the atlas construction.

Fig. 1. Summary of atlas construction. Left block: A) MR (T1 and T2-weighted) ac-
quisitions of the post-mortem specimen; B) brain extraction; C) frozen brain sectioning;
D) histological colorations and contour tracing; E) coregistration of atlas data (cryo
and histo 2D sections, MR images); F) resulting 3D meshes of the basal ganglia, after
multimodal and 3D optimization. Right block: cerebral peduncle, substancia nigra, red
nucleus, subthalamic nucleus, Forel field II, zona incerta and perithalamus with atlas
T1-weighted MR image.



Retrospective Cross-Evaluation of an Histological and Deformable 3D Atlas 389

Fig. 2. Intensity normalized patient MR images averaged after ACPC (first row) and
atlas spatial normalization (second row). Note that contours of the basal ganglia visible
in MRI (caudate nucleus, putamen, thalamus) are sharper with the atlas normalization
(only one hemisphere is presented, as the atlas is deformed indenpendantly on the 2
hemispheres).

3.2 Evaluation

Average Images. The 16 T1-weighted MR images of the patients included in
this paper were normalized in intensity, spatially normalized and averaged. Spa-
tial normalization was conducted following two distinct strategies (see Fig. 2).
On the one hand, ACPC normalization was performed (the images were au-
tomatically aligned along their mid-sagittal planes, and scaling factors were
applied along the antero-posterior direction to scale each image onto the AC-
PC line of the first patient). On the other hand, atlas normalization was per-
formed (using the transformation computed during atlas deformation - see
section 2.2).

Comparison of Atlas-Based STN Contours Versus STN Revealed by
Per-operative Electrophysiological Recordings. Before the operation, the
target and trajectory angles were chosen using MRI imaging [4]. Electrophys-
iological activity was recorded during the operation using sets of two to four
micro-electrodes, mounted on a microdrive attached to the stereotactic frame.
Recordings were analyzed by the electrophysiologist every 0.5 mm, from 5.5
mm above the target to 3 mm deeper. For each point, the intensity of the
signal and the structure identified by the electrophysiologist were noted. To
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Fig. 3. Coregistration of the atlas structures and electrophysiological per-operative
recordings in the patient’s pre-operative MRI. The blue spheres represent the record-
ings of two microelectrodes by hemisphere identified as being within the STN by the
electrophysiologist. Interval distance between two successive spheres is 0.5 mm.

Fig. 4. Backprojection of the definitive therapeutic contacts in the atlas space. Left:
STN surroundings - Cerebral Peduncle, Red Nucleus, Substancia Nigra, Zona Incerta,
Forel Field II - the STN has been suppressed to allow visualization of the contacts
(spheres); right: projection of the contacts onto the atlas T2 MR image (top: axial
slice; bottom: coronal slice).Note that not all contacts are visible on these slices, as
some contacts are located more dorsally or posteriorly.

be able to fuse this data with the atlas structures, the stereotactic frame was
extracted from the T1 pre-operative MRI, then registered with a template of
the frame to get the stereotactic referential. The stereotactic coordinates of



Retrospective Cross-Evaluation of an Histological and Deformable 3D Atlas 391

the microelectrode recordings were converted to MRI coordinates, then each
recording was encoded and displayed as a sphere, which size represents the
intensity of the recorded signal, and which color represents the structure as
identified by the electrophysiologist. For the six patients, 162 micro-electrode
recordings were identified as STN by the electrophysiologist. Among them, 132
(81.5 %) were also inside the STN surface, obtained through automatic at-
las deformation onto patient’s T1-weighted pre-operative MR image. The re-
maining STN recordings were all located at less than 1 mm of the STN
surface.

Anatomical position of therapeutic contacts in Parkinsonian patients
treated by DBS Identification of the contacts on post-operative MR images
was conducted following 2 steps: 1) MR images were reformatted along the
electrodes trajectories; 2) the 3D atlas was deformed onto the post-operative
MR images. This provided the anatomical position of the 4 contacts, including
the therapeutic one. Fig. 4 presents all the therapeutic contacts backprojected
into the 3D atlas space. For the 10 patients (meaning 20 therapeutic contacts),
14 contacts were located in the STN, 2 at the STH border, 2 in ZI (Zona Incerta)
and 2 in H2 (Forel Field II).

4 Discussion

The average images illustrate that the atlas normalization is superior to the AC-
PC normalization, as the resulting mean images are much less blurry. Moreover,
particular features are only clearly visible in the atlas-based normalized images
(such as the ventral part of the putamen).

Concerning the comparison between atlas-based STN and STN revealed by
electrophysiological recordings, it should be pointed out that the microelectrode
recordings coordinates were given by the electrophysiologist as the distance be-
tween the electrode and the target. This distance was given by the microdrive
with a variable initial offset of at most 1mm. This offset could explain some of
the mismatches between electrophysiological data and atlas STN surfaces.

Semi-automatic registration based on the SW atlas [8] led, for 10 patients
(20 electrodes) to 15 contacts located in the STN, 2 at the STN border, 1 in
ZI, 1 in H2 and 1 in the MRF. The results obtained with the new 3D atlas
automatically deformed onto patients post-operative MR images were very sim-
ilar (see section 3.2), suggesting that the automatic 3D atlas MRI registration
technique is reliable. The observed difference is most likely to be due to differ-
ences in the drawing of the two atlases (in particular for ZI and H2). Moreover,
the SW atlas is a printed histological atlas in which the number of sections is
low (20 sections in the frontal series) and the spacing between adjacent sections
very variable (1-4 mm). In the new 3D atlas there are 160 sections for a 0.35
mm spacing. This means that in [8] a section corresponding to the position of
a contact had to be registered with the nearest section in the SW atlas, which
implies approximations.
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This study demonstrated a very good correlation between different methods
for identifying the STN with an histological and deformable 3D atlas in different
patients brains. In particular, comparison with STN revealed by microelectrode
recordings led to good correspondance scores. Therefore it is concluded that this
technique is reliable and that the current atlas/MRI coregistration could be used
as a standard method of deep brain structures mapping. The method is currently
validated through a large retrospective study of Parkinsonian patients treated
by DBS.
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Abstract. Digital brain atlases can be used in conjunction with mag-
netic resonance imaging (MRI) and computed tomography (CT) for
planning and guidance during neurosurgery. Digital atlases are advanta-
geous, since they can be warped nonlinearly to fit each patient’s unique
anatomy.

Two atlas-to-patient warping techniques are compared in this paper.
The first technique uses an MRI template as an intermediary to esti-
mate a nonlinear atlas-to-patient transformation. The second, is novel,
and uses a pseudo-MRI volume, derived from the voxel-label-atlas, to
estimate the atlas-to-patient transformation directly. Manual segmenta-
tions and functional data are used to validate the two methods.

1 Introduction

Print atlases were the first visualization tools used to identify surgical targets
for functional neurosurgery [16,18]. In order to better visualize patient anatomy,
digital atlases derived from print atlases are used in conjunction with imaging
data to further enhance the visualization of targets in the subcortical nuclei
[2,17,15,10,5]. Despite recent advances in medical imaging which allow improved
visualization of the thalamus [7,14], most clinical MRI volumes lack the contrast
and resolution required for proper visualization of all subcortical nuclei.

Groups who have developed atlas-to-patient warping techniques have used
linear transformations in order to match the atlas to pre-operative patient MRI
volumes [2,15]. Recently, nonlinear atlas warping has been used to account for
local differences between the atlas and patient anatomy [17,5], and used for neu-
rosurgical planning, to analyze intra-operative electrophysiological data in the
thalamus and the internal capsule[8,9], and the analysis of thalamic lesions[1].
This paper analayzes the two different nonlinear atlas-to-subject warping tech-
niques to determine which is most accurate for surgical planning.

In this paper, we use a new high resolution atlas that contains multiple reg-
istered representions of the 105 atlas structures [4,5]. The atlas is derived from a
single set of segmented serial histological data taken from a single subject. The
segmentation contours are used to derive a voxel-label-atlas, whose intensities
are modified to create a pseudo-MRI. Figure 1 shows the histological volume,
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Fig. 1. From Left to Right: Reconstructed histological volume, histological volume
with voxel-label-atlas overlaid, pseudo-MRI, and the Colin27 MRI average.

Fig. 2. First three panels: Voxel-label atlas warped to fit the Colin27 MRI average.
Right: 3D geometric atlas.

the histological volume with the voxel-label-atlas overlaid, and the pseudo-MRI.
Figure 2 shows the voxel-label-atlas warped onto the Colin27 MRI average tem-
plate [13] and the 3D geometric atlas [5].

This paper evaluates the accuracy of two different atlas-to-patient nonlinear
warping techniques presented in Section 2. Section 3 discusses the anatomical
and electrophysiological validation criteria. The results of this evaluation are
given in Section 4.

2 Atlas-to-Patient Warping Techniques

Two atlas-to-patient warping techniques have been developed to warp the at-
las described in [5] to patient data. Both techniques begin by estimating a 9
parameter linear transformation (consisting of 3 translations, 3 rotations, and
3 scales) to transform the atlas into the native space of the MRI data. This
transformation is used as the input for the nonlinear transformation estimation.

Nonlinear warping is used in order to account for any local differences be-
tween the anatomy of the atlas and patient data. Both techniques use the ANI-
MAL algorithm to estimate the nonlinear transformation used to warp the atlas
to fit patient data (see section 2.1).
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In the first technique, described in Section 2.2, the Colin27 MRI average
is used as an intermediate template in order to estimate a nonlinear
transformation. In the original work of St-Jean [17], a thin plate spline was
used to align the digital atlas data to the Colin27 template [13]. To address
limitations of the previous landmark-based technique, the ANIMAL intensity-
based image registration technique was used to align the the new atlas with
the Colin27 template. Since similar intensities between the atlas and template
images were required, a pseudo-MRI was created from the voxel-label-atlas by
mapping each label to an intensity from the analogous structure found in the
Colin27 MRI average template volume (see Fig. 1). This procedure is validated in
section 3.1.

The use of an atlas-based pseudo-MRI inspired the second atlas-to-patient
customization technique, presented in Section 2.3. This technique estimates a
nonlinear atlas-to-patient transformation directly, without using any intermedi-
ate steps.

2.1 The ANIMAL Registration Algorithm

ANIMAL is an iterative algorithm [6] which estimates a 3D deformation field
which matches a source volume to a target volume. The algorithm is divided
into two steps. The first step is the outer loop, where large deformations are
estimated on data which has been blurred using a Gaussian kernel with of large
full-width-at-half-maximum (FWHM). These larger deformations are then input
to subsequent steps where the fit is refined by estimating smaller deformations
on data blurred with a smaller FWHM.

Each step in the outer loop contains an inner-loop where the the nonlinear
transformation which maximizes the similarity between a source and a target
volume is estimated. The inner loop consists of two steps: calculating a defor-
mation at each node which will maximize the local similarity measure, and the
second is a smoothing step to ensure that a continuous deformation field has
been estimated. For further details on ANIMAL’s parameters, the reader is re-
ferred to [5,6]. For each step in the warping techniques presented in Sections 2.2
and 2.3 the same weight, stiffness, and similarity values are used (1, 1, and 0.3
respectively), and use the cross-correlation objective function.

2.2 MRI Template Based Warping

As mentioned in Section 1, the atlas has been nonlinearly warped to the Colin27
MRI average [13], which now serves as a template for atlas-to-patient registra-
tion. Here, ANIMAL is used to compute the nonlinear transformation required
to align the Colin27 template MRI volume with the patient’s MRI. The stan-
dard parameters used for the registration strategy are shown in Table 1. Once
the transformation is estimated, it is applied to the atlas to customize it onto
the patient’s anatomy. This can be seen in the top path of the flowchart of
Fig. 3.
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Table 1. ANIMAL parameters used for template based atlas-to-subject nonlinear
transformation estimation

FWHM (mm) Step Size (mm) Sub Lattice Diameter Sub Lattice Iterations

8 8 24 6 30
8 4 12 4 30
4 2 6 6 10

2.3 Pseudo-MRI Based Warping

In the novel customization procedure, the atlas pseudo-MRI is used as the source
image in order to estimate the atlas-to-patient nonlinear transformation. Since
the pseudo-MRI is derived directly from the anatomy of the atlas, any errors
incurred by warping the atlas to an intermediate template are now eliminated.
During the nonlinear transformation step, small deformations are estimated to
warp the atlas to the target patient MRI volume. No blurring is required due to
the homogeneous intensities for each structure represented in the pseudo-MRI.
A hierarchical registration strategy is still used. The nonlinear transformation
estimation procedure can be seen in the bottom path of the flowchart in Fig. 3.
The registration parameters are shown in Table 2.

Fig. 3. Flow chart for atlas-to-patient nonlinear transformation estimation. The top
path shows the template based atlas-to-patient warping technique. The atlas is reg-
istered to the Colin27 MRI template using the pseudo-MRI. The template-to-patient
transformation is estimated and then applied to the atlas. The bottom path, demon-
strates how the pseudo-MRI based technique bypasses the need to register the atlas to
a patient MRI volume by directly estimating an atlas-to-patient transformation.

Table 2. ANIMAL parameters used for template based atlas-to-subject nonlinear
transformation estimation

Step Step Size (mm) Sub Lattice Diameter Sub Lattice Iterations

1 4 8 6 10
2 2 6 6 10
3 1 6 3 10
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3 Atlas-to-Patient Warping Evaluation

The atlas to patient warping techniques presented in Sections 2.2 and 2.3 were
evaluated using clinical T1-weighted pre-operative image data from 10 surgical
candidates: 5 subthalamic stimulation cases (5 males) and 5 thalamotomy (3
males and 2 females, 3 left and 2 right thalamotomy) cases with stereotactic
headframe attached. All MRI volumes were acquired between 1997 and 2002.
The following sections present anatomical and functional validation for each
estimated atlas-to-patient transform.

3.1 Anatomical Validation

Since a gold standard for anatomical validation was not available, manual struc-
ture segmentations were used. To estimate inter-rater variability, three expert
raters identified the striatum, the thalamus, and the globus pallidus in the MRI
data. For each structure in each MRI volume, the consensus label (ie: all voxels
labelled by at least two raters for each structure) was considered as “the ground
truth”. This consensus label was verified against the analogous atlas structure
by determining the Kappa score (κ):

κ =
2a

(2a + b + c)
, (1)

where a is the number of voxels common to the rater and the warped atlas, and
b + c represents the sum of the voxels uniquely identified by either the rater or
the atlas warping technique.

The Kappa score is extremely sensitive to changes in two different labels.
Figure 4 shows the striatum from the atlas shown in Figs 1 and 2. If the striatum
is translated by 0.5mm in all three dimensions, the Kappa score decreases from 1
(for the label on itself) to 0.87. If the striatum if translated by 1mm in all three
dimension, then the Kappa score decreases further to 0.81. Typically, scores

Fig. 4. Changing Kappa values for a displaced Striatum. From left to right
Coronal slice through the original striatum defined by the atlas, the striatum translated
by 0.5mm in all three dimension (κ = 0.87), and striatum displaced by 1mm in all three
dimensions (κ = 0.81). In the middle and right most images, the label in red represents
the original striatum, and the label in green represents the translated striatum, and
yellow, the overlap between the two.
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greater than 0.7 are deemed acceptable in the segmentation and classification
literature.

Two validations were completed. The first quantifies the pseudo-MRI based
customization of the atlas data on the Colin27 target, and thus establishes an
upper bound for atlas-to-patient warping quality when using the Colin27 MRI
template-based warping method. The second anatomical validation was done
using the pre-operative data from the 5 subthalamic stimulation cases.

3.2 Functional Validation

The functional validation uses intra-operative recordings from the 5 patients who
underwent thalamotomies to relieve symptoms of Parkinsons disease. In order
to determine the lesion location, surgeons typically locate the sensory thalamus
using electrical stimulation. By assessing the patients response to different levels
of electrical stimulation (1V, 0.75V, 0.5V, 0.25V), the location of the sensory
thalamus can be established within the coordinate system established by the
stereotactic frame mounted on the patient’s head. Using the surgical guidance
software [17], the lesion target location, the extension of the electrical stimu-
lator, angles of declination and azimuth, and the probe location frame-space
coordinate, the framespace coordinates of the tip of stimulator can be found.
For both atlas-to-subject warping techniques, the locations of stimulation point
were warped onto the Colin27 MRI average or the pseudo-MRI using the inverse
atlas-to-subject transformation. Points from patients who underwent right tha-
lamotomies were reflected to the left side of brain. Only stimulations eliciting a
sensory response were used for this validation, yielding a total of 36 functional
data points. The warped functional data points were analyzed by determining
how many fell inside the 3D boundary defined by the sensory thalamus, and by
comparing the distance between the centroid of the warped data points and the
center of gravity of the volume defined by the sensory thalamus.

4 Results

The first anatomical validation compares the atlas label to manual rater labels
of the the Colin27 MRI template to validate the initial atlas-to-template warp.
To establish a baseline, each of the raters labels is compared to the consensus
label and shown in the first row of Table 3. Kappa scores show excellent agree-
ment between raters for the striatum and thalamus, however the globus pallidus
appears to be more difficult to manually segment as demonstrated by the lower
kappa value, probably due to difficulty in identification of the posterior border
that has lower contrast in the MRI image. Comparisons between the consensus
label and the warped atlas, also show excellent agreement for the striatum and
the thalamus, but as in the case for the manual raters, it is difficult to reach
a consensus on the location of the globus pallidus. These scores indicate how
well raters agree with the atlas structures defined on the Colin27 MRI template
and serve as the upper limit in the kappa value when comparing the patient-
customized atlas labels below.
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Table 3. Top: Kappa scores to assess the overlap between initial warp to the Colin27
template and the rater-defined consensus label. The mean kappa is comparing the rater
label overlap to the consensus label is also given. Bottom: The mean kappa comparing
the rater label overlap to the mean label is also given.

Structures Striatum Thalamus Globus Pallidus

Rater-to-Template (κ̄) 0.95 0.95 (.93-.96) 0.82 (.76-.96)
Pseudo-to-Template (κ) 0.88 0.82 0.69

Structure Striatum Thalamus Globus Pallidus

Rater-to-Consensus (κ̄) 0.88 0.88 0.69
Pseudo-to-Consensus (κ̄) 0.79 0.74 0.68
Template-to-Consensus (κ̄) 0.80 0.71 0.63

The second validation compares the template-based and the pseudo-MRI
based warping procedure against the manual rater labels on each of the 5 sub-
thalamic stimulation cases. All comparison are done against the baseline estab-
lished by consensus labels. Kappa values for these comparisons are shown in the
top row of the second table in Table 3. Once again kappa values show excel-
lent agreement between raters, except for in the globus pallidus. Comparisons
between the results of the pseudo-MRI based warping technique and template-
based warping technique are compared against the consensus label and show
that the techniques are equivalent for the striatum, but the pseudo-MRI based
technique yields better results for both the thalamus and the globus pallidus.

The functional validation for both warping techniques yields 31 of 34 (89%)
data points falling inside the atlas definition of the sensory thalamus. The data
points warped using inverse atlas-to-template transformation yielded a centroid
which was 2.5mm away from the center of gravity of the sensory thalamus of the
atlas. The points warped back to the atlas space using the inverse pseudo-MRI
based transformations yielded a centroid which was 2mm away from the center
of gravity the sensory thalamus. These results suggest the the pseudo-MRI based
method yields a better atlas-to-patient customization.

5 Conclusions and Future Work

In this paper we have presented two different techniques to warp an atlas derived
from serial histological data to fit clinical patient MRI volumes. The first relies on
a template created from the Colin27 MRI average to estimate an atlas-to-patient
warp. The second technique uses a pseudo-MRI derived from a voxel-label-atlas
and has a contrast similar to the Colin27 MRI average. Both techniques were
evaluated using anatomical and electrophysiological data from pre-operative clin-
ical data from Parkinson’s patients. The analysis comparing the atlas label to
manual labels shows that the pseudo-MRI based warping technique may be bet-
ter than the template based technique for the striatum, thalamus, and globus
pallidus. An analysis of pre-operative electrophysiological data also suggests the



Anatomical and Electrophysiological Validation of an Atlas 401

pseudo-MRI based technique offers increased accuracy over the template based
technique.

Additional data will be required to determine if the pseudo-MRI based non-
linear atlas-to-patient warping technique is statistically better than the the
Colin27 MRI template based technique, and is the subject of future work. We
would like to continue the atlas validation using more intraoperative data, by
classifying the electrophysiological data with respect to the strength of the stim-
ulation and the strength of the sensory responses, and to create a probabilistic
functional atlas of the basal ganglia and thalamus from this data.
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Abstract. In this paper we present a novel method for building a 4D statisti-
cal atlas describing the cardiac anatomy and how the cardiac anatomy changes
during the cardiac cycle. The method divides the distribution space of cardiac
shapes into two subspaces. One distribution subspace accounts for changes in
cardiac shape caused by inter-subject variability. The second distribution sub-
space accounts for changes in cardiac shape caused by deformation during the
cardiac cycle (i.e. intra-subject variability). Principal component analysis (PCA)
have been performed in order to calculate the most significant modes of variation
of each distribution subspace. During the construction of the statistical atlas we
eliminate the need for manual landmarking of the cardiac images by using a non-
rigid surface registration algorithm to propagate a set of pseudo-landmarks from
an automatically landmarked atlas to each frame of all the image sequences. In
order to build the atlas we have used 26 cardiac image sequences from healthy
volunteers. We show how the resulting statistical atlas can be used to differentiate
between cardiac image sequences from patients with hypertrophic cardiomyopa-
thy and normal subjects.

1 Introduction

The early diagnosis and treatment of cardiovascular diseases is crucial in order to reduce
mortality and to improve patients’ quality of life. Recent advances in the development
of magnetic imaging (MR) have enabled the acquisition of high resolution 4D cardiac
image sequences which describe the cardiac anatomy as well as function. The acqui-
sition of 4D cardiac image sequences drastically increases the amount of data to be
interpreted by clinicians. Therefore, applications assisting the automatic interpretation
of MR images are of high importance for increasing the clinical use of MR imaging.

A large number of approaches have been developed for the volumetric modeling
of the heart. A comprehensive review of these approaches can be found in Frangi et
al. [1]. Biomechanical models of the heart have been developed by combing surface
information and motion information [2] and by using a deformation model inspired by
continuum mechanics [3]. In contrast to these biomechanical models a number of re-
searchers have developed statistical models (e.g. Active Shape Models) of the cardiac
anatomy [4] [5] and statistical models of the appearance of the heart (e.g. Active Ap-
pearance Models) [6] [7]. For example, Frangi et al. have presented an approach for
the construction of three-dimensional statistical shape models of the cardiac anatomy
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[8]. This approach eliminates the need for landmarking by using non-rigid registration
to propagate landmarks from an automated landmarked atlas to the rest of the images.
The resulting model includes the left and right ventricle. The approach developed by
Lötjönen et al. goes one step further: In this work, statistical shape models of the atria,
ventricles and epi-cardium from short-axis and long-axis MR images are constructed
and used for the segmentation of cardiac images [9]. In addition a variety of methods
which model shape variability have been explored including PCA, ICA and LPD. How-
ever, in both cases the statistical shape models describe only the 3D cardiac anatomy
at a single time point and ignore the shape variation during the cardiac cycle. Although
cardiac modeling of the anatomy is relatively well investigated, very few attempts have
been made to build a computerized atlas which captures functional variability of the
heart across a group of subjects. Rao et al. suggested a framework for building an at-
las of the myocardial motion [10] by using tagged MR image sequences to calculate
the cardiac motion. Then, the calculated motion fields of different subjects are mapped
into the same coordinate system using a vector field transformation technique which
accounts for differences in the size, orientation and shape of the heart.

In this paper we present a novel method for building a 4D statistical atlas describing
the cardiac anatomy and how the cardiac anatomy changes during the cardiac cycle.
In previous work we developed 4D probabilistic atlases of the left ventricle, the my-
ocardium and the right ventricle describing the anatomy and function of a healthy heart
[11]. While these probabilistic atlases contain information about the degree of vari-
ability at every voxel, statistical atlases provide additional information about the type
of variability. The key contribution of our work is the construction of 4D statistical
model of the heart that subdivides the distribution space of cardiac shapes into two
subspaces: One distribution space accounts for changes in cardiac shape due to defor-
mations throughout the cardiac cycle and the other distribution space accounts for the
changes in cardiac shape due to variability across the population. Furthermore, we have
used these statistical models to differentiate between cardiac image sequences from
patients with hypertrophic cardiomyopathy and normal volunteers.

2 Building a 4D Statistical Atlas

Segmentation of Cardiac MR Image Sequences. The method developed by Lorenzo-
Valdés et al. [12] has been used to segment the image sequences. In this method the
first frame of each image sequence is segmented manually and then the segmenta-
tion is propagated to the subsequent frames using a non-rigid registration algorithm.
The images sequences are segmented into three anatomical structures: the left ventri-
cle, the myocardium and the right ventricle. After segmenting the image sequences,
shape based interpolation is used to resample the images to isotropic voxels of size
1mm × 1mm × 1mm.

Mapping the Image Sequences to the Same Spatio-Temporal Coordinate System.
The second stage in the construction procedure of the atlas is to use a spatio-temporal
registration method to align the image sequences into the same spatio-temporal co-
ordinate system. The registration method is similar to one which we have previously
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introduced [13] and has also been used for the construction of a probabilistic atlas of
the cardiac anatomy and function [11]. It uses a 4D mapping which has been resolved
into decoupled spatial and temporal components Tspatial and Ttemporal respectively.

The spatial transformation used is an affine transformation with 9 degrees of free-
dom which accounts for spatial differences caused by orientation, translation and scal-
ing. The temporal transformation consists of a global part which scales the image se-
quences to match the end-systolic and end-diastolic time points and a local part which
deforms the temporal characteristics of each image sequence to follow the same mo-
tion pattern with the reference image sequence. The local temporal transformation is
modeled by a free-form deformation using a 1D B-spline:

Tlocal
temporal(t) =

3∑
l=0

Bl(u)φti+l
(1)

where Φ denotes a set of nt control points φt with a temporal spacing δt and Bl repre-
sents the l-th basis function of the B-spline. The optimal spatial and temporal transfor-
mation is found by maximising a voxel based similarity measure, the normalized mutual
information (NMI). The NMI of two image sequences can be calculated directly from
the joint intensity histogram of the two sequences over their spatio-temporal domain of
overlap.

Building the Statistical Atlas of the Heart. After obtaining the spatio-temporal map-
pings, the segmented image sequences are transformed to the common spatio-temporal
coordinate system. Then, the transformed images are blurred with a Gaussian kernel
to compensate for low out-of-plane resolution of the images which results in signifi-
cant partial volume effects in the segmentation. In our approach we eliminate the need
for manual landmarking by using a method similar to the one introduced by Frangi et
al.[8]. In this method, a set of pseudo-landmarks are propagated from an automatically
landmarked atlas to all the frames of each image sequence.

Landmark Extraction and Propagation. After blurring the image sequences with
a Gaussian kernel, the marching cubes [14] algorithm is used to generate a dense tri-
angulation (pseudo-landmarks) of the boundary surfaces of each anatomical structure
(the left ventricle, the myocardium and the right ventricle) of all the frames of each
image sequence. In order to perform any statistical analysis correspondence between
the pseudo-landmarks of each image needs to be established. This is achieved by using
a surfaced based registration method based on B-Splines. The end-diastolic frame of
the image sequence used as reference during the construction of the atlases is also used
as the reference surface in these registrations. After registering all surfaces, we use the
obtained transformations to propagate the pseudo-landmarks of the reference surface to
each frame.

Modeling Shape Variability. Let {qik; i = 0...np; k = 0...nf} denote n shapes
(np subjects with nf frames each). Each shape consists of m 3D landmarks, pj =
(p1j , p2j , p3j; j = 1....m). Each vector qik will consist of the landmarks (p11, p21, p31,
p12, p22, p32, ...., p1m, p2m, p3m). The aim of the statistical analysis is to approximate
the distribution of the landmarks with a linear model of the form:
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q = q̄ + Φb (2)

where q̄ is the average landmark vector, b is the shape parameter vector of the model,
and Φ is a matrix of eigen-vectors. The matrix Φ is obtained by performing a principal
component analysis (PCA) to the covariance matrix C. During the principal component
analysis, the principal components of C are calculated as its eigenvectors φi and the
corresponding eigenvalues λi are also calculated (such that λi < λi+1).

The aim of our statistical analysis is to identify what changes in the cardiac anatomy
occur due to the cardiac cycle and what changes occur due to shape variation across the
population. Therefore, we want to use principal components analysis (PCA) to find the
estimate of two subspaces of the overall distribution. In order to achieve this we perform
two separate principal component analysis. The covariance matrices for the total shape
distribution is given by:

Ctotal =
1

nfnp

np∑
i=1

nf∑
k=1

(qik − q̄)(qik − q̄)T (3)

where nf is the number of frames of each image sequence, np the number of images
sequences and q̄ is the mean shape.

The covariance matrix of the shape differences occurring due to the cardiac cycle is
given by:

Cwithin =
1

nfnp

np∑
i=1

nf∑
k=1

(qik − q̄i)(qik − q̄i)T (4)

where q̄i is the mean for the subject i (the image sequences contain the same number of
frames since they are registered in the temporal domain) and qik is the shape of frame
k of subject i.

The covariance matrix which described the shape differences occurring across the
population is given by:

Cbetween =
1
np

np∑
i=1

(q̄i − q̄)(q̄i − q̄)T (5)

where, as in eq. 4, np is the number of image sequences and q̄ is the total mean.
In order to find the principal components of each subspace the eigen values and vec-

tors of each covariance matrix (eq. 4 and 5) are calculated. A similar decomposition
of the total distribution to subspaces has been used by Costen et al. for the automatic
extraction of the face identity-subspace [15]. New shape examples can be generated by
varying the parameters b of equation 2. Assuming that the distribution of the data fol-
lows a multidimensional Gaussian distribution (this assumption has some limitations),
the variance of the ith parameter of b across the training set is given by λi. If we apply
limits in the variation of bi such that bi ≤ ±3

√
λi we ensure the generated shape is

similar to those contained in the training class.

3 Results

Materials. In order to produce the atlas we have acquired 26 untagged MR image
sequences from healthy volunteers. The images have been acquired using a Siemens
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Sonata 1.5T scanner using TrueFisp pulse sequence in a form of a series short-axis
images. Seven of the images were acquired using retrospective gating acquisition while
the rest were acquired using prospective gating acquisition. One of the image sequences
was selected to be the reference subject of the spatio-temporal registration. Care was
taken to ensure that the reference subject was a normal representative of the population.
The reference subject had in-plane resolution of 192 × 256 with pixel size of 1.48 ×
1.48mm and a slice thickness of 10mm (which is the typical pixel size used in these
acquisitions). After the shape based interpolation the slice thickness was reduced to
1mm. The images covered the entire left-ventricle form base to apex.

Statistical Model of the Variability Across Subjects. These models describe the sig-
nificant changes in the shape of the left ventricle, the myocardium due to subjects’
different heart shape. Figure 1 shows the three most significant modes of variation for
the left ventricle (a) and the myocardium (b). For the left ventricle, the three most sig-
nificant modes of shape variation describe the differences in the size of the left ventricle
(mode 1), the variation of the position of the apex of the heart (mode 2) and the elonga-
tion of the apex of the heart (mode 3). For the myocardium, the three most significant
modes of variation describe the size of the myocardium (mode 1), the thickness of the
myocardium (mode 2) and the direction of the myocardium long-axis (mode 3). In or-
der to describe 90% of the shape variability of the inter-subject distribution subspace
13 (of 26) modes of shape variation are required.

Statistical Model of the Variability Across the Cardiac Cycle. These models de-
scribe the most significant changes in the shape of the left ventricle and the myocardium
which occur due to the cardiac cycle. Figure 2 shows the three most significant modes
of variation of the left ventricle (a) and the myocardium (b). For the left ventricle, the
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Fig. 1. The significant modes of variation across subjects of (a) left ventricle and (b) my-
ocardium. Animations of all the atlases and also of atlases of the right ventricle can be found
at: http:/www.doc.ic.ac.uk/˜dp1/Research/StatisticalAtlases/
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Fig. 2. The significant modes of variation across the cardiac cycle of (a) left ventricle and (b)
myocardium

three most significant modes of variation (fig. 2(a)) describe the differences in the vol-
ume of the left ventricle during the cardiac cycle (mode 1), the twisting of the heart
during the contraction phase (mode 2) and the changes in the position of the apex of
the left ventricle and also the position of the papillary muscles (mode 3). For the my-
ocardium, the three most significant modes of variation (fig. 2(b)) describe the changes
in the size of the left ventricle and the thickening of the myocardium, the twisting of the
myocardium during the contraction phase (mode 3) and the movement of the cardiac
wall (mode 3). In order to describe 90% of the shape variability of the intra-subject
distribution subspace 16 (of 468) modes shape variation are required.

4 Classification Using the 4D Statistical Atlas

In this section we demonstrate a possible use of the statistical atlases for the classifica-
tion of cardiac data. We used the above statistical models to classify cardiac data from
normal volunteers and patients with hypertrophic cardiomyopathy (a condition in which
the myocardium has an excessive thickening). In order to perform this classification we
have excluded six subjects from the model (i.e. the model has been constructed from
only 20 healthy subjects) and we have acquired MR image sequences from 8 patients
with hypertrophic cardiomyopathy. The same processing steps for the registration and
pseudo-landmark extraction and propagation were used for these image sequences as
for ones used for the construction of the statistical models (see section 2). Then, for
each image sequence the mean surface (over the cardiac cycle) was calculated. These
mean surfaces were projected into the shape space of the statistical models. Figure 3
shows the projections of the subjects’ myocardium to the space of the across population
atlas (a) and across cardiac cycle atlas (b) . We clearly see from the distribution of the
data that a simple classifier will enable the correct differentiation between normal and
hypertrophic subjects.
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Fig. 3. Projection of the myocardium to the space of the (a) across the subjects atlas and (b) across
the cardiac cycle atlas (the circles on the figures are the subjects with hypertrophic cardiomyopa-
thy while the stars the normal ones)

Table 1. Accuracy of the classification using the statistical model of the myocardium describing
changes in the anatomy due to the cardiac cycle (model A), due to inter-subject variation (model
B) and a combination of both

Model A Model B Model A and B
Normal 83% 100% 100%
Hypertrophic cardiomyopathy 100% 87.5% 87.5%

In order to classify the data we used a k-weighted NN-classifier. A leave one out ex-
periment was performed. The first 4 principal components were employed when using
the statistical atlas describing the cardiac shape variability due to cardiac cycle, while
the second and the third principal components were employed when using the statistical
atlas describing the inter-subject shape variability. In this case, the first principal com-
ponent was not used in the classification since it describes the size of the myocardium in
the base to apex direction. Furthermore, the combination of these principal components
(from both models) were also used for data classification. The classification results are
reported in table 1.

5 Conclusions

In this paper we presented a novel method for building a 4D statistical atlas describing
the cardiac anatomy and how the cardiac anatomy changes during the cardiac cycle.
Contrary to probabilistic atlases, the statistical atlases provide not only information re-
garding how much variability exists in the data but also what the variability is. In order
to build the atlas we have used 26 cardiac image sequences from normal volunteers. The
method separates the distribution space of the cardiac shape into two subspaces. One
distribution subspace accounts for the changes in cardiac shape caused by inter-subject
variability. The second distribution subspace accounts for the changes in cardiac shape
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caused by deformation in the cardiac cycle (i.e. intra-subject variability). Principal com-
ponent analysis (PCA) has been performed in order to calculate the most significant
modes of variation of each distribution subspace. Moreover, our method eliminates the
need for manual landmarking of the cardiac images by using a non-rigid registration
algorithm to propagate landmarks from an from an automatically landmarked to each
image. We have also demonstrated a possible use of the statistical atlases by using them
to differentiate between cardiac image sequences from patients with hypertrophic car-
diomyopathy and normal subjects.
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Abstract. The construction of population atlases is a key issue in med-
ical image analysis, and particularly in brain mapping. Large sets of
images are mapped into a common coordinate system to study intra-
population variability and inter-population differences, to provide voxel-
wise mapping of functional sites, and to facilitate tissue and object seg-
mentation via registration of anatomical labels. We formulate the un-
biased atlas construction problem as a Fréchet mean estimation in the
space of diffeomorphisms via large deformations metric mapping. A novel
method for computing constant speed velocity fields and an analysis of
atlas stability and robustness using entropy are presented. We address
the question: how many images are required to build a stable brain atlas?

Keywords: Computational anatomy; Brain Atlases; Image Metric Space.

1 Introduction

Computational anatomy is the study of anatomical variation [1]. For a set of
images representing a population, a natural problem in computational anatomy
is the construction of an atlas — an image that serves as a representative for
the population. Such an atlas must represent the anatomical variation present
in the image population [2]. A major focus of computational anatomy has been
the development of image mapping algorithms [3,4,5,6] that map and transform
a single brain atlas onto a population.

In the recent and related work of [7], the authors developed a large defor-
mation template estimation algorithm by averaging velocity fields. Most other
previous work [8,9] in atlas formation has focused on the small deformation set-
ting in which arithmetic averaging of displacement fields in well defined. We do
not make this small deformation assumption.

To generate the deformations for producing atlases, we apply the theory
of large deformation diffeomorphisms [10,4]. We simultaneously estimate the
unbiased atlas and the transformations which map the atlas to each population
image. Linear averaging cannot be applied directly to the large deformation
setting as, under the large deformation model, the space of transformations is not
a vector space, but rather the infinite dimensional group H of diffeomorphisms
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of an underlying coordinate system Ω. In our previous work [11], we address this
problem by posing anatomical atlas creation as a statistical estimation problem
where the notion of simple intensity averaging is extended to general metric
spaces first proposed by Fréchet [12]. In [11], we developed a method for unbiased
construction of atlases based on an iterative greedy method for generating large
deformation diffeomorphisms.

In this paper, we present a complete large deformations metric mapping
(LDMM) methodology introduced by [13]. Both the greedy and LDMM im-
plementations provide large deformation coordinate system transformations. In
[11], the solution to the atlas formation problem generates paths through the
space of diffeomorphisms, the length of which cannot be used to define a metric
as the method provides a locally optimal rather than full space-time solution.
In contrast, the variational optimization of the atlas formation cost function in
the LDMM algorithm, gives geodesic paths on the manifold of diffeomorphic
transformations, G, the lengths of which places the orbit of transformed images
into a metric space. In this way, we build a geodesic atlas.

We use the entropy of voxel intensities to measure the robustness and sta-
bility of unbiased atlases. In the context of in MR images, entropy is often used
to assess the degree to which an image differs from an ideal where an ideal im-
age intensity histogram consists of a small number of modes representing tissue
classes [14,15]. We study the stability of atlases produced by our method by
building atlases, of increasing population size, using multiple permutations of
images from a database of images.

The remainder of this paper is organized as follows: in Section 2, the unbiased
atlas formation problem is developed; in Section 3, the Euler-Lagrange equations
used to characterize the LDMM and implementation details and a novel method
for constant velocity computation are presented; and in Section 4, an analysis of
the atlas stability and robustness using entropy are reported.

2 Method

In our previous work [11], we exemplify the atlas estimation problem by first
considering a population of N images {Ii}i=1...N acquired by the same imaging
modality which have been rigidly aligned. We seek the representative image, Î,
that requires the minimum amount of energy to deform into each population
image Ii. In the spirit of [13], we define dense transformations, from the infinite
dimensional group of diffeomorphisms H, and fluid flow vector fields in the fol-
lowing manner: the group elements of the change of coordinates ϕi such that
Î = ϕ−1

i Ii = Ii ◦ ϕi are generated as the end-points ϕi = φi(1) of the flows of
time-dependent vector fields vi(·, t), t ∈ [0, 1] from the space of smooth vector
fields V via

φ̇v
i (t) =

d

dt
φv

i (t) = vi(φv
i , t)

where the superscript v in φv
i is used to explicitly denote the dependence of φi

on the associated velocity field v. The terminal point of the curve φv
i at t = 0 is
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φv
i (0) = e ∈ G where e is the identity transformation e(x) = x, ∀x ∈ Ω. The end

point of the curve φv
i at t = 1 is the particular diffeomorphism φv

i (1) = ϕi ∈ G
that links the images Î and Ii such that Î = ϕ−1

i Ii = Ii◦ϕi. The transformations
ϕi are generated by integrating velocity fields, vi, forward in time.

Given H, with associated metric D : H × H → R, along with an image
dissimilarity measure E(I1, I2), we wish to find the image Î such that

{ϕ̂i, Î} = argmin
ϕi∈H,I

N∑
i=1

(
E2(I, Ii ◦ ϕi) + D2(e, ϕi)

)
. (1)

We induce a metric on H by a Sobolev norm via a partial differential operator
L on the velocity fields. Let ϕ be a diffeomorphism isotopic to the identity
transformation e, that is, there exists a continuous family of diffeomorphisms
from e to φ. We define the squared distance D2(e, ϕ) on the space V of smooth
velocity vector fields on the domain Ω, as

D2(e, ϕ) = min
v:φ̇(t)=v(φv ,t)

∫ 1

0
||Lv(t)||2V dt.

The distance between any two diffeomorphisms is defined by

D(ϕ1, ϕ2) = D(e, ϕ−1
1 ◦ ϕ2).

This distance satisfies all the properties of a metric [16].
Having defined a metric on H, the minimum energy template estimation

problem described by Equation 1 is formulated as

{ϕ̂i, Î}i=1...N = argmin
vi:φ̇(t)=v(φv ,t),I

N∑
i=1

(
E2(I, Ii ◦ ϕi) +

∫ 1

0
||Lvi(t)||2V dt

)
.

Throughout this paper we use the square error dissimilarity metric. Under this
metric, the template estimation problem becomes

{ϕ̂i, Î}i=1...N = argmin
vi:φ̇(t)=v(φv,t),I

N∑
i=1

(
1
σ2 ||I − Ii ◦ ϕi||2L2 +

∫ 1

0
||Lvi(t)||2V dt

)
(2)

where σ models the noise in the image match term. Smaller values of this pa-
rameter increase the penalty of image mismatch leading to exact matching when
σ → 0; this comes at the expense of smoothness in the estimated maps ϕi.

This minimization problem can be simplified by noticing that for fixed trans-
formations ϕi, the image Î that minimizes Equation 2 is given by the voxel-wise
arithmetic mean of the deformed images

Î =
1
N

N∑
i=1

Ii ◦ ϕi. (3)
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Combining Equations 2 and 3 results in following optimization, in terms of ve-
locity fields,

{v̂i}i=1...N = argmin
vi:φ̇(t)=v(φv,t)

E(vi)
.=

N∑
i=1

⎛⎜⎝ 1
σ2

∣∣∣∣∣∣
∣∣∣∣∣∣
⎛⎝ 1

N

N∑
j=1

Ij ◦ ϕj

⎞⎠− Ii ◦ ϕi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

L2

+
∫ 1

0
||Lvi(t)||2V dt

⎞⎟⎠(4)

For each individual velocity field, the minimizer of Equation 4 is constant speed,
that is, ||vi(t)||V = ci , since it is a geodesic. Note that the solution to this
minimization problem is independent of the ordering of the N images.

3 Implementation

We use the full space time strategy presented in [13]. Since the minimization
problem is independent of the ordering of the N images we use an algorithm that
estimates, on a per iteration basis, each ϕi in turn. The optimization described
by Equation 4 is implemented by an iterative steepest descent algorithm given
by

vk+1
i (t) = vk

i (t)− ε∇vk
i (t)E (5)

where ∇E is the Gâteaux differential of the energy of the objective function giv-
ing the Euler-Lagrange condition. The Euler-Lagrange equation for the solution
of the variational problem in 4, in space of smooth velocity fields V , becomes

vi(t) =
1
σ2 K (|Dφv

i (t, 1)|(I ◦ φv
i (t, 0)− Ii ◦ φv

i (t, 1))∇(I ◦ φv
i (t, 0))) (6)

where φi(s, t) = φi(t)◦ (φi(s))−1 and I = 1
N

∑N
j=1 Ij ◦ϕj . The operator K is the

Green’s function of the differential operator L†L used to define the norm || · ||V .
In our implementation, L is a modified Navier-Stokes operator [10]. Note that
the stable point of Equation 6 satisfies the Euler-Lagrange equation ∇E = 0.

3.1 Constant Speed Velocity

The optimal velocity fields v̂i, given by Equation 4, each define a geodesic path
on the space of diffeomorphisms. As geodesics have constant speed, the velocity
fields have constant norm over time. Given ∇E, we enforce this geodesic con-
straint by calculating adaptive per-iteration time steps εk

i (t) such that for all
time steps t, the norms

∫
Ω ||Lvk

i (t)||22dx are equal. We formulate the inductive
hypothesis:

∫
Ω ||Lvk

i (t)||22dx = ρk
i , a constant and solve for εk+1

i (t) such that∫
Ω

||Lvk+1
i ||22dx =

∫
Ω

||L[vk
i − εk+1

i (t)∇vk+1
t

E]||22dx = ρk+1
i

⇒ ρk+1
i = ρk

i (t)− 4λk+1
i (t)εk+1

i (t) + 4νk+1
i (t)

(
εk+1
i (t)

)2
(7)
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where

νk+1
i (t) = ρk

i −
2
σ2

∫
Ω

〈vk
i (t), bk+1

i (t)〉dx +
1
σ4

∫
Ω

〈bk+1
i (t), K(bk+1

i (t))〉dx

λk+1
i (t) = ρk

i −
1
σ2

∫
Ω

〈vk
i (t), bk+1

i (t)〉dx

bk+1
i (t) = |Dφv

i (t, 1)|(I ◦ φv
i (t, 0)− Ii ◦ φv

i (t, 1))∇(I ◦ φv
i (t, 0)).

After choosing an appropriate value for the difference ρk+1
i − ρk

i , we solve Equa-
tion 7 for εk+1

i (t) using the quadratic formula for the positive solution which
yields,

εk+1
i (t) =

1
2νk+1

i

(
λk+1

i (t) +
√(

λk+1
i (t)

)2 − νk+1
i (t)

(
ρk

i − ρk+1
i

))
.

We begin by specifying an initial value for one of the εk+1
i (t) and solve for

ρk+1
i − ρk

i . Note that the integrated velocity norm
∫

Ω
||Lvk+1

i (t)||22dx does not
have to be computed since it starts at zero and increases at iteration by ρk+1

i −ρk
i ,

which is known at each iteration.

4 Results

To evaluate the performance of this method, we consider the question: how many
images are required to represent a population? To address this question, we build
atlases of increasing population size and analyze their stability with respect to
image intensity entropy. Entropy has often been proposed as a good measure of
image quality [14,15] where sharp images have relatively low entropy. Let X be
a random variable associated with the intensities for a given image and let pX

be the probability mass function associated with X . Discrete entropy is defined
as the expected uncertainty in X ,

H(X) = EpX [− log pX(x)] = −
∑
x∈X

pX(x) log pX(x)

where the logarithm, in our case, is take with base two yielding entropy mea-
sured in bits. The uniform distribution maximizes entropy for random variables
defined without moment constraints, such as image intensities [17]. That is, a
blurry image, with a relatively flat histogram, will have greater entropy than a
sharp image. We are interested in the entropy introduced by the atlas creation
method rather than the intrinsic entropy associated with images of individual
brain anatomy.

4.1 Atlas Formation

Our image database contains fourteen brain images that have been provided by
the UNC autism image analysis group. These images have been intensity normal-
ized and rigidly aligned. Due to the high memory demands of our implementa-
tion, we apply our algorithm to 2D mid-axial slices, although the methodology is
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generalizable to 3D. These images are show in Figure 1. There is noticeable large
deformation variation between these anatomies, especially in lateral ventricles.

To quantify the stability of the estimated atlases, we generate eleven atlas
cohorts, {Cl}l=2...12, each with twenty atlases derived from l images randomly

Fig. 1. Image Database: 2D mid-axial slices from MR images of fourteen subjects

Fig. 2. Mutually Exclusive Atlases: each
column represents an individual atlas con-
structed by both arithmetically averaging
rigidly aligned images (top row) and es-
timating a Fréchet mean atlas after 100
iterations (bottom row). These two at-
lases were formed from completely sepa-
rate sets of images.

2 3 4 5 6 7 8 9 10 11 12
4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5
Cohort Average Entropy (bits)

Atlas Size

E
n

tr
o

p
y

Atlases via Averaging
Atlases via LDMM

Fig. 3. Average Entropy: for comparison,
the average entropy of the original four-
teen images is 3.91 bits with standard de-
viation 0.08 bits. The error bars represent
one standard deviation from the mean.
Prior to computing entropy, we shift all
atlases by half a pixel to compensate for
the entropy introduced by the linear inter-
polation used to reconstruct images dur-
ing registration.
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selected from the original database of fourteen images. Two mutually exclusive
atlases from C7 are shown in Figure 2 for both simple averaging and the LDMM
method. The rigidly aligned atlases are blurry since they are arithmetic averages
of varying individual neuroanatomies. Ghosting is evident around the lateral
ventricles and near the boundary of the brain. In the final Fréchet atlases, these
regions appear much sharper.

4.2 Atlas Convergence

To evaluate the robustness and stability of our atlases we first compute the
mean and standard deviation of the entropies of the original fourteen images. To
this we compare the mean and standard deviation of the atlas cohort entropies
that have been created both by simple arithmetic averaging of the rigidly aligned
images and those produced by the LDMM method. These results are summarized
in Figure 3. From this plot we notice that as atlas size increases, the average
atlas entropy increases for atlases formed by simple intensity averaging, where
as the average entropy decreases for atlases created via LDMM. The atlases also
become more stable with respect to entropy as the standard deviation decreases
with atlas size. After cohort C10, the atlas entropy means appear to converge.
To answer our original question, given these fourteen subjects, we need about
ten images to create a stable atlas representing neuroanatomy.

5 Conclusion

A novel method for unbiased atlas formation involving large deformations met-
ric mapping has been presented. The LDMM implementation has also been
improved by new constant speed velocity reparameterization constraint. The
preliminary results show that this method produces stable atlases with respect
to the entropy image quality measure. A possible direction for future work is
to explore the stability and robustness in the presence of much larger initial
population databases.
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Abstract. Probabilistic atlas has broad applications in medical image 
segmentation and registration. The most common problem building a 
probabilistic atlas is picking a target image upon which to map the rest of the 
training images. Here we present a method to choose a target image that is the 
closest to the mean geometry of the population under consideration as 
determined by bending energy. Our approach is based on forming a distance 
matrix based on bending energies of all pair-wise registrations and performing 
multidimensional scaling (MDS) on the distance matrix. 

1   Introduction 

The probabilistic atlas has been widely used to bring useful prior information to 
segmentation and registration tasks of human organs, especially for brain. In the 
segmentation task, atlas information may be used as prior information in the Bayesian 
formulation [1]. Atlas information guides segmentation algorithms where there is 
little grayscale value information available.  

A common approach to building an atlas is to first pick a target image and map 
other images onto that target so that statistical processing can be done in the same 
spatial frame. Methods for registration (i.e., mapping) in terms of degrees of freedom 
(DOF) and geometric interpolant have to be the same for all registration tasks to 
ensure consistent construction and use of the atlas. The resulting atlas is inherently 
biased towards the chosen target image. If the target image happens to be an extreme 
case of the population, then the atlas created does not reflect the population correctly. 
In that case, bringing an arbitrary image to the atlas space, i.e., registering a test 
image onto the atlas, maybe difficult since the geometric distance the test image has 
to travel to reach the atlas has been increased compared to the case of reaching an 
atlas which resides at the mean geometry of the population. The whole process of 
mapping other images onto the target may be repeated with the target replaced with 
an average image from the previous registrations until the average image converges 
[2]. In this case, the bias towards the initially picked target image may be reduced.  

Studholme et al. proposed a method to jointly register all images simultaneously to 
a target space that is very close to the mean geometry to reduce the bias of the target 
space [3]. It employs a cost function encouraging mean displacement field from the 
target onto other images to be zero while minimizing the joint entropy of all images. 
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All displacement fields to other images have to be known to compute the mean 
displacement field, thus the method requires registration of all images simultaneously 
increasing the optimization space tremendously. There are nontrivial issues in how to 
compute the high dimensional probability density function needed to evaluate the 
joint entropy. Joshi et al. used an atlas construction independent of choosing a specific 
target image [4]. They first construct an atlas by mapping other images onto a target 
image and performing statistical processing. After the atlas is constructed on the 
target image space, the atlas is warped onto a space where there is less bias towards 
the rest of the images. As a result they can choose any target image and arrive at the 
same atlas space since the atlas calculated on a specific target image space is always 
going to be warped onto another space where there is less bias. The above approach 
needs to satisfy certain constraints that will be discussed in section 4. Marsland et al. 
proposed to construct the atlas on a target image that is the closest to the mean 
geometry [10]. They choose the target image such that sum of distances from the 
target image to the rest of the images is minimized. Our work shares a similar 
approach to Marsland’s paper. Improvements resulting from using our approach will 
be discussed. 

Here we present a method to choose a target image that is the closest to the mean 
geometry. We acknowledge the existing work on unbiased atlas construction and 
provide an alternative method based on novel statistical machinery. Our approach is 
based on forming a distance matrix based on bending energies of all pair-wise 
registrations and using multidimensional scaling (MDS) on the distance matrix to find 
the closest target. 

2   Methods 

In this paper we choose the most common atlas construction method, mapping other 
images onto a chosen target image and performing statistical processing on the target 
image space. Our contribution is how to choose a target image that is the least biased 
considering all the other images.  

2.1   Pair-Wise Registration 

The task of mapping one image onto the other image is carried out by registration. 
Registration has been well discussed [5].  In short, two main components need to be 
determined for any registration method: the similarity measure which measures degree of 
alignment between images, and the geometric interpolant which defines the geometric 
transform. We choose mutual information (MI) as the similarity measure and thin-plate 
splines (TPS) as the geometric interpolant [6]. A simple histogram with fixed bin width is 
used to calculate the probability mass function of grayscale value distributions to 
compute MI. The process of registration can be formulated as maximizing the chosen 
similarity measure (i.e., MI) under a hypothetical geometric transform. 

2.2   Distance Measure 

Registration between two images yields a geometric transform optimized to maximize 
a certain cost function (e.g., MI). The geometric distance, hereafter called distance, 
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between two images is often measured by the roughness of the geometric transform. 
In addition, having zero distance for a simple affine transform is desirable. We define 
distance between two images as the sum of squared second partial derivatives of the 
geometric transform, 

2 2 22 2 2
2 2 2 2 2 2 2

2 2 2 2
( ) 2( ) ( ) ( ) 2( ) ( )

;  displacement in x    ;displacement in y.

y y yx x x

x y

f f ff f f
d dxdy

x y x yx y x y

f f

∂ ∂ ∂∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂∂ ∂ ∂ ∂  (1) 

Above formulation is for 2D and can be easily extended for 3D. This distance is often 
called the bending energy. Analytic formula for calculating bending energy is 
available for TPS [7]. For other geometric transforms, the bending energy may need 
to be calculated numerically. The defined distance is not strictly a metric since the 
distance between two different images can be zero if the two images can be registered 
by an affine transform. 

2.3   Multidimensional Scaling (MDS) 

Multidimensional scaling (MDS) is a technique to produce relative positional 
locations from a collection of pair-wise distances [8]. For example, given pair-wise 
Euclidean distances between North American cities, MDS will yield a map of relative 
locations (i.e., up to an arbitrary rotate-translate transform) of those cities. For N 
cities, N(N-1)/2 (i.e., N choose 2) pair-wise distances are needed. The distances used 
in MDS need not be metric; non-metric distances (e.g., ranking) can be used. Thus, 
our distance defined in section 2.2 is valid in MDS settings. Given a set of distances 
in the distance matrix D, whose element dij refers to the distance between objects i 
and j, MDS outputs a set of coordinates in a user specified dimension that reproduces 
the distance matrix best in the least square fashion. The dimension of MDS output 
should be based on the eigen structure of the distance matrix. The output coordinates 
are in the standard Euclidean space of the user supplied dimension. 

2.4   Target Selection Based on MDS 

An ideal target image is the one that resides at the mean geometry of the population. 
For the ideal target image, the sum of distances to other images from the atlas space 
(i.e., target space) is minimized. For a target image space that is far away from the 
mean geometry, the sum of distances to other images will be greater. Often there may 
not be an image at the mean geometry thus the best approach in picking a target 
image, which yields the minimum distance to other images, is to choose the image 
that is the closest to the mean geometry. The described approach works only if we 
know all the relative locations of images of the population. MDS identifies all the 
relative locations of the images from the distance matrix. Here the elements of the 
distance matrix are determined by the distances of pair-wise registrations. In 
summary, we select the target image which is the closest to the mean geometry with 
the aid of information of relative locations provided by MDS. MDS in turn requires a 
distance matrix whose elements are calculated from pair-wise registrations. The 
following is the procedure for N images, 
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1. Perform N(N-1)/2 pair-wise registrations 
2. Calculate bending energies from the registrations 
3. Form distance matrix D 
4. Apply MDS and find relative locations of images 
5. Calculate mean location of the images 
6. Choose target image that is the closest to the mean. 

Once the best (i.e., least biased) target is selected, all other images can be mapped on 
to the chosen target, this is trivial since all pair-wise registrations have been computed 
previously to fill the distance matrix. 

2.5   Distance Matrix 

The distance matrix is either symmetric or asymmetric. For a symmetric distance 
matrix, distance between object i and j is order independent. In atlas construction, it 
implies that the distance between image i as the reference image and image j as the 
floating image is the same as the distance between images i and j switching the role of 
the reference image and the floating image. In practice with TPS based registrations, 
switching the order of images in the registration task may yield a different geometric 
transform thus it may yield a different distance value, but the discrepancy in distance 
value is quite small provided that the degrees of freedom (DOF) of TPS is high 
enough. Christensen et al. proposed a registration method where both forward and 
inverse transform are estimated such that switching the order of reference and floating 
images has little effect [11]. In this case, symmetric distance matrix is ensured. Even 
for an asymmetric distance matrix, distance matrix can be made symmetric by using 
the average value of dij and dji. Here we assume a symmetric distance matrix thus we 
only calculate upper half of the distance matrix and replicate the lower half. The 
diagonal elements of the distance matrix are zero by definition. 

3   Experiments 

Synthetic experiments are carried out in 2D to show the feasibility of our approach. A 
synthetic MRI slice, 256x256 dimension and 1x1 mm2 resolution, is obtained from 
BRAINWEB simulation [9]. It is deformed in a known way using a 6x6 grid of B-
splines resulting in 50 deformed images. Deformations are applied by randomly 
choosing a knot and displacing the knot by the amount determined by zero mean 
Gaussian of variance 100 pixels in both x and y direction. After the image’s geometry 
is deformed, a zero mean Gaussian noise of variance 16 is added to the image’s 
grayscale values. Six images of the known 50 deformed images are shown in  
Figure 1. The atlas is constructed with these 50 deformed images. Geometric 
distances from the original undeformed image (i.e., BRAINWEB slice) to all 50 
images are calculated given all the known synthetic deformations and are shown in 
Table 1. With these distances, ground truth on what is the best target image can be 
established. The best target image is the image that is the closest to the original image 
(i.e., the least distance from the original image). In addition, the quality of all 
potential target images can be rank ordered according to the distance from the original 
image. 
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Fig. 1. Six images of the known 50 deformed images. Grid lines show the applied B-spline 
deformations. Image 8 and 15 have very small deformations compared to other images shown. 
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Fig. 2. Relative locations of 50 images by MDS. Mean location is at (0,0,0,0) and the closest 
image to mean is determined to be image 15. Only a 2 dimensional plot (out of 4) is given here for 
space constraints. Mean is marked with ‘+’ and the nearest image to the mean is marked with ‘o’. 

Pair-wise registrations of the 50 images are performed using 25 uniformly spread 
control points. There are 1225 (i.e., 50 choose 2) pair-wise registrations required to 
fill up the symmetric 50x50 distance matrix. MDS is performed with 4 dimensions.  
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Table 1. Distances from the original undeformed image. Geometric distances are sorted 
ascendingly. Images with small distances are desirable as the target image. Image 8 is the most 
desirable target image and image 9 is the least desirable target image.  

Distance 0.0046 0.0055 0.0121 0.0152 0.0203 0.0209 0.0251 0.0321 0.0325 
Image # 8 10 29 15 32 44 5 36 47 
Distance 0.0363 0.0598 0.0601 0.0777 0.0900 0.1170 0.1276 0.1350 0.1381 
Image # 16 20 43 4 21 46 42 35 17 
Distance 0.1409 0.1483 0.1499 0.2146 0.2182 0.2279 0.2288 0.2322 0.2416 
Image # 26 18 31 13 14 1 34 11 49 
Distance 0.2532 0.2581 0.2592 0.2785 0.2802 0.2881 0.2909 0.3289 0.3454 
Image # 41 2 7 23 3 25 6 48 27 
Distance 0.3611 0.3660 0.3734 0.3860 0.4176 0.4704 0.4805 0.5009 0.5158 
Image # 40 19 50 12 39 24 22 28 33 
Distance 0.5802 0.7047 0.8666 1.0827 1.3786     
Image # 45 30 37 38 9     

Table 2. MDS results. Image number is sorted by the distance from the location of mean 
geometry. Distances are sorted ascendingly. The order of image number is very similar to the 
order of image number in Table 1. RMS (root mean squared) error between the order of images 
by MDS and order of images of the ground truth is computed on the bottom row. 

Order 1 2 3 4 5 6 7 8 9 

Image # 15 8 5 32 44 29 10 43 47 

Order 10 11 12 13 14 15 16 17 18 

Image # 36 16 4 20 21 26 42 35 46 

Order 19 20 21 22 23 24 25 26 27 

Image # 18 17 34 1 31 14 7 3 2 

Order 28 29 30 31 32 33 34 35 36 

Image # 13 25 11 49 23 41 27 6 12 

Order 37 38 39 40 41 42 43 44 45 

Image # 40 50 19 48 33 39 28 24 22 

Order 46 47 48 49 50 Error    

Image # 45 30 38 37 9 0.3970    

The dimension is determined by observing the eigenvalue trend (i.e., abrupt drop in 
eigenvalues) of the distance matrix. Output of the MDS is 50 coordinates in 4 
dimensions representing the 50 images in the Euclidean space. Two dimensional 
projections of these coordinates are shown in Figure 2. The location of mean 
geometry is calculated by taking the arithmetic mean of 50 coordinates, which is set 
to be the origin (i.e., (0,0,0,0)). The image whose coordinate is the closest to the mean 
geometry is chosen to be the best target image. Distances from the mean geometry 
(i.e., origin) to the images (i.e., MDS coordinates) are sorted in Table 2 starting from 
the closest image to the furthest image. The best target image (i.e., the first image in 
Table 2) is image 15 while the ground truth (i.e., Table 1) indicates image 8 to be the 
best target. Image 8 and 15 have bending energies 0.0046 and 0.0152 respectively 
according to Table 1. The difference of bending energies between image 8 and 15, 
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0.0106, is relatively small compared to the possible variation of bending energies 
from 0.0046 to 1.3786 (i.e., bending energies of image 8 and 9). Thus our selected 
target is reasonably close to the mean geometry if not the closest target. Moreover 
comparison of order of images in Table 1 and 2 indicates that MDS results, order of 
images in Table 2, are very similar to the ground truth’s order of images in Table 1. 
We are able to replicate the order of images reasonably well from MDS results, not 
just the closest image to the mean geometry. In fact, the root mean squared error 
between the rank orders of images of Tables 1 and 2 is computed to be 0.3970. MDS 
coordinates are tested for multi-variate normal distribution and satisfy 4 dimensional 
normality test with p = 1 and alpha = 0.05. It implies that the origin (i.e., (0,0,0,0)) 
represents the undeformed image and that the distribution is not skewed. 

4   Discussions and Summary 

Our target selection method based on MDS enables us to choose a target that is very 
close to the mean geometry. One potential reason for not arriving at the closest target 
may come from inaccuracies in the pair-wise registration processes. If the registration 
process is not accurate, then the distance matrix contains inaccurate elements. Thus, 
MDS results may be affected. Our approach is independent of the choice of the pair-
wise registration methods. User can choose any reasonable combination of similarity 
measure and geometric interpolant, not just MI and Thin-plate splines. Relative 
locations of the images can be found as well as the closest image from the mean 
geometry. 

Our method is potentially faster than the iterative atlas construction method if the 
iterative method needs many iterations (i.e., at least N/2 iterations) to converge [2]. 
Our approach requires N(N-1)/2 pair-wise registrations and the iterative construction 
method requires (N-1)x(# of iterations) pair-wise registrations for N images. Joshi’s 
approach requires only N-1 pair-wise registrations and is independent of choosing a 
target image [4]. It assumes that the geometric transform has certain “small 
deformation” properties and is sensitive to pair-wise registration results requiring 
displacement fields to be accurate (i.e., almost no registration error). Our approach 
and Marsland’s approach share a common theme, i.e., finding a target image that is 
the closest to the mean geometry [10]. Their method tries to minimize not only the 
sum of distances to all other image but also the sum of similarity measure between the 
target and other images. They start with an initial guess of the target image and try to 
update the target image if the sum of distances decreases and the sum of MI increases. 
We believe target should be chosen solely on distances. For example, if the ideal 
target image at the mean geometry happens to be noisy, under Marsland’s approach it 
will never be selected as the target since choosing the ideal target will surely decrease 
the sum of MI. Their method is tied to a specific geometric interpolant, clamped-plate 
spline, while our approach can be applied to any geometric interpolant.  

We have shown a method to choose the target image that is very close to the mean 
geometry. It is based on information of relative locations provided by MDS. MDS 
requires a distance matrix whose elements are calculated from pair-wise registrations.  
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Abstract.  In this paper we study and evaluate the influence of the choice of a 
particular reference volume as the electrophysiological atlas on the accuracy of 
the automatic predictions of optimal points for deep brain stimulator (DBS) im-
plants. We refer to an electrophysiological atlas as a spatial map of electro-
physiological information such as micro electrode recordings (MER), stimula-
tion parameters, final implants positions, etc., which are acquired for each pa-
tient and then mapped onto a single reference volume using registration algo-
rithms. An atlas-based prediction of the optimal point for a DBS surgery is 
made by registering a patient’s image volume to that reference volume, that is, 
by computing a correct coordinate mapping between the two; and then by pro-
jecting the optimal point from the atlas to the patient using the transformation 
from the registration algorithm. Different atlases, as well as different parame-
terizations of the registration algorithm, lead to different and somewhat inde-
pendent atlas-based predictions. We show how the use of multiple reference 
volumes can improve the accuracy of prediction by combining the predictions 
from the multiple reference volumes weighted by the accuracy of the non-rigid 
registration between each of the corresponding atlases and the patient volume.  

1   Introduction 

Deep brain stimulation is a way to stimulate parts of the brain that cause movement 
disorders like Parkinson’s disease, in order to minimize or eliminate disease symp-
toms without damaging the brain. This is done by placing electrodes in specific nuclei 
of the brain and stimulating them with electrical impulses. Such functional neurosur-
gical procedures of targeting small areas deep in the brain require precise targeting. 
Traditionally, this is done in two steps. An approximate target location is first selected 
pre-operatively. The target position is then adjusted intra-operatively. Manual local-
ization of the target is achieved pre-operatively by registering an anatomic atlas such 
as the Schatelbrand-Wahren atlas to a pre-operative MR scan of the patient. This step 
is required because the precise boundaries of structures of interest in DBS surgeries 
are either not or poorly visible in the pre-operative MR scans. The anatomic informa-
tion afforded by the atlas is thus used as a guide. Intra-operative adjustment is based 
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on microelectrode recordings (MER) obtained by passing a recording electrode in the 
brain towards the pre-operatively planned target and on patient’s response to stimula-
tion as a stimulating electrode moves towards the planned target. Stimulation is pro-
vided by applying electrical impulses and the responses to such stimulation include 
improvement in disease symptoms, occurrences of side effects, etc. Intra-operative 
adjustment is necessary because of known limitations of available anatomical atlases 
(e.g. hemispheres that pertain to different subjects, discontinuities between slices, 
etc.), limited accuracy achievable when registering an MR volume to these atlases, 
and because available atlases provide only anatomic information while the position of 
the final target point is chosen based on the electrophysiology. To address these issues 
and to simplify the procedure, we created a three dimensional electrophysiological 
atlas that can be used for pre-operative planning and intra-operative guidance [2, 3]. 

Over the last several years we have also developed fully automatic 3D non-rigid 
registration algorithms that allow us to register accurately 3D MR brain volumes to 
each other and we use these algorithms to develop our atlas. In the operating room, 
we acquire MER signals, information about stimuli (in volts), response(s) to these 
stimuli, and the positions at which these data are recorded. We acquire these positions 
in CT coordinates via the stereotactic system used for the procedure (StarFix micro-
Targeting Platform®, FHC Inc., Bowdoinham, ME). Using our registration algo-
rithms, we then map the positions at which intra-operative information is gathered 
from each patient onto the corresponding positions in one MR volume chosen as a 
reference. This reference volume is referred to as the atlas. In this way all the intra-
operative information gathered from the patients can be mapped onto the atlas for 
future use. The atlas thus becomes a repository that allows us to store information 
acquired from any number of patients in a normalized space.  

Rohlfing et al. have shown that the choice of the atlas has a substantial influence 
on the quality of registration-based segmentation [4, 5]. Moreover, they demonstrated 
that by using multiple atlases, the segmentation accuracy could be improved over that 
obtained using a single atlas. Here, we investigate the effect of the atlas on the accu-
racy of our approach to predict the position of DBS targets. We also investigate a 
method by which using a combination of the atlases leads to improvement in accuracy 
of automatic prediction. 

2   Data Set 

With IRB approval (Vanderbilt University IRB # 010809) a set of CT and MRI pre-
operative scans and a CT post-operative scan is acquired for each patient. CT and MR 
volumes are acquired with the patient anesthetized and head taped to the table to 
minimize motion. Typical CT images are acquired at kvp = 120 V, exposure = 350 
mas, 512x512 pixels. In-plane resolution ranges from 0.49 to 0.62 mm, and slice 
thickness from 1 mm to 2 mm. MR images are 3D SPGR volumes, TR: 12.2 ms, TE: 
2.4 ms, dimension 256x256x124 voxels; voxels dimensions are typically 
0.85x0.85x1.3 mm3. Fourteen patients who underwent STN (subthalamic nucleus) 
stimulation were used in the study presented herein. The patients were treated over a 
period ranging from December of 2003 to April of 2005. Patients included in this 
study are different from the ones used in our earlier work [2, 3]. Therefore, although 
results are qualitatively similar, quantitative comparison between results presented in 
this work and those presented earlier is not meaningful. 



 Automatic Selection of DBS Target Points 429 

 

3   Method and Results 

Four volumes were manually selected as reference volumes (atlases) based on their 
morphological characteristics. These volumes were not from the test set of 14 patients 
used in this study. They were of earlier DBS patients. They were selected to have a 
variety in the sizes and symmetry/asymmetry of the ventricles. Because the nuclei of 
interest in this study are either not or poorly visible in current image acquisition se-
quences, registration is driven by the surrounding structures such as the ventricles, the 
thalamus, or the putamen, which are visible. The size and shape of the ventricles and 
more particularly the size of the third ventricles were chosen as the criteria for the 
selection of the atlases.  

3.1   Registration Algorithms 

Two types of registrations algorithms are needed to process our data: rigid and non-
rigid. The rigid registration algorithm is required to register MR and CT volumes of 
the same patient. The algorithm we have used for this is an independent implementa-
tion of a standard MI-based algorithm [10]. Non-rigid registration is required to regis-
ter patient data to an atlas and vice-versa. In this study, non-rigid registration is al-
ways performed on MR image volumes using an algorithm we proposed recently [1].  

3.2   Influence of the Choice of the Atlas on the Prediction Accuracy 

In this work, we used the method that we described in [2, 3] to create an electro-
physiological atlas based on the final positions of the implants. Because we now use 
four atlases, the process is repeated four times. Briefly, for each case we registered the 
MR patient volume to each the four atlases using the registration algorithms described 
in section 3.1. The registration parameters used for registration onto each of the four 
atlases were kept the same. We then projected final implant positions from each of the 
patients onto the four atlases, thus creating two clouds of points (one for the left and 
the other for the right STN) on each of the atlases. Figure 1 shows the results we have 
obtained for the left STN. Similar clusters were obtained for the right STN. To pro-
vide the reader with a better sense for the locations and spreads of the clusters we 
have superimposed contours obtained from the Schaltenbrand-Wharen (SBW) [9] 
atlas onto the MR images (the four atlases). Registration between each of the four 
atlases and the SBW atlas was performed based on a piecewise affine transformation 
using the Voxim software (IVS Solutions, AG, Chemnitz, Germany). This is known 
to be a difficult and inaccurate process. Thus, contour lines shown on the images in 
figure 1 may not exactly correspond to the true boundaries of the structures. The 
structure surrounding the core of each cluster is the STN. The structure above the 
STN is the thalamus with all its sub-nuclei; the structure below the STN is the sub-
stantia nigra (SNr).  

To quantify the spread of the cluster in each atlas, we have computed the Euclidian 
distance from the points in each cluster to their corresponding centroid. Table 1 reports 
this average distance (Dc) for each of the atlases for the left and the right sides. It can be 
seen from table 1 that atlas0 is the best in terms of the tightness of the clusters.  
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Fig. 1. Sagittal views of the right clusters on the 4 atlases (atlas 0 top left, atlas 1 bottom left, 
atlas 2 top right, atlas 3 bottom right). Contours extracted from the Shaltenbrand-Wahren atlas 
have been superimposed on the images to show the location and extent of the projected clusters 
with respect to anatomic structures seen in the SBW atlas.  

Table 1. Euclidian distance (mm) of cluster points with respect to the corresponding cluster 
centroid on each of the atlases (Dc) 

22.712.423

33.113.062

44.353.191

12.052.010

Tightness ranking of atlases
RMS spread right side 

(mm)
RMS spread left side 

(mm)Atlas

22.712.423

33.113.062

44.353.191

12.052.010

Tightness ranking of atlases
RMS spread right side 

(mm)
RMS spread left side 

(mm)Atlas

 

The tightness of the cluster depends on the quality of the non-rigid registration be-
tween each of the atlases and the patient volume, which depends in large parts on the 
morphological similarity between the volumes being registered. A single patient vol-
ume will be registered with a higher accuracy on the most similar atlas. To study the 
effect of the choice of the atlas on the prediction of the optimal position for the 
placement of the implant we selected the centroids of the clusters in each of these 
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atlases as the optimal implant positions in the corresponding atlases. These points 
were then projected using the transformations computed with the registration algo-
rithms back onto each of the patients. On each of the patients this projection resulted 
in four possible optimal positions for the implant, each related to one of the atlases. 
To quantify the effect of the atlas on target prediction accuracy, we computed what 
we call the pre-operative placement error. This error is defined as the Euclidean dis-
tance between the final intra-operative position selected by the surgical team and the 
position chosen pre-operatively. It is thus the distance by which the surgical team 
would need to adjust the position of the electrode during the procedure. Table 2 shows 
the mean and standard deviation of this error for both automatic (atlas based) and 
manual predictions, over the 14 volumes included in this study. Columns titled Atlas0, 
Atlas1, Atlas2 and Atlas3 correspond to the distances between the automatically pre-
dicted points using the corresponding atlases and the final (intra-operative) implant 
position, averaged over all the patients. The column titled Centroid represents the 
deviation between the centroid of the four predictions and the final implant position, 
averaged over all the patients. The column titled Manual represents the deviation 
between the target predicted pre-operatively by the surgeon and the final implant 
position, averaged over all the patients. Table 2 shows that the choice of atlas has a 
direct impact on the accuracy of prediction of optimal position of implant. In earlier 
work, we have shown that pre-operative target points obtained automatically were 
closer to the corresponding final points than the pre-operative target points obtained 
manually. This remains true in the results shown in table 2. Moreover, what table 2 
shows is that the pre-operative placement error could be reduced substantially if we 
could select automatically the best atlas for the case at hand, thus incurring minimum 
prediction error. We cannot, of course, use the pre-operative placement error as a 
criterion to select this atlas since the intra-operative position is not known at the time 
of planning. In the next section, we describe a method we propose to select the best 
atlas (or an optimal combination of the atlases) for a given patient.  

Table 2. Prediction errors incurred for atlas based predictions using individual atlases, cen-
troids of atlas based predictions, sensitivities of individual structures based predictions, sensi-
tivities of combination of structures based predictions and manual selection of targets. SD: 
Standard Deviation, T: Thalamus, TV: Third Ventricle, P: Putamen. 

1.410.740.850.870.80.830.990.9710.69SD

2.51.742.341.981.871.972.092.132.211.92MeanRight

1.170.920.850.890.930.930.991.110.940.85SD

2.231.661.931.711.81.81.91.721.992.01MeanLeft

T+TVPTVTAtlas3Atlas2Atlas1Atlas0

Sensitivities weightedCentroid

ManualUsing combination of multiple atlasesUsing individual atlases

Deviation from final implant (mm)StatisticSide

1.410.740.850.870.80.830.990.9710.69SD

2.51.742.341.981.871.972.092.132.211.92MeanRight

1.170.920.850.890.930.930.991.110.940.85SD

2.231.661.931.711.81.81.91.721.992.01MeanLeft

T+TVPTVTAtlas3Atlas2Atlas1Atlas0

Sensitivities weightedCentroid

ManualUsing combination of multiple atlasesUsing individual atlases

Deviation from final implant (mm)StatisticSide
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3.3   Multiple Atlases Based Prediction  

The easiest way to combine the predictions is to compute the centroid of the four 
predicted points and use it as the best automatic prediction. Prediction accuracy using 
the centroid of the cluster is substantially better than that based on manual predictions 
as can be seen in table 2. However, it is still not as good as that achievable using the 
best atlas for every patient. For instance, it was found that for the left side, using the 
best atlas for each of the 14 patients the pre-operative error was 1.46 mm averaged 
over the patients, while the same based on the centroid of the cluster was 1.8 mm and 
that based on manual predictions was 2.23 mm. To select one atlas (or perhaps a sub-
set of atlases) for a particular case, we need to find a way to estimate the likelihood 
that the atlas is more accurately registered to the patient than any other atlas. We 
achieve this through atlas-based segmentation of structures surrounding the target of 
interest. As discussed above, the STN is poorly visible in MR images. But surround-
ing structures such as the ventricles, the thalamus and/or the putamen can bee seen 
and have relatively well defined boundaries. To take advantage of this, the major 
basal ganglia structures (the putamen, the thalamus, the ventricles, the third ventricle, 
the red nuclei and the globus pallidus) were manually segmented on each of the four 
reference volumes by an expert. These segmented structures were projected from the 
four atlases onto the patients, resulting in four different segmentations for each struc-
ture on every patient. These contours were then used to estimate the specificity and 
sensitivity of each of the four segmentations for every structure using the STAPLE 
algorithm proposed by Warfield et al. [7, 8]. The computed sensitivity parameters 
were used, in turn, to weigh the contributions of the atlases to the prediction. We used 
a simple weighted average of the predictions made by the four atlases to arrive at the 
final automatic prediction.  

The weights are the sensitivities of the segmented structures for the four atlases. 
Sensitivities below 95% of the highest sensitivity were set to zero. Let P0, P1, P2 and 
P3 be the predictions based on atlases 0, 1, 2 and 3 respectively and sensitivity be 
denoted by p. Let the sensitivity for the left thalamus of the patient with respect to 
atlas0 be p_thal_left_0, that for the right thalamus with respect to atlas0 be 
p_thal_right_0 and that for the third ventricles with respect to atlas0 be 
p_third_ventricles_0. A similar nomenclature for sensitivities with respect to atlases 
1, 2 and 3 is used. Now, the average sensitivity of the structures on the patient volume 
with respect to atlas0 is given by 

3

0___0___0___
0

ventriclesthirdprightthalpleftthalp
SEN

++=  

Similarly, SEN1, SEN2 and SEN3 are computed. Next we define the set of indices IND 
such as  
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In doing this, we eliminate the contributions of atlases that produce low sensitivity 
values for the structures, i.e., atlases that lead to poor segmentation results for struc-
tures surrounding the structure of interest. Table 2 also shows the prediction error 
when the sensitivities of the thalamus, the third ventricle, and the putamen are indi-
vidually used. These results show that, though predictions based on sensitivities of a 
surrounding structure are better than manual predictions, the use of sensitivities of the 
putamen has shown to increase the error compared to the use of the centroid. Simi-
larly, it can be seen that the use of sensitivities of the thalamus improves the accuracy 
of prediction for the right side, while the use of third ventricles improves the accuracy 
of prediction for the left side, both compared to the use of centroid. This suggests that 
combining the sensitivities of the thalamus and of the third ventricles could further 
improve the results as corroborated in table 2. 

4   Discussion and Conclusion 

From table 2, it can be seen that, using the sensitivities of the thalamus and the third 
ventricles together, the pre-operative error for the left side decreased to 1.66 mm 
compared to 1.8 mm when the centroid of the cluster was used and 2.23 mm when 
manual prediction was done. Similarly, for the right side, the errors were 1.74 mm, 
1.97 mm and 2.5 mm respectively. These results are clinically important because they 
could improve the quality of DBS surgeries both in terms of accuracy and time. 

The quality of segmentations achieved on the patient volume based on each of the 
atlases is a direct indication of the accuracy with which each of the corresponding 
atlases has been non-rigidly registered to the patient volume. Since the segmentations 
used are from regions around the (poor contrast) STN, our method serves as an ap-
proach to assessing the quality of non-rigid registrations in regions of low contrast in 
a patient volume. In our multi-atlas approach to prediction of optimal points for im-
plants in DBS surgeries, we use the above method of assessing the quality of registra-
tions to determine the contributions of the four atlases to the prediction process. It is 
conclusive from our results that the use of multiple atlases helps improve the accuracy 
of automatically predicting optimal positions for DBS implants. This scheme can 
easily be extended to other targets by changing the visible structures used to evaluate 
the quality of the registration. For instance, in the prediction of the target points for 
Globus Pallidus Internus (GPi), the putamen can be expected to play a key role due to 
its close proximity to GPi.  
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Abstract. The growing usage of statistical shape analysis in medical
imaging calls for effective methods for highly accurate shape correspon-
dence. This paper presents a novel landmark-based method to corre-
spond a set of 2D shape instances in a nonrigid fashion. Different from
prior methods, the proposed method combines three important factors
in measuring the shape-correspondence error: landmark-correspondence
error, shape-representation error, and shape-representation compactness.
In this method, these three important factors are explicitly handled by
the landmark sliding, insertion, and deletion operations, respectively.
The proposed method is tested on several sets of structural shape in-
stances extracted from medical images. We also conduct an empirical
study to compare the developed method to the popular Minimum De-
scription Length method.

1 Introduction

Most anatomical structures posses a unique shape, which plays a critical role in
modern medical image analysis. Statistical shape analysis (SSA) [2,5,8] is a very
powerful tool for identifying and representing the underlying shape information
of a certain structure. Particulary, SSA can construct a statistical shape model,
usually from a set of individual shape instances, to describe the deformation
space of the underlying shape. In 2D cases, each shape instance is in the form
of a continuous curve. For convenience, we refer to this ground-truth continuous
form of a shape instance as a shape contour.

Many researchers [6,3] have pointed out that the accuracy of the shape
correspondence greatly affects the accuracy of SSA. In addition, most current
SSA methods operate on a set of sparsely sampled landmarks along the shape
contours. Therefore, our goal of shape correspondence is to find a way to lo-
cate a small set of corresponded landmarks along each shape instance. As in
most SSA methods, landmarks discussed in this paper refer to a set of sampled
points along the shape instances and may not coincide with anatomically critical
points.

For the landmark-based shape correspondence, the following three impor-
tant factors are critical in order to correctly model the shape-correspondence
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error: landmark-correspondence error, representation error, and representation
compactness. In general, a small shape-correspondence error implies a small
landmark-correspondence error, a small representation error, and a high repre-
sentation compactness. Landmark-correspondence error should be small because
we use it as an approximation of the underlying shape-correspondence error. This
is a factor that has been widely considered in most prior shape-correspondence
methods [4,1,6]. Small representation error is also important because the above
approximation is accurate only when the sampled landmarks well represent the
underlying shape contour. High representation compactness means that the land-
mark sampling should be as sparse as possible, which is desired in most SSA
methods. Clearly, small representation error and high representation compact-
ness are contradictory and require a balance.

With a set of roughly-corresponded landmarks, Bookstein [3] presents an
algorithm to move these landmarks along the tangent directions of the shape
contour to achieve a minimum landmark correspondence error that is defined
by the thin-plate bending energy. However, the resultant landmarks may not
be located on the underlying shape contour and, therefore, the representation
error may be large. Wang, Kubota, and Richardson [11] address this problem
by adding a step of projecting the landmarks back to the shape contour. This,
however, is still not sufficient to achieve small representation error. Represen-
tation compactness is not considered in either of these two methods. Mini-
mum Description Length (MDL) [6] is arguably the state-of-the-art method
for landmark-based shape correspondence. The shape-correspondence error in
MDL is measured by the required bit-length to transmit these shape instances.
Genetic algorithms are usually used to locate the optimal landmarks in MDL.
Recent efforts have been made to incorporate the factor of representation error
into MDL [10,9].

In this paper, we develop a new method to explicitly consider the three factors
listed above. More specifically, the proposed method combines three operations:
landmark sliding, landmark insertion, and landmark deletion, which explicitly
address the above three factors, respectively.

2 Problem Formulation

In this paper, we consider 2D shape correspondence, i.e., each shape instance is
in the form of a shape contour, which can be open or closed. For simplification,
we describe the shape-correspondence algorithm based on closed-curve shape in-
stances, which can be easily extended to deal with open-curve shapes. Denote
the given set of closed-curve shape instances to be S = {S1, S2, . . . , Sn}. Each
shape instance Si is in the form of an arc-length parameterized curve si(ti) =
(xi(ti), yi(ti)), 0 ≤ ti ≤ Li, where Li is the perimeter of Si and ti is the traversed
curve length from si(0) to si(ti). The goal of the landmark-based shape corre-
spondence is to identify the same number m landmarks si(ti1), si(ti2), . . . , si(tim)
along each shape instance Si such that for any k, the n landmarks si(tik),
i = 1, 2, . . . , n, are corresponded across these n shape instances. For brevity,



Nonrigid Shape Correspondence 437

we denote vik = si(tik) as a landmark and Vi = {vi1,vi2, . . . ,vim} to be the
sampled landmark set along Si. For convenience, we further assume that the m
landmarks in Vi are sampled sequentially along Si, as shown in Fig. 1(a).

As mentioned above, we need to define the measures for landmark-
correspondence error, representation error, and representation compactness to
fully model the underlying shape-correspondence error. For representation com-
pactness, the measure is simply the number of landmarks m, i.e., we desire the
number m to be as small as possible. The representation error measures the
error of using these m landmarks to represent the underlying shape contour. As
shown in Fig. 1(a), let R(Vi, Si) be the total discrepancy area (shown as dark
gray regions) between the underlying shape contour Si and the polygon formed
by sequentially connecting the m landmarks in Vi for shape instance i. We define
representation error as

α(Vi, Si) =
R(Vi, Si)

R(Si)
,
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Fig. 1. (a) Illustration of shape representation error, (b) select shape instances from
D1 to D5 respectively with landmarks resulting from the proposed method, and (c)
selected correspondence results on D1 (corpus callosum) and D4 (kidney) with MDL
results on the left and results from the proposed method on the right. See Tables 1
and 2 for statistical results on D1 and D4. Both graphs indicate further experiments
in representation error and CPU time on D1.
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where R(Si) indicates the area enclosed by the shape contour Si. The normal-
ization keeps this measure invariant to the shape size.

Thin-plate models [7] have been widely used for biological shape analysis for
its capability of describing nonrigid shape deformations [2]. In this paper, we
use the thin-plate bending energy to model the landmark-correspondence error.
Specifically, we calculate the mean shape VT = 1

n

∑n
i=1 Vi as the template and

the landmark-correspondence error from Vq is defined as the thin-plate bending
energy [7] from VT to Vq, i.e.,

β(VT → Vq) =
1
8π

(xT
q MTxq + yT

q MTyq),

where xq and yq are columnized vectors of x- and y-coordinates of landmarks in
Vq, and MT is the bending matrix calculated from VT [7]. One important prop-
erty of the thin-plate bending energy is its invariance to affine transforms. The
total landmark-based correspondence error can thus be defined as

∑n
i=1 β(VT →

Vi). Since the landmark sets Vi, i = 1, 2, . . . , n are continually updated in our
algorithm, the template shape also needs to update accordingly.

Combining these three factors, we define the shape-correspondence problem
as identifying a set of m landmarks Vi from the shape contours Si, i = 1, 2, . . . , n
such that: (a)

∑
i β(VT → Vi) is minimized; (b) α(Vi, Si) ≤ ε for i = 1, 2, . . . , n,

where ε is a preset allowed representation error; (c) m, the number of landmarks
in Vi, is minimized given condition (b) is satisfied. In the next section, we develop
an algorithm to achieve these goals.

3 Algorithm

To solve the problem formulated in Section 2, we propose an algorithm that
combines three operations: landmark sliding, landmark insertion, and landmark
deletion. To start the algorithm, we perform a landmark initialization that aims
to find an initial estimate of Vi, i = 1, 2, . . . , n. There are many ways to achieve
an initial rough landmark-based correspondence, like those successfully used for
shape recognition and retrieval [4,1]. In this paper, we use the initialization
method in [11]: uniformly sampling each shape instance into the same number
of landmarks and then finding the matching across them by minimizing the
thin-plate bending energy.

3.1 Landmark Sliding

In the landmark sliding, we slide the landmarks in Vq along the shape contour
Sq so that the landmark-correspondence error with the template landmark set
VT is minimized. The sliding operation consists of two steps: sliding and projec-
tion. In the sliding step, all the landmarks in Vq are moved along the tangent
directions of Sq so that the resultant landmarks V ′

q have the minimal landmark-
correspondence error β(VT → V ′

q ). Let rqk be the unit tangent direction at the
landmark vqk, then we have
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v′
qk = vqk + γqk · rqk (1)

where v′
qk is the k-th landmark after sliding and γqk is the sliding distance which

we want to find. Note that v′
qk is usually not located on the shape contour Sq.

In the projection step, the landmarks v′
qk, k = 1, 2, . . . , m are projected back

to Sq to construct a new version of Vq along Sq. This projection is achieved by
updating the arc-length parameters for all landmarks:

t
(new)
qk ← tqk + γqk. (2)

One important problem here is to preserve the shape topology, i.e., no landmark
is allowed to move across its neighbors along the underlying shape contour.
Therefore, we have the constraint on the sliding distance γqk, k = 1, 2, . . . , m,

(tq,k+1 − tq,k)|Lq − γqk + γq,k+1 > 0, k = 1, 2, . . . , m. (3)

The (m+1)-th landmark is the same as the first landmark and a|b is the modulus
operation; (tq,k+1 − tq,k)|Lq represents the traversed distance vq,k to vq,k+1.

From these, we can see that the sliding distance γqk, k = 1, 2, . . . , m, should
minimize the landmark-correspondence error β(VT → V ′

q ), subject to the lin-
ear constraints of Eqs. (1) and (3). This is a classical quadratic-programming
problem that can be effectively solved.

3.2 Landmark Insertion and Deletion

Both the landmark-initialization and the landmark-sliding operations have no
guarantee that the obtained landmark set Vq can represent the shape con-
tour Sq within the allowed representation error ε. We address this problem
by a landmark-insertion operation: If the shape-representation error α(Vq , Sq)
is larger than the allowed threshold ε, we simply insert an additional land-
mark point at sq(0.5 · (tqk + tq,k+1)), i.e., halfway between vqk and vq,k+1,
which contributes most to the total representation error. To keep the corre-
spondence across shape instances, we insert an additional landmark along each
of other shape instances, including the template, i.e., inserting landmark si(0.5 ·
(tik + ti,k+1)) for each shape Si. We repeat this landmark-insertion operation
until all the shape instances are represented within the allowed error
threshold ε.

Landmark deletion is the inverse process of landmark insertion that is used
to improve the representation compactness and avoid the over-sampling of the
shape instances. The basic idea is to delete k-th landmark from all the n shape
instances (including the template), if the remaining landmarks can still represent
all these n-shape instances within the allowed error threshold ε. In practice, we
in fact set a larger allowed threshold εH for landmark insertion and a lower
threshold εL for landmark deletion to reduce oscillation of the iterations and
improve algorithm speed. Combining all the operations, the proposed shape-
correspondence algorithm can be summarized as:
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Choose one shape instance as the template VT

Initialize the landmark sets Vq, q = 1, 2, . . . , n
//Main loop
Repeat while ∀i, k, |γik| > 0

Repeat while α(·) > εH

Landmark insertion
Update the template VT

Loop over each shape instance
Landmark sliding

Repeat while α(·) < εL

Landmark deletion
End

The stop condition of this algorithm is the convergence of all three operations,
i.e., |γik| = 0 and εL < α(Vi, Si) < εH , ∀i, k. In practice, we stop the algorithm
when all |γik|’s are sufficiently small.

4 Experiments

We implement the proposed method in Matlab and test it on five data sets ex-
tracted from medical images. These five data sets are: (D1) 120 corpus callosum
shape instances; (D2) 24 metacarpal shape instances [10]; (D3) 50 cardiac shape
instances; (D4) 50 kidney shape instances; and (D5) 32 femur shape instances
[10], as shown in Fig. 1(b). Among them, D1 and D2 have closed-curve shapes,
D3, D4, and D5 have open-curve shapes. For comparison, we choose the MDL
implementation (also in Matlab) by Thodberg [9] and, in all experiments, MDL
was run with 8 active nodes optimized over 40 passes. We test MDL on each
data set with three settings where the number of landmarks along each shape in-
stance is set to 16, 32, and 64, respectively. The proposed method is also run with
three settings where the allowed representation error is set to match the average
representation errors E(α) from the respective MDL runs (εL = E(α)− std(α),
εH = E(α) + std(α)). With similar representation error, we compare several
other error/accuracy measures for MDL and the proposed method.

While it is very difficult to have an objective and comprehensive evaluation of
the shape-correspondence performance, some quantitative measures have been
developed in recent years. In this experiment, we compare the following mea-
sures: (a) E(β) and std(β): the mean and standard deviation of the thin-plate
bending energy between the template and all the shape instances according to
the identified landmarks; (b) λ1, λ2, and λ3: the three principal eigenvalues of
the covariance matrix of Vi, i = 1, 2, . . . , n. In calculating the covariance matrix,
the Procrustes analysis [2] is applied to normalize the size and orientation of
all the shape instances. (c) m: the number of landmarks sampled in each shape
instance, and (d) the total CPU time used for processing each data set, based
on the specific implementations. In general, with a similar representation error,
a good shape correspondence is expected to have small E(β), λ1, λ2, λ3, and m.
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Table 1. Experimental results on D1(corpus callosum)

MDL MDL MDL Proposed Proposed Proposed
Method Method Method

Measures m = 16 m = 32 m = 64 εL = 0.1880 εL = 0.0199 εL = 0.0090
εH = 0.2669 εH = 0.1442 εH = 0.0885

E(α) 0.2275 0.0819 0.0487 0.2214 0.0637 0.0164
std(α) 0.0394 0.0620 0.0397 0.0290 0.0090 0.0023
E(β) 1.0767 2.0420 2.4937 0.0661 0.2270 0.4063
std(β) 1.3434 1.8201 1.9548 0.0425 0.1509 0.1490

λ1 0.0159 0.0155 0.0024 0.0150 0.0093 0.0016
λ2 0.0016 0.0014 0.0017 0.0025 0.0016 0.0009
λ3 0.0009 0.0010 0.0004 0.0014 0.0014 0.0004
m 16 32 64 16 32 64

CPU time(s) 1073.6 3853.0 15448.0 340.2 541.4 1027.8

Table 2. Experimental results on D4(kidney)

MDL MDL MDL Proposed Proposed Proposed
Method Method Method

Measures m = 17 m = 33 m = 65 εL = 0.0501 εL = 0.0331 εL = 0.0194
εH = 0.0977 εH = 0.0764 εH = 0.0663

E(α) 0.0739 0.0547 0.0428 0.0731 0.0366 0.0142
std(α) 0.0238 0.0216 0.0234 0.0089 0.0045 0.0020
E(β) 0.4295 0.9501 1.4099 0.1099 0.1470 0.2217
std(β) 0.1450 0.2841 0.3627 0.0654 0.1441 0.0992

λ1 0.0031 0.0029 0.0028 0.0025 0.0024 0.0022
λ2 0.0014 0.0014 0.0012 0.0015 0.0016 0.0016
λ3 0.0010 0.0009 0.0008 0.0012 0.0012 0.0009
m 17 33 65 14 20 34

CPU time(s) 298.6 764.3 1396.2 140.4 211.1 294.8

For conserving space, we only show the experimental results on D1 and D4 in
Tables 1 and 2. Figure 1(c) shows the identified landmarks along several sample
shape instances. We can see that, given similar representation error, the pro-
posed method produces much smaller mean bending energy E(β) than MDL.
This is reasonable since minimizing the bending energy is one of our explicit
goals. An interesting result is that, in all the experiments, the proposed method
produces a correspondence with λ1, λ2, and λ3 that are comparable to MDL (see
Table 1), because minimizing the eigenvalues of the covariance matrix is a goal of
MDL but not of the proposed method. In addition, we found that the proposed
method usually runs faster than MDL, especially when the number of the shape
instances increases, as in the bottom graph of Fig. 1(c). For the representation
compactness, we found MDL and the proposed method sample each shape in-
stance with similar numbers of landmarks given a similar representation error as
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in the top graph of Fig. 1(c). However, in the MDL implementation, m, the num-
ber of landmarks, is predetermined and kept unchanged in the algorithm, while
in the proposed method, m is automatically determined by landmark insertion
and deletion. We observed similar results on D2, D3, and D5.

5 Conclusion

In this paper, we developed a new landmark-based method for nonrigid shape
correspondence, a prerequisite of accurate statistical shape analysis (SSA). This
method considers three important factors in modelling the shape-correspondence
error: landmark-correspondence error, representation error, and representation
compactness. These three factors are explicitly handled by the landmark sliding,
insertion, and deletion operations, respectively. The performance of the proposed
method was evaluated on five shape-data sets that are extracted from medical
images and the results were quantitatively compared with an implementation of
the MDL method. We found that, within a similar allowed representation error,
the proposed method has a performance that is comparable to or better than
MDL in terms of (a) average bending energy, (b) principal variances in SSA, (c)
representation compactness, and (d) algorithm speed.
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Abstract. This paper describes a technique to approximately predict
the facial morphology after standardized orthognathic ostoetomies. The
technique only relies on the outer facial morphology represented as a
set of surface points and does not require computed tomography (CT)
images as input. Surface points may either be taken from 3D surface
scans or from 3D positions palpated on the face using a tracking sys-
tem. The method is based on a statistical model generated from a set
of pre- and postoperative 3D surface scans of patients that underwent
the same standardized surgery. The model contains both the variability
of preoperative facial morphologies and the corresponding postoperative
deformations. After fitting the preoperative part to 3D data from a new
patient the preoperative face is approximated by the model and the pre-
diction of the postoperative morphology can be extracted at the same
time. We built a model based on a set of 15 patient data sets and tested
the predictive power in leave-one-out tests for a set of relevant cephalo-
metric landmarks. The average prediction error was found to be between
0.3 and 1.2 mm at all important facial landmarks in the relevant areas of
upper and lower jaw. Thus the technique provides an easy and powerful
way of prediction which avoids time, cost and radiation required by other
prediction techniques such as those based on CT scans.

1 Introduction

In oral and maxillofacial surgery one of the major issues is the correction of
dentoskeletal deformities of the skull. The standard type of orthognathic surgery
is to advance the upper jaw and to push back the lower jaw. Its aim is to
establish a normal masticatory function along with an improvement in facial
esthetics [1]. To obtain true informed consent of the patient in orthognathic
surgery, the surgeon must effectively explain possible treatment outcomes to
the patient. Unfortunately, up to now the few existing methods to predict the
facial appearance changes that will result from orthognathic surgery are not
reliable and require 3D imaging [2]. Computed tomography (CT) scans are often
used as basic data for the prediction of the postoperative facial surface. Most
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Fig. 1. Example for a typical input data set: a preoperative face acquired from an
optical 3D sensor (a and b) with manually marked anatomical landmarks (a) and the
postoperative face one year after surgery (c) in which the upper jaw has been moved
forward and the lower jaw backwards.

of these methods try to model the soft tissue deformation with the aid of finite
element or spring models based on the planned surgical change of the underlying
bone structure. To date, there is little information available on the accuracy
of these predictions [3,4,5]. Commercial applications exist that allow geometric
deformations of photographs or scanned 3D models in order to plan the surgical
outcome but there is no quantitative validation on how realistic these predictions
are. It has been the aim of this study to introduce a new prediction approach
avoiding time, cost and radiation introduced by the CT scan and to evaluate the
accuracy of this approach. The presented method is based on a 3D statistical
model built from a set of 3D surface scans of different patients before and 12
months after the same type of orthognathic surgery (see Fig. 1). The variety
of preoperative facial morphologies as well as the corresponding postoperative
deformations are both captured in the model. The model can be fitted to the
face of a new patient whose facial morphology is partly known as a set of 3D
positions on the face which can either be digitally acquired by 3D surface scans
or from positions directly palpated using a tracking system. After this fitting
process the prediction can simply be extracted from the model.

We will present our statistical models in section 2 and how the model was
built from the given data in section 3. The model fitting algorithm is described
in section 4, followed by an evaluation in section 5.

2 Extended Shape Models

Cootes and Taylor first presented the idea of deformable statistical models [6] for
the purpose of image segmentation in 1992. The main assumption is that a class
of shapes can be described by a relatively small number of linear variations of
the average shape. Object shapes are described in a compact way as a vector of
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boundary point coordinates. A class of object shapes is modeled by an average
shape and a linear combination of vectors that describe the possible variations of
the shape compared to the average shape as deformation vectors. The model can
be easily deformed by changing the weights of the deformation vectors within a
limiting range keeping the shape always plausible, i.e. inside the given class of
shapes.

Technically the shape of an object is described as a point set Fi of S points
pij , j = 1 . . . S on the object surface, given N objects (i = 1 . . .N), in this
case preoperative facial morphologies from different patients. Assuming at this
point that a dense correspondence map between all shapes has already been
defined and all shapes are already aligned in space, then we can describe each
input shape as a vector xi by concatenating the x-, y- and z-coordinates of
the points, yielding a vector of dimension M = 3S. By applying an eigenvalue
decomposition [7] to the covariance matrix of these vectors we get a number of
eigenvalues λi with associated orthogonal eigenvectors vi. It can be shown that
there are at most N − 1 eigenvalues with λk > 0, if N < M [6]. By defining a
matrix V from the eigenvectors vk associated to these eigenvalues, each of the
input shape vectors xi as well as arbitrary anatomically plausible shapes x can
be described as a sum of the average shape vector x̄ plus a linear combination
of these eigenvectors with a weight vector b:

x = x̄ + Vb, V = (v1,v2, . . . ,vN−1), (1)

−3
√

λk < bk < 3
√

λk, k = 1 . . .N − 1

Since the eigenvalues are equal to the variance within the input data in direction
of the associated eigenvector, we can assume plausible shapes generated by a lin-
ear combination of weights that are constrained to a variation of three standard
deviations per eigenvector [6].

In order to include the transition between pre- and postoperative morphology
into the model, we extended this original approach by adding the displacement
vector field from pre- to postoperative facial morphology as a second part of
the input vector: We assume at this point that preoperative and postoperative
surfaces have already been registered and that a dense correspondence between
them has been established. In other words, for each preoperative face point pij of
a patient Fi there is a corresponding postoperative point qij . The displacement
vector field between pre- and postoperative face can thus be defined as dij =
qij − pij . The definition of the vector xi is extended to contain the coordinates
pij first and then the displacement vector field dij , thus doubling the dimension
M of the vector to M = 6S.

3 Model Generation

3.1 Data Acquisition

3D surface scans of 8 female and 7 male patients were acquired with an optical
3D sensor (SCAN3D, 3D-Shape GmbH, Erlangen, Germany), both preopera-
tively and one year after the surgery in which the upper jaw was moved forward



446 S. Meller, E. Nkenke, and W.A. Kalender

and the lower jaw backwards, both between 3 and 7 mm (e.g. see Fig. 1). The
postoperative scans were first rigidly registered to the preoperative scans as de-
scribed by Maier et al. [8]. On all pre- and postoperative faces several important
cephalometric landmarks were manually identified (see Fig. 1(a)).

3.2 Correspondence Mapping

A precondition for the statistical modeling is a dense correspondence between all
input shapes. A manual correspondence mapping which involves marking mutu-
ally corresponding points on all input data sets is only feasible for a small subset
of anatomical landmarks. Therefore several correspondence mapping algorithms
have been proposed in the past [9,10,11]. We applied our own approach [12] that
ensures smooth and dense correspondence mapping. It uses only moderate man-
ual interaction and is based on the multiple deformation of a template surface
to each of the input surfaces. The necessary non-rigid template-to-target regis-
trations are performed in three steps: first, an affine registration based on the
set of marked landmarks on both meshes [13] is performed, followed by second,
a 3D thin plate spline deformation [14] which brings the template to exact align-
ment with the target mesh at the landmark positions. Thirdly, for refinement,
a non-rigid iterative morphing approach is applied. It is based on four kinds of
springs attached to the vertices of the template triangle mesh that determine the
deformation of the template surface. Two of the springs minimize the surface dis-
tance to the target surface while the other two maintain the overall shape of the
template surface by minimizing changes in inter-vertex edge lengths and inter-
triangle edge angles compared to the original template surface. In each iteration
for each of the template vertices a deformation vector is calculated composed of
the four spring forces where each type of spring is weighted differently.

We applied the same technique for the inter-patient registration of a preop-
erative template face to each of the other faces and for the intra-patient regis-
trations of each pair of pre- and postoperative facial morphologies. As a result
all pre- and postoperative faces are described with the same mesh topology with
mutually corresponding vertices.

3.3 Alignment and Model Calculation

In order to compensate for translation and rotation differences in the given
data sets we applied an iterative Procrustes alignment [15], again based on the
manually marked landmark sets for each patient. At this point the model is
generated as described in section 2, including the displacement vector field to
the postoperative facial morphology into the shape vector.

4 Model Fitting and Prediction

The preoperative part of the generated model can be fitted to given data from
an arbitrary face. We assume that the data is given as a 3D set of points on the
unknown preoperative face. These may either be single point positions at known
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anatomical landmarks or whole point clouds on the face. The fitting process
thus involves the determination of a rigid transformation Tfit that transforms
the model coordinates into the target coordinate system and the shape parameter
vector bfit that deforms the model surface such that it optimally fits the given
point set. After the model-based deformation a further non-linear deformation
can be applied (section 4.2).

4.1 Model Fitting

We partly applied the fitting algorithm described by Blanz et al. [16]. The
method uses a linear matrix that maps the given vector x of model coordi-
nates onto a subset of points and applies a linear transformation, in our case
a rigid transformation that registers the model with the patient. Assuming the
correspondences from given points to model vertices are known, the shape pa-
rameter vector b which generates the model face (according to (1)) that best fits
the given points can be found in a closed solution by solving a linear equation
system after applying a singular value decomposition [7].

In this study we only used the set of predefined landmarks for model fitting for
which the corresponding vertices on the model surface are known. The approach
can be extended to include the whole preoperative facial morphology by starting
with an initial model fit defined by known landmarks. Correspondences for the
remaining vertices can then be acquired by projection onto the already fitted
model surface. Thus, the fitting can be iteratively refined.

4.2 Refinement Deformation

In order to perfectly fit the model surface to the given point set and consider
shape variances not captured in the statistical model, a non-linear deformation
can follow the fitting process described above. In this step a thin-plate spline
warping is applied to the fitted model face based on the known pairs of corre-
sponding landmarks between model and patient. In this way the preoperative
model face perfectly fits the patient face at the landmark positions.

4.3 Face Prediction

The above fitting process defines a shape parameter vector b and therefore a vec-
tor x that represents in its first half an approximation of the given preoperative
face. Since the displacement vector field to the postoperative face is stored in the
second part of the same vector (see section 2) and is therefore determined by the
same shape parameter vector according to (1), a prediction of the postoperative
facial morphology can now be acquired by adding this adapted displacement
vector field to the fitted preoperative face.

5 Evaluation Results

The evaluation was carried out in 15 leave-one-out tests. In each test one of the
15 data sets was defined as the test data set; the model was generated from the
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(a) (b) (c) (d) (e)

Fig. 2. Example for a prediction: A preoperative face of a patient (a) was landmarked
and the statistical model generated without this patient was fitted to these landmarks
as can be seen in (b). The actual postoperative outcome (c) one year after surgery can
then be compared with the prediction (d) produced by the model, both combined in
one image in (e).

14 remaining data sets and then tested against the test model (see example in
Fig. 2).

We used the manually marked anatomical landmarks on the test data set in
order to fit the model. The predicted postoperative face could then be compared
to the known postoperative face. We measured the prediction error at a subset
of the marked cephalometric landmarks:

– subnasale: point at the tip of the angle formed by colunella and upper lip
– labrale superior: most anterior point of the upper lip
– lb left and right: top of the cupid’s bow of the upper lip
– chelion left and right: points located at the labial commissure
– labrale inferior: most anterior point of the lower lip

Table 1. Statistical evaluation of the average absolute prediction error in mm at certain
anatomical landmarks from leave-one-out tests in 15 cases, compared to the maximum
displacement caused by the surgeries at these landmarks.

Landmark Mean SD Max Max.
actual

pogonion 1.2 1.2 3.8 8.5
submentale 1.0 1.1 3.4 7.5
labrale inferior 1.0 1.1 3.5 5.8
labrale superior 0.6 0.6 2.7 3.1
lb left 0.5 0.5 2.1 2.5
lb right 0.7 0.8 3.6 4.1
chelion left 0.8 0.5 1.9 2.6
chelion right 0.8 1.0 3.6 3.2
subnasale 0.3 0.4 1.6 2.3
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– submentale: most posterior point between lower lip and chin
– pogonion: most anterior point of the chin

Results are shown in Table 1: The measured average prediction errors over
all 15 cases at the landmarks with the greatest deviations (pogonion, submentale
and labrale inferior) were about 1.2 mm ± 1.2 mm with rare outliers below 4 mm
whereas the absolute displacements ranged from 2.3 mm to 8.5 mm. All other
landmark positions showed average prediction errors below 1 mm.

6 Conclusions and Discussion

We showed how statistical face models that include the shape change between
pre- and postoperative facial morphology can be successfully applied to predict
the postoperative facial morphology after orthognathic surgery from sparse 3D
data of a patient’s preoperative face. Although sophisticated nonlinear finite el-
ement modeling may be an appropriate alternative, there is no proof from the
current literature that these techniques generate valid predictions of the human
face. The presented method avoids time, cost and radiation associated with other
techniques that require a CT scan. It is fast and simple during application. The
fit and prediction is calculated within a few seconds after minimal manual inter-
action. Even based on a relatively small data base of 15 male and female cases,
the comparison between the real postoperative outcome of the facial surfaces
and the predicted surfaces revealed that the average differences were below 1.5
mm for landmarks placed on the relevant areas of upper and lower jaw. This new
type of prediction of the outcome of orthognathic surgery is favorable for several
reasons: differences between facial surfaces below 1.5 mm cannot be easily distin-
guished by the normal observer and the thickness of the facial soft tissue already
changes during the course of the day in this range. In addition, the facial surface
is influenced by changes of body weight and aging. Therefore, it will be difficult
to achieve a better prediction accuracy than the one shown in this study. Of
course, the application of the method is restricted to the kind of surgery and the
variability of facial morphologies covered in the data base. Thus, future work
will include increasing the data base to more patient data sets from different
types of surgeries, different ethnic groups and ages. The new method may also
find its application in plastic facial surgery where well standardized procedures
allow an accurate prediction by the proposed technique.
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Abstract. In this paper, we present a new framework for shape modelling and
analysis: we suggest to look at the problem from a pattern recognition point of
view, and claim that under this prospective several advantages are achieved. The
modelling of a surface with a point distribution model is seen as an unsupervised
clustering problem, and tackled by using growing cell structures. The adapta-
tion of a model to new shapes is studied as a classification task, and provides
a straightforward solution to the point correspondence problem in active shape
modelling. The method is illustrated and tested in 3D synthetic datasets and ap-
plied to the modelling of brain ventricles in an elderly population.

1 Introduction

Statistical shape modelling has been increasingly used during the last decade as a ba-
sis for image segmentation, interpretation and the studying of shape changes. Many
successful 2D-applications have been described in literature [1]. The model building
requires the establishing of correspondence between shape surfaces over a set of train-
ing examples. Defining correspondent points on different shapes is not trivial: in some
2D applications, manual landmark definition might be possible but it becomes unprac-
tical when 3D/4D shapes are considered. Different techniques have been developed to
address this problem: some solutions are rooted in computer graphics [2], others in sig-
nal/image processing [3], [4], [5], and some have used information theory [6], [7], [8].
An important distinction has to be made between pairwise and groupwise approaches
(see [6] and [8]): groupwise analysis aims to optimize an objective function over the
whole dataset while creating the statistical model, while pairwise solutions generally
start with a good representative of the dataset and build up a model rooted on it. In
the final discussion, we shortly present advantages and drawbacks of these approaches,
justifying the research on the pairwise approach described in this work.

From a pattern recognition prospective, and considering a pairwise approach, the
problem can be summarized in 3 questions: How many nodes are needed? Where should
they be located? How can we define correspondence between them? The question ”how
many nodes are needed?” is tackled as an unsupervised learning (clustering) problem
where the optimal number of clusters (nodes) has to be defined. To ensure an optimal
location of the points, the clustering technique needs to be topology-preserving. We
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consider the point correspondence as a classification problem where the generalization
aspect of a classifier is used to match unseen cases to similar previously seen points. We
investigated the use of growing artificial neural networks to tackle all three questions.
Most of the growing neural networks are variations of the growing cell structure (GCS)
introduced by Fritzke in [9]. The GCS principle is based on Self Organizing Maps
(SOM) (Kohonen [10]), which are known to be perfectly topology-preserving: the net-
work preserves neighborhood relations in the data by mapping neighboring inputs onto
neighboring nodes in the map. Recently, Marsland et al. presented a self-organizing
network that grows when required (SONGWR) [11]: SONGWR proved to be (1) more
data-driven while growing, and (2) faster in learning input representation, when com-
pared with previous models.

In this paper we describe how the SONGWR is used to create a first point dis-
tribution model from a representative instance of the training set (a single case or an
average). The adaptation phase of the SONGWR algorithm is then used to deform and
match the obtained network to all the instances in the training set. We investigated the
robustness and effectiveness of the method in synthetic data sets. Finally, we show a
successful application of the algorithm in the modelling of brain ventricles in magnetic
resonance images.

2 Method

Given a dataset of segmented objects T = {D1, ..., Dn}, we detect the clouds of points
P1, ..., Pn by selecting the boundary points of each instance. Afterwards, the method
goes through two main phases: an unsupervised clustering is used to create a first model
of a representative object Pi (chosen through visual inspection); subsequently, an adap-
tation phase adapts the model to the other clouds of points, keeping the point correspon-
dence.

2.1 Unsupervised Clustering: How Many Nodes?

The unsupervised clustering algorithm (SONGWR) is fully described in [11]: we sum-
marize it here, highlighting the main variations we introduced:

1. initialize a network M with 2 nodes at random positions
2. do

(a) randomize the order of the points in Pi

(b) for each point p ∈ Pi

i. identify the two best matching nodes s, t in the network M :
s = arg minn∈M ||p− n||, t = arg minn∈M−{s} ||p− n||

ii. set edgeages,t = 0 (age of edges,t), or create the edge if not existing
iii. evaluate the activity of s as: a = e−||p−s||

iv. if a < aT and sage > ageT

– add a new node: r = (s + p)/2
– insert edgesr,s, edger,t, and remove edges,t

v. else
– adapt s position: st+1 = wwinner ∗ st

age ∗ (p− st)
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– adapt nodes i ∈ Ns in s’neighborhood: it+1 = wd∗itage∗(p−it),

with wd = 0.1 ∗ e−
d2

2∗0.422 , d = distance in steps between s and i
vi. update edges between s and i ∈ Ns: edgeages,i = edgeages,i + 1

vii. update sage and iage, i ∈ Ns

viii. delete edges with edgeage > edgeT

ix. delete nodes with no edges
(c) remove nodes which have never been selected as best-matching s in (b)
(d) evaluate new accuracy for M as the mean average distance between each node

p ∈ Pi and the correspondent best matching unit s ∈M
while (old accuracy - new accuracy≥ accT )

3. evaluate the covariance matrix for each cluster (node of the network) by using the
associated points from the cloud

4. repeat point 2. using the Mahalanobis distance instead of the Euclidian one in (b).i

The following thresholds and formulae have been used: aT = 0.1, edgeT = 50,

accT = 0.001, ageT = 1 − 1
α ∗ (1 − e

−α∗5
β ), α = 1.05, βw = 3.33, βn = 14.3.

As discussed in [11], the accuracy threshold aT affects the final model, allowing for
multi-scale analysis (although this aspect has not been investigated in this work). The
growing steps (b).i-(b).ix follow the algorithm in [11], while points 3) and 4) are intro-
duced to better represent the surface in points of high curvature, as also suggested in
[2]. The model can be seen as a classifier, obtained by means of clustering techniques:
the next paragraph shows how to adapt it to the other shapes of the training set T (only
nodes of the final model are involved in the adaptation phase).

2.2 Point Correspondence: Adaptation Phase

In order to perform shape analysis, we need to adapt the model to the other clouds of
points, keeping point correspondence. Adapting the network to a new pattern is equiv-
alent to using the model as a classifier: for each given point in the new object, we find
the best-matching cluster and adapt it. The process has similarity with SOMs, since
there are no added/removed nodes. The segmented patterns Di are considered already
normalized for scaling, while we adjust for position and orientation during the process.
The main parts of algorithm are summarized:

1. perform block 2 of the algorithm presented in paragraph 2.1, without adding/
removing nodes (point correspondence granted, points 2.b(vii),2.b(ix),2.c skipped)

2. adapt the nodes which were never selected as best matching in the previous step (1)
(a) move each node towards the closest node which was selected in (1)
(b) average the node positions

3. repeat step (1), but using the points which were selected in (1) as new input (instead
of the original cloud of points), and adapting only those nodes which were never
selected as best matching (nodes involved in step (2))

Steps (2) and (3) are introduced in order to deal with non-closed objects. Performing
the adaptation for all the clouds of the training set leads to n neural networks (models)
M1, ..., Mn. Summarizing the whole algorithm: while working on the first shape, the
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unsupervised clustering identifies the best location for nodes in order to optimize the
representation of the cloud of points. During the adaptation phase, the nodes are moved
towards those areas in the new shape where clusters are needed in order to better repre-
sent the new cloud of points. Since no nodes are added nor removed, by simply labeling
the nodes on the first model and following them during the adaptation we obtain the
desired correspondence.

3 Results

Results on synthetic datasets. The datasets created for the synthetic experiments are
shown in figure 1.a. The algorithm introduced in 2.1 involves the randomization of the
sequence of surface points (step 2.(a)); randomizing the sequence guarantees a more
homogeneous growth for the network, but we have to assure stable results. For each
shape, we run the algorithm 20 times using the same sequence of surface points, and
evaluated the dissimilarity between models. Table 1 reports the results (stability test):
the accuracy for a model, and the dissimilarity between two models Mi, Mj are defined
as:

accuracy =
1

Npoints

∑
j=1..Npoints

||pj − wj ||, (1)

d(i, j) = accuracyij + accuracyji + (1− Em

EM
), (2)

(a) (b)
Fig. 1. (a) Synthetic datasets (dimensions in voxel): from left to right: XShape (radius = 5, length
= 30), Chalice (radius = 10), and U-tube (radius = 10, length = 105); (b) Overlapping for best
(Left, diss. = 2.58) and worst (Right, diss. = 3.59) matching shapes: in both cases, one network
has red nodes and white edges, the other has blue nodes and green edges. Even in the worst case
the two networks nicely overlap.

Table 1. Results for stability and noise tests (accuracy and dissimilarity are given in voxel);
results are averaged over 20 runs per shape and show the stability of the algorithm in relation to
random effects and noise. Details on the applied randomization and noise are given in the text.

Stability Test Small Noise Test
Surf. Avg. Diss. Accur. N nodes N edges Surf. Avg. Diss. Accur.

Points μ σ μ σ μ σ μ σ Points μ σ μ σ

X shape 1464 2.84 0.68 2.18 0.005 146 0 372.95 7.72 1317 3.09 0.72 2.32 0.01
Chalice 1208 3.53 0.94 2.25 0.01 120 0 309.65 4.86 1087 3.04 0.71 2.39 0.03
U-Tube 2247 3.33 0.83 2.37 0.007 223.85 0.49 485.25 10.78 2022 3.12 0.74 2.53 0.03
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where Npoints is the number of surface points, and wj is the best matching node
in the model, given the pj point of the surface sequence (the Euclidian distance is
used). In d(i, j), accuracyij is the accuracy of the model Mi evaluated on the set of
nodes of the model Mj (see eq. 1), Em = min(Ei, Ej), EM = max(Ei, Ej), and
Ek =

∑
q=1..Nk

edges
||edgeq||2, k = i, j. Figure 1.b shows a visual example for the dis-

similarity between models. Tests on robustness to noise were performed: for each shape,
starting with the original set of surface points, we built up 20 sequences by applying the
following noise: 60% of the points were randomly moved in space (displacement in the
range [-2,2] voxels for all the coordinates), and 10% of the nodes were removed. Table 1
(small noise test) shows the results. Finally, we tested the ability of the graph to adapt to
different instances of a same class of shapes (capturing the main variations). We created
a dataset of 40 tubes, where each tube varies in diameter and length following Gaussian
distributions (radius r: μr = 10, σr = 2 voxel, length l: μl = 125, σr = 40 voxel). We
generated an average tube and used it to train a growing neural network (first model);
the model has then been adapted to the 40 tubes (average accuracy for the adaptation
process: μacc = 2.37, σacc = 0.2 voxel). We finally performed a PCA to analyze the
performances of the PDM obtained with our algorithm. The properties we tested are
the same presented in [6]. Compactness C(M) =

∑M
m=1 pm (percentage of variance

covered by the first M modes); reconstruction error Er(M) = 1
Ns

∑Ns

i=1 |S
′
i(M)− Si|

(average accuracy in approximating Ns shapes of the training set using M modes);
generalization ability G(M) = 1

Ns

∑Ns

i=1 |S
′
i(M) − Si|: for a given i we build up a

shape model without using Si, and test the accuracy with which Si is approximated
by the model (S

′
i(M)); specificity Sp(M) = 1

N

∑N
i=1[Diss(Si(M), ObjCls)], with

Fig. 2. First row: quantitative analysis for the Tube-PCA: compactness (in percentage), recon-
struction error, generalization ability, and specificity (in voxel) are reported. The x axis shows
the retained modes of variation. The error bar shows the confidential interval at 95% (see text
for details). The model identifies the 2 main modes of variation. Second row: same analysis for
brain ventricles (values are in mm): when the 24 modes of variation are used, the error values are
particularly low, showing the good behaviour of the model: Er < 1.4, Ge < 2, and Sp < 9.
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I II

Fig. 3. Left image I: (a)-(b) 1st mode of variation, ±3σ; (c) mean shape; (d)-(e) 2nd mode of
variation, ±3σ. The 1st mode presents a global shrinking/growing behaviour, while the 2nd mode
shows elongation/compression of the temporal and occipital horns; Right image II: Color-coded
maps for the amount of movement of each node. Top row: 1st mode ±3σ. Bottom row: 2nd mode
±3σ (occipital and temporal horns mostly involved).

Diss(Si(M), ObjCls) = 1
Ns

∑Ns

i=1 |S
′
i(M) − Si|, where we create N = 100 in-

stances of the object class and average the dissimilarity between them and the shapes in
the training set. The results are shown in figure 2.

Results on a medical dataset. We applied the algorithm on a training set of 67, semi-
automatically segmented, brain ventricles (T2-MRI, 91x109x91 voxels at 2x2x2 mm
after normalization). After acquiring the clouds of points for each ventricle, we selected
a representative one and build up a first model (see section 2.1): the optimal number of
clusters (nodes) resulted in 755. The model was adapted to the other 66 clouds, and a
PCA 1 was performed on the 67 models (average accuracy for the adaptation resulted in
μacc = 2.06, σacc = 0.22 mm). Results are reported in figure 2, while figure 3 shows
the first 2 modes of variation. Although it was not the aim of the study, we tested the lin-
ear correlation between aging and first mode of variation. The dilation was significantly
associated with aging (p < 0.01, r2 = 0.10, older people showing a larger structure).
The low value for r2 is explained by the low variation in the population (μ = 75, σ = 5
years).

4 Discussion

In Kaus et al. [2], the authors iteratively reduce the set of original surface points to a
subset with high (sparse) dense point distribution in areas of high (low) curvature: a
triangular mesh is then derived. In our method, all the surface points are used, and the
unsupervised clustering detects the areas in which more clusters (nodes) are needed.
Differently from [2], we adapt nodes as in SOM: once a node is moved, a parame-
ter controls how many neighbors have to move, and a Gaussian function is used to
determine the strength of movements. As in [2], we also make use of an elastically
deformable model which avoids inverse transformations. In Gerig et al. [12], spherical
harmonics are used to model a set of surface points. The main advantage is the multi-
scale analysis which might highlight deformations not noticeable otherwise; drawback

1 While applying the PCA, we adjusted for translation and rotation of shapes following the
procedure suggested by Evangelos et al. in [13].
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of the solution are pre-processing steps needed for closing the surface. We have not
investigated the multi-scale feature, although we speculate it would be achievable by a
reduction in the accuracy for the growing process (aT ). Our solution does not require a
closed surface. Finally, the parameters used in our approach are the coordinates of the
nodes: significant differences in shape are directly associated with positions, (in [12] a
vision inspection is needed). In [8], Davies et al. highlight how critical some aspects
are for the final model: the number of nodes, their locations, and the correspondence
between them strongly influence the final performances. The authors suggest to use de-
scriptive functions to identify correspondent points on different shapes, create a first
model, and evaluate it through an objective function to be optimized: the search for the
best descriptive functions is carried on through genetic algorithms. This approach leads
to the distinction between pairwise and groupwise solutions. Groupwise approaches are
known to provide better models, optimizing the results on the whole dataset; more-
over, they do not require a first representative to start with. Pairwise approaches, like
the one described in this work, need an initial shape to operate: thus, the final model
can be influenced by such a choice. Nevertheless, pairwise approaches might overcome
some drawbacks related with groupwise solutions. The optimization needed by group-
wise solutions is often achieved by genetic algorithms (see [8]): although this improves
the chances of getting a better model, an optimal result is not guaranteed. Genetic al-
gorithms lead to heavy computation, surely a drawback if we aim to learning systems:
how can we improve a given model when a new example becomes available? Groupwise
solutions have to undertake the whole optimization process again, with a computation
load which grows with the number of shapes. Pairwise and groupwise solutions should
be seen as complementary for many aspects, and the results achieved in one field can
improve the other. The results reported in sections 3 show the stability of our solution
and its capability of generating good point distribution models (PDM) for statistical
analysis (such as PCA). The stability has been tested on synthetic datasets both with
and without noise, while the PDM has been tested both on synthetic dataset and on a
medical training set of brain ventricles. The PCA could highlight the expected modes
of variation for the synthetic data set and known variations in the aging brain ventricles
due to brain atrophy.

5 Conclusions

In this paper, we presented a new solution, rooted in a pattern recognition framework,
for a pairwise approach to the shape-modelling problem. An unsupervised clustering
technique (SONGWR) automatically identifies the optimal number of nodes and their
locations on the surface of a representative shape; the point distribution model (PDM),
considered as a self-organized map (SOM), is then adaptated onto other datasets: the
correspondence problem is solved by labeling the nodes in the first model and follow-
ing them through the adaptation phase. The method has been thoroughly evaluated on
synthetic datasets and its effectiveness has been proved in a challenging medical appli-
cation. Due to its generality, the method can be applied to other anatomical structures
(of any shape). Further investigation will be focused on the integration of the image
intensities around the nodes in the model.
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Abstract. Shape priors attempt to represent biological variations
within a population. When variations are global, Principal Component
Analysis (PCA) can be used to learn major modes of variation, even from
a limited training set. However, when significant local variations exist,
PCA typically cannot represent such variations from a small training set.
To address this issue, we present a novel algorithm that learns shape vari-
ations from data at multiple scales and locations using spherical wavelets
and spectral graph partitioning. Our results show that when the training
set is small, our algorithm significantly improves the approximation of
shapes in a testing set over PCA, which tends to oversmooth data.

1 Introduction

Shape priors are commonly used to constrain shapes obtained during the seg-
mentation and registration of biomedical images. Some of the first shape priors
were based on local smoothness constraints [1] via elastic forces or combinations
of global and local constraints [2] within the active contour framework. One
limitation of these models is possible convergence to suboptimal shapes due to
high flexibility in deformations. Statistical shape models were devised to over-
come such drawbacks by learning a shape model from a training set. In [3] PCA
was used in a framework called Active Shape Models (ASM) and has become
a standard technique for segmentation tasks [4,3]. The advantage of using PCA
as a shape prior is to restrict the segmentation task to a subspace of allowable
shapes. However, it has two major limitations. First, it often restricts deformable
shape too much, particularly if it has been trained on a relatively small number
of samples. Second, finer, more local variations of shapes are often not encoded
in eigenvectors representing the most global modes of variation in the shapes.

To address this issue, the authors in [5] have proposed a hierarchical active
shape model framework for contours in 2D medical imagery using wavelets, with
convincing results. We propose to extend this framework in two novel ways.
First we describe a multiscale representation of surfaces in 3D medical imagery
using conformal mapping and spherical wavelets. Further, we present a novel
algorithm to discover optimal independent multiscale shape variations from the
data. Spherical wavelets have been used primarily by the computer graphics com-
munity to generate multiresolution description of 3D shapes [6]. In [7], spherical
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wavelets are used to analyze a manifold not topologically equivalent to a sphere
by doing a non-bijective mapping between the manifold and the sphere via the
normals. This work does not conduct statistical analysis of a shape population
and uses a basis defined on the sphere, not on the shape.

To the best of our knowledge, this is the first application of statistical analysis
to a population of 3D surfaces using spherical wavelets. By using a spherical
wavelet basis defined on the shapes and identifying independent multiscale shape
variations, we build more accurate shape priors.

2 Shape Acquisition and Registration

In this paper, we used a dataset of 39 prostate gland shapes obtained from MR
imaging. In these images 1 the prostate capsule is visible and was manually seg-
mented by a radiologist. Each manual segmentation defined a 3D surface which
was extracted as a triangulated surface using the Marching Cubes algorithm. We
registered all prostate shapes in the dataset by re-triangulating the extracted
surfaces in a consistent manner, providing a point-by-point registration of all
surfaces in the dataset. This re-triangulation was done by first mapping each
surface to the sphere using a conformal (angle-preserving) mapping technique
as described in [8]. 6 Expert-specified landmark points were used to improve
the consistency of the spherical mappings. Next, interpolation was used to find
the coordinates of the original 3D surface at the vertices of a regular multiscale
subdivision of the sphere, having an octahedral structure at its coarsest scale.
Once corresponding points were identified, a Procrustes technique was used to
align the shapes in the original coordinate system.

3 Shape Representation

Once registered, all shapes have N vertices and each shape can be described by
its three coordinate functions, x, y, z ∈ R such that the kth shape Sk is a column
vector of size 3N : Sk = [xk(1), ..., xk(N), yk(1), ..., yk(N), zk(1), ..., zk(N)]T .

Since all vertices in the shape population are registered, we interpret each
entry of Sk as a random variable and each shape as a realization from a multi-
variate probability distribution. A population of K shapes can be described by a
mean shape S = 1

K (
∑K

k=1 Sk) and a set of transformations T = [T1, ..., TM ] that
describe the variability observed in the population. Each transformation vector
Tm is of size 3N where the ith entry is a transformation applied to the ith entry
of the mean shape with a corresponding magnitude βm ∈ R.

Each transformation vector, or variation mode, can be characterized by scale,
spatial location and magnitude. For scale, the variation can be global, meaning it
applies to all vertices of the shape (all of its entries are non-zero) or local, meaning
it is a sparse vector with a few non-zero entries. The non-zero entries determine
the spatial location of the variation. Characterization of local variations could
be important for shape analysis since a disease, such as cancer, could affect only
1 Axial, T2-weighted, 120mm field of view, matrix size 256 × 256, 3.0mm thickness,

0.5mm gap, 1.5T, using both endorectal and pelvic coil arrays.
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a portion of an organ’s surface. Therefore descriptive shape priors should discern
shape variations at different scales and spatial location.

4 Limitation of PCA in Representing Finer Shape Details

Active shape models (ASM) [3] use principal component analysis (PCA) to dis-
cover uncorrelated shape variations from a training set. ASM assumes that train-
ing shapes have a multivariate normal distribution. The modes of variation are
the eigenvectors of the data covariance matrix (major axes of the distribution).

If the training set is small, PCA favors discovery of significant global varia-
tions over local variations. Indeed, assuming a training set of K shapes with N
vertices (N � K), the rank of the covariance matrix, and number of eigenvec-
tors, will be at most K − 1. It can be shown that the eigenvectors associated
with the largest eigenvalues of the covariance matrix describe the most signifi-
cant modes of variation in the vertices [3]. This can be a feature of PCA, since
it will enforce a global smoothness constraint on shapes, but also a limitation if
shapes have important local variations, as will be shown in Section 6.

5 Multiscale Shape Prior Using Spherical Wavelets

In this Section, we describe our technique to model the full range of variation
in a population. We first derive a multiscale analysis of the variation of shapes
in section 5.1. Section 5.2 details our shape prior for multiscale statistical shape
analysis. Section 6 shows our results and compares our technique with ASM.

5.1 Description of Spherical Wavelets

To address this limitation, we propose a shape prior that represents variations
at different scales and spatial locations. This can be achieved with wavelet basis
functions that are localized in space and characteristic scales and therefore match
a wide range of signal characteristics, from high frequency edges to slowly vary-
ing harmonics [9]. Spherical wavelets are second-generation wavelets adapted to
manifolds with non-regular grids. We briefly sketch their construction [10].

Subdivision: Spherical wavelets analyze signals on a mesh obtained from recur-
sive partitioning of a mesh with spherical topology. With the technique described
in Section 2, all shapes have the required mesh to conduct the analysis. We de-
note the set of all vertices obtained after j subdivisions with an index set K(j).
The j + 1th resolution mesh is obtained by introducing new nodes, identified
by an index set M(j) which subdivide existing edges (typically at their mid-
point). The complete set of nodes in the j + 1th resolution mesh is given by
K(j + 1) = K(j)

⋃
M(j) and shown in Figure 1(a) which represents a portion

of a triangular surface mesh at resolution j + 1.

Representation of shape functions: Let S be a surface and let x ∈ R3 be a
point on S. To approximate a function f(x) we use a set of wavelet and scaling
basis functions defined on the shape and modulated by coefficients. For each
resolution level, ϕj,.(x) are hat-shaped scaling functions2defined at the nodes
2 Varies linearly from value 1 at the vertex xk to 0 at neighboring vertices.
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(a) grid (b) j = 2 (c) j = 4 (d) j = 1 (e) j = 4

Fig. 1. (a) Subdivision Grid. (b,c) Scaling (d,e) Wavelet Function for Different Nodes

(a) shape (b) res. 0 (c) res. 1 (d) res. 2 (e) res. 3 (f) res. 4

Fig. 2. Shape at various resolution levels, see text for details

k ∈ K(j) and ψj,.(x) are wavelet functions defined at nodes m ∈M(j). Wavelet
functions capture finer features since they are composed of higher resolution
(j + 1) scaling functions. Figures 1(b)- 1(e) show scaling and wavelet functions
for different values of j,k and m. Note that the support of the functions becomes
smaller as the resolution increases.

When a shape is transformed into the wavelet domain, its wavelet coefficients
are calculated 3 for all resolution levels:

f(x) =
∑

k∈K(0)

λ0,kϕ0,k(x) +
∑
0≤j

∑
m∈M(j)

γj,mψj,m(x). (1)

A shape is represented by its lowest resolution scaling coefficients and its wavelet
coefficients at all higher resolution levels. The total number of coefficients calcu-
lated by the transform is equal to the number of points representing the shape.
Each coefficient describes features at a particular scale and spatial location.

Wavelet transform of the Prostate Data: We have applied the wavelet
transform to prostate data to analyze multiscale variations in the population.
We first subtract the mean shape from all the shapes in the set. We then apply the
transform independently to the residual x,y and z coordinates of the N vertices
of the shape. The kth shape in a population of K shapes can be described by a
vector of wavelet coefficients of size 3N :

Γk = {λx
0,k, λy

0,k, λz
0,k, γx

j,m, γy
j,m, γz

j,m|j = 0, .., 4; m ∈M(j); k ∈ K(0)} (2)

Figure 2 shows a wavelet decomposition of a prostate. Figure 2(a) is the shape
before decomposition. Each Figure 2(b)- 2(f) is the mean shape plus the cumu-
lative signals up to that resolution. We observe more high frequency content as
the resolution increases.
3 By inner product with dual functions, see [10] for more details.
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5.2 Spherical Wavelets and Construction of Shape Priors

The shape prior is the multivariate probability distribution of the coefficients,
estimated from their covariance matrix ΓΓ T . In our experiments, we have ob-
served a very sparse covariance matrix with most of the dependency between
coefficients at the same scale. Furthermore, for each scale we have observed clus-
ters of correlated coefficients. This is consistent with the decorrelation property
of the wavelet transform for real-world signals [9]. Given the sparseness of the
covariance matrix, we approximate the joint distribution of coefficients with the
product of distributions over smaller clusters of correlated coefficients.

Adaptive Band Selection by scale-space decomposition: For each scale,
we cluster highly correlated coefficients into a band, with the constraint that
coefficients across bands have minimum cross-correlation. Our technique is dif-
ferent from [5] where the authors perform a scale-space frequency decomposi-
tion of the coefficients by clustering coefficients of spatially adjacent bases into
bands in each frequency plane. In this work, we cluster coefficients according
to correlation to pick meaningful bands that indicate areas of variation. Such a
decomposition can in itself be interesting for shape analysis.

To cluster correlated wavelet coefficients, we use a spectral graph partitioning
technique [11]. We use a fully connected undirected graph G = (V, E) where
nodes V are wavelet coefficients for a particular scale. The weight on each edge
w(i, j) is the covariance between the wavelet coefficients at nodes i and j. A
cut(A, B) =

∑
u∈A,v∈B w(u, v) is the optimal partitioning of V into two disjoint

sets A and B such that nodes within a partition have the highest covariance and
nodes across partitions have the lowest covariance.

Using this technique, we do a recursive partitioning of the coefficients into
bands. We use a stopping criteria based on the quality of the decomposition of
each set, validating whether the subdivided band correspond to two independent
distributions. Indeed, if we start with a graph G where we consider each coeffi-
cient to be a random variable and find a partition A ∪B = G, A ∩B = ∅, then

(a) B0,1, A (b) B0,1, P (c) B2,1 A (d) B2,1, P

(e) B(2,2), A (f) B2,2, P (g) B2,3, A (h) B2,3, P

Fig. 3. Band Decomposition: various bands Bj,i, where j is the resolution and i is the
band number, shown in Anterior view (A) and Posterior view (P), see text for color
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it is a good partition if P (G) = P (A)P (B). We can test this with the Kullback-
Leibler (KL) divergence between the joint and the product of the marginals.

In this work, we assume a multivariate Gaussian distribution for each parti-
tion and derived the KL divergence [12]:

D(P (G)||P (A)P (B)) = 1/2 log(|ΣA||ΣB|)− 1/2 log(|ΣG|) (3)

where ΣA is the covariance matrix of P (A) and |.| is the determinant 4. If the
distributions P (A) and P (B) are independent, then their KL divergence is 0. In
practice, we do not accept a partition if D(P (G)||P (A)P (B)) > 0.1.

Band Visualization: To visualize the bands, we calculate the influence of all
wavelet coefficient in band Bj,i on each point x of the surface by setting those
coefficients to 1 in (1) and others to 0. If f(x) = 0, then the point is not affected
and if f(x) > 0 it is affected according to the magnitude of f(x). Using this
function as a colormap (blue= 0, red= 1), Figures 3(a)- 3(b) show the first band
for the lowest scale. The second band is the complement of the first. As expected
each band has a large spatial extent and indicate two uncorrelated shape pro-
cesses on the prostate data: the variation of the anterior wall of the prostate
(typically rounded) and the variation of the posterior wall of the prostate (typ-
ically flatter). Figures 3(c)- 3(h) show three bands for the scale 3. These bands
are more localized. These are uncorrelated variations of the superior and inferior
walls of the shape, as well as an uncorrelated variations of the anterior wall at
that scale. Bands have compact support, though this is not a constraint of our
technique. The symmetry in bands 2 and 3 is also interesting, showing that both
the right and left side tend to co-vary similarly. This symmetry of variation is
plausible for the prostate, and we plan to investigate this further. Notably a
diseased organ could possibly be detected if there is a lack of symmetry.

Building the Prior: Each band of coefficients is modeled as a multivariate
Gaussian that encodes a set of shape variations. To estimate their distribution
from the data, we apply PCA analysis to the coefficients in each band. The eigen-
vectors and eigenvalues of lower scale bands represent relatively global aspects
of shape variability, whereas bands at higher scales represent higher frequency
and more localized aspects of shape variability. Hence, our technique discovers
shape processes at every scale, where the processes are all the eigenvectors of all
the bands, and does not favor the discovery of global processes over local pro-
cesses. Additionally, our prior accurately encodes finer details even with small
training sets, since there exists at least B(K−1) eigenvectors for each scale with
B bands.

