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Preface

The 8th International Conference on Medical Imaging and Computer Assisted
Intervention, MICCAT 2005, was held in Palm Springs, California, USA, at the
Riviera Resort, October 26-29, 2005.

MICCALI has become a premier international conference with in-depth papers
on the multidisciplinary fields of medical image computing, computer-assisted
intervention and medical robotics. The conference brings together clinicians, bio-
logical scientists, computer scientists, engineers, physicists and other researchers
and offers them a forum to exchange ideas in these exciting and rapidly growing
fields.

The impact of MICCALI increases each year and the quality and quantity of
submitted papers this year was very impressive. We received a record 632 full
submissions (8 pages in length), an increase of 22% from 2004, from 36 different
countries and 5 continents (see fig. 2). Based on a decision of the MICCAI
board, this year’s conference employed a double-blind review procedure on a
trial basis. Our Program Committee was made up of 11 area chairs, each of
whom supervised the review of almost 60 papers. Four reviews were generated
for each paper from 262 reviewers and the area chairs. A final paper selection
meeting took place during two days in early June 2005 in Chapel Hill, North
Carolina. We are especially grateful to Elizabeth Bullitt, Polina Golland, David
Haynor, Rasmus Larsen, Greg Hager and Daniel Riickert, who attended this
meeting and helped us make the final selections. Martin Styner provided valuable
help with information management and the Web-site, and James Stewart is
acknowledged for reliable and timely support of the Web-based reviewing system.
We are grateful to everyone who participated in the review process; they donated
a large amount of time and effort to make these volumes possible and insure a
high level of quality. Because of the overall quality of the submissions and because
of the limited number of slots available for presentation, paper selection was
especially challenging. The MICCAI 2005 Program Committee finally accepted
236 full papers. The normal mode of presentation at MICCAI 2005 was as a
poster; in addition, 46 papers were chosen for oral presentation. All of the full
papers accepted are included in these proceedings in 8-page format. We also
accepted 34 short communications (2 pages) which were presented as posters
but not included in the proceedings.

The first figure below shows the distribution of the 236 full paper contribu-
tions by topic; the topics are defined by the primary keyword of the submission.
The second figure illustrates the distribution of full paper submissions (a total
of 632) by region.

We note that this year’s program included some new features, including a
session on Celullar and Molecular Imaging and Analysis. We hope that all who
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attended the 2005 meeting felt as we do that the program was both strong and
diverse, within the range of topics covered by MICCALI.

It was our pleasure to welcome this year’s MICCAI 2005 attendees to Palm
Springs. Sitting in lush farming land, Palm Springs does not conform to any
typical image of the desert, embodying a mix of Spanish Colonial and mid-
twentieth century modern styling. Ever since Hollywood stars first came here
in the 1930s, laying claim to ranch-style estates, holing up in elite hotels, and
enjoying the clean dry air and sunshine, Palm Springs has been a special place to
visit. We hope that the attendees, in addition to visiting the conference, took the
opportunity to enjoy the hospitality and amenities of the Riviera Resort, and
to explore the city, the desert region, and other parts of Southern California.
For those unable to attend, we trust that these volumes will provide a valuable
record of the state of the art in the MICCALI disciplines.

We also want to thank both our sponsors who are listed below and our two
keynote speakers, Profs. Scott Fraser from Caltech and Arthur Toga from UCLA
for excellent and stimulating lectures.

Finally, we note that this year a landmark event occurred in the life of
MICCALI, namely the formation of the Medical Image Computing and Computer-
Assisted Intervention Society (the MICCAI Society) which was officially an-
nounced on December 9, 2004. The main focus of the society is our annual
international conference series (www.miccai.org) which has become the premier
conference in the field of medical image computing and computer-assisted in-
terventions, including biomedical imaging and robotics. The society is governed
and administered by the MICCAI Board of Directors. The society will continue
to publish the proceedings of the annual MICCAI conference in a prestigious
scientific series. Having a paper accepted for publication in this series is highly
meritorious and on a par with publication in highly regarded peer-reviewed jour-
nals in the field. The society is negotiating with three journals in the field of
MICCALI themes, each to become “an affiliated MICCAI journal”. These jour-
nals will offer significant benefits to members, including sharply discounted rates
for paper subscriptions and access to on-line content. The society will continue
to develop, enrich, and maintain a dynamic website with exclusive content for
members (www.miccai.org).

We look forward to welcoming you to MICCAT 2006, to be held October 24,
2006 in Copenhagen, Denmark, and chaired by Mads Nielsen.

October 2005 James Duncan and Guido Gerig
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MICCAI Student Awards

Every year MICCAI awards outstanding work written and presented by students.
Both oral and poster presentations are eligible for the awards, and the awards
are presented to the winners in a public ceremony. Student awards at MICCAI
2003 and 2004 were sponsored by Northern Digital Incorporation (NDI), and
NDI will also be the sponsor for the MICCAI 2005 awards.

MICCAI 2003 Student Awards

Robotics: Hashimoto, Ryuji: A Transurethral Prostate Resection Manipulator
for Minimal Damage to Mucous Membrane

Segmentation: Pichon, Eric: A Statistically Based Surface Evolution Method for
Medical Image Segmentation: Presentation and Validation

Image Guided Therapy Surgery: DiMaio, Simon: Needle Steering and Model-
Based Trajectory Planning

Medical Image Analysis: Fillard, Pierre: Quantitative Analysis of White Matter
Fiber Properties Along Geodesic Paths

Medical Image Processing and Visualization: Arsigny, Vincent: Polyrigid and
Polyaffine Transformations: A New Class of Diffeomorphisms

MICCAI 2004 Student Awards

Image Segmentation and Processing: Dikici, Engin: Quantification of Delayed
Enhancement MR Images

Image Registration and Analysis: Perperidis, Dimitrios: Spatio-temporal Free-
Form Registration of Cardiac MR Image Sequences

Image Guided Therapy and Robotics: Stoyanov, Danail: Dense 3D Depth Re-
covery for Soft Tissue Deformation During Robotically Assisted Laparoscopic
Surgery

Image Simulation and Display: Valtorta, Davide: Dynamic Measurements of
Soft Tissue Viscoelastic Properties with a Torsional Resonator Device
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Sensor Guided Ablation Procedure
of Left Atrial Endocardium

Hua Zhong', Takeo Kanade!, and David Schwartzman?
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Abstract. In this paper, we present a sensor guided ablation proce-
dure of highly motile left atrium. It uses a system which automatically
registers the 4D heart model with the position sensor on the catheter,
and visualizes the heart model and the position of the catheter together
in real time. With this system clinicians can easily map the motile left
atrium shape and see where the catheter is inside it, therefore greatly
improve the efficiency of the ablation operation.

1 Introduction

Recent years have witnessed an expanding need for percutaneous, endocardium-
based cardiac interventions, including ablation, injection, and device deployment.
These interventions are generally not focal, but rather involve a broad region of
endocardial anatomy. This anatomy is complex topographically, as well as motile.
Current modalities for real-time intraoperative endocardial imaging and naviga-
tion are highly inaccurate, which has been the cause of procedure inefficacy and
complications. In the present paper, we will focus on catheter ablation of left
atrial endocardium. This procedure is performed in an attempt to cure atrial
fibrillation, a common heart rhythm disorder. The left atrium has the attributes
noted above - complex topography and motility. At present, the ablation pro-
cedure is performed by attempting to ”register” preoperative four-dimensional
imaging data (derived from computed tomography) with two-dimensional in-
traoperative imaging data (derived from intracardiac echocardiography and flu-
oroscopy) using the mind’s eye. This is laborious, highly operator-dependent
(which prohibits dissemination) and inaccurate. To the clinician, the optimal
situation would be one in he/she were ”injected” into the operative environment
with automatic registration, such that endocardial intervention would be akin
to painting a wall (left atrial endocardium) with a brush (ablation catheter).
When painting a wall, complex topographical hurdles (eg. molding on the wall,
windows, light switches) are not a problem, because of real-time feedback pro-
vided by direct visualization of the paint target. Motion of the room could be
easily overcome by registering the motion of the room with that of the painter.

To realize such a goal, the system should be able to visualize the dynamic
shape of left atrium and together with real time updated catheter position.
Currently GE’s Litespeed CT scanner can provide up to 10 3D CT scan of
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heart during one cardiac cycle. Assuming the changes in shape of left atrium
repeat from one cardiac cycle to another, this one cycle heart scan is sufficient
to capture the dynamic shape of left atrium. With such CT scan (3D + time), we
can reconstruct a 4D heart shape model. Besides, currently available magnetic
tracking systems (CARTO and NOGA from Biosense) can track position of
catheter tip in real time synchronized with ECG signals. However the heart
model and magnetic tracking systems are working independently now. Our task
is to automatically register the magnetic tracking system with the 4D heart
model, and visualize the result to facilitate the ablation procedure.

In [1] a registration system (HipNav) of position sensors and CT/MRI scans
for bones has been introduced. In [2] 3D MRI models are built to navigate
in hearts. In our case we have to use a 4D model to represent motile heart
shape. Our registration problem then becomes 4D as well. [3] introduced a 4D
registration method for two MR image sequences. Our problem is also a 4D
registration but for 4D points and 4D surface models. In section 2 we will show
how to do a space time registration and in section 3 we will show experiment
results which validate our system’s correctness. Also we will discuss how we
can take advantage of this 4D property of both model and points to make the
registration even easier and more robust than 3D shape registration.

2 Sensor Guided Ablation Procedure

To register the heart model with the magnetic position sensor, we first need to
collect some points which are on the inner heart wall of left atrium with magnetic
tracking system. We call these points ” constraint point set”. Then our system
will find a transformation function F' which aligns these points to the 4D heart
model so that all the points are on the inner heart wall of the model. We also
need to align the time axis. Next we will describe our method step by step.

2.1 4D Heart Model Reconstruction from CT

CT scan is proceeded one day before the operation assuming the heart shape
won’t change within one day. We use GE’s CT scanner which can generate a 3D
heart scan at every 10% of a cardiac cycle, and totally 10 3D CT scans for one
cardiac cycle. Left atrium is then segmented out manually. We extract the surface
model from the segmented CT data using Marching Cube(MC) algorithm. The
extracted surface should represent the inner heart wall. We remove the small
floating parts by discarding all triangles except those in the largest connecting
group of the model. Then we smooth the model based on geometry cues with an
implicit integration method [4].

Each 3D surface model extracted from CT data corresponds to a time t €
[0,1) (suppose t = 0 is at the beginning of a cardiac cycle and ¢ = 1 is at the
end of a cardiac cycle) in a cardiac cycle when the CT was scanned. In the rest
of the paper, we use C = {Cy,C4,...,Cr—1} to represent the 4D heart model,
n is the number of 3D models for one cardiac cycle. In our example we capture
a 3D CT scan at every 10% of a cardiac cycle, we can extract n = 10 surface
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(a) CT scan (b) Segmented CT  (c) Model t = 0.0  (d) sModel t = 0.5

Fig.1. CT scan and 4D Heart Model of a patient. It contains 10 3D models for one
cardiac cycle.

models C = {Cy, C1, ..., Co} where each model C; represents the heart shape at
time ¢t = 4/10,7 =0, 1,...9. This process is shown in Figure 1.

2.2 Constraint Point Set Collection

At the beginning of the operation, the clinician needs to capture 20-30 points
spread on the inner heart wall with magnetic position sensor (Figure 2(b)).
During this step, another catheter with intracardiac echocardiography sensor,
which can generate 2D ultrasound images as shown in Figure 2(a) in real time,
is used to verify the touching of ablation catheter tip on the inner heart wall. The
magnetic tracking system can be setup to capture points at 10 evenly distributed
time spots within a cardiac cycle as the CT scan, so each captured point will
have a time coordinate of ¢ = 0,0.1,...,0.9. We group those points with same
time coordinates together (though they may be captured in different cardiac
cycles). Then all the recorded points can be organized into 10 groups: P =
{Po, P1, ..., Py}. P can be thought as a 4D point set.

2.3 Registration

Initial Registration. Space initial registration can be done in a coarse-to-
fine scheme. First a rough alignment can be found based on the orientation of

(a) Ultrasound Image (b) Captured Point Set

Fig. 2. Constraint Point Set. (a) Ultrasound image with the ablation catheter tip visible
in it. Clinicians can verify if the ablation catheter tip is touching the heart wall. (b)
A set of captured points (blue dots) at ¢ = 0.0. They are not aligned with the heart
model yet.
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TN

) Before time alignment ) After time alignment

Fig. 3. Time Alignment. Upper row represents models, lower row represents point
sets. z axis represents time. (a) Initial time alignment, we assume it’s simple one-
on-one correspondence. (b) The best correspondence scheme will be found after time
alignment.

the patient on the bed. This rough alignment can be further refined by some
points captured on some designated regions of the heart. These regions should
be easy to locate solely from ultrasound images, such as the entrance region of
pulmonary veins. Then we find an alignment so that these points are near the
same regions in the heart model as where we know they are captured. Other
information such as where the catheter enter the left atrium and some inside
points can also help to eliminate global alignment ambiguities. If we define the
registration error as the average distance from the real positions of constraint
points from their calculated positions, the initial alignment should be able to
reduce this error to approximate 10-20mm.

Time registration equals to a correspondence scheme S which tells for any
point set F; in P which C; in C is its correspondence according to time. We
know that we captured heart model C = {Cy,C1,...,Co} and points P =
{Po, P1,..., Py} both at t = 0,0.1,...,0.9. Ideally the time registration should
be P; corresponds to C; for any 4. In reality, the heart model is synchronized to
ECG signal one day before the operation during CT scan, while the magnetic
tracking system is synchronized to ECG signal during the operation, and under
the operation conditions, sometimes the patient’s heart beat rate is not stable,
then this one-on-one correspondence of C; with P; may not be true. This prob-
lem will be more noticeable if we have more CT scans in one cardiac cycle in the
future, for example 100 3D models instead of 10. So time alignment is necessary
(Figure 3). For initial time registration, we just use the correspondence scheme
of P, to C; for any i € [0,9].

Space Registration. Under a given correspondence scheme S, the space reg-
istration is to find a transform function F' (rotation and translation) for P so
that the average distance from each point in each transformed point set F(F;)
to its corresponding model C; is minimized. We use a modified Iterative Clos-
est Points [5] algorithm for space registration. Different from original ICP, here
during each iteration, when we try to find each constraint point’s nearest point
on the model, for any P;, we only find nearest points from its corresponding
model Cj, called P; peqr. And then we use P = |J; P; and its nearest point sets
Prear = U; Pi near to find the transformation function for that iteration.

To accelerate, we use K-D tree structure for nearest neighbor searching. And
we add random perturbation of the registration result use it as a new initializa-
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tion and run the ICP again for multiple times to avoid local minimum. To reduce
side effects of outlier points, we use a trimmed ICP with 95% of the points [6].

Space Time Registration. Under a given space registration F, the corre-
spondence scheme can be decided by: for any P;, C; which has the least average
distance from all the points in F'(P;) to C; is its corresponding model. But now
we fall into a dilemma: to register time, we need to know the space registration;
to register space, we need to know time registration (correspondence scheme).

To solve this problem, an EM algorithm is proposed assuming errors have a
gaussian distribution. We take the correspondence scheme S as a hidden vari-
able. The EM algorithm finds a space transformation function F and a time
correspondence scheme S that maximize the expectation of log likelihood of
p(F(P)|S,C). The probability p(F(P)|S,C) can be defined as

p(F(P)[S,C) = Hp P)|Cyi) = [ [(eap(=||F(Fi), Cail])) (1)

i

Here Cy; is the corresponding model for P; defined by scheme S. Each
p(F(P;)|Cs;) can be defined as an exponential function of the average distance
from every point in F'(P;) to model Cy;, which is written as ||F(F;), Cs;||. With
this definition, the EM algorithm is:

Initial Alignment: We first use simple correspondence scheme of P; to C;, and
calculate a space registration based on this initial time registration (with the
help of other initial registration methods described before). This is our initial
space registration F°.

E step: At iteration k, given the spatial registration of iteration k — 1: FF~1,
the probability of each possible correspondence scheme S can be calculated using
the following formula:

p(S|FE™Y) = a™'p(F*1(P)|S, C)prior(S) 2)

where a~! is a normalization constant. p(F*~1(P)|S, C) is similar as the proba-

bility in Equation 1. prior(S) is the prior probability of each scheme S. We set
prior(S) to be very low or zero for schemes S that map P; to a C; where ||i —j]||
is large. From now we use term p(S) to represent the probability in Equation 2.

M step: With p(S) known, we can find a F* that maximizes the expectation of
log likelihood:

argmax > _ p(F*(P)|C, $)p(S) (3)
S

Maximizing Equation 3 equals to minimizing a weighted distance function

m=10

argn;%nz Z ||F*(P;) — Cyil|p(S).
S =1
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This distance function can be minimized similarly with our modified ICP algo-
rithm. Only difference is here we need to combine the P and its nearest point
set Ppeqr under different correspondence scheme S with weight p(.S).

EM stops: when the registration improvement from F* to F¥~1 is less than
a given threshold or a certain number of iterations has been reached whichever
becomes true first. Time registration S is then computed based on the final space
registration F*.

2.4 Visualization of Ablation Procedure

After registration, the heart model and catheter position can be displayed to-
gether in real time: input catheter position in magnetic tracking system coordi-
nate (x,y, z,t) will be transformed to model’s coordinate (F(x,y, z), S(t)). The
“beating” rate of the heart model is also synchronized with ECG signal from
patient. Clinicians can setup a virtual camera anywhere in the space to monitor
the whole ablation procedure. The procedure therefore is like a simple “painting
the room” job (Figure 4).

Fig. 4. Visualization (a) view of the catheter from inside left atrium. (b) view of abla-
tion sites(yellow) together with constraint points(blue). (¢) view from outside the left
atrium.

3 Results and Discussion
3.1 Patient Data Test

To validate our system, we test it with a real patient’s data. The CT scan’s
resolution is 512 x 512 x 116 x 10 (XxYxZxtime). Voxel size is X: 0.48mm
per voxel, Y: 0.48mm per voxel, Z: 0.625mm (or 1.25mm) per voxel, time: 10%
of a cardiac cycle(Figure 1). We use CARTO system by Biosense to track the
catheter position (1lmm average error). CARTO can capture position at the
beginning of each cardia cycle. So here the points we have is P = Py(Figure
2(b)). We collect 76 constraint points to do the registration: for every location,
we recorded two points both at ¢ = 0. Then the clinician proceeded the ablation
procedure without our system’s help and recorded all the ablation sites. Our
system then mapped where those ablation sites are based on registration. The
correctness of registration is verified by the clinician who knows where those
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Fig. 5. Patient data test (a) Initial alignment (intensionally deteriorated to test ro-
bustness). (b) Outside view of the registration result. Yellow points are ablation sites.
They are correctly mapped to the pulmonary veins entrance regions. (¢) Inside view,
these points are right on the surface.

ablation sites should be mapped to. The registration error is: 1.6347mm. This
result may vary from case to case because of different heart shape and CT scan
quality. Results are shown in Figure 5.

3.2 4D Registration Versus 3D Registration

To fully exploit the information of a 4D heart model, we record constraint points
in such a way: we move the catheter to touch the heart wall, stay on the wall for a
cardiac cycle, and record all 10 positions p = {po, ..., po } at time t = 0,0.1, ..., 0.9,
generally p; # p; if ¢ # j because the heart is beating. We can call p a 4D point.
After we record one 4D point, we actually add one 3D point to each point set
P;, i =1 to 10. No extra efforts are necessary to capture one 4D point than a 3D
point. To demonstrate how 4D points can improve registration performance, we
did the following experiments. For a 4D heart model of a patient, we simulate the
collection of constraint points, both 4D points and 3D points (3D points are all
recorded on model Cp). And we use a random transformation F;. to transform the
points away from the heart model. F}. has 0—30 degree of rotation and 0 —20mm
of translation. Then we use our algorithm to find registration transformation ¥
which maps points back to the surface model. We define the error as the average
of |[v — F(F.(v))]| for every vertex v of the heart model. The result is shown
in Figure 6. As we can see, 4D point registration achieves same registration
accuracy with fewer constraint points than 3D point registration in our test.
The spatial distribution of constraint point set is random but same for 3D and
4D points.

20

4D points
15 |:|3D points

m)

Error (m

[$)}

5 points 6 points 7 points 8 points 16 points

Fig. 6. Constraint point number vs registration error. For each item, we run the reg-
istration test for several times and the average error is shown here.
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3.3 Speed Performance

Usually 15-30 seconds are needed for clinicians to record one constraint point, 2
minutes or less are needed for registration. With the automatic registration and
visualization system, the whole procedure time can be greatly reduced.

4 Conclusion

In this paper, we described a new left atrial endocardium ablation procedure
with automatic 4D registration and visualization. Registration for static objects
(bones) can be thought as a subset of our registration problem. Promising results
have been shown. Although the registration problem is far from totally solved,
we believe 4D registration is the way we should go. In the future, we will focus
on more lab animal tests to further verify and quantify the accuracy of 4D
registration. Then more real patient tests will be done.
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Abstract. Computer assistance for breast conserving surgery requires a
guidance method to assist a surgeon in locating tumor margin accurately.
A wide array of guidance methods can be considered ranging from various
pictorial representations, symbolic graphical interfaces as well as those
based on other sensory cues such as sound. In this study, we present
an experimental framework for testing candidate guidance methods in
isolation or in combination. A total of 22 guidance approaches, based on
stereographic, non-stereographic, symbolic and auditory cues were tested
in a simulation of breast conserving surgery. Observers were asked to
circumscribe a virtual tumor with a magnetically tracked scalpel while
measuring the spatial accuracy, time and the frequency with which the
tumor margin was intersected. A total of 110 studies were performed with
5 volunteers. Based on these findings, we demonstrated that a single view
of the tumor with a stereo presentation in conjunction with an auditory
guidance cue provided the best balance of accuracy, speed and surgical
integrity. This study demonstrates a practical and helpful framework for
testing guidance methods in a context dependent manner.

1 Introduction

Increasing interest in alternatives to conventional surgery for cancer applications
has prompted a wide array of potential solutions, ranging from remote surgery
under image driven, laparoscopic or robotic manipulation [1], direct real-time
image guidance integrated into a more traditional surgical setting and the use of
pre-operative imagery to track surgical maneuvers based on some model of tumor
geometry [2][3]. Regardless of the approach, the need to integrate spatial infor-
mation into a surgical decision making framework poses significant challenges
to the engineer and the surgeon alike. This is particularly challenging when the
surgeon attempts to integrate virtual data seamlessly into their appreciation of
the surgical field. Ideally, one hopes to deliver the maximum amount of spatial
information to the surgeon without inducing fatigue or being overwhelmed by
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excessive data. As each surgical task poses differing challenges, this balance will
depend on the surgical context.

We have been exploring one such task which aims to integrate MRI infor-
mation for the purpose of breast conserving surgery (BCS). Our approach is
based on a segmented model of a breast tumor for resection which is coordi-
nated to the patient’s actual tumor location and geometry during surgery. The
surgical task of BCS is to ensure complete removal of all cancerous tissue while
sparing normal tissue. In this paper, we consider the challenge of creating a
surgeon-computer interface that achieves the desired goal of guiding the surgi-
cal maneuvers while not burdening the surgeon with excessive and potentially
distracting information.

Choices for surgical interfaces range from purely visual to those which at-
tempt to integrate other perceptual cues. In addition to the inclusion of stereo
presentation of visual data, other synthetic options include the use of tactile and
auditory cues along with symbolic directives which aim to lead the surgeon in
their task. These have the advantage of being used in isolation or in hybrid com-
bination with virtual imagery with the hope of improving information transfer.
However, it is often unclear which interface method or combination thereof is
most effective. In this work, we attempt to address this question and demonstrate
a surgical interface simulator which measures the efficacy of differing interfaces
in isolation or in hybrid combinations.

2 Method

A surgical platform was constructed which allowed reproducible positioning of a
tracking system (Figure 1(a)) in which a magnetic system was used to dynam-

(b)

Fig. 1. a) Experimental setup showing the positioning table offering precise 6 DOF
positioning and orientation of the magnetic sensor. The mini-viewer seen on the left is
used in some of the various interface combinations, together with the LCD and CRT
monitors at the back. The modified scalpel containing another magnetic sensor is shown
on the bottom-right. b) Modified radio frequency scalpel that contains the magnetic
Sensor.



A Method to Evaluate Human Spatial Coordination Interfaces 11

ically locate a scalpel with respect to the boundaries of a virtual “tumor”. The
object of the experiment was to move the tip of the scalpel in a well-defined tra-
jectory to simulate tissue cutting while recording the scalpel position. To achieve
this, a 2 mm catheter-based, 6 DOF magnetic tracking probe (Ascension Tech-
nology) was embedded in a modified scalpel (Figure 1(b)). The desired trajectory
was defined and fixed in space with another channel of the magnetic tracking
system. The specific task was to trace out a circular path of radius of 200 mm
while measuring the time taken to perform the task as well as the differences
in the actual scalpel path relative to the desired path (i.e. the virtual tumor
boundary). The operator was shown the “tumor” shape in various orientations
as defined by the surgical platform.

In this experiment, we studied a number of visual and synthetic interface
approaches. In the next, section we describe each of these approaches and the
rationale behind their choice.

2.1 Interface Options

There were a total of 6 interface options we considered for this study. While many
are possible, we chose these on the basis of our own experience and evidence from
previous literature.

Interface 1 - Visual model of the scalpel and the desired task are viewed from
a single viewport on a LCD monitor. This is shown in Figure 2(a) and represents
the simplest visual presentation of the combined tracking task and the scalpel
together. Motion of the scalpel is reflected by motion of the virtual scalpel in
this presentation.

Interface 2 - Visual model of the scalpel and the desired task are shown from
three orthogonal viewports together with a perspective rendering on the LCD
monitor. This is shown in Figure 2(b) and provides complete three-
dimensional presentation of the tracking task and the scalpel motions from three
orthogonal points of view and a single perspective viewpoint. This was the most
complex visual model we tested.

Interface 3 - A stereo presentation of the task on a CRT monitor with the
observer wearing optical shutter glasses (Stereographics) as shown in Figure 2(c).
By this means, the observer perceived a clear three dimensional perception of
the tracking task and the scalpel.

Interface 4 - In this case, we provided the observer with an auditory cue in
which the amplitude of a tone with constant frequency increased as the probe
approaches the tumor boundary. Another element of this sound guidance inter-
face is noted by a change in frequency when the scalpel was moved to a position
inside the tumor, indicating an error in resection. This interface is shown in
Figure 2(d).

Interface 5 - In this case, we generated a small, “navigation compass” viewport
which was presented on the LCD monitor. The compass operates to dynamically
point in a direction that the scalpel should move to approach the desired position
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Fig. 2. a) Interface 1: one viewport with axial view and virtual scalpel. b) Interface 2:
four viewports with axial, sagittal, coronal and a perspective view. c¢) Interface 3: stereo
visualization on CRT monitor. d) Interface 4: Sound guidance and other visualization
combination. e) Interface 5: Navigation compass. f) Interface 6: Navigation compass
on mini-viewer and modified scalpel.

in a plane corresponding to the plane of trajectory. If the tip of the scalpel was
found to be “above” the desired plane, the needle would increase in length.
Likewise if it was below the desired level, the needle would shrink. The interface
is shown in Figure 2(e). This was an attempt at a symbolic interface that was
not pictorial but still provided all directional information for surgical guidance.

Interface 6 - In this interface, we explored the effect of “perceptual discon-
tinuity” where the observer must constantly redirect their attention toward a
monitor to gather perceptual information and away from the surgical area. To
overcome this effect, we used a “mini-viewer” which shows the compass of in-
terface 5, but placed immediately beside the surgical field so that the user does
not need to look away from the surgical field when using it. This is shown in
Figure 2(f).

2.2 Volunteer Studies

These six interfaces were studied in isolation and in combination. Table 1 shows
the combinations of interfaces applied in this study. A total of 22 experiments
were performed with varying combinations thought to provide interesting com-
binations of guidance methods. Each of the 22 experiments was performed with
differing orientations of the virtual tumor, thus providing a diverse set of surgical
trajectories. The volunteers were asked to move the scalpel around the virtual
tumor boundary as accurately as possible. They were also informed not to move



A Method to Evaluate Human Spatial Coordination Interfaces 13

the scalpel to a point “inside” the tumor, as this would reflect a surgical error
corresponding to degrading the tumor margin for histology. They were also told
to complete the task as quickly as possible and that they were being timed. The
balance between speed and accuracy was left to the volunteer. This experiment
was repeated for five volunteers who were asked to complete all the experiments
in a single sitting. The order of experiments was determined randomly and a
total of 110 experiments were completed.

Each volunteer was asked to move the scalpel around the desired path assisted
by the interface combination for that experiment. The positional error, the total
time to encompass the path and the frequency with which the scalpel was found
to “cut into” the tumor were all measured.

2.3 Measures of Surgical Efficiency

For each experiment, the distance between the surgical path and the actual
tumor boundary was measured at all times with the magnetic trackers. The
positional error was evaluated as the closest distance between the tip of the
virtual scalpel and the virtual tumor boundary. From this data a root-mean-
square (RMS) distance error was determined. The time taken to complete the
task was also measured by providing a target on the virtual tumor boundary to
keep track of the state of progression of the virtual surgery. This target point
would advance on the circular path each time the closest point to the scalpel
tip would cross the previously determined target point, thus simulating a virtual
“cutting” of the tumor. The task was completed when the target point had swept
over all point locations on the circular path. We also recorded the fraction of
distance measurements that were positioned inside the virtual tumor. This error
was recorded whenever a part of the virtual scalpel was touching the virtual
tumor from the inside. It was recorded as a negative distance measurement to
the scalpel tip, as seen on Figures 3(a) and 3(b).

Distance from the scalpel tip to the
virtual tumor boundary vs Time

Distance (mm)
o

-10 Total Time: 85.50 sec
RMS: 9.61 mm
-20 Neg. Fraction Inside: 0.07

Experiment: 16

0 10 20 30 40 50 60 70 80 90
Time (sec)

(a)

Fig. 3. a) Typical positional error as a function of time for completion of experiment
16. The total time in seconds to complete the surgical task, RMS distance and fraction
of distance measurements taken inside the tumor are also shown. b) Surgical path
traced out by one volunteer in experiment 16.
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3 Results

For all experiments described in Table 1, the average RMS distance was calcu-
lated across all 5 volunteers for each experiment. In addition, the average time
to completion and the average percentage of distance measurements recorded
inside the tumor were also considered (Figure 4). We can see from these data
considerable variation in these parameters across each experiment. In general,
we see a slight advantage for experiment number 16 in which the mean value is

Table 1. The combination of interface studies in the virtual surgical task

Method of Guidance Experiment Number
1234567891011 1213 141516 17 18 19 20 21 22
Single Viewport on LCD x x x x X b'e X X X X X X
Four Viewports on LCD X X X X X X
Stereo on LCD X X X X X X
Sound Guidance XXX X X X X X X X X
Compass on LCD X X X X X X X X
Compass on “Mini-viewer” X X X X X X X X
Average RMS distance (mm) Average Execution Time (sec)
vs Experiment Number vs Experiment Number
100 100 160 160
90 920 140 140
E #0 80 Q120 120
E 70 2 o
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(c)

Fig. 4. The RMS error (a), the time to complete the task (b) and the frequency with
which the scalpel cut into the tumor (c) versus the guidance method (see Table 1).
The variation is the standard error of each parameter for the five observers.
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minimized for RMS error and time. In addition, this same method also shows
a low value for the frequency with which the scalpel ventured inside the tumor.
However, in this latter case, experiments 9 and 18 also performed well. However,
methods 9 and 18 did not perform as well with regard to spatial error and time.

On the basis of these pilot data, we determined that the guidance method
tested in experiment 16 was the most successful approach. This guidance method
involved the combination of a one viewport with the additional support of 3D
stereography and auditory guidance. It is noteworthy that when the compass
was provided in the mini-viewer, there appeared to be no significant advantage
with regard to error and time but showed a slight benefit in terms of cutting
into the tumor.

4 Discussion

These studies demonstrate that there is an optimum combination of guidance
approaches for the guidance tasks presented in this paper. We note that providing
as much imaging information does not necessarily increase the ability of the user
to use this information. Furthermore, the use of stereo visualization was not
always seen to be helpful. Rather, we found that the use of stereo data needed
to be done in conjunction with other approaches to have a significant effect on
its overall utility. Another interesting finding is that the use of the navigation
compass did not contribute efficiently in improving the results. Furthermore,
the degradation from “perceptual discontinuity” was not evident in these data
as indicated by the use of the mini-viewer for the compass guidance as compared
to the compass presented on the monitor. This does not mean that the notion of
perceptual discontinuity was not operational in this study, but may reflect that
use of a compass guidance approach did not appear to offer much advantage. In
contrast, the use of an auditory cue was found to be of value when offered in
conjunction with visual cues.

These general observations are corroborated by the comments received from
volunteers while performing the experiments. They outlined that four viewports
generally added on the complexity of the task while not providing additional
support to improve performance. Volunteers would still resort to one or two
viewports to complete the task. In addition, the results reflect a general ap-
preciation of the sound guidance system, mainly for the evaluation of depth in
performing the task. Volunteers also mentioned the difficulty in using the nav-
igation compass, which is also reflected by it not having a large impact on the
accuracy data.

5 Conclusion

This experimental method has been developed to test the efficacy of varying
guidance methods for computer-assisted surgery. We tested a range of guidance
methods which have been chosen to represent appropriate and potentially use-
ful candidates for virtual surgical guidance. Our goal was to study the effect
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of combining guidance cues in a quantitative and controlled setting with the
objective of seeking approaches which maximized the accuracy and speed of an
intervention without burdening the user. We found, considerable variation in
the utility of these approaches and that stereo and auditory guidance appeared
to be a fruitful option. Clearly, other methods could have been chosen and this
same experimental platform can be used to evaluate these. In the future, we will
be using this approach to test other guidance methods with increased degree of
complexity as we move toward developing a computer assisted surgical methods
for breast conserving surgery.
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Abstract. This paper describes a system for dynamic intraoperative prostate
brachytherapy using 3D ultrasound guidance with robot assistance. The system
consists of 3D transrectal ultrasound (TRUS) imaging, a robot and software for
prostate segmentation, 3D dose planning, oblique needle segmentation and track-
ing, seed segmentation, and dynamic re-planning and verification. The needle
targeting accuracy of the system was 0.79 mm + 0.32 mm in a phantom study.

1 Introduction

Transperineal prostate brachytherapy provides an improved alternative for minimal-
invasive treatment of prostate cancer [1]. Current prostate brachytherapy involves
placing about 80 to 100 radioactive seeds (e.g. '*’I or '*Pd) into the prostate based on
a predetermined plan (pre-plan). A template with a rectilinear pattern of holes is used
to guide the implantation needles, loaded with radioactive seeds, to be inserted into
the prostate according to the pre-plan. The needle insertion into the prostate is carried
out under two-dimensional (2D) transrectal ultrasound (TRUS) guidance [2]. With
accurate placement of the seeds, the high dose of radiation is expected to be confined,
essentially, to the prostate, dramatically limiting treatment-related complications by
minimizing radiation to nearby organs, such as the bladder and rectum.

However, it has been widely recognized that current prostate brachytherapy is still
susceptible to variability. A dynamic intraoperative procedure, in which all steps are
performed in one session, including planning, monitoring of prostate changes, dy-
namic re-planning, optimal needle insertion including oblique trajectories and auto-
matic seed localization in US images, will help to solve some of the problems with
current prostate brachytherapy [3].

To achieve dynamic intraoperative prostate brachytherapy, we developed a 3D
TRUS guided and robot assisted system with new software. In this paper, we describe
the development of the system and the related algorithms, and report on the targeting
accuracy and variability achievable with the system.

2 Methods

2.1 System Description

Our prototype system (see Fig. 1) consists of a commercial robot, and a 3D TRUS im-
aging system including a B&K 2102 Hawk US system (B&K, Denmark) with a side-
firing 7.5MHz TRUS transducer coupled to a rotational mover for 3D imaging [4]. The

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 17-24, 2005.
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mover rotates the transducer about its
long axis, while 2D US images are
digitized and reconstructed into a 3D
image while the images are acquired.
A one-hole needle guide is attached to
the robot arm, so that the position and
orientation of the needle targeting can
be changed as the robot moves. The
robot and 3D TRUS coordinate sys-
tems are integrated with robot and
image calibrations of the coordinate
systems [5]. As a result, the robot can
be controlled to target any point in 3D
TRUS images, along any trajectory Fig. 1. 3D TRUS guided and robotic assisted
including oblique to avoid pubic arch prostate brachytherapy system

interference (PAI).

The software tools included in the system provide following functions:

1. Semiautomatic prostate segmentation in 3D TRUS images: We used the Dis-
crete Dynamic Contour (DDC) method for semi-automatic prostate segmentation in
3D TRUS images [6]. First, the 3D TRUS image of the prostate is re-sampled into
slices using a rotational re-slicing method (Fig. 2(a)). Then, in an initial slice, four or
more points are chosen on the boundary of the prostate to obtain an initial contour
using a cardinal-spline (Fig. 2(b)). In the next step, the initial contour is refined using
the DDC method to obtain a prostate-fitted contour in the initial slice (Fig. 2(c)). The
refined prostate contour in the initial slice is then propagated to adjacent slices and
refined until the prostate boundaries in all slices have been segmented.

Fig. 2. Prostate segmentation. (a) Rotational re-slicing. (b) Initial slicing. (c) Refine the contour.

2. 3D prostate dose planning: Real time dose calculation is performed using TG43
formalism. Geometric optimization followed by simulated annealing is used to obtain
the optimal dose distribution for pre-planning. The dose distribution is evaluated using
dose volume histograms (DVH) for the delineated organs, as well as for the implant
volume. The plan can be performed and displayed in 3D volume view, orthogonal
planes view, transverse view, and needle rendered view. The user can switch on and
off the contours, isodose curves, needles, etc., in order to view each separately, and
obtain the dose at any point by simply clicking the mouse on the transverse image or
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by typing the coordinates. Dose volume histograms for different plans from the same
patient or different DVH from the same plan can also be displayed for comparison.

3. Oblique needle segmentation and tracking: The aim of oblique needle segmen-
tation is to determine needle’s position and orientation, so that rapid dynamic re-
planning could be performed, based on the actual needle trajectory and seed locations
to obtain an optimum 3D dose distribution within the prostate. The oblique needle
segmentation algorithm includes six steps [7]: 1) pre-scan to obtain the image prior to
the insertion of the needle; 2) live-scans to obtain the images as the needle is being
inserted; 3) image subtraction to obtain a difference images between the pre-scan and
live-scans; 4) thresholding to remove background noise (Fig. 3(a)); 5) further removal
of spurious needle voxels to obtain the needle candidate voxels (Fig. 3(b)); 6) linear
regression of needle candidate voxels to obtain the needle vector in 3D TRUS image
coordinate system (Fig. 3(c)).
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Fig. 3. Oblique needle segmentation procedure. (a) 3D difference map after the thresholding
processing; (b) 3D difference map after the spurious needle voxels have been removed; (c) 3D
difference map ready for final linear regression. Black regions are the needle candidate clusters.

4. Automatic seed localization in 3D TRUS images: Automated seed localization is
important for intraoperative evaluation of dose delivery, which permits the identification
of under-dosed regions, need for remedial seed placement, and ensures that the entire
prostate receives the prescribed dose. The automatic seed segmentation algorithm is
composed of following five steps: 1) 3D needle segmentation to obtain the needle posi-
tion when implanting the seeds; 2) reducing the search space by volume cropping along
the detected needle, as the implanted seeds are close to the needle; 3) non-seed structure
removal based on model of orthogonal projections of the needle; 4) seed candidate
recognition using 3D line segment detection; and 5) localization of seed positions using
a peak detection algorithm described in [8] to localize the center of the seeds.

2.2 System Evaluation

To assess the performance of the 3D TRUS guided and robotic assisted system, we
used tissue-mimicking prostate phantoms made from agar and contained in a Plexi-
glas box. A hole in the side allowed insertion of the TRUS transducer into the phan-
tom, simulating the rectum (Fig. 4). Each phantom contained of two rows of 0.8mm
diameter stainless steel beads. The bead configurations formed a 4x4x4 cm polyhe-
dron to simulate the approximate size of a prostate. These beads were scanned using
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the 3D TRUS system, and the positions of these
seeds were determined manually in 3D TRUS
image coordinate system. Then, these positions
were transferred into the robot coordinate TELP
system, and the robot was controlled to guide O " |FEF
the needle to target these beads. The
displacements between the preinsertion bead ] ﬁ
position and the needle tip after the needle has

been inserted into the phantom were used to

analyze the needle insertion accuracy. A 3D

principal component analysis (PCA) was .
performed to analyze needle targeting accuracy.
The elements in the covariance matrix used for TSP
PCA analysis are defined as: O e

-

8 p— p—
IR s e A B X Int

S = (n-1)

(D Fig. 4. The two different prostate
phantom types with four different bead
configurations were used for the needle
dle of the pre-insertion bead and the needle tip. i targeting accuracy experiment. The
and j represent the direction component (i.e., x, y needle entered from left-hand side,
or z), kis the target index (k= 1,2, ..., 8, i.e., for Parallel to the x-axis, in each case.

each bead, 8 targeting trials were performed) in

where, X; is the displacement between the mid-

. - - 18 . .
each of four bead configurations as shown in Fig. 4. Xx; =3 2 X is the mean dis-
k=1

placement in the ith component, and n = 8. Solving the determinant equation:
IS-M1=0 2

where I is the identity matrix. S is the covariance matrix, whose elements have been
determined using Eq. (1). Egs. (1) and (2) produce a third degree polynomial equa-
tion, with roots that are the eigenvalues of S, 4 (i = 1, 2, 3), and the corresponding

normalized eigenvectors u; (i = 1, 2, 3). The eigenvalues give us the variance along
the corresponding eigenvectors, with maximum variance occurring along the principal
axis. The two other axes, orthogonal to the first and each other, account for the re-
maining variance, which is calculated as the corresponding eigenvalues of the covari-
ance matrix. The principal components, i.e., the orthonormal eigenvectors, u;, are not
necessarily parallel to the image coordinate axes.

Three-dimensional 95% confidence intervals were calculated for the eight bead
locations for each bead configuration. We assumed that the needle targeted the origin
of the coordinate system, and plotted the 95% confidence interval as an ellipsoid
about the average needle position. The orientation and length of the ellipsoid axis
were given by the eigenvectors and eigenvalues from the PCA. Because the variance
is the square of the STD, the length of the 95% confidence interval in one direction
along each of the principal axes, u; (i = 1, 2, 3), is given by:
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a; = 2\/2 (i=1,2,3) 3)

where /;is the eigenvalue of the covariance matrix. The equation of the resulting
ellipsoid is then given by:

2

Z%:l (i=1,2,3) “)
i a;

The ellipsoid equation was transformed back to the image coordinate system, and
translated so that its center was at the average needle position relative to the preinser-
tion bead position. The displacements of the measured positions of the needle tip
relative to the preinsertion bead positions at the origin were plotted for all eight tar-
geting attempts for each bead configuration along with the 95% ellipsoid intervals.

The volume of 95% ellipsoid was calculated by:

v=""1a, 5)

a; (=1, 2, 3) are the ellipsoid axis
lengths determined by Eq. (3).
Projections through the ellipsoid
and needle data were also plotted.

To assess the performance of
the prostate segmentation algo- -
rithm, we compared the algorithm
segmented prostate with manual
segmentation. Due to the robot’s
high positioning and angulation
accuracy, we used the robot as a
“gold standard” to assess the per-
formance of the needle segmenta-
tion algorithm. We compared the
results of algorithm segmentation
to the values measured by the
robot.

Fig. 5. An ellipsoid representing 95% confidence
interval for needle targeting. The target locates at
the origin of the coordinate system. The small dots
are the real needle tip positions.

3 Results

Evaluation of the system showed that needle can be used to target positions in agar
phantoms with a mean error of 0.79mm=0.32mm. The 3D 95% confidence ellipsoids
(see Fig. 5) were found to have total volumes ranging from 0.54mm3 to 1.92mm3,
depending on the location of the targets with respect to the ultrasound probe and in-
sertion distance. The size of the ellipsoid, representing the 95% confidence interval,
describes the random errors of the needle targeting. The random error results from
poorer resolution in the 3D scanning direction (Z;) due to insufficient sampling of 2D
images and the poorer elevational resolution of the transducer. This image “blurring”
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would be exacerbated for the points farther
away from the TRUS transducer, resulting
the larger volumes for the targeting of the
beads in the top row. Table 1 lists the
widths of the 95% confidence intervals
along the primary, secondary and tertiary
axis for four different bead configurations.

The distance between the intersection of
a radial line with the algorithm segmented
surface, and the intersection of the same
radial line with the manually outlined
surface, was used as the measure of the
algorithm’s performance. Error analysis
showed that the average difference between
manual and the prostate segmentation
algorithm boundaries was -0.20+0.28mm,
the average absolute difference was
1.19+0.14mm, the average maximum
difference was 7.01+1.04mm, and the
average volume difference was
7.16%+3.45%. Figure 6 is an example of a
segmented prostate in a 3D TRUS image.
Figure 7 is an example of the 3D prostate
dose planning tool showing a surface
rendered view of a pre-plan with delineated
organs and oblique needle targeting.

The error for the needle segmentation
algorithm in determining the needle tip
position was 0.8mm when the
insertion distance was greater
than 15mm. The mean error in
determining the needle
orientation in the yaw and pitch
orientations was 0.20° and 0.03°
respectively. Figure 8 shows the
result of the needle segmentation
algorithm in a patient image
obtained during a prostate
cryotherapy procedure.

The true-positive rate for the
seed segmentation algorithm was
100% for agar and 93%
for chicken phantoms. This is

Fig. 6. Segmented prostate in 3D TRUS
image

Fig. 7. Surface rendered view of the pre-
plan with delineated organs

acceptable, because according to Fig. 8. Segmented needle. (a) Oblique sagittal view;
Lindsay et al [9], variation in  (b) oblique coronal plane; (c) transverse view with a
D90 (the lower bound on the graphical 3D display of the needle targeting
minimum dose delivered to any  superposed on the view.
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90% of the target volume) due to
inability to localize 5% of the seeds
is negligible. The average distance to
the manually segmented seeds was
1.0 mm for agar and 1.7mm for
chicken phantoms. The preliminary
result for the segmentation time on a
PC computer with dual AMD Athlon
1.8GHz processor was 280 seconds
for 14 seeds. This is too long for
routine brachytherapy, and we are
improving the seed segmentation
method so that the segmentation
time is limited to less than 1 minute.
Figure 9 is an example of the result
of the seed segmentation algorithm
for localization of the seeds in the
3D TRUS image.

Fig. 9. Localized seeds in 3D TRUS image

4 Conclusion

Nath et al. has pointed out that the maximum difference between the needle tip and its
planned target allowed in prostate brachytherapy is 5 mm [10]. Compared with our
results from the phantom study, we concluded that with robotic assistance, the brachy-
therapy needle could be guided to accurately and consistently target any point identified
in the 3D TRUS image along various trajectories including oblique. In addition, the
software developed in this project provides various functions such as oblique needle
segmentation and tracking, 3D dose planning, radioactive seed segmentation in 3D
TRUS images, and dynamic re-planning, which are important for an intraoperative
procedure. In the future, we will test our system in vivo, which will include realistic
tissue deformation and mobility. We expect that the result of this work can provide a
tool to achieve dynamic intraoperative prostate brachytherapy using 3D TRUS imaging
and robotic assistance together with efficient segmentation software.

Table 1. A description of the 95% uncertainty intervals for brachytherapy needle insertion

Width of the 95 % uncertainty

interval (mm) Center of confi-  Ellipsoid

Bead configuration Primary Secondary  Tertiary denc(enll::)erval ‘E(:Illl:nlgl)e
axis axis axis

Top row, long pene-

tration (TRLP) 1.95 1.02 0.23 (-0.46,0.57,-0.98) 1.92

Bottom row, short

penetration (BRSP) 1.06 0.55 0.22 (0.38,-0.22,-0.44) 0.54

Top row, short

penetration (TRSP) 1.77 0.94 0.24 (0.03,0.49,-0.04) 1.68

Bott It

otiom oW, ONe 38 0.60 0.19  (0.170.39.0.68)  0.66

penetration (BRLP)
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Abstract. Depth estimation is one of the most fundamental challenges for
performing minimally invasive surgical (MIS) procedures. The requirement of
accurate 3D instrument navigation using limited visual depth cues makes such
tasks even more difficult. With the constant expectation of improving safety for
MIS, there is a growing requirement for overcoming such constraints during
MIS. We present in this paper a method of improving the surgeon’s perception
of depth by introducing an “invisible shadow” in the operative field cast by an
endoscopic instrument. Although, the shadow is invisible to human perception,
it can be digitally detected, enhanced and re-displayed. Initial results from our
study suggest that this method improves depth perception especially when the
endoscopic instrument is in close proximity to the surface. Experiment results
have shown that the method could potentially be used as an instrument
navigation aid allowing accurate maneuvering of the instruments whilst
minimizing tissue trauma.

1 Introduction

Over the last decade, minimally invasive surgery (MIS) has attained great popularity
and acceptance among surgeons and patients alike due to its improved cosmetic
appearance, shorter rehabilitation, less pain and decreased hospital costs. However,
MIS requires a higher degree of competency from the surgeon due to the presence of
a number of constraints. Among them, vision is the primary element. The surgeon is
required to reconstruct the 3D operative field and perform instrument navigation
through the narrow monoscopic two-dimensional (2D) field of view provided by the
endoscope. The perceptual cues that a surgeon uses to navigate are complex, and it is
well understood and documented in cue theory that a variety of cues are utilized in
order to estimate depth. The visual system typically infers depth based on information
relating to the posture of the eyes as well as visual patterns projected onto the retina
[1]. The particular cues that foster the perception of depth have been widely
investigated [2,3] and are often classified as primary (physiological) cues, such as
binocular disparity, convergence, and accommodation, and secondary (pictorial) cues,
such as linear perspective, elevation, shading and shadow, texture and texture
gradients, and reference frames [1]. It is not well understood, however, how these
cues are assimilated in MIS. This is because the majority of cues are subtle and
difficult to detect in the operative environment presented to the surgeon. Furthermore,
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there is a direct reduction in perceptual information that is available at any moment in
time due to an ever-evolving surgical scene as a result of laparoscope translations and
anatomical deformations. Ultimately, the monoscopic field-of-view provided by the
laparoscope limits the 3D perception by presenting a scene onto 2D planes. It has
been observed that surgeons tend to compensate for the lack of depth perception by
developing new strategies such as groping forward and backward with instruments to
gauge the relative depths of organs by touching them (Figure 1). The combined visual
and haptic feedback helps to confirm the instrument position and orientation. This
navigation approach, however, is not ideal particularly when undertaking delicate
surgical maneuvers that require subtle control of instruments which must be
performed slowly enough to avoid damaging the tissues in contact [4].

Fig. 1. Operative stills representing a collision sequence during MIS. In this sequence, the
surgeon advances the instrument into the vessel to establish position before straddling the
vessel instrument to transect it.