6 Experiments

We compare our technique to PCA for the task of reconstruction. We partition
our data randomly into T training samples and 39 − T testing samples, where
T = [5, 10, 20, 30] and learn a shape prior from the training set. The prior for

4 In practice since ΣA is often singular, we decompose it using SVD as ΣA = UΣ′
AUT

and estimate log|ΣA| = trace(log(Σ′
A)), using only the positive entries of Σ′

A.
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PCA consists of the mean shape, the eigenvectors and eigenvalues. The prior for
our technique consists of the mean shape, the bands structure, the eigenvectors
and eigenvalues for each band. We then reconstruct shapes in the testing set.

For PCA, we project the training shape coordinates onto the eigenvectors
and translate the coordinates of the new shape to a point lying at a reasonable
distance of the training data (± 3 standard deviation) to obtain a reconstructed
shape. For our technique, we transform the shape to its wavelet coefficients,
project and correct the coefficients for each band separately, and transform the
new coefficients back to a reconstructed shape. A mean squared error between
the vertices of the ground truth and the reconstructed shape is calculated for all
shapes in the testing set.

Figure 4 shows the reconstruction error with the multiscale prior (solid line).
It is significantly smaller than for PCA (dashed line) across all training set sizes.
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Fig. 4. Mean Squared Reconstruction Error for various training set sizes

(a) GT (b) PCA (c) Mscale (d) GT (e) PCA (f) Mscale

(g) GT (h) PCA (i) Mscale (j) GT (k) PCA (l) Mscale

Fig. 5. Ground Truth (GT) and reconstruction with PCA and Multiscale priors (a-f)
5 training samples (g-l) 30 training samples. Color is error from blue (lowest) to red.
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The error for PCA significantly increases when the training set size decreases,
but only slightly increases for the multiscale technique.

Figures 5(a), 5(d), show a ground truth test shape and 5(b), 5(e), 5(c), 5(f),
its reconstruction with the PCA and multiscale shape priors built from 5 training
shapes. For PCA, the reconstruction is very smooth. Many of the finer details are
lacking in the reconstruction. The multiscale technique incorporates both local
and global details that PCA does not encode. Figures 5(g), 5(j) show a ground
truth test shape and 5(h), 5(k), 5(i), 5(l) its reconstruction from 30 training
shapes. For PCA, the reconstruction is more accurate, but still lacks some finer
details, such as the sharper edges. Again, the multiscale technique incorporates
both local and global details that PCA misses.

7 Conclusions and Future Work

We have demonstrated that our spherical wavelet based technique is a better
shape prior than ordinary PCA when it is important to represent finer, more
localized shape variation. Our novel method finds independent shape variation
processes at multiple scales and multiple locations by adaptively clustering cor-
related wavelet coefficients. The visualization of the bands can, in itself, be an
interesting tool for shape analysis. We plan in future work to compare this choice
of L2 basis to other natural bases such as spherical harmonics [13], as well as
investigate the use of wavelet packets [14]. We also plan to use it for key imaging
tasks such as segmentation. Further, we intend to build on this theory in order
to derive a natural multiscale description for discriminative shape analysis. Lo-
calized processes cannot be overlooked when discriminating among populations,
making this technique promising for localized lesions, such as tumors. Finally,
we will be applying this methodology to other types of structures, in particular,
to the caudate nucleus as part of our research in schizophrenia.
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Abstract.  In this work, a discriminative model of attention deficit hyperactivity 
disorder (ADHD) is presented on the basis of multivariate pattern classification 
and functional magnetic resonance imaging (fMRI). This model consists of two 
parts, a classifier and an intuitive representation of discriminative pattern of 
brain function between patients and normal controls. Regional homogeneity 
(ReHo), a measure of brain function at resting-state, is used here as a feature of 
classification. Fisher discriminative analysis (FDA) is performed on the features 
of training samples and a linear classifier is generated. Our initial experimental 
results show a successful classification rate of 85%, using leave-one-out cross 
validation. The classifier is also compared with linear support vector machine 
(SVM) and Batch Perceptron. Our classifier outperforms the alternatives sig-
nificantly. Fisher brain, the optimal projective-direction vector in FDA, is used 
to represent the discriminative pattern. Some abnormal brain regions identified 
by Fisher brain, like prefrontal cortex and anterior cingulate cortex, are well 
consistent with that reported in neuroimaging studies on ADHD. Moreover, 
some less reported but highly discriminative regions are also identified. We 
conclude that the discriminative model has potential ability to improve current 
diagnosis and treatment evaluation of ADHD. 

1   Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is one of the most commonly diag-
nosed childhood behavioral disorders. According to related reports, 3~6% American 
and 5% Chinese school-age children are affected by ADHD. Developmentally inap-
propriate inattention, impulsivity, and hyperactivity are three core symptoms of 
ADHD. Children with ADHD have difficulty on controlling their behaviors or focus-
ing their attentions which result in an adverse effect on academic performance and 
social function. Current available diagnosis and treatment evaluation of ADHD are 
mainly made from the levels of the core symptoms. Ranking of the symptoms is usu-
ally made by the parents or teachers of the children, which is unfortunately subjective. 
Therefore more objective approaches are highly desired. 
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With the high spatial and temporal resolution as well as the non-invasive advan-
tage, structural and functional magnetic resonance imaging (MRI) have been playing 
an increasingly important role in brain studies. Volumetric [1], morphological [2, 3] 
and functional [4, 5] brain properties have been studied on ADHD with MRI [6, 7]. 
Voxel-based structural and functional MRI studies on ADHD have suggested various 
brain abnormalities [7]. However such a group-level statistical difference is less help-
ful to diagnosis. Currently some promising studies on mental diseases [8, 9, 10, 11, 
12] with multivariate statistical classifiers using neuroimaging information were re-
ported. Unfortunately few were concerned on ADHD. Moreover, explanation of clas-
sification result in these studies is still unsatisfactory. In this work, an ADHD dis-
criminative model which includes an ADHD classifier and an intuitive representation 
of discriminative pattern is proposed on the basis of Fisher discriminative analysis 
(FDA) of brain function obtained from resting-state fMRI.  

The classification feature and classification algorithm will be detailed in Section 2 
and 3 respectively. Materials are presented in Section 4. Experimental results and 
discussion are provided in Section 5. Section 6 is devoted to conclusion and some 
further directions.  

2   Mapping of Brain Function at Resting-State 

Low-frequency (0.01–0.08 Hz) fluctuation (LLF) synchrony among motor cortices 
was studied by Biswal at 1995, which indicated that LFF was physiologically mean-
ingful [13]. Later some studies about diseases had been conducted using LFF syn-
chrony [14, 15, 16]. As a mapping of brain function, regional homogeneity (ReHo) 
was first proposed to measure the regional synchrony of LFF voxel by voxel, and then 
employed to verify the default mode network (DMN) [17] successfully in [18]. ReHo 
has also been used to locate the ROIs automatically without a priori in a study of 
brain function connectivity [19]. Here, we used ReHo derived from fMRI series 
scanned at resting-state as a feature of classification. ReHo was defined at a given 
voxel as the temporal similarity of the LFF between the voxel and its neighbors, 
which was calculated with Kendall’s coefficient as (1).  
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=                                                (1) 

where W is the Kendall’s coefficient among given voxels, Ri the sum rank of the ith 
time point, ( )( )1 / 2R n K= +  the mean of the Ri’s,  K the number of time series within a 

measured cluster and we used K=27 as in [18]. 

3   Pseudo-Fisher Discriminative Analysis  

Fisher discriminative analysis (FDA) is a widely used technique in the domain of 
pattern recognition [20, 22]. Suppose there are two classes of samples with features of 
dimension D. Here, D is defined as the number of voxels in consideration. FDA is 
used to find a projective direction, ω*∈ℜD, along which the two classes of projected 
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samples are separated with maximal ratio of between-class distance and within-class 
variability. Mathematically, objective function (2) is to be maximized  
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are between-class scatter matrix and within-class scatter matrix respectively; 
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sizes. Theoretically, the optimal ω* can be determined by:   
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*

w
S m mω − −=                                              (3) 

However, in case of small-sample (N1+N2 << D), which is common in brain image 
analysis, computing of inverse matrix of Sw is an ill-posed problem and therefore 
FDA would yield an unreliable result. While pseudo-Fisher discriminative analysis 
(pFDA), which is a variation of classical FDA, can solve the problem by using the 
pseudo-inverse of Sw to substitute the inverse of Sw [23, 24]. Briefly, principal com-
ponent analysis (PCA) was firstly applied on sample features, xi∈ℜD, to find a linear 
subspace, ℜd, spanned by all the eigenvectors, { 1, 2, …, d}, with non-zero eigen-
value. Representing an original sample feature, x∈ℜD, with { 1, 2, …, d} would 
result in a low-dimension feature, y∈ℜd (d= N1+N2-1), so that classical FDA and (3) 
can be directly used in the subspace to find ω*∈ℜd.  Projecting each sample, y ∈ℜd, 
onto ω*∈ℜd can result in a one-dimensional score of z∈ℜ1 by inner product opera-
tion, *,z y ω= . Finally, the classification threshold, z0∈ℜ1, was determined by:  

( ) ( )
1 21 2 1 20 /z z

N Nz m m N N− +=                                    (4) 

where 
1

z
m and 

2

z
m  are centers of projective scores of the two classes. 

4   Materials 

To eliminate the impact of head motion on the calculation of ReHo maps, the subjects 
with head motion greater than 1.2 mm or rotation greater than 1.2o were excluded. 
The remained 9 ADHD and 11 controls (age range of 11-15 years and IQ > 80) were 
used for further analysis.  

The imaging processes were undertaken on the SIEMENS TRIO 3-Tesla scanner 
in Institute of Biophysics, Chinese Academy of Sciences. For each subject we con-
cerned the following two sets of imaging data: resting-state fMRI time cou   rses and 
3D structural MRI. Echo Planer Imaging (EPI) Blood Oxygenation Level Dependent 
(BOLD) images were acquired axially with the following parameters: 2000/30 ms 
(TR/TE), 30 slices, 4.5/0 mm (thickness/gap), 220 × 220 mm (FOV), 64 × 64 (resolu-
tion), 90o (flip angle), the whole session lasted for 480 seconds. 3D spoiled gradient-
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recalled whole-brain volume was acquired sagittally with the following parameters: 
1700/3.92 ms (TR/TE), 192 slices, 1.0/0 mm (thickness/gap), 256 × 256 mm (FOV), 
256 × 256 (resolution), 12o (flip angle).  

Preprocessing procedures for fMRI signals included motion correction, within-
subject registration, time aligning across slices, time series linear detrending, voxels 

resampling to 3 3 3 mm3, spatially smoothing (FWHM = 4mm) and spatial normali-
zation. All these processes were undertaken using SPM2 [25].  

5   Experiments Results and Discussion 

pFDA was performed on ReHo maps of the 9 ADHD and 11 controls, and an ADHD 
classifier and a representation of discriminative pattern were generated. First, the 
classifier was tested with the training samples to indicate the separability of the classi-
fier on training set. Then leave-one-out (LOO) cross validation approach was em-
ployed to estimate the prediction ability of the model. Classification results are listed 
in the top row of Table 1, form which zero training error is achieved, and correct 
predictions performed on ADHD and controls are 78% and 91% respectively. The 
total correct prediction rate reaches 85%. 

Table 1. Classification results  

LOO test correct rate  Discriminative model Training set  
correct rate Controls ADHD Total 

Functional 
information  

ReHo Map 100% 91% 78% 85% 

Intensity 100% 38% 67% 53% Structural 
information Morphology 100% 50% 56% 53% 

The distribution of projective scores of both the training and predicting samples in 
a 20-round LOO test are shown in Fig. 1, where white circles and squares represent 
normal controls and children with ADHD in the training set of LOO test respectively, 
and black circles and squares represent the control and patient for predicting respec-
tively. The crosses indicate the corresponding classification thresholds determined by 
(4). As in Fig. 1, there are only one testing control and two testing patients located on 
the wrong sides of the classification boundary by the classifier. Moreover, within-
class variations of projective scores of training samples are all close to zero, and be-
tween-class distances are quite large. This result convinces the objective of FDA. 

With { 1, 2, …, d}, the optimal projective direction in subspace ℜd can be easily 
inversely mapped to the original space ℜD. The projective direction in ℜD or Fisher 
brain, as a part of the discriminative model, was used to visualize the discriminative 
pattern of ReHo between the children with ADHD and normal controls. As illustrated 
in Fig.2, the larger the amplitude (positive or negative) of a voxel in the Fisher brain, 
the more the voxel contributes to the final discrimination. As shown in Fig.3, some 
highly discriminative regions are identified by the Fisher brain. Among these regions, 
prefrontal cortex and anterior cingulate cortex have been reported to be involved in 
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Fig. 2. Fisher brain to visualize the discriminative pattern  

 

Fig. 3. Highly discriminative regions identified by Fisher brain. Red: ADHD>control; Blue: 
ADHD<control. 

  

Fig. 1. Distribution of discriminative scores in LOO test
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higher brain functions like attention and inhibition and abnormal for ADHD subjects 
[1, 2, 4, 7]. Moreover, some less reported but highly discriminative regions are also 
identified.  

Our classifier was compared with other two typical linear classifiers, Batch Percep-
tron [20] and linear support vector machine (SVM) [21]. Table 2 lists the classifica-
tion results of the three methods. Considering the stochastic property of Batch Percep-
tron algorithm, we repeated the 20-round LOO test for 10 times, each with a random 
initialization. Then the correct rates of 10 times of LOO tests were averaged as the 
final result of Batch Perceptron. From Table 2 we see that Batch Perceptron (54%) 
hardly yields a meaningful result. Though linear SVM has much better performance 
than Batch Perceptron, its classification rate (80%) is obviously lower than that of the 
proposed classifier (85%). 

Table 2. Comparison of different linear classifer 

LOO test correct rate  Methods 
Controls ADHD Total 

Batch Perceptron  62% 46% 54% 
Linear SVM  100% 56% 80% 
Proposed  91% 78% 85% 

To compare the discriminative ability of functional brain information with that of 
structural brain information, FDA was also applied to 3D structural MR images. All  
3D structural MR images were spatially normalized using SPM2 [25]. To comprehen-
sively investigate the discriminative ability of structural brain information, both origi-
nal 3D MR images and their tissue segmentation results were used as the classifica-
tion features. Multi-context fuzzy clustering (MCFC) algorithm was used for tissue 
segmentation since it is insensitive to the intensity inhomogeneities [26]. The classifi-
cation results of FDA using original MR images and segmented images are depicted 
in the second and third row of Table 1 respectively. Generally speaking, no significant 
difference in classification performance appears between intensity based approach 
and morphology based one, and none of them yield a meaningful classification result 
(53%). The results clearly demonstrate that ReHo map, as a mapping of brain function 
of resting state, is more effective for discrimination of ADHD than structural informa-
tion of either the original MR intensity or the tissue segmentation result. More impor-
tantly, this implies that brain function may be more susceptible than brain structures 
for ADHD. 

6   Conclusion 

In this paper, a discriminative model of ADHD was proposed on the basis of Fisher 
discriminative analysis of ReHo map derived from fMRI scanned at resting state. The 
validation of the method was verified by experimental results. Compared with various 
classifiers and classification features, our method achieved much better classification 
performance. Furthermore, it yielded a significant representation for the discrimina-
tive pattern of brain function between the children with ADHD and the normal con-
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trols. Potential improvement of the diagnosis and treatment evaluation of ADHD can 
be realized based on the evidence given by the results of the discriminative model. 

Evaluation of the proposed method with larger sample size and multi-center imag-
ing data of children with ADHD is considered in future work. The statistic property of 
the Fisher brain is another issue to be addressed. Moreover, those less reported but 
highly discriminative regions found in this study will be further examined.  
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Abstract. FMRI group studies are usually based on stereotactic spa-
tial normalization and present voxel by voxel average activity across
subjects. This technique does not in general adequately model the inter
subject spatial variability. In this work, we propose to identify func-
tional landmarks that are reliable across subjects with subject specific
Talairach coordinates that are similar -but not exactly identical- between
subjects. We call these Brain Functional Landmarks (BFLs), and define
them based on cross-validation techniques using 38 subjects. We explore
a dataset acquired while subjects were involved in several cognitive and
sensori-motor processes, and show that this representation allows to clas-
sify subjects into sub-groups on the basis of their BFL activity.

1 Introduction

Across subjects variability of both the anatomical and functional organization
of the brain is often observed in brain imaging [13] but rarely studied in depth.
The causes of the observed fMRI variability are numerous and often difficult
to discriminate. Some of it may be due to anatomical variability [7], and some
to variation in the organization of the functional topography of our cognitive
processes; part of it depends on the (current) physiological state of the subject
at the time of scanning, and part is due to acquisition noise. The first two causes
may well reflect both genetic or epigenetic factors. This leads to strong variability
both in the i) position and in the ii) activity level (contrast to noise ratio: CNR)
of the hemodynamic signal measured in fMRI.

This inter-subject variability strongly impacts the sensitivity of group studies
[6,8], and currently the solution most widely adopted resorts to i) stereotactic
normalization followed by spatial smoothing (often 12-14 mm Gaussian FWHM),
and ii) assuming that voxel intensity follows a Gaussian distribution [1]. Both
the current spatial and intensity models are probably suboptimal.

Global measures of the overall variability between subjects have been pro-
posed and allow to address group homogeneity [11,4], but more local analyzes are
needed to decompose the sources of variability. This combines with the need for
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sparser representation of brain activity that would open the way to techniques
that are too computationally demanding in a dense (voxel based) representation
of the functional activity. To some extent, thresholding activation maps turns
a dense representation into a sparse one, but this operation is not robust to
inter-session variations [8,10] and does not model the spatial variability.

The reduction of the volume-based information to a representation that re-
tains the essential organization of the functional activity across subjects is crucial
for many applications in the field of brain mapping, and the present paper is a
step towards this goal. This reduction enforces the following constraints:

– Some cognitive processes (possibly not all) give rise to stable topographic
organization across subjects [9].

– A common topographic organization may, however, result in different spatial
positions when functional images are normalized to a standard template.
Mild spatial variability across subjects should thus be modelled.

– Quantitatively, one can expect a relatively high inter-subject variability in
the contrast magnitude or CNR. The relative activation magnitude (e.g. local
maxima of the contrast maps) may thus better characterize the activation
topography than across subject random effect tests.

The aim of the present work is to detect adapted landmarks, which we hence-
forth call Brain Functional Landmarks (BFLs). We propose to base our detection
on the reproducibility of the occurrence of activations across subjects for some
given contrasts. This analysis yields a topographic representation of the func-
tional brain, and quantitative measurements of the spatial and contrast/CNR
variability across subjects. We further use those results to classify subjects into
subgroups with similar BFL activities.

The sequel of this paper is organized as follows. In section 2, we describe
the dataset and the procedure that are used for the detection of BFLs. In sec-
tion 3, we describe our results on the BFL detection and the use of BFLs to
study the functional population variability. We discuss the technical aspects and
implications of this work in section 4.

2 Materials and Methods

Datasets and pre-processing. We used an event-related experimental Localizer
paradigm that comprises ten conditions. Subjects underwent a series of stim-
uli or were engaged in tasks such as passive viewing of horizontal or vertical
checkerboards, left click after audio or video instruction, right click after audio
or video instruction, computation (subtraction) after video or audio instruction,
sentence listening and reading. Events were occurring randomly in time (mean
inter stimulus interval: 3s), with ten occurrences per event type (except motor
button clicks for which there were only five trials).

Thirty-eight right-handed subjects participated in the study. The subjects
gave informed consent and the protocol was approved by the local ethics com-
mittee. Functional images were acquired on a 3T Bruker scanner using an EPI
sequence (TR = 2400ms, TE = 60ms, matrix size=64×64, FOV = 24cm×24cm).
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Each volume consisted of 34 4mm-thick axial slices without gap. A session com-
prised 130 scans. Anatomical T1 images were acquired on the same scanner,
with a spatial resolution of 1× 1× 1.2 mm3.

fMRI data pre-processing consisted in 1) temporal Fourier interpolation to
correct for between-slice timing, 2) motion estimation. For all subjects, motion
estimates were smaller than 1mm and 1 degree, so that no correction was per-
formed on the datasets; 3) anatomo-functional image coregistration and spatial
normalization of the functional images. This pre-processing was performed using
the SPM2 software (see www.fil.ucl.ac.uk, [1]). Statistical analysis of the dataset
was also carried out with the SPM2 software, using standard high-pass filtering
and AR(1) whitening. For further analysis, we used the effect magnitude (GLM
parameters) and significance (P-values) for each subject and contrast of interest.

Detection of BFLs. We define a Brain Functional Landmark (BFL) as a locus
around which an activation can reliably be found across subjects.

An overall description of the BFL detection procedure is given in Fig. 1.
We proceed as follows: Given N datasets (subjects), we smooth the parameter
map of (N − 1) subjects and derive the corresponding random effect (RFX)
map. We retain the maxima M i, i = 1..I of the maps that are above a rather
liberal statistical threshold (p1 < 10−3, uncorrected). Then we find the nearest
local maximum of the corresponding unsmoothed, thus bias free, statistical map
in each subject. The positions τ i

n, n = 1..N − 1, i = 1..I of these local maxima
define an area Ri. The region Ri is defined as a ball of center ci = 1

N−1

∑
n τ i

n and

radius ri =
√

5
3(N−1)

∑
n ‖ci − τ i

n‖2. This is equivalent to assuming a compactly

supported, locally uniform spatial distribution of (τ i) across the population.
Then we perform the following test on the remaining dataset: if there is an
activated voxel in the region Ri with corrected probability p2 < 0.05, the locus
ci is retained as a potential BFL . We used the Bonferroni correction for multiple
comparisons for the number of voxels in Ri.

This procedure is performed N times, one of the subjects being left out,
and provides a collection of BFL candidates ci(n) (region i, subject n left out).
This collection of BFL candidates is naturally redundant: if a candidate ci(l) is
detected when subject l is left out, it -or a very close point cj(k)- may also be de-
tected when subject k is left out. Thus we perform an average link agglomerative
clustering of the candidates, with a stopping criterion δ = 5mm. The clusters of
candidates are finally validated when they contain at least ν = N/2 candidates.
This procedure reduces the risk of false positives to α < V (δ)p1p

ν
2 , where V (δ)

is the volume (in voxels) of a ball of radius δ, making it negligible in practice.
Milder thresholds on ν, e.g. ν = N/4, may be used when one is interested in
finding landmarks on specific sub-groups of subjects. Therefore, ν, the number
of candidates within a cluster, is a measure of the reproducibility of the BFL
candidate. The BFLs are chosen on the basis of reproducibility and not contrast
to noise ratio. Note that the algorithm adapts to the number of subjects N .

Despite smoothing, the initial RFX test in the detection procedure may
contain several local maxima close to one another (possibly because of
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Fig. 1. Flowchart of our method for the extraction of Brain Functional Landmarks
(BFLs). Of note, default choices for all the parameters can be easily set. This algorithm
adapts to the number of subjects N ; for each BFL and each subject, it yields a signal
value and a position that can be further processed.

mis-registrations) which may yield confounding patterns. We avoid this by re-
stricting our definition of local maxima to maxima within a rather large neigh-
bourhood, (5× 5× 5) voxels or greater, of the RFX map.

The information conveyed by BFLs. The definition of landmarks across a popu-
lation provides a subject-specific representation of both the activation position
foci and the magnitude of the effect. This allows an exploration of the activation
pattern, and of the relative importance of the different regions across groups of
subjects. While the contrast magnitude and statistical significance essentially
classify subjects into groups activating weakly or strongly (data not shown),
classification of the relative ranking (order statistics) of the different foci yields
a more useful information. We use an agglomerative algorithm to check whether
several subgroups can be defined in the population, and represent the average
relative activation magnitude for each group.

3 Results

The BFLs found in the Localizer experiment. We applied BFL detection on the
38 subjects and the following contrasts: right click-left click; left-right click; audio
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(a) (b) (c)

Fig. 2. Representation of the functional BFLs found on the group of subjects, on
the left and right grey-white matter interface of an individual brain. (a) View from the
occipital side, (b) left hemisphere, (c) right hemisphere. The color codes for the contrast
associated with each BFL: Yellow BFLs for the audio-video contrast, green for the
opposite contrast, dark blue for the right-left click contrast, red for the opposite, pink
for the computation-sentence understanding contrast and light blue for the reading-
passive viewing contrast. Note that subject specific loci could be reported on their own
anatomy.

instructions-video instructions; video instructions-audio instructions;
computation-sentence reading/listening; sentences reading-low level visual stim-
ulation. The threshold ν is set to ν = N/2. The BFL detection lasts about one
minute per contrast with a C/Matlab code. The result is displayed in Fig. 2 on
one subject grey-white matter interface, with respectively 2, 1, 9, 2, 6 and 3
BFLs for the above contrasts. This readily yields a topography of the functional
brain.

Study of the relative activation magnitude in the population of subjects. Using the
same experimental data, we chose to explore the computation-sentence reading
contrast of interest. Lowering ν to N/4, we obtained 11 BFLs in the population
for this contrast, located in the parietal and frontal cortices. For each subject,
the BFLs are ranked according to their CNR, and a maximum link agglomerative
clustering is applied to this rank data ; 3 clusters were found to be representative
(data not shown). Fig 3(a) represents a 3D multidimensional scaling (MDS) plot
of the rank data, and the three clusters formed by the algorithm. The size of the
three subgroups are 14, 18 and 6 subjects respectively. The average network of
activations in each subgroup is presented in Fig. 3(b-d).

Although these results are still preliminary and require more validations,
recent work on computation [5] indicate that different activation strengths in
the parietal cortex imply a stronger (Fig. 3d) or weaker (Fig. 3b) involvement
of visual-spatial attention in the subtraction task; the strong dissymmetry of
the parietal activation (group Fig. 3c) may indicate a stronger involvement of
language areas in the task. Altogether, these three groups might thus represent
different subjects strategies when computing (or reading).
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(a) (b)

(c) (d)

Fig. 3. Classification of the subjects according to the magnitude of their activity
in different foci for the computation- sentence reading contrast. (a) 3-D MDS plot of
the population. The maximum link clustering algorithm indicates a 3 classes structure.
(b)(c)(d): Representation of the activation networks on the 11 foci defined by the BFLs.
The color codes for the relative magnitude of activation, from weak (brown) to strong
(yellow-white). These foci are superimposed on a standard grey-white matter interface.

4 Discussion and Conclusion

Dense versus sparse approaches in neuroimaging. So far, functional MR images
have mainly been considered as unstructured fields of data from which informa-
tion is extracted through statistical thresholding. Such a point of view is limited
in the case of multi-subject studies, in which voxel-based inference treats different
sources of variability as confounds and tries to reduce their impact by smoothing
(see [1]). We propose here an alternative solution to extract and quantify what
is common and what is variable across subjects. Obviously, this cannot be per-
formed on dense data fields, and one has to turn to sparse representations. This
is fortunate, since neuroimaging inference is generally concerned with extracting
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specific networks of regions, and not with each and every voxel in the whole
brain volume.

Consequently, so long as brain anatomy should be better described by sulco-
gyral or cytoarchitectonic structures, our results show that the brain can be
endowed with some landmarks which can be used for a better and adaptable
definition of regions of interests. To our knowledge, this is the first landmark-
based approach in functional neuroimaging.

Detection of the BFLs. We have designed a BFL detection procedure that is ro-
bust to slight displacements of a focus of activation across subjects. Our method
consists in a leave-one-out procedure, where learning is performed on second-
level (inter-subject) statistics and test on first-level (intra-subject) statistics.
This double thresholding has two advantages: it enables a relatively mild thresh-
old at each step, and adapts to small populations. Since it is specifically based
on the maxima of the map, unlike dense approaches, this procedure is not too
sensitive to a particular choice of a P-value.

Although different approaches are possible, e.g. inter-subject clustering of
the activated areas [12,9], the present method has the advantage of being com-
putationally efficient, robust to displacement and easily interpretable. Moreover,
it is controlled by reproducibility criteria that are more reliable than cluster se-
lection techniques. While the method still requires further validations, it showed
promising results on our data.

Use of BFL activity to characterize population subgroups. A tremendous advan-
tage of sparse representations is that they allow an easy comparison of subjects
activity: while distance between functional images provide very useful insight on
the homogeneity of populations [11,4], the use of BFLs simplifies the picture by
concentrating on informative regions that are not arbitrarily selected. In particu-
lar, our example in Fig. 3, shows interpretable subgroup structures for a contrast
of interest. This study would greatly benefit from a more systematic comparison
of the activation magnitude and significance across subjects and experimental
conditions, that would clarify region-based inference [3]. We emphasize that such
comparisons are precisely allowed by BFLs, whereas direct image comparisons
may be confounded by the spatial variability of activated regions.

Conclusion and future work. The information carried out by fMRI activation
images is seen in this work to have a topographic representation at least partially
reproducible across subjects. This, together with functional localization studies
[2,9] has led us to the concept of Brain Functional Landmark (BFL). We have
shown that the detection of these landmarks, based on a reproducibility criterion,
is relatively easy, and allows for sparse and thus manipulable representation of
the brain functional information. Moreover, we have shown that such a sparse
representation can be used to study, across individuals, the spatial topography
of a cognitive network defined by computation minus sentence reading.

It can be noticed that robust detection of BFLs is a step forward in the
representation of the population in a common referential (normalization).
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Straightforward extensions of this work are i) the study of the warp implied
by the spatial variability of BFLs across subjects ii) the comparison and the
merge of BFLs with anatomical landmarks [7] and iii) the use of this informa-
tion for spatial normalization and signal calibration.
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Topology Correction Using Fast Marching Methods
and Its Application to Brain Segmentation

Pierre-Louis Bazin and Dzung L. Pham
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Abstract. We present here a new method for correcting the topology of objects
segmented from medical images. Whereas previous techniques alter a surface
obtained from the hard segmentation of the object, our technique works directly
in the image domain, propagating the topology for all isosurfaces of the object.
From an analysis of topological changes and critical points in implicit surfaces,
we introduce a topology progagation algorithm that enforces any desired topol-
ogy using a fast marching technique. Compared to previous topology correc-
tion techniques, the method successfully corrects topology while effecting fewer
changes to the original volume.

1 Introduction

The topological properties of two-dimensional (2D) and three-dimensional (3D) objects
are often very simple, regardless of the complexity of the geometric object. The cortex
of the human brain is a striking example; despite its intricate folds, it is considered to
have the topology of a sphere, without any holes or handle-like junctions. Most organs
and sub-structures found in the human body also share this spherical topology.

Ideally, algorithms that extract objects from 2D or 3D images should respect the
object topology. A major problem is that topology is a global property of the object,
whereas most extraction techniques operate locally on the pixels or voxels of an image.
One solution is to start from an object with the desired topology and deform it on the im-
age to follow the shape of the object to extract [10,7,3]. However, surface segmentation
algorithms that constrain the topology also require an initialization close to the object
of interest. Correcting the topology of objects is therefore often necessary, either before
or after the surface extraction from an initial segmentation. This initial segmentation is
typically the result of a fuzzy or statistical classification algorithm [9,11]) that computes
a normalized membership value for each class and each pixel that varies continuously
between zero and one.

Current algorithms for topology correction, however, operate on a binary volume
extracted from the classification of the image data [16,13,6,15], generally obtained by
performing a threshold at the 0.5 level set of the membership function for the class. Two
types of techniques can be found in the literature: graph-based analysis and correction
[6,15], and distance function processing, inspired by level set methods [16,13]. In places
where changes are needed to enforce the spherical topology, these methods must decide
whether to cut a handle or fill a hole, and where to proceed, based solely on the geometry
of the original surface. In brain segmentation applications, the binary volumes also
require pre-procesing to remove isolated parts and close holes [16,6,15].
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c© Springer-Verlag Berlin Heidelberg 2005



Topology Correction Using Fast Marching Methods 485

Graph-based techniques convert the objects into graphs using either the 2D slices or
a morphological opening to isolate sub-structures. The graph is then processed to iden-
tify cycles and remove them from the volume. The complexity of the analysis increases
rapidly with the object size, and problems can occur at unusual configurations. Level
set methods compute a distance function to encode the object shape, which changes
when the volume is edited. In [13], candidate regions for addition or removal are identi-
fied and ranked through their distance function, so they must be recomputed whenever
the object is modified and there is no guaranteed convergence. In all these methods,
the intensity information available in the original image or in the membership function
is largely ignored. If the object is highly convoluted, it may happen that the small-
est change with regard to the geometry of the binary volume corresponds to including
points with very low membership, or discarding points with very high membership.

In this work, we propose a new topology correction algorithm that can act directly
on the membership function instead of the binary segmentation. The method propagates
rigorous topological constraints on scalar 2D and 3D functions, even in the presence of
noise. With a single computation of a modified fast marching method, the topology of
the entire image is corrected. All isosurfaces extracted from the membership function
or volumetric data will have the same topology, and we can even enforce non-spherical
topologies, given an appropriate initialization. By working on the continuously-valued
classification data rather than the binary segmentation, the amount of change effected
by the topology correction is substantially reduced. The proposed method also provides
greater flexibility in defining a desired surface. In some applications, isosurfaces at
values other than 0.5 can be desirable [17]. Previous methods would require a separate
topology correction for every desired isosurface value.

The paper is organized as follows. In Section 2, we study the topological properties
of scalar fields and present a topology-preserving approximation algorithm for distance
functions and membership functions. Section 3 details the topology correction algo-
rithm, and Section 4 demonstrates its application to magnetic resonance brain images.

2 Topological Properties of Scalar Fields

Consider the general problem of extracting an object with a given topology from an
image I in R3. The object is represented as a volume V bounded by a surface S, defined
as the zero level set of a signed distance function d: S = {x ∈ R3|d(x) = 0}. The
image itself is a function of the object, and can be a distance function, membership
function, or some other function. The image and the distance function are digital, so
the values of x are defined on a regular grid of voxels. The topology of the surface is
characterized globally by its Euler Number. This measure, however, does not account
for the type, location or extent of local topology changes.

In scalar fields, topology changes occur only at critical points [8,18]. These points
are the singular points of the implicit isosurfaces, an extension of the non-simple points
of binary images[2,4,7]. They have been classified in [18] as regular, flat, minimal,
maximal and saddle points, either local or extended. At any non-regular point or region
made of extended non-regular points, topology changes may occur when the isovalue
used to construct the surface is equal to the value at that point.



486 P.-L. Bazin and D.L. Pham

If the surface is moved away from its zero level set, it will keep the same topology
until it reaches the value of a critical point. The changes are difficult to predict without
a fine analysis of the critical point type (e.g. saddle points can have different effects).
The only simple way to keep the topology invariant is to remove all critical points.

To identify critical points, consider the distance function d(x) at a point x. We define
positive, negative and equal regions to be connected regions of neighboring points y
with d(y) > d(x), d(y) < d(x), d(y) = d(x), respectively). The neighborhood of a
point is defined as the set of 6,18 or 26-connected neighbors on the digital grid of x
values. The numbers Np, Nn and Ne of positive, negative and equal regions within a
neighborhood determines the type of the point (see [1] for more details). The choice of
connectivity will affect the shape of the object, as we will detail later. It is enough for
the subsequent analysis to know if a point is regular or critical:

x is regular ≡ Np(x) = Nn(x) = 1, Ne(x) = 0

Regions of equal value are a practical problem, as globally regular or critical regions
could have the same Np, Nn and Ne in a small neighborhood (e.g. subsample the grid
by a factor 2: all points have equal neighbors and become critical). We can remove that
problem by grouping equal points within either positive or negative regions.

2.1 Topology-Preserving Distance Functions

To compute the distance function d(x) efficiently, we rely on a fast marching method,
implemented through a binary tree sorting technique [14]: all points outside of the initial
surface S0 are ranked into a binary tree depending on their distance d(X) to the surface
(initially, the distances are all equal to 1, but will increase as the algorithm evolves), then
the surface is brought in front of the first of those points. Its neighbors (now in front of
the surface) are added to the binary tree with an increased distance value, and the surface
is moved again until the tree is empty. This method produces a distance function d(x)
accurate up to the grid scale, and the binary tree implementation provides n log n speed
in the image size. To obtain a complete distance function, distances are propagated
inside as well as outside S0, with an inverse sign. With this distance function, arbitrary
changes in the isosurface topology will occur when the isovalue is changed: parts will
split or merge, holes will appear or disappear, etc (see Fig 1-b).

Using the previous analysis, we construct a modified distance function that will
guarantee that the topology of the isosurface stays unchanged for all isovalues. The
central idea is to detect critical points and change their distance while propagating the
fast marching algorithm:

Algorithm: Topology-preserving distance function

1. starting from volume Vk bounded by the surface Sk,
2. insert the points x on the outside boundary Sk of the volume Vk in the tree, ranked

by their distance d(x) (at first, d(x) = 1),
3. extract the first point x from the tree,
4. if the point has been previously labeled as critical, its distance function becomes

d(x) = max{d(y)}, for y inside the object and neighbors of x, otherwise d(x)
5. compute the number of positive and negative neighbors for x,
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6. if x is regular, insert x into the volume and insert its neighbors outside the volume,
regular or critical, into the tree with their distance d(y) = d(x) + 1

7. else, label x as critical and set it aside,
8. go back to step 3, until the tree is empty.

This algorithm produces the regular distance function when the topology is invari-
ant. Critical points are kept outside the volume until the neighboring distances make
them regular: the algorithm not only isolates critical points but computes the exact
amount of change needed to keep the volume regular while including them. This is
illustrated in Figure 1-c: when the isovalue is low, the fingers stay connected from the
bottom to the tip, until the distance is high enough in the middle to remove the finger
completely. In the original geometric distance function, they split into several pieces
before they disappear.

a. b. c.

Fig. 1. Distance functions: a) the outline of a hand, b) the regular distance function started from
the hand contour with three isocontours outlined, c) the topological distance function, with the
same outlined isocontours. Note how the topology is different for the three regular isocontours.
The topological distance function includes stronger skeleton-like features in the areas changed to
maintain the correct topology, and all its isocontours have the same topology.

In the propagation, the object and background connectivity is controlled in step 5,
when computing the number of positive and negative neighbors. If Np, Nn are com-
puted with 6/26 (resp. 6/18, 18/6, 26/6) connectivity, then the volume and background
are 6/26, 6/18, 18/6 or 26/6 connected.

2.2 Topology-Preserving Membership Functions

We can extend the topology propagation from distance functions to general scalar fields.
We replace the distance function d(x) with a scalar field f(x) to be approximated by a
function g(x). The same propagation algorithm applies to g:

Algorithm: Topology propagation on scalar fields
1. start from g(x) = f(x) everywhere,
2. consider the volume Vk bounded by Sk: {x|g(x) <= gk},
3. insert the points x on the boundary (and outside) of the volume Vk in the tree,

ranked by their value g(x),
4. extract the first point x from the tree,
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5. if the point has not been labeled as critical, set the value as f(x),
6. else, the field value becomes g(x) = max{g(y)} for y inside Vk and neighbor of x,
7. compute the number of positive and negative neighbors for x,
8. if x is regular, insert x into the volume (set gk = g(x)) and insert its neighbors

outside the volume or critical into the tree,
9. else, label x as critical and set it aside,

10. go back to step 2, until the tree is empty.

This algorithm produces a scalar field as close as possible to f(x), with the same
topology as the starting volume V0. As the changes are propagated along successive
isovalues of the image, the technique is guaranteed to succeed in enforcing the original
topology of V0 in every isosurface of g(x).

3 Topology Correction Algorithm

Topology correction aims at enforcing a chosen topology on the objects we want to
extract. The correct or desired topology is known a priori, and depends on the appli-
cation. Unlike previous techniques, our topology propagation technique will not just
enforce spherical topology, but propagate through the distance or membership function
any prior topology template. For spherical topology, a single point is enough to impose
the sphericality constraint. For other topologies, different starting shapes can be used:
a closed circle for doughnut or cylinder-like structures, a carved sphere for a hollow
object, etc. Once we have chosen the appropriate template, we need to place it inside
the object of interest. In the case of non-spherical topology, this step can be difficult
as the holes and handles of the template should match those of the image. For spher-
ical topology however, we just need to find a point inside the main object of interest.
Starting from this point, we propagate the topology down from the highest membership
values to the lowest:

Algorithm: Spherical topology correction
1. threshold the membership function at the 0.5 isovalue, and select the largest con-

nected region,
2. in this region, select one of the points of highest membership value,
3. from this original point in the membership function, use the topology propagation

algorithm toward lower membership values, with proper connectivity.

The initialization step ensures that we select a point inside the main structure of
interest, except when dealing with several structures of similar size (in such case, it is
necessary to select a point for each structure). The topology correction could as easily
have started from a bounding box outside the image and converged toward the structure.
From our experiments, we found that there is often more noise and outliers in the back-
ground area than holes in the high membership regions, and propagating the topology
from the background would result in slightly more noise. This choice is consistent with
the previous binary techniques that would only include the largest connected compo-
nent. The corrected image with our algorithm is ”included” in the original image: all
corrected values can only be inferior or equal to the original ones. Methods to combine
both directions of change are non-trivial, and would require to re-evaluate the topology
at every change.
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4 Experiments

We have gathered a set of 10 brains processed for the Baltimore Longitudinal Study on
Aging [12] to test and validate the topology correction algorithm. These brains were
first stripped, then segmented into gray matter, white matter and CSF, and the white
matter memberships were further edited to fill the sub-cortical area [5]. The images all
have a 1mm cubic resolution. We then perform the topology correction on the edited
white matter memberships. The chosen connectivity is 18/6, so that we could compare
with previous topology correction techniques evaluated on similar data [15,6].

In all cases, the topology correction succeeds. Even though the topology of every
isovalue is guaranteed to be spherical, we verified it by automated graph-based anal-
ysis [15]. The corrected membership functions are very close to the original ones (cf.
Table 1): the number of changed voxels over the entire image is around 10%, and the
mean amount of change for these voxels (counting only changed voxels) is below 0.05
(the membership intensities are in [0, 1]). The changes counted on the 0.5 isosurfaces
are similar to those of previous methods, as shown in Table 2. We obtained results
from the GTCA method [6] for the same data, and compared them to our 0.5 isoval-
ues. Even though the proposed method enforces the topology on all isovalues, it causes

original corrected original corrected

Fig. 2. Two examples of topology correction (brains number 4 and 7 of the experiments): three
slices of the white matter membership function after filling of the internal parts, before and after
the topology correction. Note the few visible changes: parts with high membership but discon-
nected from the white matter are removed, loops are cut (see top slices) and some patterns appear
in the filled region due to remaining noise.
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Table 1. Topology correction on a set of brains

Brain Computation Total Changed % of changed mean value
number time voxels (x103) voxels (x103) voxels of change

1 52s 2,997 334 0.111 0.0294
2 63s 3,370 412 0.122 0.0456
3 53s 3,153 352 0.112 0.0471
4 63s 3,654 409 0.112 0.0400
5 59s 3,371 387 0.115 0.0446
6 58s 3,407 383 0.113 0.0498
7 65s 3,449 406 0.118 0.0432
8 63s 3,425 416 0.121 0.0465
9 69s 3,969 467 0.118 0.0448
10 48s 2,862 316 0.110 0.0365

Table 2. Topology correction on a set of brains: extracted 0.5 isovalue

Brain Initial Topology Final Topology Initial Changed % of brain % of change
number FP FL BP BL FP FL BP BL brain size voxels changed with GTCA

1 243 125 20 86 1 0 1 0 607,236 1,422 0.234 0.190
2 368 177 136 112 1 0 1 0 662,357 1,964 0.297 0.253
3 464 380 207 220 1 0 1 0 636,077 2,650 0.417 0.308
4 281 114 150 81 1 0 1 0 708,954 1,279 0.180 0.171
5 373 171 177 149 1 0 1 0 632,431 1,761 0.278 0.237
6 441 218 46 174 1 0 1 0 594,337 2,166 0.364 0.314
7 380 207 36 153 1 0 1 0 700,270 2,174 0.310 0.230
8 483 273 53 231 1 0 1 0 710,775 2,320 0.326 0.245
9 425 245 35 141 1 0 1 0 775,059 2,592 0.334 0.262

10 196 118 17 68 1 0 1 0 522,015 1,182 0.226 0.190

fewer changes on a single isosurface than the graph-based technique. The only places
of significant change are the regions close to 0 or 1 (”flat” areas, subject to higher topo-
logical noise). The processing times are usually below 1 minute on a Pentium 4 3Ghz
PC. GTCA requires approximately 2 minutes on a similar machine. All the brains we
have tested so far take about the same time to process, and the amount of change is very
similar from one brain to any other.

5 Conclusions

We have introduced in this paper an algorithm for propagating topology over scalar
fields. It offers an efficient way to correct the topology of objects with a complex geom-
etry, using all the available information of their membership function. It improves over
previous methods by acting on all isovalues rather than a binary volume, and allow-
ing non-spherical topologies. The technique was successfully tested on the problem of
cortical segmentation to enforce a proper spherical topology on the white matter/gray
matter interface. The propagation algorithm provides fast and reliable results, always
very close to the original data. All isovalues have the correct topology, and the changes
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made on the membership function take into account the geometry of the entire im-
age. The method can be applied to any kind of scalar image data, is fairly robust to
noise, and guarantees exact results, in a single fast marching propagation step. Be-
yond correcting topology for membership functions, it also has potential applications
to topology-preserving level set evolution and volumetric segmentation.
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Abstract. We present a method for the analysis of deep grey brain nuclei for 
accurate detection of human spongiform encephalopathy in multisequence MRI 
of the brain. We employ T1, T2 and FLAIR-T2 MR sequences for the detection 
of intensity deviations in the internal nuclei. The MR data are registered to a 
probabilistic atlas and normalised in intensity prior to the segmentation of 
hyperintensities using a foveal model. Anatomical data from a segmented atlas 
are employed to refine the registration and remove false positives. The results 
are robust over the patient data and in accordance to the clinical ground truth. 
Our method further allows the quantification of intensity distributions in basal 
ganglia. sCJD patient FLAIR images are classified with a more significant 
hypersignal in caudate nuclei (10/10) and putamen (6/10) than in thalami. 
Defining normalised MRI measures of the intensity relations between the 
internal grey nuclei of patients, we robustly differentiate sCJD and variant CJD 
(vCJD) patients, as an attempt towards the automatic detection and 
classification of human spongiform encephalopathies. 

1   Introduction 

The identification of diagnosis markers is a major challenge in the clinical care of 
patients with Creutzfeldt-Jakob Disease (CJD). This disease raises a number of 
questions to neuroradiological centres, due to the limited available knowledge that 
connects it to medical imaging. Some recent studies [1,5,13] found strong 
correspondences between the diagnosis of CJD and the detection of signal 
abnormality in the deep grey matter internal nuclei in Magnetic Resonance Imaging 
(MRI) of the brain. However, the observations describing the MRI ability to help in 
the diagnosis of CJD are in an early stage. Most of the studies are concerned with 
sCJD cases, which represent 80% of all forms of CJD. The first study cases describe 
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hypersignals in T2-weighted images (and FLAIR-T2) with higher incidence in the 
basal ganglia in a bilateral symmetric form [1,6]. 

A great concern has been the occurrence in the United Kingdom of vCJD in the 
1990s, a form of human environmentally acquired CJD. In FLAIR and T2 sequences, 
abnormal high signals are observed in the thalamus, mainly in the posterior pulvinar 
nucleus. Unlike in sCJD cases, in vCJD cases abnormal intensities are higher in the 
pulvinar when compared to striatum [13].  

MR related image processing is an important tool in non-invasive CJD diagnosis 
[5,6]. At present time, MRI is not included as a diagnosis criterion for sCJD, which 
would be certainly useful to include, as for vCJD [13].  

Leemput [12] proposes a method for automated quantification of MR intensity 
changes in images of CJD patients. A mixture model of normal distributions 
combined with the expectation-maximisation algorithm (EM) is proposed. However, 
the method does not detect signal abnormalities in all the CJD cases, while showing 
significant amounts of false positives (FP) along the interface between grey matter 
(GM) and cerebrospinal fluid (CSF). 

Colchester, Hojjat et al. [3,7] analyse the putamen intensity gradient to separate 
CJD from normals and propose several ratios, (posterior thalamus to caudate and most 
notably to frontal white matter) to seclude vCJD from the rest. They use T2-weighted 
and Proton Density MRI for average intensities (no hyperintesnity analysis) and their 
segmentation is performed manually. 

The image blurring due to motion artefacts in the set of images of patients 
suffering of dementia makes the use of statistical detection algorithms very difficult. 
They need good contrast between GM and white matter (WM) for stochastic analysis 
according to a general atlas context. The approach we propose is based on image 
normalisation and the use of a priori anatomical knowledge in the form of an 
accurately segmented and labelled image (e.g. the Zubal Phantom [12]) for precise 
segmentation and of a probabilistic atlas for intra- and inter-patient analysis. A feature 
detection technique based on a model of the Human Visual System (HVS) is 
employed for the depiction of hypersignals. We differentiate different types of human 
prion diseases (sCJD from vCJD) based on the lesions topographical distribution.  

2   Pre-processing and Segmentation 

The sequences used by our algorithm are: a T1-weighted acquisition for its higher 
contrast between GM and WM and higher image resolution; T2-weighted images for 
the good contrast between CSF and brain parenchyma; and a T2-weighted FLAIR 
sequence for the detection of CJD signs in the brain. We use a model of data 
normalisation and regularisation, which is required to put the images in the same 
general framework to reduce the number of parameters. A review of the different 
stages of our segmentation algorithm is shown in Figure 1.  

Data registration to an atlas has become a common technique with the introduction 
of popular statistical algorithms for image processing. A well-known probabilistic 
atlas in the scientific community is the MNI Atlas from the Montreal Neurological 
Institute at McGill University [4] built using over 300 MRI scans of healthy 
individuals. We used a block matching-based affine transformation described in [10] 
to register the patient T1, T2 and FLAIR images to the MNI atlas. 
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Fig. 1. Flowchart of the algorithm proposed for the detection of CJD-related abnormal 
hyperintensities in multisequence MRI of the brain 

In addition to geometric variability, MR images may also exhibit intensity 
variations. Our method performs an affine equalisation using the joint histogram of 
two images [11]: a standard image (from our database) onto which we align the 
intensity distribution of the second image.  

Our analysis is based on the abnormal MR intensities that can appear in the basal 
ganglia (including the thalamus) of CJD patients, which often show movement 
artefacts and therefore low contrast in images. The MNI atlas can provide a 
probabilistic segmentation of GM, which is not precise enough for our application. 
While avoiding direct non-rigid registration, the affine registration is approximate. 
We use instead a segmented anatomical atlas of the brain, the Zubal Phantom [12]. 

The Zubal atlas offers a precisely labelled segmentation of brain structures from 
the T1-weighted MR image of a single subject. First, the atlas must be aligned to our 
set of images; thus, we register the Zubal Phantom to the MNI template, again using 
the block-matching algorithm [10]  

Some important anatomical landmarks in the brain that are easier to identify are the 
ventricles and cortex external boundary. We segment them by morphological opening 
on patient T1 and T2 images. Ventricles will give a good approximation of the 
deformation field around the internal nuclei, whereas the cortex boundary will impose 
the global spatial constraints and stabilise the deformation field inside the brain. We 
are now in the possession of two binary maps of ventricles and brain boundaries for 
each patient: one from the Zubal Phantom and the other from the patient. Non-rigid 
registration is used to align the two images and compute deformation fields, 
employing the iconic feature-based algorithm described in [2]. 

We create a mask with the pulvinar, “anterior thalamus” (the part of thalamus with 
small probability to show abnormal signals in CJD patients), putamen and head of the 
caudate - which will be referred as internal nuclei for the rest of this paper - from the 
Zubal Phantom registered on MNI. Then we apply the above computed patient-
specific deformation fields to the mask of internal nuclei of the Zubal Phantom. The 
deformed mask is used to segment the internal nuclei on the patient image.  

A foveal segmentation algorithm (HVS) [9] completes the detection of areas of 
CJD MR hypersignals in the brain. This is in essence an algorithm of adaptive 
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thresholding, which uses a mathematical model of human vision. A simplified model 
for the computation of the adaptive threshold Cmin is shown in equation (1), where cmpc 
is the minimal perceivable contrast, b is constant, μN the mean value of the intensity of 
neighbourhood and μA a mean weighted value of neighbourhood and background 
(entire image).  

              (1) 

cmpc must be computed as a function of the image gradient. In MR images of the 
brain, the intensity values of GM, WM and CSF can be regularised by intensity 
normalisation and cmpc can be kept constant. Using an adaptive contrast measure both 
locally and globally, through the HVS foveal segmentation, our algorithm is less 
sensitive to artefacts, image quality and GM/WM contrast. 

3   Intensity Quantitative Analysis 

With the tools developed in this study, we can perform what seems to be the first 
computer-aided quantitative analysis between intensities in caudate nuclei or 
putamen, on one hand, and thalami (pulvinar nuclei and anterior thalami), on the other 
hand, for CJD patients. We will refer to it as Intensity Quantification Study (IQS).  

We use the segmented putamen, caudate nuclei, pulvinar and anterior thalami on 
the patient images to compute the mean MR intensities in nuclei. We calculate the 
absolute values  and  as in equation (2) to represent the mean intensity 
differences for each patient and control, where Pul , Put , CN and AT  represent the 
mean intensities respectively in the pulvinar, putamen, caudate nuclei and “anterior 
thalamus”. M represents the maximum value of all  and  over all controls.  

          (2) 

We define a first CJD prompting ratio (CP) for the separation of CJD patients from 
healthy cases as in equation (3). CP reflects the value in each control that is closer to 
the patient data and therefore less discriminating, while in patients it highlights the 
most suspicious grey nuclei (as not all nuclei are affected in a patient and different 
types of CJD affect stronger different nuclei).  

We further define a first CJD characterisation ratio (CC) to differentiate between 
sCJD and vCJD based on the lesions topographical distribution, as in equation (3). 
HPul  and HCN  represent the mean hyperintense (abnormal) values (lesion specific) 
in the pulvinar and caudate nuclei.  

CP = maxcase( / , / , /Pul AT Put AT CN AT ), CC = /HCN HPul           (3) 

4   Results  

The database comprises a total number of 23 MR image sets acquired in two major 
neuroradiological centres of France: 10 sCJD cases (5 definite and 5 probable cases); 
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5 vCJD cases (2 definite and 3 probable cases with detection of PrPres in tonsil 
biopsy); and 8 healthy controls of similar ages to the patients. The images collected in 
Paris were acquired using a 1.5 Tesla GE Signa scanner: T1 (TE=20, TR=500), T2 
(TE=92, TR=3000) and FLAIR-T2 (TE=148.5, TR=10002, TI=2200). The CJD data 
collected in Marseille were acquired using a 1.5 Tesla Siemens Magnetom Vision 
scanner: T1 (TE=15, TR=644), T2 (TE=22, TR=4000) and FLAIR (TE=110, 
TR=8000, TI=2200). Through intensity normalisation and the use of normalised ratios 
we can treat all data together for hypersignal segmentation.  

Two radiological experts annotated all patient images. Figure 2 shows detection 
results on two patients with post-mortem neuropathologically confirmed CJD. The 
main radiological characteristic of the ten sCJD patients is the presence of higher 
intensities in the caudate nuclei and putamen. Strong thalamic abnormal intensity 
distributions are present in all vCJD cases, especially in the pulvinar. No false 
positive (FP) in are detected the control images. 

 

Fig. 2. Results on patient data – on the left an sCJD case with asymmetric lesions; on the right a 
vCJD case. We present a cross-section of each contrast-enhanced FLAIR MR data with 
abnormal hyperintensities in the internal nuclei; next to it we have the CJD detection map. 

4.1   CJD Prompting 

For the intensity quantification (IQS), we prefer using FLAIR images before intensity 
normalisation (which was used for the hypersignal segmentation) for the most 
accurate estimation of mean values in the segmented internal nuclei. This naturally 
leads to different intensity values for the Paris (M=9.48) and Marseille (M=25.63) 
databases, as a result of using different MR scanners and acquisition protocols. The 
results are consistent over the sCJD patients and conform to the clinical observations, 
where cases can be differentiated from controls judging by the  and  values 
higher than M. There is no significant difference between mean intensities in putamen 
or caudate nuclei versus pulvinar for our control data. 

We further compute the CP normalised measure for the entire database. We select 
the values in patient data that are greater than the highest value of all ratios over the 
control data (which is 1.155). All patient data provide at least one suspicious value 
higher than 1.155. All 10 sCJD cases show significant values in the caudate ratio, 
while 8/10 in the putamen ratio too. Four out of five vCJD cases present significant 
values in the pulvinar ratio, while 3/5 in the putamen and caudate nuclei, when mean 
intensities (not hyperintensities) over the entire nucleus are computed.  
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We box plot the value of CP into two groups: 1 - CJD cases (sporadic and variant 
together) and 2 – controls, as shown in Figure 3. For each group of data (CJD patients 
or controls), the plot shows the group median value (the bold central line), the 
minimum and maximum values (at the end of the dotted lines), the lower and upper 
quartiles (which enclose the box around the median), and the outliers (in circles). 
Performing a Welch Two Sample t-test between the two groups we get a value of p = 
6.729e-6, which gives an excellent separation between patients and controls with ratio 
mean values of 1.266 for CJD patients and 1.092 for controls.  

4.2   CJD Characterisation 

It is important to compute mean intensities over the entire nucleus (i.e. pulvinar, 
putamen or caudate) to be able to distinguish patients from controls (who have no 
hyperintensities in the deep grey nuclei). The addressed internal nuclei do not show 
hyperintensities for all patients; the caudate appears to be the only nucleus constantly 
affected. Furthermore, only parts of a nucleus may show hyperintensities and 
therefore the mean value computed over the entire nucleus does not always reflect the 
degree of abnormality in the respective patient nucleus. Therefore the need to 
concentrate on the hyperintense areas, rather than the entire nucleus. The abnormal 
intensities we will refer to are the hyperintensities found by our detection algorithm 
based on a foveal model (HVS). 

We compute the CC ratio for each patient. All 10 sCJD cases have CC ratios 
greater than 1, while all 5 vCJD cases have CC ratios lower than 1. These results 
prove in a quantitative form that vCJD patients present higher abnormal intensities in 
the pulvinar than putamen or caudate nuclei, whereas sCJD patients show stronger 
hyperintensities in the caudate nuclei or putamen than pulvinar. 

The box plot of the two patient subgroups is presented Figure 3. The two 
distributions are clearly different, as shown by the result of the Welch Two Sample t-
test with a p value of 5.865e-6. The ratio mean values of the two classes are 1.190 for 
the sCJD and 0.967 for the vCJD.  

 

Fig. 3. Prompting and differentiating CJD: on the left the boxplot separating CJD patients 
(sCJD and vCJD together) from controls using the CP ratio shown on the vertical axis; on the 
right the boxplot separating sCJD patients from vCJD cases using the CC ratio shown on the 
vertical axis 
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The IQS separates on a first instance the CJD patients from healthy controls using 
the newly-defined CP ratio. Once the CJD cases isolated, we use the CC ratio to 
discriminate vCJD cases from sCJD. The IQS allows differentiating without 
ambiguity three distinctive classes: healthy controls, sCJD patients and vCJD patients. 
With a combination of HVS and IQS, we are able to prompt 15/15 prion disease cases 
with no FP amongst the controls and distinguish between sCJD and vCJD cases.  

5   Discussion and Conclusion 

We present a first attempt for quantitative numerical analysis of MR intensities of 
pulvinar versus putamen and caudate nuclei in FLAIR-T2 images of CJD patients. 
They accurately quantify the clinical remarks related to the possible classification of 
different types of human spongiform encephalopathies.  

We define two new MRI-based ratios to prompt and differentiate CJD forms. All 
patients show abnormal intensities in the deep grey nuclei, which are correctly 
detected by our algorithm. All ten sCJD patients have higher mean intensities in the 
caudate nuclei and generally putamen. vCJD cases show more significant 
hyperintensities in the pulvinar than in the other deep grey nuclei, which makes them 
separable from the sCJD cases. All our experimental results are in complete 
accordance with the neurological findings in clinical practice and with the brain 
lesions profile described in each form of the disease.  

In order to decrease the number of FP prompted by our detection algorithm, we 
refined the registration of the segmented data (the Zubal Phantom) on the patient 
specific data. We use intensity normalisation for the automated segmentation of 
hyperintensities, but the quantitative analysis is performed on the original values.  

Quantifying the intensities in thalami, caudate nuclei and putamen, we show that 
there are always higher mean intensities in the caudate nuclei (10/10) and sometimes 
putamen (6/10) than the pulvinar of sCJD patients. The caudate nucleus is also of high 
intensity in the vCJD cases. This conclusion highlights the caudate nuclei as area of 
interest for the diagnosis of CJD, in complete agreement with the neuropathological 
findings. The relevance of caudate nuclei is also underlined by the decreased 
quantified mean ADC values in sCJD patients versus normal data (Diffusion Tensor 
and Diffusion Weighted images were available for some patients and controls in our 
database, but the results are preliminary).  

The algorithm allows the study of asymmetries in CJD MR hypersignals, which 
has been long questioned by neuropathologists. Using basal ganglia masks, we also 
note that hypersignals are inhomogeneous over the nuclei.  

We differentiate without ambiguity all CJD cases (sporadic and variant) from 
healthy controls and further characterise the CJD patients into two subgroups of 
human spongiform encephalopathies, sporadic and variant. More validation will be 
performed in future work, when more patient data are available. 

The reader can refer to a detailed version of the methodology in this paper in [8]. 
We presented a method for the detection of hypersignals in grey matter internal 

nuclei from multisequence MR images. The particular context of our application is 
that of human spongiform encephalopathies, prion protein diseases referred as 
Creutzfeldt-Jakob Diseases (CJD). The technique employs intensity and spatial 
normalisation, foveal segmentation for the detection of hyperintensities and a priori 
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anatomical information for refined registration and removal of false positives. We are 
able to prompt 15/15 prion disease cases with no FP amongst the controls. Our 
method further allows the quantification of intensity distributions in basal ganglia, as 
we introduce two MRI-based ratios that discriminate between patients and normals 
and differentiate between CJD forms. The caudate nuclei are highlighted as main 
areas of diagnosis of sCJD, in agreement with the histological data. In vCJD patients, 
we find more significant hyperintensities in the pulvinar than in the other internal 
nuclei, which confirms the visually-based radiological observations related to CJD. 

Our method proves as reliable as the visual interpretation of radiologists for the 
detection of basal ganglia hypersignals. Moreover, it allows to automatically obtain 
quantitative data from MR patients with CJD, which could be used for the follow-up 
of patients and evaluation of the efficiency of therapeutic procedures. Our study 
demonstrates the value of MRI for a prospective non-invasive diagnosis of sCJD and 
the characterisation of prion diseases, as we clearly differentiate sporadic from variant 
CJD cases. This work was partially funded by the GIS-Prions project. 

References 

[1] J.P. Brandel: Clinical aspects of human spongiform encephalopathies, with the exception 
of iatrogenic forms. Biomed Pharmacother, 53:14-18, 1999.  

[2] P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ayache: Iconic feature-based 
nonrigid registration: The PASHA algorithm. CVIU 89(2-3):272-298, 2003.  

[3] A.C.F. Colchester, S.A. Hojjat, R.G. Will and D. Collie: Quantitative Validation of MR 
Intensity Abnormalities in Variant CJD. In: J.Neurol.Neurosurg.Psychiatry 73(2): 213, 2002 

[4] D.L. Collins et al.: Design and construction of a realistic digital brain phantom. IEEE 
Transactions on Medical Imaging, 17(3):463-468, 1998.  

[5] M. Finkenstaedt, A Szudra, I. Zerr, S. Poser, J. Hise, J. Stoebner, and T. Wener: MR 
imaging of Creutzfeldt-Jakob disease. Radiology, 3:793-798, 1991.  

[6] H.J Gertz, H. Henkes, and J. Cervos-Navarro: Creutzfeldt-Jakob disease: Correlation of 
MRI and neuropathologic findings. Neurology, 38(9):1481-1482, 1988.  

[7] A. Hojjat, D. Collie, and A.C.F. Colchester: The putamen intensity gradient in CJD 
diagnosis. In MICCAI 2002, Vol. 2488 of LNCS, Springer, (2002) 524-531. 

[8] M.G. Linguraru et al.: Automated Analysis of Basal Ganglia Intensity Distribution in 
Multisequence MRI of the Brain – Application to CJD. Res.Report RR-5276, INRIA, 2004. 

[9] M.G. Linguraru, M. Brady, and R. English: Detection of Microcalcifications using SMF. 
In Peitgen, H.O. (ed.): Digital Mammography, Springer (2002) 342-346 

[10] S. Ourselin, A. Roche, S. Prima, and N. Ayache: Block matching: A general framework 
to improve robustness of rigid registration of medical images. In A.M. DiGioia and S. 
Delp, editors, MICCAI 2000, volume 1935 of LNCS, Springer (2000)  557-566,. 

[11] D. Rey, G. Subsol, H. Delingette, and N. Ayache: Automatic detection and segmentation 
of evolving processes in 3D medical images: Application to multiple sclerosis. Medical 
Image Analysis, 6:163-179, 2002.  

[12] K. Van Leemput: Quantitative Analysis of Signal Abnormalities in MR Imaging for 
Multiple Sclerosis and Creutzfeldt-Jakob Disease. PhD thesis, Kath. Univ. Leuven, 2001.  

[13] M. Zeidler et al.: The pulvinar sign on magnetic resonance imaging in variant 
Creutzfeldt-Jakob disease. The Lancet, 355:1412-1418, 2000.  

[14] I.G. Zubal, C.R. Harrell, E.O. Smith, Z. Rattner, G. Gindi, and P.B. Hoffer: Computerized 
dimensional segmented human anatomy. Medical Physics, 21:299-302, 1994. 



Statistical Representation and Simulation
of High-Dimensional Deformations: Application

to Synthesizing Brain Deformations

Zhong Xue, Dinggang Shen, Bilge Karacali, and Christos Davatzikos

Section of Biomedical Image Analysis, Department of Radiology,
University of Pennsylvania, Philadelphia, PA 19104

http://www.rad.upenn.edu/sbia

Abstract. This paper proposes an approach to effectively represent-
ing the statistics of high-dimensional deformations, when relatively few
training samples are available, and conventional methods, like PCA, fail
due to insufficient training. Based on previous work on scale-space de-
composition of deformation fields, herein we represent the space of “valid
deformations” as the intersection of three subspaces: one that satisfies
constraints on deformations themselves, one that satisfies constraints on
Jacobian determinants of deformations, and one that represents smooth
deformations via a Markov Random Field (MRF). The first two are ex-
tensions of PCA-based statistical shape models. They are based on a
wavelet packet basis decomposition that allows for more accurate esti-
mation of the covariance structure of deformation or Jacobian fields, and
they are used jointly due to their complementary strengths and limita-
tions. The third is a nested MRF regularization aiming at eliminating po-
tential discontinuities introduced by assumptions in the statistical mod-
els. A randomly sampled deformation field is projected onto the space of
valid deformations via iterative projections on each of these subspaces
until convergence, i.e. all three constraints are met. A deformation field
simulator uses this process to generate random samples of deformation
fields that are not only realistic but also representative of the full range
of anatomical variability. These simulated deformations can be used for
validation of deformable registration methods. Other potential uses of
this approach include representation of shape priors in statistical shape
models as well as various estimation and hypothesis testing paradigms
in the general fields of computational anatomy and pattern recognition.

1 Introduction

Representing prior statistical knowledge of high-dimensional scalar or vector
fields is of fundamental importance in a variety of scientific areas including com-
putational anatomy, shape analysis, pattern recognition, and hypothesis testing
applied to images or their deformations [1,2,3,4]. For instance, statistical study of
deformations can be used to provide voxel-based morphological characterization
of different groups; to incorporate prior knowledge of deformations from train-
ing samples into image segmentation and registration algorithms; to provide an
efficient way of synthesizing new deformation fields for validation of registration
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and segmentation methods; to regularize deformations according to prior knowl-
edge of sample deformations; and to estimate the missing parts of a deformation
from parts that are observed.

The goal of this paper is to construct a statistical model of deformations from
a limited number of training samples and to simulate deformations of MR brain
images by sampling this model. By simulating deformations, we can synthesize
respective images, which can then be used for validation of various segmentation
and registration algorithms since the deformations are known [5]. Although many
statistical shape modeling methods have been proposed in literature, they are
often designed for 2-D or 3-D shapes that can be represented by a relatively small
number of landmarks or outline points [2]. However, the high dimensionality of a
variety of image warping methods of 3-D structural images renders simple PCA-
based methods unable to properly estimate the statistics of deformation fields,
from the typically limited number of training samples [6]. This is especially true
for the finer local detail of a deformation.

This paper builds upon previous methods for estimating the covariance struc-
tures of high-dimensional distributions via scale-space decompositions [7,8,9]. In
particular, the approach described herein utilizes an expansion to a wavelet
packet basis [6] to rotate the high-dimensional coordinate system in which the
discretized deformation field is defined, so that its covariance structure is close
to a block-diagonal one; each block of this covariance matrix is approximated by
its principal components via a scale-wise PCA, which captures spatial correla-
tions among wavelet coefficients within a specific scale and band. The probability
density function (pdf) of deformations can therefore be approximated by a prod-
uct of the pdfs derived from the different wavelet-based PCA subspaces. This
approach, referred to as the Wavelet-PCA (W-PCA) model, effectively implies
the assumption of independence across different scales/bands. Although this as-
sumption is not strictly true, it is found to lead to far more accurate estimation
of the pdf of the deformation field, compared to global PCA. It is also motivated
by the structural and functional correlations found among adjacent anatomical
regions, at various scales. For example, in the brain adjacent neurons typically
display dense connections among each other, and the same holds for adjacent
anatomical regions at the substructure as well as at the between-structures level.

In this paper, the W-PCA model is applied not only to deformation fields
but also to Jacobian determinants. The rationale is that the Jacobian determi-
nant field is much smoother than the deformation field itself. Cortical gyri of the
brain can have quite variable curvature patterns, but their volumes do not differ
greatly, thereby leading to tighter pdfs of volumetric measurements and making
them easier to estimate. Moreover, since the W-PCA model of deformations can
introduce some unrealistic discontinuities emanating from the assumption of in-
dependence across wavelet bands, a valid deformation should also be a smooth
field represented by a MRF. Therefore, a deformation field simulator is designed
to synthesize a valid deformation via iteratively constraining a randomly sam-
pled deformation so that it lies in the subspaces defined by the statistics of
deformations and Jacobian determinants, and the MRF regularization.
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The experiments synthesize deformations and respective images by randomly
sampling the pdfs determined as above. Quantitative measures of generaliza-
tion of the approach are evaluated and compared with those of the global PCA
method. The results show that the proposed statistical model of deformations
captures the prior knowledge of sample deformations well and generates realistic
deformations and simulated warped images.

2 Methods

2.1 General Description

Wavelet-PCA (W-PCA) Statistical Priors. Let f (x) be a scalar or vector
field defined over the template image domain Ωt, x ∈ Ωt. Trying to estimate
the pdf of f from a relatively small number of training samples is a very difficult
task. The commonly used PCA method (e.g. [1,2,4]) fails miserably when f is of
very high dimensionality [6]. If f represents a 3-D warping transformation and
it is to be estimated from 100 training samples, a global PCA model will cap-
ture mainly global size and shape characteristics that are of limited interest and
value, especially for the purposes of simulating complex deformations to be used
for validation purposes. In order to capture finer and more localized variations
of f , we follow and extend the framework proposed in [9], which decomposes f
using the Wavelet Packet Transform (WPT), and subsequently captures within-
scale statistics via hierarchically-organized PCA models. These PCA models are
estimated from statistical distributions that are both of lower dimensionality,
and more compact due to correlations among variables (e.g. the PCA model de-
rived from a high-scale representation of f represents a very compact distribution
due to the smoothing and down-sampling applied at each level of the wavelet
packet decomposition; the distribution of high frequency detail within a local
window is also easier to estimate due to its low dimensionality emanating from
the small window size). PCA within each band at a given scale is important, due
to correlations among wavelet coefficients corresponding to adjacent locations,
something which is particularly prominent in smooth elastic-type of deforma-
tions, in contrast to, for example, acoustic signals. The fundamental assumption
here is that the wavelet-based rotation renders the covariance matrix of f close to
block-diagonal, thereby leading to a more accurate estimation compared to the
usual sample covariance estimation. Generating a random sample from the pdf
of f is then achieved by randomly sampling each PCA model in this hierarchy,
and then using the inverse WPT.

“Valid Deformations” as the Intersection of Different Subspaces. In
theory, if the W-PCA model described above captures the statistics of defor-
mation f accurately, we can just generate sample deformations as described
above. In practice, however, the assumption that the covariance matrix of f is
block-diagonal in the wavelet packet basis does not hold exactly. Although it is
well-known that for broad classes of signals, correlations across scales diminish
rapidly, they are nonetheless non-negligible for adjacent scales. Therefore, the
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Fig. 1. The space of valid de-
formations are represented as
the intersection of different sub-
spaces reflecting different as-
pects of deformations

Fig. 2. Jacobians are less variable than displace-
ment fields. E.g. the displacement fields of the
precentral gyri are very different for these two
brains, whereas the volumes of these gyri are very
similar, leading to much less variable Jacobian
determinants.

resulting deformation fields might have unrealistic discontinuities. In order to
alleviate this problem, we observe that additional constraints imposed on the
estimated deformation fields can be used to define subspaces in which the de-
formation must belong to. Therefore, we require that a valid deformation field
simultaneously satisfies all available constraints, i.e. it belongs to the intersec-
tion of a number of subspaces, each of which satisfies some constraints on the
deformation. The W-PCA model applied to the deformation field specifies one
such subspace. In order to describe the second subspace, we first observe that
if f represents a linear or nonlinear function of the deformation field that can
be estimated more accurately, we can use it to further constrain the form of
the deformation field. Herein we also use the determinant of the Jacobian of the
deformation field in place of f in the W-PCA formulation above. The Jacobian
determinant is not only of lower dimensionality, since it is a scalar field, but
it is also much less variable across individuals, for the reason that is pictorially
shown in Fig. 2. Accordingly, it can be estimated much more accurately from the
typically limited training samples, using the W-PCA framework. In order to find
the deformation field that satisfies a given Jacobian determinant, we use [10].

Hierarchical Regularization. The W-PCA model of deformations can intro-
duce some unrealistic discontinuities emanating from the assumption of inde-
pendence across different scales and bands. Such potential discontinuities can be
eliminated by using a nested regularization scheme, which is applied sequentially
to each level of the wavelet decomposition via a respective MRF that imposes
spatial smoothness at different scales.

Summary of the Algorithm. An algorithm that samples the resulting pdfs
is described next and detailed in the following sections.

– Step 1. Randomly sample the W-PCA model of deformation fields, thereby
generating a tentative deformation.

– Step 2. Project the Jacobian of the deformation field onto the W-PCA model
of valid Jacobian determinants.
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– Step 3. Find the deformation field whose Jacobian matches the one generated
in Step 2, using [10].

– Step 4. Apply the nested MRF regularization to impose spatial smoothness
on the deformation at all scales.

– Step 5. Iterate above steps until convergence, i.e. until the smoothed defor-
mation field belongs to the subspaces of valid Jacobians and deformations.

2.2 The Wavelet-PCA (W-PCA) Model

The W-PCA model is used to estimate the pdf of f , which can be a deformation
field or a Jacobian determinant field, using N samples. It first applies an L-
level WPT to f , and then constructs a PCA model of the wavelet coefficients of
each wavelet band at level L, and finally it combines these pdfs together. Fig.3
illustrates the structure of 1-D WPT. For 3-D WPT, the wavelet coefficients
at level l are represented by w(l,b), b = 0, 1, ..., Bl − 1, where Bl = 8l and l =
1, 2, ..., L. At each level, w(l,0) represents the low-pass wavelet coefficients. For

 f
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Fig. 3. Illustration of Wavelet Packet Transform (WPT)

simplicity, f is also referred to as w(0,0). After L-level WPT, f can be represented
by all the wavelet coefficients at level L, i.e. w(L,b). Assuming that different
bands in the wavelet subspaces are independent, the pdf of deformation f is,

p(f) =
BL−1∏
b=0

p(w(L,b)). (1)

The pdf of each band (L, b), p(w(L,b)), can be estimated by applying PCA to the
wavelet coefficients of N sample deformations fs at that band, denoted as w(L,b)

s ,
s = 1, 2, ..., N . After performing PCA, we obtain the mean of the wavelet coeffi-
cients w̄(L,b) and the matrix Φ(L,b) formed by the eigenvectors of the covariance
matrix of these coefficients, which correspond to the largest K(L,b) eigenvalues
λ

(L,b)
j , j = 1, ..., K(L,b), of that matrix. Therefore w(L,b) can be represented by

its projected vector v(L,b) in the space spanned by the K(L,b) eigenvectors,

v(L,b) = Φ(L,b)T
(w(L,b) − w̄(L,b)). (2)

Then, the pdf of f in Eq.(1) is calculated by,

p(f) =
BL−1∏
b=0

c(L,b) exp

⎧⎨⎩−
K(L,b)∑

j=1

v(L,b)
j

2

2λ
(L,b)
j

⎫⎬⎭, (3)

where c(L,b) is the normalization coefficient. After obtaining p(f), we can generate
randomly new vectors v̂(L,b) according to the pdf in Eq.(3) and synthesize the
wavelet coefficients of different wavelet bands using,
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ŵ(L,b) = Φ(L,b)v̂(L,b) + w̄(L,b). (4)

A simulated deformation can therefore be generated by performing L-level In-
verse WPT. This W-PCA model can not only be used to model statistics of
deformations, but also be used to model other fields like the Jacobian determi-
nants of deformations.

We stress the importance of using PCA within each band, which is in con-
trast to the commonly used independence assumption for wavelet coefficients.
In particular, PCA is known to be the optimal linear expansion, provided that a
good estimate of the covariance matrix is available. Although sample covariance
is a very inaccurate estimate of the covariance of f , the sample covariance at
various scales provides a much better estimate of the covariance at that scale,
for reasons that were detailed in Section 2.1. As a result, the W-PCA model can
capture correlations between adjacent spatial locations at a given scale.

2.3 Hierarchical MRF Regularization

As mentioned in Section 2.1, if deformations are synthesized directly using the
W-PCA model, some unrealistic discontinuities emanating from the assumption
of independence across wavelet bands may occur. In order to eliminate such po-
tential discontinuities, a nested MRF regularization scheme that imposes spatial
smoothness at different scales is applied in conjunction with the inverse WPT.
That is, f is regularized at different scales: at level l, l = L−1, ..., 1, 0, its wavelet
coefficient ŵ(l,0) is regularized.

Denoting the input low-pass coefficients as ŵ (which can be any of ŵ(l,0), l =
L−1, ..., 0), the MRF regularization estimates a “true” wr, by assuming that low-
pass wavelet coefficients obey MRF conditions and ŵ is a degraded observation
of wr (ŵ = wr + n, n is the disturbance assumed to be zero-mean Gaussian
noise with standard deviation (std) σN ), and by using the Maximum a posteriori
(MAP) framework [11,12], i.e.

wr = argmaxw{p(w|ŵ)}
= argmaxw{p(ŵ|w)p(w)/p(ŵ)}. (5)

Assuming the priors p(ŵ|w) and p(w) are Gaussian distributions, we have
p(ŵ|w) ∝ exp{− 1

2σ2
N
‖w − ŵ‖2} and p(w) ∝ exp{−Ψ(w)}, where Ψ(w) =

1
2 (w − w̄)T χ−1(w − w̄). w̄ and χ refer to the mean and the covariance ma-
trix of w respectively, and the structure of χ meets the MRF property. Thus wr

is solved by minimizing an energy function Er(w),

Er(w) =
1

2σ2
N

‖w − ŵ‖2 + Ψ(w). (6)

We use a simplified approach similar to [11,13] to minimize Er(w). First, we es-
timate p(w) as a product of all the local (marginal) pdfs across the locations x,
i.e. p(w) 
 ∏x G(wx, μx, σx), where G(, , ) represents a single Gaussian distri-
bution with mean μx and std σx. Then Ψ(w) in Eq.(6) is estimated by Ψ̂(w) =∑

x{ ‖wx−μx‖2

2σx2 }, where μx = 1
|δ(x)|

∑
y∈δ(x) wy and σ2

x = 1
|δ(x)|

∑
y∈δ(x)‖wy−
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μx‖2. δ(x) refers to a neighborhood centered on x but not including x, and |δ(x)|
is the cardinality of δ(x). Therefore, the regularized wavelet coefficients wr can
be obtained by minimizing Eq.(6) iteratively using Newton’s method.

3 Results

In the experiments, the W-PCA models of deformations and the W-PCA models
of their Jacobian determinants are first constructed, and then new deformations
and their respective images are synthesized using the proposed deformation sim-
ulator. The dataset used in this experiment includes N = 158 MR brain images
of different subjects. All the subject images were first rigidly transferred onto
the space of the template image, and then the registration [14] was used to
obtain the deformations from the template image to all the 158 rigidly-aligned
subject images. After constructing the W-PCA models, we simulated randomly
a large number (more than 50) of deformations and respective images using the
deformation simulator described in Section 2.1. These deformations and images
were visually evaluated and the simulated deformations were found realistic,
smooth and also with quite significant variations. An example of the synthesized
deformation fields and the respective image is given in Fig.4.

(a) the template image (b) a simulated deformation (c) the simulated image

Fig. 4. An example of the simulated deformation

We also used the generalization measure in [9,15] to evaluate the performance
of our approach. The average and std of the generalization errors are calculated
using the leave-one out method. The generalization error is defined as the mean
of the absolute voxel-wise differences between a testing deformation field and
its counterpart after projection to the intersection of the three subspaces (see
Fig.1). We also compared the results using our approach with those using the
global PCA. It turned out that the average and std of the generalization errors of
the proposed approach are 2.3mm and 0.6mm respectively, which is a significant
(P-value close to zero) improvement comparing to the results of the global PCA
(mean 7.6mm and std 1.5mm).
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4 Conclusion

We presented a method for estimating the statistics of deformations, which is
then utilized by a deformation simulator to generate realistic deformations and
images. The W-PCA models capture the statistics of deformations and their
Jacobian determinants, and the nested MRF regularization eliminates possible
discontinuities of deformations. A valid deformation is simulated by iteratively
constraining a randomly generated deformation, so that it belongs to the inter-
section of these three subspaces. Better performance is observed by comparing
to the global PCA approach using subjective and quantitative evaluations.
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Abstract. We propose a novel method for quantitative interpretation of
uncalibrated optical images which is derived explicitly from an analysis
of the image formation model. Parameters characterising the tissue are
recovered from images acquired using filters optimised to minimise the
error. Preliminary results are shown for the skin, where the technique
was successfully applied to aid the diagnosis and interpretation of non-
melanocytic skin cancers and acne; and for the more challenging ocular
fundus, for mapping of the pigment xanthophyll.

1 Introduction

Optical imaging methods have recently assumed a much more important role
in medicine: light is non-ionising and relatively safe; and increasingly powerful
computers make it possible to implement detailed models of image formation.
These can provide principled means of relating image values to physical prop-
erties of the tissues being imaged. A common problem is the interpretation of
images taken under conditions of varying illumination. The magnitude of light
reaching the detector depends on many factors not related to tissue proper-
ties, including the magnitude, direction and spectral composition of the incident
light; the object geometry; the presence of other objects in the scene, etc. In
some cases these factors can be controlled and compensated for by calibrating
against objects with known reflectance, but this is impossible in many cases. We
show how a physical model of image formation can be used to derive quantitative
properties of tissue from uncalibrated optical images.

Earlier work [1,2] has laid down the foundations for a physics-based image
interpretation method capable of deriving quantitative parameters characteris-
ing tissue histology from in vivo multi-spectral images. The method was first
applied to skin imaging, and shown to be successful in the early detection of
melanoma [1,3]. Although the principles of that work are generic, many human
tissues present major additional challenges in comparison to the skin.

The existing approach assumes that the absolute reflectance of the tissue can
be deduced from a simple measurement. This is usually accomplished by placing
an object of known reflectance (a “standard”) alongside the tissue, but this
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is inappropriate where the image is of a non-planar object; the illumination is
spatially non-uniform; or when the tissue under investigation cannot be accessed
in order to place the standard. We have developed a method for compensating for
spatial variations in illumination and geometry in an image. The method does
not require any form of reflectance standard to be used and is quite general.
We provide objective criteria which ensure that parameter recovery from such
uncalibrated images is both unique and of sufficient accuracy.

2 Compensating for Geometric Variations in Illumination

The proposed technique is based upon an analysis of the imaging process. When
capturing an image on a CCD-based device, using a filter with transmittance
Fn(λ) at wavelength λ, the signal recorded at position x is

in(x) = C

∫
Λ

I0(λ,x)R(λ,x)Fn(λ)Q(λ)dλ, (1)

where Q(λ) is the quantum efficiency of the CCD, I0(λ,x) defines the illuminant,
and R(λ,x) is the reflectance of the tissue. The constant C scales the signal
onto the range of the detector and is determined by factory calibration. We have
assumed that Fn(λ) and Q(λ) are spatially uniform. Clearly the reflectance of
the tissue varies with position as its composition changes, and the intensity
of illumination can also vary spatially due to surface irregularities, beam edge
effects or surface curvature. We can generally assume all variations in system
geometry can be included in I0(λ,x), and that these variations are independent
of wavelength in diffuse imaging. We can therefore write I0(λ,x) = A(x)S(λ),
a product of spatial A(x) and spectral S(λ) terms. The geometric properties of
the system are then contained solely in A(x). Substituting for I0 in Eqn. (1),
and noting that A(x) does not depend on λ we obtain

in(x) = CA(x)
∫

Λ

S(λ)R(λ,x)Fn(λ)Q(λ)dλ. (2)

All geometric information is contained in the pre-factor to the integral. We
may therefore eliminate system geometry by considering quantities qmn(x) =
im(x)/in(x), the so-called image quotients. In the next section we will define
objective criteria for the selection of image quotients, and show how they can be
used to recover tissue parameters from appropriate images.

3 Modelling of Uncalibrated Imaging

In Ref. [2], Preece and Claridge described the process of image formation as a
sequence of mappings. They assumed that the optical properties of tissue can
be described by a vector of K parameters p = {pk}k=1...K , p ∈ P , where P
is the space of all possible parameter vectors for a given tissue type. The first
stage in the imaging process is the formation of the reflectance spectrum of the
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tissue: r = r(λ), r ∈ R, where R is the space of all possible reflectance spectra.
We define a mapping a : P �→ R describing the relationship between tissue
parameters and spectral reflectance. This mapping can be realised using Monte
Carlo simulation [4].

Optical imaging devices typically acquire images by filtering the remitted
spectra to generate a single image value per filter. For N filters {Fn(λ)}n=1...N ,
an image vector i = {in}n=1...N , i ∈ I is recorded, where I is the space of
all possible image vectors for a given tissue. This is represented by a mapping
b : R �→ I, defined by Eqn. (2).

We now introduce an additional step. Given an N -component image vec-
tor, we can form an (N − 1)-component vector of independent image quotients,
q = {qm}m=1...N−1 = {im/iN}m=1...N−1, q ∈ Q. The image quotients are inde-
pendent of surface and illumination geometry, and remove the need for calibra-
tion. We represent this final stage as a mapping c : I �→ Q. The process of form-
ing image quotients is then the composite function f = a◦b◦c : P �→ Q, relating
the composition of the object described by a parameter vector p to image quo-
tients q formed from an image captured by a set of optical filters {Fn(λ)}n=1...N .
We can now, in principle, construct an inverse mapping f−1 : Q �→ P which al-
lows us, given a vector of image quotients q, to deduce the vector of parameters
p that describes the tissue at the point of interest.

There are two important criteria which f and f−1 should meet: f should
be a unique, one-to-one (bijective) mapping between points in P and points
in Q; and when applied to a vector q, f−1 should compute the corresponding
parameter vector p with sufficient accuracy. Preece and Claridge [2] established
objective criteria to ensure that these conditions are met, and our analysis is
similar. We assume that the spectrum of the illuminating source S(λ) and the
quantum efficiency of the detector Q(λ) are known, and that we have control
over the filters {Fn(λ)} used to acquire the image. We first check whether f is
bijective using the criteria defined in Sect. 3.1. Sets of filters which do not meet
this requirement are discarded. We then use an evolutionary algorithm [5] to
select {Fn(λ)} such that they minimise the mean error with which parameters
can be computed from image quotients. This is described in Sect. 3.2.

3.1 Uniqueness of the Mapping

To determine the uniqueness of the forward mapping f , we compute the Jacobi
matrix J with components Jij = ∂qi/∂pj at each point at which the model is
defined. We then compute the Jacobian J = det(J), and test the sign of J at all
points in P . The mapping f is bijective if J is found to be of constant sign (and
non-zero) throughout P . An important consequence of this is that the number
of image quotients must equal the number of object parameters, N − 1 = K.

3.2 Minimisation of Error in f−1

Minimisation of error is essential in medical image analysis. The accuracy of a
clinician’s diagnosis depends on the quality of information that analysis of an
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image provides. We have identified three main sources of error: errors in f ; errors
in the imaging process; and errors in the construction of f−1.

Errors in f can arise from several sources. The data used to characterise the
tissue may not be known accurately; the characteristics of the imaging equipment
may not be known exactly; and the model of tissue reflectance may not be
deterministic. The main source of error in the imaging process is thermal noise
in the CCD. This leads to a small error in the image values recorded by the
camera, and hence in the recorded image quotients. Finally, f−1 cannot generally
be computed exactly and an approximation is necessary (see Sect. 3.3). Each of
these errors reduces the accuracy of the recovered tissue parameters. It is a simple
exercise in error propagation to compute the error which which parameters can
be recovered, given these known sources of uncertainty. The resulting measure
of error is a function of the set of filters chosen, and is used in the optimisation
process to determine optimal filters for the problem.

3.3 Construction of the Inverse Function

When processing an image using these ideas, an explicit implementation of f−1

will be required, but in general, we cannot compute f−1 directly. The forward
model f is defined only at a finite number of points in P , and there are a finite
number of points in Q. A natural approach to the construction of f−1 is to fit
a multi-dimensional surface to the data, but both f and f−1 are often highly
nonlinear, and finding an appropriate functional form for the surface is very hard.
For the two-dimensional model of skin discussed in Sect. 4, a standard surface
fitting algorithm provided good results, but models with higher dimensionality
have proven to be much more difficult. In these cases, acceptable theoretical
results have been obtained using a neural network.

4 Application: Non-contact Skin Imaging

The original parameter recovery method developed for skin imaging by Cotton
and Claridge [1] requires calibrated, illumination-invariant image data. This is
fairly simple to achieve for small areas of the skin by contact photography, but
larger, curved or uneven surfaces cannot be imaged in this way.

We have implemented a system for uncalibrated non-contact imaging of the
skin and have carried out a preliminary evaluation for a number of medical condi-
tions including non-melanocytic skin cancers and acne. For practical reasons we
have based the system on an off-the-shelf digital camera which involved making
small departures from the generic interpretation scheme described above.

An accurate optical model of the skin requires three parameters: concentra-
tion of epidermal melanin, concentration of dermal blood and thickness of the
dermal layer [6]. Appropriate ranges for each of these parameters were taken
from Ref. [6]. For each parameter vector, the mapping a : P �→ R was im-
plemented using a Monte Carlo simulation. The standard RGB camera used
provides only three filters {Fn(λ)} = {R, G, B}, allowing only two of the three
parameters to be recovered. Blood and melanin were chosen because of their
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clinical importance, but also because of their significantly greater local variabil-
ity in comparison with collagen. A constant value of collagen of 0.2mm was
assumed [6]. The thickness of collagen does change the absolute magnitude of
the reflectance spectrum, but has only a small effect on the relative magnitudes
of the image quotients. Since {Fn(λ)} were predefined, the optimisation was
reduced to selecting one of the R, G or B bands to play a role of the denomina-
tor in the image quotients, and testing whether the uniqueness of the mapping
is preserved. The quotients B/R and G/R were found to give the best unique
mapping. The correctness of this mapping was tested by comparison with the
original method, which does require calibration.

The imaging system uses a Cannon G5 Powershot digital camera capable
of taking images ranging in size from half-body to 5mm patches. Illumination
is provided by a ring flash mounted in the camera lens plane with a system
of polarising filters to prevent flash artifacts. Images are taken under ambient
illumination. Parametric maps are computed in ∼ 2 seconds on a standard PC.
Two pilot studies described here investigate the pre-therapeutic characterisation
of non-melanocytic skin lesions, and the objective assessment of severity of acne.

Non-melanocytic skin cancers. Basal Cell Carcinoma (BCC) and Squamous
Cell Carcinoma (SCC) are the most common forms of skin cancer. These can
be difficult to differentiate from non-cancerous and non-invasive lesions. A non-
invasive alternative to biopsy would reduce the likelihood of unnecessary surgery
and patient trauma. In a pilot study 150 images of non-melanocytic skin lesions
were obtained and parametric maps of blood and melanin were examined by a

Fig. 1. First row: an infiltrative BCC, (a) colour image; (b) blood map; (c) melanin
map. The lesion (dark arrow in (a)) shows increased vascularity and tortuous engorged
vessels in (b). Two nearby lesions (seborrhoeic keratoses, marked by white arrows),
show no increase in vasculature (b), and their pigment content contrasts with the non-
pigmented BCC in (c). Second row: a moderately differentiated SCC: (a) colour image;
(b) blood map; (c) melanin map. A nodular area (arrow in (a)) is highly vascular (arrow
in (b)), possibly reflecting tumour activity. Low melanin values in (c) demonstrate the
non-pigmented nature of this lesion.
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Fig. 2. Acne Lesions. (a) Colour photograph; (b) parametric map of blood; (c) extent
of the lesions identified from (b) and overlaid on the original photograph.

dermatologist for diagnostically useful features. The tumour vascularity, clearly
visible in the blood map shown in Fig. 1b (second row), was identified as a highly
relevant sign of BCC. A combination of features in blood and melanin maps was
useful in eliminating suspicious lesions as non-cancerous (Fig. 1, first row). An
in-vivo examination of these histological, diagnostically relevant signs of cancer
is at present not possible in any other way.

Acne. In acne, bacteria caught in the skin pores causes an inflammatory skin
reaction. The treatment depends on the severity and extent of the condition,
however the assessment of these factors is highly subjective. In a small study
involving 20 patients, clinical scores were compared with scores derived from
parametric maps of the blood distribution. The ’extent’ score was computed as
a percentage of skin with blood levels above the mean in the region of interest
(outlined in Fig. 2c). The ’severity’ score of the inflammation was computed as
the mean of the blood level values in the affected area. The correlation between
clinical and computer-derived scores was R2 = 0.82 for the severity and R2 =
0.8 for the extent, indicating good agreement.

It should be stressed that values recorded in the parametric maps correspond
to real physical quantities. For example blood levels can be expressed in units
of mmol/L. For this reason both, the ’extent’ and ’severity’ scores, are truly
objective measures of inflammation which can be compared over time or over a
population of patients. At present there are no other methods, neither clinical,
nor photographic, capable of such objective assessment.

5 Application: Ocular Fundus Imaging

Age-related macular degeneration (ARMD) causes irreversible sight loss in el-
derly patients. Early identification may facilitate preventative treatments, but
at present there are no objective screening methods. The pigment xanthophyll
is thought to play a protective role in ARMD and decreasing levels may indicate
the onset of the disease. Quantitative estimates of the pigment level may be of
considerable clinical value. This section describes work in progress on quantita-
tive interpretation of fundus images.

The model of fundus reflectance is described by five parameters: RPE
melanin, choroidal blood, choroidal melanin, xanthophyll and retinal blood,
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Fig. 3. (a) Projection of the model (black points) and image (gray points) onto the q1-
q2 subspaces, where q1 = i(507nm)/i(611nm), q2 = i(525nm)/i(611nm). (b) A sample
fundus image in the band centred at 507nm. (c) Distribution of xanthophyll in a healthy
human subject recovered from fundus images.

based on the model proposed by Preece and Claridge [7]. Other properties of
the tissue were assumed to be constant. The parameters were discretised within
their respective ranges and tissue reflectance for each parameter vector was com-
puted using a Monte Carlo simulation. The recovery of five parameters requires
six images, and the optimisation procedure found that the best unique mapping
was provided by filters with central wavelengths 507nm, 525nm, 552nm, 585nm,
596nm with the filter used in the denominator of the image quotients located at
611nm.

Xanthophyll absorbs light at λ < 534nm, and it is possible to recover its
distribution using the quotients at 507nm, 525nm and 552nm. Fig. 3a shows
an example of the relationship between the model vectors and image quotient
vectors in a projected view. Images from twelve normal subjects were taken
using a standard fundus camera coupled to a Retiga EXi monochrome camera
and a VariSpec programmable LCD filter. The VariSpec filter was programmed
to implement the selected filters.

When applied to a normal subject, the inverse mapping yields the distribution
of xanthophyll shown in Fig. 3c. The pigment level shows a significant increase
near the fovea, which is in agreement with the accepted distribution [8]. Areas
showing no xanthophyll include the optic disk, which is not modelled in the
current implementation, and large veins, which obscure the underlying tissue.
Values of xanthophyll range from zero (in the black regions) to 0.6 mmol/L in
the white regions. To our knowledge this is the first time that the distribution
of a single ocular pigment has been deduced by digital imaging and computer
modelling. These results are very encouraging and work is in progress to produce
parametric maps showing the distribution of the remaining model parameters.

6 Discussion and Conclusions

We have developed a generic method for quantitative interpretation of optical
images. The method uses image quotients to effectively normalise the intensity
of illumination, allowing objects with complex geometries and/or large areas to
be interpreted. This is similar to ”discounting the illuminant”, a process used
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to normalise pixel values prior to image segmentation and classification [9,10].
In this paper we have shown for the first time that it is possible to carry out
quantitative analysis of tissue composition from uncalibrated images. This is a
far more ambitious and difficult task than classification, and the merits of quan-
titative image interpretation methods in medical imaging are well recognised. A
clinically important practical advantage of our method is that it does not require
the use of calibration patches and can be used for non-contact imaging. This is
vital when studying, for example, large burns, where the area of interest is likely
to be highly sensitive to the touch and prone to infections.

The theoretical bases and computational methodology of our method are
truly generic. We have demonstrated their successful application to aid the di-
agnosis and interpretation of several skin conditions and to compute the distri-
bution of the pigment xanthophyll in the ocular fundus. The same method has
also been applied to problems in x-ray astronomy [11], and fluorescein imaging
of cancer cells [12] . We anticipate that in the future this work will yield much
insight into the optical imaging of biological tissues in general, and that it will
lead to the development of clinically useful systems.
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Abstract. We introduce a novel approach for magnetic resonance image (MRI)
brain tissue classification by learning image neighborhood statistics from noisy
input data using nonparametric density estimation. The method models images
as random fields and relies on minimizing an entropy-based metric defined on
high dimensional probability density functions. Combined with an atlas-based
initialization, it is completely automatic. Experiments on real and simulated data
demonstrate the advantages of the method in comparison to other approaches.

1 Introduction

Segmentation of magnetic resonance images (MRI) of the brain is an important problem
in biomedicine; it has a number of applications including diagnosis, surgical planning
and monitoring therapy. One of the fundamental tasks in brain MRI segmentation is
the classification of volumetric data (3D images) into gray matter, white matter and
cerebral-spinal fluid (CSF) tissue types. This classification is of great interest in the
study of neurodegenerative disorders such as Alzheimer’s Disease. It also has other ap-
plications such as the generation of patient-specific conductivity maps for EEG source
localization. Manual segmentation of high-resolution 3D images is an extremely time
consuming and subjective task; hence, automatic and semi-automatic brain tissue clas-
sification methods have been studied extensively in the field of biomedical image pro-
cessing. Recent developments in automatic brain tissue classification have led to a class
of systems that incorporate the following strategies:

1. Parametric statistical models of single-pixel image intensity for each tissue class,
2. Markov random field (MRF) type models of spatial smoothness,
3. Bias field correction, and
4. Digital brain atlas information.

In this paper, we propose a novel approach that combines the intensity and spatial
smoothness models (items 1-2) using an unsupervised learning approach that incorpo-
rates nonparametric statistics of local neighborhoods. The proposed method is compat-
ible with state-of-the-art segmentation methods that use probabilistic brain atlases [1,2]
and bias field correction [3], but it uses an information-theoretic, data-driven approach
to incorporate image neighborhood information. Validation studies on simulated data
demonstrate that this approach offers significant advantages over the state-of-the-art.
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2 Related Work

This paper introduces a new approach for removing the effects of imaging noise in
tissue classification using a statistical framework. Others have used non-linear diffu-
sion for image denoising as a pre-processing step [4]. However, for probabilistic al-
gorithms, it is intuitive to incorporate spatial smoothness constraints directly into the
segmentation process via Markov random field (MRF) models [5,6,3,7,8]. These meth-
ods modify single-pixel tissue-probabilities with energies defined on local configura-
tions of segmentation labels. Spatially smooth segmentations are assigned lower en-
ergies and therefore are more likely. However, such MRF models can over regularize
the fine structured borders, e.g. the interface between gray and white matter; therefore,
it is often necessary to impose additional, heuristic constraints [6,3]. Active contour
models [9,10] have also been used to impose smoothness constraints for segmentation.
These methods typically attempt to minimize the area of the segmentation boundary,
an approach that also can over regularize interfaces. The method proposed in this paper
formulates the segmentation problem in information-theoretic terms using probability
density functions (PDFs) defined on the space of image neighborhoods. In contrast to
MRF-type approaches to tissue classification regularization, which formulate neighbor-
hood probabilities on discrete segmentation labels, the method relies on the discovery
of regular patterns in the input data.

Lee et al.[11] analyze the intensity statistics of 3×3 pixel patches in optical images,
in the corresponding high-dimensional spaces, and find the the data to be concentrated
in clusters and low-dimensional manifolds exhibiting nontrivial topologies. Motivated
by this observation, we use nonparametric density estimation. Consequently, we impose
very few assumptions about the statistical structure of image neighborhoods. Popat et
al.[12] were among the first to use nonparametric Markov sampling in images. They
attempt to capture the higher-order nonlinear image statistics via cluster-based nonpara-
metric density estimation and apply their technique for image restoration, image com-
pression and texture classification. However, their method takes a supervised approach
for learning neighborhood relationships. The proposed method builds on the work in
[13], which lays down the foundations for unsupervised learning of higher-order image
statistics. However, that work proposes reducing the entropy of image-neighborhood
statistics as a method for removing image noise.

3 Method

A random field/process [14] is a family of random variables X(Ω; T ), for an index set
T , where, for each fixed T = t, the random variable X(Ω; t) is defined on the sample
space Ω. If we let T be a set of points defined on a discrete Cartesian grid and fix
Ω = ω, we have a specific realization of the random field as a deterministic function
x(t) – the image. In the case of 3D MRI data, t is a three-vector and T represents the
set of pixels in the 3D image. Let Nt ⊂ T be the set of pixels in the neighborhood of
t. If we associate with T a family of neighborhoods N = {Nt}t∈T such that u ∈ Nt if
and only if t ∈ Nu, then N is called a neighborhood system for the set T . An example
of such a neighborhood is a 3× 3× 3 cube of pixels centered at t. We define a random
vector Z(t) = {X(t)}t∈Nt , denoting its realization by z(t), corresponding to the set
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of intensities at the neighbors of pixel t. If the image is real-valued, then z(t) ∈ IRm

where m is the number of pixels in the neighborhood.

3.1 Neighborhood Entropy

Let pk(Z = z) be the probability of observing the image neighborhood z given that the
center pixel of the neighborhood belongs to the tissue class k. This PDF is called the
likelihood function. The total entropy associated with a set of K tissue PDFs is

H = −
K∑

k=1

∫
IRm

pk(Z = z) log pk(Z = z)dz, (1)

where the integration is performed over IRm, the domain of the random vector Z . Let
the sets {Tk}Kk=1 denote a mutually exclusive and exhaustive decomposition of T into
K tissue classes. We assume that the random process X , limited to pixels belonging
to a single class Tk, is stationary ergodic. Entropy is the expectation of negative log-
probability, and for such processes it can be approximated with the sample mean [15]

H(T1, . . . , TK) = −
K∑

k=1

(
1
|Tk|

∑
t∈Tk

log pk(z(t))

)
. (2)

Piecewise stationarity is a better model for MRI, which is not truly stationary. In prac-
tice, the stationary ergodic assumption can be relaxed as shown in Section 3.2.

We consider the optimal decomposition (segmentation) to be the sets {T̂k}Kk=1 for
which H is minimum. If the PDFs pk(Z) are known, H can be minimized by assigning
any pixel t to the class with the highest likelihood for that particular realization z(t):

T̂k = {t ∈ T | pk(z(t)) ≥ pi(z(t)), ∀i �= k} . (3)

In practice, the likelihood functions are not known a priori and have to be estimated
as well. We propose to iteratively estimate the likelihood functions and update the seg-
mentation sets {Tk}Kk=1 until H converges. This approach is similar to the estimation
of means and variances for Gaussian PDFs in the Expectation Maximization algorithm.
However, Z is not well represented by a Gaussian PDF. For instance, consider the im-
age neighborhood for a white matter pixel deep inside the white matter mass and for
one close to the interface with gray matter. These two neighborhoods are drawn from a
PDF with multiple modes. Hence, we use a nonparametric density estimation approach.

3.2 Nonparametric Multivariate Density Estimation

Entropy optimization on image neighborhoods entails the estimation of PDFs in
sparsely populated, high dimensional spaces (the so-called curse of dimensionality).
Despite theoretical arguments suggesting that density estimation beyond a few dimen-
sions is impractical, empirical evidence is more optimistic [12,13]. We use Parzen-
window density estimation [16] with an m-dimensional isotropic Gaussian interpola-
tion kernel, Gm, with standard deviation σ for all dimensions. The density estimate for
class k is
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pk(Z(t) = z(t)) ≈ 1
|Ak(t)|

∑
tj∈Ak(t)

Gm(z(t)− z(tj), σ), (4)

where Ak(t) is a small subset of Tk, chosen randomly. For a truly stationary random
process, it is sufficient to form a global sample Ak(t) and use it to evaluate the PDF for
all z(t). For a piecewise stationary model, we estimate the PDF locally by choosing the
locations in Ak(t) from a spatial sampling Gaussian PDF centered at t.

Parzen-window density estimation involves the following parameters: the size of
the set Ak(t), the standard deviations of the spatial sampling Gaussian and the interpo-
lation Gaussian kernel. The first two are not critical, and they can easily be fixed for a
wide range of MRI. In all of our experiments, we fix the standard deviation of the spa-
tial sampling Gaussian to 15 pixels. This also automatically determines the minimum
number of required samples in Ak(t) to be 1000 as explained in [13]. On the other
hand, the standard deviation σ of the interpolation kernel in equation (4) is critical for
successful density estimation in high dimensional spaces. The optimal choice for this
parameter depends on the sparsity of the data which varies with various factors includ-
ing the amount of noise present in an image. We choose σ to minimize the entropy of
the associated PDF via a Newton-Raphson optimization scheme [13]. This choice for σ
is consistent with our entropy minimization segmentation formulation.

3.3 MRI Brain Tissue Classification Algorithm

The algorithm segments four tissue classes: gray matter, white matter, CSF and non-
brain tissue. Each class is represented with a non-parametric PDF. Since, the true PDFs
are not known a priori, we use an iterative learning procedure. Another component in
MRI brain tissue classification is the correction of intensity inhomogeneities. Various
solutions to this problem have been proposed. The approaches in [20,21,3] are the most
interesting because they propose a combined approach that iteratively updates the seg-
mentation labels and the bias field correction. The focus of this paper is not on bias field
correction; however, to show that our segmentation method is compatible with previous
techniques, we have implemented a simplified version of the polynomial least-squares
fit correction described in [3]. In summary, the segmentation algorithm carries out the
following steps per iteration:

1. estimate likelihood functions from the current {Tk}Kk=1 and bias field,
2. update {Tk}Kk=1 according to the new likelihoods,
3. estimate the bias field from the new {Tk}Kk=1.

The iterations are carried out until the reduction in entropy H computed from equation
(2) drops below 0.1% of the current value of H .

The algorithm requires an initial partition of classes, which can be obtained by reg-
istering the MRI with a brain atlas. Digital brain atlases can be used to provide seg-
mentation labels for a reference dataset [17,18] or prior tissue probabilities computed
from a population of subjects [1,2,19]. In this paper, we use the ICBM probabilistic
atlas [19], which provides probabilities of gray matter, white matter and CSF classes
for each pixel. We register this atlas with the MRI by computing the affine transfor-
mation that maximizes a mutual information metric. The registered probability maps
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are then used to form an initial segmentation using equation (3). As in [1,2], we also
treat these atlas probability maps as prior probabilities. However, we have found that
while the priors help in the discrimination between brain tissues vs. non-brain tissues,
they don’t offer significant benefits for our method when choosing between the brain
tissues. Hence, we sum the CSF, white matter and gray matter priors into a single brain-
tissue prior map. The non-brain-tissue prior map is then obtained by subtracting this
map from unity.

4 Results and Validation

We validate the proposed approach on simulated images with known ground truth. We
use 1 mm isotropic T1-weighted images from the BrainWeb simulator [22] with varying
amounts of noise and bias field. The neighborhood system is chosen to include the six
adjacent pixels in the three Cartesian directions in addition to the center pixel. Hence,
the PDFs exist in a seven dimensional space.

Van Leemput et al. [1] use the Dice metric [23] to evaluate the performance of
their state-of-the-art Expectation Maximization and MRF based approach on images
from the BrainWeb simulator. For comparison purposes, we use the same metric. Let
T̃k denote the ground truth set of pixels in tissue class k, then the Dice metric for class
k is defined as 2|T̂k ∩ T̃k|/(|T̂k|+ |T̃k|), where | · | denotes set size.

The first validation experiment is performed on simulated T1-weighted data without
any bias field and with intensity noise levels in the range 0%− 9%. The noise percent-
ages are defined with respect to the mean intensity of each tissue class. Figure 1 plots
the Dice metric for gray and white matter tissue classifications from the proposed algo-
rithm and the corresponding values given in [1]. The Dice metric for combined brain
tissues vs. non-brain tissues is consistently above 98% for both algorithms and is not
shown in this paper due the lack of space. The proposed algorithm performs better at
all noise levels for gray and white matter tissues. For 3% noise, which can be consid-
ered typical for real MRI, the performance gains are approximately 1.1% and 2.8% for
gray and white matter, respectively. The proposed approach scales better with increas-
ing noise amounts; the performance gain at 9% noise is 3.8% and 6.1% for gray and
white matter, respectively. This property would be useful for segmenting clinical, fast
acquisition MRI that can have high amount of noise. The use of image neighborhood
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Fig. 1. Dice metric as a function of noise level: (a) gray matter, and (b) white matter. Solid and
dashed lines plot the performance of the proposed algorithm and [1], respectively.
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(a) (b) (c)

Fig. 2. (a) Simulated, noisy image. Tissue classification (b) without, and (c) with neighborhood
information. Classification legend: CSF(black), gray matter(dark gray), white matter(light gray).

information is critical to the success of the proposed method. We repeated the segmen-
tation experiments at the 9% noise level using only the center pixel of the neighborhood.
In this case, the method learns single-pixel intensity PDFs in a nonparametric manner.
The Dice metrics for gray and white matter were 82% and 85%, respectively, a drop of
8% from the neihborhood algorithm. Figure 2 visually demonstrates this same drop in
performance using an axial slice from the 3D image with 9% noise.

For low noise levels, the performance of the parametric Expectation Maximization
algorithm drops dramatically [1] because pixels close to the interface between gray
and white matter are systematically assigned to the class which happens to have the
larger amount of natural variability, i.e. gray matter. In contrast, nonparametric density
estimation does not suffer from this drawback as can be observed in Figure 1.

The second validation experiment is performed on simulated T1-weighted data with
40% bias field, i.e. the multiplicative factor is in the range 0.8-1.2 over the brain area.
Figure 3 plots the Dice metric with and without bias field correction for the proposed
algorithm and the corresponding values given in [1]. These results point out the im-
portance of performing bias field correction. Also, as in the previous experiment, the
proposed method performs better at all noise levels for both tissue types. We use a 2nd

degree polynomial least squares fit to the observed multiplicative factors between white
matter pixel intensities and the white matter mean intensity. The Dice metric values
obtained with this correction method are approximately 0.5% worse than the values
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Fig. 3. Results on simulated data with 40% bias field. Dice metric as a function of noise level
with and without bias field correction: (a) gray matter, and (b) white matter.
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(a) (b) (c) (d)

Fig. 4. Real data: (a) coronal slice, (b) classification, (c) close-up view of an axial slice, and (d)
classification. Classification legend as in Figure 2.

shown in Figure 1 for data with no bias field. Van Leemput et al. use a 4th degree
polynomial fit using all tissue types and obtain results that are effectively the same as
their results for unbiased data. We expect that with better bias correction methods, such
as the one used in [1], this difference can be made very small for our algorithm as well.

Figure 2 illustrates that our approach can remove the effects of noise from the clas-
sification results without over regularizing the interfaces between different tissue types.
We have also tested the algorithm on a 1 mm isotropic real T1-weighted image. Figure 4
shows coronal and axial slices from this data with corresponding tissue classifications.
In both of these cases, the fine structure of the interface between gray and white matter
is preserved without the need of placing any additional constraints on the neighborhood
PDFs learned by the algorithm.

The disadvantage of the proposed algorithm is the computational speed. For volu-
metric data with dimensions 181× 217× 181, one complete iteration of the algorithm
takes approximately 90 minutes to compute on an Intel 2.7Ghz processor. The algorithm
requires 4-7 iterations to converge depending on the noise level in the data. The Parzen
window density estimation is the bottleneck in computational speed; therefore, we plan
to address computational issues by using fast density evaluation algorithms [24].

5 Conclusion

In this paper, we introduced a segmentation method that uses entropy minimization to
learn nonparametric statistics of local neighborhoods from noisy data in an unsuper-
vised manner . This segmentation framework is used in conjunction with the ICBM
brain atlas and bias field correction methods from the literature in an automatic MRI
brain tissue classification application. Validation studies on simulated 3D images com-
pare favorably to a state-of-the-art parametric algorithm based on MRFs. Validation
studies on real data is also necessary, and will be performed as a continuation of this
work. Experiments on real and artificial data also demonstrate that noise is effectively
removed without over regularizing interfaces between different tissue types.

The algorithm easily extends to larger neighborhood systems and multi-modal data.
Preliminary experiments with 2D images demonstrate that the classification perfor-
mance can be slightly improved in these cases. Also, we have not considered the partial
voluming effect, which has been studied in several papers in the literature. In future
work, we plan to generalize the entropy defined in equation (1) from tissue labels to
mixture percentages; hence, treating the partial voluming effect in an explicit manner.
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Abstract. The minimally invasive treatment of liver tumors represents
an alternative to the open surgery approach. Radio-frequency ablation
destroys a tumor by delivering radio-frequency energy through a nee-
dle probe. Traditionally, the probe is placed manually using imaging
feedback. New approaches use robotic devices to accurately place the in-
strument at the target. The authors developed an image-guided robotic
system for percutaneous interventions using computed tomography. The
paper presents a randomized patient study comparing the manual versus
robotic needle placement for radio-frequency ablation procedures of liver
tumors. The results of this study show that in our case robotic interven-
tions were a very viable solution. Several treatment parameters such as
radiation exposures and procedure-times were found to be significantly
improved in the robotic case.

1 Introduction

Minimally invasive image guided procedures are increasingly popular due to
their potential benefits such as reduced trauma and improved recovery time. In
such procedures an instrument, usually a needle, is percutaneously placed to an
anatomical target under image guidance. The imaging methods used for guidance
include all types of imaging: ultrasound, X-Ray, computed tomography (CT),
and magnetic resonance imaging (MRI). In the traditional approach the needle is
manually placed by the physician. This requires a significant amount of training,
hand-eye coordination, 2D to 3D extrapolation skills, and in the same time it
can deliver a large amount of radiation to the patient and medical personnel
if imaging uses X-Rays. To overcome these problems researchers proposed a
number of needle guides, shields and even robotic manipulators. Robots have
the advantage of operating in the digital space of the image, potentially have
better manipulation performance, and are insensitive to radiation.

Robot manipulators for minimally invasive image guided interventions have
been developed starting in the late 80’s. Several robotic systems have been pur-
posely developed for CT-guided interventions. A system named Minerva was
designed for stereotactic neurosurgery at the Micro-engineering Laboratory of
the Swiss Federal Institute of Technology Center [3]. Masamune et al. developed
a minimally invasive surgical system for neurosurgery [6]. An MRI compatible
needle driver was designed by the same group using ultrasonic motors and non-
ferromagnetic materials [7].
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In recent years a growing effort was devoted to building robots that can work
with magnetic resonance imaging (MRI). Chinzei et al. [1] developed an MR
compatible robot that can work in an open magnet MR. Kaiser et al. developed
a system for breast biopsy [4]. The system uses ultrasonic motors for actuation
and a combination of laser range sensors and custom built optical rotation code
transducers for position feedback.

Another device for MR guided interventions was developed by Krieger et al.
[5] at the Johns Hopkins University. The manipulator was designed for tran-
srectal prostate interventions. The position of the device in MR coordinates is
computed using special design position coils. The system was used initially on
animal studies and after the initial validation was redesigned and used on a
patient pilot study.

The validation of a surgical system requires model studies, followed by ca-
daver or animal studies before the system can be clinically used. In order for a
system to demonstrate an improvement over a traditional approach, it is com-
monly evaluated in a randomized patient study. The procedures outcome vari-
ables are compared for the robotic assisted and manual approaches. Despite the
relatively large number of experimental surgical robotic systems, there are very
few randomized patient studies that assess their functionality in real clinical en-
vironments. Cleary et al. [2] reported a randomized clinical study with twenty
patients. The study compared the outcome of a joystick controlled robotic needle
placement versus manual needle placement. The study showed that the robot
can be at least as accurate as the human operator. Even though in the reported
study the system did not include computer controlled image guidance, the study
provided important validation methodologies for surgical systems in the inter-
ventional suite.

This paper reports the results of a randomized patient study comparing the
robotic assisted versus manual needle placement. Both cases are performed under
CT-guidance. The goal of the study is to evaluate wether or not the robotic
system can improve the time, radiation exposure, and/or accuracy of the RF
procedure.

2 Materials and Method

The interventional system comprises a surgical robot [10] attached to a CT-
Scanner mobile table. The target is defined by the surgeon/radiologist in CT
image space. In order to compute the position of the target in robot space it
is necessary to compute first the transformation between the CT image space
and the robot space - the registration transformation. This is computed using
the laser system provided with the CT-scanner [8]. A short description of the
surgical robot and of the registration technique is presented below.

2.1 Surgical Robot

The surgical robot (Figure 1) presents a bridge like structure comprising a XYZ
cartesian stage and a PAKY-RCM robotic module connected through a 6DOF
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a) b)

XYZ - Stage

PAKY-RCM

Passive Arm

RF-Probe

Fig. 1. AcuBot robot: a) User interface detail; b) Acubot in a robotic assisted CT
guided RF Ablation

passive arm [10]. The RCM (Remote Center of Motion) module is capable of
precisely orienting an instrument (needle) around a fixed point distal to the
mechanism. PAKY (Percutaneous Access to the KidneY) is a needle driver al-
lowing for the needle insertion to be performed after alignment with the target.
The instrument is loaded initially with its point at the fulcrum. The PAKY-RCM
ensemble is initially positioned using the passive arm such that the fulcrum is
close to the desired entry point. The XYZ cartesian stage can be used for small
adjustments in the initial robot positioning until the point of the needle is at
the skin entry site.

The user interface includes an LCD mounted on the bridge adapter
(Fig. 1) together with a joystick and an emergency stop button. The manipulator
is controlled using an industrial PC fitted with a PCX-DSP Motion Engineering
card. The manipulator can be attached to a CT table as well as an OR table,
using special adapters.

2.2 CT-Registration and Targeting

The registration procedure involves two main steps, as follows:

Step 1. This step defines the current image plane (LP1) in the robot coordinate
system by using the laser alignment process (Fig. 2). The current image
plane is defined in robot coordinates by placing the instrument/needle in two
different positions contained in that plane. The robot is initially placed such
that the needle point is in the image plane, then the instrument is rotated
around its tip and placed in two different positions −→ν i, i = 1, 2 contained in
the image plane. In the current implementation, the containment condition is
verified visually by the operator observing if the laser marker shines the end
of the needle. In future implementations an optical sensor will be attached to
the needle end for automatic plane detection. The cross product of −→ν 1×−→ν 2
defines the −→z -axis of the CT-Scanner in robot space. At this stage, the
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LP1yCT

xCT

zCT

yS

xS=Rν1xν2(α)ν1ν1 x ν2=zS

yRCM xRCM

zRCM

ν1 ν2

Fig. 2. Registration method and associated coordinates frames. xyzRCM - RCM robot
coordinate frame; xyzCT - CT coordinate frame; xyzs - auxiliary coordinate frame,
parallel with xyzCT and with the same origin as xyzRCM

robot can be restricted to move in the LP1 image plane. This could be used
to remotely manipulate the needle in the image space in a similar way that
radiologists presently perform CT fluoroscopy manual interventions.

Step 2. The remaining registration data is image-based and uses the image ac-
quired for entry-point/target specification. An image is acquired at the −→ν 1
needle orientation. The angle between the image of the needle and the −→x -axis
of the CT is α. Then, the CT −→x -axis in robot coordinates is Rotν1×ν2(α)ν1,
where Rotδ(θ) is a rotation matrix about the axis δ with the angle θ. This
completes the necessary rotational registration data. The translational com-
ponent is computed using the current position in the image of the tip of the
needle which is also the origin of the robot space and the data stored in the
DICOM image.

The physician selects the target in an intra-operative CT image displayed
on the monitor of the robot. The image coordinates are transformed to robot
coordinates using the registration transformation. The coordinates of the target
are then used by the robot controller to accurately align and insert the needle
at the specified location, if commanded by the physician.

2.3 Randomized Patient Study

The system accuracy and reliability were initially tested in a preclinical envi-
ronment. The mean accuracy recorded over n = 25 trials was 1.7mm with a
standard deviation of 0.8 [9]. While the preclinical study represents a good engi-
neering validation of the system, a clinically usable system is more demanding;
it is necessary to prove that the system improves the results of a real procedure.
After the system obtained the authorization of the hospital, the performance of
the system was objectively assessed using a randomized study involving fourteen



530 A. Patriciu et al.

patients undergoing radio-frequency ablation of the liver tumors. The patients
were randomized to undergo the robot assisted RF probe placement or conven-
tional CT guided manual probe placement.

For the manual needle placement the following steps were performed:

1. The patients were placed on the CT table. A volume scan was initially ac-
quired to localize the lesion and plan the procedure. The entry site was
cleaned with betadine; local lidocaine was administered over the planned
entry site.

2. The needle was manually inserted at the desired location under CT flu-
oroscopy guidance. During the insertion the patient is instructed by the
physician to hold his breath.

3. The radio-frequency ablation was performed.

In the robotic needle placement the following steps were performed:

1. The patients were placed on the CT table. A volume scan was initially ac-
quired to localize the lesion and plan the procedure. The entry site was
cleaned with betadine; local lidocaine was administered over the planned
entry site.

2. The robot was placed such that the point of the needle entry point was at
the planned entry point. The registration procedure was performed.

3. A CT image is acquired such that the target is contained in that image.
4. The robot automatically oriented the instrument.
5. The radiologist manually inserted the needle in with the amount specified by

the targeting algorithm under patient breath-hold; the direction of the needle
is maintained by the robot. The optimal approach would be to automatically
insert the needle using the needle driver. In the current setting this is not
possible due to a plastic insulation coating present on the RF needle barrel.

Table 1. Recorded treatment variables for CT guided RF ablation randomized patient
study

# Treatment Variable Description
1 number of probe passes How many times was the RF probe

placement adjusted.
2 time to successful targeting Time in minutes from the moment when

the CT image used to define the target was
acquired and the moment when

the probe was at the desired location.
3 overall procedure time The total duration of the procedure,

including the RF teatment, measured in minutes.
4 patient radiation exposure mrem
5 physician radiation exposure mrem
6 complications complications during or after the procedure
7 ablation completeness did the treatment cover the entire tumor?
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6. The radio-frequency ablation of the tumor is performed after a verification
of the needle placement accuracy.

For all patients, the treatment variables presented in Table 1 were recorded.
The accuracy of the procedure was characterized by the number of probe

passes required to reach a satisfactory instrument placement. The radiation ex-
posure of the patient was measured using a radiation badge placed in the prox-
imity of the entry site. The radiation exposure of the physician was measured at
the hand level using a radiation monitoring ring badge. The study was designed
to evaluate the potential of the robot to reduce the procedure costs by reducing
the overall procedure time, as well as, and the potential of the robot to reduce
the radiation exposure of the patient and physician.

3 Results

The study shows that the number of passes to reach the target is lower in the
robotic case (p = 0.0006). Also, the robotics approach delivers a smaller amount
of radiation to the physician (p = 0.0004) and to the patient (p = 0.0007).
The time to reach the target (p = 0.0001) and the overall procedure time (p =
0.00005) were lower in the case of robotic approach when compared to the manual
case. All statistical tests were performed using Student’s t-Test. Table 2 presents
the mean values and standard deviations of the treatment variables measured.
Furthermore, all ablative procedures were well tolerated in all patients with no
difference in the ability to achieve complete ablation (> 90%) in the two groups.
RF ablation was considered successful if no local recurrence was detected by CT
or MRI after 6 months of follow-up imaging (either CT or MRI). For all patients
in both robotic and manual groups, no local recurrence was detected.

Table 2. Data statistics for the CT guided robotic versus manual RF ablations patient
study

Robotic Manual
Mean Std. Dev. Max Min Mean Std. Dev. Max Min

time to successful 3.57 1.13 4 2 8.57 1.99 12 6
targeting (min)

overall procedure 44.57 6.68 53 36 67.57 8.28 57 78
time(min)

number of probe 1 1 1 3.71 1.25 6 2
passes

patient radiation 469.71 177.09 836 279 7075.71 3181.65 2923 12522
exposure (mrem)

physician radiation 0 577.57 250.56 327 1097
exposure (mrem)
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4 Conclusion and Discussion

The paper presents a randomized study designed to assess the performances
of robotic assisted CT guided RF-ablations procedures. The robotic assisted
radio-frequency ablation was compared against the standard manual approach
through several treatment variables. The study showed that the robotic assisted
treatment of liver tumors is feasible, and it provides an improvement in terms
of the procedure time, procedure accuracy, physician radiation exposure and
patient radiation exposure.

Robotic assisted approaches present the potential to reduce costs by reduc-
ing the time of the procedure. The needle placement accuracy influences the
outcome of the procedure; precise needle placement ensures that the tumor is
destroyed with more reliable margins, while minimizing the healthy tissue dam-
age. The reduction of radiation exposure is equally advantageous for patient
and physician. Since there is a maximum amount of radiation that a human can
tolerate the reduction in radiation exposure translates in the physician’s ability
to perform more procedures annually. The results of this study show that the
robotic approach can be beneficial for CT-guided RF ablations procedures.

The proposed testing methodology can be used to validate the real perfor-
mances of other robotic systems designed for minimally invasive procedures.
Future developments will evaluate its potential application to other CT guided
interventions.
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Abstract. For over 20 years, interventional methods have improved the
outcomes of patients with cardiovascular disease. However, these proce-
dures require an intricate combination of visual and tactile feedback and
extensive training periods. In this paper, we describe a series of novel
approaches that have lead to the development of a high-fidelity simu-
lation system for interventional neuroradiology. In particular we focus
on a new approach for real-time deformation of devices such as catheters
and guidewires during navigation inside complex vascular networks. This
approach combines a real-time incremental Finite Element Model, an
optimization strategy based on substructure decomposition, and a new
method for handling collision response in situations where the number of
contacts points is very large. We also briefly describe other aspects of the
simulation system, from patient-specific segmentation to the simulation
of contrast agent propagation and fast volume rendering techniques for
generating synthetic X-ray images in real-time.

1 Introduction

Stroke, the clinical manifestation of cerebrovascular disease, is the third leading
cause of death in the United States. Each year, more than 700, 000 strokes result
in over 200, 000 deaths [2]. Ischemic strokes can now be treated using interven-
tional neuroradiologic therapies which rely on the insertion and navigation of
catheters and guidewires through a complex network of arteries to restore blood
flow. Because the treatment is delivered directly within the closed brain, us-
ing only image-based guidance, the dedicated skill of instrument navigation and
the thorough understanding of vascular anatomy are critical to avoid devastating
complications which could result from poor visualization or poor technique. This
was the foundation for a recent decision by the FDA requiring all physicians who
wish to treat carotid disease using catheter-based techniques to train to profi-
ciency before performing high-risk procedures in the cerebral circulation. How-
ever, while most publications in the field of medical simulation have addressed
issues related to laparoscopic training, few aspects of interventional radiology
simulation have been explored. Aside of modeling the soft tissue deformation of
arteries, other complex problems need to be solved to enable real-time, accu-
rate simulation of such procedures. The one we address in this paper concerns
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c© Springer-Verlag Berlin Heidelberg 2005
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the simulation of non-linear deformations of wire-like structures under a large
number of non-holonomic constraints, and the definition of such constraints to
confine the catheter inside the vascular network. We also briefly mention other
results in the areas of real-time fluid flow computation, real-time synthetic X-ray
rendering, and patient-specific segmentation. Although some of theses problems
have been addressed in previous work [3,9,6,1], in particular in the areas of visu-
alization and catheter modeling, many challenging problems remain, especially
when trying to reach a higher level of fidelity and accuracy in the simulation.

2 Modeling of Wire-Like Structures

To control the motion of a catheter or guidewire within the vascular network, the
physician can only push, pull or twist the proximal end of the device. Since such
devices are constrained inside the patient’s vasculature, it is the combination of
input forces and contact forces that allow them to be moved toward a target.
The main characteristics of wire-like structures that current models attempt to
capture include geometric non-linearities, high tensile strength and low resistance
to bending. We previously proposed a multibody dynamics model [5] where a
set of rigid elements are connected using spherical joints [3], thus mimicking the
basic behavior of such devices. Another interesting approach to modeling wire-
like structures was introduced by [8]. In this model, a one-dimensional dynamic
spline model is used, providing a continuous representation. Different constraints
can be defined to control the model, such as sliding through fixed locations.
Although real-time computation is possible, this model does not incorporate
torsional energy terms. A virtual catheter model, based on a linear elasticity, was
introduced by [9], using a set of finite beam elements. The choice of beams for
the catheter model is natural since beam equations include cross-sectional area,
cross-section moment of inertia, and polar moment of inertia, allowing solid and
hollow devices of various cross-sectional geometries and mechanical properties
to be modeled. The main issue is its inability at representing the large geometric
non-linearities of the catheter or guidewire that occur during navigation inside
the vascular network. Another approach also directly targeted at virtual catheter
or guidewire modeling was proposed by [1]. In this model, only bending energies
are computed, assuming no elongation and perfect torque control. The model
has characteristics similar to a multi-body dynamics model but integrates more
complex bending energies, as well as local springs for describing the intrinsic
curvature of the catheter. Although based on a more ad-hoc representation, a
good level of accuracy is obtained using this model. The main drawbacks are
how collision response is handled during contact with the walls of the vessel,
and computation times that are not compatible with real-time requirements.

To improve the accuracy of previously proposed models, and handle geomet-
ric non-linearities while maintaining real-time computation, we have developed
a new mathematical representation based on three-dimensional beam theory,
combined with an incremental approach that allows for highly non-linear behav-
ior using a linear model, thus guarantees real-time performance. Further opti-
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mizations based on substructure decomposition are introduced. Finally, a new
method for correctly handling contact response in complex situations where a
large number of nodes are subject to non-holonomic constraints, is presented.

2.1 Incremental Finite Element Model

To model the deformation of a catheter, guidewire, we use a representation based
on three-dimensional beam theory[10], where the elementary stiffness matrix Ke

is a 12× 12 symmetric matrix that relates angular and spacial positions of each
end of a beam element to the forces and torques applied to them:

Ke =
E

l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A ←[Ki](1,1) [Ki](1,2)

0 12Iz

l2(1+Φy)
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l2(1+Φz) Symmetric

0 0 0 GJ
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0 0 −6Iy
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0 6Iz
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with G = E

2∗(1+ν) where E is the Young’s modulus and ν is the Poisson’s ratio; A

is the cross-sectional area of the beam, and l its length; Iy and Iz are cross-section
moments of inertia; Φy and Φz represent shear deformation parameters and are
defined as Φy = 12EIz

GAsyl2 and Φz = 12EIy

GAszl2 with Asy and Asz the shear area in the
the y and z directions. For the entire structure describing a catheter or guidewire,
the global stiffness matrix [K] is computed by summing the contributions of each
element, thus leading to the following equilibrium equation in the quasi-static
case:

[K]U = F (1)

where [K] is a band matrix due to the serial structure of the model (one node
is only shared by one or two elements). U represents a column matrix of dis-
placements corresponding to external forces F . The matrix [K] is singular unless
some displacements are prescribed through boundary conditions. Such boundary
conditions are naturally specified by setting the first node of the catheter (base
node) to a particular translation or rotation imposed by the user.

There is, however, one main drawback in using directly such a model: it is
linear and therefore cannot represent the geometric non-linearities that a typical
wire-like object exhibits. Therefore we propose to update [Ke] at every time step,
by using the solution obtained at the previous time step. The new set of local
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stiffness matrices are then assembled in [Kt]. Here, we do not use the initial
configuration as the reference state, but instead use the previously computed
solution. By controlling when each new [Kt] is going to be computed, we can
ensure we remain in the linear domain for each incremental step, leading to a
correct, global deformation. One potential drawback of this approach is that
the model could exhibit a inelastic behavior, i.e. in the absence of forces or
torques, the model would only return to the previous state, not the reference
configuration. We overcome this problem by computing a force Ft defined as
Ft = −α[Kt](Xt − X0) with 0 < α ≤ 1. This force is added to the external
forces F before solving the linear system, and it can be shown that it acts as a
damping force, where α relates to the damping coefficient of the model.

To simulate accurately a device such as a guidewire or catheter in the context
of interventional neuroradiology, we need to have a large number (from 100 to
200) of beam elements in the model. Although solving linear systems with about
1,000 unknowns can be done in real-time using iterative methods, when inte-
grating non-holonomic constraints, real-time computation on a single-processor
workstation is no longer possible. To improve speed and handle accurately col-
lision response, we propose the following optimizations.

2.2 Optimization Using Substructures Analysis

To optimize the computation of a wire-like object composed of multiple beams,
we decompose the object in a set of substructures. Each substructure can be
constituted of one or several beam elements, and is analyzed independently, as-
suming that all common boundaries (joints) with the adjacent substructures are
fixed (see Figure 1(a)). By doing this, we isolate each substructure from the rest
of the model. In a second phase, the boundary conditions are relaxed by prop-
agating from the base to the tip of the catheter (see Figure 1(b)). The actual
local compliance is determined from equilibrium equations at each boundary
joint. The total deformation of the structure can be calculated from the super-
position of two displacement such that:

U = U l + U c (2)

By specifying the displacement of the first node of each beam to zero, one can
compute the local displacement of the second node U l, due to external force
applied on it. Then, U c represents the necessary corrections to allow boundary
displacements. The FEM model of each beam i gives the stiffness between node
i and node i + 1: [

(Ki)(1,1) (Ki)(1,2)
(Ki)(2,1) (Ki)(2,2)

] [
Ui

Ui+1

]
=
[
Fi

Fi+1

]
(3)

Setting Boundary Conditions. When applying boundaries conditions to the
first node of each beam, we obtain U l

i = 0 in equation (3). Then, the local
displacement of node i + 1 subject to an external force Fi+1 is:

U l
i+1 = [(Ki)(2,2)]−1Fi+1 (4)
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Fig. 1. (a) Setting boundary conditions: the object is split in a series of substructures,
and local displacements and forces are computed after constraining the first node of
each substructure; (b) Relaxing boundary conditions: correction displacements are ap-
plied recursively, starting from node 1, at each first node of each substructure.

And the reaction on point i, due to this displacement is:

Ri = [(Ki)(1,2)]U l
i+1 = −(−[(Ki)(1,2)][(Ki)(2,2)]−1︸ ︷︷ ︸

[Hi]T

)Fi+1 (5)

Relaxing Boundary Conditions. In this second phase, the external force
applied at node i + 1 has already been taken into account, therefore F c

i+1 = 0
and only Ri remains. The correction displacement at node i + 1 is linked to the
correction displacement at node i by equation (7):

F c
i+1 = [(Ki)(2,1)]U c

i + [(Ki)(2,2)]U c
i+1 = 0 (6)

U c
i+1 = −[(Ki)(2,2)]−1[(Ki)(2,1)]︸ ︷︷ ︸

[Hi]

U c
i ; U c

i = −[K−1]Ri
(7)

When relaxing boundary conditions, all joints are taken into account except the
first node (base) of the model. Doing so eliminates rigid body motion and leads
to a non-singular system.

Solving for the Entire Structre. Wire-like objects being composed of
serially-linked elements, a bottom to top propagation strategy allows to solve
the entire structure. The local compliance [(K−1)(i,i)] of each node i will be first
computed (we recall that Ui = [(K−1)(i,i)]Fi). Gathering equations (4), (5) and
(7), we obtain:

[K−1](i+1,i+1) = [(Ki)(2,2)]−1 + [Hi]T [(K−1)(i,i)][Hi] (8)

To initialize the computation, we note that since all 6 DOFs of the first node
are fixed, (K−1)(1,1) = 0. The beam model then leads to a global structural
analysis: the force applied on one node induces the displacement of all other
nodes. Then, a top to bottom function (Algorithm 1) computes the displacement
contribution of each force Fi on the current and previous nodes, and a bottom
to top function (Algorithm 2) computes the contribution on following nodes.

2.3 Contact Response

Another important problem in simulating catheter or guidewire navigation is
solving the contacts between the virtual device and the vessels wall. Because
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sliding occurs at the point of contact, Lagrange multiplier techniques, simple
penalty forces or quadratic programming approaches will not constrain the flex-
ible body properly. To solve this problem, we compute the local compliance of
the node in the contact space defined by n, where n is the normal at each contact
point. The local compliance of the contact α, at node i, is:

Wαα = [n]T (K−1)(i,i)[n] (9)

The computation of Wαα is very fast, as (K−1)(i,i) is already known from equa-
tion (8). The problem of multiple sliding contact, can be solved using a Gauss-
Seidel like algorithm [4]. Considering a contact α, among m instantaneous con-
tacts, one can write the linearized behavior of the catheter in the form:

δα − [Wαα]fα︸ ︷︷ ︸
unknown

=
α−1∑
β=1

[Wαβ ]fβ︸ ︷︷ ︸
from algorithm 2

+
m∑

β=α+1

[Wαβ ]fβ︸ ︷︷ ︸
from algorithm 1︸ ︷︷ ︸

frozen

+ δfree
α (10)

where [Wαβ ] is a compliance matrix that models the coupling between contact
points α and β. For each contact α, this method solves the contact and friction
equations by considering the others contact points (α �= β) ”frozen”. The so-
lution of these equations (contact, friction) is non-linear and can be computed
using an iterative method [7]. Contributions of frozen nodes are accumulated
according to algorithms (1) and (2). By sorting nodes in decreasing order, the
contribution of contact force fα on the current and previous nodes is computed
by algorithm 1. Its contribution on following nodes is computed at the end of
Gauss-Seidel iteration, by using algorithm 2. This leads to a precise and very
fast method for computing the entire structure.

3 Interventional Neuroradiology Simulation

In addition to the models and algorithms described previously, we have addressed
several other aspects of the simulation of interventional radiology procedures. We
briefly describe here these results, more details can be found in [11].

A first problem we addressed concerns arterial flow computation, which im-
pacts both catheter navigation and contrast agent propagation. Blood flow in
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Fig. 2. Catheter navigation inside the cerebrovascular network. Complex, non-linear
deformations are correctly represented by the incremental FEM model. Collision detec-
tion and collision response allow the catheter to stay within the lumen of the vessels.

each vessel is modeled as an incompressible viscous fluid flowing through a cylin-
drical pipe, and can be calculated from a simplified Navier-Stokes equation called
Poiseuille’s Law (11). It relates the flow Q in each vessel to the pressure gradient
ΔP , viscosity of the fluid η, radius r, and length L of the vessel.

Q =
ΔP

R
with R =

8ηL
πr4 (11)

Solving this equation for the whole vascular system is equivalent to solving
a linear FEM model, and, assuming there is no deformation of the vessels, the
global resistance matrix [R] can be pre-inverted, allowing for real-time simulation
of vascular flow. An example of flow computation is illustrated in Figure 3.

Two other important aspects which relate to visual feedback are X-ray sim-
ulation and contrast agent propagation. Both are used during interventional
procedures to visualize blood vessels, as well as the anatomy. Contrast agent
propagation is simulated using an advection equation where the concentration
of contrast agent C(x, t) is a function of the injection rate r(t) and the averaged
laminar flow velocity u(x, t).

∂C(x, t)
∂t

+ u(x, t)
∂C(x, t)
∂x

= r(t) (12)

We numerically solve (12) using a finite difference scheme. The resulting
angiogram is visualized using 3D particles which intensity values are a function
of C(x, t). Similarly, we have developed a new volume rendering approach that
can render CT datasets as fluoroscopic or X-ray images, in real-time. The X-
ray attenuation process simulates X-ray beam attenuation as described by a
discretized Beer’s Law [11]. This method greatly reduces computation times by
using OpenGL and specific texture map operations.

Finally, we propose a multi-modal representation of the vascular system, gen-
erated from skeletonization of patient specific CTA datasets, as a mean to ensure
consistency in the simulation. The segmentation task is particularly challenging
due to the small vessel diameter and the close proximity of vessels to the skull,
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Fig. 3. Left: Color-coded vascular model obtained from patient data, warmer colors
correspond to increased blood flow; Center: Contrast agent injection using particle-
based rendering; Right: Real-time catheter navigation and fluoroscopic rendering

and thus remain semi-automatic. After applying a combination of anisotropic
filtering and morphological operators, medial axis and local radius information
is computed. This information is then used to automatically generate a graph of
the vascular network for fluid flow computation, a set of 3D particles for contrast
agent rendering, a discretization of the centerlines for contrast agent numerical
computation, and a C1-continuous triangulation of the surface of the vasculature
optimized for fast collision detection. An example of segmented vascular network
is presented in Figure 3.

4 Conclusions and Future Work

In this paper we propose a series of new approaches for fast and accurate simu-
lation of catheter or guidewire navigation within a vascular network. The model
we introduce for simulating wire-like structures is able to represent the complex
behavior of medical devices and handles collision responses in an effective man-
ner. We also describe results related to the development of a full simulator for
interventional neuroradiology. The system runs in real-time on a single proces-
sor machine and is capable of simulating realistically key aspects of a diagnostic
procedure. Current results for a 100 node model show a computation time of 25
ms for one time step (including the computation of Ke, substructure analysis,
collision detection, and contact response) on a Pentium 4 2.6 GHz processor.
Going forward, we will address the issue of simulating devices such as stents and
coils, and develop a set of metrics for measuring performance during training.

References

1. T. Alderliesten. Simulation of Minimally-Invasive Vascular Interventions for
Training Purposes. PhD dissertation, Utrecht University, December 2004.

2. American Heart Association. Heart and stroke facts statistics: Statistical supple-
ment. American Heart Association, Dallas, Texas, 1999.



542 S. Cotin et al.

3. S. Cotin, S. Dawson, D. Meglan, D. Shaffer, M. Ferrell, and P. Sherman. Icts,
an interventional cardiology training system. In J.D. Westwood et al., editor,
Proceedings of Medicine Meets Virtual Reality, pages 59–65. IOS Press, 2000.

4. C. Duriez, C. Andriot, and A. Kheddar. Signorini’s contact model for deformable
objects in haptic simulations. In IEEE-IROS, pages 3232–3237, 2004.

5. R. Featherstone. The calculation of robot dynamics using articulated-body inertias.
International Journal of Robotics Research, 2(1):13–30, 1983.

6. U. Hoefer, T. Langen, J. Nziki, F. Zeitler, J. Hesser, U. Mueller, W. Voelker, and
R. Maenner. Cathi - catheter instruction system. In Computer Assisted Radiology
and Surgery (CARS), pages 101 – 06, Paris, France, 2002.

7. F. Jourdan, P. Alart, and M. Jean. A gauss-seidel like algorithm to solve frictional
contact problems. Comp. Meth. in Appl. Mech. and Eng., pages 33–47, 1998.

8. J. Lenoir, P. Meseure, L. Grisoni, and C. Chaillou. Surgical thread simulation. In
MS4CMS (Proc. of ESAIM), volume 12, pages 102–107, 2002.

9. W.L. Nowinski and C.K. Chui. Simulation of interventional neuroradiology proce-
dures. In MIAR, pages 87 – 94, 2001.

10. J.S. Przemieniecki. Theory of Matrix Structural Analysis. 1968.
11. X. Wu, V. Pegoraro, V. Lubos, P. Neumann, R. Bardsley, S. Dawson, and S. Cotin.

New approaches to computer-based interventional neuroradiology training. In
James D. Westwood et al., editor, Proceedings of MMVR, pages 602–607, 2005.



Hybrid Bronchoscope Tracking Using a Magnetic
Tracking Sensor and Image Registration�

Kensaku Mori1, Daisuke Deguchi1, Kenta Akiyama1, Takayuki Kitasaka1,
Calvin R. Maurer Jr.2, Yasuhito Suenaga1, Hirotsugu Takabatake3,

Masaki Mori4, and Hiroshi Natori5

1 Graduate School of Information Science, Nagoya University, Nagoya, Japan
{kensaku@is., ddeguchi@suenaga.m.is.}nagoya-u.ac.jp

2 Department of Neurosurgery, Stanford University, Stanford, U.S.A
3 Sapporo Minami-Sanjyo Hospital, Sapporo, Japan

4 Sapporo Kosei Hospital, Sapporo, Japan
5 School of Medicine, Sapporo Medical University, Sapporo, Japan

Abstract. In this paper, we propose a hybrid method for tracking a
bronchoscope that uses a combination of magnetic sensor tracking and
image registration. The position of a magnetic sensor placed in the work-
ing channel of the bronchoscope is provided by a magnetic tracking
system. Because of respiratory motion, the magnetic sensor provides
only the approximate position and orientation of the bronchoscope in
the coordinate system of a CT image acquired before the examination.
The sensor position and orientation is used as the starting point for an
intensity-based registration between real bronchoscopic video images and
virtual bronchoscopic images generated from the CT image. The output
transformation of the image registration process is the position and ori-
entation of the bronchoscope in the CT image. We tested the proposed
method using a bronchial phantom model. Virtual breathing motion was
generated to simulate respiratory motion. The proposed hybrid method
successfully tracked the bronchoscope at a rate of approximately 1Hz.

1 Introduction

A videobronchoscope consists of a flexible tube and a tiny camera installed at
the tip. It is controlled by a physician who watches the camera image through a
headpiece or on a video monitor. Bronchoscopy is currently the most commonly
employed invasive procedure in the practice of pulmonary medicine and is used
for a variety of diagnostic and therapeutic procedures. The physician guides
the bronchoscope using only what he sees on the monitor and his knowledge
of anatomy. The long-term goal of this research is to develop a bronchoscopic
navigation system that provides information such as the planned path of the
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bronchoscope, the current position of the bronchoscope, and augmented reality
visualization of anatomical structures that lie beyond the surface of the bronchial
airway. Tracking a bronchoscope is one of the fundamental functions required to
build a bronchoscopic navigation system and is the short-term goal of this work.

One approach is image-based tracking in which the position of the bron-
choscope is determined by registration of real bronchoscopic (RB) video images
and virtual bronchoscopic (VB) images generated from a CT image acquired
before the examination. Bricault et al. [1] reported the first such work. Their
method, which uses the structure of the bronchial tree extracted from the CT
image, has difficulty estimating the position of the bronchoscope in areas where
no bifurcation appears and considers only the static registration of RB and VB
images. Mori et al. [2] reported continuous image-based bronchoscope tracking.
Good starting points for the image registration process are provided by epipolar
geometry analysis of sequential video images. They later improved the tracking
process using a sub-block matching algorithm [3].

Image-based tracking generally works very well, but one limitation is that
when mistracking occurs in one frame, tracking of subsequent frames is difficult
and the method often fails. The two most common causes of failure are quick
motion of the bronchoscope and the appearance of bubbles. Another situation
that can cause difficulty and failure is when the bronchoscope is both near the
bronchial surface and pointing at the surface: the light from the source at the
bronchoscope tip can saturate the image. To address this issue and make track-
ing more robust, we propose a hybrid method for tracking a bronchoscope that
uses a combination of magnetic sensor tracking and image-based tracking (im-
age registration). Rigid endoscopes have been tracked with magnetic and optical
sensors, and one report uses sensor-based tracking to compare real and virtual
endoscopy images [4]. Our proposed method is the first we are aware of to use
magnetic sensor tracking for a flexible endoscope, in particular a bronchoscope,
and to combine sensor-based tracking with image-based tracking. The position of
a magnetic sensor placed in the working channel of the bronchoscope is provided
by a magnetic tracking system. Because of respiratory motion, the magnetic sen-
sor provides only the approximate position and orientation of the bronchoscope
in the coordinate system of the CT image. The sensor position and orientation is
used as the starting point for the registration of RB and VB images. We define
coordinate systems and transformations, present the hybrid tracking method,
and present preliminary experimental results using a bronchial phantom model
with simulated respiratory motion.

2 Background

Bronchoscope tracking: The inputs of the proposed hybrid tracking method
are: 1) CT image acquired before the examination, 2) RB video image, and 3)
magnetic sensor tracking data. The output is the position and orientation of the
bronchoscope, specifically the viewpoint and view direction of the bronchoscope
camera model. Tracking consists in generating a sequence of outputs from a
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sequence of inputs. Synthetic VB images are generated from the CT image using
the viewpoint and view direction of the camera. We use volume rendering of the
CT image in this work rather than surface rendering of a bronchial surface model
extracted from the CT image as in previous work [2]. We denote the k-th frame
of a RB video sequence by B(k) and the position (viewpoint) and orientation
(view direction) of the camera by the homogeneous transformation matrix Q(k)

constructed from the rotation matrix R(k) and the translation vector t(k).

Magnetic tracking system and sensor: We use the Aurora magnetic tracking
system (Northern Digital, Inc., ON, Canada) and a miniature magnetic sensor
that is placed in the working channel of the bronchoscope. The measurement
volume of the magnetic tracking system is 500× 500× 500mm. The sensor has
a cylindrical shape with diameter 0.8mm and length 8 mm. With this sensor,
the tracking system provides only five of the six parameters required to fully
describe position and orientation in 3D space. The missing parameter is the
rotation angle about the longitudinal sensor axis, which means that the sensor
does not provide the twist angle of the bronchoscope. Preliminary tests showed
that the bronchoscope we use (BF-200, Olympus, Tokyo, Japan) has negligible
effect on tracking accuracy when the sensor is placed in the working channel.

Coordinate systems and transformations: Figure 1 illustrates the various
coordinate systems and transformations. We represent the position of a point
in the bronchoscope camera coordinate system C as pC . The position of this
point in the CT image coordinate system is represented as pCT . We consider
the reference frame defined by a sensor attached to the patient (or phantom) as
the world coordinate system W and the position of this point is denoted as pW .
The transformation between pC and pCT is given by

pCT = CT
W M pW = CT

W M W
F M(k) F

S M(k) S
EM E

CM pC

= CT
W M

(
W
S R(k) W t(k)

S

0T 1

)
S
EM E

CM pC . (1)

The coordinate system at the tip of the sensor in the working channel of the
bronchoscope is denoted as E and the transformation between C and E is E

CM.
The coordinate system at the actual sensing point of the sensor is denoted as
S and the transformation between E and S is S

EM. The coordinate system of
the magnetic field generator is denoted as F and the transformations between
S and F and between F and W for the k-th frame are F

S M(k) and W
F M(k). The

transformation between S and W is W
S M(k) = W

F M(k) F
S M(k) and is obtained

from the magnetic tracking system; Eq. (1) shows the rotation and translation
components W

S R(k) and W t(k)
S of this transformation. The transformation E

CM
describes the relation between the bronchoscope camera and the tip of the sensor.

3 Hybrid Tracking Method

The tracking method consists of several steps: 1) magnetic sensor calibration, 2)
image-to-physical registration, 3) estimation of camera pose for the first frame,
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and 4) updating of camera pose for additional frames. Steps 1 and 2 are per-
formed once before a bronchoscopic examination. Step 3 is performed for the
first frame. Continuous tracking is achieved by iterating step 4.

Magnetic sensor calibration: We need to determine the transformation
S
CM = S

EM E
CM. If the sensor provided all six parameters necessary to de-

scribe pose in 3D space, the transformation S
CM could easily be determined by

recording sensor tracking data and RB images of a calibration grid while mov-
ing the bronchoscope to various positions and orientations. Since the sensor we
use does not provide the rotation angle about the longitudinal sensor axis, we
set E

CM = I and construct S
EM by measuring the offset between the tip of

the sensor and the actual sensing point of the sensor. The error of the identity
transformation assumption is corrected during the image registration process.

Image-to-physical registration: We need to estimate the transformation
CT
W M between the coordinate systemsW and CT . This is accomplished by point-
based registration between corresponding points on the patient (or phantom) and
the CT image. A set of N points pCT

i (i = 1, . . . , N) are identified in the CT
image. If we had a magnetically tracked probe, we could measure corresponding
points on the patient by touching them with the probe and recording their posi-
tions. Since we do not have a tracked probe, we use the tip of our five-parameter
sensor. The transformation CT

W M is found by calculating the rigid transformation
that minimizes

N∑
i=1

∣∣pCT
i − CT

W M
(
W
F Mi

F
S Mi

S
EM pE

i

)∣∣2 , (2)

where pE
i = (0, 0, 0, 1)t is the tip of the sensor.

Initial estimation of camera pose: Since the sensor does not provide the
twist angle about the bronchoscope camera’s viewing direction, we estimate the
twist angle using a 1D image registration method for the first frame (k = 0). We
modify Eq. (1) as

pCT = CT
W M W

F M(0) F
S M(0) S

EM E
CM

(
r(θ) 0
0 1

)
pC = CT

C M(r(θ)) pC (3)
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where r(θ) is a rotation matrix that represents rotation about the z-axis by
angle θ. The pose (viewpoint and view direction) of the bronchoscope camera is
Q(0) = CT

C M(r(θ)). The twist angle θmax is found as the parameter generating
the VB image V(Q(0)) that is most similar to the RB image B(0). This 1D image
registration process is formulated as:

θmax = arg max
θ

S
(
B(0),V

(
CT
C M(r(θ))

))
, (4)

where S(B,V) denotes the image similarity between B and V calculated by the
method presented in Ref. [3]. The search is performed using Brent’s algorithm [5].
Finally, the initial camera pose is Q(0) = CT

C M(r(θmax)).

Continuous tracking of camera pose: The sensor position and orientation is
used as the starting point for the registration of RB and VB images. The output
transformation of the image registration process is the pose of the bronchoscope
camera in the CT image. For the k-th frame, we rewrite Eq. (1) as

pCT = CT
W M

(
W
S R(0) W t(k)

S

0T 1

)
S
EM E

CM
(

R(k) . . .R(0) t(k)

0T 1

)
pC

= CT
C M(R(k), t(k)) pC , (5)

where R(k) represents rotation between frames B(k−1) and B(k), R(0) = r(θmax),
and W

S R(0) is the rotation component of W
S M(0) = W

F M(0) F
S M(0). The updated

camera pose is obtained by performing the following image registration process:

(R(k)
max, t

(k)
max) = arg max

R(k),t(k)
S
(
B(k),V

(
CT
C M(R(k), t(k))

))
. (6)

The search is performed using Powell’s algorithm [5]. The camera pose is Q(k) =
CT
C M(R(k)

max, t
(k)
max). This process is iterated for frames k ≥ 1.

4 Experiments and Results

Configurations: We tested the hybrid tracking method using a bronchial phan-
tom model made of rubber. The phantom was fixed in a plastic box. We placed
24 acrylic tubes in the box and used them as fiducial markers. The tips of these
tubes are used for estimating the image-to-physical transformation CT

W M. CT
images were acquired using a multi-detector CT scanner. Image acquisition pa-
rameters of the CT image are: 512× 512 pixels, 341 slices, 0.68mm pixel size,
and 1.25mm slice thickness. The locations of the tips of the acrylic tubes were
manually identified on the CT images. The distance between the magnetic field
generator and the phantom was 200mm. The computer used in these experi-
ments was a PC workstation with dual 3.6GHz Intel Xeon processors and 2 GB
memory running Windows XP operating system. Intrinsic camera parameters of
the bronchoscope camera were determined using a calibration grid and standard
camera calibration software. Synthetic VB images are generated using a highly
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optimized software-based volume rendering method. The actual sensing point of
the sensor was found to be 3.3mm from the sensor tip.

Virtual breathing motion (VBM): The bronchoscope and the RB and VB
images are in the coordinate system of the lung or the CT image of the lung.
The lung of a living person moves during respiration and thus the lung and
the bronchoscope move relative to the coordinate system of the magnetic field
generator, which is fixed in the physical space of the treatment room. Even if the
bronchoscope is stationary with respect to the lung (and the RB image does not
change with time), the bronchoscope position will move relative to the magnetic
field generator. Since the phantom we employed here does not simulate breathing
motion, we added virtual breathing motion (VBM) to the sensor output. Here,
we simplify breathing motion as motion in the axial direction of a human body.
We assume that breathing motion in the axial direction is zero at the carina of
the trachea and is sinusoidal at the diaphragm. We define the VBM as Δp(t) =
(Δpx(t), Δpy(t), Δpz(t))T and add this motion to Eq. (5) as

pCT =
(

I Δp(t)
0T 1

)
CT
W M

(
W
S R(k) W t(k)

S

0T 1

)
S
EM E

CM pC . (7)

Since the z-axis of CT images is aligned with the cranial-caudal direction, we
add VBM after the transformation between W and CT (CT

W M). The VBM at
positions between the carina and diaphragm is interpolated according to frac-
tional axial position. Thus the VBM Δp(t) is defined as Δpx(t) = Δpy(t) =
0, Δpz(t) = Ad

zc−zcarina

zd−zcarina
× sin(2π t

T ), where Ad is amplitude of breathing mo-
tion at the bottom of the diaphragm, zc is the z-coordinate of the real camera
position before adding VBM, zcarina is the z-coordinate of the carina of the
trachea, and the zd is the z-coordinate of the bottom of the diaphragm. These
z-coordinates are represented in the CT coordinate system.

Effectiveness of image registration: We measured the changes of estimated
RB camera motion caused by VBM. We fixed a bronchoscope at some position
and recorded estimated camera positions. As a gold standard of the camera
position, we used the estimated position obtained by only image registration.
The breathing cycle was set to T = 6 s. The mean position errors and their
standard deviations are measured. The results are shown in Table 1. Examples
of VBM are shown in Fig. 2.

Continuous tracking: We performed bronchoscopic examination on the phan-
tom model using the hybrid tracking method. Camera motion was continuously

Table 1. Position estimation error by adding virtual breathing motion

Amp. of VBM at Amp. of VBM at Avg. error of estimated Standard
diaphragm (mm) camera position (mm) position (mm) deviation(mm)

±5.0 ±2.4 0.54 0.3
±10.0 ±4.8 1.22 0.57
±15.0 ±7.2 2.26 1.29
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(a) t = 0.0 (c) t = 4.5(c) t = 3.0(b) t = 1.5

Fig. 2. Effect of virtual breathing motion (VBM). VB views are rendered by using only
the sensor’s outputs.

RB VB RB VB RB VB

RB VBRB VBRB VB

Fig. 3. Tracking results. VB views were rendered by using estimated RB camera posi-
tion and orientation. VBM was generated during tracking.

tracked and estimated positions were displayed on CT images. VB images were
generated using estimated results. In these experiments, VBM was added to the
outputs of the magnetic sensor. Figure 3 shows examples of the tracking results.
It was possible to update RB camera position and orientation every 1.2 s.

5 Discussion

In the experimental results shown in Table 1, the position estimation errors
are much smaller than the VBM; the RB camera positions are satisfactorily
estimated by image registration. Figure 3 illustrates that the proposed system
successfully estimated RB camera motion in the presence of the VBM shown in
Fig. 2. This is the main advantage of hybrid tracking. Although the sensor gives
us only a rough estimation, precise estimation is done by image registration.
Since the sensor’s outputs are used for initial estimation of image registration,
it is possible to make the tracking system robust and to reduce computation
time. In previous work, e.g., the method in Ref. [2], camera motion is tracked
only by image registration. The estimated position of the previous frame is used
as the starting point of the iterative search for the current frame. When signifi-
cant estimation failures occurred, tracking failed in subsequent frames. However,



550 K. Mori et al.

the proposed method in this paper continues to track after such failures. The
proposed system tracked the RB camera at 0.8 frames per second. Because of
the limited processing speed, the system failed in tracking when an operator
inserted or pulled out a bronchoscope quickly. However, in such situations, when
the operator kept the bronchoscope stationary at a bifurcation point, the system
recovered to the correct estimated position.

We assumed that virtual breathing motion is motion in the axial direction.
However, actual breathing motion is much more complicated. Further experi-
ments are required to validate the proposed method. It would be useful to use a
bronchial phantom that includes physical breathing motion. Because the Aurora
sensor outputs only five pose parameters, we estimated only translation terms
of S

EM and assumed that the tip of the sensor is aligned with the optical center
and direction of the bronchoscope camera ( E

CM = I). The image registration
process compensated for the error inherent in these assumptions and produced
good results in actual tracking.

The work described in this paper is another step towards developing a fast,
accurate, and robust method for tracking a bronchoscope. The results are prelim-
inary but promising. Future work includes: 1) incorporating a magnetic tracking
system and sensor that fits in the working channel of a bronchoscope and pro-
vides all six parameters necessary to describe pose in 3D space (e.g., Ascension
microBird magnetic tracking system), 2) development of a better sensor calibra-
tion method, 3) development of better methods for estimating and correcting
for breathing motion, 4) improvement of processing speed, and 5) testing with
a bronchial phantom model that includes physical breathing motion and with
data collected from patients.
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Abstract. Active robotic filtering is a promising solution for beating
heart Totally Endoscopic Coronary Artery Bypass Grafting (TECABG).
In this work, we assess the heart motion dynamics using simultaneously
high speed imaging of optical markers attached to the heart, ECG signals
and ventilator airflow acquisitions. Our goal is to make an assessment
of the heart motion (shape, velocity, acceleration) in order to be able
to make more accurate specifications for a dedicated robot that could
follow this motion in real-time. Furthermore, using the 2 additional in-
puts (ECG, airflow), we propose a prediction algorithm of the motion
that could be used with a predictive control algorithm to improve the
tracking accuracy.

1 Introduction

Beating heart TECABG will probably bring a great improvement in coronary
revascularization surgery. Current open surgery techniques on the beating heart
make use of mechanical stabilizers to reduce the motion of the working area. But
they still need a sternotomy which induces a long recovery period for the patient.

Totally endoscopic stabilizers begin to be commercially available (e.g. the
Octopus TE from Medtronics) but due to their long size and the way they are
attached, the residual motion is significant. So it seems that the best way to
achieve good precision in TECABG on the beating heart is to have an active fil-
tering system e.g. a robot that follows the heart motion in real time. Experiments
with robotic prototypes and high speed cameras (500-1000Hz) demonstrate the
feasibility of active compensation on pig’s heart [1] [2]. However, the achieved
tracking accuracy (1mm) remains greater than the minimum accuracy needed
for grafting a medium sized coronary artery (0.1mm).

From these experiments, it comes out that a better knowledge of the dynamic
behavior of the heart motion would greatly improve the design of the system for
mainly 3 reasons : 1) the motion of the heart has some interesting properties
that should be taken into account to predict its behavior in combination with a
� The authors wish to thank the Alsace Regional Council and Centre National de la

Recherche Scientifique for the grant which support this research project.
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predictive control scheme. 2) a knowledge on how the heart moves (acceleration,
amplitude, shape of the cycle) would certainly help defining more accurately
the specifications of the dedicated mechanical structure. 3) the main concern in
medical robotics is safety, so knowing the behavior of the heart with respect to
redundant input signals should improve the robustness of the whole procedure.

Some previous studies have already dealt either with heart motion properties
or its modeling. In 2004 [3], Cattin et al. assess the significance of the residual
motion of a pig’s beating heart after stabilization with an Octopus. The re-
peatability of the stabilized cardiac motions, providing that hemodynamics are
constant, is underlined but no model is proposed. In [4], Ortmaier studies robust
motion prediction of heart landmarks with ECG and respiration as additional
robust landmark. In [5], Fourier coefficients of respiratory and cardiac compo-
nents are estimated by a two-stage adaptive algorithm. A similar approach based
on adaptive filtering to separate the two components and predict the future mo-
tion is presented in [1]. These frequential models assume that ventilation and
heartbeat components are independent and invariant.

In this work, we assess the local motion properties of heart for the free and
stabilized case. We take advantage of a high speed vision sensor to measure more
precisely heart beating velocity, acceleration and their correlation with the ECG
waves and ventilation airflow. The analysis of this data demonstrates that the
heart global motion is not the result of two independent components : it shows
that the shape of the cardiac cycle depends on the lung volume. Finally, we
demonstrate that arrhythmic behavior of the heart can be predicted using ECG
signals. In a second part, a model of the heart motion that takes into account
this coupling is proposed in order to predict and anticipate future motion with
a robotic device. This model, with biological signals as inputs, is then evaluated
and compared with the frequential model found in the literature.

2 Materials and Methods

Experiments were carried out on a pig that underwent a sternotomy with general
anesthesia. After positioning the chest retractor, a coronary artery was stabilized
using an Octopus v4.3 tissue stabilizer from Medtronics. A rotating knob allows
to modify the stiffness of the Octopus arm and so to free or constraint local
motion of the heart.

To measure heart motion, a 500Hz high speed camera with a 256*256 pixel
grayscale sensor (DALSA CAD6) is placed on a tripod, its lens focused on the
stabilized area (figure 1). When its arm is free, the Octopus stabilizer can be
used as a convenient way to simply attach visual markers to the heart. The pose
of the myocardium area of interest is computed in the camera frame of reference
using the modified version of the Dementhon algorithm for coplanar points.

ECG signals are acquired with a classical 3-leads cable and the CARDIOVIT
AT-6 ECG from Schiller, which outputs analog amplified and filtered ECG sig-
nals. Due to built-in signal pre-processing, it exhibits an average group delay of
8ms between electrodes potentials and the ECG analog outputs. Two AWM700
airflow sensors from Honeywell are used for the real-time measurement of the
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Fig. 1. The heart stabilizer OCTOPUS
and its 4 visual markers
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Fig. 2. Heart trajectories in absence of
ventilation with timing and ECG waves

ventilator flow. This uni-directional sensor specially designed for biomedical use
has a 6-millisecond response time.

Both ECG signals and airflow measurements are then acquired at 500Hz by
a PCI acquisition board synchronized with the image acquisition. The whole
acquisition software runs on RTAI, a real-time operating system, in order to
ensure perfect synchronization and minimal jitter.

3 Motion of an Area of Interest (AOI) on the Heart

3.1 Heart Beating Motion in Absence of Ventilation

Stabilized residual motion. Trajectories of 10 consecutive heartbeats with
and without stabilization are plotted in figure 2. It appears that the excursion
range of the AOI is about 2.3mm in the frontal plane and 15mm in the sagital
plane for the free motion case. With a constrained motion (maximum stiffness
of the octopus arm), the amplitude of the heart motion is highly damped by the
stabilizer: the excursion range is reduced to 500μm and 6mm respectively. These
values of excursion ranges are similar to those reported in [3] for the residual
motion of a stabilized AOI with constant hemodynamics.

Repeatability of the beating trajectory. The repeatability of heart beating
trajectory in absence of ventilation and cardiac arrhythmia is a very interesting
feature. In the plots of figure 2, for 10 heart beats, the maximum deviation and
standard deviation around a mean trajectory on the free and stabilized case are
reported in table 1. Thus, considering this perfect periodicity, a repetitive control
scheme (an example is given in [1]) should give really good results if we assume
that respiration can be stopped for a short amount of time. The standard and
maximal deviation give then a clue on the accuracy such a system could achieve.

AOI velocity and ECG signal correlation. The heart local velocity is plot-
ted in figure 3. Some markers are added to show the occurrences of T,P,R and S
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Table 1. Deviations with respect to the mean trajectory of 15 consecutive heart beats

frontal plane sagital plane
max deviation std deviation max deviation std deviation

free motion 146.6 μm 25.6 μm 1.6 mm 0.39 mm
stabilized 63.7 μm 14.7 μm 1.5 mm 0.4 mm

waves of the ECG. The cardiac period is 810ms. Strong accelerations (therefore
high velocities) occur 60ms after the T, P and QRS complex waves. On the other
hand, heart rest (low velocities) covers a range from 200ms after the QRS com-
plex to the next T waves. The maximum acceleration is 0.3m.s−2 measured in
the frontal plane and 10m.s−2 measured in the sagital plane. These values should
be taken into account when writing the specifications of an active robotic stabi-
lizer. Moreover, after injection of a high dose of adrenaline, maximum velocities
and maximum accelerations were doubled.

In figure 4, we assess the possibility of predicting arrhythmic behavior of the
heart. The vertical cursors indicate in both plots the time when the error between
arrhythmic ECG (resp. motion) in plain lines and normal ECG (resp. motion)
in dashed lines becomes greater than 10% of the peak to peak amplitude. This
figure shows that abnormal ECG can be detected ≈ 90ms before the abnormal
motion (mean delay=80ms, std. deviation=32ms on 12 arrhythmias) letting
quite enough time to a robotic system to switch to a failsafe mode.

3.2 Heart AOI Motion Properties with Ventilation

Influence of ventilation on heart motion. During respiration, variation of
the lung volume yields a motion of the heart within the chest. In figure 5, the
motion of a heart AOI and the corresponding lung volume are recorded over a
full respiration cycle with the following parameters : a tidal volume set to 600mL
and a frequency of 21 breaths/min.
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by proposed model and lowpass filtering

The slow motion component of the heart AOI appears to be directly corre-
lated with the lung volume. Note the different paths followed by the AOI during
forced inspiration and the free expiration. Moreover, for low lung volume, i.e. at
the end of expiration, the 3D trajectory of the heart AIO during a heart beat is
similar to the one observed in total absence of ventilation.

Extraction of the ventilation component. ECG signal acquisition can be
used as a clock to sample the heart AOI position when e.g. the heart is ’at rest’.
This way it is possible to suppress the heart beating motion and to access to the
respiration component alone.

The detection of the QRS complex can be performed on-line by derivation
and adaptive thresholding of the ECG signal. From the original ECG signal, a
discrete clock signal QRS[k] with impulses corresponding to QRS detection time
is created. In order to increase precision, the previous clock can be delayed by
half a cardiac period (Tb/2) to sample the respiration while the heart is at rest
(when the velocity is slow, see fig 3). By interpolating between the respiratory
samples, the respiration motion is reconstructed and subtracted from the global
motion in order to isolate the heart beating motion.

The upper plot in figure 6 shows the reconstructed respiratory component and
the lower plot shows the isolated heart beating component. The beating motion is
very similar to the motion in absence of ventilation, however it is modulated by the
lung volume. So we cannot assume that the beating is decoupled from respiration.

4 A Heart Motion Model Based on Biological Signals

4.1 Description of the Model

The proposed model is based on the extraction of the respiration component
presented earlier. Both the integrated airflow, so the air volume, and QRS
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occurrences of the ECG signal are used. The proposed algorithm is a 2 stages
component identification:

1) In a first step, the profile of the respiration component r is extracted with
the approach described in the previous section. Let k be the current sample
number and Tov be the sample number corresponding to the beginning of a new
respiration cycle. This beginning can be easily detected by a simple thresholding
of the volume information. Then :

r[k] = F r(k − Tov) (1)

where Fr is a spline function which interpolates one period of the respiration
component.

2) In a second step, the heart beating component is extracted from the global
motion by subtracting the respiration component. As it was shown before, the
heart beating depends on lung volume. In order to take into account this cou-
pling, a Linear Parameter Variant (LPV) Finite Impulse Response model is
proposed. This model input is an impulse at each QRS occurrences and its pa-
rameters depend on lung volume. Let v[k] be the lung volume and QRS[k] the
impulse signal corresponding to the QRS occurrence. The heart position due to
cardiac beating b[k] is then given by :

b[k] = Fb(v[k]) QRS[k − 1] (2)

� (a10 + a11v[k] a20 + a21v[k] . . . ad0 + ad1v[k] )

⎛⎜⎝QRS[k − 1]
...

QRS[k − d]

⎞⎟⎠ (3)

where d, is the number of samples in one cardiac period. With this formulation,
the coefficients ai0 represent the mean value of the beating position, i samples
after the previous QRS complex and ai1 is the variation of this position related
to lung volume. Identification of the coefficients {(ai0, ai1), i = 1 . . . d} can be
performed online via a recursive least mean square (RLS) algorithm for LPV
systems, where the criterion of minimization is the error e[k] between the model
output and the reference signal [6].

This identification scheme is summarized in the upper part of the figure 7.
The global motion h[k] of the heart AOI at sample k is given by :

h[k] = r[k] + b[k] (4)
= F r(k − Tov) + Fb(v[k]) QRS[k − 1] (5)

4.2 Validation and Comparison with other Approaches

The output of the proposed model is used to predict the motion of the heart some
steps ahead. We compare the accuracy of these predictions with respect to other
methods found in the literature. We use a set of data down-sampled at 50Hz with
a ventilation frequency of fr = 0.242Hz and a cardiac frequency fb = 1.23Hz.
We predict the motion Δ = Tb/2 = 20 samples ahead, so 1/2 heart beat ahead.
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On one hand, the classical frequential approach filters the global motion to
extract the respiration component. One can use a lowpass filter or adaptive filter
[1], or also Fourier coefficient estimation [5] to suppress heart beating harmonics
with equivalent results. In this study, a kaiser-FIR lowpass filter with a cut-off
frequency located between the fundamental of the beating fb and the last sig-
nificant harmonic of the respiration (4fr) is used to separate the 2 components.
Predicting Δ steps in the future is then done with pure delays (q−1 operator)
since the components are equal to themselves in the past with the assumption
of perfect decoupling and quasi-periodicity.

On the other hand, in our approach, the prediction assumes only that bio-
logical signals (QRS complex and ventilation parameters) remain quasi-periodic
over the next beating period (lower part of the figure 7). In figure 6, the respi-
ration component extracted from the global motion with the two methods are
plotted on the top whereas cardiac motion resulting from the LPV model output
or from the lowpass filter output are presented on the bottom.

Finally, predictions of heart motion Δ steps ahead for both strategies are
shown on the figure 8. The continuous line plots the real heart motion Δ steps
in the future, whereas the other curves give the predictions with the 2 compared
method. Standard deviation error of the prediction is 131μm (4.7% of the total
amplitude) in the frontal plane and 530μ (2.8%) in the sagital plane for our
proposed method. For comparative purpose, standard deviation of the error is
respectively of 152μm (5.5%) in the frontal plane and 547um (2.9%) for the
lowpass approach. If we compare the errors in the image plane (this is relevant
when doing image-based visual servoing as in [1]), the standard deviation of
the prediction error is 0.62 pixels along x and 0.78 pixels along y when using
lowpass filtering whereas it falls to 0.37 and 0.41 pixels respectively with the
LPV technique.
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5 Discussion

This study shows that there is a coupling between the motion components of
the heart : the shape of the beating is modulated by the state of the respiration.
Furthermore, we measured that the cardiac beating component exhibits very
sharp transients (up to 2g acceleration). We propose a new motion prediction
algorithm using LPV techniques that takes into account this coupling. This
approach improves prediction accuracy.
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Abstract. In this study we have designed and created a data-fusion
display that has enabled volumetric MIP image navigation using intra-
operative C-arm CT data in the operating room. The 3D volumetric data
reflecting a patient’s inner structure is directly displayed on the monitor
through video images of the surgical field using a 3D optical tracking
system, a ceiling-mounted articulating monitor, and a small size video
camera mounted at the back of the monitor. The system performance
was validated in an experiment carried out in the operating room.

1 Introduction

Recently, due to developments in clinical engineering, many types of equipment
have become available in the operating room: vital signs monitors, anesthesia
apparati, artificial respirators and electric cauteries to count a few. They are
essential to collect intraoperative electrocardiograms, breath rates, body tem-
perature and blood pressure, and by exerting their functions they proved to be
integral to performing successful operations. Further, in laparoscopic surgery,
additional equipment like high intensity light sources, carbon dioxide insuffla-
tors, monitors and video recorders have been used; though all have been crucial
to carry out the laparoscopic procedures, they also required additional space
in the operation theatre [1]. Regarding imaging devices, a plain X-ray imaging
device and an ultrasonic imaging system are sometimes introduced and used
during operations. Moreover, in recent years, surgery navigation systems that
utilize magnetic sensors or precise optical position sensors such as OPTOTRAK
(Northern Digital Inc., Canada) have been studied in a number of surgical set-
tings. In such technologies, however, position sensors and additional monitors
to provide guided information for surgeons have been necessary. Feasibility and
effectiveness of such systems has been pointed out in the literature and they have
successfully assisted surgeons and reduced their fatigue caused by long operation
hours.

On the other hand, accuracy and speed of the intraoperative navigation sys-
tems are important factors to consider. However, before these factors are taken
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into account, usability of the whole system in the operating room environment,
especially its ergonomic parameters and simplicity, require prioritazation, since
in the cluttered OR and with growing complexity of operative procedures, sim-
ply increasing the number of devices would not facilitate operations. Ergonomics
of the environment, especially providing navigation data, prevention of technical
difficulties and comfort of the OR staff should be firstly considered.

In the present study, we designed a data fusion display system and when
prototyping devices for clinical use, their ergonomics as well as an easy-to-
understand intraoperative display of navigation images were taken into con-
sideration. A novel interface for advanced operation planning that was based on
the guided images with volume rendering of intraoperatively scanned CT images
rather than preoperative ones was also proposed. In recent years, intraoperative
navigation, in which the target position is provided to assist an intuitive under-
standing of the surgical field has been studied and applied in many clinical areas
[2][3], mainly orthopedics and neurosurgery. Position measurements of a surgi-
cal field have been usually performed with magnetic and marker-type optical
position sensors, and preoperatively scanned CT or MRI images have been com-
monly used to represent inner structures. We believe that the time gap between
acquisition of inner structure data and the actual operative procedures should be
as short as possible for the correct depiction of the operated site. In this study, a
mobile C-arm type CT (Siemens-Asahi Medical Technologies, Ltd.) was applied
to acquire the inner structure data in the operating room; this provided the
source of information for surgery navigation. In the literature [4], registration-
free navigation with scanned images obtained by C-arm CT has been reported.
This paper attempts to design and implement a data-fusion LCD display system
for surgical navigation, which involves combining Maximum Intensity Projection
MIP-based volumetric rendering of CT data, which was acquired intraoperatively
from mobile 3D-CT device, with real-time views. A preliminary experiment was
performed to validate the system.

2 Method

The functions desirable for an image presentation device that would be used as
an intraoperative surgery navigation system were thought to be as follows:

1. It would be preferable if the image presentation device itself never limited
the space required by other surgical equipment.

2. The image presentation device and position sensors should not interfere with
the operative space. The position of the display monitor should be easily
changeable and the monitor should be easily removable from the operative
field when not used.

3. The monitor should be located in the vicinity of the surgical field. And it
also allows the assistant on the other side reference to the same navigation
images.

4. In order for a surgeon to better understand the spatial relations and di-
rections between the surgical field and navigation images, the line of sight



Data-Fusion Display System with Volume Rendering 561

for observing the surgical field and that for the navigation image should be
correspondingly adjusted.

5. It would be preferable if cabling for the surgery navigation devices was not
installed on the operating room floor.

To fulfill the abovementioned requirements, we considered that monitors and
the position measurement device should hang from the ceiling of the operating
room. Fig.1 shows a 3D CAD image of the positional layout of an optical po-
sition sensor, its measurement area, 5 monitor arms, and 4 shadowless lamps.
The data-fusion display and optical position sensor were originally built into
the operating room. This design enabled the minimalization of the operating
room clutter, even when devices for surgery navigation had been installed. The
monitors were mounted on 5 degrees-of-freedom multi-joint arms so that they
could be observed from various positions and angles. Further, the layouts of the

Fig. 1. 3D CAD layout of data-fusion display and measuring range of ceiling-mounted
OPTOTRAK in the operating room

Fig. 2. The High-Tech Navigation Operating Room
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Fig. 3. The setup of a data-fusion display. The operator is grabbing and moving the
monitor to the position from where he wants to observe the inner structure. A small
video camera is inset in the backside of the monitor.

devices were carefully designed not to disturb the measurement area of the posi-
tion sensor. The room was constructed as the High-Tech Navigation Operating
Room in an operation building of the Dai-San Hospital, Jikei University, Tokyo,
as shown in Fig.2. A report on the system was presented in MMVR13 [5].

The data-fusion display system was composed primarily of a 15-inch LCD
monitor affixed to a ceiling-hung articulating arm and a small video camera
installed at the back of the monitor. The system was equipped with a detachable
sterilization lever; therefore it could be manipulated by a surgeon and positioned
where it was most convenient for her to utilize the navigation data, i.e. in the
immediate proximity of the surgical field. The left image in Fig.3 shows the data-
fusion display and the right image shows the small video camera installed at the
back side of the monitor. In order to capture the scene of the surgical field, a
small color video camera, Dragonfly (Point Grey Research Inc., Canada) was
used. Time-sequentially captured images were sent to a PC (Dual CPU: Xeon
2.8GHz, 2GB RAM, nVidia QuadroFX1000) through an IEEE1394 interface.
This camera could collect stream VGA quality images at 30 frames per second
without compression and was incorporated in the ceiling-hung LCD monitor
thus providing ”through”-the-monitor images for the operating surgeon. The
position and direction of the monitor was constantly measured and tracked by
the ceiling-hung optical 3D position sensor OPTOTRAK. Further, the system
enabled surgeons to observe a patient’s inner structure from the viewpoint of
the monitor using VR augmentation with video see-through way during surgery.

In the present study, a mobile C-arm type CT was applied to acquire the
inner structure data used as an information source for surgery navigation inside
the operating room. To enable CT measurements during surgery, a non-metal
operating table with dynamoelectric mobility characteristics (MAQUET GmbH
& Co. KG) was incorporated. 3D volume data in 12 cm3 was measured once with
a scanning period of two minutes. The display of an acquired internal structure
data was available immediately by volume rendering onto the video image of



Data-Fusion Display System with Volume Rendering 563

Fig. 4. Configuration of the navigation system and key coordinate systems

the surgical field. As shown in Fig.4, key coordinate systems are that of OPTO-
TRAK as a global basis, the navigation display, and the volume data obtained
by the C-arm CT. An optical marker flag is attached to the C-shaped frame of
the CT, and its position during the measurement of volume data is obtained.
The positional relationship between the marker flag and the data position of
the C-arm CT should be calibrated once in the operating room. A cube-shaped
gypsum block was used for the calibration of the C-arm CT data position. The
cube-shaped gypsum was created using a rapid prototyping system (Zprinter,
Zcorporation) with powder lamination technology, its shape was designed with
a 3D CAD system and the physical model directly created from the digital data.
The gypsum block was measured by the C-arm CT as shown in Fig.5(a), and the
calibration was conducted using the corner position in the measured data coor-
dinate and the corner position in the physical space obtained by OPTOTRAK.
Finally, the transformation matrix between the marker flag of the C-arm CT
and the coordinate system of the C-arm data itself could be solved. Fig.5(b)
shows the result of the cube registration and fusion representation of the seg-
mented cube surface model on the video images of the data-fusion display. After
this calibration, the measured data position of the C-arm CT becomes a known
parameter until the marker flag attached to the C-arm is repositioned.

Fig. 5. (a) C-arm CT images of a gypsum block; (b) Results of the cube registration
and fusion representation of the cube surface model on the video images
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3 Results and Discussion
For camera calibration of the data-fusion display, a checkered board was used.
Its position was changed in pre-set time intervals and the respective images
captured. The internal camera parameters and positional relationship between
the camera coordinate and the marker flag attached to the display could be
instantly obtained by image processing and computer vision algorithm. This
was a very useful in calibrating parameters that could be executed quickly and
easily in the operating room. For details on calculations and algorithms applied,
we referred to the reports of Tsai [6] and Zhang [7].

Fig.6 shows the differential error between the detected checkered board cor-
ners in the captured images and the re-projected corners of the computed pro-
jection matrix on the image plane. The calibration was performed at about
700-800 mm distance from the display, assuming that the object was placed as
during an operation. The graph shows results of error calculations when the
image resolution was set as 360 240 pixels. The RMS error was 0.126 pixel. 35
points of the grid per one frame and the calibration was done with 22 captured
frames. We believe that such accuracy in calibration with perspective matrix is
sufficient for video see-through navigation. When intraoperatively scanned CT
data was loaded into the data-fusion system, the volume data at 256 256 256
resolution was transferred through a gigabit network into the computer located
in the operating room. Parallel processing of the display position tracking and
rendering of the volume data with a 3D texture technique was implemented,
and this method allowed a 12 fps update rate of the surgical field video images
and the superimposed volume data. The operator was able to intuitively confirm
the intraoperative inner structure obtained by the C-arm CT just by observing
through the display, as shown in Fig.7(a). Fig.7(b) represents the augmented
navigation image for an elbow joint depicted on the data-fusion display.

Head-mounted displays have been very common as image presentation de-
vices for augmented reality. However, their prolonged usage causes fatigue and
they also obstruct the operator’s view. For operating room applications and by
using a mobile ceiling-hung arm, our system enabled a surgeon to intuitively ob-
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Fig. 6. Reprojection error of camera calibration
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Fig. 7. Images of the volumetric navigation system for an elbow joint

Fig. 8. Time-sequentially generated images in the data-fusion display. The volume
data of the mobile 3D-CT was superimposed onto the live video image according to
the varying direction of the display.

serve a patient’s inner structure from his viewpoint. Further, the devices could be
easily removed from the proximity of the surgical field when the navigation was
not necessary. Fig.8 shows time-sequentially generated images on a data-fusion
display while changing the viewing direction. The volume data of the mobile
3D-CT was smoothly superimposed onto the live video images accordingly with
the varying directions of the display. We assumed that the subject was static
and that updating the data was limited due to reduction of radiation exposure.
Thus, the data acquisition was conducted fragmentarily and with the minimal
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possible amount of exposure. Furthermore, the time of one scanning time with
the mobile 3D-CT was two minutes. In effect, the volume rendering image did
not correspond to the deformation tracking. Even with such limitations, however,
this kind of visual representation would be effective for intuitive confirmation of
the static subject just after the performing the intraoperative measurements.

4 Conclusion

In the present study we designed and created a data-fusion display for clinical
applications in the operating room. The system enabled volumetric MIP image
navigation using intraoperative C-arm CT data. The 3D volumetric images re-
flecting a patient’s inner structure were directly displayed on the monitor, which
also simultaneously displayed the superimposed video images of the surgical
field. In the system, a 3D optical tracking device, a ceiling-mounted articulating
monitor and a small size video camera mounted at the back of the monitor were
utilized. The system performance was validated in an experiment carried out
in the operating room. In addition, it was very important and challenging for
the system that the surgical navigation data was intraoperatively obtained and
was not based on preoperative images. We think, however, that preoperative
imaging will still be necessary because data resolution and measurement ranges
were limited in the intraoperative imaging system. A combination of techniques
that utilize several medical imaging modalities would be crucial for on-coming
surgery navigation.
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Abstract. An integral element of every surgical simulator is the ability
to interactively cut tissue. A number of approaches have been suggested
in the past, the most important being mesh subdivision by introducing
new elements and mesh adaptation by adjusting existing topology. In
this paper we combine these two methods and optimize them for our
training system of hysteroscopic interventions. The basic methodology
is introduced in 2D, a first extension to 3D is presented and finally the
integration into the simulator described.

1 Introduction

Therapeutic hysteroscopy has become a common technique in gynecological
practice [4]. Nevertheless, a number of potentially dangerous complications
exist - the most common being uterine wall perforation, intra-uterine bleed-
ing, and mismanagement of distension fluid. In [19] the rate of complications for
therapeutic interventions is reported as 17%. According to [14], 97% of hystero-
scopic interventions are performed with resectoscopes, with up to 9% of them
leading to perforations. The most critical situation is wall perforation with re-
sectoscope electrodes during cutting procedures, since lesions of intra-abdominal
organs are likely. In these cases hysteroscopy usually has to be stopped and an
emergency abdominal intervention performed. Therefore, specialized training is
necessary to reduce the rate of complications. Virtual Reality based surgical sim-
ulation [11] is one option to provide a corresponding learning environment. In
contrast to existing systems and products [10,15,13], our work aims at achiev-
ing the highest possible realism. With this system, we intend to identify the
necessary level of fidelity for achieving a specific training effect, by stepwise re-
duction of realism. As described above, a key element of training is the tissue
ablation process. We currently focus on the resection of intra-uterine neoplasms.
Myomectomy with loop electrodes has to be carried out by stepwise shaving.
The process is depicted in Figure 3. Including these procedures in our simulator
system necessitates updates of the underlying tissue model.

Different approaches for handling cutting have been proposed, which can
be summarized into three major categories: straight-forward element deletion
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[2,7,5], mesh subdivision [12,16,8,3,1] and topology adaptation [20,17]. While the
first method is not appropriate for a realistic simulator, the latter two have pro-
duced reasonable results. However, both of them still have significant limitations
(e.g. increase of element count, reduced element sizes or degenerate elements),
which will be discussed in more detail in the next section. In the following, we
propose a hybrid approach, combining subdivision with mesh adaptation strate-
gies. These are completed by a subsequent mesh optimization step. Our method
is tailored for our hysteroscopic training system.

2 Previous Work

Cutting approaches are usually tailored to the applied deformation and visual-
ization mesh representations. With only few exceptions, these are triangular or
tetrahedral meshes, respectively. Straight-forward deletion of mesh entities has
been applied in [2] and [5]. The idea is to remove elements, which are contacted
by a cutting tool. Unfortunately, this leads to visual artifacts, since the cut-
ting path can not be accurately approximated. Moreover, the principle of mass
conservation is violated.

More appealing visual representations of incisions were made possible with
mesh subdivision methods. These usually have in common the classification of
a cut according to different rotational invariant intersection states. Predefined
subdivisions of mesh elements will then be performed. In the context of medical
applications, this was first introduced in [12] for cutting of tetrahedral meshes
with predefined planes. This approach has been refined in [16], where partial
incision of mesh elements as well as progressive cutting is taken into account.
Finally, [1] discusses the use of a state machine to keep track of different inci-
sions in tetrahedral meshes. All described approaches have in common the often
considerable increase of element count, which is reported to range from five up
to 17 new elements per incised tetrahedron. Moreover, introduction of new mesh
elements often necessitates extensive model recalculations, for instance when
using implicit FEM. Another negative factor is the reduction in element sizes.
Deformation stability problems were reported [16], which required a significant
reduction of the time step, thus rendering real-time simulation intractable.

Some of these problems could be ameliorated with topology adaptation ap-
proaches as suggested in [20] and [17]. The central idea is to approximate a cut-
ting path with existing edges or surfaces. This enables mesh incisions without
large increase of element count and occurrence of small elements. Unfortunately,
problems arise due to degenerated elements, which can appear, if unconditional
node displacement is carried out in the mesh. Also, the quality of incision ap-
proximation is limited by the initial mesh resolution.

3 Hybrid Cutting Approach in 2D

The key idea of our method is the combination of mesh adaptation by adjusting
existing topology, and mesh subdivision by introducing new elements. This is
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complemented by subsequent local mesh optimization procedures to ensure a
consistent overall mesh quality. Finally, similar deformation behavior is guaran-
teed by adjusting mechanical parameters. The basic concepts are first introduced
in 2D, however, the strength of our approach becomes especially evident in the
3D case.

Generally, element count #E, number of nodes #N and element size should
be kept constant. Therefore, mesh adaptation should be applied whenever possi-
ble. To this end, edges are divided into regions, which define, whether displace-
ment or subdivision is applied. Three general cases can occur as depicted in
Figure 5. Depending on the intersection, one or two additional elements are cre-
ated. In extreme circumstances, this still leads to an increase in element count.
The situation, however, is rectified in the mesh optimization step described be-
low. With the combined approach, small sized elements as well as degeneracies
are avoided. Moreover, the process is easily applicable in progressive cutting,
since only local edge intersection information is needed.

The method is further refined by extending the view beyond the current
triangle. If two type 2 cases follow each other, element creation can be avoided
with an edge flip. However, if the second displacement would involve a neighbor
of the edge to be flipped, this can not be done. This case requires the addition
of two new elements. Furthermore, a few other cases can appear, which need
special treatment. Similar to the previous example, it can happen, that after a
type 3 case, the displacement of a neighbor would require additional elements.
This can be solved by displacing the node on the cut itself. The selected cases
discussed are shown in Figure 4. Special treatment is also necessary for nodes
on the object border. Displacement can only be performed within the border to
preserve object shape. Moreover, this is only possible, if no prominent features,
for instance sharp corners, are represented by the nodes. This is the case, if the
angle between normals of neighboring border elements is small.

Succeeding several adaptation/subdivision steps, a mesh optimization pro-
cess is performed. Although generally applicable, this step is optimized for a
straight incision through several triangles. This is justified by the nature of
the cutting process in myomectomy (see section 4). The optimization includes
edge collapse and equal node distribution on the cut, as well as local mesh

(a) Before optimization af-
ter initial cut.

(b) Edge collapse and node
distribution on cut.

(c) Mesh after homogeniza-
tion step.

Fig. 1. Mesh optimization process (cut line/nodes depicted in black)
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regularization. The latter is carried out by local computation of a combined
mass-spring/particle system in the cut’s vicinity. In this local system, nodes,
which can be reached from cut nodes via one or two edge steps, are movable,
while the remainder, including the cut nodes, is fixed. Mean local edge length is
used to set mass-spring constants and particle system force profiles. Moreover,
constant masses and high damping values are applied to avoid unnecessary oscil-
lations. Positions xĩ of the nodes proximal to the cut are adjusted by integrating
the equation of motion.

mĩẍĩ + cĩẋĩ +

⎛⎝α∑
j

gĩj + βf int
ĩ

⎞⎠ = 0, ĩ ∈ Ñ

where Ñ are indices of the proximal nodes. gĩj are spring forces, and f int
ĩ

are
forces resulting from the potential energy function of the particle system. The
homogenization will be carried out, until node movement xt

ĩ
− xt−1

ĩ
drops below

2% of mean edge length. Generally, about 4ñ steps have to be carried out, with
ñ being the number of elements intersected. All three optimization steps are
displayed in Figure 1.

Table 1 shows results obtained with our proposed algorithm. The test meshes
were created with the DistMesh tool described in [18]. The following statistical
values were determined: number of nodes and elements, minimum, mean and
standard deviation of element areas (Amin,Aμ,Aσ) and edge lengths (Emin,Eμ,
Eσ), as well as mesh optimization time t. Moreover, a commonly used quality
measure q ∈ [0, 1

2 ] (qmin, qμ, qσ) based on ratio between largest inscribed and
smallest circumscribed circle, is also computed (triangles with q > 0.25 are
considered to be well shaped). All values were determined for the initial mesh
(Initial), as well as after remeshing with standard subdivision (Stndrd) and our
hybrid approach (Hybrid). With our proposed method element and node count
were kept almost constant. Also, the values of Amin, Emin and qmin, which have
the strongest impact on deformation stability, remained favorable. Computation
time increased in larger meshes, which is due to large incisions performed across

Table 1. Statistical values of test cases with two example meshes

Test #N #E Amin Aμ Aσ Emin Eμ Eσ qmin qμ qσ t[ms]
Initial 88 59 88.93 113.64 11.06 12.63 16.26 1.81 0.393 0.473 0.028

1a Stndrd 107 70 0.23 93.46 38.27 0.66 14.64 4.07 0.012 0.433 0.108
Hybrid 88 59 72.45 113.64 18.31 10.30 16.31 2.25 0.361 0.465 0.032 10

1b Stndrd 108 70 0.38 92.59 37.72 0.87 14.62 3.97 0.036 0.434 0.101
Hybrid 93 62 71.96 107.98 15.79 9.94 15.93 2.29 0.284 0.460 0.036 20
Initial 519 298 4.10 5.09 0.28 2.75 3.45 0.27 0.398 0.487 0.015

2a Stndrd 587 335 0.03 4.50 1.40 0.05 3.23 0.68 0.011 0.461 0.086
Hybrid 521 299 2.19 5.07 0.43 2.19 3.45 0.32 0.332 0.483 0.021 190

2b Stndrd 603 343 0.03 4.39 1.50 0.09 3.18 0.72 0.012 0.454 0.094
Hybrid 517 297 3.51 5.11 0.52 2.03 3.48 0.39 0.270 0.478 0.028 250
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the complete mesh without any intermediate calculations. This can be alleviated
by progressively carrying out regularization while the cut is being made.

Finally, we have to update the tissue model, since the underlying mesh has
been changed. This is necessary to ensure a consistent deformation behavior.
For the currently applied mass-spring system, node masses and spring constants
need to be adjusted. The new mass distribution can be obtained via preservation
of object mass moments pjk up to second order as suggested in [6]. The moments
are computed for the initial configuration.

pjk =
n∑

i=1

xj
iy

k
i mi j + k ≤ 2

where (xi, yi) and mi are coordinates and masses of node i. This gives us the
moment vector p = (p00, p01, ..., p20)T for the initial mesh. After the remeshing
process, the new mass coefficients m∗ for the adjusted node coordinates can the
be obtained via the precomputed moments. To this end, we have to solve the
underdetermined system Am∗ = p, where A is the Vandermonde matrix of the
new coordinates. This can be done, by introducing B = AAT . We first solve
Bm̃ = p, and in a second step, we obtain the new mass distribution according
to m∗ = AT m̃.

For setting of new spring constants k∗, a method was suggested in [9].

k∗s =
E
∑

E area(TE)
|s|2

where the sum is over elements TE incident on edge s and E is Young’s modulus.
This was suggested for isotropic, homogeneous, linear elastic material.

4 Extension of Hybrid Cutting to 3D

The main elements of our hybrid approach have been implemented for incisions
into tetrahedral meshes. In the current stage, subsequent mesh optimization has
not been integrated. However, the mass-spring/particle regularization generalizes

(a) Cut plane through
one tetrahedron

(b) After remeshing
approach

(c) Example mesh
for a polyp

(d) Excised tissue
sample

Fig. 2. Examples of incisions into 3D meshes
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(a) Deformation
with inactive elec-
trode

(b) Start of cut (c) Directly after end
of cut

(d) Excised tis-
sue moved against
fundus

Fig. 3. Steps of shaving process with loop electrode during myomectomy

(a) Edge exchange possible
in this configuration

(b) Additional elements
necessary

(c) Cut node displaced

Fig. 4. Treatment of special cases

(a) Edge regions (b) Case 1: Two dis-
placements

(c) Case 2: Subdivi-
sion & displace

(d) Case 3: Two sub-
divisions

Fig. 5. Cases for hybrid approach (cut line depicted in yellow)

(a) Deformation
with inactive elec-
trode

(b) Start of cut (c) Directly after end
of cut

(d) Excised tis-
sue moved against
fundus

Fig. 6. Steps of myoma shaving process in Virtual Reality
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Table 2. Statistical values of test cases with a tetrahedral mesh

Test #N #E Vmin Vμ Vσ Emin Eμ Eσ q∗
min q∗

μ q∗
σ

Initial 69 136 3.54 37.07 15.80 3.14 7.19 1.99 0.017 0.21 0.06
Standard 319 620 8.8x10−6 8.13 14.5 0.03 3.69 2.78 3.2x10−3 0.09 0.09
Hybrid A 76 136 3.54 37.12 15.82 3.14 7.17 1.99 0.018 0.22 0.06
Hybrid B 88 145 2.96 34.77 16.29 2.82 7.06 1.96 0.017 0.21 0.06

well to 3D and its addition is straight-forward. Again, subdivision is carried out,
if a cut plane is close to the middle of an edge. If the plane is close to a node,
the incision is approximated by separating existing mesh nodes. This gives us
four rotationally invariant cases, where zero to three nodes of a tetrahedra are
separated. Examples of this process can be seen in Figure 2.

As in 2D, this approach allows for smooth cuts without considerably in-
creasing node and element count, while mesh quality is kept in an acceptable
range. Table 2 shows statistical values for example cuts in 3D. It contains the
number of nodes and elements, minimum, mean and standard deviation of el-
ement volumes (Vmin, Vμ, Vσ) and edge lengths. q∗ ∈ [0, 1

3 ] is again a quality
measure, this time denoting the ratio between radii of tetrahedra inspheres and
circumspheres. All values were determined for the initial mesh, the mesh after
remeshing with standard subdivision (Standard), as well as two different cuts
using our hybrid approach (HybridA/B). Our approach prevents a considerable
increase of element and node counts. The values of Vmin, Emin and qmin, which
have the strongest impact on deformation stability, remain again in acceptable
ranges.

Since our application area is tissue ablation in hysteroscopy, we can make
some assumptions about the cutting process. In the standard approach, the loop
electrode is placed behind the pathology and then advanced towards the camera
along a straight path (as depicted in Figure 3). This allows us to simplify the
definition of the cutting surface by extruding the shape of the loop along the
tool vector. Entry and exit position of the loop are registered in our collision
detection routine. As soon as the tool leaves the tissue, our hybrid approach
is carried out. Steps of this process, integrated into a simulator framework for
hysteroscopy, are shown in Figure 6.

5 Conclusion and Future Work

We have presented a hybrid cutting approach combining mesh subdivision and
topology adaptation. The approach was optimized for our specific application do-
main - simulation of tissue excision in hysteroscopic interventions. The method
was introduced in 2D, followed by an extension to 3D. Future work will fo-
cus on integration of the mesh regularization process also in 3D. Moreover, the
generalization of the cutting approach to arbitrary cut paths will be further
investigated.
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Abstract. During hysteroscopy a hydrometra is maintained, i.e. the
uterus is distended with liquid media to access and visualize the uterine
cavity. The pressure and flow induced by the liquid are crucial tools for
the gynecologists during surgery to obtain a clear view of the operation
site. This paper presents two different aspects of hydrometra simulation,
namely the distension of the uterine muscle and the liquid flow simulation
in the cavity. The deformation of the organ’s shape is computed offline
based on finite element calculations whereas the flow is approximated on
the fly by solving the simplified Navier-Stokes equations. The real-time
capabilities of the presented algorithms as well as the level of fidelity
achieved by the proposed methods are discussed.

1 Introduction

Hysteroscopy, the endoscopic inspection of the uterus, has become an estab-
lished technique in gynecological practice [2]. A fundamental prerequisite of the
method is the proper distension of the uterine cavity, also known as hydrometra.
In general, a non-ionic solution will be used for therapeutic procedures. In- and
outflow of the distension fluid is accomplished via the endoscopic tool and con-
trolled with valves, while the pressure of the liquid is provided by a pump. It is
essential to select correct pressure settings for the hydrometra according to mus-
cle tone and uterine wall thickness [9]. Additional to the inflation of the uterus,
the fluid flow also ensures a clear visibility in the cavity during interventions.
Obscurations can be caused by endometrial bleeding, floating tissue fragments
or air bubbles. It is the gynecologist’s experience to correctly dose the in- and
outflow through the valves that leads to a proper view of the scene. According
to [7], a number of complications can be encountered related to the application
of the distension fluid. Thus, the total amount of liquid loss should be strictly
limited to 1500 ml, at which point the procedure has to be terminated.

Due to these reasons, the correct handling of the valves is a crucial skill that
has to be an integral part of training for every gynecologist. Virtual Reality based
surgical simulation offers a promising alternative to today’s teaching approaches,
which are largely based on interventions performed on real patients. In order
to provide a suitable learning environment, the degree of realism necessary for
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effective training of complete surgical procedures with a simulator has to be
identified. Our current research aims at the development of a simulator of highest
possible realism for the procedural training of hysteroscopy. Key elements of
this system are the proper cavity inflation, flow control of the distension fluid,
pressure adjustment to handle small bleeding, and correct management of liquid
pressure.

2 Related Work

In this paper an integrated approach for real-time simulation of various aspects
of generating and maintaining of the hydrometra is presented. The authors are
not aware of work with a similarly comprehensive approach. Nevertheless, related
research exists, which focuses on individual aspects of our method.

A number of different approaches has been suggested for the description of
the mechanical behavior of organic tissue. Usually, for these methods a trade-off
has to be found between accuracy and computation time. Free-form deformation
(FFD) techniques, stemming from Computer Graphics [11], have been applied in
surgical simulation due to their efficiency. However, FFD procedures have only
very limited physical meaning. More accurate deformations can be obtained
with mass-spring models, initially introduced in [15]. Numerous projects have
made use of this method, however, problems remain due to its limitations when
approximating true physics. Nevertheless, an advantage of the method is its ap-
plicability in real-time simulations. Finally, rigorous representation of soft tissue
physics can be achieved with continuum mechanics approaches, the most pop-
ular one being the Finite Element Method (FEM). Different levels of accuracy
for deformation simulation have been realized with FEM, ranging from elastic
linear [4] to nonlinear anisotropic systems [10]. Recently, a simulation of a hy-
drometra using FEM has been presented which, however, requires several hours
of computation [17].

Physically-based real-time simulation of fluid flow in 3D has found increas-
ing attention in recent years, mainly fueled by ever increasing computing power.
In [3], discretized Navier-Stokes equations are solved using explicit finite dif-
ferences and visualized with a so-called marker particle approach. The method
requires relatively small time steps to ensure stable simulation, thus limiting
its usage in real-time applications. A solver based on a semi-Lagrangian advec-
tion scheme has been presented in [14]. Its unconditional stability allows using
larger time-steps, hence making fluid simulation in real-time possible. Recent
work aims at efficient GPU-based implementations of fluid solvers to increase
computational speed [6]. We previously reported on a method that combines
the semi-Lagrangian solver with the marker particle approach to represent the
blood flow in a simple geometry [18]. This combination allowed to achieve more
realistic liquid-like behavior. However, the method was tailored to only visualize
blood streams in a static environment. The results are extended in the follow-
ing to consider the complex dynamic scene when regulating pressure and flow
conditions during hydrometra.
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3 Real-Time Deformation of the Uterine Cavity

The almost instantaneous response of the uterine cavity to pressure adjustments
of the distension fluid exceeds by far the real-time capabilities of most known
deformation models. Not only computationally intensive approaches, like FEM,
are therefore completely infeasible, but even mass-spring methods proved in-
tractable for the given problem. Firstly, the deformation accuracy of the latter
is limited, and suitable model parameters can not easily be found. Secondly, in
order to precisely approximate the shape of the uterus, still a large number of
mesh elements is needed. As a result, the required mesh updates are currently
beyond the capabilities of mass-spring methods. Therefore, free-form deforma-
tions seem to be better suited to solve the problem at hand. However, they do
not provide the needed physical realism.

In order to achieve physically realistic real-time deformation of the uterine
cavity, we suggest the combination of accurate FEM computations with FFD
approaches. The underlying idea is to first carry out offline precomputations to
obtain an accurate response of the tissue model to the fluid pressure. These data
are then used during real-time interaction for model adjustments based on given
pressure states. It is assumed that the boundary conditions of the deformation
model do not change during the intervention. This is usually the case in hystero-
scopic procedures, since the surrounding tissues are not directly accessible. More-
over, extreme modifications of the cavity wall should be avoided. This is also ful-
filled, since cutting into the myometrium is limited to a relatively thin layer dur-
ing surgery, otherwise risking the perforation of the wall leading to the immediate
termination of the intervention. Hence we can assume, that the uterus’ response
to pressure differences stays relatively constant throughout the intervention.

Three major steps are needed for our approach: Data acquisition from real or-
gans for model geometries and material laws, offline computations with a highly
accurate FE approach, and real-time replay of these data during the interven-
tion. The first step consists of a statistical model which encodes the natural
variability of the healthy organ geometry which was segmented from MRI data
obtained from a study with volunteers [13]. Based on a predefined set of param-
eters that are familiar to the gynecologists, new surface meshes of the uterus can
be derived intuitively prior to training. Material parameters for the offline de-
formation computations are obtained in-vivo with a tissue aspiration device [8].
The obtained data are fed into the FE model in order to achieve a reasonable
approximation of real deformation behavior. Both the FEM computation and
the real-time simulation are based on homogeneous tetrahedral meshes. While
in the former stage the mesh is required for calculating the deformations, the
tetrahedral representation is needed for collision detection and haptic feedback
in the latter step. The specific mesh generation approach employed is presented
in [12]. In the second step, the offline computation enables the use of more ad-
vanced, and thus more accurate, tissue modeling techniques. We apply the FEM
presented in [17], where homogeneous, isotropic and nonlinear hyper-elastic ma-
terial laws are used. Based on the in-vivo aspiration experiment a polynomial
strain-energy function of the form
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Ψ(Ī1, J) =
N∑

p=1

μp(Ī1 − 3)p +
1
2
κ(J − 1)2

is used to describe the mechanical behavior of the particular soft tissue where
Ī1 is the first reduced invariant of the right Cauchy-Green tensor, J the volume
ratio, μp material parameters and κ the bulk modulus. J ≈ 1, i.e. the material
is assumed to be quasi-incompressible. The resulting equations are solved with
the commercial package MarcMentatTM. The organ model deformations are ob-
tained for 100 different pressure settings. In the third step, the precomputed
deformation states are loaded into the simulator and interpolated in real-time
according to the applied fluid pressures. As the mesh topology does not change
during deformation, only the vertex positions x of the tetrahedral mesh have to
be updated based on the interpolation parameter t and a limited number n of
precomputed instances xi: x = f(t,x0, ...,xn). Therefore, large meshes consist-
ing of more than 30’000 tetrahedra and 50 interpolation samples can be updated
in real-time. Already simple linear interpolation with as few as four precomputed
samples proved to be sufficient for obtaining convincing visualizations.

4 Handling of Distension Fluid

The motion of liquid is described by the Navier-Stokes equations. For an incom-
pressible fluid they take the form:

∇ · vf = 0 and (1)
∂vf

∂t
= −(vf · ∇)vf + ν∇2vf − 1

ρ
∇p+ F (2)

where vf is the velocity vector, p is the pressure, ρ is the density of the fluid, ν
represents the kinematic viscosity coefficient and F corresponds to the vector of
external body forces. The density and the temperature of the fluid are considered
constant. Equation (1) represents the mass conservation in the fluid, while (2)
is the momentum equation [1]. Equations (1) and (2) are solved numerically on
a uniform Cartesian grid to evaluate the time dependent behavior of the fluid.

In order to solve the velocity field, proper boundary conditions have to be
set. For hysteroscopy these are the endometrium as well as pathologies present in
the scene, the in- and outflow according to the tool position, and their intensity
according to the valve states. By labeling the voxels of the grid, these elements
can be incorporated consistently into the numerical solver as discussed in [3].
As both the hydrometra and the pathologies may frequently change during sim-
ulation, the labeling of the voxels has to be updated accordingly. Therefore all
voxels are re-labeled whenever the surfaces are modified in real-time [12]. For
the inflow, constant velocity is set at the voxels corresponding to the tip of the
tool. The outflow is represented by voxels that are set to velocities according to
the outflow conditions at the respective positions.

Depending on the state of the valves, the properties of the liquid current vary
in a wide range. The maximal flow speed of the distension liquid at fully opened
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valves reaches approximately 2m
s according to our measurements. Considering

the small size of a normal cavity in the order of a few cm3, the liquid flow is
highly turbulent with a Reynolds number of about 30’000. However, the direct
numerical simulation of turbulent flows is still a challenging task and physically
based simulation approaches require extremely time-consuming calculations. In
order to improve the simulation fidelity, the swirling motion within the fluid
caused by the turbulence has still to be modeled. Therefore the velocity field
vf serves as a realistic approximation for moderate flow speed. For higher flow
rates, artificial vortices can be added as needed. While this combination is not
physically accurate, it provides a higher level of fidelity in real-time.

At the start of the simulation, we place the initial position of the vortices
randomly within the fluid filled area. The orientation ω of the vortices is given
by the curl of the velocity field vf interpolated at the position of the vortex:
ω = ∇× vf . The Rankine vortex model is used, where a concentrated vorticity
is simulated in the core region and combined with an exponential decay of the
circumferential velocity as the distance from the core increases [5]. The velocity
field represented by the Rankine vortex is divergent free, i.e. satisfies (1), and
therefore provides a kinematically plausible velocity field. During simulation, the
vortices are moved in each iteration according to their vorticity vector ω by a
simple Euler step, i.e. pvort

t+1 = pvort
t + Δtvortω. The resulting flow velocity

can finally be computed by superimposing the flow provided by the fluid solver
and the velocity originating from the various vortices i: v = vf +

∑n
i=1 vvorti.

5 Results and Discussion

The left image in Figure 1 illustrates a surface mesh of a uterus. The vertices
are labeled according to their behavior during the subsequent deformations. The
white vertices, highlighted with the ellipse, represent the portion of the surface
protruding into the vagina which is fixed prior to surgery. The blue vertices
(inner surface) represent the endometrium deforming according to the pressure
induced by the fluid. The surrounding organs like the urinary bladder and the
rectum can be considered as being quite soft compared to the uterus. Therefore,
the remaining vertices colored in red (outer surface) are free to move. The uterus
in the middle corresponds to the surface of the tetrahedral mesh consisting of

Table 1. Performance data

Δvoxel #voxels #voxels CPU time [ms] CPU time [ms] Voxelization Time to traverse Fidelity

[cm] total fluid no vortices with vortices [ms] [s]

0.06 191022 35179 100 112 77 5 +
0.09 62964 9528 26 30 42 2 ++
0.12 27880 3813 10 12 28 1.5 ++
0.15 15246 1818 5 6 19 1 −
0.18 9408 969 3 5 12 < 1 −
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Fig. 1. Left: Uterus with labeled vertices. Middle: Corresponding surface of tetrahedra
mesh. Right: uterus with hydrometra. In all cases the frontal surface has been rendered
in wireframe mode to visualize the inner cavity.

Fig. 2. Left: Visualization of the flow in the uterine cavity under limited pressure.
Middle: Flow pathlines in a fully distended state. Right: Effect of additional vortices
on the flow field.

Fig. 3. Left: Low hydrometra in a cavity with a myoma. Middle: Same scene under
maximal distension. Right: Scene with blood streams under the influence of both inflow
and vortices.

approximately 35’000 tetrahedra. Finally, the uterus on the right illustrates the
result of the FEM-based hydrometra simulation as presented.

During surgery the interaction is mainly restricted to the fundus of the uterus.
Therefore, the simulation is confined to this region of interest. In Figure 2 the
flow field is visualized by pathlines. Two different stages of hydrometra are shown
in the first two images, while the third image illustrates the flow in the presence
of 20 vortices. The arrows indicate the inflow and outflow directions. As can be
seen, the pathlines clearly indicate the main flow streams from the inlet position
to the outflow. The vortices clearly perturb the local behavior as desired, but do
not disrupt the overall flow.
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Table 1 compiles different performance measurements while using the pre-
sented algorithms on a standard 3.0 GHz PC. As the computational time for the
deformation of the tetrahedral mesh can be neglected, the single parameter that
determines the overall performance is the size of the voxels used for discretiza-
tion. The table shows the values measured for increasing voxel dimensions. The
total number of voxels in the bounding box of the organ are shown in the sec-
ond column. The effective number of voxels used for flow simulation in the fully
distended case are shown in the third column. Obviously, all calculations are
faster for smaller hydrometra states. The next two columns indicate the CPU
time for the flow field evaluation without and with up to 100 vortices. For every
new state, the voxel representation has to be updated (6th column). While all
these values prove that the update of the flow can be computed in real-time,
the maximal flow speed that can be represented is limited by the time required
to propagate a single particle across the cavity, indicated by the ’time to tra-
verse’. The highest resolution is not optimal, as the numerical dissipation of the
semi-Lagrangian method can be observed. Large voxel dimensions allow for the
representation of faster flows, however, they are no longer able to accurately
guide the particles from the in- to the outlet. In conclusion, an optimal voxel
size of approximately 0.12 cm has been identified.

In order to validate the visual fidelity of the flow field we use blood streams
as they are highly influenced by the distension liquid in real surgery. The blood
streams are mostly computed on the GPU by using billboards and dynamic tex-
tures to represent the blood particles. Figure 3 shows three different snapshots
of the simulator with a myoma attached to the upper wall. The dynamic be-
havior of the discussed images can be observed in the movie provided online
(www.vision.ee.ethz.ch/∼rsierra/hydrometra.avi).

As stated, the computation of fluid dynamics on the GPU is nowadays a
field of intensive research. However, this approach is only of limited relevance
in the current environment, as the information of the fluid field needs to be
propagated to several other components of the simulator, such as the rendering
of the blood streams, the displacement of floating tissue fragments or air bubbles.
This requires copying of the results from the GPU to the CPU memory, an
expensive operation in currently available hardware setups.

6 Conclusion and Future Work

In this paper we have presented the methods developed for the full simulation
of hydrometra during hysteroscopy. Both the organ’s deformation and the fluid
flow in the cavity are modeled with highest possible realism while still meeting
the real-time requirements of a simulator.

The fluid simulation will be further validated. We plan to perform an accurate
flow simulation with exactly the same boundary conditions with an available
commercial packages offline and quantitatively compare to our own results. The
increased computational power of future hardware can be used to enhance the
accuracy of the flow simulation. The Lattice Boltzmann Method [16] offers an
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appealing alternative to account for additional aspects of the underlying physics
and will be implemented in the future.

The presented FEM computation is simplified in several respects. Many as-
sumptions, e.g. quasi static behavior, may not hold for a realistic simulation. It
might be necessary to resort to more complex models incorporating non-linear,
anisotropic, and time dependent materials which approximate the real behavior
of the myometrium more precisely. Therefore, a study is currently being per-
formed where the hydrometra is generated in a surgically removed uterus in a
CT scanner. This study will provide the necessary ground truth for the derivation
of more advanced FEM models in the future.
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Abstract. In the present study, fully nonlinear (i.e. accounting for both geomet-
ric and material nonlinearities) patient specific finite element brain model was 
applied to predict deformation field within the brain during the craniotomy-
induced brain shift. Deformation of brain surface was used as displacement 
boundary conditions. Application of the computed deformation field to align 
(i.e. register) the preoperative images with the intraoperative ones indicated that 
the model very accurately predicts the displacements of gravity centers of the 
lateral ventricles and tumor even for very limited information about the brain 
surface deformation. These results are sufficient to suggest that nonlinear bio-
mechanical models can be regarded as one possible way of complementing 
medical image processing techniques when conducting nonrigid registration. 
Important advantage of such models over the linear ones is that they do not re-
quire unrealistic assumptions that brain deformations are infinitesimally small 
and brain tissue stress–strain relationship is linear. 

1   Introduction 

Brain shift occurring during craniotomy distorts the preoperative anatomy and often 
leads to misalignment between the actual position of important brain structures and its 
position determined from the preoperative images. This is one of the key challenges 
faced by neurosurgery, and its importance is increasing with progress of therapeutic 
technologies. Important feature of the technologies that are entering medical practice 
now, such as e.g. gene therapy, nanotechnology devices, focused radiation, lesion 
generation and robotic surgery, is that they have extremely localized area of therapeu-
tic effect [1]. Therefore, they have to be applied precisely in relation to the current 
(i.e. intraoperative) patient’s anatomy, directly over specific location of anat-
omic/functional abnormality (e.g. tumor).  

While the intraoperative imaging would be the most straightforward method when 
determining the current position of the tumor during surgery, its quality suffers from 
the constraints of the operating room. As a result of these constraints, spatial resolu-
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tion and contrast of intraoperative images are typically inferior to those of preopera-
tive ones [2]. This problem is typically solved by aligning (i.e., registering) the preop-
erative data to scans of the brain acquired intraoperatively, which makes it possible to 
retain the preoperative image quality during the surgery. In order to achieve accurate 
alignment, the brain deformation must be taken into account, which implies nonrigid 
registration. In recent years, biomechanical models have been recognized and used as 
efficient tools for predicting the brain deformation. In most practical cases, such mod-
els utilize the finite element method [3] to solve sets of partial differential equations 
governing the deformation behavior of continua. 

Selection of appropriate mathematical model governing the deformation is crucial 
to ensure realistic computer simulation of brain deformation. In nonrigid registration, 
linear elastic formulation is typically used [2], [4], [5]. In this formulation, the brain 
deformations are regarded as infinitesimal (i.e. geometric linearity) and brain tissue is 
treated as an elastic material in which the stress is a linear function of the strain (i.e. 
material linearity). Although nonrigid registration using linear biomechanical models 
has been an important achievement that significantly adds to the value of intraopera-
tive imaging [2], it must be realized that neither the assumption about infinitesimally 
small brain deformation nor the one about brain stress–strain linear behavior is valid 
during brain shift. Craniotomy typically results in deformation of brain surface as 
large as 10 mm [6] (i.e. around 10% of distance between the left and right cortical 
landmarks) and rigid body movement of the brain, which implies that fully nonlinear 
finite element formulations and material models are needed when predicting deforma-
tion field within the brain during a typical brain shift. 

Therefore, we propose that when conducting nonrigid registration, image analysis 
techniques should be complemented by biomechanical models based on fully nonlin-
ear finite element formulations rather than linear ones. We demonstrate that such 
nonlinear models facilitate accurate prediction of deformation field within the brain 
even when simplified brain geometry and limited data about the brain surface defor-
mation are used. 

2   Methods 

2.1   Construction of Finite Element Mesh for Patient Specific Brain Model  

In the present study, a volumetric (i.e. three-dimensional) patient specific brain mesh 
was constructed from the segmented preoperative magnetic resonance images (MRIs) 
(Fig. 1). The segmentation was done using 3D Slicer [7] — open-source software for 
visualization, registration, segmentation and quantification of medical data developed 
by Artificial Intelligence Laboratory of Massachusetts Institute of Technology and 
Surgical Planning Laboratory at Brigham and Women's Hospital and Harvard Medi-
cal School.  

The mesh was built using 15036 hexahedron elements (i.e. 8-node “bricks”)  
(Fig. 2). The hexahedron finite elements are known to be the most effective ones in 
nonlinear finite element procedures using explicit time integration. The construction 
of hexahedron grid for the present brain model has been described in our previous 
publication [8].  
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In order to simulate the pia matter, the brain surface was covered by a layer of 
3522 membrane elements (thickness of 0.1 mm). The cerebral falx was also discre-
tized using membrane elements: 436 such elements of thickness of 1 mm were used. 

 
a)   b) 

   
 
Fig. 1. Example of segmented MRIs of the head used when building patient specific brain 
mesh. The tumor segmentation is indicated by white lines in the anterior brain part. a) Preop-
erative; b) Intraoperative. 
 
 

a) b) 

 
 
Fig. 2. Patient specific brain mesh constructed in the present study. a) Entire left brain hemi-
sphere; b) Lateral ventricles. 

2.2   Brain Shift Simulation 

Equations of Mathematical Model. Detailed account of biomechanics of the brain 
including relevant equations was given by Miller [9]. In this section, the basic ideas 
are summarized.  

From the perspective of surgical simulation, the brain can be considered a single-
phase continuum undergoing large deformations. In the present analysis, the stresses 
and strains were measured with respect to the current configuration. Thus, energeti-
cally conjugate Almansi strain e and Cauchy stress τ (i.e. forces per unit areas in the 
deformed geometry)  were used:  

e = 1

2
[I − (F−1 )T (F−1 )] , (1) 

where F is the deformation gradient and I is the identity matrix. 
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Using Almansi strain and Cauchy stress, the equation of equilibrium can be written 
in the following way: 

τ ,i
ij + ρRi = 0 , (2) 

where ρ is a mass density, Ri is a body force per unit mass in direction i, and comma 
indicates covariant differentiation with respect to the deformed configuration. Re-
peated index summation convention was used.  

Eqs. (1)-(2) must be supplemented by formulae describing mechanical properties 
of materials, i.e. appropriate constitutive models. Modeling of physical properties of 
the brain is still an uncovered area pioneered by a few only [10], [11], [12]. As shown 
by Miller and Chinzei [13], [14], the stress–strain behavior of the brain tissue is 
nonlinear. The stiffness in compression is significantly higher than in extension. One 
can also observe a strong stress–strain rate dependency. To account for these 
complexities, we used the model suggested by Miller and Chinzei [14]: 

 

W = 2

α 2 [μ(t − τ )
d

dτ0

t

(λ1
α + λ2

α + λ3
α − 3)]dτ , (3) 

 

μ = μ0[1− gk
k=1

n

(1− e
−

t

τ k )] , (4) 

 

where W is a potential function, λi’s are principal stretches, is the instantaneous 
shear modulus in undeformed state, τk are characteristic times, gk are relaxation coef-
ficients, and α is a material coefficient, which can assume any real value without 
restrictions. The model parameters are given in Table 1.  

The cerebral falx was assigned Young’s modulus of 3.4 MPa [15]. For pia, the 
Young’s modulus of 1.1 MPa was used – a value derived from the studies on brain 
injury by Takhounts et al. [15] and Zhang et al. [16]. 

Table 1. List of material constants for constitutive model of brain tissue, Eqs. (3) and (4), n=2. 
The constants were taken from Miller and Chinzei [14] 

Instantaneous response μ0=842 [Pa]; α=-4.7 

k=1 Characteristic  time τ1=0.5 [s]; g1=0.450 

k=2 Characteristic  time τ2=50 [s]; g2=0.365 

Integration of Equations of Equilibrium. Integration of equations of equilib-
rium/dynamics (i.e. Eq. 2) can be done using either implicit or explicit methods [3]. 
The implicit integration methods are unconditionally stable but can be time consum-
ing as iterations are conducted at each time step. Therefore, in the present study an 
explicit integration was used. In the explicit integration, no iteration is needed as the 
displacement at time t+Δt is solely based on the equilibrium at time t.  

The computations were conducted using the LS-DYNA code (Livermore Software 
Technology Corporation, Livermore, California, USA) [17], which is one of the ex-
plicit finite element codes routinely applied in car crash simulation. Fully nonlinear 

μ0
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formulations are used in LS-DYNA, i.e. both geometrical and material nonlinearities 
are taken into account. 

Boundary Conditions for Simulation of Brain Shift. The anterior parts of the pre-
operative and intraoperative cortical surfaces were discretized using consistent rec-
tangular meshes of the same density. The distances between corresponding nodes of 
the preoperative and intraoperative cortical surfaces were calculated and used as dis-
placement boundary conditions (i.e. prescribed nodal displacements) for the nodes 
located in the anterior part of the brain model surface. To define the boundary condi-
tions for the remaining nodes on the brain model surface, contact interfaces were 
defined between the rigid skull model and parts of the brain surface where the nodal 
displacements were not prescribed.  

The spine–spinal cord interactions and constraining effects of the spinal cord on 
the brain rigid body motion were simulated by rigidly constraining the spinal end of 
the model. 

In biomechanical models for nonrigid registration, cerebral falx is typically not 
simulated. However, as suggested by Warfield [18], disregarding falx may lead to 
misregistration of the lateral ventricles on the side opposite to surgical intervention. 
Therefore, in the present study the falx was simulated as elastic membrane rigidly 
attached to the skull. The contact interfaces were defined between this membrane and 
inter-hemisphere surfaces.  

3   Results 

The craniotomy-induced displacements of the ventricles’ and tumor’s centers of grav-
ity (COGs) predicted by the model agreed well with the actual ones determined from 
the radiographic images (Table 2). With the exception of the tumor COG displace-
ment along the Y (i.e. inferior-superior) axis, the differences between the computed 
and observed displacements were below 0.65 mm. Important and not unexpected 
feature of the results summarized in Table 2 is that the displacements of the tumor’s 
and ventricles’ COGs appreciably differed. This feature can be explained only by the 
fact that the brain undergoes both local deformation and global rigid body motion, 
which implies that nonrigid registration had to be used. 

Table 2. Comparison of craniotomy-induced displacements of ventricles’ and tumor’s centers 
of gravity (COGs) predicted by the present brain model with the actual ones determined from 
MRIs. Directions of X, Y and Z axes are given in Fig. 2a. 

 

 Determined from MRIs Predicted 
 Δx= 3.40 mm Δx= 3.06 mm 
Ventricles Δy= 0.25 mm Δy= 0.29 mm 
 Δz= 1.73 mm Δz= 1.65 mm 
 Δx= 5.36 mm Δx= 4.74 mm 
Tumor Δy=-3.52 mm Δy=-0.40 mm 
 Δz= 2.64 mm Δz= 2.77 mm 
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Fig. 4. Comparison of contours of axial sections of ventricles and tumor obtained from the 
intraoperative images with the ones predicted using the present brain model. Positions of  
section cuts are measured from the most superior point of parietal cortex (superior direction is 
positive). 

Detailed comparison of cross sections of the actual tumor and ventricle surfaces 
acquired intraoperatively with the ones predicted by the present brain model indicates 
some local misregistration, particularly in the inferior tumor part (Fig. 4). However, 
the overall agreement is remarkably good. 

4   Discussion and Conclusions 

Instead of relying on unrealistic linearization (i.e. assumption about infinitesimally 
small brain deformation during craniotomy and linear stress – strain relationship of 
brain tissue) used in almost all biomechanical models for neurosurgical registration 
(with a notable exception of Xu and Nowinski [19]), we applied fully nonlinear (i.e. 
including both geometrical and material nonlinearities) finite element formulations to 
compute deformation field within the brain. These formulations made it possible to 
predict the displacement of the ventricles’ and tumor’s centers of gravity with around 
0.5 mm accuracy (Table 2). This remarkable accuracy was achieved using displace-
ment boundary conditions determined from very limited information about the brain 
surface deformation. 

Detailed comparison of the calculated and image-determined cross sections of ven-
tricles and tumor after craniotomy indicated local misregistration (Fig. 4), but the 
overall agreement was remarkably good. The local inaccuracies observed here could 
be related to simplifications of the brain geometry when building the finite element 
mesh and inability of our brain model to accurately account for various complex 
physiological phenomena, such as loss of fluid from ventricles, that could affect de-
formation field within the brain. A combined approach is needed in which nonlinear 
biomechanical models, such as the one developed in the present study, are applied 
together with traditional registration methods relying on image processing techniques, 
such as e.g. optical flow [20], mutual information-based similarity [21], entropy-
based alignment [22] and block matching [23]. 

The presented results indicate that finite element analysis using fully nonlinear 
solid mechanics formulations is a powerful method for computing deformation field 
within the brain during craniotomy. As realistic prediction of deformation field within 
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the brain is crucial for nonrigid registration, our results show that biomechanical mod-
els using fully nonlinear finite element formulations can be regarded as promising 
tool when complementing traditional image processing techniques used in image 
registration. Such models do not require unrealistic assumptions that the brain defor-
mations are infinitesimally small and brain tissue stress–strain relationship is linear. 
Therefore, they can be seen as one possible way of improving reliability of image 
registration. 
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Abstract. Cornea surgeons have observed that changes in cornea curva-
ture can follow cataract surgery and cause astigmatism. The placement of
surgical incisions has been shown to influence these curvature changes.
Though empirical data has been collected about this phenomenon, a
biomechanical model has not been employed in predicting post-surgical
outcomes. This work implemented an incised finite element model of the
eye to investigate factors influencing corneal shape after surgery. In par-
ticular, the effects of eye muscle forces and intra-ocular pressure were
simulated. Cornea shape change was computed via finite element analy-
sis, and the resulting change in cornea curvature was measured by fitting
quadratic curves to the horizontal and vertical meridians of the cornea.
Results suggest that these two sources of deforming force counteract each
other and contribute to astigmatism in perpendicular directions.

1 Introduction

A finite element model of the eye was developed to investigate whether such
a model might be helpful in predicting changes in the corneal curvature after
cataract surgery. Cornea surgeons have observed that changes in cornea curva-
ture often follow cataract surgery and alter pre-operative astigmatism. Further,
they have found that the orientation of the astigmatism is related to the position
of the surgical incision(s). For patients with pre-existing astigmatism, the astig-
matism can be reduced or increased, depending on incision placement. Cornea
surgeons have produced tables based on empirical observations of surgical results
that allow them to predict the cornea curvature change that will result from a
given incision [1]. However, a clear mechanical understanding of the causes of
the observed changes does not exist.

Related work includes a study by Pinsky and Datye [2] that constructed
a finite element model of the eye to examine the effects of radial keratotomy.
Partial thickness corneal incisions were modeled on one quarter of the cornea;
horizontal and vertical corneal symmetry was assumed. The work presented here
expands on this earlier work by modeling the full cornea and the rest of the globe
without making assumptions about symmetry that prevent the consideration of
irregularities such as astigmatism. Another difference is the placement and depth
of the modeled incision. This work models an incision along the periphery of the
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cornea that might be used for cataract or anterior segment surgery instead of
the radial incisions used in radial keratotomy.

Other models of radial keratotomy have been developed by Vito, et al [3],
Wray, et al[4], and Sawusch, et al [5]. Related work also includes a model of the
phototherapeutic keratectomy procedure by Katsube, et al [6] and a simulation
of eye trauma using a finite element model that was constructed by Uchio, et al
[7].

Investigations into the material properties of the cornea provide a basis for
the development of biomechanical models. Such work includes an analysis of
cornea strain distribution by Shin, et al [8] and a micro-structural analysis of
the cornea by Johnson [9].

The construction of the finite element mode used in this work is described in
section 2, along with the simulated incision and application of deforming forces.
Model deformation results are described in section 3 and discussed in light of
the available patient data. Finally, section 4 presents conclusions and planned
future work.

2 Finite Element Model

The finite element eye model in this study was designed to focus on the struc-
tural integrity of the cornea and sclera, the structures that form the outer shell
of the eye. Initially, a geometric eye model was developed based on the female
Visible Human image set, using anatomical image slices with 0.33 mm thickness.
However, experience showed that the image resolution and clarity was not suffi-
cient to adequately capture the small, detailed structures of the eye. A smoother,
more appropriate model was subsequently developed using an analytically gen-
erated eye model based on the known geometry of the eye. This type of model
has the further advantage of providing automatic generation of eye models to
represent patients with a variety of eye and cornea geometry.

The model generation algorithm accepts as input the radii of curvature for
the cornea and the larger eye globe, as well as the number and thickness of the
layers that form the outer shell of the eye. The algorithm produces as output
a finite element mesh composed of quadratic hexahedral elements. Quadratic
hexahedra provide excellent representation of the eye’s smooth curved surface
geometry with a relatively small number of mesh nodes and elements. Each
quadratic hexahedral elements had 27 nodes, as shown in Fig. 1. The eye mesh

Fig. 1. Illustration of the structure of a quadratic hex-
ahedral element. Each edge interpolates 3 nodes, result-
ing in a quadratic curve. The midpoint of each face and
the center of the element also have nodes that support
quadratic interpolation across all three spatial dimen-
sions.
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shown in Fig. 2 contains only 6804 nodes and 812 elements. Hexahedral elements
also provide excellent numerical properties for finite element analysis [10].

The eye model is generated using two superimposed spherical coordinate
systems. The model shown in Fig. 2 has realistic eye geometry, with a globe
radius of 11.5 mm and a cornea radius of 7.8 mm. A linear elastic material
model was used for the entire eye, but the stiffness and thickness of the different
layers of the cornea varied. For the model in Fig. 2, the corneal layers were
represented as shown in Table 1.

Mesh elements were created in layers to form concentric spherical shells. Each
node was provided with both spherical coordinates (θ, φ, r) and Cartesian coor-
dinates (x, y, z). A custom meshing pattern was developed to connect the cornea
mesh and the globe mesh so that the eye model consisted of one continuous fi-
nite element mesh. For this model, the interior of the eye was assumed to have
homogeneous material properties.

A linear elastic material model was applied to the eye model. The thick
stroma layers of the cornea are composed predominantly of collagen and water.
These layers account for much of the cornea’s strength, and were assigned a
Young’s modulus 160 kPa, consistent with published stiffness values [11], and a
Poisson’s ratio of 0.49 to indicate near incompressibility. The shell of the globe
was assigned the same material properties, while the interior of the eye and
thinner layers of the cornea were assigned the same Poisson’s ratio but were

Fig. 2. Left: Exterior view of an eye model. Center: View showing divisions between the
quadratic hexahedral elements that compose the finite element mesh. Right: Interior
view of the structure of the volumetric mesh.

Table 1. Eye model layers and thicknesses

Name Thickness (mm)
Epithelium 0.05
Bowman’s membrane 0.012
Stroma (anterior) 0.25
Stroma (posterior) 0.25
Descemet’s membrane 0.01
Endothelium 0.005
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Fig. 3. To model an incision along the top edge of the
cornea, connections between adjacent elements were re-
moved through all of the corneal layers. Connections be-
tween the elements that compose the homogeneous inte-
rior of the eye were left intact. The black curve along the
top corneal border indicates the placement of the cut.

given a Young’s modulus an order of magnitude smaller. This choice of material
properties was designed to capture the difference between the relatively tough
outer shell of the eye and the interior of the eye that is filled with a much softer
vitreous material.

To examine the effects of surgical incisions, a cut in the initial eye mesh was
made, as shown in Fig. 3. The 9.5mm incision was made along the top border
of the cornea and represents the incision made in an extra-capsular cataract
extraction procedure. The incision alone does not cause post-operative astigma-
tism, but forces acting on an incised cornea cause it to deform differently than
an intact cornea would. Therefore, two types of forces were defined to simulate
the stresses to which corneas are ordinarily subjected.

The first set of forces represented intra-ocular pressure. In this case, a uniform
force was applied across the cornea in the direction normal to the cornea surface
at each point. The normal range for intra-ocular pressure is 10-21 mm Hg. For
this experiment a pressure of 10 mm Hg was applied, which is equal to 1.33 kPa
distributed over the surface area of the cornea.

The second set of forces were muscular. The superior, inferior, lateral, and
medial recti eye muscles are the strongest muscles attached to the eye, and these
were approximated by force vectors applied tangentially at the locations where
those muscles insert on the globe. The applied muscle forces had three times the

Fig. 4. Illustration of two sets of forces applied to the eye. For both sets of boundary
conditions, nodes on the posterior portion of the eye remained fixed. These are marked
with black dots. Left: Eye model with muscle forces applied tangential to the globe.
Right: Eye model with intra-ocular pressure forces applied normal to the cornea.
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magnitude of the intra-ocular pressure, but were applied to a smaller area. The
force from each muscle was applied to a narrow patch located approximately
6.5 mm from the edge of the cornea. Fig. 4 illustrates both the muscle and
intra-ocular force vectors. To maintain stability and prevent model translation
or rotation under the application of these forces, the nodes on the posterior
surface of the globe were assigned fixed positions.

The application of forces to the incised cornea model produced a deformed
corneal surface, but further analysis was required to quantify the shape change.
The shape change was analyzed by performing a least-squares fit of quadratic
polynomial curves to the mesh nodes lying along the horizontal and vertical
meridians of the deformed corneas. The radius of curvature of the quadratic
curves was computed at the center point of the cornea, and then the radius of
curvature was converted to diopters, a measure of refractive power. This allowed
direct comparison between the model results and published patient data. Results
are presented in the following section.

3 Results

Visualization of the height maps of the original and deformed corneas produced
by the two sets of boundary conditions is provided in Fig. 5. Corresponding
numerical results are shown in Table 2.

The results show that for an incision along the top border of the cornea
model, muscle forces led to stretching and flattening of the cornea along the
horizontal meridian. Forces from intra-ocular pressure led to stretching and flat-
tening along the vertical meridian. This indicates that the two types of forces
tend to counteract each other in terms of causing astigmatism.

Merriam showed that for the type of cornea incision modeled in this experi-
ment, one month after surgery patients had an average of +1.6 diopters change
in the vertical meridian (steepening) and -1.4 diopters change in the horizontal

Fig. 5. Left: Contours of original, spherical cornea’s height map Center: Contours of
cornea model deformed by muscle forces, showing evidence of flattening in the hori-
zontal direction Right: Contours of cornea model deformed by intra-ocular pressure,
showing evidence of flattening in the vertical direction, but less pronounced than the
flattening caused the muscle forces.
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Table 2. Numerical results for the finite element model’s cornea curvature across the
horizontal and vertical meridians, given muscle force boundary conditions and intra-
ocular pressure boundary conditions

Vertical Axis Vertical Axis Horizontal Axis Horizontal Axis
Radius of Diopters Radius of Diopters

Curvature (mm) Curvature (mm)

Original Cornea 7.80 43.27 7.80 43.27

Deformed by
muscle forces 7.64 44.18 7.72 43.72

Deformed by
intra-ocular 7.89 42.76 7.59 44.47
pressure

meridian (flattening). However, five years after surgery patients exhibited astig-
matism in the reverse direction, with an average of -0.7 diopters change in the
vertical meridian and +0.6 diopters change in the horizontal meridian compared
to their pre-operative condition [1]. This is likely because the vision change in
first weeks after surgery is heavily influenced by tissue swelling and the heal-
ing response, whereas the long term vision change may be due to permanent
structural changes in the cornea.

The finite element model results indicate that the long-term astigmatism
observed in the patient population is consistent with the model deformation
caused by forces from intra-ocular pressure. However this preliminary result re-
quires further investigation, as not all of the factors influencing the cornea shape
were represented in the initial finite element model. In particular, the effects of
swelling and healing may influence the final visual result. In the healing pro-
cess, scar tissue is formed that has different mechanical properties than normal
cornea tissue. This scar tissue begins to form while the eye is still swollen from
the surgical trauma. Therefore the final, healed geometry of the eye may depend
on a patient’s degree of swelling, rate of healing, and scar formation process as
well as the forces exerted by intra-ocular pressure and eye muscles.

4 Conclusions and Future Work

In conclusion, this work has shown that the long-term astigmatism observed in
the patient population is qualitatively similar to the model deformation caused
by forces from intra-ocular pressure. However, extensive future work is needed to
produce and validate a biomechanical model that could be used to help predict
surgical outcomes.

Future work may expand on the current work in the following ways:

• Apply an oriented fiber tissue model to cornea.
The corneal stroma is known to be composed of oriented bundles of
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collagen [12]. The direction of collagen fibrils at a given point on the cornea
is related to that point’s distance from the center of the cornea and angle
from the horizontal and vertical axes. A finite element oriented fiber material
model requires that each element possess a vector that defines the direction of
the fibers. Although an isotropic material model was assumed for this initial
eye model, the use of spherical coordinate systems in the mesh construction
will facilitate the future implementation of an oriented fiber material model
for the cornea.

• Augment the finite element model with a time-dependent simulation of the
healing response.

By locally varying the cornea’s material properties over time to account
for swelling and scar formation, and then running the model over a number
of simulated months, the impact of the healing process could be examined. A
time-dependent simulation would also allow the influence of constant intra-
ocular pressure versus the intermittent application of muscle forces to be
investigated.

• Experiment with individualized eye models.
By generating a variety of eye models with different corneal thickness, dif-

ferent degrees and orientations of pre-existing astigmatism, different levels
of intra-ocular pressure, and different levels of muscle strength, the model
generated deformations could be compared to existing data on patient sur-
gical outcomes. This would assist in the development and validation of an
individualizable, predictive cataract surgery model. Additionally, the effect
of incision placement and size can be examined for the different eye models
to see if surgeons’ ability to reduce pre-existing astigmatism with carefully
placed incisions can be accurately replicated by the model.
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Abstract. Soft tissue characterization and modeling based on living tissues has 
been investigated in order to provide a more realistic behavior in a virtual real-
ity based surgical simulation. In this paper, we characterize the nonlinear vis-
coelastic properties of intra-abdominal organs using the data from in vivo ani-
mal experiments and inverse FE parameter estimation algorithm. In the assump-
tions of quasi-linear-viscoelastic theory, we estimated the viscoelastic and hy-
perelastic material parameters to provide a physically based simulation of tissue 
deformations. To calibrate the parameters to the experimental results, we devel-
oped a three dimensional FE model to simulate the forces at the indenter and an 
optimization program that updates new parameters and runs the simulation it-
eratively. We can successfully reduce the time and computation resources by 
decoupling the viscoelastic part and nonlinear elastic part in a tissue model. The 
comparison between simulation and experimental behavior of pig intra abdomi-
nal soft tissue are presented to provide a validness of the tissue model using our 
approach. 

1   Introduction 

Soft tissue characterization and modeling has been investigated in order to understand 
mechanisms of traumatic injury. For example, Farshad et al. [1] characterized the 
material parameters of pig kidney based on uniaxial tension tests on ex vivo samples. 
They were mainly interested in a tissue behavior under high speed or impact loading 
conditions, which occur in accidents, so their measurements were mainly ex vivo 
measurements. Recent developments in medical instruments have motivated the tissue 
characterization under the lower speed loading conditions and using the data from in 
vivo measurements which are expected to provide the properties of living tissues.  
Davies et al. [2] developed a two dimensional mathematical model for pig  
spleen tissue from uniform compression tests using a large-area indenter. They solved 
the nonlinear constrained boundary value problems numerically with an exponential 
stress-strain law and a finite element model (FEM).  By varying the model size,  
they showed that the forces measured at the indenter were insensitive to the size of  
the model.  Miller [3] developed a three-dimensional, hyperelastic, viscoelastic  
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constitutive model for abdominal organ tissues. The model was developed from a 
strain-energy function with time dependent constants.  

Although in vivo experiments can provide the data in a living state and they are es-
sential to develop soft tissue models for surgical simulation or rehearsal, the charac-
terization of soft tissue properties has not been successful. Because the target organs 
have non-uniform cross-sectional area and non-uniform strain across any given cross 
section.  An analytic solution based on the boundary value problem was not a good 
candidate, given the complexity of the material behavior, the organ geometry, and the 
three-dimensional deformation imposed on the surface. To circumvent these difficul-
ties, inverse finite element estimation has been investigated recently. This method 
estimates unknown material parameters for a selected material law by minimizing the 
least-squares difference between predictions of a finite element model and experimen-
tal responses. In this paper, we estimated viscoelastic material properties of soft tissue 
by using the in vivo animal experimental data and a FE tool to provide a model for 
medical simulation or off-line analysis. 

2   In vivo Animal Experiments  

We measured pig’s liver and kidney under open surgical conditions to measure me-
chanical properties in vivo at the Harvard Center for Minimally Invasive Surgery in 
collaboration with surgeons from the Massachusetts General Hospital (MGH). A total 
of 10 pigs were used in these experiments. The pigs were first put under general anes-
thesia and placed on the surgical table. A midline incision was then made at its ab-
dominal region and dissection carried out on the anatomical structures to expose the 
organs. The indentation stimuli were delivered using the haptic interface device, 
Phantom Premium-T 1.5 (SensAble Technologies, www.sensable.com) that was pro-
grammed to perform as a mechanical stimulator. Reaction forces were measured us-
ing a six-axis force transducer, Nano 17 (ATI Industrial Automation) that was at-
tached to the tip of the Phantom. The transducer has a force resolution of 0.781 mN 
along each of the three orthogonal axes when connected to a 16-bit A/D converter.  
The indenter was a 2 mm diameter flat-tipped cylindrical probe that was fixed to the 
tip of the Phantom with the force transducer mounted in-between to accurately sense 
the reaction forces.  

3   Estimation of Soft Tissue Properties  

We used the quasi-linear viscoelasticity (QLV) framework proposed by Fung [5]. This 
approach assumes material behavior can be decoupled into two effects: a time-
independent elastic response, and a linear viscoelastic stress relaxation response.  These 
models can be determined separately from the experiments. The stresses in the tissues, 
which may be linear or nonlinear, are linearly superposed with respect to time.   

The three-dimensional constitutive relationship in the framework of QLV is given 
by, 
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where S(t) is the second Piola-Kirchhoff stress tensor and G(t) is called the reduced 

relaxation function. ))(( λES e  is called the pure elastic response of the material and 

can be nonlinear or linear. The reduced relaxation function G(t) is a scalar function of 
time and can be often expressed by the Prony series, 
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where P
ig are the Prony series parameters. 

For the nonlinear elastic response, we have used an incompressible hyperelastic 
material representation, which is commonly used for elastomer modeling. The  
material properties of a hyperelastic material can be determined by a strain energy 
function W.  Ideally, W is defined with only as many parameters as are required in 
order to make a FE model. There are many specific material models that could be 
used, depending on how to approximate the strain energy function. The strain energy 
function of the three-dimensional incompressible Mooney–Rivlin model is given by 

10 1 01 2( 3) ( 3)W C I C I= − + −
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where 10C , 01C are material parameters (having unit of stress) and 1I , 2I are principal 

invariants. Since the analytical solution considering the above material law and ex-
perimental conditions is very difficult, the Finite Element Method (FEM) has been 
widely used in simulation.  Through modeling of indentation experiments with the 
QLV approach, the final outcome of the FE simulation can be simply expressed as,  
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where sF  is the simulated force and ip is the material parameter containing the vis-

coelasticity and nonlinear elasticity.  For example, the number of the estimated pa-
rameters for the Mooney-Rivlin model is two. The goal of the characterization is to 
determine these parameters for a proposed material law by minimizing the errors 
between the simulated and the associated experimental measurements. This process is 
also called the inverse calculation because it is the opposite of an ordinary simulation 
(that is, solving for forces or displacements given material parameters and boundary 
conditions).    

Instead of estimating all required parameters in one step, we separated the charac-
terization process into two stages.  In the first step the viscoelastic parameters were 
determined from the normalized force responses against ramp-and-hold indentation 
from the experiments. With the viscoelastic parameters estimated in the first stage, the 
inverse FEM parameter estimation method was used to determine the remaining elastic 
parameters.. This separation of parameters is also similar to the work by Kauer et 
al.[6]. However, they fixed the time constants of the stress relaxation 
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Fig. 1. Flow chart for the developed parameter estimation algorithm  

(0.1s, 1s, 10s, and 100s), and fit their magnitudes, then determined the rest of the 
parameters using an inverse FEM calculation. In our work, the parameters in the vis-
coelastic model were estimated directly from the normalized force-displacement data 
in the experiments.  The overall procedures of the characterization are illustrated in 
Fig. 1.  

3.1   Determination of Viscoelastic Parameters 

In this section we develop a three-dimensional linear viscoelastic model of the soft 
tissue based on the force-displacement experiment data. The simplest lumped parame-
ter model that can capture the viscoelastic behavior of a solid is the three parameter 
linear solid model whose transfer function may be written as           
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where )(sF  and )(sδ  are the Laplace transformed force and displacement variables, 

ssF is the steady state value of the force response. τ is the relaxation time constant 

and α  is the ratio of the initial response of the system to a step in displacement to the 
steady state value ( α >1). Incidentally, this model has the similar to the Kelvin 
model.  The point indenter is a good choice for model parameter estimation since it is 
the closest approximation of a punch on an elastic half space. From linear elastostatics 
we know that the total force, P, required to indent a frictionless circular cylindrical 
punch, of radius 'a', into an isotropic elastic halfspace, by a distance D is given by  
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where G is the rigidity modulus, a is the diameter of the indenter and K is the bulk 
modulus.  

From the correspondence principle and the incompressibility assumption, the 
above equation can be simplified,  
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From the above equations, the step response rigidity modulus may be written as, 
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Using the above model and the experimental data, we can find iig τ,  by using 

lsqnonlin.m, which is a built-in function for the nonlinear curve fitting in MATLAB. 
This approach allows the rigidity modulus to be expressed as a Prony series expansion 
in the time domain. Table 1 lists the computed Prony series parameters of the selected 
experiments.  

3.2   Estimation of Nonlinear Elastic Parameters   

In our application, the compared quantities are the simulated forces from the FEM 
simulation and the associated experimental forces at the indenter. Therefore, we can 
minimize a nonlinear sum of squares given by 
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where Fe, Fs, it , m are measured forces, simulated forces, time and the total number 

of data points, respectively. Among several optimization algorithms that could be 
used, we adopt the nonlinear least square optimization known as the Marquardt-
Levenberg algorithm.  

Although the Levenberg-Marqudt has been used successfully in finite strain 
applications [7], the entire process is computationally expensive.  The FEM 
simulation, in which a few hours per run, is repeated as many times as necessary until  
 

Table 1. Prony series parameters from the normalized force data  

Organ Depth (mm) 1τ  (sec)  2τ  (sec) 1g
 2g

 
2ε

 
Liver 6  1.537 6.090 0.2866 0.2022 0.0754 

Kidney 5  0.741 6.171 0.2054 0.2725 0.0653 

Kidney 4  0.747 6.021 0.2305 0.2105 0.0867 
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the simulated results match the experimental results. The Jacobian vector is calculated 
at each iteration but this requires perturbing one parameter, running the entire FEM 
simulation, and measuring the effect of the perturbation.  To construct the vector, this 
must be repeated for each parameter. Thus, for five free parameters, the FE model 
must be solved six times per iteration (the sixth solution is the reference to which the 
perturbations are compared). The entire characterization process takes several itera-
tions to converge so the computational time is very large and hence it is better to 
reduce the number of parameters as much as possible as in our approach. It was this 
computational expense that led us to identify the viscoelastic parameters before un-
dertaking the inverse FEM simulation.  This allowed us to iterate using only two 
(Mooney-Rivlin) free parameters. Fig. 2 shows the developed model in ABAQUS.  In 
our experiments, the deformation field appeared to be insensitive to the organ geome-
try.  This made sense, since our indentations were small (millimeters) compared to the 
organs (centimeters). Accordingly, we simplified our analysis by modeling a sub-
domain of the organ. The size and the mesh density of the model are carefully ad-
justed to ensure a well-conditioned solution. Nonlinearities from both the material 
model and from large geometric deformation were allowed. 

The contact between the indenter and tissues was modeled with a contact mechan-
ics module in ABAQUS and the non-uniform element density over the model was 
used to improve accuracy of the contact region. We implemented the Levenberg-
Marquardt algorithm with the Python language, which is a way to control the inputs 
and outputs of ABAQUS. 

With the approximate initial values from the ABAQUS evaluation function, we 
used our Python code to iterate the FE model and update the parameters automati-
cally.  The parameters reached convergence with four or five iterations.  Table 2 pre-
sents the initial parameters and converged parameters for both hyperelastic material 
models.  With a good guess from a priori knowledge of the parameters, the parame-
ters converged with three or four iterations in most of cases. Fig. 3 shows the pre-
dicted forces from the FE simulation with the estimated parameters and experimental 
forces for the pig liver and kidney. The force responses of the hyperelastic model in 
ABAQUS match the experimental data well. 

 

Fig. 2. FEM simulation of the experiment developed with ABAQUS. The upper right shows the 
shape of sub-domain region for the simulation. 
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Table 2. Initial and estimated parameters in the Mooney-Rivlin model 

Condition Initial parameters 
Iteration 
Number 

Final  
parameters  

2ε  

Organ Indentation C10 (Pa) C01(Pa)  C10(Pa) C01(Pa)  

Liver 6mm 83.18 84.76 3 322.96 161.47 0.0028 
Kidney 5 mm 682.31 700.02 2 868.66 467.11 0.0031 

 

Fig. 3. Force responses of the model prediction and the experiments. (Left) liver with 5mm 
indentation. (Right) kidney with a 6mm indentation. The responses in (b) shows this noisy 
signal. 

4   Concluding Remarks 

In this paper, we have characterized the mechanical properties of intra-abdominal 
organs from the in vivo animal experiments. To calibrate the parameters to the ex-
perimental results, we developed a three dimensional FE model to simulate the forces 
at the indenter and an optimization program that updates new parameters and runs the 
simulation iteratively. Key assumptions in our approach are that the organs are in-
compressible, homogenous, and isotropic, and that the deformations we imposed were 
small compared to the size of the organ. With these limitations in mind, the material 
models presented in this study offer two basic uses in a VR-based medical simulation. 
First, they can be used directly in the simulator to compute visual deformations and 
interaction forces that are displayed in real time. Second, the mathematical models 
presented here can be used as a standard for the evaluation of new real time algo-
rithms for computing deformation. 
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D.L.G. Hill4,�, and R.S. Razavi1

1 Division of Imaging Sciences, King’s College London,
5th floor Thomas Guy House, Guy’s Hospital, London, UK

2 Jean Leray Mathematics Laboratory, Nantes University, France
3 Epidaure Research Project, INRIA, Sophia Antipolis, France

4 Centre for Medical Image Computing, University College London, UK
derek.hill@ucl.ac.uk

Abstract. Cardiac ablation procedures are becoming more routine to
treat arrhythmias. The development of electrophysiological models will
allow investigation of treatment strategies. However, current models are
computationally expensive and often too complex to be adjusted with
current clinical data. In this paper, we have proposed a fast algorithm to
solve Eikonal-based models on triangular meshes. These models can be
used to extract hidden parameters of the cardiac function from clinical
data in a very short time, thus could be used during interventions. We
propose a first approach to estimate these parameters, and have tested it
on synthetic and real data derived using XMR imaging. We demonstrated
a qualitative matching between the estimated parameter and XMR data.
This novel approach opens up possibilities to directly integrate modelling
in the interventional room.

1 Introduction

The treatment of cardiac arrhythmias has changed considerably in the last fifteen
years. Radio-frequency cardiac ablation techniques are becoming widely available
as an alternative treatment to drug therapy. These are carried out under x-ray
fluoroscopic guidance, with specialised catheters for making invasive recordings
of the electrical activity in the heart, and even reconstruct the chamber geometry
(CARTO from Biosense, EnSite from ESI).

These procedures can be highly effective with minimal side effects, but in
some groups of patients have unsatisfactory success rates, are often very long,
and can involve high x-ray radiation dose to both patient and staff. Moreover,
serious side effects can arise if the lesions extend beyond the target area. There
is a need for substantial innovation in order to reliably achieve successful results
in an acceptable time, with lower radiation dose and reduced risk of accidental
damage to adjacent structures.
� Corresponding author.
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The aim of this research work is to design models of the cardiac electrical
activity that are suited for clinical use and to propose methods to combine these
models with interventional data in order to better estimate the patient cardiac
function and help in the guidance of procedures.

1.1 Electrophysiology Models

Modelling the electrophysiology of the cell is an active research area since the
seminal work of Hodgkin and Huxley [1]. The precise modelling of the my-
ocardium involves a cell membrane model embedded into a set of partial dif-
ferential equations (PDE) modelling a continuum. We can divide these models
into three categories, from the more complex to the simpler (numerically):

– Biophysical models: semi-linear evolution PDE + ionic models. Up to fifty
equations for ion concentrations and channels (Luo-Rudy, Noble)

– Phenomenological models: semi-linear evolution PDE + mathematical sim-
plification of biophysical models. Reducing to two equations representing the
intra- and extra-cellular potentials (bi-domain, mono-domain)

– Eikonal models: one static non-linear PDE for the depolarisation time de-
rived from the previous models (Eikonal-Curvature, Eikonal-Diffusion)

Solutions of the evolution PDE are very computationally demanding, due to the
space scale of the electrical propagation front being much smaller than the size
of the ventricles. The motion of the front governed by the Eikonal equation is
observed at a much larger scale, resulting in much faster computations.

For our interventional purpose, and as parameter adjustment often requires
several simulations, we want to design a very fast model. Moreover, clinical data
currently available is mainly on depolarisation times. For these reasons we chose
to base the presented work on the Eikonal models. Even if these models are not
able to precisely simulate the whole range of cardiac pathologies, they open up
possibilities for fast estimation, filtering, interpolation and extrapolation. The
long-term goal is to build up a hierarchy of models where a more complex model
could be used in pathological areas.

1.2 Clinical Measures

XMR suites are a new type of clinical facility combining in the same room a
MR scanner and a mobile cardiac x-ray set. The patient can be easily moved
between the two systems using a specially modified sliding MR table top that
docks with and transfers patients to a specially modified x-ray table. Techniques
have been designed to register the two imaging spaces [2]. Therefore it is possible
to combine patient anatomy with electrophysiology recordings.

2 A Fast Electrophysiology Model

The classical Eikonal equation is:

c‖∇T ‖ = 1 (1)

where T is the depolarisation time and c is the local propagation speed.
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However, the propagation in an excitable medium like the myocardium de-
pends on the curvature of the propagating front. It can be explained physically
by the fact that if a convex front is propagating outward, the excitation of the
neighbours is more spread out, so the excitation is slower than for a planar wave.
Two different formulations have been proposed to introduce this effect. Both are
based on asymptotic development of the solution around the activation front
given by the Nagumo equation: ∂tu = DΔu + kf(u), where u is the action po-
tential. f and k describe the cell membrane, they refer to the ionic reactions in
the cell. D is the volumetric electrical conductivity of the tissue i.e. the transmis-
sion of the electrical wave from cell to cell. In the case of cardiac pathology, the
conductivity and the ion channel mediated change of polarisation of the cardiac
cells can be both involved.

The two resulting formulations are the Eikonal-Curvature equation [3]:

c
√
kD‖∇T ‖ −Dκ(T ) = 1 (2)

with κ(T ) = ‖∇T ‖div
(

∇T
‖∇T‖

)
, and the Eikonal-Diffusion equation [4]:

c
√
kD‖∇T ‖ −DΔT = 1 (3)

c is a constant depending only on the function f .

2.1 Fast-Marching Approach

Different numerical approaches have been proposed to solve these equations. A
temporal evolution term and finite differences have been applied to Eq. 2 [3]:
c
√
kD‖∇T ‖ −Dκ(T ) = ∂tT , and an evolution term and finite elements to the

Eq. 3 [4]: ∂tT + c
√
kD‖∇T ‖ −DΔT = 1.

A time dependant PDE like these needs up to thousands of iterations, each of
which might be a linear (or non-linear) system to solve. Furthermore, additional
stability conditions constrain the computations. The static solving of Eikonal
equations 2 and 3, first proposed by [5] with a Newton’s method, requires to
solve only one non-linear system of equations.

For sake of efficiency, our approach is also to directly solve the static equa-
tions 2 and 3, but takes advantage of the Fast-Marching Method (FMM) [6] to
solve the non-linear system. FMM are numerical algorithms for solving Eq. 1 on
a Cartesian grid in O(M logM) steps (O(M2) for a Newton’s method), where M
stands for the number of grid points. Consistent upwind discretisations of the
gradient are used that select the correct viscosity solution, and leads to a causal-
ity relationship between the unknowns: the solution at a grid point depends only
on the smaller adjacent points, and the unknown can be computed from point
to point in an ascending manner.

We evaluate a first guess T0 for T by solving the Eq. 1 with the FMM, and
then compute the curvature effect from T0 to correct the equation and re-evaluate
T . The iterative process is: c‖T k+1‖ = 1+F (T k), where F (T k) = κ(T k) for Eq. 2
and F (T k) = ΔT k for Eq. 3. The curvature term being only a small perturbation
of the equation, the sequence (T k) hopefully converges quickly. Then its limit is
a solution of the discretised equation.
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2.2 Unstructured Grids Implementation

The complexity of the heart geometry is difficult to describe with structured
grids. Moreover, most of the 3D medical data is in the form of triangulated
surfaces or point clouds. It is thus important to be able to deal with this kind
of domain. This is why we implemented our algorithm on triangulations.

The FMM has been extended to unstructured grids, with criteria on the tri-
angles to compute the narrow band values [7]. We implemented Eq. 3 using using
P1 Lagrange Finite Elements to compute the Laplacian. Experimental evidence
suggests no flux on the myocardium surface, so we use Neumann boundary con-
ditions. We integrate this in the stiffness matrix K: Kij =

∫ ∇φi∇φj coming
from an integration by parts of the Laplacian in the variational formulation,
with φi and φj the P1 Lagrange shape functions.

We compute the curvature flow for Eq. 2 with the formula proposed in [8].
We adapted the edge-based formula into a triangle-based formula, faster for the
neighbourhood iterators we are using, and to cope with the presence of holes in
the mesh. The curvature flow at point i is then:

κ(T ) ≈ ‖∇T ‖i

∑
n∈Ni

W i
j (Tj − Ti) +W i

k(Tk − Ti)∑
n∈Ni

meas(n)

with Ni the triangle neighbour set incident to i; j and k the two other ver-
tices of triangle n (and αj , αk the corresponding angles); ‖∇T ‖i the point-
wise mass-lumped Galerkin approximation of the gradient in i; and W i

j =
cotan(αk)/(2‖∇T ‖n); and meas(n) the area of n.

Our C++ implementation using the sorted containers of the Standard Tem-
plate Library and precomputed neighbouring iterators makes it possible to com-
pute the FMM and these terms in less than a second for a 13 000 nodes mesh.

2.3 Validation of the Algorithm: Convergence and Precision

The numerical approach has been tested on Eq. 2 with c = 1 and α = 0.002,
on a family of unstructured meshes with up to 13092 nodes. Since we study
the effect of curvature, the front is initially a circle of radius r0 = 0.1 in the
square [−1, 1]× [−1,−1]. As a consequence, the solution is expected to be mainly
dependent on r =

√
x2 + y2 so that its curvature κ = 1/r varies from 1/r0 = 10

down to 1.
The computation of numerical solutions to Eq. 2 introduces errors when

approximating the differential terms by differences on a mesh of nodes, and also
when solving the resulting non-linear discrete problem.

We investigated numerically:

1. the algorithmic convergence of the sequence of approximation T k towards
a limit, expected to be the solution TN of the discrete problem on a given
mesh with N nodes, Fig. 1 (Left);

2. the mesh convergence of the solution TN as N → ∞, Fig. 1 (Right).
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Fig. 1. (Left) Convergence of the algorithm for different mesh sizes. (Right) Evolution
of the error with the mesh size.

Concerning point 1, the sequence T k seems to converge, as shown in Fig. 1 Left.
The number of iterations necessary for the residual correction ‖T k+1 − T k‖∞
to be of order 10−10 increase slowly as N , but remains reasonable: about 50
iterations on a 13 092 nodes mesh, which means that 50 FMM solutions has
been successively computed. Our FMM iterative algorithm looks like a good
replacement for a Newton’s method.

Concerning point 2, a reference solution is constructed on the finer mesh, and
compared to the solutions on coarser meshes. As expected from the first order
upwind differences used to discretise the gradient, the error decreases as 1/N (ie
as h

1
2 in 2D, standard for such methods). Of course higher order methods exist

to discretise the gradient in an upwind manner. But, on unstructured meshes,
they are not usually compatible with a Fast-Marching type algorithm.

3 Local Apparent Conductivity Estimation

Depolarization times on the endocardium are difficult to interpret due to the
influence of the geometry and the curvature. The idea is to estimate hidden
parameters using the proposed model and the clinical measurements in order to
help diagnosis and therapy planning from electrophysiology study. A first step is
to locate differences in local conductivity. In this section, we present a method
to estimate this parameter using the fast Eikonal-Curvature model presented in
the previous section (it could also be applied to the Eikonal-Diffusion).

Such parameters could eventually be estimated from the measured data using
a signal processing approach. The model based method has the advantage of
allowing the use of the model in a predictive way, once adjusted to the data.
This can be very useful to test therapies and plan interventions. Moreover, it
can be extended to partial observations: we aim to model the whole volumetric
myocardium, but we will still have only access to surface data.

Estimating the parameters of a model from patient specific data is part
of the field of data assimilation. Existing methods are generally based on the
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minimisation of the quadratic error between the model and the data: C(P) =∑
i(T

m
i −T s

i (P))2, where Tm
i is the measured depolarisation time at vertex i and

T s
i (P) is the depolarisation time at vertex i computed with the set of parameters

P. The minimisation is either sequential like in Kalman filtering based methods
or global like in adjoint methods.

The time introduced in Eq. 3 or 2 to solve the Eikonal equation is an arti-
ficial time, therefore the sequential methods are not the natural framework to
solve this problem. Moreover sequential methods involve the updating of all the
variables and of a covariance matrix of the same size, involving additional com-
putational costs. The adjoint methods propose a precise method to compute the
gradient of C but the numerical scheme proposed, alternating a fast marching
step and the computation of diffusion/curvature term, implies that the adjoint
methods are not directly applicable to this problem.

The adaptation of one of these methods to the proposed discrete model is still
work in progress. As a first approach, we proposed to adjust the conductivity
parameter D by iterating the two following steps:

– convergence of the Eq. 2 using presented algorithm
– local adjustment by multiplying D by 1 + ε or 1 − ε depending on the sign

of the difference between the measured and simulated depolarisation times

We expect this parameter to be different (smaller) in pathological regions.

3.1 Synthetic Data

We simulated on a triangulated sphere different propagation conditions to test
the estimation procedure. On this normalised test, c0 = 1, k = 1, D0 = 0.01. We
defined three different zones: one excitation zone for the initialisation, one zone
where D = 2D0, and one zone where D = D0/2. We simulated the propaga-
tion and stored the depolarisation times. We then started the data assimilation
procedure with D = D0.

After convergence of this procedure, we obtain a mean error of 2.95 × 10−3

and a maximum error of 8.46 × 10−3 on the depolarisation times which are
between 0 and 31 (arbitrary units). We were thus able to detect very precisely
the areas with different conductivity and these conductivities were well estimated
(cf Fig. 2).

3.2 XMR Interventional Data

XMR registration makes it possible to integrate in a same coordinate space
the electrophysiology measurements and the patient anatomy. This opens up
possibilities to obtain very rich data to validate the estimation procedure, as
MR can give spatial information on the location of the pathology.

We used measurements from the Ensite system (Endocardial Solutions),
which is a non-contact invasive catheter based device for recording the elec-
trical activity of the heart (reconstructed on 256 points). Due to the tangential
aspect of the fibre orientations, we believe that the 3D aspect of the propagation
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Fig. 2. (Left) Simulation of different conduction zones with D twice the normal value
(left zone) and half the normal value (right hexagonal zone). (Middle) Resulting
isochrones with the Eikonal-Curvature equation. The excitation zone is on the right
side of the sphere. (Right) Estimated D with the parameter estimation procedure.
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Fig. 3. (Left) Initial propagation with standard parameters. (Middle) Resulting
isochrones with adjusted the Eikonal-Curvature equation . (Right) Estimated D with
the parameter estimation procedure. Mesh: 256 nodes.

Fig. 4. Matching between the conductivity estimated with the described procedure
and a scar segmented in a late enhancement MR image (white voxels). The complete
XMR registration involves non-rigid deformation, this is why the shape of the basket
is different between Fig. 3 and Fig. 4.

does not interfere too much with the surface endocardial recordings. This data
is from a patient with a left bundle branch block, so the initialisation does not
come from the Purkinje network, but through the septum. From these record-
ings, we initialise the depolarisation in the model. We then adjusted the local
conductivity. We obtain a mean error of 7.75 × 10−1 ms and a maximum error
of 9.75 ms on the depolarisation times which are between 0 and 66 ms.
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The XMR registration makes it possible to locate these electrophysiology
measurements in the MR coordinate space. This patient had multiple scars in
the myocardium, leading to a left bundle branch block and poor cardiac function.
Using late enhancement MR, some of these scars were manually segmented by
an expert. The local apparent conductivity estimation procedure can then be
compared with the scars locations. Precise comparison is still work in progress,
but the first results obtained compare qualitatively well with the segmented scar.
We can see in Fig. 4 that the segmented scar corresponds to a lower apparent
conductivity zone (blue).

The mean value of the adjusted local apparent conductivity is 0.0149 and
the maximum value is 0.0309.

4 Conclusion

We presented in this article a new algorithm to achieve fast simulations of elec-
trophysiology, along with a procedure to adjust the model parameters from inter-
ventional data. This algorithm has been validated on analytical solutions and the
procedure has been tested on synthetic and real data. It was used to estimate
the local apparent conductivity from interventional data, and the first results
obtained are very encouraging. Having such a model opens up possibilities for
real-time filtering and interpolation of electrophysiology recordings. Moreover,
hidden parameter estimation is of great use for a better evaluation of the extent
of the pathology and for planning of the therapy . An excellent example appli-
cation is the planning of bi-ventricular pacing therapy for treatment of heart
failure. A model with accurate information on the local conductivity would al-
low a better placement of the pacing leads and thus man improve of the 50-60%
success rate of the procedure.

This simulation part could be improved by using higher order schemes for the
FMM and the curvature term, and the improvement of the implementation in
case of obtuse angles in the triangulation. The current implementation does not
treat these cases separately, but the numerical schemes should be different. Also,
including the fibre orientations, which is rather straightforward in this formula-
tion, could give more reliable results. We also plan to study more sophisticated
estimation procedures, to achieve a precise and robust adjustment. In particular,
we want to study the possibility to adapt a sequential method, like unscented
Kalman filtering, or adjoint methods to this parameter estimation problem.

References

1. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its
application to conduction and excitation in nerve. J. of Physio. 177 (1952) 500–544

2. Rhode, K., Hill, D., Edwards, P., Hipwell, J., Rueckert, D., Sanchez-Ortiz, G., Hegde,
S., Rahunathan, V., Razavi, R.: Registration and tracking to integrate X-ray and
MR images in an XMR facility. IEEE Trans. on Med. Imaging 22 (2003)

3. Keener, J., Sneyd, J.: Mathematical Physiology. Springer (1998)



A Fast-Marching Approach to Cardiac Electrophysiology Simulation 615

4. Franzone, P.C., Guerri, L., Rovida, S.: Wavefront propagation in activation model
of the anisotropic cardiac tissue. J. Math. Biol. (1990)

5. Tomlinson, K., Hunter, P., Pullan, A.: A FEM for an eikonal equation model of
myocardial excitation wavefront propagation. SIAM J. Appl. Math. (2002)

6. Sethian, J.: Level Set Methods and Fast Marching Methods. CUP (1999)
7. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proceedings of

National Academy of Sciences 95 (1998) 8431–8435
8. Barth, T., Sethian, J.: Numerical schemes for the Hamilton-Jacobi and Level Set

equations on triangulated domains. J. of Computational Physics 145 (1998) 1–40



An Inverse Problem Approach to the Estimation
of Volume Change

Martin Schweiger1, Oscar Camara-Rey2, William R. Crum2, Emma Lewis2,
Julia Schnabel2, Simon R. Arridge1, Derek L.G. Hill2, and Nick Fox3

1 Department of Computer Science, University College London
2 Centre for Medical Image Computing, University College London

3 Dementia Research Centre, Institute of Neurology, University College London

Abstract. We present a new technique for determining structure-by-
structure volume changes, using an inverse problem approach. Given a
pre-labelled brain and a series of images at different time-points, we gen-
erate finite element meshes from the image data, with volume change
modelled by means of an unknown coefficient of expansion on a per-
structure basis. We can then determine the volume change in each struc-
ture of interest using inverse problem optimization techniques. The pro-
posed method has been tested with simulated and clinical data. Results
suggest that the presented technique can be seen as an alternative for
volume change estimation.

1 Introduction

There are a wide number of clinical applications where it is desirable to localize
structural change from serial imaging, such as dementia, tumour growth and
multiple sclerosis. Several approaches have been proposed to estimate such vol-
ume changes [1,2,3]. The most powerful make use of serial imaging in conjunction
with image registration techniques such as the BBSI [1], the SIENA [2] or the
VCM [3]. These techniques are mostly based on a voxel-by-voxel analysis, while
clinical interest is normally in structure-by-structure changes.

We propose a new technique for determining structure-by-structure volume
changes, using an inverse problem approach. Given a pre-labelled brain, and a se-
ries of images at different time-points, we generate finite element meshes from the
image data, with volume change modelled by means of an unknown coefficient of
expansion on a per-structure basis. The inverse problem then consists of recov-
ering the coefficients of expansion for each structure which would result in the
observed volume changes in the mesh. Therefore, the algorithm directly solves
for the unknown volume changes in anatomically relevant structures, rather than
using an arbitrary regular voxel array. This approach in due course will enable us
to incorporate more anatomical and histological information about the disease.

The method has been applied to the recovery of synthetic deformations sim-
ulated by an elasticity forward model, to test its robustness in the presence of
background noise and local perturbations. Furthermore, it has been applied to 9
pairs of Alzheimer’s disease patient images to identify the rate of brain volume
change.
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2 Inverse Problem

2.1 Finite Element Deformation Model

We use a thermoelastic model of soft tissue deformation to simulate the change
in brain structure caused by degenerative diseases such as Alzheimer’s disease.
Thermoelasticity is a convenient way of inducing structural volume change but
it should be noted that the thermal expansion coefficient in this model does not
have a physical meaning beyond introducing an initial stress term that leads to
a volume displacement field. This avoids the need of more accurate models of
tissue thermal distributions such as the bioheat equation [4].

The deformation model employs a linear elastic finite element method [5].
Each element of the generated tetrahedral meshes is assigned a set of elastic
material properties represented by the elasticity matrix D. The finite element
solver is based on the TOAST package [6] which is freely available1. In this paper
we consider isotropic elastic deformations, where D is symmetric and can be
expressed in terms of two parameters, usually Young’s modulus E and Poisson’s
ratio ν. The elastic coefficients are assumed time-invariant. The deformation of
the mesh is induced by assigning an isotropic thermal expansion coefficient α(i)

to each element i, and simulating a global temperature changeΔT . The resulting
isotropic thermal expansion enters the description of elastic deformation in the
form of an initial element strain ε

(i)
0 = { α(i) ΔT , α(i) ΔT , α(i) ΔT , 0, 0, 0 },

where the relation between stresses σ and strains ε is given by

σ(i) = D(i)(ε(i) − ε
(i)
0 ) + σ

(i)
0 (1)

Assembling all element contributions of the mesh leads to the linear system

Ku + f + f ′ = r, Kij =
∫

V

BT
i DBjdV (2)

with stiffness matrix K. In an n-noded element, B is the 6×3n strain displacement
matrix B = {Bi} with

Bi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂x 0 0
0 ∂Ni

∂y 0
0 0 ∂Ni

∂z
∂Ni

∂y
∂Ni

∂x 0
0 ∂Ni

∂z
∂Ni

∂y
∂Ni

∂z 0 ∂Ni

∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, f ′ =

∫
V

BT Dε0dV, (3)

given nodal shape functions Ni. f ′ contains the volume forces arising from the
initial thermal strain, f combines all other surface and volume force terms, r
defines explicit displacements, and u is the vector of nodal displacements.
1 http://www.medphys.ucl.ac.uk/∼martins/toast/index.html
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2.2 Inverse Model

We formulate the inverse problem of coefficient reconstruction as follows:

Given two meshes corresponding to a baseline state and a distorted tar-
get state, e.g. obtained from segmented patient images at two stages of
disease, recover the coefficients of expansion α(i), i = 1 . . .m in a suit-
able basis of dimension m that, applied to the baseline state, minimise
an error norm of difference between the transformed baseline state and
the target state.

In this paper we consider an objective function ψ that defines the square sum of
nodal displacements ai → āi between two states,

ψ =
∑

i

|ai − āi|2. (4)

If the mesh representations of the two states are not structurally equivalent, a
suitable nodal interpolation of the displacement field must be applied. Given
the mesh discretisation, the distribution of coefficients of expansion α(r) can
now be represented in the element basis α(i) of the mesh. For the purpose of
reconstruction we restrict the search space by the additional assumption that
the expansion coefficients be homogeneous or piecewise homogeneous within each
of a set of anatomical structures of the brain. The inverse problem thus reduces
to finding one coefficient of expansion for each segmented region or subregion.
Let m be the number of regions, and n the number of mesh nodes. To recover
α = {α(i)} ∈ Rm, we employ an iterative Levenberg-Marquardt solver,

αk+1 = αk + (JT
k Jk + ηI)−1(JT

k (ak − atgt)), (5)

where ak and atgt are the nodal positions of the deformed and the target mesh,
respectively, and J ∈ Rn×m is the Jacobian matrix Jij = ∂ui

∂αj
, and η is a trust-

region control parameter. Because m is small, J can be calculated by explicit
perturbation of the region coefficients.

3 Experiments and Results

We obtained the labelled reference images identifying brain tissue types of the
baseline MR image with the FAST algorithm [7]. From the labelled reference
image we generated a surface mesh of the whole brain with the marching cubes
algorithm [8]. Volume finite element meshes were then obtained using the NET-
GEN mesh generation software2.

In this paper we present two initial tests of reconstruction of the coefficients
of expansion: In the first test, synthetic target images are generated by a for-
ward model of thermoelastic deformation, given distributions of the elastic and

2 http://www.hpfem.jku.at/netgen/
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thermal coefficients in the volume domain. The reconstruction algorithm is then
applied to recover region thermal coefficients from the mesh deformation. The
performance of the reconstruction algorithm in the presence of random back-
ground noise and localised perturbations is investigated. In the second test,
the reconstruction is applied to pairs of clinical MR images obtained from AD
patients at a 12-month interval. Comparison of the true changes with model
predictions from the reconstructed thermal coefficients gives an indication of the
fidelity of the reconstruction when applied to realistic structural change.

3.1 Simulated Deformation Recovery

A finite element brain mesh consisting of 163765 nodes and 868404 4-noded
tetrahedral elements, segmented into 5 regions of background, CSF, grey and
white matter and hippocampi was generated from MR data. To obtain the de-
formed target image, piecewise constant elastic and thermal coefficients were
applied to each of the regions. The region coefficients are shown in Table 1.

An axial cross section of the target distribution of thermal coefficient α is
shown in Fig. 1a). In addition to the homogeneous region coefficients, defor-
mations were generated from two further sets of coefficients, by adding random
Gaussian background noise (standard deviation σ = 0.03) to the coefficients
throughout the domain (Fig. 1b), and by including a localised perturbation of
α = −0.3 in the grey matter compartment of a frontal lobe (Fig. 1c).

Using the linear elasticity forward model, nodal displacements were calcu-
lated for each of the three parameter distributions. The surface of the mesh was
assumed to coincide with the inner surface of the skull, and Dirichlet bound-
ary conditions were introduced using a Payne-Irons (“big spring”) method to
suppress the displacements of boundary nodes. The nodal displacements served
as the target data for the inverse solver. For this simulation, the reconstruction
assumes correct region boundaries of the baseline mesh, and correct elastic co-
efficients E and ν. The initial estimate of the thermal coefficients α is zero for
all regions. The reconstruction results for the region α-values are compared to
the target values in the left graph of Fig 2. The imposed boundary condition
of fixing the mesh surface imposes a constraint of constant mesh volume on the
reconstruction, leading to a non-uniqueness which allows to recover α subject to

Table 1. Elastic material properties (Young’s modulus E × 103NM−2 and Poisson’s
ratio ν) and target coefficients of expansion (α) used for simulating deformation

region E ν α

background 1 0.45 0.000
CSF 1 0.45 0.300
grey matter 8 0.45 -0.050
white matter 4 0.45 0.030
hippocampi 1 0.45 -0.1
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Fig. 1. Axial cross sections of target thermal coefficient distributions. a) piecewise
constant region coefficients, b) added random Gaussian background noise, c) added
localised grey matter perturbation.
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Fig. 2. Left: Reconstructed region thermal coefficients for the 3 distributions shown
in Fig. 1. Right: reconstructed coefficients after mapping the displacement field onto a
coarse mesh.

an arbitrary global additive term. We take this into account by normalising all
results to a value of α = 0 for the background region.

We find that the reconstruction of homogeneous region parameters provides
good quantitative results, and that the addition of Gaussian random noise does
not affect the recovered values significantly. The application of a localised pertur-
bation of α has a more significant effect on the recovered region values, because
the target distribution is now no longer in the support of the region basis. It is
interesting to note that mostly the CSF and white matter regions are affected,
but not the grey matter region where the local perturbation was applied.

A further test was performed to investigate the effect of an imperfect knowl-
edge of the region boundaries on the parameter reconstruction, by mapping the
nodal displacements calculated for the piecewise homogeneous α-distribution
(case a) onto a coarser mesh consisting of 10749 nodes and 52297 tetrahedra.
The parameter reconstruction was then performed on the coarse mesh, using the
interpolated displacement field. The reconstructed region coefficients are shown
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in the right graph of Fig. 2. Due to the misalignment of region boundaries, the
target distribution is no longer in the solution space, leading to a degraded quan-
titative reconstruction. However, the qualitative expansion trends in all regions
are still recovered.