Currently, there is a constant requirement for surgery to become safer, particularly
in the current climate of clinical governance. Practically, safety can be achieved by
better training as well as by reducing the constraints set by the nature of MIS.
Improving 3D visualization and ultimately facilitating instrument navigation and
maneuvering should be a priority. Although advances in stereoscopic surgery aim to
improve 3D perception, such systems have practical limitations with respect to their
practical use as they tend to be extremely expensive and not widely available. For
these reasons, it is useful to investigate other alternatives for conveying depth
information and enhancing existing monocular visual cues. One of the primary cues
that the visual system utilizes to infer depth is shadow [5]. Shadow can provide useful
information about object shapes, relative 3D position, and surface characteristics
within a scene [6,7,8,9]. Unfortunately, this visual cue is unavailable with MIS due to
the coaxial alignment of the lens and light bundle of traditional rigid endoscopes.
Under this setup, the operative field is generally shadowless [10]. It has been shown
that inducing shadow by the introduction of a secondary light source within the
surgical field improves endoscopic task performance [11]. The purpose of this paper
is to introduce a new framework for improving depth perception for MIS by
introducing a secondary light source. The unique feature of the proposed method is
that it only casts a weak shadow of the laparoscopic instrument that is almost invisible
under normal viewing conditions. During instrument maneuver, this “invisible
shadow” is dynamically enhanced which introduces a strong depth cue from which
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the distance between the instrument and tissue can be accurately determined. This
naturally avoids the use of the instrument to “crash” on the tissue surface to gauge the
3D relative position of tissue-instrument whilst maintaining normal laparoscope
viewing condition when instrument depth cuing is not required.

2 Materials and Methods

To emulate the laparoscopic environment, a laparoscopic box trainer was used, within
which a silicon based tissue surface model was placed. The surface was coated with
silicone rubber mixed with acrylic to give it a specular finish that looks similar to wet
tissue. The scene was illuminated primarily from the endoscope itself and a secondary
light source was placed directly above the surface but away from the endoscope. The
intensity of this source was carefully adjusted so as to cast a near invisible shadow to
the surface to avoid any interference to the normal viewing condition. A laparoscopic
instrument was held over the surface in different positions and the vertical distance
from the tip to the surface was measured to the nearest half centimeter. A video
stream of the instrument assuming each position was obtained from a camera within
the endoscope and digitally stored for subsequent processing. Figure 1 outlines the
main components used for dynamically enhancing the “invisible shadow” during
instrument maneuver.

Bayesian
Shadow
r Removal -| Shadow Shadow
Video Stream ™ Ennancement ™ Enhanced
L Statistical J Image
Background
Removal

Fig. 2. A schematic illustration of the shadow enhancement filter design to generate the
computer enhanced shadow

With this work, the shadow removal algorithm was based on the following four
low level visual cues: intensity difference, intensity gain, angle between RGB vectors
and color difference. Intensity difference is the absolute difference between the
current image and the statistical background image B(x,y) calculated from the peak
PDF of each pixel, D(x,y)=/(x,y)-B(x,y)| where D(x,y) is the filter output. The use of
intensity difference is biased towards the extraction of shadows in bright regions. For
shadows in darker regions, however, one has to rely on the relative intensity
attenuation between /(x,y) and B(X,y), given by G(x,y)= | I(x,y)/B(x,y) |. Based on the
property of shadow color invariance, two color filters working in the RGB space have
also been adopted:
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where ; and E are the RGB vectors of the background images. The final filter uses a
color invariant model and addresses the limited color quantization steps:

Ri Ry
ci=arctan| ———— b =arctan| ———
max(Gi, Bi) max(Gbs, By)

Gi G
c:=arctan| ———— b.=arctan| ———
max(Ri, Bi) max(Rs, Br)

Bi B»
cs=arctan| — bs=arctan| ———
max(R;:, Gi) max(Rs, Gv)

V(x,y)=(c1—b1)* +(c2—b2)* + (c3—b3)

where (R;,G;,B;) and (Ry,Gyp,B;,) are the RGB components of a given pixel of the
current background [12].

In order to evaluate the effect of shadow enhancement as an aid to depth
perception, an experiment was devised comparing shadow enhanced to shadow
unenhanced images. Ten volunteers with experiences in surgical imaging were
recruited for this study. They were blinded to the aims of this study and asked to
serially assess 36 images taken from the experimental setup described above on a 2D
display. Each image showed part of laparoscopic instrument over a surface and the
subjects were asked to estimate to the nearest half centimeter the vertical distance

Fig. 3. (A) A series of raw images showing a laparoscopic instrument tip (T) as it approaches
the silicon surface. (B) The same images following shadow (S) enhancement. Note the Scm
scaling aid to the left of each image (arrow).
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from the tip of the instrument to the surface, with their answers recorded. The first 18
images were raw images (similar to those shown in Figure 3A) taken from the
endoscope, whereas the remainder images were obtained by applying the described
shadow enhancement algorithm (Figure 3B). For a better appreciation of the scaling
and perspective, a Scm marker with 1cm graduations was placed directly onto the
surface in line with the z-axis.

To elucidate the underlying visual behavior of the users under normal and
shadow enhanced viewing environments, gaze tracking was performed on all subjects
performing the above task using a Tobii ET 1750 eye tracker. This is an infra-red
video-based binocular eye-tracking system recording the position of gaze in the work
plane (screen) at up to 38 samples per second with an accuracy of 1 degree across the
work plane [13]. In this study the eye gaze data was analyzed qualitatively using the
Clearview software (Tobii technology).

3 Results

To determine the perceptual accuracy, the absolute difference of the perceived
distance of the tool-tip from the surface from the mean measured distance for all
images for each subject was calculated. The mean difference for all subjects was
1.36¢cm for raw and 1.02cm for shadow enhanced images indicating an improvement
in depth perception after shadow enhancement. This difference, however, was not
statistically significant (t-test p = 0.115). The results indicate that the users are able to
gauge large relative instrument distance to the surface when there are secondary
visual cues. When the instrument is close to the tissue surface, however, the visual
cues appreciable by the user are diminished if dynamic shadow enhancement is not
applied. For this study, when the distance between the instrument and tissue surface is
within lcm (see Figure 4) (a situation that is most critical for relying on
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Fig. 4. Bar charts comparing the mean distance difference from reality perceived for raw and
shadow enhanced images for each subject when the distance between the tool tip and tissue
surface was set within 1cm
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Fig. 5. An eye-gaze path demonstrating the fixations (white circles = fixations, yellow circle =
first fixation, and white lines = saccades) recorded during the experiment. The effect of the
“invisible shadow” enhancement to the accuracy of perceived tissue-instrument distance can be
clearly demonstrated. In (a) and (b), the actual distance of the instrument tip from the tissue is
2cm and the subject whilst underestimating this to be lcm in the raw image was able to
estimate the exact distance correctly after shadow enhancement. In images (c) and (d) without
shadow enhancement, the perceived distance was 2.5cm whereas by the use of shadow
enhancement the perceived distance was 0.5cm, which is much closer to the ground truth.

tactile distance ranging), the mean errors for this group of observers were 1.283 and
0.709 (standard deviation 0.64 and 0.32) for raw and shadow enhanced images
respectively (t-test p=0.020). This result was statistically significant. In addition,
overall subjects were able to estimate depth faster from shadow enhanced images
compared to raw images (5.8s versus 7.9s).

Verbal assessment of the participants has shown that all of them admitted that the
enhanced “invisible” shadow had significantly facilitated their perception of depth.
When a shadow was not present, most subjects based their answer on the scale of the
instrument tip to estimate its position in space.
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Figure 5 demonstrates the effect of the enhanced “invisible shadow” on general
visual behavior revealed through eye tracking. It is evident that in Figures 5(a) and
(b), the apex of the shadow provides direct cuing for depth perception with the subject
drawing a visual line between the apex and tool tip. The real distance in this image is
2cm and the subject whilst underestimating to lcm in the raw image was able to
estimate the exact distance correctly after shadow enhancement. Figures 5(c) and (d),
show a pair of images without and with “invisible shadow” enhancement when the
instrument is in fact touching the surface. Without shadow enhancement, the
perceived distance was 2.5 cm whereas by the use of shadow enhancement the
perceived distance was 0.5cm, which is much closer to the ground truth.

4 Discussions and Conclusions

In this paper, we have demonstrated the effect of shadow on the accuracy of perceived
tissue-instrument distance. One important feature of the algorithm is to cast an
“invisible shadow” through the careful use of a secondary light source in a simulated
laparoscopic environment. During instrument maneuver, this “invisible shadow” is
dynamically enhanced which introduces a strong depth cue from which the distance
between the instrument and tissue can be accurately determined. From a practical
point of view, a faint shadow can theoretically be easily created by the introduction of
a secondary light source through one of the accessory laparoscopic ports inserted
during the procedure. The method naturally avoids the use of instrument to “crash” on
the tissue surface, which is undesirable under delicate surgical maneuvers that require
subtle control of the instruments to avoid damaging the tissues in contact. From both
the objective and subjective assessment results of the study, it is evident that artificial
shadow enhancement can be a useful aid for the perception of depth from 2D cues.
Furthermore, the digital enhancement approach proved to be most effective when the
instrument is in close proximity to a surface, which is the most critical time for
enhanced instrument maneuver as in vivo mal-navigation at this level may lead to
accidental injury to sensitive tissues.
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Abstract. The purpose of our project was to develop a novel navigation
system for interventional radiology. Fields of application are minimally
invasive percutaneous interventions performed under local anaesthesia.
In order to reduce unintentional patient movements we used a patient
vacuum immobilization device. Together with the vacuum fixation and a
newly developed reference frame we achieved a fully automatic patient-
to-image registration independent from the tracking system. The combi-
nation of the software and a novel designed needle holder allows for an
adjustment of the needle within a few seconds. The complete system is
adapted to the requirements of the radiologist and to the clinical work-
flow. For evaluation of the navigation system we performed a phantom
study with a perspex phantom and achieved an average needle position-
ing accuracy of less than 0.7 mm.

1 Introduction

CT-guided minimally invasive interventions on human subjects are today an es-
tablished radiological procedure. Such interventions include percutaneous punc-
tures, biopsies, vertebroplasties and radio frequency ablations, as well as thera-
pies requiring the percutaneous advancing of a needle to a definite anatomical
position in the patient. CT-guided interventions allow the radiologist to work
rapidly with the greatest care and interest of the patient.

The exact placement of the needle in the patient requires a great deal of ex-
perience and considerable skills. A limiting factor is the time required to exactly
position a needle at the required anatomical site in the patient. Particularly with
interventions requiring a high degree of precision, where the incorrect position-
ing of the needle can lead to life-threatening complications, it is necessary to
repeatedly control and correct the position of the advancing needle within the
patient using CT control scans. This not only lengthens the entire intervention,
but also increases radiation exposure for the patient.

In practice, a number of different auxiliary needle positioning devices are
employed. For example, laser targeting devices attached to the gantry or tar-
geting devices which can be fixed directly to the patient [1,2]. However, none
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of these auxiliary devices permits simultaneous real-time control of the needle,
tremble-free needle advancement, and assistance for the implementation of an
access path as planned in the patient data. Since the early 1990s, computer and
robot-assisted navigation systems have been increasingly used as intervention
aids, leading the way for applications in neurosurgery and orthopedics. Appli-
cations in the area of interventional radiology are, on the other hand, very rare.
The Tirat Hacarmel company utilizes an electromagnetic localization system
(UltraGuide1000). This system has already been successfully employed for hep-
atic and renal punctures, as well as for radio frequency ablations [3]. Bale et al.
have employed an optical localization system for punctures and radio frequency
ablations [4]. Medical research shows a continuously growing interest in naviga-
tion systems for interventional radiology, as seen by the ever increasing number
of groups working on prototypes for needle positioning systems and robotic sys-
tems [5,6,7,8].

With CT-guided navigation systems, it is first necessary to register the pa-
tient according to the images acquired. For this purpose, a fixed reference point,
defined by a Dynamic Reference Frame (DRF), is rigidly attached to the pa-
tient. For navigation systems used in orthopedics, the DRF is firmly attached
to the bones by using surgical screws. For neurosurgical applications, stereotac-
tic frames are attached to the head to allow for the registration of the patient.
With minimally invasive interventions such as punctures and biopsies, the rigid
attachment of a DRF to the patient represents a problem due to the absence
of firm anatomic structures. One solution is to use skin markers which can be
positioned in combination with DRFs either directly on the patient’s skin, or
nearby. However, in this case patient movement would impair the precision of
registration or even render the registration useless. Since most minimally in-
vasive interventions are performed under local anesthesia, patient movement is
highly probable. A further difficulty with navigation systems is the guidance of
the physician during the 3D orientation of the instruments such as the puncture
needle along a planned access path. The orientation process must be fast, pre-
cise and simple. In order not to lengthen the entire interventional procedure, the
workflow of the navigation system needs to be adapted to the clinical procedure.

We will introduce a new navigation system to solve the problem of patient
movement and registration, at the same time enabling the fast, simple and precise
orientation of the needle along a planned trajectory. Additionally, the navigation
system is ideally matched to the clinical requirements and the clinical workflow.

2 Materials and Methods

2.1 System Overview and Architecture

The navigation system consists of an optical tracking system (Polaris, NDI,
Canada), a standard PC with touch screen as user interface and dedicated nav-
igation software (CAPPA IRad, CAS innovations, Germany), a needle holder,
a patient fixation vacuum device (BodyFix™, Medical Intelligence, Germany)
and a reference frame (RF) developed in this work. The RF is attached with
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Software

Fig. 1. Overview of the system architecture: CAPPA IRad (Input/Output, Processing,
GUI) and hardware (reference frame, needle holder, polaris, CT with workstation)

markers that can be detected automatically in CT images as well as with reflec-
tive markers detectable by optical tracking. For image acquisition the navigation
system is connected to a CT scanner (Sensation 64, Siemens Medical Solutions,
Germany). The system architecture and interface between the components used
are illustrated in Fig. 1.

The tracking system is used to localize the position of the reference frame
and the needle holder in the operating room. For this purpose, reflecting spheres
are fixed with a known geometry on both the reference frame and the needle
holder. The position of the needle holder is measured by the tracking system
relative to the reference frame in physical space. All necessary 3D coordinates
are transmitted from the Polaris to the PC by using the serial port. For the com-
munication of the CAPPA TRad System with the CT scanner we implemented a
DICOM network application providing verification, storage and query /retrieve
services to enable image transfer using a TCP /IP connection. The DICOM net-
work application is implemented as a background process and set up to receive
images as soon as CAPPA IRad is running. After receiving the images, these
can be visualized in multi planar reconstruction (MPR) views. We also used the
connection to send DICOM images back to the scanner for documentation of
performed steps.

2.2 Description of the System Components and Steps

Needle holder: The needle holder was constructed such that any medical tool
like biopsy syringes or needle hulls can be quickly attached and unmounted. The
needle holder itself is mounted at the end of a hydraulic arm. By moving the
hydraulic arm (6 DoF) which is mounted on the CT table, the needle holder
can be positioned near the patient. Two independent pivot joints on the needle
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holder enable the precise and fast alignment of the needle holder with the planned
surgical path, illustrated in Fig. 2.

Reference frame (RF) and image-to-patient registration: In order to
visualize medical instruments like the needle in the CT images of the patient,
an image-to-patient registration is necessary. For that the RF is positioned in
proximity to the planned entry point prior to the first CT scan. In addition to
the tracking markers, which are used as reference DRF to define the coordinate
system of the tracking system, we also placed CT markers in a known geometry
on the RF. During image acquisition, all CT markers at the frame must be
inside the field of view. After sending the images to the CAPPA TRad system,
an integrated marker detection algorithm in the navigation software finds the
CT markers in the patient’s data set and determines the marker centroids with
sub-voxel accuracy. The coordinates of the CT markers in the patient coordinate
system and the coordinates of the CT markers in the tracking system are used to
derive the registration matrix. After this step, the relation between the images
and the patient are fixed.

Patient fixation: We used the BodyFix™to fixate the patient to reduce any
patient movements relative to the positioned RF. The BodyFix™is a double
fixation device which consists of a vacuum bag, cushions and a pump. The patient
is fitted to the vacuum bag and the cushions are placed on the patient. The air
in the bag and in the cushions are exhausted by the pump. In that way the
patient is fixed securely to the bag. The fixation device is used successfully in
both radiation therapy for the reproducible positioning of the patient for beam
delivery [9] and for medical navigation and robotic systems [4].

Calibration of the needle: We implemented and evaluated two kinds of needle
navigation possibilities. The first method restricts the adjustment of the needle
holder according to the prior planned trajectory without visualizing the length
of the needle in the patient’s data set. The adjustment of the needle outside the
patient is visualized and the software only guides the radiologist to adjust the
needle holder. During the needle feed, graduated marks on the needle can be
used for depth information.

The second method requires a calibration of the needle to obtain the exact
needle length. For that, the radiologist holds the needle tip on a calibration point
on the RF. The 3D coordinates of the calibration point are known by the system.
A second DRF (needle DRF) is fixed above the needle and calibrated in a way
that the origin of the DRF is on top of the needle, as illustrated in Fig. 2. The
needle length is defined as the length of the vector between the calibration point
and the origin of the needle DRF. During the needle feed, the needle DRF is
moved with the needle. The exact position of the needle, especially the tip of
the needle, is visible in the patient’s data set on the screen.

Software and graphical user interface (GUI): The GUI is designed to allow
for an intuitive use of the navigation software. Transfer and loading of the images
from CT and registration work fully automatically: The planning module is kept
as simple as possible but contains comfortable planning features like oblique
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Fig. 2. Left: Calibration step. The length of the needle is calculated from the needle
DRF to the calibration point located at the frame. Middle, Right: The needle holder
with the two possible movements.

MPRs and accurate planning of trajectories with sub-voxel accuracy. It is also
possible to plan arbitrary oblique trajectories. The planning can be performed
with the mouse or by touch screen. The combination of the dedicated navigation
software and the needle holder allows for an accurate adjustment of the needle
according to the planned trajectory within a few seconds. For documentation,
screenshots containing information about the final needle position are created,
converted to DICOM images and finally sent to the PACS. After the intervention,
all images and patient data are removed from the CAPPA TRad system since
the local PACS is responsible for archiving and managing the image data.

2.3 Clinical Workflow

We analyzed the established clinical workflow of CT-guided, minimally invasive
interventions. Based on our investigations we were able to derive the navigation
workflow which consists of the following steps:

Preparation of the patient: The patient is placed on the CT bed and immobi-
lized with the BodyFix™™system. The RF is positioned close to the prospective
entry point. A field of view is determined to ensure that all CT markers are
inside the scanning area.

Importation of scanned images: After scanning, the images are sent from
the CT system to the navigation system. All images are internally checked by the
software to ensure consistency of patient data before visualization. Additionally,
the images are verified by the radiologist and stored on the system to allow for
a quick review during the intervention.

Preparation of trajectories: The radiologist defines a trajectory by setting a
target and an entry point using the touch screen or the mouse.

Calibration of the needle (optional): The radiologist calibrates the needle
used to obtain its length.
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Adjustment of the needle: The adjustment process of the needle with respect
to the planned trajectory is divided into two steps. First, the radiologist moves
the needle holder in vicinity to the planned entry point, assisted by the naviga-
tion system. The next step is the adjustment of the needle holder to adapt the
needle axis to the planned trajectory. The software gives the radiologist impor-
tant information on how to move the needle holder at the two joints to adjust
it within a few seconds.

Navigation of needle feed (optional): If the needle was calibrated, the
actual position of the needle tip is visible within the CT images of the patient
during the needle feed. By extracting information about the location of the needle
within the CT coordinates, the system proposes a small region for a control scan
in longitudinal direction.

Initiation of control scan: During the needle feed the radiologist is able to
initiate control scans and load the images into the navigation system. It is also
possible to continue the navigation in the images delivered by the control scan
or switch back to the images of the preparation scan.

Documentation: After the needle is at the final position, screenshots can be
taken and sent back to the PACS for documentation.

3 Phantom Test and Results

To evaluate the navigation system’s accuracy we designed a perspex phantom
with a base plate including 7 rods with tips, Fig. 3. The phantom was placed at
the CT table and the RF was positioned above the phantom with a distance of
15 c¢m from the base plate to the RF. After scanning the phantom we selected
the tips of the rods as targets in the planning step of the navigation software
and planned trajectories with lengths of 120 mm and 180 mm.

A standard biopsy needle (18G) was calibrated and adjusted so that the
needle tip was exactly on the top of the tips of the rods and the needle was
adjusted according to the planned trajectory. The navigation system calculates
the vector v between the current needle tip measured by the system and the
planned target point and the perpendicular I of the needle path to the target
point. The distance € = |v| and the perpendicular k = |l| were used to denote the
error of the misadjustment. The error includes the error of construction (needle
holder and RF), the image-to-patient registration error and the error caused by
the tracking system.

For every rod we measured 30 values respectively 15 for both planned tra-
jectory lengths (120 cm and 180 cm).

The resulting error € of 105 measurements on 7 targets with a trajectory
length of 120 mm was 0.635 mm rms with 0.228 mm standard deviation. The
length of the perpendicular x at this length was 0.481 mm with a standard
deviation of 0.211 mm. The 105 measurements at the same 7 targets but with a
trajectory length of 180 mm showed nearly the same results. The resulting error
€ was 0.604 mm rms with 0.217 mm standard deviation and the perpendicular
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Fig.3. Perspex phantom study: The needle is exactly adjusted to the planned tar-
get (tip of rod) and the needle deviation denoted by the software is used as system
adjustment error

Table 1. Results of the phantom study

path length n rms (€) rms (k)
120 mm 105 0.635 mm =+ 0.228 mm 0,481 mm =+ 0.211 mm
180 mm 105 0.604 mm =+ 0.217 mm 0,489 mm =+ 0.204 mm

x was 0.489 mm with a standard deviation of 0.204 mm. All measured values
are summarized in Table 1. The maximum measured deviation was 1.2 mm at a
path length of 120 mm.

4 Discussion

We presented a new navigation system to be used for minimally invasive percu-
taneous procedures in interventional radiology. The main focus of the system was
to support the radiologist during interventions and to provide a system which is
at the same time fully integrated into the clinical workflow. The TCP/IP net-
work connection of the navigation system with the CT scanner and the DICOM
protocol enables a manufacturer independent and comfortable image transfer
in both directions. By using the developed RF, a fully automatic, tracking sys-
tem independent patient-to-image registration was achieved. Unpredicted pa-
tient movements relative to the RF which could influence the image-to-patient
registration are minimized by the fixation. In that way risk related to patient
movements was minimal. The calibration allows any needle to be used regard-
less of the manufacturer. Biopsy syringes or needle hulls can be easily integrated
into the system during the intervention. With the combination of software and
needle holder it was possible to adjust the needle holder in accordance with a
prior planned trajectory. This process was fast and accurate. The needle feed is
visualized in the patient’s data set to verify the needle placement. This reduces
the number of control scans which would otherwise be necessary. In contrast
to conventional navigation systems or help devices, our navigation system was
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adapted to the requirements of the radiologist and therefore serves as an ideal
tool for various CT-guided percutaneous interventional procedures.

The first accuracy studies with a perspex phantom illustrated a repetitious
accuracy of less than 0.7 mm for two different path lengths (120 mm and
180 mm). The next step will involve a cadaver study prior to clinical evalua-
tion which has already been approved by an ethics commission.
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Passive Markers for Ultrasound Tracking
of Surgical Instruments
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Abstract. A family of passive markers is presented by which the position and
orientation of a surgical instrument can be computed from its ultrasound image
using simple image processing. These markers address the problem of imaging
instruments and tissue simultaneously in ultrasound-guided interventions.
Marker-based estimates of instrument location can be used in augmented reality
displays or for image-based servoing. Marker design, measurement techniques
and error analysis are presented. Experimentally determined in-vitro
measurement errors of 0.22 mm in position and 0.089 rad in orientation were
obtained using a standard ultrasound imaging system.

1 Introduction

While ultrasound imaging has traditionally been employed for diagnostic procedures,
its use in minimally invasive interventions is growing. The advent of real-time 3D
ultrasound is also likely to facilitate these procedures. For example, in cardiac surgery,
ultrasound imaging can be used for beating-heart repair of internal defects [1].

A challenge arises, however, due to the substantial difference in both impedance
and absorption of biological tissues and instruments. Imaging systems designed to
differentiate tissue types based on small changes in impedance are not well suited to
imaging metal instruments. As a result, instruments produce image artifacts due to
specular reflection and scattering, which obscure both the location and geometric
details of the instrument. The instrument markers presented here address this problem
by providing a means to easily estimate an instrument’s body coordinate frame from a
single ultrasound image. Such estimates can be used to augment ultrasound images
with precise instrument location or to register instruments with respect to a
manipulating robot for image-based servoing.

Alternate solutions to the instrument imaging problem include instrument
modification, image processing techniques and the use of active markers. In
instrument modification, several researchers have focused on altering instruments’
reflection characteristics to make them more visible [2]. This approach can involve
the application of coatings or surface modifications to the instruments, which can add
cost while not necessarily eliminating image artifacts. Image processing methods
apply search techniques based on either actual instrument geometry or the geometry
produced under ultrasound imaging [3]. This approach shows promise although the
amount of processing involved may be tied to the complexity of the geometry. Other
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(a) (b)

Fig. 1. Two possible marker designs attached to a surgical grasping instrument

work has focused on actively tracking instruments and ultrasound transducers using
electromagnetic and optical sensors. Lindseth et al. report measurement accuracy of
0.6 mm with optical tracking of the ultrasound scan head [4], and Leotta reported
accuracy of 0.35 mm with electromagnetic tracking [5]. Merdes and Wolf reported a
method for tracking an active ultrasound receiver mounted on a cardiac catheter [6].
They achieved a mean accuracy between 0.22+0.11 and 0.47£0.47 mm, depending on
the distance between the catheter and the ultrasound transducer. Active tracking
devices are more costly than passive ones. They also can require more complex
calibration and can be more difficult to integrate with existing medical instruments.

The solution presented here consists of passive markers which can be easily added
to existing surgical instruments and require minimal calibration. The markers are
constructed to possess two properties: (1) they appear clearly when imaged along with
tissue regardless of instrument appearance, and (2) they are shaped such that their
positions and orientations can be determined from a single image using simple image
processing.

In this paper, we assume that the instruments possess a cylindrical shaft over which
the marker can be attached as shown in Figure 1. The cylindrical portion of the
marker is used to determine the four degrees of freedom associated with the
instrument shaft axis. The marker pattern is designed to indicate the location of the
marker along the instrument shaft and the rotation of the marker about the shaft’s
axis. The proposed markers are applicable to both 2D and 3D ultrasound. For
simplicity of presentation, only the 2D case is considered here.

These markers are similar to devices known as stereotactic frames, which have
been studied extensively for imaging modalities such as CT and MRI [7][8]. A
stereotactic frame consists of a shape that appears uniquely when imaged at various
positions and orientations and is constructed of material easily seen in a particular
imaging modality.

The next section describes the proposed family of markers — their design, image
processing and error analysis. The subsequent section presents an experimental
evaluation of one possible marker shape and the paper concludes with a discussion of
the results.

2 Implementation

The markers consist of two parts, a cylindrical sleeve that can be fit over the shaft of a
surgical instrument and ridges of constant height and width fixed to the outer surface
of the sleeve, as shown in Figure 1. The cylindrical shape allows the markers to fit
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through access ports used in minimally invasive surgery. The ridges trace out
prescribed paths on the sleeve’s surface, which, when imaged, indicate the marker’s
position along and orientation about the cylinder’s axis. The family of markers is
characterized by a variable number of ridges and a variety of ridge paths. These are
together referred to as the marker pattern.

The marker pattern must satisfy three constraints. First, each position along and
rotation about the cylinder’s axis must correspond to a unique ultrasound image of
marker pattern. Second, the error in position and orientation should be small. Third,
the length of the marker pattern should be small since ultrasound imaging systems
typically have a small field of view. Note that the marker body can extend beyond the
marker pattern in order to make the instrument shaft visible.

2.1 Marker Analysis

If the relative position and orientation of the instrument and marker are known, the
rigid body transformation, 7,", relating the marker coordinate frame to the image-

based coordinate frame defines the instrument’s position and orientation relative to
the ultrasound image. This transformation can be decomposed into two elements,

1—1]111 — 1—’[/11—1{M~ (1)

As shown in Figure 2, transformation T,A relates an intermediate frame, A , located

on the instrument shaft’s axis, with the image frame. This frame, determined in an
initial processing step, serves to locate the axis of the instrument shaft in the image.

The second transformation, 7,"(6,t), defines the marker frame with respect to the

shaft axis frame in terms of € and ¢, the rotation about, and the translation along, the
shaft axis x,. The entire length of the marker body can be used to estimate the shaft

axis frame while the marker pattern is used to estimate 6 and ¢ .

Assuming the instrument shaft lies in the plane of the 2D ultrasound image, the
marker body appears as a line of high pixel intensity. This line represents a thin strip
along the surface of the marker facing the ultrasound transducer. The marker pattern
appears as a sequence of bumps along the bright line produced by the body.

image coordinate frame

Vi

Xy

t 14 intermediate
frame
2y
instrument ig\‘r_)@ X, Va
X
M
Yu

marker coordinate frame

Z;

ultrasound image

Fig. 2. Ultrasound image plane and coordinate systems Fig. 3. Marker pattern
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The transformation 7} is estimated by fitting a line to the high intensity marker
body image and selecting as the frame’s origin, 7;,, one of the two points where this
line intersects the image boundary. The frame’s x-axis, x, is selected to lie along the
instrument’s shaft axis and its z-axis, z, is taken to coincide with z;, orthogonal to
the image plane. Note that the axis x, is offset from the image line in the £y,
direction by the known radius of the marker body.

Transformation 7T, is estimated from the bump locations associated with the
imaged marker pattern. As shown in Figure 3, the z, coordinates of the n bumps are

l }T. This vector is related to the marker pattern

) n

combined in a vector [ =[l,,,..
through 6 and ¢ by

(0.0)] [ £(0) :
00 _1LO) @)
I, (é,t) £, @) !

in which the components of the vector f (9) are functions describing the =z,
coordinates of the marker ridges as functions of rotation angle € about z,, . In this
equation, ¢ is seen to be the magnitude of r,,,, the vector describing the origin of
marker frame M with respect to shaft axis frame A, measured along x, .

In terms of the vector [, the constraint that each position along, and rotation about,
the cylinder’s axis corresponds to a unique ultrasound image of marker pattern can be
expressed as

1(0,,1,)—=1(0,.1,)=0<(0,,1,)=(6,.1,) VO€[0...27m), 1€ R. (3)
Combining (2) and (3) gives the constraint in terms of f (),
f(6)-f(6,)#au VaeR. “4)

By (2), a marker pattern must possess at least two ridges (n > 2) to provide a unique
solution for 6 and ¢. By (4), the curves describing these two ridges must differ. For
markers with more than two ridges, (2) is overdetermined providing the means to
reduce measurement error. For marker patterns satisfying (4), solutions for € and ¢
can be found by the following procedure. First note that ¢ can be expressed explicitly
in terms of 6 by

t=u'"(1—f(0))/n. (5)

The error vector [ — f(6) — tu can be expressed solely in terms of 6 using (5) and its
minimum norm solution corresponds to 6,

(6)

0 = arg min
0<a<2m

= fla) -

u' (1 fw) UH

n
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2.2 Error Analysis

The resolution of the marker depends fundamentally on the error in measuring the
individual components of /. This error arises from four sources: random noise, finite
image resolution, marker manufacturing defects, and misalignment between the image
plane and instrument shaft. Since noise and image resolution involve the imaging
system, they are assumed to affect all elements of / equally and are treated as one error
source. While manufacturing defects can cause unevenly distributed error, for simplicity
they are treated here as noise affecting all elements equally. Distortion of / caused by
misalignment of the instrument in the image plane is assumed to be small, due to both
the length of the instrument shaft and the narrow width of the ultrasound image.

Error estimates in fand 6 based on measuring the components of [ can be
obtained by first linearizing (2) about a nominal angle, 6, .

_(& (o) o) 0

l‘[aeL{_ O+n+|f(0) [39]9” 90]—[]‘ @) u] |+9@).
Least squares solutions for ¢ and @ are given by the pseudoinverse of [ f ! 6,) u] as

bT f/Tu ,
= l—~), b=|u— ]
t bTu( 7) [u [f’Tf’]f] 8)

cr ;o ",

O=apll=n) e= [f [—M ]u] ©

The linearized error estimate for rand 6 is given by multiplying the error factors
"b/bTu” and "c/ c'f /", respectively, by the standard deviation of the error in the
components of [ . The error factors are functions of the nominal angle 6, .

Marker pattern length corresponds to the total range of values in f (&). As can be
seen in (8) and (9), design changes, such as increasing the number of ridges (ie.

. . . . . /
increasing |lull) or increasing the ridge slope, f', can reduce the error factors. Such

changes, however, also increase the marker pattern length. As a result, there exists a
tradeoff in marker design between the stated design constraints of minimizing
measurement error and minimizing pattern length.

3 Example

Figure 4 depicts one possible marker pattern (also shown in Figures 1b and 3)
consisting of three ridges described by sine waves of equal amplitude, but with phase
lags of 27/3 and displacement offsets of 3,

T

f(0)=|asin(0)+a, asin[G—&—z?ﬁ}—l—ﬂ—i—a, asin[@—l—%]—i&ﬁ—i—a (10)
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Fig. 4. Plot of f (6’ ) versus @ for the example Fig. 5. Error factor versus length for the
marker example marker

This choice of f(6) is such that u' f ()= 3(a+ 3) for all §. Consequently, the
dependence of ¢ on 6 in (5) is eliminated yielding the explicit solution,

t=(u"l-3(a—pB))/n a1
and the expression for 6 simplifies to
0 = arg min |l — f(o) — tu] . (12)
0<a<2m

The pattern parameters are & =3.48mm and £=9.02mm resulting in a pattern
length of 25 mm. Here, /3 is selected to ensure minimum separation of the ridges.

Using (8) and (9), the error factors for ¢+ and 6 are 0.58 and 0.23 rad/mm,
respectively. A plot of theoretical error factors for a variety of other lengths, obtained
by varying «, is shown in figure 5.

The marker’s cylindrical body is constructed with plastic by a rapid prototyping
process. This enables shallow grooves to be located precisely on the outer surface, in
which 1 mm diameter hollow plastic tubing is glued to form the ridges. Marker
dimensions are as follows: body inner diameter Smm, body outer diameter 7 mm, and
overall marker diameter 8mm.

3.1 Experimental Evaluation

Two imaging experiments were performed to determine the example marker’s
accuracy and verify its predicted error factor. Images were generated using a 3.5
MHz 2D ultrasound probe (Analogic, Peabody, MA). The scan head was mounted to
a linear micrometer stage over a tank filled with degassed water. A rotational
micrometer was fixed to the side of the tank, and a Smm diameter stainless steel rod,
simulating the shaft of a surgical instrument, was attached such that it extended into
the imaging plane and could rotate about its axis. The markers were then placed on
the rod for imaging. The complete test apparatus is shown in figure 6.
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scan head
marker
Fig. 6. Test apparatus Fig. 7. Ultrasound image of a marker showing
surface contour (line) and bump locations
(arrows)

In all experiments, ultrasound images were analyzed offline in Matlab (Mathworks,
Natick, MA). Images were initially filtered with a Gaussian kernel to remove high
frequency noise. Surface contours were then obtained via threshold edge detection,
super-sampled by cubic interpolation, and filtered to smooth the bumps. An example
surface contour is shown in Figure 7. Analysis required an average of 0.047 sec. per
image (21 Hz) on a Pentium 4, 3.5 Ghz desktop.

The first experiment established the error in the components of [ at a variety of
image regions. At each region, the scanhead was translated randomly 20 times within
a 15 mm range along the marker’s axis while the marker rotation angle was held
constant. The locations of bumps in image coordinates were compared to the
corresponding scan head positions recorded by micrometer. A line was fit to the data
to determine the image resolution in pixels/mm, and the standard deviation from this
line was taken as the error in components of [ . At depths of 20 to 80 mm and +40mm
horizontally from center, error in the components of / ranged from +0.20 to +0.40
mm, increasing with distance from the transducer focal depth of ~60 mm.

The second experiment determined the marker’s accuracy. Images were taken of
the marker at a random set of 100 angles (0 — 27 rad) and positions across the width
of the image (~80 mm). Actual marker angle and scan head position were recorded
by micrometer. The errors in #and € were taken as the standard deviation of the
difference between measured values and actual values. Finally, actual errors in 7 and
6 were compared with predictions based on the error in the components of / and the
marker’s error factors defined by (8)-(9).

Error in the components of / was found to be +0.33 mm at a depth of 70 mm. At
this depth, the marker showed measurement errors in ¢ and 6 of +0.22 mm and
+0.089 rad. Based on the marker error factors, predicted measurement errors are
+0.19 mm and +0.077 rad.

4 Discussion

The experimental results show that the example markers have comparable accuracy to
other methods of tracking instruments. They also confirm the marker error analysis by
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showing a small difference between actual and predicted measurement errors. Higher
image resolutions and higher probe frequencies will likely lower the error in the
components of [ and thereby increase marker accuracy.

The results also verify that marker analysis can be accomplished with simple image
processing. More sophisticated approaches, such as physics-based techniques, may
produce further reductions in error.

The family of markers proposed in this paper is also amenable to 3D ultrasound
imaging. In particular, it removes the constraint of 2D imaging that the instrument
shaft be aligned with the image plane. Since the 3D analysis will be comparable to the
2D approach, the marker accuracy demonstrated with 2D images will likely be the
same for 3D images which possess the same error in the components of / .

In conclusion, the markers presented have been shown to be a simple, cost-
effective, and accurate approach to image-based instrument guidance.

Acknowledgment. This research was funded by the NIH, grant #R01 HL0O73647.
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Abstract. Percutaneous radiofrequency ablation has become a frequent-
ly used technique for the treatment of liver cancers, but still remains very
difficult to plan. In this paper, we propose a robust method to delineate
on the skin of a 3D reconstructed patient the zones that are candidate
for an insertion, because they allow a safe access to the tumor without
meeting any organ, and to compute automatically within these zones an
optimal trajectory minimizing the volume of necrosis covering the tumor.

1 Introduction

Radiofrequency ablation (RFA) of liver tumors is a relatively recent technique,
that has been increasingly used in the past few years. The percutaneous pro-
cedure has proved its effectiveness, relative safety and predictability. It has the
advantage to be minimally invasive, that means lighter operations and shorter
hospital stays, becoming a good option for unresectable cases or small tumors.

This approach consists in inserting a probe through the skin towards the
tumor, and causing coagulative necrosis of the tumor by heating the tissues
surrounding the probe’s tip above 60°C thanks to an ionic agitation due to the
principle of microwave. The success of such an operation closely depends on the
choice of an optimal strategy for the insertion of the RF probe through the skin,
even though this choice remains very difficult for a physician, who can only rely
on 2D slices acquired from CT scan or MRI.

Our long term objective is to elaborate a complete tool for patient-specific
treatment planning, surgeons training, and even robotically assisted interven-
tions, including all steps from the 3D reconstruction of the acquired images to
simulation and assistance, including image analysis, 3D modeling, 3D interac-
tion, haptics and virtual reality, augmented reality, automatic planification, and
robotics. In this paper, we will only focus on one part of this work, currently in
progress, concerning the automatic planification of an appropriate strategy for
needle placement, and detail our first encouraging results.

After a brief state of the art in Section 2, we will expose our new method
in Sections 3 and 4. Then we will discuss the results, report the few remaining
problems of our approach, and give perspectives for our future works.
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2 Previous Works

2.1 General

First of all, our work is based on an abundant literature about RFA, explain-
ing widely the profile of candidate patients, the principle and the effects of the
process, existing devices and usual treatment strategies, the nature of possible
complications, the reasons why complications or failure may occur and the oc-
curring rates, and the procedures that improve the treatment, for hepatic or
other tumors, and for percutaneous, open, or laparoscopic procedures [1,2,3,4].

In addition to a need from radiologists, our project also takes its motivations
from works proving how an important part of the success of an intervention was
played by the training and experience of the surgeons [5]. That is why a realistic
training simulator can be very useful in the formation of novices. Moreover, it
has been underlined that an volumic view improved the success rates [6], so we
think that helping the radiologists in having a better visualization, and even
providing him an assistance for the treatment planning can be of valuable help.

In computer science, many works have been focused on simulations of cancer
treatments, a few ones concerning RFA, or cryotherapy that has a lot of common
points. Most of the developments use finite elements methods, reproducing the
thermic exchanges within the teated area [7,8]. However, this approach has the
drawback to be quite slow, whereas one of our objectives is to have a low-cost and
transportable solution, working on a common laptop. Treatment planning has
been less studied for RFA, but there are close works in neurosurgery, where we
find comparable objectives: destroying tumors and damaging as less surrouding
tissue as possible, even if the constraints are not the same [9].

2.2 Basis of Our Works

The tool we are developping is based on works, presented a few years ago, about
automatic 3D reconstruction of slices from enhanced spiral CT scans with 2 mm
cuts acquired from patients with liver metastases [10]. The software detects,
delineates and reconstructs automatically their liver, pathologies, and surround-
ing organs. It produces realistic and manipulable 3D scenes representing the
anatomy of the patients.

Then, we added the possibility to perform simulations of RFA [11], based
upon the characteristics of the Berchtold HITT needle. A user of the simula-
tor can add virtual probes into the 3D scene of the patient’s organs, and then
freely manipulate them. During a simulation, the lesion zone is estimated and
simulated as a simple mesh representing the 60 °C isosurface, most of the time
approximated as being a simple spheroid, that is deformed when necessary to
simulate the heat-sink effect caused by large vessels.

First attempts were also leaded to perform an automatic treatment planning
for RFA [12]. We proposed an algorithm able to find automatically a secure
trajectory for the needle, covering the whole tumor plus an additional security
margin while minimizing the damages on healthy cells and avoiding other organs.
The first part of this algorithm finds the minimal spheroid containing the tumor
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given a fixed trajectory for the needle, and computes its volume. The second
part is based on a classic minimization method, the Downhill Simplex algorithm
[13], and tries to find the smallest minimal spheroid by varying a set of parame-
ters corresponding to the needle’s position and orientation. To avoid organs, we
simply return a penalty volume for candidate trajectories that would meet an
organ, in order to eliminate this candidate. With this method, we managed to
obtain satisfying results in terms of volume, with acceptable computation times.

However, a few problems still remained. The major of them was that we
observed that this approach was quite dependent on the initial position from
which the process was launched. Two phenomena were involved. The first one
was due to the Downhill Simplex method we use, that is known to be sensitive to
local minima. The second one was due to the way we avoid organs: it leads the
minimization process to be bounded into a zone delimited by the surrounding
presence of organs. Then, if the initial position was located within such an area,
the minimization process was not able to cross the virtual boundary, and was
limited to the minimum of the considered area. Due to these problems, the
planning could not be really considered as being fully automatic, as it depended
on the initial data determined by the user. As we wanted it to be fully automatic,
we tried to find ways to solve these problems. That is the main purpose of this
paper, and we describe in next section the solutions we propose.

3 Determination of the Candidate Zones for Needle
Insertion

The algorithm we propose acts in 3 phases. The first one is the delimitation of
the zones of the skin where a needle can be inserted and reach the target without
meeting an organ. Let us describe this phase more in detail.

3.1 Simplified Algorithm

If we consider the tumor as a visualization point, we have to solve a visibility
problem. All the points that are visible from the tumor point of view without
being hidden by any organ are candidates. Of course, the tumor cannot be
considered as a single point of view, because it has a volume, but we’ll explain
later how we can extend the proposed algorithm. For simplicity and computing
efficiency, we do not consider all the points of the surface of the skin, but only the
triangles of the mesh. One triangle is considered as visible if every point in this
triangle is visible, hidden otherwise. That means that if one triangle belongs to
the accessibility zone, any needle insertion in this triangle that reaches the tumor
(tumor considered as a point) will not collide any organ. Then we only have to
determine the visibility of each skin’s triangle from the tumor. To do this, we
place a camera at the point of view, and compute 6 views of the scene, each one
corresponding to one face of an imaginary projection cube around the tumor. If
one triangle is hidden by an organ (except liver), there will be at least one view
in which it will be detected. Triangles not detected as hidden are visible.
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3.2 Algorithm Taking into Account Tumor’s Volume

Let’s now consider the whole tumor volume. We will say that a triangle is visible
from the tumor if it is visible from at least p% of its voxels. In practice, we
will only consider triangles that have a 100% visibility, in order to ensure that
the whole tumor is reachable from the zone without any obstructing organ. To
compute the 100% visible triangles, we could launch the previous algorithm from
each tumor’s voxel, considering it as the projection cube. In order to optimize
the algorithm, we only examine external voxels of the tumor. Among them, we
only compute the views corresponding to faces adjacent to other external voxels.
On Fig.1 the considered faces in the tumor are drawn in thick. For each view,
if a triangle is hidden we eliminate it from the list of candidates, that will be
called the 100% zone. An example of the 100% zone is shown on left of Fig.2.
The time taken to determine the 100% zone mainly depends on the number
of tumor’s external voxels, as seen in Table 1, but it is not the only influencing
factor, as can be seen comparing cases 2 and 3, and cases 4 and 5, where the
number of tumor’s external voxels are quite the same but times are different. The
complexity of the scene and the skin’s mesh have a reduced but not insignificant
influence on the execution time. We can see for instance in cases 1 and 2 that,

skin

Fig. 1. Computation of the candidate zones on the skin

Fig. 2. Left: example of a computed 100% zone (in transparent with a thick border,
1 c.c.); Right: example of computed optimal trajectories for each of the 3 c.c. of the
100% zone (here in opaque with a thick border)
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Table 1. Execution times for the computation of candidate zones in 5 cases. The
number and surfaces of the obtained zones can be found on Table 2.

case # nb. of tumor’s nb. of skin’s nb. of other execution
external voxels triangles organs triangles time (s)

1 220 2106 207257 43

2 401 2055 150187 63

3 417 2062 185509 74

4 1198 2074 141285 186

5 1120 1953 171401 175

the execution time is barely the same, showing that a large number of triangles
compensates for a small number of voxels. In cases 4 and 5, the number of skin’s
triangles seems to make the difference and to lengthen the process. Times are
computed with a Pentium 4 with 1,5 GHz and 768 Mo RAM and a Radeon 8500.

4 Candidate Optimal Trajectory for Each Zone

After the computation of each connected component, the goal is to launch the
minimization algorithm in each component in order to compare the respective
minima and choose the best one. In previous works, we used to choose randomly
an initial position of the needle, and launch the minimization process. When a
candidate trajectory collided an organ, the volume of the lesion was artificially
increased. Here, for the second phase, we will use a quite similar approach.

On a first idea, we tried to launch the minimization from a randomly chosen
triangle of the connected component. The results were satisfying for small, con-
vex zones. But in larger zones, the algorithm often fell into local minima. We
decided to add an initialization phase, to bring the initial position closer to the
minimum. We make a quick estimation of the burnt volume for the barycentre of
each candidate triangle, with the tip of the needle placed in the centre of the tu-
mor’s bounding box (not axis-aligned). Then we compare the obtained volumes
and initialize the needle in the position of the smallest one. If the initial position
corresponds to the good valley, the needle will reach the good minimum.

On Table 2 we can see the difference between the obtained minima, with or
without initialization phase. In this table, we only mentioned connected compo-
nents containing more than one triangle, because we consider zones with only
one triangle as being too risky (too closely surrounded by organs). We can see
on Fig.2 the result of this process for the three 100% zones obtained in case #4.

We observe that the initialization phase is more or less efficient according
to the size of the region. The bigger the region is, the more the minimization
with initialization can improve the result: we notice that we obtain an average
gain of -0.213 mL for zones larger than 10 cm?, whereas we obtain no gain (or
infinitesimal) for smaller zones. This is probably because in large regions there
are more local minima in which the process could fall, and starting the process
in the appropriate valley prevents more often from a wrong convergence. When
the zone is small, the method provides approximately the same result in volume.
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Table 2. Results of the minimization for each candidate zone, for 5 patient cases, with
and without initialization. Last column: objective to reach.

case connected  size of the  without init. with init. theor.
# component # component min. vol. time min. vol. time min. vol
(cm?) (mL) (s) (mL) (s)  (mL)

1 1 234,4 3,588 12 3,067 13 2,730

1 1,1 7,227 18 7,222 16

2 1,6 7,180 12 7,180 12

3 2,2 6,888 13 6,859 13 6,830

4 2,3 7,532 8 7,534 8

5 12,0 7,698 12 7,596 12

6 92,0 7,070 15 7,073 13
3 1 3,2 5,823 11 5,837 7

2 5,0 5,846 10 5,827 8

3 5,2 5,740 12 5,739 12

4 150,6 3,858 26 3,831 14 3,059
4 1 43 13,707 16 13,751 11

2 10,8 12,270 15 11,960 13

3 28,1 10,610 16 10,618 14 8,876
5 1 12,0 13,698 20 13,678 13

2 79,0 11,841 19 11,805 13

3 162,9 10,216 18 9,301 20 9,304

Concerning execution time, we noticed that the minimization process itself
converges faster when the needle is previously positioned. If we add initialization
and minimization times the total time sometimes increases, but in most cases
does not exceed the time witout initialization. We even have an average gain of
-2.41s. In conclusion, we think that the initialisation is always useful: for large
regions it allows to provide a sizeable better volume, in other cases it speeds up
the process.

On this table, we also mentioned in the last column the theoretical minimal
covering volume that could be reached if the surrounding organs were not taken
into account, that can be seen as a goal: for each case, this volume is written
in front of the best candidate trajectory. This value is computed thanks to an
exhaustive sampling method. Most of the time, this theoretical minimal volume
doesn’t correspond to a possible needle insertion point, but we can see that we
manage to find a very close result within authorized areas, with an average of
only +0.57 mL, i.e. +11.52% of the theoretical values, that is encouraging.

5 Discussion

Until now, we always considered the optimal trajectory as being the one provid-
ing a minimal volume of burnt tissue, that was the aim of this work. However,
we have to notice that a radiologist would not always make the same choice.
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First of all, we did not take into account some additional constraints, such as
the length of the needle, or the level of risk. Sometimes, the trajectory is good,
but impossible to reproduce in practice. To solve these problems, we plan to
eliminate triangles being too far from the tumor, and to add an extra margin
around organs, except bones that can usually be safely approached by the nee-
dle, in order to eliminate unfeasible insertion points from candidates. An other
solution would be to compute a “risk level” for every candidate triangle, and to
give triangles with a high risk level a penalty when performing the minimiza-
tion. The strength of the penalty could be chosen by the radiologist, from 0
to 100% penalty, the latter leading to a total elimination of the risky insertion
points.

Another criterion that could be taken into account is the distance between
the chosen entry point and the tumor, as in some cases a radiologist may prefer
a more direct insertion. But in some other cases, if the tumor is located close
to the capsule, the radiologist would choose a trajectory including a portion of
healthy liver tissue instead of a direct access to avoid a possible hemorrhage.
Many other criteria like these ones can be cited, and the planning process would
benefit if they were included in the process. That is why we plan to work on the
integration of these numerous and not always quantifiable constraints.

We also plan to find ways to include those various informations into the
interface, in order to help the radiologist if he wants to choose himself among
the possible trajectories or even among the proposed insertion zones. The major
problem is the amount of necessary information that would be added to the vi-
sualization area. To avoid an overload of the visual information, that is very rich
yet with the view of the volumic data, we are currently studying the approach
of using haptic interfaces for the materialization of extra information.