3.2 Clinical Data

From 9 pairs of Alzheimer MRI images taken at a 12-month interval the cor-
responding baseline and deformed meshes are generated by using mesh warp-
ing techniques [9]. This leads to pairs of meshes with conforming structure and
known volumetric differences. In future applications, this method can be replaced
by direct mapping of displacement fields between non-conforming meshes. The
generated meshes have between 79505 and 138916 elements. Label information
is mapped from the reference image into the mesh through a rasterization proce-
dure [10] which computes fractional element labels. To reduce the discretisation
error of mapping region boundaries into the mesh, additional boundary regions
containing mixed-label elements were introduced, leading to a total of 15 coeffi-
cients to be recovered.

Each brain grey-level image at each time-point was registered to the reference
image using a 9 degrees of freedom registration3 with Normalised Mutual Infor-
mation as the image similarity measure. Non-rigid fluid registration [11], run at
half image resolution was applied. Fluid registration has the advantage for mesh
warping purposes that provides diffeomorphic transformations (i.e. they do not
fold or tear). After mesh warping based on fluid registrations, we have observed
that the geometric quality of the meshes is only slightly reduced (the mean±STD
aspect ratio4 was (a) before mesh warping = 0.67±0.06 (b) after mesh warping
= 0.66±0.06), but it does not furnish critical elements (aspect ratio < 0).

Fig. 3. Comparison between observed and reconstructed volume changes of 4 regions
(background, CSF, grey and white matter) in 9 cases

After generating the conforming baseline and target mesh pairs for the 9
cases, the inverse Levenberg-Marquardt solver described in Section 2.2 was used

3 http://www.image-registration.com
4 The aspect ratio is defined as the ratio between the longest edge and the radius of

the inscribed circle in a tetrahedron, being 1 in the case of optimal quality.
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to recover the coefficients of expansion in the 15 generated regions which min-
imise the nodal displacement between the deformed baseline mesh and the target
mesh. In all cases, the reconstructions were started from an initial value α = 0
in all regions. The element volume changes introduced as a result of the recon-
structed deformation were then collected into the 4 segmented regions, using the
partial volume information from each element.

Figure 3 shows a comparison of volume changes between baseline and target
(dark bars) and between baseline and reconstruction (bright bars) for all 9 cases.
It can be seen that the reconstructed deformations predict the trend of volume
change correctly in the majority of cases, although the absolute values are not
always agreeing well. The results show that the thermoelastic deformation model
has a potential to describe the types of structure change seen in AD, but that
a further subdivision of the anatomical structure may be required to provide a
sufficiently large search space for accurate representation of the deformation in
the basis of the inverse solver.

4 Discussion and Conclusion

The method of recovering coefficients of expansion from a baseline and a de-
formed mesh has been shown to converge robustly in simulated data generated
from piecewise homogeneous region parameters even in the presence of random
zero-mean background noise and localised parameter perturbations. Where de-
formations were applied that could not be represented in the low-dimensional
basis of homogeneous region coefficients, a qualitative recovery of trends within
the regions is still feasible, but the quantitation of region parameters deterio-
rates. In that case, the convergence of the inverse solver could be improved by
further subdivision of the segmented regions and increasing the dimension of
the parameter solution space, for example by a segmentation into anatomical
sub-regions using information from manually segmented atlases that separate
structures likely to undergo structural changes in the course of disease. This will
maintain an anatomical interpretation of the deformation coefficients and allow
to easily distinguish between specific patterns of different types of dementia.

The proposed technique has also been applied to a set of 9 pairs of images
from AD patients. Despite the restriction to a low-dimensional solution space of
15 regions the reconstruction results show good qualitative agreement of region
volume change when compared with target data in the majority of cases. As
with the simulated data set, further improvement can be expected by increasing
the dimension of the search space. One strategy of parameter space refinement
that retains the correspondance with anatomical features would be a subdivision
of tissue types into separate lobes of the brain.

The results presented in this paper indicate that a region-based approach of
structure change can be seen as a feasible alternative to other volume change
estimation techniques. By representing the coefficients of deformation in a basis
that is directly associated with the underlying anatomical structure, the re-
covered expansion parameters can be interpreted more immediately than in a
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voxel-based technique in terms of anatomical change, such as grey-matter vol-
ume loss. A further subdivision of the basis representation into regions of interest
may be suitable to recover disease-specific parameters and so aid in the diagno-
sis of dementia. Future work will also be focused on a rigorous validation of the
presented technique, by comparing its performance with classical volume change
measurement methods such as the BBSI or the VCM.
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Abstract. Models that predict the soft tissue deformation caused by
needle insertion could improve the accuracy of procedures such as brachy-
therapy and needle biopsy. Prior work on needle insertion modeling has
focused on static deformation; the experiments presented here show that
dynamic effects such as relaxation are important. An experimental setup
is described for recording and measuring the deformation that occurs
with needle insertion into a soft tissue phantom. Analysis of the collected
data demonstrates the time- and velocity-dependent nature of the defor-
mation. Deformation during insertion is shown to be well represented
using a velocity-dependent force function with a linear elastic finite ele-
ment model. The model’s accuracy is limited to the period during needle
motion, indicating that a viscoelastic tissue model may be required to
capture tissue relaxation after the needle stops.

1 Introduction

An important source of error in needle insertion procedures such as brachy-
therapy and needle biopsy is the soft tissue deformation that occurs as a needle
is inserted. The guidance accuracy provided by a pre-operative planning image is
limited by the difference between the location of a tissue target pre-operatively
and its location intra-operatively, when the target and surrounding tissues are
deformed by needle insertion forces. Needle placement errors due to tissue defor-
mation have been documented for breast biopsy [1] and prostate brachytherapy
seed placement [2] [3]. If the deformation caused by needle insertion could be
accurately predicted, and the needle placement could be accurately controlled,
the effectiveness of needle-based procedures would be improved.

Various needle insertion simulators have employed heuristic models of tissue
stiffness supported by user studies but not experimental measurements of tissue
deformation [4] [5]. An impediment to the development of more realistic and
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carefully validated deformable tissue models is the scarcity of data about soft
tissue mechanical properties. Very limited data is available for prostate and other
soft pelvic and abdominal organs. Especially lacking from the literature are ex-
periments investigating the dynamic response of living soft tissue to interaction
with needles and other surgical instruments. The instrument-tissue experiments
that have been reported are limited to force recordings and do not include tissue
deformation data [6] [7]. Factors making the design of such experiments challeng-
ing include acquisition speed limits for 3D imaging modalities and the difficulty
of accurately extracting point displacements from soft tissue images.

Lacking force and deformation data for real tissues, prior work by DiMaio
and Salcudean [8] relied on data from needle insertions into a soft tissue phantom
for the development of an insertion simulation based on an elastostatic material
model. Our work also relies on phantom data, but differs in that it focuses
on the dynamic effects of needle insertion. Other related work includes the 2D
prostate needle insertion simulation developed by Alterovitz, et al. [9], and the
Truth Cube developed by Kerdok, et al. [10]. Our tissue phantom’s design was
inspired by the Truth Cube, a silicone gel volume with embedded fiducials whose
displacements were tracked to estimate the gel’s properties in compression tests.

2 Experiment Design

An 18 gauge diamond-tip brachytherapy needle was inserted at a constant ve-
locity into a tissue phantom impregnated with a grid of tiny fiducials for each
experiment trial. Needle forces were recorded for insertion velocities from 3 to 21
mm/s. The phantom deformation was monitored by optically tracking the fidu-
cial displacements. The experiment hardware included a specially constructed
tissue phantom, a device that precisely controlled needle motion, a force/torque
sensor, and calibrated stereo video cameras for recording fiducial motion.

2.1 Tissue Phantom

The tissue phantom was made of GE RTV-6166, the same transparent, homoge-
neous silicone gel used for the Truth Cube [10]. An experienced brachytherapy
surgeon selected this gel as providing more realistic resistance to a needle than
alternative soft plastic and porcine gelatin materials.

The phantom was constructed by pouring gel into an acrylic box in 8 mm
layers, placing it in a vacuum chamber to remove air bubbles, and then dropping
a row of 0.8 mm fiducials onto the surface as the gel began to set. Subsequent
layers were added before curing completed so that boundaries did not form
between layers. The needle was inserted perpendicular to the plane of the layers,
so variations in stiffness caused by the layer construction would have caused
periodic irregularities in the force data corresponding to the layer width. Layer
effects were deemed negligible because such irregularities were not detected.

The fiducials’ small size minimizes their influence on the material proper-
ties of the phantom tissue. Kerdok performed indentation tests on samples of
RTV-6166 with and without implanted fiducials and reported that there was no
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discernible change in its material properties even when using fiducials that had
nearly twice the diameter of the ones used in our work [10].

2.2 Needle Insertion Device
The needle was inserted using an en-
coded Maxon A-max 22 DC motor con-
nected to a translational stage via a cap-
stan drive. Constant velocity during inser-
tion was maintained using a proportional-
derivative controller for the needle stage po-
sition. A 6-axis force/torque sensor (Nano-
17 from ATI Industrial Automation) was
mounted at the needle base. Needle forces,
position, and velocity were recorded at 500
Hz. The phantom was attached to the nee-
dle insertion device as shown in Fig. 1 so
that the needle was aligned with the plane
of fiducials.

Fig. 1. Tissue phantom was 113 mm
× 135 mm × 30 mm; the fiducial grid
has 5 mm × 8 mm spacing

2.3 Fiducial and Needle Tracking

Insertions were recorded by two Sony DFW-X700 digital cameras at 7.5Hz and
640 × 480 resolution. A 9 × 9 grid of fiducials was tracked by convolving each
captured image with a rotationally symmetric Laplacian of Gaussian (LoG) ker-
nel that was width matched to the fiducials. The maximum match near each
fiducial was tagged as the fiducial’s center. Tracking results are shown in Fig. 2.

The needle trajectory was found by convolving one image from each trial
with a LoG kernel that was width matched to the needle diameter, selecting the
peak match points, and performing a least squares fit of a line to the match point
coordinates. Needle tip tracking was performed using images that were masked
to include only the portion of the image near the needle trajectory. Tracking was
accomplished by computing difference images between successive video frames.
The needle’s stripes caused bright bands in the difference images when the needle
was shifted; the leading band indicated the needle tip position.

2.4 3D Reconstruction and Error Estimation

The fiducial and needle tracking algorithms provide pairs of corresponding image
coordinates from the right and left camera views. From these, 3D coordinates

Fig. 2. Both camera views
are shown with tracked fidu-
cials marked by black circles.
Untracked peripheral fidu-
cials appear fainter. The fidu-
cials and needle are clearly
visible because the transpar-
ent gel is backlit.
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were computed using a standard computer vision algorithm that relies on stereo
camera calibration parameters [11]. The error present in the 3D coordinates can
be attributed to uncertainty in the camera calibration and to limitations in point
tracking accuracy. This error can be estimated by examining the coordinates
computed for the needle tip. Since the needle path is known to be a straight
line (there is no needle bending, as verified by visual and force data inspection),
the deviation of the 3D tip coordinates from a line is an indication of the error.
To investigate this, a least squares line fit was performed for the 3D needle tip
coordinates of nine trials. The mean distance between the tip coordinates and the
line was 0.73 mm with a standard deviation of 1.23 mm. The largest component
of the error was along the camera’s viewing direction, with a mean of 0.65 mm
and standard deviation of 1.10 mm in that direction.

3 Force and Deformation Data

3.1 Insertion Force

Needle forces were recorded for three insertions at each of the following velocities:
3, 6, 9, 12, 15, 18, and 21 mm/s. Fig. 3 shows total needle force versus insertion
depth for all trials, demonstrating a velocity-dependent effect. Fig. 4 graphs the
slopes of the curves in Fig. 3 vs. insertion velocity. As shown, a good approx-
imation to the force function is provided by a scaled and shifted log function.

3.2 Force Decay

A gradual reduction in force after the needle halts was another dynamic effect
observed. Fig. 5 shows the force decaying for 500 seconds after the needle halts.
The decay can be analyzed using the following time dependent function:

fi = (1 − αi) ∗ fi−1 (1)

Fig. 3. Total
needle force vs.
needle insertion
depth for dif-
ferent insertion
velocities
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αi represents the fraction of force that dissipates each time step. The αi values
in Fig. 5 were computed for the recorded force data. The shape of the α curves
suggested a good fit might be obtained using Gaussian functions. Thus, the
following function models α:

α(f) = hα∗G(f, σ, μ) where σ = (c1 ∗ max(f)) + c2 (2)
μ = (c3 ∗ max(f)) + c4

h = c5 ∗ σ
G(x, σ, μ) =

1
σ
√

2π
e

−(x−μ)2

2σ2 (Gaussian eqn.)

f is the needle force. Optimizing this model to fit the recorded data yielded con-
stant values: c1 = 0.1267 c2 = 0.7613 c3 = 0.8171 c4 = 0.8194 c5 = 2.15.
The force decay model with these constants is shown in Fig. 6. The difference
between recorded forces and model forces was at all points less than 0.5 N.
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3.3 Needle Shaft Force Distribution

The simplest force distribution is a constant force level defined by the slope
of the appropriate curve from Fig. 3. To investigate the validity of this simple
model, shaft force constants defined by the equation in Fig. 4 were integrated
along the length of the needle shaft for trials at different insertion speeds. The
results of the integration shown in Fig. 7 closely match the measured needle
forces, supporting a generally flat force distribution model.

To further examine the distribution of needle force, an optimization approach
was applied in conjunction with a finite element model. Using the
recorded experiment data, the fidelity of a needle model can be judged based on
the accuracy with which it predicts fiducial motion. For the optimization, needle
force models were represented by piecewise cubic splines. Two spline segments
were allocated for 3 mm near the tip, and one segment was allocated to each 10
mm along the rest of the needle shaft. The spline functions represented the force
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magnitude; consistent with the data recorded
from the force/torque sensor, the force direc-
tion was assumed to be the insertion direction.

The finite element model shown in
Fig. 8 was constructed with Femlab (COM-
SOL, Inc.). A linear elastic material model
was applied, with a Young’s modulus of 14.9
kPa based on the work by Kerdok [10], and a
Poisson’s ratio of 0.49 to indicate near incom-
pressibility. Fixed boundary conditions were
applied to the phantom sides held stationary
by the acrylic casing. Given a force distribu-
tion, finite element analysis yielded the defor-
mation and fiducial displacements, as shown
in Fig. 9.
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A quasi-Newton optimization method was applied to the force distribution
with the objective of minimizing the error in the predicted fiducial displacements.
A portion of the optimization results are shown in Fig. 10. Though noisy, the
optimized distributions indicate relatively constant force along the needle shaft
followed by a dip and pronounced peak at the tip. The force peak is required to
overcome the material’s resistance to cutting/crack propagation. The dip may
be due to a snap-back effect that occurs as compressed tissue at the tip fractures
and relaxes. The mean error in the predicted fiducial motion was 0.31 mm, with
a standard deviation of 0.21 mm. Optimization was performed over a period of
two weeks using a PC workstation with two 3.2 GHz Intel Xeon processors.

Based on these results, the following time and velocity-dependent function
for needle force was constructed to fit the experiment data:

Fig. 8. Femlab phantom tissue model and tetrahe-
dral mesh with higher resolution around the needle

Fig. 9. Slices through the de-
formed finite element model
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fi(x, v) =

⎧⎪⎪⎨⎪⎪⎩
2 ∗ shaf tForce if v > 0, x < 1
0.5 ∗ shaf tForce if v > 0, 1 ≤ x < 2
shaf tForce if v > 0, x ≥ 2
fi−1 ∗ (1 − αi ∗Δt) if v = 0

(3)

where shaf tForce = log(0.415 ∗ v − 1.106) ∗ 0.015 + 0.058 (see Fig.4)

Here x is distance from the needle tip, v is insertion velocity, i is time step
index, αi is defined by Eqn. 2, and Δt is time step length. fi defines the force
magnitude applied in the direction of needle insertion. Constants in Eqn. 3 will
vary depending on the selection of needle and material.
The needle force function was constructed to satisfy these observations:

• The needle force depends on insertion velocity, as shown in Figs. 3 and 4.
• The majority of the needle force is evenly distributed along the shaft because:

(1) for constant velocity insertion the force increases at a nearly constant
rate (see Fig. 3) and (2) assuming a flat force distribution results in a total
needle force that closely matches the measured force (see Fig. 7).

• Optimization indicated a force peak at the tip preceded by a small force dip.
• When the needle halts, the force decays according to Eqns. 1 and 2.

4 Results

Force profiles were generated by the model given in Eqn. 3 and were applied to
the Femlab 3D finite element model. Some of the force profiles generated and
cross-sections of the corresponding fiducial displacements are shown in Fig. 11.
The results indicate this model produces an excellent approximation to the forces
and deformations recorded in the experiment during the active insertion phase.
When the needle halts, the model produces force relaxation that closely match
the decay in needle force recorded in the experiment (see Fig. 4). However, the
deformation produced by the model in the relaxation phase does not match the
recorded deformation as well. As shown in Fig. 11, the recorded deformation
decayed more quickly than the recorded force after the needle stopped.

5 Conclusions and Future Work
Through experimental observation and FEM modeling, this work has shown that
a static linear elastic tissue model combined with a dynamic force function can
accurately model forces and deformations during insertion at varying speeds.
However, the accuracy of the model diminishes during the relaxation phase after
the needle halts because real and phantom soft tissues are viscoelastic [12]. A
viscoelastic model, to be considered in future work, might account for differing
rates of force and deformation decay, consistent with the results shown Fig. 11.

It is not ideal that phantoms are used rather than in vivo tissues, but this is
necessary for repeatability and validation. Thus, future work may include tests
on real tissues, using a modified experimental setup. By using bi-plane x-ray
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Fig. 11. Column 1: model force profile for 50 mm insertion without relaxation and 120
mm insertion with 5 sec. relaxation. Column 2: model and experiment displacements for
50 mm insertion. Column 3: model and experiment displacements for 120 mm insertion
with 5 sec. relaxation; 0.5 times model displacements is also shown.

to track radio-opaque fiducials or tissue features, the experimental methodology
could be applied to non-transparent tissue samples. The effect of perfusion will
likely impact on a tissue’s dynamic response [13]. Further experiments should
include many repetitions to allow statistical measures of model accuracy.
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Abstract. In order to calculate deformation of soft tissue under arbi-
trary loading conditions, we have to take both non-linear material char-
acteristics and subcutaneous structures into considerations. The estima-
tion method of material properties presented in this paper accounts for
these issues. It employs a compression test inside MRI in order to visual-
ize deformation of hypodermic layered structure of living tissue, and an
FE model of the compressed tissue in which non-linear material model
is assigned. The FE analysis is iterated with updated material constant
until the difference between the displacement field observed from MR
images and calculated by FEM is minimized. The presented method has
been applied to a 3-layered silicon rubber phantom. The results show the
excellent performance of our method. The accuracy of the estimation is
better than 15 %, and the reproducibility of the deformation is better
than 0.4 mm even for an FE analysis with different boundary condition.

1 Introduction

The rapid progress in computational power and algorithm enable us to carry out
finite element (FE) analysis of massive mechanical structures. This technique is
being applied to the structural simulation of human body that lead to successful
stress/strain analysis of hard tissue such as bone.

In surgical training system and computer assisted diagnosis system, precise
FE analysis of soft tissue is required in order to predict the response of the
tissue under arbitrary loading conditions. Mechanical characterization of living
soft tissue is thus one of the key technologies in such medical systems.

Many methodologies have been proposed for estimating mechanical prop-
erties of living soft tissue. One intuitive method is to indent the surface of
the tissue [1,2]. Material property is then obtained from the relation between
the indentation depth and the reaction force. Although this method is simple
and applicable to the entire surface of human body, they have two fatal disad-
vantages. They cannot take large deformation and subcutaneous structure into
considerations as is obvious from the principle.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 633–640, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Recent progress in diagnostic imaging modalities allows us to develop new
elasticity imaging techniques. Magnetic resonance elastography (MRE) is one
of the promising method [3,4]. It visualizes strain waves that propagate within
soft tissue by using MRI. We can estimate distribution of the stiffness even for a
subcutaneous tissue since the wavelength visualized by MRE is proportional to
the stiffness. However, several problems arise when applying this technique to a
practical application. Damping and reflection of the strain waves cause artifacts
in MR image, and thus they lead to error in the stiffness estimation.

Quasi-static MRE is another elasticity imaging method [5]. It employs a
constitutive equation of linear elasticity to reconstruct the stiffness distribution
from the strain field visualized also by MRI. It was found, however, that in this
method, since the constitutive equation assumes small deformation, non-linear
characteristics of soft tissue caused by large deformation cannot be taken into
accounts.

In order to calculate deformation of soft tissue under arbitrary loading condi-
tions, we have to take both non-linear material characteristics and subcutaneous
structures into considerations. The estimation method of material properties
presented in this paper accounts for these issues. It employs a compression test
inside MRI in order to visualize deformation of hypodermic layered structure
of living tissue, and an FE model of the compressed tissue in which non-linear
material model is assigned. The FE analysis is iterated with updated material
constant until the difference between the displacement field observed from MR
images and calculated by FEM is minimized.

Different from similar approaches presented in the literature [6], we employ an
MR-compatible optical force sensor [7] in order to determine the strict bound-
ary conditions for the FE analysis. Furthermore, the extended Kalman filter
used in the iterative optimization help us to achieve fast convergence to the
final estimate. The presented method has been applied to a 3-layered silicon
rubber phantom. The results show the excellent performance of our method.
The accuracy of the estimation is better than 15 %, and the reproducibility of
the deformation is better than 0.4 mm even for an FE analysis with different
boundary condition.

2 Method and Implementation

2.1 Method Overview

Our method for material properties estimation involves four steps.

MR compression test: Compress the tissue inside MRI in order to visualize
deformation of the subcutaneous structure. The reaction force is simultane-
ously measured by using an MR-compatible force sensor [7].

MR image processing: Extract the displacement field within the tissue by
applying an image registration technique to the obtained MR images.

FE mesh generation: Generate a finite element model of the subcutaneous
structure from the pre-compression MR image. The same boundary condi-
tions as the MR compression test are given to the FE model.
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Iterative FE analysis: Assign the initial estimate of the material constant to
the model, and repeat the FE analysis with updated material constant until
the difference between the displacement field observed from MR images and
calculated by FEM is minimized (see Section 2.2 for detail).

This method has distinct advantages over the conventional approaches
[1,2,3,4,5]. Firstly, both non-linear characteristics and subcutaneous structure
are incorporated at a time. Secondly and equally important for medical appli-
cations, the reproducibility of the FE analysis in which the estimated material
properties are assigned is guaranteed, since they are determined so that the
result of the FE analysis is adapted to the observed deformation.

2.2 Implementation of the Iterative FE Analysis

To be precise, the iterative FE analysis is a minimization process of a disparity
function D defined by Equation (1),

D (m) =
∑

i

(
dMRI

i − dFEM
i (m)

)2
(1)

where, m is the material constant, dMRI
i is the observed displacement,

dFEM
i (m) is the calculated displacement when the material constant is m, and

i is an index of the corresponding point between the MR image and the FE
model.

An extended Kalman filter (EKF) is employed for the minimization of the
disparity function. In the case of this implementation, the measurement equation
of the EKF is the FE analysis itself, and material constant m does not change
during the time update phase of the EKF (a steady condition is given to the state
equation). Functional capability of this Kalman filter is therefore equivalent to
that of non-linear optimization algorithms such as Levenberg-Marquadt method.

As formulated in Equation (2), Kalman gain Kk at step k is calculated
from the error covariance P k−1, the measurement noise covariance Rk and the
measurement jacobian Hk.

Kk = P k−1H
T
k

(
HkP k−1H

T
k + Rk

)−1
(2)

The measurement jacobian Hk is approximated by a numerical difference of
the forward FE analyses as given by Equation (3),

Hij =
∂di

∂mj
=
dFEM

i (m + dm) − dFEM
i (m)

dmj
(3)

where dm is the minute increment of the material constant that have dmj at
the j-th element and 0 at the rests. Thus, if m contains n variables, n+ 1 times
FE analyses are required in total to compute the measurement jacobian. The
time update and the measurement update process of the EKF is iterated until
the disparity function D (m) is minimized. This procedure is implemented on
the commercial FE solver, MSC Marc2003, by using a programming language
Python.
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3 Material Model

3.1 Silicon Rubber Phantom

The estimation method given in Section 2 is applied to a 3-layered silicon rubber
phantom. The dimension of this phantom is 12 mm in both width and height,
and 70 mm in depth. It has the same 3-layered structure along the longitudinal
direction. Thus, mechanical behavior at the center section of this phantom is
given by a two-dimensional plane strain model, if the boundary conditions are
also identical along this direction.

The material constant of each layer is estimated by a uni-axial compression
test for reference, and by the proposed method for validation. The detail de-
scription of the uni-axial compression test is given in Section 4.1. The results of
the estimation by the presented method are given in Section 4.2 to 4.4.

3.2 Material Model

To deal with non-linear characteristics of the silicon rubber, first-term Ogden
model is employed [8]. It is one type of a hyperelastic model widely used in the
analysis of rubber-like material and soft tissue [9]. As shown in Equation (4),
the nominal stress σ is formulated by a function of the nominal strain ε and two
material constants, μ and α, in the case of a uni-axial compression/tension.

σ = μ
(
(ε+ 1)α−1 − (ε+ 1)−

α
2 −1
)

(4)

Shown in Fig. 1 is the relation between the nominal strain ε and the nor-
malized nominal stress σ/E (nominal stress divided by the Young’s modulus E)
for different α. As is obvious from this figure, the stress-strain curves are almost
identical when the strain is within the range of −0.5 to 0.25 that shows the
redundancy between the two material parameters. This redundancy inhibits us
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from estimating them uniquely by a compression test. The material constant α
is therefore fixed to 1.4 referring to the conventional solution [10]. The material
model used in this research is finally given by Equation (5).

σ = μ
(
(ε+ 1)0.4 − (ε+ 1)−1.7

)
(5)

The simplified Ogden model contains only one material constant to be esti-
mated. The material constant m in Equation (1) is thus given by
(μ1st, μ2nd, μ3rd)

T , where subscript means the position of the rubber in the lay-
ered structure.

4 Experiment

4.1 Uni-axial Compression Test

Three cylindrical silicon rubbers that have 8 mm in height and diameter are
prepared for the uni-axial compression test. Each rubber has the same material
property as each layer of the phantom. Both end surfaces of the cylindrical
rubbers are lubed by a silicon oil to achieve ideal uni-axial compression. They
are compressed by a linear stage with the indentation speed of 0.1 mm/sec until
the indentation depth becomes 3.0 mm.

Figure. 2 shows the stress-strain diagrams of the cylindrical rubbers. The
material constant μ is identified by fitting Equation (5) to each diagram. The
results of the identification are shown in the second column of Table 1.

4.2 MR Compression Test

Shown in Fig. 3-(a) and (b) are the MR images of the center section during
the compression test with a flat indenter and a cylindrical indenter, respectively.

Force = 0.0 N Force = 1.9 N Force = 12.9 N Force = 28.1 N Force = 48.3 N 

(a) Compression test by a flat indentor

Force = 0.0 N Force = 5.6 N Force = 13.5 N Force = 24.6 N Force = 39.7 N 

(b) Compression test by a cylindrical indentor

Fig. 3. Results of the MR compression test
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All images have a resolution of 256 × 256 pixels and a pixel size of 0.098 ×
0.098 mm. They are obtained with the Varian Unity INOVA, 4.7 Tesla scanner
for experimental purpose. The imaging sequence is Spin Echo with TE = 19 msec
and TR = 500 msec. An MR-compatible optical force sensor is employed for the
reaction force measurement. The rated force and the accuracy of this sensor is
60 N and 1.0 %, respectively. As can be seen in Fig. 3, the reaction force as well
as the deformation of the subsurface structure are clearly obtained.

The bottom face of the phantom is glued to the base, and the indenters have
the same profile along the longitudinal direction. Mechanical behavior of the
center section is thus given by a two-dimensional plane strain model.

4.3 Estimation Results

Coarse and fine FE models consist of 133 and 1870 plane strain triangular ele-
ments are prepared for the estimation. The same boundary conditions as the MR
compression test with the flat indenter are given to these models. Nodal displace-
ments are measured at the boundary of the layers (square-marked 6 points in the
first column of Fig. 3-(a)) by manual operations. Since there are 4 successive im-

Table 1. Result of the material constants estimation

Uni-axial Our method
compression test Coarse model Fine model

μ1st 0.0212 N/mm2 0.0229 N/mm2 0.0227 N/mm2

Error in μ1st — 8.0 % 7.1 %
μ2nd 0.0356 N/mm2 0.0447 N/mm2 0.0405 N/mm2

Error in μ2nd — 25.6 % 13.8 %
μ3rd 0.0654 N/mm2 0.0370 N/mm2 0.0593 N/mm2

Error in μ3rd — 43.4 % 9.3 %
Error in displacement (mean) — 0.17 mm 0.17 mm
Error in displacement (max.) — 0.34 mm 0.38 mm
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Fig. 4. Transition of the disparity func-
tion during the iteration (fine model)

0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

Iterations

1st Layer
2nd Layer
3rd Layer

M
at

er
ia

l C
on

st
an

t [
N

/m
m

  ]2

Fig. 5. Transition of the material con-
stants during the iteration (fine model)



Material Properties Estimation of Layered Soft Tissue 639

(a) MR image (b) Coarse (c) Fine

Fig. 6. Result of the iterative FEM analysis

(a) MR image (b) FE analysis

Fig. 7. Reproducibility Test

ages (the second to the fifth column of Fig. 3-(a)), total 24 displacement data are
used for the estimation of material properties. The material constant m is ini-
tially set to (0.1, 0.1, 0.1)T . Note that the initial values are about 1.5 to 4.0 times
greater than the material constant identified by the uni-axial compression test.

The iterative FE analysis terminate after 4 iterations with the coarse model
and 3 iterations with the fine model. Transition of the disparity function and
the material constants are shown in Fig. 4 and Fig. 5, respectively. The results
of the estimations are shown in the third and the fourth column of Table 1. It
should be remarked that the errors in the material constants estimated with the
coarse model are greater than that with the fine model, whereas the errors in
the displacement are almost identical in both models.

Figure 6 shows the observed MR image and the result of the FE analysis
with the final estimates. There are better correspondences in the whole profile
of the phantom between Fig. 6-(a) and (c), while there are correspondences only
in the reference points between (a) and (b). This is the causal explanation of
the phenomenon described in the previous paragraph. These results suggest that
better estimates can be achieved, 1) if the FE model is finer, and 2) if there are
enough reference points to be compared even in the coarse model.

4.4 Reproducibility Test

In order to validate the estimated material constants, FE simulation of the com-
pression test with a cylindrical indenter is carried out. Figure 7 shows the ob-
served MR image and the result of the simulation with the estimated material
constants in the fourth column of Table 1. Better correspondences in the whole
profile of the phantom can be confirmed. The mean and the maximum error
in the displacement reproducibility are 0.22 mm and 0.35 mm that are almost
identical to the results in Section 4.3.

The results of these experiments show the capability of our method that can
incorporate both non-linear characteristics and subsurface layered structure of
soft tissue. As mentioned in the previous section, the accuracy of the estimation
can be improved by using finer model with enough reference points.

5 Conclusion

A new estimation method of material properties was presented in this paper.
Since this method employs MR observation and iterative FE simulation, it
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can incorporate both non-linear material characteristics and hypodermic lay-
ered structure of living soft tissue. The excellent performance of our method was
shown by carrying out estimation for a 3-layered silicon rubber phantom. This
warrants future works on the noninvasive material properties estimation of real
soft tissue.

References

1. J.F.M.Manschot, A.J.M.Brakkee: The measurement and modeling of the mechan-
ical properties of human skin in vivo–i. the measurement. Journal of Biomechanics
19 (1986) 511–515

2. A.Z.Hajian, R.D.Howe: Identification of the mechanical impedance at the human
finger tip. Journal of Biomechanical Engineering 119 (1997) 109–114

3. R.Muthupillai, D.J.Lomas, P.J.A., R.L.Ehman: Magnetic resonance elastography
by direct visualization of propagation acoustic strain waves. Science 269 (1995)
1854–1857

4. J.Bishop, G.Poole, M., D.B.Plewes: Magnetic resonance imaging of shear wave
propagation in excised tissue. Journal of Magnetic Resonance Imaging 8 (1998)
1257–1265

5. T.L.Chenevert, A.R.Skovoroda, M., S.Y.Emelianov: Elasticity reconstructive imag-
ing by means of stimulated echo mri. Magnetic Resonance in Medicine 39 (1998)
382–490

6. G.Soza, R.Grosso, C.G., P.Hastreiter: Estimating mechanical brain tissue prop-
erties with simulation and registration. In: Proceeding of the 7th International
Conference on Medical Image Computing and Computer Assisted Intervention.
Volume 2. (2004) 276–283

7. M.Tada, T.Kanade: An MR-compatible optical force sensor for human function
modeling. In: Proceeding of the 7th International Conference on Medical Image
Computing and Computer Assisted Intervention. Volume 2. (2004) 129–136

8. R.W.Ogden: Large deformation isotropic elasticity – on the correlation of the
theory and experiment for incompressible rubberlike solids. In: Proceedings of the
Royal Society of London. (1972) 567–583

9. J.Z.Wu, R.G.Dong, W., A.W.Schopper: Modeling of time-dependent force response
of fingertip to dynamic loading. Journal of Biomechanics 36 (2003) 383–392

10. O.H.Yeoh: On the ogden strain-energy function. Rubber Chemistry and Technol-
ogy 70 (1996) 175–182



Simulating Vascular Systems in Arbitrary Anatomies
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Abstract. Better physiological understanding of principles regulating vascular
formation and growth is mandatory to their efficient modeling for the purpose
of physiologically oriented medical applications like training simulation or pre-
operative planning. We have already reported on the implementation of a visually
oriented modeling framework allowing to study various physiological aspects
of the vascular systems on a macroscopic scale. In this work we describe our
progress in this field including (i) extension of the presented model to three di-
mensions, (ii) addition of established mathematical approaches to modeling an-
giogenesis and (iii) embedding the structures in arbitrary anatomical elements
represented by finite element meshes.

1 Introduction

As pointed out in our previous work [1], the vascular systems do not simply influence
organ appearance as part of their surface texture, but also behave like physical objects
with certain mechanical properties. In particular, they will deform along with the host-
ing tissue and lead to bleeding when cut through. The ultimate goal is to provide a
tool which, given a 3D representation of a given tissue/organ and an intuitive set of
physiologically meaningful parameters, will generate vascular structures in an arbitrary
anatomical region. Such systems are not expected to carry only geometrical information
but also provide data on mechanical properties of the vascular system and the related
blood flow.

In the previous work we have proposed a macroscopic model allowing to generate
various vascular systems with high graphical fidelity for simulation purposes. The pre-
sented model included the formation of a primitive capillary plexus prior to maturation
of the vascular system and treated its later development as a dynamic growth controlled
by biophysical factors. This way the remodeling of the vascular system could be de-
scribed, and full information on biophysical properties and hemodynamic conditions in
the system could be provided at any time. The model, successful in generating a di-
versity of visually appealing vascular structures suffers, however, from a fundamental
limitation. Whereas various geometrical constraints on the growth process can be im-
posed a priori, the domains to be vascularized are basically addressed as continuum and
represented analytically. Such treatment is very convenient and widely used in develop-
ing and investigating mathematical modeling methods. Their implementation for real-
life applications over complex domains represented in discrete forms is, however, not
straightforward and needs special attention. The goals of the present work therefore are:
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– the full extension of the existing framework to three dimensions;
– the integration of the established mathematical modeling of angiogenesis with our

previous simulation framework with the emphasis on visually realistic appearance;
– the embedding of such vascular networks in real-life anatomical objects defined by

finite element meshes.

In practice, these objectives will be strongly inter-dependent. In order to solve dif-
ferential equations governing the vessel formation one needs to provide a discretization
scheme and proceed by finding the solution numerically. This is to be performed on a
mesh, with the simplest one to use being an isotropic Cartesian grid. Offering signifi-
cant implementational simplicity, which is advantageous from the algorithmic point of
view, such meshes do not, however, provide the desired flexibility to efficiently map
complex anatomical domains. Because of irregularity and high unpredictability, model-
ing such a diverse range of anatomical geometries is only possible through unstructured
meshes. Such meshes are also convenient for modeling elastic properties of the tissue
and organs.

Vascular structures are subject to computer modeling for a longer time now. A de-
tailed overview of the available literature is given in our previous work [1] and will not
be repeated here. The approaches discussed there include fractal self-similar constructs,
functional macroscopic pipelines and continuous mathematical models. Still another
group of approaches, not discussed previously, is based on optimization principles of
theoretical physiology, which is well exemplified by the recent work by M. Georg et.al.
[2]. Their model is initialized by a simple sub-optimal tree filling of the entire organ at a
given resolution. It then becomes subject to optimization, mainly intra-vascular volume
minimization, which is one of the major principles driving vascular system develop-
ment as discussed in the literature. As compared to another popular optimization-based
method, namely Constrained Constructive Optimization (CCO) [3], this new algorithm
can also implement topological changes, which are essential to the optimization pro-
cess. The generated structures presented by the authors prove to be similar to real ex-
perimental data acquired from corrosion casts, with the emerging symmetry explained
in terms of global optimality. The fundamental difference to our approach is in that
(1) we explicitly address capillary networks supplied by higher order vessels and (2)
we model blood vessel formation by relying exclusively on local interactions, without
enforcing any global optima. Our approach is well justified in cases of malignant tu-
mors, where the vascular systems are known to be often unstable, leaky or otherwise
sub-optimal.

One of the inspirations to continue our previous work is a recent proposition of a
non-lattice mathematical model of angiogenesis [4]. Whereas established mathemati-
cal models to date restrict endothelial cell movements to 4 discrete directions on an
isotropic Cartesian grid, the authors of that work propose to depart from a fixed lattice
and adopt the governing equations for arbitrary (continuous) directions. They still, how-
ever, use very simple geometrical domains (squares) and provide biochemical agents
only in form of analytically prescribed profiles. As described in the next section, we
will adopt their topological freedom to model endothelial cell motility but with sig-
nificant differences in the discretization scheme and representation of the underlying
biochemical factors.
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2 The Model

The formation of blood vessels during angiogenesis in general - healthy or cancerous -
is a process where capillary sprouts depart from pre-existing parent vessels in response
to externally supplied chemical stimuli. By means of endothelial cell proliferation and
migration the sprouts then organize themselves into a branched, connected network
structure. In this work we tend to focus specifically on tumor induced angiogenesis,
which involve cancerous solid tumor cells secreting a number of biochemicals collec-
tively known as growth factors. The general formalism can, however, also be applied
to healthy anatomies if global functional optimality is not the primary focus of investi-
gation. This is the case e.g. in early vascular development stages with only preliminary
capillary beds present. Moreover, the remodeling procedure introduced in our previous
work can readily be applied to the structures generated here. The preliminary capil-
lary plexus does not necessarily require blood flow to form. Once the blood enters the
freshly formed vessels it inflates the elastic walls. Regions of high stress disproportions,
where the capillaries started to sprout from the parent vessels are remodeled first. In-
flating vessels will not only change their initial distribution of radii but also adjust the
bifurcation angles. The optimal bifurcation design discussed so often in the literature
may arise from local conditions determined by e.g. the elastic properties of the walls
forming the initial tripod. In a completely different modeling approach, involving cells
as opposed to pipes used here, we have demonstrated that local variations in the shear
stress rebuild a uniform distributions of tissue pillars into a set of non-symmetric bifur-
cations [5] observed in vivo. Even thought the resulting structure is not guaranteed to be
optimal, the initial symmetry is broken and the bifurcations and micro-vessels emerge
as a result of a simulation instead of being composed a priori out of basic structural
elements as pipes or tripod. Therefore, instead of presumptively imposing optimality
rules on the sprouting and bifurcating capillaries we start our modeling from the widely
accepted assumption that the initial response of the endothelial cells to the angiogenic
growth factors is due to chemotaxis, enforcing the cell migration towards the tumor
or ischemic cell. Once secreted, the growth factors diffuse into the surrounding tissue
and the extracellular matrix, establishing a certain concentration gradient between the
chemical source and the parent vessels. As the endothelial cells migrate through the
extracellular matrix in response to this gradient there is some uptake and binding of the
growth factors by the cells [6]. Therefore, it can be modeled by a diffusion equation
with a natural decay term:

∂c

∂t
= Sc +Di∇2c − θ0c , (1)

with c being the chemical concentration, Sc its source, D the diffusion coefficient and
θ decay rate. Once the initial distribution of the growth agents due to secretion by the
malignant or ischemic cells has been established, endothelial cells start to respond to
the stimulus by sprouting, eventually modifying the initial growth factor concentration
by cellular bindings. Partial differential equations governing the endothelial density
evolution are derived from a general form of transport equation and can be written in
the following form:
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∂n

∂t
= D0∇ · (f0(c)∇n) −Dc∇ · (fc(c)n∇c) (2)

∂c

∂t
= −θ1nc (3)

with n the endothelial cell density and Di, θi positive constants.
A similar set of partial differential equations with respect to cellular density evolu-

tion was first postulated by [7]. Below is the interpretation of these equations needed
for their adaptation to our simulation framework, as well as discussion of the main dif-
ference to our modeling approach. The first term in Equation 2, chemokinesis, is the
random displacement of the endothelial cells with the transition probability modulated
by the concentration of the chemical stimuli. In a specific case of constant growth factor
concentration this reduces to the classical diffusion equation with the diffusion constant
D0, in a general case of non-constant concentrations, however, this term allows to se-
lectively change random motility of the migrating cells. In particular, it is reasonable to
assume that as the cells approach the angiogenic source they will become more motile
and more chaotic in their migration. In our model we address this issue taking a sim-
ple linear form of f0. The second term in the same equation is known in literature as
chemotaxis. It is the advective term in the general transport equation with the difference
in that the advection velocity is replaced by another vector field, namely the gradient
of the (scalar) growth factor concentration. This is well justified from experimental
observations, as it is widely known that the endothelial cells tend to “climb up” the gra-
dients of biochemical growth stimuli [8]. Similar to Anderson and Chaplain, we take
the chemotactic amplitude fc(c) as a receptor-kinetic function of the form fc(c) ∼ 1/c.
This represents an intuitive assumption of decreased cellular sensitivity with the in-
creased chemical stimulus. The second equation (Equation 3) models the biochemical
growth factors concentration by linear uptake functions due to degradation through cel-
lular bindings. We make two important simplifications in our modeling, namely that the
concentration of the growth factor does not change throughout the vessel growth pro-
cess (i.e. Equation 3 is not solved) and that the haptotactic response due to fibronectin,
present in the original formulation, is neglected. Inclusion of these components in the
transport equation appears to be crucial to obtain physiologically normalizable models,
in the first implementation, however, with the emphasis on real-life modeling of the
underlying arbitrary hosting tissue, we did not find them mandatory for providing a re-
alistic network coverage of the domain of interest. This could, however, be integrated
in the next version of the framework to increase the physiological correctness of the
model.

Anderson and Chaplain proceed by discretizing the partial differential equations on
an isotropic Cartesian grid and either modeling the endothelial cell density (the con-
tinuous model) or by introducing transition probabilities and displacing the endothelial
sprouting tips explicitly (the discrete model). Instead, we follow the way sketched for
simple geometries in [4] and depart from fixed vascular topology, which allows us to
flexibly handle arbitrary finite element meshes.

A detailed description of an example method to generate unstructured tetrahedral
meshes out of surfaces (extracted by e.g. segmentation of magnetic resonance imaging
of real anatomical objects) can be found in [9]. Here we proceed by interpreting the
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governing equations in terms of a given mesh. We start by discretizing the ∇ operator
needed for establishing the initial chemotactic gradient as well as for diffusive transport
of the growth factors. In case of tetrahedral meshes a natural choice of discretization
is the finite volume scheme. The transport phenomena described by Equation 1 and
Equation 2 in such a nomenclature take the following general form:

with φ a general scalar field, V denoting the control volume, A control volume surface,
n the surface normal vectors (not to be confused with n scalar) and Sc the growth
factor sources (e.g. secretion by tumor or ischemic cells). We linearize these equations
and express their discretized versions using the control volume central values in order
to facilitate the iterative solution procedure:

Ciφi + Ci,jφi,j = Sφ
i , (5)

with the Einstein summation over the control element’s direct (i) and indirect (i, j)
neighbors. φi, φi,j correspond to the scalar field’s cell centered values, and Sφ is deter-
mined by the boundary conditions. Derivation of the coefficient matrix C is nontrivial
and will not be presented here.

By proceeding with the Eulerian formulation used so far, we would have to solve
this kind of equations three times: to establish the initial concentration gradients
(φ = c), and to solve the transport equation terms (φ = n and φ = c). Instead, we
solve it only once, for the initial steady-state equilibrium of c (Equation 1), and change
our formulation of Equation 2 to Lagrangian dynamics of sprouting vessel tips. Such a
continuous approach, as opposed to a discrete Eulerian treatment, is particularly bene-
ficial in case of finite element meshes, as the generated vascular structures are limited
by neither the underlying mesh resolution nor the topology. In addition, the resulting
structure can straightforwardly be converted to a flow network required to solve the
Hagen-Poiseuille’s flow equations, as described in our previous paper [1]. Therefore,
by realizing that the diffusive term in the transport equation is responsible for random
motility of the endothelial cells (modulated by f0), and that the advective term effec-
tively displaces the cells towards the regions of higher chemical concentration, we arrive
at the following equation of a sprouting tip motion:

with dr being the net displacement of the sprouting tip due to the following contribu-
tions:

– diffusive motility in a random direction (e.g. picking a random point on a
sphere),

– directed motility in the direction of a local growth factor’s gradient (estimated
e.g. using the Gauss theorem),

– inertial motility enforcing a certain resistance of the sprouting tip to rapidly
change the currently followed direction.

∫
V

(
∂φ

∂t
)dV +Dc

∮
A

fc(c)n�n · ∇c dA = D0

∮
A

f0(c)�n · ∇n dA +
∫

V

Sc dV . (4)

d�r

dt
≡ �vtot = d1(c)�v0 + d2(c)�vc + d3(c)�vi, (6)

�v0

�vc

�vi
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The functions di(c) regulate the relative importance of the three contributions to the net
displacement and depend on the local growth factor concentrations in the same way as
the previously discussed coefficientsDi. We additionally introduce a function β(c) reg-
ulating bifurcation probability at the sprouting tip and allow for fusion of colliding ves-
sels (anastomosis). In addition, once a vessel reaches a minimal diameter (correspond-
ing to a capillary), it is no more bifurcating (as it would lead to further decrease in diam-
eter, which is not observed in reality). As stated in section 1 - and opposed to our pre-
vious approach - we do not anymore attempt to provide optimal bifurcation angles nor
diameters a priori, instead we simply chose a random deviation from the followed direc-
tion within [0, π). Even if such a selection may seem arbitrary, these angles are strongly
influenced by chemotaxis, and practically anyway limited to forward directions.

3 Results

The model described in the preceding sections was tested with a finite element volumet-
ric mesh of an early development stage of a uterine polyp model presented in [10]. A
few interior elements in the structure’s head were picked and marked as actively divid-
ing cells, which will be continuously secreting angiogenic growth factors and regulating
the endothelial response. Because there is an uptake of these chemicals in the extracel-
lular matrix, as discussed before, a steady state concentration gradient will form after
some iterations. Now the vessels are allowed to start sprouting, with the bifurcation
probability and random motility increasing and the chemotactic sensitivity decreasing
with the concentration of the growth factor. Such separation between the initial and
the growth phase is not unrealistic since it is very likely that the sprouting begins only
when a certain triggering threshold in the local concentration is reached. The input sur-
face mesh along with the output vascular network, with the initial growth starting from
the base of the polyp, is shown in Figure 1. The steady state distribution of the growth
factors is visualized on the surface (leftmost) and inside (middle) of the model. Note the
chaotic nature of the resulting vessels (right) as compared to the results presented in the

Fig. 1. Simulation results of the vascular growth model described in the text. Left: input mesh
with the surface triangles color-coded according to the growth factor concentration on the sur-
face. Middle: volumetric ”see-through” visualization of the growth factor concentration inside
the model. Right: generated vascular structure and wire-frame of the input mesh.
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previous work [1]. As expected - and as observed in real tumors - the blood vessels be-
come gradually very chaotic as they approach the cancerous epicenter. This is achieved
in the simulation by letting the random motility and the bifurcation probability increase
rapidly as the tumor is approached. At the same time the vessel tip inertia as well as the
ability to reorient itself along the local gradient is continuously quenched. This results
in approximately parallel vessels along the polyp’s neck and ends with a dense “brush”
in the epicenter. The full procedure leading to the results presented above, including
mesh generation, establishment of the initial gradients and generation of the vessels,
took approximately 10 minutes on a PC with Pentium4/3.0GHz and 1GB RAM. Calcu-
lation of flow conditions in the generated network and the according oxygen penetration
of the tissue took another 10 minutes.

These results demonstrate the model’s ability to deal with realistic conditions en-
countered in early development stages of small vascular tumors and at the same time
providing realistic visualization along with necessary bio-physical information required
by surgical training simulations. Moreover, as indicated before, the meshes used for the
discretization purposes were designed with the possible tissue elastic deformation in
mind. It is straight-forward now to mechanically deform the vessels together with the
hosting tissue using e.g. a simple and fast mass-spring modeling. In addition, using the
flow network model described in our previous work, we can readily provide the flow
conditions at any location of interest and use this information for e.g. visualization of
bleeding when a surgeon cuts in the tissue during a virtual training session. Together
with the real-time elastic deformation this provides reasonably realistic environment for
virtual-reality based medical training.

4 Outlook

The presented simulation takes into account basic experimental knowledge of the grow-
ing process, namely endothelial cell proliferation and migration, and their modulated
response to changes in local growth factor concentrations. Achieved results correspond
well to both experimental findings and to the established mathematical models of an-
giogenesis. In addition, the key components of the previously introduced model - the
flow network and stress driven remodeling - can readily be applied. The network cov-
erage is, however, provided under the quasi-static assumption of a steady development
state of the tumor and the underlying chemical factors. While the mechanical deforma-
tion of the resulting structure can be easily applied, further increase of realism can only
be achieved by simultaneous simulation of the vascular growth and the tumor devel-
opment. This would allow to study both the mechanical interplay between developing
structures (e.g. deformation due to stretching and strains) as well as their coupled bio-
chemical dependence. Such modeling is already under way and will soon be integrated
into the presented framework.

We are aware that in case of healthy anatomies the generated structures may be sub-
optimal in the sense of a network coverage, building material or diffusive exchange. The
enforcement of such an optimum based exclusively on local interactions will require
much better understanding of short-range mechanisms acting on the cellular level, but is
an attractive vision for the ultimate explanation of the origins of natural self-symmetry
and functional optimality.
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[1] Szczerba, D., Székely, G.: Macroscopic modeling of vascular systems. In: Medical Image
Computing and Computer-Assisted Intervention - MICCAI 2002. Volume 2489 of Lecture
Notes in Computer Science., LNCS Springer (2002) 284–292

[2] Georg, M., Hahn, H., Preusser, T., Peitgen, H.O.: Global constructive optimization of
vascular systems. Submitted to IEEE transactions on Medical Imaging (2004)

[3] Schreiner, W., Neumann, M., Neumann, F., Roedler, S., End, A., Buxbaum, P., Muller,
M., Spieckermann, P.: The branching angles in computer-generated optimized models of
arterial trees. J. Gen. Physiol. 103 (1994) 975–989

[4] Plank, M.J., Sleeman, B.D.: Lattice and non-lattice models of tumour angiogenesis. Bul-
letin of Mathematical Biology 66(6) (2004) 1785–1819
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Abstract. Diffuse optical tomography (DOT) is a noninvasive imag-
ing technology that is sensitive to local concentration changes in oxy-
and deoxyhemoglobin. When applied to functional neuroimaging, DOT
measures hemodynamics in the scalp and brain that reflect competing
metabolic demands and cardiovascular dynamics. Separating the effects
of systemic cardiovascular regulation from the local dynamics is vitally
important in DOT analysis. In this paper, we use auxiliary physiological
measurements such as blood pressure and heart rate within a Kalman
filter framework to model physiological components in DOT. We validate
the method on data from a human subject with simulated local hemody-
namic responses added to the baseline physiology. The proposed method
significantly improved estimates of the local hemodynamics in this test
case. Cardiovascular dynamics also affect the blood oxygen dependent
(BOLD) signal in functional magnetic resonance imaging (fMRI). This
Kalman filter framework for DOT may be adapted for BOLD fMRI anal-
ysis and multimodal studies.

1 Introduction

Diffuse optical tomography (DOT) is a noninvasive imaging technology that uses
near infrared (IR) light to image biological tissue. The dominant chromophores
in this spectrum are oxyhemoglobin (HbO), deoxyhemoglobin (HbR), lipids and
water. The basis of DOT is in vivo near infrared spectroscopy of these dominant
chromophores in the tissue. Tomographic images in DOT are constructed by
simultaneously measuring from many local regions that cover a larger volume
of tissue. The in-plane resolution limit of DOT increases rapidly with depth be-
cause biological tissue is a highly scattering medium for near infrared light. This
diffuse property of the light also limits the penetration depth in adult human
� This research was funded by NIH T32-CA09502, P41-RR14075, R01-EB001954 and

the MIND Institute.
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brain imaging to about 3 cm, which is sufficient to study most of the cerebral
cortex. See Gibson et al. for a complete description of DOT [1]. Clinical and
research applications of DOT arise due to is its specificity to the physiologically
relevant chromophores HbO and HbR. Potential clinical and research applica-
tions for DOT abound in brain injury, degenerative neurovascular diseases and
in cognitive neuroscience. Other research areas for DOT include fetal and neona-
tal monitoring and breast cancer detection. DOT is particularly suitable for in
situ monitoring and multi-modal imaging [2].

The dynamics measured with DOT in the functional neuroimaging applica-
tion are caused by local changes in blood volume and oxygenation in the scalp
and in the brain. Due to the physical constraints of noninvasive imaging with
DOT, the scalp and brain effects are combined in the measurements. The mea-
sured hemodynamics are caused by blood pressure regulation, cerebral blood flow
autoregulation, local vasomotion and the vascular response to neuronal activity.
Complexity arises because of interactions between these factors. The primary
aim of DOT functional neuroimaging is to separate the stimulus related brain
function signal from the background physiology related signal. The main prob-
lem is that the latter of these two is much stronger. A method to help resolve
the physiological components in DOT is to include noninvasive auxiliary phys-
iological measurements in the analysis. Many instruments can be used during
DOT experiments. Examples are the blood pressure monitor, pulse oximeter,
electrocardiogram (ECG), chest band respirometer, spirometer and capnograph.
A further complexity of DOT analysis is that even when auxiliary physiology
is included in the analysis, their effects do not appear to be stationary in time
or space. We commonly observe that signal dynamics that are correlated with
respiration, for example, will vary significantly in amplitude and relative phase
angle at different measurement locations even when breathing rate and depth are
held constant. The present objective is to separate the physiological components
of DOT with a dynamical model.

State-space estimation has previously been applied to DOT without phys-
iological regressors [3]. Prince et al. [4] fit the amplitude and phase angle of
three non-stationary sinusoids to DOT time-series data using the Kalman filter.
While supporting the principle of using the Kalman filter in DOT analysis, the
three-sinusoid model does not allow for the most commonly used event related
experimental designs nor can it use readily available physiological measurements
such as blood pressure as a regressor. Zhang et al. used principal component
analysis (PCA) to reduce the background physiological variance in functional
neuroimaging experiments [5]. Anecdotal evidence was presented that certain
principal components correlate with blood pressure and respiratory dynamics.
This observation of statistically uncorrelated blood pressure and respiratory dy-
namics contradicts known respiratory interactions in blood pressure regulation
[6]. Due to physiological interactions, the orthogonal projections in PCA are
more likely to be mixtures of physiological effects. Standard linear regression
methods in fMRI analysis [7] accept multiple regressors that could easily include
auxiliary physiological measurements but will not accommodate temporal non-
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stationarity of the linear models. Dynamical system identification for fMRI is
at the forefront of new analysis methods [8]. These advances in fMRI have not
extended to DOT thus far mainly because the DOT inverse problem is typically
ill posed and requires a more complicated physical model. In this paper, we
present a framework that employs the Kalman filter for dynamical modeling of
the physiological components of DOT.

2 Methods

The Kalman filter is a recursive solution to discrete linear filtering and prediction
problems [9]. The objective of the Kalman filter is to estimate the time-varying
states of a discrete-time process that is described by stochastic equations for up-
dating the states and measurements over time. There are many ways to model
the same physical system within the generality of the Kalman filter. Our pro-
posed Kalman filter model of the DOT system begins by naming the constants
in table 1 and naming the model variables in table 2. The respective sizes of
each variable are indicated with a parenthetical subscript notation and those
that vary with time are indicated.

The inputs u in the DOT model are the Boolean stimulus time vector and
time-series physiological measurements such as blood pressure and heart rate
variability. The states x in the DOT model are the discrete finite impulse re-
sponse (FIR) functions that are convolved with the inputs to yield local concen-

Table 1. Length constant names

nu inputs (regressors) nw wavelengths
nd source-detector pairs nc chromophores
ns voxels ng spatial basis functions
nr regression time points nh temporal basis functions
nx states (nx = nuncngnh) ny measurements (ny = nwnd)
nz auxiliary states (nz = nuncngnr) nk total time points

Table 2. Variable names and sizes

k(t) time index u(nu,1)(t) input vector
x(nx,1)(t) state vector V(nx,nx)(t) state covariance
w(nx,1)(t) process noise Q(nx,nx) process noise covariance
z(nz,1)(t) auxiliary state vector y(ny,1)(t) measurement vector
v(ny,1)(t) measurement noise R(ny ,ny) meas. noise covariance
A(nx,nx) state update model B(nz ,nz) auxiliary update model
C(nz,nu) auxiliary input model D(ny,nx)(t) measurement model
K(nx,ny)(t) Kalman gain matrix S(ny,nuny) summing matrix
U(nuncng ,nz)(t) input matrix M(nuncng ,nz) input mask matrix
L(nuny,nunwns) pathlength matrix L0(nwnd,nwns) pathlength submatrix
G(nunwns,nunwng) spatial basis set G0(ns,ng) spatial basis submatrix
E(nunwng ,nuncng) extinction matrix E0(nw ,nc) extinction submatrix
H(nz,nx) temporal basis set H0(nr ,nh) temporal basis submatrix
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tration changes in HbO and HbR. In order to perform this convolution within a
Kalman filter framework, it is convenient to define auxiliary states z that merely
store a regression length nr of most recent inputs. The measurements y are the
time-series of changes in optical density (ΔOD) for each source-detector pair
and wavelength. This discrete-time process can be described as

xk = Axk−1 + wk−1 (1)
zk = Bzk−1 + Cuk (2)
yk = D(zk)xk + vk . (3)

In order to include a physical model for the DOT inverse problem, the model
elements A, B, C and D are defined as

A = I(nx) (4)

B = I(nuncng) ⊗
[
0(1,nr−1) 0
I(nr−1) 0(nr−1,1)

]
(5)

C = I(nu) ⊗ 1(ncng,1) ⊗
[
1 0(nr−1,1)

]
(6)

S = 1(1,nu) ⊗ I(ny) (7)
L = I(nu) ⊗ L0 (8)
G = I(nunw) ⊗ G0 (9)
E = I(nu) ⊗ E0 ⊗ I(ng) (10)
M = I(nuncng) ⊗ 1(1,nr) (11)
H = I(nuncng) ⊗ H0 (12)

U(zk) = 1(nuncng,1)zT
k � M (13)

D(zk) = SLGEU(zk)H , (14)

where T is the transpose operator, ⊗ is the Kronecker tensor product, � is term-
by-term array multiplication, I is the identity matrix, 1 is a matrix of ones, 0 is
a matrix of zeros and matrix sizes are indicated with parenthetical subscripts.
The submatrix L0 is a block diagonal matrix formed from meassurement by
voxel average effective pathlengths for each wavelength as described by [10].
The columns of G0 contain a set of spatial basis functions that can be used to
reduce the number of states and/or impose spatial smoothing of the state esti-
mates. Known optical extinction coefficients are contained in the wavelength by
chromophore submatrix E0. The columns of H0 contain temporal basis functions
to reduce the number of states and/or impose temporal smoothing.

The Kalman filter is a recursive solution to the state estimation problem
for the discrete-time process described by equations 1, 2 and 3. The recursions
require initialization of the state estimate x̂0 and estimated state covariance V̂0
and then proceed with the following prediction-correction algorithm

x̂k|k−1 = Ax̂k−1|k−1 (15)
zk|k−1 = Bzk−1|k−1 + Cuk (16)
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V̂k|k−1 = AtV̂k−1|k−1AT + Q (17)

Uk = 1(nuncng,1)zT
k|k−1 � M (18)

Dk = SLGEUkH (19)

Kk = V̂k|k−1DT
k

(
DkV̂k|k−1DT

k + R
)−1

(20)

x̂k|k = x̂k|k−1 + Kt

(
yk − Dkx̂k|k−1

)
(21)

zk|k = zk|k−1 (22)

V̂k|k = V̂k|k−1 − KkDkV̂k|k−1 . (23)

We designed an experiment to test the basic functionality of this proposed
method. We combine real DOT data with a simulated functional response and
then analyze the result with static deconvolution and the proposed Kalman filter
method. This experiment allows us to compare the estimated responses with
the “true” response. Only a single trial is examined so the results are mainly
illustrative. Data was collected from a human subject who was instructed to sit
quietly and breath freely. Measurements were taken with a continuous wave DOT
instrument [11] then demodulated and down sampled to 1 Hz. The measurements
were high pass filtered in a forward then reverse direction with a 6th order IIR
Butterworth filter with a cutoff frequency of 0.05 Hz and zero phase distortion.
This filtering removes slow physiology that is sufficiently outside the frequency
range of interest for the hemodynamic response that it can be ignored. Short-
term variability including the respiratory sinus arrhythmia, Mayer waves and
vasomotion remain after filtering. The photon fluence Φ(t, λ) was then converted
to a change in optical density ΔOD

ΔOD(t, λ) = ln
(
Φ(t, λ)
Φ0(λ)

)
, (24)

where Φ0 is average detected photon fluence, ΔOD(t, λ) are measurements y as
a function of time t and wavelength λ. The three model inputs contained in u
were the Boolean stimulus time vector, the blood pressure (BP) and heart rate
variability (HRV) with normalized variances.

Data from only a single source fiber and three detector locations were in-
cluded in the analysis. The three detectors were arranged about 2 cm apart
in a row and the source was placed 3 cm away from the center detector and
equidistant from the other two. Three voxels defined the tissue volume under
the optical probes. Voxel 1 represented the scalp and was common to all the
detectors. Voxels 2 and 3 represented two regions of the brain located under
the scalp voxel. A simulated functional response was added into the baseline
hemodynamics in voxel 2. The stimulus paradigm was event related with a 12
to 18 second inter-stimulus interval over the 300 second trial. The model used
to simulate the hemodynamics was one period of a raised cosine with a delay
and amplitude set differently for the HbO and HbR functional responses. The
simulated waveforms can be seen in the results figures.

The pathlength submatrix L0 was computed with a diffusion approximation
to the transport equation for a semi-infinite medium [10]. An identity matrix



654 S.G. Diamond et al.

was used for the spatial basis set G0 and a normalized Gaussian function was
used for the temporal basis set H0. The standard deviation for the Gaussian
function was fixed at 1.5 seconds and the means were separated by 1.5 seconds
over the regression time. The same temporal basis set was used for the static de-
convolution. The state update noise covariance Q only contained nonzero terms
on the diagonal elements. Diagonal terms related to the functional response were
set to 3× 10−6 and those related to BP and HRV were set to 10−5. This imbal-
ance in state update noise caused the functional response model to evolve more
slowly than the systemic physiological models. The measurement noise covari-
ance matrix R was set to an identity scaled by 10−3. These variances act as
regularization and were adjusted to stabilize the estimation scheme.

3 Results

The state estimates from the Kalman filter were propagated through the forward
model to calculate the component of the measurements that relates to each input.
An example result of this signal separation for the 890 nm measurement from
detector 1 is shown in figure 1. The functional response to the stimulus only
accounts for 2.8% of the variance in the measurement whereas BP and HRV
account for 11.3% and 77.9% respectively. The sum of the modeled components
accounts for over 99.9% of the variance in the measurement.

The results of the static deconvolution analysis to recover the functional
hemodynamic response is shown in figure 2. The functional responses are clearly
present in the estimates but are distorted by large physiological noise artifacts.
Compared to the true hemodynamics, the HbO estimate resulted in R2 = 0.78,
which is reasonably good considering that the physiological noise dominates the
measurement. For the smaller HbR signal, R2 = 0.57 with the true hemodynam-
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Fig. 1. Separating a ΔOD measurement into components related to each model input.
The scale for each component of ΔOD was shifted for visual comparison.
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Fig. 2. Result for deconvolution of functional response from hemodynamics in voxel 2
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Fig. 3. Result for proposed Kalman filter estimate functional response in voxel 2

ics, indicating that the physiological noise artifacts are of comparable magnitude
to the actual response.

The result for the Kalman filter was taken to be the last state estimate
computed during a forward pass through the data. This result, shown in fig-
ure 3, appears to be a significant improvement over the deconvolution approach.
The HbO estimate improved to R2 = 0.99 and the HbR estimate jumped to
R2 = 0.89. There is some lag in the Kalman filter result which may have been
caused by only using a forward pass through the data.

4 Discussion

We successfully implemented the Kalman filter for system identification in DOT.
Based on the preliminary results described, the proposed analysis framework may
help to improve estimates of functional hemodynamics in DOT neuroimaging.
This result is potentially significant because improved hemodynamic estimates
could make a broader range of brain activation paradigms possible with DOT.
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The ability to separate signals into physiological components may also reveal
new information about the local regulatory physiology and may be useful in
identifying certain vascular pathologies. Unlike the prior work with the Kalman
filter for DOT, the present formulation has the flexibility to be applied to any
experimental design and for problems of reasonably large spatial and temporal
dimension. The proposed Kalman filter formulation may also be useful for other
imaging modalities such as fMRI, MEG and EEG or when multiple modalities
are combined with a single state-space model of the underlying physiology.
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Abstract. We develop a general approach that uses holomorphic 1-
forms to parameterize anatomical surfaces with complex (possibly branch-
ing) topology. Rather than evolve the surface geometry to a plane or
sphere, we instead use the fact that all orientable surfaces are Riemann
surfaces and admit conformal structures, which induce special curvilin-
ear coordinate systems on the surfaces. Based on Riemann surface struc-
ture, we can then canonically partition the surface into patches. Each
of these patches can be conformally mapped to a parallelogram. The re-
sulting surface subdivision and the parameterizations of the components
are intrinsic and stable. To illustrate the technique, we computed con-
formal structures for several types of anatomical surfaces in MRI scans
of the brain, including the cortex, hippocampus, and lateral ventricles.
We found that the resulting parameterizations were consistent across
subjects, even for branching structures such as the ventricles, which are
otherwise difficult to parameterize. Compared with other variational ap-
proaches based on surface inflation, our technique works on surfaces with
arbitrary complexity while guaranteeing minimal distortion in the pa-
rameterization. It also offers a way to explicitly match landmark curves in
anatomical surfaces such as the cortex, providing a surface-based frame-
work to compare anatomy statistically and to generate grids on surfaces
for PDE-based signal processing.

1 Introduction

In brain imaging research, parameterization of various types of anatomical sur-
face models in magnetic resonance imaging (MRI) scans of the brain involves
computing a smooth (differentiable) one-to-one mapping of regular 2D coordi-
nate grids onto the 3D surfaces, so that numerical quantities can be computed
easily from the resulting models [1,2]. Even so, it is often difficult to smoothly
deform a complex 3D surface to a sphere or 2D plane without substantial an-
gular or area distortion. Here we present a new method to parameterize brain
surfaces based on their Riemann surface structure. By contrast with variational
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approaches based on surface inflation, our method can parameterize surfaces
with arbitrary complexity including branching surfaces not topologically home-
omorphic to a sphere (higher-genus objects) while formally guaranteeing minimal
distortion.

1.1 Previous Work

Brain surface parameterization has been studied intensively. Schwartz et al. [3],
and Timsari and Leahy [4] compute quasi-isometric flat maps of the cerebral
cortex. Hurdal and Stephenson [5] report a discrete mapping approach that uses
circle packings to produce “flattened” images of cortical surfaces on the sphere,
the Euclidean plane, and the hyperbolic plane. Angenent et al. [6] represent the
Laplace-Beltrami operator as a linear system and implement a finite element
approximation for parameterizing brain surfaces via conformal mapping. Gu et
al. [7] propose a method to find a unique conformal mapping between any two
genus zero manifolds by minimizing the harmonic energy of the map.

1.2 Theoretical Background and Definitions

We begin with some formal definitions that will help to formulate the param-
eterization problem(for further reading, please refer to [8]). For a manifold M
with an atlas A = {Uα, φα}, if all chart transition functions φαβ = φβ ◦ φ−1

α :
φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) are holomorphic, A is a conformal atlas for M . A
chart {U ′

α, φ
′
α} is compatible with an atlas A, if the union A ∪ {U ′

α, φ
′
α} is still

a conformal atlas. Each conformal compatible equivalence class is a conformal
structure. A 2-manifold with a conformal structure is called a Riemann surface.
It has been proven that all metric orientable surfaces are Riemann surfaces.

Holomorphic and meromorphic functions and differential forms can be gen-
eralized to Riemann surfaces by using the notion of conformal structure. For
example, a holomorphic one-form ω is a complex differential form, such that in
each local frame zα = (uα, vα), the parametric representation is ω = f(zα)dzα,
where f(zα) is a holomorphic function. On a different chart {Uβ, φβ}, ω =
f(zα(zβ))dzα

dzβ
dzβ . For a genus g closed surface, all holomorphic one-forms form

a real 2g dimensional linear space.
At a zero point p ∈ M of a holomorphic one-form ω, any local parametric

representation ω = f(zα)dzα, f |p = 0. According to the Riemann-Roch theorem,
in general there are 2g − 2 zero points for a holomorphic one-form defined on a
surface of genus g.

A holomorphic one-form induces a special system of curves on a surface, the
so-called conformal net. A curve γ ⊂ M is called a horizontal trajectory of ω,
if ω2(dγ) ≥ 0; similarly, γ is a vertical trajectory if ω2(dγ) < 0. The horizontal
and vertical trajectories form a web on the surface. The trajectories that connect
zero points, or a zero point with the boundary are called critical trajectories. The
critical horizontal trajectories form a graph, which is called the critical graph. In
general, the behavior of a trajectory may be very complicated, it may have infi-
nite length and may be dense on the surface. If the critical graph is finite, then
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all the horizontal trajectories are finite. The critical graph partitions the surface
into a set of non-overlapping patches that jointly cover the surface, and each
patch is either a topological disk or a topological cylinder. Each patch Ω ⊂ M
can be mapped to the complex plane using the following formulae. Suppose we
pick a base point p0 ∈ Ω, and any path γ that connects p0 to p. Then if we
define φ(p) =

∫
γ ω, the map φ is conformal, and φ(Ω) is a parallelogram. We

say φ is the conformal parameterization of M induced by ω. φ maps the verti-
cal and the horizontal trajectories to iso-u and iso-v curves respectively on the
parameter plane. The structure of the critical graph and the parameterizations
of the patches are determined by the conformal structure of the surface. If two
surfaces share similar topologies and geometries, they can support consistent
critical graphs and segmentations (i.e. surface partitions), and the parameteri-
zations are consistent as well. Therefore, by matching their parameter domains,
the entire surfaces can be directly matched in 3D. This generalizes prior work
in medical imaging that has matched surfaces by computing a smooth bijection
to a single canonical surface, such as a sphere or disk.

This paper takes the advantage of conformal structures of surfaces, consis-
tently segments them and parameterizes the patches using a holomorphic 1-form.
We call this process - i.e., finding a critical graph and partitioning the surface
into conformally parameterized patches - the holomorphic flow segmentation.
This parameterization and partitioning of the surface is completely determined
by the surface geometry and the choice of the holomorphic 1-form. (Note that
this differs from the typical meaning of segmentation in medical imaging, and
is concerned with the segmentation, or partitioning, of a general surface, rather
than classification of voxels in an image). Computing holomorphic 1-forms is
equivalent to solving elliptic differential equations on surfaces, and in general,
elliptic differential operators are stable. Therefore the resulting surface segmen-
tations and parameterizations are intrinsic and stable, and are applicable for
matching noisy surfaces derived from medical images.

2 Holomorphic Flow Segmentation

To compute the holomorphic flow segmentation of a surface, first we compute the
conformal structure of the surface; then we select one holomorphic differential
form, and locate the zero points on it. By tracing horizontal trajectories through
the zero points, the critical graph can be constructed and the surface is divided
into several patches. Each patch can then be conformally mapped to a planar
parallelogram by integrating the holomorphic differential form.

In our work, surfaces are represented as triangular meshes, namely piecewise
polygonal surfaces.The computations with differential forms are based on solving
elliptic partial differential equations on surfaces using the finite element method.

2.1 Conformal Structures Computation

A method to compute the conformal structure of a surface was introduced in [9].
Suppose M is a closed genus g > 0 surface with a conformal atlas A. The con-
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formal structure A induces holomorphic 1-forms; all holomorphic 1-forms form a
linear space Ω(M) of dimension 2g which is isomorphic to the first cohomology
group of the surface H1(M,R). The set of holomorphic one-forms determines
the conformal structure.

2.2 Canonical Conformal Parameterization Computation

Given a Riemann surface M , there are infinitely many holomorphic 1-forms, but
each of them can be expressed as a linear combination of the basis elements.
We define a canonical conformal parameterization as any linear combination of
the set of holomorphic basis functions ωi, i = 1, ..., g. They satisfy

∫
ζi
ωj = δj

i ,

where ζi, i = 1, ...n are homology bases and δj
i is the Kronecker symbol. Then

we compute a canonical conformal parameterization ω =
∑n

i=1 ωi.

2.3 Zero Points Location

For surface with genus g > 1, any holomorphic 1-form ω has 2g− 2 zero points.
The horizontal trajectories through the zero points will partition the surface into
several patches. Each patch is either a topological disk or a cylinder, and can be
conformally parameterized by ω using φ(p) =

∫
γ ω.

Estimating the Conformal Factor. Suppose we already have a global confor-
mal parameterization, induced by a holomorphic 1-form ω. Then we can esti-
mate the conformal factor at each vertex, using the following formulae: λ(v) =
1
n

∑
[u,v]∈K1

|ω([u,v])|2
|r(u)−r(v)|2 , u, v ∈ K0, where n is the valence of vertex v.

Locating Zero Points. We find the cluster of vertices with relatively small con-
formal factors (the lowest 5 − 6%). These are candidates for zero points. We
cluster all the candidates using the metric on the surface. For each cluster, we
pick the vertex that is closest to the center of gravity of the cluster, using the
surface metric to define geodesic distances.

2.4 Holomorphic Flow Segmentation

Tracing Horizontal Trajectories. Once the zero points are located, the horizontal
trajectories through them can be traced. First we choose a neighborhood Uv of a
vertex v representing a zero point, Uv is a set of neighboring faces of v, then we
map it to the parameter plane by integrating ω. Suppose a vertex w ∈ Uv, and
a path composed by a sequence of edges on the mesh is γ, then the parameter
location of w is φ(w) =

∫
γ
ω.

The map φ(w) is a piecewise linear map. Then the horizontal trajectory is
mapped to the horizontal line y = 0 in the plane. We slice φ(Uv) using the line
y = 0 by edge splitting operations. Suppose the boundary of φ(Uv) intersects y =
0 at a point v′, then we choose a neighborhood of v′ and repeat the process. Each
time we extend the horizontal trajectory and encounter edges intersecting the
trajectory, we insert new vertices at the intersection points, until the trajectory
reaches another zero point or the boundary of the mesh. We repeat the tracing
process until each zero point connects 4 horizontal trajectories.
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Critical Graph. Given a surface M and a holomorphic 1-form ω on M , we define
the graph G(M,ω) = {V,E, F}, as the critical graph of ω. Here V is the set of
zero points of ω, E is the set of horizontal trajectories connecting zero points
or the boundary segments of M , and F is the set of surface patches segmented
by E.

Given two surfaces with similar topologies and geometries, by choosing ap-
propriate holomorphic 1-forms, we can obtain isomorphic critical graphs, which
will be used for patch-matching described in the next section.

3 Experimental Results

We tested our algorithm on various anatomic surfaces extracted from 3D MRI
scans of the brain to illustrate the approach.

Figure 1 (a)-(d) shows experimental results for a hippocampal surface, a
structure in the medial temporal lobe of the brain. The original surface is shown
in (a). (b) shows the conformal mapping of (a) to a sphere with a variational
method introduced in [7]. Since the shape of hippocampal surface is not quite
similar to a sphere, lots of distortion has been introduced. In our method, we
leave two holes on the front and back of the hippocampal surface, representing its
anterior junction with the amygdala, and its posterior limit as it turns into the
white matter of the fornix. It can be logically represented as an open boundary
genus one surface, a cylinder (note that spherical harmonic representations would
also be possible, if the ends were closed). The computed conformal structure is
shown in (c). Then we can conformally map the hippocampus to a rectangle (d).
Since the surface of rectangle is similar to the one of hippocampus, the detailed
surface information is well preserved in (d). Compared with other spherical pa-
rameterization methods (e.g. (b)), which may have high-valence nodes and dense
tiles at the poles of the spherical coordinate system, our parameterization can
represent the surface with minimal distortion.

Shape analysis of the lateral ventricles is of great interest in the study of
psychiatric illnesses, including schizophrenia, and in degenerative diseases such
as Alzheimer’s disease. These structures are often enlarged in disease and can
provide sensitive measures of disease progression. We can optimize the conformal
parameterization by topology modification. For the lateral ventricle surface in
each brain hemisphere, we introduce five cuts. Since these cutting positions are
at the end of the frontal, occipital, and temporal horns of the ventricles, they can
potentially be located automatically. The second row in Figure 1 shows 5 cuts
introduced on three subjects ventricular surfaces. After the cutting, the surfaces
become open boundary genus 4 surfaces.

Figure 1 (e)-(g) show parameterizations of the lateral ventricles of the brain.
(e) shows the results of parameterizing a ventricular surface for a 65-year-old
patient with HIV/AIDS (note the disease-related enlargement), (f) the results
for the ventricular model of a 21-year-old control subject, and (g) the results for
a 28-year-old control subject. The surfaces are initially generated by using an
unsupervised tissue classifier to isolate a binary map of the cerebrospinal fluid in
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Fig. 1. Illustrates surface parameterization results for the hippocampal surface and the
lateral ventricles. (a) is the original hippocampal surface; (b) the result of inflation of
surface (a) to a sphere; (c) the computed conformal structure; and (d) the rectangle
that (a) is conformally mapped to. The second row shows how 5 cuts are introduced;
they convert the lateral ventricle surface into a genus 4 surface. (e)-(g) show models
parameterized using holomorphic 1-forms, for a 65-year- old subject with HIV/AIDS,
a healthy 21-year-old subject and a second healthy 28-year-old subject, respectively.
The computed holomorphic flow segmentations and their associated sets of rectangular
parameter domains are shown (the texture mapped into the parameter domain here
simply corresponds to the intensity of the surface rendering, which is based on the
surface normals).
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the MR image, and tiling the surface of the largest connected component inside
the brain. Based on the computed conformal structure, we can partition the
surface into 6 patches. Each patch can be conformally mapped to a rectangle.
Although the three brain ventricle shapes are very different, the segmentation
results are consistent in that the surfaces are partitioned into patches with the
same relative arrangement and connectivity. Thus our method provides a way
for direct surface matching between any two ventricles.

For the surface of the cerebral cortex, our algorithm also provides a way
to perform surface matching, while explicitly matching sulcal curves or other
landmarks lying in the surface. Note that typically two surfaces can be matched
by using a landmark-driven flow in their parameter spaces. An alternative ap-
proach is to supplement the critical graph with curved landmarks that can then

Fig. 2. Illustrates the parameterization of cortical surfaces using the holomorphic 1-
form approach. The thick lines are landmark curves, including several major sulci lying
in the cortical surface. These sulcal curves are always mapped to a boundary in the
parameter space images.
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be forced to lie on the boundaries of rectangles in the parameter space. This
has the advantage that conformal grids are still available on both surfaces, as
is a correspondence field between the two conformal grids. Figure 2 shows the
results for the cortical surfaces of two left hemispheres. As shown in the first
row, we selected four major landmark curves, for the purpose of illustrating the
approach (thick lines show the precental and postcentral sulci, and the superior
temporal sulcus, and the perimeter of the corpus callosum at the midsagittal
plane). By cutting the surface along the landmark curves, we obtain a genus
3 open boundary surface. There are therefore two zero points (observable as a
large white region and black region in the conformal grid; an illustration of the
conformal structure is shown in the first panel the first row). We show corti-
cal surfaces from two different subjects in Figure 2 (these are extracted using a
deformable surface approach, but are subsequently reparameterized using holo-
morphic 1-forms). The second and fourth rows show the segmented patches for
each cortical surface. The rectangles that these patches conformally map to are
shown on the third and fifth row, respectively. Since the landmark curves lie
on the boundaries of the surface patches, they can be forced to lie on an iso-
parameter curve and can be constrained to map to rectangle boundaries in the
parameter domain. Although the two cortex surfaces are different, the selected
sulcal curves are mapped to the rectangle boundaries in the parameter domain.
This method therefore provides a way to warp between two anatomical surfaces
while exactly matching an arbitrary number of landmark curves lying in the
surfaces. This is applicable to tracking brain growth or degeneration in serial
scans, and composite maps of the cortex can be made by invoking the consistent
parameterizations. Lamecker et al’s work [10] has the similar motivation as ours
for the cortex case, which is to partition a surface into canonical patches and pa-
rameterize the patches with minimal distortion. However, our partition method
is based on intrinsic Riemann surface structure and theirs is based on shortest
paths along lines of high curvature. Thus our method is global and more stable.

4 Conclusion and Future Work

In this paper, we presented a brain surface parameterization method that in-
vokes the Riemann surface structure to generate conformal grids on surfaces
of arbitrary complexity (including branching topologies). We tested our algo-
rithm on the hippocampus, lateral ventricle surfaces and on surface models of
the cerebral cortex. The grid generation algorithm is intrinsic (i.e. does not
depend on any initial choice of surface coordinates) and is stable, as shown
by grids induced on ventricles of various shapes and sizes. Compared with
other work conformally mapping brain surfaces to sphere, our work may intro-
duce less distortion and may be especially convenient for other post-processing
work such as surface registration and landmark matching. Our future work in-
clude automatic location of cutting positions and more experiments on disease
assessment.
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Abstract. Many medical imaging applications require the computation
of dense correspondence vector fields that match one surface with an-
other. To avoid the need for a large set of manually-defined landmarks
to constrain these surface correspondences, we developed an algorithm
to automate the matching of surface features. It extends the mutual in-
formation method to automatically match general 3D surfaces (including
surfaces with a branching topology). First, we use holomorphic 1-forms to
induce consistent conformal grids on both surfaces. High genus surfaces
are mapped to a set of rectangles in the Euclidean plane, and closed
genus-zero surfaces are mapped to the sphere. Mutual information is
used as a cost functional to drive a fluid flow in the parameter domain
that optimally aligns stable geometric features (mean curvature and the
conformal factor) in the 2D parameter domains. A diffeomorphic surface-
to-surface mapping is then recovered that matches anatomy in 3D. We
also present a spectral method that ensures that the grids induced on the
target surface remain conformal when pulled through the correspondence
field. Using the chain rule, we express the gradient of the mutual infor-
mation between surfaces in the conformal basis of the source surface.
This finite-dimensional linear space generates all conformal reparame-
terizations of the surface. We apply the method to hippocampal surface
registration, a key step in subcortical shape analysis in Alzheimer’s dis-
ease and schizophrenia.

1 Introduction

In computational anatomy, surface-based computations are used to statistically
combine or compare 3D anatomical models across subjects, or map functional
imaging parameters onto anatomical surfaces. When comparing data on two
anatomical surfaces, a correspondence field must be computed to register one
surface nonlinearly onto the other. Multiple surfaces can be registered nonlin-
early to construct a mean shape for a group of subjects, and deformation map-
pings can encode shape variations around the mean. This type of deformable
surface registration has been used to detect developmental and disease effects on
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brain structures such as the corpus callosum and basal ganglia [1], the hippocam-
pus [2], and the cortex [3]. Nonlinear matching of brain surfaces can also be used
to track the progression of neurodegenerative disorders such as Alzheimer’s dis-
ease [2], to measure brain growth in development [1], and to reveal directional
biases in gyral pattern variability [4].

Surface registration has numerous applications, but a direct mapping between
two 3D surfaces is challenging to compute. Often, higher order correspondences
must be enforced between specific anatomical points, curved landmarks, or sub-
regions lying within the two surfaces. This is often achieved by first mapping each
of the 3D surfaces to canonical parameter spaces such as a sphere [5,6] or a planar
domain [7]. A flow, computed in the parameter space of the two surfaces [1,8],
then induces a correspondence field in 3D. This flow can be constrained using
anatomic landmark points or curves, or by constraining the mapping of sur-
face regions represented implicitly using level sets [7]. Feature correspondence
between two surfaces can be optimized by using the L2-norm to measure dif-
ferences in convexity [5]. Artificial neural networks can rule out or favor certain
types of feature matches [9]. Finally, correspondences may be determined by us-
ing a minimum description length (MDL) principle, based on the compactness
of the covariance of the resulting shape model [10]. Anatomically homologous
points can then be forced to match across a dataset. Thodberg [11] identified
problems with early MDL approaches and extended them to an MDL appearance
model, when performing unsupervised image segmentation.

By the Riemann uniformization theorem, all surfaces can be conformally em-
bedded in a sphere, a plane or a hyperbolic space. The resulting embeddings form
special groups. Using holomorphic 1-forms and critical graphs, global conformal
parameterization [12] can be used to conformally map any high genus surface
(i.e., a surface with branching topology) to a set of rectangular domains in the
Euclidean plane. In this paper, we use conformal parameterizations to help match
arbitrary 3D anatomical surfaces. Mutual information is used to drive a diffeo-
morphic fluid flow that is adjusted to find appropriate surface correspondences
in the parameter domain. We chose the mean curvature and the conformal factor
of the surfaces as the differential geometric features to be aligned in this study
as they are intrinsic and stable. These choices are illustrative - any scalar fields
defined on the surfaces could be matched, e.g. cortical thickness maps, functional
imaging signals or metabolic data. Since conformal mapping and fluid registra-
tion techniques generate diffeomorphic mappings, the 3D shape correspondence
established by composing these mappings is also diffeomorphic (i.e., provides
smooth one-to-one correspondences).

2 Theoretical Background and Definitions

Due to space limitations, here we list some formal definitions that help describe
our approach, without detailed explanation. For further reading, please refer to
[13] and [14].
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2.1 Surface Parameterization with Riemann Surface Structure

An atlas is a collection of consistent coordinate charts on a manifold, where
transition functions between overlapping coordinate charts are smooth. We treat
R2 as isomorphic to the complex plane. Let S be a surface in R3 with an atlas
{(Uα, zα)}, where (Uα, zα) is a chart, and zα : Uα → C maps an open set
Uα ⊂ S to the complex plane C. An atlas is called conformal if (1). each chart
(Uα, zα) is a conformal chart. Namely, on each chart, the first fundamental form
can be formulated as ds2 = λ(zα)2dzαdz̄α; (2). the transition maps zβ ◦ z−1

α :
zα(Uα ∩ Uβ) → zβ(Uα ∩ Uβ) are holomorphic.

A chart is compatible with a given conformal atlas if adding it to the atlas
again yields a conformal atlas. A conformal structure (Riemann surface struc-
ture) is obtained by adding all compatible charts to a conformal atlas. A Riemann
surface is a surface with a conformal structure. It has been proven that all metric
orientable surfaces are Riemann Surfaces.

One coordinate chart in the conformal structure introduces a conformal pa-
rameterization between a surface patch and the image plane. The conformal
parameterization is angle-preserving and intrinsic to the geometry.

The surface conformal structure induces special curvilinear coordinate sys-
tem on the surfaces. Based on a global conformal structure, a critical graph can
be recovered that connects zero points in the conformal structure and parti-
tions a surface into patches. Each of these patches can be conformally mapped
to a parallelogram by integrating a holomorphic 1-form defined on the surface.
Figure 1(a)-(c) show an example of the conformal parameterization of a lateral
ventricle surface of a 65-year-old HIV/AIDS patient. The conformal structure of

Fig. 1. Illustrates conformal surface parameterization. (a) - (c) illustrate conformal pa-
rameterizations of ventricular surfaces in the brain for a 65-year-old HIV/AIDS patient.
(d)-(g) show the computed conformal factor and mean curvature on a hippocampal sur-
face, (d)-(e) are two views of the hippocampal surface, colored according to conformal
factor; (f)-(g) are two views of the hippocampal surface, colored according to mean
curvature.
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the ventricular surface is shown in (a). (b) shows a partition of the ventricular
surface, where each segment is labeled by a unique color. (c) shows the param-
eterization domain, where each rectangle is the image, in the parameterization
domain, of a surface component in (b).

For a Riemann surface S with genus g > 0, all holomorphic 1-forms on S form
a complex g-dimensional vector space (2g real dimensions), denoted by Ω1(S).
The conformal structure of a higher genus surface can always be represented in
terms of a holomorphic one-form basis, which is a set of 2g functions ωi : K1 →
R2, i = 1, 2 · · · , 2g. Any holomorphic one-form ω is a linear combination of these
functions. The quality of a global conformal parameterization for a high genus
surface is fundamentally determined by the choice of the holomorphic 1-form.

2.2 Conformal Representation of a General Surface

For a general surface S, we can compute conformal coordinates (u, v) to pa-
rameterize S. Based on these coordinates, one can derive scalar fields including
the conformal factor, λ(u, v), and mean curvature, H(u, v), of the surface po-
sition vector S(u, v): ∂S

∂u × ∂S
∂v = λ(u, v)n(u, v), and H(u, v) = | 1

λ2(u,v) (
∂2

∂u2 +
∂2

∂v2 )r(u, v)|. From the theorem [15], we can regard the tuple (λ,H) as the con-
formal representation of S(u, v).

Clearly, various fields of scalars or tuples could be used to represent sur-
faces in the parameter domain. Because the conformal structure is intrinsic and
independent of the data resolution and triangulation, we use the conformal repre-
sentation, λ(u, v) and H(u, v), to represent the 3D surfaces. This representation
is stable and computationally efficient. Figure 1 (d)-(g) shows the conformal
factor((d) and (e)), and mean curvature((f) and (g)), indexed in color on a hip-
pocampal surface.

2.3 Mutual Information (MI) for Surface Registration

We now describe the mutual information functional used to drive the scalar fields
λ(u, v) and H(u, v) into correspondence, effectively using the equivalent of a 2D
image registration in the surface parameter space (i.e., in conformal coordinates).
Let I1 and I2 be the target and the deforming template images respectively,
and I1, I2 : R2 → R. Let Ω ⊂ R2 be the common parameter domain of both
surfaces (if both are rectangular, the target parameter domain is first matched
to the source parameter domain using a 2D diagonal matrix). Also, let u be a
deformation vector field on Ω. The MI of the scalar fields (treated as 2D images)
between the two surfaces is defined by I(u) =

∫
R2 pu(i1, i2)log

pu(i1,i2)
p(i1)pu(i2)di1di2.

where p(i1) = P (I1(x) = i1), pu(i2) = P (I2(x − u) = i2) and pu(i1, i2) =
P (I1(x)) = i1 and I2(x − u) = i2.

We adopted the framework of D’Agostino et al. [16] to maximize MI with
viscous fluid regularization. Briefly, the deforming template image was treated
as embedded in a compressible viscous fluid governed by Navier-Stokes equation
for conservation of momentum [17], simplified to a linear PDE:

Lv = μ∇2v + (λ + μ)∇(∇· v) + F (x, u) = 0 (1)
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Here v is the deformation velocity, and μ and λ are the viscosity constants.
Following [16], we take the first variation of I(u) with respect to u, and use the
Parzen window method [18] to estimate the joint probability density function
(pdf) pu(i1, i2).

3 The Surface Mutual Information Method for an
Arbitrary Genus Surface

To match two high genus surfaces (i.e., surfaces with the same branching topol-
ogy), we apply our surface mutual information method piecewise. First, we com-
pute conformal representations of the two surfaces based on a global conformal
parameterization. 1 These conformal representations are aligned with mutual in-
formation driven flows, while enforcing constraints to guarantee that the vector-
valued flow is continuous at the patch boundaries. 2 When the chain rule is used,
we can further optimize the mutual information matching results by optimizing
the underlying global conformal parameterization.

Let S1 and S2 be two surfaces we want to match and the conformal parame-
terization of S1 is τ1, conformal parameterization for S2 is τ2, τ1(S1) and τ2(S2)
are rectangles in R2. Instead of finding the mapping φ from S1 to S2 directly, we
can use mutual information method to find a diffeomorphism τ : D1 → D2, such
that: τ−1

2 ◦ τ ◦ τ1 = φ. Then the map φ can be obtained from φ = τ1 ◦ τ ◦ τ−1
2 .

Because τ1, τ and τ2 are all diffeomorphisms, φ is also a diffeomorphism.

3.1 Mutual Information Contained in Maps Between High Genus
Surfaces

A global conformal parameterization for a high genus surface can be obtained by
integrating a holomorphic one-form ω. Suppose {ωi, i = 1, 2, · · · , 2g} is a holo-
morphic 1-form basis, where an arbitrary holomorphic 1-form has the formula

1 Several variational or PDE-based methods have been proposed to match surfaces
represented by parametric meshes [5], level sets, or both [7]. Gu et al. [19] found a
unique conformal mapping between any two genus zero manifolds by minimizing the
harmonic energy of the map. Gu and Vemuri [20] also matched genus-zero closed 3D
shapes by first conformally mapping them to a canonical domain and aligning their
2D representations over the class of diffeomorphisms.

2 The mutual information method [14] measures the statistical dependence of the
voxel intensities between two images. Parameters of a registration transform can be
tuned so that MI is maximal when the two images are optimally aligned. The MI
method has been successful for rigid [21] and non-rigid [22,23] image registration.
Here, we generalize it to match 3D surfaces. For MI to work, a monotonic mapping
in grayscales between images is not required, so images from different modalities can
be registered [24]. Hermosillo et al. [25] adopted linear elasticity theory to regularize
the variational maximization of MI. D’Agostino et al. [16] extended this approach to
a viscous fluid scheme allowing large local deformations, while maintaining smooth,
one-to-one topology [17].
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ω =
∑2g

i=1 λiωi. Assuming the target surface’s parameterization is fixed, the mu-
tual information between it and the source surface’s parameterization is denoted
E(ω), which is a function of the linear combination of coefficients λi. A necessary
condition for the optimal holomorphic 1-form is, ∂E

∂λi
= 0, i = 1, 2, · · · , 2g. If the

Hessian matrix ( ∂2E
∂λi∂λj

) is positive definite, then E will reach the minimum. If
the Hessian matrix is negative definite, E will be maximized.

Our surface mutual information method depends on the selection of holo-
morphic 1-form ω. To match surfaces optimally, we find the holomorphic 1-form
that maximizes the mutual information metric. Suppose a holomorphic func-
tion ω =

∑2g
i=1 λiωi, our goal is to find a set of coefficients λi, i = 1, ..., 2g that

maximize the mutual information, EMI . We solve this optimization problem
numerically as follows:

dEMI = ( dEMI
du

, dEMI
dv

)

(
du

dλ1

du
dλ2

... du
dλ2g

dv
dλ1

dv
dλ2

... dv
dλ2g

)⎛⎜⎜⎝
dλ1

dλ2

...
dλ2g

⎞⎟⎟⎠ (2)

where (u, v) is the conformal coordinate.
Once we compute dEMI

dλi
, i = 1, 2, ..., 2g, we can use steepest descent to op-

timize the resulting mutual information. A complete description of the surface
mutual information method follows.

Algorithm 1. Surface MI Method (for surfaces of arbitrary genus)
Input (mesh M1, M2,step length δt, MI difference threshold δE),
Output(t : M1 →M2) where t minimizes the surface mutual information.

1. Compute global conformal parameterization of two surfaces, ωj =
∑2g

i=1 siωi,
j = 1, 2; i = 1, 2, ..., 2g, where g is the surface genus number of two surfaces
M1 and M2, and sj

i , j = 1, 2, i = 1, 2, ..., 2g are the coefficients of a linear
combination of holomorphic function basis elements. The steps include com-
puting the homology basis, cohomology basis, harmonic one-form basis and
holomorphic one-form basis.

2. Compute holomorphic flow segmentation of the target surface, M2, from
the global conformal parameterization, ω2, which conformally maps the 3D
surface to a set of rectangles in the Euclidean plane.

3. Compute 2D conformal representation for the target surface, λ2(u, v) and
H2(u, v), where (u, v) is the conformal coordinate;

4. Compute holomorphic flow segmentation of the source surface, M1, and 2D
conformal representation λ1(u, v) and H1(u, v);

5. Apply the mutual information method to optimize the correspondence be-
tween two surfaces, t : (λ1(u, v), H1(u, v)) → (λ2(u, v), H2(u, v)), j = 1, 2
and Hj(u, v), j = 1, 2; and compute mutual information E0

MI ;
6. Compute derivative Dt.
7. Update the global conformal parameterization of source surface, M1, by

changing the coefficients s1(v) = Dt(v)δt.
8. Compute mutual information E, with steps 3, 4, 5.
9. If EMI −E0

MI < δE, return t. Otherwise, assign E to E0 and repeat steps 6
through 9.
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Currently, we use the following numerical scheme in step 6:

1. Compute dEMI/du and dEMI/dv, du/dsi, i = 1, 2, ..., 2g;
2. Compute dv/dsi, i = 1, 2, ..., 2g;
3. Compute Dt = dEMI/dsi, i = 1, 2, ..., 2g with Equation 2.

4 Experimental Results

To make the results easier to illustrate, we chose to encode the profile of surface
features using a compound scalar function C(u, v) = 8λ(u, v) + H(u, v), where
λ(u, v) is conformal factor and H(u, v) the mean curvature. Several examples
are shown matching hippocampal surfaces in 3D. This type of deformable sur-
face registration can help track developmental and degenerative changes in the
brain, and can create average shape models with appropriate boundary corre-
spondences. In the experiments, the velocity field v in Equation 1 was computed
iteratively by convolution of the force field with a filter kernel derived by Bro-
Nielsen and Gramkow [26]. The viscosity coefficients λ and μ were set to 0.9
and 6.0 respectively. The deformation field in the parameter domain (u) was
obtained from v by Euler integration over time, and the deformed template im-
age was regridded when the Jacobian determinant of the deformation mapping
at any point in x − u was smaller than 0.5 [17]. At each step, the joint pdf
was updated and the MI re-computed. Iterations were stopped when MI was no
longer monotonically increasing or when the number of iterations reached 350.
The Parzen parameter h was set to 10 for smoothing the joint pdf. Figure 2 (a)
shows the matching fields for several pairs of surfaces, establishing correspon-
dences between distinctive features. Here geometric features on 3D hippocampal
surface, conformal factor and mean curvature, were conformally flattened to a
2D square. In the 2D parameter domain, data from a healthy control subject was
registered to data from several Alzheimer’s disease patients. Each mapping can
be used to obtain a reparameterization of the 3D surface of the control subject,
by convecting the original 3D coordinates along with the flow. Importantly, in
Figure 2 (a), some consistent 3D geometric features are identifiable in the 2D
parameter domain; bright area (arrows) correspond to high curvature features
in the hippocampal head.

Although validation on a larger sample is required, we illustrate the approach
on left hippocampal surface data from one healthy control subject and five pa-
tients with Alzheimer’s disease. We register the control subject’s surface to each
patient, generating a set of deformation mappings. Figure 2 (b)-(e) show the cor-
respondences as a 3D vector field map connecting corresponding points on two
surfaces being registered. (d) and (e) are a part of surface before and after the
registration. After reparameterization, a leftward shift in the vertical isocurves
adds a larger tangential component to the vector field. Even so, the deformed
grid structure remains close to conformal. The lengths of the difference vectors
are reduced after the MI based alignment; a formal validation study in a larger
sample is now underway.
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Fig. 2. (a) Geometric features on 3D hippocampal surfaces (the conformal factor and
mean curvature) were computed and compound scalar fields were conformally flattened
to a 2D square. In the 2D parameter domain, data from a healthy control subject (the
template, leftmost column) was registered to data from several Alzheimer’s disease
patients (target images, second column). The deformed template images are shown in
the third and fourth (gridded) columns. (b)-(c) show the two 3D hippocampal surfaces
being matched, for (b) a control subject and (c) an Alzheimer’s disease patient. We flow
the surface from (b) to (c). (d)-(e) show the 3D vector displacement map, connecting
corresponding points on the two surfaces, (d) before and (e) after reparameterization
of the source surface using a fluid flow in the parameter domain. These 3D vector fields
store information on geometrical feature correspondences between the surfaces.

5 Conclusions and Future Work

We extended the mutual information method to match general surfaces. This has
many applications in medical imaging. Future work will validate the matching
of hippocampal surfaces in shape analysis applications in degenerative diseases,
as well as building statistical shape models to detect the anatomical effects of
disease, aging, and development. The hippocampus is used as a specific example,
but the method is general and is applicable in principle to other brain surfaces
such as the cortex. Whether or not our new method provides a more relevant cor-
respondences than those afforded by other criteria (minimum description length,
neural nets, or hand landmarking) requires careful validation for each applica-
tion. Because different correspondence principles produce different shape mod-
els, we plan to compare them in future for detecting group differences in brain
structure.
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Abstract. To compare and integrate brain data, data from multiple
subjects are typically mapped into a canonical space. One method to
do this is to conformally map cortical surfaces to the sphere. It is well
known that any genus zero Riemann surface can be conformally mapped
to a sphere. Therefore, conformal mapping offers a convenient method
to parameterize cortical surfaces without angular distortion, generating
an orthogonal grid on the cortex that locally preserves the metric. To
compare cortical surfaces more effectively, it is advantageous to adjust
the conformal parameterizations to match consistent anatomical features
across subjects. This matching of cortical patterns improves the align-
ment of data across subjects, although it is more challenging to create
a consistent conformal (orthogonal) parameterization of anatomy across
subjects when landmarks are constrained to lie at specific locations in
the spherical parameter space. Here we propose a new method, based on
a new energy functional, to optimize the conformal parameterization of
cortical surfaces by using landmarks. Experimental results on a dataset
of 40 brain hemispheres showed that the landmark mismatch energy can
be greatly reduced while effectively preserving conformality. The key
advantage of this conformal parameterization approach is that any lo-
cal adjustments of the mapping to match landmarks do not affect the
conformality of the mapping significantly. We also examined how the pa-
rameterization changes with different weighting factors. As expected, the
landmark matching error can be reduced if it is more heavily penalized,
but conformality is progressively reduced.

1 Introduction

An effective way to analyze and compare brain data from multiple subjects is to
map them into a canonical space while retaining the original geometric informa-
tion as far as possible. Surface-based approaches often map cortical surface data
to a parameter domain such as a sphere, providing a common coordinate system
for data integration [1,2]. One method is to map the cortical surface conformally
to the sphere. Any genus zero Riemann surfaces can be mapped conformally
to a sphere, without angular distortion. Therefore, conformal mapping offers a
convenient way to parameterize the genus zero cortical surfaces of the brain. To
compare cortical surfaces more effectively, it is desirable to adjust the conformal
parameterizations to match specific anatomical features on the cortical surfaces
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Fig. 1. Manually labeled landmarks on the brain surface. The original surface is on
the left. The result of mapping it conformally to a sphere is on the right.

as far as possible (such as sulcal/gyral landmarks in the form of landmark points
or 3D curves lying in the surface). Here we refer to these anatomical features as
landmarks. Some examples of landmarks are shown in Figure 1.

1.1 Previous Work

Several research groups have reported work on brain surface conformal mapping.
Hurdal and Stephenson [3] reported a discrete mapping approach that uses cir-
cle packing to produce “flattened” images of cortical surfaces on the sphere,
the Euclidean plane, or the hyperbolic plane. They obtained maps that are
quasi-conformal approximations to classical conformal maps. Haker et al. [4] im-
plemented a finite element approximation for parameterizing brain surfaces via
conformal mappings. They represented the Laplace-Beltrami operator as a linear
system and solved it for parameterizing brain surfaces via conformal mapping.
Gu et al. [5] proposed a method to find a unique conformal mapping between
any two genus zero manifolds by minimizing the harmonic energy of the map.
They demonstrated this method by conformally mapping the cortical surface to
a sphere.

Optimization of surface diffeomorphisms by landmark matching has been
studied intensively. Gu et al. [5] proposed to optimize the conformal parametriza-
tion by composing an optimal Möbius transformation so that it minimizes the
landmark mismatch energy. The resulting parameterization remains conformal.
Glaunés et al. [6] proposed to generate large deformation diffeomorphisms of the
sphere onto itself, given the displacements of a finite set of template landmarks.
The diffeomorphism obtained can match the geometric features exactly but it is,
in general, not a conformal mapping. Leow et al. [7] proposed a level set based
approach for matching different types of features, including points and 2D or 3D
curves represented as implicit functions. Cortical surfaces were flattened to the
unit square. Nine sulcal curves were chosen and were represented by the inter-
section of two level set functions, and used to constrain the warp of one cortical
surface onto another. The resulting transformation was interpolated using a large
deformation momentum formulation in the cortical parameter space, generaliz-
ing an elastic approach for cortical matching developed in Thompson et al. [8].
Duygu et al. [9] proposed a more automated mapping technique that results
in good sulcal alignment across subjects, by combining parametric relaxation,
iterative closest point registration and inverse stereographic projection.
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1.2 Basic Idea

In this paper, we propose a new method to adjust conformal parameterizations
of the cortical surface so that they match consistent anatomical features across
subjects. This matching of cortical patterns improves the alignment of data
across subjects, e.g., when integrating functional imaging data across subjects,
measuring brain changes, or making statistical comparisons in cortical anatomy
[10].

Our new method, which is based on a new energy functional, optimizes the
conformal parameterization of cortical surfaces by using landmarks. This is done
by minimizing the compound energy functional Enew = Eharmonic+λElandmark,
where Eharmonic is the harmonic energy of the parameterization and Elandmark

is the landmark mismatch energy. We prove theoretically that our proposed Enew

is guaranteed to be decreasing and study the rate of changes of Eharmonic and
Elandmark. Experimental results show that our algorithm can considerably re-
duce the landmark mismatch energy while effectively retaining the conformality
property. Based on these findings, we argue that the conformal mapping provides
an attractive framework to help analyze anatomical shape, and to statistically
combine or compare 3D anatomical models across subjects.

2 Algorithm

2.1 Combined Energy Definition

A diffeomorphism f : M → N is a conformal mapping if it preserves the first
fundamental form up to a scaling factor (the conformal factor). Mathematically,
this means that ds2M = λf∗(ds2N ), where ds2M and ds2N are the first fundamental
form on M and N , respectively and λ is the conformal factor. For a diffeo-
morphism between two genus zero surfaces, a map is conformal if it minimizes
the harmonic energy1 ,Eharmonic [1]. Based on this fact, we can compute the
conformal mapping by a variational approach, which minimizes the harmonic
energy.

Here we propose a new algorithm that optimizes the conformal parameteriza-
tion using discrete landmarks. This algorithm optimizes the landmark mismatch
energy over all degrees of freedom in the reparameterization group. The map ob-
tained can considerably reduce the landmark mismatch energy while retaining
conformality as far as possible.

Suppose C1 and C2 are two cortical surfaces we want to compare. We let
f1 : C1 → S2 be the conformal parameterization of C1 mapping it onto S2. We
manually label the landmarks on the two cortical surfaces as discrete point sets,
as shown in Figure 1. We denote them as {pi ∈ C1}, {qi ∈ C2}, with pi matching
qi. We proceed to compute a map f2 : C2 → S2 from C2 to S2, which minimizes
the harmonic energy as well as minimizing the so-called landmark mismatch en-
ergy. The landmark mismatch energy measures the Euclidean distance between

1 We adapted the harmonic energy computation in [5].
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the corresponding landmarks. Alternatively, landmark errors could be computed
as geodesic distances with respect to the original surfaces, rather than on the
sphere; here we chose to perform distance computations on the sphere. Using our
algorithm, the computed map should effectively preserve the conformal property
and match the geometric features on the original structures as far as possible.

Let h : C2 → S2 be any homeomorphism from C2 onto S2. We define the
landmark mismatch energy of h as, Elandmark(h) = 1/2

∑n
i=1 ||h(qi))−f1(pi)||2.

where the norm represents distance on the sphere. By minimizing this energy
functional, the Euclidean distance between the corresponding landmarks on the
sphere is minimized.

To optimize the conformal parameterization, we propose to find f2 : C2 → S2

which minimizes the following new energy functional (instead of the harmonic
energy functional), Enew(f2) = Eharmonic(f2) + λElandmark(f2), where λ is a
weighting factor (Lagrange multiplier) that balances the two penalty functionals.
It controls how much landmark mismatch we want to tolerate. When λ = 0,
the new energy functional is just the harmonic energy. When λ is large, the
landmark mismatch energy can be greatly reduced. But more conformality will
be lost (here we regard deviations from conformality to be quantified by the
harmonic energy).

Now, let K represent the simplicial realization (triangulation) of the brain
surface C2, let u, v denote the vertices, and [u, v] denote the edge spanned by
u, v. Our new energy functional can be written as:

Enew(f2) =1/2
∑

[u,v]∈K

ku,v ||f2(u) − f2(v)||2 + λ/2
n∑

i=1

||f2(qi) − f1(pi)||2

=1/2
∑

[u,v]∈K

ku,v ||f2(u) − f2(v)||2 + λ/2
∑

u∈K

||f2(u) − L(u))||2χM (u)

where M = {q1, ..., qn} ; L(qi) = pi if u = qi ∈ M and L(u) = (1, 0, 0)
otherwise. The first part of the energy functional is defined as in [5]. Note that
by minimizing this energy, we may give up some conformality but the landmark
mismatch energy is progressively reduced.

2.2 Optimization of Combined Energy

We next formulate a technique to optimize our energy functional. Suppose we
would like to compute a mapping f2 that minimizes the energy Enew(f2). This
can be solved easily by steepest descent.
Definition 3.1: Suppose f ∈ CPL, where CPL represent a vector space consists of
all piecewise linear functions defined on K. We define the Laplacian as follows:
Δf(u) =

∑
[u,v]∈K ku,v(f(u) − f(v)) + λ

∑
u∈K(f2(u) − L(u))χM (u).

Definition 3.2: Suppose
−→
f ∈ CPL,

−→
f = (f0, f1, f2), where the fi are piecewise

linear. Define the Laplacian of
−→
f as Δ

−→
f = (Δf0(u), Δf1(u), Δf2(u)).

Now, we know that f2 = (f20, f21, f22) minimizes Enew(f2) if and only if the
tangential component of Δf2(u)= (Δf20(u), Δf21(u), Δf22(u)) vanishes. That is
Δ(f2) = Δ(f2)⊥.

In other words, we should have P−→nΔf2(u) = Δf2(u)−(Δf2(u)·−→n )−→n = 0. We
use a steepest descent algorithm to compute f2 : C2 → S2: df2

dt = −P−→nΔf2(t).
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Algorithm 1. Algorithm to Optimize the Combined Energy Enew

Input (mesh K, step length δt, energy difference threshold δE),
output(f2 : C2 → S2), which minimizes E. The computer algorithm proceeds as follows:

1. Given a Gauss map I : C2 → S2. Let f2 = I, compute E0 = Enew(I)

2. For each vertex v ∈ K, compute P−→n Δf2(v)

3. Update f2(v) by δf2(v) = −P−→n Δf2(v)δt

4. Compute energy Enew

5. If Enew − E0 < δE, return f2. Otherwise, assign E to E0. Repeat steps 2 to 5.

Fig. 2. In (a), the cortical surface C1 (the control) is mapped conformally (λ = 0) to
the sphere. In (d), another cortical surface C2 is mapped conformally to the sphere.
Note that the sulcal landmarks appear very different from those in (a) (see landmarks
in the green square). In (g), the cortical surface C2 is mapped to the sphere using our
algorithm (with λ = 3). Note that the landmarks now closely resemble those in (a)
(see landmarks in the green square). (b) and (c) shows the same cortical surface (the
control) as in (a). In (e) and (f), two other cortical surfaces are mapped to the spheres.
The landmarks again appears very differently. In (h) and (i), the cortical surfaces are
mapped to the spheres using our algorithm. The landmarks now closely resemble those
of the control.
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3 Experimental Results

In our experiment, we tested our algorithm on a set of left hemisphere corti-
cal surfaces generated from brain MRI scans of 40 healthy adult subjects, aged
27.5+/-7.4SD years (16 males, 24 females), scanned at 1.5 T (on a GE Signa scan-
ner). Data and cortical surface landmarks were those generated in a prior paper,
Thompson et al. [10] where the extraction and sulcal landmarking procedures
are fully detailed. Using this set of 40 hemispheric surfaces, we mapped all sur-
faces conformally to the sphere and minimized the compound energy matching
all subjects to a randomly selected individual subject (alternatively, the surfaces
could have been aligned to an average template of curves on the sphere). An im-
portant advantage of this approach is that the local adjustments of the mapping
to match landmarks do not greatly affect the conformality of the mapping. In
Figure 2(a), the cortical surface C1 (a control subject) is mapped conformally
(λ = 0) to the sphere. In (d), another cortical surface C2 is mapped conformally
to the sphere. Note that the sulcal landmarks appear very different from those in
(a) (see landmarks in the green square). This means that the geometric features
are not well aligned on the sphere unless a further feature-based deformation is
applied. In Figure 2(g), we map the cortical surface C2 to the sphere with our
algorithm, while minimizing the compound energy. This time, the landmarks
closely resemble those in (a) (see landmarks in the green square).

In Figure 3, statistics of the angle difference are illustrated. Note that under
a conformal mapping, angles between edges on the initial cortical surface should
be preserved when these edges are mapped to the sphere. Any differences in
angles can be evaluated to determine departures from conformality. Figure 3(a)
shows the histogram of the angle difference using the conformal mapping, i.e.
after running the algorithm using the conformal energy term only. Figure 2(b)
shows the histogram of the angle difference using the compound functional that
also penalizes landmark mismatch. Despite the fact that inclusion of landmarks
requires more complex mappings, the angular relationships between edges on

Fig. 3. Histogram (a) shows the statistics of the angle difference using the conformal
mapping. Histogram (b) shows the statistics of the angle difference using our algorithm
(λ = 3). It is observed that the angle is well-preserved.
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Table 1. Numerical data from our experiment. The landmark mismatch energy is
greatly reduced while the harmonic energy is only slightly increased. The table also
illustrates how the results differ with different values of λ. The landmark mismatch
error can be reduced by increasing λ, but conformality will increasingly be lost.

λ = 3 λ = 6 λ = 10

Eharmonic of the initial
(conformal) parameterization: 100.6 100.6 100.6

λElandmark of the initial (conformal)
parameterization: 81.2 162.4 270.7

Initial compound energy
(Eharmonic + λElandmark) : 181.8 263.0 371.3

Final Eharmonic 109.1 (↗ 8.45%) 111.9 (↗ 11.2%) 123.0 (↗ 22.2%)

Final λElandmark 11.2 (↘ 86.2%) 13.7 (↘ 91.6%) 15.6(↘ 95.8%)

Final compound energy
(Eharmonic + λElandmark) 120.3 (↘ 33.8%) 125.6(↘ 52.2%) 138.6 ( ↘ 62.7%)

the source surface and their images on the sphere are clearly well preserved even
after landmark constraints are enforced.

We also tested with other parameter λ with different values. Table 1 shows
numerical data from the experiment. From the Table, we observe that the land-
mark mismatch energy is greatly reduced while the harmonic energy is only
slightly increased. The table also illustrates how the results differ with different
values of λ. We observe that the landmark mismatch error can be reduced by
increasing λ, but conformality is increasingly lost.

4 Conclusion and Future Work

In conclusion, we have developed a new algorithm to compute a map from the
cortical surface of the brain to a sphere, which can effectively retain the original
geometry by minimizing the landmark mismatch error across different subjects.
The development of adjustable landmark weights may be beneficial in compu-
tational anatomy. In some applications, such as tracking brain change in an
individual over time, in serial images, it makes most sense to place a high prior-
ity on landmark correspondence. In other applications, such as the integration
of functional brain imaging data across subjects, functional anatomy is not so
tightly linked to sulcal landmarks, so it may help to trade landmark error to
increase the regularity of the mappings. In the future, we will study the nu-
merical parameters of our algorithm in details to determine how the weighting
factor λ affects the signal to noise for different neuroimaging applications. We
will also compare our algorithm with other existing counterpart quantitatively.
Furthermore, more analysis will be done to examine how well the alignment of
the sulci/gyri is, such as averaging the maps.
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Appendix

A Energy Is Decreasing

Claim : With our algorithm, the energy is strictly decreasing.
Proof : Our energy (in continuous form) can be written as: E(u) = 1/2

∫ ||∇u||2
+ λ
∫
δE ||(u − v)||2 where v is the conformal mapping from the control cortical

surface to the sphere. Now,
d
dt |t=0E(u+ tw) =

∫ ∇u · ∇w + λ
∫
δE(u − v) · w =

∫
Δuw + λ

∫
δE(u− v) · w

In our algorithm, the direction w is taken as: w = −Δu−λδE(u−v). Substituting
this into the above equation, we have d

dt |t=0E(u+ tw) = − ∫ (∇u− (λ)
∫
δE ||u−

v||)2 < 0. Therefore, the overall energy of the mapping is strictly decreasing, as
the iterations proceed.

B Rate of Changes in Eharmonic and Elandmark

To explain why our algorithm can effectively preserve conformalilty while greatly
reducing the landmark mismatch energy, we can look at the rate of change of
Eharmonic and Elandmark. Note that the initial map u we get is almost conformal.
Thus, initially Δu is very small.
Claim : With our algorithm, the rate of change of Eharmonic(u) is O(||Δu||∞)
and the rate of change of Elandmark is λ2Elandmark(u) + O(||Δu||∞). Here the
norm is the supremum norm over the surface.
Proof : Recall that in our algorithm, the direction w is taken as: w = −Δu −
λδE(u − v). Now, the rates of change are:

Eharmonic =| d

dt
|t=0Eharmonic(u + tw)| = |

∫
∇u · ∇w| = |

∫
Δu · w|

=|
∫

||Δu||2 +
∫

δEΔu · (u − v)| ≤ ||Δu||2∞ + 8λπ||Δu||∞ = O(||Δu||∞)

Elandmark =| d

dt
|t=0Elandmark(u + tw)| = |

∫
(λδE)2(u − v) · w +

∫
δE(u − v) · Δu|

≤λ2Elandmark(u) + 8π||Δu||∞ = λ2Elandmark(u) + O(||Δu||∞)
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Fig. 4. This figure shows how the harmonic energy and landmark energy change, as the
number of iterations increases, using our steepest descent algorithm. Initially, the rate
of change of the harmonic energy is small while the rate of change of landmark energy is
comparatively large. Note that a Lagrange multiplier governs the weighting of the two
energies, so a compromise can be achieved between errors in landmark correspondence
and deviations from conformality.

Since initially the map is almost conformal and Δu is very small, the change
in harmonic energy is very small. Conversely, initially the landmark energy is
comparatively large. Since the rate of change of Elandmark is λ2Elandmark(u) +
O(||Δu||∞), the change in landmark energy is more significant (see Figure 4 for
an illustration).
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Abstract. We developed a new method for absolute quantification of targeted 
radiotracers uptake in the myocardium using hybrid SPECT/CT and an external 
reference point source. A segmentation algorithm based on the level set was de-
veloped to determine the endocardial edges from CT, which were subsequently 
applied to the physically co-registered SPECT. A 3-D Gaussian fitting method 
was applied for quantification of the external point source. The total targeted 
radiotracer activity in the myocardium was normalized to that in the point 
source to calculate the absolute uptake of targeted radiotracer in the myocar-
dium. Preliminary validation was performed in rats with ischemia-induced an-
giogenesis. The quantified in vivo radiotracer uptake was compared to the 
postmortem tissue radioactive well-counting of the myocardium. Our methods 
worked well for identification of the endocardial edges. Quantification of the 
focal uptake was consistent with the well-counting data. Our methods may have 
the potential of providing precise absolute quantification of targeted radiotracer 
uptake in the myocardium. 

1   Introduction 

Recently substantial research was directed toward the developments of targeted mo-
lecular imaging agents [1] for the cardiovascular system and radiotracer based imag-
ing techniques for noninvasive visualization of the molecular processes in the myo-
cardium. Radio-labeled agents targeted at the molecular processes often result in focal 
“hotspot” images, which are distinctly different from the perfusion images conven-
tionally acquired in nuclear cardiology. Because the changes in the myocardial uptake 
of these targeted radiotracers are generally small, precisely tracking these subtle 
changes requires a sophisticated quantitative method to assess the absolute hotspot 
uptake in the myocardium. However, quantification of myocardial uptake of targeted 
radiotracers has not been extensively investigated previously in part due to the back-
ground activity in the cardiac images. Quantification of hotspot focal uptake in the 
myocardium from single photon emission computerized tomography (SPECT) pre-
sents another challenge due to the effects of image resolution, background activity  
[2, 3], object size, shape and voxel size in SPECT images [4]. Other confounding fac-
tors such as photon attenuation and the partial volume effect may also cause errors in 
quantification of absolute hotspot tracer uptake [5] in the myocardium. On the other 
hand, it is difficult to obtain anatomical information from focal hotspot SPECT  
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images and thus reference images such as 201Tl or CT images are needed to identify 
the position and orientation of the heart. Currently, quantitative approaches are not 
available for serial evaluation of changes in the uptake of these targeted radiotracers. 
Previous studies in quantification of targeted cardiac images are mostly derived only 
from visual analysis. Recently, we developed a stochastic approach [6] for quantifica-
tion of focal uptake from cardiac SPECT/CT images using a 99mTc/201Tl dual-isotope 
SPECT imaging protocol in which 201Tl SPECT was used as the reference perfusion 
image. However, quantification of the targeted radiotracer uptake using two isotopes 
may require assumptions of the reciprocal relation between the 99mTc and 201Tl images 
which may not be true due to the cross-talk between the two tracers on board. Using 
CT image to replace 201Tl image as the reference image may potentially address this 
issue. 

In this paper, we introduce a new level-set-based SPECT/CT segmentation and 
quantification approach for absolute quantification of myocardial uptake of radio-
tracers targeted at the molecular processes such as angiogenesis. Absolute myocardial 
uptake is quantified from SPECT images with the support of co-registered SPECT/CT 
images in identification of the left ventricular (LV) myocardium. 

2   Methods 

2.1   The Level Set Approach for Image Segmentation 

The level set method, developed previously by Osher and Sethian [7, 8], is a numeri-
cal approach for tracking the evolution of the surfaces. Let Γ(t) denote a time-
dependent closed (n-1)-dimensional hyper-surface which evolves in its normal direc-
tion. Instead of maneuvering the hyper-surface directly, the desired hyper-surface is 
embedded in the zero level set of a higher n-dimensional function φ(x,t), which can be 
described as: 

}0),(|{)( ==Γ txxt φ  (1) 

The value of φ at point x  is defined by: 

dt(x ±=),φ , (2) 

where d is the shortest distance from x to the desired hyper-surface Γ(t). The sign is 
determined by either the point x lying outside (+d) or inside (-d) the hyper-surface
Γ(t). The level-set function is evolved under the control of the differential equation: 

0t(xF
t(x

=∇+
∂

∂
),

),
φ

φ
, (3) 

where |∇φ| is the norm of the gradient of the level set function φ. The speed term F in 
Equation 3 to be defined in the next section depends on the feature of the image seg-
mented and the intrinsic geometrical property of the surface (eg. curvature of the sur-
face). Given φ(x,t)= 0, the evolving surface can be obtained by extracting the zero 
level-set as expressed in Equation 1. For details of the level set methods, the reader 
can refer to [9]. 
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2.2   The Cavity Separation 

In vivo cardiac CT images have very low contrast and ambiguous boundaries due to 
the cardiac motion. Segmentation of the myocardium from the in vivo CT images is 
challenging. Instead of segmenting the myocardium, we segment the cavity from the 
in vivo CT images because of the complex shape of the myocardium. We also rescale 
the CT images to enhance the intensity in the LV regions. Let IC denote the rescaled 
CT image. The speed term used in Equation 3 can be formulated as [9]: 

I
g

I
g)(F C

C ∇

∇⋅∇
−⋅⋅−= , (4) 

where 
)(1

1

CIGcIg
∗∇+

=
σ

 and φ
φκ ∇

∇
⋅∇= . The expression 

C
IG ∗σ denotes the re-

scaled CT images convolved with a Gaussian smoothing filter of which the character-
istic width is denoted as . We use the Gaussian filter to reduce the noise of the edges 
and facilitate the edge detection for the anatomical structures of the LV.  is a curva-

ture-based geometric smoothing term. The last term 
φ

φ

∇

∇⋅∇
CIg

in Equation 4 is used to 

direct the curve to the boundaries of the LV cavity. The scalars ,  and  are the pa-
rameters used to weigh the relative influence of each of the terms on the movement of 
the edges. 

Proper initialization is critical for the level set algorithm. A seed region with one or 
more pixels needs to be manually introduced into the cavity volume. Ultimately, the 
cavity volume is updated iteratively with the speed term F until it reaches the endo-
cardial edges. 

2.3   Point Source Extraction 

In order to calculate the total counts of the external reference point source, the volume 
of the reference point source needs to be extracted from the SPECT images. A 3-D 
Gaussian fitting is incorporated into the point source extraction. Total counts of the 
external point source fitted as a 3-D elliptical Gaussian shape are integrated from the 
center of the volume to 2 standard deviation (SD) outward in the 3-D space to acquire 
97.5% of the counts in the elliptical shape. The 3-D Gaussian function of the point 
source can be formulated as 
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1

exp),,(
n

T
n XXMXX

AzyxP
−−−

⋅= , (5) 

Where X= (x, y, z)T denote the spatial coordinates, Xn= (xn, yn, zn)
T denote the spatial 

coordinates of the center of the point source, A is the height of the Gaussian shape, 

and 
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σ . The variance of the Gaussian in different directions 
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( xσ , yσ , zσ ) are not necessarily the same. The parameters of the point source 

distribution can be estimated by a gradient-expansion algorithm [10] to compute a 
non-linear least squares with the seven parameters shown above. 

To locate the point source in the SPECT images, a seed is manually introduced into 
the region of the point source. The initial center of the point source can be defined by 
the position of maximal value pixel in the finite region around the seed. After the 
parameter estimation, the count of the point source can be collected from the 3-D el-
liptical volume with the estimated standard deviations. 

2.4   Quantification of Targeted Radiotracer Uptake from SPECT Images 

The signed distance map as described in Section 2.1 can be generated with incorpora-
tion of the LV cavity volume obtained from the CT images. In the signed distance 
map, pixel values represent the shortest signed distance of the points from the con-
tour. Consequently, the myocardial volume is obtained by integrating all the pixels 
within an assumed myocardial thickness. The myocardium determined by CT can be 
applied to the targeted radiotracer SPECT images (see Fig. 1(c)) thanks to the co-
registration of the SPECT and CT images.  

The point source filled with 99mTc was used as a known reference to quantify abso-
lute uptake of the targeted radiotracers in the LV myocardium. The boundary between 
the left ventricular and left atrial myocardium was determined manually and was lo-
cated approximately one half of the whole LV length as evidenced by the CT images. 
Targeted radiotracer uptake in the LV myocardium was normalized to the total counts 
of the external point source of which the volume was determined by the method de-
scribed in Section 2.3. Relative radiotracer uptake was calculated as a summation of 
pixels values in the segmented LV myocardium volume. The resulted relative radio-
tracer uptake was in turn weighted by the known dose of the external point source to 
obtain absolute radiotracer uptake. The total absolute radiotracer uptake is calculated 
by 

Targeted radiotracer uptake c
duu

dvv
⋅=

)(

)(

θ
ζ

, (6) 

where ζ(ν) denotes the targeted activity in the LV myocardium volume ν, θ(u) de-
notes the targeted activity in point source volume u, and c represents the known ra-
dioactivity (μCi) in the point source. 

3   Rat Experiments 

3.1   Surgical and Imaging Preparation 

Rats weighting 200-250 gm were used in our preliminary validation for the methods. 
The rats were anesthetized with isoflurane and the hearts was exposed via a limited 
left anterolateral thoracotomy. The left anterior descending coronary artery was 
ligated at 7 mm distal to the origin. The coronary occlusion was subsequently released 
after 45 minutes resulting in non-transmural infarction and the chest was closed in 
layers. One week following myocardial infarction, the rats were anesthetized with 
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isoflurane and positioned in a hybrid microSPECT/CT imaging system (XSPECT 
Gamma Medica, Northridge, CA) for microCT and microSPECT imaging. A point 
source filled with 32 μCi 99mTc was placed under the imaging table and near the rat. A 
99mTc-labeled radiotracer (4 5 mCi) targeted at the αvβ3 integrin (NC100692, GE 
Healthcare), a marker of angiogenesis, was injected into the rats. The rats were also 
injected with an intravascular vascular contrast agent (Fenestra VC, Alerion Biomedi-
cal, San Diego, CA) to visually separate the myocardium from LV cavity. 

3.2   Image Acquisitions and Reconstructions 

Non-gated CT projections were acquired for 15 minutes. A total of 512 projections 
were acquired. The CT images were reconstructed using the filtered back-projection 
algorithm. The matrix size of CT images was 512×512×512 voxels. The voxel size of 
CT reconstruction was 0.1557 mm cubic. 

After CT imaging, SPECT images were acquired using the same dual-head mi-
croSPECT/CT camera with pinholes collimators (1 mm aperture) for 35 minutes, with 
a 20% energy window symmetrically centered at 140 keV photopeak of 99mTc. 
Eighty-two projections were acquired for each head in a 1800 circular orbit. The 
SPECT images were also reconstructed using the filtered back-projection algorithm. 
The matrix size of SPECT images was 82×82×82 voxels, with voxel size of 1.524 
mm×1.524 mm×1.524 mm. CT and SPECT images were fused to obtain co-registered 
SPECT/CT images. All fused images had an image matrix size of 256×256×256 vox-
els, with voxel size of 0.3114 mm×0.3114 mm×0.3114 mm. 

3.3   CT Image Segmentation and SPECT Image Quantification 

The level set image segmentation method was applied to the CT images to determine 
the endocardial edges and the resulted edges were subsequently applied to the SPECT 
images to calculate the focal radiotracer uptake in the LV myocardium as described in 
Section 2. 

3.4   Tissue Well-Counting 

Rats were sacrificed after SPECT/CT imaging. The heart was extracted from the chest 
and was sliced for tissue well-counting measurements of the radioactivity in the LV 
myocardium. The well-counting data was corrected for decay based on the time inter-
val between the SPECT imaging and well-counting. 

4   Results 

Fig.1(a) illustrates the in vivo CT images for one rat. The cavity of the left ventricle 
determined using the level set method is shown in Fig. 1(b) in red and the myocar-
dium between the endocardial and epicardial edges is shown in green. The thickness 
of the myocardium shown in Fig.1(b) was seven pixels (~ 2.2 mm). The LV edges 
were subsequently applied to the targeted SPECT images as shown in Fig. 1(c) 
to integrate the total photon counts in the targeted regions in the LV myocardium. The 
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Fig. 1. (a) In vivo CT images, (b) In vivo CT images with LV cavity (in red) and myocardium 
(in green) superimposed, (c) In vivo SPECT images superimposed with the LV myocardial 
edges from (b). The myocardial thickness is 7 pixels width in this illustration. 

integrated tracer counts were normalized to that in the point source to calculate the 
absolute radiotracer dose in the LV myocardium as described in Section 2.4. Point 
source dose (μCi) was calculated using the method described in Section 2.3. Because 
only one point source was used in our experiments, the absolute dose in the point 
source was decay corrected for each rat. 

Table 1 shows the well-counting dose and SPECT quantified doses with 7 different 
wall thicknesses assumed in our segmentation method. The ratio shown in Table 1 
was calculated as the SPECT dose divided by the true well-counting dose. The well-
counting data was also corrected in the same way based on the time interval between 
the SPECT imaging and well-counting. As seen in Table 1, the ratio is linearly in-
creased as a function of the assumed LV myocardium thickness. The positive linearity 
is expected because a thicker LV thickness assumed should reflect higher integrated 
counts from the myocardium. Notice that the SPECT quantified dose using seven-
pixel thickness (~ 2.2 mm) resulted in the smallest error as compared to the other 
thicknesses used. The true thickness of rat myocardium is approximately 1~1.5mm. 
By taking into account the intrinsic pinhole SPECT resolution (~1 mm) and low-pass 
filtering effect on SPECT images, the myocardial thickness assumed in SPECT im-
ages needs to be at least 2 times image resolution to compensate for the partial vol-
ume effect. This may explain that the assumed seven-pixel thickness resulted in a bet-
ter estimation of the uptake of the targeted radiotracer. 
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Table 1. Comparisons between the SPECT quantified radiotracer dose and true well-counting 
dose in 7 different thicknesses assumed for the left ventricular myocardium of rat 

D= 4 pixels D= 5 pixels D= 6 pixels 

Rat # 

Well 
counting 

dose 
(μCi) 

SPECT 
dose 
(μCi) 

Ratio 
SPECT 
dose 
(μCi) 

Ratio 
SPECT 
dose 
(μCi) 

Ratio 

1 1.93 0.76 0.39 1.08 0.56 1.56 0.81 

2 1.56 0.75 0.48 1.09 0.70 1.53 0.98 

D= 7 pixels D= 8 pixels D= 9 pixels D= 10 pixels 

SPECT 
dose (μCi) 

Ratio 
SPECT 

dose 
(μCi) 

Ratio 
SPECT 

dose 
(μCi) 

Ratio 
SPECT 

dose 
(μCi) 

Ratio 

1.91 0.99 2.56 1.33 3.17 1.65 3.93 2.03 

1.94 1.24 2.52 1.62 3.11 1.99 3.82 2.45 

5   Discussion and Conclusion 

We have derived an image segmentation method using the level set scheme to iden-
tify the LV cavity in CT images and developed a SPECT quantification approach for 
assessment of absolute targeted radiotracer uptake in the LV myocardium. A hybrid 
microSPECT/CT imaging system was used for imaging. The methods were evalu-
ated using an in vivo rat model and a radiotracer targeted at angiogenesis. The valid-
ity of the results was demonstrated in 2 rats with 7 different myocardium thicknesses 
assumed in our methods. The linearity of SPECT quantified radiotracer uptake with 
respect to the thickness confirmed that the results of absolute radiotracer uptake 
quantification in our rat data were quite promising. Using the 7-pixel wall thickness 
in consideration of image resolution and the partial volume effect, the resulted 
SPECT quantified dose was comparable to the true dose obtained from the well-
counting data. 

While the preliminary results presented herein are encouraging, we did not apply 
photon attenuation and scatter corrections to the SPECT images in this animal valida-
tion. We believe that the estimation of absolute quantification of targeted radiotracer 
uptake in the LV myocardium can be further improved when these corrections are in-
corporated. Also, the level sets used in the myocardium segmentation may be affected 
by the complicated parameter settings and the initial placement of seed region in the 
cavity. Thus, further validation of our methods in adjusting those settings is warranted. 
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Abstract. Cine-DEMR is a new cardiac imaging technique which combines 
aspects of Cine and Delayed Enhancement MR. Like Cine, it displays the heart 
beating over time allowing for the detection of motion abnormalities. Like 
DEMR, non-viable (dead) tissues appear with increased signal intensity (it has 
been shown that the extent of non-viable tissue in the left ventricle (LV) of the 
heart is a direct indicator of patient survival rate). We present a technique for 
tracking the myocardial borders in this modality and classifying myocardial 
pixels as viable or non-viable. Tracking is performed using an affine deformed 
template of borders manually drawn on the first phase of the series and refined 
using an ASM-like approach. Classification employs a Support Vector Machine 
trained on DEMR data. We applied our technique on 75 images culled from 5 
patient data sets. 

1   Introduction 

Cine-Delayed Enhancement Magnetic Resonance imaging (Cine-DEMR) is a novel 
imaging technique targeted to the left ventricle of the heart which combines the 
advantages of both Cine MR and Delayed Enhancement MR (DEMR). Like Cine 
imaging, Cine-DEMR recovers the motion of the heart over the cardiac cycle - the 
detection of motion abnormalities such as hypokinesis in Cine is a well established 
indicator of cardiac health [Schwartzman]. Like DEMR images, non-viable (dead) 
myocardial tissue appears bright in Cine-DEMR images, allowing the amount of non-
viable myocardium to be quantified - the extent of non-viable tissue in DEMR is 
directly correlated with improved cardiac function after revascularization therapy (e.g. 
coronary bypass surgery) [Kim NEJM]. Thus, Cine-DEMR unites morphology (Cine) 
with function (DEMR). Figure 1 shows sample images from a Cine-DEMR study and 
compares them to Cine and DEMR images. 

Cine-DEMR has advantages over the combination of separate Cine and DEMR 
acquisitions. First, it decreases scanning time by replacing two acquisitions with one – 
no small benefit given the costs of imaging. Second, it supplants the mental 
integration of the two sequences with a perfectly fused simultaneous visualization. 
Third, it avoids potential mis-registration of the two separate sequences. Cine and 
DEMR are typically acquired minutes apart. During that time the patient may have 
moved, or chest positions may be at variance due to differing breath intakes. The 
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resulting images may describe regions millimeters apart. Fourth, the optimal phase for 
evaluating scar (non-viable) tissue may not be end-diastole (the phase in which 
DEMR is typically acquired). Fifth, due to motion of the myocardium normal to the 
imaging plane as the heart contracts, the scar may appear and disappear. With Cine-
DEMR, the phase which best describes the scar is much more likely to be imaged 
simply because more than one phase is acquired. Finally, in cases where the scar does 
not completely cover the wall (is not transmural), it is easier to see how the healthy 
portion moves as compared to Cine because the two regions can be distinguished.  

 

 

Fig. 1.  Top Left: A DEMR image showing non-viable regions with increased signal intensity 
(denoted by arrow) (Note: DEMR images are single phase). Top Middle and Right: End-
diastolic and end-systolic images from a mid-ventricular short-axis Cine acquisition. Bottom: 
Images from a 15 phase Cine-DEMR study. End-diastole is on the left, end-systole on the right. 

The above benefits, however, come at a cost. Cine-DEMR has both decreased 
spatial and temporal resolution compared to the individual sequences. Nevertheless, 
preliminary studies in which clinicians analyzed Cine-DEMR, Cine, and DEMR 
images of the same individual have shown showed a strong correlation in the 
categorization of tissues [Setser]. And, work is currently being done to improve the 
temporal resolution via parallel imaging and/or segmented K-space schemes [Setser].  

The ultimate goal of our work is the quantification of myocardial scar in Cine-
DEMR images. By quantification we mean the identification and measurement of 
dead myocardial tissue. This implies a two part analysis scheme. First, the 
myocardium must be defined via the delineation of its borders. Then, those 
myocardial tissues must be classified as viable or non-viable. 

The first part of the scheme, the delineation of the myocardium, is quite 
challenging. Compared to the same task in Cine MR, it is harder since the myocardial 
borders may be completely missing. That is, the signal of the myocardium may be the 
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same as that of the bloodpool in non-viable regions. And, since the scar may appear 
and disappear due to thru plane motion we cannot guarantee that the same intensity 
pattern will be present over the cycle. Compared to the task in DEMR, it is also 
difficult. Previous quantification schemes for DEMR [Dikici] assumed the existence 
of a Cine study so that the true morphology could be referenced. With the advent of 
Cine-DEMR there may not be a separate Cine study. 

Thus, to simplify the delineation task, we assume the existence of a manually drawn 
contour on the first frame and track the borders over the cycle using this starting 
point. Briefly, we register this first frame to each of the subsequent (target) frames, 
copy the endo and epi contours over and fit them to the edges in the target frame 
using affine transforms. To refine the fit, we take an active shape model approach by 
attempting to match the radial intensity profiles in the target image to those in the first 
frame. A spline is then fit to the individual contour points to smooth them. For the 
second part of the scheme, the classification of the tissues, we rely on a Support 
Vector Machine (SVM) [Cristianini] which has been trained to recognize non-viable 
tissue in DEMR images. 

The remainder of this paper is as follows. In Section 2 we describe related work. In 
Section 3 we provide a more detailed description of our algorithms. In Section 4 we 
show results on the tracking and analysis of Cine-DEMR studies from 5 patients with 
15 frames each for a total of 75 images. Discussion of these results are presented in 
Section 5 and finally, in Section 6 we submit our conclusions. 

2   Related Work 

While both Cine and Delayed Enhancement MR have become standard protocol for 
assessment of cardiac viability when using MR [Schwartzman], Cine-DEMR is new 
enough that, to our knowledge, no work has been published on its automatic or semi-
automatic analysis.  

Dikici et. al. [Dikici], segmented static DEMR on a slice by slice basis using a 
standard Cine image set as a morphology reference. The employment of an affine 
deformed template for the tracking of the myocardium was done by [Sun] which bares 
resemblance to our initial tracking scheme. Our refinement of the tracking  uses an 
active shape model [Cootes] approach similar to that of [Mitchell], however, it is not 
“trained” on a set of images. Rather, we simply use the first frame of the series as a 
comparison. 