Finally, we would also like to try to speed up the process. At first, we consid-
ered the idea to eliminate very small regions, for instance < 5c¢m?, that would
sometimes reduce significantly the computation time. But we decided to keep
them because for some cases a very optimal solution could be found in one of
those very small regions, and according to radiologists the small size of a region
is not really a problem to reproduce. Moreover, as we plan to couple our method
with a robot [14], trajectories in these zones can easily be reproduced.

6 Conclusion

In this paper, we presented an algorithm that automatically computes an optimal
needle trajectory, for the planning of a RFA intervention. This algorithm first
selects the possible entry zones on the skin, i.e. the zones from which we can
reach the tumor without meeting any organ, then computes for each zone the
trajectory minimizing the volume of the necrosis zone covering the whole target.

In the future, we plan to improve the algorithm by integrating other criteria
in the planning process, as the minimization of the volume is sometimes not the
only factor that is taken into account by radiologists to consider a trajectory as
optimal, always keeping in mind the reproducibility of the proposed trajectory.
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Abstract. The paper is concerned with determining the feasibility of
performing telesurgery over long communication links. It describes an
experimental testbed for telesurgery that is currently available in our
laboratory. The tesbed is capable of supporting both wired and satellite
connections as well as simulated network environments. The feasibility
of performing telesurgery over a satellite link with approximately 600 ms
delay is shown through a number of dry and wet lab experiments. Quan-
tative results of these experiments are also discussed.

1 Introduction

The use of minimally invasive surgical systems for performing remote surgery
(telesurgery) has the potential to significantly improve healthcare in remote com-
munities and provide cost effective services. While robot-assisted on-site mini-
mally invasive surgery (MIS) has became a routine procedure, there has been
very little experience gained so far in remote teleoperations of robotic MIS sys-
tems [1]-[5]. Our aboratory is currently developing and testing new infrastracture
to investigate the feasibility of telesurgery over wired and satellite communica-
tion links. This work concentrates on the following issues: 1) development of an
appropriate testbed; 2) dry lab experiments to evaluate the effects of communi-
cation latency; 3) determination of tasks that are appropriate for telesurgery; 4)
wet lab experiments in the presence of different amounts of latency; 5) determi-
nation of the type and amount of training required for telesurgery.

It is well known that delays and disturbances in communication links can
severely degrade the quality of teleoperation. However even approximate limits
on such operations are currently not known. The experiments conducted in our
Telesurgery Research Laboratory at CSTAR are aimed at addressing some of the
issues related to telesurgery over large distances. In this paper, we present results
that provide a quantitative evaluation of the effect of latency on the performance
of telesurgery using both dry lab and wet lab (animal) experiments.
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2 Experimental Setup

The experimental setup consists of the following two major units: a teleoperation
capable ZEUST™ robotic MIS system [1] with both the surgeon’s console and
the surgical robot located in our laboratory and a communication network with
its monitoring equipment.

A redundant dedicated communication link consisting of three different
modalities has been established with the help of Bell Canada and Telesat Canada.
These include a wired link via Halifax with a roundtrip delay of 64 ms, a satel-
lite link with a roundtrip delay of 580 ms, and a software simulated delay link
through a local switch. The network design provides considerable flexibility for
expansion and redeployment, sufficient redundancy and graceful degradation in
case of communication failures. The setup has been found to be suitable for both
dry and wet lab experiments as described below.

2.1 Telesurgery Unit

The ZEUST™ robotic MIS system has been designed using a master-slave phi-
losophy as described in [1] with the master (surgeon’s console) and the slave
(surgical robot located in the operating room) comprising completely separate
units that are both IP capable. The surgical robot at the patient side contains
three robotic arms, two of which are used to manipulate laparoscopic surgical
intruments while the third holds an endoscopic camera. The latter provides a 2D
view of the surgical area inside the patient. All three arms are controlled from
the surgeon’s console. The arms are controlled remotely through a sequence of
packet-oriented digital commands from the surgeon’s console, and are delivered
through a standard 100 base T ethernet network connection. The surgeon’s con-
sole has two 5 degrees-of-freedom “arms” that are used by the surgeon to manip-
ulate the two robotic arms at the patient side that are connected to laparoscopic
surgical tools. The endoscopic camera unit at the patient side is controlled from
the surgeon’s console. The surgeon also has a view of a video stream provided
by a color video camera located at the patient side.

An additional unit described in [1] allows the telesurgery system to operate in
UDP/IP mode thus avoiding time-outs due to large delays. The unit is designed
to lock the operation of the robot if the packet loss in the communication network
becomes unacceptably high.

The video signal from the endoscopic camera in compressed by an encoder
to preserve bandwidth. The encoder introduces a 100 ms processing delay. The
image is restored into the original video format at the surgeon side by means of a
decoder. An additional function of the encoder/decoder is to enable one to vary
the effective transmission bandwidth utilized by the system. This is because
most of the bandwidth resource is consumed by the videotraffic. Two sets of
encoders and coders are used to provide redundancy. Both the surgeon and the
patient sides are equipped with IP compatible Polycom ViewStations allowing
lower quality video and audio interaction between the two sides. This link is also
used to convey instructions from the surgeon to the remote side (such as turn
on/off ultrasound scalpel, etc.).
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2.2 Networking

The general network configuration is shown in Fig. 1. All individual devices are
connected to each other using a standard IP interface. This enables the sys-
tem to be easily deployed, be readjusted or be augmented by new tools. Signals
from all devices are collected and multiplexed by aswitch, creating a single data
stream directed by a router. The networking hardware is fully redundant on
both sides. The system automatically chooses between switches to obtain the
most reliable link. The total bandwidth provided by Bell amounts to 10 Mbps
which is sufficient for transmitting all of the necessary signals with a high level
of priority. Routers on each side can be connected in different ways to emulate
different modalities of the deployment. The first possibility it to connect through
a dedicated computer equipped with the NetDisturb software [2]. This modality
can be used for the purpose of training and testing of the system under a great
variety of simulated conditions. The software allows one to isolate particular net-
work parameters to study their influence on the setup performance. The second
option includes a wired high quality, low latency (approximately 65 ms round
trip)connection which loops from London to Halifax and back. Coupled with
the delay in the codecs, this is roughly equivalent to a 200 ms round trip delay.
Finally, a Telesat satellite link can also be included in the loop, providing a link
with a variable time delay of approximately 600 ms round trip with some jitter
and packet losses. Inclusion of such a segment is a substantial contribution since
no such experiments have been reported in the literature. A protocol of switch-
ing between the wired and satellite loops has been agreed upon between the
involved parties and the switching itself has been routinely used during actual
experimentation.

T
Telosat Sogment

350 Surgeon side | Patient side
. . ! ) N , . ;
50 100 150 200 250 300 850 400 450 500

Fig. 1. Network configuration

2.3 Experiments

We have conducted numerous experiments to evaluate the performance of the
system. In contrast to previously reported feasibility experiments [1],[3]-[6], we
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have conducted a number of trials that provide more quantative information
about such important parameters as completion time and quality of surgery.
In this paper, we focus our attention on the dry lab experiments while briefly
reporting the results of the wet lab experiments which are still ongoing and will
be reported in detail at another time.

2.4 Dry Lab Experiments

The robotic exercises were designed to simulate typical surgical maneuvers.
These involved object grasping and precise placement, object steering, and curved
needle manipulation using the laparoscopic tools manipulated by the robot arms.
We did not simulate more complex tasks such as knot tying or precise suture
placement. Due to the technical limitations of the ZEUS robotic system, such
complex tasks are quite difficult to complete even without any latency thus re-
sulting in a very 'noisy’ data set. The following exercises were evaluated:

1. Pick up a cone with the left hand. Place in a circle. Return the cone to
its original position with the right hand. Pass it back and forth six times.
Repeat this procedure four times for one data set.

2. Pick up a 6-0 suturing needle with the left hand. Maneuver the needle to
enter at the left dot and exit from right dot. Retrieve the exiting needle with
the right hand. Hand over the needle to the left hand and repeat six times.
Repeat this procedure four times for one data set.

3. Pick up a ring with the left hand, grasping the ring at the black line. Maneu-
ver the ring with both hands so that the right hand only holds it at the black
line. Do not drop or let the ring touch the surface during the maneuver. Pass
the ring back and forth four times. Repeat this procedure eight times for one
data set.

4. Pick up a rod with the left hand. Pass the rod through three hoops without
touching the hoops. Pass it back and forth through the hoops four times.
Repeat this procedure three times for one data set;

Four test subjects with no previus experience (students with science back-
grounds) were assigned to complete the surgical exercises. These subjects had
dayly access to the robotic system and has performed the exercises five days per
week over a period of four months. Therefore, they were continuously exposed
to the system and had the opportunity to learn and adapt to the system.

The group performed the surgical exercises at latencies from 0 to 1 s, in
increments of 100 ms. At each latency, each subject completed four data sets for
each exercise. Additionally, the subjects performed the exercises with random
delays between 0 to 1 s at the end of the training period. Task completion times
and error rate were recorded for all exercises.

The delay in the network was controlled by the NetDisturb software. For
each delay, the completion time and a number tally of errors for the maneuver
were recorderd and later plotted as a function of delay. It was observed that a
relatively small number of repetitions of the same maneuver led to a reduction
of task completion times due to learning. It was also found that the effect of
delay is not pronounced until the round trip time exceeds 400 ms.
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2.5 Wet Lab Experiments

The wet lab experiments were designed to conduct an internal mammary artery
(IMA) takedown on a pig using the ZEUST™ Telesurgical System. The procedure
was divided into two 45 min. segments each using a different C-STAR network
asset. The first segment used the Halifax loop (64 ms roundtrip delay) and the
second used the satellite (537 ms round trip delay). Following each segment, the
length of the IMA dissected was measured and the surgeon’s skills were assessed
according to the “Objective Structured Assessment of Technical Skills” sliding
scale. During the first segment, 3.5 ¢m of the IMA was dissected, and in the
second segment, 4.5 ¢m of the IMA was dissected. The surgeon was able to
perform at both latencies with fluid instrument movements, maximum efficiency
and no inadvertent damage to the tissue.

3 Experimental Results

A few representative results of the dry lab experiments described above are
shown in Fig. 2. It shows the completion time for different experiments as a
function of the delay. The experiments were conducted by a group of inexperi-
enced users who were asked to repeatedly conduct the experiments starting from
a negligible delay and then with delay increasing by 100 ms for each new set of
runs. Solid lines in Fig. 2 illustrates the effect that we call long-term learning.
This type of learning has to do with improving performance through repeating a
task a number of times. The effect of long term learning remains with the partici-
pant over the whole period of experiments (just over three months). The gradual
decline in completion time upto about 300 ms delay can thus be explained by
this long-time learning. This figure also indicates that the minimum amount of
training needed to properly perform simple tasks can be achieved over relatively
short periods of time, equivalent to 3-4 weeks of one hour a day, three times a
week training period.

This point can be further verified by comparing the results with incremental
and random delay distribution. The latter was performed under random delays
that were unknown to the users. The experiments were conducted after all the
users had gained significant experience in manipulating the robot thereby reduc-
ing the effect of any long-time learning. The curves clearly show that delays of
upto 300 ms do not have any significant impact on the performance of teleoper-
ation tasks. Further increase in the delay gradually degrades the performance.
However, one can conclude that it is possible to perform simple tasks with delays
as high as 800 ms with a high level of accuracy. Overall it can be concluded that
it is possible to perform basic surgical tasks in a simulated environment with
delays as large as 800 ms with moderate training.

The results shown in Fig. 3 illustrate the effect we refer to as short-term
learning. This phenomenon was observed experiments with random delays that
are unknown to the operator. Each task was performed a number of times and
it can be seen from the figure that the perfomance improved significantly at the
second attempt. This indicates that the operator adapted to a particular delay
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Fig. 2. Dependence of the completion time on the delay. The delay was gradually
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Fig. 3. Short term adaptation to a random delay

and his/her performance is optimized for this delay. However, once the delay
changes, the skills acquired are no longer applicable and the operator has to
adapt to a new delay. The skills acquired are therefore helpful only for a short
period of time.

4 Heuristic Mathematical Model

While one cannot expect that a simple and accurate mathematical description
of telesurgery can be developed, it is reasonable to explore the applicability of
some basic models, based on Fitts’ law [9] or feedback control.

The crossover model [7]-[8] with one pole the open loop transfer function:
G (s) = we/sexp (—sTp) and the unity feedback is widely accepted as a model
for a human operated control system. In essence, this is the simplest possible
model which reflects the following fundamental properties of a human operator:
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Decision is based on some sort of information feedback; the human operator is
able to react only to relatively slow changes in stimuli limited by the so-called
crossover frequency w,, and there is some delay 7p between an observation and
the reaction of the motor system.

In the absence of the delay 7p = 0, the model gives a simple estimate of
the task completion time for moving an object over a distance A and placing
it onto a target of width W: T, = 1/w.In(2A4/W) if the task can be consid-
ered complete when the position of the target is in the range A + 0.5W. This
result agrees with Fitts’ law [9]. In the presence of a delay, one can distinguish
three different regimes of operation: for relatively small delays, the exponential
approach to the target remains, albeit the time of completion may be reduced
; for intermediate delays the system maintains stability; however, the approach
to the target becomes oscillatory which, in turn, increases the completion time.
For large delays the system becomes unstable or even chaotic [10].

While the model is simple and describes the main features concerning the
human operator, it does not reflect such features as learning due to repeated
practicing and adaptation to the delay during a single run of an experiment. We
suggest the following generalization. The open-loop network is a series connec-
tion of a time-varying gain Kp(¢,7p), a time-varying crossover frequency gain
1/mn(t,7p), and the delay term. The variable gain represents short-term learn-
ing: decreasing the gain is equivalent to slowing the operation. It is assumed that
at the initial stage of the movement, the human operator estimates the delay mp
and adjusts the gain to avoid oscillatory movement. We suggest simple models
of the dynamics of time delay estimation and gain adjustment as follows:

t t
) , Kp = Kpo+ (K5 — Kpo) exp (—7_ ) (1)

TD = TDO+(TE —TD())eXp (—
a

This model reflects the fact that it takes a certain amount of time 7, to acquire
the necessary information about the delay, possible errors in the delay estimation,
ThH # 7Tp, and that there is some initial guess about the delay in the network.

The variation in the parameter 73, (7p, N) reflects the long-term learning (i.e.
learning over a number N of repetitions of the same maneuver). During one run
of the experiment, it remains constant but from run to run it may change due to
a training process. It is reasonable to assume that the time needed to complete
a task decreases from some level 739 to a level of the best possible performance
7. It is suggested that the task completion time decreases according to a power
law N—< [7].

5 Concluding Remarks

Preliminary results of the experiments indicate that telesurgery over long com-
munication links is possible. It has been found that the maximum tolerable delay
is approximately 600 ms. This allows operations to be performed over wired links
that cover most of continental Canada as well as through a one hop satellite link
which allows for a much wider coverage. While there was some degradation in
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task completion times, it was shown experimentally that this was within tol-
erable limits. It was shown that the completion time complies with the basic
Fitts’ law. The results also show that significant improvement in performance
can be achieved with proper training. However, additional work is required to
quantify the effect of learning and to determine the maximum tolerable delay.
Furthermore, an investigation of the quality of the communication channel on
performance also needs to be performed.
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Abstract. This paper introduces a novel method for ultrasound cali-
bration for both spatial and temporal parameters. The main advantage
of this method is that it does not require a phantom, which is usually
expensive to fabricate. Furthermore, the method does not require exten-
sive image processing. For spatial calibration, we solve an optimization
problem established by a set of equations that relate the orientations of a
line (i.e., calibration pointer) to the intersection points appearing in the
ultrasound image. The line orientation is provided through calibration
of both ends of the calibration pointer. Temporal calibration is achieved
by processing of the captured pointer orientations and the corresponding
image positions of intersection along with the timing information. The
effectiveness of the unified method for both spatial and temporal calibra-
tion is apparent from the quality of the 3D reconstructions of a known
object.

1 Introduction and Background

Ultrasound imaging systems are being widely used in many interventional and
radiation therapy applications. In these applications, ultrasound probe is usually
instrumented with a tracking sensor (either magnetic or optical) or an articu-
lated arm providing the estimates of position and orientation (i.e., pose) of the
probe at all times. A calibration process has to establish the transformation
from an anatomical location appearing in the ultrasound image to the coordi-
nate system established by the external tracking device. This is referred to as
spatial calibration. Furthermore, the exact timing at which the ultrasound image
is captured has to be synchronized to the positional information read from the
external tracking system. This is referred to as temporal calibration. The cumula-
tive accuracy of tracking system and calibration parameters dictates the fidelity
of the overall system to quantify anatomical locations in the desired coordinate
system. A tracked ultrasound imaging system can be used to bring anatomical
location and surgical instruments or the iso-center of a radiation beam into the
same coordinate system [2,4]. Another application is to compound 3D ultrasound
volumes for visualization and quantification [8].
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Ultrasound spatial calibration methods have widely been investigated in the
literature. There are varieties of geometrical phantoms proposed in the literature
mainly to facilitate the calibration procedure. Phantoms with sparse set of wires
are proposed in [1,3]. In these procedures, intersection points of the wires are
being imaged and are related to the known 3D position of the same point in
the phantom. In [9], the proposed phantom has a special shape with known
control points, which is then used to relate the local coordinate system of the
phantom to that of the tracking system. In [2], a Z-shaped based phantom is used
reduce the scan time and to facilitate the process of establishing correspondences
between features in the ultrasound image and that in the phantom. In [6], a more
sophisticated phantom is used, which combines strings and fiducials.

The main problem in using a phantom is that first the manufacturing of an
accurate phantom is expensive and second no matter how accurate the phantom
is, its position (or local coordinate system) has to be determined in the tracking
system either by attaching another sensor to the phantom at the some exact
position or to use control points on the phantom as beacons for registration. In
either case the accuracy of the phantom is bound to the accuracy of the tracking
system. In [7], authors propose a single-wall phantom that is very easy to use and
does not require establishing any correspondences. The equation of the wall has
to be determined in the tracking device coordinate system. Furthermore, a spe-
cial holder has to be used for scanning procedure. The number of images required
for this calibration process is rather high. In [5], authors propose a calibration
method that does not require a phantom. A calibrated pointer tip is placed into
the ultrasound beam. The traces of the pointer tip in the image and the three-
dimensional locations acquired with the tracking system are collected and used
to compute calibration parameters. The drawback of this approach is that it is
very hard to pinpoint the exact position at which the pointer enters the plane.
This is mostly because of the beam width of the ultrasound imaging system.
This effect makes the whole process inaccurate in determining the calibration
parameters, specifically regarding translation in the direction perpendicular to
the ultrasound plane.

Our proposed method is inspired by the method described in [5]. However,
we address the shortcomings of the previous method. Furthermore, we add an
essential piece for estimating the temporal lead /lag between tracking information
and ultrasound frame. In contrast to [5], we use a line pointer instead of a
“point pointer”. I.e., we formulate the problem, in a way that we only require
the direction of a tracked pointer in 3D and not the location of pointer tip.
Therefore, as long as the pointer intersects the ultrasound plane, we are acquiring
valid information for the calibration process.

2 Ultrasound Calibration

Conventional ultrasound imaging systems provide real-time two dimensional ar-
ray of pixels (i.e., I(u,v)) refreshed at the frequency of f,s. Real-time optical,
magnetic, or mechanical tracking devices are used to map ultrasound images
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taken from various positions into a global coordinate system. Let us denote the
world coordinate system of the tracking device as W, and the coordinate sys-
tem of the sensor ¢ as S;. Tracking device provides homogenous transformation
matrices "V T, relating the sensor coordinate S; to the world coordinate system
W with certain refresh frequency of f.. Spatial calibration parameters can be
presented as the combination of a homogenous scaling matrix T and a trans-
formation matrix T.. In order to map any point in the ultrasound image plane
(i.e., P, = [u,v,0,1]7) to the world coordinate system the following matrix
multiplication chain has to be computed:

pL =" T, T.T,P, (1)

where the scaling factors in horizontal and vertical directions are built into Ty =
diag(se, $y,0,1), and it is assumed that the ultrasound probe is instrumented
with the tracking sensor number 0. Furthermore, time dependency is denoted
by t. Sampling interval is usually dictated by 6t = fis' Temporal calibration
(synchronization) process is to infer Tg, at time nét (n is an integer) from the
samples available at the time intervals of i‘. The synchronization is dominated
by inherent delays, which exist in both ultrasound image formation and tracking.
Therefore, the temporal calibration parameter is a single number 7 representing
the delay, which is usually much larger than the sampling interval of either
ultrasound or tracker. For the case where the sampling frequency is identical
(i-e., fus = fir) perfect synchronization can be achieved. However, in the case
where the sampling frequencies are not identical, the time discrepancy varies in
the range of 7 £ min(f; , fir ).

2.1 Phantom-Less Calibration

A calibration procedure that does not require a phantom is proposed in [5]. In
this approach, a secondary tracked coordinate system (i.e., S1) is considered. The
pointer is in fact a known fixed coordinate P, within such a coordinate system.
By carefully placing the pointer tip into the ultrasound beam and recording both
the trace of the point in the image P! and the coordinate transformation of the
sensor attached to the pointer, one can establish the following relationship:

Wty p, =" T, T.TP., 2)

Therefore, the spatial calibration procedure can be thought of as an opti-
mization process finding eight parameters (i.e., six for translation and rotation
and two for the scaling) lumped into matrices T, and Ts, as follows:

{Te, T} = arg nin Z ||V T, P, =" T%, T T Plls|| (3)
where operator [.]3 converts homogenous to Euclidian coordinates by dropping
the fourth element, and || .|| represents Euclidian norm. The main problem with
this approach is that it is very hard to make sure that the pointer tip is exactly
in the ultrasound plane. The trace of the pointer observed within the ultrasound



68 A. Khamene and F. Sauer

Fig.1. (a) depicts the calibration method, which requires exact placement of the
pointer tip in the ultrasonic plane. (b) shows our new method that only requires inter-
section anywhere along the pointer.

image is poorly resolved. Furthermore, the width (elevational thickness) of the
ultrasound beam is not infinitesimally small, the lower bound of the error in
determining the position of the pointer tip is half of the beam width.

2.2 Proposed Phantom-Less Calibration Method

The proposed phantom-less calibration method addresses the problem of the
method discussed in section 2.1. Two or more points on the calibration stylus
(pointer) are assumed to be known. In this way, the orientation of the calibration
pointer is known. We denote the coordinates of these points as Py, and P, in
the coordinate system of the tracker sensor S; attached to the pointer. If we
position the stylus in a way that it intersects the ultrasound beam, we have the
following equation:

Ppl_Ppo

w
Ts, (Ppy + A
e ‘Ppl_PPo‘

) =" TSoTcTsPuv (4)
where A is an unknown real number with in [0 1]. In order to omit the unknown
factor A, equation 4 can e re-written as follows:

[Lorle [ T, TeTs Py =" T, Pyy ], = Osx1, (5)

where the operator [.], converts a vector to a skew symmetric matrix, and Oz
represents a null point. Furthermore, Lg; is the normalized vector within the
world coordinate system, which is connecting the points P,, and P,, with L1 =

w W
Bsi[PoyJa= "R, [Pools WR o is the 3 x 3 rotation matrix imbedded in " Ty, .
1Py —Pog sl ! !

Finally if the measurements are done for various points i, a similar relationship
as in equation (3) can be established to solve for calibration parameters:
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— . , , ; 2
{TmTS} = arg [,Ir‘nl,{,l] Z H[ 61]1 [WT‘ZSQTCTSPZ - T31PP0]3H (6)
e Ts ;

The difference between equations (3) and (6) is the matrix [L},].., which spec-
ifies the direction of the pointer and relaxes the constraint of exact intersection
of the pointer tip with the ultrasound plane.

2.3 Calibration Workflow

The calibration can be divided into three processes. First is the pointer cali-
bration, during which the coordinates of two points along the stylus have to be
determined accurately within the coordinate system of the sensor attached to
the stylus. In the second step, the spatial calibration acquisition is done. The
pointer is placed into multiple positions within the ultrasonic beam, preferably
using a grid guide that is well spread over the ultrasound image plane. The 6DOF
sensor readings along with the 2D coordinates of the intersection points on the
image is recorded and used for recovering the spatial calibration parameters. The
third process is for temporal calibration. During this step, we continuously move
the pointer while keeping it intersecting the ultrasound plane. We record 2D
coordinates of the pointer trace within the ultrasound image, 6DOF coordinates
of the pointer sensor,and the corresponding time stamps. These recordings are
then used to recover the (semi) constant delay between the magnetic pose and
the ultrasound image acquisition.

Pointer Calibration. Pointer tip calibration can be performed by fixing the tip
of the pointer and rotating the pointer about the fixed point. For two distinctive
poses of the pointer (e.g., WT% and WTY ), we have WTY P, =V TY P,.
Therefore, the pointer tip is simply:

[Pp]g = (WRgl _W RAlsl)il(thl _W tAlsl)’ (7)

where R is the rotation matrix and t is the translation vector embedded in
homogenous transformation matrix T. For more robust and accurate solution
and to avoid degeneracy in equation 7 more than two poses (e.g., n) should be
used. In this case, we select any combination pair of points, and solve a least
squares problem using matrix manipulations, as follows:

[P,]s = (RR'RR)"'RRtt (8)

where RR = [... [ R, =" R{% |..],and tt = [... [V tg =W tgl |...], and
(,7) is a combination pair from [1, n].

Spatial Calibration. For the spatial calibration, we first overlay an equi-
distant grid of points onto the ultrasound image plane. The user’s task is to
intersect the pointer with the ultrasound plane in a way that the grid points are
lined up with the trace of the pointer in the image. In order to avoid degeneracy
in the solution of equation (6), it is required the user change the orientation of
the pointer from one grid point to another. At each grid point, the coordinates
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Table 1. (a) Pointer calibration results, (b) extracted spatial calibration parameters

Calib. X y z
Trans. (mm) 27.891 21.967 -62.082

Fro 523 e LT Rot. (deg)  -47.038 -70.526 -44.386
b 800 6. 1 geale 0.187 0196 -

(a) (b)

Point X y

of the grid and the pose of the sensors attached to the pointer and ultrasound
probe are saved. It is desirable that the user performs the acquisition in the
vicinity of the workspace, where the final measurements are done specially in
the case, where magnetic trackers are used. This ensures that magnetic tracker
readings are as consistent as possible. Furthermore, it is better to change the
pose of the ultrasound probe as the user select different grid point to account
for possible variations in magnetic readings and minimize the bias in the results
by perturbing the measurement error.

Temporal Calibration. We assume that tracker and ultrasound acquisition
frequencies are known. What remains unknown is the inherent delay that exists
between the two processes. In order to measure this delay, the user holds the
pointer intersecting the ultrasound plane in a perpendicular fashion. The user
should periodically move the pointer in horizontal or vertical direction back
and forth, while the ultrasound probe is steady. During the motion, both the
ultrasound images and the pose of the pointer sensor are recorded together with
the time stamps. We then process the recorded images and extract the bright
points (in pixels) representing the pointer intersections. The dominant direction
of the point in the image (in pixels) and dominant translation parameter of the
sensor (in millimeters) are then used to recover the delay. Let us assume the
dominant direction of image point movement is in horizontal direction (i.e. r(t),
where ¢ is time) and the dominate translation is in « direction (i.e., z(t)). The
delay can be computed using the following equation:

7o (£ e o ) .

where F and F~! represent Fourier and inverse Fourier transforms, respectively,
and () denotes the complex conjugate operation.

3 Experimental Results

We performed a series of tests in order to verify the performance of the proposed
calibration process. Performance measures are considered to be the amount of
residual error in the optimization process for the calibration parameters and
the quality of three dimensional compounding of the tracked B-plane images.
In this experiments , we used images acquired by a SONOLINE Elegra ultra-
sound (Siemens Medical Solutions, Issaquah, WA) with a 50HDPL40 probe.
As tracking device, we used a MicroBird magnetic tracking system (Ascension,
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torsaction

Fig. 2. (a) depicts the ultrasound image with projected grid pattern, (b) shows the
discrepancy between the pointer intersection according to the tracking system and its
trace in the image, (c) the discrepancy is minimized after the calibration process.

Fig. 3. (a) depicts the compounded volume with overlaid B-plane, (b) shows the volume
from another view and (c) is the photograph of the actual clay model.

Burlington, VT). We prepared a 10cm stainless steel rod as the pointer. We
attached a magnetic sensor to the middle of the rod ,sharpened and calibrated
both ends using the method described in section 2.3. The standard deviations of
the end points in the world coordinate system were 0.9501mm and 0.6068mm.
The estimated coordinates of the end points are listed in Table 1(a). We acquired
calibration data as explained in section 2.3. By assuming nominal scaling for the
ultrasound image, and relaxing the orthonormality constraints of the rotation
matrix, we found an estimate of the calibration parameters in a closed-form
fashion using various measurements through equation (5). The results were then
used as initial values for the optimization in equation (6). We used Levenberg-
Marquardt method to solve the non-linear optimization problem. The residual
error of the optimization process was 0.8913 mm. Figure 2 (b) shows the intersec-
tion of the virtual pointer and the ultrasound plane with arbitrary calibration pa-
rameters. There is a clear discrepancy between the virtual and real intersections.
Figure 2 (c) shows a good match after computing the correct calibration param-
eters. The temporal calibration delay was computed to be about 96 milliseconds.
The refresh rates of the magnetic tracker and ultrasound device were 60 and 30
Hz, respectively. Since the frequencies were not synchronized up to 16 millisecond
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variable time discrepancy exists between image and tracked pose. Figures 3 (a)
and (b) show reconstruction of the clay head, depicted in Figure 3 (c), using the
real-time compounding method described in [4]. The reconstruction is performed
by sweeping the B-plane axially from head to neck. Figure 3 (a) shows the re-
construction overlaid by a B-plane in sagittal orientation. Matching outlines in
B-plane and reconstruction confirm the fidelity of the calibration parameters.

4 Summary and Conclusion

Calibration is essential for a tracked ultrasound system. In this paper, we propose
a robust phantom-less calibration approach. With this method, one can extract
both spatial and temporal calibration parameters in a unified way. During spatial
calibration, no image processing is needed. Some image processing is required
for temporal calibration. Main advantage of the method is minimizing the user
dependency during the acquisition of the data for spatial calibration. The new
approach relies on the orientation of the tracked pointer instead of the exact tip
position. Reconstruction of clay model illustrates the quality of the calibration.
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Abstract. Developing electromagnetically (EM) tracked tools can be very time
consuming. Tool design traditionally takes many iterations, each of which re-
quires construction of a physical tool and performing lengthy experiments. We
propose a simulator that allows tools to be virtually designed and tested before
ever being physically built. Both tool rigid body (RB) configurations and refer-
ence RB configurations are configured; the reference RB can be located any-
where in the field, and the tool is virtually moved around the reference in user-
specified pattern. Sensor measurements of both RBs are artificially distorted ac-
cording to a previously acquired error field mapping, and the 6-DOF frames of
the Tool and Reference are refit to the distorted sensors. It is possible to predict
the tool tip registration error for a particular tool and coordinate reference frame
(CRF) in a particular scenario before ever even building the tools.

1 Introduction

Optimal design of new electromagnetically (EM) tracked tools requires determining
the quantity, relative position, and pose of sensors on tools and the corresponding
coordinate reference frames (CRFs). Design is a tedious and time consuming process;
to optimize a tool experimentally it takes many design iterations; for each it is neces-
sary to build the tool, collect data, and perform error analysis. We propose a simulator
that allows arbitrary tool rigid body (RB) configurations and arbitrary CRF configura-
tions of any number of sensors to be virtually positioned in user-specified patterns and
distorted according to a model of a previously acquired measurement distortion error
map. This predicts the tool tip registration error for a particular tool with respect to a
patient-mounted CRF in a particular scenario before ever building the physical tools.

This work spans two distinct fields related to Image Guided Surgery (IGS). First is
tool design and optimization. There appears to be no analytical work directly related
to EM tool design, but there has been in depth analysis of optically tracked tool de-
sign. The primary work in this field is presented in a series of papers by Fitzpatrick,
West, and Maurer, the most recent of which being [1] and [2]. The second key field is
EM tracker characterization and calibration, where there has been much work so this
summary is far from exhaustive. Tracker characterization involves measurement of
the tracking errors with respect to a ground truth reference; recent work describing
this can be found in [3] and [4]. Calibration, which takes characterization information
to make a model of the measurement distortion has been presented in many papers,
including [5] and [6]. In this work, we adapted the formulation of [7], which specifi-
cally modeled Aurora tracker’s distortion.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 73 - 80, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Measurement Error Modeling

It is important to be able to map the measurement error in a distorted measurement
field of an EM tracker; such a mapping is essential for understanding how error is
affected by the environment and for modeling the distortion and further error analysis.

2.1 Measurement Error Assessment

Sensor measurement distortion is assessed by collecting a large quantity of measure-
ments from the EM tracker along with corresponding reference measures from a
ground truth. In our trials, the NDI Optotrak optical tracking system (OTS) is used as
a reference for the NDI Aurora EM tracking system (EMTS); the Optotrak has an
accuracy that is about one order of magnitude better than that of the Aurora and is
effectively immune to field distortion. The EM sensors are moved throughout the
working volume of the Aurora and simultaneously tracked with the EMTS and OTS.
By registering the EM sensors to this OTS RB and optically tracking Aurora, it is
possible to know the ground truth position and orientation (pose) of each sensor. Ref-
erence measurements are then compared to EMTS measurements for the same time
step to obtain the measurement error’s position and orientation components. Position
error is simply the translation required to align the ideal reference position to the
distorted EMTS position. Orientation error is defined as a Rodriguez vector that cor-
responds to the magnitude, @, and axis of rotation, @, required to align the OTS
reference to the EMTS measurement. The errors are mathematically represented as

—— — 3 = _ = 3
epos - pmeasured - pideal € R and eori - a)a < R . (1)

2.2 Polynomial Modeling of Measurement Error

The detailed error mapping is used to generate a model that estimates a sensor’s
measurement error at a given position and orientation in the workspace of the charac-
terized environment. Bernstein polynomials are used as the basis for these distortion

models. In general, n™ order Bernstein polynomials are defined for 0 <i<n by

n n i n—i n I’LY
B'(x)=|  [x(d=x)"", where |  |=——. ()
i i il(n—1i)!

Extending Bernstein polynomial models for measurement error in 3D measurement
space where the six error values from (1) are interpolated, for each value we have

e(x,y,2) =222 ¢, B (VB (MB(z) €R’ . @)
i=0 j=0 k=0

The model in (3) is sufficient if the measurement error of the EM system being
modeled is independent of the orientation of the sensors. However, this is not a valid
assumption for many tracking system; in particular, this is not valid for the Aurora
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system and the sensor orientation must be accounted for. The following algorithm
accounts for both position-related and orientation-related measurement error:

e Choose a set of basis orientations vectors for which the polynomials in (3) will be
generated. They should be evenly distributed as the example shown in Fig. 1.

Basis orientation vectors (14):

1 0 0

0 1 0

0 0 1
0.57735 0.57735 0.57735
-0.57735 0.57735 0.57735 ~
0.57735 -0.57735 0.57735
-0.57735 -0.57735 0.57735
-1 0 0

0 -1 0

0 0 -1
-0.57735 -0.57735 -0.57735
0.57735 -0.57735 -0.57735
-0.57735 0.57735 -0.57735
0.57735 0.57735 -0.57735

Fig. 1. Basis orientations along which distortion models are created when using 14 basis vec-
tors. Measurements are interpolated between these to determine relative contributions of each.

e For each measurement, determine the closest three base orientation vectors that
enclose the z-axis of the measured sensor reading, il , inside of a spherical trian-
gle defined by 151,132, and 153 as shown in Fig. 2. Determine the corresponding
areas of each of the three spherical triangles; these that are directly proportional
to the weighting of a particular base vector’s contribution, W, ,, to the error.

e (Calculate the Bernstein coefficients. For each base orientation, there are six sets

of coefficients in (4) to solve for: X, Y, Z, Rx, Ry, Rz.
o Normalize the measured positions to fit inside a unit cube.

o Build the six sets of equations in AX =5 form to solve in the least squares
(LS) sense for each base vector and dimension being interpolated,

wlvbei WibCay00 wl'be,'k Wi bCRey 00
-p| IEV )
w

i b€x b Wi,be;?z WibCrs, ..
Where, w;,, is the weight of the i™ data point for the b™ basis vector and

Bl (x)B(y)Bi(z) - B'(x)B'(3)B(z)
B= : ‘ ®)

By (x)B; (y)By(z) -+ B (x)B,(y)B,(z) i(n+1)?

o Solve for 6m*(n+1)* coefficients in the LS sense using singular value de-
composition (SVD), where m is the number of basis orientations.
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Measured orientation
(z-axis of sensor)

b] , b2 s b3 Enclosing three base
orientation vectors

Areas of corresponding
11,1, spherical triangles
(normalized to sum to 1)

Fig. 2. Spherical interpolation techniques determine the relative contributions of the three
closest orientations to a sensor’s measurement error (and vice versa for model generation)

3 Tool Tracking Simulation

Contrary to the more traditional application of modeling field distortion so that
measurements can be compensated in real-time (which is also a feature of our
software), we are focused on simplifying tool design by removing the necessity to
construct and test each physical tool in each environment of interest. The method is
similar to compensation methods, but sensor measurements are artificially distorted
rather than corrected.

3.1 Calculating Measurement Distortion

For a given position and orientation error at a given simulated sensor pose we have
the distorted sensor position and orientation as

Disiored = Pactual T €pos  a0d )

R, R_"'R where R =e¢ e SO®3) .

istorted = error actual > error (7)

Where, $0 = skew((i)é’)e so(3) and e, =m0 is the Rodriguez vector representing

the axis and angle of the estimated orientation error.
The above equations require the estimated measurement distortion for a given sen-
sor pose, €, and e .. The process for determining the error is very similar to that of

generating the distortion model; the error is calculated as

3 n.n_n e os
e(x,y,2)= 2 w,| DD D€ B (B} (1B (2) |= ép eR". ®)
b=1 j

i=0 j=0 k=0 ori

Where, the values for b correspond to one of the three closest basis orientations as
described earlier and w,, corresponds to the contribution of each basis orientation.
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Fig. 3. Residual error for 1025 sensor measurements compensated for with a model generated
an using independent data set of 1025 sensors as a function of polynomial order and angular
resolution. An order of zero represents the original measurement error with no compensation.

3.2 6-DOF Frame Fitting

The frames {F,F,,---,F,} represent the known position and orientation of n sensors

with respect to the given RB frame of reference (i.e. a frame centered at a tool tip and
aligned with a pointer shaft). Since sensor frames for the Aurora are only specified in
5 DOF, they can be represented as F, =(ii,, p, ) -

De-meaned values of sensor positions are necessary to compute the optimal rota-
tional alignment of an RB configuration to the corresponding measurements. These
values are the measurements in the RB frame with the position of the center of gravity
(CQG) in the RB frame subtracted off. The best rigid point cloud to point cloud rotation
that aligns the sensor RB configuration to the measurements is found in the LS sense.

Weighted orientations are treated the same way as the demeaned points; the
weighting factor, w, keeps the position and orientation contributions balanced. The
method is a modified version of that presented in [8], with the modification being the
addition of orientations as just mentioned. Two variables are defined in (9); X repre-
sents the configuration of the rigid body’s sensors with respect to its own frame
(denoted by subscript RB), and Y represents the corresponding positions and
orientations for the actual sensor measurements (denoted by subscript Meas).

(f’RB, ’ﬁm& )’I (f’th‘ ’§Mu\ )I

©)

Where, n represents the number of sensors, prepresents the mean position of the
measurement set, 7, represents the unit vector pointing along the z-axis of the given

sensor, w represents the weighting of the orientation measurements relative to the
position measurements. This weight was analytically determined and experimentally



78 G.S. Fischer and R.H. Taylor

confirmed to be a function of the relative position and orientation accuracy of the
tracker. In the environment present in our lab, a weight of w=100 is satisfactory.
Using the notation in [8], two variables are defined as

¢ =X(@i,1:3)" and ¢ =Y(i,1:3) for i={1,....2n}. (10)
Using the variables in (10), the matrix H is calculated as
H=>4qq". (1)
i=1

The best rigid rotation in the LS sense that aligns the tool configuration to the
measurements is determined by taking the SVD of H and calculating R where,

H=UAV' and R=VU". (12)
The optimal translation that aligns the RB with the measurements is then given by
v:l_?Meas_R*ﬁRB : (13)

3.3 Tool Tracking

The primary contribution of this method
is that it allows for simulated tracking of
a tool with respect to a reference body
and determining the relative tracking
error. The frame transformations of
interest are detailed in Fig. 4, the ‘A’ and
the dotted lines indicate approximate,
measured transformations.

The important transformation from
Fig. 4 is that of the tool with respect to

the patient-fixed reference frame. It is
defined as

N ~ -1 A (14)
Tool __

FCRF _(FCRF) FTool .

Fig. 4. Tool tracking scenario of where a tool
is measured with respect to a coordinate refer-
ence frame (CRF). This is critical for IGS
applications where a surgical tool is tracked
with respect to a patient-fixed reference.

4 Simulation Software

The above algorithms have been incorporated into a single program that allows for
data collection, frame fitting, real-time measurement compensation, and tool simula-
tion; Fig. 5 displays the GUI for the simulator. The software takes a tool configuration
and reference configuration from user-specified files or native NDI SROM formats.
The reference is virtually placed at its commanded pose and the tool is placed with
respect to the reference. Sensor locations in the base frame of the EM tracker are
determined based on the RB configuration and are distorted based upon the polyno-
mial model of the error for the chosen environment from (8). Tool RBs are refit to



Electromagnetic Tracker Measurement Error Simulation and Tool Design 79

the distorted sensor readings as in (12) and (13); tracking error is the relative change
in frame transformation between the reference and the tool.

The software can be run in three modes. The first mode, ‘Single Point’ mode,
places the two RBs at the specified poses and outputs the relative tracking error. In
‘Range of Motion” mode, the reference is fixed in a pose selected by the user, and the
tool is moved in the specified range of positions and orientations with respect to the
reference. This represents a tool being moved about a patient-fixed CRF. Finally, in
‘Input Data’ mode, the program accepts a text file with arbitrarily specified positions
and orientations for both the tool and the reference. For all modes, summary statistics
are displayed on the screen and results from each trial can be logged to file.

4.1 Tool Design Using Simulator

The simulator proves to be a very helpful tool for design of EM tracked instruments
because a tool’s performance can be gauged without ever even building it; this allows
for a very large quantity of trials. In general, the tool design procedure is as follows:

1.  Generate a CRF design (skip this step if one is already available)

Simulate the CRF design in the appropriate environment with respect to the
EMTS base. Many different environments can be used for the experiments.

3. Analyze the results and Jrurare s e |
decide if design satisfies
requirements. If Yes,
continue; if No, return
to step 1.

4. Generate a Tool design
and simulate with re-

o4t 1= 7w 1= 3 k- o o mbarne
B e S e

Siadader el en cadllsdmtann
£l 2

s whnoowe w Lm
el [1mm [Fed  [pEEE (oo [Dodc (oo

spect to the CRF. e e B FET.,"
® b 4 P ol ) angaegl e T
5. Analyze the results and e ‘ Pz

S and s v
Ko bl o 228 2
[FacirgeaTans smdadata

decide if design satisfies [oasioms
requirements. If Yes, i SR ‘
continue; if No, return rnrs |
to step 4.

6. Build the reference and  Fig. 5. GUI front end for simulation software. Allows for
tool and compare the simulated tracking of pre-defined tools with respect to pre-
results. defined references in a given characterized environment.

R Endie D Lo

Ten

5 Discussion

A new tool for design of electromagnetically tracked instruments is presented here. It
allows for rapid prototyping and design of EM tracked tools without the necessity to
physically build and experiment with many different designs. This allows for the
prospect of faster design of higher quality tracked instruments. Initial experiments
show that the polynomial model, when used for measurement compensation, produces
a very accurate representation of the data. The RMS residual error for a mildly dis-
turbed data set that began with RMS errors of 2.30mm and 0.45° was below 0.20mm
and 0.05° for a 6™ order model with 14 basis orientations.
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To get a better idea of how representative the measurement distortion model really
is, it was applied to an independent set of sensor measurements with know reference
measurements; the results are shown in Fig. 3. Realistically, it appears that we can
expect the model to decrease the residual error by a factor of about two. Fortunately,
the minimum residual error occurs at a lower order model (1* or ond order), so the
quantity of data required for generation of the model can be reduced to make collec-
tion reasonable for a given practical environment such as an operating room. The
compensation results are quite good, and therefore, we can expect the simulator to
produce realistic distortions since it based off of the same model. Thus far, the proce-
dure has been used successfully to help design instruments and references for ENT
surgery including a head-mounted CRF, endoscope, pointer, and tissue shaver. Fur-
ther results and more detail of these methods are available in [9].
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Abstract. This paper reports evaluation of compact forceps manipula-
tor designed for assisting laparoscopic surgery. The manipulator consists
of two miniaturized parts; friction wheel mechanism which rotates and
translates forceps (62x52x150[mm?®], 0.6[kg]), and gimbals mechanism
which provides pivoting motion of forceps around incision hole on the ab-
domen (135x165x300[mm?], 1.1[kg]). The four-DOF motion of forceps
around the incision hole on the abdomen in laparoscopic surgery is real-
ized. By integration with robotized forceps or a needle insertion robot, it
will work as a compact robotic arm in a master-slave system. It can also
work under numerical control based on the computerized surgical plan-
ning. This table-mounted miniaturized manipulator contributes to the
coexistence of clinical staffs and manipulators in the today’s crowded
operating room. As the results of mechanical performance evaluation
with load of 4 [N], positioning accuracy was less than 1.2 [deg] in pivot-
ing motion, less than 4 [deg] in rotation of forceps, less than 1.2 [mm] in
longitudinal translation of forceps. As future works, we will modify mech-
anism for sterilization and safety improvement, and also integrate this
manipulator with robotized forceps to build a surgery assisting robotic
system.

1 Introduction

Today, as a means of minimally invasive surgery, laparoscopic surgery is widely
performed. Surgeons cut small holes on the abdomen to insert laparoscope and
forceps, and conduct all operations inside the abdominal cavity. Small incisions
damage patients much less than conventional laparotomy, and patients can get
relief from postoperative pain or medication. This patient-friendly technique,
however, is rather difficult and cannot be applied to all cases, mainly because the
limited degrees of freedom (DOF) of forceps eliminate the dexterity of surgeons
(Fig.1(a)). Surgeons must take special training for laparoscopic surgery.
Responding to these issues, surgery-assisting robotic manipulators are devel-
oped. Some of them are clinically applied and show their availability [1,2]. Those
new systems have provided surgeons with technologically advanced hand skills,

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 81-88, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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and enabled higher-quality and more precise operation, that could not be real-
ized in the conventional laparoscopic surgery. Meanwhile, the large size of them
caused problems. Some robotic systems require larger room and are difficult to
install into conventional crowded operating theater. As the operation space above
the patient’s abdomen is occupied by the manipulator arms, clinical staffs have
troubles to observe the patient and have danger of collision with manipulators.
Thus, a new compact surgery-assisting robotic system is required [3].

We have developed a compact forceps manipulator using “friction wheel
mechanism” (FWM) [4] and gimbals mechanism (Fig. 1(b)). In the former study,
a prototype was manufactured, and feasibility was shown as a forceps manipula-
tor [5]. At the same time, some problems emerged. The rotational speed of ultra-
sonicmotor varied depending on various factors, that is, the motor we adopted
for actuation was unstable, being affected by temperature and load, so that the
motion of forceps was also unstable under the open-loop controlling system [6].
In the recent presentation [7], we reported mechanical implementation of minia-
turized ultrasonic motors with rotary encoder into the mechanically-modified
prototype, and reported evaluation of basic performance using feedback control
system. Positioning accuracy of the gimbals mechanism was less than 0.6 [deg],
and that of friction wheel mechanism was less than 0.2 [mm] in translation and
1 [deg] in rotation.

In the former studies, the accuracy was measured as a static positioning de-
vice without load. Thus, in this study, we measured and evaluated static position
accuracy with load of 4 [N]. In section 2, we introduce the configuration and
mechanism of our compact forceps manipulator. Experimental apparatus and
evaluation results are shown in section 3. We discuss the results of performance
evaluation in section 4. Conclusions are presented in section 5.

2 System Configuration

We adopted following two mechanisms to realize four-DOF motion of forceps
required in laparoscopic surgery(Fig.1(a)); “Friction wheel mechanism” (FWM)
provides the rotation around the forceps shaft and translation along the shaft
(number (1) and (2) in Fig.1(b)). Gimbals mechanism realizes the pivoting mo-
tion to determine the direction of the forceps (number (3) and (4) in Fig.1(b)).
The dimension of the FWM is 62x52x150[mm?] and the weight was 0.6[kg].
Those of gimbals mechanism are 135x165x300[mm?] and 1.1[kg]. We mount this
manipulator near the incision hole using multiple joint arm (ex. Iron intern® 8]
or Point setter [9]). This is because mechanisms and actuators should be mounted
near the operating field so that they require less torque or force [3].

Friction wheel mechanism (FWM) consists of three titled idle rollers and
outer case (Fig. 2(a)). Three idle rollers around the forceps shaft travel spirally
on the surface of shaft when outer case rotates (Fig. 2(b)) [10]. A couple of
FWNMs with opposite tilting angle (like right-handed screw and left-handed one)
hold the forceps shaft(Fig. 2(c)). When they rotate in the same direction, the
shaft held statically by rollers rotates around its longitudinal axis (Fig. 3(a)).



Compact Forceps Manipulator Using FWM and Gimbals Mechanism 83

(@ (DRotation around ~ (®)  Rotation (1)®

forceps shaft of forceps

Friction Wheel

Abdomen (2) Insertion along Mechamsm
@S shaft Translation ,
of forceps
isi é , 4)Roll
Incision (3) e . (
hole /' ) 2DOF pivoting motion ? 4 b 1
imbals
# (3)Pitch Mechamsm

Fig. 1. System configuration, (a) In laparoscopic surgery, forceps have only four degrees
of freedom; two for rotation(1) and insertion(2) of forceps, two for pivoting motion(3)(4)
around the incision hole. (b) Friction Wheel Mechanism provides two motions of (1)
and (2). Gimbals mechanism realizes the rotational motions of (3) and (4).
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Fig. 2. Friction wheel mechanism, (a) a FWM has three rollers (arrow). (b) Rollers
travel spirally on the surface of shaft. That motion can be divided into axial translation
along the shaft and rotation around the shaft. (c) We combine two different spiral
motions to realize rotation and translation.

Alternatively, when they rotate in the opposite direction, rollers travel on the
shaft spirally and rotational motion is cancelled by rotational component of each
spiral motion, so that forceps moves along its axis (Fig. 3(b)). The tilting angle
was set at 30 [deg] in this study. We used hollow-shaft ultrasonic motors with
rotary encoder (custom order, Fukoku, Japan) to drive the outer case of FWM
for miniaturization of the system. The resolution of the rotary encoder was 0.2
[deg/pulse].