Regarding the classification of myocardial tissues using DEMR, Noble et. al., 
registered Cine and DEMR image sets in 3D in order to detect hibernating (dormant 
but not dead) myocardium [Noble].  As well, there are several semi-automatic 
segmentation techniques for classifying DEMR published in the literature [Kim]. 
Some of these studies have defined a threshold for non-viable pixels as >2*std dev of 
the signal intensity of remote, viable myocardium (which was defined manually) 
[Kim]; other studies have used 3*std dev as the threshold [Fieno]. We employ a 
Support Vector Machine to classify tissues and in this regard are similar to El-Naqa 
et. al., in their work on mammogram analysis [El-Naqa] and Dikici et. al.,[Dikici] in 
their work on the heart. 
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3   Materials and Methods 

3.1   Segmentation of the Myocardium 

Let nC represent a vector of Cine-DEMR images with n consecutive phases 

describing one spatial slice of the heart. Let )(1 rS represent a contour manually 

drawn on phase 1. 

3.1.1   Localization of the LV in  Phases n..2  
The approximate position of the LV in phases nk ..2=  is found through a non-rigid 

registration of 1C  with kC , nk ..2= . This results in a series of deformation fields 

kD such that 

))(()( ,1 xDCxC kk

r
a

r
, nk ..2=  

These deformation fields are then applied to )(1 rS , 10: →r , to arrive at 

))(()( 1 rSDrS klocalizedk
= , nk ..2=  

The centroid of ),(rS
ilocalized  

drrSx
klocalized

kk

S

localizedcenter )(=r
 

is the position from which we start our search for the LV in kC , nk ..2= . This 

deformation is too imprecise for any other inferences. The resulting contour is too 
deformed to serve as a starting point for the next step of the procedure. Rather, we 

simply copy over 1C  to kC and center it on 
kcenterx

r
 resulting in )(rSk

′ . 

3.1.2   Affine Transformation of Contours  
We deform )(rS

k
′ to fit the image kC by applying an affine deformation composed 

of 5 parameters: translation in the x and y dimensions kτr , shearing parameters 

kqs and 
kms in =

1

1
),(

k

k

kk
m

q

mqk s

s
ssH , and a scaling parameter kω . The 

translation is bound by the distance of 10 pixels, the shearing  bound by ±60 degrees 
and scaling by ±%20. 

The affine parameters are adjusted to minimize an energy term made up of the 

components: 1E , 2E , and 3E  such that: 
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The resulting contour )(rSk
″ serves as a starting point for a local refinement process. 

3.1.3   Local Refinement of the Tracking 
Over the course of the cardiac cycle, the shape of the LV deforms in a non-rigid 
manner. The affine transformation from the previous section is capable of describing 
this only to a limited extent. However, it does provide a good basis from which to 
begin a less constrained search. Therefore, we apply an ASM-like approach to 

refining )(rSk
″ .  

Essentially, we determine the signatures of radial profiles in the neighborhoods of 

the inner and outer contours of )(1 rS . We then locally deform )(rSk
″  such that the 

signature of its profiles in the neighborhoods of the inner and outer contours match 
those of )(1 rS .  

3.1.4   Profile Calculation 
We sample both inner and outer contours in j radial directions yielding 

profiles )(ρ
endokjp

r
 and )(ρ

epikjp
r

, nk ..1= . The radial directions are centered at the 

centroid, kμr , of )(1 rS epi
 or )(rS

epik
″  (depending on k). Note: kμr may be different 

from 
kcenterx

r
 due to the affine transformation in Section 3.1.2). The rays intersect 

)(1 rS  or )(rSk
″  (depending on k) at 

endokjq
r

 and 
epikjq

r
. 

For a particular image k (we drop the k subscript here for clarity), profile 

)(ρjp
r

(whether for the inner contour )(ρ
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r
 or outer contour )(ρ

epijp
r

) is a 

linear function of ρ , 
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, andκ is the length of the profile. 

The energy dataε for matching the profiles is expressed as a function of the offset 
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This energy is minimal where the profile in image kC is offset by kjυr  best matches 

the profile in image 1C . 

3.1.5   Refining the Contours 
For the outer contour, the optimal offset is determined simply by minimizing 

)(
epikjdata υε r

with respect to 
epikjυr , 

)(
epi

epikj
epi kjkj ArgMin υευ

υ
′=

′

rr
r

 

For each )(rS
epik

″ , a cubic  spline is fit to the points )(
epiepi kjkjq υrr + , for all j , to 

form the final outer contour, )(rF
epik

. 

The fitting of the inner contour is less stable and requires a smoothing coefficient. 
This coefficient represents a tethering of the inner contour to the fixed outer contour 
with a spring which limits its deformation. For a given image, nk ..2=  (we drop the 

k subscript here for clarity), 
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Where 
epijq′r is the intersection in the radial direction with the final outer contour 

)(rF
epik

. Therefore, the optimal offset for the inner contour is determined by 

minimizing with respect to 
endokjυr (returning to the k subscript), 
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Similarly, a cubic spline is fit to the points )(
endoendo kjkjq υrr +  to form the final contour 

)(rF
endok

. 

3.2   Classification of Tissues 

We employ an SVM to classify the myocardial pixels once the borders have been 
detected. For our kernel function of the SVM we use a Gaussian radial basis function 
of the form:  

22
2/)'()(

))'(),((
σφφφφ xx

exxk
−−=rr

 

where φ is the vector of features. The feature vector φ  is made up of three 

components: First, the intensity of a pixel, relative to the average myocardial 
intensity. Second, the standard deviation  of the relative pixel intensities with respect 
to its next neighbors. Finally, the “myocardial contrast” defined as the ratio of the 
mean myocardial intensity  and the mean image intensity  of the image. Training was 
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performed on static DEMR images due to the lack of available Cine-DEMR 
examples. To determine σ in our kernel as well as K , a compromise between 
maximizing the margin and minimizing the number of training set errors, we 
employed the “leave-one-out strategy”.   

3.3   Acquisition Protocol  

Cine-DEMR imaging is based on inversion recovery, single-shot, balanced steady 
state free precession (bSSFP) imaging [Chung]. Each image frame of the ECG-
triggered cine series is acquired during a separate RR-interval using a constant 
inversion time. Image frames are acquired every other heart beat to allow 
magnetization recovery. To create a cine series, the trigger delay is varied between 
image frames, resulting in a series of single-shot images, each from a different phase 
of the cardiac cycle. 

Cine-DE images were acquired using a 1.5T MRI scanner (Magnetom Sonata, 
Siemens Medical Solutions, Erlangen, Germany), using the following typical 
acquisition parameters: flip angle 50°, repetition time 2.5 ms, echo time 1.1 ms, 
bandwidth 1090 Hz/pixel, field-of-view 380 mm, rectangular field-of-view 75%, 
acquisition matrix 192 x 115 (frequency, phase). By default, 15 image frames are 
acquired in each CINE-DE series, with a variable temporal spacing to cover the 
cardiac cycle. Images are acquired during a single breath-hold, approximately 10-20 
minutes after intravenous injection of 40 ml of 0.5 mmol/ml gadopentetate 
dimeglumine (Magnevist, Berlex Imaging, Wayne NJ). 

4   Results  

We validated our study by comparing our automated results with ground truth 
provided by an expert. Three phases (frames 5, 10, and 15) from each patient were 
collected for a total of 15 images. An expert different from the one providing ground 
truth supplied the  initial segmentation to initialize the tracking (frame 1).  Figure 2 
(Left) shows an example frame. 

 

Fig. 2.  Left: An example Cine-DEMR image. Middle: the tracking/classification protocol 
applied to the example image. The white pixels represent those found to be non-viable. Right: 
The ROC curve describing the results of our experiments. 96.80% of the area is under the 
curve. 
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For the segmentation, 32 radial directions were used for the profiles. Both the inner 
and outer profiles had length 5=κ  pixels and the search space for matching the 
profiles was 3 square pixels. The tracking of the myocardial borders had an average 
error of 2.1 pixels over all images. Regarding the classification of pixels as viable or 
non-viable, appropriate SVM parameters were found to be 01.0=σ  and 20=K . 
Our experiments had a sensitivity of 80.76%, specificity 96.54% with 96.80% of the 
area covered under the ROC (see Figure 2 (Right)). The general correctness rate was  
93.46%. 

5   Discussion  

The tracking of the myocardial borders was performed from the first phase to every 
other phase ( n→1 ) rather than from one phase to the next ( 1+→ nn ). This 
approach was taken because the profile signatures in phase 1 were guaranteed to be 
correct (having been based on manually drawn contours) and were a better basis for 
matching. We initially attempted a consecutive frame ( 1+→ nn ) approach but 
found that a slight drift over the series resulted in poorer segmentations. Our scheme 
depends on the general appearance of the myocardium staying constant over the 
cardiac cycle. As mentioned in the introduction, this may not always be the case due 
to through plane motion. Therefore, we are currently investigating a Kalman filter 
approach to this tracking. 

As described in Section 3.1.5, the refinement of the endocardial and endocardial 
contours is treated differently in the tracking. The endocardial border generally 
deforms much less significantly than the endocardial border over the cardiac cycle. 
Because the endocardial border is subject to such variability, we found that without 
the smoothing effect of tethering to the epicardium, the endocardial segmentation was 
far too jagged to appear natural. This tethering had a strong impact particularly when 
the tissue was very damaged. In these cases the myocardium was bright enough to be 
indistinguishable from the blood pool so there was little influence from the data 

energy dataε . In these cases, the dead tissue moves very little since it is, in fact, dead. 

Therefore reliance on the tethering influence yielded good results. 
Finally, as mentioned in the introduction, Cine-DEMR and DEMR have different 

resolutions and thus appear slightly dissimilar from one another. Our training set for 
the classification of the myocardial tissues was based on standard DEMR datasets 
since we had few Cine-DEMR datasets on which to train the SVM. We attribute our 
relatively low sensitivity in our results to the fact that the training set and testing sets 
do not come from the same population.  

6   Conclusions 

We have presented preliminary findings on the tracking and classification of a new 
MR imaging sequence Cine-DEMR. In the future we hope to develop methods for the 
segmentation of the first phase of these series thereby creating a fully automatic 
quantification procedure. 
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Abstract. X-ray microCT (computed tomography) has become a valu-
able tool in the analysis of vascular architecture in small animals. Because
of its high resolution, a detailed assessment of blood vessel physiology
and pathology is possible. Vascular measurement from noninvasive imag-
ing is important for the study and quantification of vessel disease and
can aid in diagnosis, as well as measure disease progression and response
to therapy. The analysis of tracked vessel trajectories enables the deriva-
tion of vessel connectivity information, lengths between vessel junctions
as well as level of ramification, contributing to a quantitative analysis
of vessel architecture. In this paper, we introduce a new vessel tracking
methodology based on wave propagation in oriented domains. Vessel ori-
entation and vessel likelihood are estimated based on an eigenanalysis of
gray-level Hessian matrices computed at multiple scales. An anisotropic
wavefront then propagates through this vector field with a speed mod-
ulated by the maximum vesselness response at each location. Putative
vessel trajectories can be found by tracing the characteristics of the prop-
agation solution between different points. We present preliminary results
from both synthetic and mouse microCT image data.

1 Introduction

Methods for the quantification of vascular structure are crucial in a number of
domains. While 3D localization and visualization are important, the power of
vascular imaging methods lies in quantitative analysis including characterizing
and measuring connectivity, level of ramification, segment length as well as cross-
sectional area and volume. A particularly important application is the study of
changes that occur in response to angiogenic therapy which has tremendous
potential for treatment in vessel disease and would benefit from non-invasive
methods for quantitative evaluation of vasculature growth and remodeling.

X-ray microCT imaging combined with perfused contrast agents provides
a robust methodology for evaluation of intact vascular networks [4]. However,
the ability to extract and quantify vessels, especially those of smaller diameter,
is limited by noise, contrast and extraneous features, such as bone. In CT us-
ing contrast agents, vessels appear as relatively bright; in magnetic resonance
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angiography (MRA), they may be dark or bright depending on the technique.
They are curved structures of varying width with greatest width at the aorta,
generally decreasing in diameter with branching and greater distance from the
aorta. The geometry is quite complex making 3D imaging a necessity (2D serial
section analysis is only of limited use).

Techniques for filtering curved structures have been applied to vessel images
[15,9,6,11], especially using multiscale techniques. In these methods, the Hessian
of the gray level intensities is computed at multiple scales. The eigenstructure
of the Hessian is determined in order to characterize the local structure (linear,
planar or no structure) and if linear, the orientation of the vessel. Methods have
been developed for vessel segmentation using thresholding [15], active contours
[11], model-based methods [9,8], expectation maximization [1] as well as level set-
based approaches [12,3]. Lorigo et al. [12] applied a novel level-set segmentation
formulated specifically for 3D curves. Vessel segmentation, however, is prone to
errors and may result in discontinuous segments and inclusion of extraneous fea-
tures, such as bone. Work on tracing vessel trajectories has also been attempted
before. Olabarriaga et al. find a minimum cost path through a vesselness image
using bidirectional search [14]. Flasque et al. [5] track vessels from MRA using a
model-based approach, tracking centerlines using a search strategy. Deschamps
and Cohen presented a minimal-path method based on the Fast Marching algo-
rithm applied to vessel centerline extraction for virtual endoscopy [2]. Lin [10]
also investigated extracting minimal paths using an anisotropic version of the
Fast Marching method that incorporates orientation and was applied to MRA
and fluorescence images.

In this paper, we also focus on extracting vessel trajectories. Our approach is
similar to that of Lin [10], by using an anisotropic wavefront evolution method,
and like Descoteaux [3], we also make use of Frangi’s vesselness measure. While
we are interested in finding the size of extracted vessels, which can be obtained by
the vesselness response across scales, we do not use level sets to explicitly recon-
struct vessel boundaries. Levels sets for explicit surface reconstruction can easily
bleed out into regions with similar vessel intensities. They also have difficulty ex-
tracting finer-scale vessels and may result in disconnected vessel segments. In the
next section, we describe our vessel tracing approach using a static anisotropic
wavefront propagation method combined with a multiscale vessel analysis.

2 Approach

In this section, we briefly describe the multiscale vessel localization procedure
and how to obtain the vessel likelihood measure [6]. Then we describe the wave
propagation equation that will drive the front evolution using information from
the Hessian matrix as well as the maximum vessel likelihood response across
different scales. Finally, we describe how to extract vessel trajectories by tracing
the characteristics of the front evolution PDE. An anisotropic version of the
static front evolution method is used to build a cost map which will be minimum
for pathways in highly oriented structures and with high vesselness measure.
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2.1 Vessel Filtering

One way to account for the varying size of vessels is by multiscale analysis. It
allows us to detect structures of different sizes according to the scale at which
they give maximal response. In order to enhance blood vessels at a particular
scale σ, Frangi [6] designed the filter V (x, σ), which is a nonlinear combination
of the eigenvalues of the Hessian matrix H computed at each voxel of the image.
This vesselness measure has given reasonable results in the segmentation of blood
vessels by other investigators [3] and is also employed here. The scale corresponds
to the vessel radius in pixels.

The filter V provides a likelihood value for a structure having a tubular
shape. At each scale σ, the image is first convolved by a 3-D Gaussian with
standard deviation equal to that scale in pixels and then the vesselness measure
is computed as:

V (x, σ) =

{
0, if λ2 > 0 or λ3 > 0(
1 − exp

(
− R2

A

2α2

))
exp
(
−R2

B

2β2

) (
1 − exp

(
− S2

2c2

))
, otherwise

(1)
where RA = |λ2|

|λ3| , RB = |λ1|√
|λ2λ3|

, S =
√
λ2

1 + λ2
2 + λ2

3 and the eigenvalues are

ordered according to their magnitudes as |λ1| ≤ |λ2| ≤ |λ3|. Since the vessels
are bright against a darker background in microCT images, the eigenvalues are
negative. The quantities RA, RB and S are designed to punish cross-sectional
asymmetry, blobness and low energy, respectively. The parameters α, β and c
are used to tune the sensitivity of the filter to deviations from perfect tubular
structures. This measure will yield maximum response at the center of vessels
and close to zero outside them. The filter V is applied at different scales in order
to detect vessels with different scales. We vary σ from σmin to σmax, and compute
the maximum vessel likelihood across all chosen radii:

Vmax(x) = max
σmin≤σ≤σmax

V (x, σ). (2)

2.2 Front Evolution

Once the maximum response Vmax is computed for all points in the domain, not
only will we have a vessel likelihood map but also a map containing the corre-
sponding Hessian matrix Hmax at the maximum scale. From the eigenanalysis
of Hmax, the eigenvector u = u1 which corresponds to the smallest eigenvalue
will represent the vessel orientation. In our implementation, we will propagate a
wavefront through the vector field defined by u. The front will move fastest in
regions where its normal vector n = ∇T

‖∇T‖ lines up with the vector field and in
regions with a high vesselness measure. T represents the time of arrival of the
front at each location. Such evolution can be modeled by the following static
anisotropic evolution equation:

‖∇T ‖ Vmax(x) F (x,n) = 1, F (x,n) = exp({n · u}2). (3)
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This propagation equation will evolve a wavefront driven by the directionality of
the vector field u but will stop its evolution near the boundary with non-vessel
structures, since Vmax will be close to zero in these regions. Since the Hessian
matrix is indefinite [10], not all eigenvalues have the same sign. Hence, Hmax
may not represent an ellipsoid at all times. Instead of using the full Hessian as
an ellipsoidal speed profile, we resort to driving our wavefront according to the
colinearity between the front normal n and u.

Equations such as (3) cannot be correctly solved by isotropic propagation
methods, such as the Fast Marching Method. Hence, we employ an iterative
approach combined with a Lax-Friedrichs (LF) discretization of our propagation
equation. A nonlinear Gauss-Seidel updating scheme is used to solve the equation
in terms of neighboring grid points. No minimization is required when updating
an arrival time, and thus it becomes very easy to implement.

In order to track vessel segments, we seed the evolution at a point inside the
vessel, and let the propagation take place. When the evolution has converged to
a solution, it will represent a cost map which can be used to find a minimal cost
path representing the vessel trajectory.

2.3 Vessel Tracking

Minimum-cost trajectories are determined by the characteristic curves of the
respective partial differential equation [13,7]. In our propagation model, the gra-
dient ∇T of the solution will not point to the minimum-cost path, since our
equation is anisotropic and the speed profile is not circular. One must explicitly
calculate the appropriate characteristic directions of the obtained arrival times
solution at every point.

A generic first-order PDE with m independent variables can be written as:

H(xi, T, pi) = 0, where pi = ∂T/∂xi, i = 1, ...,m (4)

where T is a function of each of the independent variables xi. In our case, T
represents the arrival times of the wavefront. The characteristic vector a can
be obtained via Charpit’s equations [13] and is defined as ai = ∂H/∂pi. Our
wavefront evolution equation (3) can be written in generic form by discarding
its dependence on location x:

H =
√
p2
1 + p2

2 + p2
3 Vmax F (p1, p2, p3) − 1 = 0 (5)

By differentiating H with respect to p1, p2 and p3, we find the characteristic
vector a. Because the speed function F is a function of the gradient ∇T , the
characteristic vector a does not necessarily coincide with the gradient. Therefore,
one must integrate dX

dt = −a instead of dX
dt = −∇T to obtain the minimum-cost

path, X .

3 Experimental Results

In order to evaluate our vessel tracing method, we first applied it on a synthetic
dataset obtained from the Laboratory of Mathematics in Imaging at Harvard
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University [9]. Figure 1a depicts the Y-junction vessel model which contains
2 segments of different radii (1 and 3 pixels). They have Gaussian intensity
profiles with a maximum intensity value of 100 at their centerlines. Fig. 1b
shows the corresponding ridges (centerlines) from the model. The centerlines
are assumed to be the true trajectories. We investigated how close the resulting
trajectories were to the true centerlines, with and without noise. Gaussian noise
with σ2 = 10, 20, 40 was added to the original image. The maximum vesselness
measure Vmax and the respective Hessian Hmax were then computed at two
different scales, 1 and 3 pixels to match the exact model dimensions (Fig. 1c-e).
Parameters α, β and c were set to 0.5, 0.5 and half the maximum Frobenius
norm of the Hessian matrices, respectively, according to [6]. Next, we employed
our wave propagation technique by first selecting a seed point for propagation
(see cross-hairs in Fig. 1a). After propagation reached convergence, we traced
the centerlines from the extreme points of the two branches (Figs. 1f-h) and
compared the results to the true trajectories (Fig. 1b).

As can be seen in Figs. 1f-h, the technique is robust enough to recover the tra-
jectories embedded in very noisy backgrounds. This is partly due to the Gaussian

(a) (b)

(c) (d) (e)

(f) (g) (h) (i)

Fig. 1. (a) Synthetic dataset. (b) Corresponding centerlines. Second row: Vector field
u at different noise levels; (c) σ2 = 10, (d) σ2 = 20, (e) σ2 = 40. Third row: Resulting
trajectories at different noise levels. (i) Close-up at branching point.
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smoothing that is applied at each scale when determining the maximum vessel-
ness response. Figure 1i shows a close-up view of the branching point in the
model. The maximum disparities between the centerline (shown in gray) and
the resulting trajectories were found to be at the center of the branching point
(shown as a white square in Fig. 1i). This is because our speed term does not
currently follow the ridges of the vessels, only their directionality. Therefore,
the minimum-cost trajectory may not pass exactly through the true center of
the intersection. For the larger branch (3 pixels in radius), the maximum error
averaged ≈ 1 voxel, with and without added noise (no-noise trajectory shown in
red). The largest error was obtained for the smaller size branch, as large levels of
noise destroyed a lot of its structure and subsequent smoothing altered its final

(a) (b)

(c) (d)

Fig. 2. (a) Volume rendering of the CT dataset depicting the lower body of a mouse. (b)
Three-dimensional view of the vector field u colored by the vesselness measure. Both
bones and vessels can be seen. (c) Reconstruction of the major vessels connecting to the
aorta shown with volume rendering. Vessels are colored according to their estimated
size. (d) Reconstructed vessels colored according to their maximum vesselness measure.
Vessels located in the inferior half of the volume were partially obscured for better
spatial perception.
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shape. A maximum error of ≈ 1.7 voxels resulted at σ2 = 40. The corresponding
errors for no-noise was 0.79 voxels, with noise σ2 = 10 was 0.92, σ2 = 20 was
1.13 and σ2 = 40 reached 1.73 voxels. Despite the discrepancies from the true
centerline, the technique presented here allows for fine vessel extraction in the
presence of significant noise, and will not result in disconnected structures, as
may occur with other level set-based techniques.

To evaluate our method on a real image, an ex-vivo mouse microCT dataset
using barium-sulfate contrast was acquired at a resolution of 50×50×100 μm.
(Figure 2a). After cropping, the resulting image size was 291×131×226. A mean
curvature-based smoothing was first applied to eliminate undesired background
noise while preserving edge information. Multiscale analysis was performed in
10 uniformly sampled Gaussian scales ranging from 0.5 to 5 voxels. The maxi-
mum vesselness measure and the corresponding Hessian Hmax was computed at
each location. Figure 2b shows the vector field u after diagonalizing Hmax. The
vector field is colored according to the vesselness measure at each point. Both
vessels and bones can be seen. A seed point was placed inside the aorta and a
wavefront was propagated in the vector field u. In order to initialize tracking, 45
points were selected manually by picking the center of vessels at different planes.
Vessel trajectories were then traced back into the aorta. Estimates of radius and
vesselness measures were calculated at every point on the trajectories.

Figure 2c shows the resulting trajectories as tubular structures and colored
according to their estimated radius. Because a discrete number of scales were
employed, tubes representing the vessels did not change in size continuously.
With a more continuous scaling, better radii estimates can be determined. Radii
were determined by the scale in which the vesselness measure was maximum.
Figure 2d shows the extracted vessels colored according to their maximum ves-
selness measure.

4 Conclusions

An anisotropic front propagation method was described for determining vascular
pathways in mouse microCT images. Using multiscale analysis, the maximum
vesselness measure was computed at every point and the corresponding Hessian
matrix was recorded. A wavefront was propagated in the vector field defined
by the smallest eigenvector of the Hessian matrix. The propagation speed was
defined by the colinearity between front normal and the smallest eigenvector of
the Hessian. The front stopped at regions of very low vesselness. Using the char-
acteristic vector of the propagation solution, the technique was able to recover
trajectories in both synthetic and real microCT data.

Results on mouse CT datasets were presented where major vessels were re-
covered and reconstructed. Vessel trajectories were fit with tubular structures
with a radius corresponding to the scale in which they were detected. Further
investigation will be done on new forms of the evolution PDE for tracking the
ridges. We will also fit ellipses instead of circles for the vessel reconstruction by
using the eigenvalue magnitudes from the Hessian matrix. In addition, we will
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investigate an automated approach for initializing the vessel tracing which will
enable us to reconstruct the entire vessel tree and allow for its quantification
with minimum manual intervention. Features such as connectivity, level of ram-
ification, segment length as well as cross-sectional area and volume can then be
calculated. These measures may ultimately improve quantitative diagnosis and
allow the measurement of change due to disease or therapy.
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Abstract. This paper describes a novel approach to automatically recover accu-
rate correspondence over various shapes. In order to detect the features points
with the capability in capturing the characteristics of an individual shape, we pro-
pose to calculate the skeletal representation for the shape curve through the me-
dial axis transform. Employing this shape descriptor, mathematical landmarks are
automatically identified based on the local feature size function, which embod-
ies the geometric and topological information of the boundary. Before matching
the resulting landmarks, shape correspondence is first approached by matching
the major components of the shape curves using skeleton features. This helps in
keeping the consecutive order and reducing the search space during the match-
ing process. Point matching is then performed within each pair of corresponding
components by solving a consecutive assignment problem. The effectiveness of
this approach is demonstrated through experimental results on several different
training sets of biomedical object shapes.

1 Introduction

Deformable models in medical imaging have a variety of applications including
anatomical registration, segmentation and morphological analysis. Since shape infor-
mation is a crucial visual cue for human perception, one of the most promising class
of deformable models, the statistical model of shape [1], has been proposed to capture
the patterns of variation in the shapes and spatial relationships in a class of objects. In
this approach, a shape is commonly described by locating a finite number of points, the
landmarks, on the boundary. Landmarks are well-defined points which are supposedly
homologous from one instance to the next.

Although manual landmarking is an intuitive way to obtain those discernable points
in practice, it is subjective and labor intensive and studies have shown that the precision
of manual landmarking drifts with time and the accuracy varies among the landmark-
ers. There are also some semi-automatic and automatic landmarking approaches [2].
The mathematical landmarks are located according to some mathematical or geometric
properties such as curvature, angel and arc length. One of the problem with curvature-
defined landmarks is that in some applications (e.g. biological imaging), these points
are not always born out clearly or uniquely by the individual shape, and in this case the
landmarks must be inferred from a more global context.

Davies et al. [3] proposed to use the Minimum Description Length (MDL), as a
quantitative measure of “simpleness”, to achieve a dense correspondence across a set of
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shapes. However, like other global shape correspondence methods [4], the MDL-based
approach constructs a very complicated and highly nonlinear cost function. Belongie et
al. [5] introduced a shape matching scheme using roughly uniform samplings. Based
on the proposed descriptor, this approach has produced encouraging results on a wide
variety of data sets [6]. However, as shown by many researchers (e.g. [3]), the equally
space landmarks can result in poor models, which indicates unit-length sampling cannot
capture the shape’s crucial characteristics if the sampling is not dense enough. Another
weakness of this approach is the absence of any consecutive constraint. This leads to
more erroneous matches. Recently, a continuity constraint was incorporated into the
shape context matching scheme by Thayananthan [7] and the cost function was opti-
mized using a dynamic programming.

In this paper, we present a simple and fast algorithm to obtain shape correspondence
via an automatic landmarking scheme. Given a shape, we first re-sample the shape
curve in an optimal way based on the Medial Axis Transform (MAT) proposed by Blum
[8]. Landmarks along the shape curve are located using the Local Feature Size (LFS)
function, which is determined by the geometric and topological features around the
curve points. The major contribution of the paper is a fast and robust approach to match
those non-uniformly samplings. It consists of two steps. First, the characteristic points
on the medial axis are matched. This leads to an initial correspondence of different
major components of the shapes. Then point correspondences are obtained within each
pair of corresponding curve segments.

2 Optimal Shape Sampling

2.1 Medial Axis Transform

Let F (u) = (x(u), y(u)) be a smooth curve representing a shape. A point is on the
medial axis (or skeleton) of the shape if it is equidistant from two or more points on the
shape curve as shown in Fig. 1(a).

There are three kinds of points on a medial axis, including the endings, the mid-
points and the junctions. In the continuous case, the distinction between an ending, a

Fig. 1. An illustration of the shape sampling rule. (Left) A curve (light) and its medial axis
(heavy). The circle indicates a maximal disk. (Middle) The sampling result using the γ-sampling
rule. There are totally 85 samples with γ = 0.4. (Right) The sampling result using curvature
maxima (top 85 points).
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midpoint and a junction of the skeleton follows from the number of times a disc centered
at the point intersects the skeleton. The endings and midpoints are equidistant from ex-
actly two boundary points while the junctions are equidistant from three or more points
on the boundary. The maximal disk associated with the singular medial location oscu-
lates the object’s boundary, meaning that the curvature radius (CR) of the boundary at
the location of tangency is equal to the radius of the maximal disk. The two involutes
necessarily converge at this location of tangency.

Based on the medial axis directly, many approaches [9,10] have been developed
for shape matching. However, comparing shapes via exact matching of medial axes is
not trivial since the internal structure of medial axis may change greatly due to minute
deformation or occlusion of shape curves as shown in Fig. 3.

2.2 Shape Sampling

Given a shape, we seek a method to sample the shape curve with a compact set of points,
which can characterize the inherent feature of this shape uniquely. In other words, this
set of samplings can lead to only one possible smoothed curve, the original shape. Our
sampling condition is based on a geometric length scale, local feature size, which was
first proposed by Ruppert [11] for mesh generation. The local feature size for a shape
F is a continuous function: LFS : F → R2 defined as distance of p ∈ F to the medial
axis of F , see Fig. 1(a). Because it is defined on the medial axis, the local feature size
function is dominated by both the geometric features (e.g. curvature and orientation)
and the topological features (e.g. symmetry and width).

Using this detail descriptor, we sample a curve under the following γ-sampling
condition. Let S ∈ R2 be a set of points on a shape F . Set S is defined as a γ-sample
of F if for each point p ∈ F , there is a sample point q ∈ S so that ||p − q|| ≤
γLFS(q). This condition makes sampling density vary with the local feature size on
the curve, so that areas of less detail will be sampled less densely. Two sampling results
using γ-sampling condition and curvature maxima are shown in Fig. 1(b) and Fig. 1(c),
respectively. We can see that γ-sampling can produce a more representative and full
descriptor for the shape than the curvature maxima based sampling method.

It has been observed that for γ ≥ 1, the sample set may produce more than one curve
that is the polygonal reconstruction of a smooth curve γ-sampled by S. This indicates
the sampling is not dense enough for the unique reconstruction of the original shape. In
this case, there are some small features on the shape that are sampled inadequately.
Therefore, such a undersampling will block the success of point distribution based
shape matching. On the other hand, for considerably smaller γ (e.g. γ < 1), Amenta
[12] and Dey [13] have shown that there is only one possible reconstruction of the curve.
Typically, in our approach, γ = 1/3 gives a good performance for all experiments.

3 Shape Correspondence

After the optimal sampling process, each shape is represented by a set of sampling
points S = {s1, s2, ..., sn}, si ∈ R2. Because our sampling rule is an adaptive strat-
egy based on the medial axis, the number of resulting samplings at each shape may not
equal. Given two shapes and their sampling sets, S1 and S2, we wish to match one point
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in S1 to another point in S2, in an optimal scheme. One way to achieve this purpose
is to check all possible matchings of the two sets of points and choose the assignment
with maximal similarity as the result [5]. However, this is computationally expensive
and prone to produce erroneous matches. It would be desirable to obtain a good corre-
spondence in the first step. We thus propose the following two-stage matching scheme.

3.1 Initial Matching

In the first step, we match the two shapes using only the topological principle points on
the medial axis. The skeleton is a nice shape descriptor because it captures the notion
of parts and components, while the skeleton’s principle points are important features to
describe the topological information embedded in the skeleton.

We assume that different shapes of a certain object usually compose of the similar
significant components. Because each ending on the medial axis generally locates in a
major component or part of the shape, these endings have a good capability in indexing
the major parts. On the other hand, we observe that the junctions and midpoints on
medial axis are too sensitive to the changes of the shape curve. Therefore, we choose
only the endings for the coarse matching. A point on the medial axis can be identified
as an ending if there is only one skeleton point in its eight neighbors.

To match two sets of endings, we use the shape context matching method [5]. Given
a set of samplings S = {si}L

i=1 of a shape F and the endings E = {ek}K
k=1 of its

medial axis, the shape context of each ending ek ∈ E is a log-polar histogram hk,
which records the relative locations of the sampling points referring to ek.

The optimal matching of two sets of endings is achieved by minimizing the to-
tal matching cost

∑K
1 C(k, πk), where πk is the index of correspondence of ek and

C(k, πk) denotes the cost of matching ek with eπk
, measured using the χ2 statistic of

their shape contexts. When the two sets of endings have difference sizes, dummy points
will be added to each set. The resulting square cost matrix is then input to an assignment
problem (AP) and the optimal matching between the two sets of endings is obtained by
solving this AP problem using the algorithm in [14].

(a) (b) (c)

Fig. 2. An example of ending matching. (a) and (b) are two shapes of a hand. Because the two
shapes have the same significant components, the ending correspondence is very intuitive. (c)
A pair of corresponding segments in (a) and (b). The two arcs direct the corresponding ending
tangents.
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(a) (b) (c) (d)

Fig. 3. An example of shape matching. (a) and (b) are two hand outlines with corresponding
segments. The same colors indicate the corresponding segments. The point matching results of
the shape context method and our method are shown in (c) and (d), respectively.

Recall that each point on the medial axis has two or more tangents on the shape.
Particularly, each ending has exactly two tangents. We can imagine the ending tangents
as hinges between a sequence of segments of the shape curve. Each segment consists of
an opened curve and two ending tangents (see Fig. 2).

To find the point correspondence across two shapes, we want to match these seg-
ments first. This can be done easily with the matching of the medial axis endings. Con-
sider a pair of corresponding endings of two shapes. There are only two possible map-
ping of their ending tangents from one shape to another. For an ending tangent ti on
the first shape, we choose as its correspondence the candidate tj on the second shape
with the smaller matching cost C(ti, tj). Because each segment of the shape can be
identified by two neighboring ending tangents, the correspondence of ending tangents
on the two shapes leads to a unique matching of these segments. See Fig. 3(a-b) for an
example of the initial matching result.

3.2 Point Correspondence Within Segments

After obtaining the segment correspondence, the point correspondence problem can be
restricted to searching the optimal matching within only each pair of corresponding seg-
ments. This provides a significant gain to increasing the robustness of shape matching,
for the mismatch from one component to others is avoided. Moreover, this matching
strategy can improve the speed of the matching process greatly since, for each point on
one shape, only several points on the corresponding segment will be considered.

Now, we consider the point correspondence problem within a pair of corresponding
segments. Recall each segment has two terminals, i.e. two ending tangents. Given two
segmentsΓ1={t11, s11, · · ·, s1i, · · · , s1m, t12} and Γ2={t21, s21, · · · , s2j , · · · , s2n, t22},
we want to find the best match across the two sets of points. Without loss of generality,
we suppose the points on each segment are in the following order t11 < s11 < · · · <
s1i < · · · < s1m < t12, t21 < s21 < · · · < s2j < · · · < s2n < t22 and m ≤ n.
Because those samplings are selected in an optimal way, all of them are useful for de-
scribing the input shapes. Therefore, we wish to find the largest match between the pair
of segments. In other words, we want to find min(n,m) pairs of corresponding points
across the two segments.
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Note that the points on each segment are arranged in a string order. We constrain
our method to preserve this ordering in the matching. Meanwhile, since Γ1 and Γ2 are
corresponding segments, their terminals should also be corresponding to each other, i.e.
t11 ↔ t21 and t12 ↔ t22. Fig.2(c) gives an illustration of this matching problem, which
we define as Consecutive Assignment Problem (CAP). This problem can be solved by
the following optimal combination scheme.

Because Γ1 contains fewer samplings than Γ2 (m ≤ n), for each sampling s1i ∈ Γ1,
we need to find one sampling from Γ2. Thus, finding one-to-one point matching be-
tween two segments is equivalent to removing (n − m) samplings from Γ2 so that the
remaining set of samplings on Γ2 have the same size as that on Γ1. Because each set of
samplings is in a string order and the terminals of the two strings are already matched,
there is a unique matching between the two sets of samplings. To measure the similarity
of points, the shape context of each point is calculated using all the samplings obtained
through the re-sample process introduced in previous sections. The point correspon-
dence is found by minimizing the sum of cost

∑m
i=1 C(i, πi).

The search space for this consecutive assignment problem is C(n−m)
n , which is

much smaller than that for the assignment problem in [5]. Moreover, the points to be
considered in this step are restricted in the curve segment. Therefore, the number of
points in this case is only a small set of the total samplings of the whole shape. Those
greatly improve the matching speed. A matching example of two outlines of a hand is
shown in Fig. 3.

4 Experiments

To demonstrate the performance of our approach for statistical shape modeling, we
apply it on several training sets of biomedical objects. For an object, each shape in
the training set is matched to all others with the minimal sum of matching cost, which
is defined as the difference of each pair of shapes. The shape with the minimal total
difference is selected to find the overall correspondence of the whole set, by selecting
the same corresponding points among the matching results of it with other shapes.

Fig. 4 shows two of our experimental results. The hand training set contains 15 hand
outlines extracted from the Jochen Triesch Static Hand Posture Database [15] and the

Fig. 4. Two models automatically generated using the proposed approach
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Fig. 5. Three kidney models generated using the proposed method, manual landmarks and even-
space samplings

Table 1. Evaluation of The Three Kidney Models

Kidney Model
Number of

Points
Variance

Mode 1 Mode 2 Mode 3 Total

Automatic Landmarking 81 46.89 34.92 13.08 94.89
Manual Landmarking 54 60.13 34.91 14.58 109.62
Even-space Sampling 81 172.86 35.44 30.82 239.12

callosum set contains 14 callosum shapes extracted from 14 MRI brain slices. Using the
proposed automatic landmarking algorithm, we obtained 128 landmarks on each shape
for the hand data set and 112 for the callosum data set. Each three rows of the two
experiments show the first three modes of each model varied by ±2σ, where σ refers to
the standard deviation along principal directions.

To evaluate our method quantitatively, we compared the automatic model (Fig. 5)
with those built using manual landmarkers and equally spaced samplings, in terms of
variance of the three largest modes of the models. The training data is the kidney data
set from [16] which contains 20 2D left kidney shapes from different patients. The
quanlity results in Table 1 show that the automatically generated model has the smallest
variances in all three principal directions.

5 Conclusions

In this paper we have presented a novel approach for automatic landmarking of shapes.
To capture the crucial characteristic of a shape, we sample the shape curve based on the
local geometric and topological features. Then the shape correspondence is obtained
through a two-stage matching approach, which stands for the major contribution of this
paper. The course mapping of the skeleton endings provides an initial correspondence
of the major components of the shapes, yet allows the following local point matching so
that the computation complex is considerably reduced. Meanwhile, because the consec-
utive enforcement included in the point matching process, our approach enables better
correspondences. We evaluated the proposed approach using the statistical shape mod-
eling on various shapes of biomedical objects and the results are excellent in terms of
both compact and speed.
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A Computer-Aided Design System for Revision
of Segmentation Errors
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Abstract. Automatic image segmentation methods often involve errors,
requiring the assistance of the user to correct them. In this paper, a
computer-aided design system is introduced for correcting such errors.
The proposed system approximates each 3-D region by a parametric
surface. Region voxels are first parametrized spherically using a coarse-
to-fine subdivision method. By using the voxel positions and their pa-
rameter coordinates, control points of a rational Gaussian surface are
determined through a least-squares method to approximate the region.
Finally, this surface is overlaid with the volumetric image and by locally
pulling or pushing it with the mouse while viewing image information,
the surface is revised as needed. Typically, a few minutes are sufficient
to correct errors in a region.

1 Introduction

Image segmentation is the process of partitioning an image into meaningful parts.
The objective is to extract objects or their parts in an image. Difficulties arise
when noise is present in the image or when properties within objects vary. The
problem is worsened when their boundaries become blurred or when boundary
information is absent, owing to different tissues having similar properties. These
variations, which are often unpredictable, make it impossible to develop an au-
tomatic method that can segment all images correctly. At the present, the best
one can hope for is to have a method that can correctly delineate most parts of
an object of interest, and in areas where it makes a mistake, allow the user to
interactively correct the errors.

Various user-guided and interactive segmentation methods have been devel-
oped. A popular method described by Falcão, Mortensen, Udupa, and others
[6,1,10] is known as “live-wire.” In this method, the user selects a number of
points on the region boundary, and the program automatically finds optimal
boundary segments between consecutive points by minimizing a cost function
based on the image gradient information. Minimum-cost segment paths are cal-
culated in real time, allowing the user to interactively snap each segment to the
intended boundary to constrain the search space for the optimum solution and
improve speed. An extension of it known as “live-lane” was later devised [5]
where the optimization process is restricted to a small area around the image
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edges, called a “lane.” More recently, Falcão and Bergo introduced a full volu-
metric interactive segmentation approach based on Image Foresting Transforms
(IFT) [4]. The IFT is Dijkstra’s shortest-path algorithm modified to handle mul-
tiple sources using more general cost functions. Seed points are added or removed
interactively as needed and cost graphs are pruned in real time, thereby allowing
revision of the segmentation result.

An interactive segmentation method based on a genetic algorithm was de-
scribed by Cagnoni et al. [2]. In this method, the boundary contour of a region
of interest is manually drawn in one of the slices. The boundary contour is then
considered an initial contour in the subsequent slice and the contour is refined
by a genetic algorithm using image information.

Energy-minimizing models or “snakes” have also been used for segmentation
as well as revision of regions [9]. Since some points in a snake may trap in local
minima during the optimization process, the globally optimal solution can be
missed. To avoid this, often the user is required to intervene and either move some
of the snake’s points that are thought to have converged to local minima or guide
the snake to the optimal position by interactively controlling the external forces.
The Insight Registration and Segmentation Toolkit (ITK) initiative provides
a semi-automated segmentaion tool based on watersheds where the user can
hand-select regions of interest [12]. A survey of interactive segmentation methods
providing different levels of user control is given by Olabarriaga and Smeulders
[11].

The new idea introduced in this paper is to use the capabilities of a computer-
aided design system to quickly and easily refine the result of a 3-D segmentation,
just like editing a 3-D geometric model. We assume that a volumetric image has
been segmented and regions of interest have been extracted. A region is composed
of connected voxels that represent the bounding surface of an object, which we
call a digital shape. Under these assumptions, we first describe the parametric
surface that will be used to represent a given digital shape. Next, we show
how to parametrize the shape voxels and optimally determine the control points
of the approximating surface. Then we describe the segmentation refinement
process, involving interactive free-form surface deformations. Finally, we present
experimental results by the proposed method.

2 Approach

2.1 Surface Approximation

Since voxels in a digital shape usually do not form a regular grid, we use a rational
Gaussian (RaG) surface [7] to represent the shape. The standard deviation of
Gaussians in a RaG surface may be used to control the smoothness of the created
surface. Given a set of (control) points Vi = {(xi, yi, zi) : i = 1, . . . , n} and their
parameter coordinates {(ui, vi) : i = 1, . . . , n}, the RaG surface approximating
the control points is defined by P(u, v) =

∑n
i=1 Vigi(u, v), where u, v ∈ [0, 1]

and gi(u, v) is the ith blending function of the surface given by
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gi(u, v) =
Gi(u, v)∑n

j=1 Gj(u, v)
. (1)

Gi(u, v) is the Gaussian centered at (ui, vi) in the parameter space. The pa-
rameter coordinates determine the adjacency relation between the points. The
standard deviation of all Gaussians are set to the same value σ and controlled
globally.

When the shape under consideration is closed and has a spherical topology,
the parameter coordinates at the shape voxels can be determined by mapping
the voxels to a sphere. Assuming that φ ∈ [−π/2, π/2] and θ ∈ [0, 2π] represent
the spherical coordinates of voxels of a digital shape, we will use u = (φ+ π

2 )/π
and v = θ/2π in the equation of the RaG surface approximating the shape.
In the following sections, we show how to spherically parametrize voxels in a
closed digital shape and approximate the shape by a RaG surface using the least
squares method.

2.2 Shape Parametrization

To approximate the digital shape with a RaG surface, one must first find the
parameter coordinates of the shape voxels. Here we employ a coarse-to-fine sub-
division method described in [8]. Initially, the given digital shape and a unit
sphere are simultaneously approximated by two octahedra. The process involves
placing a regular octahedron at the center of gravity of the shape and extending
its axes until they intersect the shape (see Fig. 1a). By establishing the corre-
spondence between the triangles in the shape approximation and triangles in
the sphere approximation (Fig. 1b), parameters of the shape control points are
determined. In the case of irregular shapes, the center of the octahedron is taken
as the midpoint of the major axis segment inside the shape.

The projection of each triangular facet onto the shape determines a digital
patch. The triangles obtained by the octahedral subdivision are further subdi-
vided into smaller facets in a recursive manner [8]. This process continues until

(a) (b)

Fig. 1. (a) Approximation of a digital shape by an octahedron. (b) Approximation of
a sphere by an octahedron. Parameter coordinates of octahedral vertices in the sphere
are assigned to the octahedral vertices in the shape.
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(a) (b) (c) (d)

Fig. 2. (a) A digital shape and a unit sphere in the lower right corner. (b-d) Three
simultaneous subdivisions of a digital shape and the reference sphere.

the distance between each triangular facet and its associating patch falls below
a prescribed tolerance. Whenever a triangle in the shape approximation is sub-
divided, the corresponding triangle in the sphere approximation is subdivided
also. Hence, there always exists a one-to-one correspondence between triangles in
the shape approximation and triangles in the sphere approximation. By knowing
the parameters of mesh vertices in the sphere, we will know the parameters of
corresponding mesh vertices in the shape. The process is graphically shown in
Fig. 2. By using the vertices of the triangular mesh as the control points of a
RaG surface and the parameters at mesh vertices as its nodes, a smooth para-
metric surface can be obtained to approximate the shape. Note, however, that
the surface obtained in this manner will only approximate the mesh vertices and
will not necessarily pass through the vertices. In the next section, we show how
to improve the shape recovery process by determining the control points of a
RaG surface that interpolates the mesh vertices.

2.3 Least-Squares Computation of the Control Points

Suppose a digital shape is available and the shape voxels are parametrized ac-
cording to the procedure outlined in the preceding section. Also, suppose the
shape is composed of N voxels: {Pj : j = 1, . . . , N} with parameter coordinates
{(uj, vj) : j = 1, . . . , N}. We would like to determine a RaG surface with control
points {Vi : i = 1, . . . , n} that can approximate the shape points optimally in
the least-squares sense. Let Pj = (Xj , Yj , Zj), P(u, v) = [x(u, v), y(u, v), z(u, v)],
and Vi = (xi, yi, zi). Then the sum of squared distances between the voxels and
the approximating surface can be written as:

E2 =
N∑

j=1

{[x(uj , vj) −Xj]2 + [y(uj , vj) − Yj ]2 + [z(uj, vj) − Zj]2} (2)

= E2
x + E2

y + E2
z . (3)

Since the three components of the surface are independently defined, to min-
imize E2, we minimize E2

x, E2
y , and E2

z , separately. This involves determining
the partial derivatives of E2 with respect to each variable, setting the partial
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derivatives to zero and solving the obtained system of equations. For E2
x, the

following system of n linear equations are obtained:

E2
x =

N∑
j=1

gk(uj , vj)
n∑

i=1

[xigi(uj , vj) −Xj ] = 0, k = 1, . . . , n, (4)

which can be solved for xi, i = 1, . . . , n. Components yi and zi are determined
similarly. The standard deviation of all Gaussians is set to the same value σ
and controlled globally. Since RaG basis functions monotonically decrease from
a center point, if σ is not very large, these equations will have diagonally dom-
inant matrices of coefficients, ensuring a solution. Note that the above process
positions the n control points of a RaG surface so that the surface will approx-
imate the N image voxels with the least sum of squared errors. n depends on
the size and complexity of the shape being approximated (n is typically a few
hundred). The smallest surface-fitting error will be obtained when the standard
deviation of Gaussians matches the level of detail of the shape. This minimum
error can be determined by a steepest-descent algorithm. However, since the
given region is known to contain errors, finding the surface that is very close to
the region may not be of particular interest. Currently, after the control points
of an approximating surface are determined, the user is allowed to interactively
vary the smoothness (standard deviation) of the surface and view the obtained
surface as well as the associating RMSE. In this manner, the standard deviation
of Gaussians is interactively selected to reproduce a desired level of detail in the
constructed shape.

2.4 Shape Editing

Once the result of an automatic segmentation is represented by a free-form para-
metric surface, the surface can be revised to a desired geometry by appropriately
moving its control points. In the system we have developed, an obtained surface
is overlaid with the original volumetric image. Then by going through differ-
ent image slices along one of the three orthogonal directions, the user visually
observes the intersection of the surface with the image slices and verifies the
correctness of the segmentation. When an error is observed, one or more control
points are appropriately moved to correct it. As the control points are moved,
the user will observe changes in the surface in real-time.

Figure 3a shows the surface approximating a brain tumor within the original
volumetric image. By picking the surface at a point near where the error occurred
(shown by white arrow), a spherical attractor is activated and the control points
(darker dots) falling inside the attractor are selected. By changing the radius of
action, different numbers of control points are selected. Each point is translated
in the appropriate direction by connecting it to the center of the attractor and by
using the amount proportional to the cosine of the angle between that direction
and the direction of motion of the mouse. Only those control points falling inside
the hemisphere with positive cosines are moved. This avoids the movement of
control points with negative cosines in the opposing direction. It also ensures that
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(a) (b)

Fig. 3. (a) Overlaying of the approximated tumor surface and the volumetric image.
Dots show the selected control points during surface editing. The upper-left window
shows the 3-D view of the image volume with all three orthogonal slices. Arrow points
to the revision area. (b) The tumor after necessary modifications. This is the final
result in parametric form.

discontinuities will not occur between points that are moved and points that are
not. Fig. 3b shows the resulting surface after revision. Surface revision can be
performed gradually and repeatedly while observing the image information. The
sensitivity of the surface to the motion of the mouse can be changed by increasing
or decreasing the weights assigned to the control points.

3 Results

Examples of the proposed segmentation revision method are shown in Fig. 4.
The first column shows the original images, the second column shows the initial
segmentation results, and the third column shows the results after the necessary
revisions. Both the ventricular blood pool (Fig. 4, first row) and the brain tumor
(Fig. 4, second row) were initially segmented by applying a smoothing operation
and an optimal intensity thresholding method. At the optimal threshold value,
a small change in threshold value will change the segmentation result minimally.
This threshold value corresponds to the intensity at object boundaries where
intensities change sharply. Therefore, a slight error in estimation of the threshold
value will not change the segmentation result drastically. The liver (Fig. 4, third
row) was segmented by a 3-D Canny [3] edge detector. Weak edges were removed
by interactively varying the gradient threshold value and observing the resulting
edges. In these figures, results of the initial segmentation are shown after RaG
surface fitting by the least-squares method. RaG surfaces were then interactively
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Fig. 4. First row: A short-axis cardiac MR image and segmentation of the left ventric-
ular cavity. Second row: An MR brain image and segmentation of the tumor. Third
row: An abdominal CT image and segmentation of the liver. The first column shows
the original images, the middle column shows the initial segmentation results, and the
right column shows the results after the necessary modifications (white arrows).

revised as needed while viewing the overlaid surface and volumetric image. Final
segmentation results are shown in the third column of Fig. 4.

Approximation of the initial regions by triangular meshes took from 10 to
30 seconds and approximation of the regions with RaG surfaces by the least-
squares method took from 40 to 60 seconds. Interactive revision of the initial
surfaces to obtain the final surfaces took from 1 to 2 minutes. All these times are
measured on an SGI Octane computer with R10000 processor. Although the time
to subdivide a region into a triangular mesh and the time to fit a RaG surface to a
volumetric region are fixed for a given region, the time needed to revise an initial
surface to a desired one depends on the speed of the user and the severity of errors
in the initial segmentation. The final result of a segmentation obtained by the
proposed system is thus user-dependent. Since users have different experiences
in image interpretation, results obtained by different users may differ.
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4 Conclusions

In this paper, the idea of using a computer-aided design system to refine the
result of an automatically determined segmentation was introduced. In the pro-
posed system, a RaG surface is fitted to voxels covering a 3-D region by the
least-squares method. The surface and the original volumetric image are then
overlaid and the surface is interactively revised until the desired segmentation
is achieved. Because a 3-D shape is represented by a parametric surface, the
surface may be sent to a computer-aided manufacturing system for construction
of an actual 3-D model of the shape. The proposed system provides tools with
which a user can modify a segmentation result freely. There are no limitations
in shape, size, or complexity of a region except that it should have a spherical
topology.
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Statistical Modeling of Shape and Appearance
Using the Continuous Medial Representation
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Abstract. We describe a novel approach to combining shape and ap-
pearance features in the statistical analysis of structures in medical im-
ages. The continuous medial representation is used to relate these two
types of features meaningfully. The representation imposes a shape-based
coordinate system on structure interiors, in a way that uses the bound-
ary normal as one of the coordinate axes, while providing an onto and
nearly one-to-one parametrization. This coordinate system is used to
sample image intensities in the context of shape. The approach is illus-
trated by the principal components analysis of the shape and appearance
of the hippocampus in T1-weighted MRI from a schizophrenia study.

1 Introduction

In medical image analysis, it is typical to describe anatomical structures in terms
of either shape or appearance. Combining these two classes of descriptors is
challenging because appearance features are local measurements of certain tissue
properties (e.g., T1 relaxation) that are sampled on a lattice, while shape features
are derived from geometric loci (e.g., boundaries) that are modeled by meshes
or parametric manifolds. The importance of combining shape and appearance
features in the statistical analysis of anatomical structures is underscored by the
wide use of Active Shape and Active Appearance models (ASM/AAM) [4,5].

In this paper, we demonstrate how the continuous medial representation (cm-
rep) [13] can be used to co-analyze shape and appearance. Specifically, we focus
on the unique way in which cm-reps impose a common shape-based coordinate
system on anatomical structures in a population. This coordinate system ex-
tends the boundary parametrization y(u1, u2) onto the entire volumetric region
enclosed by the boundary, in a way that (1) is depth-based, i.e., it preserves
coordinates u1 and u2 along vectors normal to the boundary, and (2) is onto
and, except at a codimension 1 set of points, one-to-one. The first property is
akin to ASMs, which use fixed-length intensity profiles normal to the boundary
to associate shape features with appearance features. The second property is
analogous to AAMs. Hence, our method combines two attractive, but mutually
exclusive, properties of ASMs and AAMs. However, it does so at the cost of rep-
resentational accuracy, as cm-rep models are restricted to a class of shapes with
non-branching skeletons. In [13], we estimated the accuracy with which cm-reps
can describe the hippocampus. In this paper, we illustrate how cm-reps can be
used to study the variability in hippocampal shape and appearance.
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2 Methods and Experimental Results

2.1 Modeling Anatomical Structures with CM-Reps

In the first approximation, the cm-rep approach is the continuous analog of the
Pizer et al. m-rep method [11]. Anatomical structures are modeled by inverting
the process of skeletonization: the skeleton of a structure is defined explicitly
and the boundary is derived from the skeleton analytically. In our method, the
skeleton is described parametrically as a combination of a medial manifold and
a positive-valued radial scalar field given at each point on this manifold (the
modeling of branching skeletons as a set of connected medial manifolds is the
subject of ongoing research). The radial scalar field is in turn derived from a
radial conductance scalar field by solving a Poisson PDE. This step is necessary
to conform to the equality constraints imposed on the radial scalar field by the
medial geometry. The medial manifold and the radial conductance scalar field are
defined using basis functions whose coefficients can be varied in order to apply
deformations to the model. Actual anatomical structures are represented by
fitting a template to characteristic images in a Bayesian estimation framework.
In the following paragraphs, we describe our approach in greater detail. However,
for a complete treatment of the subject, we refer the reader to [13].

A cm-rep model is defined uniquely by two sequences of coefficients: a vector-
valued sequence w1, . . . ,wN in R3 and a real-valued sequence ω1, . . . , ωM . These
coefficients are used together with a sequence of orthogonal twice-differentiable
basis functions fi(u1, u2) on a regular domain Ω ∈ R2 to define the medial
manifold x and the radial conductance scalar field ρ as

x(u1, u2) =
N∑

i=0

wi fi(u1, u2) ; ρ(u1, u2) =
M∑
i=0

ωi fi(u1, u2) . (1)

Currently, we use the real components of the Fourier basis to define functions
fi, but we expect that in the future a wavelet basis will prove to be better suited
for Bayesian estimation of the coefficients.

The radial scalar field R is derived from the medial manifold x and the radial
conductance field ρ by solving the following variant of the Poisson PDE:

�xR
2 = ρ ; ||gradxR|| = 1 on ∂Ω , (2)

where �x and gradx denote, respectively, the Laplace-Beltrami operator and
the Riemannian gradient on the manifold x. These operators are intrinsic man-
ifold generalizations of the Laplacian and gradient operators in Rn. Despite the
unusual non-linear boundary condition, the PDE carries many desirable proper-
ties, such as uniqueness (which we can prove formally), existence and stability
(which are supported by empirical evidence), invariance under similarity trans-
forms applied to x, etc. We solve this PDE numerically using Newton’s method
in the Finite Differences framework.

The boundary surface y associated with a cm-rep model is generated ana-
lytically from the medial manifold and the radial field. This surface is naturally
partitioned into two halves, y+ and y−, one on each side of the medial manifold:
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Fig. 1. The local geometry of a point on the medial manifold

y± = x +R U± , where U± = −gradxR±
√

1 − ||gradxR||2 Nx , (3)

and Nx is the unit normal to the medial manifold. This expression is essentially
the inverse of Blum’s Medial Axis Transform [1] in 3-D. It describes two points
of tangency between the sphere of radius R centered at x and the boundary
surface. Unit vectors U± are orthogonal to the boundary surface at y±. Fig. 1
illustrates the medial-boundary relationship described by (3).

It is easy to verify from the boundary condition in (2) that boundary halves
y+ and y− coincide along ∂Ω. This coincidence is a form of an equality constraint
imposed by the medial geometry on functions x and R. If, instead of deriving
R using the PDE (2), we had modeled R explicitly as a weighted sum of basis
functions, we would be presented with a severely overconstrained problem, as the
number of places where the constraint holds would be infinite (all of ∂Ω), while
the number of coefficients defining x and R would be finite. In addition to this
equality constraint, there are certain inequality constraints that the coefficients
wi and ωi must satisfy in order to ensure that y+ and y− form a smooth closed
surface. These are handled in the course of Bayesian estimation.

The three stages of cm-rep construction are illustrated in Fig. 2: the first
panel shows the medial manifold and the radial conductance field, the second
panel plots the radial field, and the third panel shows the boundary surface.
Note that the medial manifold has corners; this is an undesirable side effect of
using the unit square as the domain Ω. We are working to extend our method
to arbitrary domains in R2.

a. b. c.

Fig. 2. The three steps of constructing a cm-rep. a. A medial manifold x with the
radial conductance function ρ. b. The radial function R computed by solving the
Poisson equation (2) on the manifold. c. Boundary surface y computed using (3).
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The basic ideas behind cm-rep deformable modeling are derived from the
discrete m-rep methodology [11], which is based on pattern theory [10]. First, a
template cm-rep is generated. Currently that is done in an ad hoc manner, but in
the future we plan to study optimal template selection, perhaps adapting tech-
niques developed for m-reps [12]. The deformable template is fitted to instances
of the anatomical structure by minimizing the posterior probability of the coeffi-
cients {wi} and {ωi}, given data in the form of a binary characteristic image of
the structure. In a classical Bayesian estimation framework, the posterior prob-
ability is factored into a likelihood term, which measures the match between
the cm-rep boundary/interior and the binary image, and a prior term. We use
volumetric overlap (which can be computed efficiently using the cm-rep interior
parametrization, Sec. 2.2) and boundary-based match metrics to compute the
likelihood. Penalty prior terms are used to enforce the inequality constraints on
{wi} and {ωi} ‘softly’. In addition, a regularization prior is used to minimize the
distortion in area element on the medial manifold, thus providing a rudimentary
correspondence between instances.

The deforming cm-rep template can only assume shapes for which the skele-
ton is a single manifold. This clearly limits the representational ability of the
model. However, in practice, it appears that many anatomical structures can be
modeled with cm-reps fairly accurately. Indeed, Styner [12] proved that certain
subcortical structures can be represented using single-figure discrete m-reps with
sub-voxel error. To evaluate the representational ability of cm-reps in a similar
manner, we fitted the hippocampus template to 174 (87 right, 87 left) segmenta-
tions of the hippocampus from a MRI schizophrenia study [3]. The segmentation
was computed using the Joshi et al. [9] algorithm for large deformation diffeo-
morphic registration with manually placed anatomic landmarks. This approach
is used extensively in brain morphometry [6] and was shown to be more accurate
and reliable than manual segmentation [8]. The data in the form of boundary
meshes was graciously provided by Profs. Guido Gerig (UNC Depts. of Comp.
Sci. and Psychiatry) and Sarang Joshi (UNC Dept. of Rad. Onc.).

The results of the fitting are illustrated in Fig. 3. The fit was computed in a
multi-resolution procedure where the number of basis functions and coefficients
was gradually increased. At the highest resolution, 8 × 12 × (3 + 1) coefficients
were used. After the fitting, we computed the average of several goodness-of-fit
scores over the entire data set. These include mean squared distance from the

Fig. 3. Examples of a template fitted to instances of the hippocampus. The solid
blue surface is the boundary of the subject hippocampus, and the white mesh is the
boundary of the fitted cm-rep template.
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cm-rep boundary to the hippocampus boundary (0.201 mm), maximum distance
from cm-rep to the hippocampus (1.576 mm), maximum distance from the hip-
pocampus to the cm-rep (2.558 mm) and volume overlap between the cm-rep and
the hippocampus (91.3%). These error scores are slightly worse than the m-rep
results (avg. model-to-hippo. distance of 0.17 mm.) [12] that were computed on
the same images, but using a different manual segmentation. The m-rep model
does not enforce strict conformance to medial geometry, so we expect it to fit
somewhat better than cm-reps.

2.2 CM-Rep Interior Parametrization

One advantage of cm-reps over discrete m-reps and boundary shape shape rep-
resentations is the ability to impose, with ease, a shape-based coordinate system
on the cm-rep interior, i.e, the region of space enclosed by the cm-rep boundary.
For ‘valid’ cm-reps, the interior is homeomorphic to a unit ball. The vectors
U±(u1, u2) with tails at x(u1, u2) span the cm-rep interior. We can use these
properties to define a shape-based coordinate system that consists of the coor-
dinates (u1, u2) ∈ Ω and a scalar ξ ∈ [−1, 1] that describes a point’s location
with respect to the medial axis and the boundary. Formally, we define a mapping
from Ω × [−1, 1] onto the cm-rep interior:

z(u1, u2, ξ) = x(u1, u2) + |ξ|R(u1, u2) Usignξ(u1, u2) (4)

Under this parametrization, points on the medial manifold have ξ = 0 and points
on the boundary have ξ = ±1. If Q is some point on the boundary, then all points
along the inward boundary normal vector with tail at Q have the same first two
coordinate values as Q, due to the fact that the vectors U± are orthogonal to
the cm-rep boundary. The distance from a point on the cm-rep interior to the
nearest point on the cm-rep boundary is equal to (1 − |ξ|)R(u1, u2).

Thus, we have parameterized the entire object interior, in a way that, roughly
speaking, associates each interior point with the nearest point on the boundary.
This type of interior parametrization is consistent with the way that the ASM [4]
samples image intensities inside objects using profiles that extend in the normal
direction from the boundary. Unlike ASM, but like AAM [5], our parametrization
is onto. It is also one-to-one, with the exception of a codimension 1 set of points
whose coordinates (u1, u2) ∈ ∂Ω. For these points, z(u1, u2, ξ) = z(u1, u2,−ξ).
Thus, we may say that our coordinate system combines the best of ASM and
AAM: the preservation of boundary normal direction and (nearly) one-to-one
and onto parametrization.

When cm-reps are fitted to anatomical objects in medical images, we are
able to use this coordinate system to sample image intensities. This ability is
illustrated in Figs. 4 and 5a. Here, a cm-rep has been fitted to the hippocam-
pus in a T1 image (Fig. 4a.). The values of u1, u2 and ξ coordinates of on the
cm-rep interior are shown using color maps in Figs. 4b-d. Fig. 5a shows the im-
age intensities mapped back to the u1, u2 and ξ space. This mapping of image
intensities associates shape features with intensity features, and is a unique way
of establishing across-subject correspondences between intensities on the basis
of geometry.
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a. b. c. d.

Fig. 4. The shape-based coordinate system induced by a cm-rep. a. A slice through
the hippocampus in a T1 weighted MRI, to which a cm-rep template has been fitted.
b, c. The values of the coordinates u1, u2, which span the medial manifold, plotted at
each point in the hippocampus using a color map. d. The values of the ξ coordinate,
which goes from the medial manifold to the boundary.

a. b.

Fig. 5. a. MRI intensities of the hippocampus in Fig 4a, sampled on a lattice in the
shape-based coordinate system. The slices are taken as ξ goes from -1 to 1, and the
axes are along the u1 and u2 coordinates. Sampling used cubic interpolation. b. The
PCA mean of the hippocampal image intensities in the shape-based coordinate system.
The CSF adjacent to the hippocampus can be seen near the edges; this illustrates the
error in the initial segmentation combined with the error in cm-rep fitting.

Fig. 6. Four principal modes of variability in the left hippocampus shape. The eigen-
values corresponding to these modes are 2.57, 2.28, 1.81 and 0.96, the total spectrum
is 11.38, so the modes shown here represent 66.8% of total variability. The color map
represents the radius function.
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2.3 Statistical Modeling

To show how cm-reps would be used for shape characterization, we performed
principal component analysis (PCA) on the shape and appearance features of
cm-reps fitted to the hippocampus data. The shape features were computed by
taking the values of the coefficients {wi}, {ωi} after aligning the cm-reps using
the Generalized Procrustes method [7]. The appearance features were sampled on
a regular lattice in the u1, u2, ξ space. Fig. 6 shows the mean shape and principal
modes of shape variability, and Fig. 5b shows the mean intensity pattern. Our
PCA did not take into account the fact that some linear combinations of the cm-
rep parameters that PCA generates can violate one of the inequality constraints
mentioned above. However, no invalid cm-reps were generated by staying within
2.8 standard deviations from the mean in the first 10 principal modes. This
indicates that valid and invalid cm-reps are well separated in feature space.

3 Discussion and Conclusions

We have presented cm-reps : a shape representation that models the continu-
ous geometric relationship between the boundaries and skeletons of objects. The
ability to impose a coordinate system on the interior of structures in a way that
preserves two of the three coordinates along boundary normals and is nearly
one-to-one and onto is the strength of the representation. The lossy nature of
the representation, which is a potential weakness, was evaluated for the hip-
pocampus, and the average representational error was found to be relatively
small. The utility of cm-reps for the statistical analysis of shape and appearance
was demonstrated by applying PCA to the cm-reps of the hippocampus. In the
future, we plan to address the problem of cm-rep correspondence more directly
and to use the cm-rep PCA as a component in an algorithm for the segmen-
tation the hippocampus in structural MRI. We also intend to use cm-reps for
structure-oriented fMRI analysis.

Other approaches to depth-based parametrization of interiors of anatomical
structures have appeared in the recent literature. These methods typically em-
ploy distance transforms or skeletonization algorithms to assign a depth-based
coordinate system to objects. For instance, Bouix et al. [2] find the dominant
medial surface in the hippocampus and flatten it to form a reference space. The
advantage of our method is that it is model-based, so a consistent shape-based
coordinate system is given by construction, while methods such as [2] require
pruning of skeletal branches and registration to find a common coordinate frame.
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Abstract. The shape and appearance of vertebrae on lateral dual x-ray
absorptiometry (DXA) scans were statistically modelled. The spine was
modelled by a sequence of overlapping triplets of vertebrae, using Active
Appearance Models (AAMs). To automate vertebral morphometry, the
sequence of trained models was matched to previously unseen scans. The
dataset includes a significant number of pathologies. A new dynamic
ordering algorithm was assessed for the model fitting sequence, using
the best quality of fit achieved by multiple sub-model candidates. The
accuracy of the search was improved by dynamically imposing the best
quality candidate first. The results confirm the feasibility of substantially
automating vertebral morphometry measurements even with fractures or
noisy images.

1 Introduction

1.1 Context – Osteoporosis and Vertebral Fracture

Osteoporosis is a progressive skeletal disease characterized by a reduction in bone
mass, resulting in an increased risk of fractures. Vertebral fractures are the most
common, and their presence significantly increases the risk of further vertebral
and non-vertebral fractures [7]. The accurate identification of prevalent vertebral
fractures is therefore clinically important. However there is no precise definition
of exactly what constitutes a vertebral fracture, though a variety of methods
of describing them have been developed [1]. These include semi-quantitative
methods involving some subjective judgement by an expert radiologist, and fully
quantitative morphometric methods. The latter require the manual annotation
of six (or more) points on each vertebra. This annotation is time consuming, and
subtle shape information is lost in the reduction of shape to 6 points.

Our ultimate aim is to define more reliable quantitative fracture classification
methods based on a complete definition of the vertebra’s shape. The first step
must therefore be to achieve a reliable automatic segmentation. Some success in
automatically locating vertebrae has been reported by several authors [8,9,6,3].
The purpose of this study was firstly to assess the feasibility of using an Active
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Appearance Model (AAM) [11] approach to a challenging dataset, including
fractured vertebrae, and noisy images. A second aim was to improve the accuracy
and robustness of the techniques by improving the sequence in which vertebral
locations are determined.

2 Materials and Methods

2.1 Data – DXA Images

Assessment for vertebral fracture is traditionally carried out using spinal ra-
diographs. This study used dual x-ray absorptiometry (DXA) images however.
Despite the images being noisier and of lower resolution, DXA has several ad-
vantages, such as a substantially lower radiation dose, and a lack of projective
effects. Figure 1a shows a typical DXA scan with some endplate fractures, and
Figure 1b shows the solution superimposed. The models cover the lumbar start-
ing at L4 and continuing up the thorax up to vertebra T7.

The DXA images used were obtained from two previous studies [8,4], obtained
from a Hologic (Bedford, MA) QDR2000plus scanner and a QDR4500A scanner
respectively. Pixel dimensions are 1.0mm and 0.5mm respectively. The combined
dataset of 202 images contains 173 fractures in total, and many images are very
noisy due to an inherent bias towards obese patients in the clodronate study
(second dataset). The images were manually annotated using an in-house tool,
by one of the authors (MGR), with supervision by an experienced radiologist

Fig. 1. Lateral DXA image of a spine displaying some symptoms of osteoporosis (e.g.
T12 fracture). a) shows the raw image; b) shows the model solution superimposed.
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(JEA). Each vertebral contour uses between 32 to 40 points around the vertebral
body (32 points for T10 and above), with 8 further points around the pedicles
for L4 to T10.

2.2 Statistical Models in Medical Imaging

Many problems in medical image interpretation require an automated system to
interpret images. These images may provide noisy data, and typically complex
structure. Model based methods offer solutions to these difficulties, by enforcing
strong priors learned from a set of annotated training images. A widespread such
current approach is the Active Appearance Model (AAM) [11].

One fundamental problem is that under-training of the model means that
it may be insufficiently adaptable on a local level, especially when pathologies
are present. In previous work [9] we showed that this problem could at least
be mitigated by using multiple sub-models. The sub-structures were linked by
partially overlapping them, and using the constrained form of the AAM [10].

2.3 Combining Multiple Sub-models

In [9] we demonstrated this approach on Smyth’s original dataset [8] of predomi-
nantly normal spines. We modelled the spine by using a sequence of overlapping
triplets of vertebrae. In this paper we improve the robustness and generality
of the algorithm by developing a dynamic sequencing method for the order in
which the sub-models are fit.

The sequence of sub-model solutions were combined in [9] as follows, using
a fixed ordering starting by going up the lumbar. Each vertebra is fit using the
triplet sub-model in which it is central (Figure 2). Note that subsequent itera-
tions do not update any point positions which have already been determined,
unless the point is in the central vertebra of the triplet. When a triplet model
has been fit it provides part of the initialisation (via the overlapping vertebrae)
for subsequent iterations which fit its neighbours. Furthermore constraints are
applied [10] so that overlapping vertebrae cannot be moved far from the provi-
sional positions determined previously. This feed-forward of constraints is further
aided by re-fitting the global shape model to the solution so far. This is used
to initialise a starting solution for vertebrae not yet fit, and relatively low con-
straint weights are attached to this global prior. Thus information in the global
shape model is still used in guiding the solution, but the global shape constraints
are downweighted, which allows their violation to a degree if the image evidence
locally supports such a solution.

Our approach differs somewhat from that of Davatzikos et al [2], who pro-
pose a hierarchical Active Shape Model based on a wavelet decomposition of the
shape contours, in which local regions of the wavelet transform space are decou-
pled when applying the shape model constraints. In [2] coarse global constraints
continue to apply in a strict sense. However, in the case of vertebral morphom-
etry, certain pathologies of the spine such as scoliosis may cause even coarse
aspects of the shape model to be violated, as whole vertebrae can be laterally
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Fig. 2. An illustration of the first two iterations (static fit ordering) combining ver-
tebral triplet sub-models. a) shows the result of fitting the first triplet containing
L4/L3/L2. b) indicates the next iteration which fits L3/L2/L1. The second iteration
resets L2 and provides an initialisation of L1, and an updated prediction for T12 via
the global shape model.

shifted outside the region captured in the training set. Therefore we use multi-
ple overlapping AAMs instead, which allows a wider range of pathologies to be
adequately fitted. Furthermore there may be some advantages in decomposing
the image search process, as well as the application of shape constraints.

2.4 Dynamic Sub-model Sequence Ordering Algorithm

If one sub-model fit fails, then this can misalign the starting solution for sub-
sequent iterations. In such a case it would be better to adapt the sequence
dynamically by comparing the fit quality of several candidate sub-models. Pick-
ing the best fitting model as the one to impose at this iteration will tend to defer
noisier or poorly fitting regions until they have been better constrained by their
neighbours.

In this new approach a subset of N active candidate sub-models is main-
tained. Each such candidate is provisionally fitted, then the submodel with the
best quality of fit (see next section) is imposed into the overall solution, and
removed from the candidate list. A new candidate sub-model to replace the one
just imposed is added at the end of each iteration by searching from the latest
best candidate to locate its nearest remaining neighbour1. As with the static
ordering, the global shape model is then fitted to the subset of all points deter-
mined so far, and used to predict an initial solution for all points which have not
yet formed part of any imposed sub-model solution. These iterations continue
1 “Remaining” means that the submodel has never been in the candidate list.
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until all sub-models have either been fitted and imposed already, or are now in
the set of candidates. When no more candidates can be added the remaining
N − 1 sub-models are fitted (best quality first) and the search concludes. It is to
be noted that all candidates in the active subset are re-fitted at each iteration,
as they will generally have a slightly different initialisation and altered shape
constraints as a consequence of imposing the last accepted candidate. We used a
set of 3 candidate sub-models, starting with the top, bottom and middle of the
spine.

2.5 Quality of Fit Measure

The quality of fit measure used to pick the best candidate sub-model is based
on the scaled residual sum of squares S, which is calculated as:

S =
n∑

i=1

r2
i

σ̂2
i

(1)

where ri is the grey level residual at point i, and σ̂i is its estimated standard
deviation. However, when comparing different sub-models with different numbers
of points it is not meaningful to directly compare values of S. Instead we pick the
best fitting sub-model, in the sense of having the lowest probability of obtaining
a residual sum of squares any better (i.e. lower) than that achieved. So S is
mapped to a value z on a standard Gaussian approximating the theoretically
χ2 distribution of S, but with further scaling parameters α and β for its overall
mean and variance. These scaling parameters are necessary because the set σ̂i

are underestimated, as they are calculated at model creation by refitting the
model to the training set, and do not account for model inadequacies in fitting
to unseen images. To more accurately model the true distribution of S, the
boosting parameters α and β in mean and variance due to model inadequacy
are derived by running a preliminary set of randomised train/test set partitions.
The final standardised Gaussian z-value used is then:

z =
S − αn

α
√

2nβ
(2)

The quality measure is obtained by just negating this, as picking the highest
value of −z is equivalent to choosing the candidate with the lowest probability
of obtaining a residual sum of squares any better than that achieved.

2.6 Experiments

Leave-8-out tests were performed over the 202 images. When the algorithm is
run interactively in an associated prototype clinical tool, the clinician initialises
the solution by clicking on 3 points. These are the bottom of L4, top of T12
and top of T7. The global shape model fit to these 3 points is used as the
starting solution. On each experiment the 3-point initialisation was simulated
by using the known equivalent marked points and adding random offsets to
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them. These were zero-mean Gaussian errors with SD of 1mm in the y-direction
(along the spine) and 3mm in the x-direction. Twenty replications (i.e. random
initialisations) of each image were performed. The AAMs sampled the gradient
along profiles spanning 6mm either side of the shape, with the overall sample
renormalised onto the sample cdf.

3 Results

The accuracy of the search was characterised by calculating the absolute point-
to-line distance error for each point on the vertebral body. The error is the
distance from each located point to the nearest point (in the same vertebra) on
the smooth bezier spline passing through the manually annotated points.

3.1 Optimal Sub-models

We assessed the effect of the size of structures used for the sub-models. As well as
triplets, we tried using individual vertebra models, and a central vertebra with
the neighbouring half-vertebrae. Scaling up the structure size, we assessed the
use of quintets (5 vertebrae). Space does not permit the inclusion of full results.
In summary, structures smaller than triplets were found to be too unconstrained
and therefore unreliable. Triplets performed slightly better than quintets on
fractured vertebrae, but there was little difference between triplets and quintets
on normal vertebrae. We concluded that triplets are the optimal sub-structure
to model.

3.2 Dynamic vs Static Ordering

The overall mean point accuracies are 0.79, 1.03, and 0.92 mm for the dynami-
cally ordered, statically ordered, and global model approaches respectively. Table
1 compares results for static and dynamic sub-model ordering, but decompos-
ing the data into points within normal or fractured vertebrae. Each row gives
the mean, median and 75th percentiles, and the percentage of point errors in
excess of 2mm. The threshold of 2mm would be around 2SDs of manual preci-
sion, and can be viewed as a fairly stringent point failure indicator. The Eastell
morphometric method [5] was used to determine fracture status.

Comparing the dynamic and static ordering results in table 1, there is an
improvement by using the new dynamic ordering method, but this is mainly

Table 1. Search Accuracy Percentiles by Fracture Status

Normal Fractured
Model Fit Mean Median 75%ile %ge errors Mean Median 75%ile %ge errors
Strategy Acc Acc Acc over 2mm Acc Acc Acc over 2mm

Dynamic 0.70 0.50 0.92 4.96% 1.23 0.70 1.41 16.22%
Static 0.88 0.55 1.04 7.54% 1.80 0.83 1.79 22.21%
Global 0.84 0.62 1.12 7.12% 1.37 0.84 1.63 18.17%
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evident in the tails of the error distribution. Although there is little difference
in median accuracy, the reduction in extent of the error tails leads to an overall
mean improvement of 0.24mm, rising to 0.57mm for fractures. The symmetric
(in probability) 98% confidence interval of the mean improvement (derived by
bootstrap resampling) is [0.143,0.385].

4 Discussion

The previously observed accuracy improvement [9] of around 0.4mm between
the statically ordered triplet approach and a global model disappears with a
larger training set. A similar effect was noted in [2] comparing a standard and
an hierarchical ASM. But the mean difference between the dynamic sub-model
approach and a single global model is statistically significant (using a 98% boot-
strap confidence interval on the mean difference). So there does appear to be a
real improvement from the heuristic of first imposing the better fitting regions,
and then using the constraints implied by them in subsequent (partial) searches.
Further gains might possibly be derived from increasing the size of the candi-
date subset N , but this would of course increase the computation time of the
algorithm.

With the new dynamic ordering method the mean location accuracy of 0.7
mm for normal (i.e. not fractured) vertebrae is comparable to typical manual
precision. Over 95% of points in normal vertebrae are located to within 2mm.
The performance on fractured vertebrae worsens, but remains quite respectable,
and the mean of 1.23mm is still comparable with manual precision on fractures.
Fractured vertebrae present a more challenging problem, as the variation is much
greater for pathological cases than for normals, and also when a vertebral end-
plate collapses a remnant of the stronger outer ring of cortical bone can provide
a weaker outer edge to further confuse the search algorithm.

Nevertheless around 84% of points in fractured vertebrae are located to
within 2mm with the dynamic method. The remaining 16% in the tail of the
distribution are due to a combination of under-training of the models, and false
local minima. In the former case the problem is that the shape model cannot
fit to some of the more extreme fractures. In the latter case, there appear to be
problems with local minima where the top of a vertebra is erroneously fit to the
bottom of the vertebra above (or vice versa). Fractured vertebrae may be prone
to this failure mode, as the true edge of a collapsed vertebral body may well be
further from the starting solution than the opposite side of its neighbour. It may
ultimately prove necessary to search using multiple initialisations to segment
pathological cases more reliably - for example by using a normal and a fractured
candidate. However even here our framework could still be used, as multiple
candidates of the same sub-model can essentially be treated in the same way as
multiple different sub-models.

The accuracy is better than other comparable cited figures in the literature
[8,9,6,3]. For example de Bruijne et al [3] obtained a mean point-to-contour
accuracy of 1.4mm on lumbar radiographs using shape particle filtering, whereas
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we achieve a mean accuracy of 0.8mm, even though DXA images are typically
noisier than radiographs and have poorer resolution, and we also include the mid-
thorax which has more soft-tissue clutter and a greater probability of fracture.

Our latest results confirm the feasibility of substantially automating vertebral
morphometry measurements even with fractures or noisy images. However some
work remains on extending the models and search process to cope with the more
severe fractures. Furthermore the sub-model approach offers scope for greater
gains on radiographic images, which have significant local variation in projective
effects, which could be compensated for by varing the affine pose of the sub-
models.

References

1. Guermazi A, Mohr A, Grigorian M, Taouli B, and Genant HK. Identification of ver-
tebral fractures in osteoporosis. Seminars in Musculoskeletal Radiology, 6(3):241–
252, 2002.

2. Davatzikos C and Tao. Hierachical active shape models: Using the wavelet trans-
form. IEEE Trans. Med. Imag., 22(3):414–423, 2003.

3. de Bruijne M and Nielsen M. Image segmentation by shape particle filtering. In
International Conference on Pattern Recognition, pages 722–725. IEEE Computer
Society Press, 2004.

4. McCloskey E, Selby P, de Takats D, and et al. Effects of clodronate on vertebral
fracture risk in osteoporosis: a 1-year interim analysis. Bone, 28(3):310–5, 2001.

5. R Eastell, SL Cedel, HW Wahner, BL Riggs, and LJ Melton. Classification of
vertebral fractures. J Bone Miner Res, 6(3):207–215, 1991.

6. B. Howe, A. Gururajan, H. Sari-Sarraf, and R. Long. Hierarchical segmentation of
cervical and lumbar vertebrae using a customized generalized hough transform and
extensions to active appearance models. In Proc IEEE 6th SSIAI, pages 182–186,
2004.

7. Melton LJ III, Atkinson EJ, Cooper C, O’Fallon WM, and Riggs BL. Vertebral
fractures predict subsequent fractures. Osteoporosis Int, 10:214–221, 1999.

8. Smyth PP, Taylor CJ, and Adams JE. Vertebral shape: automatic measurement
with active shape models. Radiology, 211:571–578, 1999.

9. M.G. Roberts, T.F. Cootes, and J.E. Adams. Linking sequences of active appear-
ance sub-models via constraints: an application in automated vertebral morphom-
etry. In 14th British Machine Vision Conference, pages 349–358, 2003.

10. Cootes TF and Taylor CJ. Constrained active appearance models. In 8th Interna-
tional Conference on Computer Vision, volume 1, pages 748–754. IEEE Computer
Society Press, July 2001.

11. Cootes TF, Edwards GJ, and Taylor CJ. Active appearance models. In Burkhardt
H and Neumann B, editors, 5th European Conference on Computer Vision, vol-
ume 2, pages 484–498. Springer (Berlin), 1998.



Geodesic Active Contours
with Adaptive Neighboring Influence

Huafeng Liu1,2, Yunmei Chen3, Hon Pong Ho2, and Pengcheng Shi2

1 State Key Laboratory of Modern Optical Instrumentation,
Zhejiang University, Hangzhou, China

2 Department of Electrical and Electronic Engineering,
Hong Kong University of Science and Technology, Hong Kong

3 Department of Mathematics, University of Florida, Gainesville, USA

Abstract. While geometric deformable models have brought tremen-
dous impacts on shape representation and analysis in medical image anal-
ysis, some of the remaining problems include the handling of boundary
leakage and the lack of global understanding of boundaries. We present
a modification to the geodesic active contour framework such that influ-
ence from local neighbors of a front point is explicitly incorporated, and
it is thus capable of robustly dealing with the boundary leakage problem.
The fundamental power of this strategy rests with the local integration
of evolution forces for each front point within its local influence domain,
which is adaptively determined by the local level set geometry and im-
age/prior information. Due to the combined effects of internal and exter-
nal constraints on a point and the interactions with those of its neighbors,
our method allows stable boundary detection when the edge information
is noisy and possibly discontinuous (e.g. gaps in the boundaries) while
maintaining the abilities to handle topological changes, thanks to the
level set implementation. The algorithm has been implemented using
the meshfree particle domain representation, and experimental results
on synthetic and real images demonstrate its superior performance.

1 Introduction

Shape recovery has been one of the most active research areas in medical im-
age analysis because of its practical importance and theoretical challenges. Over
the last two decades, various parametric and geometric deformable models have
gained much popularity [4,7]. Geodesic active contours have been proposed [1] to
connect classical parametric snakes based on energy minimization to geometric
active contours based on the theory of curve evolution [8], and thus maintain
the desirable properties of allowing topological changes during the curve evolu-
tion process. Nevertheless, these geometric snakes still have certain drawbacks,
i.e. they face difficulties in handling weak edges/gap problems [1,10] where the
evolving contour cannot stick to the object boundary and would simply leak
through the gaps, they are very sensitive to local minima in noisy images [11].

In order to overcome these problems, considerable progress has already been
made through the use of additional force (or energy) terms. An extra stopping
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Fig. 1. 1st: adaptive point-based domain representation; 2nd: influence domain (and
the associated other points) of the red point; 3rd: closeup which illustrates the genera-
tion of neighboring points in the tangent direction (we generate the points pn through
xpn = xp(n−1) + tscale

|κ| t, with κ the curvature and t the tangent vector of point p(n−1));
4th: generated neighboring points in both normal and tangent directions (and thus the
influence domain) for the red point.

term for pulling back the contour if it passes the boundary was investigated in
[1], although this formulation is still susceptible to boundary leakage problem.
A weighted area functional force has been introduced to help the snake be more
robust with respect to small gap problem [10]. Diffused external data forces,
such as the gradient vector flow (GVF), have also been adopted to deal with
the leakage problem and noisy data [12]. And boundary and region information
has been integrated under a curve-based minimization framework [9]. These
later approaches own the benefits provided by external force potential field in
achieving a larger capture range and robustness against the boundary leakage
problem [9,12]. More recently, a region-aided geometric snake, which integrates
gradient flow forces with region vector flow forces obtained through the diffusion
of the region segmentation map, has been developed and implemented within
level set platform [11]. These integrated forces give another way to be more
robust toward weak edges. Similar region-based strategies have been explored
by other works as well [2].

We realize that the boundary leakage problem can be more readily solved if
the behavior of individual curve point is constrained by local edge information
of itself and that of its neighboring points. These inter-point relationships act as
diffused local internal energy, which would make the snakes less sensitive to noisy
or broken edges. Thus, our aim is to develop a robust segmentation framework
that imposes adaptive local inter-point constraints into geodesic active contours.
Instead of using additional external forces, we make use of the image data at
the adaptively determined local support domain around each point of interest,
which effectively enlarges the capture range of each point to have a better local
understanding of the image information within its local neighborhood. In other
words, we modify the image forces on each point of the geodesic contour in a
way such that it is capable of providing sufficient information to define a desired
segmentation which is robust against boundary leakage and noise impact. One
key issue is the proper determination of the local neighborhood of each curve
point such that the integration of information can be performed. In this paper,
we present a numerical implementation of the strategy on the meshfree particle
representation of the evolution domain, where the local neighbor is adaptively
selected based on image data and curve geometry.



Geodesic Active Contours with Adaptive Neighboring Influence 743

2 Methodology

2.1 Geodesic Active Contours (GACs)

Let us consider an active contour C(s) parameterized by s ∈ [0, 1]. It has been
known that the problem of boundary detection can be casted into the problem of
minimizing the curve length in Riemannian space min

∫ 1
0 g(|�I(C(s))|)|C′(s)|ds,

where g(.) is a strictly decreasing edge-function such that g(0) = 1 and limx−>∞
g(x) = 0 [1]. Now we represent the evolving contour C implicitly as the zero level
set of a scalar Lipschitz function φ: C(t) = {x|φ(x, t) = 0}. The corresponding
energy over the image domain Ω in terms of level set function φ becomes:

E(φ) =
∫

Ω

g(| � I(x)|)| �H(φ(x))|dx (1)

where H(x) is the Heaviside function, that is H(x) = 1 if x >= 0, and H(x) = 0
if x < 0, and let δε(x) = H ′(x) be the Dirac measure. Then, the length of zero
level set is given by

∫
Ω
| � H(φ(x))| =

∫
Ω
δε(φ)| � φ(x)|. The energy can be

rewritten:

E(φ) =
∫

Ω

δε(φ)g(| � I(x)|)| � φ(x)|dx (2)

The minimization process can be achieved by solving the Euler-Lagrange
equation, obtained by minimizing Eqn. (2) with respect to φ and parameterizing
the descent directions by an artificial time t:

∂φ

∂t
= δε(φ)div

(
g(| � I(x)|) �φ

| � φ|
)

(3)

We reach the following equations by expanding the divergence term and
replacing δε(φ) by �φ [13]:

∂φ

∂t
= g(| � I(x)|)| � φ|div

( �φ
| � φ|

)
+ �g(| � I(x)|).� φ (4)

where �φ
|�φ| denotes the unit normal vector. The divergence of the unit normal

vector div
(

�φ
|�φ|

)
represents the curvature of the current point.

2.2 GACs with Adaptive Neighboring Influence (GAC-ANI)

The main idea in the GAC-ANI formulation is that centered at each front point,
there is an influence domain Ωe which contains points that have effects on the
evolution of the concerned front point. Hence, each front point moves under
the influence of two forces: the typical data force provided by image informa-
tion such as GVF, and the neighborhood force due to the interaction of the
point with other points in the influence domain. With proper formulation of the
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neighboring interactions, front points at the weak edges or gaps will be domi-
nated by the neighborhood force such that the front would be discouraged from
leaking through the boundary. For front points with good data force, their move-
ment is still mostly controlled by image information and thus would stick to the
object boundary exhibited in the image. Due to the combined effects of data
constraints and interactions with the neighboring points, GAC-ANI exhibits ro-
bustness against boundary leakage while maintaining the desired geometrical
characteristics of GACs.

While there could be many ways to incorporate the inter-point relationship
into the GAC-ANI formulation, one simple way of enforcing neighborhood influ-
ence is to replace the edge function g(x) in Equation (2) by G(x) =

∫
Ωe

Ng(y)dy,
where N is a shape function that assigns proper weights to each point within the
influence domain. In this sense, the evolution force on point x is now constrained
by the image data at the point itself and at the other points within its influence
domain. The modified objective function of GAC-ANI now becomes:

E(φ) =
∫

Ω

δε(φ)
(∫

Ωe

Ng(y)dy
)
| � φ(x)|dx =

∫
Ω

δε(φ)G(x)| � φ(x)|dx (5)

The evolution equation related to the Euler-Lagrange equation for Eqn. (5) is:

d

dτ
E(φ + τΦ)|τ=0 = 0 (6)

Now, let us take care of the left hand side of the equation:

d

dτ

∫
Ω

δε(φ+ τΦ)G(x)| � φ+ τ � Φ|dx = −
∫

Ω

δε(φ)div
(
G(x)

�φ
| � φ|

)
Φdx(7)

Finally, the following Euler-Lagrange equation can be achieved:

δε(φ)div
(
G(x)

�φ
| � φ|

)
= 0 (8)

It is common to expand the divergence term to obtain the alternative equation:

δε(φ)G(x)div
( �φ
| � φ|

)
+ δε(φ) �G(x).

�φ
| � φ| = 0 (9)

where �G =
∫

Ωe
�Ng(y)dy. The steady state solution of the above equation

results in the GAC-ANI formulation in level set representation, where a standard
rescaling can be made through replacing δε(φ) by | � φ| [13]:

∂φ

∂t
= G(x)| � φ|div

( �φ
| � φ|

)
+ �G(x).� φ (10)
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Discussions. It should be noted that the most attractive property of the above
GAC-ANI formulation is that the influence domain Ωe controls the trade-off
between a parametric snake and a geodesic snake at the front point.

Consider the case where the size of the local influence domain is approaching
zero, e.g. the level set value of the point is mainly determined by itself. Hence,
Eqn. (10) goes back to the standard geodesic active contours. On the other hand,
if we enlarge the influence domain to cover the entire curve, the integration is
then taken over the whole contour. Perceptually, the behavior of all curve points
are now inter-related, and we effectively have a parametric deformable model
instead. In practice, influence domains of different sizes generate different G
and �G, which in turn are suitable for different situations. For example, large
influence domains are effective in robust segmentation of noisy images or object
with broken edges. On the other hand, small influence domains are needed for
object boundaries with many fine details. Schemes to adaptively determine the
sizes of the influence domains will be discussed in the following section.

2.3 Numerical Implementations of GAC-ANI

We have implemented the GAC-ANI on the evolution domain represented by
adaptively distributed meshfree particles [3]. Here, we want to point out that
any numerical implementations such as traditional finite difference schemes can
also be used for GAC-ANI without any fundamental algorithmic modifications.

Let φ(x, t = 0) = ±d, where ±d is the signed distance to the interface. The
level set updating procedures on the meshfree particle domain are:

1. Initialization: Initialize φ(·, 0) to be the signed distance function.
2. Domain Representation: We adopt an adaptive point distribution scheme

to represent the domain by meshfree particles (see Fig. 1 for an example).
The point distribution is adaptive towards both local level set geometry and
image gradient, and it allows extremely convenient enhancement/reduction
of curve precision by simply putting more/fewer points on the computation
domain. A detailed discussion of this scheme can be found in [3]. Then, find
all the points in the narrow band of the current zero level set.

3. Influence Domain Generation: Generate a proper influence domain for each
point within the narrow band (see detailed discussion later).

4. Shape Function Construction: Here, we use the concept of moving least
squares (MLS) to construct the shape functions. It is assumed the cur-
rent active point x with its neighboring nodes xI , I = 1, 2, ..., n are given
in the influence domain. Following the work in [5], the MLS-derived shape
function is NI(x) =

∑m
j pj(x)(A−1(x)B(x))jI = pT A−1BI , with A(x) =∑

I w(x − xI)p(xI )pT (xI), BI = w(x − xI)p(xI), B(x) = [B1,B2, ...,Bn].
p(x) is polynomial basis functions, and w(x−xI) is the weighting function.

5. Evaluation of Integrals: To update level set function of Equation (10), ma-
trices G and �G need to be calculated. That is, one needs to integrate
over the influence domain. This can be carried out through numerical tech-
niques which approximate a continuous integral over Ωe into a discrete sum:
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Ωe
f(ξ) =

∑nq

l=1 wlf(ξl), where nq is number of quadrature points, ξl is
the coordinates of sampling point l, and wl is the corresponding weighting
factor. Here, we use the Gaussian quadrature technique which is the most
commonly used integration scheme in meshfree particle methods [6].

6. Updating Procedure: Update level set function φ using Equation (10).
7. Reinitialization: Re-initialize φ(·, t + 1) to be the signed distance function of

its zero level set.
8. Convergence Test: Set proper convergence criterion to test whether the zero

level set reaches object boundary. If no, go back to step 2.

Influence Domain Determination. In the level set formulation based on
distance measure, there is an entire family of isocontours of different level set
values (although only one of which is the zero level set). For each data point in
the narrow band, or a node, its all important influence domain Ωe is determined
by a data-driven local operation. And the geometry of the resulting influence
domain adapts to the isocontour segment to which it belongs (see Fig. 1 for an
illustration).

First, we calculate the image gradient magnitude | � I(xnb)| within the nar-
rowband and normalize them to [0, 1], where xnb is the narrow band node points
set. Starting with an arbitrary narrow band point xnb(i) (the red point in Fig.
1), let xi = xnb(i) and tag it as active. We then compute the normal vector n,
the tangent vector t, and curvature κ of the active point. Adding a tangent vir-
tual node along the tangent direction use xi = xi + tscale

|κ| t (adding the opposite
point by xi = xi − tscale

|κ| t ), where tscale is the tangential scale factor. This way,
the higher the curvature, the closer the added point will be to the active point,
which will in turn guarantee that fine shape details will be preserved. We then
tag the new added point as active point. This process is executed iteratively until
the number of added points has reached a specified limit, which is determined
by totscale

exp(|�I(xnb(i))|) , where totscale is another scale factor. This entire procedure
implies that for low image gradient node, many virtual points will be added
in the tangent direction (large Ωe dimension size in the tangent direction). Of
course for high image gradient node, there will be few virtual points added and
the Ωe dimension size in the tangent direction will be small. In the same fash-
ion, virtual nodes in normal direction can be added using a similar scheme by
xi ± nscale| � I(xi)|n where nscale is the normal direction scale factor.

3 Experiments and Results

In Fig. 2, comparison is made between traditional GAC and GAC-ANI on their
ability to deal with boundary gaps. The test object contains a big blurred area
on the right boundary and a small blurred area on the lower left boundary.
Clearly, the traditional GAC curve keeps shrinking and leaks through the broken
edges, while GAC-ANI does not suffer from such leakage problem and converges
to the true boundary since the neighborhood point information offers useful
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Fig. 2. Segmentation of noisy synthetic image with boundary occlusion: traditional
level set implemented on finite difference grid (top); GAC-ANI on adaptive point cloud.

Fig. 3. The ability of the GAC-ANI to handle topological changes

Fig. 4. Segmentation process on the bone CT image: GAC (left) and GAC-ANI (right)

Fig. 5. Epicardial segmentation process on canine MRI image: traditional GAC (left
three) and GAC-ANI (right three). The red circles highlight the ill-defined boundary
areas (upper-right: image void caused by implanted marker; lower-left: weak contrast
between myocardium and background tussue) where neighboring influence is dominant.

expanded view on the image boundaries. Each contour point of the GAC-ANI
belonging to the blurred area is adaptively assigned large influence domain and
thus detects the boundary properly, while front point elsewhere is determined to
have very small influence domain and thus behaves just like the traditional level
set point. In Fig. 3, starting from a single front, GAC-ANI manages to split and
capture all the boundaries of three objects, just like a traditional GAC. During
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the segmentation process, as the front moves, the nodes in the narrow band
are adaptively constructed depending on local image (red points) and geometry
(cyan points). Finally, we show the segmentation results on several real medical
images. In the bone CT image segmentation (Fig. 4), the low-left corner of the
big bone has a relatively weak edge. While the traditional GAC leaks through
the edge (left figures), GAC-ANI properly stops at that part of the edge (right
figures). In the difficult task of epicardial segmentation from the canine cardiac
MRI image (Fig. 5), the ill-defined epicardium from its background and the void
caused by implanted imaging-opaque markers make the traditional GAC fail to
produce appropriate definition of the boundary, while the proposed GAC-ANI
yields proper, smooth segmentation result.

Acknowledgement. This work is supported in part by the 973 Program of
China (2003CB716104), by the HKRGC-CERG HKUST6252/04E, by the NSF
of China(60403040).

References

1. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International
Journal of Computer Vision, 22(1):61–79, 1997.

2. T. Chan and L. Vese. Active contours without edges. IEEE Transactions on Image
Processing, 10(2):266–277, 2001.

3. H. Ho, Y. Chen, H. Liu, and P. Shi. Level set active contours on unstructured
point cloud. In IEEE Computer Vision and Pattern Recognition, 2005.

4. M. Kass, A. Witkin, and D. Terzopoulos. SNAKES: Active contour models. In-
ternational Journal of Computer Vision, 1:321–332, January 1988.

5. P. Lancaster and K. Salkauskas. Surface generated by moving least squares meth-
ods. Mathematics of Computation, 37(155):141–158, 1981.

6. H. Liu and P. Shi. Meshfree representation and computation: Applications to
cardiac motion analysis. In Information Processing in Medical Imaging, pages
560–572, Ambleside, U.K, July 2003.

7. R. Malladi, J.A. Sethian, and B.C. Vemuri. Shape modeling with front propaga-
tion: A level set approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(2):158–175, 1995.

8. S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed:
Algorithms based on hamilton-jacobi formulations. Journal of Computational
Physics, 79:12–49, 1988.

9. N. Paragios and R. Deriche. Coupled geodesic active regions for image segmenta-
tion: a level set apporach. In Proceedings of the Europe Conference on Computer
Vision, pages 224–240, 2000.

10. K. Siddiqi, Y. Lauziere, A. Tannenbaum, and S. Zucker. Area and length-
minimizing flows for shape segmentation. IEEE Transactions on Image Processing,
7:433–443, 1998.

11. X. Xie and M. Mirmehdi. RAGS: Region-aided geometric snake. IEEE Transac-
tions on Image Processing, 13(5):640–652, May 2004.

12. C. Xu and J. Prince. Generalized gradient vector flow external forces for active
contours. Signal Processing, 71(2):131–139, 1998.

13. H. Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach to
multiphase motion. Journal of Computational Physics, 127:179–185, 1996.



A Construction of an Averaged Representation
of Human Cortical Gyri Using Non-linear

Principal Component Analysis

G. Lohmann1, D.Y. von Cramon1, and A.C.F. Colchester2

1 Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2 University of Kent at Canterbury, UK

Abstract. Because of the complex shape of human cortical gyri and
great variation between individuals, development of effective represen-
tation schemes which allow establishment of correspondence between
individuals, extraction of average structure of a population, and co-
registration has proved very difficult. We introduce an approach which
extracts line representations of gyri at different depths from high resolu-
tion MRI, labels main gyri semi-automatically, and extracts a template
from a population using non-linear principal component analysis. The
method has been tested on data from 96 healthy human volunteers. The
model captures the most salient shape features of all major cortical gyri,
and can be used for inter-subject registration, for investigating regional-
ized inter-subject variability, and for inter-hemispheric comparisons.

1 Introduction

The idea of constructing a model brain is not new. Perhaps the most well-known
example is the Talairach brain atlas. While this atlas constituted a tremendous
step forward because for the first time a generally accepted coordinate system
was introduced, it also soon became clear that a number of problems still remain
to be solved. In particular, the Talairach atlas [1] is based on one single brain
so that it does not account for inter-individual anatomical variations. For this
reason, more representative brain templates have been introduced [2]. Probabilis-
tic atlases detailing anatomical structures were targeted by the ICBM consor-
tium [3]. These templates provide presence probability maps of different struc-
tures. Transfer of labels between atlas and new subject requires co-registration
of a T1-weighted MRI scan, that is already linked to the atlas labels, to the
same type of MRI obtained in the new subject. Voxel-based co-registration of
highly variable structures such as cortical sulci and gyri is imperfect. Averaging
co-registered scans tends to blur the boundaries even of major sulci and gyri and
generally does not allow accurate transfer of labels from atlas to subject. For
example, a sulcus label from the atlas will frequently overlie a gyrus and vice
versa.

An alternative and promising approach is to extract gyri by data-driven seg-
mentation followed by object-based matching between subjects. Surface-based
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methods analyse cortical curvature and use geodesic distance metrics to define
boundaries [4]. However, manual selection of neighbouring sulcus-pairs was re-
quired to initiate segmentation of a gyrus, and did not resolve the difficulties of
substantial inter-subject variation whereby a significant number of the gyri in
one individual seem to have no clear matching gyri in another. In preliminary
experiments we found a voxel-based method for extracting gyral cores [5] to be
more robust and we based our approach on this.

Our framework allows matching of the important gyri across subjects. In
addition to supporting automated labelling, the gyral representation should al-
low inter-subject registration and may be used for quantitative studies of inter-
subject variability and inter-hemispheric differences.

2 Data and Pre-processing

Our input data consisted of 96 T1-weighted MRI brain data of healthy human
volunteers acquired on a 3-Tesla magnetic resonance scanner (Bruker Medspec
300) using a MDEFT pulse sequence [6]. The within-plane spatial resolution was
set to 1×1mm, the between plane resolution was approximately 1.5mm. All data
sets were rotated and shifted into a standard stereotactic coordinate system with
the origin residing halfway between CA and CP [1]. At the same time, the data
sets were resampled so that isotropic voxels of size 1× 1× 1mm3 resulted. After
resampling, each data set consisted of 160 image slices that contained 160× 200
voxels covering the entire brain. We restricted our attention to the large primary
gyri that can be identified in almost all healthy individuals on the lateral aspect
of hemispheres. Secondary, and particularly tertiary, cortical folds have a high
degree of inter-subject variability so that it is unrealistic to derive a valid model
for them.

3 Methods

In our algorithm, cortical folds are represented as 3D polygonal lines so that folds
extracted from a group of individuals form a cloud of such lines. The central idea
of our approach is to subject such data clouds to non-linear principal component
analysis so that a principal curve for each major gyrus results. A principal curve
captures the most salient shape features of a data cloud. Our gyral model is a
collection of such principal curves. In the following, we will present this sequence
of processing steps in more detail.

3.1 Representation of Gyri Using 3D Polygonal Lines

The initial steps for automatically extracting the polygonal line representation
of gyral cores are similar to those described in [5]. In the current work, we ex-
tend this approach to include extraction of the deep white matter surface, which
smoothly connects the fundi of the major sulci, and we express the depth of gyri
as a proportion of the distance between the outer (closed) and inner (opened)
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white matter surfaces. The rationale behind this approach is that various re-
gions of the brain show marked differences in the depth of the cortical foldings.
For example, pre-frontal sulci are generally more shallow than parietal sulci. A
relative measure of depth as introduced here allows us to incorporate all major
folds into a common framework so that regional differences in sulcal depth play
a lesser role.

The algorithm consists of the following steps (fig. 1):

1. White matter segmentation.
2. Extraction of a superficial white matter surface (corresponding to the arach-

noid surface overlying the superficial grey matter) by 3D morphological clos-
ing of the segmented white matter [7], using a spherical 12 mm radius struc-
turing element.

3. Extraction of the deep white matter surface using a morphological opening
with a 8 mm diameter spherical structuring element.

4. 3D distance transform to define the depth from the closed white matter
surface [8].

5. 3D distance transform to define the distance from the opened white matter
surface.

Fig. 1. The processing chain for obtaining the gyral core graph
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Fig. 2. Definition of relative depth
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6. Calculation of relative depth of any point as the ratio of the distance from
the superficial surface to the sum of the two distances (to superficial and
deep surfaces) (fig. 2).

7. Extraction of the gyri via a top-hat transformation (the white matter image
minus the result of a 3D morphological opening).

8. 3D topological thinning of the gyri [9],[10].
9. Extraction of the intersections of the thinned gyri at a series of relative

depths, to form ”gyral cores”.
10. Representation of the intersection as an undirected graph. The nodes in the

graph correspond to voxels. Any two nodes are linked by an arc if their
corresponding voxels are 26-connected.

We call our representation the “core graph”. A path within the core graph is
called a “gyral core”. In the following, we will discuss some specific gyral cores
that are of interest because of their interindividual consistency.

3.2 Anatomical Labelling of Gyral Cores

At the 0.95 depth level, gyri appear geometrically simple. They are smoother
and less convoluted than at more shallow depth levels. This makes their identifi-
cation much easier. Therefore, we initially attach anatomical labels only to gyral
cores at the deepest depth level. These labels are then subsequently propagated
upwards to all other levels of depth. We selected gyri which show high consis-
tency across subjects to form the basis of the labelling scheme. These included
the precentral, postcentral, middle frontal, parietal, inferior temporal, and supe-
rior temporal gyri (fig. 3). At the deepest relative depth levels, it was clear that
the superior temporal gyral core was continuous with the opercular gyral bank

Fig. 3. Illustration of the gyral labelling procedure. Anchor points P1 and P2 mark the
endpoints of the perisylvian core. The perisylvian core is defined as the shortest path
in the core graph connecting P1 and P2. Other anchor points and the shortest paths
between them are used for identifying other gyri. To identify the pre- and postcentral
gyri, we additionally impose the constraint that the two gyri must be roughly parallel.
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above the circular sulcus of the insula, so we named this continuous gyral core
perisylvian (fig. 3).

We devised a semi-automatic algorithm for labelling the above named gyral
cores. For each of these six types of gyral cores we have devised a set of heuristic
rules to be used in the identification process. Dijkstra’s algorithm for finding
shortest paths in graphs is one of the key elements of our method. For instance,
to identify the perisylvian core, we first identify the two anchor points P1 and P2
that mark the anterior and posterior ends of this core. We then apply Dijkstra’s
algorithm for finding the shortest path in the core graph that connects P1 to P2.
P1 is defined as the most ventral point whose y-coordinate in the stereotactic
Talairach system is less than -10. P2 is defined by a similar rationale.

Once the core graph of a data set is anatomically labelled at the deepest
depth level, we can propagate its anatomical labels upwards to the next higher
depth level, and so on, until the graph is labelled at all depths. This process is
not very exact However, for the purpose of generating a generic model that is
representative of 96 individuals, it is not essential to obtain a highly accurate
labelling in each case.

3.3 Principal Curves

We have applied the anatomical labelling to all 96 data sets. In order to extract
a generic gyral model from these data, we integrated the labelled gyral cores
from all subjects into one data set using a common coordinate frame. We then
extracted principal curves from this combined data set in order to reveal the
generic structure of the data.

Principal curves are defined to be polygons which pass through the center of
an n-dimensional data cloud. The data cloud is assumed to have an elongated
shape so that a polygonal line can be considered to represent its most salient
shape features. Its mathematical formulation is the following [11].

Let X = {x1, ..., xn}, xi ∈ Rn be a set of data points. A curve f is called a
principal curve of length L for X if f minimizes

Δ(f) = E[ inft ||X − f(t)||2]

the expected squared distance between X and the curve, over all curves of length
less than or equal to L. In [11], a suboptimal algorithm for learning principal
curves from training data X is described. The algorithm starts with a straight
line segment that is iteratively refined as new vertices are added. With each addi-
tion of a new vertex, the resulting polygon achieves a more precise representation
of the data. Figure 4 illustrates this process. For a more detailed description of
the algorithm see [11].

This process was performed for each of the six anatomical labels and for each
of the eight depth strata separately. More precisely, we extracted each of the six
different type of anatomical labels from the combined data set in each depth
level separately, and applied the principal curve extraction method described
in [11].
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Fig. 4. Illustration of the principal curve algorithm [11]. In the first iteration step, a
straight line segment is placed such that it runs through the center of gravity of points
projecting to it. In subsequent iterations, the shape representation is refined by adding
more vertices. The rightmost image shows a principal curve running through the data
cloud representing a post-central gyrus.

4 Results

We have applied the method for gyral core identification to all 96 data sets.
In table 1, a list of the identification rates is given. Note that some types of
gyral cores could be located in almost every data set while others were less
robustly identified. The main reason for failure are topological interruptions of
the gyral stalks because the algorithm relies on finding paths in the gyral graph.
A disconnected gyral stalk produces a gap in the graph structure so that a 26-
connected path from one anchor point to the next does not exist. In cases where
the automatic identification failed, it was supplied manually. In some regions –
especially in the anterior part of the middle frontal gyrus – the gyral core was
only partially identifiable.

The resulting non-linear PCAs from eight depth levels were assembled into
one output set to create the averaged representation of human cortical gyri
(fig. 5). Note that the most shallow level of the representation is more convo-
luted than the deepest level (fig.5c,d). Furthermore, an inter-hemispheric differ-
ence emerges in the vicinity of the planum temporale. This region is connected
to language processing, and it is well known that the left-hemispheric planum
temporale is larger than the right [12].

Table 1. Identification accuracy of the gyral labelling. The numbers represent the
absolute number of cases (out of a total of 96 data sets) in which the identification was
successful. In some cases, gyral cores could be only partially identified (see text).

Frontal, left 94
Frontal, right 94
Pre- and postcentral, left 92
Pre- and postcentral, right 89

Perisylvian, left 96
Perisylvian, right 96
Temporal, left 91
Temporal, right 95
Parietal, left: 95
Parietal, right: 95
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Fig. 5. The gyral model. 5a): the left hemisphere of the model in all its depth lev-
els, 1:perisylvian, 2: inferior temporal, 3:parietal, 4:postcentral, 5:precentral, 6:frontal,
7:dorsal rim. 5b): an inter-hemispheric comparison where the right hemispheric model
is flipped around the x-axis and superimposed onto the left hemisphere. The arrows
indicate a region of inter-hemispheric differences in the vicinity of the planum tempo-
rale. 5c): the degree to which the model is representative of the population from which
it was derived. Each node in the model graph has a label that indicates how many of
the 96 inidividual labelled core graphs have a node of the same label within a 6 mm
neighbourhood around the model node. Note that some segments of the model graph
represent the data better than others. The anterior part of the middle frontal gyrus
has low values indicating a high degree of inter-individual variability. Fig. 5d compares
the deepest depth level of the model (red) with the most shallow level (green). Note
that the gyri at the shallow level are more convoluted than at the deepest level.

5 Discussion

We have presented a method of constructing an averaged representation of hu-
man cortical gyri from a large population of individuals. We restrict the study to
the gyri which are known from qualitative study of our data and from anatomical
texts to be the most consistent. The method is based on measuring relative depth
based on the deep white matter surface, on extraction of gyral cores which are
1-D structures in 3-D space at specific relative depths, and applying non-linear
principal component analysis to the point sets to extract an average representa-
tion of the gyri. The model represents even quite subtle features of the cortical
folding; for example, inter-hemispheric differences around the planum temporale
are preserved. By comparing different strata of depth within the model, it is ev-
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ident that the cortical gyri generally become smoother and less convoluted with
depth. However, this appears not to hold for the precentral gyrus. The model
also highlights areas of high inter-individual variability such as the anterior part
of the middle frontal gyrus.

In addition to allowing study of gyral variability across individuals and be-
tween hemispheres, the representation provides a framework which can be used
for future work on non-rigid registration.
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Abstract. We propose a nonlinear statistical shape model for level set
segmentation which can be efficiently implemented. Given a set of train-
ing shapes, we perform a kernel density estimation in the low dimensional
subspace spanned by the training shapes. In this way, we are able to com-
bine an accurate model of the statistical shape distribution with efficient
optimization in a finite-dimensional subspace. In a Bayesian inference
framework, we integrate the nonlinear shape model with a nonparamet-
ric intensity model and a set of pose parameters which are estimated
in a more direct data-driven manner than in previously proposed level
set methods. Quantitative results show superior performance (regard-
ing runtime and segmentation accuracy) of the proposed nonparametric
shape prior over existing approaches.

1 Introduction

Originally proposed in [5,11] as a means to propagate interfaces in time, the
level set method has become increasingly popular as a framework for image
segmentation. The key idea is to represent an interface Γ ⊂ Ω in the image
domain Ω ⊂ R3 implicitly as the zero level set of an embedding function φ :
R3→Ω:

Γ = {x ∈ Ω | φ(x) = 0}, (1)

and to evolve Γ by propagating the embedding function φ according to an ap-
propriate partial differential equation. The first applications of this level set
formalism for the purpose of image segmentation were proposed in [1,10,7]. Two
key advantages over explicit interface propagation are the independence of a
particular parameterization and the fact that the implicitly represented bound-
ary Γ can undergo topological changes such as splitting or merging. This makes
the framework well-suited for the segmentation of several objects or multiply-
connected objects.

When segmenting medical images, one commonly has to deal with noise,
missing or misleading image information. For certain imaging modalities such
as ultrasound or CT, the structures of interest do not differ much from their
background in terms of their intensity distribution — see Figure 1. Therefore
they can no longer be accurately segmented based on the image information
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Cardiac ultrasound Histograms Prostate CT Histograms

Fig. 1. Segmentation challenges and estimated intensity distributions. The
two curves on the right correspond to the empirical probability of intensities inside
and outside the left ventricle (for the ultrasound image) and the prostate (for the CT
image). The region-based segmentation of these structures is a challenging problem,
because objects and background have similar histograms. Our segmentation scheme
optimally exploits the estimated probabilistic intensity models.

alone. In recent years, researchers have therefore proposed to enhance the level
set method with statistical shape priors. Given a set of training shapes, one
can impose information about which segmentations are a priori more or less
likely. Such prior shape information was shown to drastically improve segmen-
tation results in the presence of noise or occlusion [9,16,3,14,4,6]. Most of these
approaches are based on the assumption that the training shapes, encoded by
their signed distance function, form a Gaussian distribution. This has two draw-
backs: Firstly, the space of signed distance functions is not a linear space, there-
fore, the mean shape and linear combinations of eigenmodes are typically no
longer signed distance functions. Secondly, even if the space were a linear space,
it is not clear why the given set of sample shapes should be distributed ac-
cording to a Gaussian density. In fact, as we will demonstrate in this work,
they are generally not Gaussian distributed. Recently, it was proposed to use
nonparametric density estimation in the space of level set functions [3] in or-
der to model nonlinear1 distributions of training shapes. While this resolves the
above problems, one sacrifices the efficiency of working in a low-dimensional sub-
space (formed by the first few eigenmodes) to a problem of infinite-dimensional
optimization.

In the present paper, we propose a framework for knowledge-driven level set
segmentation which integrates three contributions: Firstly, we propose a statis-
tical shape prior which combines the efficiency of low-dimensional PCA-based
methods with the accuracy of nonparametric statistical shape models. The key
idea is to perform kernel density estimation in a linear subspace which is suffi-
ciently large to embed all training data. Secondly, we propose to estimate pose
and translation parameters in a more data-driven manner. Thirdly, we opti-
mally exploit the intensity information in the image by using probabilistic in-
tensity models given by kernel density estimates of previously observed intensity
distributions.

1 The term nonlinear refers to the fact that the manifold of permissible shapes is not
merely a linear subspace.
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2 Level Set Segmentation as Bayesian Inference

The goal of level set segmentation can be formulated as the estimation of the
optimal embedding function φ : Ω→R given an image I : Ω→R. In the Bayesian
framework, this can be computed by maximizing the posterior distribution

P(φ | I) ∝ P(I |φ) P(φ). (2)

The maximization of (2) results in a problem of infinite-dimensional optimiza-
tion. Given a set of training shapes encoded by their signed distance functions
{φi}i=1..N , Tsai et al. [16] proposed to reduce the segmentation problem to one
of finite-dimensional optimization by constraining the optimization problem to
the finite-dimensional subspace spanned by the training shapes.

In this paper, we make use of this compact representation of the embedding
function. Given the distance d on the space of signed distance functions defined
by: d2(φ1, φ2) =

∫
Ω (φ1(x)−φ2(x))

2
dx, we align the set of training shapes with

respect to translation and rotation. Subsequently, we constrain the level set
function φ to a parametric representation of the form:

φα,h,θ(x) = φ0(Rθx+ h) +
n∑

i=1

αi ψi(Rθx+ h), (3)

where φ0(x) = 1
N

∑N
i=1 φi(x) represents the mean shape, {ψi(x)}i=1..n are the

eigenmodes of the distribution, and n < N is the dimension of the subspace
spanned by the N training shapes. The parameter vector α = (α1, . . . , αn)
models shape deformations, while the parameters h ∈ R3 and θ ∈ [0, 2π]3 model
translation and rotation of the respective shape.2

The infinite-dimensional Bayesian inference problem in (2) is therefore re-
duced to a finite-dimensional one where the conditional probability

P(α, h, θ | I) ∝ P(I |α, h, θ) P(α, h, θ), (4)

is optimized with respect to the shape parameters α, and the transformation
parameters h and θ. In the following, we will assume a uniform prior on these
transformation parameters, i.e. P(α, h, θ) = P(α). In the next section, we will
discuss three solutions to model this shape prior.

3 An Efficient Nonparametric Statistical Shape Model

Given a set of aligned training shapes {φi}i=1..N , we can represent each of them
by their corresponding shape vector {αi}i=1..N . In this notation, the goal of
statistical shape learning is to infer a statistical distribution P(α) from these

2 In our applications, where the scale of objects is known, a generalization to larger
transformations groups (e.g. similarity or affine) did not appear useful.
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sample shapes. Two solutions which have been proposed are based on the as-
sumptions that the training shapes can be approximated by a uniform distri-
bution [16,14]: P(α) = const., or by a Gaussian distribution [9]:

P(α) ∝ exp
(−α�Σ−1 α

)
, where Σ =

1
N

∑
i

αi α�
i . (5)

In the present paper, we propose to make use of nonparametric density estima-
tion [13] to approximate the shape distribution within the linear subspace. We
model the shape distribution by the kernel density estimate:

P(α) =
1
Nσ

N∑
i=1

K

(
α − αi

σ

)
, where K(u) =

1√
2π

exp
(
−u

2

2

)
. (6)

There exist various methods to automatically estimate appropriate values for
the width σ of the kernel function, ranging from k-th nearest neighbor estimates
to cross-validation and bootstrapping. In this work, we simply set σ to be the
average nearest neighbor distance: σ2 = 1

N

∑N
i=1 minj �=i |αi − αj |2.

In the context of level set based image segmentation, the kernel density esti-
mator (6) has two advantages over the uniform and Gaussian distributions:

– The assumptions of uniform distribution or Gaussian distribution are gener-
ally not fulfilled. The kernel density estimator, on the other hand, is known to
approximate arbitrary distributions. Under mild assumptions, it was shown
to converge to the true distribution in the limit of infinite sample size. We
refer to [15] for a proof.

– The space of signed distance functions is known to not be a linear space.
Therefore, neither the mean shape φ0 nor a linear combination of eigenmodes
as in (3) will in general be a signed distance function. As a consequence, the
functions φ(x) favored by the uniform or the Gaussian distribution cannot
be expected to be signed distance functions. The kernel density estimator
(6), on the other hand, favors shape vector α which are in the vicinity of the
sample shape vectors αi. By construction, these vector correspond to signed
distance functions. In fact: In the limit of infinite sample size, the
distribution inferred by the kernel density estimator (6) converges
towards a distribution on the manifold of signed distance functions.

Uniform density Gaussian density Kernel density

Fig. 2. Schematic plots of different density estimates within a subspace.
Darker shading indicates areas of high probability density for the respective models.
The kernel density estimator adapts to the training data more flexibly since it does
not rely on specific assumptions about the shape of the distribution.
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Figure 2 shows schematic plots of the three methods for a set of sample data
spanning a two-dimensional subspace in R3. The kernel density estimator clearly
captures the distribution most accurately.

In analogy to the shape learning, we make use of kernel density estimation
to learn the conditional probability for the intensity function I in (4) from ex-
amples. A similar precomputation of intensity distributions by means of mixture
models was proposed in [12]. Given a set of presegmented training images, the
kernel density estimate of the intensity distributions pin and pout of object and
background are given by the corresponding smoothed intensity histograms. This
has two advantages: Firstly, the kernel density estimator does not rely on spe-
cific assumptions about the shape of the distribution. Figure 1 shows that the
intensity distributions for ultrasound and CT images are not well approximated
by Gaussian or Laplacian models. Secondly, in contrast to the joint estimation of
intensity distributions (cf. [2,8]), this simplifies the segmentation process which
no longer requires an updating of intensity models. Moreover, we found the seg-
mentation process to be more robust to initialization in numerous experiments.

4 Energy Formulation and Minimization

Maximizing the posterior probability in (2), or equivalently minimizing its neg-
ative logarithm, will generate the most probable segmentation of a given image.
With the nonparametric models for shape and intensity introduced above, this
leads to an energy of the form

E(α, h, θ) = − logP(I|α, h, θ) − logP(α), (7)

The nonparametric intensity model permits to express the first term and equa-
tion (6) gives exactly the second one. With the Heaviside step function H and
the short hand Hφ = H(φα,h,θ(x)), we end up with:

E(α, h, θ)=−
∫

Ω

Hφ log pin(I) + (1−Hφ) log pout(I)dx−log

(
1
Nσ

N∑
i=1

K

(
α−αi

σ

))
,

With e(x) =
[
log pout(I(x))

pin(I(x))

]
, Ki = K

(α−αi

σ

)
, and ψ = (ψ1, . . . , ψn), we obtain

the following system of coupled gradient descent equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα

dt
=
∫
Ω

δ(φα,h,θ(x))ψ(Rθx+ h) e(x) dx+
1
σ2

∑N
i=1(αi − α)Ki∑N

i=1 Ki

,

dh

dt
=
∫
Ω

δ(φα,h,θ(x))∇φα,h,θ(x) e(x) dx,

dθ

dt
=
∫
Ω

δ(φα,h,θ(x)) (∇φα,h,θ(x) · ∇θRx) e(x) dx.

(8)

In applications, we solve these equations by initializing the shape α with the
mean shape (α = 0) and the transformation parameters h and θ with some
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Initialization No prior Uniform prior Kernel prior
Fig. 3. Model Comparison. Level set segmentations obtained without prior, with a
uniform prior in the subspace and with a kernel prior in the subspace. In contrast to
the uniform prior, the nonparametric prior accurately constrains the segmentation to
a submanifold of familiar shapes (90% correctly classified, 2.7% false positives).

reasonable estimates. Subsequently, we discretize the above partial differential
equations by a standard finite difference scheme.

Note that in all equations, the Dirac delta function δ appears as factor inside
the integrals over the image domain Ω. This allows to restrict all computations to
a narrow band around the zero crossing of φ. While the evolution of translation
and pose parameters h and θ are merely driven by the data term e(x), the shape
vector α is additionally drawn towards each training shape with a strength that
decays exponentially with the distance to the respective shape.

5 Experimental Results and Validation

Heart Segmentation from Ultrasound Images

Figure 3 shows experimental results obtained for the segmentation of the left ven-
tricle in 2D cardiac ultrasound sequences, using shape priors constructed from a
set of 21 manually segmented training images. In contrast to the segmentation
with uniform prior (top row), the nonparametric statistical shape prior allows to
accurately constrain the segmentation (bottom row). This becomes particularly
apparent in areas where the data term is too weak. As a quantitative evaluation
we computed the percentage of correctly classified object pixels and that of mis-
classified ones. During energy minimization, the percentage of correctly classified
pixels increases from 56% to 90% while the percentage of false positives decreases
from 27% to 2.7% by using the kernel prior. Using the uniform prior, we attain
92% correctly classified, yet the percentage of false positives increases to 42%:
Merely constraining the boundary evolution to the linear subspace spanned by
the training shapes is insufficient to provide for accurate segmentation results.

Prostate Segmentation from 3D CT Images

We built a nonparametric 3D shape model of the prostate using 12 manually
extracted prostates (with seminal vesicles) collected from two different patients.
In contrast to existing work, we subsequently used a single shape model for the
segmentation of images from different patients.

We employed a leave-one-out strategy by removing the image of interest from
the training phase. Figure 5 shows 2D cuts of a few results obtained using this
strategy. With a one-click initialization inside the organ, the algorithm lead to a
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Fig. 4. Prostate segmentation for 2 patients with the same shape model.
Each column shows coronal and axial slices of the same segmentation, for the first
patient (left two columns) and the second one (last two). The first column also shows
the manual segmentation (black contour).

3D view Kernel/Uniform Kernel/Gaussian Kernel/Manual

Fig. 5. Comparison of the segmentations obtained with the kernel prior
(white) and with alternative approaches (black).

steady-state solution in less than 20 seconds. We obtained 86% successfully clas-
sified organ voxels and 11% mis-classified organ voxels. This compares favorably
to the intra-patients results reported in [6]. Figure 4 provides qualitative com-
parisons to the manual segmentation, as well as to the segmentations obtained
with uniform and Gaussian approximations of the shape distribution.

6 Conclusion

We proposed an efficient and accurate statistical shape prior for level set seg-
mentation which is based on nonparametric density estimation in the linear
subspace spanned by the level set surfaces of a set of training shapes. In addi-
tion, our segmentation scheme integrates nonparametric estimates of intensity
distributions and efficient optimization of pose and translation parameters. We
reported quantitative evaluation of segmentation accuracy and speed for cardiac
ultrasound images and for 3D CT images of the prostate. These indicate that
the proposed nonparametric shape prior outperforms previously proposed shape
priors for level set segmentation.
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Abstract. Statistical shape analysis has become of increasing interest
to the neuroimaging community due to its potential to locate morpholog-
ical changes. In this paper, we present the a novel combination of shape
analysis and Diffusion Tensor Image (DTI) Tractography to the compu-
tation of a probabilistic, model based corpus callosum (CC) subdivision.
The probabilistic subdivision is based on the distances of arc-length pa-
rameterized corpus callosum contour points to trans-callosal DTI fibers
associated with an automatic lobe subdivision. Our proposed subdivision
method is automatic and reproducible. Its results are more stable than
the Witelson subdivision scheme or other commonly applied schemes
based on the CC bounding box. We present the application of our sub-
division method to a small scale study of regional CC area growth in
healthy subjects from age 2 to 4 years.

1 Introduction

Quantitative morphologic assessment of individual brain structures is often based
on global volume and area measurements, which are intuitive features as they
may explain atrophy or dilation due to illness. On the other hand, structural
changes at specific locations are not sufficiently reflected in volume and area
measurements. Shape analysis has thus become of increasing interest to the
neuroimaging community. In this paper, shape analysis is employed to compute
a probabilistic subdivision model of the Corpus Callosum(CC).

The corpus callosum is the major commisural pathway between the hemi-
spheres and plays an integral role in relaying sensory, motor and cognitive infor-
mation from homologous region in the two hemispheres. It has been a structure
of much interest in neuroimaging studies of normal development [1], schizophre-
nia [2], autism, bipolar and unipolar disorder. In-vivo assessment of the com-
misural pathways through the CC is difficult, but can be approximated using
Diffusion Tensor Imaging (DTI) and Tractography [3,4,5] (see Figure 1).

The computation of regional volumes and areas based on subdivision schemes
of anatomical structures is quite common in neuroimaging. Most common sub-
division protocols are executed manually by relabeling an already segmented
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Fig. 1. Left: Visualization of interhemispheric, trans-callosal DTI Fibers. Middle: Re-
sult of an automatic lobe subdivision. Right: Schematic subdivision based on neuro-
histological studies [6].

structure into subregions. These methods are time-consuming, not reproducible
and subjective. Further, they are often based on the structure’s bounding box
and are thus likely to mix different parts of the structure into the same subdi-
vision due to the non-convex shape of most anatomical structures. Subdivision
schemes can also be categorized into hard and probabilistic subdivisions. A hard
subdivision assigns a single regional label for every image element. A proba-
bilistic subdivision on the other hand assigns multiple labels with individual
probabilistic weights for each element.

The currently most widely applied subdivision scheme for the CC was orig-
inally proposed by Witelson [6] and is motivated by neurohistological studies.
It has been adapted in many studies [7,2]. The Witelson based subdivisions use
somewhat arbitrarily defined hard subdivision boundaries and is often still ap-
plied manually, even though automatic and probabilistic methods exist[8]. To
our knowledge probabilistic subdivision methods in combination with fiber con-
nectivity information have not been proposed before.

In this paper we propose a novel model based probabilistic subdivision scheme
of the CC. The subdivision model described in section 2.1 is computed as the av-
erage model of a training population of automatic cortical lobe subdivisions prop-
agated via inter-hemispheric, trans-callosal DTI fibers. The subdivision model
is then applied to a small study of CC area growth in healthy children.

2 Methods

Subjects and Image Acquisition: There are 2 mutually exclusive sets of sub-
jects used in this paper: one for the computation of the subdivision model and one
for the small study on normal growth. The subdivision model was built from 5
different subjects of a larger database of healthy (2 cases), autistic (2) and devel-
opmentally delayed children (1) at age of 2 years (2) and 4 years (3). The growth
study was computed on 3 additional healthy subjects with scans at age 2 and
age 4. All subjects were scanned on the same GE 1.5 Tesla Sigma Advantage MR
system. The structural MRI (sMRI) dataset was acquired using a 3D IR Prepped
SPGR protocol with a 256x256x124 image matrix at 0.9375x0.9375x1.5mm res-
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olution. The DTI dataset was acquired using a 12 direction, 4 repetition DTI
sequence with a 128x128x30 image matrix at 1.875x1.875x4.2mm resolution.

Corpus Callosum Segmentation: Our automatic segmentation of the CC
from the sMRI data is an extension of Kelemen’s 2D Fourier descriptor based
Active Shape Model [9]. The shape model is described with complex Fourier de-
scriptors up to degree 11. It was derived from a large, mixed population of adult
controls, schizophrenics, pediatric controls and autistics. Based on a prior auto-
matic tissue segmentation [10] the initial values for position, scale and grayscale
normalization were computed automatically. From these initial values, the CC
segmentation is performed in 2 steps: first within a larger search region (6 mm
along each profile) using a fully constrained model deformation, then secondly
within a small search region (1 mm along each profile) using an unconstrained
deformation. Each step is computed until convergence. We applied this method
so far to over 150 pediatric cases with less than 2% cases that needed manual
interaction in the segmentation process.

Correspondence via Fourier Descriptors (arc-length parametrization):
The segmentation procedure yields Fourier coefficients with an inherent corre-
spondence based on its arc-length parametrization. The start-point for the arc-
length parametrization is given by the first order ellipse. The fourier descriptor
were then uniformly sampled into a single polygon curve (100 points, spacing
along curve is about 0.75mm).

Alignment and Scale: Alignment of the CC contours is achieved using the
Procrustes[11] alignment method without scaling. We chose the iteratively com-
puted average CC as the template of the Procrustes alignment. In the longi-
tudinal study presented in this paper the CC contours were analyzed in their
original scale and thus no scaling normalization was performed.

Model based subdivision: Our novel CC subdivision method is based on a
prior subdivision model (described below in section 2.1). The subdivision model
consists of 4 probabilistic maps that assign to each contour point C(x) the
probabilities pi(x) to belong to any of the 4 connectivity based subdivisions
Si. These probabilities are assigned to the contour points of each individual CC
contour using the contour correspondence of the Fourier Descriptors. Our model
subdivides thus not the full cross-section of the CC, but rather only its contour.
The subdivision probabilities for the whole CC cross section are determined
by closest point correspondence to the contour. This closest point operation
results in the probabilistic area maps for the CC cross-section(see Figure 4).
From the probabilistic area maps, the area values of the 4 regions are computed
by simple summation. The computation of these probabilistic areas is automatic
and reproducible.

2.1 Subdivision Model

The subdivision model was built from 5 pediatric cases combining fiber tract
information from DTI data, and cortical lobe subdivision and shape informa-
tion from T1w sMRI data. In summary we first compute for each case its lobe
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subdivision and the CC segmentation. Then the lobe subdivision is used for
the computation of the interhemispheric lobar DTI fiber tracts. The next step
computes a distance-weighted probabilistic subdivision of each case’s CC con-
tour from the location of all tracts. The resulting probabilistic subdivisions are
averaged to produce the final CC subdivision model.

During several steps of the model computation, the results of the previous
steps is transformed from DTI to sMRI coordinate space or vice-versa. This
transformation was computed using a fully affine registration of the sMRI image
to the B0 DTI image based on normalized mutual information [12].

In the first step of the model computation, we employ a fluid registration [13]
to propagate the lobe parcellation from a single template to all sMRI images.
The lobe subdivisions were then controlled by experts. Only in few cases manual
corrections are necessary. The result of the lobe subdivision is a set of separate
left and right hemispheric lobes: frontal, parietal, occipital and temporal lobe.
As a next step, the CC is segmented using the Fourier Descriptor Active Shape
Model.

The lobe subdivision and the CC segmentation serve as automatic selection
regions for the source (lobes) and target (CC) of the DTI fiber tract compu-
tation. This results in 4 sets of fibers that originate in each of the lobes, pass
through the CC and end up in the corresponding lobe of the other hemisphere.
The fibers from the occipital and temporal lobes are joined as their fiber tracts
are highly overlapping. The limiting factor for a higher degree of lobar subdi-
vision is the moderate resolution of the DTI datasets employed in this study.
The fibers of the frontal lobe are further subdivided using an interactive 3D
DTI tract clustering and manipulation tool called FiberViewer, which was de-
veloped at our lab. This fiber subdivision creates two fiber sets, one with fibers
that are anteriorly oriented (anterior-frontal fibers) and one with fibers that are
superiorly oriented (posterior-frontal fibers). A reconstruction of the 4 sets of
fibers computed for a sample case is visualized in Figure 2. The fiber sets are
quite overlapping and thus we chose to describe the model as a probabilistic
subdivision, which is clearly better suited than a hard subdivision.

Fig. 2. Subdivision model computation. Left: Reconstruction of the fiber sets associ-
ated with each lobe in DTI coordinate space. Middle: Schematic visualization of the
probability computation. Right: Sample CC contour probability map plotting disks of
radii relative to the corresponding probability at each contour point.
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The 4 probabilistic subdivisions pi(x) of the CC contour are computed using
the closest distances di(x) = dist(C(x), f(i)) of every contour point C(x) to the
reconstructed 4 fiber sets f(i): pi(x) = (maxdist−d2

i (x))/
∑4

i=0(maxdist−d2
i (x))

where maxdist represents the maximal possible distance predetermined at the
average length of the CC. The computation of the probabilities is schematically
shown in Figure 2 along with the result of the probabilistic contour subdivision of
a sample case. The contour subdivision is shown for each lobe separately plotting
at each CC contour point disks with radii relative to the corresponding probabil-
ity. The final probabilistic subdivision model is computed by linearly averaging
the probabilities for each CC contour point across the training population.

3 Results

Probabilistic CC subdivision model: The contour probability maps of all 5
cases in the training population show a high similarity across all cases (see Figure
3A) and so does the final subdivision model(see Figure 3C). The largest variabil-

A: Probability maps B: Hard decision maps

C: Average Model D: Average Model without Case4

Fig. 3. Results of the subdivision model computation. A: Contour probability maps
for all training cases. B: Hard decision maps for 2 selected training cases(cyan:anterior-
frontal, purple:posterior-frontal, brown:parietal, red:occipital-temporal lobe). C: Prob-
abilistic and hard decision map of the final subdivision model. D: Probabilistic and
hard decision map of the subdivision model excluding a single training case.
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Fig. 4. Probabilistic area maps for a sample case. Each region is annotated with the
respective probabilistic area percentage relative to the overall area.

A B

Fig. 5. Relative growth curves of CC subdivision regions. Data from 3 healthy subjects
along mean curves from age 2 to age 4. A: Regional growth relative to the overall CC
growth. B: Regional growth relative to the size of the corresponding region at age 2.

ity seems to be present in the occipital-temporal lobe section. Alternatively to
the probability maps, we also computed the hard decision maps by associating
each contour point with a single region based on the highest probability. The
high decision variability between the 2 selected cases shown in Figure 3B clearly
illustrates the main drawback of a hard decision map for the training cases. A
similarly high variability is also present in a single leave-one-out experiment of
a hard subdivision model computed from the final probability maps as shown in
Figures 3C and D.

The result of the final subdivision model applied to a sample CC contour
is shown in Figure 4. The occipital-temporal lobe region clearly shows a low
probability in a relatively large region, which remains low even in the posterior-
most sections of the CC. The resulting probabilistic area is relatively large (21%
for the shown sample case). In contrast, a hard decision model as illustrated
in Figures 3C would compute a much lower area value and would thus highly
underestimate the CC area associated with the occiptal-temporal lobe fibers.

Application of the model to a study of CC growth: In order to illustrate
the potential of the subdivision model, we applied it to a small study of CC
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growth in 3 healthy children of age 2 to 4. We applied the model after CC seg-
mentation and computed the probabilistic area sum for the 4 regions. Figure 5
shows the resulting regional area growth A) relative to the overall CC growth
and B) relative to the regional area of corresponding CC region at age 2. The
first shows the largest growth in the posterior-frontal lobe region and the small-
est growth in the anterior-frontal lobe region. As the posterior-frontal region is
overall the largest region and the anterior-frontal region is the smallest region,
this growth curve plot can be misleading. The second plot captures the local
growth more intuitively, as it shows the regional growth relative to the overall
regional size. In this plot one can clearly see that the main growth is happening
in the frontal lobe regions with the anterior-frontal lobe region experiencing the
largest relative growth from age 2 to age 4 at 26%.

4 Discussion and Conclusion

We present in this paper a novel method for the computation of a probabilistic
subdivision model of an anatomical structure. The subdivision is not based on
commonly applied arbitrarily subdivision boundaries based on the bounding
box. Rather the subdivision is computed from probabilistic maps based on the
distance to trans-callosal DTI fibers associated with a lobe subdivision.

Even though our CC subdivision model is based directly on DTI fiber connec-
tivity information, the individual CC subdivisions are based on the geometric
correspondence of the boundary to the subdivision model. On one hand, this
scheme allows us to apply the subdivision model to retrospective CC data that
lack an appropriate DTI dataset. On the other, if an appropriate DTI dataset is
given, then we could directly compute the subdivision from the DTI fibers. For
our present clinical studies either without DTI data or only with low-resolution
DTI data the choice of a probabilistic subdivision model is the optimal method.
In our future studies we are planning to recompute this subdivision model for a
higher resolution data and investigate the direct computation of the CC subdi-
vision from the DTI fibers.

The regions in our subdivision model are quite similar to those of the Wi-
telson subdivision model [6], which is motivated by neurohistological studies. In
contrast to the Witelson method is more stable due to the probabilistic nature of
the subdivision and has been directly computed from connectivity information.