Gimbals mechanism provides pivoting motion, two rotational motions around
the mutually-perpendicular axes. It is to be noted that pivot center of this ma-
nipulator is not located at the incision hole, but at the intersectional point of two
axes. As for a surgery assisting robot for laparoscopic surgery, “remote center
of motion (RCM)” mechanism should be mounted to bind the rotational center
of manipulator at the incision hole (ex,[11,12]). However, as we reported in [5],
it is not always necessary. This was because abdominal muscle under anesthesia
gets flaccid and manipulator does not damage the abdominal wall by driving the
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Fig. 3. Driving mechanism of forceps, (a) Rota-
tion, (b) Translation Fig. 4. New prototype

forceps. We used geared DC servomotors (ENC-185801, Chiba Precision Co.,Ltd,
Japan) for actuation. The reduction gear ratio was 1/576. The resolution of the
rotary encoder was 0.36[deg/pulse]. The prototype is shown in Fig. 4.

3 Evaluation Experiments

We conducted mechanical performance evaluation of our forceps manipulator.
In the former studies, we conducted performance evaluation without any load
[5,6,7]. Thus, in this study, we applied a load of 4[N], that was equivalent to the
one third weight of Japanese male liver.

We measured working range and positioning accuracy of each axis (pitch
and roll motions in gimbals mechanism, rotation and longitudinal translation of
forceps in FWM) with load. Motion of manipulator was recorded using digital
microscope (VH-7000C, KEYENCE, Japan), and working range and positioning

@ Pitch(+) ®) ©

Roll(- Forceps

Rotation(+) Rotation(-)

N

Pitch(-)
g Forceps
Translation(Jr)T shaft
Thread

l 250[mm]

ion(+
Translation(-) Rotation(+)

Weight

Fig. 5. Experimental setup, (a) Forceps were initially set in the vertical position to
measure the motion of gimbals mechanism and the translation. Input direction is de-
fined as shown here. (b) In the evaluation of rotation, forceps were set horizontally. (c)
We measured the rotational positioning accuracy of forceps when forceps were pulling
up the weight.



Compact Forceps Manipulator Using FWM and Gimbals Mechanism 85

accuracy were measured by its accompanying utility software. Each measurement
was repeated for twelve times. In order to reduce the measuring error, maximum
and minimum values were eliminated, and the average and standard deviation
of other ten values were calculated. Positive value in positioning error means
that manipulator overruns beyond the input command, and negative means that
it does not reach the goal. The definition of +/- input direction is shown in
Fig. 5. As the initial setting, the forceps were set vertically in the evaluation of
gimbals mechanism and translation of forceps (Fig. 5(a)), and horizontally in
rotation (Fig. 5(b)). The distance between the weight and the center of gimbals
mechanism was 250 [mm).

3.1 Gimbals Mechanism

Working range of gimbals mechanism was measured. No decrease of working
range was shown (Table. 1). Positioning accuracy of the gimbals mechanism was
measured at every 5 [deg] from —30 [deg] to +30[deg]. Measurement results are
shown in Fig.6, comparing the results of evaluation without load [7]. Accuracy
was less than 1.2 [deg] in pitch and roll motions.

3.2 Friction Wheel Mechanism (FWM)

As for the working range, FWM has no mechanical limitation, and the load did
not limit the working range (Table. 1).

Before measuring the positioning accuracy, we evaluated the separation of
rotation and translation. Because rotation and translation of forceps are gener-
ated by combining a couple of spiral motions, if each spiral motion differs from
each other because of machining error, rotational error occurs in translation
and translational error occurs in rotation [7,13]. Thus we measured the motion
error beforehand and added compensation factor. When 45 [mm)] translation
command (that corresponds to 5 revolutions or 1800[deg] rotation of friction
wheel) was input, forceps rotated 14.3 [deg]. This means that the difference of
rotational traveling distance between FWMs is 14.3 [deg]. Thus we applied two
coefficients; 1 - (14.3 / 1800) to longer traveling one, and 1 + (14.3 / 1800) to
shorter traveling one.

Positioning accuracy of FWM was measured at every 45 [deg] from —180
[deg] to +180[deg] in rotation, and at every 20[mm]| from —80 [mm] to +80[mm]

Table 1. Results of Working Range Evaluation

Working Range

with load w/o load
Pitch [deg] ~ —35.0 — +37.0 —35.0 — +37.0
Roll [deg] + 180.0 + 180.0

Rotation [deg] no limitation no limitation
Translation [mm]| no limitation no limitation
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Fig. 7. Positioning accuracy of friction wheel mechanism, (a) Rotation, (b) Translation

in translation. The diameter of the forceps was 5 [mm], thus the torque applied
by the weight was 10 [mNm]. Results are shown in Fig. 7. The accuracy was less
than 4 [deg] in rotation of forceps, less than 1.2 [mm] in longitudinal translation.

4 Discussion

4.1 Working Range and Positioning Accuracy

Working range of gimbals mechanism and FWM did not affected by the load of
4 [N]. As for the roll motion of gimbals mechanism and rotation and translation
of FWM, they have no mechanical limitation to realize wide range of motion.
However, we can think mechanical limitation is desirable to ensure the safety in
the case of malfunction. Some kind of safety mechanism should be implemented
without wasting the advantages of gimbals mechanism and FWM.

As for the positioning accuracy of gimbals mechanism, it decreased as the
input value increased. However, results showed the relative small standard devi-
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ation and high repeatability, thus high positioning accuracy will be realized by
adding offset into input command depending on the load.

Positioning accuracy of FWM also decreased, especially in the rotation of
forceps. This would be because the friction force between idle roller and forceps
shaft to hold the forceps is smaller than external force by the load. Though we
used stainless steel for idle rollers and shaft from the viewpoint of future washing
and sterilization in the current prototype, we have to consider other materials
to strengthen the friction force.

4.2 Future Works

We have following plans as near-term future works.

1. We will measure the dynamic response characteristics with/without load.
The dynamic characteristics must be known to drive this manipulator smoothly
as a slave robotic arm in a master-slave system.

2. As arelated work, we evaluated the tilting angle of idle rollers in FWM [15].
In that study, FWM with rollers of 45 [degree] tilting angle showed higher speed,
torque and force, and did not show any decrease in the positioning accuracy,
comparing with those of 30 [degree], those were used in this study. Thus we will
replace the FWMs with new ones.

3. Sterilization-compatible mechanism should be implemented for the clinical
application. We will use “separation method” that separates sterilized and non-
sterilized part via transmission part [14].

5 Conclusion

In this study, we evaluated the compact forceps manipulator using gimbals mech-
anism and FWM. As the results of experiments applying 4[N] load, positioning
accuracy of the gimbals mechanism was less than 1.2 [deg], and that of friction
wheel mechanism was less than 4 [deg] in rotation and 1.2 [mm] in translation.

This manipulator can work as a compact robotic arm to manipulate vari-
ous kinds of forceps, ex. wire-driven bending forceps [16], bending forceps using
linkage mechanism [17], and laser surgical tool [18], or rigid laparoscope can
be manipulated with this system. In other words, this manipulator can be a
common platform for robotized forceps. Thus we are going to integrate vari-
ous surgical instruments with this manipulator to use robotized sophisticated
surgical equipments.
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Spatial Motion Constraints for Robot Assisted
Suturing Using Virtual Fixtures

Ankur Kapoor, Ming Li, and Russell H. Taylor
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Abstract. We address the problem of the stitching task in endoscopic
surgery using a circular needle under robotic assistance. Our main focus
is to present an algorithm for suturing using guidance virtual fixtures
(VF) that assist the surgeon to move towards a desired goal. A weighted
multi-objective, constraint optimization framework is used to compute
the joint motions required for the tasks. We show that with the help of
VF, suturing can be performed at awkward angles without multiple tri-
als, thus avoiding damage to tissue. In this preliminary study we show the
feasibility of our approach and demonstrate the promise of cooperative
assistance in complex tasks such as suturing.

1 Introduction

The benefits of Minimally Invasive Surgery (MIS) over conventional open surgery
are well known, however, the surgeon faces the challenge of limited and con-
strained motion as well as loss of direct visualization. These factors make the
simple act of suturing probably the most difficult and time consuming of all MIS
tasks. For these reasons, robotic assisted MIS has gained increasing popularity
during the last decade. As shown in [1] by Ruurda et al. there is a significant
improvement in time needed per stitch with robotic assistance even for experi-
enced surgeons. Hubens [2] reaches a similar conclusion for standardized surgical
tasks performed by inexperienced surgeons. To further augment the surgeon’s
ability to manipulate the surgical instruments using robotic system in a confined
environment, various techniques have been proposed in literature. In [3] the sur-
geon’s view is enhanced by 3D vision. Kitagawa et al. [4] provide force feedback
through sensory substitution to achieve suture results that are closer to ideal
conditions. It is important to note that in the various surgical systems described
above the surgical procedures are still performed by surgeon; the robotic device
merely follows the human commands. Estimation of distances and angles with
a “key hole” view provided by endoscopic cameras becomes difficult and time
consuming for surgeons. Consequently, the suturing motion is often realized by
multiple trials that extend the operating time as pointed out by Ruurda et al.
[1]. This indicates that a robotic assistant system that uses surgeon’s intelli-
gence for high level cognition tasks and at the same time fills the gap in sensory
perception by providing motion guidance will be useful.

Different techniques [5,6,7,8] have been proposed to provide interaction modes
in which the surgeon shares the control of the robot with the computer process.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 89-96, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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The goal of the computer process is to provide anisotropic motion behavior to
the surgeon’s motion command besides filtering out tremor and disturbance to
enhance precision and stability. Li and Taylor [9] extended Funda’s work [10]
to generate virtual fixtures (VF) to assist the surgeon to manipulate surgical
tools in a complex work space environment, in which anatomical constraints are
automatically generated from 3D medical images.

The suturing task was observed and analyzed as performed in training videos.
This task involves the following steps 1) (Select) Determine a suitable entry and
exit point for the suture needle leaving sufficient room from the edge to be
approximated. 2) (Align) Grasp the needle, move and orient it such that the
tip is aligned with the entry point. 3) (Bite) Entry and exit “bites” are made
such that the needle passes from one tissue to be approximated to the other. 4)
(Loop) Create a suture loop to tie a knot. 5) (Knot) Secure the knot under proper
tension. Previous works have focuses on steps 4 and 5 and used a shuttle device to
address the issue of manipulation of curved needle. Kang and Wen [11] and Nagy
et al. [12] have focused on the knot tying aspects of suturing. Both of them use
tele-manipulation with haptic feedback to perform these tasks. Nageotte et al.
[13] have presented a kinematic analysis of the entrance and exit bites involved
in stitching task. In this work we describe our recent approach to VF that can
combine guidance with forbidden regions relative to features on the target and
its application to the task of stitching.

2 Methods

In this work we address the align and bite steps of the suturing process described
above, where the primary challenges are manipulation of curved needle under
non-ideal haptic using a robot with complex kinematics. In the align step, the
goal is to move the robot to align the position and orientation of the suture
needle such that it pierces the tissue correctly, at the same time minimizing
extraneous motion of the needle and robot. The goal of the bite step is to move
the needle tip from entry point to the exit point with minimum damage to the
tissue through which the needle passes.

2.1 Constrained Control Algorithm Overview

For this work, we assume that the robot is holding the needle and the needle
tip and target have been registered in the robot coordinate system. The outline
of the algorithm is as follows: 1) Obtain the incremental motion desired by
the user through force sensor, joystick or master 2) Formulate a set of linear
constraints based on current robot state and specified task 3) Use the robot
and task instantaneous kinematics to generate a quadratic program with linear
constraints. The general form of the program is

argminp, [|W(Az — Azd)||, (1)
st. HAxz > h, Ax = JAq

where Aq is the desired incremental motions of the joint variables, Az?, Ax
are the desired and the computed incremental motions of the task variables
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in Cartesian space, respectively. J is the Jacobian matrix relating task space
to joint space. W is a diagonal matrix for weights selected so that the errors
of critical motion elements are close to zero, while errors in other non-critical
motions simply stay as low as possible within tolerances allowed by the constraint
set. 4) Solve the quadratic program for the incremental joint motion, which is
used to move the robot. We would like to note that the constraints of step 3
might not be linear such as the distance function. In such cases we use a linear
approximation, which allows us to utilize the structure of least squares problem
with linear constraints, and solve the quadratic program in time frames suitable
for robot control. We have used the Lawson and Hanson’s algorithm as presented
in [14].

2.2 Modeling of Task

We assume that the entry and exit points are known in the robot coordinate
frame. These could be specified by surgeon using an optical marker tool to indi-
cate points in space or by using a computer vision system to determine suitable
points on the surface based on distance from the edge to be approximated and
transferred to the robot coordinate frame (Reader is refered to [15] for a general
purpose toolkit for computer vision).For the purpose of this work we use a point
based registration method using Optotrak. We shall denote p; as the position of
the origin of frame {i} with respect to world coordinates, where {i} is any one
of the frames shown in Figure 1.

Align Step. We now present a strategy that
could be used for the align step with the follow-
F ing substeps. (Substep 1) First the needle tip is al-
lowed to move in a straight line such that the nee-
dle tip coincides with the desired entry point; at
the same time its orientation is allowed to change

Force _a . |
Sensor Tt

/

{wv}_f {r} ! J-'._ . . . .
g AN J only about an axis such that this motion will re-
Custom Needle  Sult in the tangent at needle tip being coincident
)% R with the normal to the surface at the entry point.
HZ A Suture Needle (Substep 2) In the next substep the orientation
£\<~£e} of the normal to the needle plane is allowed to
g

change, such that the needle plane coincides with
line joining entry and exit points. Assistance is
provided by not allowing any motion of needle
tip or the tangent at the needle tip. (Substep 3)
Once the desired orientations are reached we allow the surgeon to penetrate the
tissue by a small distance, (Substep 4) followed by motion constraints that would
let the surgeon bring the tangent at needle tip to coincide with the desired entry
direction without changing the plane normal and tip position. The align step is
completed once the desired orientation is reached, which is computed using the
entry and exit points specified by the surgeon and the needle radius. In all these
substeps only those motions that bring the needle closer to the desired position
and orientation are allowed.

Fig. 1. Custom needle holder,
needle and assigned frames
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The above sequence of substeps ensures that the needle tip (cutting point) is
normal to the tissue surface at the time of piercing the tissue. This is particularly
favorable for hard tissue such as muscle as it makes the optimal use of the cutting
point of needle. In case of soft tissue, the surgical needles used do not have a
sharp cutting point. Thus in order to reduce the number of substeps and hence
the time, an alternate strategy in which the substeps are to align needle tip
directly with desired direction instead of surface normal and skiping the last two
substeps could be used. For the remainder of this paper, we shall focus on the
former approach. For our algorithm, the later approach can be considered as a
special case of former.

Moreover, for the current work we ignore the deformation in the tissue. For
the future we want to extend this approach by regarding the deformation and
updating the targets accordingly.

Bite Step. (Substep 5) Once the entry and exit points are determined, and the
radius of needle is known, it easy to see that the trajectory of the needle tip that
would cause minimum damage to the tissue lie on a circle with entry and exit
points as points on a chord and with radius equal to needle radius. To ensure
sufficient depth of penetration in the tissue we ensure that the needle plane is
parallel to the line joining entry and exit points and the surface normal at entry
point. In this step our constraint motion algorithm permits only those motions
that satisfy these constraints.

2.3 Algorithm Implementation

In our approach the required VF constraints for each substep are analyzed and
broken into a combination of one or more of basic constraints.

We make use of the common structure be-

tween the different substeps and construct
Ideay !
Center Line
of wound
/-/-_'--._‘ i
Stbstep 2 | |

utilize the sequential nature of the task
to switch between different substeps. The
switch could be triggered when the error
o between the current value and target de-
Direction creases below a threshold. We now describe
a method to compute H and h in the in-
equality subject function of (1) correspond-
ing to one of basic constraints, then we show
S ) ) ) ) how we can combine then together to form
minimal tlss?e fear is a circle with 4 jegired VF behavior. We use MOVE (and
the same radius as the suture needle ROTATE) for the constraint of moving along a
desired direction (or rotate about a desired
direction). We use the name STAY (and MAINTAIN) for a VF designed to maintain
a desired position (or orientation). We denote signed error for target by 8, its
translational part by é, and the rotation component by a Rodriguez vector 6,..
Since the angles are small, we can approximate the Rodriguez vector by Euler
angles.

generalized constraints that take desired

substep 4 target into consideration. Furthermore we
Suture CeTer of
R ’tation

P
Substep 5

Fig. 2. Ideal path of needle tip for

and centered at needle center
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STAY Constraint. We are given a desired target point p¢ in some frame {i}.
This gives signed error as § = [p; — p¢, 0]'. We require that after incremental
motion due to input, the position be as close as possible to the target point. This
requires that ||6,+ Ap;|| < €1 where €; is a small positive number that defines the
size of the range that can be considered as the target. To gain computational
efficiency we would like to solve a quadratic program with linear constraints.
Thus, we linearize the above constraint by considering projections of 8, + Ap;
on a finite set of lines through target point. These can be written as

t
[ Caicass caisgs, sair 0,0, 0] (6+A@)Sers  i=1, i j=1, m. @)

o 27, o 2TG . o i 2. i 27
where Cai=C08 “]"; cgj=cos 7 7 Sqi=sSin “1"; sgj=sin ° -

Then we set H € R6*™" and h € R™” as

—Ca1CB1;, —CalSg1l; —Sa1, 0,0,0
—€1
—CalCBm, —CalS88m; —Sa1, 0, 0,0 .
H = . h=| : | —HS§ 3)
—CanCB1l, —CanSpl, —San, 0,0,0
—€1

—CanCBms; —CanSpm, —San, 0,0,0

MOVE Constraint. We are given a
desired line L(s) = Lo+1-s in some
frame {i}. We require that the posi-
tion after incremental motion due to
input be as close to the line as possi-
ble. If p¢ is the closest point on the
line to the current position, then the
signed error is § = [p; — p¢,0]". We
define u; as the projection of p; — p§
on a plane IT that is perpendicular
to the line. Our requirement is that
|lu; || be close to zero. If R denotes a
rotation matrix that would transform a vector in plane II to world coordinates,
then any unit vector in plane IT with O (Figure 3) as origin can be written in
world coordinate frame as R [cos v, sin -y, O]t-

Like before we approximate by considering only a finite set of vectors, and
our constraint can be written as

Fig. 3. Geometric relation for (a) STAY and
(b) MOVE

t t
|: |:R[Cwi’ Sis O]tj| ; 0,0, 0] (6+Am)<ez;  cyi=cos 221?5"{77:5111 22";1':17"' ik (4)

We can set H € R6%F and h € R* as,
o ‘[R[Cwlew{;'O]Z]i’ 0,0, 0 C h= T2 _ps (5)
{R{cw, ks 0] ] ,0,0,0

The construction of H and h for MAINTAIN and ROTATE follow the same lines,
and uses the later three columns of matrix H corresponding to three rotational
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components in Az. We refer the reader to [16] for further details on contruction
of matrix H for different constraints. A combined constraint can be applied to
a same frame or to different frames. For the case of different frames we con-
sider Jacobian corresponding to each frame and the inequality subject function
is of the form (6a) where J;(q) is the Jacobian matrix that maps Cartesian ve-
locities of frame {i} to joint space. For the case of same frame the inequality
subject function of (1) is of the form (6b) where subscript p and r denotes the
translational and rotational constraints respectively.

H1 0 Jl(q) h1 H h
- : Ag> | 6a Pl J(@)Aq > |, P 6b
o N R 7| swaaz ] o

3 Materials

As a preliminary test bed (Figure 4) we have used a Johns Hopkins Univer-
sity Steady-Hand robot [17], which is equipped with a custom needle holder
and a 6-DoF force-torque sensor (ATI Nano43 F/T transducer) mounted on the
tool handle. For these experiments we have selected a 3/8 circle 30mm cutting
needle from Ethicon (needle diameter 1mm). The Optotrak (Northern Digital
Inc, Waterloo, CA) infrared optical position tracking system was used for robot
calibration.Our control algorithm is independent of manipulator type and in-
put form a joystick or a master robot can easily replace the force input to the
controller. The phantom to mimic the tissue is contructed by dissolving 4% by
weight of agar in distilled water, maintaing this solution at 90 deg C' for one hour
and solidifying the solution by rapidly cooling it to —20deg C'.

4 Experiments

We performed three sets of experiments; The first set was computer simulation
to check the feasiblity of motion given the constraints and robot kinematics. The
second set was experiments with the robot. We recoreded the encoder reading
of the robot joints and used direct kinematics of the robot to verify our algo-
rithm by measuring the errors between the ideal target path and that followed
by the robot. Figure 5 show the errors between actual and ideal robot motion as

swf‘iﬁ_ Aa

Fig. 4. (left) Experimental Setup, Insert: Path of needle (right) Phantom being sutured
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0.2

Substep 1 | | ubstep 4
L ubstep Substep 5
015 1 ! ! Table 1. The error in
01l ideal and actual points as
measured by OptoTrak
0.05
Entry Exit
0 . A . .
0 100 200 300 400 500 600 Robot 0.6375 0.7742
Manual - 2.1

Fig. 5. The magnitude of error in needle tip with respect
to ideal path as measured by robot encoders

measured with robot encoders and kinematics for different substeps. The values
(e; in equations 3 and 5) for positional and angular tolerance were selected as
0.5mm and 0.25 deg. The diameter of the needle was 1mm. The last set of ex-
periments were a demonstration of our algorithm using a phantom tissue. Since
the phantom is opaque, the measurements available are the entry and exit points
of the needle. Table 1 presents the differences between the user specified targets
and the actual ones as measured by an optical tool. As expected the errors mea-
sured by Optotrak are higher than measured by encoders alone, because this
represents the overall accuracy of the system, which also includes errors arising
from calibration of the needle and accuracy of Optotrak (0.1mm). The resid-
ual calibration errors are appear as errors in the entry point errors in Table 1
above. Average errors for free hand suturing as performed by four users (5 trials
each), using the same needle holder and without robot assistance, are presented
in Table 1. We believe that robot assistance can improve accuracy especially
in constrained environment such as that of endoscopic surgery. Moreover, robot
assisted motions did not require multiple trials and large undesirable movements
of tissue, which is often the case in free hand suturing. Figure 4 shows the pro-
gression of different substeps for one of the trials. The insert in Figure 4 shows
the phantom with a portion cut out so that the actual path taken by the needle
is visible, the entry and exit points are 13.5mm apart. As seen in the Figure 4
we have selected an angle that places limits on performing the suture manually,
to emphasize the ability of our algorithm to assist in non-favorable orientations.

5 Conclusion

Endoscopic surgery presents a constrained working environment for surgeons,
and the surgeons must deal with the realities of long instruments and awkward
angles. In this paper we have implemented the constrained control for performing
“align” and “bite” steps, given a surface, entry and exit points. Using guidance
virtual fixtures we provide assistance to the surgeon allowing only those motions
of the needle that are feasible and move the needle towards the desired goal. This
helps realize the stitching motion without multiple trials and large undesirable
movements of tissues involved. This formulation can be extended to include
additional constraints such as collision avoidance and anatomy-based constraints
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We plan to extend these results by integrating vision to take into account

deformation and also add force feedback. We are also working on implementing
this algorithm for control of a high dexterity snake-like robot [18] geared towards
long and slender anatomy such as throat.
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Abstract. For delicate operations conducted using surgical robot systems, sur-
geons need to receive information regarding the contact forces on the tips of
surgical instruments. For the detection of this contact force, one of the authors
previously proposed a new method, called the overcoat method, in which the
instrument is supported by sensors positioned on the overcoat pipe. This
method requires cancellation of the acceleration forces of the instrument/holder
attached to the overcoat sensor. In the present report, the authors attempt to use
acceleration sensors to obtain the acceleration forces of the instrument/holder.
The new cancellation method provides a force-detection accuracy of approxi-
mately 0.05-0.1 N for a dynamic response range of up to approximately 20 Hz,
compared to approximately 1 Hz, which was achieved by using acceleration
forces based on the theoretical robot motion.

1 Introduction

In laparoscopic surgery, a surgeon operates using specially designed instruments
through ports formed in the patient’s abdomen. This technique reduces surgical dam-
ages to the patient’s body and results in a shortened recovery period. However, the
surgeon is significantly constrained with respect to the loss of direct visual informa-
tion and manual operations. Surgical robot systems such as the da Vinci system and
the Zeus system have substantially reduced these constraints. However, at present,
haptic feedback is not provided by these systems. Although surgeons are able to view
tissue deformation as a measure of external force, this type of visual compensation is
limited to elastic materials and is not suitable for bone structure or suture materials.

A great number of studies have been conducted, though the references are omitted
here, in order to investigate 1) the tactile force, 2) the grasping force of the forceps,
and 3) the tip end force of the instrument, in combination with a) the effect of force
feedback on the surgeon’s skills as well as the development of b) force sensors, ¢) a
man-machine interface and d) bilateral controls. The present report concerns the de-
velopment of b) force sensor equipment for use on a slave robot for sensing the 3) tip
end force of the instrument.

Taylor [1] pointed out that the friction force between the instrument and the trocar
may limit sensitivity of the external force detection. Madhani [2] reported a vital

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 97— 104, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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method for estimating the tip force from the motor torques that drive a multiple-
degree-of-freedom forceps. Although this system was tested on a master slave system,
the force feedback was reported to give the operator annoyance. Seibold [3] installed a
six-axis force sensor to the end of a forceps, but reported that precise sensing is diffi-
cult with respect to forces in the direction of the shaft, which include the pulling force
for the gripping jaws of the forceps.

One of authors [4] proposed a new method, called the overcoat method, in which
the instrument is supported by force sensors that are located on the inner face of the
overcoat pipe, as shown in Fig.1. The overcoat sensing system accepts most types of
instruments. In addition, this system allows measurement of the external force acting
on the tip of the surgical instrument attached to the slave robot in laparoscopic robotic
surgery and is free from the frictional forces generated on the trocar.

The main concern regarding the overcoat method is the construction of the force
sensors. In our first attempt [4], three-axis force sensors were placed on the outside of
the abdomen and were driven at semi-static speed. This structure provided only a
short sensing range of force magnitude. In our second stage attempts [5],[6], in order
to provide higher speed of the instrument motion, the acceleration force derived from
the instrument mass was compensated with the acceleration force due to the robot
motion. However, the obtained dynamic response was only up to approximately 1 Hz.
This poor response is a result of the robot arm motion. Robot has inherently character
frequency. Main character frequency of industrial robot is around from several Hz to
20 Hz. The robot used as test equipment has the character frequency of approximately
7 Hz. Low-pass filtering of 2Hz yields a measuring system response of around 1 Hz.

For detecting delicate changes of
contact force and for applying the
overcoat method to a robot that has Overcoat Pipe Instrument
such rigidity as that of industrial robot,
we have to improve the dynamic Trocar,
response of the force measurement
system. i

Recently, small acceleration sensors

have become available. The present Abdomen
report describes an attempt to improve -
the response characteristic of the
measurement system by means of Force Sensors

direct measurement of the accelera-

tion of the instrument mass for com- Fig. 1. Basic principle of overcoat method.
pensating the acceleration force. Force sensors support instrument.

' Slave robot

2 Theory of Force Measurement

Feedback Force Components. The goal of the present study is to provide force
feedback to the fingertips of the surgeon. So, three orthogonal force components act-
ing on the tip end of the instrument are measured herein.

Outline of the Overcoat Method. Fig.1 shows the basic principle of the overcoat
method. A number of sensors that are installed inside the overcoat pipe support the
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instrument/holder that contains the instrument, the driving mechanisms and the hold-
ers for the instrument. The overcoat pipe is inserted into a trocar and is handled by a
slave robot hand. In actual construction, the instrument shaft is inserted into an inner
pipe and the force sensors are arranged between the inner pipe and the overcoat pipe.
The mass of the instrument/holder and its acceleration make up the acceleration force.
If the acceleration force can be subtracted
from the force measured by the overcoat
force sensors, then the force acting on the tip
end of the instrument can be detected.

a,b : Trajectries

Coordinate System and Force Balance. 7 y M-
Fig.2 shows the shaft of the instrument and 7
the X, Y, Z coordinate system fixed on the
ground. As shown in Fig.2, in the present ¢
report, the shaft direction of the instrument

will be oscillated. For the expression of f e
forces, let us introduce new coordinate axes X
and fix them to the instrument so as that the z Fig. 2. Test trajectories for point “R”

axis coincides with the shaft of the in-

strument, the x axis is set parallel to the

ground plane at the starting position of the instrument and the x, y and z coordinates
form an orthogonal coordinate system, as shown in Fig.5.

Point
Universal
Joint

Outside
4 Sensor

omt T

Fig. 3. Test setup of the overcoat sensing system

Let us define the following: f, (f.f,.f2) is the detected force that acts on the tip end
of the instrument, f,(f;.f;.f;;) is the force sensed by the overcoat sensors, m; is the
mass of the instrument/holder, ¢;is the motional acceleration of the center of gravity
of the instrument/holder, m  is the mass of the overcoat sensor frame, a, is the mo-
tional acceleration of the gravity center of the overcoat sensor frame, and g is the
gravitational acceleration. The force balance of the instrument/holder is as follows:
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forfs+m (a;+g) +m, (a,+g) =0,
(1
ai=o;+g,a,=05+g.
Here, the accelerations a j(a;,a;,a;;) and a g (a,.ay,a,;) are to be measured directly
using acceleration sensors.

3 Experimental System

Experimental System. Fig.3 shows anoverview of the experimental system. The
system is composed of a six-axis slave robot, the overcoat sensor, an instru-
ment/holder and a trocar (commercial
item) supported by a universal joint
mechanism. The base frame of the
overcoat sensor is attached to the robot
hand through a universal joint for adjusting
miss-alignment between the overcoat
sensor pipe axis and the robot hand rota-
tional axis.

Overcoat Sensor. The overcoat sensor
consists of three stainless pipes: an inner
pipe, through which the instrument is
inserted, a force sensor pipe, to which
deflectable beams are attached for strain
gauges, and an outer pipe (overcoat pipe),
which covers the sensor pipe. The inner
pipe has an inner diameter of 5.5 mm, and
the outer pipe has an outer diameter of 10
mm. Fig.4 (top photograph) shows the Fig. 4. Overcoat sensor. (top); inner part
inner part of the sensor pipe. Here, the that is set on the inside B,: bending beams
outer pipe is removed. The 0.5-mm-thick for x, y and z forces, of abdomen, By, By,
sensor pipe has two sets of parallel deflec- B:: bending beams for x, y and z directional
tion beams for the force component f,; and ~forces, (bottom): outer part, By, Boy, bend-
that for the f;,;, as well as a deflection beam ing beams for x, y and z forces.

structure for allowing displacement by f;,

in the shaft direction. Fig.3 (bottom photograph) shows the outside sensor part that is
placed on the outside of the abdomen. This sensor part has three sensor components.
Each sensor component has a set of two parallel bending plates for sensing each force
component. The three sensor components for the fi,, f;,, and f;, directional forces are
stacked one-by-one inside the sensor in a box shape.

The overcoat sensor has five outputs fi, fiyis fovos fiyo and f;. The x and y compo-
nents are summed as fi, = fui + fuo and fiy = fiyi + fiy0 using a computer. The masses of
the outer sensor frames, onto which parallel bending plates are fixed, are 120.4 g for
S 85.7 g for f;,, and 10.7 g for f;,, respectively. The sensors have the linearity ap-
proximately 5% for 10 N and the resolution smaller than around 0.02N, as low pass
filtered signals.
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Trocar and Instrument/Holder. A commercially available trocar for an instrument
shaft diameter of 10 mm was attached to a universal joint mechanism. The design of
instrument/holder mechanisms is one of the future subjects. To test the overcoat
method, we have to assume the instrument/holder mass. So, the authors made a sim-
ple holder in which a commercial and hand operate forceps is installed and the open-
close motion of the jaws of forceps is driven by a geared motor (back side of the
plate) that has larger power than the required one, as shown in Fig.5. The total weight
of the trial instrument/holder is approximately 350g. So, the authors attached a model
weight (400g = 350g) to the inner pipe, as shown in Fig. 6. Authors expect now that
the weight of instrument/holder may have around 500g. In this case, a; and a; become
equal (, and it will be expressed as a; (a,,ay,as,)).

\Universal Joint i

* [Instrument
)]

Weizht instead of
Instrument/Holder

Fig. 5. An example of the instrument/holder Fig. 6. Acceleration sensors and weight that
setup represents the instrument/holder

Acceleration Sensor and Low Pass Filters. A two-directional acceleration sensor
ADXL202E (Analog Devices Co.) was used as an acceleration sensor. The sensor has
the outer dimensions of approximately Smmx5mmx2mm and a cross-axis sensitivity
of approximately 2%. For three-directional sensing, two sensors are arranged as

shown in Fig.6.

The sensor outputs were passed through
Low-Pass Filter (LPF) system, as shown in Acesloration sensor | PWM, L8KH: [ pipo oo
Fig. 7. The LPF generally gives a phase sift to 15t RC-LPF 100H: LPF 45.5Hz
the signal. Calculation must be performed for
several output signals. So, we used filters that Foree || LatRCLPF | | 2odButterworth L,
have almost the same characteristic for each Sensors | - | 105z LPF 45 5
of the signal passes. The acceleration sensor L ra—

. <

has two types of output s¥gnal; analog type AD | Digtat s Baerwort |
and pulse width modulation (PWM) type. Converter i
PWM type was selected in consideration of
noise mixing in signal transmission. In order Fig. 7. Low-pass filter system

to obtain a smooth analog signal, a 2nd-order
Butterworth LPF (approximately 50 Hz) was used, as shown in Fig. 7. The LPF for
the outputs of the force sensors were adjusted to those of the acceleration sensors, in
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order to obtain almost the same characteristic. The above-mentioned values depend
on the nominal values of the R C electric parts, and so have the same accuracy.

Slave Robot. The slave robot is a type of six-axis serial linkage. The rotation rigidity
around the first axis of the robot arm is low, and its character frequency is approxi-
mately 7-8 Hz which is in the character frequency range of typical industrial robot.

4 Experimental Results

Experimental Trajectories of the Robot Hand. The robot hand point “R” was
driven sinusoidally in two trajectories “a” and “b”, as shown in Fig.2. The starting
position of the instrument shaft is inclined 30° from X-Y plane and is parallel to the
Z-Y plane. Trajectory “a” exists on a plane parallel to the Z-Y plane and has an
oscillation of (u sin(2zft), f: frequency) for an amplitude (# = 50 mm in circular arc)
around the trocar point “T”. Trajectory “b” has the same oscillation as that of trajec-

[73%1]

tory “a”, but the swing axis exists on a plane parallel to the Z-Y plane. We can easily

observe the motional acceleration effect in trajectory “a” and the gravitational accel-
eration effect in the trajectory “b”.

Data Acquisition and Procession. All of the input signals were reset to zero at the
starting position of the trajectories. The force and acceleration by each sensor were
measured three times for both trajectories “a” and “b” at a speed 0.5 Hz without load-
ing the tip end of the instrument, i.e., f, =f, =f,=0.

In canceling the acceleration forces, we have to consider the cross-axis sensitivity
of the acceleration sensor. Therefore, the overcoat force sensor outputs f,, fi,, and f;,
were cancelled through the following expression:

(Fo £ )" = (oo fir [i)" = K((@paya)" -y,

-0.6360 0.0626 —0.0182
K=| 0.0242 -0.4120 0.0249 |, ¢=(0.0021,-0.0166,0.0035).
0.0081  0.0651 —0.4504

2

Here, the diagonal coefficients of the matrix “K” correspond to the masses of each
directional sensor, and the other values show the effects of the cross-axis sensitivity.
The constant “c” corresponds to the offset of the acceleration sensor outputs.

The constants “K” and “c” are calculated using a regression for each force direction
X, y and z, for each data corresponding to the three measurements for both trajectories
“a” and “b”, under the condition f, = f, = f, = 0. The 18 sets of constants are averaged
to obtain the constants shown in Eq. (2).

The diagonal constant referring to the x direction on the matrix “K” shows that the
mass in the x direction is approximately 0.636 Kg. This value differs from the meas-
ured mass, i.e., (0.400 + 0.120 = 0.520 Kg/0.636 Kg), and the same method yields
0.486 Kg/0.412 Kg for y and 0.411Kg/0.450Kg for z, respectively. These values ex-
ceed the expected accuracy, which is smaller than 10%. Poor accuracy with regard to
the x directional data, will also be shown later.
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Fig. 8. Example of force cancellation on
trajectory “b”. fi; force sensor output, a,,;
acceleration sensor output, f,, f,, f.; detected
forces, Agy.Aux: amplitude of f,, a, for
ffeqllency subscript 7-8:7'8HZ9 subscript O.S:O-SHZ,

Ki1:11 component of matrix K.
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0 —————————

0.5Hz, LPF(20Hz), |
Trajectory "b"

0.051

Fig. 9. Force amplitude/frequency analysis by
FFT for the data shown in Fig.8

Measurement Errors. As the worst case, which shows the largest error in the de-
tected forces, Fig.8 shows the force component f;, for trajectory “b” and the detected
forces f,, f;, and f; that should be zero. Fig.9 shows the results of FFT analysis for the
same data of the forces f,,, f., f; and f.. Fig.9 shows that the amplitude of the signal fi,
in the frequency ranges of up to approximately 20 Hz is almost canceled by the accel-

eration forces.

As shown in Fig8, the
accelerationsensor output ay, follows
the force f;, without phase lag of the
signal, even though the robot and
with large amplitude after approxi-
mately 9 seconds. However, the
large amplitude of the resonance
frequency of 7-8 Hz gives the largest
error for the detected force f;. In Fig.
8, the four arrows indicate two types
of amplitude Ay, Au for the force
fix and the acceleration a,,, and for
frequency 0.5 Hz and 7-8 Hz,
respectively. The ratio (amplitude
A5 of the force f, at a frequency
7-8 Hz) /(amplitude Ag,ps of the
force f, at a frequency of 0.5 Hz) is
approximately 1.3 times of that
(Ausx7-s /Aasxos) of the acceleration

Detected Force Amplitude (N)

0.2

T

0.5Hz, LPF(20Hz2)
3 times x 2 trajectories x (f, ., f, . f; )

9 Time (sec)

Fig. 10. Detected force amplitude for hand starts
oscillating severely no-contact condition, i.e.
measurement error

a,.. This makes the detected force errors large. This is a future problem that must be

solved in order to improve fine force detection.
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Fig.10 shows the detected forces f,, f,, and f; for trajectories “a” and “b”, and for
three measurements. The amplitude of the detected force for no-contact condition
corresponds to the measurement error of the system. The amplitude of the force is in
the range of approximately 0.05-0.1 N, for every kind of the forces.

5 Conclusion

In order to feed back the contact force of a surgical instrument to the surgeon in a
laparoscopic surgical robot system, the overcoat method has been previously pro-
posed by one of authors. This method requires cancellation of the acceleration force
of the instrument/holder. In the present study, the authors attempted to use accelera-
tion sensors to estimate the acceleration forces of the instrument/holder, and the fol-
lowing results were obtained. The cancellations performed using the acceleration
sensors can provide a force-detection accuracy of approximately 0.05-0.1 N for a
dynamic range of up to approximately 20 Hz.

The cancellation method examined herein improved the dynamic response range to
20 Hz from 1 Hz by using robot motion for calculating the acceleration of the instru-
ment/holder.
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Abstract. Percutaneous Vertebroplasty (PVP) is an effective and less
invasive medical treatment for vertebral osteoporotic compression frac-
tures. However, this operative procedure is quite difficult because an
arcus vertebra, which is narrow, is needled with accuracy, and an op-
erator’s hand is exposed to X-ray continuously. We have developed a
needle insertion robot for Percutaneous Vertebroplasty. Its experimental
evaluation on the basic performance of the system and needle insertion
accuracy are presented. A needle insertion robot is developed for PVP.
This robot can puncture with accuracy and an operator does not need
to be exposed to X-ray. The mechanism of the robot is compact in size
(350 mm x D 400 mm x H270 mm, weight: 15 kg) so that the robot
system can be inserted in the space between C-arm and the patient on
the operating table. The robot system is controlled by the surgical navi-
gation system where the appropriate needle trajectory is planned based
on pre-operative three-dimensional CT images. The needle holding part
of the robot is X-ray lucent so that the needle insertion process can be
monitored by fluoroscopy. The position of the needle during insertion
process can be continuously monitored. In vitro evaluation of the sys-
tem showed that average position and orientation errors were less than
1.0 mm and 1.0 degree respectively. Experimental results showed that
the safety mechanism called mechanical fuse released the needle hold-
ing disk properly when excessive force was applied to the needle. These
experimental results demonstrated that the developed system has the
satisfactory basic performance as needle insertion robot for PVP.

1 Introduction

Percutaneous Vertebroplasty(PVP) is an effective treatment for vertebral osteo-
porotic compression fractures (Figure 1). In this technique, the surgeon inserts
one or two bone biopsy needles into fractured vertebral body, and injects semi-
liquid plastic cement called bone cement into the vertebral body through the
needle. After injection the bone cement hardens, the vertebra is stabilized. In

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 105-113, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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this treatment technique, it is one of the most important procedure that the sur-
geon inserts needle into vertebra precisely. Because the spinal cord and nerves
exist through the vertebra, if the surgeon injures nerves by the needle, it will
cause critical accidents such as a partial paralysis of the patients. The surgeon
must insert needles along appropriate trajectory that locates in a narrow space
of pedicle of arch of vertebra. Thus, surgeons must have considerably high skill
and experiences in order to control the position of needle. When the needle is
inserted percutaneously, the surgeon uses X-ray fluoroscopy to confirm the po-
sition of needle resulting in continuous exposure of surgeon’s hand to X-ray. A
new engineering assistance is required to improve the reliability, accuracy, and
safety of this procedure.

In order to improve the above- @
mentioned subject, we have developed a \
needle insertion robot for PVP (Figure
2)[1]. Cleary et al. developed needle inser-
tion robot for nerve and facet blocks un-
der X-ray fluoroscopy|2]. Compared with
robot for nerve and facet blocks, the robot
for PVP must generate larger insertion
force to make the needle penetrate cor- e R Be T
tical bone of vertbra. On the other hand,
the size of the robot must be compact. In
this report, design of the developed nee-
dle insertion robot for percutaneous vertebroplasty, its experimental evaluation
on the basic performance of the system and needle insertion accuracy are pre-
sented. The positioning accuracy of the robot itself was evaluated and the safety
mechanism in case of excessive applied force was also tested. Finally, accuracy
of needle insertion of the robot under image guidance was evaluated using a
vertebra model.

Bone Cement

Fig. 1. Percutaneous Vertebroplasty

2 Materials and Methods

Design of the Needle Insertion Robot
The developed robot has the following features:

1. The robot is rigid enough to generate required needle insertion force.

2. The robot is compact so that the robot system (needle positioning mecha-
nism, needle insertion and rotation mechanism) can be inserted in the space
between C-arm and the patient on the operating table. We have also de-
veloped an X-ray lucent operating table made of carbon reinforced fiber
materials (Mizuho Ltd., Japan).

3. The needle holding part of the robot is X-ray lucent so that the needle
insertion process can be monitored by fluoroscopy (Figure 3).

4. The position and orientation of the needle can be adjusted with five degrees
of freedom in three-dimensional space.
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5. The robot system is controlled by the surgical navigation system where the
appropriate needle trajectory is planned based on pre-operative three dimen-
sional CT images.

6. The safety mechanism that avoid injury of the patient by the needle when
excessive force is applied to the needle due to malfunction of the system.

The needle insertion robot is shown in Figure 2. The robot consists of three
parts: 1) Rough positioning mechanism, 2) Accurate positioning mechanism, 3)
Puncture mechanism. The rough positioning mechanism does not have any actu-
ator. It has only electro-magnetic brake to fix two joints. (X, and Y in Figure 4).
It positions the accurate positioning mechanism and puncture mechanism in
two-dimensional plane parallel to the operation bed surface. One actuated trans-
lational positioning mechanism is used to position the mechanism in z direction
shown in Figure 4.

The accurate positioning mechanism has four degrees of freedom for deter-
mination of orientation and position of the puncture mechanism: two DOF for
to perpendicular translational motions (£10 mm in s[1] and s[2] direction shown
in Figure 4) and two DOF for rotating motions around two axis intersecting
with each other at right angle (£30 degrees in a and £5 degrees in 3 shown in

Fig.2. Developed Needle Insertion Fig. 3. C-arm X-ray image of the robot
Robot which has radiolucent
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Fig. 4. Robot Mechanism
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Figure 4). R-guide was used to realize the rotation for « axis, and remote center
of motion mechanism consisting of two linear actuation mechanism was used to
reduce the thickness of the mechanism[3].

The puncture mechanism inserts the needle into the patients (shown as s[3]
in Figure 4) and rotates the needle in reciprocal manner with amplitude of 120
degrees. The stroke and resolution of the needle insertion mechanism are 110
mm and +0.2 mm respectively (Figure 4). The holder is a plastic disk fixed to
cylindrical part made of stainless steel that is rotated by a DC motor. Inner
diameter of the cylinder is 52 mm. We can observe the position of needle by
intra operative X-ray fluoroscopy through the cylinder. Surgeon can monitor
the position of the tip of the needle during needle insertion process. It also
has a force/torque sensor to measure the force applied on the robot during
needle insertion. It is reported that the axial force during needle insertion to
human vertebra preserved under formalin fixation. And it is reported that the
forces did not exceed 25 N when feed rate of the needle was 0.05-0.5 mm/s.
We designed the needle insertion mechanism to generate up to 60 N of axial
force.

This robot has safety mech-
anism, called ” Mechanical Fuse”
(Figure 5). The needle was
fixed on the disk plate. The
holder grasps the disk with
four contacting parts supported
by springs as shown in Fig-
ure 6. When unexpected exces-
sive force is applied to a nee- Fig. 5. Left: Normal setting, Right: Situation of
dle, the disk comes off from the
holder to avoid possible damage
to the patient.

The entire mechanism was designed to be fixed to the operating table. The
size of the entire mechanism was 350 mm x D 400 mm x H270 mm, and its
weight was 15 kg. It can be inserted in the space between C-arm of the patient
on the operating table as shown in Figure 7.

Needle comes off by Mechanical Fuse

=

\

weudl |

Fig. 6. Mechanism of the Mechanical Fuse Fig. 7. The robot can be installed
between a patient and C-Arm X-
Ray Equipment
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Description of Control System

Next, control system is shown in Figure 8. The system consists of the following
three devices: 1) Needle Insertion Robot, 2) Navigation System([4]), 3) Optical
Position Sensor (Optotrak, NDI, Canada). The robot is connected the navigation
system by LAN cable (TCP/IP). And the navigation system is connected with
an optical Position Sensor by serial cable (RS232C). The navigation system
sends the position and orientation data to the robot. The robot drives the target
position and orientation using this data by software.

Send Position Data
- Target
- Rohot

Navigation System
= Operation Plan
- Robot Navigation

Optotrak

oy Marker - Get Position

- Target
& - Robot

# Robot
Set Position
Puncture

Fig. 8. Total System

Evaluation of Needle Positioning Accuracy

In this study, three experiments were conducted. First experiment is accuracy
evaluation of the robot positioning ability. Target values in robot coordinate
system were input to the robot and errors between target values and real values
which were measured with a position sensor (Polaris, NDI, Canada) placed at
the needle insertion mechanism. The errors were evaluated for various points
and orientations in the range of motion of the robot.

Second experiment was evaluation of the Mechanical Fuse. The needle was
hold by a material-testing instrument with force sensor. The force was applied
along the needle and from the direction perpendicular to the needle. The force
applied to the needle when the disk came off from the holder was recorded.

Third experiment is evaluation of
needle insertion accuracy as a en-
tire system including positioning er-
rors due to needle insertion robot, sur-
gical navigation system, and optical
position sensor using a vertebra model h - A}
(Sawbones, Pacific Research Labora- I -
tories, USA). (Figure 9). Three di- sk =
mensional computer model of the ver-
tebra model was obtained based on its  Fig. 9. Polyurethane Vertebra Phantom
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CT data. The surface registration was used for surgical navigation [5,6,7,8]. The
total errors between target values and determinate needle positions were mea-
sured by comparing the planned positions of the needle insertion mechanism and
measured position data obtained by the optical position sensor. CT data after
the needle insertion was also obtained to identify the difference between the ac-
tual needle trajectory and needle insertion plan for one case of the experiments.

The operation with this robot has three stages. At first stage, rough position
is set manually. Second, accurate position is set automatically by interaction
with the navigation system. Third, needle is inserted to a vertebra.

3 Results

Accuracy Evaluation of the Robot Positioning

Accuracy evaluation is performed on each axis. Result is shown in Table 1. All
axes are satisfied requested specifications. However, errors of axis X and Z are
somewhat large.

Next, target values in a robot coordinate system are inputted the robot.
Result is shown in Table 2. In this case, all axes are satisfied requested specifi-
cations, too.

Evaluation of the Mechanical Fuse

Force along the insertion direction larger than 50 N made the disk came off the
holder. Needle holding disk came off when force larger than 3 N was applied at the
tip of the needle perpendicular to the needle direction. To simulate the possible
situation in clinical setting, position of the vertebra model after initial needle
insertion was shifted purposely by manual. The needle came off by mechanical
fuse successfully. When a vertebra model is moved suddenly, the needle came off
from the robot, too.

Evaluation of Puncture in a Vertebra Model

The target value is set by the navigation system with CT image of pre-operation.
The position and orientation errors before and after contacting the model were
shown in Table 3. The contact of the needle was detected by the force sensor
signals from the system.

X-ray images of one vertebra model used in the experiments were obtained
by CT to identify the position of holes created by the needle. The position and
trajectory of the needle insertion was evaluated as the center of the respected

Table 1. Accuracy evaluation result of each axis (n=)

X (n=15) Y (n=15) Z (n=12) a (n=36) 8 (n=27)
0.54 mm 0.09 mm 0.80 mm 0.25 deg 0.41 deg



Development of the Needle Insertion Robot for PVP 111

Table 2. Accuracy evaluation result of multiple axes

Ave. SD Max. Err.
X[mm] (n=675) -0.437 0.325 -1.197
Y[mm] (n=900) -0.158 0.197 -0.675
Z[mm] (n=1428) -0.540 0.361 -1.476
afdeg] (n=2448) 0.122 0.0448  0.230
Bldeg] (n=279) 0.138 0.0661 0.364

Table 3. Result of Puncture Experiment

Average Error + SD Maximum Error Minimum Error

Pre-Puncture Position [mm] 0.80 + 0.29 1.13 0.31
(n=10) Orientation [deg] 0.06 £+ 0.08 0.21 0.00
Contact Position [mm] 0.81 £ 0.40 1.51 0.41

(n=8) Orientation [deg] 0.20 + 0.26 0.80 0.03

volume due to needle insertion. The difference between the planned position and
the entry point of the needle at the surface was 0.21 mm and the orientation
error was 0.9 deg.

4 Discussion

The developed robot is compact enough to be set in the space between C-arm and
operating table, while being able to generate required force for needle insertion to
vertebra. It can insert 10 G needle into porcine vertebra sample with surrounding
tissue and skin (data not shown.) Thus, it can generate enough force for PVP.

In accuracy evaluation, the robot is satisfied requested specifications (error
less than 1 mm). The reason that errors of axis X and Z are somewhat large is
mechanism of X-axis for small size. We used a remote center of motion mech-
anism consisting of two linear actuation mechanisms to reduce the thickness of
the mechanism placed in the space between the C-arm of the fluoroscopy and
operating table. This deteriorates positioning accuracy of the robot. However,
since required positioning accuracy was satisfied as a whole. The system has
enough positioning accuracy for PVP.