We are currently using the subdivision model to study regional CC growth
in a large neurodevelopmental study of autistic, developmentally delayed and
healthy subjects from age 2 to 4. For a subset of this study additional relatively
low-resolution DTI data is also available and we plan to use the model to study
regional histograms of DTI properties such as Geodesic Anisotropy. We further
plan to employ the model for the computation of regionally cumulative shape
measurements, such as the mean distance between the mean contours of two
populations in every CC subdivision region.

The results of the small scale study of callosal growth from year 2 to 4 is quite
preliminary due to the low number of subjects. The high similarity of the results
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in all cases is though suggesting that the frontal lobe regions experience a larger
growth than those of the posterior lobes in that stage of healthy development.
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Abstract. A new approach to interactive segmentation based on ran-
dom walks was recently introduced that shows promise for allowing
physicians more flexibility to segment arbitrary objects in an image.
This report has two goals: To introduce a novel computational method
for applying the random walker algorithm in 2D/3D using the Graphics
Processing Unit (GPU) and to provide quantitative validation studies
of this algorithm relative to different targets, imaging modalities and
interaction strategies.

1 Introduction

A general-purpose, automatic, segmentation engine for medical images is ex-
tremely challenging due to the drastic changes in image data as a result of
pathology and changes in radiologist preference. Therefore, efforts have contin-
ued toward providing interactive tools that allow a physician to quickly obtain an
image/volume segmentation meeting their specific goals and criteria. Recently,
a promising new interactive approach was introduced that uses random walks
to define segmentation boundaries given user-placed seeds indicating K objects
[1] (for arbitrary K). It was shown in [1] that this random walks algorithm is
robust to weak boundaries and image noise. With the theory developed in [1],
the current work introduces a faster, GPU-based, method of computation and
offers a quantitative validation of the segmentations produced by this method.

The major computational hurdle of the random walker algorithm in [1] is the
solution to a sparse system of equations for which a generic conjugate-gradients
approach is employed. Although achieving reasonable speeds for moderately
sized images (four seconds for a 256×256 2D image), the size of modern medical
volumes requires a more efficient implementation to achieve an interactive speed.
Therefore, we introduce a GPU-based implementation that offers over an order
of magnitude speed increase for the processing of 2D and 3D datasets.

Validation of a general-purpose, interactive segmentation tool is difficult.
Since this tool will provide an arbitrary segmentation with enough user interac-
tion (i.e., if the user seeds every pixel), the main concerns are: 1) How sensitive
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are the results to exact seed placement? 2) How sensitive are the results to
the quantity of seeds placed? 3) How much time, both user and computer, is
required to perform a segmentation? 4) What is the subjective quality of the
segmentations across different imaging modalities and different segmentation
targets? These are the four questions that we address in the validation section.

The major interactive techniques for general-purpose organ segmentation are
graph cuts, intelligent scissors and level sets. Graph cuts [2] treat the image as
a graph where each pixel is associated with a node and a lattice edge structure
is imposed, weighted to reflect intensity changes. Although performing well in
many situations, there are a few concerns associated with this technique. For
example, if a small number of seeds are used, the algorithm will often return the
smallest cut as the cut that minimally separates the seeds from the rest of the
image. Therefore, a user often has to continue placing seeds in order to overcome
this “small cut” problem. Additionally, the K-way graph cuts problem is NP-
Hard, requiring use of a heuristic to obtain a solution. The intelligent scissors
algorithm [3] again views the image as a graph and employs Dijsktra’s algorithm
to compute the shortest path between user-defined points, treating this path
as the object boundary. Unfortunately, a low-contrast or noisy boundary may
require the specification of many points and the algorithm is inapplicable to 3D
boundaries. Although the family of active contours and level sets is large [4] a user
is generally asked to place a contour near the desired boundary and the algorithm
evolves the boundary to a local energy minimum. The main problems with level
set methods are difficulty of implementation (often requiring specification of
several free parameters) and difficulty in fixing an incorrect solution, especially
if the desired contour does not correspond to a local energy minimum.

This paper is organized as follows: In Section 2 we review the random walker
algorithm and Section 3 details our novel GPU implementation in 2D/3D. Sec-
tion 4 provides the results of our validation studies with respect to the questions
raised above. Section 5 follows with a conclusion.

2 Random Walks for Image Segmentation

In this section we review the random walker image segmentation algorithm in-
troduced in [1]. In the case of two labels, we determine the label for a non-seed
pixel by asking: Given a random walker starting at this pixel, what is the prob-
ability that the random walker will reach a foreground seed before it reaches
a background seed? If this probability is above one-half, then we assign this
pixel to the foreground and if it is below one-half, we assign this pixel to the
background. If more than two labels are used, the pixel is assigned the label for
which a random walker is most likely to reach first. In [1], a Gaussian weight-
ing function was used to represent the image structure as random walker biases
(i.e., edge weights). This function has a single free parameter (representing the
only free parameter in the algorithm), β, that was set to β = 1500 for all 2D
experiments and β = 4000 for all 3D experiments.
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Fig. 1. Sensitivity analysis of segmentation to random shifts of seed placement in direc-
tion and magnitude over 1,000 trials. Left: Original 2D datasets from each of the four
major imaging modalities and a 3D (CT) dataset. Middle: Foreground and background
seeds are given by the gray markers. The white line represents the initial segmenta-
tion boundary (in 2D datasets). Right: Experimental results. The x-axis represents the
ratio of the shift measured in pixels to the horiztonal image resolution. The y-axis
represents the ratio of the pixels that switched label to the number of pixels originally
labeled foreground. The plotted line represents the mean, with error bar indicating one
standard error of the mean.



776 L. Grady et al.

The equivalence between the random walker problem and the Dirichlet prob-
lem from potential theory was exploited in [1] to transform the computation of
the random walker probabilities into the solution to system of linear equations.
Although the system is sparse, symmetric and positive definite, allowing applica-
tion of fast solvers like conjugate gradients, interactive speeds were not achieved
for high-resolution images in [1]. For this reason, we present in the next section
a GPU-based method that the solves the linear system (i.e., calculates the ran-
dom walker probabilities) at interactive speeds for higher-resolution images and
volumes.

3 GPU Implementation

Commodity graphics cards have been successfully used in recent years to en-
hance the speed of computation for image segmentation algorithms [5,6]. The
computation of the random walker algorithm fits perfectly with the GPU in
three respects: 1) All necessary linear algebra operators are computed extremely
fast due to the inherit parallelism of the GPU and efficient caching, 2) Since a
GPU processes four channels (RGBA), each channel may be used to represent
a set of probabilities, allowing four labels to be solved simultaneously, 3) The
segmentation may be continuously updated on the screen for the benefit of the
user. An additional benefit of simultaneously solving the system of equations for
multiple labels is that one may stop the computation when three of the four la-
bels have converged and simply subtract the converged probabilities from unity
to obtain the probabilities for the unconverged label.

Either a 2D or 3D dataset may be processed using the GPU. However, the
limited size of the on-board memory of today’s GPUs (256MB) constrains us to
images with a resolution of 1024×1024 or volumes of resolution 128×128×128.
The implementation of a conjugate gradients method requires only two non-
trivial operations: a sparse-matrix vector multiply and a vector inner product.
The sparse-matrix vector multiply is described below and the vector inner prod-
uct is described by Bolz et al. [7] and Krüger et al. [8]. Each row of the 2D-
Laplacian matrix represents one pixel and the four values on the sub-diagonals
indicate the weights of that pixel to each of its neighbors. Since the diagonal con-
tains redundant information (i.e., the diagonal entry equals the negative sum of
the off-diagonals), we can represent the Laplacian matrix as a 2D, four-channels,
texture with size equal to the number of pixels in the image. The matrix-vector
multiplication is therefore executed by multiplying the four channels of a given
pixel (row) by the values of the four neighboring pixels of the vector. The diag-
onal value of the matrix is retrieved by summing and negating the four channel
values. This value is then multiplied by the corresponding vector pixel. The five
multiplication values are then summed together to provide the current output
vector element results.

The Laplacian matrix for a 3D lattice has six sub-diagonals. However, due to
matrix symmetry, one need only store three out of six sub-diagonals. The other
three sub-diagonals can be retrieved by sampling neighboring matrix entries. In
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2D and 3D a matrix-vector operation requires one rendering pass only. In 3D we
put all slices of a volume in one 2D flat texture side-by-side. Operations on a flat
texture have proven to be much faster than on a stack of slices (textures) [9].

4 Validation

The original exposition of the random walker technique demonstrated that the
algorithm is capable of finding weak (i.e., low-contrast or no-contrast) bound-
aries, behaving robustly to noise and giving good quality results. However, since a
user may achieve an arbitrary segmentation with the placement of enough seeds,
a strict error measure is practically meaningless. An ideal interactive segmenta-
tion algorithm would not require an excess of seeds or require user precision to
carefully choose the seed locations. An additional criterion is obviously speed of
computation and user time. Therefore, in this section we provide a quantitative
validation of the algorithm by studying the following questions: 1) How sensitive
are the results to exact seed placement? 2) How sensitive are the results to the
quantity of seeds placed? 3) How much time, both user and computer, is required
to perform a segmentation? We examine the first two questions with a 2D exam-
ple from each of the major imaging modalities of MR, CT, PET and Ultrasound
as well as a 3D (CT) volume. The third question is addressed by applying the
algorithm to a range of targets in images of differing image modalities. For sim-
plicity, all of these experiments were conducted on a lattice with a 4-connected
topology using a two-label scenario. However, these results should extend to the
multilabel setting since the probabilities for each label are computed by effec-
tively viewing the label as the foreground opposed to the background of all of
the other labels.

Obviously, the segmentation obtained with the random walker algorithm will
depend on the location of the seeds. If this were not true, no seeds would need
to be placed. However, a small difference in the placement of the seeds within
the same object should not result in a significant change in the computed seg-
mentation. Ideally, the user should be free from a requirement that the seeds
are drawn very carefully or placed in prescribed locations. We performed five
experiments in seed placement using a 2D example from each of the four imag-
ing modalities described above and a 3D (CT) dataset. For each of these seed
placements, the locations of the foreground seeds were shifted (as a group) in
a random direction with random magnitude. Although no range of magnitudes
was pre-established, we rejected any perturbation that would have moved fore-
ground seeds into the background. After the seed placements were perturbed,
the segmentation was recomputed and the change in pixel labeling was reported
as the ratio of pixels that switched labels to the number of pixels originally la-
beled as foreground. The original images, initial segmentations and experimental
results of the perturbation studies are shown in Figure 1.

As one might expect, a greater magnitude shift produces a greater change in
the segmentation. However, the algorithm does appear to be stable in the tradi-
tional sense that a small change in input (i.e., seed placement) produces a small
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change in output (i.e., the segmentation). In fact, perturbations within the orig-
inal object all produced changes in the segmentation under 5%. However, image
content does influence the segmentation response to seed perturbation, as may
be seen by comparing the plots in Figure 1. For example, the low-contrast bound-
ary of the cerebellum in this particular MR image results in a greater sensitivity
to seed location than the more straightforward cardiac PET image, although all
segmentations remain within 5% of the original. Therefore, we conclude that a
user need not be very accurate in placing seeds, since a small deviation will not
be expected to make a large difference in the results.

A second important question is: How many seeds does a user need to place
in order to achieve the desired segmentation? If many seeds are required, the al-
gorithm has little to offer over a purely manual segmentation. As above, we have
used a foreground/background scenario for simplicity. We used following design
in examining this question quantitatively: We start with the initial segmenta-
tions of Figure 1, filling the object with foreground seeds and the background
with background seeds. Then, we shrink the two seed groups by applying a
morphological erosion operation to each group and track the change in the seg-
mentation as the number of seeds are reduced. Figure 2 illustrates the change in
segmentation as the number of seeds are reduced. As desired, small reductions in
the numbers of seeds preserve the object boundaries almost exactly. In fact, it is
only after the number of seeds has dropped dramatically, to less than 50% of the
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Fig. 2. Sensitivity analysis of segmentation to the numbers of seeds used. For each
image in 1, we initially filled the inside of the initial segmentation with foreground seeds
and the outside with background seeds. Then, we performed morphological erosion
until the seeds were entirely removed and tracked the change in segmentation after
each erosion step. The x-axis indicates the percentage of seeds remaining (with respect
to the initial seeding) and the y-axis represents the ratio of the number of seeds that
changed label to the total number of foreground seeds. Since this experiment was
deterministic, the resulting value is simply reported after each erosion operation. Seed
reductions of 50% or more are seen to produce only minor changes in the resulting
segmentation. Note that the 100% value is not actually reported — the experiment
was terminated when erosion would have removed the final seed.
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(a) Brain tumour (b) Brain (c) Cerebellum

(d) Lung tumour (e) Lung with tumour (f) Left atrium

Fig. 3. User and computer time for image segmentations. User time indicates the esti-
mated time taken to place seeds. Computer time is given with both a CPU and GPU
implementation. a) User: 2s, CPU: 10s, GPU: 0.7s, b) User: 2s, CPU: 6s, GPU: 1.5s,
c) User: 2s, CPU: 83s, GPU: 0.3s, d) User: 3s, CPU: 3s, GPU: 0.9s, e) User: 5s, CPU:
23s, GPU: 1.3s, f) User: 4s, CPU: 3s, GPU: 0.8s.

original, that the effects of reduced seeds are noticeable. Therefore, we conclude
that only a fraction of the seeds necessary to specify a manual segmentation are
required to produce a nearly identical segmentation.

The time required by a user to obtain a desired segmentation (with editing) is
more crucial than the computation time. Figure 3 shows the results of segmenting
several different targets in different imaging modalities. The caption details the
total user time required to place the seeds (including edits) and the computation
time on the CPU and GPU. The experiments were performed on a Pentium 4
with 2.8 GHz and a ATI Radeon X800 XT graphics card. User time ranged from
2–5s, CPU computation time from 3–83s and GPU time from 0.3–1.5s. As a
comparison, we note that segmenting the 3D volume of Figure 1 required 35s
for the CPU, 1s for the GPU and 5s of user time to place seeds.

5 Conclusion

Anatomical differences between patients and the patient pathology often prevent
a fully automatic algorithm from producing high-quality segmentations without
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user interaction. The random walker method presented in [1] has proven a useful
tool for general-purpose, interactive segmentation.

Since a diligent user could achieve an arbitrary segmentation by placing
enough seeds, it is important to validate this technique using metrics that mea-
sure the speed and ease of use for a naive user. Our experiments above examined
how sensitive the segmentation is to seed placement and how many seeds are
needed to obtain a quality segmentation. Furthermore, we have presented a sim-
ple method for reducing the computation time of the random walker algorithm
by over an order of magnitude on commodity graphics hardware and measured
the total time required for a user to obtain a desired segmentation. Our exper-
iments support the statement that the random walker algorithm allows a user
to quickly obtain a desired segmentation without concern for placing an excess
of seeds, placing them very carefully or in a prescribed pattern. Ultimately, we
believe that these qualities will lead to the widespread use of the random walker
segmentation algorithm in varied applications.
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Abstract. Two novel methods are proposed for robust segmentation of
pulmonary nodules in CT images. The proposed solutions locate and seg-
ment a nodule in a semi-automatic fashion with a marker indicating the
target. The solutions are motivated for handling the difficulty to segment
juxtapleural, or wall-attached, nodules by using only local information
without a global lung segmentation. They are realized as extensions of the
recently proposed robust Gaussian fitting approach. Algorithms based on
i) 3D morphological opening with anisotropic structuring element and ii)
extended mean shift with a Gaussian repelling prior are presented. They
are empirically compared against the robust Gaussian fitting solution by
using a large clinical high-resolution CT dataset. The results show 8%
increase, resulting in 95% correct segmentation rate for the dataset.

1 Introduction

Pulmonary nodule segmentation is one of the major goals of the computer-aided
diagnosis with the chest CT data (chest CAD [1,2,3]). A semi-automatic robust
segmentation solution is required for realizing reliable volumetric measurement
of nodules [4,5], as an integral part of lung cancer screening and management.

Intensity-based segmentation solutions, such as local density maximum algo-
rithm [6], have been successfully applied to the nodule segmentation problem.
Although such solutions can be effective for solitary nodules, they cannot sepa-
rate noduels from juxtaposed surrounding structures, such as walls and vessels,
due to their similar intensity. Recently, to address this issue, more sophisticated
approaches have been proposed to incorporate nodule-specific geometrical con-
straints [7,8]. However, juxtapleural, or wall-attached, nodules still remain as a
challenge because they can grossly violate such geometrical assumption and also
appear frequently in practice. Another source of problem is rib bones which ap-
pear with high intensity values in CT. Such high-intensity regions near a given
marker can bias the semi-automatic nodule center estimator. Robust segmenta-
tion of the juxtapleural cases can be addressed in two approaches: a) global lung
or rib segmentation [6,9,10,11] and b) local non-target removal or avoidance [4].
The former can be effective but also computationally complex and dependent on
the accuracy of the whole-lung segmentation. The latter is more efficient than
the former but more difficult to achieve high performance due to the limited
amount of information available for the non-target structures.
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Addressing the above issue of the juxtapleural cases, this article proposes two
novel 3D nodule segmentation solutions based on the local non-target removal
and avoidance approach. The local analysis-based approach is preferred to the
global one in the semi-automatic CAD context due to its efficiency. The first
solution detects and removes the lung wall region within an input sub-volume
by using 3D binary morphological opening operation. Similar approaches have
been proposed [9,4], however our solution employs data-driven ellipsoidal 3D
structuring element unlike others. The second solution is based on an extended
mean shift framework incorporating a repeller (negative) prior which pushes
the convergence away from a specific data point. This prior-constrained mean
shift is used for correctly detecting the nodule center despite the presence of rib
bones, thereby improving the segmentation accuracy without an explicit removal
of the walls and ribs. Both proposed solutions are realized as extensions of the
robust anisotropic Gaussian fitting solution [8], which is employed for deriving
the ellipsoidal structuring element and the repeller prior.

This article is organized as follows. Section 2 summarizes the robust Gaussian
fitting solution. Section 3 introduces the proposed solutions for handling the
juxtapleural nodules. Section 4 presents the results of our performance validation
with a large clinical CT dataset. Section 5 presents our conclusive remarks.

2 Robust Anisotropic Gaussian Fitting

This section summarizes the robust anisotropic Gaussian fitting algorithms pro-
posed previously as a solution to the semi-automatic (one-click) 3D nodule seg-
mentation problem [8,12]. The one-click segmentation assumes that we are given
a marker xp indicating a rough location of the target nodule. Such marker can
be provided from the radiologist’s readings by eye-appraisal or the outcome of
automatic nodule detection system [13,14]. For computational efficiency, the al-
gorithm is usually applied to a sub-volume V (x) centered at the marker and
extracted from the 12-bit CT volume data I(x) : R3

+ → R+.
The algorithm results in a Gaussian function which fits the local inten-

sity distribution of the target nodule best: I(x) � α × Φ(x;u,Σ)|x∈S where
Φ(x;u,Σ) = |2πΣ|−1/2 exp(−1/2(x−u)tΣ−1(x−u)) is the anisotropic 3D Gaus-
sian function. α is a positive magnitude factor. S is a local neighborhood forming
a basin of attraction of the target. u is the fitted Gaussian mean indicating the
estimated nodule center. Σ is the fitted Gaussian covariance matrix indicating
the nodule’s anisotropic spread. The nodule’s 3D boundary is approximated by
the 35% confidence ellipsoid of the fitted Gaussian, determined empirically.

The algorithm performs a multiscale analysis by considering a Gaussian scale-
space of the input sub-volume. The Gaussian scale-space L(x;h) is a solution
of the diffusion equation ∂hL = 1

2∇2L with an initialization L(x; 0) = I(x).
Such a scale-space is defined by a convolution of I(x) with a Gaussian kernel
KH(x) with a bandwidth matrix H: L(x;h) = I(x) ∗ KH(x;H = hI). The
algorithm considers a Gaussian scale-space constructed over a set of densely
sampled discrete analysis scales {hk|k = 1, ..,K}. At each analysis scale, a fixed-
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scale robust analysis is performed for fitting an anisotropic Gaussian function
in each scale space image. Given a set of estimated Gaussians, the most stable
estimate across the scales determines the final outcome.

The fixed-scale analysis performs a robust Gaussian fitting with scale-space
mean shift, a convergent weighted mean shift defined in the Gaussian scale-space,

m(x;Hk) =
∫

x′KH(x − x′;Hk)I(x′)dx′∫
KH(x − x′;Hk)I(x′)dx′ − x = hk

∇L(x;hk)
L(x;hk)

(1)

Gaussian mean u as the nodule center is estimated by the convergence of the
majority of initial seeds sampled around xp. A set of new seeds are sampled
around the estimated mean u. The mean shift procedures are then performed
from each seed. Gaussian covariance is estimated by a constrained least-squares
solution of a linear system with unknown Σ, constructed with mean shift vectors
only along the convergent trajectories. The linear system can also be constructed
with the response-normalized scale-space Hessian [12].

The multiscale analysis, given a set of Gaussians estimated at the analysis
scales {(uk,Σk)}, is realized by finding the most stable estimate among others
using a divergence-based stability test. For this purpose, the algorithm employs
the Jensen Shannon divergence (JSD) of three neighboring Gaussians computed
at each analysis scale. Assuming the normal form of distributions, JSD can be
expressed in the following simple form [15],

JSD(k) =
1
2

log
|13
∑k+1

i=k−1 Σi|
3

√∏k+1
i=k−1 |Σi|

+
1
2

k+1∑
i=k−1

(ui − u)t(
k+1∑

i=k−1

Σi)−1(ui − u) (2)

where u = 1
2

∑k+1
k−1 ui. The minimization of a JSD profile across the scales hk

results in the most-stable-over-scales estimate (u∗,Σ∗) [12].
The robustness is due to two aspects of this algorithm. First, the fixed-scale

Gaussian fitting solution performs robust model fitting with the outlier removal
using the scale-space mean shift convergence analysis. This helps to mitigate the
problem of juxtaposed neighboring structures. Second, the usage of the stability-
based scale selection robustifies the fitting process even for intensity distributions
that do not follow the Gaussian assumption well. This facilitates the effectiveness
of the solution for segmenting clinically significant but technically challenging
ground-glass nodules [8,16].

3 Segmentation for Juxtapleural Cases

Two proposed solutions described below extends the above robust Gaussian
fitting solution for handling not only the solitary but also the juxtapleural cases.
Both solutions first execute the robust Gaussian fitting. The resulting fitted
Gaussian undergoes a goodness-of-fit test, analyzing chi-square errors between
the data and fitted model, as well as a linear DC bias [8]. Only when the initial
fitting results fail to pass the test, either of the following two solutions is invoked.
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Our pilot study resulted in following two empirical observations. First, the
most of gross segmentation failures which can be detected by the goodness-of-fit
test are due to the juxtapleural cases. Second, the initial fitted Gaussians for
such failures tend to approximate the wall and rib structures. Exploiting these
observations, we develop the segmentation solutions which employ the initial
fitted Gaussian as an input to their process.

3.1 Wall Removal by 3D Morphological Opening

The input sub-volumes of the juxtapleural failure cases contain lung wall regions.
Such wall regions appear typically as a large connected region with CT values
higher than surrounding pulmonary parenchyma. The juxtapleural nodule will
appear as a nodular structure partially embedded into the wall. The first solution
explicitly removes the wall regions from the sub-volume using the morphological
operation. Then the robust Gaussian fit is performed again on the wall-removed
data, resulting in an improved segmentation of the target nodule. The algorithm
consists of the following steps.

Wall Removal: Given the input (V (x),xp) and a fitted Gaussian (u∗,Σ∗) fail-
ing the goodness-of-fit test, remove wall regions in V (x), resulting in Vr(x).
1. Binarize the input sub-volume V (x) with an intensity threshold th1,

resulting in a binarized sub-volume Bo(x).
2. Compute the average diameter dave of the ellipsoid defined by Σ∗.
3. Initialize a 3D structuring element: E = Σ∗ if dave > th2, otherwise E

is set to a 3D ball with a fixed radius rb.
4. Perform 3D binary morphological opening, resulting in smoothed volume

Bs(x) retaining only the large wall region: Bs(x) = [Bo(x) � E] ⊕ E.
5. Perform a wall removal by masking V (x) with the negative of Bs(x):

Vr(x) = V (x) × NOT[Bs(x)]
Nodule Segmentation: Perform the robust Gaussian fitting algorithm on Vr(x)

with xp, providing an improved nodule segmentation (uwr,Σwr).
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Fig. 1. Examples of the 3D morphological opening results shown in 2D cross-section
images. From left to right column: input sub-volume V (x), binarized sub-volume Bo(x),
smoothed sub-volume Bs(x), wall-removed sub-volume Vr(x).
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This algorithm utilizes a data-dependent ellipsoidal structuring element es-
timated for each data unlike the similar approach with a disc-like element [7].
Our experimental results later show that this algorithm effectively reduces the
segmentation failures due to the juxtapleural cases. Figure 1 illustrates some ex-
amples of the morphological opening applied to the real CT data. It shows that
the operation effectively removes the walls with large (1a), small (1b), heavily-
embedded (1c), and irregular (1d) nodules. Note that this was achieved without
using a set of structuring elements of different sizes.

3.2 Mean Shift Constrained by Gaussian Repelling Prior

The second solution is proposed for detecting the nodule center correctly without
an explicit removal of the walls and ribs despite the presence of rib bones.

The prior-constrained mean shift incorporates a spatial prior information to
the data-driven mean shift analysis. Suppose that the robust Gaussian fitting is
performed on the sub-volume V (x), resulting in the nodule center and spread
estimate (u∗,Σ∗). This fitted Gaussian can be interpreted as the normal proba-
bility distribution Q(x) indicating a likelihood of x being the estimated center,

Q(x) = N (x;u∗,Σ∗) = |2πΣ∗|−1/2 exp(−1
2
(x − u∗)tΣ∗−1(x − u∗)) (3)

Suppose next that this estimate failed the goodness-of-fit test. This indicates
that the estimated location u∗ is not at the center of the target nodule and
that the estimated spread Σ∗ roughly expresses the extent of the (rib/wall)
structure which falsely attracted the mean shift convergence away from the true
nodule center. Our main idea here is to re-estimate the nodule center with the
constrained mean shift whose convergence is biased by the knowledge of Q(x)
so as to pushes the convergence away from the failed estimate u∗.

To incorporate such a repelling (negative) prior, we consider resampling, or
associating weights to, available data I(x) to denote the notion that some data
points are more likely to occur than others. We define such prior-induced positive
weights by a negative of Q(x),

wQ(x) = 1 − |2πΣ∗|1/2Q(x) (4)

Incorporating the negative prior leads to the following resampled scale-space
L̃(x;h) expressed in the discretized data space,

L̃(x;h) =
N∑

i=1

wQ(xi)I(xi)Kh(x − xi) (5)

We call the mean shift mr(x;h,Q) that is convergent to a mode in L̃(x;h)
negative prior-constrained scale-space mean shift. It is defined by,

mr(x;h,Q) =
∑

i xiKh(x − xi)I(xi)wQ(xi)∑
i Kh(x − xi)I(xi)wQ(xi)

− x (6)
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Its convergence property is maintained because wQ(xi) ≥ 0 ∀xi.
A new Gaussian fitting solution is constructed by replacing the original scale-

space mean shift (1) by this prior-constrained mean shift (6) in the robust fitting
algorithm described in Section 2. Given an initial Gaussian (u∗,Σ∗) failing the
goodness-of-fit test, this new solution with mr(x;h,Q) is executed on the original
data V (x), resulting in an improved segmentation with (ums,Σms).

4 Experimental Results

We compare the segmentation results of the two proposed methods against the
baseline robust Gaussian fitting solution. We use a clinical HRCT dataset, con-
sisting of 39 patients with 1312 nodules whose size ranges from 1 mm to 30 mm
in diameter. The markers are provided by certified radiologists’ eye-appraisal.

Table 1. Segmentation performance of the robust Gaussian fitting solution. GOF: the
goodness-of-fit test. TP: accepted correct estimates. FN: rejected correct estimates.
TN: rejected false estimates. FP: accepted false estimates.

Classif. # Cases (%) GOF # Cases (%)

Correct 1156 (88.1) TP 1095 (83.5)
FN 61 (4.6)

Failure 156 (11.9) TN 123 (9.4)
FP 33 (2.5)
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Fig. 2. Twelve examples of the 3D nodule segmentation results. 1st and 4th rows:
(u∗,Σ∗) by the robust Gaussian fitting of Section 2, 2nd and 5th rows: (uwr, Σwr)
by the morphological opening of Section 3.1, 3rd and 6th rows: (ums, Σms) by the
prior-constrained mean shift of Section 3.2.



Robust Pulmonary Nodule Segmentation in CT 787

V (x) is set to 33x33x33 in voxels centered at the markers. The correct/failure
classification of the segmentation results are given by the agreement of experts by
eye-appraisal. The implementation of the systems follows the parameter settings
in [8] with an additional 2-layer Gaussian pyramid for handling larger nodules.
For the morphological opening, we set th1 = 500 for the normalized intensity
I(x) ∈ [0, 4095], rb = 14, and th2 = 16.6 in voxels, determined empirically. The
prior-constrained mean shift does not have a free parameters to be tuned.

Table 1 summarizes the quantitative performance of the segmentation by the
baseline robust Gaussian fitting solution. Together with the goodness-of-fit test,
88.1% and 9.4% resulted as true positives (TP) and negatives (TN). Among the
123 true negative cases, 108 were visually confirmed to be juxtapleural cases.
The proposed nodule segmentation systems are tested with the 123 TN cases.

Figure 2 shows some illustrative examples. Both methods successfully seg-
mented the difficult juxtapleural cases that failed initially: large (2a-b), irregular
(2c-d), and heavily-embedded (2e-h). The morphological opening-based solution
(WallRemove: WR) segmented the small nodules better than the negative prior-
constrained mean shift solution (MeanShift: MS) as shown in (2i-l). Incorporat-
ing more negative priors in MS by iterating the whole procedure can improve
some failure cases that are surrounded by multiple distractors (2l).

The quantitative performance comparison is summarized in table 2. The
results indicate that WR (71.5%) performs better than MS (34.1%), especially
for the small juxtapleural cases. WR thus improves the overall segmentation
performance from 88.1% to 94.8%. Although MS’s improvement was much lower
than that of WR, there are some cases in which MS performs better than WR,
as shown in Figure 3. When the nodules are attached to, or influenced by, non-

Table 2. Quantitative comparison of the two proposed segmentation solutions

Classif. MeanShift WallRemove
Correct 42 (34.1) 88 (71.5)
Failure 81 (65.9) 35 (28.5)

Tot. Corr. 1198 (91.3) 1239 (94.8)
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Fig. 3. Four example cases where the prior-constrained mean shift-based solution
works better than the solution with wall removal using the morphological opening.
From top to bottom row: initial fitted Gaussian (u∗,Σ∗), after morphological opening
(uwr,Σwr), with prior-constrained mean shift (ums,Σms).
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wall structures (3a-c), the morphological opening cannot be effective thus MS
performs better. There are also several cases where a very large nodule was
attached to a thin part of lung wall (3d). Such a case will result in over-estimation
of the structuring element thus a failure of the wall removal.

5 Conclusions

We proposed two novel 3D nodule segmentation solutions which improve per-
formance for the difficult juxtapleural cases. The morphological opening-based
(WR) and prior-constrained mean shift-based (MS) solutions, extended from the
robust Gaussian fitting approach, are evaluated with a large clinical CT dataset.
The validation results show that i) they can effectively segment the juxtapleural
cases, ii) WR performs better than MS for the small juxtapleural cases, and
iii) MS performs better than WR for the cases attached to non-wall structures.
Toward our goal of the volumetric measurement of nodules, the accuracy by
our methods is limited due to the ellipsoidal boundary approximation. However,
further improvement of segmentation quality is possible by incorporating a non-
parametric segmentation with a Gaussian prior derived by using the proposed
methods [17]. Developing such an accurate non-parametric system together with
the proposed solutions remains our future work.
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Tissue Classification of Noisy MR Brain Images
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Abstract. We present an automated algorithm for tissue segmentation
of noisy, low contrast magnetic resonance (MR) images of the brain. We
use a mixture model composed of a large number of Gaussians, with each
brain tissue represented by a large number of the Gaussian components
in order to capture the complex tissue spatial layout. The intensity of a
tissue is considered a global feature and is incorporated into the model
through parameter tying of all the related Gaussians. The EM algorithm
is utilized to learn the parameter-tied Gaussian mixture model. A new
initialization method is applied to guarantee the convergence of the EM
algorithm to the global maximum likelihood. Segmentation of the brain
image is achieved by the affiliation of each voxel to a selected tissue class.
The presented algorithm is used to segment 3D, T1–weighted, simulated
and real MR images of the brain into three different tissues, under vary-
ing noise conditions. Quantitative results are presented and compared
with state–of–the–art results reported in the literature.

1 Introduction

MRI images contain various noise artifacts, such as intra-tissue noise, inter-tissue
intensity contrast reduction, partial-volume effects and others [1]. Reviews on
methods for brain image segmentation (e.g., [2]) present the degradation in the
quality of segmentation algorithms due to such noise, and recent publications can
be found addressing various aspects of these concerns (e.g. [3]). Due to the arti-
facts present, classical voxel-wise based classification methods, such as Mixture
of Gaussians modeling (e.g., [4]), may give unrealistic results, with tissue class
regions appearing granular, fragmented, or violating anatomical constraints. In-
corporating statistical spatial information via a statistical atlas [5], provides a
means for improving the segmentation results. The co-registration of the input
image and the atlas, a computationally intensive procedure, is critical in this sce-
nario. Another conventional method to improve segmentation smoothness and
immunity to noise is by using a Hidden Markov Random Field (HMRF), thus
modeling neighboring voxels interactions [6,7].

This paper describes a robust, unsupervised and parametric method for the
tissue segmentation of 3D MR brain images with a high degree of noise. The

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 790–797, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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number of tissues is assumed given. Each tissue is modeled with multiple four-
dimensional Gaussians, where each Gaussian represents a localized region (3
spatial features) and the intensity characteristic per region (T1 intensity feature).
The incorporation of the spatial information within the feature space is novel,
as well as the use of a large number of Gaussians per brain tissue in order to
capture the complicated spatial layout of the individual tissues. Note that models
to-date use a single Gaussian per tissue type (e.g. [4]). An elaborate initialization
scheme is suggested to link the set of Gaussians per tissue type, such that each
Gaussian in the set has similar intensity characteristics with minimal overlapping
spatial supports. The hypothesis is that all the Gaussians within the same class
represent the same physical tissue with the same mean intensity and the same
intensity covariance. It is assumed that the intensity inhomogeneity effect has
been dealt with in a pre-processing phase. A detailed description of the proposed
algorithm is provided in Sect.2. Experimental results are presented in Sect.3. The
algorithm is validated on simulated brain as well as real brain volumes.

2 The CGMM Segmentation Framework

Given a brain volume, a 4-dim. feature vector is extracted for each voxel v. The
main feature is the voxel intensity, denoted by vI . In order to include spatial
information, the (x, y, z) position is appended to the feature vector. We use the
notation vxyz = (vx, vy, vz) for the three spatial features. Denote the set of the
feature vectors by {vt | t = 1, ..., T} where T is the number of voxels in the im-
age. In order to capture the complex spatial layout, we model the image using
a mixture of many Gaussians: f(vt|θ) =

∑n
i=1 αifi(vt|μi, Σi) such that n is the

number of components in the mixture model, μi and Σi are the mean and the
covariance of the i-th Gaussian component fi, and αi is the i-th mixture coeffi-
cient. The spatial shape of the tissues is highly non-convex. However, since we use
a mixture of many components, each Gaussian component is modeling a small
local region. Hence, the implicit convexity assumption induced by the Gaussian
distribution is reasonable (and is empirically justified in the next section).

The intra variability of the intensity feature within a tissue (bias) is mainly
due to artifacts of the MRI imaging process and once eliminated (via bias-
correction schemes) is significantly less than the inter-variability among different
tissues. It is therefore sufficient to model the intensity variability within a tissue
by a single Gaussian (in the intensity feature). To incorporate this insight into
the model, we further assume that each Gaussian is linked to a single tissue and
all the Gaussians related to the same tissue share the same intensity parameters.

Technically, this linkage is defined via a grouping function. In addition to the
GMM parameter set θ, we define a parameter π which is a grouping function
π : {1, ..., n} → {1, ..., k} from the set of Gaussians to the set of tissues. We
assume that the number of tissues is known and the grouping function is learned
in the initialization step. The intensity feature should be roughly uniform in each
Gaussian component spatial support, thus, its spatial and intensity features are
assumed uncorrelated. These assumptions impose the following structure on the
mean and variance of the Gaussian components:
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μi =

⎛⎝ μxyz
i

μI
π(i)

⎞⎠ Σi =

⎛⎝Σxyz
i 0

0 ΣI
π(i)

⎞⎠ i = 1, ..., n (1)

where π(i) is the tissue linked to the i-th Gaussian component and μI
j and ΣI

j

are the mean and variance parameters of all the Gaussian components that
are linked to the j-th tissue. We term the GMM model with the additional
constraints Constrained-GMM (CGMM). The main advantage of the CGMM is
the ability to combine in a tractable way, a local description of the spatial layout
of a tissue with a global description of the tissue’s intensity.

2.1 Model Initialization

We present a novel semi-supervised top-down initialization method that utilizes
our knowledge about the number of tissues of interest. The initialization is a
dual step procedure. In the first step K-means clustering is done based only
on the intensity feature in order to extract a rough segmentation into 6 tissue
classes (WM, GM, CSF, WM+GM, WM+CSF, GM+CSF) where combination
of classes is due to partial volume effects. We assume the WM voxels to be of
highest intensity, and the CSF voxels to be of lowest intensity. Voxels that belong
to the four other classes are labeled as GM voxels. This rough but important
initial clustering determines an initial group of voxels that belong to each tissue.
We use this segmentation to calculate the approximate position of the Gaus-
sians in each tissue. The next step is a top-down procedure. We iteratively split
regions until we obtain convex regions that are suitable for Gaussian modeling.
Each iteration of the spatial region splitting algorithm involves three steps: 1) A
connected–components (CC) algorithm is used to define distinct regions which
should be modeled by one or more Gaussians. Regions with less voxels than a
user defined threshold are deleted and their voxels are marked as background
noise, thus avoiding redundant Gaussians caused by noise; 2) Each region is en-
circled with the smallest ellipsoid possible1. If the volume inside the ellipsoid,
that is not part of the region, is higher than a user defined threshold and the
ellipsoid volume supports more voxels than the defined threshold value of mini-
mum voxels per a region, the region is marked for further splitting; 3) A marked
region is further split using K-means on the spatial features, into two distinct
(not necessarily connected) subregions. The splitting algorithm iteratively pro-
ceeds as long as at least one region is marked for partitioning. Once the regions
are determined, each region is modeled with a single Gaussian. The Gaussian’s
spatial parameters are estimated using the spatial features of the voxels sup-
ported by the region, while the intensity parameters is estimated using all the
voxels supported by all the regions of the same tissue. Thus, Gaussians from
the same tissue receive the same initial intensity parameter. Furthermore, each
Gaussian is tagged with a label which indicates its tissue affiliation. Overall, the
initialization process determines and fixes the grouping function π.

1 Using the GBT� (Geometric Boundary Toolbox).
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Figure 1(a)-(e) illustrates the steps of the initialization process as applied
to a 2D synthetic image with two tissues. A similar process is performed in 3D
using a 3D ellipsoid instead of a 2D convex polygon for the convexity measure.

2.2 Parameter Learning for the Constrained GMM

Following initialization, an iterative maximum-likelihood (ML) learning process
is conducted. Gaussians with the same tissue–label are constrained to have the
same intensity parameters throughout. A modification of the standard (EM)
algorithm for learning GMM is required, as shown in the following equations.
The expectation step of the EM algorithm for the CGMM model is (same as the
unconstrained version):

wit = p(i|vt) =
αifi(vt|μi, Σi)

n∑
l=1

αlfl(vt|μl, Σl)

i = 1, ..., n t = 1, ..., T (2)

We shall use the abbreviations:

ni =
T∑

t=1

wit , kj =
∑

i∈π−1(j)

ni j = 1, ..., k i = 1, ..., n (3)

such that ni is the expected number of voxels that are related to the i-th Gaussian
component and kj is the expected number of voxels that are related to the j-
th tissue. The maximization in the M-step is done given the constraint on the
intensity parameters.

αi =
ni

n
i = 1, ..., n j = 1, ..., k (4)

μxyz
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1
ni

T∑
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witv
xyz
t Σxyz
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1
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T∑
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wit (vxyz
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i ) (vxyz
t − μxyz

i )
�

μI
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1
kj

∑
i∈π−1(j)

T∑
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witv
I
t ΣI

j =
1
kj

∑
i∈π−1(j)

T∑
t=1

wit

(
vI

t − μI
j

)2
The grouping function π that links between the Gaussian components and the
tissues is not altered by the EM iterations. Therefore, the affiliation of a Gaus-
sian component to a tissue remains unchanged. However, since the learning is
performed simultaneously on all the tissues, voxels can move between tissues
during the iterations.

Figure 1(f) shows the CGMM model obtained for the synthetic image shown
in Fig.1(a) after seven EM iterations (following the top-down initialization). A
2σ spatial projection of the region-of-support for each Gaussian in the model is
shown (where different shades of gray represent the two distinct tissues present).

If the representation phase is a transition from voxels to clusters (Gaussians)
in feature space, the segmentation process can be thought of as forming a linkage



794 A. Ruf, H. Greenspan, and J. Goldberger

Fig. 1. Illustration of the Initialization process on a 2D synthetic image: (a) Input im-
age; (b) Segmentation into two groups using the intensity feature only; (c) Connected–
components (CC) algorithm; (d) CC (region) is encircled with a convex polygon; (e)
CC is clustered into two regions based on spatial features only; (f) Gaussian mixture
modeling (seven EM iterations).

back from the feature space to the raw input domain. Each voxel is linked to the
most probable Gaussian cluster, i.e. to the component of the model that max-
imizes the a-posteriori probability. The current model uses multiple Gaussians
per tissue. Thus we need to sum over the posterior probabilities of all the iden-
tical tissue Gaussians to get the posterior probability of each voxel to originate
from a specific tissue:

tissue-labelt = argmax
j∈{1,...,k}

∑
i∈π−1(j)

αifi(vt|μi, Σi) t = 1, ..., T (5)

such that tissue-labelt ∈ {1, ...k} is one of the tissues. The linkage of each voxel
to a tissue label provides the final segmentation map.

3 Experiments and Results

In the following we present a set of experiments to validate the proposed frame-
work. We used a severely noised normal T1 MR brain data set from the Brain-
WEB simulator repository 2 as well as 15 real normal T1 MR brain data sets
from the Center for Morphometric Analysis at Massachusetts General Hospital
repository 3 (hereon termed IBSR). An important pre-processing step is used to
extract the brain region as well as to correct any intensity inhomogeneity (bias)
present within the images. A variety of techniques are known in the literature.
We use the algorithm proposed by Van-Leemput [6] as implemented in the EMS
software package 4. Next we applied our initialization step followed by EM it-
erations for CGMM. In our experiments a threshold of 250 voxels per region
(Gaussian) is used in the initialization stage. In the first experiment we demon-

2 http://www.bic.mni.mcgill.ca/brainweb/
3 http://www.cma.mgh.harvard.edu/ibsr/
4 http://www.medicalimagecomputing.com/EMS/
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Fig. 2. (a) Slice number 95 from the BrainWEB normal brain simulator; (b) Ground-
truth; (c) GMM-Without constraints; (d) CGMM-With constraints.

strate the performance of the CGMM framework as compared with regular EM-
based modeling and segmentation. Figure 2 shows slice number 95 taken from
the BrainWEB normal simulated brain volume, contaminated with 9% thermal
noise artifact (relative to the white matter intensity). The Gaussian parame-
ters were once learned using EM-based modeling (without intensity constraints)
and once learned using the CGMM framework (with intensity constraints). Fig-
ure 2(c) shows the final segmentation using regular EM-based modeling. The
segmentation result is noticeably distorted due to the high noise present. The
segmentation results of the CGMM framework are shown in Fig.2(d). A consid-
erable improvement in the segmentation results can be seen. In the next set of
experiments, a comparison is conducted with the well-known EM-based segmen-
tation algorithm of Van-Leemput (hereon termed KVL) [6] implemented by the
EMS software package. In the KVL implementation the statistic brain atlas of
the SPM995 was normalized to the target brain volume. The EMS algorithm
was setup to use the HMRF option as well as intensity inhomogeneity correction
with 3D polynomial of order 4. Experiments were conducted on the simulated
normal MR brain volume with very high thermal noise artifacts as well as on
15 real MR brain volumes from the IBSR. In the CGMM implementation, we
used the EMS to remove any intensity inhomogeneity effects from the original
real MR brain volumes as well as to extract only the brain tissues from the head
volume.

We choose to compare the CGMM and the KVL algorithm with the volumet-
ric overlap metric (the volumetric overlap metric is not claimed to be the best
metric for medical image comparisons, but it is widely used). which was also
used by [6]. This metric is used to quantitatively measure the overlap between
the automatic segmentation and the ground truth for each tissue and every algo-
rithm. Denote by V k

ae the number of voxels that are assigned to tissue k by both
the ground truth and the automated algorithm. Similarly, let V k

a and V k
e denote

the number of voxels assigned to tissue k by the algorithm and the ground truth,
respectively. The overlap between the algorithm and the ground truth for tissue
k is measured as: 2V k

ae/
(
V k

a + V k
e

)
. This metric attains the value of one if both

segmentations are in full agreement and zero if there is no overlap at all.

5 http://www.fil.ion.ucl.ac.uk/spm/
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Table 1. Average and Std volumetric overlap results for CGMM on 16 brain volumes

KVL CGMM
WM GM CSF WM GM CSF

86.0 ± 2.0 78.9 ± 5.3 20.7 ± 16.6 85.9 ± 3.6 79.5 ± 5.7 26.0 ± 16.3

Fig. 3. Overlap metric of the CGMM algorithm (bright) and the KVL algorithm(dark)
per each of the 16 volumes. Each graph shows a different tissue. The BrainWEB9% is
a simulated volume, where all the rest are real brain volumes.

Figure 3 shows the segmentation results of the CGMM algorithm (bright)
and the KVL algorithm (dark). The CGMM performance improvement over the
KVL is shown in most of the volumes and in all of the tissue types. However,
CGMM’s gain over the KVL is especially evident within the CSF tissue since
the volumetric overlap tend to be more sensitive to outliers when dealing with
small objects. Table 1 shows that the average results of the CGMM are slightly
better than KVL in gray matter and even more significant in CSF. Furthermore,
Fig.4 shows the smoothness in the segmentation output. The strength of the
CGMM framework is more clearly evident in its robustness to noise and smooth
segmentation results in increased noise levels.

4 Discussion

We present a fully automated, parametric, unsupervised algorithm for tissue
classification of extremely noisy and low contrast MR images of the brain. The
tissues are assumed to have been cleaned (preprocessed) of any intensity inho-
mogeneity. The algorithm was tested on different real brain volumes as well as
heavily noised simulated brain volume. Quantitative comparison with KVL state-
of-the-art algorithm in the presence of extremely noised images was performed
and has shown that the CGMM presents better visual results in presence of high
noise as well as better quantitative results - especially in CSF segmentation.
This result holds with increased noise up to 9%, a level that presents a challenge
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(a) (b) (c)

Fig. 4. Comparison of CGMM vs. KVL algorithm for segmentation of slice 95 from
BrainWEB simulator with 9% noise level and no bias (a) Original image (b) KVL
algorithm (c) CGMM algorithm

for most of the existing segmentation algorithms. The linkage of Gaussians has
strong resemblance to using a HMRF model. The main difference is that the
intensity information is linked adaptively and globally within the image, in con-
trast to a HMRF model that integrates information from the nearest neighbors
only and in predetermined neighborhoods. These differences result in improved
segmentation and decreased tissue region granularity in the presence of extreme
noise. The CGMM is shown to provide a parametric framework good enough for
segmentation without requiring a priori registration to a brain atlas, thus, it can
be useful for abnormal brain segmentation, image registration as well as image
retrieval. Currently we are working on an extension of the model to incorporate
intensity inhomogeneities as well as to support multi-channel volumes.
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Abstract. This paper presents a method to extract heart structures from CTA 
and MRA data sets, in particular the left atrium. First, the segmented blood pool 
is subdivided at narrowings in small components. Second, these basic compo-
nents are merged automatically so that they represent the different heart struc-
tures. The resulting cutting surfaces have a relatively small diameter compared 
to the diameter of the neighboring heart chambers. Both steps are controlled by 
only one fixed parameter. The method is fast and allows interactive post-
processing by the user. Experiments on various data sets show the accuracy, ro-
bustness and repeatability of this approach. 

1   Introduction 

Atrial fibrillation is the most common heart arrhythmia and greatly increases the risk 
of stroke. This irregular heart rhythm originates in the atrial heart chambers. Over 2 
million people are affected in the U.S. alone. One way to treat and cure atrial fibrilla-
tion is catheter ablation. First electrical signals in the heart muscle are mapped and 
localized. One successful approach to finally eliminate the atrial fibrillation is to iso-
late the pulmonary veins of the left atrium electrically from the rest of the heart by 
ablation. The dissimilarity of different left atrium shapes complicates the procedures. 
CT or MR imaging supports planning and intervention of these catheter ablations. 
After segmenting the left atrium and the pulmonary veins from the images the indi-
vidual patient morphology can be visualized and the extracted boundary surface can 
be provided to electro-anatomical mapping systems. 

CTA and MRA images are CT and MR images enhanced by contrast agent filled 
blood vessels and chambers. This provides higher image intensities for the blood pool 
than for surrounding tissues and helps to extract the left atrium voxels. Nevertheless, 
the left atrium segmentation is usually done manually or by segmentation tools that 
are not specific to this task, which yields segmentation times larger than 30 minutes. 
The reason for the absence of more specific automatic segmentation algorithms might 
be the complex and varying shape of the left atrium. (For instance position and num-
ber of the pulmonary veins can vary for different patients.) This is in contrast to the 
left ventricle, where a lot of segmentation approaches were suggested. Automatic 
methods for left ventricle segmentation are usually level-set methods [13], atlas-based 
methods or algorithms based on active shape models [3]. Active shape models are the 
most common approach for such segmentations. Recently, a shape model approach 
for the left atrium segmentation from CT images was proposed in [1]. 
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Fig. 1. Left: A narrowing and a possible cut. Right: Medial Axis (dashed line) of a two dimen-
sional object (interior of the solid lines) and two locally maximal medial balls m1, m2 and the 
smallest medial ball s between m1 and m2. The ball s lies at the narrowing between m1 and m2. 

In our method we make use of the fact that neighboring heart chambers can be 
separated with cuts at narrowings of the blood pool. The size of such a cutting surface 
is relatively small compared to the size of the neighboring heart chambers. We give 
an algorithmic formulation how to cut a blood pool at all narrowings. This subdivi-
sion into basic components is related to the medial axis transform which describes a 
volumetric object as a union of balls. The balls touch the surface of the object in at 
least two points, their center points build the medial axis (see Fig. 1). In this paper we 
associate with every locally maximal ball a basic component. If we follow the union 
of balls along the centers from a maximal ball to a neighboring maximal ball the radii 
first get smaller and then increase. At the smallest ball on this way we have a narrow-
ing of the object, which is a possible cut. Because of this relation between our com-
ponents and the medial axis transform we make use of a distance transformation algo-
rithm [4] that helps to construct this data structure and gives information about the 
size of the basic components. 

The merging of the basic components to build up the heart chambers is similar to 
the merging process used in watershed-transformation algorithms [11] and algorithms 
for surface reconstruction of geometric point sets [5]: In our setting two components 
are merged if the separating structure is large, so the difference to the size of the 
neighboring components is small. Observe that the common merging procedure for 
watershed-transformations in medical image segmentation handles every voxel as one 
element, whereas an element in our merging procedure is a basic component that 
usually consist of thousands of voxels. Furthermore the merging does not depend on 
the gray values but on the geometric structure of the object. Also for fast and efficient 
interactive post-processing by the user we adapt techniques originally developed for 
interactive watershed-transformations [7,8]. 

2   Method 

Before we discuss the technical details of our segmentation method we want to give 
an intuition about its basic ideas. Figure 2 gives an overview of the whole method. 

To decompose a segmented blood pool object into the different heart chambers  
and vessel structures it can be cut at narrowings. Figure 1 shows such a narrowing for 
a vessel which might be a possible cut. The problem is to find the right cuts  
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Fig. 2. Overview of the algorithm. Three steps of the algorithm are visualized in the images 
with a CTA data set. Left: A volume visualization of the complete data set. Middle: Subdivi-
sion of the blood pool into basic components. Right: Merged components that represent the 
heart chambers and vessels. 

automatically. We can make the following observation: The diameter of the correct 
cuts is small compared to the diameter of the adjacent components.  

The main idea of the algorithm is to subdivide the segmented blood pool object at 
all possible narrowings and merge the resulting basic components to get the heart 
structures. We start with the basic components and merge neighboring components if 
the diameter of a separating surface (i.e. the cut at the narrowing) is nearly as large as 
the diameter of the adjacent components. We end up with cuts with relatively small 
diameters compared to the adjacent components. 

2.1   Segmenting the Blood Pool 

The extraction of heart structures requires the extraction of the blood pool from the 
contrast enhanced CTA and MRA data sets. We use a simple threshold-based ap-
proach. With a given threshold we separate the blood pool voxels from other struc-
tures. This works fine with MRA data sets. With CTA data sets such a threshold also 
segments voxels that represent bone tissue. Fortunately, blood pool structures and 
bone structures only touch each other, but do not intersect deeply. Therefore, it is no 
problem to separate these structures by the subsequent steps of the algorithm  
(see Section 2.2 and 2.3). 

For CTA data one can use a constant Hounsfield threshold for segmenting the 
blood pool. Alternatively, the algorithm can let the user pick a voxel inside the blood 
pool. A threshold can then be computed automatically from the local neighborhood of 
this seed point. 
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If we allow the algorithm to let the user select a voxel inside the blood pool, we 
can use region growing. This helps to eliminate a lot of bone tissue voxels at the be-
ginning and speeds up the subsequent algorithm steps. 

2.2   Computing Basic Components 

In this section we will show how to subdivide a binary image into several compo-
nents. Figure 3 gives an overview of this part of the algorithm. 

The first step is to compute the distance transformation of the binary image. For 
each marked voxel (inside object) we compute its squared Euclidian distance to the 
closest unmarked voxel (outside object). So voxels deep inside the object get a high 
value, voxels close to the boundary of the object get a small value. Zero is assigned to 
all voxels outside the object. Several algorithms were proposed for this task, see [4] 
for an overview. We use the fast and exact method described in [12]. 
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Fig. 3. Subdivision overview. The lower row shows a two dimensional example on a 2D grid. 
First, a distance transformation is computed. Then maxima and saddle points are extracted. 
Finally every object voxel is assigned to a maximum which results in the basic components. 
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Fig. 4. Left: A Freudenthal subdivision of a cube. Right: The 14-neighborhood of a grid vertex 
of a regular cubic grid, if every grid cube is subdivided by the Freudenthal scheme. 
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In a second step we determine all voxels that are local maxima and saddle points of 
the distance transformation. A (local) maximum is a voxel, that has a larger value 
than all its neighboring voxels. A saddle (point) is a voxel that has (at least) two vox-
els with larger values in its neighborhood and a ring of voxels with smaller values that 
separates the two larger ones.  

Both maxima and saddles lie on the medial axis of the object. Every maximum lies 
in the center of a basic component. Every saddle lies at the center of a separating sur-
face between two neighboring basic components which is the cutting surface at a nar-
rowing of the object. The other way around, every basic component contains a maxi-
mum and every separating surface between two basic components contains a saddle. 
So, determining these two types of voxels helps to compute the basic components. 

It can happen, that two neighboring voxels have the same value. To simplify the 
handling of maxima and saddles we want to avoid this situation when comparing 
voxels. Solutions to such equality problems are discussed in [11]. We prefer a simple 
one: We define a fixed order over all voxels (only depending on the x-,y-, and z-
coordinates). In the case of equal voxel values we compare the voxels with respect to 
this order. 

In a third step we assign every voxel to a basic component. Each local maximum is 
the center of a basic component. To assign a voxel to a basic component, we follow 
the gradient of this voxel until we end up in a maximum. To be more precise we fol-
low a line of voxels with increasing distance function values until we reach a maxi-
mum. We determine this line by computing for each voxel the neighboring voxel with 
the steepest ascent. 

The whole computation of maxima, saddles and basic components depends on the 
choice of the local neighborhood. We use a 14-neighborhood, i.e. 14 neighbors are 
assigned to each voxel (see Figure 4). This neighborhood comes from a tetrahedral 
subdivision of the regular cubic grid, where the grid vertices are the center points of 
the voxels. If we take a voxel v, all voxels that are connected by an edge to v in the 
tetrahedral grid are defined as neighbors of v. We get a regular 14-neighborhood if we 
use the Freudenthal subdivision. This and other tetrahedral subdivisions are discussed 
in [2]. The computation of maxima and saddles can be done fast using lookup tables; 
such techniques are described in [6] in the context of multiresolution isosurface ex-
traction. The advantage of the 14-neighborhood is the resulting regular grid and the 
relatively small number of neighbors compared to the standard 26-neighborhood. 
Furthermore, we have the following guarantees: Every basic component contains a 
maximum and the surface between two components contains a saddle. This is because 
the 14-neighborhood goes back to a tetrahedral subdivision, which directly extends 
the discrete samples of the volume space to the whole space R3 by linear interpola-
tion. So the maxima and saddles are critical points of a real continuous space and the 
guarantees described above come from the Morse theory of continuous spaces [10]. 

2.3   Merging of Basic Components 

The granularity of the basic components is too large to represent real heart structures. 
Therefore we need to merge the basic components to build up larger structures. We 
start merging neighboring components m1 and m2 that have a separating surface s with 
a large diameter, i.e. if 
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merging value(m1, m2, s)   =    min( diam(m1), diam(m2) )  –  diam(s) (1) 

is small. The diameter of a component is the Euclidian distance function value of its 
corresponding maximum. The diameter of a separating surface is the Euclidian dis-
tance function value of its corresponding saddle.  

Merging two components means algorithmically: Deleting symbolically the corre-
sponding saddle and the smaller maximum and rearranging the saddles that were 
incident to the smaller maximum. Observe that some of the other merging values can 
change in this step. 

We merge all neighboring components with a merging value smaller than a given 
threshold. We start with the components with the smallest merging value and go on in 
increasing order.  

After the merging process the resulting components are separated at narrowings 
which have a small diameter compared to the diameter of the adjacent regions. Their 
merging value is larger than the given merging threshold. 

2.4   Interactive User Control 

After the previous algorithm steps the user can mark voxels as positive (= has to be 
part of the final segmentation) and negative (= not part of the final segmentation). We 
assign these markers to the basic components corresponding to the marked voxels. 
Now we can restart the merging process of Section 2.3, but we forbid merging of 
different labeled components and force merging of components with the same label. 

Because the merging is very fast and the basic component subdivision can be re-
used, marking voxels by the user gives the user immediately a result.  

 

Fig. 5. Some results of the left atrium segmentation method. Left, Middle: CTA Right: MRA. 

3   Experiments and Results 

We applied our algorithm to 40 coronary CTA and 20 coronary MRA data sets from 
different manufacturers and clinics. The results were evaluated and discussed with 
electrophysiologists and radiologists. The goal of our study was to extract the left 
atrium with as little user interaction as possible. The user started the segmentation by 
selecting a voxel in the left atrium as a seed point. After the automatic segmentation 
procedure the user was able to mark additional voxels to interactively improve the 
result. The results were visualized either by a marching cubes isosurface [9] or by 
volume rendering. 
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All data sets had an in-slice resolution of 512 × 512 voxels, the number of slices 
varied from 40 to 500, and the voxel size varied from 0.318 × 0.318 × 0.4 mm3 to 
0.859 × 0.859 × 1.4 mm3. The data sets included anomaly cases (more than two pul-
monary veins on one side of the left atrium) and images with rather bad scan quality. 

In all data sets we successfully extracted the left atrium with a merging threshold 
of 2.3 mm. On some of the data sets user interaction helped to improve the results, 
usually for images with poor quality. In all cases the algorithm was able to segment 
the left atrium including all pulmonary veins and the left atrial appendage. All 
neighboring structures like the left ventricle, the right atrium, and veins close to the 
pulmonary veins were excluded. Furthermore, the bone structures in the CTA images 
were eliminated correctly. The segmentation results were practically independent of 
the exact position of the users click into the left atrium. This is mainly due to the 
computation and merging of the basic components which only depends on the geome-
try of the blood pool. Noisy data sets did not much effected the merging results, be-
cause small components due to noise are merged in an early phase to larger and more 
robust components. 

We tested the algorithm on a 2 GHz Pentium IV PC with 1 GB of RAM. The run-
time of the algorithm depends on the number of blood pool voxels and varies between 
5 (for small MRA data sets) and 45 seconds (for large CTA data sets). After the user 
added an additional marker the update of the segmentation took always less than a 
second, which made interactive post-processing with immediate feedback feasible. 

4   Conclusions 

To extract the left atrium from CTA and MRA images we suggest to cut the blood 
pool using geometric properties, i.e. to cut at narrowings that are small compared to 
their neighboring components. This approach gives correct results, which was tested 
on 40 CTA and 20 MRA data sets. The results are repeatable because of the stable 
method and the minimization of user interaction. The algorithm is fast, especially the 
merging procedure (that operates on the set of maxima and saddles which is much 
smaller than the number of all object voxels). The algorithm gives robust results even 
for noisy data sets. 

To further evaluate the algorithm we will start a more detailed clinical evaluation. 
Besides supporting the intervention by visualizing the left atrium we will use the 
results for accurate 3D volume measurements and the support of electro-anatomical 
mapping systems. Possible future research directions are the automatic segmentation 
of other heart chambers and the automatic bone removal from CTA images. 
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Abstract. We present a novel technique for the automatic formation of
vascular trees from segmented tubular structures. Our method combines
a minimum spanning tree algorithm with a minimization criterion of the
Mahalanobis distance. First, a multivariate class of connected junctions
is defined using a set of trained vascular trees and their corresponding im-
age volumes. Second, a minimum spanning tree algorithm forms the tree
using the Mahalanobis distance of each connection from the “connected”
class as a cost function. Our technique allows for the best combination of
the discrimination criteria between connected and non-connected junc-
tions and is also modality, organ and segmentation specific.

1 Introduction

Segmentation of vascular structures from volume images reflects several chal-
lenges. Among them, accuracy of centerline extraction as well as complex for-
mation of the vascular trees have led to powerful algorithms.

Several segmentation techniques have shown high accuracy and robustness
in extracting vascular structures from MR and CT datasets. In fact, the curve
evolution algorithm [5] produces accurate vascular segmentations by combining
the modified curvature diffusion equation (MCDE) with a level-set based tech-
nique. On the other hand, Aylward et al. [1] use a ridge traversal technique
with width estimation to extract vascular centerline and estimated radius at
each point along blood vessels. Both techniques have shown robustness to noise
and high accuracy. However, most of the vascular segmentation algorithms do
not form trees at the time of extraction but rather consider each blood vessel
independently.

Being able to visualize the vascular tree is a real motivation. In fact, neuro-
surgeons and interventional radiologists must often occlude blood vessels during
vascular procedures. The risk of stroke to the patient depends largely upon the
collateral flow provided by other parts of the circulation. It is therefore impor-
tant for the clinician to visualize vascular connections in order to make correct
decisions about vessel occlusion. Moreover, in parenchymal organs, the identifi-
cation of vascular territories is crucial for providing resection proposals as well as
for preoperatively estimating resection volumes and patient outcome [4]. Some
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recent model-to-image registration methods also rely on a vascular network to
perform a hierarchical registration strategy [2].

The most closely related work for tree creation has been done by Bullitt et
al. [3]. They have shown that by using a combination of both linear distance and
image intensity in suspected regions of connection, a tree can be formed with
high accuracy. The combination of the distance and image intensity as a cost
function for the minimum spanning tree algorithm is described by the following
weighted equation: 4 · I + d, where I is the ratio of mean intensities along the
centerline μc of a cylinder centered on the vessel junction (radius larger than
that of the child) and on the surface of that same cylinder μe such that I = μe

μc
.

Our method differs from the previous technique in that it combines multiple
criteria for connection in an optimal way using a linear discriminant strategy.
Moreover, by creating training classes, our algorithm can be made specific to a
particular modality, organ and even extraction method.

2 Methods

Our method relies on the centerline representation of a blood vessel. In fact, each
extracted blood vessel is defined as centerline points (x, y, z) with associated
radius r. The tangent t and normal plane (n1,n2) are computed using finite
differences.

2.1 Minimum Spanning Tree and Mahalanobis Distance

Our technique makes use of the minimum spanning tree algorithm based on
Prim’s method [6]. The main difficulty in forming such vascular tree lies in
defining an effective cost function for the junctions and, even with a set of
“good” criteria, it can be difficult to find an appropriate linear combination of
these values. By definition, in a tree structure, a child can only have one parent.
Moreover, a vascular network is usually formed of several trees and if those trees
overlap, i.e portal and hepatic vascular systems in the liver, it is often the case
where an automated algorithm has to make the choice between two (or more)
parents.

Figure 1 shows an example of vascular configuration with two trees. In this
case, vessel 5 can be connected to two parents and relies on the cost function to
decide the best connection between C35 and C45.

Our method provides an optimal way to combine the criteria defining junc-
tions using the Mahalanobis distance. The Mahalanobis distance is a statistic
value which measures the distance of a single data point from the sample mean
or centroid in the space of the independent variables used to fit a multiple re-
gression model. The Mahalanobis can be formulated as:

dS(x, y) =
√

(x − y)tS−1(x− y) (1)

where y is the corresponding mean from the class and S its covariance matrix.
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Fig. 1. Example of tree configuration. Vessel 5 should only have one parent. The choice
is based on the minimum Mahalanobis distance between C35 and C45.

We first define a multivariate class of connected junctions using five criteria:

1. Distance from the first point of the child vessel to the closest parent point.
2. Angle between the tangent direction of the parent point and the first point

of the selected child.
3. Ratio between the radius of the parent point and the selected child.
4. Difference between the radius of the parent point and the selected child.
5. Ridgeness, defined as the mean of the ridgnesses rn at each point from

the parent point and the first point of the selected child. rn is defined as
follows: rn = ‖d · V3‖ · λ2

λ1
· (1− λ3

λ2
) ·λ2, where d is the direction of the vessel

at that point; V3 is the eigen vector corresponding to the minimum eigen
value of the Hessian of the image intensities λ1, λ2 and λ3 the corresponding
decreasing set of eigen values.

For each connected junction in the training set, the five criterion values are
computed and define the “connected” class. A minimum spanning tree algorithm
is then performed using the Mahalanobis distance of the selected connection
criteria and the previously defined class. One can notice that the criterion values
do not have to be especially minimize - they can be maximized - as long as the
class definition and the corresponding Mahalanobis distance are computed with
the same criteria. Moreover, our algorithm does not rely on the number of criteria
or the quality of the criterion used since the linear discrimination will select the
“best” features.

One constraint of this approach is that the Mahalanobis assumes a normal
distribution of the variables. However, some of our criteria, i.e the ridgeness,
does not fulfill this assumption since the ridgeness is linearly proportional to the
significance of a connection. In order to approximate a normal distribution we use
the exponential value of the ridgeness centered on zero mean. For each ridgeness
value we actually define two values: e−rn and −e−rn in the class definition.

2.2 Robust Class Definition

The definition of the “connected” class requires a set of trained vascular trees and
corresponding dataset volumes. Each trained vascular tree is formed manually
by an expert. However, the high number of possible connections (100 to 300)
and the quality of the segmentation makes this task difficult. Therefore, we
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perform a robust algorithm to remove any outliers left in the training set. First
the multivariate class is computed using all the possible connections available.
Second, the Mahalanobis distance of each connection is checked against the
defined class. Outliers are removed if their Mahalanobis distance is more than
2σ from the mean distances.

3 Results

We have tested our algorithm on nine brain MR and nine liver CT datasets.
CT volumes are contrast enhanced 1× 1 × 3mm3 voxels and MRA volumes are
time-of-flight data with 1 × 1 × 1mm3 voxels. The class of connected junctions
for both organs are reported in figure 2. As one can see, the connection criteria
may have large differences depending on the modality and the organ concerned.
This shows the importance of having an organ and modality specific “connected”
class. Moreover, the radius ratio in the brain connected cases is close to one and
has a small standard deviation compared to the radius ratio obtained for the
liver datasets. In fact the segmentation algorithm used [1] is less robust close
to the branching regions. This is especially true for our liver datasets where the
blood contrast tends to weaken around branch points.

To show that the class definition is reliable across datasets, we perform a
leave-one-out analysis. For each organ, the “connected” class is defined using

Criterion Mean (σ) brains Mean (σ) livers
Distance 0.534 (1.450) 3.441 (2.696)
Tangent -0.021 (0.553) 0.038 (0.604)

Radius difference 0.216 (0.338) 1.200 (1.063)
Radius ratio 1.038 (0.273) 1.701 (0.996)
Ridgeness 0.000 (0.274) 0.000 (0.186)

Fig. 2. Criteria for connected junctions for brain and liver datasets
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Fig. 3. Percentile of effective connections given a threshold for the Mahalanobis dis-
tance for nine brain MRI (left) and nine liver CT (right).
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eight vascular systems and the Mahalanobis distance is computed for each con-
nection in the remaining vasculature. Figure 3 shows the percentile of accurate
connections found given a threshold for the Mahalanobis distance. As one can
see, (a) the curves are very similar meaning that the class definition and the
Mahalanobis distance are reliable; (b) the thresholds to achieve 100% of connec-
tions are different for the brains and livers which strengthen the statement that
an organ/modality specific class is necessary.

In the next paragraph we show that our algorithm is able to select junctions
even for difficult cases in the brain and in the liver.

3.1 Difficult Cases

We found interesting to test the output of our algorithm in the only region of
the human body where the vascular system forms a circle: the circle of Willis in
the brain. In this particular case we test two junctions, J2− 3 and J2− 1, were
the connection effectively exists as shown in figure 4. We trained our algorithm
using the eight brain MR datasets previously presented and we computed the
Mahalanobis distance for the two junctions. The results are shown in Figure 5.

As expected, the two junctions have similar Mahalanobis distances, there-
fore we can assume that they should be both connected (or not connected).
The distance seems high compared to the class definition obtained during the

Vessel 3

Vessel 2

Vessel 1

J2-3

J2-1

Fig. 4. Circle of Willis in the brain

Criterion J2-3 J2-1
Distance 2.369 1.092
Tangent 0.334 -0.819

Radius difference 1.950 1.629
Radius ratio 1.864 2.256
Ridgeness 0.000 0.000

Mahalanobis distance 30.169 34.342

Fig. 5. Mahalanobis distance of the two junctions in the circle of Willis



Automatic Vascular Tree Formation Using the Mahalanobis Distance 811

Vessel 3
J1-3

Vessel 1
Vessel 2

J2-3

Fig. 6. Difficult case within the liver where the hepatic and portal venous systems
overlap

Criterion J1-3 J2-3
Distance 2.676 1.236
Tangent -0.320 -0.769

Radius difference 1.006 1.692
Radius ratio 2.337 0.475
Ridgeness 0.001 0.316

Mahalanobis distance 1.522 10.329

Fig. 7. Mahalanobis distance of the two junctions in the liver. The distance is inversely
proportional to the probability of connection.

training stage and will be in favor of a non connected function. This is due to
the particularity of these junctions in the circle of Willis where the radius ratio
and difference values are high compared to other connections in the brain. To
test this hypothesis, we have trained and compared the junctions without the
radius ratio and difference criteria and we obtained respectively dJ2−3 = 1.99
and dJ2−1 = 2.25.

We have also tested our method on a difficult case within the liver where
the hepatic and portal venous systems overlap. Figure 6 shows the region of
interest where the vessel 3 can be connected to either vessel 1 or vessel 2. In
fact, due to a bad segmentation of vessel 3, a standard algorithm would make
J2−3 the preferred connection over J1−3. However, the computed Mahalanobis
distances, shown in figure 7, for both junctions are reporting J1 − 3 to be the
selected connection and not J2−3. By looking at the image volume, and also the
ridgeness values, J1−3 appears to be the real connection in this case as predicted
by our algorithm. From the class definition shown in the previous section, one
can see that the ratio between the radius of the child and the radius of the
parent is not a high significant criterion (μ = 1.701, σ = 0.996), therefore the
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linear discriminant will be less sensitive to this particular feature. Moreover, as
one can notice, the value of the non-connected junction is close to the threshold
defined in the previous section.

4 Discussion and Conclusions

We have presented a novel algorithm for automatic vascular tree formation based
on the Mahalanobis distance. The main advantages of our algorithm are (a)
the optimal combination of discrimination parameters and (b) the fact that
the defined class from these criteria can be modality, organ and segmentation
specific. We have also shown that the class definition is consistent among datasets
based on the Mahalanobis distance measure and that our algorithm can detect
real branching with high accuracy.

One of the weaknesses of our approach is that it relies on some information
regarding the segmentation technique. If the segmentation predicts a radius far
from the real radius, our method may fail. However, the other criteria, such as
the tangent direction and the ridgeness can help in this case. We are currently
working on extending our approach to include direction of the blood flow. This
work has been developed using the Insight Toolkit [7].

This work is funded in part by the Whitaker Foundation (TF-04-0008) and
the NIH-NIBIB (R01 EB000219).
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Abstract. This paper considers the problem of tissue classification in
3D MRI. More specifically, a new set of texture features, based on phase
information, is used to perform the segmentation of the bones of the
knee. The phase information provides a very good discrimination between
the bone and the surrounding tissues, but is usually not used due to
phase unwrapping problems. We present a method to extract textural
information from the phase that does not require phase unwrapping.
The textural information extracted from the magnitude and the phase
can be combined to perform tissue classification, and used to initialise
an active shape model, leading to a more precise segmentation.

1 Introduction

In MRI, the signal intensity, which is normally used for diagnostic purposes,
depends upon spin density and relaxation time in order to enhance contrast
between different type of tissues inside the body. However, intensity is only
one part of the signal. The image acquisition is performed in the K-space [1],
resulting in a complex signal, that can be decomposed as a magnitude, and a
phase component as shown in Figure 1. Depending on the choice of the pulse
sequence, the phase can represent different types of information:

– for angiography, the acquisition sequence is designed to purposefully sensitise
the image to phase due to velocity of moving spins and emphasise the motion
of blood.

– for conventional anatomical imaging methods, the images are usually dis-
played in magnitude mode and thus the phase information is not used. In this
context the phase information is non-coherent dephasing caused by chemical
shift and local magnetic susceptibility.

The latter effect is due to differing magnetic susceptibilities within the body
and/or instrumental imperfections. Some imaging sequences are more sensitive
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Fig. 1. Magnitude and phase image with TE = 10ms. The wrapped phase image shows
strong textural information in the bone and the background, compared to the relatively
smooth areas in the cartilage and the muscles.

Fig. 2. Magnitude and phase image of the knee cartilage

to this effect than others, so the choice of the acquisition methods is very im-
portant. With a properly chosen sequence, the phase can give information about
tissue interfaces. In the case of the articular cartilage, there is a large differ-
ence in magnetic susceptibility between the subchondral bone and the cartilage
that creates a local magnetic gradient leading to loss of signal [2]. The study of
the phase can give additional information on the cartilage/bone interface due
to magnetic inhomogeneities caused by the local tissue transition. A closer look
at the femur and tibia cartilage (Figure 2) shows that the magnitude is not ef-
ficient in separating the two cartilages. This is a common problem in cartilage
segmentation, whereas the phase shows a strong black line between them. Unfor-
tunately, phase is only defined within the interval [0 2π[, and phase unwrapping
is required prior to processing [3][4]. Phase unwrapping is commonly used in
MRI to perform the three points Dixon water/fat separation technique, and to
reconstruct cardiovascular structures in phase contrast MRI, but the operation
can be extremely time consuming, especially in 3D, and is prone to errors. More-
over, most algorithms can’t handle the high level of noise that can be found in
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the background for example. As a result, only the magnitude of the complex
MRI signal is used for clinical diagnostics. This results in the loss of information
which is and can only be encoded in the phase of the signal. More information
on phase acquisition can be found in Haacke et al [1].

This paper intends to demonstrate the potential benefit in including the
phase information in segmentation algorithms. Since image processing algo-
rithms have been mainly designed to work on magnitude images, the paper
also presents the corresponding tools that have been developed to extract useful
information from the complex image without the need of phase unwrapping.

2 Method

The images used in this paper where acquired on a Bruker Medspec 4T Whole-
body MRI scanner with a specific knee coil. The acquisition was performed on a
healthy patient with (TR/TE1/TE2 = 45/10/20 ms). The scans are made through
the sagittal plane with a resolution of 0.5859 × 0.5859× 1.5 mm3, and a size of
256 × 256 × 64 pixels, which gives two complex images with two different TE .
Increasing the TE increases the phase difference between the different type of
tissues, but also increases the noise level in the magnitude image. As reminded
by Ghiglia [3], it is important to note that phase is not a signal itself, but a
property of a real signal, and should therefore be processed as such. A complex
3D image I(x, y, z) can be expressed as :

I(x, y, z) = A(x, y, z) × ejϕ(x,y,z), (1)

where A(x, y, z) is the magnitude of the image, and ϕ(x, y, z) the phase of the
image. In areas of low intensity, such as the background, the signal does not
contain enough information to produce an accurate measure of the phase, which
is mainly composed of noise.

Reyes-Aldasoro and Bhalerao [5] presented a method based on texture anal-
ysis to perform 3D segmentation of the bone in MRI. They apply a subband
filtering technique, similar to a Gabor decomposition, in the K-space in order
to extract textural information from the different type of tissues, but this tech-
nique does not take full advantage of the information contained in the phase.
The filter is set to select a region of the spatial and frequency domain. The am-
plitude of the output of the filter measures the signal energy within the selected
region. This means that the output of the filter is strongly dependant on the
local amplitude of the signal, and within the areas of low amplitude, the phase
information will not be taken into account. We first introduced the idea to pro-
cess the phase information separately from the amplitude information, without
phase unwrapping, in the context of image segmentation in digital holography,
where complex images are widely available [6]. Instead of applying a bank of
Gabor on the complex image only, the same filters can be applied to the phase
image after a normalisation step. In order to remove the sensitivity to amplitude
variation, the complex image is divided by the amplitude, to generate a complex
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image Iϕ(x, y, z) of constant amplitude equal to 1, and therefore only composed
of phase information :

Iϕ(x, y, z) =
I(x, y, z)
A(x, y, z)

= ejϕ(x,y,z) = cos(ϕ(x, y, z)) + j.sin(ϕ(x, y, z)). (2)

Iϕ(x, y, z) is a complex image that can be Fourier transformed and then filtered
in order to extract phase information without phase unwrapping. Variations
in the phase induce variations in the frequency of the signal, and therefore,
a frequency analysis performed using Gabor filters on Iϕ(x, y, z) can extract
usefull information about the phase. The same bank of Gabor filters can then be
applied on both the amplitude image A(x, y, z) and the phase image Iϕ(x, y, z),
generating two different sets of features, containing different types of information.

3 Implementation

In 2D, the Gabor filters [7][8] are defined by their impulse response h(x, y) such
that:

h(x, y) = g(x, y)ej2π(Ux+V y), (3)

with:

g(x, y) =
1

2πσxσy
e
− 1

2

[
( x

σx
)2+

(
y

σy

)2
]
, (4)

where h(x, y) is a complex sinusoid of frequency (U, V ) with a Gaussian envelop
g(x, y) of shape defined by (σx, σy). The Fourier transform of h(x, y) is given
by :

H(u, v) = G(u− U, v − V ), (5)

with
G(u, v) = e−2π2σxσy(u2+v2), (6)

the Fourier transform of g(x, y). For our implementation, we used a bank of non
symmetric Gabor filters with 5 scales and 6 orientations as presented in Fig-
ure 3. These parameters were chosen to obtain a good coverage of the frequency
space. Because of the anisotropic nature of the images, most of the textural in-
formation is contained in the sagittal planes, so we opted for a two dimensional
implementation of the Gabor filters. Each magnitude and phase image is Fourier
transformed, and multiplied by each Gabor filter H(u, v) corresponding to the
different scales and orientations. A 3D Gaussian filter is then applied on the
magnitude of the output of each filter to smooth the response across slices. It
is important to preserve rotation invariance, since the knee can be in various
positions, and more or less bent. Therefore, the magnitude of the output of the
filters is summed across all orientations as shown in Figure 4, in order to obtain a
set of features that is rotation invariant. Figure 5 presents the features obtained
from the magnitude and the phase images with TE = 10 ms. For each dataset,
the magnitude of the image is low-pass filtered with the same 3D Gaussian filter
to produce an additional feature for the classifier.
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Fig. 3. Bank of Gabor filters, with the contour representing the half-peak magnitude
of the filter response

Fig. 4. Phase features at scale 5, all 6 orientations are summed together to produce a
rotationally invariant feature

Fig. 5. Magnitude features (top row) and phase features (bottom row). The features
represent a 5 levels decomposition, from low to high frequencies (presented left to right)
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The feature images clearly show how the phase can be used to discriminate
the bone from the other tissues, but are not of much utility for separating bone
from background. On the other hand, the magnitude can discriminate between
the bones and the background, so that the combination of the two sets of features
can be used to effectively segment the bones. The pixels are classified using the
SVM classifier [9]. The implementation relies on SVMLIB [10]. We use an RBF
kernel, with the parameters (C, γ) optimised using a five fold cross validation.

4 Experimental Results and Discussion

A single slice, where the bones have been manually segmented, is used to train
the classifier. In order to test the utility of phase for bone segmentation, the
classifier was trained with three different sets of features :

– The first set of features is composed of the features extracted from the mag-
nitude, and the low-pass filtered magnitude of the image for the two TE

values.
– The second set of features is composed of the features extracted from the

phase, and the low-pass filtered magnitude of the image for the two TE

values.
– The third set of features is composed of the features extracted from the

magnitude and the phase, and the low-pass filtered magnitude of the image
for the two TE values.

Since we are looking at segmenting large objects, a size filter is applied to
the segmented image in order to remove small misclassified volumes. The sensi-
tivity and specificity results after filtering are presented in Table 1. The phase
by itself does not give good results as it produces a lot of misclassification in
the background, since the bone and the background have a similar response.
The magnitude produces better features than the phase, but there are misclas-
sifications around the skin and the ligaments. The combination of the features
extracted from the phase and the magnitude maintains the specificity around
97% but increases the sensitivity to 95%, and leads to a global misclassification
rate of 3.3%. Moreover, only the combination of the features can successfully sep-
arate the four bones present in the image, the two other set of features merging
the patella with the femur, and the fibula with the tibia. Slices of the segmented
images for each type of feature are displayed in Figure 6, along with a 3D view

Table 1. Sensitivity, specificity, and global misclassification rate on the bone segmen-
tation

Magnitude Phase Magnitude and Phase

Sensitivity (%) 90.3 79.9 95.1
Specificity (%) 97.1 96.0 96.9
Misclassification rate (%) 3.8 6.3 3.3
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(a) (b) (c) (d)

Fig. 6. Segmentation results with (a) magnitude, (b) phase, (c) phase and magnitude,
(d) phase and magnitude 3D view

of the segmented bones using the full set of features. On a 2.8GHz PC, with
a C++ implementation of our technique, it took 6 minutes to generate the 22
features, 3 minutes to train the classifier, and 35 minutes to segment the image.

4.1 Discusion

The use of texture to perform segmentations rarely produces results of sufficient
accuracy and robustness for medical image analysis. However, it can be used
to automatically initialise other advanced segmentation algorithm such as active
shape models [11]. Such models are highly dependent upon initialisation, with no
accepted ways to initialise them, especially in 3D. The most promising approach
relies on a registration of the resulting segmentation to an atlas (or statistical
map) which is then used to initialise the active shape models.

To evaluate if the results are accurate enough to initialise a statistical shape
model, the location of the centre of mass is measured for each bone in the
segmented image, and compared to the manually segmented one. The distances
are reported in Table 2. The largest difference is obtained for the patella with 2.8
mm. This difference can be explained by the high level of noise present in this
area, produced by the different type of tissues (ligament, fat, skin) surrounding
the patella which produce a lot of misclassification. Nevertheless, the position is
sufficiently close to be used to initialise an active shape model.

Table 2. Distance to the centre of mass for each type of bone between the manually
segmented mask, and the result of the segmentation using features extracted from the
phase and the magnitude.

Femur Tibia Patella Fibula

Distance (in mm.) 0.69 1.07 2.8 1.72

5 Conclusion

In this paper, we have presented preliminary results on bone segmentation of
the knee articulation using both phase and magnitude information. In most con-
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ventional anatomical imaging, the phase information is acquired, but is usually
not used for diagnostic purposes. The phase image contains extra information
that can be used in image segmentation. Gabor filters can easily extract this
information, which is useful to discriminate bones from surrounding tissues. By
using this technique, the future goal is to provide a complete map of the different
type of tissues in the knee, and more specifically the cartilage, for use in clinical
studies of osteoarthritis.
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Abstract. A novel shape based segmentation approach is proposed by
modifying the external energy component of a deformable model. The
proposed external energy component depends not only on the gray level
of the images but also on the shape information which is obtained from
the signed distance maps of objects in a given data set. The gray level
distribution and the signed distance map of the points inside and outside
the object of interest are accurately estimated by modelling the empir-
ical density function with a linear combination of discrete Gaussians
(LCDG) with positive and negative components. Experimental results
on the segmentation of the kidneys from low-contrast DCE-MRI and on
the segmentation of the ventricles from brain MRI’s show how the ap-
proach is accurate in segmenting 2-D and 3-D data sets. The 2D results
for the kidney segmentation have been validated by a radiologist and
the 3D results of the ventricle segmentation have been validated with a
geometrical phantom.

1 Introduction

Both parametric deformable models and geometrical deformable models (level
sets) are powerful methods and have been used widely for the segmentation
problems; however, they both tend to fail in the case of noise, poor image res-
olution, diffused boundaries or occluded shapes, and they don’t take advantage
of the a priori models. Yet, especially in the area of medical imaging, organs
have well constrained forms within a family of shapes [1]. Thus, additional con-
straints based on the shape of the objects are greatly needed besides the gray
level information of these objects.

To allow shape driven segmentation, Leventon et.al. [2] used a shape prior
whose variance is obtained thorough PCA, and used this shape prior to evolve the
level sets to the maximum a posteriori shape. Chen et al. [3] defined an energy
functional which basically minimizes an Euclidean distance between a given point
and its shape prior. In [4], a representation of the segmenting curve was generated
based on the pose and shape parameters of a training set, which were optimized
using a region based energy functional. In [1,5] a shape prior and its variance
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obtained from training data are used to define a Gaussian distribution, which
is then used in the external energy component of a level sets framework. In
[6], a shape boundary prior was formed from the features of the boundary, and
this boundary was used in a level set framework. Recently, Tsai et.al. [7] used
a deterministic model to represent the desired shape as a linear combination of
weighted signed 2D distance maps and estimated these weights by minimizing a
mutual information based cost function. And Yang et.al. [8] described the shapes
with a multidimensional Gaussian probability model of these weights.

Different from the previous studies, in our approach, instead of directly using
the average image itself, we are estimating the density of the signed distance map
inside and outside the object of interest of the registered training samples by our
modified EM algorithm and use this estimated density in the external energy
component of the proposed deformable model framework. This representation of
shapes is invariant to rotation and translation, and it overcomes the deformable
models’ inability to stop in high noise or in the case of missing edges.

2 Proposed Deformable Models

In conventional deformable models, surfaces move in the direction that minimizes
an energy function given as [9]:

E = Eint + Eext =
∫

τ∈T

(
ξint
(
φ(τ)

)
+ ξext

(
φ(τ)

))
dτ (1)

where ξint
(
φ(τ)

)
and ξext

(
φ(τ)

)
denote the internal and external forces respec-

tively.
Typical external forces designed in [9] lead a deformable model toward edges

in a 2D/3D grayscale image. This and the other traditional external forces (e.g.
based on lines or, edges, or the gradient vector flow) fail to make the deformable
model closely approach an intricate boundary with concavities. Moreover, due
to high computational complexity, the deformable models with such external
energies are slow compared to the other segmentation techniques.

As a solution to these problems, we modify the external energy component of
this energy formulation, and we formulate an energy function using the density
estimations of two distributions: the signed distance map from shape models and
the gray level distribution. The external energy component of our deformable
models is formulated as:

ξext

(
φ(τ)

)
=
{−pg(q|k)ps(d|k) if k = k∗

pg(q|k)ps(d|k) if k �= k∗

In this formulation, k is the region label with k = 1, . . . ,K, q is the gray level
and d is the signed distance where ps(d|k) is the density that describes the signed
distance map inside and outside the object, and pg(q|k) is the density estimation
of the gray level. With this energy function, the stochastic external force for each
control point φ(τ) of the current deformable model evolves in a region k∗.
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Specifically for the examples to be given in section 3, we assume that the
empirical density comes from two classes, i.e. k = 1, 2. For the kidney segmen-
tation problem, these classes are the kidney and the other tissues, and for the
ventricle segmentation, the first class is the gray matter, white matter, fat and
bones; while the second class is the CSF of the brain (inside and outside the
ventricles).

2.1 Shape Model Construction

The signed distance map density ps(d|k) in the above mentioned external energy
is calculated using a shape model, which is basically an average surface shape
obtained from the images in the data set. The steps to construct this average
surface shape is as follows:
1. Align the images in the data set using 2D/3D rigid registration based on

Mutual Information [10].
2. Manually segment the objects of interest from the database.
3. Calculate the 2D/3D edge V that describes the boundary of the object for

all the manually segmented N number of images obtained in Step 2.
4. From the N number of shapes calculated in Step 3, find the average 2D/3D

shape Vm of the object by: Vm = 1
N

∑N
i=1 V i.

5. From the average shape, the distribution of the signed distance map inside
and outside the 3D shape is calculated as follows: (z = 0 for 2D)

d(x, y, z) =

⎧⎨⎩ 0 (x, y, z) ∈ V
S((x, y, z), V ) (x, y, z) ∈ RV

−S((x, y, z), V ) Otherwise
(2)

where Rv is the region lying inside the shape and S((x, y, z), V ) is the mini-
mum Euclidean distance between the image location (x, y, z) and the curve
V . This shape model is constructed only once throughout the whole algo-
rithm.

The results of the average shape and signed distance calculations are shown
for the kidney in Fig. 2, and the density estimation of this average shape is
calculated using our modified EM approach which will be explained in Sec. 2.2.

2.2 Density Estimation

In this paper we will use our modified Expectation-Maximization algorithm that
approximates an empirical probability density function of scalar data with a
linear combination of discrete Gaussians (LCDG) with positive and negative
components.

In the following, we describe this model to estimate the marginal density for
the gray level distribution pg(q) in each region. The same approach is also used
to estimate the density of the signed distances ps(d) in the given image.

Let q ∈ Q = {0, 1, . . . , Q − 1} denote the Q-ary gray level. The discrete
Gaussian (DG) is defined as the discrete probability distribution Ψθ = (ψ(q|θ) :
q ∈ Q) on Q such that ψ(q|θ) = Φθ(q + 0.5) − Φθ(q − 0.5) for q = 1, . . . , Q− 2,
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ψ(0|θ) = Φθ(0.5), ψ(Q − 1|θ) = 1 − Φθ(Q − 1.5) where Φθ(q) is the cumulative
Gaussian (normal) probability function with a shorthand notation θ = (μ, σ2)
for its mean, μ, and variance, σ2.

In contrast to a conventional mixture of Gaussians and/or other simple dis-
tributions, one per region, we closely approximate the empirical gray level dis-
tribution for the given image with a LCDG having Cp positive and Cn negative
components:

pg:w,Θ(q) =
Cp∑
r=1

wp,rψ(q|θp,r) −
Cn∑
l=1

wn,lψ(q|θn,l) (3)

under the obvious restriction on the positive weights w = [wp,., wn,.]:
Cp∑
r=1

wp,r −
Cn∑
l=1

wn,l = 1 (4)

To estimate the parameters for the model shown in Eq. (4), we will use our
modified EM algorithm that modified the conventional EM algorithm to take into
account both positive and negative discrete Gaussian components. The details
of the algorithm are shown in [11].

2.3 Stepwise Deformable Model Algorithm

For any given image, the proposed algorithm of segmenting the region k∗ is as
follows:

1. Register the given image to an average image using Mutual Information [10],
where the average image is obtained by averaging the registered images of
the database of Step 1 in Sec. 2. This step makes the algorithm invariant to
scaling, rotation and translation.

2. Use the modified EM algorithm to estimate the density for signed distance
map ps(d|k) inside and outside the object of interest from the average shape
which was calculated a priori.

3. Calculate the normalized histogram for the given image/volume.
4. Use the modified EM algorithm to estimate the density for each class pg(q|k),

k being the class number k = 1...K.
5. Initialize the control points φ(τ) for the deformable model, and for each

control point φ(τ) on the current deformable model, calculate sign distances
indicating exterior (−) or interior (+) positions of each of the eight nearest
neighbors w.r.t. the contour.

6. Check the label k = X(φ(τ)) for each control point:
(a) If the point is assigned to the region k = k∗, then

i. Estimate the region labels for its neighbors using Bayesian classifier
such that they have the (−) distance.

ii. If some of these sites are also assigned to the class k∗, then move
the control point to the neighboring position ensuring the minimum
total energy (i.e., expand the contour).

iii. Otherwise, do not move this point (the steady state).
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(b) If the point is assigned to the region k �= k∗, then
i. Estimate the region labels for its neighbors using Bayesian classifier

such that they have the (+) distance.
ii. Move the control point to the neighboring position ensuring the min-

imum total energy (i.e. contract the contour)
7. If the iteration adds new control points, use the cubic spline interpolation

of the whole surface and then smooth all its control points with a low pass
filter.

8. Repeat steps 5, 6, and 7 until no positional changes occur in the control
points.

3 Experimental Results

This section presents the results of our approach to segment the kidneys from the
Dynamic Contrast-Enhanced MR images of the abdomen in 2D, and to segment
the brain ventricles from MR images in 3D.

3.1 2D Results for the Kidney

In this study, Dynamic Contrast-Enhanced MRI (DCE-MRI), has been employed
by a Signa Horizon GE 1.5T scanner using a contrast agent Gadolinium DTPA.
In DCE-MRI, after the injection of a contrast agent Gd-DTPA, the abdomen is
scanned rapidly and repeatedly resulting in high noise images because of the fast
image acquisition. Moreover, the contrast of the kidney in the images changes
continuously as the contrast agent perfuses into the kidney, resulting in very low
contrast at some stages of the perfusion, necessitating the use of shape models
in segmentation.

A typical DCE-MRI scan of a kidney is given in Fig. 1(a) with its empir-
ical density (normalized histogram) shown in blue and the estimation of this
density shown in red in Fig. 1(b). Figure 1(c) shows the positive and negative
LCDG components used in our modified EM algorithm, and Fig. 1 (d) shows
the estimated density for each class.

In Fig. 2(a) the average shape of a kidney obtained from 50 subjects is given
with the signed distance map inside and outside the object as in Fig. 2(b). The
density of this signed distance map is estimated with the same density estimation
approach, the results of which are shown in Fig. 2(c), (d).

Finally, Fig. 3 shows the segmentation results of our approach compared to
the segmentations by a radiologist.

3.2 3D Results for the Brain Ventricles

In the following part, we use the proposed segmentation approach on 3D data
sets collected from 20 subjects to segment the lateral ventricles of the brain in
MR images, and in the second part, we are evaluating the segmentation approach
using the cone-beam CT scans of a mould ventricle phantom.
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Fig. 1. A typical MRI scan of a kidney (a), and its gray level density estimation with
the Modified EM Algorithm: (b) LCG components of the density estimation, (c) The
final estimated density pg(q) for the empirical density f(q) of the kidney image, (d)
The marginal density estimation for each class.

(a) (b) (c) (d)

Fig. 2. (a) An average shape for a certain cross-sections of the kidney. (b) The signed
distance map of this shape. (c) Density estimation for the signed distance. (d) Marginal
density estimations for each class.

error = 0.029% error = 0.024%

Fig. 3. Segmentation results (shown in red to the right) w.r.t. the radiologist’s seg-
mentation (to the left).

For ventricle segmentation from MRI, twenty data sets are not enough to
get an accurate shape for the ventricles because the ventricles vibrate during the
MRI or CT scans. Therefore, to cover all the shape variations of the brain ventri-
cles for each subject, we performed finite element analysis on the motion of the
real brain ventricles. For finite element analysis of the ventricle shape changes,
assuming the cerebrospinal fluid (CSF) inside lateral ventricles is isotropic and
linear elastic, we employed the linear elastic mechanical model. The Young’s
modulus of the CSF is 1000 Pascals and the Poisson ratio is 0.499 ([12]). For
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(a) (b) (c) (d)

Fig. 4. The four states of the real ventricles at t=0, 0.7, 0.9, 1.1 seconds (final) from
left to right.

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
p

g
(q)

f(q)

q 
0 50 100 150 200 250

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
p

g
(q|2)

p
g
(q|1)

q 

Distribution of the gray     
levels  of the brain tissues 
(White matter, gray matter,  
 fat and bones)              

Distribution of CSF   
inside the ventricle   

t = 177 

−200 −150 −100 −50 0
0

0.002

0.004

0.006

0.008

0.01

0.012
p

s
(d)

p
s
(d)

d −200 −150 −100 −50 0
0

0.002

0.004

0.006

0.008

0.01

0.012
p

s
(d|2)

p
s
(d|1)

t = 1.2 

d 

(a) (b) (c) (d)

Fig. 5. (a) Final density estimation for the mixed frequency gray level distribution,
(b) The class model of gray level for each class, (c) Final density estimation for the
sign map inside and outside the 3-D brain ventricle, (d) The final class model of signed
distance map for each class.

adults, the pressure of the CSF under normal conditions ranges between 50 and
180 mmH2O with a median pressure of 115 mmH2O. Therefore, the uniform
pressure of 115 mmH2O is applied over the surfaces of the ventricles for each
subject, and finite element analysis is performed to capture the variation of
the ventricles. After finite element analysis, the 3D structure is re-sliced and 10
states of the ventricles are obtained resulting in 20 subjects× 10 states = 200
datasets. The four states of one subject’s ventricles are shown in Fig. 4. Using
the resulting 200 data sets for the ventricles, we followed our density estimation
approach to estimate the density of the gray level distribution and the signed
distance map inside and outside the ventricles. The results of density estimation
using the proposed approach are shown in Fig. 5 and the segmentation results
at different signal to ratios (SNR) (obtained by adding Gaussian noise with
different variance) are shown in Fig. 6.

The hand segmentation of the radiologists may not always be accurate be-
cause of hand shaking. Therefore, to get accurate evaluation of our proposed
approach, we used a mould ventricle phantom that resembles the geometrical
structure of the real ventricles, scanned it with cone-beam CT, and used the
scans for finite element simulation. Following the same procedure of the ven-
tricle motion estimation, we captured all variations of the phantom ventricles.
For the database obtained from the geometrical phantom, the inverse mapping
method was used to get the same gray level distribution with the real ventricles;
the gray level distribution of which was shown in Fig. 5(b). The final step of our
algorithm is to estimate the pdf that describes the signed distance map inside
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(a) (b) (c) (d)

Fig. 6. (a) Results of our segmentation approach at SNR = 28dB, error = 0.01%
(b)at SNR = 7.8dB, error = 0.2% (c)at SNR = -1.9dB, error = 2.8%. (d) Result of
the segmentation errors using the conventional EM algorithm as a density estimator
at SNR = 28dB, error = 18.8%. The errors are shown in red.
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Fig. 7. (a) Final density estimation for the signed distance map inside and outside the
3-D ventricle phantom, (b) The final class model of signed distance map for each class.
Segmentation using our approach at different SNR (c) SNR = 28dB, error = 0.008%,
(d) SNR = −1.9dB, error = 1.76%.

and outside the geometrical phantom; the results of our modified EM algorithm
are shown in Fig. 7. Figure 7 (c – e) show the results of our segmentation for
the geometrical phantom at different signal to noise ratios and the errors are
calculated with respect to the ground truth from the phantom.

4 Conclusion

We have presented an approach for image segmentation which depends on both
the intensity gray level and the shape information, and we have applied the
algorithm on 2D and 3D images. Apart from the other shape based segmenta-
tion methods which calculate the mean and the variance and assume gaussian
distribution, in our method, the mean and variance are all embedded into the
estimated density, which is calculated using our modified EM algorithm. This
algorithm is notably fast, and works both in 2D and 3D.
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Abstract. Preventing complications during hepatic surgery in living-
donor transplantation or in oncologic resections requires a careful preop-
erative analysis of the hepatic venous anatomy. Such an analysis relies
on CT hepatic venography data, which enhances the vascular structure
due to contrast medium injection. However, a 3D investigation of the
enhanced vascular anatomy based on typical computer vision tools is in-
effective because of the large amount of occlusive opacities to be removed.
This paper proposes an automated 3D approach for the segmentation of
the vascular structure in CT hepatic venography, providing the appro-
priate tools for such an investigation. The developed methodology relies
on advanced topological and morphological operators applied in mono-
and multiresolution filtering schemes. It allows to discriminate the opaci-
fied vessels from the bone structures and liver parenchyma regardless of
noise presence or inter-patient variability in contrast medium dispersion.
The proposed approach was demonstrated at different phases of hepatic
perfusion and is currently under extensive validation in clinical routine.

1 Introduction

Liver surgery raises several challenges in terms of preoperative evaluation, both
in the case of living-donor liver transplantation and oncologic resections. The
key issue is to take into account the intrahepatic vessel anatomy specific to each
patient in order to reduce surgical complications and/or planning a resection
strategy [1,2]. The hepatic vascular system is composed of three hierarchical
networks: portal tree, hepatic veins and hepatic arteries. Among them, the por-
tal system defines the functional units of the liver while the hepatic veins are in
charge with liver drainage. Their morphological analysis is thus mandatory at
the preoperative stage in order to define virtual anatomical landmarks, a safety
margin for resection, and the zone impacted by a vessel ligation. CT hepatic
venography provides a vessel investigation modality based on MDCT data acqui-
sition after injection of a contrast agent. The hepatic vasculature is progressively
opacified and the different vascular systems irrigating the liver become visible.
Developing computer vision tools for preoperative planning based on such data
is still an active research area despite major advances in this field. Several vir-
tual/augmented reality systems have been proposed for liver surgery planning,
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(a) Arterial phase. (b) Portal phase. (c) Venous phase.

Fig. 1. Some examples of CT hepatic venography axial images showing a strong noise,
different levels of liver opacifying and vertebra-aorta artifact connections

relying on complex interaction interfaces [3,4,5,6] and different visualization and
segmentation strategies [1,7,8,9]. Note that, solving the liver segmentation prob-
lems, generally requires excellent radiological data which is not always achievable
in clinical routine. Strong noise, different levels of liver opacifying and partial
volume effects resulting in bones-vessels artifact connections on CT images are
the major difficulties to overcome (Fig. 1).

This paper addresses the issue of the automatic 3D segmentation of hepatic
vessels in clinical CT hepatic venography and develops an original approach
based on advanced topological and morphological operators combined in mono-
and multiresolution filtering schemes. The proposed approach was applied to CT
data acquired at different phases of liver perfusion (arterial, portal and venous,
Fig. 1) in order to test its robustness with respect to anatomical variability.

The paper is organized as follows. Section 2 presents the multiresolution
framework on which the segmentation approach relies, and introduces the 3D
morphological operator involved. Section 3 describes and illustrates the devel-
oped segmentation strategy. Results are presented and discussed in Section 4.

2 A Multiresolution Segmentation Framework

In order to overcome the limitations related to the strong noise and to the
variable level of liver opacifying, a multiresolution approach is used for vascular
segmentation. Such an approach relies on a morphological operator, so-called
selective marking and depth constrained connection cost (SMDC-CC).

Defined on functions f : X ⊂ �n → � of connected support supp(f) = X and
upper bounded, on any bounded subset of supp(f), the SMDC-CC affects the
local minima of f according to connectivity and morphometric criteria. While a
complete mathematical definition of SMDC-CC can be found in [10], its intuitive
interpretation will be given in the following. Let us imagine f as the surface of
a relief. A point x ∈ supp(f) is called topographically connected to a subset
Y ⊂ supp(f), if there is a descending path on f leading from x to Y . Computing
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SMDC−CC(f,Y,m)

Y

supp(f)

f

m

(a) 1-D example. (b) 2-D example (f left, SMDC − CC
right).

Fig. 2. SMDC-CC of f with respect to a Y subset, for a given SE size, m

SMDC-CC of f with respect to a non-empty subset Y ⊂ supp(f) will result in
“filling in”, at constant level, all local minima of f topographically disconnected
from Y . The “filling in” level is controlled by the size m of the structuring element
(SE) associated with the SMDC-CC operator. If such a SE is a n-D ball, the
“filling in” depth of a “valley” is given by the level at which the “valley” width
becomes larger than m (Fig. 2).

By adjusting the m parameter, the SMDC-CC can be implemented in a
multiresolution scheme, making it possible to segment structures of interest in a
noisy environment. Such a scheme is visually described in Fig. 3, simulating the
detection of the vascular structure in a liver-like, noisy environment (Fig. 3(a)).
The reference Y subset is defined as the image border. The SMDC-CC is first
applied on the negative data (Fig. 3(b)) with a small-size m to filter out the local
minima corresponding to the noise (Fig. 3(c)). The small-size vasculature is not
affected at this step due to the topographically connection with large caliber
vessels. In a second step, by increasing the m size over the maximum vessel
caliber, the SMDC-CC selects the desired structures (Fig. 3(d)). A histogram-
based thresholding of the SMDC-CC difference (Fig. 3(e)) provides the vessel
segmentation (Fig. 3(f)).

Note that the local maxima in the original data (white areas) which are situ-
ated at boundary and connected to Y (image border) were not segmented. This
property will be useful for designing an additional vessels-bones discrimination
approach in CT hepatic venography data, exploiting the described multiresolu-
tion framework.

3 An Automated Approach for CT Venography
Segmentation

Looking back at the CT images from Fig. 1, we note that the real hepatic venog-
raphy data raise additional challenges for vessel segmentation. Such challenges
are related to the automated discrimination between the opacified vessels and
the bone structures. Since density or morphological criteria are neither accu-
rate nor robust for this purpose, the idea is to filter the original data in order
to achieve the appropriate configuration for a SMDC-CC based segmentation
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(a) (b) (c)

(d) (e) (f)

Fig. 3. SMDC-CC based multiresolution segmentation scheme: (a) original data, (b)
negative data, (c) noise filtering with SMDC-CC of small-size m, (d) vessel selection
with SMDC-CC of large-size m, leaving unaffected the “valleys” connected with the Y

subset (image border), (e) difference (d)-(c), (f) adaptive thresholding of (e)

Filtering and

morphometry

Topographical

adaptation

Multiresolution

segmentation scheme

detection
Body & bones Skin & vertebrae removal

Rib insulation
SMDC−CC based

approach

Fig. 4. Block diagram of the implemented segmentation approach

(Fig. 3(a)). More precisely, after the filtering step, the bones have to become
topographically connected to the Y subset and disconnected from the opacified
vessels. The latter condition need to be checked because of the presence of noise
which, combined with partial volume effects, may produce on CT images an
artifact connectivity between vertebrae and aorta (Fig. 1(b)).

Based on the previous considerations, the developed segmentation scheme
consists of three modules, as illustrated in the block diagram from Fig. 4. The
first module performs a morphological filtering for detecting the body and the
bones, and extracting the parameters involved in the multiresolution segmenta-
tion scheme. The second module provides the topographical adaptation imposed
by the multiresolution framework, by removing the skin and the vertebrae and
insulating the ribs. The third module achieves the segmentation as discussed
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(a) Original axial image, Io. (b) If = CC(Io). (c) Ibone = FH(Bin255
255 If ).

(d) Iskin. (e) Irg = GR(If , Iskin). (f) Iliv = If − Irg.

(g) Inv. (h) Itopo. (i) Iseg = MR(Itopo).

Fig. 5. Stepwise illustration of the 3D segmentation algorithm presented in the Fig. 4
block diagram. The following notations were used: CC - connection cost with respect
to borders, Binb

a - binarization between the thresholds a and b, FH(.) - “fill holes”
operator, GR(I1, I2) - gray-level reconstruction of I1 by I2, and MR - multiresolution
segmentation approach cf. §2.

in §2. The different steps of the segmentation approach are described in the fol-
lowing and illustrated in Fig. 5 at the level of an axial CT image (Fig. 5(a)).

A. Filtering and morphometry
1. The CT data is filtered by means of a connection cost (CC) operator [12]

applied with respect to the volume borders (If , Fig. 5(b)). Such an operator
performs like a SMDC-CC one, with m = ∞. It regularizes the noise, levels up
the local minima and provides the threshold value for body detection.

2. The bone components and the highly opacified vessels are extracted by
binarization followed by a 2D “fill holes” procedure (Ibone, Fig. 5(c)). The max-
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imum axial size of the vertebrae, further denoted by V S, is computed along the
volume data using a 2D distance map on Ibone with respect to the background.
B. Topographical adaptation

3. Based on the distance map computed with respect to the bone structures
outside the body volume, an estimated of the minimal thickness of the skin and
muscle tissues outside the rib cage is computed (Iskin, Fig. 5(d)). The body
“background” (Irg, Fig. 5(e)) is computed by means of a 3D gray-level recon-
struction [11] of If by Iskin. The soft tissue outside the liver is then removed
(Iliv , Fig. 5(f)) by subtracting from the body volume, If , its “background”, Irg.

4. The spine is detected from the bone data, Ibone, and removed from Iliv
in order to prevent any artifact connection with aorta (Inv, Fig. 5(g)). The
procedure is based on 3D morphological opening of size V S/2 (removing the
ribs and the other dense structures from Ibone) followed by a geodesic dilation
with a small-size spherical structuring element (SE).

5. In order to achieve the configuration requested in §2, the ribs and the liver
are insulated with maximum gray-level regions (Itopo, Fig. 5(h)) by means of
3D region growing with a spherical SE of radius V S/2, initiated at the volume
lateral walls.
C. Multiresolution segmentation scheme

6. The multiresolution framework based on the SMDC-CC operator is ap-
plied to Itopo cf. §2 in order to achieve the vessel segmentation (Iseg , Fig. 5(i)).
The reference subset Y is defined as the volume border, while the SE size is
respectively set to m = 2, for noise removal, and to m = V S, for vascular
selection.

4 Results and Discussion

The robustness of the developed vessel segmentation approach was tested on a
CT hepatic venography database acquired in clinical routine in 10 patients at
different phases of liver perfusion. No constraint was imposed on the acquisition
protocol. MDCT data were provided by the Central Radiology Service of Pitié
Salpêtrière Hospital in Paris which used either a Philips Brilliance40 or a General
Electric LightSpeed scanner with collimations of 1.25, 2 and 2.5 millimeters and
half overlapped or joint axial image reconstructions.

The segmentation results obtained on such a database were in good agree-
ment with the analysis performed by an experienced radiologist on the native
CT images. They demonstrate the robustness of the proposed methodology with
respect to the anatomical variability and the liver opacifying degree. Fig. 6 il-
lustrates some examples of 3D segmentation results for four patients at different
perfusion phases. Note that such 3D segmentations must be interpreted with
respect to the progression of the contrast bolus within the target vessels. When
the degree of enhancement of a vessel decreases below some threshold, the ves-
sel appears on the CT images as a collection of low-contrasted and disconnected
small elements. Its components risk to be thus removed together with the overall
noise during the multiresolution SMDC-CC based segmentation (Fig. 3(c)).
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(a) Aorta and hepatic arteries at arte-
rial phase.

(b) Portal and hepatic veins at early
portal phase.

(c) Portal and hepatic veins at late
portal phase.

(d) Portal and hepatic veins at venous
phase.

Fig. 6. Some results of 3D reconstructed hepatic vessels for different patients at differ-
ent CT hepatic perfusion phases

In conclusion, the data acquisition triggering plays an important role in se-
lecting the appropriate vessel enhancement. The analysis of portal and hepatic
veins for preoperative purposes requires CT acquisitions at late portal phase
which ensures the best contrast of such structures. Vessel topological anal-
ysis is possible after the 3D segmentation by means of a central axis-based
description. In this respect, a central axis computation approach for tree-like
structures and the related navigation/interaction tools have already been de-
veloped in the framework of pulmonary airways investigation. Their description
is beyond the scope of this paper, but the interested reader could report to
[13].

5 Conclusion

This paper addressed the issue of 3D segmentation of liver vessels from 3D CT
hepatic venography data acquired in clinical routine with various protocols. It
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developed an original and automated 3D reconstruction methodology based on
topological and morphological operators combined in a multiresolution scheme.
Such an approach made it possible to overcome the limitations raised by the CT
image variability in terms of liver opacifying degree and noise presence. Tested at
different perfusion phases, the developed segmentation methodology is currently
under extensive validation in a clinical framework of liver surgery planning.
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Abstract. Combination of multiple segmentations has recently been introduced
as an effective method to obtain segmentations that are more accurate than any of
the individual input segmentations. This paper introduces a new way to combine
multiple segmentations using a novel shape-based averaging method. Individual
segmentations are combined based on the signed Euclidean distance maps of the
labels in each input segmentation. Compared to label voting, the new combina-
tion method produces smoother, more regular output segmentations and avoids
fragmentation of contiguous structures. Using publicly available segmented hu-
man brain MR images (IBSR database), we perform a quantitative comparison
between shape-based averaging and label voting by combining random segmen-
tations with controlled error magnitudes and known ground truth. Shape-based
averaging generated combined segmentations that were closer to the ground truth
than combinations from label voting for all numbers of input segmentations (up to
ten). The relative advantage of shape-based averaging over voting was larger for
fewer input segmentations, and larger for greater deviations of the input segmen-
tations from the ground truth. We conclude that shape-based averaging improves
the accuracy of combined segmentations, in particular when only a few input
segmentations are available and when the quality of the input segmentations is
low.

1 Introduction

Combination of multiple segmentations has recently been introduced as an effective
method to obtain segmentations that are more accurate than any of the individual input
segmentations [1,2,3,4]. Typically, such algorithms are based on local (i.e., voxel-wise)
decision fusion schemes, such as voting, or on probability-theoretical combination of
Bayesian classifiers that assign likelihoods to the possible output classes [5,6].

For classification of voxels in multi-dimensional images, this paper introduces a new
way to combine multiple segmentations using a novel shape-based averaging method.
Unlike many other classification problems, there is a natural distance relationship be-
tween the voxels of an n-dimensional image. We exploit this relationship to combine
segmentations based on the signed Euclidean distance maps of the labels in each in-
put segmentation. Compared to label voting, the new combination method produces
smoother, more regular output segmentations, and it also produces segmentations that
are closer to the ground truth as measured by the recognition rate.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 838–845, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Our method is related to shape-based interpolation, which was introduced by Raya
& Udupa [7] as a method for the interpolation of binary images. Grevera & Udupa [8]
later extended the method to gray-level images by embedding an n-dimensional gray-
level image into an (n+1)-dimensional binary image space. Our approach is similar in
that we consider images with multiple classes of a segmentation. However, our approach
is different insofar as it combines multiple such images on a common grid into one
image, rather than resamples one image onto a new grid. In this sense, our method is a
shape-based averaging method.

2 Methods

Let L be the number of classes in the segmentation. For simplicity, each class is identi-
fied with a number in the set Λ = {0, . . . , L−1}, where class 0 without loss of general-
ity represents the image background. For K different (input) segmentations of the same
image, let sk(x) ∈ Λ for k = 1, . . . ,K be the class assigned to voxel x in segmenta-
tion k. We are particularly interested in atlas-based segmentations that are generated by
mapping the coordinates of an image onto those of a segmented atlas image. For sk, let
the atlas image be Ak and the transformation Tk, so that

sk : x �→ Ak(Tk(x)) ∈ Λ. (1)

2.1 Shape-Based Averaging of Segmentations

Let dk,l(x) be the signed Euclidean distance of the voxel at x from the nearest surface
voxel with label l in segmentation k. The value of dk,l(x) is negative if x is inside
structure l, positive if x is outside, zero if and only if x is a voxel on the surface of
structure l in segmentation k. Note that in effect, we derive from each of the abstract-
level classifications sk a measurement-level classification dk,∗.

for all x do � Loop over all voxels to initialize data structures
S(x) ← L � Set label to “undecided”
Dmin(x) ← ∞ � Initialize distance map as “far outside”

end for
for l = 0, . . . , L−1 do � Loop over all labels

for all x do � Loop over all voxels
D ←∑

k dk,l(x) � Total signed distances for this voxel and label
if D < Dmin(x) then � Is new distance smaller than current minimum?

S(x) ← l � Update combined label map
Dmin(x) ← D � Update minimum total distance

end if
end for

end for

Fig. 1. Shape-based averaging algorithm. See text for details
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Based on the distance maps of all structures in all input segmentations, we define
the total distance of voxel x from label l as

Dl(x) =
K∑

k=1

dk,l(x). (2)

Note that since the number of segmentations K is constant, the total distance is di-
rectly proportional to the average distance. The combined segmentation S(x) for voxel
x is now determined by minimizing the total distance from the combined label (and,
equivalently, the average distance) as

S(x) = arg min
l∈Λ

Dl(x). (3)

This can be iteratively computed using the algorithm in Fig. 1. Note that at any given
time, due to the incremental nature of our algorithm, it requires space for three distance
maps independent of the number of classes L: 1) the individual distance map dk,l for
the current input segmentation k and class l, 2) the total distance map Dl over all seg-
mentations for class l, and 3) the minimum total distance map Dmin over all classes so
far.

The main computational burden of our method stems from repeatedly computing the
Euclidean distance transformation. We use an efficient algorithm by Maurer et al. [9]
that computes the exact Euclidean distance in linear timeO(N), whereN is the number
of voxels in the image.

Examples of intermediate closest distance maps and corresponding label maps are
illustrated in Fig. 2. For better graphical presentation, the images shown are from a
simpler segmentation problem with a smaller number of less complex structures than
there are in the human brain. As the algorithm iterates over all labels, areas that have
been assigned to a label turn negative in the minimum total distance map (Fig. 2(b)
and 2(c)), representing their location “inside” a structure. When all labels have been
processed, the boundaries between structures are identified by the zero-level set in the
final total distance map (Fig. 2(d)).

2.2 Label Voting

For comparison with our new method, we have implemented a standard segmentation
combination scheme based on label voting. In atlas-based segmentation, labels need to
be computed for non-grid locations in the atlas by interpolation. One interpolation tech-
nique that is applicable to label data and produces better results then nearest neighbor
interpolation (NN) is partial volume (PV) interpolation, introduced by Maes et al. [10]
for histogram generation in entropy-based image registration. Using PV interpolation,
a vector of weights is returned as the classifier output, where each weight represents the
relative share of one label. From these weights, we compute the combined segmenta-
tion for each voxel by sum fusion, i.e., by adding all weight vectors from the individual
segmentations and selecting the class with the highest weight in the sum.

Note that by applying PV interpolation and sum fusion we effectively take advan-
tage of the inherent sub-pixel resolution1 of atlas-based segmentations. Other segmen-

1 NB: sub-pixel resolution does not imply sub-pixel accuracy.



Shape-Based Averaging for Combination of Multiple Segmentations 841

(a) l = 0 (background)

(b) l ≤ 2

(c) l ≤ 11

(d) l ≤ 22 (final)

Fig. 2. Example of evolving minimum total distance maps Dmin(x) (left image in each pair) and
label maps S(x) (right image in each pair). Brighter values in the distance maps correspond to
positive values (i.e., outside of structures), darker values correspond to negative values (i.e., inside
of structures). (a) Image background is canonically treated as an ordinary label. (b) First two non-
background structures. (c) First 11 non-background structures. (d) Final combined segmentation
(22 structures). For illustrative purposes, the images shown in this figure are from a different,
simpler segmentation problem with a smaller number of less complex structures than there are in
the human brain images used for quantitative evaluation in this paper.
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tation methods, most notably manual segmentation, may not require label interpolation,
in which case combination by sum fusion reduces to combination by vote fusion, i.e.,
counting of discrete votes for each label. The same is true for atlas-based segmentation
when nearest (NN) is used instead of PV interpolation.

2.3 Evaluation

For quantitative evaluation of the combination method independent of the performance
of a particular segmentation algorithm, we apply a strategy introduced by Rohlfing et
al. [3]. This method evaluated classifier combination methods in atlas-based segmen-
tation using segmentations with controlled error magnitudes and known ground truth.
Based on the ground truth segmentation of an image, a random segmentation is gen-
erated by applying a nonrigid coordinate transformation of random magnitude. In par-
ticular, we apply B-spline free-form deformations (FFD) [11] with control point posi-
tions perturbed from the identity transformation by adding Gaussian-distributed random
numbers. The choice of the FFD transformation model is motivated by its compact rep-
resentation, as well as by the fact that it is also used in a popular nonrigid registration
algorithm by Rueckert et al. [12].

A set of publicly available expert-segmented human brain MR images (T1-weighted
anatomical images) from ten subjects was obtained from the Internet Brain Segmen-
tation Repository (IBSR; http://www.cma.mgh.harvard.edu/ibsr/). The
corresponding segmentations with 43 anatomical structures provide the ground truths
for the random segmentation evaluation outlined above (since we do not perform an
actual segmentation, the anatomical MR images were not actually used in this study).
All images had the same size, 256×256×128 voxels, with coronal slice orientation. The
in-plane pixel size was either 0.9 mm or 1.0 mm. The slice spacing of all images was
1.5 mm.

For each image in our test set, twenty random segmentations were generated: ten
with a standard deviation of the random perturbation of the FFD control points of σ =
10 mm, and another ten with σ = 20 mm. Note that larger values of σ correspond to
larger magnitudes of the random FFDs, and thus to larger deviations of the random
segmentations from the (undeformed) ground truth.

For each value of σ, we then computed combinations of two through ten of the re-
spective random segmentations at that error level, once using shape-based averaging
and once using label voting. The accuracy of each combined segmentation was then
quantified by computing the recognition rate, i.e., the fraction of correctly labeled vox-
els as compared to the ground truth segmentation.

3 Results

Examples of combined segmentations using shape-based averaging and label voting are
shown as 3-D renderings in Fig. 3. Shape-based averaging produced visually superior
results. In particular, the inherent spatial continuity of the Euclidean distance maps
avoided fragmentation of contiguous structures.

The recognition rates of combined human brain MR segmentations (simulated seg-
mentations) using shape-based averaging and label voting are plotted in Fig. 4. Results
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(a) (b) (c)

Fig. 3. Three-dimensional rendering of the inferior brain surface of the human brain MR data used
for evaluation. (a) Shape-based averaging. (b) Label voting. (c) Ground truth. The renderings (a)
and (b) are the result of averaging the same five simulated segmentations generated with FFD
perturbation σ = 20mm.

(a) σ = 10 mm (b) σ = 20 mm

Fig. 4. Recognition rates of combined segmentations for shape-based averaging and label voting.
(a) Input segmentations generated using random FFD with σ = 10mm. (b) Input segmentations
generated using random FFD with σ = 20mm. In both graphs, the columns represent the mean
recognition rates over ten subjects. The error bars represent the respective standard deviations.
The dashed lines show the averaged recognition rates of the individual segmentations used as
inputs for the combination methods.

using random deformations with σ = 10 mm are shown in Fig. 4(a), results using
σ = 20 mm in Fig. 4(b).

Both segmentation combination methods generated outputs closer to the ground
truth the more input segmentations were provided to them. Between the two combi-
nation methods, shape-based averaging clearly outperformed label voting in all cases.
The relative advantage of shape-based averaging was larger for smaller numbers of in-
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put segmentations, and it was larger for greater deviations of the input segmentations
from the ground truth (σ = 20 mm). The recognition rate of the combined segmen-
tation using shape-based averaging improved consistently with added input segmenta-
tions, while label voting benefited less from even numbers of inputs than it did from
odd numbers.

Note that combination of two segmentations by voting is not entirely reasonable
as there is no way to decide the winning label in cases of disagreement. Therefore,
the combined classification will fail wherever the two input segmentations disagree.
As a result, the combination of only two segmentations by label voting has a worse
recognition rate than the individual segmentations. Similarly, even numbers of input
segmentations in general increase the likelihood of equal numbers of votes for more
than one label in label voting. Neither is the case for shape-based averaging, which
clearly improves recognition rates even for only two input segmentations, because each
segmentation assigns a weight to every voxel based on its distance from the nearest
structure boundary.

4 Discussion

This paper has introduced a method for shape-based averaging that can be applied to
combine multiple segmentations of the same image. In a quantitative evaluation study
using simulated segmentations, which makes it independent of the performance of any
particular segmentation algorithm, we have demonstrated the superiority of our method
to label voting. Applied to identical input segmentations, shape-based averaging gen-
erated combined segmentations that were substantially closer to the ground truth than
those generated by label voting. The improvement achieved by shape-based averaging
was larger for smaller number of input segmentations, and larger for input segmenta-
tions that deviate more from the ground truth.

While evaluation using randomly deformed ground truth segmentations borrows
from concepts of atlas-based segmentations, our method is straight forward to apply
to segmentations generated by arbitrary labeling methods. It works on as few as two
segmentations, whereas label voting requires at least three and is prone to undecided
voxels for small numbers of segmentations. These properties make our method poten-
tially interesting for combination of multiple manual segmentations, where the number
of available segmentations is typically small.

A potentially useful extension of our method is to use robust averaging rather than
the arithmetic means of the individual distance functions as in the present paper (Eq. 3).
This may improve the combination results in the presence of outliers, and ultimately
also provide an effective way to address the problem of diversity [13] among the input
segmentations.
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Abstract. Analysis of CT datasets is commonly time consuming be-
cause of the required manual interaction. We present a novel and fast
automatic initialization algorithm to detect the carotid arteries providing
a fully automated approach of the segmentation and centerline detection.
First, the volume of interest (VOI) is estimated using a shoulder land-
mark. The carotid arteries are subsequently detected in axial slices of the
VOI by applying a circular Hough transform. To select carotid arteries
related signals in the Hough space, a 3-D, direction dependent hierarchi-
cal clustering is used. To allow a successful detection for a wide range
of vessel diameters, a feedback architecture was introduced. The algo-
rithm was designed and optimized using a training set of 20 patients and
subsequently evaluated using 31 test datasets. The detection algorithm,
including VOI estimation, correctly detects 88% of the carotid arteries.
Even though not all carotid arteries have been correctly detected, the
results are very promising.

1 Introduction

CT angiography images an anatomical region as a 3D volume. The axial source
images can be used for visual inspection and to grade the severity of stenosis.
However, this is a tedious job and it does not make full use of the advantages
of 3D visualization. The 3D volume representation offers several post processing
techniques such as Curved Planar Reformation (CPR) [1] to ease the evalua-
tion of the artery. CPR resamples the dataset such that the centerline of an
artery becomes a straight line. In current visualization workstations centerlines
are not detected automatically, and user interaction is required to position sev-
eral points inside the vessel [e.g. Vessel View; Siemens, Forchheim, Germany].
Several segmentation techniques and centerline detection algorithms can be used
to segment the carotid arteries and detect their centerline [2,3,4,5]. However, all
of these techniques need to be initialized manually by the specification of the
start and end points of the artery segment.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 846–853, 2005.
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Here we present an Automatic iNITialization Algorithm (AnitA) to select the
carotid arteries providing a fully automated approach of the segmentation of the
carotid arteries and the detection of its centerline. This algorithm excludes any
user interaction and therefore reduces the time required for the analysis of carotid
arteries. The algorithm is designed to position a single initialization point in the
common carotid arteries. This point can then be used by common segmentation
algorithms, such as a wave front propagation segmentation algorithm [6]. Usually
a full examination of the carotid arteries using CT images takes approximately
30 to 45 minutes. It is expected that a full automatic segmentation can reduce
this time to 5 to 10 minutes.

There are only a few papers known that are concerned with the fully auto-
matic detection of arteries. Cline et al. [7] have developed a method to auto-
matically segment the coronary vessel tree with mathematical morphology op-
erations. Lorenz [8] describes a heuristic approach for delineation of the cardiac
volume, which includes the automatic detection of the descending aorta. Both
methods are heuristic methods for different vessels and therefore not suitable to
adapt to carotid artery detection.

To our knowledge no literature has been published that describes a fast and
fully automated segmentation of a peripheral vessel (segment) in 3D datasets.
Here we present a fast initialization algorithm that allows the fully automatic
start of a the segmentation of the carotid arteries, which may be generally ap-
plicable to other vessels.

2 Methods

AnitA consist of two main steps. Because the lower part of the neck is best suited
to detect the common carotid arteries, this area, or volume of interest (VOI) is
estimated first. In the second step the common carotid arteries are detected in
the VOI and the initialization point is selected for each carotid artery.

To automatically determine the VOI it is desirable to make use of distinct
image features, or landmarks. A distinct (spatial) feature in CT images is the
(vertical) position of the shoulders, which is close to the common carotid arteries.
The shoulders are detected in Maximum Intensity Projections (MIPs) of the
dataset on the coronal plane (xz-plane). The detection process starts at two
positions: 6 cm left and right of the center of the MIP (figure 1). The closests
pixels with bone intensities below these starting points are considered to be the
shoulder landmark.

The VOI boundaries can be estimated based upon this position. First the
VOI boundaries are manually determined in the training datasets. From the
distances between these positions in single datasets, a general relation between
VOI boundaries and landmarks is determined.

Because the common carotid arteries have a tubular shape and run near
vertically, their appearance in horizontal slices approximates circles. The carotid
arteries are detected in a number of steps, which are described below. First, small
size contributions are removed by smoothing the image using a convolution with
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Fig. 1. Landmark detection starts next to
the center of the MIP, and is then directed
downwards

Fig. 2. Maxima (white dots) in a slice af-
ter thresholding Hough space (top), max-
ima reduced by threshold of values in
corresponding position in original image
(middle), and a second reduction by clus-
tering and replacing the cluster with its
center of gravity (bottom)

a Gaussian. In order to detect circles in the images, we need to extract the
contour of the carotid arteries. Edges are detected by using a combination of the
gradient magnitude and the Laplacian of the image in horizontal slices. Edges
that are typical for the carotid arteries are selected by thresholding the gradient
magnitude, excluding edges that are too sharp or too soft. The edge image
is subsequently used to detect potential center points of the carotid arteries
using the circular Hough transform. The Hough transform can be expressed as
a convolution operation, using a circle with a radius r as the kernel:

H = E ⊗ KCircle (1)

KCircle =
{

1, iff m2 + n2 = r2

0, otherwise (2)

with H the Hough response, E the binary edge image, and KCircle the circle
kernel. The pixels that are most likely to be center points of a circle appear as
maxima in the output image of the convolution operation. In order to be able
to detect circles for a range of radii in one convolution operation, the kernel can
be shaped like an annulus:

KAnnulus =
{

1, iff r2
min < m2 + n2 < r2

max

0, otherwise (3)



Automatic Initialization Algorithm for Carotid Artery Segmentation 849

with KAnnulus the annulus kernel, and rmin and rmax the minimum and maxi-
mum radius of the annulus [9]. To remove the contributions that are not related
to the carotid arteries, only the local maxima are selected that have an intensity
of at least 90% of the maximum intensity (figure 2). To reduce the number of
maxima even further, the intensity in the original image at the corresponding
positions is used to discard maxima that do not have an intensity value that
is typical for contrast-enhanced blood. Because in a single slice multiple max-
ima per carotid artery are found, the number of maxima is finally reduced by
clustering these maxima per slice. This can reduce the number of maxima per
carotid artery to one, in a single slice. The clustering technique also reduces the
number of non-carotid related maxima.

The procedure described above, produces a 3D volume with center points
that are potentially related to the carotid arteries. To distinguish the carotid
artery center points from other objects, we can make use of knowledge on the
tubular shape and the running of the carotid arteries. This near vertical running
of the common carotid arteries results in little deviation in horizontal position
in subsequent axial slices. To exploit this anatomical property, a 3D clustering
is applied in which a point is added to a cluster if the distance to the cluster
is not larger than a given direction dependent distance. The distance between a
cluster and a point is defined as the minimum distance between the point and
any other point of the cluster and is calculated as

d =
√
x2 + y2 + (α · z)2, with 0 < α < 1 (4)

where α allows for larger deviation in the z-direction and consequently puts
restrictions on the horizontal distance in the clustering. The two clusters con-
taining the most Hough maxima are considered to contain the center points of
the left and right common carotid artery.

A self test was introduced to value the results from the detection process
based upon the number of center points per cluster. If the number of center
points in one of the clusters was below a threshold, the detection process can be
repeated using a different value for the annulus kernel. After the second run, the
self test is used again to determine if the smaller radius range annulus provides
a satisfying detection.

Finally, from each cluster the point with the highest intensity in Hough space
is selected as the final initialization point.

3 Results

The estimation of the VOI and the detection of carotids were initially developed
using a dataset of 20 patients. For the testing of the algorithm data from another
31 patients were used. This test set consisted of datas from 29 successive patients
from one clinic, and two other datasets from two different clinics.

The shoulder landmarks were detected correctly on all test datasets. The
VOI detector was constructed by comparing the data from the VOIs determined
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manually and the using the landmarks. The VOI detector based on the shoulder
was constructed as follows:

V OIupper = zshoulder + dV u (5)

V OIlower = zshoulder − dV l (6)

with zshoulder the position of the shoulder landmark in the VOI, and dV u and
dV l the average distance between upper and lower VOI boundaries and shoulder
landmark. Table 1 and figure 3 show the results of the VOI estimation.

Because the carotid artery must be detected in a number of subsequent slices,
the VOI does not have to be estimated perfectly accurate. However, it is impor-
tant that the common carotid arteries are present in the bulk of the slices of
the VOI. Therefore the VOIs are evaluated on the basis of the percentage of
the slices in which the common carotid arteries are present. Taken the carotid
artery detection in consideration, the VOI detection is considered successful if
the common carotid arteries are present in at least 70% of the slices. For all
steps of the carotid artery detection in the VOI, initially a range of values was
used for each parameter to inspect which values gave the best performance. Be-
cause the optimal values of some parameters are dependent on the settings of
other parameters, continuous tuning of the values of all parameters was done
while developing the algorithm. Final values for all parameters can be found in
Table 2.

On average the Hough transform resulted in 50 maxima for each slice. After
removing contributions that do not have typical values for contrast enhanced
blood in the original image in corresponding positions, on average 40 maxima

Table 1. VOI estimation results

Number of test datasets

Total number of datasets tested 31
100% common carotid arteries present in slices 23
≥ 70% common carotid arteries present in slices 30
≥ 50% common carotid arteries present in slices 31

Table 2. Values of parameters for carotid arteries detection

Standard deviation Gaussian for smoothing 1.8 mm
Zero crossing margin in edge detector 10 HU/mm2

Maximum gradient magnitude in edge detector 860 HU/mm
Minimum gradient magnitude in edge detector 172 HU/mm
Maximum clustering distance in 2D in maxima reduction 5.8 mm
Maximum cluster distance in 3D 5.8 mm
Factor to allow large cluster distance in z-direction α 0.001
First Hough transform annulus kernel radius-range 3.5 mm < r < 4.5 mm
Second Hough transform annulus kernel radius-range 2.5 mm < r < 3.5 mm
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were present in each slice. After the reduction using the 2D clustering only 10
maxima were present on average in each slice. For the evaluation of the pre-
sented method, the carotid artery detection was performed on the test dataset.
The algorithm provided 50 initialization points (25 datasets) that were consid-
ered accurate according to the self evaluation test. Of these 25 datasets, 16 were
detected during the initial run and in 9 datasets the carotid arteries were de-
tected in the second run. In 6 datasets, the self evaluation test decided that no
accurate carotid artery detection was performed. Subsequently, the results of all
test datasets were inspected visually. Initialization points that were classified as
successful by the self test and proved to be correct by visual inspection were
labeled true positive, see table 3. All true positive points were usable as initial-
ization points according to expert opinion. In the training set all datasets were
classified as successful by the self test. In the first run 37 initialization points
were correctly positioned, after a second run, on three datasets, 39 initialization
points were positioned correctly in total, resulting in a true positive percentage

Table 3. Results from carotid artery detection in estimated VOIs in test datasets

True positive 91%
True negative 67%
Unsuccessful datasets after re-run 21%

Table 4. Total numbers of correct and uncorrect detected initialization points in train-
ing and test sets

# Correct init. points # False init. points Percentage

Training set (20 datasets) 39 1 97.5%
Test set (31 datasets) 51 11 82.3%
Total (51 datasets) 90 12 88.2%

Fig. 3. Two VOI estimations, shoulder
landmark in solid line, estimated VOI in
dotted lines, manually selected VOI in
dashed lines

Fig. 4. Slab based MIPs of two VOIs,
showing all center points found in the two
largest clusters. They are positioned in-
side the carotid arteries.
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of 97.5%. Table 4 shows the total numbers of correct and incorrect initialization
points according to expert opinion. Figure 4 shows the detected centerpoints of
the carotid arteries in slab based MIPs.

The average time necessary to detect the starting points in the datasets,
including the time needed to read the data from hard disk is 120 sec. with a
standard deviation of 20 sec., on a Pentium IV 2.5Ghz processor, with 1 GB of
memory.

4 Discussion

We have presented a full automatic approach of detection the carotid arteries in
CTA datasets using a VOI estimation and a Hough space based carotid artery
detection. The shoulder landmark was detected correctly in all datasets, resulting
in accurate VOI estimations using the average distance of shoulder and VOI
boundaries.

While testing for the optimal radius for the Hough transform, most carotid
arteries were detected using a radius of approximately 4 mm. In some datasets
4 mm was too large and a radius of around 3 mm gave correct results. It was
not possible to detect carotid arteries using a Hough annulus kernel with a ra-
dius range that included both radii, because too many contributions from other
structures in the Hough space were present. This was solved by introducing a
feedback architecture using the self test allowing two runs with a different radius
range. The self test was also used to grade the performance of the carotid artery
detection. Currently this use of the test results in too many false negatives. Im-
provement of the self test is expected by incorporating a more advanced analysis
of the shape and position of the cluster and anatomical knowledge.

The carotid artery detection was unsuccessful for a few datasets, because
the intensity of the maxima related to the carotid arteries was smaller than
required. Careful inspection of the various steps indicated that this can happen
when parts of the contour are not detected. In some datasets the carotid arteries
were detected, but in too few slices, resulting in a rejection by the self test
classifier. Another cause for failure was the strong variation in the density of
contrast material in CT images. In these cases, the intensities in other arteries
and veins was significantly higher than was observed in the training set. As
a result of this, in one dataset a jugular vein was detected instead of carotid
arteries in the test set. It is expected that a full automatic segmentation can
reduce analysis time of a single dataset from 30-45 minutes to 5-10 minutes. It
has been shown that AnitA can detect the carotid arteries on average in 88%,
therefore this approach can reduce the analysis time by a factor 3 on average.

5 Conclusions

Currently, a significant amount of time in the evaluation of arteries in CTA
images is concerned with the manual interaction for the centerline detection.
We have presented a novel approach for the full automatic detection of the
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carotid arteries. The implementation of such an automated detection results in
a significant reduction of analysis time of the carotid arteries in CT-images.

The combination of the VOI estimator based on the shoulder landmark and a
carotid artery detection based on a circular Hough transform and a hierarchical
clustering algorithm has been proved to be successful on 31 test datasets. In
97% the VOI detection is correct, and in 88% the carotid artery detection in the
estimated VOIs is correct. Even though not all carotid artery detections were
successful, the results are very promising.
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Abstract. We propose a novel anatomical labeling algorithm for
bronchial branches extracted from CT images. This method utilizes mul-
tiple branching models for anatomical labeling. In the actual labeling
process, the method selects the best candidate models at each branching
point. Also a special labeling procedure is proposed for the right up-
per lobe. As an application of the automated nomenclature of bronchial
branches, we utilized anatomical labeling results for assisting biopsy
planning. When a user inputs a target point around suspicious regions on
the display of a virtual bronchoscopy (VB) system, the path to the de-
sired position is displayed as a sequence of anatomical names of branches.
We applied the proposed method to 25 cases of CT images. The label-
ing accuracy was about 90%. Also the paths to desired positions were
generated by using anatomical names in VB.

1 Introduction

Recent progress in 3-D medical imaging devices has enabled us to measure very
precise volumetric data of the human body. Since these imaging devices output
a lot of images, development of CAD systems is strongly expected to reduce
medical doctors’ load and to enable more accurate diagnosis. The bronchus is
a very important organ in diagnosis of the lung. In the lung area, it is possible
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to define dominant bronchial branches in each segmental lobe or subsegmental
area. Bronchial branches connected to lesions are investigated when diagnosing
diseases of the lung. Anatomical names of bronchial branches are systematically
assigned based on branching patterns. When a medical doctor reviews chest CT
images, bronchial branches connected to lesions are identified and their anatom-
ical names are reported. In bronchoscopic examinations, such as transbronchial
lung biopsy (TBLB), medical doctors identify appropriate paths for biopsy us-
ing the anatomical names on the paths. Automated nomenclature is one of the
indispensable functions required in the CAD systems for the lung.

There are only a few reports on automated anatomical labeling of bronchial
branches extracted from CT images [1,2,3]. Mori et al. proposed an automated
anatomical labeling method where they prepared a branching model contain-
ing anatomical names before the labeling process[1]. This model consists of a
set of information of each branch, such as running direction, anatomical name,
parent branch name, child branch name. Graph representations of the bronchial
branches were obtained by applying a thinning method to the bronchus regions.
Automated nomenclature (anatomical labeling) process was sequentially per-
formed from the center to the peripheral side by selecting the best fit branch
from the model. However, this model is unable to handle variations in branching
patterns. Kitaoka et al. proposed an automated labeling method using a graph
matching algorithm[2]. It is still difficult to deal with branching pattern varia-
tions. The report from Ema et al. proposed a labeling method using multiple
models of bronchial branches[3]. They divided the bronchus into four parts and
prepared multiple models for each part. For each part, the best model was se-
lected by calculating the evaluation values of fitting and actual labeling was then
performed. However, since the model was selected by averaging the differences of
the running directions between the models To solve these problems, we propose
a new anatomical labeling algorithm that selects the best candidate models at
each branching point in Section 2. Also a special labeling procedure is proposed
from the right upper lobe. As an application of the automated nomenclature
of bronchial branches, we utilize anatomical labeling results for assisting TBLB
path planning in Section 4. When a user inputs a target point around suspicious
regions on the display of a virtual bronchoscopy (VB) system[4], the path to the
desired position is displayed as a sequence of anatomical names of branches. This
function will greatly help a bronchoscopist. Experimental results and discussion
are described in Sections 5 and 6.

2 Bronchial Branch Model

The bronchial model is a graph representation that shows the branching patterns
of the bronchial branches in each lobe in the lung (RU: right upper lobe, RL:
right middle and lower lobes, LU: left upper lobe, and LL: left lower lobe) (Fig.
1). The q-th model, Mp

q , for the lobe p is a set of attributions of branches vi.
The i-th branch has the following attribute information, Ei: branch number i,
anatomical name Ni, pointer to parent branch ti, running direction di, pointer
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Trachea and Main Bronchi

RU (Right Upper Lobe)

RL (Right Middle and
Lower Lobes)

LU
(Left Upper Lobe)

LL (Left Lower Lobe)

Fig. 1. Division of bronchial trees. A
bronchial tree is divided into four lobes:
RU, RL, LU, and LL.

Mp
q = {Ei}

p : Part No. (p = 0, …, 3)
q : Model No. (q = 0, …, n)
Ei : Set of branch attributions for branch vi

(i = # of branches included in Mp
q

Attribution Ei = {i, Ni, N
p

i, di, ci}

i : Branch No. (=i)
Ni : Anatomical name
ti : Parent branch No.
di : Running direction
tj

i : Child branch No. (j = 1,..., ci)
ui : Number of child branches
si : Start position of branch
ei : End position of branch

Ei

Ei

Ei

The q-th model for the p-th path Mp
q = {Ei}

Fig. 2. Branch model structure

to child branches uj
i (j = 1, . . . , ci), number of child branches ci, start point si,

and end point ei (Fig. 2). These models are prepared for each lobe (RU (p = 0),
RL (p = 1), LU (p = 2), and LL (p = 3)) by using hand-labeled bronchial
branches extracted from multiple cases of CT images.

3 Automated Anatomical Labeling

The actual processing procedure consists of four parts: (a) extraction of bronchial
regions and bronchial trees from CT image, (b) labeling of trachea and main
bronchi, (c) labeling of the RU, and (d) labeling of remaining lobes (RL, LU, and
LL). Bronchus regions and tree structres are extracted by using tree structure
tracing algorithm presented in [5].

3.1 Labeling for RU

Temporal Labeling. Let B be the child branch of the right upper lobe
bronchus (a child branch of the right main bronchus) and a model in the RU
M0

q is associated with B. A labeling process is sequentially performed from B to
the peripheral branches by using model M0

q prepared for the RU and is saved as
the temporal labeling results. Let B′ be a branch in model M0

q that has the same
anatomical name as B. Model M0

q is then rotated around the start point, B′, so
that the running direction of B′ corresponds to that of B. For all possible com-
binations of one-to-one correspondence between the child branches of B and B′,
the sum of the inner products of running directions of the corresponding pairs is
calculated. The combination that produces the minimum sum is considered as
the best combination and then copy the anatomical name of B′ to B and process
child branches of B using a breadth-first search. Finally, the labeling results are
obtained whose number is equal to the number of the models prepared for RU.
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Model Selection. Using temporal labeling results, inappropriate models are
removed from candidate models for the RU. First, three vectors are calculated
that start from B and direct to the ends of the branches labeled as Rt.B1, Rt.B2,
and Rt.B3 using model M0

q . These vectors are denoted as U1, U2, and U3. Also
vectors are calculated on model M0

q as V1, V2, and V3 in the same way. If
any of the inner products V1 · U1, V2 · U2, or V3 · U3 is smaller than a given
threshold value, the model M0

q is removed from the RU model candidates. This
process is iterated for all models prepared for the RU.

Final Labeling. The labeling process is performed by using the remaining
models. For each model, the model is deformed so that the model fits to the input
tree structure and an average deformation angle is calculated. The final labeling
is performed using the model whose average deformation angle is the smallest
among the models. Anatomical names of the deformed model are assigned to
the branches of the input tree structure [3].

3.2 Labeling for Remaining Parts

For each child branch of the main bronchi (except for the upper lobe bronchus,
i.e. p = 1, . . . , 3), the following steps are performed (Fig. 3).

1. An anatomical name is assigned to a child branch of a main bronchus (right
or left main bronchus) and let it be O. The branch O and all candidate
models associated with O are stored (for example, if O is left upper lobe
bronchus, we associate all models of LU with O.) into a FIFO (first in first
out) queue.

2. Branch O and a set of models, MO, associated with O are retrieved from
the queue. If the queue is empty, the process is terminated.

3. If O does not have a child branch, return to Step 2. Otherwise, branches ofO′
i

are searched for whose anatomical names equal O’s anatomical name in each
model Mp

i contained in model set MO. If the number of child branches of O
and O′

i differs, the model Mp
i is removed from model set MO. The removed

model is not used for anatomical labeling of the descendant branches of O′
i.

4. Similarity is calculated between the descendent branches of O and each
model Mp

i of model set MO. First, Mp
i is rotated around the start point

of O′
i so that the running direction of O′

i equal the running direction of O.
For all of possible combinations of one-to-one correspondence between child
branches of O and O′

i, the sum of the inner products of the running direc-
tions of corresponding pairs is calculated. This sum of the inner products is
considered similar between model Mp

i and the input tree structure.
5. From model set MO, the model, Mp

s , that has the smallest sum is selected
and assigned the anatomical names of the child branches O′

s to the child
branch of O.

6. The child branch names of O′
i and O′

s are compared for each model Mp
i of

model set MO. If there is no branch, whose anatomical name is equal to that
of O′

s, in the child branches of O′
i, model Mp

i is removed from MO.
7. The child branches of O and the model set MO are stored into the queue.
8. Return to Step 2.
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Fig. 3. Illustration of model selection

RU

B1

B2

B3

U1

U2

U3

RU

B1B2

B3

V2

V3

V1

Temporal labeling results
on input tree structure

Model Mp
0

Fig. 4. Illustration of vectors U1,
U2,U3, V1, V2, and V3

4 Path Generation for Biopsy Planning

We integrated the proposed labeling system into the VB system for assisting
path planning for TBLB. A physician inputs a desired location on MPR (multi
planner reconstruction) images or volume rendering images as end point pe.
The start point is set as the start point of the trachea and a branch that is the
closest to point pe is located. In the tree structure of the bronchial branches
extracted from CT images, each branch has the information of their path. The
path is represented as a set of voxels. By finding the closest point to the specified
point, it is possible to select the closest branch. Once the anatomical name of
the selected branch is obtained, traverse up the tree structure up to the trachea.
Anatomical names of branches existing on the traversed path are displayed on
the VB views. Automated fly-through to the desired position is also possible
with displaying the anatomical names of the branches on the path.

5 Experiments and Results

We applied the proposed method to bronchial branches extracted from twenty-
five cases of chest CT images. For each case, a medical doctor assigned anatomi-
cal names to all of the branches. Bronchial branch models were constructed from

(c) Previous method (d) Proposed method(b) Input tree structure(a) Bronchus regions

Fig. 5. An example of partial view of bronchus region extracted from CT images (a),
its tree structure (b), labeling results using previous (c) and proposed methods (d).
Green characters mean correct labeling and red characters mean wrong labeling.
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Fig. 6. Labeling results using proposed and previous [3] methods. Anatomical names
surrounded by boxes show incorrect labeling.
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Fig. 7. Number of branches and labeling accuracy at each branching level

24 cases excluding the labeling target case (leave-out-method). We generated six
models for the RU, eight models for RL, five models for LU, and six models for
LL. We measured labeling accuracy of the proposed and previous methods. Im-
age acquisition parameters of the CT images were: 512 × 512 pixels, 141 – 401
slices, 0.625 – 0.723 mm in pixel spacing, 1.0 – 2.5 mm in slice spacing, and
1.25 – 2.5 mm of X-ray collimation. All labeling results were evaluated by a
medical doctor. Figure 5 shows an example of a partial view of the bronchus re-
gion extracted from CT images, its tree structure, and the labeling results using
the proposed and previous methods. Table 1 lists the labeling accuracy at each
part up to the segmental regions. We successfully assigned correct anatomical
names to 799 out of the 888 branches using the proposed method, while 754
branches were assigned using the previous method. The proposed method was
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Fig. 8. Path generation for TBLB planning on VB. Anatomical names on the path are
displayed on left side of VB view.

able to perform nomenclature on 90% of the branches extracted from CT images.
Examples of anatomical labeling are shown in Fig. 6. Also we measured labeling
accuracy at each branching level. Figure 7 shows the number of branches and
the correct labeling rate.

We integrated the proposed labeling system into the VB system and tested
automated path generation for TBLB path planning. Examples are presented
in Fig. 8. In this figure, a user specifies suspicious shadows on slice images
by a mouse click. The system automatically generated paths to the specified
points and also displayed the paths by using anatomical names of the bronchial
branches. These anatomical names are displayed on the left side of a VB view.

6 Discussion

From the results listed in Table 1, it is clear that the proposed method sig-
nificantly improved labeling accuracy in comparison with the previous method.
This is because the proposed method selected the appropriate models as branch-
ing level progressed. Also, the special model selection procedure for the RU
contributed to increase labeling accuracy. Incorrect labeling was prevented by
checking dominant regions of the Rt.B1, Rt.B2, and Rt.B3 branches. In the la-
beling result of Case 11, the bronchus bifurcates in the order of Rt.B6, Rt.B7,
Rt.B8, Rt.B9, Rt.B10. The previous method selected the model having Rt.B∗

branch and assigned the wrong names after Rt.B7. The reason for the model
mis-selection was the branching pattern and the running directions of branches
after Rt.B6 were very close to the input tree structure in the mis-selected model.
The proposed method successfully assigned correct names to these branches
because the method selected the best models branch by branch and removed
inappropriate models from the model set. The special model selection technique
worked well in Case 19, as shown in Fig. 6. In this case, the previous method
selected the wrong model that assigned the name Rt.B(1+2) to branch Rt.B1.
However, in the proposed method, this model was removed by comparing the
running directions of Rt.B1, Rt.B2, and Rt.B3 of the model and those of the
labeled tree.
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Table 1. Labeling accuracy in segmental level

Part Number of branches Previous method[3] Proposed method
Trachea and main bronchi 75 75 (100%) 75 (100%)

RU 124 106 (82.5%) 110 (88.7%)
RL 322 268 (83.2%) 291 (90.4%)
LU 183 159 (86.9%) 165 (90.2%)
LL 184 146 (79.3%) 158 (85.9%)

Total 888 754 (84.9%) 799 (90.0%)

The path for TBLB was automatically generated and described using a set
of anatomical names in the proposed method. Also, a user was able to perform
fly-through or automated fly-thorough checking anatomical names. Since acces-
sibility to suspicious regions is discussed by using anatomical names of bronchial
branches connected to it, it is very useful for medical doctors to see paths by
their anatomical names. The automated anatomical labeling system proposed in
this paper enabled us to implement function that makes VB systems intelligent.

This paper presented a novel anatomical labeling algorithm for bronchial
branches extracted from CT images using multiple branching pattern models.
The method presented here is another step towards createing truly intelligent
computer aided diagnosis syetm. Annotations displayed on CT images will much
assist a medical doctor to read images. Future work includes testing more cases,
and improving model selection and removal.
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Abstract. Image segmentation algorithms derived from spectral clus-
tering analysis rely on the eigenvectors of the Laplacian of a weighted
graph obtained from the image. The NCut criterion was previously used
for image segmentation in supervised manner. We derive a new strategy
for unsupervised image segmentation. This article describes an initial in-
vestigation to determine the suitability of such segmentation techniques
for ultrasound images. The extension of the NCut technique to the unsu-
pervised clustering is first described. The novel segmentation algorithm is
then performed on simulated ultrasound images. Tests are also performed
on abdominal and fetal images with the segmentation results compared
to manual segmentation. Comparisons with the classical NCut algorithm
are also presented. Finally, segmentation results on other types of medi-
cal images are shown.

1 Introduction

Successful segmentation techniques can be used in a variety of clinical applica-
tions. In clinical practise, ultrasound images are often segmented manually, but
manual techniques can be laborious. More sophisticated techniques are needed.
Various methods have been previously proposed. For instance, active contours
have been used [1]. Kalman filters are proposed in [2] to improve the segmen-
tation of organ cavities in ultrasound. A statistical shape model is reported for
aiding prostate segmentation [3].

However, most of these methods require intensive human interaction. Spec-
tral methods for data clustering have received increasing attention for practical
applications in other fields [4]. The spectral methods usually involve taking the
top eigenvectors of a matrix constructed from a similarity metric (such as the
distance between points) and using them to cluster the various points [5]. Im-
age segmentation can be described as a clustering problem where pixels are the
measured data points. For example, Shi and Malik [6] combine spectral clus-
tering and image segmentation. Nevertheless, two important issues need to be
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addressed within this context. First is the determination of the number of clus-
ters to be obtained (supervised vs unsupervised clustering). The second aspect
to be considered is execution time. For real images, the matrix for which the
eigenvectors should be computed is large (n2 × n2 for an image of n × n pix-
els). Therefore efficiency is necessary for practical implementations. We focus on
the first issue, introducing an unsupervised algorithm. Moreover, using a simple
windowing principle, the introduced algorithm has reasonable execution times.

In this paper we show the effectiveness of this novel approach for ultrasound
image segmentation. We present validation results on both simulated ultrasound
and patient data. Manual segmentation of images by two independent radiolo-
gists is the gold standard used to quantify the success of our method. Com-
parison with a classical related segmentation method - NCut - is also provided.
Additionally, we present examples of segmentation results from other imaging
modalities.

2 Method

The NCut technique can be applied directly to the ultrasound image, but good
results in MRI are reported for a combination of NCut with an anisotropic
diffusion filter [7]. Therefore, an anisotropic filter is first applied.

Spectral Clustering and Some Previous Results on Image Segmenta-
tion. Spectral methods for image segmentation use the eigenvectors and eigen-
values of a matrix derived from the pairwise affinities of pixels. These eigenvec-
tors induce an embedding of the pixels in a low-dimensional subspace wherein a
simple central clustering method can be used to do the final partitioning. Here
the partitioning is based on the Normalized Cut (NCut) [6]. Some mathematical
notations are first introduced. Let I be the original image of size N × N . The
symmetric matrix S ∈ RN2×N2

denotes the weighted adjacency matrix for a
graph G = (V,E) with nodes V representing pixels and edges E whose weights
capture the pairwise affinities between pixels. Let A and B represent a biparti-
tion of V , i.e. A ∪B = V and A ∩B = ∅. Let cut(A, B) denote the sum of the
weights between A and B: cut(A, B) =

∑
i∈A,j∈B Sij . The degree of the ith node

is defined as di =
∑

j Sij . The total connection from nodes in the set A to all
nodes in the graph is denoted by assoc(A, V ) =

∑
i∈A,j∈V Sij . The normalized

cut between sets A and B is then given by:

NCut(A, B) =
cut(A, B)
assoc(A, V )

+
cut(A, B)
assoc(B, V )

. (1)

The problem is to find A and B such that NCut(A, B) is minimized. Using
elements of spectral graph theory, it is shown [6] that an approximate solution
may be obtained by thresholding the eigenvector (called the Fiedler vector)
corresponding to the second eigenvalue λ2 of the generalized eigenvalue problem:
(D − S)y = λDy, where D is a diagonal matrix with entries Dii = di. Image
segmentation is reduced to the problem of partitioning the set V into disjoint
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sets V1,..,Vn, such that similarity among nodes in Vi is high and similarity across
Vi and Vj is low. Here we define the similarity function between two pixels i and
j as:

Sij =

{
1− ||F (i)−F (j)||2

maxF−minF

||X(i)−X(j)||2 if ||X(i) −X(j)||2 < r

0 otherwise

}
(2)

where X(i) is the spatial location of node i, and F (i) is a feature vector, based
on intensity. The values maxF and minF are respectively the maximum and the
minimum values of F for the all the pixels in the image. Finally, the similarity
matrix S is normalized by S = S/max(S) as proposed by [8]. A requirement
of NCut is the number of clusters. Overcoming this problem is a challenging
task. Unsupervised clustering, based solely on Fiedler eigenvector is a potential
solution. In the unsupervised clustering, the user does not need to explicitly
specify the number of clusters. More details follow.

Fiedler Eigenvector for Unsupervised Image Segmentation. Instead of
minimizing the NCut function (as suggested by [6]), a property of the Fiedler
vector is used. Let each pixel be Ij , j = 1, ..., N2. Given the image pixels P =
(I1, .., IN2) and the Fiedler vector V = (v1, .., vN2), we consider the permutation
℘ = (i1, .., iN2) that sorts the vector V : vi1 ≤ .. ≤ viN2 . By applying ℘ to the
pixel vector P , the vector (Ii1 , .., IiN2 ) is obtained. It satisfies the property that
∃j1, .., jk with ∀p, jp ≤ l ≤ jp+1 : S(Il, Il−1) < ε, where S is the similarity
function defined in equation (2). This property provides a way to cluster the
original image according to the given similarity metric.

In its new form the vector components are grouped in compact blocks which
represent the clusters. It becomes clear that the problem of clustering the initial
matrix data is reduced to the problem of determining the sequences of maximum
length having similar values in the vector obtained from the Fiedler eigenvector.
The pseudocode of the introduced unsupervised segmentation technique is listed
in Algorithm 1.

Calculating the eigenvectors for the Laplacian resulting from the whole image
is computationally expensive. Therefore a grid is used to divide the whole image
into smaller windows. We then apply the clustering algorithm to each of these
smaller windows. A global criterion is used to regroup the cluster obtained in
every grid cell. There is still no need to know or estimate the number of clusters,
K, in advance.

The introduced algorithm requires three parameters to be specified. The first
parameter (DifPixels) specifies the maximum difference between two pixels to
consider them as belonging to the same cluster. This parameter could be deter-
mined for specific applications using a priori information about the image con-
tent. However, for our experiments we used the same value for all examples with
good results. The second parameter (DifClusters) is the threshold value when
two clusters are grouped together during windowing. It can also be customized
for a particular application, but is kept constant in the images presented in this
paper. Both parameters are present in the majority of the standard segmenta-
tion algorithms since one needs to specify when two pixels are similar enough to
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Algorithmus 1 Unsupervised clustering of a matrix
Require: image I having the size N × N
Ensure: the number of clusters K and the clusters C1, ..., CK

1: Build the similarity matrix S, and the diagonal matrix of node degrees D
2: S = S/max(S)
3: Solve the generalized eigenvector problem (D − S)y = λDy
4: Consider λ2 the second smallest eigenvalue and v2 its corresponding vector
5: Consider the permutation ℘ = (i1, .., iN2) sorting v2

6: Apply ℘ to the image pixels (I1, .., IN2). Obtain I ′ = (I ′
1, .., I

′
N2)

7: K = 1; CK = I ′
1

8: i=2;
9: while i ≤ N2 do

10: if I ′
i cannot be added to CK then

11: K = K + 1
12: end if
13: Add I ′

i to CK

14: i=i+1
15: end while

be grouped in the same region. The third parameter is the window size and is
also kept constant. We have also noticed that there are small differences in the
clustering results when using different values for the window size. More details
follow in the Results section.

3 Results

Five simulated ultrasound images of circular objects were created with the Field
II program [9]. Various levels of Gaussian additive noise have been used.

Two different metrics are used to compute the error between the boundary
of the segmented region and the known object: Hausdorff and the mean error.
Although theoretically attractive, the Hausdorff metric is very sensitive to noise
in practice.

Abdominal images were also obtained in vivo for patients exhibiting cysts
in the liver. The cysts have varying degrees of visibility so are more difficult to
segment. Five images were used (see Fig. 1).

The clustering techniques are also used to segment the amniotic fluid present
in five images of the fetus. Clinical applications of the segmentation include
the diagnosis and quantification of hydramnios or oligohydramnios (see Fig. 2).
An example of an ultrasound image segmentation obtained during a prostate
brachytherapy procedure is shown in Fig. 3. Finally results of this technique on
other imaging modalities, such as CT and microscopic images are illustrated in
the Fig. 4. The Hausdorff and mean errors were calculated between the radiolo-
gist and NCut, and the radiologist and NCut-Unsupervised.

For the liver images, a second radiologist performed manual segmentation so
a comparison can be made between the results with each radiologist. For all tests,
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(a) (b) (c) (d) (e) (f)

Fig. 1. Liver cyst image. (a) Original image of a liver with a visible cyst. (b) The man-
ually drawn contour of the cyst. (c) Segmentation using NCUT (9 clusters). (d) The
contour of the selected cluster corresponding to the cyst. (e) Segmentation using our un-
supervised technique. (f) The contour of the selected cluster corresponding to the cyst.

(a) (b) (c)

Fig. 2. Fetus images. (a) An original image of a fetus. (b) Segmentation using NCut.
(c) Segmentation using our unsupervised technique. The segmentation closely reflects
the underlying anatomy.

(a) (b) (c)

Fig. 3. Bladder image (a) Original image. (b) Segmentation with NCut. (c) Segmen-
tation with our unsupervised method.

the NCut and NCut-Unsupervised were implemented in Matlab (The Mathworks
Inc., Natick, MA, USA). For NCut, the number of clusters was selected manually
for each image to get the best segmentation. For NCut-Unsupervised, there was
no need to specify the number of clusters. The parameters used for the algorithm
had the same values for all the images in the experiments. The values used in the
tests are DifPixels=5, DifClusters=20 and window size=15 pixels. The computa-
tion time of the Matlab implementation of both NCut and NCut-Unsupervised
is approximately 30 seconds on an image of 150× 150. The results in all cases is
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(a) (b) (c) (d)

Fig. 4. (a) Original cancer stain image. (b) Segmentation with our method. (c) CT
slice. (d) its segmentation. The segmentation closely reflects the underlying anatomy.

Table 1. Simulated ultrasound images. The errors between the segmented object and
the true object are calculated using the Hausdorff metric and the mean differences.

Image True object vs NCut True object vs NCut-Unsupervised
Hausdorff Mean Hausdorff Mean

(mm) (mm) (mm) (mm)
1 3.5 2.2 4.0 2.0
2 3.6 1.3 3.8 1.5
3 3.7 1.2 3.2 1.4
4 3.5 1.4 3.3 1.2
5 2.7 1.9 2.2 1.3

Average 3.4 1.6 3.3 1.5

Table 2. Liver cyst images. The errors between NCut-Unsupervised and a manually
segmented contour of the cyst are calculated using the Hausdorff metric and the mean
differences. The manually segmented contours were drawn by radiologist Rad.1 or
Rad.2

Image Hausdorff Error Mean Error Hausdorff Error Mean Error
Rad.1 vs NCut-Uns. Rad.1 vs NCut-Uns. Rad.2 vs NCut-Uns. Rad.2 vs NCut-Uns.

(mm) (mm) (mm) (mm)
1 6.5 2.6 6.0 2.4
2 2.3 1.2 2.0 1.1
3 1.7 0.8 2.5 1.1
4 2.5 1.2 2.4 1.0
5 1.2 0.5 1.6 0.7

Average 2.8 1.3 2.9 1.3

a partitioning of the image into a set of regions. The clinical user then can select
the segmented region of interest and subsequently calculate geometric proper-
ties (dimensions, shape, area, volume), build anatomical models, or other types
of analysis. For this work, the boundaries of the segmented regions are com-
pared. Numerical results are presented in the Tables 1, 2 and 3. Performance
estimates for the segmentation of liver cyst image presented in the Fig. 1 were
also obtained using STAPLE [10]. Overall accuracy of the segmentation, summa-
rized as the probability for any voxel that the true segmentation label matched
the rater segmentation, was 0.981 (Fig. 1 (b)), 0.965 (Fig. 1 (d)) and 0.989
(Fig. 1 (e)).
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Table 3. Fetus images. The errors between NCut, NCut-Unsupervised and a manually
segmented contour of the amniotic fluid are calculated using the Hausdorff metric and
the mean differences.

Image Manual vs NCut Manual vs NCut-Unsupervised
Hausdorff Mean Hausdorff Mean

1 6.4 2.8 6.0 2.2
2 5.5 2.9 5.7 3.2
3 5.1 3.2 3.8 3.1
4 5.5 3.0 5.2 2.9
5 4.5 2.2 4.7 1.7

Average 5.4 2.8 5.3 2.6

4 Discussion

The simulations show a good match between the spectral clusters and the true
object. Small differences along the boundary are likely due to the noise and
speckle in the images. There is no significant difference between the NCut and
the NCut-Unsupervised techniques (at the 95% confidence level using the paired
student t-test). This gives confidence that the changes to the algorithm to make
it unsupervised have not caused a drop in accuracy. For the tests on the liver
cysts, there was also no significant difference between the following: 1. errors be-
tween NCut and manual segmentation and 2. the errors between the two manual
segmentations (95% confidence level, using the paired t-test). Nor was there a sig-
nificant difference between the following: 1. errors between NCut-Unsupervised
and manual segmentation and 2. the errors between the two manual segmenta-
tions (again with same confidence, 95% using the paired t-test). In other words,
the results from either NCut or NCut-unsupervised were within the variation of
the two radiologists.

For the tests on the amniotic fluid segmentation, there was also no signifi-
cant difference between the NCut and theNCut-Unsupervised techniques when
compared to the manual segmentation results ( 95% confidence level, paired t-
test). With NCut-Unsupervised, the fluid and the fetus were clearly partitioned
into separate clusters. On the other hand, as previously mentioned, the clusters
obtained with standard NCut tend to have the same size, so the amniotic fluid
was occasionally split in two clusters, and manually combined by clicking both
regions.

All of the tests were done without changing the three parameters of the
method. The images of the partitioned regions also show the limitations of a
spectral clustering approach. Clearly not all separate tissue types are partitioned
into separate regions. The objects of interest in this study were partitioned the
easiest because they exhibited the most homogeneous properties. For example,
the liver cyst forms a single cluster, but the rest of the liver is formed from four
more clusters. Some of the liver clusters are also shared with non-liver tissue.
Clearly the liver could not be completely segmented with the current partition.
So far, the method appears to work well for fluid-filled cavities and vessels.



Spectral Clustering Algorithms for Ultrasound Image Segmentation 869

To perform other segmentation tasks, a more sophisticated similarity crite-
rion may be needed. Additional features, such as texture could be added to the
similarity criterion. This may slow the creation of the similarity matrix, but the
rest of the algorithm will proceed without change. The main conclusion is that
automatic unsupervised spectral clustering on ultrasound images is feasible. The
spectral clustering technique is promising, and future research will focus on the
development of new similarity criteria, the addition of other a priori information,
and further improvements to speed.
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Abstract. Curves are often used as anatomical features to match sur-
faces that represent biological objects, such as the human brain. Auto-
mated and semi-automated methods for extracting these curves usually
rely on local properties of the surfaces such as the mean surface curva-
ture without considering the global appearance of the curves themselves.
These methods may require additional human intervention, and some-
times produce erroneous results. In this paper, we present an algorithm
that is based on the fast marching method (FMM) to extract weighted
geodesic curves. Instead of directly using the local image properties as a
weight function, we use the surface properties, together with the global
properties of the curves, to compute a weight function. This weight func-
tion is then used by the FMM to extract curves between given points.
The general framework can be used to extract curves with different global
properties. The resulting curves are guaranteed to be weighted geodesic
curves without cusps usually introduced by intermediate points through
which the curves are forced to pass. We show some results on both a
simulated image and a highly convoluted human brain cortical surface.

1 Introduction

The problem of finding curve features in an image arises in many computer vi-
sion and medical image analysis applications. In particular, curves representing
anatomical features can be used to match brain surfaces [1, 2, 3]. The curves
of sulcal fundi can be viewed as crestlines [5], sulcal roots [4], or as weighted
geodesic curves [3,6], where the weight is usually computed from the local prop-
erties (e.g., mean curvature) of the surface [3, 6, 7, 8].

In literature, there have been some methods on how such weighted geodesic
curves can be obtained. In [8], finding sulcal fundal curves is formulated as an

� This work was done at Johns Hopkins University.
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c

Fig. 1. Left: A human cortical surface. Right: A flattened map [9] of the surface with
mean surface curvature of the region around the pre-central sulcus (yellow curve).

optimization problem, which is solved by using a dynamic programming method.
The resulting curve is restricted to travel along the edges of the surface, there-
fore depends on the parameterization of the surface and suffers from metric
distortion. More recently, an algorithm based on the FMM has been reported to
extract curves of sulcal fundi [3, 6]. In the algorithm, the weight is set to be a
function of local “valley-ness”. A FMM is used to compute the weighted distance
between any points on the surface to a given origin. A weighted geodesic curve
can be constructed by following the negative gradient directions. One of the ad-
vantages of this algorithm is that it treats the surface as a continuum; therefore,
the resulting curves are not restricted to triangle edges and are independent of
the surface parameterization.

A problem with both of the above methods is that there is little control over
the global properties of the curves. The method may fail in complicated geome-
tries such as the human cortical surface. As an example, consider the situation
shown in Fig. 1. When we use a weight function computed from only mean sur-
face curvature to extract the pre-central sulcal curve between a and b, we will
get the upper curve instead. Because the weight function is computed locally,
points in the neighborhood of c introduce large cost to curves passing them be-
cause they have small mean curvature values. Previously, people circumvented
this problem by manually picking intermediate points to force the curve to go
over the interruption, such as point c shown in Fig. 1. This solution, however, is
practical only with additional human intervention.

In order to address the above problem, we develop a novel algorithm based
on the FMM to extract weighted geodesic curves that have desired global prop-
erties. The method uses the desired properties of the curve to compute a weight
function, which is then used to extract the curve.

2 Weighted Geodesic Curves

Background. In this section, the problem of finding geodesic curves is stated
in 2D Cartesian space, but generalization to surfaces is straightforward with
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the FMM on triangulated meshes. For a 2D image domain Ω = [0, 1] × [0, 1]
and a positive weight function w(x) : Ω → �+, we define the cost for a curve
c(t) : [0, 1] → Ω as Φ(c) =

∫ 1
0 w(c(t))|c′(t)|dt.

If two points a = (ax, ay),b = (bx, by) ∈ Ω are given, the problem of finding
the curve connecting a and b that minimizes the above cost can be expressed
as the following optimization problem:

min Φ(c) =
∫ 1

0
w(c(t))|c′(t)|dt, s.t. c(0) = a, and c(1) = b. (1)

By convention, we define F (x) = 1/w(x) as a speed function. The solution to
Equation (1) can be obtained by first solving the Eikonal equation for T (x):

‖∇T (x)‖ = F (x) = 1/w(x), with T (a) = 0, for x ∈ Ω, (2)

then following the negative gradient directions of the function T (x) starting from
b until reaching a. The Eikonal equation can be solved efficiently using the fast
marching method [10]. If the weight function w(x) ≡ 1, the cost Φ(c) is the
length of the curve. The solution to Equation (1) is a geodesic curve on the
surface.

Curves with Global Properties. For the purpose of clarity, the global property
is set to be the intensity profile along the curve segment connecting two given
points. Generalization to other properties is straightforward.

Given an image I : Ω −→ R and two points, a and b, we want to find a curve
c(t) = [x(t), y(t)] ⊂ Ω with c(0) = a, c(1) = b, such that the intensity values
of the image along the curve resemble a given function g(t) in the least square
sense. This problem can be written as the following optimization problem:

min E [x(t), y(t)] =
∫ 1
0 [I(x(t), y(t)) − g(t)]2

√
x′2(t) + y′2(t)dt, (3)

s.t. x(0) = ax, y(0) = ay, x(1) = bx and y(1) = by.

When g(t) is not a constant, the cost function also depends on the parame-
terization of the curve c(t), which means that the same curve with different
parameterizations will have different costs. One way to circumvent this difficulty
is to impose a constant parameterization constraint on the curve c(t), which can
be stated as |c′(t)| = L with L being the unknown length of the curve. Since L
is unknown, |c′(t)| = L cannot be used directly. Instead, we use an equivalent
constraint in differential form: d

dt |c′(t)| = 0 ⇔ x′(t)x′′(t) + y′(t)y′′(t) = 0.
By doing this, Equation (3) is modified to the following form:

min E [x(t), y(t)] =
∫ 1

0
[I(x(t), y(t)) − g(t)]2

√
x′2(t) + y′2(t)dt (4)

and satisfy the initial and final conditions: x(0) = ax, y(0) = ay, x(1) =
bx, and y(1) = by, and the second order differential equation: x′(t)x′′(t) +
y′(t)y′′(t) = 0. This is a Lagrange problem with optimality condition given by
Mayer Equations [11], which is a system of nonlinear partial differential equations
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of order four. Directly solving the problem is difficult. Later, we describe a two-
step algorithm to first find a speed function using these global properties, and
then extract the weighted geodesic curves using the speed function.

In the above discussion, we assume g(t) is determinant and known. Sometime,
we can only estimate the statistical distribution of g(t) from a set of training
data. For simplicity, we assume that for fixed t, g(t) follows a Gaussian distribu-
tion and for t1 �= t2, g(t1) and g(t2) are independent. The point-wise mean and
variation of g(t) are μg(t) and σ2

g(t). If we want to find a curve c(t) = (x(t), y(t)),
such that I(x(t), y(t)) has large probability according to the statistical properties
of g(t), the problem in Equation (3) can be written as:

min E [x(t), y(t)] =
∫ 1
0

[
I(x(t),y(t))−μg(t)

σg(t)

]2√
x′2(t) + y′2(t)dt, (5)

s.t. c(0) = (ax, ay), c(1) = (bx, by), and x′(t)x′′(t) + y′(t)y′′(t) = 0.

Again, directly solving the above problem will involve a system of 4th order
nonlinear partial differential equations. In the following, we develop an algorithm
to find a solution to Equation (5), which we refer to as a statistical geodesic curve.
We will use speed function F (x) instead of the weight function w(x).

3 Finding Statistical Geodesic Curves

Suppose a curve c0(t) is the solution to the problem (5). It minimizes the cost
function E(c) and must be a weighted geodesic curve under a properly chosen
speed function. Since the speed function uniquely determines the curve when the
end points are specified, problem (5) is equivalent to finding the proper speed
function. When the speed function is obtained, the curve can be extracted as a
weighted geodesic curve using the method described before.

Now, suppose in addition to the point-wise statistics of g(t), we also know
that the length of the curve connecting a and b, ", follows a Gaussian distri-
bution that is independent of g(t). The probability density function is fL(") =
1/

√
2πσL exp

{−("− μL)2/2σ2
L

}
. The probability density function of the inten-

sity value along the curve is fG(g; t) = 1√
2πσ2

g(t)
exp
{
− (g−μg(t))2

2σ2
g(t)

}
.

We use these probability density functions to find the proper speed function
(see Fig. 2 for an illustration). For an image I, on which the end points a and b
are given, the speed function in the image domain is initialized to be an arbitrary
constant. Then an iterative algorithm is applied to successively larger regions
surrounding a, until the regions cover the entire image domain. At each iteration,
for every point p [Fig. 2(c)] in the region being processed, a tentative curve,
cap(t), is reconstructed connecting a and p using the current speed function.
The length of cap(t) and the intensity along cap(t) are compared to those of the
appropriate segment of the desired curve between a and b. This step results in
a measure of how good cap(t) resembles the corresponding part of the desired
curve cab(t). We use this measure to update the speed value at p.

When we update the weight at p, we assume that p is on the final optimal
curve [dotted curve in Fig. 2(c)] and compute the ratio τ = "ap/", where " is the
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Fig. 2. Demonstration of the iterative algorithm for finding the speed function

curve length of cab(t). By assumption, " follows a Gaussian distribution with
mean μL and variance σ2

L. The probability distribution of τ is:

fT (τ |" ≥ "ap) =
dFT (τ |" ≥ "ap)

dτ

∣∣∣∣
τ=τ

=
1
Z

"ap

τ2
√

2πσ2
L

exp

{
− ("ap/τ − μL)2

2σ2
L

}
,

(6)
where Z =

∫∞
�ap

fL(s)ds is a normalization factor. With the distribution of τ , we

compute the distribution of the intensity at p, f(g) =
∫ 1
0 fG(g; τ)fT (τ)dτ :

f(g) =
"ap

2πZσL

∫ 1

0

1
τ2σg(τ)

exp

{
− (g − μg(τ))2

2σ2
g(τ)

− ("ap/τ − μL)2

2σ2
L

}
dτ. (7)

The speed value at p is updated as:

F (p) =
∫ I(p)+δ

I(p)−δ

f(g)dg, (8)

where I(p) is the image intensity at p and δ is a parameter. To summarize, the
algorithm proceeds as follows.

Step 0. Initialize the speed function to be an arbitrary positive constant F0;
Step 1. For each point p ∈ N a

k = {p : p ∈ Ω, (k − 1)R ≤ ‖p − a‖ < kR},
perform steps 2 and 3.

Step 2. Reconstruct a tentative curve cap(t) using speed function F (k−1)(x).
Step 3. Update the speed function at point p using Equations (6)–(8).
Step 4. Increase k by 1 and go to Step 1.

The above process proceeds until the speed function at every point x ∈ Ω has
been updated. We use the speed function at the final iteration to reconstruct a
weighted geodesic curve between a and b. The image intensity at every point
along the resulting curve resembles that presented in the training datasets.

There are two parameters in the algorithm. The first parameter, R, controls
the size of the region whose speed function is updated at each iteration. With
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large R, we need fewer iterations to cover the entire image domain Ω, and there-
fore need less computation time. But we will also get less accurate results, since
at each iteration, the updating of the speed function for two points p,q ∈ N a

k

may depend not only on the speed function already updated for N a
j , j < k, but

also on the speed values of each other. In practice, we choose R to be the pixel
size of the image. The parameter δ controls how restrict we are on the intensity
at a given point. If δ is large, we allow a point with a wide range of intensity to
have relatively large speed value. An extreme is when δ tends to ∞, F (p) = 1,
no matter what I(p) is. The resulting curve is a true geodesic curve. If δ is small,
we require the resulting curve to have an intensity profile very close to the mean
intensity profile presented in the training datasets.

4 Results

In this section, we describe two experimental results of finding the curves con-
necting two given points with global properties on the intensity profile of the
curve. The first experiment is on a simulated image. And the second one is a
segment of the pre-central sulcus on a highly convoluted cortical surface.

A simulated example. The simulated image is a gray level image with some bright
structures (Fig. 3 left). In the image we specified the end points of the desired
curve. If the speed function is set to be the intensity value, the resulting curve
will run through regions with high intensity values as much as possible. This
is the upper curve in the figure. If instead, the lower curve is desired, without
constraints on the global appearance of the curve, we need to specify some
intermediate points (circles in the figure). The intensity profile along the desired
curve is shown in the right plot of Fig. 3. If we use this intensity as g(t) to solve
problem (3), we get the speed function shown in the left image of Fig. 4. By
using the FMM with this speed function and the usual curve tracking technique,
we get the curve as shown in the right image of Fig. 4.

A curve of sulcal fundi on a cortical surface. In this experiment, we computed the
point-wise statistics of the surface mean curvature along a segment of the curve
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Fig. 3. Left: A simulated image. Right: The intensity profile along the lower curve in
the left image.
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Fig. 4. Left: Speed functions at different iterations. The small crosses are the interme-
diate points picked in order to get the desired curve. Right: Statistical geodesic curve
(thick curve) extracted from two given end points. The thin curve is reconstructed with
manually picked intermediate points and the intensity alone as the speed function.

Pre-Central Central

Statistical geodesic curve

using both surface properties

and desired curve properties

Weighted geodesic

curve using only

surface properties

Fig. 5. A statistical geodesic curve on a cortical surface (left), the curve mapped onto
the unit sphere with the computed speed function (right, for visualization only)

of pre-central sulcus, and used this information to extract a statistical geodesic
curve between two given points on a cortical surface. We used a training set of
30 subjects to estimate the distributions of the length of the sulcal curve and
the mean curvature profile along the curve. In the training set, each sulcal curve
is extracted using a semi-automatic method with point correspondence built by
constant speed parameterization. The results are shown in Fig. 5. When only
the mean curvature of the surface is used to extract the curve, we get a segment
that connects the pre-central sulcus to the central sulcus (right curve in the
figures) because of the structures connecting these two sulci have large local
“valley-ness” measure. If we use the statistical information, we are able to get
the desired curve representing the part of the pre-central sulcus.
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5 Conclusions and Discussion

In this paper, we presented an algorithm to extract curves as weighted geodesics
using the FMM. The speed function for FMM is computed using both the surface
properties and the global properties of the curves. The algorithm can be easily
extended to incorporate different global properties.

There are several advantages of the proposed method. The first advantage is
automation. The proposed method allows us to extract the curves from only the
most distinctive points, which are relatively easy to be automatically located,
while manually picked intermediate points do not necessarily have clear features
to facilitate automatic localization. The second advantage is that the entire curve
extracted as a statistical geodesic curve is always a weighted geodesic curve
under the speed function computed, while curve obtained using manually picked
intermediate points consists of pieces of weighted geodesic curve segments, and
any intermediate point is a cusp of the curve, where the tangent vector is not
continuous.

Future work includes investigation on the optimality of the speed function
with given constraints. Although the iterative algorithm presented in this paper
solves the problem of finding weighted geodesic curves that satisfies given global
constraints, it is not known what the optimal speed is for given properties of
the curves. A theoretical understanding of the optimality condition of the speed
function, as well as the optimality condition in problem (4) is also needed. An-
other topic of interest is to use other properties of partically reconstructed curve
segments, such as curve shape, as the global properties for curve reconstruction.
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Abstract. This paper presents an algorithm for determining regional
cerebral grey matter cortical thickness from magnetic resonance scans.
In particular, the modification of a gradient-based edge detector into an
iso-grey-level boundary detector for reliably determining the low-contrast
grey-white matter interface is described and discussed. The reproducibil-
ity of the algorithm over 31 gyral regions is assessed using repeat scans
of four subjects, and a technique for correcting the misplacement of the
grey-white matter boundary is shown to significantly reduce the system-
atic error on the reproducibility.

1 Introduction

The determination and characterisation of human cerebral cortical grey matter
thickness has enormous potential use in the assessment of the severity and pro-
gression of pathology and of the processes of normal brain ageing. Grey matter
(GM) volume loss is seen throughout adulthood to old age [1] and increased
cortical thinning relative to control subjects has been implicated in various de-
generative diseases, such as Alzheimer’s disease [2], and Multiple Sclerosis [3].

The highly convoluted folding of the cortex provides two challenges to the
estimation of thickness. The first is the problem of measuring a thickness of
a curved structure, the second is the determination of the boundaries of the
GM ribbon, particularly when the opposing banks of two cortical folds are suf-
ficiently close that there is no intervening cerebro-spinal fluid (CSF) or white
matter (WM). Assuming that the boundaries of the GM ribbon have been ac-
curately segmented in 3D, there are various measures of distance between the
two surfaces that might be employed. First, if an active shape model algorithm
using correspondences (eg. [4]) has been used to create the surfaces, the distance
between the corresponding points on the two surfaces can be taken. However,
anatomical homology within a group of subjects will not be precise. Alterna-
tively, the minimum distance or distance along the surface normal between a
given point on one surface to the opposing surface can be used. Of these two
methods, the minimum distance will always produce a shorter average cortical
thickness than the surface normal method [4].

Segmentation of the GM from the underlying WM and enveloping CSF on
MR images requires knowledge of the expected grey-level intensity values for
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(a) (b)

Fig. 1. Example axial inversion-recovery image (a) and corresponding grey-level inten-
sity histogram (b) showing, from left to right, peaks for the CSF, GM and WM

these tissues. The segmentation used must also be able to detect tissue partial vo-
luming and appropriate boundaries should be located under such circumstances.
Through-plane magnetic field inhomogeneities should also not be ignored [5].
In addition, the contrast between the tissues needs to be sufficient in order to
define their boundaries. Demyelination of WM axons, due to ageing and disease
processes will result in the WM appearing more like the non-myelinated GM,
making accurate boundary detection less feasible.

The simplest model for boundary determination between two tissues (WM/
GM or GM/CSF) is based upon the assumption of a linear image formation pro-
cess, such that the boundary occurs at the position where the image grey-level
intensity is half-way between the two pure tissue values. As can be seen from
fig. 1(b) the contrast at the GM/CSF boundary is large and it should be possi-
ble to use an edge detector to determine this boundary, whereas the GM/WM
contrast is comparable to the noise in the image, so an edge detector could not
be used reliably here. The main emphasis of this paper is to describe a modi-
fication to the Canny edge detector [6] for the determination of the GM/WM
boundary for subsequent use in an original cortical thickness algorithm. The
technique allows an assessment of the accuracy of the boundary positioning, and
hence a post-processing correction mechanism for the regional thickness esti-
mates. A reproducibility study is presented, showing that the boundary correc-
tion can indeed be used to reduce the systematic error on the cortical thickness
measurements.

2 Materials and Methods

2.1 Approach Taken to Determine Cortical Thickness

The analysis of the data can be divided into two stages; pre-processing to con-
vert the original volume of data into the required form and the actual cortical
thickness estimation. Initially, the mean and standard deviation of the grey-level
values of the pure tissues (in this case only GM, WM and CSF are considered)
in the image volume are determined for use in future processing steps. Grey-
level intensity values from a region (comprising several slices in order to average
through-plane inhomogeneities to a certain degree) in the frontal lobe represen-
tative of the pure tissue values, are histogrammed (as shown in fig. 1) and a
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Bayesian mixture model [7], containing terms for both pure tissues and partial
volumes, is fitted to the histogram using simplex to obtain the pure tissue means
and standard deviations. To obtain a finer through-plane resolution whilst pre-
serving tissue boundaries, the data is explicitly up-interpolated in the z-direction
[8] using a partial volume scheme to constrain the potential tissue boundaries,
determined using 3D image gradients, that could pass through a partial volume
voxel. The volume of data is then registered to a stereotaxic space (the Talairach
atlas [9]) using a linear affine transform. The atlas defines the 31 cortical regions
(see table 2 for region names) used later in producing regional histograms of the
cortical thickness. Finally, the GM is segmented in the form of the most likely
volume estimate in each voxel given the data, based on the defined probability
density functions of the image intensity distribution.

The cortical thickness estimation itself proceeds by using a modified edge
detection process (see below) to determine the GM/WM boundary. The surface
normal to the boundary in 3D at each voxel on the boundary is determined,
using a 3D Gaussian smoothed data set (in order to reduce the effects of noise)
and a search is performed over 20mm in this direction on the segmented GM
map until an edge (see [10] for precise details) is found. The cortical thickness at
each boundary voxel is inserted into the appropriate regional histogram accord-
ing to the registration into stereotaxic space determined earlier. The median of
each regional histogram is calculated in order to give a robust estimation of the
average cortical thickness for each region.

2.2 Modification to the Canny Edge Detector

The approach to thickness measurement presented here is inherently feature
based and the GM/WM boundary is of particular importance. Conventional
edge detectors are particularly poor at identifying edge boundaries where the
contrast approaches the noise level, such as found at the GM/WM boundary.
However, this boundary is expected to have one consistent grey-level value, in
the absence of field inhomogeneities and tissue variation, and in this case is
defined as the boundary at the average of the two pure tissue (50% transition)
values. A simple ‘z-score’ measure of the consistency of the grey-level of each
voxel with this boundary midpoint value is used to construct a likelihood image
(which highlights the GM/WM boundary) based on a Gaussian distribution
with a standard deviation of ten times the noise in the input image. This is
monotonically related to a true hypothesis probability, but has better numerical
properties for subsequent processing and sub-voxel peak location. This can be
used as the basis for the enhancement process rather than the conventional
(summed squares) gradient based measure and subsequent stages of the detection
process are applied as normal. The implementation is based upon a version of
the Canny edge detector. This new iso-contour Canny (or Iso-Canny) algorithm
has the advantage that although noise processes may move the position of the
detected boundary, these processes cannot prevent detection of a transition.

The later stages of the standard Canny edge detector perform non-maximal
suppression and hysteresis thresholding which results in well localised connected
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Fig. 2. Diagram illustrating the midpoint offset calculation. The plots show position
on the x-axis and grey-level on the y-axis. Marked are the pure tissue grey-level values
for GM and WM and the midpoint between them is shown by the dash-dot line. The
central position is at the midpoint (edge) and the two positions on each side are in GM
and WM. The left-hand plot shows the ideal case, where the linear interpolation (solid
line) between the grey-level values of the positions 2mm either side corresponds to the
midpoint value. The right-hand plot shows an example of the case where the value
of the position in the GM is less than the pure tissue value, so that the interpolated
grey-level value at the central position is less by some offset than the midpoint (edge)
value.

edge strings which persist into low edge strength regions. Edge locations are
computed within each slice of the data to sub-pixel accuracy (to 0.1mm repro-
ducibility) from quadratic fits to the peaks in the edge strength map. This whole
process is particularly reliant on the assumption that one accurately determined
GM/WM boundary value is applicable in all parts of the image volume. The fol-
lowing section describes the implementation of a quality control process to assess
any systematic errors in the analysis, or failures of the calibration process.

2.3 Post-processing to Determine the “Correct” Boundary Position

Use of an incorrect grey-level value for the midpoint of the GM and WM will
result in a large systematic error on the regional cortical thickness. Presented
here is a technique for monitoring this effect and for correcting for it post hoc
if required. In order to calibrate such a correction for a given subject, the effect
on the median thickness in each region by perturbing the GM/WM grey-level
midpoint by -80 to +80 (in increments of 20 grey-levels) was investigated (using
in each case the same set of grey-level and probability images). The regression
coefficients of median thickness against grey-level perturbation are presented
in section 3.2. A method for determining the difference (“offset”) between the
pre-determined midpoint grey-level value and the value at the actual GM/WM
boundary is presented in fig. 2. In order to obtain an average value for each
region, the offsets at each tissue boundary location are entered into regional
histograms. The position of the peak of each histogram is taken as the offset
estimate for that region. This grey-level offset can be used to compute an equiv-
alent median thickness error, using the appropriate regression coefficients (given
in table 2) as determined earlier.
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2.4 Subjects and Scan Parameters

4 normal volunteers (all male, ages: 34, 40, 40, 46) underwent MR scans on
two occasions within 7-21 days apart. All subjects gave informed consent and
the study was approved by the Central Manchester LREC. An axial anatomical
inversion recovery MR sequence (eg; fig. 1) was acquired (Philips Medical Sys-
tems, Best, The Netherlands, 1.5 Tesla, TI/TR/TE=300/6850/18ms, 90◦ flip
angle, echo train length=9, matrix size=2562, in-plane resolution=0.8982mm,
slice thickness=3.0mm, 51 slices taken covering the whole of the brain). These
images were used to determine GM thickness in 31 cortical regions, as described
above. Reproducibility of the technique was assessed by comparison of the re-
gional median thicknesses of the two acquisitions from each subject. Images from
the subject with the worst reproducibility underwent the correction for the mis-
placement of the Iso-Canny boundary, and the reproducibility of the modified
results was assessed.

3 Results

3.1 Reproducibility Results

Figure 3 shows the 31 regional cortical thickness estimates from the 2nd scan
plotted against those of the first, for all four subjects. Table 1 gives the corre-
sponding regression coefficients, and the standard error on their measurement
for the 4 subjects. Subjects 2, 3 and 4 have slopes which lie within 5% of the
expected value of 1, whereas subject 1 shows a 16% error. The systematic error
on the thickness measurements for this group is calculated as the RMS of the
differences between the line of equality and the coefficients, scaled by

√
2 because

two measurements have been taken, and amounts to 6.2% on the measurement
in any given individual. The standard error of the data is indicative of the sta-
tistical error due to sampling the thickness distribution on any given region of
the data. This can be calculated as the product of the standard error and the√
N where N is the number of regions, and amounts to no more than 0.06mm.
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Fig. 3. Scatterplot of 2nd vs 1st scan cortical
thickness measurements for 31 regions in each of
4 subjects. The line of equality is also shown.

Table 1. Table of fitted slopes and
standard error on the fit for each
subject for the data in fig. 2. Note
that all regressions are constrained
to pass through the origin.

Subject Slope Std. Err
1 1.16 0.0148
2 1.04 0.0111
3 0.95 0.0098
4 1.03 0.0088
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3.2 Iso-Canny Correction Results

Table 2 gives, for the two scans of subject 1, the regression coefficients of the
slopes of median thickness against the extent of GM/WM midpoint perturbation,
as well as the estimated offset values by which the boundary was misplaced. In
the majority of regions, the slopes are near perfect negative linear correlations of

Table 2. Table of the Talairach regions investigated, values of the slopes of median
thickness against Iso-Canny midpoint used and calculated offset values for the two
scans of subject 1

Lobe Region Slope (×10−3) Offset
(mm/grey-level) (grey-levels)

Scan 1 Scan 2 Scan 1 Scan 2

Rectal Gyrus -4.08 -1.64 8.00 -126.67
Orbital Gyrus -1.23 -1.08 -173.33 127.62
Precentral Gyrus -4.64 -8.26 -23.33 -50.13

Frontal Inferior Gyrus -4.37 -6.47 -16.57 -67.88
Middle Gyrus -4.50 -6.62 -30.14 -74.17
Superior Gyrus -4.96 -7.23 -32.64 -82.07
Medial Gyrus -4.33 -7.46 -21.78 -48.68

Posterior Cingulate -1.30 -5.28 -10.26 -45.81
Limbic Anterior Cingulate -6.32 -7.03 -7.27 -47.69

Subcallosal Gyrus -2.12 2.82 -126.67 -60.44

Inferior Gyrus -2.24 -4.28 -3.64 -46.67
Lingual Gyrus -2.03 -5.03 -19.39 -95.24

Occipital Middle Gyrus -2.48 -5.09 5.22 -45.46
Superior Gyrus -2.04 -4.82 -55.24 -156.00
Cuneus -2.67 -5.61 -20.98 -58.24

Insula -3.15 -2.53 -34.02 -72.94
Angular Gyrus -3.93 -4.89 -51.43 -99.26
Supramarginal Gyrus -3.43 -6.10 -22.22 -52.08
Cingulate Gyrus -3.93 -5.03 -18.58 -54.81

Parietal Inferior Lobule -4.03 -5.79 -20.39 -88.79
Superior Lobule -4.33 -5.80 -37.58 -70.77
Paracentral Lobule -3.73 -7.26 -110.30 -108.57
Postcentral Gyrus -3.92 -6.85 -34.67 -60.61
Precuneus -3.83 -6.48 -34.29 -67.83

Transverse Gyrus -5.58 -9.83 8.48 -20.00
Uncus -2.23 -1.37 -42.67 -70.83
Fusiform Gyrus -1.93 -4.18 -21.40 -65.78

Temporal Inferior Gyrus -3.07 -2.88 -41.90 -95.76
Parahippocampal Gyrus -1.91 -4.23 -18.63 -76.92
Middle Gyrus -2.66 -5.45 -22.48 -54.57
Superior Gyrus -3.22 -4.21 2.37 -42.46
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thickness with midpoint perturbation. The offset results demonstrate a negative
bias (roughly ranging between 0 and -100) which is also seen in a larger cohort
(results not shown). This is consistent with the GM grey-levels being lower than
expected. The thickness estimation technique assumes that the average of two
pure tissue values can be taken as the value at the boundary between these
tissues. However, due to the slice thickness of this data, it is likely that there
are substantial partial volume effects. GM/CSF partial volumes will result in a
more pronounced effect than GM/WM partial volumes, which could explain the
peak shift seen in the data If this is the case, the boundary correction may still
be used for correcting the systematic error, even though the peak is no longer
expected to be at the same grey-level as the assumed tissue boundary.

Applying the Iso-Canny offset correction to the regional cortical thickness
measurements from both scans of subject 1 reduces the slope of the regressions
from 16% greater than unity to 9.7% and marginally improves the standard error
on fitting the regressions from 0.0148 to 0.0133mm.

4 Discussion

This paper has presented some of the difficulties in reliably determining GM cor-
tical thickness from images obtained using MRI. Descriptions of a cortical thick-
ness algorithm and the required pre-processing stages are given. The method is
applied to repeat scans of four young normals, and the reproducibility of the
whole procedure is assessed. The large systematic error, at 6.2%, mainly due
to the initial grey-level histogram parameter determination, has implications for
the use of this cortical thickness estimation in longitudinal studies. Such an error
would be expected to mask any real changes in cortical thickness in an individual
over the time scale in which the repeated measurements are likely to be made.
However, several steps can be taken in order to achieve greater consistency. En-
suring an identical scanner set-up and subject physiology, as well as fixing the
Bayesian prior terms and the ratio of grey-level histogram peaks between scans
should reduce variability. Note that natural variation between subjects will be
far greater than the effects of the systematic error, such that group-wise com-
parisons are feasible on tens of subjects. However, the ultimate goal of this work
is to provide information suitable for decision support in individual subjects.

The main focus of the paper is a description of a GM/WM boundary de-
tector. The advantage of basing this upon a conventional edge detector is that
it provides edge locations computed to sub-pixel accuracy, as is necessary when
measuring structures as small as the GM ribbon. In addition, well localised con-
nected edge strings persist even in conventional low edge strength regions. The
effect of perturbing the GM/WM midpoint value, in order to determine the effect
of modifing the position of the GM/WM edge strings on the regional thickness
estimation was used to calibrate a regional correction factor. This was used in
conjunction with a technique for determining the inaccuracy in the position of
the boundary, for the subject with the greatest systematic error, in order to
produce a distance by which the regional thickness was in error. The modified
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regional estimates were then used to assess any change in reproducibility afforded
by the boundary correction technique. The technique improved the systematic
error in all 31 regions of subject 1 from 16% to 9%, so the technique appears
to be beneficial and implies that through-plane inhomogeneities are partly re-
sponsible. However, the error is still greater than that exhibited by the other
three subjects, probably for reasons associated with the segmentation. If the
tissue value estimations led to inaccuracies in the GM/WM boundary, then the
GM/CSF boundary found on the segmented GM maps may also have been in-
accurate, although misplacement of the GM/CSF boundary by 50 grey-levels or
so will have a much smaller effect on the median thickness than misplacing the
GM/WM boundary by the same amount.
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Abstract. This paper assesses the estimation of kinetic parameters
from dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI). Asymptotic results from likelihood-based nonlinear regression are
compared with results derived from the posterior distribution using
Bayesian estimation, along with the output from an established software
package (MRIW). By using the estimated error from kinetic parame-
ters, it is possible to produce more accurate clinical statistics, such as
tumor size, for patients with breast tumors. Further analysis has also
shown that Bayesian methods are more accurate and do not suffer from
convergence problems, but at a higher computational cost.

1 Introduction

The quantitative analysis of dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) is typically achieved by applying pharmacokinetic (PK)
models to the signal intensity, or a nonlinear transformation of it, observed from
the scanning process. The contrast agent Gd-DTPA (gadolinium diethylene-
triaminepentaacetic acid) is a small molecular weight substance injected after
several baseline scans have been acquired. Using T1-weighted sequences, the
reduction in T1 relaxation time caused by the contrast agent is the dominant en-
hancement observed [1]. T1-weighted kinetic curves typically have three phases:
the upslope, maximum enhancement, and washout [2]. Quantitative PK param-
eters are estimated by fitting a nonlinear function, the solution of a system of
linear differential equations, to the observations. Each PK parameter has a di-
rect relationship with key biological processes of interest; e.g., volume transfer,
leakage space, etc. This is a distinct advantage over the semi-quantitative ap-
proach where descriptive statistics of the kinetic curve (onset time, mean rate
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of change, maximum signal intensity, etc.) are estimated, but lack direct tissue
or vascular information.

From a statistical point of view this quantitative methods are based on the
theory of nonlinear regression [3]. Non-linear models are typically hard to es-
timate due to optimization problems, but standard software is available. We
estimate parameters in pharmacokinetic (PK) models using nonlinear regression
in both a likelihood and a Bayesian framework [4] to help alleviate some of the
concerns stated above and provide a richer summary of the results, specifically
with respect to convergence issues.

Potential clinical applications of DCE-MRI include screening for malignant
disease, lesion characterization, monitoring lesion response to treatment, and as-
sessment of residual disease. Newer applications include prognostication, phar-
macodynamic assessments of antivascular anticancer drugs, and predicting ef-
ficacy of treatment. We propose to look at parameters obtained from the two
methods and how they impact clinically relevant statistics such as tumor size.

2 Theory and Methods

2.1 DCE-MRI Data

To evaluate our methods we use a dataset provided by the Paul Strickland Scan-
ner Centre at the Mount Vernon Hospital, Northwood. The data consist of six
patients with breast tumors, scanned once at the beginning of treatment and
again after six weeks. The scans were acquired with a 1.5 T Siemens MAGNE-
TOM Symphony scanner, TR = 11 ms and TE = 4.7 ms. Each scan consists of
three slices of 230×256 voxels. A dose of D = 0.1 mmol/kg body weight Gd-
DTPA was injected at the start of the fifth acquisition using a power injector.

We use a standard compartmental model [5] to describe the arterial influx
of Gd-DTPA into extracellular extravascular space (EES) and its venous efflux.
The time series of gadolinium concentration in the tissue is modeled by

Ct(t) = Ktrans [Cp(t) ⊗ exp(−kept)] , (1)

where Ct(t) is the observed Gd-DTPA concentration in the tissue at time t
and Cp(t) is the tracer concentration in arterial blood. The parameter Ktrans

represents the transfer from plasma to EES, and kep is the rate parameter for
transport from the EES to plasma. Here, ⊗ denotes the convolution operator.
The volume of EES per unit volume of tissue (leakage space) is given by

ve =
Ktrans

kep
. (2)

For the arterial input function Cp(t) we follow the work of Tofts and Kermode
[6] and use a bi-exponential function

Cp(t) = D

2∑
i=1

ai exp(−mit), (3)



888 V.J. Schmid et al.

with the values a1 = 3.99 kg/l, a2 = 4.78 kg/l, m1 = 0.144 min−1 and m2 =
0.0111 min−1 and the actual dose per body weight.

To calculate the Gadolinium concentration Ct, the signal intensity was con-
verted to T1 relaxation time values using T1-weighted images, proton density
weighted images and data from a calibration experiment consisting of phan-
toms with known T1 relaxation time. The Gd-DTPA concentration can then be
computed via

Ct(t) =
1
r1

[
1

T1(t)
− 1
T10

]
(4)

where T10 is the T1 value without contrast, computed as mean value of the first
four images, and r1 = 4.24 l/s/mmol is the longitudinal relativity of protons in
vivo due to Gd-DTPA.

Regions of interest (ROIs) were drawn manually, on a scan-by-scan basis,
using subtraction images from the acquisition of dynamic data. Although the
tumor was isolated, in order to save on computation time, enough surrounding
tissue was also captured to allow for reasonable contrast between tissue types
within the ROI.

2.2 Statistical Models

Likelihood Approach. In each voxel we fitted a nonlinear regression model
to the Gd-DTPA concentration time series. By carrying out the convolution in
Eqn. 1, the following statistical model can be derived:

Ct(t) = D exp(θ1)
2∑

i=1

ai{exp(−mit) − exp[− exp(θ2)t]}
exp(θ2) − mi

+ εt, (5)

where εt is the noise error at time t. We assume the expected value of the error to
be zero; i.e. E(ε) = 0. Inference is performed by minimizing the sum of squares
of the errors min

∑
ε2t . We use parameters exp(θ1) instead of Ktrans and exp(θ2)

instead of kep to insure positive values of Ktrans and kep. The parameter ve

was computed using Eqn. 2. Estimation of the model was done using the nls
function of the statistical computing environment R [7]. The function uses a
Gauss–Newton algorithm to estimate parameters of interest along with their
standard errors.

As comparting models are typically difficult to optimize, we use a multiple
search start point approach for the algorithm [8]. To identify the starting val-
ues, we follow the ideas of Pinheiro and Bates [9] for first-order compartmental
models. Nevertheless, the algorithm still failed to converge in 5% of voxels.

Bayesian Approach. For the Bayesian approach we use the following model

Ct(t) = DKtrans
2∑

i=1

ai[exp(−mit) − exp(−kept)]
kep − mi

+ ε. (6)
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In the Bayesian framework prior probability density functions (PDFs) have to
be specified for all unknown parameters, and hence, we use

ε ∼ N(0, τ−1
ε ),

log(Ktrans) ∼ N(0, τ−1
Ktrans),

log(kep) ∼ N(0, τ−1
kep

),

where N denotes the Gaussian (Normal) distribution. The variance parameters
for these PDFs are also specified by so-called hyper-priors,

τε ∼ Ga(0.001, 0.001),
τKtrans ∼ Ga(0.001, 0.001),
τkep ∼ Ga(0.001, 0.001),

where Ga denotes the Gamma distribution. So the PDFs of ε,Ktrans and kep
have high variance and therefore are very diffuse. This reflects lack of prior in-
formation about the parameters of interest. By using a normal prior distribution
for log(Ktrans) and log(kep), we ensure positive values for both parameters as
with the likelihood method.

Inference is made by computing the posterior distribution p(Ktrans, kep |Ct)
given by Bayes’ theorem, so that

p(Ktrans, kep |Ct) =
p(Ktrans, kep) "(Ct |Ktrans, kep)∫
p(Ktrans∗ , kep∗) "(Ct |Ktrans∗ , kep∗)

, (7)

where "(Ct |Ktrans, kep) denotes the likelihood function of Ct(t). Samples from
the posterior distribution are obtained via Markov chain Monte Carlo (MCMC)
methods [4] implemented in C++. For estimating the parameter and standard
errors we use the mean and the empirical standard error of the sample of each
parameter, respectively, after a reasonable burn-in phase.

MRIW. Estimation of pharmacokinetic parameters was also performed using
MRIW v4.1.6 [10], an established software package for parametric analysis of
DCE-MRI data developed at the Institute of Cancer Research, United Kingdom.

3 Results

Both the likelihood and Bayesian methods were applied to six patients, with
breast tumor, before and after treatment. Fig. 1 shows the estimated volume
transfer constant (Ktrans), the standard error of log(Ktrans) and the leakage
space (ve) from a single slice of patient #2 before therapy. The tumors are
clearly visible as a region of high Ktrans, although the likelihood-based procedure
and MRIW failed to converge for approximately 5% of voxels both inside and
outside the tumor. Bayesian parameter estimates were available for all voxels.
When looking at leakage space the tumor is surrounded by a region of high ve,
making the edges of the tumor difficult to identify.
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Ktrans SE{log(Ktrans)} ve

(1)

(2)

(3)

Fig. 1. Parametric maps of kinetic parameters for a region of interest around a breast
tumor – from left to right – the volume transfer constant (Ktrans), the standard er-
ror of log(Ktrans) and the leakage space (ve). The rows correspond to three methods
likelihood (1), Bayesian (2) and MRIW(3).

To specify the exact region of the tumor, we threshold Ktrans such that only
values exceeding 0.3 remain (Fig. 2, left). This helps to highlight the tumor,
but many voxels not associated with the tumor also remain. To produce a better
specification, we take advantage of the estimated standard error for Ktrans. Fig. 1
(right) shows the estimated standard error of log(Ktrans) for the likelihood and
Bayesian methods (see our model specification in Sec. 2.2). The error is especially
high where the estimated value of Ktrans is high (e.g., in the tumor). Assuming an
asymptotic Normal distribution, we can compute the probability of each pixel
exceeding the threshold. Fig. 2 (middle) shows this probability map, whereas
Fig. 2 (right) shows pixels where the probability of exceeding the threshold
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(i.e., a pixel being part of the tumor) is greater than or equal to 99%. Utilizing
the PDF of Ktrans, either its asymptotic distribution via the likelihood method
or its posterior distribution via the Bayesian method, produces a much better
separation between tumor and non-tumor voxels.

We explore the clinical application of these methods by computing the size of
the tumor, defined here to be the number of voxels per slice. A tumor mask was
created from the estimated Ktrans for each method (Fig. 3) and the size of the
tumor, both pre- and post-treatment, is provided in Tab. 1 for all six patients.
There is good agreement between the three methods for most of the scans.

Ktrans > 0.3 P (Ktrans > 0.3) P (Ktrans > 0.3) ≥ 0.99

(1)

(2)

(3)

Fig. 2. Threshold maps derived from estimates of Ktrans of first scan of patient #2 –
from left to right – basic thresholding, probability of exceeding the threshold and
probability of exceeding the threshold by at least 99%. The rows correspond to three
methods – from top to bottom – likelihood (1), Bayesian (2) and MRIW (3).
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Likelihood Bayesian MRIW

Fig. 3. Mask of the tumor of scan 1 of patient # 2 based on different estimates of
Ktrans – from left to right – likelihood, Bayesian and MRIW

Table 1. Tumor size (number of voxels) derived from Ktrans for each slice of the six
patients, pre- and post-treatment

Bayes Likelihood MRIW
Slice 1 2 3 Total 1 2 3 Total 1 2 3 Total

Patient Treatment
1 pre 0 557 0 557 0 566 0 566 0 569 0 569

post 4 32 0 36 5 36 0 41 5 34 0 39
2 pre 663 1068 567 2298 676 1147 582 2405 846 1306 504 2656

post 0 0 0 0 0 0 0 0 140 0 0 140
3 pre 256 440 192 888 266 429 185 880 289 439 238 966

post 0 7 0 7 8 0 21 29 0 0 52 52
4 pre 58 292 144 494 57 293 138 488 94 201 261 556

post 1375 25697 2087 6031 1393 2591 2100 6084 1973 1351 1089 4413
5 pre 450 287 222 959 456 290 207 953 260 227 29 516

post 1393 1467 1175 4035 1449 1769 1511 4729 445 190 526 1161
6 pre 87 481 114 682 89 503 115 707 104 233 78 415

post 142 297 0 439 149 301 0 450 134 396 120 450

4 Conclusion

Statistical properties of pharmacokinetic parameters from DCE-MRI have been
used to improve clinically relevant quantities of interest. Bayesian techniques
allow one to input prior information into the estimation procedure, greatly re-
ducing problems with convergence with the cost of increased computing time.
The posterior distribution provides instant access to valuable information about
the kinetic parameters without resorting to asymptotic results. We have utilized
second-order quantities of the posterior distribution to help discriminate voxels
and produce more accurate summaries of clinically meaningful statistics.

With the proposed framework, it is possible to incorporate additional in-
formation via the prior distributions including dependence between kinetic pa-
rameters and spatial constraints, thus moving towards semi-parametric or non-
parametric models in DCE-MRI.
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Abstract. High resolution MRI images of the beating heart permit observation of
detailed anatomical features and enable quantification of small changes in metrics
of cardiac function. To obtain approximately isotropic sampling with an adequate
spatial and temporal resolution, these images need to be acquired in multiple
breath-holds. They are, therefore, often affected by through-plane discontinuities
due to inconsistent breath-hold positions. This paper presents a method to correct
for these discontinuities by performing breath-hold-by-breath-hold registration of
high resolution 3D data to radial long axis images. The corrected images appear
free of discontinuities, and it was found that they could be delineated more repro-
ducibly than uncorrected images. This reduces the sample size required to detect
systematic changes in blood pool volume by 57% at end systole and 78% at end
diastole.

1 Introduction

High resolution dynamic 3D volumes of the beating heart are very desirable from both
clinical and image processing points of view. Clinically, they permit observation of
small anatomical features and enable quantification of small changes in metrics of car-
diac function. In addition as we will show, intra-observer variability when delineat-
ing such images would appear to be greatly reduced when compared to the repeated
delineation of traditional multi-slice cine functional images which have much lower
through-plane resolution. From an image analysis perspective, volumetric imaging with
isotropic resolution and a sinc point spread function in all directions is desirable because
it improves the performance of multi-planar re-formatting and more sophisticated 3D
analysis techniques. This should improve the performance of segmentation and model
construction techniques, making automatic quantitative image analysis more reliable,
and therefore lead to more clinically straightforward imaging protocols.

Currently, clinical MR images used for ventricular function assessment typically
feature reconstructed voxel sizes of around 1.5× 1.5mm in-plane and 8 – 10mm through
plane. Two or three slices of this type can be acquired in a single breath-hold, which
leads to acquisition times of 4-6 breath-holds for coverage of the entire left ventricle in
the short axis. Although these images demonstrate very good contrast, in the z-direction,
the resolution is not sufficient to differentiate small features and the point spread func-
tion is non-ideal. In this paper, we acquire 3D volumes with reconstructed voxel sizes
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of 1.5×1.5mm in-plane and 1.5mm through plane in chunks of 10 slices during 7-8
breath-holds. During scanning the subject is instructed to hold their breath at the same
position, but many patients find this very difficult in practice. Breath-hold inconsisten-
cies result, most clearly visible as jagged structure boundaries in re-formatted long axis
images. Translations of up to 23.5mm and rotations of up to 8◦ due to inconsistent
breath-hold positions have been recorded in the literature [1].

Several approaches may be employed to remove through-plane discontinuities. Ac-
quisition approaches include the use of respiratory navigators [2] which when placed
through the diaphragm may be used to reject inconsistent breath-holds [3]. However this
can greatly increase the scan time as the subject repeatedly attempts to hold their breath
within a gating window of 2.5mm. Swingen et al. [4] corrected for in-plane translations
by fitting a polynomial through the centroids of manually delineated in-slice endocar-
dial contours. Each slice was then translated by the residual error following fitting.
Lötjönen et al. [5] corrected for 3D translations by registering parallel long axis images
and short axis images. Chandler et al. [6] corrected for 3D translations and rotations by
registering short axis images to 3D volumes. However, these three techniques all seek to
correct for breath-hold discontinuities in thick sliced images whose features are some-
what different to those of high resolution near-isotropic images. To date, only Moore
et al. [7] have attempted to correct for breath-hold inconsistencies in images with high
through-plane resolution. They performed successive rigid registrations between each
slice and sagital and axial scout slices. This permitted translations in the foot-head and
right-left directions to be corrected for. Their images however suffered from very poor
SNR. To surmount this, they combined images from multiple subjects (via elastic reg-
istration and signal averaging) to form a high resolution atlas.

In this work, to correct for breath-hold discontinuities, 3D translations and rotations
are recovered by registration of 2D long axis images acquired with radially oriented
slices (figure 1) to high resolution 3D short axis multi-chunk images. Analysis is then
performed to determine whether the described technique can be used to reduce the sam-
ple size required to detect systematic changes in blood pool volume. Such a reduction
is potentially of great importance when performing clinical trials.

2 Data

Following plan scans and identification of the vertical and horizontal long axes, short
axis ECG gated steady state free precession 3D volume images with SENSE factor 2
were obtained in 5 healthy male volunteers. Seventy to eighty slices were acquired in 7
or 8 chunks of 10 slices per end-expiration breath-hold. The field of view was adapted
for each subject. Imaging parameters were: field of view 330 - 420 mm, acquisition
matrix 129×160 with 80% phase encode direction sampling in the in-plane direction,
50% phase encode direction sampling in the through-plane direction, reconstructed to
256×256×70–80 giving a resolution of 1.30×1.30×1.57mm – 1.64×1.64×1.57mm,
with 8 phases in the cardiac cycle, flip angle 45◦, TE 1.5 ms and TR 3.08 - 3.54 ms.
An end diastolic ECG gated steady state free precession long axis image containing
twelve 2D slices radially oriented about the long axis was then acquired during a sin-
gle end-expiration breath-hold. The imaging parameters were; slice thickness 8 mm,
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field of view 400 - 500 mm, acquisition matrix 160×192 with 120% phase encode di-
rection sampling, reconstructed to 256×256 giving a resolution of 1.56×1.56×8mm –
1.94×1.94×8mm, flip angle 50◦, TE 1.5 ms and TR 3.39 - 3.57 ms. To enable subse-
quent variability assessment, this procedure was repeated twice during the same scan
session for each volunteer.The images were acquired on a Philips Intera 1.5 T with mas-
ter gradients, using a 5 element cardiac synergy coil and vector ECG.

3 Methods

Before registering the radial long axis and short axis multi-chunk images, transforma-
tions must be defined that relate any point in the short axis image to the corresponding
point in the radial long axis image. Radial long axis images are stored by stacking radi-
ally adjacent images — figure 1.

For each slice (i), locations in voxel coordinates can be related to their position in
world coordinates by the following matrix

ARL(i) = TiRxiRyiRziOi (1)

whereRxi,Ryi andRzi are 4×4 matrices representing rotations about the respective x,
y, and z axes, Ti contains translations in the x, y and z directions andOi is an orientation
matrix with three possible values (corresponding to transverse, sagital and coronal slice
orientations). The parameters that make up these matrices were automatically recorded
during acquisition and subsequently extracted from the Philips proprietary PAR header
file. Likewise, locations in voxel coordinates in the short axis image are related to their
position in world coordinates by matrix ASA (composed as per equation 1, but valid for
the entire short axis image).

Pseudo radial long axis images were then created from the end diastolic multi-chunk
images. For each ten slice chunk, a corresponding short axis ’chunk of interest image’
was created. These images were the same as the short axis image, however all voxels
that were not acquired during the breath-hold corresponding to that chunk were set to
a padding value. The padding value was chosen so that it could not occur elsewhere
in the image (-1 in this case). Blank images with the same geometry as the radial long
axis image were then created for each chunk of interest image—the pseudo images. For

Fig. 1. Illustration of the orientation of radial long axis slice planes with respect to the left ventri-
cle (left), and how they are stored in the image (right)
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each pseudo image, the voxel locations were transformed into world coordinates before
being transformed into voxel coordinates in the short axis image.

PosSA = ARL(i)A
−1
SAPosRL (2)

where PosRL is a 4 × 1 matrix representing the voxel location in the radial long axis
image and PosSA represents the corresponding voxel location in the short axis image.
These locations were then interpolated using trilinear interpolation to provide the voxel
intensity values for the pseudo radial long axis images. Figure 2 shows an example of
several slices from pseudo radial long axis images.

To avoid the two stage interpolation associated with transforming the chunk of inter-
est image prior to creating a pseudo radial long axis image, the registration transforma-
tion matrix was incorporated into the process of creating the pseudo images. Equation
2 hence becomes

PosSA = ARL(i)TREGA−1
SAPosRL (3)

where TREG is a 4 × 4 matrix which represents a six degree of freedom rigid body
transformation.

The correlation coefficient similarity measure between the radial long axis image
and each pseudo long axis image was then optimised as a function of the six degrees
of freedom of TREG using a simplex search method [8]. Voxels set to the padding
value did not contribute to the similarity measure. A two stage optimisation approach
was employed; firstly the x, y, and z translations alone were optimised, then all six
parameters were optimised. The chunk of interest images were then transformed using
trilinear interpolation according to their respective registration matrices. The corrected
chunk of interest images were then combined into a single corrected image. Where
multiple chunks overlapped, the mean voxel intensity was used. Following correction,
small gaps may occur in locations where chunks did not overlap as shown in figure 2.
The location of such gaps may be identified by searching for voxels which contain
padding values in all of the corrected chunk of interest images. To fill these gaps, for
each gap voxel, one dimensional linear interpolation was performed between the nearest
non-gap voxels in the inferior and superior z-directions.

For each pair of radial long axis and short axis multi-chunk images, each chunk of
the end diastolic multi-chunk image was registered to the radial long axis image. The
registration matrices were then used to create corrected short axis image series. The
end diastolic and end systolic blood pool volumes were then manually delineated in
the original and corrected images by an expert observer using Analyze (Mayo Clinic,
Rochester, MN, US).

The reproducibility of manually determined end diastolic and end systolic volume
for the original and corrected images was investigated as per [9]. The mean and standard
deviation difference between results and the mean and standard deviation percentage
variability (defined as the absolute difference of two measurements divided by their
mean) were assessed. The correlation coefficient between the first and second set of
acquisitions was also calculated. Student’s paired t-test was employed to identify any
significant differences between the two sets of measurements. The sample sizes (N )
required to detect a systematic change (δ) of 1ml with a power (P ) of 90% and an α
error of 5% were calculated using the following formula
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N = f(α, P )2σ2/δ2 (4)

where σ is the standard deviation of the difference as described by Altman [10] and
f(α, P ) = 10.5 for α = 0.05 and P = 90.

4 Results

Visually, all images registered well. Figure 2 shows example radial long axis views of
the corrected images. Note specifically the areas around the right and left ventricular
myocardium. The improvements in though-plane continuity can clearly be observed.
The uncorrected images can show features that are not present in the corrected images
and vice versa. This is due to rotations about the z-axis being recovered during registra-
tion. The corrected images after filling contain residual intensity fluctuations resulting
from the z-axis linear interpolation.

Table 1 shows the reproducibility data. It can be seen that for the corrected images
the mean and standard deviation volume differences at both end diastole and end systole
are reduced with respect to the uncorrected images. The mean and standard deviation
percentage variability for both end diastolic and end systolic volumes of the corrected
volumes were also less than for the uncorrected images. For both corrected and uncor-
rected images the correlation of both end diastolic and end systolic volume between the
first and second set of images was very high (correlation coefficient> 0.98). No signif-
icant differences between the first and second sets of images were observed (p < 0.05).

To detect a change of 1ml in end diastolic and end systolic volume in the uncorrected
images requires 83 and 67 subjects respectively. To detect the same change in corrected

Fig. 2. Pseudo radial long axis images before correction (left), following correction (middle) and
following correction and z-direction interpolation to fill any gaps (right)
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Table 1. Reproducibility data for uncorrected and corrected images

Uncorrected Corrected
EDV (ml) ESV (ml) EDV (ml) ESV (ml)

Mean difference ±SD 3.07±1.99 3.36±1.79 1.17±0.92 1.44±1.18
Correlation coefficient 0.99 0.98 1.00 1.00
t-test p NS NS NS NS
% Variability ±SD 2.25±1.28 6.94±3.94 0.97±0.69 3.55±2.56

EDV = End Diastolic Volume; ESV = End Systolic Volume; SD = Standard Deviation.

images requires 18 subjects for end diastolic volume and 29 subjects for end systolic
volume. In percentage terms, these represent reductions in sample size of 78% and 57%
respectively.

It is interesting to note that the standard deviations of differences in end diastolic
and systolic volumes in both corrected and uncorrected images are much smaller than
when delineating the thick slices exhibited by 2D multislice images —the current gold
standard. Standard deviations of 4.3 – 4.7ml at end systole and 2.3 – 3.5ml at end di-
astole have been reported in the literature when manually delineating 10mm thick
slices [9,11]. To put these values in context, this would correspond to sample sizes of
388 – 464 for end systolic volume and 165 – 257 for end diastolic volume to detect a 1ml
volume change with P = 90% and α = 0.05. This indicates that the reproducibility of
end diastolic and end systolic volumes is much greater for high resolution 3D images.

5 Discussion

We have described a technique for generating high quality dynamic cardiac MR vol-
umes from data acquired using multiple breath-holds. The approach corrects for incon-
sistent breath-hold positions by registration to a radial stack of long axis slices. We
have demonstrated the qualitative benefit of this approach, and also used a power anal-
ysis to demonstrate that our technique can provide images that are more sensitive to
within- and between-subject changes in cardiac function than the current gold standard
technique of multi-slice cine cardiac MRI.

The radial long axis images have a slice thickness of 8mm, whereas the pseudo
images are created by sampling high resolution images and have an effective thickness
of around 1.5mm. Even at perfect alignment, the radial and pseudo images will appear
slightly different because of the disparate slice thicknesses. A possible solution is to
simulate thick slices by sampling the chunk of interest images at multiple points normal
to the radial long axis slice plane. Weighted combination according to the slice select
profile [12] would then produce a simulated thick sliced pseudo radial long axis image,
which should better resemble the radial long axis image and may aid registration.

This work has assumed to good effect that misalignment due to inconsistent breath-
hold positions can be corrected for by using a rigid transformation model. However, the
heart, chest wall and other organs move relative to one another during respiration. In
addition, the shape of the heart alters during the respiratory cycle due to changes in the
venous return. To further improve registration accuracy, it may be necessary to employ
non-rigid registration.
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As was seen in figure 2, the corrected images contain residual intensity modula-
tion in the areas of gaps in the data. These intensity modulations could be reduced by
using more sophisticated through-slice interpolation (e.g. [13]), or alternatively using
the inherent oversampling in each 3D chunk to fill the gaps. The latter approach would
require working with the raw data, rather than the exported images, as this oversampled
data is discarded prior to image exportation.

6 Conclusion

To conclude, a technique has been described for the correction of breath-hold disconti-
nuities in high resolution short axis images via registration with radial long axis images.
Visually, the results are very positive, providing a qualitative indication that the tech-
nique has effectively corrected for discontinuities resulting from inconsistent breath-
hold positions. Numerical analysis of delineations performed prior to and following
correction has shown that correction substantially improves reproducibility. When these
results are interpreted in terms of sample size, this improvement corresponds to a re-
duction of the sample size required to detect systematic changes of 1ml in blood pool
volume of between 57% and 78%.
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Abstract. A 4D image registration method is proposed for consistent estimation 
of cardiac motion from MR image sequences. Under this 4D registration 
framework, all 3D cardiac images taken at different time-points are registered 
simultaneously, and motion estimated is enforced to be spatiotemporally 
smooth, thereby overcoming potential limitations of some methods that typi-
cally estimate cardiac deformation sequentially from one frame to another, in-
stead of treating the entire set of images as a 4D volume. To facilitate our image 
matching process, an attribute vector is designed for each point in the image to 
include intensity, boundary and geometric moment invariants (GMIs). Hierar-
chical registration of two image sequences is achieved by using the most dis-
tinctive points for initial registration of two sequences and gradually adding 
less-distinctive points for refinement of registration. Experimental results on 
real data demonstrate good performance of the proposed method in registering 
cardiac images and estimating motions from cardiac image sequences. 

1   Introduction 

Heart attack, stroke and other cardiovascular diseases have been the leading cause of 
death since 1919 [1]. Importantly, cardiovascular disease kills more Americans than 
the next seven causes combined, including cancer. Cardiac imaging techniques were 
developed for providing qualitative and quantitative information about the morphol-
ogy and function of the heart [2]. In particular, spatiotemporal imaging is a valuable 
tool for understanding cardiac motion and perfusion, and their relationship with the 
stages of disease. For assisting the diagnosis and treatment of cardiac diseases, auto-
mated methods are needed to analyze a large set of cardiac images and to extract 
clinically relevant parameters. 

Cardiac motion estimation is an important step for quantification of the elasticity 
and contractility properties of the myocardium, related to the regional function of 
heart. In the setting of ischemic heart disease, localized regions with abnormal motion 
are related to the existence of infarcted or hibernating segments, the function of which 
has been affected by insufficient tissue microcirculation. Extensive research has 
shown that regional function measures, i.e., wall-thickening, strain, and torsion, may 
be earlier sub-clinical markers for examining left ventricular dysfunction and myo-
cardial diseases, although ventricular mass, volume, and ejection fraction are consid-
ered as a standard for evaluating global function of heart [3]. 
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Many motion estimation methods have been developed for quantification of the de-
formation of regional myocardial tissue, and they fall into three categories. The first 
category of methods tracks invasive or noninvasive markers in cardiac images. Im-
planting invasive markers into the myocardium tends to influence the regional motion 
pattern of the wall muscle. Accordingly, MR tagging was developed to provide non-
invasive mathematical markers inside the myocardium, which can deform with myo-
cardial motion [4]. MR imaging and especially tagged MR are currently the reference 
modalities to estimate dense cardiac displacement fields with high spatial resolution. 
The deformation fields, as well as the derived motion parameters such as myocardial 
strain, can be determined with accuracy [5,6]. The second category of methods uses 
segmentation of the myocardial wall, followed by geometrical and mechanical model-
ing using active contours or surfaces to extract the displacement field and to perform 
the motion analysis [5,7,8]. For matching two contours or surfaces, curvatures are 
frequently used to establish initial sparse correspondences, followed by the dense 
correspondence interpolation in other myocardial positions by regularization or me-
chanical modeling [5,9]. The third category of methods uses energy-based warping or 
optical flow techniques to compute the displacement of the myocardium [10-12]. 
There also exists a method taking advantages of both the second and the third catego-
ries, i.e., tracking the cardiac boundaries by image curvatures [13]. Recently, 4D 
models are also proposed for cardiac registration and segmentation [14,15,16].  

We propose a 4D deformable registration method for consistent motion estimation 
from 3D cardiac image sequences. The main premise of the proposed method is that, 
if suitable attribute vectors can be designed to serve as morphological signatures for 
distinctive points in a cardiac image sequence, then by hierarchically matching those 
attribute vectors along with appropriate regularization we can yield an accurate esti-
mation of cardiac motion. Also, by integrating all temporal cardiac images into a 
single 4D registration framework, it is possible to estimate temporally consistent 
cardiac motion, since the constraints of temporal smoothness and consistency can be 
performed concurrently with the image registration procedure.  

2   Method 

2.1   Formulating Motion Estimation as Image Registration  

Cardiac motion estimation is a problem of finding a transformation to describe how 
each point x in the heart moves over the time t. If each point x in the image at a cer-
tain time-point can be related to its corresponding position in the images at other 
time-points by an image registration method, cardiac motion can be immediately 
estimated. Thus, for estimating cardiac motion from end-diastole to other times in a 
periodic sequence of N 3D images, i.e., }1,{),x( NtItI t ≤≤=  with I1 as an end-
diastolic image, we need only to register end-diastolic image I1 to images at other 
time-points.  

In order to use a 4D image registration for simultaneously estimating the motion 
from the end-diastolic image I1 to all other time-points {It}, we generate a new 4D 
image, i.e., a new image sequence },...,{),( 11 IItT =x , which repeats the end-diastolic 
image I1 as images at N different time-points (Fig 1). Thus, by registering the 4D 
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images I(x,t) to T(x,t) via a spatial transformation h(x,t), we can estimate motion for 
each point x in the end-diastolic I1 to all other time-points in a cardiac sequence. No-
tably, the transformation h(x,t) is restricted to 3D spatial deformations at the same 
time-point, since no temporal differences exist in the generated image sequence T(x,t) 
and thus no need to consider temporal variations. 

I1 I1 I1

I1 Ii IN 

T(x,t) 

I(x,t) 

h-1(x,t)h(x,t) 

 

Fig. 1. Formulation of cardiac motion estimation as a 4D image registration problem 

2.2   Attribute Vector 

In order to register two image sequences accurately, we design for each point a mor-
phological signature, i.e., an attribute vector a(x,t), for the purpose of minimizing the 
ambiguity in image matching and correspondence detection during the deformable 
registration procedure. Each attribute vector includes not only image intensity, but 
also boundary and Geometric Moment Invariants (GMIs) [17], all of which are com-
puted from the 3D spatial images. For generated image sequence T(x,t), we need only 
to compute attribute vectors for one 3D image and other identical images just take the 
same set of attribute vectors. GMIs are computed from different neighborhood sizes, 
and are concatenated into a long attribute vector. GMIs at a particular scale are calcu-
lated by placing a spherical neighborhood around each voxel and calculating a num-
ber of parameters that are invariant to rotation. The detailed definitions for attribute 
vectors and their similarities are the same as in [17].  

2.3   Energy Function 

The 4D image registration is completed by hierarchically matching attribute vectors in 
the two image sequences. To make the registration independent of which of the two 
sequences is treated as the template [18,17], the energy that evaluates the match of 
two image sequences should be symmetrically designed for two image sequences 
under registration. That means, both the forward transformation h(x,t) and backward 
transformation h-1(x,t) should be evaluated in a single energy function, and forced to 
be consistent with each other.  

To allow the registration algorithm to focus on different sets of image points adap-
tively during different stages of image registration, each point should have its own 
energy term and the whole energy function should be a weighted summation of all 
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points’ energy terms. Therefore, by hierarchically assigning those weights according 
to the distinctiveness of attribute vectors, i.e., assigning large weights for the energy 
terms of the points with distinctive attribute vectors (such as points with high curva-
tures along the left ventricular border) and zero weights for the energy terms of other 
points, we can focus on the most suitable points to actively drive the image registra-
tion. Effectively, this procedure approximates what would be a very high-dimensional 
(equal to the number of points in the two image sequences) cost function, by a signifi-
cantly lower-dimensional function of only the active points. This latter function has 
few local minima, because it is a function of the coordinates of active points, for 
which relatively unambiguous matches can be found. Therefore, using this strategy, 
we can speed up the performance of image registration and also reduce the chances of 
local minima, which in part result from ambiguities in determining the matching pairs 
of points. 

Also, the transformation h(x,t) should be smooth spatially and temporally. Since the 
image sequences are periodic, i.e., the first image I1 and the last image IN are also 
temporal neighbors as indicated by solid arrows in Fig 1, the temporal smoothness 
constraint should be applied between the first and the last images in the periodic se-
quence. In this way, after completing 4D image registration, it is ensured that each 
point x moves smoothly along the temporal direction from the end-diastolic image I1 
to other time-points, and importantly moves back to its original position since the first 
images respectively in the two sequences are identical and transformation between 
them is thus forced to be exactly zero during the entire registration procedure.  

By considering all of above-described requirements, the energy function that our 
4D registration algorithm minimizes is defined as follows:  
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There are four energy terms in this energy function. The first term EF is defined on 
the forward transformation h(x,t), and measures the similarity of attribute vectors 
between each point in the sequence T(x,t) and its corresponding one in the sequence 
I(x,t). The second energy term EB is similar to the first term, while it is defined on 
the inverse transformation h-1(x,t) to make sure that each point in the sequence I(x,t) 
also finds its best matching point in the sequence T(x,t). Specifically, in the first 
energy term, the importance of each point (x,t) in the image registration is deter-
mined by its corresponding parameter ωT(x,t), which is designed to be proportional 
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to the distinctiveness of this point’s attribute vector aT(x,t). The match for each point 
(x,t) is evaluated in its 4D (3D spatial and 1D temporal) neighborhood n(x,t), by 
integrating all differences between the attribute vector aT(z,τ) of every neighboring 
point (z,τ) and the attribute vector aI(h(z,τ)) of the corresponding point h(z,τ) in the 
sequence I(x,t). The difference of two attribute vectors d(·, ·) ranges from 0 to 1 [17]. 
The size of neighborhood n(x,t) is large initially and decreases gradually with the 
progress of the deformation, thereby increasing robustness and accuracy of deform-
able registration.  

The third energy term EC measures the attribute-vector matching of corresponding 
points in different time-point images of the sequence I(x,t). Notably, for each point 
(x,t) in the sequence T(x,t), its corresponding point in the sequence I(x,t) is h(x,t). 
Since the sequence T(x,t) has identical images at different time-points, i.e., same 
end-diastolic image, points }1),,({ Ntt ≤≤x  are N corresponding points in the se-
quence T(x,t); accordingly, N transformed points }1),,({ Ntth ≤≤x  are the established 
correspondences in the sequence I(x,t). In this way, we can require the attribute vec-
tor aI(h(x,t)) of a point h(x,t) in the image I(x,t) be similar to the attribute vector 
aI(h(x,τ)) of its corresponding point h(x,τ) in the neighboring time-point image 
I(x,τ). This requirement is repeated for each position (z,τ) in a 4D neighborhood 
n(x,t), and the total attribute-vector difference is weighted by εT(x,t) to reflect the 
importance of a point (x,t) in the sequence T(x,t). The use of this energy term poten-
tially makes it easier to solve the 4D registration problem, since the registration of 
cardiac images of neighboring time-points is relatively easier and thus it can provide 
a good initialization for 4D image registration by initially focusing only on energy 
terms of Ec and ES. 

The fourth energy term ES is a smoothness constraint for the transformation h(x,t). 
For convenience, we separate this smoothness constraint into two components, i.e., a 
spatial smoothness constraint Spatial

SE  and a temporal smoothness constraint Temporal
SE , 

and these two constraints are linearly combined by their own weighting parameters α 
and β. For the spatial smoothness constraint, we use a Laplacian operator [17] to 
impose spatial smoothness. Notably, all images in the sequence T(x,t) are identically 
the end-diastolic image. Thus, for registering two image sequences T(x,t) and I(x,t), 
we have to register the end-diastolic image with the end-systolic image by a large 
nonlinear transformation, which might be over-smoothed by the Laplacian operator. 
To avoid this over-smoothing problem, we use a multi-resolution framework, i.e., 
multi-level transformations, to implement our registration algorithm. Each resolution 
will estimate its own level of transformation based on the total transformations esti-
mated from the previous resolutions, and the final transformation used to register two 
image sequences is the summation of all levels of transformations respectively esti-
mated from all resolutions. Notably, the Laplacian operator is only allowed to smooth 
the current level of transformation being estimated in the current resolution, which 
effectively avoids smoothing the transformations estimated from the previous resolu-
tions. As for the temporal smoothness constraint, we use a Gaussian filter to obtain an 
average transformation in a 1D temporal neighborhood around each point (x,t), and 
force the transformation on this point (x,t) to follow its average transformation in 
temporal neighborhood.  
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3   Results 

The first experiment is designed to show the performance of the proposed method in 
estimating cardiac motion and deformation fields. There are 33 different time-point 
images in total, taken from a cardiac cycle of a normal volunteer, with the first time-
point at end-diastole. Some selected cardiac images are shown in Fig 2(a). With the 
transformations established between end-diastolic frame and other frames, we can 
warp the end-diastolic image to any of the other frames, as shown in Fig 2(b), which 
becomes very similar to the corresponding frame, partly indicating the accuracy of 
our registration algorithm. Also, from Fig 2(c) that shows the deformation fields 
around the left ventricle at end-diastole to other time-points, we can observe that the 
deformation fields are very smooth in each time-point, and consistent over time.  

The accuracy of motion and deformation estimation can also be reflected by the 
performance of the boundary tracking/labeling results provided by the 4D registration 
method. For example, if the boundaries of interest have been labeled in the end-
diastolic image, we can warp these labeled boundaries to other time-points and obtain 
the boundary tracking/labeling results at other time-points. Fig 3 shows our semi-
automatically labeled boundaries of interest as red contours in two images with black 
borders, respectively called long-axis and short-axis views at end-diastole. The track-
ing/labeling results at other time-points are shown by red contours in other images in 
Figs 3(a) and 3(b). Moreover, we can display the temporal views of short-axis lines to 

 

     
(a) Original images 

                                
                         (b) The end-diastolic image warped to other time-points 

                              
                    (c) Estimated deformations around the endocardial border of left ventricle 

Fig. 2. Estimating deformations from end-diastole to other time-points. (a) 5 selected cardiac 
images, (b) the results of warping end-diastole to other time-points, (c) deformations around 
left ventricle, estimated from the end-diastolic image and cropped here for clear display.  
 

 1 18 1614 5 

18 1614 5 

18 1614 5 



908 D. Shen et al. 

 

    
(a) Long-axis view 

     
(b) Short-axis view 

Fig. 3.  Tracking/labeling the boundaries of interest in a cardiac sequence 

 
 

                    
 

                                      (a)                                                                                        (b) 

Fig. 4. Tracking/labeling results in temporal views of two short-axis lines. The red colors indi-
cate the labeling results on the left and right ventricular boundaries.   
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Fig. 5. Left ventricular volume of a selected subject, segmented by our algorithm (solid curve) 
and by hand (dotted curve) over all frames in a cardiac cycle 

show the temporal tracking/labeling results. As shown in Fig 4, the proposed algo-
rithm is able to track/label the two short-axis lines over time.  

We also validated our method on a small dataset of 3D cardiac image sequences, by 
comparing the left-ventricular volumes obtained respectively by manual and auto-
matic segmentations. Average volume error is 3.37%, with standard deviation 2.56%; 
and average volume overlap error is 7.04%, with standard deviation 3.28%. Correla-
tion coefficient between manual and automatic segmentations is 0.99. Fig 5 shows the 
comparison on a selected subject over a whole cardiac cycle.  

 1 19 1613 7 

 1 19 1613 7 
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4   Conclusion 

We have presented a 4D deformable registration method for estimation of cardiac 
motions from MR image sequences. The experimental results show consistent motion 
estimation by our method. This performance is achieved by formulating the cardiac 
motion estimation as a 4D image registration problem, which simultaneously consid-
ers all images of different time-points and further constrains the spatiotemporal 
smoothness of estimated motion fields concurrently with the image registration pro-
cedure. Also, compared to other motion estimation methods that use very simple 
features such as curvature of the left ventricular border, our method uses a rich set of 
attributes, including GMIs, to distinguish the corresponding points across different 
time-points, thereby maximally reducing ambiguity in image matching. Finally, by 
hierarchically selecting the active points to match, based on the distinctiveness de-
grees of their attribute vectors, our registration algorithm has more opportunities to 
produce a global solution for motion estimation.   

Our 4D registration method for cardiac applications needs extensive validation in 
the future, by using both simulated and real data. For simulated data, we will validate 
the accuracy of our registration algorithm by directly comparing our estimated mo-
tions with ground-truth motions that we simulate. For real data, we will compare the 
algorithm-detected correspondences with the manually placed correspondences in the 
different frames, in order to validate the motions estimated.  
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Abstract. A new method for MR to X-ray registration is presented.
Based on training data, consisting of registered multispectral MR and
CT data, a function is defined that maps multispectral MR data to CT-
like data. For new subjects for which multispectral MR data have been
acquired, the mapping function is used to generate a corresponding CT-
like dataset. The CT-like image is subsequently used for registration to
X-ray data, using gradient-based registration. Preliminary experiments
indicate that MR to X-ray registration using this method is more ac-
curate and has a larger capture range than gradient-based registration
applied directly to MR data.

1 Introduction

In diagnosis and therapy planning, volumetric magnetic resonance (MR) images
and computed tomography (CT) datasets are often used. However, in many in-
terventions, intraoperative imaging is limited to 2D; in intravascular procedures
and in orthopedic interventions, for example, usually only X-ray projection im-
ages are available. In order to relate these images to preoperative data so as to
provide 3D insight during the intervention, 2D-3D registration is required.

Several 2D-3D registration methods have been reported in literature. Most
algorithms have been designed for CT to X-ray registration. Since both these
imaging modalities rely on X-rays, this can be exploited in designing 2D-3D
registration methods. MR to X-ray registration is much more challenging, owing
to the different underlying contrast mechanism. Several papers have appeared
that address registration of magnetic resonance angiography (MRA) to digital
subtraction angiography (DSA) images (among others [1, 2, 3]) and little has
been done for MR to X-ray registration of bone [4, 5]. Rohlfing [4] compares
intensity distributions along all rays to the corresponding pixel intensities of the
real projection images by means of a probabilistic extension of histogram-based
similarity measures, and Tomaževič [5] optimizes alignment of the gradients in
2D and 3D images. The main difficulty in MR to X-ray registration for bone
applications is that bone tissue is not well depicted in MR images. This makes
direct application of gradient-based methods, that rely on the bone edge or

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 911–918, 2005.
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surface, or intensity-based methods, that assume a relation between the image
intensities, difficult.

In this paper, a new approach for MR to X-ray registration is proposed. It
is investigated whether multispectral MR data can be used to construct a CT-
like image, containing sufficient information for registration to X-ray projection
images. Hereto, a mapping function is defined, based on training data, which
maps multispectral MR data obtained with a standardized acquisition protocol,
into a simulated CT dataset. This is not straightforward, as MR imaging is not
quantitative and MR intensities are affected by position dependent variations in
coil and scanner sensitivity.

In the following, we first introduce the method to construct a CT-like image
from multispectral MR data. Next, 2D-3D registration based on the constructed
CT-like data is described and the datasets that are acquired for training and
evaluation are specified. Subsequently, the experiments are described that were
conducted to assess whether in controlled conditions MR intensities can be as-
sumed to be similar across subjects for our purpose, or whether intensity remap-
ping is required. Finally, the 2D-3D registration experiments with the CT-like
datasets are detailed and the results are presented and discussed.

2 Method

2.1 Training Multispectral MR to CT Mapping

The general idea is to investigate whether a function can be proposed that maps
multispectral MR datasets that are acquired with a standardized protocol to CT-
like data. This mapping function can depend on MR image intensities, image
features, and spatial information. For a proof of concept, we use a straightforward
approach, in which only the image intensities of three different MR scans are
used.

In the training stage, registered multispectral MR and CT datasets are used.
From these datasets, a look-up table (LUT) is constructed relating MR-value
triplets to CT values. Hereto, intensities in each of the MR images are divided
in n bins each:

BINi(x) =

⌊
Ii(x) − min(I)

(max(I) − min(I))/n

⌋
, (1)

where

Ii(x) = intensity of voxel x in MR image i,
min(I)/max(I) = minimum/maximum intensity over all MR images.

In this preliminary experiment, 64 evenly distributed bins were used. A region
of interest is determined containing the specific anatomy that is trained. In our
case this is a specific level of the spine (or several spine levels).

The simulated CT value in a certain region corresponding to a specific MR-
value triplet, is determined using a mapping function f :

LUT(u, v, w) = f
({CT(x)|x ∈ Sr

u,v,w}
)
, (2)
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where

Sr
u,v,w = set of voxels x in region r where

BIN1(x) = u,BIN2(x) = v and BIN3(x) = w,

f : Zq → R is function that maps the set of CT values corresponding to a
certain MR-value triplet into a single estimated CT value.

We chose the median function for f . The mapping functions can easily be ex-
tended, e.g. by incorporating feature information, information over larger neigh-
borhoods, or spatial information (e.g. an atlas). In addition, binning techniques
more effective than uniform binning may be useful.

2.2 2D-3D Registration Based on a CT-Like Dataset

For a new subject for which a multispectral MR dataset is available, a trained
mapping function as defined in the previous section can be used to generate
a CT-like image. This image is subsequently used in 2D-3D registration. Since
the CT-like image consists of values that are similar to CT values, intensity-
based registration methods as well as feature-based or gradient-based registra-
tion methods can be applied.

In this preliminary experiment, we considered a gradient-based 2D-3D regis-
tration approach [5], which was previously used for MR to X-ray registration of
the spine. Registration to two X-ray images was considered, as one X-ray image
is not sufficient to assess the position in three dimensions.

For validation of the 2D-3D registration we applied the framework that was
introduced in [6]. Using an accurate reference standard the performance of the
method was evaluated by reporting the capture range and final mean TRE
(mTRE) of successful registrations within the capture range.

3 Experiments

3.1 Data Acquisition

First, multispectral MR datasets of six healthy subjects (one male and five fe-
males with ages ranging from 21 to 54) were acquired using a standardized
protocol (see Table 1) with a 1.5-T MR scanner (GyroScan NT, Philips Medical
Systems, Best, The Netherlands). Two of the subjects were scanned in two MR
scanners, with the same specifications but at different locations, to assess inter-
scanner variability. Histograms of all MR images of the same anatomic regions
were compared qualitatively, to determine whether intensity remapping of the
MR data would be required for training the LUT and applying it to new cases.

Second, multispectral MR (using the same protocol as above), CT, and 3DRX
datasets with corresponding X-ray images were acquired from two fresh post-
mortem subjects (females aged 102 and 77). CT images were acquired on a
clinical multi-slice CT scanner (MX8000, IDT16, Philips Medical Systems). CT
and MR datasets were registered using maximization of mutual information.
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Table 1. Specifications of the acquired scans

Protocol name Specifications

Balanced Fast Field Echo
(BFFE)

TR 5.29, TE 1.80, NA 8.0, slice thickness 3.0 mm,
slice spacing 1.5 mm, pixel spacing 0.5/0.5 mm, flip
angle 50◦, 512 × 512 × 70

Balanced Fast Field Echo
with water selection
(BFFE WS)

TR 6.21, TE 3.10, NA 8.0, slice thickness 3.0 mm,
slice spacing 1.5 mm, pixel spacing 0.5/0.5 mm, flip
angle 50◦, 512 × 512 × 70

Balanced Fast Field Echo
with fat selection
(BFFE FS)

TR 6.21, TE 3.10, NA 8.0, slice thickness 3.0 mm,
slice spacing 1.5 mm, pixel spacing 0.5/0.5 mm, flip
angle 50◦, 512 × 512 × 70

CT 0.35 × 0.35 × 0.5 mm3, slice thickness 1.0 mm
3DRX 0.43 × 0.43 × 0.43 mm3, 256 × 256 × 256
200 X-ray projections 0.44 × 0.44 mm2, 512 × 512, 25 cm II

These registered datasets were used to train the LUT. 3DRX data and X-ray
images were acquired using a 3D C-arm system (Integris BV5000, Philips Med-
ical Systems). Table 1 describes the details of the acquired scans.

The geometrical relation between X-ray images and the 3DRX volume was
known, because the 3DRX volume is reconstructed from the X-ray projections.
This serves as a reference standard for 3DRX to X-ray registration, as proposed
by van de Kraats et al. [6]. The CT and MR data were registered to the 3DRX
data using maximization of mutual information. As a consequence, the relation-
ship between the X-ray images and the CT and MR data was indirectly derived,
which provided the reference standard for MR to X-ray and CT to X-ray regis-
tration.

3.2 MR Histogram Inspection

For the six healthy subjects it was investigated whether intensity remapping
was required to relate image intensities between subjects. We also qualitatively
assessed the relation between MR intensities of healthy subjects and postmortem
subjects.

The comparison of MR intensities (across different scans or patients) was
performed using the MR intensities that result directly from the Fourier trans-
formed signal intensities, to circumvent the linear transformations that are nor-
mally applied in postprocessing steps by MR scanners. We determined regions of
interest around the vertebra for each of the subjects and for all the scans. Since
the region of interest affects the histogram, it was crucial that similar regions
of interest were chosen. In this experiment, a narrow region of interest around
vertebral body L3 was taken.

The resulting histograms indicated that the MR intensities were indeed com-
parable and that age, sex, or scanner did not influence the histograms profoundly.
The peaks in the histograms per MR protocol occurred at similar intensities. For
the BFFE scan the mean and standard deviation of the position of the peaks was
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Fig. 1. Sagittal plane through center of vertebra and spinal canal of CT-like images
of two healthy subjects constructed using a LUT trained on a postmortem subject
(SA-L1)

19.1±3.5, for BFFE WS this was 47.6±4.9, and for BFFE FS this was 7.7±1.9.
Thus it was expected that application of a LUT trained on any one of these
multispectral MR datasets would result in similar CT-like images. A logical step
was to verify this by using the trained LUT obtained from the postmortem
scans. However, from a similar analysis, it seemed that the histograms of fresh
postmortem subjects did not correspond well with healthy subjects. Since the
availability of MR, CT, and 3DRX data of the same patient is rare, we had to
rely on the (fresh) postmortem data to relate MR and CT intensities. To over-
come the intensity correspondence problem, we linearly rescaled the images of
the postmortem subjects in such a way that the histogram peaks roughly over-
lapped with the peaks of the healthy subjects before these were used to train the
LUT. This was done in an ad hoc manner; for better histogram overlap more so-
phisticated techniques can be used. The resulting CT-like images, for which one
slice is shown for two subjects in Figure 1, could not be evaluated quantitatively
as corresponding CT and 3DRX scans were not acquired of volunteers. The dark
areas in the images correspond to locations for which no or insufficient data was
present in the training set. These locations can be filled, e.g. using gray value
dilation or inpainting. The dark areas mainly occur in the spinal canal. This is
possibly due to differences between in vivo and in vitro spinal fluid. However,
the resulting CT-like images look promising as edges are present at positions
where a bone edge is expected.

3.3 2D-3D Registration

Experiments were conducted to determine the performance of 2D-3D registration
using the simulated CT-like datasets in the postmortem study. An important
aspect was to decide on what dataset and region to train the LUT. Whereas we
hypothesize that the LUT will improve with a larger training set, in our first
experiments only two datasets were available: a postmortem female aged 102
(SA) and a postmortem female aged 77 (SB). These differred substantially in
quality as SA had a very deformed spine with hardly any disc spaces and a high
degree of osteoporosis. We therefore did not use this dataset for training, but
for evaluation; vertebra L3 (SA-L3) was used for this purpose. To determine the
performance as a function of the training data, we trained on SA-L3, SB-L3,
SB-L1 and SB-L1,L3.
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To assess the performance of 2D-3D registration using the CT-like image in
comparison to registrations using 3DRX, CT, and original MR data, we also
evaluated the performance of 2D-3D registration using corresponding regions of
interest in the 3DRX, CT, resampled CT image (‘trans CT’, which resembles
the resolution of the MR images, 1.5 × 0.5 × 0.5mm3), and the original MR
scan (BFFE). For each of the corresponding vertebra volumes, the same two
fluoroscopic images were used for registration. These were approximately at a
90◦ angle.

For all the datasets, 200 registrations were performed, using the same offsets
from the gold standard, which ranged from 0 to 10mm mTRE with 20 starting
positions per 1mm. The 100 and 90 percent capture ranges, where success was
defined as an error smaller than 2 mm mTRE, are reported together with the
mean accuracy for successful registrations.

4 Results and Discussion

Figure 2 shows corresponding slices of MR BFFE data, transformed CT data
(registered to MR BFFE data), and four generated CT-like datasets (acquired
using LUTs trained on different vertebrae) for vertebra L3 of subject A. Whereas
it can clearly be seen that when training on the vertebra itself, the generated
CT-like image resembles the CT scan best (Figure 2c), in all generated CT-like
data edges are present at bone surfaces. There were only a few nontrained MR-
intensity triplets (holes in the CT-like datasets), and we thus expect that the
unfilled locations have minimal effect on the registration result.

Table 2 lists the 2D-3D registration results. The 100% and 90% capture
ranges (where success was defined as a final mTRE less than 2mm) are reported
along with the average error of successful registrations within these ranges. As ex-
pected, registration of the 3DRX image to the two X-ray images had the highest
100%/90% capture range (5/6mm start mTRE) with an mTRE of 0.30mm, fol-
lowed by registration of the original CT image to the two X-ray images (4/5mm

(a) (b) (c)

(d) (e) (f)

Fig. 2. The same slices of vertebra L3 of subject A: a) BFFE; b) transformed CT; c)
trained on SA-L3; d) trained on SB-L3; e) trained on SB-L1; f) trained on SB-L1,L3
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Table 2. The 100% and 90% capture ranges and accuracy of successful (< 2mm
mTRE) registrations within the capture range for 2D-3D registration using a gradient-
based method on 3DRX data, CT data, transformed/resampled CT data (‘trans CT’),
and four generated CT-like datasets of vertebra L3 of subject A.

Gradient-based method
100% (mm) 90% (mm) Err. (mm)

3DRX 5 6 0.30
CT 4 5 0.22
trans CT 3 5 0.34
train SA-L3 3 5 0.46
train SB-L3 2 4 0.55
train SB-L1 3 4 0.45
train SB-L1/L3 3 4 0.61
MR (BFFE) 1 1 0.81

with mTRE of 0.22mm). Registration of the transformed and resampled CT
image, i.e. the image used when training the LUT, had a slightly smaller cap-
ture range (3/5mm with mTRE of 0.34mm). Registration performance for the
four generated CT-like datasets (approximately 3/4mm and mTRE of 0.52mm)
was almost equal to the performance of the transformed CT image. As it can be
assumed that the results obtained for the transformed CT image are the best
attainable for the CT-like images, since the LUT is trained from the transformed
CT image, this indicates the potential of the method. Furthermore, it seemed
that the training set used to define the mapping function from multispectral
MR intensities to CT values did not have a large influence on the result. The
performance of MR to X-ray registration using the CT-like data was much bet-
ter than when using gradient-based registration directly (after windowing and
optimizing parameters for relevant point extraction) on MR data (1/1mm and
mTRE of 0.81mm) and better than the results reported in literature [5]. This
may be explained by numerous points extracted on soft-tissue boundaries in the
original MR dataset which introduce boundaries that are not clearly visible in
the X-ray images and thus make gradient-based registration applied directly on
MR data difficult.

The current study has several limitations. First, we used a limited number
of training and evaluation data. Second, the quality of the data was limited,
and therefore we should be cautious in generalizing the results. It is subject of
further investigation whether the result will be the same when a larger dataset
is used and when LUTs are trained and evaluated on more subjects. Moreover,
although it is difficult to acquire training data in vivo, this may be required for
in vivo application, as we observed considerable differences in the histograms of
MR data between healthy subjects and in the postmortem scans.

Furthermore, in our experiment a simple mapping function, i.e. the median,
was used for generating the LUT. Other mappings of CT intensities can be
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investigated as well. Possible extensions are to take neighborhood information or
other spatial information into account, or using extra features, e.g. gradient and
texture information or intensity profiles. Another option is to use the variance
of the occurring CT values for a specific MR intensity triplet, for example to
determine the confidence when generating the CT-like image. It can also be
investigated if less than three MR images or other MR protocols can be used to
achieve similar results.

Finally, the performance of other types of 2D-3D registration methods, such
as feature-based and intensity-based methods, using generated CT-like data
should be investigated. By using a CT-like image, intensity-based methods can
potentially overcome their current limitation in registering MR data to X-ray
images.

5 Conclusions

A method has been presented to simulate CT data from multispectral MR data
so as to allow indirect MR to X-ray registration. In preliminary experiments, it
was shown that gradient-based registration of the CT-like data to X-ray data
yielded results that approximated the accuracy of original transformed CT data
to X-ray registration, and that it outperformed registration directly on the MR
data.
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Abstract. This paper describes a new piecewise rotational transforma-
tion model for capturing the articulation of joints such as the hip and
the knee. While a simple piecewise rigid model can be applied, such
models suffer from discontinuities at the motion boundary leading to
both folding and stretching. Our model avoids both of these problems
by constructing a provably continuous transformation along the motion
interface. We embed this transformation model within the robust point
matching framework and demonstrate its successful application to both
synthetic data, and to serial x-ray CT mouse images. In the later case,
our model captures the articulation of six joints, namely the left/right
hip, the left/right knee and the left/right ankle. In the future such a
model could be used to initialize non-rigid registrations of images from
different subjects, as well as, be embedded in intensity-based and inte-
grated registration algorithms. It could also be applied to human data
in cases where articulated motion is an issue (e.g. image guided prostate
radiotherapy, lower extremity CT angiography).

1 Introduction

While non rigid image registration has been extensively applied to brain im-
age analysis [7,2,4,5] (e.g. for comparing shape and function between individuals
or groups, developing probabilistic models and atlases, and measuring change
within an individual) it has not been extensively applied to other parts of the
body to date. Unlike the brain which is a single organ enclosed in the skull with
no articulated joints, the abdominal/pelvic cavities and especially regions close
to limb joints contain many organs/glands whose relative position/orientation
vary substantially from subject to subject. This is of particular importance for
non-rigid registration, as the process typically relies on a good initialization of-
ten performed by estimating the global linear transformations between the two
images. Given the relatively high degrees of freedom (DOF) available in most
non-rigid registration methods, the final estimate of the nonlinear transforma-
tion is critically dependent on this early step to bring the nonlinear optimization
process to a position to enable it to converge to the appropriate local minimum.
While the estimation of the initial linear transformation is relatively straightfor-
ward in the case of brain images (using both intensity and/or feature methods),
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such simple transformations are inadequate (even for the purpose of initializa-
tion) in regions where there are articulated joints. Here the relative orientation
of, for example, the proximal and the distal leg is highly dependent on the state
of the knee joint and can vary substantially between subjects even when extra
care is taken to implement a standardized imaging protocol. This is particularly
true in our application of serial hybrid 3-dimensional imaging for the purpose of
quantifying the remodeling of existing collateral arteries (arteriogenesis) and in-
creased microvascular density (angiogenesis) associated with peripheral arterial
disease of the lower extremities. In this application, x-ray computed tomographic
(CT) angiography is used to evaluate lower extremity arteriogenesis, while reg-
istered single photon emission computed tomographic (SPECT) images provide
a quantitative index of changes in either tissue perfusion or critical radio-labeled
molecular markers of the underlying biological process.

While the problem of modeling articulated joints has received extensive in-
terest in computer graphics, it has received little attention to our knowledge, in
the medical image analysis literature, the recent early work of Martin-Fernandez
et al. [6] being one exception. In their work, the problem of estimating 2D hand
motion tracking is modeled using a weighted sum of multiple rigid transforma-
tion. While this model is adequate for simple motions, it does not explicitly ad-
dress the key problem of folding (i.e. ensuring that the resulting transformation
remains invertible). A more interesting set of work is the polyrigid/polyaffine
model proposed by Arsigny et al. [1], where an elegant method for constructing
an invertible transformation as a weighted sum of piecewise rigid/affine trans-
formations is described. The weights are obtained by the solution of an ordinary
differential equation. Arsigny et al. present 2D results in the matching of histo-
chemical slices to anatomical data, and they note that this model would also be
applicable to articulated registration issues such as the one of concern in this pa-
per. A weakness of their method is the fact that there is no closed form solution
to the resulting transformation, rather a numerical solution of the differential
equation is needed to generate the final transformation, which makes the model
highly computationally intensive.

In this work, we present both a theoretical model with a closed form solution
for modeling the piecewise rotational motion of both the hip, the knee, and the
ankle joints in mice (and by extension man) in a manner that ensures that the
overall map is smooth and invertible and apply this model to the problem of
registration of serial CT images acquired from mouse models of angiogenesis.
The transformation model is used within the robust point matching registration
framework to estimate the piecewise rigid transformation, which can then be
used as the initialization to a full nonrigid registration.

2 Methods

2.1 A Model for Non-folding Piecewise Rotations

Our model for computing a non-folding mapping appropriately blends piecewise
rotations making the following assumptions: (i) at each joint the motion is a
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rotation about a rotation axis passing through the joint origin (e.g. the knee). (ii)
The two “limbs” linked at the joint can be described without loss of generality
as a stationary limb and a moving limb. (iii) A surface can be found which
separates the two limbs in the original position (i.e. in the reference image); we
label this the joint or motion interface, and (iv) both the joint origin and the axis
of rotation are restricted to lie outside the moving limb – this last assumption
effectively reduces each joint to having only two degrees of freedom.

Given these assumptions, we now describe our blending piecewise rotation
model of articulated joints which provably results in no folding (i.e. the de-
terminant of the Jacobian matrix of the resulting transformations is positive
everywhere [2]). Consider the example shown in Figure 1. Here the top part of
the cylinder (the moving limb) rotates counter-clockwise, with angle q degrees,
with respect to the bottom part of the cylinder (the stationary limb). The axis
of rotation shown in yellow (coming out of the paper). If a “naive” piecewise
rotation model is used, we observe (Figure 1 middle-top) both folding of the
surface where the moving limb moves towards the interface (near point A) and
stretching where it moves away from the interface (near point B). Our proposed
model (Figure 1 middle-bottom) corrects for both of these problems by appro-
priately manipulating the angle of rotation. The key to our model is the fact
that any complicated 3D rotation can be described as a single rotation about a
single axis (the so-called angle-axis representation). Without loss of generality,
let the rotation axis pass through the local coordinate origin and be aligned to
the z−axis. (This can easily be achieved by a global rigid transformation). We
next employ a cylindrical polar coordinate system (r, z, θ), where r is the radial
distance from the origin and θ the rotational coordinate. In this polar coordinate
system, any rotation about the z−axis can be expressed as a translation in θ .
For example the “naive” piecewise rotation model can be written as:

Fig. 1. The blending piecewise model. Left: A simple case of articulated motion
where the top part of a cylinder is rotating independently of the bottom part. Middle
Top: Simple piecewise rotation model exhibiting folding (A) and stretching (B) behav-
ior. Middle Bottom: Proposed blending piecewise rotation model which is free from
folding and stretching. Right: Following transformation to a cylindrical polar coordi-
nate system we plot the original (θ) vs the transformed (θ′) polar angle for both the
piecewise and the blending models. Note that the blending piecewise rotation model re-
sults in an continuous invertible mapping unlike the “naive” piecewise rotation model.
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Static Limb: (r, z, θ) �→ (r, z, θ), Moving Limb: (r, z, θ) �→ (r, z, θ + q) (1)

Static Limb: θ′ = θ, Moving Limb: θ′ = θ + q (2)

where in equation 2 we explicitly reduce this mapping to a one dimensional
problem of finding θ �→ θ′, since (r, z) remain constant. Using the same notation,
we express our blended piecewise rotation model as:

θ′ = θ + qφr,z(θ) (3)

where φr,z(θ) is the to-be constructed continuous function on each circle of con-
stant r, z. Since there is no change in the r, z coordinates, the key to constructing
an invertible, continuous mapping is reduced to simply constructing an invert-
ible continuous function φr,z(θ) which is constrained to be close to 0 in the
static limb and 1 in the moving limb so as to adhere as much as possible to
the overall piecewise rotation. One possible solution to this is demonstrated in
figure 1(right) where we plot θ against θ′. For a given circle at constant (r, z),
let A and B be the points where the circle intersects the motion interface, with
angular coordinates θA and θB respectively. Our blending model sets φr,z = 0
in the static limb, and performs all blending in the moving limb – this enables
easy hierarchical updating of multi-joint structures such as the leg. Next, in
the moving limb, in the region immediately after B (i.e. θB < θ < θB + mq,
where m > 0 is the dimensionless “extent of blending” parameter typically set
to 1) φr,z ramps up from zero to one to correct for the stretching problem. In
the region θB + mq < θ < θA − (1 + m)q we have φ = 1 resulting in uncon-
strained rotation i.e. θ′ = θ + q. Finally as we approach the moving interface
θA − (1+m)q < θ < θA we ramp down the rotation angle back to zero to ensure
continuity at the interface point A. This map is both continuous and invertible;
a cubic blending method can also be used to make it C1 continuous if desired.
An easily handled special case occurs when the part of the circle that lies in the
moving limb is too short (in an angular sense) such that θA−(1+m)q < θB +mq.
In this case φr,z never reaches one and there is no middle portion to the line,
rather the ramping functions intersect. We apply folding correction to the right
of the intersection and stretching correction to the left.

The practical application of this blending model consists of finding for any
given point p = (r, z, θ), the θ-coordinates of the appropriate intersection points
A, B via a bisection search strategy along the circle centered at (0, z). Potential
singularities can exist close to the rotation axis r = 0; these are avoided by
design (see assumption iv above) by ensuring that the rotation axis lies outside
the moving limb. A sufficient condition for this is to ensure that the rotation
axis lies on a plane (the local xy-plane) that is outside the moving limb – this
effectively reduces each joint to having only two degrees of freedom.

2.2 Practical Implementation

First, a label image is constructed where each voxel contains a value equal to
the index of each limb (i.e. air=-1, main body=0, left hip=1, left knee=2 etc.).
Next, for each joint we identify both the position of the joint and a local xy-plane
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that stays completely outside the moving limb on which the rotation axis for the
joint is constrained to lie. The joint or motion interface is set to be, for each
joint, the bounding surface of the static limb. In the case of the left knee joint,
for example, the motion interface is the boundary of the static “limb” which is
the union of the main body trunk, the whole right leg, and the left proximal leg,
whereas the moving “limb” is the union of the left distal leg and the left foot.
The overall transformation model consists in applying a series of transformation
in a hierarchical manner, i.e. in the case of a point x in the left foot the overall
mapping is:

x′ = Tglobal.Tleft-hip.Tleft-knee.Tleft-ankle(x) (4)

Here Tglobal is an arbitrary global transformation, whereas Tleft-hip, Tleft-knee,
Tleft-ankle are modeled using our blended piecewise rotation model described
above. As an example, the 2-DOF (α, q) transformation Tleft-ankle is applied to
x as follows:

1. Transform the global coordinate system to the local coordinate system such
that the joint origin for the ankle is mapped to the coordinate origin, and
the normal of the local xy-plane to the local z-axis. (Transformation T1).

2. Initialize the the rotation axis to be the local x-axis and rotate it by an angle
α about the local z-axis to obtain the final rotation axis l.

3. Convert to a cylindrical polar system such that l maps to the cylindrical
polar z-axis. (Transformation T2).

4. For any point (r, z, θ) compute φr,z(, θ) and map to (r, z, θ+ qφr,z(θ)), using
the construction discussed in Section 2.1, below equation 3.

5. Transform by T−1
1 .T−1

2 to get back to the original coordinate system.
6. Consecutively apply Tleft-knee, Tleft-hip and Tglobal in order to get the final

transformed point x′.

2.3 Articulated Rigid Robust Point Matching

We embed this new transformation model within the robust point matching
(RPM) framework [3]. The registration procedure consists of two alternative
steps: (i) the correspondence estimation step – which allows for the handling of
outliers both in the reference and target point sets and (ii) the transformation
estimation step. The correspondence estimation step is identical to the standard
RPM implementation [3] and will not be described here. Given two sets of corre-
sponding points we estimate the N = 6+2n parameters of the articulated model,
where n is the number of the articulated joints, by optimizing a functional of
the form:

G =
argmin

g

∑
i

wi(g(Xi) − Vi)2 (5)

where g is the articulated rigid transformation, Xi is point i in the reference
point set, Vi is its corresponding point in the target data set and the weights
wi are set to give less weight to points termed as outliers by the correspondence
process. This functional is optimized using a Conjugate Gradient method.
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3 Results

3.1 Synthetic Data

Fig. 2. A Synthetic Mouse Leg Model

To test both the utility of the model as
well as the convergence of our registration
algorithm, we constructed a three piece
(two-joint) synthetic model using the left
leg from a real micro-CT mouse image, as
shown in Figure 2. The leg is divided into
three parts (proximal leg or femur, distal
leg and foot) as shown in Figure 2(left)
and has two joints (knee,ankle).

A simulated motion of this model using our articulated blended transforma-
tion is shown in Figure 2(b) where the original model is shown in red and the
transformed model in green. The result of the registration algorithm which con-
sists of the RPM matching strategy and the hierarchical articulated rigid model
presented in this paper is shown in Figure 2(c). Note that for this example, the
joint rotations where of the order of 25◦ and the error in the parameter estimates
was less than 10% for all parameters.

3.2 Serial Mouse Image Registration

Imaging: We tested the initial utility of our algorithm on three different pairs
of mouse micro CT images (resolution 100 × 100 × 100μm3. In two of the pairs
the images were acquired 3 weeks apart as part of an angiogenesis imaging
protocol, whereas the third case was specially planned to test this algorithm. In
this last example, the mouse was positioned in the scanner, imaged and then
removed from the scanner. Then the technologist attempted to position the
mouse approximately in the same position as in the first acquisition, thereby
simulating the actual situation in the case of serial imaging. The images consisted
of the lower half of the mouse (roughly from below the lungs to the feet). All
figures are based on this last example.

Articulated Model Construction: Prior to registration, the articulated
model with six joints was constructed which is shown in Figure 3 (left). The
mouse was divided into seven parts namely the main body trunk, the left and
right femurs (or proximal legs), the left and right distal legs and the left and
right feet, by manually partitioning the image by interactively placing cutting
planes to separate the parts. Whereas a single plane was sufficient for the knee
and ankle joints, two planes where needed to delineate the boundary between
the hips and the main body. In addition, at each joint, the joint origin was lo-
cated (at the intersection of the bone and the cutting planes) and the local x-
and y-axes were defined such that the local x-axis was roughly aligned to the
most likely rotation axis. The joint origin was subsequently translated along the
local z-axis away from the cutting plane to ensure that the local xy-plane did
not intersect the moving limb at each joint, as required by our model.
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Fig. 3. Left: Schematic of the articulated model with the six joints overlaid on
the mouse bony anatomy. (1,2=left/right hip, 3,4=left/right knee and 5,6=left/right
ankle) Right 3 views: (A) starting position for the registration (red=reference,
green=target), (B) result after global rigid alignment, (C) result after articulated rigid
alignment. For this result we used points extracted from the bone surfaces of the two
images. In particular note the improvement in the registration when using the artic-
ulated model at the knee (highlighted by a white circle) and the foot (yellow circle).

Fig. 4. Surface based registration. In this example, using the same images as in Figure 3
above, we performed the registrations using points sampled from the outer skin surfaces
(red=reference, green=target). (A) starting position, (B) after global rigid alignment,
(C) after articulated rigid alignment.

Registration: We estimated two different variants of the registration, namely
(i) using bone surface points as shown in Figure 3, and (ii) using skin surface
points, as shown in Figure 4. While in the case of CT data, the use of the bone
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surfaces is optimal for estimating the articulation such surfaces are not easily
extractable from MRI-data, hence the use of skin surfaces to test for the more
general applicability of the method. Visually, at least, our model performs as
expected and successfully captured the articulation at the joints, as shown in
the figures. In particular, the bone point version of the algorithm was tested on
all three datasets and the algorithm successfully recovered joint rotations in the
range of 10 to 40◦. For this application we represented the bony anatomy with
approximately 600 points. RPM was run with a temperature range 10.0 : 2.0
mm and the annealing factor was set to 0.93 [3].

4 Conclusions

In this paper we presented, the first to our knowledge implementation of an
articulated rigid registration which embeds a blending piecewise model of the
articulated joint that provably results in a continuous and smooth transforma-
tion across motion interfaces. The ultimate goal of this work is to use the output
of this algorithm to optimally initialize a non-rigid registration algorithm for
capturing the deformation of the soft tissue in addition to the overall limb mo-
tion, which will in turn provide accurate registrations of both serial intra-mouse
images as well as inter-mouse images. This model of articulation is also appli-
cable to human image data, as for example, in the case of the registration of
pre-therapy and intra-therapy images in image guided prostate radiotherapy,
where there is a significant articulated motion component.
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Abstract. Deforming a digital atlas towards a patient image allows the
simultaneous segmentation of several structures. Such an intersubject
registration is difficult as the deformations to recover are highly inho-
mogeneous. A priori information about the local amount of deformation
to expect is precious, since it allows to optimally balance the quality
of the matching versus the regularity of the deformation. However, in-
tersubject variability makes it hard to heuristically estimate the degree
of deformation. Indeed, the sizes and shapes of various structures differ
greatly and their relative positions vary in a rather complex manner. In
this article, we perform a statistical study of the deformations yielded by
the registration of an image database with an anatomical atlas, and we
propose methods to re-inject this information into the registration. We
show that this provides more accurate segmentations of brain structures.

1 Introduction

Brain radiotherapy must achieve two goals: the complete irradiation of the tu-
mor, and the preservation of certain critical structures (brainstem, eyes, optical
tracts, etc.). By customizing the shape of the irradiation beam and modulating
the irradiation intensity, conformal radiotherapy allows to optimize the irradia-
tion of the tumor and the critical structures. The planning of conformal radio-
therapy requires accurate localizations of the tumor and the critical structures.
In existing planning systems, the segmentation of brain structures is manual
and each structure has to be delineated in each slice of a 3D image (e.g. MRI).
An automatic segmentation algorithm of all the critical structures in a patient
image is then an invaluable tool for radiotherapy, and its main requirement is a
precise delineation of the structures of interest.

In order to segment all these structures in a specific patient’s image, we
use an anatomical atlas (described in [1]) containing labels of the structures of
the brain. The atlas was manually labeled from an artificial MR image (obtained
from the BrainWeb1). The first step of the general segmentation method is a rigid
1 See web site: http://www.bic.mni.mcgill.ca/brainweb/
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matching between the atlas and the patient MRI (usually T1). The recovered
transformation is refined using non-rigid registration, and then applied to the
atlas labelization in order to obtain a segmentation of the patient image.

Due to its multi-subject nature, the non-rigid registration problem is gener-
ally difficult. The topology of the brain, the shape of the ventricles, the number
and shape of the sulci vary strongly from one individual to another. Thus, algo-
rithms have to deal with the ambiguity of the structures to match and also to
take into account the large variability of the differences between the two brains.
The ideal transformation is smooth in some places, and has fine details in oth-
ers. Registration algorithms based on a uniform regularization lead therefore to
local misregistrations as they do not take into account this variability. In the
literature, this problem has been explored in the following two ways.

On the one side, some registration algorithms using inhomogeneous regular-
ization [2,3] were recently introduced. They apply a strong regularization where
the local deformability is low, and a weak regularization where it is high. How-
ever, they use heuristic maps of the deformability. These approaches lead to
better results than with uniform regularization, but heuristic models are gener-
ally too simple compared to the complexity of the deformability. As a result, the
model is not accurate everywhere and there are still local misregistrations.

On the other side, some studies have been conducted on brain asymmetry
[4] and on the variability of the cortex surface using a non-rigid registration
algorithm [5]. Some studies have also used extrapolation of the variability infor-
mation on sulci all over the brain [6]. However, to our knowledge, none of them
has been used yet to guide in some way a non-rigid registration algorithm.

In this article, we introduce a framework to compute deformability statistics
over a database of patient MRI. These statistics are in turn used to guide the
regularization of the deformation field. In Section 2, we first introduce an algo-
rithm which is able to take into account scalar or tensor information to guide
the regularization. In Section 3, we present the pipeline used to compute the
statistics and the two deformability measures we propose. Finally, we present
experiments on our image database that demonstrate quantitatively better seg-
mentations with the proposed method, and qualitatively much more consistent
from an anatomical point of view.

2 Incorporating Statistics

The registration algorithm proposed in [7] recovers the transformation as an
invertible dense displacement field. Given a target image I and a source image
J , the algorithm recovers the deformation field U which makes the deformed
source image J ◦ U be as similar as possible to the target image. The method
consists in the optimization of a three-term criterion:

E = Sim(I, J ◦ U) +
∫

x∈Ω

∥∥∥∥k(x)∇∂U

∂t
(x)
∥∥∥∥2

dx+
∫

x∈Ω

‖D(x)∇U(x)‖2
dx. (1)

The first term optimizes the similarity between the target and source image.
The second term performs a regularization of the temporal derivative of the
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displacement field, similar to a fluid regularization of the velocity field in fluid
mechanics. By locally weighting this “fluid” regularization with a scalar field k,
[8] showed that the algorithm can be rendered robust with respect to potential
pathologies in the subject image.

The third term of the criterion performs a regularization of the displacement
field, thereby simulating an elastic-like behavior. This “elastic” regularization is
weighted by a space-varying field D. If D(x) is scalar, the regularization can
model position-dependent deformations: the larger D(x) is, the larger the local
deformation can be. If D is a tensor field, the deformability is position-dependent
and direction-dependent: the amount of deformation allowed can be separately
tuned along spatial directions. Indeed, when one performs a diagonalization of
D(x), its eigenvalues model the deformability along the directions represented
by the eigenvectors of the tensors (see [7]).

This elastic-like regularization model can very well incorporate deformability
statistics: if the deformations are known to be large in some place, D(x) is
assigned a low value. Conversely, a high D(x) is assigned if the deformations are
known to be locally low. Furthermore, if we also have directional information
about the local deformations, D can be a tensor. Its eigenvalues are large if the
deformations along the corresponding eigenvectors are small, and vice versa.

3 Computation of Statistical Variability Measures

Our goal here is to build statistical measures of the deformability of the brain,
that can be re-introduced as regularization mapsD(x) in the algorithm described
above. To build the deformability statistics, we need a reference image on which
we bring all the images. As choosing one image among the others in the database
would introduce a bias in our approach, we use the simulated MRI of the atlas as
our reference image. Then, all the images are brought to the atlas geometry using
the algorithm described in Section 2 with uniform regularization, meaning that
we do not make any assumption about the local deformability of each structure.
This pipeline is illustrated on Fig. 1. Once the deformation fields are computed,
we need a way to evaluate the mean deformability on the reference image: we
now turn to the definition of scalar and tensor measures we propose.

3.1 Scalar Statistics

A good estimator of the local deformation caused by the mapping of the patient’s
geometry onto the atlas geometry is the Jacobian matrix J of the deformation.
Indeed, its determinant |J(x)| indicates whether the region around voxel x locally
shrunk (|J(x)| < 1) or locally expanded (|J(x)| > 1).

Using only the determinant of the Jacobian matrix, it is clear that the con-
tractions and expansions have not a symmetric influence when we compute statis-
tics of the deformability: expansions will have a greater importance than contrac-
tions. We therefore propose the following expression based on the determinant:

Defj(x) = abs(log(|Jj(x)|)). (2)
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Fig. 1. Schematic view of the pipeline used to compute the deformability
statistics. This scheme shows which major steps are done for computing our scalar or
tensor stiffness map. (see text)

In this formula, the index j corresponds to the patient while x is the current voxel
position. Taking the logarithm symmetrizes the influence of the deformations,
thus avoiding to penalize the contractions. The absolute value insures that we
have no compensation between contractions and expansions at voxels where
both occur in different images. Finally, this distribution can be summarized by
its mean value:

Def(x) = E

(
abs(log(|Jj(x)|))

)
. (3)

This equation can also be seen as a dispersion measure associated to the median,
i.e. a robust version of the standard deviation. However, as we said in Section
2, the quantity of regularization in the algorithm is defined by a stiffness map
D(x), where D(x) ∈ [0; 1] is a scalar map. The greater D is, the stronger the
regularization is and therefore the less the deformability is. We can see that D
is roughly equivalent to the inverse of the measure we defined above. To keep
the value of D bounded, we use the following formulation for the stiffness map
with λ > 0: D(x) = 1/(1 + λDef(x)).

3.2 Tensor Statistics

At this point, we have defined a scalar estimator of the mean deformability of
the brain. However, the drawback of a scalar field is that we do not use all
the information given by the deformation: we have not taken into account the
directional information of the displacements. As the algorithm presented above
allows us to perform anisotropic regularization using tensor fields, we would like
to have an extension of the preceding formulation to compute tensor statistics
of the brain deformability.

The tensor we propose here is based on the Jacobian matrix: Wj(x) =
Jj(x).Jj(x)

T . This expression can be seen as a measure of the local deforma-
tion. A related idea was suggested in [9], but directly on the Jacobian matrix.
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However, using the symmetric deformation tensor W allows us to compute sim-
ple and efficient (rigid-invariant) statistics.

As for the scalar field, we want to symmetrize the influence of the contractions
and the dilatations. We therefore take the matrix logarithm of this expression
and the absolute value of the resulting value. Let W = R.Diag(Si).RT be a diag-
onalization of a symmetric matrix (where Si are the eigenvalues of the matrix).
Then, the matrix absolute value is defined by abs(W ) = R.Diag(abs(Si)).RT .
Finally, we define the measure of deformability by: Σj(x) = abs

(
log(Wj(x))

)
.