The Mechanical Fuse functioned as designed. For further validation of the
mechanical fuse, experiments simulating possible disturbances observed in ac-
tual clinical situations to confirm the safety of the system. In addition to the
mechanical safety measures, we have to develop the software to stop the system
when the abnormal needle force is detected in the embedded force sensors in the
system.

In total system error evaluation experiments, average of error is satisfied
requested specifications (position error less than 1 mm and orientation error
less than 1 deg). However, there was a case of the error exceeding required
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specification. We have to investigate the possible causes of errors to reduce the
total positioning accuracy. Another possible factor not evaluated in the present
study is the slip of the needle tip at the contact to the cortical bone. When
the surface of the vertebra is inclined, the needle may slip from the appropriate
insertion position. Thus the appropriate needle insertion plan must be designed
to reduce the possibility of needle slip based on the geometrical information of
the vertebra. Although the system can be inserted into the space between the C-
arm and patient on the operating table, the system must be further miniaturized
for ease of operation for easier setting and operation. We will analyze the cause
of errors and optimize the mechanical design.

5 Conclusion

We have developed a needle insertion robot for Percutaneous Vertebroplasty.
Its experimental evaluation on the basic performance of the system and needle
insertion accuracy is presented. This robot can puncture with accurate and an
operator does not need to be exposed to X-ray. The mechanism of the robot
is compact in size (350 mm x D 400 mm x H270 mm, weight: 15 kg) so that
the robot system can be inserted in the space between C-arm of the patient on
the operating table. The position and orientation of the needle can be adjusted
with five degrees of freedom in three-dimensional space. The robot system is
controlled by the surgical navigation system where the appropriate needle tra-
jectory is planned based on pre-operative three-dimensional CT images. The
needle holding part of the robot is X-ray lucent so that the needle insertion pro-
cess can be monitored by fluoroscopy. The position of the needle during insertion
process can be continuously monitored. In vitro evaluation of the system showed
that average positioning and orientation errors were less than 1.0 mm and 1.0 de-
gree respectively. Experimental results showed that the safety mechanism called
mechanical fuse released the needle holding disk properly when excessive force
was applied to the needle. These experimental results demonstrated that the de-
veloped system has the satisfactory basic performance as needle insertion robot
for PVP.
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Abstract. For robotic assisted minimal access surgery, recovering 3D soft tis-
sue deformation is important for intra-operative surgical guidance, motion
compensation, and prescribing active constraints. We propose in this paper a
method for determining varying focal lengths of stereo laparoscope cameras
during robotic surgery. Laparoscopic images typically feature dynamic scenes
of soft-tissue deformation and self-calibration is difficult with existing ap-
proaches due to the lack of rigid temporal constraints. The proposed method is
based on the direct derivation of the focal lengths from the fundamental matrix
of the stereo cameras with known extrinsic parameters. This solves a restricted
self-calibration problem, and the introduction of the additional constraints im-
proves the inherent accuracy of the algorithm. The practical value of the method
is demonstrated with analysis of results from both synthetic and in vivo data
sets.

1 Introduction

With the maturity of master-slave robotic manipulators, the clinical applications of
minimally invasive surgery (MIS) are rapidly advancing. Robotic assistance provides
enhanced instrumental control and intuitive 3D manipulation of the operating field,
and advanced systems can include image guidance, motion compensation and active
constraints. For MIS involving large soft tissue deformation, intraoperative guidance
with patient specific anatomy presents a significant challenge and reliable 3D recon-
struction of soft-tissue deformation in situ is essential [1]. The prerequisite of this for
optical methods, however, is accurate and robust camera calibration. Existing research
has shown that after calibration and feature correspondence, it is possible to perform
real-time 3D reconstruction of soft tissue deformation with stereo laparoscope cam-
eras [2].

Thus far, preoperative calibration for robotic assisted MIS is generally achieved
with a calibration object [3] based on the assumption that during the operation the in-
trinsic parameters of the laparoscope remain fixed. This, however, is not true for
complex procedures as for example in thoracoscopic surgery, where parameters such
as the focal length may change in order to optimize the surgical field-of-view. In such
cases, frequent recalibration of the laparoscope is not feasible and in situ self-
calibration is the only practical way forward. Hitherto, self-calibration has received
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extensive interest in computer vision and most existing techniques assume a rigid
world, which can be viewed from a number of different positions [4]. For
continuously deforming scenes, however, such temporal constraints are invalid and
only inter-stereo epipolar geometry can be used to derive camera parameters. Hartley
[5] has shown that the focal lengths of the stereo camera can be extracted from the
fundamental matrix by using Singular Value Decomposition (SVD) and a number of
other techniques based on the same constraint have also been developed [6,7]. Brooks
et al. [8] demonstrated that in a typical stereo configuration, the problem is degenerate
for cameras with different focal lengths [9]. Strum [10] subsequently provided a
detailed analysis for deriving matching focal lengths of the cameras based on epipolar
geometry, and outlined the potential singularities when variable focal lengths were
used [11].

It has been recognized that the above methods are susceptible to noise in the prox-
imity of singularities. Frahm et al [12] proposed a method based on known rotations
between views and using one epipole for embedding the unknown translations. Earlier
work by Stein [13] and McLaughlin et al [14] also used partial knowledge of rotation
to restrict the problem. These techniques, however, are not specifically designed for
stereo camera setups and can result in complex formulations with additional degener-
ate configurations. Whilst for many vision systems critical motion can be avoided
through appropriate setups, this is not the case for stereo laparoscopes where the cam-
era arrangement is on a much smaller scale to assist the 3D perception of the surgeon.
The purpose of this paper is to develop a parameterization scheme for the intrinsic pa-
rameters of the stereo laparoscope based on the epipolar constraint with known intrin-
sic parameters. This simplifies the traditional self-calibration to an over determined
problem with respect to focal lengths. We demonstrate that the problem is solvable
with a minimum of two correspondences and the stability of the algorithm to different
noise levels can be further improved by using a robust estimator. The practical value
of the technique is demonstrated with both numerical simulation and in vivo robotic
assisted MIS data.

2 Methods

2.1 Stereoscopic Laparoscope Model

It is assumed in this study that the stereo laparoscope cameras follow the standard
pinhole model, with which the mapping of a point M=[X Y Z WT in projec-
tive 3D space onto the corresponding image point m= [x y WT can be described
up to a scale by a matrix multiplication with homogeneous coordinates:

m ~ PM (1)

where ~ denotes equality up to scale. The matrix P is the camera’s projection matrix
and may be decomposed into the intrinsic and extrinsic camera parameters:

P =K[RI|-RC] (2)

The camera orientation and position with respect to a reference coordinate system are
expressed by a rotation matrix R and a translation vector t=—RC, where C is the
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location of the optical center. The upper triangular matrix K encompasses the focal
length, f, skew, s, aspect ratio, #, and the image coordinates of the principal point,

[ v]:

f s u
K= uf v 3)
1

Without a loss of generality, the camera matrices for the stereoscopic laparoscope can
be represented with the following equation by taking the left camera as the reference
coordinate system:

P=K[I10] and P'=K’'[RIt] 4)

The inherent relationship between the left and right camera frames is described by the
epipolar geometry, which is algebraically encapsulated by the fundamental matrix, F
[15]. The fundamental matrix is a rank two matrix, defined up to scale and thus it has
seven degrees of freedom. Its dependency on the camera parameters can be expressed
as:

F~K' ([t RJK"'~K""EK"' )

where [.] is used to denote a skew symmetric matrix and E is the essential matrix
defined by the rotation and translation between the cameras [15]. For corresponding
image points (points which are projections of the same 3D world point), F can be
used to express the constraint:

m  Fm=0 (6)

Given sufficient corresponding points (eight or more for a unique solution) the fun-
damental matrix can be determined from Eq. (6) and this is the basic knowledge about
the camera geometry, which can be directly obtained from the images.

2.2 Self-calibration with Varying Focal Lengths

Without prior knowledge about the cameras, Eq. (5) is governed by 15 unknowns, and
the seven degrees of freedom of the fundamental matrix are insufficient to provide a
solution for the camera parameters from a single pair of stereo images. In robotically
assisted MIS, however, it is feasible to calibrate the stereoscopic laparoscope before
the procedure. Therefore, the knowledge about the initial extrinsic and intrinsic pa-
rameters of the cameras can be used to simplify Eq. (5) for deriving a solution for the
varying focal length problem. By assuming all parameters except for the focal lengths
are known, Eq. (5) can be written as:

_ € € ey f
F ~ diag (1,1, fEdiag(1,1, f) ~| e,, e, enf @)
e31f, eSlf/ emﬁc/
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For computing F based on Eq. (6), the coordinates of the corresponding image points
are normalized by the known intrinsic parameters to m and M’ [15]. Since the
knowledge of the essential matrix is also available from the initial calibration, Eq. (7)
yields a bilinear equation with respect to the focal length for each point
correspondence:

(Xy/e2l erwle}l)f JF(Wx,eB +Wylez3>f/+wwle33ﬁc/ =

/ / / / ®)
xXx'e +xyey, +yxe,+yye,

It is evident that the above equation can be solved from a minimum of two correspon-
dences. But in practice, the problem is likely to be over determined and may be solved
in a least-squares sense. The minimum solution required is important, however, to ro-
bust estimation schemes such as the random sampling consensus (RANSAC) ap-
proach [15], which outperform linear methods in the presence of noise. We have
therefore used an approach analogous to the RANSAC estimation of the fundamental
matrix using the minimum solution obtained from Eq. (8). With the proposed tech-
nique, inliers are determined using the first-order approximation to the geometric re-
projection error:

2

2 (€))

7 (R, )+ (B, )+ (FTab))” -+ (FTi))

1 2

The number of samples used in the robust estimation is determined adaptively and
once the desired solution is determined, Eq. (9) is used as a cost function to refine the
estimated focal lengths by using the Levenberg-Marquardt algorithm. With the pro-
posed framework, incremental changes of the known extrinsic parameters, as well as
shifts of the principal points, can also be incorporated in the minimization procedure.

It can be shown that the practical critical motion (extrinsic configuration of the ste-
reo cameras for which the solution is degenerate) for the proposed method is when the
optical axis are parallel. This configuration is a generic singularity for most existing
methods, which results in a reduced version of the fundamental matrix so that Eq. (8)
cannot be solved. In practice, however, the stereo laparoscope is always setup with a
small vergence angle to assist stereoscopic fusion of the surgeon with the left and
right visual channels. Although this naturally avoids the singularity problem, it is im-
portant to note that the cameras can be in proximity of the degeneracy.

2.3 Numerical Validation and In vivo Experiment

To assess the general performance of the proposed method, particularly in the vicinity
of the singular configuration, a synthetic test data set was used. In this experiment, the
left and right cameras started from a degenerate position with parallel image planes
with optical axes as shown in Fig. 1. We varied the vergence angle, &, from zero with
increasing steps up to ten degrees. In this configuration, the problem can be unstable
[8] as the e;33 element of the essential matrix is zero, and therefore there is a single
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optical
axis

(a) (b)
Fig. 1. (a) A schematic illustration of the setup used for synthetic simulation. (b) An example
stereo view of the calibration grid used for deriving the ground truth data.

linear solution for Eq. (8) when only two correspondences are available. For numeri-
cal validation, a total of 100 random 3D points in the viewing volume in front of the
cameras were used, and the projection of each point in the image planes was cor-
rupted by additive zero mean Gaussian noise with standard deviation varied from zero
to two pixels. The effect of error with known extrinsic parameters was analyzed also
by corrupting the known vergence angle and baseline with zero mean Gaussian noise
with standard deviation varying from zero to two in units of degrees and millimeters,
respectively. We performed a total of 100 trials for each noise level and the mean es-
timation was used for final analysis.

For in vivo validation of the proposed technique, a surgical procedure with the
daVinci™ surgical robot was used. The ground truth of the calibration data was ob-
tained by using a planar grid method [17] before the insertion of the laparoscope into
the patient. The proposed algorithm was used to intraoperatively compute the focal
length of the stereo system. Image correspondences were obtained by using a variant
of the stereo feature matching algorithm described by Pilu [18]. With this experiment,
the focal lengths of the cameras were altered during the procedure in order to validate
the proposed method. The ground truth parameters were recalculated immediately af-
ter the change of parameters by removing the stereo laparoscope out of the patient for
recalibration.

3 Results

In Fig. 2, we demonstrate the overall performance of the proposed method as the
cameras rotate about their own vertical axis forming a vergence angle. Fig. 2 (a)
shows the results of solving Eq. (8) by using a least-squares-method (LSM), whereas
Fig. 2 (b) shows the corresponding results by using the robust algorithm. It is evident
that in the presence of noise, the robust algorithm clearly out-performs LSM and it re-
tains a good accuracy in the vicinity of degeneracy.

In Fig. 3, the effects of noise in the known extrinsic parameters are analyzed for
the proposed calibration method by varying stereo vergence angle. It is evident that
the algorithm performed well in the presence of significant errors in the baseline and
rotation angles. Similarly to Fig. 2, the algorithm is also relatively robust in the
neighborhood of the singular camera configuration.
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Fig. 2. Average percentage errors in focal length estimation by varying vergence angle near the
singularity point with noise corrupted synthetic data. (a) Results with least-squares solution us-
ing SVD, and (b) results with the proposed robust algorithm.
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Fig. 3. Percentage errors in focal length estimation w.r.t. noise in the known extrinsic parame-
ters of (a) vergence angle, (b) baseline

The results obtained from in vivo experiment are listed in Fig. 4. For the calcula-
tion of the ground truth calibration data, the intrinsic accuracy of the method had a
pixel reprojection error of 0.12 pixels, and a reconstruction error of 0.78 mm. Fig. 4
(b) demonstrates the estimated focal lengths over the acquired video sequence,
where the solid lines correspond to the ground truth data. It is clear from Fig. 4
that after the change in camera focal length, the algorithm is able to reliably
quantify the shift involved. For providing a detailed statistical analysis of data, Fig.
5 illustrates the standard deviation of focal length estimation for the left laparoscope
camera before and after the change in focal length. The shaded region outlines the
standard deviation of the derived focal length value in every 0.4s window of the
video sequence. The variance in the estimation is dominated by the accuracy of
feature matching in the stereo pair, which can vary for images with many
specular highlights or significant motion blurring from caused instrument or tissue
movement.
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Fig. 4. In situ calibration results for a robotic assisted MIS video where the ground truth is
shown as a solid red line. Columns (a) and (b) show the changes in focal length during the op-
eration. The circular and square markers represent the estimations of the focal lengths of the left
and right cameras, respectively.
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Fig. 5. The standard deviation of focal length estimation for the left stereo laparoscope camera
before (a) and after (b) focal length change (the estimation window was set to be 0.4s)

4 Discussion and Conclusions

In this paper, we have proposed a practical method for intra-operatively determining
the varying focal length of stereo laparoscopes. The validity of the method has been
demonstrated on both synthetic and in vivo data. The results indicate the high
accuracy obtained despite the near singular arrangement of the cameras. The perform-
ance of the algorithm against noise of the known extrinsic parameters, suggests that it
may be possible to fully calibrate the system in different surgical procedures by using
a prior estimate of the camera parameters. Thus far, approaches to self-calibration
typically involve temporal constraints over rigid multi-view geometry. Due to
extensive deformation of the soft tissue, constraints can only be enforced across
two-view inter-stereo epipolar geometry for robotic MIS procedures. The proposed
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method represents a first step towards active calibration of changing camera parame-
ters during surgery, and the results derived have shown the robustness of the tech-
nique in proximity of the generic degeneracy and against noise influence.
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Abstract. This paper presents a hand-eye robotic model for total knee
replacement (TKR) surgery. Unlike existent robot assisted TKR surgery, the
proposed model is a surgical robot that combines with a movable hand-eye
navigation system, which would use the full potential of both computer-assisted
systems. Without using CT images and landmark pins in the patient’s bones, it
can directly measure the mechanical axis with high precision. This system
provides a new approach of the minimally invasive surgery. Experiment results
show that the proposed model is promising in the future application.

1 Introduction

Total knee replacement (TKR) surgery is a common orthopaedic procedure to replace
damaged articular surfaces of the knee with prosthetic implants. To fit the prosthesis,
each of the knee bones (tibia, femur and patella) should be cut to a specific shape to
mate the mounting side of the corresponding prosthesis component. To ensure normal
functionality of the knee, all components must be placed onto the bones with high
precision. For this aim, we must consider both the bone axes and the mating surfaces
between the bone and prosthesis [1].

During the operation, traditionally, a complex jig system composed of cutting
blocks, alignment rods, etc., is used to help the surgeon to estimate the geometry of the
bones and select the appropriate size and location of the components. The accuracy of
this process relies on the surgeon’s individual experience. Besides, the traditional
jig-based systems also introduce several sources of inaccuracy in alignment of the
prosthetic components [2]. The limitations of traditional knee surgery have prompted
the research for a more accurate and repeatable system for TKR.

The rapid development of robotics provides a new approach to improve the surgery
quality. Due to the rigid nature of bone, it is relatively easy to image in computed X-ray
tomography (CT) and X-ray fluoroscopy [3]. So orthopaedics suits for robotic
assistance. Moreover, robot assisted TKR can enhance the quality of the bone cuts and
require less time for surgery [2].

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 122 -130, 2005.
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1.1 Related Work

There are already commercially available surgical robots for joint replacement surgery,
such as ROBODOC [4] and CASPAR [5]. Both systems adapted industrial robots for
surgical task and were initially aimed at hip replacement. Unfortunately, they still
require additional surgery to preimplant fiducial markers. ROBODOC recently started
using an anatomical registration procedure [6]. Researchers in Imperial College,
London developed a ‘“hands-on” robot, called Acrobot, for TKR surgery [1].
Intraoperatively, the surgeon guides the special-purpose robot, which is mounted on a
gross positioning device. Acrobot uses active constraint control to constrain the motion
of the cutter to a predefined region, and thus allows the surgeon to safely cut the knee
bones with high precision. Nevertheless, all the above systems need to take plenty of
CT images for registration.

The technology of knee replacement is evolving, changing, and improving. Laskin
and Richard [7] described some new techniques and concepts in TKR, especially
Minimally Invasive Surgery (MIS). A good approach for MIS is the use of a CT-free
image-guided system, which usually based on optically tracked surgical tools with a
visual display of the bone models to aid in the positioning and alignment of tools.
Aesculap Inc. has developed Unveils OrthoPilot, which is the industry's first CT-free
navigation system for orthopedic surgery and has been routinely used in orthopaedic
surgery [8]. Other commercialized systems include BrainLab’s (BrainLab, Germany),
Stryker Leibinger’s (Leibinger, Germany), and PiGalileo (PLUS Orthopedics USA,
Inc.). These navigation systems, however, while helping to improve accuracy, should
not be moved during the operation, which greatly constrains the field of view of the
optic sensors. In brief, we call such system as static navigation system. More recently,
DiGioia et al. provided rich review of these relevant technologies in [9].

1.2 Contributions of This Paper

In this paper, we propose a hand-eye robotic model for TKR surgery. In this model,
both the optic sensors and the cutting tool are fixed on the end-effecter/gripper of a
surgical robot, which can be moved freely to anywhere within the capability of the
robot. Thus, we combine the surgical robot and navigation system together, which
would use the full potential of both computer-assisted systems. As the navigation
system can move while the robot gripper is moving, we call it a movable navigation
system. The remainder of this paper decomposes as follows. Section 2 recalls the target
problem in TKR surgery. Then the proposed model is presented in detail in section 3.
Section 4 describes how to use the proposed model for TKR surgery. Some
experiments on performance test are conducted in section 5.

2 Problem Formulation

Let’s revisit the target problem in TKR surgery. Shown as Fig. 1(a), the normal
mechanical axis of the leg is formed by a straight line starting from the center of the
femoral head B, passing through the center of the knee joint O and ending at the center
of the ankle C. The transverse axis passing through the joint is parallel to the floor when
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Fig. 1. Main task of TKR surgery. (a) Restoration of the mechanical axis. (b) Surface of the bone
to be cut. (c) Femoral positioning and measure. (d) Tibia positioning and measure.

one stands. The angle € between the normal mechanical axis OB and the axis of the
femur canal OA is about 5°~ 9° [10]. The aim of TKR surgery is to restore the normal
mechanical axis and create a joint plane, which is vertical to the mechanical axis, while
sacrificing minimal bone stock and maximizing collateral ligament. Thus, shown in
Fig. 1(b), five planes on the distal femur (plane 1-plane 5) and one plane on tibia (plane
6) must be cut to fit on prosthesis components. Therefore, there are mainly two tasks in
the TKR surgery: one is the precise measurement of the mechanical axis and the other
is the accurately milling of the fitting plane. The former task is especially dependent on
the accuracy of the navigation system.

Unfortunately, the mechanical axis is not directly measurable by the surface of the
femoral, tibia, or deforming joint. For example, present methods of measuring OB
firstly figure out the axis of the femur canal OA, and then make a rotational alignment
of 5°~ 9°. This kind of alignment heavily depends on the experience of the surgeons.

3 Techniques of the New Model

In this paper, we propose a flexible hand-eye robotic model, in which the navigation
system can directly measure the mechanical axis without using CT images or other
indirect ways. In contrast to previous navigation system for orthopaedic surgery, which
uses static navigation system, a hand-eye, special-purpose robot, called WATO, has
been built for a movable navigation and operation in TKR surgery. Besides, the cutting
tool is fixed on the end-effecter of the robot, which would use the full potential of both
computer-assisted systems.

3.1 System Configuration

The WATO is a 6-DOF industrial robot (MOTOMAN) with the cutting tool and a pair
of CCD cameras attached on the end-effecter. After the stereo rig is precisely
calibrated, we mount an infrared filter on each camera. Thus, we get an infrared
stereovision system, see Fig. 2. In order to make precise measuring on the bone, some
infrared positioning devices, such as infrared marker and infrared probe, are developed.
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3.2 Positioning and Measuring in the Surgery

Positioning and measuring are the most important and difficult technology in TKR
surgery. Traditional mechanical guidance relies heavily on an individual surgeon’s
experience with a given jig system. CT-based image-guidance system has greatly
promoted the measure in robot assisted
TKR surgery. However, early approach
requires an additional surgery to implant
several metal pins into the bone and the
later developed noninvasive anatomical
registration method is time-consuming.

In WATO system, neither CT models
nor metal markers on the patient’s bone are
needed. Instead, an infrared guide system is
used which consists of a binocular vision
system and its associated infrared
marker/probe. Several special infrared
emitters are embedded in the infrared
probe, whose 3-D coordinates can be
detected by the binocular vision system.
After the infrared probe calibration, the Fig. 2. WATO Experimental System
position of the probe tip relative to those
diodes can be obtained. Therefore, when
the probe picks up a space point, the position of infrared diodes can be detected and
then the position of the probe tip. To build femoral and tibia coordinate system,
surgeons are requested to detect some physiological marks on patient’s bone by probe.
Fig. 2 shows a probe that was used in WATO system. Similar to infrared probe, the
infrared marker also consists of some infrared emitters and is clamped on the distal
femur or tibia. According to the relationship between the marker and the bone, the
motion of the bone can be monitored by the vision system. We will explain it in detail in
the following.

Femoral measure. Sufficient surgical exposure is needed to fix the infrared marker,
surgeons instead of robot complete this procedure. After surgical exposure, we clamp
an infrared marker on the distal femur, see Fig. 2.

In the jig-based surgery, see Fig. 1(a), a baseline axis AQ is first measured by
inserting a T-rod into the femoral canal. Then they can restore the mechanical axis
BOC by adjust AO 5°~ 9°. In WATO system, however, the axis BOC can be
acquired directly. Shown as Fig. 1(c), P, is the center of the femoral head, P, is the

center of intercondylar fossa, P, is the epicondylus medialis, and P, is the epicondylus

lateralis. With the infrared marker clamped on the femur, the surgeon manually flexes
and abducts the entire leg (which is able to rotate only about the femoral head) through
substantial arcs, while the hand-eye navigation system observing the position of the
infrared marker. As the detected positions of the infrared emitters are on a sphere
whose center is also the center of the femoral head, then we can obtain the coordinate of
P, It is important that the surgeon must take special care during the pivot motion with

the femur and not to move the pelvis, which would invalidate the pure rotation. This
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approach is inspired by the work of Kienzle et al. [2]. Meantime, the coordinates of
P,, P, and P, can be obtained by infrared probe. Straight line BP, is equivalent to the

mechanical axis BOC in Fig. 1(a). Take the center of intercondylar fossa P, as the
origin, FIFZ as the direction of Z axis, the cross product of the vectors E’Z and Eﬁz

as the direction of X axis. Then one can obtain the direction of Y axis by cross product
of Z axis and X axis. Thus, the femoral coordinate system P,- XYZis constructed.

We denote the rigid transformation between the femoral coordinate system and the
camera coordinate system with the couple (R oty ), and then we have

R, =[PP, xRP,FP,X(PP,XFP,),FP.1, =P, (1

The transformation from camera to gripper (R,.t,,)can be obtained by hand-eye

calibration [11] in advance and the transformation from gripper to robot base
(R,,.t,)can be computed from the recorded gripper pose. After constructing femoral

coordinate system, we can obtain the relationship (R ot fr)between the femur and the

robot coordinate system by

Ry 15| _|Ry 1ty | Ry Iy || Rp 1 @)
0 1 0O 1] 0 1]0 1

Therefore, any point (x,,y 225 )" in the femoral coordinate system can be transformed

to the coordinate (x,,y,, zr)T in robot base as

(x5 9,:2)" =R, (x;,y,,2,) +1, (3)

In making surgical plans, a planning software is used to interactively decide
prosthesis size according to the sampled data of individual patient’s femur. Then the
placement of the prosthesis and cutting quantity could be estimated automatically. All
the data in femoral coordinate system are transformed to the data in robotic coordinate
system, then the robot are controlled to perform bone resection with special designed
cutting tool.

Tibia measure. Similar to femoral positioning, as shown in Fig. 1(d), surgical
exposure of the tibia is made by surgeons in advance and then the infrared marker is
clamped onto the distal tibia. Since the mechanical axis passes through the center of the
knee joint and ends at the center of the ankle, tibia coordinate system must be
constructed in accordance with this axis. Firstly, the positions of the physiology
fiducial mark of malleolus medialis and malleolus lateralis are sampled by using
infrared probe. We assume that the mid-point of the two points is the center of ankle
joint. In the similar way, surgeons can obtain the position of 1/3 part on the tuberculum
intercondylare mediale ( P,) and tuberositas tibiae (P, ). Define the plane BPP,

formed by tuberculum intercondylare mediale, center of ankle and tuberositas tibiae.
We define the direction of vector P,P, as the direction of Z axis. The line in plane
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PP,P, which is perpendicular to Z axis is defined as the direction of X axis. Then

Y axis is the cross product of Z and X axis. So we have constructed tibia coordinate
system. After constructing tibia coordinate system, we can obtain the relationship
between the two coordinate systems of tibia and infrared marker. When the infrared
marker is combined with the tibia, the pose monitoring and resection of it are similar to
the way of femur.

3.3 Visual Servoing in the Surgery

In the surgery, the milling track of the cutting tool can be planned in advance. However,
in conventional system, patient is not fixed completely during the whole operation.
Consequently, when unwanted micro-movements of the leg occurs during robotic
surgery, the surgical plan must be re-designed, which is time-consuming. In order to
deal with this problem, the traditional method is trying to fix the patient’s leg and an
alarming device is mounted on the patient’s leg. For example, in ROBODOC TKR
system [6], bony spiculas are fitted into the femur and tibia to guarantee the patient’s
leg unmovable. However, in TKR surgery, it often requires a different flexion angle of
the knee in order to find an optimal pose for operation. Once the patient’s leg is fixed
completely, the surgeons will have some trouble in operation especially in an
emergency. All the above disadvantages constrain the applications of such systems.

The above problems have been solved in WATO system when we fix the infrared
markers onto the bones. During the surgery, the passive markers are constantly
monitored by the cameras, so does the associated femur or tibia coordinate system. In
this way, a position-based visual servoing system [12] comes into being. In CASPAR
system, the movement of the leg is also monitored by an infrared camera system [5],
however, it is based on a static navigation system. When the navigation system keeps
tracking the position and orientation of the infrared marker (or the bone), the movement
of the bone will not affect the bone resection, which guarantee a safe operation.
Besides, as the position-based visual servo in the system needs only simple stereo
computation, it performs much faster than that of registration between CT model and
the patient’s bone. The refresh time of the visual servoing system is less than 0.2
second, which can fulfill the surgical requirement.

4 System Operation

To apply our model to TKR surgery, the basic steps are as follows.
Preoperative procedures

1. Mount two cameras and the cutting tool (a milling cutter) on the
end-effector/gripper of the robot (see Fig. 2). Calibrate the stereo rig (camera
calibration) and the transformation relationship between the robot gripper and the
stereo rig (hand-eye calibration).

2. Mount an infrared filter on each camera. Calibrate the infrared probe using the
stereo rig and find the 3-D position of the probe tip in the probe coordination
system.

3. Carry out the sterilize process.
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Surgical procedures

1. Immobilize the pelvis using specially designed fixtures and clamped the infrared
markers onto the distal femur. Find the center of the femoral head using the
method described in section 3.2.

2. Use the infrared probe to determine the coordinate of the physical fiducial marks
on the distal femur in order to construct the femur coordinate system.

3. Use planning software to interactively decide the prosthesis size and placement.

4.  Use the robot to guide the surgical cuts for placement of the femoral component.

5. Clamp the infrared marker on the tibia and use the similar method as that of femur
to construct the tibia coordinate system.

6.  Use the robot to guide the surgical cuts for placement of the tibia component.

5 Performance Test of the Navigation System

The hand-eye navigation system is the most distinctive part in the proposed model. In
this section, we test the performance of the navigation system with two different
measurement schemes. First, a fixed infrared marker was used to test the calibration
accuracy of the stereo rig and the hand-eye relationship. In the second test, we use a
calibrated infrared probe to sample the crossings of a chessboard, which will test the
positioning accuracy of the infrared probe, see Fig. 4.
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Fig. 3. Results of the first test. (a) Mean error of the three Fig. 4. Positioning test with
translation components; (b) Mean error of the three rotation the infrared probe
components.

In the first test, the robot gripper is randomly moved to 30 different positions to
observe a static infrared marker and each recorded gripper pose is denote as
P=(X,,Y,Z,RX,,RY,RZ), i=1,2,....30; repeat the test for 20 times. X,,Y,,Z, are
the translation components and RX,,RY,,RZ, are the three pose angles of robot
gripper. Then camera motion B, ( j=1,2,...,29) between frame i and frame i+1 can be
calculated according to pose of the infrared marker. Then, from the basic equation of
robotic hand-eye relationship A X,=X,B, [11], where X is the relation between
robotic gripper and cameras, the gripper motion A, can be obtained. Notice that
P, =PA,, wecan obtain a sequence of calculated robotic Eositions ﬁm . We compare
the translation part and rotation angle of P, with that of p respectively. Shown as
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Fig. 3, the mean error is illustrated in solid line, in which mean error of the translation
part is 0. 58 mm, the standard deviation is 0.44 mm, while rotation angle is 0.19 degree
and 0.17 degree respectively.

In another test, a calibrated infrared probe is used to sample the crossings of a
chessboard, where the real distance d between crossings is known. The distance
between crossings that calculated from the 3-D coordinates sampling by the probe is d’.
Here, the coordinates sampled by the probe are all in the camera coordinate system. We
randomly move the chessboard to 10 locations with different translation and orientation
while keeping the cameras or the robot gripper static. In each location, 40 pairs of
crossings are sampled. To qualify the results, we take RMS of the error lld-d’ll. The
mean error is 0.40 mm.

From the experimental results, we can see that a goal of less than 0.6 mm of
translational error and less than 0.2 degree of rotational error is achievable, which
means that WATO can fulfill the requirement of the TKR surgery.

6 Summary and Future Work

A new robot assisted surgical model (WATO) is proposed for TKR in this paper.
Unlike existent solutions, WATO is a surgical robot that combines together with a
movable, hand-eye navigation system. Without using CT images and landmark pins in
the patient’s bones, WATO can directly measure the mechanical axis with high
precision, which affords a new approach for the development of the minimally invasive
surgery. Experimental results show that WATO is promising in the future application.
However, there are still some places to be improved. The present infrared marker
needs too much surgical exposure to fix on the femur, which increases the invasiveness
of the procedure. So, we need to design more efficient clamps to fix the infrared
marker. In addition, as the proximity of the camera to the cutting tool, some
splash-guard and vibration control mechanism should be considered in the future.
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Abstract. This paper present a novel image-guided system for precise
automatic targeting in keyhole minimally invasive neurosurgery. The sys-
tem consists of a miniature robot fitted with a mechanical guide for nee-
dle/probe insertion. Intraoperatively, the robot is directly affixed to a
head clamp or to the patient skull. It automatically positions itself with
respect to predefined targets in a preoperative CT/MRI image following
an anatomical registration with a intraoperative 3D surface scan of the
patient facial features. We describe the preoperative planning and reg-
istration modules, and an in-vitro registration experiment of the entire
system which yields a target registration error of 1.7mm (std=0.7mm).

1 Introduction

Precise targeting of tumors, lesions, and anatomical structures with a probe or
a needle inside the brain based on preoperative CT/MRI images is the standard
of care in many keyhole neurosurgical procedures. The procedures include tumor
biopsies, catheter insertion, deep brain stimulation, aspiration and evacuation of
deep brain hematomas, and minimal access craniotomies. Additional procedures,
such as tissue and tumor DNA analysis, and functional data acquisition, are
rapidly gaining acceptance and also require precise targeting. These minimally
invasive procedures are difficult to perform without the help of support systems
that enhance the accuracy and steadiness of the surgical gestures.

Four types of support systems for keyhole neurosurgery are currently in use:
1. stereotactic frames; 2. interventional imaging systems; 3. navigation systems,
and; 4. robotic systems. Stereotactic frames provide precise positioning with a
manually adjustable frame rigidly attached to the patient skull. These exten-
sively used frames provide rigid support for needle insertion, and are relatively
accurate and inexpensive (< 1mm, USD 50K). However, they require preopera-
tive implantation of frame screws, head immobilization, and manual adjustment
during surgery. They cause patient discomfort and do not provide real-time vali-
dation. Interventional imaging systems produce images showing the actual needle
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position with respect to the predefined target [1,2,3]. Their key advantage is that
they account for brain shift. A few experimental systems also incorporate optical
real-time tracking and robotic positioning devices. However, their nominal and
operational costs are high and their availability is very limited. Furthermore,
brain shift is a secondary issue in keyhole neurosurgeries.

Navigation systems (e.g., Medtronic, USA and BrainLab, Germany) show in
real time the location of hand-held tools on the preoperative image onto which
targets have been defined [4,5,6]. Augmented with a manually positioned tracked
passive arm (e.g., Phillips EasyTaxis” ), they also provide mechanical guidance
for targeting. While these systems are now in routine clinical use, they are costly
(USD 250K), require head immobilization and maintenance of line-of-sight for
tracking, and additional time for registration and manual arm positioning.

Robotic systems provide frameless stereotaxy with a robotic arm that au-
tomatically positions itself with respect to a target defined in the preoperative
image [7,8,9,10]. Registration between the image and the intraoperative situa-
tion is done by direct contact or with video images. Two floor-standing com-
mercial robots include NeuroMate?™ (Integrated Surgical Systems, USA) and
PathFinder™™ (Armstrong HealthCare, UK). Their advantages are that they
are rigid, accurate, and provide a frameless integrated solution. However, since
they are bulky, cumbersome, and costly (US 300K), they are not commonly used.

2 System Overview and Protocol

We are developing a novel image-guided system for precise automatic targeting
of structures inside the brain that aims at overcoming the limitations of existing
solutions [11]. The system automatically positions a mechanical guide to sup-
port keyhole drilling and insertion of a needle or probe based on predefined entry
point and target locations in a preoperative CT/MRI image. It incorporates the
miniature MARS robot (Mazor Surgical Technologies) [12,14], originally devel-
oped for orthopaedics, mounted on the head immobilization clamp or directly
on the patient skull via pins (Fig. 1). Our goal is a robust system for keyhole
neurosurgical procedures which require clinical accuracy of 1-1.5mm.

The key idea is to establish a common reference frame between the preop-
erative CT/MRI image and the intraoperative patient head and robot locations
with an intraoperative 3D surface scan of the patient’s facial features. Once this
registration has been performed, the transformation that aligns the planned and
actual robot targeting guide location is computed. The robot is then automat-
ically positioned and locked in place so that its targeting guide axis coincides
with the entry point/target axis.

The system hardware consists of: 1) the MARS robot and its controller; 2) a
custom robot mounting base, targeting guide, and registration jig; 3) an off-the-
shelf 3D surface scanner, and; 4) a standard PC. MARS is a 5 x 8cm? cylinder,
250—gram six-degree-of-freedom parallel manipulator with workvolume of about
10cm?® and accuracy of 0.1mm. It operates in semi-active mode; when locked, it
is rigid and can withstand lateral forces of up to 10N [13]. The adjustable robot
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Fig.1. The MARS robot mounted on the skull

mounting jig attaches the robot base to either the head immobilization frame
or to skull-implanted pins. The system software modules are: 1) preoperative
planning; 2) intraoperative execution; 3) surface scan processing; and 4) three-
way registration. This paper describes the first and last modules.

The surgical protocol is as follows. A preoperative marker- and frame-less
CT/MRI image of the patient is acquired. Next, with the preoperative planning
module, the surgeon defines on the image the entry points and target locations,
and determines the robot mounting type (head clamp or skull) and the desired
robot location. Intraoperatively, guided by a video-based intraoperative module,
the surgeon places the robot approximately in its planned location. When the
robot is mounted on the head frame, the robot base is attached to an adjustable
mechanical arm affixed to the head clamp. When mounted on the skull, two
4mm pins are screwed under local anesthesia on the skull and the robot mount-
ing base is attached to them. Next, the registration jig is placed on the robot
mounting base and a surface scan showing both the patient forehead and the
registration jig is acquired. The registration jig is then replaced by the robot with
the targeting guide on it, and the registration module automatically computes
the offset between the actual and the desired targeting guide orientation. It then
positions and locks the robot so that the actual targeting guide axis coincides
with the planned needle insertion trajectory. On surgeon demand, the system
automatically positions the robot for each of the predefined trajectories.

3 Preoperative Planning

The preoperative planning module inputs the CT/MRI image and geometric
models of the robot, its workvolume, and the targeting guide. It automatically
builds from the CT/MRI image the face surface and extracts four landmarks
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near the eyes to be used later for coarse registration. The module allows in-
teractive visualization of the CT/MRI slices and the face surface, and enables
the surgeon to define entry and target points and visualize the resulting needle
trajectories (Fig 2a). Based on the surgeon-defined entry and target points, and
the robot mounting mode (on the skull or on the head clamp), the module com-
putes a suggested preferred approximate robot base placement and its range.
The computed robot base placement is such that the needle trajectories are at
the center of the robot work volume. Placements away from it are assigned a
score based on how far they are from the robot work volume center. The results
are graphically shown to the surgeon (Fig 2b), who can then select the approxi-
mate actual position to satisfy clinical criteria, such as avoiding placements near
the cranial sinuses, temporal muscle, or emissary vein. The output includes the
surgical plan (entry and target points), the approximate robot base placement,
and the patient face surface mesh and landmarks.

The algorithm for computing and rating the robot placements proceeds as
follows. A needle trajectory is associated with a coordinate frame whose z axis
is aligned with the needle axis and points towards the target. For each point on
a uniform 5 x 5mm? grid of possible robot base placements over the skull, the
rigid transformation that aligns the targeting guide z axis, held by the robot in
its home position, with the needle trajectory axis, is computed based on Horn’s
closed-form solution. The robot base location is then computed by composing the
fixed transformation from the targeting guide to the robot top, and the transfor-
mation from the robot top to the robot base. The resulting robot transformation
is scored against the robot home position based on their distance.

4 Registration

The three-way registration module computes the transformation that establishes
a common reference frame between the preoperative CT/MRI, the robot mount-
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Fig. 3. In-vitro experimental setup

ing base, and the intraoperative patient situation. Two transformations are com-
puted to this end: CT/MRI to intraoperative patient face and robot mounting
base to intraoperative patient face. The module inputs the intraoperative surface
scans of the registration jig and of the patient’s face, and four eye landmarks
from the 3D surface scan processing module.

The transformation between the face surface scanner cloud of points and
the corresponding CT/MRI surface is performed by first computing a coarse
correspondence between them from the extracted landmark eye points in both
datasets. This correspondence is then refined with robust Iterative Closest Point
(ICP) registration [15], which is performed between a small (1,000-3,000) subset
of the surface scan points and the CT/MRI points on the face/ear surface.

The transformation between the robot mounting base and the patient face
is performed with a custom-designed registration jig. The registration jig is a
75 x 75mm? base with a wide-angled tetrahedron of 9mm height that is placed on
the robot mounting base (Fig 3a). It is designed so that all four planes can be seen
from a wide range of scanning viewpoints, with sufficient area for adequate scan
sampling. To facilitate plane identification, all pairwise plane angles are different.
The registration jig model is matched to the surface scanner data as follows.
First, we compute a Delaunay triangulation of the registration jig scanner cloud
of points. Next, the normals of each mesh triangle are computed and classified
into five groups according to their value: four groups correspond to each one of
the planes of the registration jig, and one to noise. A plane is then fitted to the
points in each of the groups, and four points, corresponding to the intersection
between any three planes, are computed. The affine transformation between
these four points and the corresponding ones in the model is then computed.
Finally, an ICP rigid registration on the plane points is computed to further
reduce the error. The actual robot mounting base location with respect to the
preoperative plan is determined from this transformation, and from it and the
robot characteristics, the targeting guide location.
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5 Experimental Results

We have implemented a complete hardware and software prototype of the pro-
posed system and designed an in-vitro registration experiment to validate it. In
earlier work [11], we measured the accuracy of the MRI/surface scan registra-
tion by acquiring 19 pairs of MRI/3D surface scans of the first two authors with
different facial expressions — worried or relaxed, eyes open or closed. The MRI
scans are 256 x 256 x 200 pixels® with voxel size of 0.93 x 0.93 x 0.5mm? from
which 100,000-150,000 face surface points are extracted. The surface scans were
obtained with a laser scanner (Konica Minolta Vivid 910, USA — accuracy of
0.1mm or better). The registration RMS error was 1.0mm (std=0.95mm) com-
puted in 2 secs, which is adequate and compares favorably with [16].

In this in-vitro registration experiment of the entire system, we manufac-
tured the registration jig, a positionable robot mounting base, and a precise
stereolithographic phantom replica of the outer head surface of the second au-
thor from an MRI dataset (Fig 3). Both the phantom and the registration
jigs include fiducials for contact-based registration. The phantom is attached
to a base with a rail onto which slides a manually adjustable robot mounting
base.

To verify the accuracy of the three-way registration algorithm, we used an
optical tracking system (Polaris, Northern Digital, Canada — 0.3mm accuracy)
to measure the relative locations of the phantom and the registration jig. Their
spatial location was determined by touching with a calibrated tracked pointer
the phantom and registration jig fiducials. The phantom and the registration jig
were scanned with a video scanning system (Optigo200, CogniTens — 0.03mm
accuracy). We then computed two registration chains (Fig 4), and measured the

-
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Fig. 4. Registration chains for in-vitro experiment. Each box corresponds to an in-
dependent coordinate system. The location of the phantom targets with respect to
the robot base origin is computed once via the surface scanner (phantom/scanner and
robot/scanner transformations) using the face and registration face surfaces, and once
via the optical tracker (phantom tracker and robot/tracker transformations) using the
registration jig and the face fiducials. By construction, the phantom and the MRI are
in the same coordinate system.
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Table 1. In-vitro registration results (in mm) of five experiments. The 2nd and 3rd
are the surface scanner phantom and robot base surface registration errors. The 4th
and 5th column are the fiducial tracker phantom and registration jig registration errors
(both FRE - Fiducial Registration Error — and TRE — Target Registration Error for a
target at about 150mm from the mounting base. The 6th column is the error between
the target scanner and tracker fiducial locations.

Set phantom/scan robot/scan phantom/tracker robot/tracker Error

RMS (std)  RMS (std) FRE (TRE) FRE (TRE) (std)
1. 0.45 (0.16)  0.31 (0.22) 0.50 (0.61) 0.71 (0.68) 2.71
2. 0.46 (0.17)  0.28 (0.20) 0.50( 0.61) 0.71 (0.68) 1.85
3. 0.46 (0.17)  0.25 (0.13) 0.22 (0.53) 0.65 (0.69) 1.31
4, 0.46 (0.18)  0.34 (0.27) 0.22 (0.53) 0.65 (0.69) 1.09
5. 0.44 (0.14)  0.21 (0.08) 0.76 (0.79) 0.73 (0.73) 1.49
Avg. 046 (0.17)  0.28 (0.18) 0.44 (0.62) 0.67 (0.69)  1.69 (0.7)

location error of phantom targets with respect to the robot mounting base as
computed by the surface scanner and the optical tracker.

Table 1 shows the results of five experiments. The Target Registration Er-
ror (TRE) is 1.7mm, which is close to the desired clinical goal. It includes the
positional error tracked pointer tip, estimated at 0.5mm (this can be improved
with a more accurate measuring system). In addition, we measured the accu-
racy of the registration between the real faces and the CogniTens scans, taken
several months apart, as we did in the earlier experiment. The RMS error is
0.7mm (std=0.25mm), which shows that registration based on facial features
is accurate and stable over time. We also measured the accuracy of the robot
and registration jig mounting with the optical tracker by putting on and off 10
times the registration jig and measuring the fiducial offset location. The FRE
is 0.36mm (std=0.12mm), which is within the measuring error of the optical
tracker.

6 Conclusion

We have described a system for automatic precise targeting in minimally inva-
sive keyhole neurosurgery that aims at overcoming the limitations of the existing
solutions. The system, which incorporates the miniature parallel robot MARS,
will eliminate the morbidity and head immobilization requirements associated
with stereotactic frames, eliminate the line-of-sight and tracking requirements of
navigation systems, and provide steady and rigid mechanical guidance without
the bulk and cost of large robots. This paper presents the preoperative planning
and registration modules, and the first results on an in-vitro registration experi-
ment. It establishes viability of the surface scan concept and the accuracy of the
location error of phantom targets with respect to the robot base to 1.7mm, which
is close to the required 1-1.5mm clinical accuracy in many keyhole neurosurgical
procedures.
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Abstract. In robotically assisted laparoscopic surgery, soft-tissue motion track-
ing and structure recovery are important for intraoperative surgical guidance,
motion compensation and delivering active constraints. In this paper, we pre-
sent a novel method for feature based motion tracking of deformable soft-tissue
surfaces in totally endoscopic coronary artery bypass graft (TECAB) surgery.
We combine two feature detectors to recover distinct regions on the epicardial
surface for which the sparse 3D surface geometry may be computed using a
pre-calibrated stereo laparoscope. The movement of the 3D points is then
tracked in the stereo images with stereo-temporal constrains by using an itera-
tive registration algorithm. The practical value of the technique is demonstrated
on both a deformable phantom model with tomographically derived surface ge-
ometry and in vivo robotic assisted minimally invasive surgery (MIS) image
sequences.

1 Introduction

Recent advances in robotic assisted Minimally Invasive Surgery (MIS) for performing
micro-scale tasks using motion scaling and miniaturized mechanical wrists have made
it possible to perform closed-chest cardiothoracic surgery on a beating heart. This ap-
proach minimizes patient trauma and avoids certain adverse effects associated with
cardiopulmonary bypass. In practice, deformation of the epicardial surface due to car-
diac and respiratory motion can impose significant challenges to delicate tasks such
vessel anastomosis. The use of mechanical stabilizers can effectively remove most of
the bulk motion, but residual tissue deformation remains significant in most cases. For
intraoperative guidance and applying image guided active constraints to avoid critical
anatomical structures such as nerves and blood vessels, it is necessary to develop
complementary techniques for accurate 3D surface structure reconstruction and mo-
tion estimation in situ [1].

The determination of tissue deformation can be approached with a number of ap-
proaches that involve intraoperative imaging such as endoscopic ultrasound, or mo-
tion sensors such as mechanically or optically based accelerometers [2,3]. Marker
based techniques have been proposed, but they involve suturing or projecting fiducals
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onto the heart surface [4,5]. Region based tracking of natural epicardial regions has
also been investigated using monocular video sequences [6], but only for recovering
2D image motion. Since robotic assisted MIS procedures typically involve a pair of
miniaturized stereo cameras, detailed 3D motion and structure recovery from the ste-
reo laparoscope with image registration was recently proposed [7,8]. The major ad-
vantage of these methods is that they do not necessitate additional modification to the
existing MIS hardware, but computationally they require complex computer vision
algorithms inferring dense 3D correspondence which is often an ill-posed problem.
Existing research has shown that sparse sets of well known feature correspondences
can be used as ground control points to enforce additional constraints and increase the
inherent accuracy and robustness of dense stereo techniques [9]. Furthermore, the in-
tegration of other visual cues such as shading and specular reflectance and their tem-
poral characteristics in response to soft-tissue deformation can further improve the
practical value of optically based methods.

The purpose of this paper is to introduce a method for inferring precise 3D struc-
ture and motion for a set of sparse salient features on the soft-tissue surfaces during
robotic assisted MIS procedures. With a calibrated stereo laparoscope, a combination
of landmarks is used to provide robust performance in the presence of specular reflec-
tions. The temporal behavior of each landmark is then derived by using constraints in
the stereo video sequence. Detailed validation of the proposed method was performed
on both a phantom model with known geometry and in vivo robotic assisted MIS data.

2 Methods

2.1 Salient Landmarks on the Epicardial Surface

Traditionally, the identification of salient landmarks is usually achieved with edge or
corner features for sparse stereo matching and motion tracking. For robotically as-
sisted MIS, these features can be unstable and prone to errors due to the homogeneity
of surface texture and the presence of specular highlights, which can cause clustering
of high frequency features on the specular boundary. In the context of wide-baseline
stereo matching, Matas et al. [10] defined maximally stable extremal regions (MSER)
based on thresholding the image intensity to create connected components with local
minima. The use of MSER landmarks has a number of desirable properties as they are
invariant to monotonic changes in illumination. Furthermore, if they are detected by
starting from the lowest intensity (MSER-), they can implicitly avoid specular reflec-
tions. It can also be shown that on MIS cardiac surfaces, MSER- generally corre-
sponds to physically meaningful texture details such as superficial blood vessels or
small tissue bruising.

In this paper, a combination of MSER- regions and the traditional gradient based
image features [11] is used for salient landmark selection. The use of different feature
descriptors can provide added robustness [12], which is necessary in the presence of
occlusions and specular highlights as encountered in cardiac MIS procedures. We as-
sociate a measurement region (MR) around each landmark for computing the dissimi-
larity metrics. The MR is a rectangular window for corner features and an ellipse that
bounds the convex hull of the component for MSER- regions.
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2.2 Stereo Feature Matching

To recover 3D measurements from a stereoscopic laparoscope, the correspondence of
landmarks of the stereo pair needs to be determined. There are many algorithms for
matching sparse feature sets, and in this work we used the method proposed by Pilu
[13] for combining proximity and similarity measures to discriminate between poten-
tial matches. For each feature type, we build a cost matrix with row entries corre-
sponding to features in the left image and columns for the right image. Each entry of
the cost matrix depicts how well respective features correspond to each other by using
the following dissimilarity measure:
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In Eq. (1), r is the Euclidian distance between features, y and u are sensitivity control
parameters set to the values suggested in [13], and C;; is the normalized cross correla-
tion (NCC) between the measurement regions of featuresi and j. When matching
MSER-, we used the largest MR for computing correlation. The algorithm makes use
of the properties of Singular Value Decomposition (SVD) of the cost matrix to at-
tenuate matrix values for poor matches. Once corresponding points are determined,
3D points on the epicardial surface can be inferred by using the centre of mass of the
MSER- as a reference. By calibrating the camera before the MIS procedure, the epi-
polar constraint can be introduced to the proximity cost. Calibration is also important
to the intrinsic accuracy of the proposed technique as otherwise the recovered 3D
points will be ambiguous up to a projective transformation if just using the deter-
mined stereo correspondences for estimating the camera matrices.

2.3 Temporal Tracking Using Stereo Constraints

Once the stereo correspondence is established, we used temporal motion tracking of
salient features to iteratively update their temporal positions in 3D space by using
both stereo frames. This extends the Lucas-Kanade (LK) [15, 16] registration algo-
rithm for incorporating the inter-stereo epipolar constraint. The goal of the LK tracker
is to align a reference image template 7(x) with an image region subject to the
squared pixel difference, given a warping function W(x;p) of arbitrary complexity
and p parameters. The algorithm starts with an initial estimate of the warping pa-
rameters p and iteratively computes an update term AP until convergence below a
predefined threshold Ap < ¢ . The error function e used for minimizing the modified
stereo LK tracker is defined as:

EZZX:l[I(W(X;P—i-Ap))—T(X)r +[J(W’(X/;P-&-Ap))—T’(x’)r

2

where I(W(x;p)) and J(W'(x;p)) are the images transformed by the respective warp-
ing function. The error function can be linearized by taking the first order Taylor ex-
pansion about p, such that the partial derivative with respect to AP can be deter-
mined by using the chain rule. Setting the partial derivative to zero and solving for
Ap yields a least-squares solution (constants are ignored), we have:
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Where vy and VJ are the warped image gradients of each stereo channel, W /9p is
the Jacobian of each warping function and H ' is the inverse of the Hessian matrix:
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The motion parameterization used in this is study is based on a pure translation model
for each feature, which incorporates terms for the vertical and horizontal motion in
the reference image, and an additional term for disparity changes in the stereo pair.
More complex models can readily be incorporated into the proposed framework (for
further details consult the study by Baker et al [16]) but the increased search space
may have an adverse effect on the actual system performance [6]. Furthermore, it has
been demonstrated that for small inter-frame motion, the use of translation tracking
alone can be sufficient [11].

2.4 Experimental Design

The proposed method was implemented in C++ on a standard desktop PC with a Pen-
tium IV 2.4 GHz CPU and 512 Mb RAM, running the Windows XP operating system.
In the current implementation, initialization took 0.5s (mostly for MSER detection)
after which the algorithm processed 320x288 images at 11 frames per second (fps).
With further optimization real-time performance can be achieved.

(a) (b)

Fig. 1. The cardiac phantom model used for validating the proposed technique (a) image of the
heart model showing the visual and geometrical fidelity of the model and (b) CT slice for three
levels of deformation and 3D renditions of reconstructions from the respective CT series
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To validate the proposed method, a scaled simulation environment was created
with a phantom heart model shown in Fig. 1 (a). A stereo rig mounted on a Stdubli
RX60 robotic arm with six degrees of freedom (DOF) and repeatability accuracy of
+0.02mm. The phantom model was created using thixotropic silicone mould rubber
and pre-vulcanized natural rubber latex with rubber mask grease paint to achieve a
specular appearance and high visual fidelity. The deformable silicone surface was
mounted onto a piston mechanism with controllable injection levels to simulate the
heart beat motion in a reproducible manner. The precise phantom model geometry
was recovered at seven discrete heart beat simulation levels using a Siemens Soma-
tom Sensation 64 CT scanner with slice thickness of 0.6mm, an example CT slice and
3D rendition of a reconstruction are shown in Fig. 1 (b).

For in vivo analysis, data from robotic assisted cardiac surgery carried out with a
daVinci™ surgical system (Intuitive Surgical, CA) was used. The cameras of the
stereoscopic endoscope were hardware synchronized by using a proprietary FPGA
device designed by this institution. The stereo cameras were calibrated before the pro-
cedure using a planar calibration object [17]. The proposed method was used to de-
tect and then track landmarks on the epicardial surface after the positioning of a me-
chanical stabilizer. Since, ground truth data for the 3D structure and motion of the
soft-tissue cannot be easily obtained for robotic procedures, we used the motion of
landmarks on the epicardial surface to determine the respiratory and cardiac motion as
a means of qualitative analysis.

3 Results

The phantom heart model described above was used to generate an image sequence of
50 frames, with each frame showing consecutive deformation of the heart associated
with the CT data. The setup was devised so that the resultant inter-frame pixel motion
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Fig. 2. Phantom model experiment for evaluating reconstruction accuracy of stereo feature
tracking (a) the average and standard deviation of error in millimeters for feature correspon-
dences in each experimental frame (b) the number of features actively tracked at each frame of
the sequence
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Fig. 3. Example stereoscopic image pairs of robotic assisted totally endoscopic coronary artery
bypass surgery used for the in vivo analysis in this study
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Fig. 4. Results for in vivo robotic assisted MIS (a) the recovered 3D coordinates in the left cam-
era reference system for a landmark tracked through 1500 video frames at 50 fps (b) power
spectral analysis clearly identifies the heart beat and respiratory frequencies in the 3D motion
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did not exceed 15 pixels, which was consistent with observations from in vivo data for
consecutive frames. Metric error was measured as the distance between the recon-
structed 3D point and the point on the CT reconstructed surface along the ray back-
projected from the left camera. In Fig. 2, we demonstrate the reconstruction accuracy of
stereo correspondence obtained with the proposed technique. Not all features are suit-
able for temporal tracking, and initial outliers were rejected depending on the correla-
tion threshold. This results in fewer features being tracked over the entire period but im-
proves the overall accuracy by ensuring that only consistent landmarks are considered.
With the proposed framework additional landmarks may be introduced at any stage.

The in vivo performance of the algorithm is assessed with a robotic assisted totally
endoscopic coronary artery bypass graft (TECAB) as shown in Fig. 3. In Fig. 4, it is
evident that the recovered motion clearly captures the coupled deformation of the
epicardial surface due to cardiac as well as respiratory motion. It is worth noting that
the graph shown in Fig. 4 illustrates the surface motion as projected onto the x,
yand Z axes of the camera coordinate system. Within this figure, the power spec-

trum of each of the motion components is also provided, which illustrates the domi-
nant frequencies derived from the proposed algorithm. In Fig. 5, we show the decoup-
led motion component indicating only the cardiac motion by using a localized
principal component analysis (PCA) cardiac/respiratory decoupling technique.

4 Discussion and Conclusions

In this paper, we have proposed a practical method for determining soft-tissue defor-
mation for robotic assisted MIS from a set of landmarks. We have used a combination
of landmarks including MSER- regions and the traditional gradient-based image fea-
tures for ensuring robust system performance. Results from the phantom model have
demonstrated the accuracy of 3D reconstruction that can be achieved and analysis of
in vivo robotic assisted MIS data has further demonstrated the clinical value of the
proposed technique. With the current implementation, features occluded by the in-
struments or tissue effects such as bleeding are detected through correlation and epi-
polar geometry thresholds and set as outliers in the tracking process. The introduction
of new features or labeling lost features as occluded and performing subsequent
searches with statistical motion models can be used improve the tracking process.
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Abstract. This paper presents a new algorithm for non-rigid registra-
tion between two doubly-connected regions. Our algorithm is based on
harmonic analysis and the theory of optimal mass transport. It assumes
an underlining continuum model, in which the total amount of mass is
exactly preserved during the transformation of tissues. We use a finite
element approach to numerically implement the algorithm.

1 Introduction

Image registration is the process of generating a common geometric frame of ref-
erence between two or more image datasets. This technique is especially useful
in the context of medical image processing. A successful registration technique
allows for the integration of pre-operative information with intra-operative imag-
ing to improve image-guided surgery and therapy. For example, in brain surgery
where craniotomy is performed, the ventricles in the brain may be compressed
due to pressure changes. A surgical plan based on pre-surgical images must there-
fore be updated accordingly to reflect these shape deformations. There have been
numerous algorithms proposed for non-rigid registration. See [9] for a detailed
review and the references therein. Our method employs optimal mass transport,
and therefore belongs to the category of warping algorithms based on continuum
and fluid mechanics. The approach may be formulated as an energy minimiza-
tion problem. We should point out that our methodology may not be suitable
under circumstances where the mass preservation assumption is invalid, such as
the matching of two different perspective projections of a spatial object.
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In the work of [5,11], an algorithm was presented for finding an optimal
warping function between two simply-connected domains, or more specifically
two rectangular regions. The assumption was that the mass is preserved at all
points in the image domain. However, this is not always the case. Sometimes, the
mass preserving (MP) assumption is valid only in parts of the two images. The
specific example we have in mind concerns two magnetic resonance (MR) images
of the heart taken at different times in the cardiac cycle, but corresponding to the
same spatial position. Indeed, during the cycle, the MP assumption is valid in the
myocardium, but not in the ventricles where the volume of blood varies from time
point to time point. With this key example in mind, we will derive an algorithm
for extending previous approaches to two doubly-connected domains, based on
harmonic analysis and a Finite Element Method (FEM). Here, we treat image
intensity as tissue mass density, due to the fact that in MR images intensity is
related to proton density, thus related to mass density. After registration, image
intensity (mass density) can change, but the total amount of mass (mass density
times area or the integral of intensity) preserves.

We now outline the contents of this paper. In Section 2, we give a brief
review of the optimal mass transport problem and a general gradient descent
solution. In Section 3, we summarize the approach for finding an optimal MP
mapping between two doubly-connected domains. In Section 4, we illustrate
the proposed algorithm using a pair of heart MR images. Finally, in Section 5,
we summarize the contribution of this paper and discuss some possible future
research directions.

2 Background on Optimal Mass Transport

The Monge-Kantorovich Problem (MKP) is concerned with the optimal way
of moving certain amount of mass from one domain into another. The total
amount of mass remains constant in this process. It has been widely studied in
various fields such as econometrics, fluid dynamics, transportation, and image
retrieval [7]; see [6] and the references therein. In this paper, we will consider
only 2D problems. Accordingly, let £29 and £2; be domains of R?, having smooth
boundaries. On each domain (2;, we assume that there exists a positive mass
density function p;,7 = 0,1. It is further assumed that the same total amount
of mass is associated with the two domains.

We will be considering a class of diffeomorphisms u from {2y to (2; which
satisfy the “Jacobian equation” in the form of

po = |Dulp o, (1)

where |Dul is the determinant of the Jacobian of u, and o represents the compo-
sition of functions. Equation (1) is an infinitesimal form of the mass preservation
(MP) constraint. We are interested in finding an MP mapping « which differs
minimally from the identity. To this end, we introduce the L? Kantorovich—
Wasserstein penalty functional on v € MP, defined as:
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M) = /Q lu(z) — ]2 o) de )

This functional places a penalty on the distance the map u moves each bit of
material, weighted by the material’s mass. The resulting distribution of material
is constrained to be the given density p;. The “optimal” mapping u is the one
that minimizes functional (2), and is the “cheapest” way of transporting mass
from one domain into the other. An energy term penalizing intensity change can
also be added, please refer to [5].

Theoretical results [2,3] show that there is a unique minimizer @ € MP , and
that this minimizer is characterized as being the gradient of a convex function w,
i.e., 4 = Vw. There have been a number of algorithms proposed for solving this
problem, e.g. linear programming [6], which is the most popular one. However,
the linear programming approach has a high computational complexity. In the
method presented here, we use a gradient descent approach to solve for the opti-
mal transport problem, based on the equivalent problem of polar factorization.
Here we will briefly describe the procedure; for mathematical details we refer
the reader to [5].

The first step of the method is to construct an initial MP mapping. For two
rectangular regions, the initial mapping can be found by solving a family of 1D
problems unsing simple numerical integration. Assume the two domains have
shapes of 2y = [0, Ag] x [0, Bo] and 21 = [0, A1] x [0, B1], respectively. Assume
further that the initial mass preserving mapping has the form of u°(z,y) =
(a(zx),b(x,y)). Since both g and pq are positive everywhere, it is easy to solve
u® = (a(x),b(x,y)) from the following equations:

a(z) rBi1 z pBo
/ / pa(n, y)dydn = / / po(n, y)dydn
0 0 0 0
) y

b(z,y
@) [ ma@pdo = [ oo pp 3)

0

The second step is to find the minimizer @ of the energy functional (2), using
an iterative approach. In [5], it is shown that the evolution of u should have the
following form in order to satisfy the mass preserving constraint:

2
up = " DuV+A~ div [(u —id)* ], (4)
0

where L rotates a vector by 7/2 in the counterclockwise direction, A~! denotes
the inverse of Laplacian, and id stands for the identity map. It can be shown
that the optimal mapping @ is a curl-free vector field [5].

3 Mass-Preserving Registration Between Two
Doubly-Connected Domains

In the previous section, we briefly described the approach for solving the trans-
port problem between two rectangular regions. However, this approach cannot
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be applied on doubly-connected regions (i.e. an annular region) without some
modifications. The main difficulty comes from the construction of an initial MP
mapping u® between two irregular doubly-connected domains. In this section,
we present an algorithm which constructs such a mapping by using harmonic
parametrization. In this approach, the two domains are first harmonically pa-
rameterized, then the initial MP mapping u° is constructed by solving a 1D
transport problem along one harmonic coordinate, followed by a family of 1D
transport problems along the other harmonic coordinate.

3.1 Harmonic Parametrization

Here we sketch the steps for constructing an analytic function f" = u” +iv" for
the harmonic parametrization. Similar techniques have been applied for measur-
ing tissue thickness [10], for colon surface visualization [4], and for parametriza-
tion of ventricular regions of the heart [8].

Assume we have a triangulated doubly-connected domain X', which has an
inner boundary denoted by oy and an outer boundary denoted by o1 as shown
in Figure 1. First, we want to construct u”, which is the real part of f. It is
assumed that u” satisfies

Aul =0
with u”(¢) = 0 and u"(01) = 1 (5)
The Laplace equation can be solved by using standard FEM techniques [4].
A cut C is then found from g to oy by following the gradient of u" from an

arbitrary point zy € oy to another point x; € o1. The cut C' and two original
boundaries o¢ and o1 form a new closed and oriented boundary B for the domain,

g C o1 7C
B:xg—x9 > 21 =21 — X9
The boundary condition of the imaginary part v" can be then prescribed by,

¢ v ¢ Ou
by _ _
vHO) = ¢o 8sds N ¢o 8nds

according to the Cauchy-Riemann equations. Inside the cut surface, v" is found
as the solution of Laplace’s equation Av” = 0.

Fig. 1. A doubly-connected domain X with two boundaries
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Fig. 2. Harmonic parametrization of a heart image

Once the analytic function f* = u” + iv" is constructed, a curvilinear har-
monic polar coordinate system is defined by taking u" as one coordinate axis and
v" as the other. The coordinate u” can be thought of as a curvilinear “radius”
and v" as the “angle”. By scaling u and v" by a constant, v" can be made to
run from 0 to 2x. Figure 2 shows such a parametrization on a heart MR image
without involving the ventricle area.

3.2 Finding the Initial Mapping u°

By performing harmonic parametrization, the first doubly-connected domain
(£20, 110) is cut and mapped onto a rectangular region (2%, ul) via a harmonic
(conformal) mapping f¥ = ul + ivf. If we define the mass density u? by

ue = Df5 1™ o (6)

then the mapping from (25 to 2! is mass-preserving. Similarly, the second
doubly-connected domain ({21, p1) is mapped onto another rectangular region
(020, phy via f = ul + v, Here, u? is taken to be

pi =D . (7)

The remaining task is to find an MP mapping from (£2%, ul) to (027, u#). Since
{29 and {2, are now rectangular regions, we can use the algorithm presented in
Section 2 to find an initial MP mapping u,,;, between them. This process can be
illustrated by the following diagram.

h hoy :oh h ho ok
fo = ug + ivg Uinit fi =i +ivy

(£20, po) > (026, ) > (0, pl)= (£21, p1)

The resulting initial mapping u° is the composition of f, u.;, and (ff)~1,
so that
uo = (flh)_louinitof(gl' (8)
Compositions of MP mappings and inverses of MP mappings are also MP map-
pings. Thus «° is and MP mapping, since fél, Il and u,,;, are.
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3.3 Finding the Minimizer u

The equation we use to evolve u is the same as for rectangular regions. The finite
element method (FEM) is used to solve the Poisson equation (the A~! part of
equation (4)) on a triangulated irregular domain.

In the evolution equation of u (equation (4)), we use an upwinding scheme
for computing Du. For all other derivatives, we use a Least Mean Square (LMS)
method to numerically implement the spatial derivatives. For example, assume
that a given point (xo,yo) has N neighbors (z;,y;),7 = 1...N, and a function
& is defined such that &(z;,y;) = @; for i = 0...N. It is easy to show that the
derivatives of @ should satisfy

b D1 — Py

<¢m> = (ATA)71AT , (9)
Y PN — Do

where A is the position difference matrix given by

1 —Zo, Y1 — Yo
A= . (10)

IN — Zo, YN — Yo

A time step was chosen as in [5] to make the algorithm stable.

4 Example

We illustrate the procedure outlined above on two 256 x 256 MR images of the
heart acquired on a GE scanner. Referring to Figure 3, we show the diastolic
(Figure 3(a)) and systolic (Figure 3(b)) time points of the cardiac cycle.

The black regions in Figure 3 (c¢) and (d) are two multi-connected domains,
corresponding to the heart muscle and other tissues in which we use image
intensity as the mass density. Uniform mass densities could also be used, in
which case mass preservation becomes a simple area preservation constraint.
These regions were chosen as natural candidates to apply an MP deformation
(in contrast to the left ventricle in which the change is too drastic to sensibly
apply the procedure). Harmonic parametrization is first done on each domain
(as shown in Figure 2 for the diastolic image), and an FEM-based L? MKP is

(a) diastolic phase (b) systolic phase (c) the mask of (a) (d) the mask of (b)

Fig. 3. Two heart MR images and their segmentation results



Mass Preserving Registration for Heart MR Images 153

Fig. 4. The deformed grid on the systolic heart image

r r

Fig. 5. Morphing movie for two heart images in Figure 3

then solved between the two domains to find the correspondence. Figure 4 shows
the deformed grid. We can also create a morphing video to show the deformation
of the first image into the second. Figure 5 shows some key frames in the video.

5 Conclusions

In this note, we extended the methodology for applying MP registration [5] to a
pair of doubly-connected domains. For an L? version of the problem, a gradient
descent algorithm is proposed to solve the problem iteratively. Harmonic analysis
is employed in this approach for constructing an initial MP mapping. If the radius
of the inner boundary is small enough, the inner boundary can be considered
as a single landmark. In this sense, we have solved for MP registration on two
domains with a pair of corresponding landmarks. This technique can also be
extended into multi-connected domains (corresponding to multiple landmarks).

In the present work, the pure L? Kantorovich-Wasserstein functional is pro-
posed as the similarity measure. A modified energy functional penalizing the
intensity change can also be implemented [12]. Other types of distance mea-
sures, e.g. minimizers of the Dirichlet energy integral, can also be combined
with a mass preservation constraint [1]. We plan to implement these ideas in
some future work.
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Abstract. In this paper we propose a new two step method to register
the liver from two acquisitions. This registration helps experts to make
an intra-patient follow-up for hepatic tumors.

Firstly, an original and efficient tree matching is applied on differ-
ent segmentations of the vascular system of a single patient [1]. These
vascular systems are segmented from CT-scan images acquired (every
six months) during disease treatement, and then modeled as trees. Our
method matches common bifurcations and vessels. Secondly, an estima-
tion of liver deformation is computed from the results of the first step.

This approach is validated on a large synthetic database containing
cases with various deformation and segmentation problems. In each case,
after the registration process, the liver recovery is very accurate (around
95%) and the mean localization error for 3D landmarks in liver is small
(around 4mm).

1 Introduction

Motivations: Liver Tumors Follow-Up: The main purpose of our work is to
make an intra-patient follow-up of tumors (see our previous work [2]). This task
is difficult since the liver is a highly deformable organ. Thus, tumor matching
relies on the liver deformation. To estimate this deformation, we propose to
compute a deformation field from reliable landmarks and then extrapolate it
to a dense field. It is a well-known result that the most reliable landmarks to
estimate deformations sustained by the liver are provided by its vascular network
[3,4,5,6,7]. We use our iterative tree matching algorithm on the vascular system,
to match common bifurcations and edges (see [1] for more details). Thus, each
match provides a displacement vector. From this sparse data a dense deformation
field is built.

Proposal: The remainder of this paper is organized as follows. We briefly recall
related methods to solve the problematics of our approach to compare and to
justify our approach. Then, we summarize our iterative oriented tree matching
(detailed in [1]). The next part describes the registration algorithm. The last
section deals with the validation protocol and demonstrates the efficiency of this
global approach (localization error reduced from 20mm to 4mm).

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 155-162, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Related Works

Matching: Related works propose algorithms to match and/or register vascular
systems (brain, liver and, in a similar manner, lung airways). Generally, veins
are modeled as graphs computed from segmented images and skeletons [8]. Some
authors use tree structure notions in their algorithms to register a tree with an
image [3] or two trees [4]. Other approaches match structures (nodes and vessels),
but use general graph matching methods [5,6,9] or specific methods like subtree
isomorphism [7] which do not take segmentation problems into account.

The oriented tree matching problem is more specific than graph matching
because the structure is oriented and the path that connects two nodes is unique.
Moreover, it cannot be considered as an oriented subtree isomorphism problem
because of the segmentation errors. Indeed, the segmentation process can miss
some vessels (edges). This implies a (virtual) pruning on both trees (for example
an edge in a tree could be represented by several successive edges on the other
tree) and thus the tree topology differs between acquisitions.

In our previous work [1], vascular systems are modeled as trees. Then, tree
vertices are matched using a cost function that takes possible segmentation errors
into account. Our algorithm does not focus on the best solution (given two edge
sets to match) but on the most likely solutions which are updated during the
process.

Vector Field Interpolation: Several methods exist to produce a deforma-
tion vector field from sparse displacements : the method in [10] is based on the
computation of the optical flow. Another approach uses krigging [11] or con-
siders the deformation field as a derivate of a potential scalar map modeled by
Green’s function [12]. A generalization of scalar splines to vector interpolation
is proposed in [13] to estimate displacements.

Our first time method is simpler and less computive consuming than previ-
ously cited ones. Indeed liver deformations are less complicated than generalized
flow fields (no vortex for instance). Our method is decribed in section 4 and its
efficiency which is encouraging is discussed in section 5.

3 Iterative Tree Matching Technique

This section describes how we build correspondences among common structures
in the vascular system. Skeletons computed from segmented vascular systems can
be represented as oriented trees. The orientation symbolizes blood circulation
flow. Nodes represent bifurcations and edges correspond to vessels between two
bifurcations. Furthermore in our algorithm, some geometric attributes are added
to the vessels (3D positions, radius, path).

Vascular trees segmented for a patient follow-up represent the same vascular
system and our goal is to find common bifurcations and to register them. How-
ever, their topology and 3D positions may differ due to segmentation errors and
deformations applied to them. The main challenge consists in using tree topology
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Fig.1. [Left] A large deformation case is pruned at 20% (% of branch area randomly
removed in both trees). [Center| The figure shows the result of our oriented tree
matching, good matches are represented by light gray arrows and represent 91% of
all nodes and wrong matches by dark gray arrows. [Right] The figure shows the tree
registration after the process.

to detect deformations, and in parallel, geometric information to detect topology
problems.

The idea of our algorithm [1] is to search for the best tree matching start-
ing from roots (vascular system entrance). Since possibilities are numerous, we
propose to generate and select the most relevant solutions. The algorithm starts
by studying the root match and updates selected solutions while it explores and
finds other possible matches in both trees. This means that some solutions se-
lected at a given process step can be eliminated later if they become less relevant.
The relevance of the solutions is evaluated at each step using a quality match
criteria. We show in [1] that this algorithm matches 90% of common nodes on
standard deformation and pruning. An example is shown in Fig. 1 and other
results are shown on Tab. 2. For more information on this topic, please refer to
our previous paper [1] in which this method is described and validated.

4 Registration

The previous step provides us with a match set which represents a deformation
vector field. We explain here how we extrapolate it to a dense field in order to
predict the liver deformation.

The matching provides us with a vector deformation T; = P/ — P; in each
correspondence point (bifurcation) (P/,P;). Our method extrapolates this vector
flow to yield deformation vectors in each point inside the liver. To compute the
deformation T, we use Voronoi cells V; = {P € R : |[P — P|| < |P — P},
Vj # i}. The extrapolated deformation Thys in a point M # P; is defined by :

1
T = i T; 1
N volume(Sar) X Zi:volume(v N Sar) X (1)

where Sps is a sphere centered on M and of radius d = min||M — P;||. This

deformation is a linear combination of surrounding bifurcation displacements.
The impact of each displacement is correlated with its influence zone (V; N Siy).
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Fig.2. [Left] The figure shows two color points P; (black) and P, (white), their
associated Voronoi cell Vi and V2. The circles S; are defined using the distance d
from M; to the closest point P;. [Right] The figure shows the result of our color
interpolation.

To speed up the process,the displacement field is computed on a regular
subsampled liver. Then, we use a trilinear interpolation to extend the results
to whole liver. A 2D example with color interpolation of two points (white and
black) is illustrated on Fig. 2.

5 Experiments and Validation

To validate this registration algorithm, it is necessary to have a large patient
database. However, we lack multi-acquisitions of the same patient mostly be-
cause the time between two acquisitions is long as it is imposed by the disease
treatment (around 6 months). This is why our real patient database is not suf-
ficient to provide a clinical validation of our method. However, a real case is
studied at the end of this paper and results are encouraging for the future.

At the moment, we have tested our algorithm on a large synthetic database.
Even if synthetic cases differ slightly from real cases (deformations and segmen-
tation problems are simulated), working with a synthetic database has some
advantages. It allows to test many configurations and to have a gold standard,
so that we can estimate the algorithm efficiency. In this section, we present how
we build this database and obtain our results.

5.1 Creating Virtual Patient

To test and validate our algorithm, we worked on synthetic deformation applied
on a liver and its hepatic vascular system. The liver model has been extracted
from the Visible Man image which voxel resolution is 0.33 x 0.33 x 1mm (cf.
The Visible Human Project of NLM) with a segmentation that provides us an
accurate quality model.

To simulate deformations, we use the minimally invasive hepatic surgery
simulator prototype developed at INRIA [14]. This simulator provides a realistic
deformation model for the liver and its vascular system. It uses complex biome-
chanical models, based on linear elasticity and finite element theory, including
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Fig.3. The EPIDAURE surgery simulator is used to simulate liver and vascular sys-
tem deformations. [Left] Volumetric model with the portal vascular system. [Center]
Portal and sus-hepatic vascular system of Visible Man [Right] Portal vascular system
is randomly pruned to lose approximately 40% of its branches. Lost branches appear
in light gray.

anisotropic deformations. Thanks to a discussion with surgeons, we try to ren-
der realistic deformations by simulating pressure applied on the liver (breathing,
patient positions, etc). The left of Fig.5 shows an example of an applied defor-
mation.

To simulate segmentation errors, we have pruned random tree branches. Since
segmentation errors are mostly observed on small vessels, the probability to lose
small vessels is greater than to lose large ones. A database of 600 patient follow-
up cases has been generated from 5 types of deformations and 5 pruning steps
(0,10,20,30,40 %) with, on each step, 20 randomly generated prunings.

5.2 Results on a Virtual Patient

Matching: In our previous paper [1], we have demonstrated the efficiency and
robustness of our matching algorithm on standard deformations. An average of
90% of all possible matches was found in the 600 different cases, even with large
pruning. The process is fast and matches 380 nodes in 10 minutes on a 1GHz
PC. Fig. 1 shows an example of a matching process where we obtain an efficiency
of 91% for a standard deformation case.

Fig.4. [Left] Portal vascular system before the deformation estimation. [Center]
Perfect match between both portal trees. [Right] Portal vascular system after the
registration.
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Table 1. Deformation results on deformation n 5 : All distances are in millime-
ters. The liver similarity is Zgégisizg with L; the liver area. Before the registration,
the liver similarity is 72.8% and the mean displacement distance between livers is 22.7
+ 10.3 . With a perfect registration, these distances (errors) should be equal to 0 and

liver similarity to 100%.

% pruning portal system portal & sus-hepatic system

error  similarity error similarity
0-0 30+ 20 954 23+138 96.4
10-10 32 +21 949 25+£19 96.0
20-20 3.9+2.6 93.9 28 +20 95.6
30-30 4.6 +£31 924 33+26 94.4
40-40 50 £33 925 38+28 94.0
50-50 5.6 £3.5 91.3 45431 92.7

Table 2. Matching and deformation results: Each vascular system of these five
configurations has been pruned at 20%. The sensitivity (S) is the number of correct
found matches among the number of perfect solution matches (here 165 nodes). The
efficiency (E) is the number of correct found matches among the number of found
matches (correct and incorrect). The average distance between same points in the liver
are shown before registration (references), after the deformation estimated from our
matching and after a deformation estimated from a perfect matching.

cases S E references found matches perfect matches
error similarity —error similarity error similarity

defl 98.8 90.4 9.9 £ 4.2 841 1513 970 1312 973
def2 955 87.1 289 £ 13.6 733 49+42 942 44 4+34 942
def3 98.2 869 229 £ 11.8 678 32+20 960 33 +22 956
def4 96.0 87.1 19.7 £ 9.8 75.9 35£25 9.3 33£23 955
def5 96.1 87.1 22.7 £10.3 723 42+30 936 3.9+2.6 93.9

Fig.5. [Left] Liver and its tumors before the deformation estimation. [Center] Liver
and its tumors after the registration. [Right] Details on liver superimposition after
the registration.
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Deformation Field: Here, we test the registration robustness only. Thus,
the estimation is computed from a perfect matching. Firstly, we study the
registration estimated from portal vascular system matches with different level of
pruning. Secondly, we improve the estimation by adding the sus-hepatic vascular
system analysis. Table 1 shows the results of these experiments. The synthetic
deformation on the volumetric mesh gives us the true displacement inside the
liver. Thus we compare this displacement with the one estimated from the de-
formation field by studying the distance between matching 3D landmarks. We
compute a mean and a standard deviation on the distance between the corre-
sponding points. According to surgeons, results are sufficient to permit a tumor
follow-up: the mean error to localize a 3D point in the liver is 5.6 mm in the worst
case and our registration estimation is robust against the pruning of data. Results
are better when the sus-hepatic analysis is added to the process. However, the
gain (about 1 mm) appears small compared to the 10 additional minutes neces-
sary to match the vascular system. Fig. 4 shows the vascular system registrations
estimated from a perfect matching on the case number 5 with a 20% pruning.

6 Conclusion

The purpose of this paper was to present a new robust method to register the
liver between two CT/MRI acquisitions using the segmented vascular systems.
This registration provides us a powerful tool for the follow-up of hepatic tumors.
It is easier to match tumors after this registration despite the disease evolution.
Thanks to the synthetic database automatically generated by the INRIA simu-
lator, we have tested numerous configurations. These different cases allow us to
gain in robustness.

Currently, we are improving the liver deformation by testing another vector
flow extrapolation. Moreover we are taking the liver surface into account to
better estimate the deformation close to the surface (generally far from the
vascular system). In parallel, we have started tests on a real patient database
with very encouraging results (Fig. 6) and we plan to provide surgeons with a
new tool for automatic diagnosis of liver tumor evolution.

Fig.6. [a]Real patient where the vascular system has been matched whose vertex
matches are represented by black arrows. [b]Deformation field computed from matches.
[c,d] Tumors before and after registration.
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Abstract. Image similarity measures for registration can be considered
within the general context of joint intensity histograms, which consist
of bin count parameters estimated from image intensity samples. Many
approaches to estimation are ML (maximum likelihood), which tends to
be unstable in the presence sparse data, resulting in registration that
is driven by spurious noisy matches instead of valid intensity relation-
ships. We propose instead a method of MAP (maximum a posteriori)
estimation, which is well-defined for sparse data, or even in the absence
of data. This estimator can incorporate a variety of prior assumptions,
such as global histogram characteristics, or use a maximum entropy prior
when no such assumptions exist. We apply our estimation method to de-
formable registration of MR (magnetic resonance) and US (ultrasound)
images for an IGNS (image-guided guided neurosurgery) application,
where our MAP estimation method results in more stable and accurate
registration than a traditional ML approach.

1 Introduction

The evaluation of intensity similarity between two images for the task of image
registration can be framed in the general context of joint intensity histograms,
for a wide variety of similarity measures including correlation, correlation ratio,
mutual information and others [12]. In this context, the task of similarity eval-
uation is to calculate the relevant similarity measure based on an estimate of
the joint intensity histogram. Thus, the quality of image similarity evaluation is
dependent on the quality of joint histogram estimation.

Histogram estimation can be considered in the context of statistical param-
eter estimation, where the parameters to be estimated are the bin counts of
the joint histogram. A variety of estimation techniques have been presented in
the literature, the majority of which are variants of ML (maximum likelihood)
estimation [6]. The hallmark of ML estimators is that they become unstable in
the presence of sparse image data, and are undefined in the absence of image
data. As such, ML estimators perform poorly in the presence of sparse data,
tending to latch onto spurious, noisy matches despite the variety of techniques
designed to improve their performance such as Parzen windowing, partial volume
interpolation, robust ML estimation, etc.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 163-170, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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In this article, we present a method of joint histogram estimation based on
MAP (maximum a posteriori) parameter estimation. In contrast to ML estima-
tion, MAP histogram estimates are well-defined in sparse data or even in the
complete absence of data by a prior distribution over histogram bins. As such,
MAP histogram estimates are not subject to instability as are ML estimates.
Furthermore, MAP estimation provides a principled way incorporating prior in-
formation in terms of the number of samples required to obtain a valid histogram
estimate. As a result, one can bias histogram estimates such that if the number
of samples is insufficient, the MAP estimate will favor a benign prior unlikely to
lead to spurious matches.!

In practical terms, our method involves pre-populating joint histogram bin
counts before the arrival of data, according to an estimate of number of samples
M required for valid joint histogram estimation. This pre-population constitutes
our prior belief as to the joint histogram, which is gradually outweighed as
data samples are added. This general approach is known to stabilize probability
estimates of infrequently observed events [10], but it is not commonly used to
stabilizing image similarity estimates for registration.

Our MAP estimation method was developed for the purpose of on-line non-
linear registration of MR (magnetic resonance) and US (ultrasound) imagery in
the context of an IGNS (image-guided neurosurgery) application. This is a de-
manding registration task for the following reason: the joint intensity relationship
between MR and US imagery is noisy, multi-modal and highly non-stationary
(i.e. varying with spatial location), thus computing image similarity for registra-
tion requires a sophisticated similarity measure such as MI (mutual information)
with a high degree of parameterization. At the same time, precise nonlinear regis-
tration requires evaluating similarity within small local image windows, meaning
a relatively large number of histogram parameters must be estimated from a rel-
atively small number of intensity samples. A principled method of histogram
estimation is therefore needed to overcome the problem of sparsity. Preliminary
results based on stereotactic ground truth are promising, indicating a greater
degree of registration stability and accuracy when based on MAP as opposed to
ML histogram estimation.

2 Methods for Dealing with Sparsity

Sparsity in histogram estimation is a problem touched on by many authors,
although rarely in the framework of statistical parameter estimation. Here we
present some common approaches histogram estimation, particularly for the pur-
pose of dealing with data sparsity:

Parzen windowing: Parzen windowing [15], involves smoothing histograms
with a Parzen window kernel, often a Gaussian. Parzen windowing has the draw-
back of populating histogram estimates with fictitious samples, and does not gen-
erally converge to the true histogram estimate with increased sample size. To

1 We stress here that we refer not to MAP estimation for registration, but the estima-
tion of the joint histogram used to evaluate similarity given a fixed image alignment.
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see this, consider the case in which the joint intensity histogram is completely
contained in a single histogram bin. Using Parzen windowing, this histogram
will always contain a smoothed peak, regardless of the amount of image data.

Coarse histogram binning: Coarse histogram binning reduces the number of
parameters to be estimated from a limited amount of data [16]. Coarse histogram
binning in itself is not sufficient to deal with sparsity, however, as the coarser
the histogram quantization, the more impoverished the histograms become for
the purpose of registration. In addition, even highly quantized histograms can
suffer from undersampling given small local window sizes. Finally, the question
of an optimal quantization scheme is difficult and task dependent.

Probabilistic Segmentation of Before Registration: A new approach
which serves to reduce problems with sparse intensity histogram estimation is
to compute histograms based on probabilistically labeled images [2]. Here, his-
tograms are based on low-dimensional probability distributions, resulting in bins
that are non-zero. Although seemingly well suited to it’s purpose, such an ap-
proach requires the extra step of probabilistic data segmentation, which in our
experience tends to blur out local structures in favor of global segmentation.

Weighting Local Histograms with Global Intensity Relationships:
Weighting local histograms with global intensity relationships has been touched
on by several authors [9,7,4,8,14], suggesting agreement that a means of dealing
with sparsity is to populate histograms based on other sources of relevant infor-
mation. The drawback with considering global histograms is that they do not
generally reflect local intensity relationships, as in the case of MR and US modal-
ities (See Figure 1), and can result in inappropriately biased estimates. That
being said, our method of MAP estimation can be used to bias local histogram
estimates using a variety of prior information within the principled context of
statistical parameter estimation, allowing incorporation of global histogram in-
formation when relevant and providing other options when it is not.

3 MAP Histogram Estimation

The majority of techniques have difficulty with local histogram estimation be-
cause they are based on ML estimation, which becomes increasingly unstable
in the presence of sparse data. In practical terms, this results in registration
that tends latch onto spurious incorrect matches as data sparsity increases. To
deal with this instability, we propose MAP estimation with a maximum entropy
prior, which tends to produce strong matches only when justified by sufficient
intensity samples.

3.1 Maximum Likelihood vs. Maximum a Posteriori

The task of estimating a local histogram for the purpose of registration is one of
estimating a set of K discrete bin frequency counts 6 = {#',...,0%}. The goal
in histogram estimation is to determine the values of 6 that maximize p(6|I), the
conditional probability of 6 given the image data I. By Bayes rule, the following
equality holds:
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P110)p(0) "

p(I)

For the purpose of statistical parameter estimation, p(I) is constant as image
data I is constant, p(I|f) naturally takes the form of a multinomial distribution,
and p(f) and p(#|I) are Dirichlet distributions [6].

There are two significantly different methods of estimating p(6|I): ML and
MAP. We advocate the MAP strategy, as it provides a principled mechanism for
explicitly incorporating prior information in the form of the number of intensity
samples M required for valid estimation.

p(O|T) =

ML Estimation: ML estimation is based on the assumption that p(6) is con-
stant. Under this assumption, we seek an estimate 6,7, such that:

Onrs, = swgmax { p(16) ). (2)

Here, to maximize p(6|I), it suffices to maximize the term p(I]#), which is known
as the likelihood, hence the name maximum likelihood estimation. In ML esti-
mation, histogram bin counts 6 are simply set to counts of intensity data I,
optionally processed with Parzen windowing, etc.

MAP Estimation: MAP estimation does not treat all histograms as equally
probable, and p(f) is not constant. In particular, certain histograms are more
probable than others, based on prior assumptions we may have regarding 6, and
we seek an estimate 674 p such that:

Orsap = axgmax { p(110)p(0) } (3)

It can be shown that as the number of intensity samples I approaches infinity,
both ML and MAP estimation converge to the same optimal histogram estimate
of 6 [6]. In intuitive terms, this is because the prior distribution p(#) of the MAP
approach becomes swamped by p(6|I). Being swamped with intensity data is
hardly a problem in histogram estimation however, particularly when attempting
to calculate similarity for the purpose of localized deformation [11]. It is precisely
in the case of sparse data samples I that the difference between ML and MAP
estimation is most telling. MAP estimation allows the incorporation of a prior
distribution p(f) as to the value of # in the absence of data I. In the presence
of sparse data, i.e. an image window I with insufficient samples to estimate the
histogram, we would like estimation to default to our expectation as to the true
histogram values, or at least a benign histogram 6 that is not likely to result in
spurious, noise-driven matches.

In general, p(#) could be based on a variety of prior assumptions, i.e. the global
histogram approach, although the global histogram may not be representative of
local intensity relationships, as in the case of MR /US registration. In the absence
of constraints, we follow the rule of maximum entropy [5] and suggest a uniform
prior - in the case of undersampling, the uniformly-weighted histogram is adverse
to making a strong decision regarding registration, and the effect of spatial neigh-
borhood constraints will dominate. In the case where the number of intensity sam-
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Fig. 1. The image intensity relationship between MR and US image modalities is multi-
modal and non-stationary, i.e. varying spatial position. The upper left image is a 2D
slice from T'1-weighted MRI brain volume, and the upper right image is a corresponding
US image slice. Correspondence was determined via a stereotactic positioning of the
US probe relative to the volume coordinate system. The white circles overlaying the
image indicate local regions within which local likelihood histograms p(US|MR) are
calculated. The smaller images along the bottom are likelihood histograms, where the
vertical axis is MR intensity and the horizontal axis is US intensity. The histograms
corresponding to local regions are indicated by arrows, and the larger histogram in the
bottom right is the global histogram. It can be seen that the statistical likelihood pixel
relationship is non-stationary, as it varies significantly with spatial location. In addition,
local likelihood relationships are significantly different from the global likelihood.

ples is significant, the uniform prior will be outweighed by evidence and valid reg-
istration will occur. The intuition is that M should be set according to the number
intensity samples required to obtain a valid histogram estimate, which is related
to a number of factors such as noise, the number of histogram bins to be estimated,
etc. Our MAP estimation approach can be summarized as follows:

MAP Histogram Estimation:

1) Generate an estimate as to the number of intensity samples M required
to obtain a valid estimate of the histogram bins.

2) Pre-populate histogram counts according to M, either uniformly or ac-
cording to other sources of prior information.

4 Deformable MR to US Registration

We developed our MAP estimation method for the purpose of deformable reg-
istration of MR and US imagery in the context of an IGNS application, where
the goal is to update a detailed pre-operative 3D MR volume of the brain used
in intervention planning with real-time US gathered inter-operatively, in order
to reflect brain shift that occurs once the dura lining has been entered. With
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Registration Error vs. Pre-Population
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Fig. 2. A plot of mean displacement vector registration error vs. the degree of uniform
prior incorporated MAP estimation. The error for a 9-point displacement field drops
by a factor of 1.6 as the joint histogram pre-population is increased from M=0 to M=5
samples per bin. Note that when M=0, MAP and ML estimation are equivalent. The
error is high for low M, as the posterior is dominated by spurious local MI maxima.
Error reaches a minimum at M = 5 samples per histogram bin, after which point it
rises slightly as the elastic prior begins to dominate the posterior.

both the US probe and the patient’s head registered rigidly via a stereotactic
tracking apparatus, the task becomes one of updating the 3D MR, volume based
on non-linear registration with 2D US slices.

For the purpose of validation, we have compiled a database of US slices taken
inter-operatively. To test registration, we focus on recapturing the deformation
relative to stereotactic ground truth. US image structure is due to the reflection
of acoustic waves at the boundaries of structures of differing density, and is an
inherently noisy and difficult image modality to work with, due to speckle noise,
signal attenuation artifacts such as acoustic shadows, etc. Figure 1 illustrates
how the joint intensity relationship between MR and US varies to a large degree
with spatial position.

In order to model nonlinear brain shift, we are interested in recovering a field
of displacement vectors T = {t;} mapping fixed points in the MR image to their
displacements in the US image. Adopting a Bayesian strategy as in [3], we formu-
late registration as a posterior probability over T given the images to be matched:

p(T|US, MR) x p(US|T, MR)p(T). (4)

The Bayesian formulation requires specification of the terms p(US|T, M R)
and p(T) which are referred to as the likelihood and prior, respectively. In reg-
istration, the likelihood is the data term serving to evaluate similarity between
images US and M R given T, and the prior serves to incorporate regularization
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constraints on T independent of image information, such smoothness, elasticity,
etc. The strength of Bayesian registration is that the likelihood and prior terms
can be be changed to suit the registration task at hand without altering the
overall formulation.

For our purposes, we choose to model p(US|T, M R) using the MI (mutual in-
formation) of intensities. The MI is a widely-used measure of statistical intensity
similarity based on information theory [15,1]. Many excellent references exist re-
garding the details of MI calculation [11]. Alternatively, we could have adopted
the correlation ratio approach of [13] based on intensity and gradient images or a
learning based similarity measure as in [7]. In order to model nonlinear deforma-
tion, we choose to model p(T) using an elastic prior between pairs of neighboring
deformation vectors in T. The final Bayesian posterior is of the form:

N N,N
p(T|US, MR) < exp{a» (MI(US|ti, MR) = MIna) — B d(ti t;)}, (5)
i,J

7

where M 1,4, is the maximum MI achievable using a 25x25 bin joint histogram,
N is the number of vectors in T, d(t;,t;) represents an elastic prior energy
between t; and t;, and o = 5 and 8 = 2 are empirically determined parameters
that balance the relative strengths of the likelihood and prior terms.

For experimentation, we attempt to recover the known transform T between
US and MR image pairs. Given a fixed local window size, we compare the
result of registration T using ML and MAP estimation. The number of joint
histogram bins used is 25x25=625 and the local window size is 43x43=1849
pixels. Optimization of the posterior in (5) was achieved via gradient ascent from
100 random seeds, and the best solution, i.e. the deformation field maximizing
equation (5) was used in the result analysis. Random seeds were generated by
perturbing vectors t; to random displacements within a 25 pixel radius of the
known transform. The resolution of registration was lmm per pixel.

Figure 2 shows the impact of MAP estimation on registration error, as the de-
gree of prior pre-population in the joint histogram is increased. Here we see that
with little or no histogram pre-population, i.e. ML estimation, poor histogram
estimates result in unstable, inaccurate registration.

5 Conclusion

In this article, we presented a principled means of estimating joint intensity his-
tograms for the purpose of similarity calculation in the presence of sparse image
data. Given the number of intensity samples M required to reliably estimate in-
tensity histograms, we proposed a MAP estimation method based on a uniform
prior histogram. The advantage of this method is that histogram estimates only
result in strong matches when sufficient evidence exists to justify them, i.e. when
the number of intensity samples is sufficiently high. In the case of undersampling,
histogram estimates will default to a benign prior histogram that is unlikely to
result in strong false matches. Traditional ML estimation, on the other hand,
tends to produce strong false matches in the case of undersampling, which can
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throw off registration. Practically, our method is simple to implement, where
histogram bin counts are pre-populated by M uniformly distributed samples
prior to estimation, representing the prior assumption of MAP estimation. We
expect that MAP histogram estimation will result in improved registration in
other methods of similarity calculation based on histograms, such as correlation,
correlation ratio, etc. Future work will involve further clinical validation, testing
with other similarity measures, and determining of an optimal degree of prior
information M to incorporate given the images to be registered.
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Abstract. Real-time three-dimensional ultrasound (RT3D US) is an ideal
imaging modality for the diagnosis of cardiac disease. RT3D US is a flexible,
inexpensive, non-invasive tool that provides important diagnostic information
related to cardiac function. Unfortunately, RT3D US suffers from inherent
shortcomings, such as low signal-to-noise ratio and limited field of view,
producing images that are difficult to interpret. Multi-modal dynamic cardiac
image registration is a well-recognized approach that compensates for these
deficiencies while retaining the advantages of RT3D US imaging. The clinical
application of multi-modal image registration methods is difficult, and there are
a number of implementation issues to be resolved. In this work, we present a
method for the rapid registration of RT3D US images of the beating heart to
high-resolution magnetic resonance (MR) images. This method was validated
using a volunteer image set. Validation results demonstrate that this approach
can achieve rapid registration of images of the beating heart with fiducial
landmark and registration errors of 1.25 + 0.63 and 1.76 mm respectively. This
technique can potentially be used to improve the diagnosis of cardiac disease by
augmenting RT3D US images with high-resolution MR images and to facilitate
intra-operative image fusion for minimally invasive cardio-thoracic surgical
navigation.

1 Introduction

Cardiovascular disease is the most frequent cause of death by disease in North
America and accounts for the death of more Canadians than any other disease. Early
diagnosis of heart failure is essential for successfully addressing the underlying
diseases and/or causes, and the prevention of further myocardial dysfunction and
clinical deterioration.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 171-178, 2005.
© Springer-Verlag Berlin Heidelberg 2005



172 X. Huang et al.

The ability of MRI to be employed in a dynamic mode allows cardiologists to
acquire high quality images of cardiac anatomy that assist diagnosis, yet it is an
expensive procedure that may not yield all of the relevant diagnostic information.
Echocardiography, also used to diagnose cardiac disease, is a flexible, inexpensive,
non-invasive tool. However, the cardiac images produced are of lower quality and the
small field of view (FOV) makes it difficult for the cardiologist to mentally place
abnormal cardiac structures and congenital defects in the proper clinical context, which
increases the risk of misdiagnosis. While both real time echocardiography and
dynamic MRI are routinely used in the diagnosis of cardiac disease, there is no
mechanism to easily integrate information from both image sets in order to take
maximum advantage of both modalities. Techniques currently used to examine the
heart provide valuable information, but do not represent the complete picture of cardiac
health. It is therefore important for the cardiologist to dynamically relate the images
generated from US studies to dynamic MR images from the same patient. We believe
that ability to correlate real time echocardiography images with previously acquired
dynamic 3D MR images would be a significant contribution to the diagnosis of cardio-
vascular abnormalities and to interventional and minimally-invasive cardiac surgery.

While existing literature outlines procedures and methods for multi-modal image
registration [1, 2, 3], these approaches have mainly been used in neurosurgical
applications [4, 5] and abdominal interventions [6]. These methods show promising
results, however these techniques are insufficient to meet the demands of real time
cardiac image registration. To account for the periodic motion of the beating heart,
image registration must be performed very rapidly. The lower quality of the US
images of the heart makes the realization of a fast, robust US-MR image registration
technique difficult.

In this paper, we present a method for the rapid registration of RT3D US images
with dynamic 3D MR images. This method integrates electrocardiogram (ECG)
signals and a spatial tracking system with a commercially available US machine.
Compared to the existing methods for fusing RT3D US with dynamic 3D MR images,
our technique is the first to simultaneously address the issues of image acquisition,
image processing timing constraints, and the motion of the beating heart.

2 Methods

In medical image registration one approach for modeling the beating heart is to
represent the heart as a deformable model [7]. A major concern relating to this
approach for real time 3D US-MR image registration is the associated computation
time. For the method to operate in real time, the entire process (image acquisition,
processing and visualization) must be completed at least 20 times per second.
Accounting for time lag due to image acquisition and visualization, for real time image
integration to be possible, image registration must be completed in 20-50 ms. If a
deformable model is used, then the integration process requires substantially more
computation time, because additional registration parameters need to be adjusted and
optimized [8]. Therefore, the use of a deformable model to represent the heart is not a
suitable choice in this case. To meet these strict time constraints we propose a
registration method that employs a rigid-body transformation between US and MR
images.
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2.1 Rigid-Body Representation

During cardiac diagnosis and surgery planning the heart remains relatively fixed with
respect to the thoracic cage between dynamic 3D MRI and RT3D US examinations.
Breath-holding is employed during both MRI and US acquisitions to ensure that
organ motion is due solely to the beating heart, and not a combination of the beating
heart and patient respiration. Although the shape and size of the heart differs at
different phases in the cardiac cycle, it is reasonable to assume that the overall pattern
of shape and size variation does not change beat-to-beat. This assumption is
especially true in the case of diagnosis where there is no significant change in heart
rate or blood pressure. We further observe that if we subdivide the cardiac cycle into
discrete cardiac phases, the US and MR images acquired at the same moment in the
cardiac cycle represent the same physical heart features. Given these observations, it
is straightforward to represent the registration for each pair of the US and MR frames
of the same cardiac phase with a rigid-body transformation.