And the expression for the mean deformability is simply:

Σ(x) = E

(
abs(log(Wj(x)))

)
. (4)

Similarly to the scalar map, we use the following expression to obtain a bounded

stiffness tensor map: D(x) =
(
Id+ λΣ(x)

)−1
.

4 Experiments and Results

We used in our experiments a database of 36 patients with brain tumors at
different grades and positions. For each patient three MRI have been acquired
(T1, injected T1 and T2). All these patient images are registered on the atlas
MRI following the process in Fig. 1, first by an affine global registration, then
using a uniform elastic registration.

Once the deformation fields are obtained, we compute a mask of the region of
interest for each image. This allows us to compute our statistical measures only
on tissues that are present in both the patient and the atlas images. The problem
is similar for tumor and surgical resections. The correspondences are not relevant
in these regions as these tissues are not homologous in both images. Then, as we
have T1 and T2 images of the patient, we segment the tumor and the surgical
resection as in [8] and remove these segmentations from the mask. We are then
able to compute deformability statistics on relevant regions using Eqs. (3) and
(4). An example of the resulting stiffness maps and fractional anisotropy (FA is
an index of the anisotropy of the tensor) for the tensor-based model are given in
Fig. 2. As we compute our statistics only on imaged regions of each brain of the
database, we do not have any information on some exterior regions of the atlas
image, leading to some black regions in the FA map.

As we can see on Fig. 2, the statistical stiffness maps we computed are
smoother than the heuristic model used in [7]. We can notice that the heuris-
tic assumptions made in [7] on the deformability of the ventricles are mostly
verified. However, in some regions (like the ventricles boundaries), the tensor
deformability map is highly anisotropic (see the FA map in Fig. 2). The statisti-
cal maps are also very different from the heuristic one in the region in front of the
brainstem. This region is attributed a more elastic behavior than in the heuristic
map, where it is set to almost 0, resulting in a fluid regularization. However, we
can see in Fig. 3 that this assumption can result in relatively bad segmentations
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Fig. 2. A slice of the statistical maps obtained in our comparison. The frames
show the brainstem and the area in front of it. From left to right: the simulated MRI of
the atlas, the heuristic scalar map, the scalar map obtained using Eq. (3), the fractional
anisotropy (FA) map obtained using Eq. (4) (see text).

Fig. 3. Comparative results of the atlas-based segmentation. Top: Sagittal slice
of the 3D patient image with the segmentation superimposed. Bottom: close-up on the
brainstem area. From left to right: registration with the heuristic scalar map, with the
statistical scalar map and with the statistical tensor map.

of the brainstem. In this case, the segmented structure often includes the artery
just in front of it. This is due to the absence of matter in the atlas image leading
to bad correspondences.

Using a fluid registration in this area, as proposed by the heuristic model,
leads to non-anatomical deformations. In our scalar stiffness map as well as in
its tensor equivalent, the region just in front of the brainstem is assigned to
a higher value. Thus, we focus on an example of the automatic segmentation
of the brainstem using the image of a patient that was not used to compute
the statistics. We can see that the results are improved in this region as shown
in Fig. 3. The segmentation is qualitatively more consistent. We can also see
that taking into account a directional component in the regularization (tensor
map) further improves the results as the artery in front of the brainstem is
not anymore included in the segmentation (see arrows in Fig. 3). Finally, the
registration process takes about one hour to run in sequential execution on an
AMD Opteron 2 GHz, independently of the statistical model used.
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Table 1. Statistics obtained using the STAPLE algorithm [10]. Seven expert
segmentations for each patient (Sens. stands for Sensitivity, Spec. for Specificity and
dist. for the distance to the point (Sens. = 1, Spec. = 1)) (see text).

Patient 1 Patient 2 Patient 3
Sens. Spec. Dist. Sens. Spec. Dist. Sens. Spec. Dist.

Heuristic 0.86 0.87 0.19 0.81 0.74 0.32 0.83 0.88 0.21
Scalar 0.84 0.92 0.18 0.82 0.83 0.25 0.81 0.94 0.20
Tensor 0.86 0.91 0.17 0.83 0.84 0.23 0.82 0.94 0.18

At this point, we have seen that our method gives qualitatively better re-
sults than the method using a scalar heuristic stiffness map on one example. We
also studied in more details the results on three other patient images for which
seven experts have manually segmented the brainstem. For each patient image,
we compute the ground truth segmentation (see [10]) from the expert segmenta-
tions. Then, we use this ground truth to compute the sensitivity and the speci-
ficity of each automatic segmentation. We also compute the distance to the best
result achievable (Sensitivity = 1, Specificity = 1). The results are reported in
Table 1 and confirm our qualitative estimation: the results obtained by the scalar
statistics map are slightly better than the ones obtained by the heuristic map.
We verify also quantitatively that using an anisotropic regularization map gives
better results than using only isotropic information.

5 Conclusion

In this article, we have described a method to incorporate statistics of the de-
formability of the brain into a non-rigid registration algorithm. We have in-
troduced scalar (isotropic) and tensor-based (anisotropic) models to this end.
For each method, we have detailed a symmetric measure of the deformations,
on which we can perform consistent statistics. These statistics are also robust
since we explicitly exclude the tumor and surgical resection parts of the patients
images from the computation of the statistics.

The two ways of re-introducing statistics in the registration result in qual-
itative and quantitative improvement of the segmentations, the tensor-based
model achieving the best results. However, concerning quantitative validation,
only three patients were used with only one structure segmented manually by
seven experts. We intend to extend this validation to more patients and to more
structures in a near future.

The framework we have used has the advantage to be independent of the
non-rigid algorithm used to compute the statistics. However, it is sensitive to
potential systematic errors in the algorithm used to register images on the at-
las image. To compute less biased statistics, it will be interesting to use other
non-rigid algorithms (for example parametric algorithms as [11]) or to bring into
correspondence manual delineations of structures. Ideally, in order to be as un-
biased as possible, we would like to be able to fuse the information provided by
several non-rigid registration algorithms into one single statistical map.
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Finally, this algorithm can be used on other regions of the body. This ap-
proach could bring a way to evaluate the local deformability on regions where it
is difficult to have a good idea of the elasticity of the deformation.
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Abstract. This paper presents a robust and fully automated registra-
tion algorithm for registration of images of Quadrature Tomographic
Microscopy (QTM), which is an optical interferometer. The need for
registration of such images is to recognize distinguishing features of vi-
able embryos to advance the technique for In Vitro Fertilization. QTM
images a sample (live embryo) multiple times with different hardware
configurations, each in turn producing 4 images taken by 4 CCD cam-
eras simultaneously. Embryo movement is often present between imaging.
Our algorithm handles camera calibration1 of multiple cameras using a
variant of ICP, and elimination of embryo movement using a hybrid of
feature- and intensity-based methods. The algorithm is tested on 20 live
mouse embryos containing various cell numbers between 8 and 26. No
failure thus far, and the average alignment error is 0.09 pixels, corre-
sponding to the range of 639 and 675 nanometers.

1 Introduction

With the work pace and stress levels ever increasing, infertility now affects
10% [4] of the population at reproductive age. In Vitro Fertilization (IVF) is
a method of assisted reproduction in which fertilization takes place in a labora-
tory dish. Usually, multiple embryos are transferred to the uterus during each
cycle to increase the success rate. One cycle of IVF costs an average of $12,400
in the United States. According to the latest statistics, the success rate for IVF
is 29.4% live deliveries per egg retrieval, of which about 63% are singletons, 32%
are twins, and 5% are triplets or more [4, 1].

To strive for a higher success rate of live deliveries and to reduce multiple
births, researchers at Northeastern University, USA, are developing a unique
state-of-the-art “fusion microscope” to recognize distinguishing features of viable
embryos [6, 11]. This instrument combines 5 imaging modalities for subsurface
imaging, including Quadrature Tomographic Microscopy (QTM) and Differential
Interference Contrast (DIC) microscopy.

There are two types of registration involved: inter- and intra-modality reg-
istration. The work presented in this paper is on intra-modality registration of

1 In this paper, we define camera calibration as a process that estimates the spatial
relationship between the 4 CCD cameras.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 935–942, 2005.
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QTM images. Applications for such work include the construction of amplitude
and phase images of transparent samples, and cell counting methods involving
the combination with DIC images for embryos before the blastocyst stage (less
than 30 cells) [7].

2 QTM Images and the Challenges

QTM based on a modified Mach-Zener Interferometer. The laser source is split
into two separate beams — signal and reference. The signal beam goes through
the sample (embryo) and the reference beam travels the same distance as the
signal beam, but is undisturbed. Both are combined later by an unpolarized
beamsplitter and their interference is imaged simultaneously by 4 CCD cameras,
each having its own coordinate system. An embryo is imaged three times by
different hardware configurations (see Fig. 1): (a) mixture, the interference of
the reference and signal beams, (b) reference only with the signal beam blocked,
and (c) signal only with the reference beam blocked.

Placing all images in the same coordinate system requires calibration between
the 4 cameras and registration of images taken at different times. The latter
compensates for movement of the embryo. There are two ways to solve the
registration problem: (a) for every image pair estimating the transformation
directly from features of the embryo, and (b) solving camera calibration first and
then eliminating embryo movement. The second method is superior in terms of
speed and robustness for the following reasons:

– QTM images of all beam types appear substantially different (see Fig. 2).
If registering such an image pair directly, the result is often not accurate

Fig. 1. QTM images of a live embryo taken with different hardware configurations.
Accurate registration is required to eliminate the movement of the embryo between
imaging. Left: mixture of reference and signal. Middle: reference alone. Right: signal
alone.
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Fig. 2. Two mixture images taken by different cameras. Left: image of x-polarization
(first camera). Right: image of y-polarization (second camera).

enough. In addition, it requires a more expensive registration algorithm that
exploits the properties of the images. The number of times such an algorithm
is applied should be minimized.

– Camera calibration is independent of the object for imaging and performed
only when cameras change their relative positions. We can make use of any
pattern that allows fast and accurate registration.

– If 4 images of a specific hardware configuration are aligned, we can make
use of special optical properties to synthesize images that are similar in ap-
pearance. Such images can provide better registration result for elimination
of embryo movement between imaging.

3 Camera Calibration

Between two images, the calibration process estimates an affine transformation
that allows translation, rotation, reflection, and slight shearing. The image of the

(a) (b) (c)

Fig. 3. The target pattern, imitating a vasculature, designed for automatic calibration
of the 4 CCD cameras. (a) The image of the second camera. (b) The image of the
fourth camera. (c) The checkerboard mosaic of the registered target images
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first camera is the anchor (fixed image) for registration. Since camera calibration
is independent of the object for imaging, we designed a target pattern that
simplifies the registration process. Images of the target are shown in Fig. 3.

The pattern bears strong similarity with a vasculature — both are patterns
of lines crossing at random angles. This property allows us to register our target
images using feature-based methods in the literature. The features for regis-
tration are the centerline points and cross-overs of the dark lines [3, 12]. The
transformation model is affine that allows left-right or top-bottom flipping, and
significant rotation. We first discuss computation of the transformation Θ that
does not involve reflection.

Estimation of Θ follows the method in [9], with some modifications, for full
automation. The process consists of 2 steps:

Initialization: To avoid convergence to an incorrect alignment, we need a good
initialization scheme to place the transformation in the right domain of con-
vergence. We adopt invariant indexing to automate the process. In particular,
for each image, a set of landmark (cross-over) pairs is generated and each
pair is associated with a signature vector that is only invariant to similar-
ity transformation, which is the initial transformation model. This is the
reason for separation of reflection from the rest of the transformation. The
algorithm generates a list of hypothesized correspondence pairs, ordered by
the similarity of the invariant features. Each hypothesis provides an initial
transformation.

Refinement: The refinement technique is a robust form of ICP (Iterative Clos-
est Points) algorithm which minimizes the sum of point-to-line distances
using an M-estimator. It alternates between closest centerline point match-
ing using the current transformation, and transformation estimation using
the set of matches. The transformation model for refinement is affine.

The algorithm refines the initial transformations one by one until it reaches
one that converges to a good alignment. In practice, we only need to try the
very first few.

Special care is needed to register an image pair related by reflection. To do so,
the moving image is flipped by Θf . Both the flipped and original moving images
are registered to the fixed image using the abovementioned procedure, and the
best alignment is taken. It does not matter if the moving image is right-left or
top-bottom flipped, since rotation of π relates one to the other. This is the major
reason for the need of significant rotation. If the flipped is better aligned with
the fixed image, the final transformation is the product of Θ and Θf .

We validated the algorithm with a small set of target images. Fig. 3(c) con-
tains a checker-board mosaic with sub-pixel accuracy.

4 Elimination of Embryo Movement

The embryo may move between the time two images are acquired with different
hardware configurations. In practice, the movement is limited to translation and
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Fig. 4. The synthesized images for registration of signal to mixture images. Features,
shown by white dots, are for invariant indexing and refinement. Left: Image Ia, aver-
age signal image. Only a subset of features extracted takes part in initialization and
refinement. Right: Image Is, the synthesized signal image. All features are involved in
initialization.

rotation. To eliminate the movement, the signal images of the embryo must be
aligned with the mixture. Due to the complex optical properties of the QTM, it
is hard to directly relate the signal images to the mixture images (see Fig. 1). To
overcome this problem, we perform the registration using synthesized images,
instead of the original raw images.

Let Mi, be image i of the mixture after camera calibration (i.e. the im-
age mapped to the coordinate system of the first camera). Similarly, Ri is
for reference and Si for signal. The formula for the synthesized image Is is∑4

i=1 (Mi −Ri)/4. A very similar image Ia can be generated from Si using the
formula

∑4
i=1 Si/4.

Ia is registered to Is, which is in the same space as the first image of the
mixture. Fig. 4 shows examples of Ia and Is from the same set of images. The
registration algorithm uses salient features and intensity structure of the images,
and consists of 3 steps:

Feature Extraction: Since the background, not the embryo, is already aligned
before registration, we want features that concentrate in the embryo to drive
the registration out of the local minimum. Edge points are obviously not
good candidates, since they are mostly on the fringes in the background.
The type of key-point of our choice is harris-corner[5]. We empirically de-
termined the threshold on the corner-like measure to reduce the number of
features extracted from the background. Fig. 4 shows a result of the feature
extraction.
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Initialization: Robust initialization is crucial when the movement of the em-
bryo is significant. Again, we employ invariant indexing. The invariant fea-
ture is Lowe’s SIFT descriptor [8], a 128-component histogram of normalized
gradients. The algorithm generates a list of hypothesized correspondence be-
tween two key-points, based on the invariant features. To reduce the number
of hypotheses, we only take subset of key-points in Ia. The same set of key-
points are used in the refinement stage as well. Each hypothesis provides
an initial affine transformation estimate from the location, orientation and
scale of each key-point, and is refined separately.

Another common approach is to combine invariant features with RANSAC
[2], which examines a number of n correspondences (n is 3 for affine) for the
best alignment. We chose invariant indexing over RANSAC for two reasons:
(a) invariant indexing can return correct transformation as long as there
is one correct match, and (b) SIFT descriptors are distinctive enough for
this type of images that invariant indexing can succeed with the first match
almost 100% of the time.

Refinement: The refinement algorithm is a variant of ICP that matches key-
points based on intensity structure [10]. Unlike initialization, which matches
key-points detected in both Ia and Is, only key-points in Ia are needed.

To generate the corresponding point in Is, each key-point is associated
with a small region R, centering at the location of the key-point p. This
region is mapped into the other image (Is), using the current transformation
estimate. Let the transformed location and region be p′ and R′, respectively.
R′ is matched against regions centered at pixel locations falling into the

Fig. 5. The registration result, illustrated with cropped checker-board mosaics, of the
average to synthesized signal images. Left: before registration. Discontinuity of the bor-
der of the embryo manifests the mis-alignment of the images. Right: after registration.
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search window of p′ in Is. The width of the window is a multiple of the error
scale (uncertainty) of the current transformation; less accurate transforma-
tion leads to larger search window for each key-point. The best match has
the lowest normalized SSD error measure. The center location of the best
matched region defines the new corresponding point to p. Each match is as-
signed a robust weight which is a product of the distinctiveness of the match
and the geometric distance between the corresponding points. The weights
are required for robust estimation of the transformation.

We have tested the algorithm on a set of 20 mouse embryos containing vari-
ous cell numbers between 8 and 26. Some samples were stationary, while others
were fairly mobile. The success rate is 100% thus far, with an average alignment
accuracy of 0.09 pixel, corresponding to 639 - 675 nanometers. The accuracy is
measured in terms of weighted average distance error using the matches gener-
ated in the refinement stage. Fig. 5 is the registration result of the two images
in Fig. 4. All results were verified manually by visual inspection of the checker-
board mosaics.

We have also attempted registration directly using signal and mixture images
of the first camera. The results were not as satisfactory. The set of images in
Fig. 1 serves as an example of which signal and mixture images are substantially
different. With this set of images, invariant indexing failed with the first 10
hypotheses, which was the threshold. Even if manually initialized by a pair of
corresponding points, the final alignment was not as good as our current method.

5 Discussion and Conclusion

We presented a new algorithm for registration of QTM images, and demonstrated
its robustness with images of a set of 20 live mouse embryos. The algorithm con-
sists of two parts: camera calibration followed by registration of embryo images
taken with different hardware configurations. After registration, all images are
aligned with the first camera of mixture. If the embryo movement is present, the
images of the embryo are aligned instead. The algorithm is both accurate and
efficient — the average alignment error is 639-675 nanometers (0.09 pixel), and
it succeeds with the first match almost all the time for both camera calibration
and embryo registration.

With registration of QTM images in place, the next step is to apply the
technique to synthesis of better amplitude and phase images, which are easily
corrupted by embryo movement. Inter-modal registration of QTM phase images
with DIC images, for applications such as cell counting, is also simplified by
using the registered raw data (mixture and signal images) instead.
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Abstract. In inter-subject registration, one often lacks a good model
of the transformation variability to choose the optimal regularization.
Some works attempt to model the variability in a statistical way, but the
re-introduction in a registration algorithm is not easy. In this paper, we
interpret the elastic energy as the distance of the Green-St Venant strain
tensor to the identity, which reflects the deviation of the local deforma-
tion from a rigid transformation. By changing the Euclidean metric for a
more suitable Riemannian one, we define a consistent statistical frame-
work to quantify the amount of deformation. In particular, the mean
and the covariance matrix of the strain tensor can be consistently and
efficiently computed from a population of non-linear transformations.
These statistics are then used as parameters in a Mahalanobis distance
to measure the statistical deviation from the observed variability, giving
a new regularization criterion that we called the statistical Riemannian
elasticity. This new criterion is able to handle anisotropic deformations
and is inverse-consistent. Preliminary results show that it can be quite
easily implemented in a non-rigid registration algorithms.

1 Introduction

Most non-linear image registration algorithms optimize a criterion including an
image intensity similarity and a regularization term. In inter-subject registra-
tion, the main problem is not really the intensity similarity measure but rather
the regularization criterion. Some authors used physical models like elasticity
or fluid models [1,2]. For efficiency reasons, other authors proposed to use non-
physical but efficient regularization methods like Gaussian filtering [3,4], recently
extended to non-stationary but still isotropic diffusion in order to take into ac-
count some anatomical information about the tissue types [5,6]. However, since
we do not have in general a model of the deformation of organs across subjects,
no regularization criterion is obviously more justified than the others. We could
think of building a model of the developing organ: inverting the model from the
first subject to a sufficiently early stage and growing toward the second subject
image would allow to relate the two anatomies. However, such a computational
model is out of reach now, and most of the existing work in the literature rather
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try to capture the organ variability from a statistical point of view on a repre-
sentative population of subjects (see e.g. [7,8,9]). Although the image databases
are now large enough to be representative of the organ variability, the problem
remains of how to use this information to better guide inter-subject registration.

We propose in this paper an integrated framework to compute the statistics
on deformations and reintroduce them in the registration procedure. The basic
idea is to interpret the elastic energy as a distance in the space of positive definite
symmetric matrices (tensors). By changing the classical Euclidean metric for
a more suitable one, we define a natural framework for computing statistics
on the strain tensor. Taking them into account in a statistical distance lead
to the Riemannian elasticity energy. Notice that we do not enter the fluid vs
elastic registration debate as the energy we propose can be used either on the
deformation field itself or on its temporal derivative (fluid-like method) [4].

In the sequel, we first recall how to optimize the elastic energy in a registra-
tion algorithm. Then, we define in Section 3 the Riemannian elasticity energy as
the Mahalanobis distance on the logarithmic strain tensor. To better exemplify
its properties, we investigate in Section 4 the isotropic Riemannian Elasticity,
which is close to the classical elasticity energy while being inverse-consistent.
Preliminary experiments show in Sec. 5 that the Riemannian elasticity frame-
work can be implemented quite effectively and yields promising results.

2 Non-linear Elastic Regularization

Let Φ(x) be a non-linear space transformation with a positive Jacobian every-
where. We denote by ∂αΦ the directional derivatives of the transformation along
the spaces axis α (we assume an orthonormal basis). The general registration
method is to optimize an energy of the type: C(Φ) = Sim(Images, Φ) +Reg(Φ).
Starting from an initial transformation Φ0, a first order gradient descent meth-
ods computes the gradient of the energy ∇C(Φ), and update the transformation
using: Φt+1 = Φt − η ∇C(Φt). From a computational points of view, this La-
grangian framework can be advantageously changed into a Eulerian framework
to better conserve the diffeomorphic nature of the mappings [6]. In the following,
we only focus on the computation of the gradient of the regularization.

2.1 Elastic Deformations

In continuum mechanics [10], one characterizes the deformation of an infinitesi-
mal volume element in the Lagrangian framework using the Cauchy-Green tensor
Σ = ∇ΦT ∇Φ =

∑
α ∂αΦ ∂αΦ

T. This symmetric matrix is positive definite and
measures the local amount of non-rigidity. Let ∇Φ = V S RT be a singular
value decomposition of the transformation Jacobian (R and V are two rota-
tion matrices and S is the diagonal matrix of the positive singular values). The
Cauchy-Green tensor Σ = R S2 RT is equal to the identity if and only if the
transformation is locally a rigid transformation. Eigenvalues between 0 and 1
indicate a local compression of the material along the associated eigenvector,
while a value above 1 indicates an expansion. To quantify the deformation, one
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usually prefers the related Green-St Venant strain tensor E = 1
2 (Σ− Id), whose

eigenvalues are null for no deformation. Assuming an isotropic material and a
linear Hooks law to relate strain and stress tensors, one can show that the motion
equations derive from the St Venant-Kirchoff elasticity energy [10]:

RegSV KE(Φ) =
∫
μTr(E2) +

λ

2
Tr(E)2 =

∫
μ

4
Tr
(
(Σ − Id)2

)
+
λ

8
Tr(Σ − Id)2

where λ, μ are the Lamé coefficients. To minimize this energy in a registration
algorithm, we need its gradient. Since ∂uΣ =

∑
α

(
∂αΦ ∂αu

T + ∂αu ∂αΦ
T
)
, the

derivative of the elastic energy in the direction (i.e. displacement field) u is:

∂uRegSV KE(Φ) =
∫

μ
2 Tr((Σ − Id) ∂uΣ) + λ

4 Tr(Σ − Id) Tr(∂uΣ)

=
∑

α

∫ 〈 μ (Σ − Id) ∂αΦ | ∂αu 〉 + λ
2 Tr(Σ − Id) 〈 ∂αΦ | ∂αu 〉

Using an integration by part with homogeneous Neumann boundary conditions
[4], we have

∫ 〈 v | ∂αu 〉 = − ∫ 〈 ∂αv | u 〉, so that the gradient is finally:

∇RegSV KE(Φ) = −∑α ∂α

(
Z∂αΦ

)
with Z = μ(Σ− Id)+ λ

2 Tr(Σ− Id)Id (1)

2.2 Practical Implementation

In practice, a simple implementation is the following. First, one computes the
image of the gradient of the transformation, for instance using finite differences.
This operation is not computationally expensive, but requires to access the value
of the transformation field at neighboring points, which can be time consuming
due to systematic memory page faults in large images. Then, we process these 3
vectors completely locally to compute 3 new vectors vα = Z(∂αΦ). This opera-
tion is computationally more expensive but is memory efficient as the resulting
vectors can replace the old directional derivatives. Finally, the gradient of the
criterion ∇E =

∑
α ∂αvα may be computed using finite differences on the re-

sulting image. Once again, this is not computationally expensive, but it requires
intensive memory accesses.

3 Riemannian Elasticity

In the standard Elasticity theory, the deviation of the positive definite symmetric
matrix Σ (the strain tensor) from the identity (the rigidity) is measured using
the Euclidean matrix distance dist2Eucl(Σ, Id) = Tr((Σ − Id)2). However, it has
been argued in recent works that the Euclidean metric is not a good metric for
the tensor space because positive definite symmetric matrices only constitute a
cone in the Euclidean matrix space. Thus, the tensor space is not complete (null
or negative eigenvalues are at a finite distance). For instance, an expansion of
a factor

√
2 in each direction (leading to Σ = 2 Id) is at the same Euclidean

distance from the identity than the “black hole” transformation Φ(x) = 0 (which
has a non physical null strain tensor). In non-linear registration, this asymmetry
of the regularization leads to different results if we look for the forward or the
backward transformation: this is the inverse-consistency problem [11].



946 X. Pennec et al.

3.1 A Log-Euclidean Metric on the Strain Tensor

To solve the problems of the Euclidean tensor computing, affine-invariant Rie-
mannian metrics were recently proposed [12,13,14,15]. Using these metrics, sym-
metric matrices with null eigenvalues are basically at an infinite distance from
any tensor, and the notion of mean value corresponds to a geometric mean, even
if it has to be computed iteratively. More recently, [16] proposed the so-called
Log-Euclidean metrics, which exhibit the same properties while being much eas-
ier to compute. As these metrics simply consist in taking a standard Euclidean
metric after a (matrix) logarithm, we rely on this one for the current article. How-
ever, the Riemannian Elasticity principle can be generalized to any Riemannian
metric on the tensor space without any restriction.

In this framework, the deviation between the tensor Σ and the identity is
the tangent vector log(Σ). Interestingly, this tensor is known in continuum me-
chanics as the logarithmic or Hencky strain tensor and is used for modeling very
large deformations. It is considered as the natural strain tensor for many ma-
terials, but its use was hampered for a long time because of its computational
complexity [17]. For registration, the basic idea is to replace the elastic energy
with a regularization that measures the amount of logarithmic strain by taking
the Riemannian distance between Σ and Id. This give the Riemannian elasticity:

RegRE(Φ) = 1
4

∫
dist2Log (Σ, Id) = 1

4

∫ ‖log(Σ) − log( Id)‖2
2 = 1

4

∫
Tr
(
log(Σ)2

)
It is worth noticing that the logarithmic distance is inverse-consistent, i.e. that
Tr
(
log(Σ(Φ(x)))2

)
= Tr

(
log(Σ(Φ(-1)(y)))2

)
if y = Φ(x). This comes from the

fact that ∇(Φ(-1))(y) = (∇Φ(x))(-1). In particular, a scaling of a factor 2 is now
at the same distance from the identity than a scaling of 0.5, and the “black hole”
transformation is at an infinite distance from any acceptable deformation.

3.2 Incorporating Deformation Statistics

To incorporate statistics in this framework, we consider the strain tensor as a ran-
dom variable in the Riemannian space of tensors. In the context of inter-subject
or atlas-to-image registration, this statistical point of view is particularly well
adapted since we do not know a priori the deformability of the material. Starting
from a population of transformations Φi(x), we define the a priori deformability
Σ̄(x) as the Riemannian mean of deformation tensors Σi(x) = ∇ΦT

i ∇Φi. A re-
lated idea was suggested directly on the Jacobian matrix of the transformation
∇Φ in [18], but using a general matrix instead of a symmetric one raises impor-
tant computational and theoretical problems. With the Log-Euclidean metric on
strain tensors, the statistics are quite simple since we have a closed form for the
mean value:

Σ̄(x) = exp(W̄ (x)) with W̄ (x) = 1
N

∑
i log(Σi(x))

Going one step further, we can compute the covariance matrix of the random
process Cov(Σi(x)). Let us decompose the symmetric tensor W = log(Σ) into
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a vector Vect(W )T = (w11, w22, w33,
√

2w12,
√

2w13,
√

2w23) that gathers all the
tensor components in an orthonormal basis. In this coordinate system, we can
define the covariance matrix Cov = 1

N

∑
Vect(Wi − W̄ ) Vect(Wi − W̄ )T.

To take into account these first and second order moments of the random
deformation process, a well known and simple tool is the Mahalanobis distance,
so that we finally define the statistical Riemannian elasticity (SRE) energy as:

RegSRE(Φ) = 1
4

∫
μ2

(W̄ ,Cov)(log(Σ(x))) = 1
4

∫
Vect(W−W̄ )Cov(-1)Vect(W−W̄ )T

As we are using a Mahalanobis distance, this least-squares criterion can be
seen as the log-likelihood of a Gaussian process on strain tensor fields: we are
implicitly modeling the a-priori probability of the deformation. In a registration
framework, this point of view is particularly interesting as it opens the way to
use Bayesian estimation methods for non-linear registration.

4 Isotropic Riemannian Elasticity

With the general statistical Riemannian elasticity, we can take into account the
anisotropic properties of the material, as they could be revealed by the statistics.
However, in order to better explain the properties of this new tool, we focus in
the following on isotropic covariances matrices. Seen as a quadratic form, the
covariance is isotropic if μ2(W ) = μ2(RW RT) for any rotation R. This means
that it only depends on the eigenvalues of W , or equivalently on the matrix
invariants Tr(W ), Tr(W 2) and Tr(W 3). However, as the form is quadratic in W ,
we are left only with Tr(W )2 and Tr(W 2) that can be weighted arbitrarily, e.g.
by μ and λ/2. Finally, the isotropic Riemannian elasticity (IRE) energy has the
form:

RegIRE(Φ) =
∫

μ
4 Tr
(
(log(Σ) − W̄ )2

)
+ λ

8 Tr(log(Σ) − W̄ )2

For a null mean W̄ , we retrieve the classical form of isotropic elastic energy with
Lamé coefficients, but with the logarithmic strain tensor. This form was expected
as the St Venant-Kirchoff energy was also derived for isotropic materials.

4.1 Optimizing the Riemannian Elasticity

To use the logarithmic elasticity energy as a regularization criterion in the reg-
istration framework we summarized in Section 2, we have to compute its gra-
dient. Let as assume that W̄ = 0. Thanks to the properties of the differential
of the log [19], we have Tr(∂V log(Σ)) = Tr(Σ(-1) V ) and 〈 ∂V log(Σ) |W 〉 =
〈 ∂W log(Σ) | V 〉. Thus, using V = ∂uΣ =

∑
α (∂αu ∂αΦ

T + ∂αΦ ∂αu
T) and

W = log(Σ), we can write the directional derivative of the criterion:

∂uRegIRE(Φ) =
∫

μ
2 〈W | ∂V log(Σ) 〉 + λ

4 Tr(W ) Tr(∂V log(Σ))

=
∫

μ
2 〈 ∂W log(Σ) | V 〉 + λ

4 Tr(W ) Tr(Σ(-1) V )

=
∑

α

∫
μ 〈 ∂W log(Σ) ∂αΦ | ∂αu〉 + λ

2 Tr(W ) 〈Σ(-1) ∂αΦ | ∂αu 〉
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Integrating once again by part with homogeneous Neumann boundary condi-
tions, we end up with the gradient:

∇RegIRE(Φ) = −∑α ∂α(Z ∂αΦ) with Z = μ ∂Wlog(Σ) + λ
2 Tr(W )Σ(-1) (2)

Notice the similarity with the gradient of the standard elasticity (eq. 1). For
a non null mean deformation W̄ (x), we just have to replace W by W − W̄ in
the above formula. One can even show that the same formula still holds for the
general statistical Riemannian elasticity with Z = ∂X log(Σ) where X is the
symmetric matrix defined by Vect(X) = Cov(-1) Vect(log(Σ)).

4.2 Practical Implementation

Thus, we can optimize the logarithmic elasticity exactly like we did in Section
2.2 for the Euclidean elasticity. The only additional cost is the computation of
the tensor Z, which implies the computation of the logarithm W = log(Σ) and
its directional derivative ∂W log(Σ). This cost would probably be prohibitive if
we had to rely on numerical approximation methods. Fortunately, we were able
to compute an explicit and very simple closed-form expression that only requires
the diagonalization Σ = R D RT [19]:

[RT ∂V log(Σ)R]ij = [RT V R]ij λij with λij = (log(di) − log(dj))/(di − dj)

Notice that formula is computationally well posed since λij = 1
d (1 + 1

12ε
2d2 +

1
80ε

4d4 +O(ε6)) with d = (di + dj)/2 and ε = di − dj .

5 Experiments

To evaluate the potential of the Riemannian elasticity as a regularization cri-
terion in non-rigid registration, we implemented the following basic gradient
descent algorithm: at each iteration, the algorithm computes the gradient of the
similarity criterion (we chose the local correlation coefficient to take image bi-
ases into account), and adds the derivative of the Euclidean or the Riemannian
elastic energies according Sections 2.1 and 4.1. Then, a fraction η of this gradient
is added to the current displacement field. This loop is embedded in a multi-
scale pyramid to capture larger deformations. At each pyramid step, iterations
are stopped when the evolution of the transformation is too small (typically a
hundred iterations by level). The whole algorithm is implemented in C++, and
parallelized using Message Passing Interface (MPI) library on a cluster of PCs.

We tested the algorithm on clinical T1 weighted MR images of the brain of
Parkinsonian patients (see Fig. 1). The ROI including the full head has 186 x 124
x 216 voxels of size 0.94 x 1.30 x 0.94 mm. Images were first affine registered and
intensity corrected. We used a fraction η = 5.10−4 for the gradient descent and
standard values μ = λ = 0.2 for both Euclidean and isotropic Riemannian elastic
energies. The algorithm took about 1h for the Euclidean elasticity and 3h for the
isotropic Riemannian regularization on a cluster of 12 AMD bi-Opteron PC at 2
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Source image Elastic result Riemann res. Target image Elast.+target Riem.+target

Fig. 1. Experimental comparison of registration with the Euclidean and the Rieman-
nian elasticity regularization. From left to right, we displayed corresponding zoom of
axial and coronal slices of: the source image, the elastically deformed source image,
the Riemannian elastic result, the target image and the elastic and Riemannian results
with the contours of the target image superimposed. Euclidean and Riemannian results
are globally equivalent. One can only notice a slightly larger and better deformation
of the right ventricle (near the crossing of the axes) with the Riemannian elasticity.

Ghz, connected by a gigabit Ethernet Network. These computations times show
that our basic implementation of the Riemannian Elasticity is only 3 times slower
than the Euclidean one. The diagonalization of the symmetric matrices being
performed using a standard Jacobi method, we could easily design a much more
efficient computation in dimensions 2 and 3. In terms of deformation, the results
are quite similar for both methods in the absence of any a priori statistical
information. However, we expect to show in the near future that taking into
account statistical information about the expected deformability improves the
results both in terms of accuracy and robustness.

6 Conclusion

We proposed in this paper an integrated framework to compute the statistics
on deformations and re-introduce them as constraints in non-linear registration
algorithms. This framework is based on the interpretation of the elastic energy
as a Euclidean distance between the Cauchy-Green strain tensor and the identity
(i.e. the local rigidity). By providing the space of tensors with a more suitable
Riemannian metric, namely a Log-Euclidean one, we can define proper statistics
on deformations, like the mean and the covariance matrix. Taking these mea-
surements into account in a statistical (i.e. a Mahalanobis) distance, we end-up
with the statistical Riemannian elasticity regularization criterion. This criterion
can also be viewed as the log-likelihood of the deformation probability, which
opens the way to Bayesian deformable image registration algorithms.

Riemannian elasticity gives a natural framework to measure statistics on
inter-subject deformations. We demonstrate with the isotropic version that it is
also an effective regularization criterion for non-linear registration algorithms.
There is of course room for a lot of improvements that we plan to tackle in the
near future. We are currently computing the deformation statistics (mean and
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covariance of the logarithmic strain tensor) on a database of brain images to
assess their impact on the registration results. We also plan to evaluate carefully
how the implementation influences the theoretical inverse-consistency property
of the Riemannian elasticity, as this feature may turn out to be very useful for
fine measurements of volume changes.
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and Prediction of Respiratory Cardiac Motion
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Abstract. This paper presents a new approach for lung registration
and cardiac motion prediction, based on a 3D geometric model of the left
lung. Feature points, describing a shape of this anatomical object, are au-
tomatically extracted from acquired tomographic images. The
”goodness-of-fit” measure is assessed at each step in the iterative scheme
until spatial alignment between the model and subject’s specific data
is achieved. We applied the proposed methods to register the 3D lung
surfaces of 5 healthy volunteers of thoracic MRI acquired in different
respiratory phases. We also utilized this approach to predict the spatial
displacement of the human heart due to respiration. The obtained results
demonstrate a promising registration performance.

1 Introduction

Over the past decennium image registration has been receiving a significant
amount of attention from the medical image processing community. Registration
methods aim at establishing a spatial alignment between the tomographic images
that were taken at different time points or under different conditions or with
different imaging modalities. A vast number of different registration algorithms
have been proposed and exhaustively reviewed in literature [1]. Registration
algorithms can be split into the following broad categories: intensity- [2,3] and
feature-based [4,5] methods or a hybrid of both approaches [6].

The intensity-based methods provide the most accurate way for spatial align-
ment between two image sets. A registration is performed by transforming one
image set with respect to the other and optimizing a measure based on pairs of
overlapping voxels. Different similarity measures (i.e. normalized cross correla-
tion, mutual information of pixel intensities etc.) have been adopted to govern
the optimization procedure. In spite of the fact that the intensity-based registra-
tion algorithms are optimal in terms of accuracy, they remain computationally
expensive. The feature-based methods offer a better alternative with respect to
numerical efficiency. Commonly two surfaces or point sets, describing the shape
� Partially funded by the Dutch Foundation for Technical Sciences (STW LPG 5651).
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of the same anatomical objects, are aligned with each other, based on a mean
squared distance metric. The feature-based registration methods are extremely
sensitive to initial mutual alignment of the feature sets.

In this paper, we propose a new model-based registration approach, that
combines the best features of the registration algorithms of both categories.
We strive to achieve the accuracy comparable with one of the intensity-based
registration methods without sacrificing the computational efficiency. Moreover,
the model-based approach is much less sensitive to initial misalignment of the
feature points with the geometric model.

In this work we adopted the model-driven segmentation method for thoracic
MRI images and automated recognition of the organs with the profound air-
tissue boundaries proposed in [7]. A new concept of multi-resolution registration
is introduced. It significantly improves the computational efficiency and conver-
gence to the globally optimal solution. The energy minimization functional, re-
flecting a ”goodness-of-fit” measure, was adapted to meet the new requirements.
This approach is applied to registration of left lung MRI images in extreme
respiratory states and to predict the cardiac motion due to respiration.

2 Methods

The components of the model-based registration framework and their intercon-
nections are shown in Fig.1. The basic input data for the registration process are
the geometric model of an anatomical organ and the representative set of the fea-
ture points describing the same organ. Registration is treated as an optimization
problem aimed at finding the spatial mapping that aligns the feature points with
the geometric model. The transform component represents the spatial mapping
of the features points to the model space. Metric provides a ”goodness-of-fit”
measure of how well the feature points are brought into alignment with the

Fig. 1. The main components of the model-based registration framework (left panel).
The right panel depicts the 3D geometric model, consisting of the heart (A), spleen
(B) and left lung (D) primitives. Those primitives are combined together by means of
boolean operators, e.g. union-operator for the heart-spleen composite (C) and differ-
ence-operator for the final model (E), describing the complex shape of the left lung.
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model. This measure is the quantitative criterion to be optimized by the opti-
mizer over the search space defined by the transformation parameters.

2.1 3D Geometric Model of Left Lung

Among the vast variety of different modeling paradigms, Implicit Solid Modeling
(ISM) [8] allows to describe the shape of an anatomical object in terms of an
algebraic implicit function of the spatial coordinates F (x, y, z). The set of points
where the function has a predefined cutoff value c describes the surface of the
modeled anatomical object. Its interior and exterior are associated with the
points where F (x, y, z) < c and F (x, y, z) > c, respectively. Different F’s can
be deduced to describe the analytical template, called primitive, of different
anatomical objects. Primitives are organized in a tree-like structure to describe
intermediate composites and the final model. The primitives form the leaves of
the tree, while the nodes are boolean operators such as differences, unions, etc.
The geometric properties of this model are thus expressed in the primitives, while
the topological characteristics are stored in the relational tree. Fig. 1 shows the
3D geometric model of the left lung constructed by means of ISM.

2.2 Feature Points

The feature points, describing the shape of the modeled anatomical organ
(e. g. left lung), can be extracted automatically from the tomographic images of
the examined subject. A cumulative pixel-intensity histogram of scout images
typically has a bimodal distribution: one peak corresponds to the pixels with low
attenuation or air, contained in the lungs, and the other peak is attributed to
tissue or thoracic organs. Expectation-Maximization [9] histogram-based cluster-
ing can be utilized to determine the brightness values for air and tissue classes.
By fitting a two-component mixture of Gaussian distributions and assigning the
class labels according to a maximum a-posteriori criterion, the final segmenta-
tion of the scout images can be obtained. A set of tuples (xi, gi) constitutes the
automatically detected feature points, where xi is a vector of the spatial coordi-
nates of the air-tissue boundaries and gi is the image gradient at the point xi.

2.3 Metric and Optimizer

A metric characterizes the fit between the model and feature points. It is defined
via the boundary distance field, which was first introduced in [7]. This field rep-
resents a mapping bΔ : R3 → R that computes a value for each point according
to the following formula:

bΔ(xi) =
{ |d(xi)|/Δ, |d(xi)| < Δ;

1, |d(xi)| > Δ.
(1)

where d(xi) ≈ (F (xi) − c) /‖∇F (xi)‖ is the orthogonal distance from the feature
point xi to the surface of the model; Δ is the effective range of the boundary
distance field. The boundary distance value is equal to 0 for the points lying on
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the model surface, and exhibits approximately linear behavior in the vicinity of
the surfaces as the distance to the model surface increases. Outside the effective
range, this value is equal to 1.

The energy minimization function to be optimized is given by the formula:

E(xi, gi) =
N∑

i=1

w(xi, gi)b2Δ(xi) + ρ · N − Ñ

N
, where (2)

w(xi, gi) = exp
{
α

(
1 − arccos

∇F (xi) · gi

‖∇F (xi)‖ · ‖gi‖

)}
(3)

The first term in Eq. 2 is a weighted sum of squares of the boundary distance
values and quantifies proximity of the feature points to the model. The weighting
factor w assures the topological alignment of the feature points. It attains the
minimum, when the image gradient lies along the direction of the model gradient,
and maximum, when those vectors point in the opposite directions. The second
term in Eq. 2 is a penalty factor proportional to the relative number of points
lying outside the effective range of the distance field (N - the total number of
points and Ñ - the number of points inside the boundary distance field).

The energy minimization function can be optimized by introducing variations
in the spatial positioning, scaling and rotation of the feature points. Since the
minimization function is the sum of squares, a numerically stable method (e.g.
Levenberg-Marquardt [10]) is used in the optimization procedure.

2.4 Multi-resolution Optimization

Multi-resolution approaches are usually employed to improve the computational
efficiency and robustness of the registration algorithms. Initially the optimization

Fig. 2. Multi-resolution approach employed in the model-based registration. The vary-
ing effective range of the boundary scalar field (top row) improves robustness of the
optimization procedure (boundary distance values are color coded with blue (dark)
corresponding to 0 and yellow (light) - to 1), while the variable sparsity factor applied
to the feature points (bottom row) increases the computational efficiency.
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procedure is solved at the coarsest level. The obtained results are used as a
starting guess for finding a solution at the next finer level. The whole procedure
iterates until the finest level is reached.

To improve the robustness of the model-based registration, the effective range
of the boundary distance field depends on the resolution scale (Fig.2). At the
coarsest level, this range is made large. The optimization procedure is primarily
governed by the first term of the energy minimization function Eq. 2. The results
obtained at a coarser level are subsequently propagated to the next finer level
with reduced range of the boundary distance field. At the finer levels both terms
in Eq. 2 are equally important. Due to the narrowing effective range, small
variations in the spatial positioning, scaling and rotation of the feature points
may result in some points moving outside the boundary scalar field, introducing
irregularities in the energy minimization function. However, such variations are
penalized by the second term, locking the feature points in the vicinity of the
global solution and increasing the robustness of the optimization procedure.

The computational efficiency of the model-based registration algorithm is
mainly determined by its numerical complexity. The latter can be roughly esti-
mated as O(MN), where N is the number of the feature points and M is the
number of primitives constituting the geometric model. While the number of
the primitives remains constant, the number of the feature points used at the
different resolution scales is made variable. At a coarser level, the optimization
procedure is applied to a sparser subset of the extracted feature points, yielding
fewer computational costs. At the finer levels the number of the feature points is
gradually increased, providing more accurate description of the object of interest
and better mutual alignment with the model.

3 Results

In-vivo scout images were obtained from 5 healthy volunteers using a Philips
Gyroscan Intera 1.5T MRI scanner. A balanced-FFE protocol (TR 2.32 ms; TE
1.16 ms; flip angle 55◦) with prospective VCG was utilized to acquire 60 thoracic
images in three standard projections (20 transversal, 20 sagittal, 20 coronal).
Two sets of scout images were obtained at full inspiration and expiration for
each subject. All volunteers were instructed to withhold from breathing during
acquisition. The field of view and slice thickness were equal to 450 mm and
8 mm, respectively. The reconstruction matrix of 256x256 was used, yielding the
effective in-plane resolution of 1.75 mm/pixel.

In the first experiment, the model-based registration method was used to
identify the anatomically homologous cross-sections of the left lung in extreme
respiratory states. The geometric model of this anatomical organ provided the
common reference frame for registration. Two sets of the feature points, describ-
ing the shape of the left lung of the examined person at full inspiration and
expiration, were automatically extracted from the acquired scout images. Both
sets were aligned with the model, resulting in two sets of the transformation
parameters. A stack of parallel, equidistantly spaced intersecting planes, span-
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Fig. 3. The results of model-based registration. The spatially homologous cross-sections
of the left lung (columns of the first two rows to the left), acquired at full inspiration
(1st row) and expiration (2nd rows) show the effect of respiration. The morphologi-
cally homologous cross-sections (columns of last two rows to the left), reconstructed
after registration, exhibit the anatomical coherence of the left lung appearance. Initial
misalignment of the feature points at full inspiration (A) and expiration (B) does not
affect the final registration results (C,D).

ning the whole extent of the geometric model in the axial direction, was used
to identify the morphologically homologous cross-sections in in-vivo imaging
data. The geometric parameters of those intersecting planes were projected back
from the model into imaging domain by applying the inverse transformation,
obtained during registration. The morphologically homologous cross-sections,
reconstructed after registration, exhibit the anatomical coherence of the left
lung in different slices and are shown in Fig. 3. Before registration, the lung size
is generally smaller at full expiration in all slices. Moreover, the cross-section
with the liver in the most inferior slice is only visible at full expiration. After
registration, the size of the lung is approximately the same in all cross-sections.

Table 1. The results of the quantitative comparison of model- and intensity-based reg-
istration approaches (two first columns) using the normalized cross-correlation metric.
The assessment of respiratory motion of the heart are summarized in last three columns.
The levels of statistical insignificance were found for ∗ = 0.54 and for ∗∗ = 0.41.

NCC∗ Heart Displacement (mm)∗∗

Intensity-based Model-based Actual Predicted Abs.Diff.

Normal 1 0.70 0.76 32.76 29.01 3.75
Normal 2 0.92 0.79 26.66 30.62 3.96
Normal 3 0.84 0.82 22.20 26.95 4.75
Normal 4 0.73 0.72 32.35 28.37 3.98
Normal 5 0.77 0.73 28.86 32.55 3.68

Mean 0.79 0.76 28.57 29.50 4.03
StdDev 0.09 0.04 4.36 2.16 0.42
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Fig. 4. Difference between actual and predicted heart displacement in projection onto
the coordinate planes. The errors are of the same order of magnitude in all projections.

The accuracy of model-based registration was evaluated using the normalized
cross-correlation (NCC). The correlation coefficient, normalized by the square
root of the autocorrelation, was used to assess the similarity between the mor-
phologically homologous stacks of the left lung at full expiration and inspiration.
The NCC results for all subjects as well as the mean and standard deviation are
presented in the second column of Tab. 1. For quantitative comparison, the
intensity-based registration method was implemented using the Insight Toolkit
(ITK) [11]. Prior to registration, the Volume-Of-Interest (VOI) containing the
left lung was manually outlined for all subjects and two respiratory states. The
affine image registration technique, based on normalized mutual information
as a voxel similarity measure and the multi-resolution matching strategy, was
employed to align the VOI’s at full expiration and inspiration. The quality of
intensity-based registration was finally measured using the NCC metric and is
shown in the first column of Tab. 1.

In our second experiment, we numerically assessed the displacement of the
heart due to respiration. The actual and predicted displacements of the heart
were quantitatively compared. The actual displacement was computed by manu-
ally delineating the left ventricular (LV) blood pool in all visible cross-sections of
the chamber in the scout images, by estimation of the LV center by calculation
of the center-of-gravity of the boundary points, and by quantifying the distance
between these centers at full expiration and inspiration. The predicted displace-
ment was estimated by back-projection of the center of the LV, comprising the
model primitive, from the model to imaging domain using two inverse trans-
formations, obtained during the registration in full exhalation and inhalation.
The actual and predicted displacements of the heart along with the absolute
difference are shown in last three columns of Tab. 1 and Fig. 4.

4 Discussion and Conclusions

The results show that this new algorithm is a promising tool for left lung registra-
tion. The model-based registration with the multi-resolution matching strategy
is a fast way of establishing alignment of the left lung in different respiratory
states and gives comparable accuracy as the intensity-based registration. The
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algorithm also produces plausible matches while depending less on correct ini-
tial alignment between the feature points and model (Fig. 3). Computational
costs for model-based registration amount to 10-12 sec. per match against 60-
75 sec. for the intensity-based registration method on a Pentium 2.8 GHz with
1024 MB memory capacity. In particular, the model-based registration is also
suitable for the quantitative analysis of respiratory motion of the heart. Our
findings are in excellent agreement with those of McLeish [12], obtained with
the intensity-based rigid registration of the lungs in extreme respiratory phases.

The proposed model-based registration method was based on two assump-
tions. Firstly, ISM effectively but coarsely allows to represent the shape of
anatomical organs with moderately complex shapes such as lungs and is less
suitable to represent highly complex shapes such as cortical sulci or brain ven-
tricles. Secondly, there is a single affine transformation that matches the set of
feature points against the model. Although not strictly true, this assumption
provides a global but accurate conformal mapping between lungs in extreme
respiratory states. That mapping can be beneficial in establishing preliminary
correspondence between the major anatomical landmarks of the modeled organ
and subsequent intensity-based registration of the lungs in oncological applica-
tions [13,14]. Further improvement involves non-rigid transformation that allows
to recover local deformation due to the shape changes in the lungs and should be
considered as a potential extension of the model-based registration framework.
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Abstract. We present a simple and rapid method for generation of
perspective digitally rendered radiographs (DRR) for 2D/3D registra-
tion based on splat rendering. Suppression of discretization artefacts
by means of computation of Gaussian footprints – which is a consid-
erable computational burden in classical splat rendering – is replaced by
stochastic motion of either the voxels in the volume to be rendered, or by
simulation of a X-ray tube focal spot of finite size. The result is a simple
and fast perspective rendering algorithm using only a small subset of
voxels. Our method generates slightly blurred DRRs suitable for regis-
tration purposes at framerates of approximately 10 Hz when rendering
volume images with a size of 30 MB on a standard PC.

1 Introduction

Generation of simulated X-ray images or digitally rendered radiographs (DRR)
is a key technology in 2D/3D registration for image guided therapy (IGT) [1,2,3]
and patient alignment in radiation oncology. In general, a DRR is a simulated
X-ray image derived from a computed tomography (CT) volume by simulating
the attenuation of virtual X-rays. Therefore a DRR is a perspective volume
rendering. Raycasting, the computation of line integrals along selected beams
emerging from the viewpoint, appears to be the logical rendering algorithm to
fulfill this task. From a practical perspective, this approach is barely feasible.
In 2D/3D registration patient alignment is achieved by iteratively solving an
optimization problem in 6 degrees-of-freedom (dof). During the optimization,
the CT-volume undergoes rigid-body transformations where every dof is varied
until an optimum match between DRR and X-ray image is achieved. Due to
the complexity of the registration task a considerable number of DRRs have
to be computed, and the time required for registration is closely related to the
efficiency of DRR generation.

Fast perspective volume rendering for DRR generation is therefore a crucial
issue for 2D/3D registration. Several alternatives to conventional raycasting such
as lightfield- [4] or shear-warp rendering [5] were proposed in the past. In this
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paper, we present a variation of splat rendering [6] – the direct projection of
single voxels to the imaging plane – as a fast and simple alternative to these
rendering algorithms. The main advantage of splatting lies in the fact that only
voxels above a certain threshold are used for DRR generation; this can reduce
the number of voxels to be visited during the rendering process significantly.
Typically, a DRR of an abdominal CT scan uses less that 10 % of the voxels
for splat rendering of bony tissue. Therefore direct projection of voxels easily
outperforms methods such as discrete raycasting by a factor of 10 - 20 depend-
ing on the minimum Hounsfield density to be rendered. The inherent problem of
direct voxel projection is the massive decrease in image quality due to aliasing
artefacts. The original splatting algorithm overcomes this problem by calcula-
tion of a 3D Gaussian kernel projected onto the image plane providing a discrete
point spread function. For orthogonal projection, these so-called footprints can
be computed in a preprocessing step. Unfortunately, this is not feasible for per-
spective splat rendering. As a result of applying antialiasing techniques, time
requirements again increase considerable since for each voxel position in the CT
volume, the projection of a discrete Gaussian 3D-kernel has to be computed
as well. The initial advantage of the splatting algorithm over raycasting – its
shorter execution cycle – is actually reversed by this additional task.

In this paper, we present a simple and efficient method for antialiasing of
splat - rendered DRRs avoiding the computation of footprints. DRRs from splat
rendering and raycasting are compared, and time requirements for DRR - gen-
eration were recorded.

2 Materials and Methods

The basic idea of splatting for generating a DRR is simple. Since the exponential
weakening of the X-ray beam during body passage – which derives from the
general law of linear attenuation [7], p. 59 ff – can be taken into account on the
projected image by logarithmization, a perspective summed voxel rendering is
an acceptable volume rendering method for this purpose. Thus, every voxel can
be projected by an algebraic perspective projection operator P (actually a 4× 4
matrix). A setup where the focal spot is located on the z-axis and the imaging
plane lies in the x-y plane is, for instance, a good starting point since it shows
some favourable symmetry properties for registration [3].

Motion of the CT data set in this coordinate system is given by a 4×4 matrix
V which is composed out of a 3 × 3 rotation matrix and a translation vector.
Details on both operators can be found in the literature, e. g. [1,3].

The contribution of each voxel can be computed by applying these operators
to every voxel position x in the CT-volume;

xp = PV x (1)

resulting in coordinates xp on the image plane. The HU of the voxel at location
x is added to the actual grayscale value of the pixel located closest to xp. After
applying eq. 1 to every voxel and integrating the projected density values, a



962 W. Birkfellner et al.

summed voxel rendering of the CT-volume is the result. Discretization artefacts
are inevitable when using this technique.

The method of directly projecting single voxel densities onto the projection
plane also reveals the inherent advantage of splatting. Since the ordering of
voxels relative to each other is of no importance, one can remove all voxels not
contributing to the DRR. In the case of 2D/3D registration, this is usually the
CT volume content filled with soft tissue and air. After selecting a minimum and
maximum threshold for voxels to be rendered, a single preprocessing step allows
for reordering the volume.

It should be stated that eq. 1 can easily be generalized to positions of the
X-ray tube different to the geometry resulting in the projection operator P . As
long as the projection plane remains normal to the central beam of the X-ray
tube (for instance in a C-arm), a rigid body transform V ∗ similar to the matrix
V can be used to model motion of the virtual tube focus. The projection operator
P is moved to P ∗ by computing

P ∗ = V ∗P (2)

As said before the classical splatting technique overcomes the aliasing problem
by means of projecting a Gaussian kernel for every voxel position. While the
generation of the lookup table containing the splats is simply a preprocessing
step in orthogonal projection, this is not the case for perspective projection.
On the other hand, projecting such a kernel for every voxel position is a very
time-consuming task. The quality of the antialiasing depends on the size of the
Gaussian kernel. Taking into account that computation of a 3 × 3 × 3 kernel
requires 27 projections for a single footprint, it is evident that rendering times
increase considerably, and that kernels with even larger size are definitely out
of discussion. As an alternative, we have tested two methods where artefact
suppression is achieved by stochastic motion of various parameters in the splat-
ting process. These methods are a.) Gaussian motion of voxels and b.) Gaussian
motion of the viewpoint.

The first method resembles a stochastic variant of the original splatting
method; in this case, the projected voxel value is not spread on the projec-
tion plane by a footprint but by a stochastic Gaussian displacement of voxel
positions x in a small range. For each voxel position x, a 3 × 1 Gaussian ran-
dom vector u with standard deviation σ and mean 0 is computed using the
Box-Muller method. Eq. 1 becomes

xp = PV (x + u) (3)

The standard deviation σ of the Gaussian distribution was chosen in such a
manner that 3σ approximately equals the voxel size of the volume used.

The second approach is slightly more sophisticated and has the additional
appeal of modelling the physics of X-ray generation. To some extent, it resembles
methods for rendering of soft shadows in computer graphics. In general, the focal
spot of an X-ray tube is not a mathematical point but an area approximately 2.0
mm in diameter [7], p. 42. This behaviour is simulated by stochastic translation of
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the projector P . parallel to the x-y plane. An additional benefit of this approach
is the fact that only two instead of three random numbers have to be computed,
as opposed to the first approach. In detail, a 3 × 1 Gaussian random vector
v = (v0, v1, 0)T is computed. Again, mean of the Gaussian distribution is 0 and
standard deviation σ is chosen to be σ = 1

3Dfs where Dfs is the diameter of
the focal spot to be simulated. This displacement is applied to the projection
operator P ∗ (see eq. 2) by computing

P ′ = V ∗

⎛⎜⎜⎝
1 0 0 v0
0 1 0 v1
0 0 1 0
0 0 0 1

⎞⎟⎟⎠P (4)

Here, the projection operator P is configured in such a manner that it splats
the voxels to the x-y plane and the viewpoint is located at the z-axis. Apply-
ing P ′ instead of P or P ∗ respectively to the volumes voxel positions (eq. 1)
results in geometric unsharpness as caused by a focal spot of finite size. We
refer to both methods – the Gaussian distortion of voxel positions within the
volume and the Gaussian motion of the virtual focal spot of the projector P as
’wobbled splatting’ since the antialiasing effect of footprint evaluation as in the
classical splatting method is replaced by a random distortion of some splatting
parameters.

A small application named SPLATTER for generation of DRRs was written
in C++ using the Qt 3.0 graphical user interface toolkit on standard Pentium
IV with 2.8 GHz under SuSE Linux 9.0. Additional image processing function-
ality was implemented using AVW 6.0 library (Biomedical Imaging Resource,
Mayo Clinic, Rochester/MN). The Box-Muller method for generation of random
numbers with a Gaussian distribution was taken form the GNU scientific library
GSL 1.4 (Free Software Foundation, Boston/MA). All illustrations in this paper
were generated using SPLATTER. AVW was provided courtesy of Dr. R. A.
Robb, Biomedical Imaging Resource, Mayo Clinic, Rochester/MN.

For testing the various antialiasing methods, three CT volume scans were
used. First, a clinical pediatric abdominal scan acquired with a Siemens Sen-
sation CT (Siemens AG, Erlangen, Germany) with an original resolution of
512 × 512 × 151 voxels was used. Since all scans were resampled using linear
interpolation to (1 mm)3 voxels, the scan used for rendering had 237×237×302
voxels and a size of 32.35 MB. It is to be noted that resampling to cubic voxels
is performed for the sake of simplying the splatting algorithm, but it is not a
necessity [6]. Second, a scan of a pelvis phantom interpolated to 290× 205× 200
voxels and a size of 22.67 MB was used. Finally, a clinical scan of mandible
(172 × 172 × 72 voxels, 4.06 MB) was used. The latter two scans were acquired
using a Philips Mx 8000 IDT scanner (Philips AG, Best, The Netherlands).

Evaluation was performed by applying various antialiasing techniques on
DRRs rendered with an image size of 256 × 256 pixels and comparison of the
outcome. A high-quality rendering using the interpolated raycasting routine from
the AVW library was used as a gold standard.
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3 Results

Table 1 gives an overview of the visual outcome from the various antialiasing
methods. Results from discrete and interpolated raycasting are also included.
Voxel wobbling and focus wobbling combined with lowpass-filtering both pro-
vide good results. Figs. 1 and 2 show the effects of footprint evaluation and
wobbling. The eight DRRs were rendered with a minmum threshold of 0 HU
and a maximum threshold of 3072 HU from the pediatric abdomen scan. Fig. 1
shows considerable artefacts, which cannot be fully removed by multiplication
with a footprint table generated from 3×3×3 Gaussian kernels and subsequent
lowpass-filtering (fig. 1).

Fig. 2a shows a DRR generated using the same parameters as the DRRs in
fig. 1 but rather than performing a footprint-evaluation, the image was generated
with voxels being shifted by a Gaussian motion as given in eq. 3 with zero
mean and standard deviation σ = 0.4 mm. Fig. 2c was generated with static
voxel positions; antialiasing is introduced by a Gaussian motion of the focal
spot (or ’viewpoint’) according to eq. 4 with zero mean and σ = 1

3 mm. While
discretization artefacts are compensated for, Gaussian noise is clearly visible in
both images. 2D lowpass filtering of the DRRs using a Gaussian 3 × 3 kernel
compensate for this flaw (Figs. 2b and 2d).

Fig. 1. Results of conventional splatting. The left image shows a direct projection of a
mandible CT scan without further antialiasing measures. Discretization artefacts are
clearly visible. The right image was splatted using Gaussian 3 × 3 kernels and lowpass
filtering of the resulting DRR with a 3 × 3 kernel.



Fast DRR Generation for 2D/3D Registration 965

Table 2 compares the amount of time required for DRR generation using
splatting and raycasting combined with several antialiasing techniques. It is ev-
ident that the performance of splat rendering depends on the number of voxels
used for DRR generation. Voxel wobbling and focus wobbling combined with sub-
sequent lowpass filtering of the resulting DRR – the antialiasing techniques pro-
viding a sufficient result according to table 1 – outperform interpolated raycast-
ing typically by a factor of 20 when using a minimum threshold showing mainly
bony tissue. Otherwise, splatting approximately requires the same amount of
time as discrete raycasting. It was found that for the DRRs generated for this
study, only 5 - 33 % of the voxels had to be used.

Fig. 2. Results of wobbled splatting. No footprint-table was generated, but either the
voxel positions underwent displacement (a, voxel wobbling – voxels perform Gaussian
movement with mean 0 and standard deviation σ = 0.4 mm), or the focus position
was blurred (c, focus wobbling – focal spot performs Gaussian movement with mean 0
and standard deviation σ = 0.33 mm). b) shows a) after lowpass-filtering (again with
a 3 × 3 kernel). d) shows c) after the same filtering procedure.
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Table 1. Visual effect of the various combinations of raycasting and antialiasing tech-
niques. Rendering methods are splatting (SPL) and raycasting (RC). Antialiasing mea-
sures are lowpass filtering of the DRR using a 3×3 kernel (LP), evaluation of footprints
from 3 × 3 × 3 Gaussian footprints (GF), voxel wobbling (VW), focus wobbling (FW),
and combinations thereof. Outcome was categorized to be heavily stricken with arte-
facts (−−), aliased (−), fair (. . .), good (+) and excellent (++).

Renderer/ SPL SPL/ SPL/ SPL/ SPL/ SPL/ SPL/ SPL/ SPL/ RC RC/

Anti- LP GF VW FW VW, FW, VW, VW, inter-

aliasing LP LP FW FW,LP polation

Visual
outcome −− − − . . . . . . + + . . . + − ++

Table 2. Time required for DRR generation from three different CT scans given in
seconds. Splat rendering (SPL) and raycasting (RC) were used as rendering methods.
Antialiasing techniques employed for splat rendering were lowpass filtering using a 3×3
Gaussian kernel (LP), prjoection using a footprint (point-spread function) calculated
from a 3 × 3 × 3 Gaussian kernel (GF), voxel wobbling (VW), focus wobbling (FW),
and combiations. Finally, interpolated and discrete raycasting was used as well. Focus
and voxel wobbling combined with 2D lowpass filtering – the preferrable antialiasing
methods according to table 1 – are printed in boldface.

CT-Volume Abdomen Pelvis Jaw
Min. Threshold Min. Threshold Min. Threshold

Render Anti-
method aliasing -205 0 205 -980 0 350 -1024 0 380

SPL — 0.92 0.71 0.10 1.41 0.10 0.09 0.19 0.10 0.02
SPL LP 0.94 0.71 0.10 1.40 0.11 0.12 0.20 0.10 0.02
SPL GF 43.83 16.87 2.73 33.05 2.52 2.25 4.68 2.20 0.44
SPL VW 1.24 0.83 0.12 1.65 0.13 0.11 0.23 0.11 0.02
SPL FW 1.13 0.85 0.12 1.71 0.12 0.12 0.24 0.12 0.02
SPL VW, LP 1.13 0.84 0.15 1.81 0.13 0.12 0.24 0.11 0.02
SPL FW, LP 1.13 0.84 0.13 1.72 0.13 0.13 0.24 0.12 0.03
SPL VW, FW 1.33 1.00 0.14 2.05 0.15 0.14 0.27 0.13 0.02
SPL VW, FW, LP 1.40 1.00 0.15 2.03 0.17 0.14 0.28 0.14 0.03
RC — 1.63 1.68 1.64 1.16 1.07 1.12 0.08 0.09 0.08
RC interpolation 6.15 2.75 2.33 7.17 1.82 1.77 0.42 0.30 0.13

4 Discussion

A fast DRR algorithm not requiring lengthy preprocessing is definitely desireable
for clinical implementations of 2D/3D registration algorithms. For the particular
case of iterative DRR generation for registration, splatting has the inherent
advantage of its simplicity. The considerable time necessary for generating the
footprint tables calls for an alternative solution for the reduction of aliasing
artefacts. For this reason, footprint tables generated by Gaussian kernels with a
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dimension beyond 3×3×3 were not included in this paper. As mentioned before,
the reduction of detail due to antialiasing is not considered a severe drawback
since measures similar to lowpass filtering have to be undertaken to avoid local
minima in the optimization process [1,2]. Aliasing artefacts, on the other hand,
cannot be tolerated since small structures with high intensity variations tend to
introduce considerable misregistration for a number of 2D/3D cost functions such
as minimization of cross-correlation and algorithms based on image gradiente
evaluation. The advantage of wobbled splatting compared to anti-aliasing by
lowpass-filtering with larger kernels lies in the fact that structure and detail
is conserved to some extent. In this paper we have shown that DRRs of bony
structures (i. e. DRRs rendered with a minimum threshold above typical soft
tissue radioopacity) can be rendered without visible artefacts at framerates of
approximately 10 Hz. This amounts to 5 – 7% of the computing time necessary
for interpolated raycasting.

While comparing rendering algorithms applied to different volumes remains
difficult, it has to be stated that this increase in computational efficiency com-
pares well to the numbers reported in the literature. We conclude that wobbled
splatting is comparable to these rendering algorithms in terms of efficiency; it
provides an interesting alternative for generation of DRRs in iterative registra-
tion applications.
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Abstract. The aim of this project is to verify the accuracy of positron
emission tomography (PET) in identifying the tumour boundary and
eventually to enable PET-guided resection with removal of significantly
smaller margins. We present a novel use of an image-guided surgery sys-
tem to enable alignment of preoperative PET images to postoperative
histology. The oral cancer patients must have a high resolution CT scan
as well as undergoing PET imaging. Registration of these images to the
patient during surgery is achieved using a device that attaches to the
patient’s upper or lower teeth. During the procedure markers are placed
around the lesion within tissue that is to be resected. These are marked
along with any convenient anatomical landmarks using the image guid-
ance system, providing the location of the points in the preoperative
images. After the sample has been resected, slices through at least 3 of
these points are made and photographed. Registration should be possible
using these landmarks, but the accuracy of alignment is much improved
by marking the bone surface in the histology image and registering to
preoperative CT.

1 Introduction

Histology is generally regarded as the gold standard for identification and la-
belling of pathological tissues. Imaging techniques can provide a wealth of in-
formation about anatomy and physiology in vivo, but its value depends on
how closely the image approximates reality. The spatial resolution and level
of anatomical or functional detail, however, is much higher in histological slices.
Alignment of in vivo images to histology could provide a powerful tool for vali-
dation of the imaging process.

Versions of this technique have been used to validate PET. Mega et al regis-
tered PET imaging to postmortem brain sections in a patient with Alzheimer’s
disease [1]. The aim was to compare stained brain sections with a PET scan
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taken 8 hours premortem. A 3D volume was reconstructed from cryosections at
0.5mm intervals and aligned to the PET scan using the method of Woods [2].
The stained sections were also registered to the cryosection data using an outline-
based warping algorithm, providing the desired match between stained sections
and premortem PET. Humm et al, on the other hand, inserted small rods into a
tumour to act as markers for registration of magnetic resonance imaging (MRI)
or PET images to histology in rodents [3]. Malandain et al produced a system
for alignment of MRI to autoradiographs in tumour bearing mice [4]. Here an
initial 3D volume of the autoradiographs is constructed and registered to the
MRI image. The alignment for each autoradiographic slice is then refined and
a new volume produced, and this process is repeated until a sufficiently good
match is achieved.

In all these examples a volume is produced by aligning many histological
slices from a postmortem subject. The aim of this project is to examine the
accuracy of PET imaging for delineation of tumours in patients, for which we
require a means of alignment to the excised tissue. This sample may not be able
to provide many parallel slices, so a method that can register a single slice is
required.

2 Method

The patient population considered for evaluation had an oral cancer sited in
close association with the bone of the upper or lower jaw. A lockable acrylic
dental stent (LADS) was made to clamp firmly to the patient’s upper or lower
teeth.

Fiducial markers can be attached to the LADS which provide accuracy of
registration for the head, both in terms of stability and repeatability of posi-
tioning, to a tolerance of 1-4mm [5]. Any rotational instability causes greater
errors at a distance from the teeth. We would expect accuracy in these cases to
be higher, since the lesion is always located very close to the LADS.

2.1 Preoperative Image Acquisition and Processing

Preoperatively, prior to undergoing a PET scan, the LADS and fiducial frame
are attached to the patient and the imaging markers filled with 5kBq/ml FDG.
This is followed by a CT scan, with the markers filled with iodine solution.
Usually there are 8 markers visible in both scans which are used for registration
(see Fig. 1).

The position of the fiducials is marked in both sets of images. This provides
registration from CT to PET. This was found to be a more accurate and reliable
method than automated voxel-based registration [6], since the amount of activity
in the PET scan can be quite small unless a significant amount of brain is
included and there may be relative movement between the head and the region
of interest if the lesion is in the mandible.

The PET scan is segmented using Analyze [7] to remove any activity other
than the lesion. A set of surfaces is then produced using marching cubes [8] for



970 P.J. Edwards et al.

Fig. 1. An example PET scan and CT scan, showing the visibility of the fiducial
markers

different thresholds to produce PET models of the lesion. These will be used
to produce PET isointensity contours on the resulting histology slice. A bone
and teeth surface model is created from the CT scan, also by marching cubes.
This is useful for checking registration accuracy and is also required for the
outline-based registration step described later.

2.2 Registration to the Physical Space of the Patient

The LADS is designed to carry a tracking frame of 6 infra-red emitting diodes
(IREDs). that are located by the Optotrak position sensor from Northern Dig-
ital, Inc. Both the tracker and the fiducial frame are attached and the imaging
fiducials are replaced by physical markers that dock accurately with a tracked
pointer. Marking these points provides their location in the physical coordinate
system defined by the IRED tracking frame. Registration to the same points
marked in the PET and CT images aligns the preoperative data to the physical
space defined by this frame. Now the wings carrying the fiducials can be removed
and the intraoperative alignment is performed simply by attaching the LADS to
the patient’s teeth.

The beauty of using the LADS for this purpose is that the image-to-physical
registration process can take place without the patient being present, as long as
both the tracking frame and fiducial frame are attached.

It proved instructive to attach the cast of the teeth to the LADS. Then a
pointer-based guidance system can be used on the cast to check that the CT
is well aligned by marking bone surface points. The lesion can be visualised to
check PET alignment (Fig. 2(c)). These planning checks save on operating room
time and forewarn of problems with the data.

At surgery only the LADS with the tracking frame is attached to the teeth.
The LADS locates and locks onto the teeth with great accuracy [5]. The position
of the lesion can now be visualised using pointer-based guidance or augmented
reality visualisation (see Fig. 2(d)).
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a b

c d

Fig. 2. The LADS registration device, showing attachment to the teeth (a), a rendering
of the fiducial frame from CT (b), an overlay on the cast taken when producing the
LADS (c) and an overlay during the operation showing that marker pins have been
placed around the lesion (d).

2.3 Intraoperative Marker Placement

The surgeon and pathologist decide from the preoperative renderings the position
of likely cuts through the lesion for histological assessment of the lesion. We then
aim to place markers so that they define this plane, though high accuracy at this
stage is not important. At least 3 points are required to define the plane of the
cut. If anatomical landmarks are available, such as the cusp of a given tooth,
these can be used. Otherwise markers are implanted in the tissue around the
lesion. Dental barbed broaches or preferably standard bone screws are used for
this purpose.

The screws are then marked with the image-guided surgery system, providing
their position in the preoperative images. We use the CT scan as the reference
image. The position of all intraoperative markers are recorded.

The surgery then proceeds and the sample containing the lesion and all the
markers is removed in one piece to be transferred to the pathology laboratory.
It is normal practice for the tumour and a 2cm margin of normal surrounding
tissue to be removed.

2.4 Postopertative Histology

The tumour specimen is formalin fixed. With the aid of renderings showing the
bone from CT, lesion from PET and the location of the markers, a number of
cuts are made through the specimen as close as possible to at least 3 landmarks.
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The cuts are made with an Exact 0.3mm thickness diamond grinding band. This
part of the process relies on operator skill, but with experience it is possible to
produce a cut through the relevant points that is very close to planar. The
diamond band should not produce significant distortion of the tissue, especially
since we have chosen non-mobile lesions close to the bone.

After each cut the sample is photographed with a Nikon coolpix 900 digital
camera set on macro. The plane of the cut is manually placed to be perpendicular
to the optical axis of the camera, which is mounted on a camera stand. Two
rulers are placed in the same plane as the sample to be used for scaling of the
resulting image. The position of the landmarks and the outline of the tumour
are identified by the pathologist in the histology image. The landmark positions
are released for registration purposes, but the tumour outline is not disclosed
until the registration and PET rendering is completed.

2.5 Registration and Refinement

Registration can now be simply performed by point-based alignment of the land-
marks from the scaled histology image to the landmark positions in the preoper-
ative images. This process was prone to errors of rotation. The guidance system
should be accurate to around 1mm, but the fiducial points are often only a few
mm apart. Every effort is made to ensure landmarks are well spread in a trian-
gle, but often this is not possible as the available anatomy at the beginning of
surgery may consist of only one tooth. The close proximity of the landmarks can
produce significant rotational errors.

To refine the registration the outline of the bone is delineated manually in
the histology slice and registered to the bone surface from CT using the iterative
closest point (ICP) method [9]. The result of the point-based registration is used
as a starting estimate.

2.6 Validation

The technique described here could be used as a validation of PET imaging
for tumour localisation, but the method of alignment itself should be validated.
Unfortunately there is no easy gold standard registration of PET to histology
with which to assess the current method.

It is possible to examine the precision of the registration, however. This is per-
formed for the landmark identification by marking the fiducials intraoperatively
six times. For the ICP registration refinement we use multiple random starting
estimates within the range of error associated with the landmark registration.

3 Results

An example resulting alignment is shown in figure 3. The outline on the histol-
ogy slice was provided by the pathologist. Bone from CT and the tumour from
PET are overlaid on the histology image using landmark registration (Fig. 3(b))
and after ICP registration (Fig. 3(c)). For landmark registration there is a clear
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Fig. 3. An example histology slice showing the outline of the lesion (a), an overlay of the
bone (brown) and lesion (green) after registration by landmarks (b) and ICP (c). The
latter clearly gives a visually better alignment. Two thresholds are used that roughly
correspond to the inner and outer boundary of the lesion in PET, demonstrating how we
can use this method to help determine how best to use PET for tumour segmentation.

misalignment of the bone surface. After ICP the alignment is visually much
improved. Figure 4 shows the position of the histology slice using the two regis-
trations displayed over a rendering of the bone surface from CT and the lesion
from PET. The rotational discrepancy between the two registrations is clear.

Repeated marking of the fiducials with the image-guided surgery system gave
errors of around 1mm. The RMS residual error on the bone surface points after
ICP is 0.34mm. Repeated ICP registrations based on random starting positions
were highly consistent, with a mean target registration error (TRE) within the
histology slice of 0.54mm. It should be stressed that this is an initial result on
one dataset and should not be taken as a true measure of the accuracy of the
method.

4 Discussion

We have presented a method for alignment of PET imaging to histology slices.
This should enable validation of the ability to delineate a tumour using PET.



974 P.J. Edwards et al.

An initial result is given in which the alignment precision after ICP registration
appears to be around 0.5mm. This is an early result and further experimentation
is required. The effect of outline accuracy on precision could be estimated by
marking multiple boundaries. Also a true gold standard may be possible with
phantom or animal studies. Particularly a series of patients needs to be examined
using the system. The initial results do suggest that the use of a guidance system
in conjunction with a CT scan to provide the bone surface enables accurate
alignment between PET and histology.

Fig. 4. A rendering of the mandible from CT, lesion from PET and the histology slice,
registered using landmarks and ICP. The rotational error between the two registrations
can clearly be seen. We believe the ICP result provides accurate alignment.

There are a few caveats when considering this process. Firstly, if the PET
scan is taken a significant time before surgery there is the possibility that the
lesion may have grown. To minimise this effect scanning was performed 1 week
before surgery so as not to allow significant time for tumour growth. In general
scanning should take place as near as possible to the time of the operation.
Another potential problem is the shrinkage of soft tissue on removal or fixation.
By choosing non-mobile lesions that are close to bone, we not only have the
advantage of being able to match to the bone surface from CT, but also any
deformation of the soft tissue is likely to be minimised. Shrinkage on fixation
across the tumour was experimentally assessed to be of the order of 1% linear
based on measurement along needles passed through the lesion.

The aim of the project will be to collect a database of PET images aligned
to histology slices. This will enable quantitative analysis of the accuracy of PET
segmentation techniques for tumour boundary delineation. Once we have confi-
dence in the accuracy of the tumour segmentation we can develop a PET-based
image-guided surgery system that will allow complete resection of the lesion with
much smaller margins. The current practice is to ensure full resection by taking
a significant margin of 1-3cm. Accurate PET-guided tumour resection should
result in less-invasive surgery and reduced morbidity for the patient.
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This paper presents, to the best knowledge of the authors, the first attempt
to use image-guided surgery techniques to perform alignment of PET imaging
to histology for verification of tumour boundary segmentation.
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Abstract. In this paper we present an enhanced method for non-rigid
registration of volumetric multi-modal images using Mutual Information
(MI). Based on a hierarchical subdivision scheme, the non-rigid matching
problem is decomposed into numerous rigid registrations of sub-images
of decreasing size. A thorough investigation revealed limitations of this
approach, caused by a peculiar behavior of MI when applied to regions
covering only a limited number of image pixels. We examine and explain
the loss of MI’s statistical consistency along the hierarchical subdivi-
sion. We also propose to use information theoretical measures to identify
the problematic regions in order to overcome the MI drawbacks. This
does not only improve the accuracy and robustness of the registration,
but also can be used as a very efficient stopping criterion for the fur-
ther subdivision of nodes in the hierarchy, which drastically reduces the
computational costs of the entire registration procedure.

1 Introduction

Medical imaging has been developing extremely fast during the last decades,
bringing new technologies to improve pre-operative planning and intra-operative
navigation. All the related procedures are using a large number of digital images
taken at different time intervals or by different radiological modalities. Medical
images are usually containing complementary information and their proper inte-
gration is often required. The crucial step in this fusion process is the registration
procedure to ensure that the images of interest are in a sufficiently good spatial
alignment. Several surveys and textbooks (e.g. [1] and references therein) have
already been published providing a broad and general overview and analysis of
the related problems and techniques proposed in the literature.

Among other, two key elements are to be mentioned in the context of image
registration: the measure used to quantify the similarity between the images to
be matched, and the spatial transformation that aligns the images. The intro-
duction of MI as a similarity measure [2,3] has especially influenced the devel-
opment of intensity-based image registration due to its inherent ability to deal
with multi-modal matching problems [4]. Because of unavoidable deformations
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of the anatomy between consecutive scanning procedures, classical rigid, affine
or projective registration techniques can only be used in limited special cases.
Non-rigid registration procedures, capable to deal with more localized spatial
changes, are therefore in the focus of current research and development. Likar
and Pernuš proposed in [5] a hierarchical subdivision strategy that decomposes
the non-rigid matching problem into an elastic interpolation of numerous local
rigid registrations of sub-images of decreasing size.

Starting from the original 2D version of the hierarchical strategy, we improved
the algorithm presented in [5] and extended it for volumetric data. In this paper,
we first present an analysis of difficulties emerging when using this hierarchical
registration scheme. Subsequently, solutions to overcome these drawbacks are
presented based on a new method to detect noisy patches or regions of homo-
geneous intensity within an image. Finally, the performance of our method is
compared with the original algorithm [5].

2 Method

Even though MI was proven to be a very robust and reliable similarity measure
for intensity-based registration of multi-modal images, numerous problems have
to be faced if it is applied to small-size images, compromising its usefulness for
subdivision schemes. These problems have been identified in connection with
either interpolation artifacts or inherent limitations of the MI definition. These
difficulties are strongly coupled with the calculation of parameters for the dis-
crete intensity probability distribution estimated by histograms. Therefore, they
are increasingly disturbing when the size of the sub-images become smaller with
the successive hierarchical subdivision. This effect is, however, less pronounced
for 3D data.

The interpolation artifacts have been broadly analyzed in the literature and
different solutions have been proposed [6,7].In order to minimize their influence,
Likar and Pernuš artificially increased the number of image samples used for
histogram generation by incorporating the global joint distribution as a prior.
As a consequence, the statistical reliability of MI is increased. For small patch
sizes, however, the use of prior information estimated from the entire image may
lead to false maxima in the MI goal function. Therefore, we propose to estimate
the prior only from a surrounding area relative to the size of the sub-image.

As another consequence of the successive image splitting, patches of low
structural content may appear that often lead to morphologically inconsistent
local registrations with a low MI response.

Likar and Pernuš suggested to identify such patches by thresholding the MI
value and to exclude them from the local adjustment process. However, this
way structured sub-images with low MI value, which still can be registered in a
morphologically consistent way, will be prevented to become properly adjusted.
At the same time, structureless patches may be retained as according to our
observations the MI significantly increases when these start to overlap a structure
in the reference image.
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It is well known in information theory [8], that if two signals are statistically
independent then their MI is reaching its minimum possible value, namely zero.
Therefore, one would expect that by shifting a structureless noisy patch around
its initial position, the similarity measure has a small response. Surprisingly,
preliminary experiments clearly demonstrated that even though MI is small, it
starts to increase as soon as the structureless patch overlaps a region of higher
structural content, leading to wrong local registrations, that a thresholding tech-
nique or a regularization procedure may fail to detect or correct. The problem
is even more pronounced in the context of multi-modal image registration when
not all tissue details can be seen in all modalities, like in the case of CT-MR
cross-registration.

The following experiment shows this behavior on a simple one-dimensional
case. Let us consider two signals A and B depicted in Fig. 1(a). We generated the
reference signal A by adding white noise to a step function. The floating signal
B consists of white noise, and is statistically independent of A. Using the basic
definition, we can calculate the MI between the two signals as a function of the
displacement when the floating signal is translated along the reference signal. The
none-zero baseline of the MI, clearly identifiable in Fig. 1(a), can be explained by
a combination of two different effects. One is rooted in the difficulty to observe
strict independence between signals represented by a finite number of discrete
samples. On the other hand, it is well known in the information theory [9] that
at the transition from continuous differential entropy to discrete entropy there is
systematic bias by an error term depending on the size of the quantization bins
used for histogram generation. This theorem does only apply to the marginal
entropies H(A) and H(B). We are not aware of any results on deriving a similar
relation for the joint entropy H(A, B). Clearly for strictly independent signals
A and B the quantization error of the discrete entropy would cancel out. This
is, however, not the case if the independency condition is perturbed.
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Fig. 1. (a) Experiment, demonstrating the behavior of MI in the presence of noise,
showing the original test signals (top) and the response of MI (bottom) when the
floating signal B is shifted over the reference signal A. (b) The dependency of the
entropies H(A)+ H(B) and H(A,B) on the number of samples in the signals. (c) The
corresponding dependency of MI and cross-correlation coefficients on the number of
samples.
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To further investigate the problem, numerical experiments have been carried
out showing the dependency of the entropies on the sample size. The results
are shown on Fig. 1(b,c). The cross correlation (CC) graph clearly shows, as
expected, that the statistical independence of the two finite, discrete random
signals improves with the sample length. Figure 1(b), on the other hand, shows
a very interesting property of the entropies. While the marginal entropies H(A)
and H(B) are only slightly influenced by the sample length and very quickly
reach the theoretically predicted value for discrete entropy, the joint entropy
H(A, B) requires substantially more samples to show a similarly stable behavior.

Relating this observation to the test signals from Fig. 1(a) it is obvious,
that once the floating signal B starts to overlap the step, we get a bi-modal
distribution for both H(A) and H(A, B), while H(B) remains constant. The
number of available samples needs then to be distributed among two separated
distributions for the marginal entropy H(A) and the joint entropy H(A, B). As
can be clearly seen from the above graph, the joint entropy H(A, B) decreases
much faster than the marginal entropy H(A), necessarily leading to the observed
strong increase of the MI. The same behavior has been also noticed when using
the normalized mutual information as defined in [10].

As discussed previously, a simple thresholding of the MI during the matching
process does not offer a satisfactory solution to the identified problems. There-
fore, a new method is necessary, purely relying on the structural content of the
single sub-images, allowing to identify structureless nodes in the subdivision
scheme. These have to be excluded from both the registration chain and from
the further hierarchical splitting process.

Inspired by the point-pattern analysis, where the main goal is to gain infor-
mation about the spatial pattern or the variation in the data within a region
of interest, we propose to use the spatial autocorrelation coefficient to test the
consistency of the sub-images. Among different statistical tests proposed in the
literature to determine whether the data are randomly or regularly distributed
or clustered, the Moran I coefficient is favored by most of the analysts because it
has highly desirable statistical properties [11]. For a dataset X = {xi, i = 1..N}
of mean value E(X) = x, Moran’s I is defined as

I =
N∑N

i,j=1 wij

·
∑N

i,j=1 wij · (xi − x) · (xj − x)∑N
i=1(xi − x)2

(1)

where W = {wij} is called the contiguity matrix characterizing the amount of
interaction between the i and j locations and N is the number of observations.

In order to use Moran’s I as an indicator of the structural content in 2D
or 3D sub-images, we chose to use a weighting scheme inversely proportional
to the Euclidean distance d(· , ·) between the currently inspected pixel at the
image coordinates i = {i1, ..in} ∈ INn=2,3 and its neighbors. A maximum inter-
action distance D ∈ INn has to be selected according to the minimal size of the
structures to be detected in the image. Changing the linearized index notation
in (1) to image coordinates, and denoting the vicinity of size D around i with
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VD
i = {j ∈ INn, ∀ | ik − jk |≤ Dk and k = 1..n} , then the contiguity matrix can

be expressed as

W =
{
wij = 1

d(i,j) , ∀j ∈ VD
i \{i}

0, otherwise
(2)

Denoting with ai the intensity value of the image voxel located at the spatial
position i within an image patch A of size N ∈ INn and mean value a, the Moran
I becomes

I =
1∑

j∈VD
0
w0j

·
∑

i∈N

∑
j∈VD

i
wij · (ai − a) · (aj − a)∑

i∈N (ai − a)2
(3)

Moran’s I varies in the interval [−1, 1], where the random patterns are character-
ized by values close to zero. As the associated standard Z value is asymptotically
normally distributed [11], a threshold of ±1.96 corresponding to the 95% con-
fidence interval can be chosen to identify random, i.e. structureless patterns.
Figure 3(b-c) shows the result of the analysis at the 5th level of the hierarchy of
a 2D neuroradiological MR slice.

We incorporated the enhancements discussed above into the 3D extended
version of the hierarchical subdivision scheme described in [5]. The Moran in-
formation consistency test is applied to every sub-image in order to pass only
the relevant image patches to the succeeding rigid registration stage. For all
the sub-images failing this consistency test, the hierarchical splitting is stopped.
However, for the 3D version, care has to be given to anisotropic voxel dimen-
sions. In order to avoid discontinuities between neighboring leafs the parameter
inheritance from one level to the other, used for the initialization, is done by
linearly interpolating the transformations of the parent leaf and its surrounding
neighbors. The consistency of the identified individual transformations between
neighboring sub-images is ensured by a regularization procedure. It imposes
spatial constraints on the centroids of the sub-images by defining a distance
range between them. The identified outliers are corrected by assigning them the
average transformation of all their surrounding sub-images. Thin-plate splines
(TPS) [12] are used to calculate the final deformation field by densely interpolat-
ing the regularized local transformations of the sub-images over the whole image
domain.

3 Results

For all the experiments, the registration algorithm was using the following pa-
rameter settings: (a) the two-dimensional histogram was generated using 256
bins; (b) the prior joint probability was estimated locally only from the direct
neighboring sub-windows; (c) the threshold for the magnitude of the standard
Z value of Moran’s I coefficient used in the information consistency test was
set to 1.96; (d) the contiguity matrix was calculated according to a maximum
distance of 3 pixels ((7 × 7) or (7 × 7 × 7) for the two- and three-dimensional
case respectively), considering also the voxel anisotropy.
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We illustrate the performance of our method on a CT-MR cross-registration
example. The reference image is a 512 × 512 × 46 CT scan of the head with
0.39× 0.39× 0.6mm3 voxel dimension and the floating image is a 512× 512× 28
MR scan with voxels of the size 0.5×0.5×1.0mm3. Figure 2 visualizes details of
our non-rigid registration method in a region where elastic deformation is needed
to correct for both MR susceptibility artifacts (e.g. within the left sphenoid sinus)
and tissue deformation (e.g. the left ear) between the two acquisitions. In order to
better compare the results between a global rigid registration (Fig. 2(c,d)) and
after applying the enhanced hierarchical registration process (Fig. 2(e,f)), the
outline of the head and of the left sphenoid sinus is extracted from the floating
MR volume and overlaid on the reference CT image. The remaining deviations
of the two contours are caused by both the spatial constraints imposed by the
regularization of the deformation field and the size of the smallest sub-image
(16 × 16 × 8) given by the number of hierarchical splitting levels.

Figure 3 shows the performance of our enhanced algorithm in comparison
with the original method [5] for a two-dimensional registration example. The
reference image (Fig. 3(a)) shows one slice from the aforementioned CT scan
of the head and the floating image shows the corresponding transversal slice of
the rigidly registered MR volume. A comparison between Fig. 3(f) and Fig. 3(g)
clearly shows the favorable effect of using Moran’s test when the local registration
is dealing with structureless sub-images. Depending on the number of structure-
less sub-images found, the new algorithm can perform significantly faster than
the original method (e.g. approximately a factor of two for this experiment). Even
more, the Moran’s consistency test incorporated into the enhanced algorithm al-
lows us to go further with the hierarchical subdivision down to sub-images of
16 × 16 pixels, while Likar and Pernuš reported a minimum sub-image size of
95 × 64 pixels.

To quantify the improvement of the registration, we used an empirical proce-
dure proposed by Ion Pappas et al. [13] to measure the performance of

(a) (c) (e)

(b) (d) (f)

Fig. 2. Result of a CT-MR cross-registration. (a) Transversal and (b) coronal sections
of the region of interest in the initial floating MR volume. (c-f) Corresponding sections
in the reference CT volume, overlaid with the contours of the head and of the sphenoid
sinus after a global rigid (c,d) and after the full hierarchical (e,f) registration. Note:
The dashed lines mark the position of the cutting planes.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Registration details of the sphenoid sinus in the left temporal bone at the 5th

level of the hierarchy. (a) The reference CT. (b) and (c) The result (cropped images)
of Moran’s consistency test on the floating MR, divided in 32 × 32 sub-images of
16 × 16 pixels. The examined region, ((d) on the CT and (e) on the MR) consists of
3×3 sub-images. (f) Depicts the final position of each image patch after the local rigid
registration, while (g) shows the result after applying the local rigid registration only to
those MR patches which passed Moran’s test. The consistency check clearly prevented
the two middle patches from being pulled towards structures in the reference CT.

multimodal registration procedures. Similar to [14], the method estimates the
percentage of overlapping volumes segmented from the images of interest. The
final score of the registered bony structures using the improved algorithm shows
a 2.3% improvement over the original method of Likar et al.

4 Conclusions

In this paper we extended and improved the hierarchical non-rigid registration
algorithm relying on the maximization of MI, proposed by Likar and Pernuš.
An information consistency test based on Moran’s spatial autocorrelation coef-
ficient has been developed and used to detect and eliminate the structureless
sub-images from the registration chain, thus avoiding registration errors caused
by structurally meaningless extrema of the MI. However, the MI proved to be
more robust for the 3D version of the algorithm due to the larger number of
available samples. Moran’s test results in a very effective stopping criterion for
the hierarchical subdivision process allowing to eliminate errors introduced by
problematic structureless sub-images and it also speeds up the entire algorithm.

We see several possible directions for future research. Currently, the hierarchi-
cal binary splitting is ignoring the image content. An adaptive positioning of the
splitting boundaries, enabling better adaptation to the anatomical structures,
would not only further reduce the computational load but also improve image
registration quality. This adjustment process could also be supported by using
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Moran’s spatial autocorrelation coefficient. Finally, the regularization method
could be significantly improved by adapting the corresponding corrections to
the certainty of the estimated transformation parameters, which can be mea-
sured by their standard deviation estimated using standard error propagation
methods.
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Abstract. Matching 3D shapes is important in many medical imaging
applications. We show that a joint clustering and diffeomorphism esti-
mation strategy is capable of simultaneously estimating correspondences
and a diffeomorphism between unlabeled 3D point-sets. Correspondence
is established between the cluster centers and this is coupled with a si-
multaneous estimation of a 3D diffeomorphism of space. The number of
clusters can be estimated by minimizing the Jensen-Shannon divergence
on the registered data. We apply our algorithm to both synthetically
warped 3D hippocampal shapes as well as real 3D hippocampal shapes
from different subjects.

1 Introduction

Shape matching is ubiquitous in medical imaging and in particular, there is a real
need for a turnkey non-rigid point feature-based shape matching algorithm [1,2].
This is a very difficult task due to the underlying difficulty of obtaining good
feature correspondences when the shapes differ by an unknown deformation. In
this paper, we attempt to formulate a precise mathematical model for point
feature matching.

Previous work on the landmark matching problem [3,4] ignored the unknown
correspondence problem and assumed all the landmarks are labeled. And fur-
thermore, there is a considerable amount of point feature data where the cardi-
nalities in the two shapes are not equal and a point-wise correspondence cannot
be assumed. On the other hand, previous work on the correspondence problem
[5,6] did not solve the diffeomorphism problem. The deformation model used was
splines, like thin-plate splines, Gaussian radial basis functions and B-splines. The
principal drawback of using a spline for the spatial mapping or the deformation
model is the inability of the spline to guarantee that there are no local folds or
reflections in the mapping and that a valid inverse exists.

Here, we are not interested in curve and surface matching because unlike
a point-set representation of shapes, which is a universal representation, curve
or surface representation of shapes usually require prior knowledge about the
topology of the shapes. A point-set representation of shapes is especially useful
when feature grouping (into curves and the like) cannot be assumed.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 984–991, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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As far as we know, there is very little previous work on 3D diffeomorphic point
matching. Our previous work in [7] deals with 2-D shapes only. The only known
competitors are the distance transform-based approach and the recent work of
[8]. Due to the indirect approach of transforming point-sets into distance fields,
the distance transform method [9] has not seen wide applicability for point-sets.

2 Diffeomorphic Point Matching with the Unknown
Correspondence

We use a Gaussian mixture model to describe the data points with a log-
likelihood

log p(x|r, σT ) =
N1∑
i=1

log
N∑

a=1

exp(− 1
2σ2

T

||xi − ra||2), (1)

where x is a point in Rd, r is the collective notation of a set of cluster centers
and σ2

T is the variance of each Gaussian distribution. As pointed out by Hath-
away [10], the EM algorithm maximizing (1) can be viewed as an alternative
minimization of the following objective

E(M, r) =
1

2σ2
T

N1∑
i=1

N∑
a=1

Mx
ia||xi − ra||2 +

N1∑
i=1

N∑
a=1

Mx
ia logMx

ia (2)

with simplex constraints on M . We put together the clustering energy of the two
point-sets and the diffeomorphic deformation energy induced in space and our
objective function is

E(Mx,My, r, s, v, φ)

=
N1∑
i=1

N∑
k=1

Mx
ik||xi − rk||2 + 2σ2

T

N1∑
i=1

N∑
k=1

Mx
ik logMx

ik

+
N2∑
j=1

N∑
k=1

My
jk||yj − sk||2 + 2σ2

T

N2∑
j=1

N∑
k=1

My
jk logMy

jk (3)

+
N∑

k=1

||sk − φ(rk, 1)||2 + 2σ2
Tλ

∫ 1

0

∫
Ω

||Lv(x, t)||2dxdt.

Notice we have multiplied each term in the objective function by a constant 2σ2
T .

In the above objective function, the matrix entry Mx
ik is the membership of data

point xi in cluster k whose center is at location rk. The matrix entry My
jk is the

membership of data point yj in cluster k whose center is at position sk.
The diffeomorphic deformation energy in Ω is induced by the landmark dis-

placements from r to s, where x ∈ Ω and φ(x, t) is a one parameter diffeo-
morphism: Ω → Ω. The diffeomorphism φ(x, t) is generated by the flow v(x, t).
φ(x, t) and v(x, t) together satisfy the transport equation ∂φ(x,t)

∂t = v(φ(x, t), t)
and the initial condition ∀x, φ(x, 0) = x holds. This is in the inexact matching
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form and the displacement term
∑N

k=1 ||sk − φ(rk, 1)||2 plays an important role
here as the bridge between the two systems. This is also the reason why we pre-
fer the deformation energy in this form because the coupling of the two sets of
clusters appear naturally through the inexact matching term and we don’t have
to introduce external coupling terms as in [7].

3 A Diffeomorphic Point Matching Algorithm

Our joint clustering and diffeomorphism estimation algorithm has two compo-
nents: i) clustering and ii) diffeomorphism estimation.

For the clustering part, we use the deterministic annealing approach proposed
by Rose et al. [11] in order to avoid poor local minima. For the diffeomorphism
estimation, we expand the flow field in term of the kernel K of the L operator

v(x, t) =
N∑

k=1

αk(t)K(x, φk(t)) (4)

where φk(t) is notational shorthand for φ(rk, t) and we also take into consider-
ation the affine part of the mapping when we use thin-plate kernel with matrix
entry Kij = −rij and rij =‖ xi −xj ‖. After discretizing in time t, the objective
in (3) is expressed as

E(Mx,My, r, s, α(t), φ(t))

=
N1∑
i=1

N∑
k=1

Mx
ik||xi − rk||2 + T

N1∑
i=1

N∑
k=1

Mx
ik logMx

ik

+
N2∑
j=1

N∑
k=1

My
jk||yj − sk||2 + T

N2∑
j=1

N∑
k=1

My
jk logMy

jk

+
N∑

k=1

‖sk − rk −
N∑

l=1

S∑
t=0

[P (t)dl(t) + αl(t)K(φk(t), φl(t))] ‖2 (5)

+λT
N∑

k = 1

N∑
l=1

S∑
t=0

< αk(t), αl(t) > K(φk(t), φl(t))

where P (t) is the homogeneous form of φ(t). It is easy to find a close form
solution for d(t) and α(t) after performing a QR decomposition on P and we use
gradient descent to solve for φk(t) when αk(t) is held fixed.

The clustering of the two point-sets is handled by a deterministic annealing
EM algorithm which iteratively estimates the cluster memberships Mx and My

and the cluster centers r and s. The update of the memberships is the very
standard E-step of the EM algorithm [12] and is performed as shown below.

Mx
ik =

exp(−β‖xi − rk‖2)∑N
l=1 exp(−β‖xi − rl‖2)

, ∀ik (6)
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My
jk =

exp(−β‖yj − sk‖2)∑N
l=1 exp(−β‖yj − sl‖2)

, ∀jk . (7)

The cluster center update is the M-step of the EM algorithm. This step is not
the typical M-step. We use a closed-form solution for the cluster centers which is
an approximation. From the clustering standpoint, we assume that the change
in the diffeomorphism at each iteration is sufficiently small so that it can be
neglected. After making this approximation, we get

rk =
∑N1

i=1M
x
ikxk + sk −∑N

l=1

∫ 1
0 αl(t)K(φl(t), φk(t))dt

1 +
∑N1

i=1M
x
ik

, (8)

sk =

∑N2
j=1 M

y
jkyj + φ(rk, 1)

1 +
∑y

j=1 M
y
jk

, ∀k. (9)

The overall algorithm is described below.

– Initialization: Initial temperature T = 0.5(maxi ‖xi − xc‖2 + maxj ‖yj −
yc‖2) where xc and yc are the centroids of X and Y respectively.

– Begin A: While T > Tfinal
• Step 1: Clustering
• Update memberships according to (6), (7).
• Update cluster centers according to (8), (9).
• Step 2: Diffeomorphism
• Update (φ, v) by minimizing

Ediff(φ, v) =
C∑

k=1

||sk − φ(rk, 1)||2

+ λT

∫ 1

0

∫
Ω

||Lv(x, t)||2dxdt

– Step 3: Annealing. T ← γT where γ < 1.
– End

4 Experiments and Results
4.1 Experiments on Synthetic Data

We selected one hippocampus point-set and warped it with a known diffeomor-
phism using a Gaussian Radial Basis Function (GRBF) kernel. We choose σ = 60
for the GRBF because with this larger σ we are able to generate more global
warping.

Figure 1 shows the two hippocampal shapes. The set with “+” markers is the
original set and the set with point markers is the set after GRBF warping. First,
we have no noise added. We used the TPS kernel to recover the diffeomorphism
via joint clustering using our algorithm. We experimented with different number
of clusters and found the corresponding standard errors. It is easy to see that
the standard error goes down as the number of clusters goes up from 100 to 300
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Fig. 1. Hippocampal point-sets

and goes up again when the number of clusters increases further. This is because
when we have too few clusters, the points are not well represented by the cluster
centers. On the other hand, if we have too many clusters, the variance between
the two shapes is too big and the deformation increases dramatically. There is a
optimal number of clusters and in this case we find it to be 300.

Next we add noise to the warped data and test the robustness of our algorithm
to noise. After GRBF warping we add Gaussian noise to the warped data with
different variances σN . We experimented with ten trials for each noise level from
0.1 to 1.0 and for each cluster level from 100 to 500. We can see the standard
error increase with the increasing noise level but it approximately keeps in the
range of the noise. This is easy to see when plotted in Figure 2 with error bars.
Figure 2(a) has the errors for 100, 200 and 300 clusters and Figure 2(b) has the
errors for 300, 400 and 500 clusters. We can see that at the 300 cluster level we
obtain the best matching.

4.2 Experiments on Real Data

We applied the algorithm on different real hippocampal data sets. We have ten
3D point-sets which were extracted from epilepsy patients with left anterior
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Fig. 2. Matching results on synthetic data for different number of clusters
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Table 1. Matching metrics of various pairs of shapes

Jensen-Shannon div. Hausdorff distance modified Hausdorff
Trial\No. Clusters 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

1 0.87 0.31 0.03 0.13 0.21 7.1 7.4 5.7 6.2 7.3 2.8 2.0 1.4 1.2 1.1
2 0.93 0.62 0.47 0.05 0.24 9.3 8.9 7.2 8.3 8.7 3.5 3.1 2.8 2.4 2.3
3 0.76 0.27 0.04 0.16 0.32 7.2 6.1 4.9 5.6 6.4 2.0 1.7 1.4 1.3 1.2
4 0.98 0.52 0.34 0.09 0.45 8.4 7.8 7.2 5.2 6.5 2.7 2.4 2.3 1.7 1.4
5 0.69 0.41 0.14 0.18 0.36 9.6 9.7 8.0 8.4 8.9 3.9 3.6 3.1 2.8 2.7
6 0.57 0.23 0.43 0.78 0.97 9.2 6.3 7.1 7.8 8.6 3.1 2.8 2.5 2.2 2.1
7 0.66 0.21 0.05 0.14 0.30 6.9 5.8 4.4 6.0 7.3 2.4 2.2 2.1 1.7 1.5
8 0.99 0.70 0.25 0.19 0.63 8.9 8.5 7.0 6.4 8.2 3.0 2.6 2.4 2.2 1.9
9 0.85 0.42 0.11 0.68 0.74 9.3 8.0 5.9 7.6 9.1 2.9 2.7 2.3 2.1 1.6
10 0.97 0.62 0.10 0.18 0.55 7.8 7.3 4.7 6.7 8.1 3.2 2.8 2.3 1.8 1.4
11 0.70 0.33 0.06 0.13 0.26 8.7 7.7 5.8 7.4 9.0 2.5 2.1 1.6 1.4 1.2
12 1.02 0.64 0.08 0.44 0.71 9.1 8.3 6.1 7.4 8.6 3.3 3.0 2.5 2.2 2.0
13 0.89 0.54 0.20 0.31 0.65 9.3 8.4 6.5 7.0 8.7 3.6 3.4 3.1 2.4 2.2
14 0.57 0.09 0.15 0.66 0.80 7.4 5.1 5.5 6.8 8.3 3.0 2.7 2.3 2.0 1.8
15 0.88 0.30 0.05 0.29 0.36 8.8 7.1 4.9 6.3 7.8 2.6 2.0 1.5 1.3 1.2
16 0.90 0.75 0.12 0.17 0.44 9.4 9.0 6.1 7.3 8.5 3.2 3.0 2.4 2.1 1.9
17 0.61 0.16 0.28 0.53 0.72 8.6 6.8 7.9 9.0 9.9 3.4 3.5 3.1 2.7 2.4
18 0.91 0.37 0.18 0.40 0.88 9.5 8.2 6.5 7.4 8.0 3.7 3.2 2.9 2.6 2.1
19 1.12 0.80 0.47 0.09 0.28 9.2 7.8 7.2 5.1 6.4 2.8 2.6 2.3 2.2 2.0
20 0.96 0.54 0.33 0.60 0.74 9.6 8.0 7.3 8.7 9.3 3.9 3.5 3.3 3.1 2.7
21 0.65 0.23 0.51 0.78 1.04 8.4 6.1 6.9 7.8 9.5 3.3 3.1 2.8 2.4 2.3
22 0.93 0.46 0.22 0.51 0.68 9.7 8.5 7.0 8.1 9.0 2.9 2.7 2.6 2.3 2.1
23 0.92 0.60 0.28 0.15 0.34 9.6 8.2 7.3 6.5 7.7 2.4 2.1 1.7 1.6 1.5
24 0.80 0.26 0.57 0.69 0.86 7.8 6.6 7.2 8.9 9.6 3.1 2.7 2.5 2.2 1.9
25 1.10 0.62 0.44 0.78 0.97 9.8 7.9 7.6 8.8 9.2 3.8 3.4 3.0 2.8 2.7
26 0.90 0.39 0.05 0.21 0.47 9.0 7.3 5.8 7.0 8.7 2.9 2.4 2.0 1.4 1.2
27 0.58 0.07 0.20 0.56 0.77 7.8 6.0 6.5 7.2 8.3 3.2 2.9 2.5 2.1 1.9
28 0.93 0.51 0.09 0.40 0.63 9.5 8.1 6.1 7.4 8.8 3.0 2.8 2.5 2.1 1.8
29 0.99 0.26 0.18 0.37 0.70 9.7 8.3 6.7 7.0 8.5 3.4 2.7 2.2 1.9 1.7
30 0.60 0.06 0.17 0.54 0.57 7.1 5.6 6.2 7.3 7.8 2.5 2.2 1.8 1.3 1.2
31 0.83 0.19 0.08 0.37 0.76 9.3 6.7 5.8 7.5 8.4 2.7 2.4 2.2 1.6 1.4
32 1.22 0.42 0.57 0.70 0.95 9.9 7.2 7.8 8.5 9.2 3.5 3.0 2.8 2.5 2.3
33 0.80 0.59 0.30 0.86 0.92 8.9 8.0 6.3 7.1 8.7 3.3 3.1 2.6 2.4 2.3
34 0.89 0.76 0.35 0.28 0.67 8.9 8.5 6.7 6.4 7.0 3.0 2.8 2.5 2.2 2.1
35 1.05 0.42 0.37 0.81 1.13 9.6 8.4 7.0 8.1 9.9 3.7 3.4 3.0 2.3 2.0
36 0.92 0.25 0.31 0.60 0.85 8.7 5.9 6.2 7.5 8.4 3.2 2.9 2.5 2.3 2.2
37 0.79 0.35 0.08 0.24 0.40 7.7 6.3 5.4 6.1 7.6 2.4 2.2 1.9 1.6 1.5
38 0.90 0.42 0.16 0.35 0.68 9.5 7.1 5.7 6.6 7.9 2.8 2.4 2.3 2.0 1.8
39 0.86 0.27 0.38 0.50 0.71 9.2 7.3 8.2 8.4 9.0 3.2 3.0 2.7 2.5 2.4
40 0.55 0.04 0.19 0.36 0.67 6.5 5.2 5.8 6.7 7.3 2.0 1.6 1.3 1.1 0.9
41 1.02 0.30 0.47 0.81 0.98 9.4 7.5 7.9 8.6 9.2 3.8 3.2 2.5 2.4 2.3
42 0.43 0.07 0.22 0.56 0.86 7.2 5.8 6.7 7.3 7.9 2.3 1.9 1.6 1.5 1.4
43 0.78 0.56 0.18 0.39 0.61 8.2 7.4 6.0 6.7 7.8 2.9 2.4 2.2 2.0 1.8
44 0.61 0.09 0.25 0.70 0.82 7.1 5.9 6.6 7.5 8.0 2.2 1.9 1.7 1.5 1.4
45 0.44 0.15 0.26 0.53 0.93 7.0 6.5 7.2 7.7 9.1 2.5 2.1 1.9 1.7 1.6
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Fig. 3. Two hippocampus shapes

temporal lobe foci identified with EEG. An interactive segmentation tool was
used to segment the hippocampus in the 3D anatomical brain MRI of the ten
subjects. The shapes vary from point-set to point-set and the number of points in
each point-set varies from 310 to 555. Figure 3 shows two hippocampal shapes.
We observe when we have 300 clusters, we have a reasonable σ = 1.2 as the
average distance between the nearest neighbors is about 2.65.

We did the matching for all the pairs out of ten hippocampus shapes with
totally 45 such pairs. We compare three measures for the matching result with
different number of clusters in Table 1. The Jensen-Shannon divergence (a special
case with equal weights) [13], Hausdorff distance and modified Hausdorff distance
[14]. Notice Jensen-Shannon divergence is highly non-linear. When p and q are
completely independent, namely in our matching case, when the two shapes are
completely different, D has a maximum of 2 log 2 = 1.39.

From Table 1 we can see that when we have 300 clusters we have the minimum
Jensen-Shannon divergence and Hausdorff distance. However, Hausdorff distance
is too sensitive to outliers. We also calculated the modified Hausdorff distance
as first introduced in [14]. It is easy to see that when the number of clusters
increases, the modified Hausdorff distance decreases.

5 Discussion

The need for a good 3D point feature matching algorithm arises in various appli-
cation areas of medical image analysis. To our knowledge, this is one of the first
attempts at 3D diffeomorphic point matching. We have demonstrated a 3D joint
clustering and diffeomorphism algorithm and applied it to hippocampal point-
sets. In the process of careful validation, we investigated the role of the different
numbers of clusters in the joint clustering and diffeomorphism optimization pro-
cess. In the current formulation, we still have a free parameter λ whose role has
to be determined. The immediate future goal is to further address (theoretically
and experimentally), the role of free parameters. The same framework can be
used for atlas estimation. Finally, once we have a turnkey 3D diffeomorphic fea-
ture matching algorithm, we plan to use it for hippocampal shape classification
of epilepsy patients [15].
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Abstract. Electromagnetic tracking systems have the potential to track instru-
ments inside the body because they are not limited by the line of sight con-
straints that characterize optical tracking systems. To integrate an electromag-
netic tracking device into a surgical navigation system, accurate registration is 
required. We present a two-stage registration mechanism designed to be more 
accurate than the widely used global fiducial-based registration method. The 
first stage uses a hybrid Iterative Closest Point (ICP) registration method and 
the Simulated Annealing (SA) optimization algorithm, to increase the initial 
registration accuracy. The second stage exploits multiple implanted tracking 
needles that are used to calculate the affine transform based on the initial trans-
form information, and thereby to compensate for the deformation in real time. 
Phantom and swine studies have demonstrated the utility of this technique. 

1   Introduction 

While optical tracking systems are the gold standard for image-guided surgery, recent 
developments in electromagnetic tracking systems have enabled the development of 
prototype image-guided systems that can track internal organs. Electromagnetically 
tracked needles have been constructed that incorporate one or more electromagnetic 
coils in the needle stylettes.  These needles can be as small as 18 gauge, and their 
stylettes containing the electromagnetic sensor coils can be as small as 19 gauge. 
Using this technology, our research group has been developing an image-guided sys-
tem for abdominal interventions such as liver procedures. Liver motion due to respira-
tion is a major concern when trying to precisely target liver lesions. The purpose of 
this study was to increase the accuracy of the image-guided system using a novel two-
stage registration method. 

Fiducial and point-based registration is the most widely used registration method 
for image-guided surgery. In our image-guided system, fiducials are placed on the 
patient’s skin before the pre-operative CT or MR scan. Since the flexibility of the 
patient’s body can cause errors in registration [1], it is essential to place markers in 
relatively stable locations. In addition, the motion of the liver is not well correlated 
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with the motion of the skin surface or underlying anatomy. Hence, external tracking 
of the skin surface may not be sufficient to determine the location of targets within the 
liver [2].  

In a liver biopsy, the needle is inserted percutaneously towards the tumor target. To 
improve the accuracy of biopsy using our image-guided systems, our algorithm uses 
multiple points on a needle for registration. According to Fizpatrick [3], formula (1) is 
used for calculating the target registration error: 
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where TRE is the target registration error in the position r and FLE is the fiducial 
localization error. N indicates the number of fiducials; dk is the distance of the target 
from principal axis k; and fk is the RMS distance of the fiducials. In our algorithm, the 

fiducial number N is increased by resampling the needle. Also, kk fd  is decreased 

because the principal axis completed from the needle is quite close to the real target. 
The simulated annealing algorithm and ICP metric are integrated to give the best 
transformation. This transformation is used as the initial matrix for the second stage: 
real-time affine transform compensation. The liver and other abdominal organs are 
not rigid; rather, they are somewhat deformable, so the global transform is not always 
appropriate due to the intrinsic and extrinsic factors, such as respiration and external 
forces [4]. In a previous study [5], a tracked reference needle was placed inside the 
liver to compensate for motion, while still treating the whole model as rigid-body. 
Compared with the rigid body transform, the affine transform can provide additional 
scale and shear behavior that can be used to simulate some basic deformation. Our 
method uses the affine transform, which is computed in real time to reflect the exact 
internal motion for deformable compensation. 

2   Methods 

Our method was first tested using a respiratory motion phantom. The phantom in-
cludes a rib cage, synthetic skin, and a foam liver model that is mounted on a one 
degree-of-freedom precision motion platform [6]. The Aurora electromagnetic track-
ing system from Northern Digital Inc. was the tracking device. Tracked 18-gauge 
needles (MagTrax Needles, Traxtal Technologies, Bellaire, TX) were placed through 
the skin and into the liver to define the puncture volume. An image-guided software 
platform was also developed for the experiment evaluation and clinical research. The 
overall system implements our own registration algorithm, and also uses ITK for 
some registration and segmentation, VTK for visualization, and MFC for user inter-
face. The workflow is as follows: DICOM image loading, tracker device initializa-
tion, biopsy planning, registration and segmentation, visualization, and motion track-
ing. The system can be used for biopsy, guide-wire deployment, verterbroplasty, and 
radio-frequency ablation procedures. The experiment was completed in the interven-
tional suite at Georgetown University Medical Center. 
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2.1   First Stage: Needle Based Registration  

In order to achieve a better registration, three needles are implanted inside the liver 
and near the tumor target. These three needles bound a volume into which the actual 
procedure needle will pass through. Multiple points along these needles are used in 
the registration. The procedure is as follows: 

                                                                                
Algorithm 1: Needle-Based Registration                                                                                       

1) Implant three non-parallel needles into the liver; 
2) Obtain the pre-operative CT scan; 
3) Segment the needles to obtain the image space points; 
4) Sample the sensor coils embedded in the stylettes to obtain the corresponding 
points in tracker space; 
5) Process the sampled points to reduce the noise generated by the tracking system; 
6) Use ICP as the transformation metric, and integrate the simulated annealing opti-
mization algorithm to get the correct transform. 

 

Usually, the ICP algorithm can efficiently minimize the root mean square (RMS) 
distance between two feature point sets. However, it may find local minima, especially 
in noisy feature sets. The ICP algorithm can always reach the local minima, and the 
simulated annealing algorithm can achieve the global minima position slowly [7, 8]. In 
our algorithm, we use the ICP algorithm and a Levenberg-Marquardt solver to attain 
each local minima position. At these local points, the simulated annealing algorithm is 
applied to the transformation to perturb out and find the global one. The energy func-
tion is defined as formula (2), which is the distance between two point sets:  

( ) ( )
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A and B are the source and destination point sets. R and T are the rotation and transla-
tion matrices from point set A to B, respectively. CP is the operator that finds the 
closest point in another data set. 

Luck and Penney have described methods that are similar to ours, but the algo-
rithms were implemented differently [8, 9]. Luck used the simulated annealing algo-
rithm to produce “good” starting points for the ICP algorithm. Penny added random 
Gaussian noise to perturb the positions of the feature set and increase the robustness. 
Our method applies the simulated annealing algorithm directly to the transformation 
parameters of each local minimum, as described in formula (3):  

[ ] ( )( )( )MM ppELMPP ~,,~min,, 11 LL =                         (3) 

ip~  represents the disturbed parameters around the last Levenberg-Marquardt solution 

position, and these parameters are used for optimization.  LM is the general Leven-
berg-Marquardt solver.          

2.2   Second Stage: Real-Time Affine Transform Compensation 

The affine transform aims to simulate the deformation in some sense, and has transla-
tion, rotation, scale, and shear operations. The anisotropic scale and shear behavior can 
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be used to simulate the deformable model to some extent [10-12]. A 3D rigid-body 
transform has three translation factors and three rotation factors. In the affine trans-
form, additional scale factors and other shear factors are incorporated to construct the 
whole matrix. The computation of the affine transform is described by Horn [13].                    

The three previously implanted needles are then used for compensation. When the 
external surgical tool is pushed into the liver body, the pre-calculated global transform 
will change due to the deformation behavior. Therefore, compensation is required to 
accurately track the target point. The standard clinical technique uses some external 
fiducials and internal fiducials, and tracks their positions over several respiratory 
cycles, trying to find the correlation between the external and internal motion [14]. 
Clinically, it will use only the external motion to predict the internal movement 
through the model. The advantage of this method is that it is non-invasive and can be 
effectively used to synchronize the treatment planning system. However, this method 
also has several drawbacks. First, it predicts the internal motion from the external 
motion, whose accuracy greatly depends on the predicting model, without a fixed 
equation or formula to validate. Second, it treats the whole body as rigid, and then 
applies the rigid-body compensation to the whole body’s motion. Third, the method 
cannot compensate for the intrusion deformation caused by the surgical tools during 
the intervention. 

The 3D affine transform has 12 defining parameters, and we only use three im-
planted needles for real-time tracking. Consequently, the orientation information of 
each needle is used to get three additional points besides three sensor points. There-
fore, we have 6 points from three needles for the affine transform registration. These 
six points are typically chosen as the sensor points and their fixed offset points along 
the needle direction. The procedure is as follows: 

                                                                                
Algorithm 2: Real-Time Affine Transform Compensation                                             

1) At end-expiration period, record the tracking information and generate 6 points in 
electromagnetic space; 
2) Apply the inverse of the transformation calculated in algorithm 1 to get the respec-
tive 6 points in the image space. These points are the fixed image points during the 
tracking; 
3) Throughout the whole procedure, record the tracking needles and generate 6 differ-
ent points in real-time that correspond to the first 6 points due to the deformation; 
4) Use point-based registration between these changing tracking points and the fixed 
image points to update the affine transform in real time; 
5) Apply the updated transform to the system, and repeat from step 3.                

3   Results 

The whole procedure was separated into the two stages explained above. The initial 
transform calculated from stage one was used for the fixed point set calculation in the 
second stage. We tested our algorithm with the liver phantom model. In stage one, the 
final transform matrix and fiducial registration error (FRE) were recorded. Since the 
target registration error (TRE) is more important for clinical applications, the center 
point of the triangle defined by the tips of the three needles is considered as the target 
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point. The positions in the image space and in the electromagnetic space were re-
corded and compared as the TRE.  

The intermediate results of the optimization procedure are listed in Table 1 and 
shown in Fig 1. The final optimization registration result indicates that the FRE is 
0.96mm and the TRE is 2.67mm using our registration method. We also computed the 
registration matrix through the four skin-fiducials in the same case. The result of the 
skin-fiducial based registration indicates an FRE of 1.49mm and a TRE of 7.54mm. 
Therefore, the hybrid registration method proposed here is more accurate than the 
skin fiducial-based registration method.  

Fig. 2 shows the point sets before and after the registration method, optimized by 
ICP and SA algorithms. Fig. 3 shows the needle position validation result after we 
applied the different matrix to our system. In the left image, we can see the displace-
ment error of the overlaid needle tip compared with the background pre-operative CT 
image slice. In the right image, the two tips fit together quite well using our registra-
tion algorithm. 

Table 1. Process for hybrid registration of ICP and SA algorithm 

Iteration FRE (mm) TRE (mm) Iteration FRE (mm) TRE (mm) 
1 60.59 76.42 2 25.67 79.52 
3 24.82 80.38 4 24.36 80.34 
5 23.91 80.39 6 21.71 5.18 
7 15.36 10.75 8 3.20 3.46 
9 2.97 3.30 10 2.21 3.20 
11 0.96 2.67    

 

 

Fig. 1. Optimization process of the hybrid registration. The final registration specification of 
FRE and TRE is better than the skin fiducial-based registration. 

 

To validate real-time updating of the affine transform, we implanted four needles 
into the phantom model. Three needles were used in the matrix computation and  
the fourth needle was used as the target for verification. TRE is calculated by compar-
ing the real position reported by the tracking system and the position generated by  
the registration transform. Some random deformations of the liver torso by the  
external force and intrusion were simulated. We also provided the global registration 
result without affine compensation from the same first-stage transform matrix for  
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Fig. 2. Point sets before and after registration. Left: The initial position of needles in image 
space and position sensor space. Right: After the registration. The two point sets agree well and 
appear as overlaid lines. 

                       

Fig. 3. Needle verification of skin fiducial-based registration and our hybrid registration 
method. Left: The tip of the needle is a bit off the pre-operative CT image due to the distance 
between the skin fiducials and target point. Right: The tip is perfectly overlaid with the left 
band, showing that our needle-based registration algorithm can improve the target registration 
accuracy. 

Table 2. Comparison of the affine compensation with the global registration 

 Affine TRE (mm) Global TRE (mm) Improvement (%) 
Phantom1 2.47±0.03 2.97±0.52 16.74 
Phantom2 2.18±0.44 3.40±2.03 36.03 
Swine1 3.30±1.16 3.70±1.61 10.84 
Swine2 2.07±0.70 2.80±1.45 26.21 
Swine3 2.14±0.87 2.82±1.54 24.07 

comparison. The results of the phantom simulation and the swine study are given in 
Table 2, which shows a 10.84% to 36.03% improvement in accuracy, with a standard 
derivation better than the global one.  

A swine study was also completed under an approved protocol, with three needles 
for real-time affine compensation and the fourth needle for validation. Three 30 sec-
ond periods, each containing several respiratory cycles, were recorded by the tracking 
system. The results are shown in Fig. 4. After the registration, the liver target was 
successfully punctured, guided by our software as shown in Fig. 5. 
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Fig. 4. TRE of affine compensation and global registration. Left: Phantom study with organ 
deformation. Right: Swine study with respiration deformation.                                                                         

  

Fig. 5. Left: Image-guided tracking system in swine study. Right: graphical user interface. 

4   Discussion 

These novel registration methods may be helpful in practical applications. First, we 
created a hybrid registration method based on the ICP and SA algorithm, which can 
improve the accuracy of needle insertion. Second, we applied the position information 
from the tracking needles to update the real-time affine transform and compensate for 
the basic deformation. Compared with biomechanical model deformation, this method 
is simple and can be quickly completed. Finally, we proposed a two-stage strategy to 
combine the different registration methods together. Although we used our registra-
tion method in the first stage, any other method can be used in the first stage as the 
initial transform for the following calculation. 

Our needle-based registration method takes advantage of position sensor readings 
from three reference needles and can provide better accuracy than registration based 
on skin fiducials. The drawback of this method is that it will take more time to calcu-
late the initial correct transform compared to the real-time computation of point-based 
registration. However, once the initial transformation matrix is obtained, the affine 
transform can be updated in real-time to compensate for the deformation.  
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Abstract. A method is presented for the registration of tracked B-mode
ultrasound images to a CT volume of a femur or pelvis. This registration
can allow tracked surgical instruments to be aligned with the CT im-
age or an associated preoperative plan. Our method requires no manual
segmentation of either the ultrasound images or the CT volume. The
CT and US images are processed to produce images where the image in-
tensity represents the probability of the presence of a bone edge. These
images are then registered together using normalised cross-correlation
as a similarity measure. The parameter which represents the speed of
sound through tissue has also been included in the registration opti-
misation process. Experiments have been carried out on six cadaveric
femurs and three cadaveric pelves. Registration results were compared
with a “gold standard” registration acquired using bone implanted fidu-
cial markers. Results show the registration method to be accurate, on
average, to 1.7mm root-mean-square target registration error.

1 Introduction

Recent years have seen the emergence of image-guidance systems for orthopaedic
surgery [1,2,3]. All of these systems require a registration between physical and
image space. Most systems achieve this by identifying point landmarks or by de-
lineating surfaces using a tracked pointer. To achieve accurate registrations, bony
landmarks, or fiducials attached to bone should be located. Implanting fiducials
or exposing additional bone surfaces for registration is invasive and may cause
additional pain and risk of infection, whereas limiting surface information to
regions exposed in standard procedures may adversely affect registration accu-
racy. There is a trade off between invasiveness and accuracy of the registration
process. The drive to develop less invasive registration methods will increase
with the adoption of minimally invasive surgical techniques [4,5], particularly as
reduced invasiveness of procedures may be the most powerful argument for the
use of computer assisted orthopaedic surgery systems.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 1000–1007, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Cadaver Validation of Intensity-Based Ultrasound to CT Registration 1001

Proposals to use B-mode ultrasound (US) for registration to bone in image
guided surgery go back approximately a decade [6]. The main application ar-
eas have involved registrations on vertebrae [7,8], pelves [9,8,10] and long bones
[6,11,12]. The work presented in this paper differs from previously published work
in three main ways: firstly, we have used an intensity-based algorithm, therefore
no segmentation is required in either the US or CT volume; secondly, our algo-
rithm also optimises the probe calibration parameter which is directly related
to the average speed-of-sound through tissue; and thirdly, our validation strat-
egy uses a combination of human cadavers, an independently calculated “gold
standard” registration based on bone implanted fiducial markers, and clinically
realistic starting positions.

2 Method

2.1 Overview of System

The registration algorithm used in this paper is an extension of an algorithm
previously described for registering US images to magnetic resonance images of
the liver [13]. An overview of the registration system is given in Figure 1. An
optical localiser (Optotrak 3020, Northern Digital Inc., Ontario, Canada) was
used to track an US probe and a dynamic reference object (DRO) which is rigidly
attached to the bone. Our aim is to calculate the registration transformation,
Treg, which transforms physical positions in the coordinate system of the DRO
into voxel positions within a preoperative CT volume.

To calculate Treg, 3D freehand US images are acquired of the bone sur-
face. These images are then registered to the preoperative CT volume to obtain
transformation, T, which maps pixel positions, xUS , in the US images to voxel
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Fig. 1. Overview of system and transformations
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positions, xCT , within the CT volume. Transformation T is computed from four
separate transformations:

T = Treg(Ti
DRO)−1Ti

probeTcal (1)

The calibration matrix, Tcal, which transforms positions from the US image to
positions relative to the infrared-emitting diodes (IREDs) attached to the probe
was calculated using an invariant point method. Transformations TDRO and
Tprobe transform positions relative to the IREDs (on the DRO and attached to
the US probe respectively) to positions relative to the cameras on the Optotrak
localiser.

The algorithm described in this paper calculates the transformation T by
altering the six rigid-body parameters which define transformation Treg and the
probe calibration scaling parameter in the vertical (or y) US image direction, sy,
in order to optimise the value of a similarity measure between the US and CT
images. The scaling parameter in the horizontal (or x) US direction, which is not
affected by the speed of sound in the imaged medium, was held constant during
optimisation. After optimisation Treg can be used to determine the position and
orientation of any tracked and calibrated object (such as a surgical drill) in the
CT scan, and so can relate the intraoperative positions of such instruments to a
preoperative plan described in the CT image.

The similarity measure for the algorithm is calculated as follows: The current
estimate of Treg and sy are used to reslice the CT probability image (described in
section 2.2) in the plane of each US slice (N.B. therefore, there is no requirement
to compound the US slices to produce a 3D volume). The pixel values in these
reformatted slices and in the US probability images are then compared using
the normalised cross-correlation similarity measure. A three stage hill-climbing
optimisation approach is used: low-resolution, high-resolution and then high-
resolution which includes sy optimisation.

2.2 Formation of Probabilistic Images

The US and CT images are converted from intensity images, I(x), into proba-
bilistic images, P (x), where x represents the image position and P (x) represents
the probability of a pixel or voxel containing a bone-to-soft-tissue interface. The
probability images, P (x), are calculated using a probability density function
(PDF), p, which, given a set of image features, F(x), returns an estimate of the
probability that position x is a bone-edge, i.e. P (x) = p(F(x)).

Converting the CT Volume: The CT PDF, pCT , was based on two image
features, so F(x)CT = F(fCT1(x), fCT2(x)). Both CT features were calculated
in 2D by applying operators to each CT slice in turn. The first CT feature,
fCT1(x), was the intensity of a gradient image calculated using Sobel operators.
The second feature, fCT2(x), was set equal to the maximum value under a 3×3
mask centred on pixel x.

A set of training data, comprised of n CT volumes, was used to calculate
pCT . Our aim is to identify two sets of voxels in the training data: all of the
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voxels which lie on a bone-to-soft-tissue boundary, SedgeCT ; and all the voxels
in the training data, SCT . Therefore, SedgeCT ⊂ SCT , and the PDF is defined as

pCT (a, b) =
Number of voxels where x ∈ SedgeCT with fCT1(x) = a and fCT2(x) = b

Number of voxels where x ∈ SCT with fCT1(x) = a and fCT2(x) = b
(2)

Converting the US Slices: The first step is an artifact removal stage. Our
method uses simple knowledge of the US image formation process; in particular,
that most strong reflections and artifacts cause a loss of signal intensity along
the direction of the beam. The algorithm begins at the bottom of each column
of pixels in the US image, and moves upwards towards the transducer face.
The image is labelled as artifact until a threshold value is reached, see Figure
2(b). A small region (3mm) immediately adjacent to the transducer face is also
labelled as artifact to remove artifacts caused by imperfect acoustic coupling at
the skin surface boundary. Image regions labelled as artifact were not used in
any subsequent image processing.

Two image features, F(x)US = F(fUS1(x), fUS2(x)), were used for the US
PDF, pUS . The first US feature, fUS1(x), was the intensity of the US image
IUS(x). The second US feature, fUS2(x), was the number of pixels below x not
labelled as artifact. Both of these features are able to highlight bone edges due to
the large change in acoustic impedance between soft-tissue and bone. This results
in high US intensity values at the boundary (detected by fUS1(x)) followed by
a bone shadow region of very low US intensities (detected by fUS2(x)). Figure 2
shows an example of an US probability image.

(a) (b) (c) (d)

Fig. 2. Formation of US probability images: (a) sample US slice through femur; (b)
mask produced by the artifact removal stage where only pixels in the white region
are included for subsequent image processing; (c) probability image; (d) correspond-
ing reformatted slice through the CT volume (calculated using the “gold standard”
transformation) included to show the position of bone boundaries. In (c) Some non-
bone-boundary pixels can be seen to have been allocated a high value in the probability
image and vice-versa. However, it is important to note that our aim is not to produce
a perfect segmentation, but to produce probability images of sufficient quality to allow
accurate and robust registration.
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A set of US slices were used as training data for pUS . The bone edge was
defined in the training US images as a number of manually selected points con-
nected by straight lines, to give the pixel set, SedgeUS . The pixel set, SUS , com-
prised all the non-artifact US pixels from the training data, and, as before,
SedgeUS ⊂ SUS . The PDF, pUS , is then defined as

pUS(a, b) =
Number of pixels where x ∈ SedgeUS with fUS1(x) = a and fUS2(x) = b

Number of pixels where x ∈ SUS with fUS1(x) = a and fUS2(x) = b
(3)

2.3 Experiments

Data Acquisition: for this study was carried out using 3 complete female ca-
davers. Fiducial markers were implanted into the femur and pelvis of each cadaver
(4 in each femur and 5 in each hemi-pelvis) which were used to calculate a “gold
standard” registration between image and physical space. A single high-resolution
spiral CT scan (Siemens SOMATOM Plus 5) was obtained of the whole pelvis and
femurs of each cadaver (voxel dimensions varied between 0.71× 0.71× 2mm3 and
0.79×0.79×2mm3). Each CT was then reduced into three smaller volumes which
contained either a pelvis or femur plus some surrounding anatomy.

Prior to acquiring US images, a dynamic reference object (DRO) was rigidly
attached to the bone. All measurements were recorded relative to the co-ordinate
system of the DRO. The use of a DRO enabled the position of the cadaver to be
changed during US acquisition so that images could be obtained in regions that
would otherwise be inaccessible with the cadaver remaining in the supine posi-
tion. The attachment of DROs [2,3] or external fixators [1] is standard practice
for most image-guided orthopaedic surgery systems. Ultrasound images were ac-
quired using a Philips-ATL HDI-5000 scanner and a high frequency probe (5-12
MHz). Between 168 and 565 tracked US images were acquired of each bone using
continuous scanning. This took approximately 8 minutes, though we believe that
this time could be substantially reduced if an optimal protocol was established.
The US images showed no effects of the cadaver preservation process, and so the
acquired sets of US images should closely represent clinical data; both in terms
of image characteristics, and in terms of in which regions of human femur and
pelvis is it possible to obtain clear images of the bone surface using US.

Clinically Realistic Starting Positions: One method for obtaining a start-
ing estimate for the algorithm in a clinical situation is to pick corresponding
skin positions in the CT scan and physically using a tracked pointer. We have
simulated the above process to obtain 100 starting estimates for each bone. The
simulation uses four skin positions on each pelvis, and 3 skin positions and the
pivot position for each femur. Our simulation assumes that the skin positions
can be selected within a distance of 20mm and the pivot position is accurate to
within 10mm.

Training Data for PDF Calculations: For the experiments described in this
paper all the CT femur images and between 42 and 100 US images from each
femur were used as training data. In order to keep the training data separate from
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the experimental data the following method was used: All the pelvis experiments
used the same US and CT PDFs, which were produced using all the training
data. For the femur experiments, separate PDFs were produced for each femur.
For a given femur, PDFs were produced using a subset of the training data. This
subset comprised all the training data except for the data from the given femur.

3 Results

The results are shown visually using sample overlay images in Figure 3, and
numerically in Table 1, where root mean square (RMS) target registration er-
ror (TRE) values have been calculated at three stages during the registration
process: after the low-resolution optimisation, after the high-resolution optimi-
sation and after the scaling parameter, sy, is included in the optimisation. The

(a) (b) (c) (d)

Fig. 3. Sample overlays of US onto reformatted slices through CT volumes calculated
using the intensity-based registration transformation. Images correspond to (a) cadaver
1 pelvis, (b) cadaver 1 L.femur, (c) cadaver 2 L.femur and (d) cadaver 3 R.femur.

Table 1. Registration accuracy, mean RMS TRE, for each bone averaged over all
successful registrations. The RMS TRE was calculated over the whole bone surface.
A registration was defined to be a failure if its RMS TRE was more than double the
mean RMS TRE calculated over all 100 registrations.

Cad Bone mean (and s.d.) RMS TRE (mm) sy No. No. US
initial low-res high-res 1 inc. scaling fail slices

1 L.Fem 7.3 (2.2) 3.4 (0.6) 2.3 (0.1) 2.2 (0.1) 1.004 0 226
R.Fem 7.1 (2.3) 4.6 (0.3) 2.2 (0.1) 3.0 (0.1) 1.028 0 168
Pelvis 11.0 (3.5) 2.2 (0.1) 1.7 (0.1) 1.7 (0.1) 1.001 0 200

2 L.Fem 7.7 (2.5) 4.8 (0.1) 1.3 (0.1) 0.8 (0.1) 0.991 0 247
R.Fem 7.9 (2.6) 4.9 (0.3) 1.1 (0.0) 1.1 (0.0) 1.000 0 556
Pelvis 15.1 (7.0) 3.6 (0.2) 1.7 (0.0) 1.0 (0.0) 0.971 1 317

3 L.Fem 7.1 (2.3) 2.6 (0.6) 1.6 (0.4) 1.3 (0.2) 0.965 0 516
R.Fem 7.3 (2.5) 5.0 (0.3) 2.4 (0.1) 1.4 (0.1) 0.969 0 565
Pelvis 11.6 (4.0) 5.1 (0.2) 3.0 (0.1) 2.2 (0.1) 0.974 1 331
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factor by which sy has changed, the failure rate and the number of US slices
used for each bone registration are also given. The results show that the mean
RMS TRE after registration was less than 2.3mm for all the registrations ex-
cept for the right femur of cadaver 1. The results for this case also show the
only instance when the RMS TRE increased when the optimisation included the
y scaling parameter; when this parameter was held fixed, the RMS TRE was
2.3mm. These registrations used the smallest number of US images (only 168)
compared to over 500 for some of the other femur registrations, and we believe
that this may have been a factor in the higher TRE calculated from this case.

4 Discussion and Conclusions

Very basic image processing filters have been used to produce the features on
which the probability images are calculated. These have proven sufficient to allow
accurate and robust registrations. However, in the future other, more sophisti-
cated filters may be used which are more accurate and robust in their ability to
extract bone-to-soft-tissue edges from US and CT images.

The inclusion into the optimisation process of the US image scaling param-
eter, sy, improved the TRE values for over half the registrations, once by more
than 1mm. Only in one case did the error increase, and this is believed to be
due to insufficient numbers of US images.

Future work includes establishing how many US images (and from which
anatomical areas) are required for accurate registration. The algorithm speed
needs to be improved: current time for registration is between 5 and 22 minutes
on a 2.8MHz Intel Pentium 4 processor. We also intend to combine this intensity-
based technique with a method which instantiates a shape model [14]. This links
in well with the current trend in computer assisted orthopaedic surgery, which
is towards the use of CT-free methods.

We have presented an automatic method to register freehand 3D US images
to a CT volume of a pelvis or femur. Our method is based on a strategy in
which we preprocess images to provide a probability map of corresponding fea-
tures. This preprocessing step uses information gathered from a set of manually
segmented training data. The algorithm also optimises the parameter which de-
fines the speed-of-sound through tissue. Our method had been compared to a
“gold-standard” registration based on bone implanted fiducial markers. Registra-
tions have been validated using three cadavers (6 femurs and 3 pelves). Results
show that our method is accurate to less than 2.3mm (in all-but-one case), which
should be sufficiently accurate for most total hip replacement procedures.
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Automatic Patient Registration for Port
Placement in Minimally Invasive Endoscopic

Surgery�

Marco Feuerstein, Stephen M. Wildhirt,
Robert Bauernschmitt, and Nassir Navab

Abstract. Optimal port placement is a delicate issue in minimally in-
vasive endoscopic surgery, particularly in robotically assisted surgery. A
good choice of the instruments and endoscopes ports can avoid time-
consuming consecutive new port placement. We present a novel method
to intuitively and precisely plan the port placement. The patient is reg-
istered to its pre-operative CT by just moving the endoscope around
fiducials, which are attached to the patients thorax and are visible in its
CT. Their 3D positions are automatically reconstructed. Without prior
time-consuming segmentation, the pre-operative CT volume is directly
rendered with respect to the endoscope or instruments. This enables the
simulation of a camera flight through the patients interior along the in-
struments axes to easily validate possible ports.

� The online version of the original chapter can be found at
http://dx.doi.org/10.1007/11566489_36
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