Furthermore, if we consider any two pairs of US and MR images in different
phases, the non-rigid transformation between the two MRI frames is the same as that
for the two US frames, because they represent the same physical heart deformation
between the two cardiac phases. Aligning any pair of MRI and US frames
automatically aligns the other sets of frames.

These observations imply that a single rigid-body transformation between the MR
images and US images can be used to rapidly register the image sets.

2.2 Registration Method

To register RT3D US images with 4D MR images we track the US probe using a
Polaris optical tracking system (OTS) (NDI, Waterloo, Canada) while simultaneously
recording ECG signals. One major advantage of using US imaging systems lies in the
flexibility of image acquisition. During a cardiac examination, the operator has the
freedom to position/orientate the US probe in any manner to obtain the necessary
views of the heart. Since the position and orientation of US probe is continuously
tracked with the Polaris OTS, the tracking information can be used to register the US
images to the world coordinate system (WCS).

ECG signals are employed to temporally align the US and MRI frames. Dynamic
3D MRI frames are often acquired with a fixed sampling rate, whereas the sampling
rates for US systems vary with any on-the-fly adjustments made to the FOV by the
operator. This difference in sampling rates implies that the US and MRI frames will
not in general be temporally synchronized. To overcome this difficulty, we utilize
ECG signals to phase-stamp the US images with timing information derived from the
ECG signals. The MR images are temporally interpolated, and using this phase data,
US and MR images with coincident cardiac phases are identified. The US images are
transformed into the WCS and the US and MR images are registered together.
Recognizing that there will be sampling errors in the ECG signal, the tracking system,
and variations in the heart rate between MRI and US acquisitions, it is necessary to
perform a final ‘fine-tuning’ of the registration to ensure optimal spatial and temporal
alignment.
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In order to fine-tune the registration result, the transformation matrix generated by
the registration procedure is used as the starting position/orientation for a mutual
information (MI) registration method [9], which further optimizes the registration with
respect to seven parameters: translations (x, y, z), rotations (6, 6, 6,) and time ().

2.3 Registration Procedure

Based on the above considerations and the analysis of cardiac diagnostic and planning
problems, we outline the following procedures for real time image registration. Our
approach involves two steps: 1) a pre-registration step and 2) a real-time registration
step (Figure 1). The steps for the registration procedure are as follows:

Step 1. Pre-registration before procedure (diagnosis/planning):

Pre-operative

1. acquire dynamic 3D MR images (gradient echo T1-weighted imaging sequence
with a voxel size of 1.5 mm’ [10]) at different phases over one cardiac cycle

Immediately prior to procedure

2. acquire a 3D US image (denoted US;) recording the US probe’s tracking
information ( 7y s, ) and the ECG signal at some cardiac phase

3. the MR images are temporally interpolated and based on the ECG information (7, )

the MR image with the closest cardiac phase is identified (denoted mr;)

4. the two image sets are manually registered together, generating a temporary
transformation matrix, 7,,, . s

5. using T, s as the starting point, the two image sets are registered together using
a MI registration method, optimizing the positional, rotational and temporal
variables (x, y, z, 6, 6, 6, 1) to obtain T, . . We use the notation MR; to
denote the optimal aligned MR image corresponding to US;

6. finally, using the following relation, the pre-registration transformation 7, ycs 1S
calculated

T,

1
MR<WCS — TMR, «Us, (TWCS<—US] )7 (1)

Step 2: Real-time registration during procedure:

1. acquire an intra-operative RT3D US image (denoted US;), recording the probe
tracking information (7j,¢s. 5, ) and ECG signal

2. use the ECG signal to estimate the cardiac phase, ,, corresponding to US,

3. derive a ‘near-optimal” transformation, 7, . s,

, using the following equation
TmQ(—USz = TMRHWCSTWCSHUSZ (2)

where T, wcs 18 the initial position/orientation estimated from the pre-registration

procedure, and Ty 5, is the US to WCS calibration transformation for US, and

mr, denotes the MR image interpolated based on the ECG information (7, )
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4. using £, as the cardiac phase and T, as the starting position/orientation,

nry <USy
register the two image sets together using a MI registration method and generate

the final transformation, 7)., . s, , Where MR, denotes the optimal interpolated MR

image corresponding to US;,

PRE-
REGISTRATION temporal synchronization cardiac synchronization ECG
— (3D US - 4D MRI)
MR imaging
acquisition TMR1 «US) 3D US image acquisition
l immediately prior to procedure
register MR to patient (WCS)
_ ( )_1 = spatial tracking (T} us, )
Tyirewes = TMR| «US, TWCS(—US]
\4
calculate initial registration ) cardiac synchronization ECG
Tmrz “Us, — TyrewesTwes «Us,
i spatial tracking ( TWCSH,S2 )
.| fine-tune registration < intra-operative 3D US image
"| (DUS-4D MRI) acquisition
REAL-TIME i *
REGISTRATION l
optimal registration visualization
TMR2 us, > (image fusion)

Fig. 1. The proposed method is a two-step registration procedure. The first step, pre-
registration, involves registering pre-operative dynamic 3D MR images to RT3D US images at
an arbitrary point in the cardiac cycle. This step is performed while the patient is on the
OR/examination table. The second step, real-time registration, is performed during the
procedure and involves acquiring RT3D US images augmented with both ECG signals and
spatial tracking information. A series of these ‘augmented’ RT3D US images are continuously
acquired and registered with the pre-operative dynamic 3D MR images to provide accurate, real
time image registration.

3 Experimental Results

In this experiment, 20 dynamic 3D MR images of one cardiac cycle, acquired on a
1.5T GE CVi scanner (GE Medical systems, Milwaukee) and 14 RT3D US images,
acquired on a Phillips SONOS 7500 real time US machine, from the same volunteer
were registered together. The image sets were temporally aligned, and then spatially
registered using a MI registration algorithm. This method was able to achieve image
registration within 1 second.
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The registration was visually satisfactory in all image pairs (see Figure 2), but it is
not a trivial task to perform a quantitative validation, since the ground truth is
unknown. We discuss below two methods used to evaluate the registration accuracy:
1) a landmark-based method, and 2) an average transformation method.

Fig. 2. Registration between RT3D US and dynamic 3D MR images. (a) orthogonal slices of
the US volume of the beating heart; (b) the MRI volume of the beating heart; (c) the overlay of
the two image sets after registration.

3.1 Landmark Based Validation

Anatomical landmarks within the heart were used to evaluate the registration
accuracy. Five such landmarks, the mitral annular septal site (MASS), mitral valve
(MV), anterior tricuspid valve (ATV), septal tricuspid valve (STV) and the coronary
sinus (CS), were identified in both the US and MR images by six observers and the
landmark (or fiducial) localization error (FLE) and fiducial registration error (FRE)
were determined. The FLE is defined as the error in locating the landmarks (i.e. the
distance of the localized landmark from the “forever unknown” actual landmark
location) [11] and is approximated by the average of the landmark locations for the
six observers. The FRE is defined as the root mean square (RMS) distance between
landmarks in the US image after registration and the corresponding homologous
landmarks in the MR image. In this experiment the FLE and the FRE were 1.25 +
0.63 and 1.76 mm respectively.

3.2 Average Transformation Based Validation

Since the heart beats periodically there should be little variation between the resultant
registration transformations of all cardiac phases. Using this assumption it is
reasonable to approximate the average transformation over all cardiac phases as the
“ground truth” transformation. We evaluate the registration accuracy by using the
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average distance error, which is defined as the average of displacement error at the
eight vertices of a hypothetical cube centered with the bounding box of a data volume
[8]. The side of the cube is 100 mm. We compute the average distance error from the
average transformation for each registration of the paired images at the same cardiac
phase. Compared to the average transformation of all cardiac phases, the average
distance error is 0.86 + 0.40 mm (mean + SD). While this result is smaller than the
values represented in the landmark-based method, it is nevertheless reasonable
considering the FLE previously reported.

4 Discussion and Conclusion

In this paper we presented a method for the rapid registration of RT3D US and dynamic
3D MR images of the beating heart. This technique will improve the ease and accuracy
of cardiac disease diagnosis, as well as aid in surgical planning and guidance.

We employed image data of a volunteer’s beating heart to validate the proposed
method with encouraging results. In the future we plan to investigate more effective
approaches to preprocessing US images and develop a more robust registration
method to improve the registration accuracy and speed.

This method can also be employed to register real-time dynamic 2D US images with
dynamic 3D pre-operative CT/MR images and other multi-modal dynamic images, and
has the potential to be used in other clinical applications such as liver and lung
surgeries, where the organs are subject to approximately periodic respiratory motion.

This method was validated using volunteer data to yield a registration accuracy of
1.76 mm. This method will provide real-time high quality image guidance for cardiac
disease diagnosis and surgical planning by improving interpretation of images of the
beating heart. We also expect this work to lead to the development of a novel cardiac
diagnostic US device that can output real-time high quality cardiac images, fused with
high-resolution anatomical information. This device will retain all the merits of
conventional US system, and will also have applicability for the guidance of intra-cardiac
interventions by improving interpretation of images acquired from various cardiac US
modalities (trans-thoracic, trans-esophageal and intra-cardiac echo techniques).
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Abstract. This paper presents a learning method to select best geometric fea-
tures for deformable brain registration. Best geometric features are selected for
each brain location, and used to reduce the ambiguity in image matching during
the deformable registration. Best geometric features are obtained by solving an
energy minimization problem that requires the features of corresponding points
in the training samples to be similar, and the features of a point to be different
from those of nearby points. By incorporating those learned best features into
the framework of HAMMER registration algorithm, we achieved about 10%
improvement of accuracy in estimating the simulated deformation fields, com-
pared to that obtained by HAMMER. Also, on real MR brain images, we found
visible improvement of registration in cortical regions.

1 Introduction

Deformable registration is very important for medical image analysis. So far, various
methods have been proposed [1-7], either based on feature matching or intensity simi-
larity. HAMMER registration algorithm [8] uses an attribute vector, instead of only
intensity, as a signature of each point, for reducing the ambiguity in correspondence
matching during the image registration procedure. Each attribute vector includes im-
age intensity, edge type and a number of geometric moment invariants (GMIs) calcu-
lated in certain neighborhoods for reflecting the anatomy around that point. However,
GMIs are calculated from the fixed sizes of neighborhood around each point at each
resolution, regardless of whether this point is localizing in the complicated cortical
regions or in the simple uniform regions. Thereby, it might be difficult to obtain the
distinctive GMIs for every image point, by using identical neighborhood size for the
whole image.

Recently, in computer vision area, Kadir and Brady [9] studied the implicit rela-
tionship between scale and saliency, and found that scale is intimately related to the
problem of determining saliency and extracting relevant descriptions. They also pro-
posed an effective method to detect the most salient regions in image, by considering
the entropy of local image regions over a range of scales, in order to select regions
with highest local saliency in both spatial and scale spaces. Based on [9], Huang et al
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[10] proposed to align images under arbitrary poses, by finding the correspondences
between salient region features. Although best features have been studied for active
shape models [11, 12], however, to our knowledge, it seems that no previous non-
rigid registration method considered the relationship between scale and saliency and
used this relationship to guide image matching and correspondence detection during
the deformable registration procedure.

This paper presents a learning-based method to compute GMIs from the best
scales, for significantly reducing the ambiguity in image registration. Each image
location will have its own best scale to calculate its GMIs, and simultaneously best
scales are made smooth spatially. It is required that, for each point, its GMIs com-
puted from its best-scale neighbor be similar across the corresponding points in the
training samples, and also be different from GMIs of nearby points in all training
samples. Entropy used in [9] is adopted here to measure this requirement, and the best
scales are obtained by solving an energy minimization problem. Finally, by incorpo-
rating those best-scale GMIs into the original HAMMER algorithm, we achieved
about 10% improvement in estimating the simulated deformation fields, compared to
that obtained by HAMMER.

2 Method

2.1 Attribute Vector with Best Scales

Attribute vector is defined for each point x in the image /, and it is designed as dis-
tinctive as possible, in order to distinguish this point from others in its neighborhood,
Ny. In HAMMER registration algorithm [8], each attribute vector includes edge type,
image intensity, and GMIs. GMIs are computed from a spherical neighborhood
around point x, with radius of Sy that is identical at all image locations. Images, i.e.,
brain MR images, are usually spatially complicated, thus different regions usually
need features computed from its best scale Sy [9], to distinguish itself from others. For
example, for brain MR images, the point X in cortical regions requires a different best

scale Sy to compute the distinctive GMIs G (Sy), compared to the points in uniform
regions. Therefore, it is significant to obtain a best scale Sy for each image point X,
based on particular image content around that point.

A machine learning based method is proposed to select best scales in the template
space, in order to capture the distinctive attributes for robustly establishing corre-
spondences. Three criteria are used to select best scales. First, the GMIs of a point x,
computed from the best-scale neighborhood, should be different from the GMIs of the
nearby points in its neighborhood R, thereby this point x can be easily recognized.
Second, the resulted GMIs of a point x should be statistically similar to the GMIs of
its corresponding points in training samples, if a set of training samples is available.
Third, the selected best scales should be spatially smooth.

Entropy of GMIs is used to measure the above requirements, by following an idea
of using entropy for salient region detection [9]. Thus, the first criterion requires that
the entropy of GMIs in the neighborhood Ry, E|(Xx,Sy), be maximized, and the second
criterion requires that the entropy of GMIs over the corresponding points in training
samples, Ex(xX,Sy), be minimized. Entropy can be computed from the histograms of
GMISs [9]. The third criterion requires that the differences between S and scales Sy of
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its small neighborhood ry, E,(x,5,) = Z (S, _Sy)Q, be minimized. Therefore, we can
- YeKK

obtain best scales for all image points, by using a gradient-based algorithm to mini-
mize the following cost function:

E=Y(-E,(X.S8,)+aE,(x8,)+ BE,(XS,)) (1)

where a and f are two weights. Notably, if there is no training samples available, then
we just use the best scale selection method [9], with spatial smoothness constraint, to
compute the best scales based on the template image itself.

A learning-based method for selecting the best scale S, can be summarized next:

e Select a set of brain samples, such as 18 brains we used.

e Use a linear registration algorithm [13] to linearly align those samples to a se-
lected template, thereby obtaining the linearly aligned brain samples.

e Use HAMMER algorithm [8] to register template with each linearly aligned
brain sample, thereby obtaining the correspondences of each template point in
any brain samples.

e For each template point x and their corresponding points in training samples,
compute their GMIs of different scales Sy, from the linearly aligned brains.

e Determine best scales for all template points jointly, by minimizing the cost
function in equation (1).

For increasing the robustness of registration, the registration algorithms are usually
implemented in a multi-resolution fashion [8]. Thus, we need to select best scales
separately for each resolution, by performing the same best-scale selection method at
each resolution.

Smooth maps of best scales are obtained, from fine to low resolutions, as shown in
Fig 1 with the smallest scale (radius) 4 and the largest scale 24. The resulted best
scales are actually adaptive to the brain anatomy, such as small scales selected in rich
edge regions like cortex, and scales increased gradually from exterior to interior brain
regions with the largest best scales selected for the uniform regions like white matter
(WM) region. Notably, in low resolution, even a small best scale on cortex will cap-
ture a large region in the fine resolution (Fig 2), thereby providing the possibility of
distinguishing between precentral and postcentral gyri. Also, since the registration
algorithm is implemented in a multi-resolution fashion, the registration results from
low and middle resolutions will make the two images approximately aligned, thereby
local features, based on small best scales selected for cortex, can be used to refine the
registration in cortex during the high-resolution registration stage. Fig 2 shows the
best scales selected for seven points on ventricular corners, sulcal roots, gyral crowns,
and putamen boundary, in three different resolutions, respectively. For convenience,
both low and middle resolution images have been upsampled to the same size of high
resolution image. The size of circle denotes the value of the best scale. Also, best
scales ranged from 4 to 8 are displayed by solid circles, best scales ranged from 8 to
15 displayed by densely-dashed circles, and best scales over 15 displayed by sparsely-
dashed circles.

Advantages of using best-scale GMIs. By employing a learning-based best scale
selection method described above, we can use adaptive scale to compute GMIs for
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each point, thus making it distinctive among its neighboring points as well as similar
to its correspondences in other brains. For example, for a template point on sulcal root
in Fig 3(a), as indicated by the cross, it is similar to its true correspondence indicated
by the asterisk and the false correspondence indicated by the dot in subject (Fig 3(b)),
if local image content is compared. Therefore, by measuring the similarities of this
template point with all points in the subject image (Fig 3(b)) by the attribute vectors
computed from neighborhoods of fixed scale (or size) such as S,=3.4,7 used for low,
middle, and high resolution images in HAMMER algorithm, it is not easy to establish
correct correspondences, since multiple peaks are existing in the similarity map, as
color-coded and shown in Fig 3(c). Red represents the most similar points, which
include the false correspondence indicated by the dot in Fig 3(b). Importantly, by
using our learning-based best scale selection method, we can determine the best scales
for this template point at different image resolutions (i.e., Sx=7,14,8, respectively for
low, middle and high resolutions), and further obtain for this template point all GMIs
computed from different resolution images using the selected best scales. The best
scales selected in low and middle resolutions (7x4=28, 14x2=28) actually correspond

Corresponding template MR slice High resolution Mid resolution Low resolution

Fig. 1. Best scales selected for the image at three different resolutions, and further color-coded
according to the color bar on the right. This figure is best viewed with color.

High resoluteion

Mid resoluteion Low resoluteion

Fig. 2. Best scales of seven selected points in three different resolutions. For convenience, the
low and middle resolution images (b,c) were zoomed to the same size of the original image.
Here, best scales ranged from 4 to 8 are displayed by solid circles, best scales ranged from 8 to
15 displayed by densely-dashed circles, and best scales over 15 displayed by sparsely-dashed
circles. This figure is best viewed with color.
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N ~ b ad
i (e) Neighborhoods extracted from
(c) Similarity map by using (d) Similarity map by using template with different scales
fixed scales adaptive scales 5] 1

Fig. 3. Advantages of using adaptive scales to compute GMIs for correspondence detection.
The similarity of a template point indicated by the cross in (a), is compared to any point in the
subject (b), by respectively using GMIs with fixed scales (c) and with learned adaptive scales
(d). The color-coded similarity map in (d) indicates distinctive correspondences, compared to
the similarity map in (c¢) which has multiple peaks, with one peak corresponds to the false
correspondence which is indicated by the dot in (b). This figure is best viewed with color.

L s "
(a) Template (b) Subject (c) By fixed scales (d) By best scales
Fig. 4. Similar performances of using fixed scales and learned best scales for distinguishing
some brain points, such as ventricular corners. The point in (b), as indicated by black cross, is a
detected correspondence of the point in (a), by comparing the GMIs of either fixed scales or
learned best scales. The red denotes similar, and blue denotes different. This figure is best

viewed with color.

to big regions around this template point in the fine resolution, such as big circled
images in the right panel of Fig 3. Thus, by using new attribute vectors, we can easily
distinguish this template point from two candidate points in Fig 3(b), which has been
clearly demonstrated by a color-coded similarity map in Fig 3(d).
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Although it is possible to distinguish correspondences for many brain points even
using the GMIs with a fixed scale, it may be less distinctive, compared to the method
of using learned best scales. Fig 4 shows an example of detecting correspondences in
subject image (Fig 4(b)), for a template point in Fig 4(a). According to a color-coded
similarity map in Fig 4(c), the method of using fixed scales to compute GMIs can
distinguish corresponding points, while it is less distinctive, compared to our method
of using learned best scales, as indicated by a color-coded similarity map in Fig 4(d).

2.2 Image Registration by Matching Best-Scale Attributes

All image registration strategies developed in HAMMER algorithm [8], such as defi-
nitions of attribute vector similarity and energy function, and hierarchical driving
point selection, are adopted by our registration algorithm, except using best-scale
GMIs to replace the fixed-scale GMIs for image matching. Notably, the best scale for
each location is determined in the template space, thus it is easy to compute GMIs for
each femplate point by using the pre-calculated best scale. However, for subject im-
age, it is not direct to use appropriate best scales to compute GMIs, since subject is in
its own space. To overcome this problem, we will first align the subject to the tem-
plate space by a linear registration algorithm [13], and then compute in advance the
GMIs of all scales (used in the template space) for each subject point. When matching
two template and subject points during the deformable registration procedure, we use
the particular GMIs included in the attribute vector of the template point as standard
and take the corresponding GMIs from the subject point, to measure their similarity.
For saving time to compute GMIs of all possible best scales for each subject point, we
limit the number of scales used as best scales, such as selecting best scales from a
small set of scales {il i =4%j, j=1,2,3,...,6}.

HAMMER algorithm selects the initial driving points at sulcal roots, crown gyri,
and certain areas of strong boundary, and then gradually adds more driving points
according to a simple criterion. Here, we adopt the saliency definition in [9], and
similarly define the salient measure for each brain point as follows. Given the best
scale Sy for a point X, its salient measure can be defined by the entropy of GMI vec-
tors in its neighborhood N, i.e. E|(x,Sy), multiplied by a weight that penalizes self-
similarity of E(x,Sx) around the best scale S [9]. Notably, the definition of E(x,Sy) is
the same as that in equation (1).

3 Results

The proposed method has been evaluated by both real and simulated MR brain images
with comparison of HAMMER algorithm [8]. All experiments are performed in PC
(Pentium 4, 3.0GHz), by using the same set of parameters.

3.1 Experiment on Real MR Brain Images

The proposed registration algorithm has been used to register 18 brain images, and the
results by our method are further compared with those by HAMMER algorithm. The
average brain produced from 18 normalized brains by our method is visually very
similar to that obtained by HAMMER algorithm. However, when we further check
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individual registration results, we find the visual improvement by our method in the
areas such as cortical regions, although two methods perform equally well on most
parts of brain regions. Fig 5 shows two examples, which compare the template with
the results obtained by both methods, indicating that our method can align cortical
regions more accurately.

3.2 Experiment on Simulated Brain Images

Simulated data is used to quantitatively evaluate the performance of our method. Our
simulated data is created by using an elastic warping method [14] to warp a selected
brain to be similar to five real brains, respectively, thereby obtaining five simulated
brains that are actually five deformed versions of the selected brain. Besides, the re-
gions of precentral gyrus and superior temporal gyrus have been manually labeled in
this selected brain, thereby the labels of these two regions can be warped together by
the same deformation fields during the simulation procedure. Thus, by using our pro-
posed registration method, we can estimate deformations between the selected brain
and each of its deformed brains, and further bring two labeled regions in the simulated
brains to the original space of the selected brain. Then, we can measure the overlay
degree of the labeled regions. Our method achieves average overlay percentage
88.29%, which is very close to that by HAMMER algorithm on the same dataset
(88.48%). The average volume error by our method is 5.18%, while it is 6.67% by
HAMMER; this indicates 28.8% of volume error reduction by our method. Moreover,
we compare the deformations estimated by our method with those simulated, thus
obtaining a histogram of estimation errors as shown by red bars in Fig 6. This result is
compared with that obtained by HAMMER algorithm, whose histogram of estimation
errors is shown as blue bars in Fig 6. Obviously, the result obtained by our method is

(a) Model

Fig. 5. Visual improvement in registering some brain images by the proposed method, particu-
larly in the cortical regions circled.
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Fig. 6. Performances of estimating simulated deformations by our method (red) and by
HAMMER algorithm (blue). The average error is 0.98 mm by our method, and 1.09 mm by
HAMMER algorithm, which indicates 10.1% of improvement by our method.

much better, since its histogram is shifted to left, i.e., small errors. The average de-
formation error is 0.98mm by our method, and 1.09mm by HAMMER, indicating
10.1% of improvement by our method.

4 Conclusion

We have presented a learning based method to adaptively select best-scale GMIs for
different image locations, thereby achieving higher registration accuracy by incorpo-
rating the selected best-scale GMIs into the HAMMER registration framework. Our
learning method requires simultaneously the similarity of corresponding points in the
training samples and the difference of a point to its nearby points, in terms of GMISs. It
further requires the spatial smoothness of best-scale map. All of these requirements
are formulated by a single entropy-based energy function, thereby solved by an en-
ergy optimization method. Importantly, our learning method can also be used to learn
best features from others, i.e., wavelet-based features [15].
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Abstract. An essential goal in medical image registration is, the for-
ward and reverse mapping matrices should be inverse to each other, i.e.,
inverse consistency. Conventional approaches enforce consistency in de-
terministic fashions, through incorporation of sub-objective cost function
to impose source-destination symmetric property during the registration
process. Assuming that the initial forward and reverse matching matrices
have been computed and used as the inputs to our system, this paper
presents a stochastic framework which yields perfect inverse consistency
with the simultaneous considerations of the errors underneath the regis-
tration matrices and the imperfectness of the consistent constraint. An
iterative generalized total least square (GTLS) strategy has been devel-
oped such that the inverse consistency is optimally imposed.

1 Introduction

One of the most desirable properties for registration is inverse consistency or
source-destination symmetry in which the correspondence is one-to-one and also
unambiguous. Consistent transformations maintain the topology of the register-
ing pair. This is important in medical image registration for generating biologi-
cally meaningful results [1]. The inverse consistent constraint has been enforced
with other information such as image intensity and geometric characteristics to
become part of the optimization criterion in medical image registration [1] or
to act as a sub-objective cost function in point set matching [3]. Since the in-
verse consistency in the latter case is only part of the metric which needs to be
minimized, the resulting transformation matrices are, in general, not perfectly
inverse consistent. Furthermore, all the above approaches solve the transforma-
tions in a deterministic nature, meaning that the stochastic properties of these
matrices are not considered.

We propose a stochastic framework for registration problems which generates
perfect source-destination symmetric mapping between the data sets. Instead of
imposing inverse consistency in a deterministic and imperfect sense, we enforce
the inverse consistent property optimally with the systematic considerations of
the stochastic uncertainties of the input forward and reverse transformation
matrices to achieve perfect source-destination symmetry. The adoption of the
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Generalized Total Least Square(GTLS) technique [6] allows simultaneous con-
siderations of the errors in the input transformation matrices and the inverse
consistent constraint during a post-registration fitting process to solve a set
of new forward and reverse transformations iteratively until they are perfectly
inverse to each other. This framework can be used with any registration algo-
rithms which have already shown their validity in establishing forward/reverse
mappings for different matching problems.

2 Inverse Consistency in Medical Image Registration

2.1 Discrete Nature of the Information Sources

Due to the discrete nature of data, either the point representation or the digital
medical image of the biological objects and the discrete optimization process,
correspondences extracted from conventional registration algorithms are always
ambiguous, i.e., the forward and reverse mapping is not consistent. Fig.1(g) and
(j) show 2 simple 1D examples to illustrate the point: A,, and B,, are discrete
version of the original continuous signals A and B which B is shifted to right
by 0.5s from A=sin(x). A. and B, are the reconstructed signals for registration.
Notice that A, and B, on the above examples are unable to represent the original
signals perfectly due to the inadequate sampling rate of A,, and B,,. Conventional
optimization processes initialize one way to start climbing the hill (the matching
criteria curve), e.g. from left to right. In Fig.1(h), the possible forward and
reverse registration results would be an ambiguous pair (-1.1,-0.5) instead of
the ground truth pair (-0.5,0.5). In Fig.1(k), the matching criteria curves give a
consistent pair (-1,1), however, it is not the ground truth transformation®.

2.2 Deterministic Inverse Consistent Constraint

One typical scheme to incorporate inverse consistency for registration is to assign
a cost metric Econs for the inverse consistent property as part of the matching
cost function E, i.e., E = Fgim + FEcons where Eg;,, measures the similarity
(i.e. image intensity and geometrical properties) between the data sets. Since
the consistency is only part of the overall cost function, the optimal solution to
Equ. 1 in general would not produce the perfect source-destination symmetry
one desires.

Moreover, this type of formulation didn’t consider the underlying stochastic
uncertainties such that the forward transformation 775 and the reverse trans-
formation T5; are solved in deterministic nature in order to get a one-to-one
consistent mapping (consistent correspondence), i.e.,

T12 * T21 =1. (].)

! It should be noticed that inverse consistency can always be automatically achieved if
the registering pair is continuous (Fig.1(a),(b)) or the digital signal is sampled under
very high sampling rate such that the original continuous signal can be perfectly
reconstructed (Fig.1(d),(e)).



190 S.K. Yeung and P. Shi

.' . fg'h ~| ; -/
:'T._"_'.?'"'f_‘ 4k m rﬁ ‘W] n\ :
e T w (i.).. Al

Fig.1. Column 1 and 4: A; and B, are the registering pair reconstructed from A,
and B, which are the sampled version of A and B respectively (in (a): Ac=A, B.=B).

Column 2 and 5: the blue curve (NMIf) shows the forward matching criteria (regis-
tering B. to A.) while the red one (NMIr) for registering A. to B.. Column 3 and 6:
The combined matching criteria curve (NMlIc) from the forward and reverse registra-
tion process, here the combination is simple addition. NMI is the normalized mutual
information [5].

2.3 Role of Inverse Consistency in Registration

In one dimensional, imposing inverse consistency deterministically means the
hill climbing process should be in pairwise nature: (1,-1)...(8,-8) for the testing
signal over the reference signal. Equivalently, there would be a new matching
criteria curve that is a combination of the forward and reverse matching criteria
curve. The simplest way is to have a non-weighted linear combination [4], which
is equivalently a simple addition, as shown column 3 and 6 in Fig.1. Here, a
critical rule for combining the forward and reverse matching criteria curves un-
der a deterministic sense is that they should be combined in the corresponding
transformation position, i.e. the NMIf value at 0.5 translation have to combine
with the NMIr value at 0.5 translation also. In fact, deterministic consistency
will only give better registration results if a new peak closer to the ground truth
is formed as shown in Fig.1(i), which the transformation pair corresponding to
optimum will be around (-0.8,0.8) instead of (-1.1,-0.5) and also closer to the
ground truth (-0.5,0.5).

3 Stochastic Inverse Consistency in Medical Image
Registration

3.1 Stochastic Inverse Consistent Constraint

As we have stated above, the discrete nature of the information source makes the
matching criteria drive to incorrect maximum, simply combine them determin-
istically will not be an optimal way to utilize the information from the forward
and reverse process. In this paper, we are arguing that one should model inverse
consistency stochastically with the simultaneous consideration of the underlying
stochastic uncertainties within the forward and reverse transformation matrices
and hence the imperfectness of the inverse consistent constraint, i.e,



Stochastic Inverse Consistency in Medical Image Registration 191

(T2 + E7,) * (To1 + Er,,) = [ + R; (2)
Br, = |Tia — Ty’ Bpoi = [T —T1y'| ®3)

We adopt a simple absolute difference approach for Er,, and Er,, (Er, is ob-
tained from ET;;, which will be explained later) to model the stochastic error

properties of the transformation matrix Ti5 and Ty, 2 respectively since the for-
ward and inverse of the reverse transformation has already set up a loose upper
bound of the error. R; is the error imposed on the imperfectness of the inverse
consistent constraint®. Under this formulation, we can provide more flexibility
on imposing source-destination symmetry between the forward and reverse reg-
istration processes, without compromising accuracy.

To further simplify our current error model, we assume all the elements in
the error matrices have zero mean and are independent to each other. These
matrices will be involved in building the error equilibration matrices for the
Generalized Total Least Solvers in the following section.

3.2 GTLS Formulation

As the stochastic property are not the same for every entry and some of the
entries are error free, in order to solve the problem while considering all the
errors simultaneously, a Generalized Total Least Square (GTLS) [6] approach is
adopted. Consider a overdetermined system of linear equations

AX~B AcR™" BecR™and X € R"*, m>n+d (4)

If the first n; column in A is error free, A can be partitioned into [A1, As] where
A; € R™*™ Ay € R™*™ and n = nj + ng. A GTLS solution of (4) is any
solution of the set AX = A1 X, +;1\2X2 —B A= [Aq, ;1\2] and B are determined
such that Range(B) C Range(A) and || RBT[AZX\Q, Aé}REl =] Rp [A2 —
Ay, By — BIRG! || is minimal where Rp € R™*™ and Re € R(2+d)x(na+d)
are the given equilibration matrices such that the errors on R’ [As, B]R" are
equilibrated, i.e. uncorrelated with zero mean and same variance.

Our objective is to solve the fitting transformation matrices under the consid-
eration of the errors in the transformation matrices and the source-destination
symmetric constraint simultaneously by making use of the GTLS property. No-
tice that the last row of the affine transformation matrix is actually error free. By
making use of this property, the transformation matrices can be first transposed
and permuted to fit the GTLS formulation:

Q=T+ P Qan =T} *P (5)
invQia = (T")T * P invQa = (Ty;")T * P (6)

2 In this paper we test on the 4-by-4 affine transformation matrices, in theory, we
can also enforce the stochastic relationship on non-rigid deformation. Notice that we
didn’t apply our model on rigid transformation due to the orthonormality issue.

3 We simply assume all the entries in R; have the same stochastic uncertainty and set
it as A, ie., R; € R*** with all the entries equal to A\,.
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0001 1000 1000
0100 0001 0100

P = Piy* Pay % Py, Pra = 0010 Poy = 0010 Py = 0001 (7)
1000 0100 0010

Q12 will be a 4-by-4 matrix with the form:

0 Tyg(1,1) --- T12(3,1) 0 T21(1,1) --- T21(3,1)
0 T19(1,2) . 0 Toq(1,2) .
Q12 = . . . Q21 = . . . (8)
0 . . . 0 . . .
1 : S Tya(3,4) 1 . cor T21(3,4)

So the first column of ()12 and @21 is error free and suit the form of the GTLS
approach stated before. Hence the GTLS formulation of our stochastic inverse
consistent model becomes:

| 7= [i] - ["a) =] 0

The optimal forward and reverse transformation 77, and 7%, are obtained by
performing the permutation and transpose on the GTLS solutions X and Y:

Ty = (P+X)T T = (P Y)T (10)

Apart from the input transformation matrices, the error properties are also
necessary to specify the GTLS formulation. The error matrices Eg,,, Einvgi.
for Q12, invQ12 are derived as the same in Equ.(3) i.e.,

Eg,, = |Qi2 — invQa1| Einvg,, = |Q21 — invQ2] (11)

and the first column is dropped as the first column of Q15 is error free. The error
matrices Eipny0,, and Eg,, transformation matrix are formed respectively by:

11—« 1l—«a
Eianzl = ( ) *EQ12 EQ21 = ( ) *Eianlz (12)
where « is the weighting on the error of the forward transformation matrix To:
_ voxel size of I __ # of points in point set 2 (13)
" voxel size of I " # of points in point set 1

So by imposing the above relationship, the registration result with a higher res-
olution testing image or point matching result with more points in the testing
point set will be trusted more. While in this paper we use this simple assumption
to model the weighting function between the error on forward and reverse reg-
istration results from two images under different resolutions. More complicated
way can be investigated and would be one possibility of our future work.

The error equilibration matrices Rc and Rp are obtained from the Cholesky
decomposition of the error covariance matrices C and D, where C = AT A,

D = AAT, A = [ Bon R

. A represents the stochastic property of the
Ei’ILUQ21 R’L

Eian12 R’L :| .

error in solving X in Equ.(9), while A matrix in solving Y is {
Eq,, Ri
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3.3 Inverse Consistency by Iterative GTLS Solution

After defining the GTLS model for fitting the transformation matrix based on
our stochastic source-destination symmetric model, we set up the whole iterative
process from the registration results 7172 and 751 in order to extract both the
forward transformation matrix 775 and the reverse transformation matrix 7%
which are inverse of each other. The input for the iteration process is Q12, Qo1,
invQ12, invQ9 in Equ.(5) and (6).

QY | o H mv@
me@g? I Q21

with the corresponding stochastic property in the noise data:

~ ﬂ (14)

E© ; E© ;
o R and i1z R (15)
Ewarn R; EQ21 Ri_

the ’0’ in the brackets is the number of iteration and the solved X(® and Y (©
are:

XO =Pl ()" YO =Pt (my))" (16)
so (X =ineQ)  and P (X©@)xP=QY (17)
(Y(O))*1 = ian%) and P« (Y( )) * P = Q(l) (18)

The corresponding error matrices for the transformation matrices are also up-
dated during the iteration, i.e., getting ES)Q, Eéh)l , Ei(ilQm , EZ(:LEJQQI by Equ.(11)
and (12) to fit the input matrices of the GTLS solvers as the transformation
errors should be smaller during the iteration (closer to the ground truth) while
the error matrix R; for the source-destination symmetric constraint is fixed as
the initial input stochastic consistent model is kept unchanged. So all the com-
ponents for the GTLS solvers are updated and the process can be repeated until

(P * X)) T« (P« Y™)T — || < threshold (19)
and the GTLS solution matrices will be:

T = (P« XTI T = (PxY™)T (20)

4 Experiments and Discussion

We have applied our stochastic inverse consistent model on registration of point
sets which representing the human brain in Fig.2. Feature points are selected
from the brain image to act as the testing point set, then a non-rigid mapping,
Gaussian radial basis functions was applied on it to form the reference point set.
Different degree of gaussian noise and different proportion of outliers are added
to both point sets in the experiment. The Robust point matching algorithm
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Fig. 2. (a):Brain image with the extracted point set (the testing point set). (b),(c):
Testing point sets (blue circle) and the reference point sets (black cross). (b) small defor-
mation, noise level = 2SD. (c) large deformation, outlier proportion = 0.5. (d):Forward
wrapping results: small deformation, outlier proportion = 0.1. (e):Reverse wrapping re-
sults: large deformation, noise level = 4SD. Color convention for all the results shown
in the figure: forward process - red:Ti2, green:T75, blue:T;ll, reverse process - red:Tb,
green:Ty, blue:Tle. The 2nd and 3rd row are the results for small deformation and
large deformation respectively. Column 1 to 3 are the results for different noise level,
column 4 to 6 are for different proportion of outliers. Column 1 and 4 are the errors
computed as sum of squared distance (SSD) between the points in the warped testing
point set and the reference point set for forward process while column 2 and 5 are for
reverse process. Column 3 and 6 are the consistency error computed as || Ti2%T21 —1I ||
for the input and || 77 * 757 — I ||r for the GTLS output.

RPM [2] is run on the pair of point sets to obtain the forward and reverse trans-
formation matrices for our system. The position error of the points is computed
as the sum of squared distance (SSD) between the points in the warped testing
point set and the reference point set for the evaluation of the transformations
obtained. We also compare the error on consistency by || Ti2 * To; — I ||p. As it
is expected, our stochastic inverse consistent model generates a perfect source-
destination symmetric registration results from the input forward and reverse
transformation matrices which are inconsistent in nature.

Moreover, our GTLS solutions will produce results those will always better
than the worst and sometimes be the best as shown in column 1 and 2 in Fig.2.
Actually proper modelling of individual element of the error matrices, their re-
lationship within the matrix and also the interrelation among the error matrices
will be the potential mean to improve the registration results through consis-
tency so that the GTLS solutions always yield the best results. This modelling
is depended on the actual data and also the corresponding matching criteria
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Fig. 3. Column 1: two different PD-weighted MRIs. Row 1 and 2 are the forward
and reverse registration results. Forward results - red: T2, green:T75, blue:T{ll, reverse
results - red:Ts1, green:T5, blue:Tlgl. White: contour of the unregistered testing image
overlay the reference image.

which is very complicated and will be investigated in our future work. In real
registration problem, ground truth is not available and the complicated input
image or point data make it very difficult to determine the forward or reverse
transformation is superior than the other. Hence our stochastic inverse consistent
model can always produce better result in terms of robustness. Fig.3 shows the
registration results for 2 PD-weighted MRIs. The inconsistency of the forward
and reverse process is shown in the figures by the red and blue contours. 17,
and T3 is in-between their inputs and also perfectly inverse to each other. In
addition, the observable registration errors in 712 and T5; from the red contours
are not appeared in our GTLS solutions which show that the stochastic model
produce better registrations.

5 Conclusion

We presented a novel framework for modelling inverse consistency stochastically,
by simultaneously considering the stochastic uncertainties on both of the trans-
formation matrices and the source-destination symmetric constraint through
the Generalized Total Least square fitting from the transformation matrices
obtained after the registration process. With our stochastic inverse consistent
model, source-destination symmetry can be enforced perfectly with the consid-
eration of any other similarity constraints. This work is supported by HKRGC
CERG Grant HKUST6151/03E.
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Abstract. We propose a novel incremental surface-based registration
technique that employs the Unscented Kalman Filter (UKF) to register
two different data sets. The method not only reports the variance of the
registration parameters but also has significantly more accurate results in
comparison to the Iterative Closest Points (ICP) algorithm. Furthermore,
it is shown that the proposed incremental registration algorithm is less
sensitive to the initial alignment of the data sets than the ICP algorithm.
We have validated the method by registering bone surfaces extracted
from a set of 3D ultrasound images to the corresponding surface points
gathered from the Computed Tomography (CT) data.

1 Introduction

Registration is a crucial step in applications of medical imaging in computer-
assisted surgery. Two general methods for registration are intensity-based and
feature-based approaches [1]. The former uses the intensity of two images or vol-
umes of the targeted anatomy to calculate the registration parameters by using
a variety of similarity measures, such as the mutual-information or normalized
correlation. The latter, extracts corresponding geometric features in order to
perform the registration. In the feature-based registration technique, if corre-
sponding points between two data sets are available, then one could easily find
the registration parameters by employing the closed-form solution provided by
Horn [2]. However, the problem becomes more challenging when the correspond-
ing points between the two cloud of points are unknown. In this case the most
widely used registration method is the Iterative Closest Points (ICP) algorithm
[3]. But the ICP algorithm is very sensitive to the initial alignment of data sets
and easily gets trapped in a local minimum. Recently, Ma [4] has proposed a
novel approach for estimating the registration parameters and visualizing the
error distribution by using the Unscented Particle Filter (UPF). While excellent
registration results are reported for a small size of data set (24 points), the algo-
rithm converges very slowly due to the employment of 5000 particles. The need
to employ a large number of particles makes this algorithm practically impossi-
ble to run for large data sets. The Particle Filtering is a powerful method when
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one is dealing with a nonlinear process or model corrupted by a non-Gaussian
random noise. In the case of the Gaussian distribution assumption for the noise
distribution, one could significantly reduce the computation time by using the
Unscented Kalman Filtering (UKF'), while achieving similar registration perfor-
mance. Due to the significantly small computational requirements of the UKF
algorithm in comparison to the UPF algorithm, it is possible to apply the UKF
technique to large data sets.

In this paper, we propose a novel incremental registration algorithm based
on the Unscented Kalman Filtering. It is shown that the proposed registration
algorithm is less sensitive to the initial alignment and is more accurate than the
ICP method. Finally, the robustness and accuracy of the proposed technique is
examined by registering a 3D ultrasound data set of a Scaphoid bone surface to
the corresponding 3D Computed Tomography (CT) data.

2 Method

2.1 Unscented Kalman Filter Registration

In 1960, R. E. Kalman published his famous paper describing a recursive and
incremental solution to the discrete data linear filtering problem [5]. Since that
time the Kalman Filtering (KF) has been the subject of research with several
applications, specifically in the navigation and target tracking area [6]. The KF
addresses the state vector estimation, x € R™, of a discrete time control process
model governed by a linear equation:

X = AXp—1 +Wp_1, (1)
from the observation model which is a linear function as well:
Z = CX}c + Vg, (2)

where A and C are defined by the system dynamics, z; € R™ is the observation
vector at time k, wi and vj represent the process and the observation noise
at time k, respectively, and are independent Gaussian random vectors with dis-
tributions N (0, W) and N(0,V) respectively. The KF algorithm estimates the
state vector by minimizing the mean square error. This estimation is optimum
if the process and the observation models are defined by linear equations, and
the process and the observation noises are independent Gaussian random vari-
ables. However, in a general case, the process and the observation models can
be governed by non-linear equations:

xp = F(Xp—1, Wi_1), (3)
Zp — H(xk,vk). (4)

In this case the KF estimation of the state vector is not optimum anymore. There
are two well known solutions for dealing with nonlinearities in the process or the
observation model. As a first solution, the non-linear function in the observation
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or process model can be linearized around a good initial guess, using the first
order Taylor approximation, and then the KF algorithm is used to estimate
the state vector. This method is called Extended Kalman Filtering (EKF) [6].
However, to use the EKF, one needs to have the first derivative of the nonlinear
functions (Jacobian Matrix) for linearization. Finding the Jacobian matrix is
usually cumbersome and makes the algorithm complicated.

As a second approach, one could use the true non-linear models and approx-
imate the distribution of the state random variable rather than approximating
the non-linear process or observation model. This method, called the Unscented
Kalman Filtering (UKF) [7], uses the true non-linear models to approximate the
distribution of the state or observation vector with the Gaussian distribution by
using a set of deterministically chosen sample points. These sample points com-
pletely capture the true mean and covariance of the Gaussian random variables,
and when propagated through the true non-linear system, accurately capture
the posterior mean and covariance to the third-order of Taylor series expansion
for any nonlinearity. The EKF algorithm, in contrast, only achieves first-order
of Taylor series expansion accuracy, with the same order of complexity as that
of the UKF algorithm [8]. Once distributions of the state and the observation
vectors are estimated, one could easily estimate the state vector by using the
KF technique.

The problem of estimating the state vector becomes more challenging by
assuming that the observation and the process noise have non-Gaussian distri-
butions. In this situation, where one is dealing with the system governed by
nonlinearity functions and distorted by a non-Gaussian noise, the Particle Filter
algorithm is used to estimate the state vector [9].

2.2 Incremental Registration Algorithm Based on UKF

Since we would like to estimate rigid transformation parameters which register
a cloud of data set (register data set) to the desired data set (model data set),
the state vector contains three rotational (6, 8y, 6,) and three translational (¢,
ty, t.) parameters. We assume that the scale factors between two data sets are
known. Therefore, the state space model can be defined as follows:

Xp = Xk—1 +N(0, Wi), (5)

where, xj, = [tz,ty, bz, 05, 0,,0.]7 € RS and W, is the covariance matrix of the
zero-mean Gaussian random vector. This covariance matrix allows the algorithm
to move from a poor initial estimate to the successively better ones. However,
the process noise variances should be small values, since the state vector (trans-
formation parameters) is time invariant.

The observation model is defined as follows:

yik = Rig, 0,0 (b, b, 6. + k) +N(0, Vi), (6)

where R is an Euler rotation matrix about x, y and z axes, respectively, and
t is a translation matrix along x, y and z coordinates. Furthermore, uj is the
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k., registering point in the register data set and yy, is its corresponding point in
the model data set; However, these correspondence points are unknown and we
have used the well-known nearest-neighbor approximation method proposed by
Besl and Mckay [3] for finding the correspondences. Finally, it is assumed that
the observations are stimulated by a zero-mean Gaussian random vector with
the covariance matrix of V. This assumption can be verified by the following
argument: Since the data sets’ points are not accurately extracted because of
the calibration and segmentation errors, it is logical to assume that they are
degraded by a zero-mean uniformly distributed and independent random vector
noise with a specific variance in each dimension. In the sequel, for simplicity,
it is assumed that the variance of the noise is the same in each dimension;
however in the reality they might be different. Also, different modality data sets
have different uniformly distributed random noise vector characteristics. Hence,
by assuming that the registration parameters (rotation matrix and translation
vector) between two data sets are known, one can write:

y+n, =R(t+u+n,), (7)

where n, = [n1y, nay,n3y|7 and n, = [n14, N2y, n34)7 are zero-mean indepen-
dent uniformly distributed random vectors in the two data sets with covariance
matrices of UgI and 021 (I3x3 is the identity matrix), respectively. y + n, is
the selected point in the model data set and u + n,, is its correspondence in the
register data set. Equation (7) can be simplified as:

y=R(t+u)+Rn, —n, =R(t +u) +n, (8)

where n = Rn, — ny, is a random vector with three components. The first
element of n can be written as:

N1 = T11M1y + T12N2y + T13N3y + N1y, 9)

where r11,712 and ri3 are the first row components of the rotation matrix R.
Using central limit theorem, it is easy to show that, with a good approximation,
n1 has a Gaussian distribution with the mean of zero and the variance of:

2 _ .2 2 2 2, .3 2 2 _ 2 2
Opy =T110, + 1120, + 1130, + 0y, =0, + 0. (10)

In the same way, it can be verified that the two other components of n have the
variance of o7 + o as well. Considering that the components of n are statisti-
cally independent, by a good approximation, n can be considered as a zero-mean
independent Gaussian random vector with the covariance matrix of (o2 + 03)1.
Since the defined observation model is governed by a non-linear function dis-
torted by a Gaussian observation noise, we have employed the UKF algorithm
for estimating the registration parameters as follows:

In the first iteration, the state vector is initialized to zero, and only one
random point is selected from the register data set. Next, the state vector is
used to transfer the selected point to the model data set. Then the closest point
in the model data set to the transferred selected point is transferred back to
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the register data set using the inverse of the transformation matrix represented
by the state vector. The distance between this point and the original selected
point is used to update the state vector and its covariance by using the UKF
algorithm. The procedure is iteratively repeated by incrementally adding more
points from the register data set to the algorithm in the next iterations.

3 Results

Two sets of experiments are performed to validate the accuracy of the pro-
posed registration method. In addition, the registration results of the proposed
method are compared to the well-known ICP algorithm. In the first experiment,
a set of known random transformations are applied to a cloud of points and the
proposed algorithm is employed to register the original point cloud to the trans-
formed one. This experiment shows the performance of the proposed algorithm
where there is no ultrasound calibration or segmentation error involved. In the
second experiment, the point cloud representing the bone surface extracted from
3D ultrasound data is registered to its corresponding surface points extracted
from the mesh data generated by segmenting CT images. This experiment shows
the degradation of the registration parameters caused by segmentation and cal-
ibration errors.

3.1 Two Point Clouds Registration

By using the ultrasound calibration and segmentation methods proposed in [10],
the 2D ultrasound images of a phantom Scaphoid bone surface are transferred
to the 3D real-world coordinates. Then a set of random transformations are ap-
plied to the 3D ultrasound point cloud, and for each transformation, registration
parameters are estimated between the original point cloud and the transferred
one. For constructing the 3D ultrasound data set, 280 points of the bone surface
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Fig. 1. Error distributions for 50 UKF registrations; standard deviations are 2.6° X
1078, 2.7° x 1077 and 9.5° x 10~ for x, y and z axis rotation errors, and 6.8 x 10~°mm,
1.4%x 107 %mm and 5.3 x 10~mm for the x, y and z axis translation errors, respectively.
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Fig. 2. Registration of model and registered data sets using ICP and our proposed
method with the same initial conditions (units are in millimeters)

from 14 ultrasound images are selected. By drawing from the uniform distri-
bution U(£10mm, £10mm, £10mm, £10°, £10°, £10°), 50 random transforma-
tions are generated and each transformation is applied to the 3D ultrasound
point cloud to construct the model data set. Next, the proposed registration
method is used to register the original data set (register data set) to the model
data set. The distribution of the rotation and translation errors are shown in
Figure 1. As expected, the variance and the mean of errors are very small (al-
most zero), since there is no calibration or segmentation errors in the data sets.
For the same set of data and initial conditions, the registration results for the
ICP algorithm and our proposed registration method are compared as well. The
same uniform distribution mentioned above is used to generate the initial con-
ditions. Figure 2 shows the registration result for the ICP algorithm and the
proposed registration method for one of the simulations. It is seen that the
proposed method’s performance is significantly higher than that of the ICP al-
gorithm. On average, the maximum distance error using the ICP registration
algorithm is 1.5mm, whereas this error reduces to 0.8mm using the proposed
registration method.

3.2 CT to Ultrasound Registration

In this experiment the constructed 3D ultrasound cloud is registered to the
bone mesh surface, extracted from the CT data. Here, the two data sets have
different number of points and are extracted from different imaging modali-
ties, therefore containing different inherent calibration and segmentation errors.
At first the 3D ultrasound data is manually aligned to the CT mesh using
the fiducial points mounted on the Scaphoid bone. We were able to align two
data sets manually within the range of 2mm fiducial registration error. Then
a set of random transformations are applied to the 3D ultrasound point cloud,
and for each transformation, registration parameters are estimated between the
CT mesh data and the transferred 3D ultrasound points. The 3D ultrasound
data set is constructed by selecting 450 points from the bone surface within 30
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ultrasound images. Obviously, due to the uncertainty caused by the thickness
of the bone response in each ultrasound image, these points are just approx-
imations to the location of the bone within these images. As before, 45 ran-
dom transformations are produced by drawing from the uniform distribution
U(£10mm, £10mm, £10mm, £10°,+10°, £10°) and each transformation is ap-
plied to the randomly selected 3D ultrasound points. Then the proposed reg-
istration method is employed to register the transformed 3D ultrasound point
cloud to the CT mesh data set. The distribution of the rotation and transla-
tion error of the estimated transformation parameters are shown in Figure 3.
For the similar data sets and the same initial conditions, the registration re-
sult for the ICP algorithm and the proposed registration method is compared in
Figure 4. As shown, the proposed method registers the two data sets much

x-axis translation error inmm  y-axis translation error in mm z-axis translation erfor in mm

-1 o 12 o 1 05 0 05

axis rotation error in degrees y~axis rotation error in degrees  z-axis rotation error in degrees
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Fig. 3. Error distributions for 45 UKF registrations; standard deviations are 0.022°,

0.018° and 0.1° for x, y and z axes rotation errors, and 0.26mm, 0.32mm and 0.008mm
for the x, y and z axes translation errors, respectively.
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Fig. 4. Comparison of the proposed method to ICP: a) The black star points represent
the bone surface extracted from the ultrasound images, overlaid on the 3D surface
mesh extracted from CT using UKF; b) Surface registration error (units are in mm).



204 M.H. Moghari and P. Abolmaesumi

more accurately than the ICP algorithm which is trapped in a local minimum.
Figure 4(b) shows the distance error histogram between the 3D ultrasound points
cloud and the corresponding CT data set after registration. The maximum and
the root mean square distance errors using the ICP algorithm are 6mm and
3.7mm, respectively, whereas these errors reduce to 1.4mm and 0.31mm using
the UKF method.

4 Discussion and Conclusions

A novel incremental surface-based registration technique based on the UKF is
proposed. It is shown that the proposed method accurately registers the bone
surface points extracted from the 3D ultrasound images to the ones from CT
images. This method offers notable advantages to the other approaches such as
the ICP and UPF algorithms. The proposed registration method not only is less
sensitive to the initial guess or alignment, but also is significantly more accurate
than the ICP algorithm as shown in Section 2. Moreover, against the UPF al-
gorithm, the proposed registration method has less limitation on the size of the
registration points due to the significantly less computational complexity. On
the average, the complexity of the proposed method is O(N?), N is the number
of points in the register data set, while the complexity of the ICP algorithm and
the UPF registration method with P particles, in the best case, are O(N log N)
and O(PN?), respectively. In the future, further simulations and experiments
will be performed to validate the UKF algorithm and its capture range under
different measurement noise conditions.
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Abstract. Dynamic contrast-enhanced 4-D MR renography has the potential for
broad clinical applications, but suffers from respiratory motion that limits
analysis and interpretation. Since each examination yields at least over 10-20
serial 3-D images of the abdomen, manual registration is prohibitively labor-
intensive. Besides in-plane motion and translation, out-of-plane motion and
rotation are observed in the image series. In this paper, a novel robust and
automated technique for removing out-of-plane translation and rotation with
sub-voxel accuracy in 4-D dynamic MR images is presented. The method was
evaluated on simulated motion data derived directly from a clinical patient’s
data. The method was also tested on 24 clinical patient kidney data sets.
Registration results were compared with a mutual information method, in which
differences between manually co-registered time-intensity curves and tested
time-intensity curves were compared. Evaluation results showed that our
method agreed well with these ground truth data.

1 Introduction

Single kidney glomerular filtration rate and split renal function can be measured by
gadolinium-enhanced MR renography. Despite the fact that the kidney is a 3-D organ,
most previous animal and clinical studies have been restricted to serial 2-D MRI data
[1]. With three-dimensional magnetic resonance renography [2, 3], 3-D MR
acquisitions are recorded repeatedly for at least 4 minutes after intravenous injection
of a low dose of gadopentetate dimeglumine. In this context, image analysis
of perfusion images aims to construct representative time-intensity curves from
specified regions of interest such as the renal cortex, medulla, and collecting system.
When patients cannot hold their breath reproducibly during perfusion data acquisition,
accurate computation of time-intensity curves becomes complicated because of image
misalignment over time. In an earlier study [2], three-dimensional registration and
segmentation of all images were performed separately for each kidney by two
investigators. For each case, manual registration and segmentation required
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approximately 2-3 hours at the workstation. For clinical applications, this workload is
prohibitively time- and labor-intensive. Therefore, automated and semi-automated
image registration techniques to correct respiration motion are of great clinical
interest. There has been little work related to the registration of dynamic renal
perfusion MRI data in which registration in time series is restricted in 2-D plus time
and in-plane motion only [1, 4, 5]. Automated full 3-D serial image registration
remains an unsolved problem especially in the context of internal organs [6-9]. We
propose a novel fully automated four-dimensional (3-D plus time) MRI renography
registration framework based on wavelet and Fourier transforms (WTFT). First, a
preprocessing of denoising is employed using edge-preserving anisotropic diffusion;
secondly, an edge detection is implemented using a 3-D overcomplete dyadic wavelet
expansion; thirdly, based on the previous edge images, a 3-D registration is applied
using the Fourier transform; then an existing sub-voxel registration scheme, which
was extended to 3-D, is used to refine the registration results. Our method was
quantitatively evaluated by phantom studies as well as on 24 clinical data sets
compared with manually registered ground truth. WTFT was also compared with an
existing 3-D mutual information based registration method.

2 Methodology

2.1 Anisotropic Diffusion

If edge detection is applied directly on the original serial 3-D images, the edges
caused by noise prevent the registration process from achieving accuracy. Therefore,
we needed to apply a denoising process before edge detection. Here, we have applied
a computationally efficient denoising filter based on anisotropic diffusion previous
developed by Duan et al. [10].

(b)

Fig. 1. The effect of anisotropic diffusion comparison (coronal view): (a) original image; (b)
processed image

2.2 Wavelet Edge Detection

Due to the gadopentetate dimeglumine perfusion process, intensities of serial images
change with time, therefore, it is unreliable to use intensity images directly. Instead,
we can use edge information which is preserved fairly well in the serial 3-D image
volumes. Compared with gradient and 3-D Sobel edge detection, wavelet transforms,
which can also be used for edge detection, provide smooth and strong edge detection
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results. One way of implementing a multi-dimensional discrete dyadic transform is to
use a filter bank scheme with separable wavelet bases [11]. Since the research in this
paper focuses on three-dimensional processing, we used a three-dimensional discrete
dyadic transform. We selected the modulus at level 2 for registration. A comparison
of the three different edge detection methods is shown in Figure 2.

(b)

Fig. 2. A sample slice (coronal view) to compare different edge-detection methods: (a)
gradient; (b) 3-D Sobel; (¢) 3-D over-complete dyadic wavelet transform modulus

2.3 Fourier Based Registration

Using edge images acquired from previous step, a 4-D registration framework was
accomplished by considering the first frame the reference as a 3-D object; the
following 3-D frames were registered to the first one. Our work utilized a 3-D motion
correction method based on the Fourier transform. The procedure can lead to an
unsupervised 3-D rigid body registration method. One of the benefits of the method is
that it makes use of all available information instead of limited features from the
images. This makes the procedure very robust. Let f(x,y,z)be a 3-D volume data,

and let g(x,y,z)be a translated and rotated version of f(x, y,z) , then
g(x,y,2) = f(Rx+1) ey

where fe R’ is a translation vector, and R e SO(3) is a rotation matrix.
The three-dimensional Fourier transform is defined as:

© 0

Sy = [ [ [ fxr2)e ™ dxdydz

—00 —00 —00 (2)
According to the property of the Fourier transform,
s[g](wx ,Wy ,WZ) _ R%[f](wx ,Wy ,Wz )ejZ;r[wYerwv‘.y+w:z]R1 (3)

and

3110w, w,w,)| = [RBLS 10w, w,w.)

) 4)
From above equations, we can see that the estimation of rotation has been decoupled
from the estimation of translation. Thus the first estimation of R should be
implemented before the estimation of . In three dimensional spaces, the rotation
cannot be expressed in polar or spherical coordinates, in which case it would
be reduced to a translation and be estimated by phase-correlation [8] as in the
2-D case. In other words, whereas rotation in 2-D space can be completely expressed
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by one angle, in order to represent a rotation in 3-D space, three angles are
needed (Euler’s rotation theorem). Rodrigues’ rotation formula is adopted, which
gives an efficient method for computing the rotation matrix Re SO(3)

(50(3)={R6RM,R7' =RT,det(R)=1} is a group of the 3-D special orthogonal
matrices) corresponding to a rotation by an angle i € R about a rotation axis

specified by the unit vector »= (0, 0,,0,) € R’ Then R is given by

cosy + @’ (1-cosy) .0, (1-cosy)—o,siny @, siny +o.0,(1-cosy)
R=| @ siny +o.0,(1-cosy) cosy +a.(1—cosy) -, siny + 0,0, (1-cosy) (&)

-0, siny + 0.0, (1-cosy) @, siny +0,0,.(1-cosy) cosy/+a)f(1—cosy/)

Since any unit vector in 3-D space can be expressed by two angles (6,¢), the

rotation axis unit vector can be calculated by three angles (8,9,y) :
o, =cosfcosp, o, =sinfcosy, @ =sing. (6)

Since the kidney is a fairly symmetric object in 3-D, if we use the same method in
Lucchese’s work [7], which is mainly designed for binary images, the solution of the
rotation axis is not unique because the intensity projection from different directions
may be equal to the projection on the rotation axis. Furthermore, projection loses the
information in the spatial domain, where the intensity profile along a fixed direction
would provide extra information to find the rotation axis. Instead of three steps, in this
context, only two steps were applied: rotation matrix, R, estimation and translation
vector, t, estimation.

Stepl. Recovering the rotation matrix

By using the relationship between the Fourier transform magnitudes in equation(4)
and to avoid the effects of aliasing introduced by rotation to the energy minimization
procedure, we use the energy term as

E= I”(S[g](wx,wy W) = SR 1w, w, ,wz))z dw,dw,dw, (7

and the optimum rotation axis and rotation angle can be recovered by
é,;ﬁ,y/; =argmin £ 8
(6.6 = argmi ®

The minimization problem in equation (8) can be efficiently solved by the Quasi-
Newton Method [12].

Step2. Recover translation vector.
After the rotation estimation, the rotational version of f, Rf, is calculated. Thus, the
translation vector can be easily recovered by a phase-correlation technique:

B0, )T TRAOL W) e
corr = —e
| STe10v,w, ) [ TR 1w, o, |

where * denotes complex conjugate and . denotes vector dot product. The inverse
Fourier transform of the right-hand side of equation (9) is the Dirac impulse function.
So the translation vector can be trivially found by finding the position of that impulse

(€))
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function. According to the rotation and translation estimation, an aligned image from
g(x,y,2)to f(x,y,z)can be denoted as &(X,¥,2)and /(x,y,z) , whose spectrum are

F(w,,w,,w,)and G(w,,w,,w.) .

2.4 Subvoxel Refinement in Frequency Domain

Based on the integer voxel translation estimation and correction, a subvoxel refining
process can be used to make more accurate registration results. A 2-D subpixel
registration method put forward by Stone et al. [9] was extended to a 3-D framework
in this article for the first time. The method requires integer voxel accuracy because it
can only correct subvoxel misalignment.

From the property of the Fourier transform,

G=Flf(x+ Xo, Y+ Vo, 2+ 29)]= Fe /Cr/ Mmoo (10)

ie.

ﬁ / é _ ej(ZII/N)(n{\xo+w‘y0+w:zo) ) (1 1)
In other words, the phase of F/G should be a plane in the (w,, w, w,) space.
Therefore, the subvoxel registration problem can be converted into a 3-D plane fitting

problem, which can be solved by least square fitting. For any voxel in
the (w,,w ,w,) space, in theory, the following equation holds:

phase(l?/a) =Q2r/ N)w,x, +w, ¥, +w.2,) . (12)

Using matrix representation, the above equation is equivalent to

%[WX w, wz:|[x0 Yo ZO]T = [phase(ﬁ'/@)} . (13)

Equation (13) can be solved by pseudo inverse methods or singular value
decomposition for the subvoxel translation vector [x,, y,, 2, ]T .

In both Fourier registration and subvoxel refinement process, a 3-D window is
applied, which is recognized for eliminating the spurious introduction of high-
frequency spectral energy due to the boundary effects [9]. We tried Blackman, Hann,
and Tukey windows (r=0.5, which is r is the ratio of taper to constant sections), and
we found that Blackman window worked the best for this dynamic renal data.
Although in some time frames, when contrast agent intake is maximum and kidney
boundaries are not clear, inner structures and outside edges surround the kidney, such
as part of liver edges, will help the registration process.

3 Experiments and Results

3.1 Simulated Clinical Study

Based on a manually registered 4-D MR renography data set, a simulated data set
with dimension [77 97 40 20] and voxel resolution 1.66mm x 1.66mm x 2.5 mm was
generated by translating and rotating the kidney. Simulated motions included head to
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feet (HF) translation, left to right (LR) translation, anterior to posterior (AP)
translation and rotation (Rot) with respect to three different axes, represented in terms
of (6,9,v) , where (6, 9) defined the axis of rotation; i the angle of the rotation along
that axis (Table 1).

The estimated errors in translation and rotation are shown in Figure 3. Translation
estimation errors were lower than 1.4 voxels in all the directions with mean value
0.53+ 0.47, 0.51+£0.46, and 0.60+0.41 in x, y, and z direction respectively; for
rotation, except for one case, the errors in the two angles representing the rotation axis
were less than 0.5 degrees, and the errors in rotation angle were less than 2.5 degrees
with mean value 0.003+0.003, 0.07+0.26, and 1.14+0.72 degrees in (8,9, ) .

Table 1. Simulated Motion for Each Time Frame (T)

T  Motion T Motion T Motion
1 Baseline 8 LR(-1.66mm)+(90,0,5) 15 HF(3.32mm)
2 AP(-2.5mm)+(0,90,-9) 9 AP(2.5mm) 16  AP(5.0mm)
3 LR(3.32mm)+(90,0,-2) 10 Baseline 17 Baseline
4  HF(6.64mm) 11 HF(1.66mm) 18 HF(-4.98mm)
5 (0,0,-4) 12 HF(-1.66mm) 19 Baseline
6  HF(-6.64mm) 13 Baseline 20 LR(-4.98mm)
7 Baseline 14 LR(6.64mm)
1.4f’i 25 T
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Fig. 3. Clinical phantom study results: (a) translation error; (b) rotation error

3.2 Clinical Evaluation

In order to evaluate the performance of our algorithm (WTFT) clinically, our
algorithm was applied to 12 clinical patient datasets (24 kidneys in total), with manual
registration and segmentation as ground truth. All datasets consisted of at least 41 3-D
acquisitions, where each 3-D dataset comprised 40 interpolated partitions of 2.5 mm
thickness, with inplane matrix of 256 and inplane voxel size 1.66 x 1.66 mm. After
registration, the cortex, medulla, and collecting system were differentiated by
applying manual segmentation labels on the first frame, assuming following frames
were been correctly registered. The time-intensity curves of cortex, medulla, and
collecting systems were calculated based on manual registration treated as ground
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Fig. 4. Average intensity curves for one of the data sets using manual registration, WTFT, and
mutual information registration
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Fig. 5. Boxplot for RMS evaluation of the time-intensity curves generated from WTFT (A) and
MI (B) methods. ‘ct’ stands for cortex; ‘md’ stands for medulla; ‘cs’stands for collecting
system. (a) left kidneys, (b) right kidneys.

Table 2. Significance values for Left and Right cortex, medulla and collecting systems for pairs
of two methods

Left Kidney Right Kidney
Cortex Medulla CollSys Cortex Medulla CollSys
WTFT/MI | <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005

P

truth and our automatic registration method. As a comparison, the time-intensity
curves based on Viola-Wells Mutual Information (MI) [13, 14] were also calculated.
In Figure 4, results from the three registration methods are shown for each kidney
structure. Qualitatively, time-intensity curves based on WTFT registration are much
closer to the ground truth than MI. To quantitatively evaluate the performance, root
mean squared (RMS) relative errors of time-intensity curves between automatic
registration methods, WTFT or MI, and ground truth were calculated and are shown
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in Figure 5. From the box-plot, the relative errors based on our WTFT method are
much smaller than the MI methods in terms of average and standard deviation of
RMS measurements. However, we note that both automated registration methods
performed best for cortex but lower agreement for the collecting systems. The average
errors for cortex, medulla and collecting systems in WTFT method were
3.24%+1.41%, 5.31%%2.19%, and 8.23%=+3.35% respectively for the left and
3.99%=+2.23%, 5.67%+4.13%, and 9.26%=%5.94% for the right. Evaluation of the
statistical differences of results from the two registration methods was performed at
the significance level 0.05 with a Wilcoxon signed rank test for paired data.
Significance values for the three tissue types for each pair of registration methods are
reported in Table 2. Small p values (below 0.0005) indicate a significant statistical
difference between the methods. From box plot, we can see WTFT had lower mean
and smaller standard deviation compared with MI, so WTFT statistically performed
better than MI.

4 Conclusion

In this paper, we proposed a novel fully automated four-dimensional MRI renography
registration framework based on over complete dyadic wavelet and Fourier transform
(WTFT), which was tested in terms of automation, robustness, and accuracy.
Simulated motion studies and clinical evaluation studies were used to evaluate the
new method. Comparison between different edge detection methods and comparison
between WTFT and mutual information (MI) were performed to illustrate the
effectiveness of the proposed scheme. An edge-preserving anisotropic diffusion
operator was also introduced as a denoising method. Experimental results showed
accurate registration results when compared to manual registration, by expert
radiologists.
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Abstract. This paper deals with the modeling of a vascular C-arm to
generate 3D augmented fluoroscopic images in an interventional radi-
ology context. A methodology based on the use of a multi-image cali-
bration is proposed to assess the physical behavior of the C-arm. From
the knowledge of the main characteristics of the C-arm, realistic models
of the acquisition geometry are proposed. Their accuracy was evaluated
and experiments showed that the C-arm geometry can be predicted with
a mean 2D reprojection error of 0.5 mm. The interest of 3D augmented
fluoroscopy is also assessed on a clinical case.

1 Introduction

In order to guide tools during the procedure, the interventional radiologist uses
a vascular C-arm to acquire 2D fluoroscopy images in real time. Today, 3D X-ray
angiography (3DXA) is widely available on modern vascular C-arms. Such 3D
images are recognized as being of a daily clinical usefulness for the planning and
follow-up of the treatment of cerebral pathologies [1]. One next step is to leverage
the high-resolution volumetric information provided by 3DXA to complement
fluoroscopy images and ease the tool guidance. This requires registering 3DXA
with fluoroscopy images, for any orientation of the C-arm.

Image-based registration [2] was investigated to match MRA with Digital
Subtracted Angiography (DSA) images. Though providing accurate registration,
such methods require the injection of contrast agent for the reference 2D image.
Furthermore, their computation time together with the manual interaction nec-
essary to initiate the registration [3] still hampers their wide integration in an
ever tighter medical workflow.

Using 3DXA, both images to register are acquired on the same machine. Reg-
istration can be deduced from a model of the C-arm, based on the information
provided in real-time by the system sensors, such as the C-arm angles. The a
priori model in [4] does not accurately fit the acquisition geometry, due to slight
mechanical deformations undergone by the C-arm. More sophisticated models
have been proposed in [5,6]. Though encouraging with regards to the precision
of the registration, these works proved that the a priori model was not accurate
enough to render the effective mechanical behavior of the C-arm.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 214-222, 2005.
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In this paper, an a posteriori model of the C-arm motion is built through a
series of measurements relying on vision-based methods. The aim is twofold: on
one hand improve the quality of the registration and on a second hand effectively
render the mechanical behavior of the C-arm, including mechanical deformations.

2 The Vascular C-Arm

2.1 The C-Arm and Its Sensors

During a clinical procedure, the C-arm can be oriented in any incidence that the
physician reckons as the best suitable for the treatment (Fig. 1). The orientation
is classically described by two anatomical angles: o = cranio-caudal (CC) and 8
= right/left anterior orientation (RAO/LAO). Furthermore, the imager can be
translated to adjust its distance to the X-ray tube (Source to Image Distance,
or SID). The SID and the o and  angles are measured in real time by sensors.

2.2 The Acquisition Geometry

The C-arm can be modeled as a pinhole camera by a projection matrix M,
relating any 3D point X to its corresponding projection ¢ in the acquired image:

fO’LL()
¢=MX with M=IE= | 0fuv | [R|T]
001

The intrinsic parameters I describe the projection parameters from the X-ray
tube to the 2D view: (ug,vg) is the principal point and f is the focal length in
pixels (square pixels); the extrinsic parameters E define the orientation R and
position T of the acquisition system in a world coordinate system.

2.3 The Predictive C-Arm Model

Model-based approaches [4,5,6] all aim at estimating the intrinsic and extrinsic
parameters, thus building up the M matrix. The intrinsic parameters (ug, vp)
are assumed constant while f directly depends on the SID.

M 0= IIY E()

D =20B8=0

Position0 : o = B = 0 Position

Fig. 1. The vascular C-arm in two different orientations. The change in the acquisition
geometry M is given by the rigid motion D, expressed in the world coordinate frame.
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The extrinsic parameters are assumed to be known in a reference position,
which is straightforward. To compute them in a different orientation, the rigid
motion D of the C-arm is modeled as a function of the oo and § angles (Fig. 1).
Dumay [4] modeled D as made of two independent rotations around the a and
0 axes respectively. Both axes were assumed to be orthogonal and to intersect.
Kerrien [5] showed that this does not exactly hold and proposed to calibrate
the axes. Canero [6] compared 4 models with growing complexity, starting from
Dumay’s model, that significantly improved the accuracy of the registration.

Still, the C-arm bears slight mechanical bendings that impair the accuracy
of the previous models. Reliable and independent measurements of intrinsic and
extrinsic parameters should help understand these deformations. Next section
describes how such measurements can be made.

3 Robust Estimation of the Acquisition Geometry

3.1 Classical Geometric Calibration

The projection matrix M is classically estimated through the minimization of
the reprojection error £, on a set of 3D markers (X;):

1 n
£M) = 37 M, - g
=0

where n is the number of detected markers (g;) in the image. In practice, we use
a phantom called "helix phantom" which is made of a hollow Lucite cylinder
in which lead markers are inserted according to an helicoidal pattern. Although
the estimated projection matrix is known with a sub-pixel reprojection error,
its decomposition into intrinsic and extrinsic parameters is known to be unsta-
ble.The statistical noise affecting this measurement prevents us from computing
independent and reliable intrinsic and extrinsic parameters.

3.2 Multi-image Calibration

To reduce the statistical noise, calibration can be repeated with varying extrin-
sic parameters and fixed intrinsic parameters. Thereby, the inter-dependence
between both sets of parameters is reduced, so that reliable intrinsic parameters
are estimated. In [7], the camera is moved around the calibration target. In our
case, there is no valid reason to believe the intrinsic parameters do not depend
on the C-arm orientation. As a result, for a given C-arm orientation, N images
of the helix phantom are taken, with the phantom being moved in both rotation
and translation between each image acquisition. This step is called multi-image
calibration. The common intrinsic parameters I and N extrinsic parameters (E;)
are then estimated simultaneously by minimizing the residual reprojection error
R on the N images, using Levenberg-Marquardt algorithm:

R, = ;ZE(MD with M, = IE; (1)

N
=0
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3.3 Per-Axis Analysis

Our medical institution is equipped with a vascular C-arm mounted with the
latest generation of flat panel detectors (INNOVA 4100 — GE Healthcare, Buc,
France), thus bearing no geometrical distortions. The pixel size is 0.2 mm.

Experimental values showed that 30 images were enough to obtain a stable
estimation of the intrinsic parameters. More, bootstrap techniques showed that
the precision of the intrinsic parameters was always better than 2.5 pixels.

The Intrinsic Parameters. The multi-image calibration was used to study
how the intrinsic parameters varied when the C-arm was rotated around either
the « axis or the 3 axis, with a fixed SID (1180mm). For each axis, 5 orientations
were chosen: 2, = {(o,3) |8 = 0&a € [—40°,—20°,0°,10°,20°]} and P53 =
{(e, B) oo = 0& B € [-90°, —40°,0°,40°,90°]}. For each orientation, a multi-
image calibration was performed using N = 30 images.

The focal length remained almost constant whatever the orientation of the
C-arm. Figure 2.a shows the measurements made on (ug,vp), the shorter lines
being related to the a rotation. Given the 2.5 pixels precision of the method,
no definite change of the intrinsic parameters could be observed except for wug
which clearly presents a smooth variation during a rotation around the (§ axis.
This imprecision also explains why the curves do not intersect for « = 3 = 0.

The Extrinsic Parameters. The multi-image calibrations also provide N ex-
trinsic matrices E for each orientation in the %, and Pg sets (see eq. 1). These
parameters are stable, since estimated with stable intrinsic parameters. A subset
of images, one per orientation, was taken with a common helix phantom position,
thereby providing a subset of extrinsic matrices, one per orientation, expressed
in the same coordinate system.

The orientation common to both sets was chosen as the reference position
(o = g = 0). Following [5], the rigid motion D of the C-arm was computed by

Vo RAO/LAO angle ——

Vo CC angle
uo RAO/LAO angle - 5
520 o CC angle =

Pixel
a
g
8
110 mm

&

70 e 25
400 80 60 40 20 0 20 40 60 80 100 200 80 60 40 20 0 20 40 60 80 100
Angle (degree) Angle (degree)

Fig. 2. Mechanical deformations. Left: Variations of (uo,vo). Right: factor .
Table 1. Per-axis rotation parameters

a B
C xyz] (mm) ¢ (°) C [xyz] (mm) ¢ (°) Oerr(®)
mean [1.75 0.53 -29.04] 0.48 [0.72 4.86 -0.04] 0.06 0.26
std  [0.33 0.17 1.20] 0.30 [0.90 0.67 0.003] 0.02 0.18
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compositing extrinsic parameters (see also Fig. 1). For analysis purpose, D was
expressed as:
D =[Ry|T]=[Reg|(Id — Ry)C + AT] (2)

where Ry is a rotation of angle 6§ and axis v, C is the closest point to the
origin on the axis of rotation, and AT is a residual translation, proportional to
v: AT = .

A per-axis basis analysis of the rigid motions D is reported in table 3.3: the
stability of the rotation axis is verified through statistics on the position of C'
and by computing the angular deviation ¢ of v with respect to its average value.
The difference 6., observed between the computed 6 and the sensor data is also
very small. The norm of AT is below 0.2 mm for the a axis. On the opposite,
it cannot be neglected for the [ axis: provided that AT = A\v, figure 2 displays
the variation of A according to the angle 5. As a conclusion, the rotation model
is valid for the C-arm motion around the « axis, but not for # which requires a
further translation parallel to the rotation axis.

3.4 Conclusion

The multi-image calibration is an accurate method to determine reliable intrin-
sic and extrinsic parameters. A per-axis analysis unveiled a variation of the wug
intrinsic parameter and an important residual translation during a (§ rotation.
These may be interpreted as respectively a physical change of the relative posi-
tion between the X-ray tube and the flat panel, and a global mechanical bending
of the C-arm under its own weight in lateral positions. Such effects are taken
into account in two models described in the next section.

4 Predictive Models of the C-Arm Acquisition Geometry

4.1 Description

The aim in modeling the C-arm acquisition geometry is to be able to predict,
for any orientation («, ) of the C-arm, the acquisition geometry:

M. = 1a,8Ea,p

The extrinsic parameters E, g are recovered by modeling the rigid motion im-
parted to the C-arm to move from a reference orientation (o« = § = 0) to (o, 3).
Under the hypothesis that the a and 3 motions are independent, this rigid mo-
tion is a composition of two rigid motions: D, around the o axis, and Dg around
the 0 axis:

E. s =E(D.,Dg

where Eg = [Ro|Tp] are the extrinsic parameters in the reference orientation.
According to the above measurements, D, is a rotation of angle «, read

on the sensor, and parameterized by an axis vector v, and a fixed point C|,.

Dg is a rotation of angle 3, read on the sensor, and parameterized by an axis
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Table 2. Reprojection error in pixels for the matrices predicted by both models. The
mean error for model My was 2.37 pixels (std=1.48). The mean error for model M,
was 2.31 pixels (std=1.31). The pixel size is 0.2 mm.

a (°) -28.8-28.8 -28.8 -8.8 -8.8 -8.8 -8.8 -8.8 -0.3 -0.3 -0.3 -0.3 -0.3 19.1 19.1
B (°) -40.4 1.3 40 -90.4-39.1 0.1 41.1 79.8 -90.4 -39.6 0.4 41.2 80.3 -19.3 0.1
My 5.81 3.43 5.61 1.93 1.90 2.24 2.59 2.24 1.20 1.27 1.28 1.38 1.60 1.83 1.25
My 3.63 3.44 6.10 1.47 1.72 2.252.26 3.20 1.59 1.39 1.28 1.26 1.66 2.19 1.25

vector v, and a fixed point C} associated to a translation along v, of amplitude
A. Provided the general function shape in figure 2.b, second- and third-order
polynomials were tested to model the parameter A\ as a function of 3. The latter
gave better results: A\ = Z?:o it

The intrinsic parameter vy is constant, and the focal length f only depends
on the SID. The models are described considering a fixed SID, allowing the
assumption that f is also constant. According to the above experiments, ug
varies as a function of 3. Figure 2.a suggests the shape of a low-order polynomial.
Again third-order polynomial proved best: ug = Z?:o w3t

Thereby a model was built to render the mechanical properties of the C-arm.
This model, denoted 9,,, is parameterized by the vector:

&m = {Ro,T0;Va; Cai Vi, Cp, (Mi)i=0.3; (1i)i=0.3,v0, f }

A second model was considered, only differing from 94, by considering u is
also constant, thereby assuming intrinsic parameters are constant. The model is
denoted by 2 and is parameterized by:

&7 = {Ro,T0;Va;Ca3 Vb, Cp, (Mi)i=0.33 0, v0, f }
4.2 Calibrating the Models

Model M. Since intrinsic parameters are constant, a classical multi-image
calibration can be performed, with a moving C-arm and a fixed helix phantom
as in [7]. One image was acquired for every orientation in 2, and P3. The only
difference with section 3.2 is that the N extrinsic parameters are replaced by the
components of ¢y modeling the extrinsic parameters. Images of the fixed helix
phantom were also taken for C-arm orientations outside %, and ®3 for validation
purpose. The orientations of this test set are provided in table 2.

Model 2M,,,. Due to the varying intrinsic parameter ug, one multi-image acqui-
sition has to be made for each orientation in 2, and P3. These come in addition
to the same acquisition as for My, necessary to manage the extrinsic parameters.
This results in the same type of acquisition as made in section 3.3 to study the
extrinsic parameters. Again, a global cost function could be designed and mini-
mized but the relatively small influence of the intrinsic parameters compared to
that of the extrinsic parameters leads to poorly optimized intrinsic parameters.
As often in numerical optimization, we found the adequate cost function to be
the weighted sum of two residuals:

R=R;+7 Y, Rn(May)

(o, B)EPUPg
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where Ry is the residual of the classical multi-image calibration as for the 24
model, and R, is the residual of our multi-image calibration, as described in
section 3.2. v was fixed at 1000, to balance the influence of both terms on ®.

5 Validation — Application to 3D Augmented Fluoroscopy

The limitations of fluoroscopy are well known: contrast medium has to be in-
jected repetitively to visualize the vessels, its image quality is reduced compared
to DSA, and finally, it does not provide 3D information. The real-time super-
imposition of fluoroscopic images with pre-operative 3DXA images could poten-
tially overcome some of these limitations. We call this clinical application “3D
augmented fluoroscopy”. The various validation studies that follow were targeted
to such an application. As a result, the reprojection error was chosen as the figure
of merit to evaluate our models.

5.1 Comparison of the Models

Both M and M, models where calibrated as described above. For each orien-
tation (a, B) in the test set, the matrix M, g predicted by each model was built
up and its reprojection error computed. Results are reported in table 2.

Each model presents a mean reprojection error of about 2.5 pixels which
represents 0.5 mm of error in the image plane (pixel size=0.2 mm). In both
cases, the error was below this average error in 84% of the test orientations.
This precision is sufficient for many medical applications and in particular for
3D augmented fluoroscopy. No major differences could be noted between the
models. Indeed, in My, nothing prevents the coupling effect between intrinsic
and extrinsic parameters from counteracting the error made when assuming wg
is constant.

5.2 Evaluation of 3D Augmented Fluoroscopy

Phantom experiment. A silicon phantom of the cerebral vasculature was in-
jected with a contrast medium and a 3DXA was acquired. Then, one fluoroscopy
image was taken for each test orientation in table 2. 3D augmented views were

,-1 4

Y % §

Fig. 3. 3D augmented fluoroscopy on phantom dataset. Left: fluoroscopic image of the
phantom; right: superposition of the 3DXA onto the fluoroscopic image.
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Fig. 4. 3D augmented fluoroscopy on a clinical case with model #,,: Comparison of
contrast-enhanced fluoroscopy (left) and 3D augmented fluoroscopy width blending
(middle) and surface (right) views. Only the main vessels are shown and the guide wire
was manually overlined in black.

generated, using model M,,,, to allow a visual assessment of the local reprojection
error to complement the above global statistics. In Fig.5.2 an augmented image
is shown for o = 8.8° and 8 = 41.1°. The precision of this position is 0.45 mm
(see table.2) which, from a visual standpoint, corresponds to a perfect fit.

Patient Data. A patient underwent an endovascular treatment for an aneurysm.
A 3DXA was acquired and fluoroscopy images were captured under an oblique
orientation (o = 2°, 3 = —82°) while the micro-catheter was moved up to the
aneurysm. The SID (1070 mm) used during the procedure was different from the
SID used to calibrate the models (1180 mm). Therefore, the focal length given
by the models was updated as f + (1070 — 1180)/s, where s, = 0.2mm is the
pixel size.

Visual assessment of 3D augmented views indicated a very accurate match
on the region of medical interest, i.e. around the aneurysm. Compared to flu-
oroscopic images (Fig.5.2 left), the augmented images (Fig.5.2 middle & right)
present a higher image quality and ease the assessment of the tool position within
the 3D vascular anatomy in real time. Furthermore, the surface view (Fig.5.2
right) allows to better analyze superimpositions of vascular structures and can
dramatically help the radiologist to understand the vascular bifurcations. Thus,
3D augmented fluoroscopy can make micro-catheter navigation and tool deploy-
ment easier.

6 Conclusion

A robust calibration method for the intrinsic and extrinsic parameters of a vascu-
lar C-arm was proposed and evaluated. Thereby, some mechanical characteristics
of the C-arm were assessed and realistic models were built, including slight de-
formations of the system. These models were evaluated as being able to predict
the acquisition geometry for any C-arm orientation with a mean 2D reprojection
error of 0.5 mm. This accuracy enables many medical applications such as 3D
augmented fluoroscopy. A clinical case showed that 3D augmented fluoroscopy
has the potential to facilitate the classical navigation of the radiologists.
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Abstract. Statistical atlases built by point distribution models (PDMs) using a
novel hybrid 3D shape model were used for surface reconstruction. The hybrid
shape model removes the need for global scaling in aligning training examples
and instance generation, thereby allowing the PDM to capture a wider range of
variations. The atlases can be used to reconstruct, or deformably register, the sur-
face model of an object from just two to four 2D x-ray projections of the object.
The methods was tested using proximal and distal femurs. Results of simulated
projections and fluoroscopic images of cadaver knees show that the new instances
can be registered with an accuracy of about 2 mm.

1 Introduction

Variations of a shape in a population can be described using a statistical shape model
(SSM). The point distribution model (PDM) proposed by Cootes et al. has been shown
to be very successful in applications modeling anatomical objects.

In this paper, we propose a hybrid 3D shape model which can be used in a PDM
framework. We show how to use the hybrid shape model and the resulting PDM to
reconstruct the surface model of an object from a set of 2D x-ray projections using
intensity-based registration techniques.

Methods for reconstructing 3D surfaces by a PDM usually use the PDM in a simple
way, requiring a global scale factor to align the training examples and to correct the
surface model generated by a PDM. The problem of global scaling is that, because the
scaling changes the original shapes, so the PDM is actually constructed from altered
shapes. The use of the hybrid shape model removes the need of global scaling, therefore
the PDM can capture a wider range of variations. Nonetheless, traditional PDM still
has good variability given enough training examples are used. Fleute et al. [4] used a
PDM for the reconstruction using the segmented contours of the 2D projections. Yao
[7] used a PDM with tetrahedral meshes with intensity-based registration. Benameur et
al. [1] used an edge-based method for registering 2D projections with the surface model
generated by a PDM.

2 Shape Modeling and Atlas Building

A shape model should be able to describe both global (overall) characteristics and local
(detail) characteristics of a shape. The hybrid shape model used in the present work ex-
plicitly modeled both characteristics. The global characteristics were described by a set
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of connecting inscribed spheres — in-spheres — contained within the bounding surface
of the shape. The local characteristics were described by parameterizing a surface with
respect to each in-sphere.

2.1 Global Model

The global model here, as is the case for Blum’s medial-axis description [2], uses in-
spheres. One problem with medial-axis models, in general, is that a slight change in
a shape can result in a very different set of medial axes. Instead of putting inscribed
circles into a 2D shape (or in-spheres in 3D) that satisfy the medial constraints, one can
instead fit in-spheres so that they take up the space inside the shape as much as possible.
A crucial difference between the medial-axis description and the global model here is
that spheres in the former may overlap, whereas in-spheres here serve as constraints
on how subsequent in-spheres are positioned and sized. A given shape that is globally
modeled by k in-spheres can be parameterized by k four-component tuples of the form
(ei, 1), where ¢; and r; are respectively the center and radius of the ith in-sphere.
Figure 1 shows the global model of a proximal and distal femur.

Fig. 1. Global model of the reference femur

2.2 Local Model

The local model parametrically represents the surface of a given shape around each
in-sphere in the global model. In this work the parameterization was done by system-
atically shooting rays from the center of each sphere. Each ray had a parameter that
represented the distance of the surface from the center of the sphere. Ideally the rays
should be uniformly distributed on a sphere; this is only possible with the Platonic
solids, but the rays would not be dense enough to capture the relevant details of the
surface to be modeled. Nonetheless, approximation by a geodesic dome is sufficient.
We used the octahedron and subdivided it such that it approximates a sphere with 1026
vertices and 2048 triangles. These vertices can then be used as directions of rays that
emanate from the center.

Suppose that, for a given in-sphere, n rays are produced. The local model of the
shape’s surface is derived from the intersections of the rays with the surface. This is
done in two stages; first, the length of the rays are found and then a polygon is con-
structed from the tips of the rays. A set £ consisting of n distances suffice to parame-
terize the shape.
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2.3 Merging the Global and Local Model

If a given shape is represented by k in-spheres, then it would be parameterized by &
tuples of the form (c;,r;, £;), where ¢; and r; are the center and radius of the i-th
sphere, and £; is the n-dimensional set of ray lengths that describes the local shape.
Each tuple can be used to reconstruct a mesh using the triangulation of the subdivided
octahedron, in which the mesh describes part of the shape. The entire shape can be
recovered by combining these meshes.

2.4 Building a Shape Atlas

Given a set of training examples, one of them, M,.; was selected as the reference
example, and its shape parameter, y,.f, was determined. For a new training exam-
ple M;, an affine transformation was performed with the reference example, such that
Mies = Toffine(Trigia(M;)), where T'(+) is a transformation. This affine transfor-
mation was used on the in-spheres locations of the reference example, so that they
become the initial guess for the in-sphere location of the new training example. The
in-sphere description is then determined in the same sequential order of the reference
example. For the alignment, the only rigid part of the transformation is used. The local
model of the new training example can be calculated after aligning it with the refer-
ence example, and the shape parameter y; for M; is now determined. Mathematically,
Sil(yref) ~ Ta ne(Sil(yi))-

With the shape parameters of all the training examples known, a hybrid statistical
shape atlas was generated using principal component analysis (PCA) [3]. PCA reduces
the dimension of the shape parameter from thousands to ¢, whose dimension has only
a few values, such that § = C(y), and y ~ C ().

The hybrid shape model provides a method for parameterizing a shape, which can
be denoted as functions S(-) and S~1(+), such that for a given a shape M that is repre-
sented as a triangle mesh:

y:[(Cl,?"],ﬁ]),...7(Ck,7"k,£k)]T:S(M) (1)
M =S5 y) 2)

where M’ is a retriangulated version of M.

3 Shape Reconstruction

Given data from a surface that is not one of the training examples, the parameters can
be optimized to best match the given data, such that a model for this surface is recon-
structed. This process also includes registration, because the given data is under some
coordinate system that is different from the coordinate system of the atlas. Therefore
the reconstruction gives the shape parameter g, a rotation R and translation ¢, such that
the mesh S(C~1(7)) transformed by T +(-) is the best match to the given data.

The given data may be of various forms. The two most important forms for or-
thopedic applications are when the data are 3D points obtained from the surface of an
anatomical object, and when the data are 2D projections of an anatomical object. As for
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2D/3D rigid registration, a crucial component of reconstruction is the use of an appro-
priate similarity measure that can be used to compare the given data with an instance
generated from the atlas. In other words, the reconstruction is essentially a minimiza-
tion problem, that some error measure is minimized by using some values of § R, and
t. Here we address the reconstruction using a few 2D projections.

Given a set of calibrated 2D projections (i.e., the projection geometry for each pro-
jection, and the relative poses of the projections are known) the reconstruction was done
in an iterative manner in two steps. First, starting with the mean shape (§ = 0) and an
initial estimate of the pose, an intensity-based registration [6] was performed so that
a similarity measure [5] between the digital reconstructed radiographs (DRRs) of the
shape, and the given projections, was optimized. By fixing the resulting transforma-
tion, the similarity measure was further optimized using the dimension-reduced shape
parameter, which was done using a non-gradient-based optimization technique. By re-
peating these steps, the shape of the given surface was determined. Because we focus
on orthopedic application, we used gradient correlation as the similarity measure. For
the optimization of the shape parameter, we used the downhill simplex method.

Note that the shape atlas only provides a surface mesh, not an image volume that
is required for DRR generation. To simulate an image volume using the surface mesh,
one can intersect the mesh with a set of parallel planes. The result would be a contour
of the shape, represented by line segments. Guided by the local surface normals, these
segments were “grown’ inward to simulate the thickness of the cortical bone in a real
CT slice.

4 Experiments

The shape model was tested using 20 dry human femurs. CT scans were acquired for
each femur, using an (z, y) pixel size varying from 0.50 to 0.65 mm and a slice thickness
of 1.25 mm. The resolution of the CT volumes was 512 x 512, comprised from 380 to
400 slices. Left femurs were mirrored to produce only right-femur shapes. The surface
meshes were computed from the CT volumes. The proximal and the distal femurs were
treated separately.

In building and testing the atlas a leave-one-out approach was used, i.e., 19 femurs
were used for training the atlas and the remaining one was used for testing the atlas.
The dimensions of the shape parameters were about 6620 and 5180 for the proximal
and distal femur; after performing PCA they were reduced to 9 and 7, with a cumulative
variance of 85.9 + 0.4%, and 86.1 + 0.5%, respectively.

RMS error was used for quantifying the error in the reconstruction of a surface M,
which can be defined as the sum of the distances between all the mesh vertices of M,
and the reconstructed shape:

RMS Error(y, R, t) = Z [|lm — closest(m, Tr +(S(C—L(GN)?*/IM] (3)
meM

where | M| is the number of mesh vertices in M. Note that a rigid transformation has
already been performed for M in the simulation, so the RMS error contains not only
the error in the shape, but also the error in the registration.
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Retrospective analyses show that the atlases were capable of describing the left-
out femurs with mean RMS error£SD for the proximal and distal femur was 0.84 +
0.17 mm and 0.70 &£ 0.15 mm from 3D surface data.

4.1 Reconstruction from 2D Projections

Both simulated and cadaver data were used for testing.

For simulated data, reconstruction was done with two, three, and four images using
all proximal and distal femurs. The view angle difference was approximately 15°, 60°,
and 90° for reconstruction with two images, 15°, 30°, and 45° with three and four
images. 2D projection images of the left-out femurs were simulated by DRRs with a
resolution of 512 x 512. The mean initial pose error was normally distributed with
zero mean and SD of 5° and 10 mm. Each set was done with and without calibration
error. The calibration error included the error in finding the x-ray source location of
the fluoroscope (in-plane SD = 0.25 mm, out-of-plane SD = 0.9 mm), and the relative
orientation between projections (SD = 0.5°, 0.2 mm).

Two human cadaver knees with soft tissues intact were used in this study. The distal
femurs were implanted with seven fiducial markers, such that they could be used to
provide ground truth for the pose of the femur from the fluoroscopic images (OEC
9800, General Electric, USA). The knees were flexed in nine or ten positions, with
three images of about 45° view angle difference for each position. CT scans with the
same resolution of the dry bones were performed to determine the 3D models of the
femurs, and the locations of the fiducial markers.

Table 1. Simulation of reconstruction using 2D projections for the proximal femur. All errors are
in mm. Note that the histograms contain cases that were failed.

Using 3 images (45 degrees difference) Using 4 images (45 degrees difference)

Il No error Il No error
Il With error Il With error
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2 4 6 2 6
RMS error (mm) RMS error (mm)

o
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Proximal Femur No Error With Error Number
Mean SD Failure Mean SD Failure of cases

2 images (all) 1.80 045 0.9% 2.03 0.54 29% 490
3 images (all) 1.70 0.34 0.0% 1.89 0.45 0.5% 432
4 images (all) 1.66 0.34 0.0% 1.76 0.45 0.0% 512
2 images, 90°  1.73 0.37 0.0% 1.80 0.39 0.0% 152
3 images, 45° 1.66 0.32 0.0% 1.79 0.38 0.0% 145
4 images, 45° 1.61 0.34 0.0% 1.69 0.43 0.0% 229
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Table 2. Simulation of reconstruction using 2D projections for the distal femur. All errors are in
mm. Note that the histograms contain cases that were failed.

Using 3 images (45 degrees difference) Using 4 images (45 degrees difference)
60, 70

Il No error Il No error
Il With error Il With error
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Distal Femur No Error With Error Number

Mean SD Failure Mean SD Failure of cases
2 images (all) 1.55 0.46 0.8% 2.34 0.82 40.4% 532
3 images (all) 1.46 0.40 0.2% 1.99 0.70 15.0% 513
4 images (all) 1.42 040 0.5% 1.70 0.56 5.8% 399
2 images, 90° 1.42 0.39 0.8% 2.20 0.82 444% 133
3 images, 45° 1.36 0.35 0.0% 2.09 0.82 8.3% 133
4 images, 45° 1.31 034 1.3% 1.57 0.50 1.3% 76

Table 3. Reconstruction from sets of three 2D projections of the distal femur of the two cadaver
knees. Errors are in mm.

Mean RMS Error SD n Failure
Femur 1 1.95 0.55 171 6.9%
Femur 2 1.72 0.25190 0%

The average time taken for reconstruction with two, three, and four images were
4.5, 6, and 8 minutes. Table 1 and 2 summarize the overall simulation results, and also
the setting which produced the best results (4 images at 45°). A mean RMS error of
over 4 mm was considered a failure. As a reference, reconstruction of a femur phantom
using 60 surface points had an mean RMS error of 1.35 mm for the proximal femur,
and 1.34 mm for the distal femur.

5 Discussion

The error of reconstruction using 2D images were about 2 mm, which is impressive
because atlas-based reconstruction, or non-rigid registration, is a difficult problem. The
use of more images significantly improved the accuracy. For both the proximal and
distal femur, best results were obtained by using four images with view angles that
were 45° apart. The cadaver results were better than the simulation with errors, which
means that the actual calibration errors were likely not as high as we simulated.
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Figures 2 and 3 show the average error for the proximal and distal femurs. In both
cases, the error was extracted from a set of four test cases registered with four images at
45° apart. These particular sets were chosen as they had a relatively high error, so they
better illustrate the most problematic cases. In the proximal femur, the femoral head
is the most stable, with very small errors except around the fovea capitis. The greater
trochanter, the lesser trochanter, and the medial/posterior side were not accurately re-
constructed. In the distal femur, most error occurred around the intercondylar notch.
An explanation for the higher error in these regions is that they can only be seen in one
viewing angles, and for some parts like the tip of the greater trochanter and the inter-
condylar notch, they are hardly visible, so they could only be inferred indirectly from
the atlas simultaneously with other regions.

Although the atlases were capable of generating left-out femurs with a mean error of
under 1 mm, the error of the actual reconstruction was much higher. This does not imply
that the deduced shape parameters are not optimal, as pose error is also included in the
RMS error. Furthermore, the RMS errors reported here were only slightly higher than

Evor fmmy

iRAg
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Fig. 2. Average error occurred in a proximal femur reconstructed by 2D images. The error was

extracted from a set of four test cases registered with four images and 45° apart, and with cali-

i

bration error.

Evor fmmy

b d

Fig. 3. Average error occurred in a distal femur reconstructed by 2D images. The error was ex-

tracted from a set of four test cases registered with four images and 45° apart, and with calibration
erTor.
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(if not comparable to) errors reported in the literature of intensity-based registration
using the original CT scan.

In summary, we have shown that a PDM generated using our hybrid shape model
can be used for registration using 2D x-ray projection with good accuracy, with the best
results using four projections in 45° difference. The only human intervention needed in
the process of the reconstruction was the specification of the initial pose estimate.
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Abstract. In this paper we present a novel 3D/2D registration method, where
first, a 3D image is reconstructed from a few 2D X-ray images and next, the
preoperative 3D image is brought into the best possible spatial correspondence
with the reconstructed image by optimizing a similarity measure. Because the
quality of the reconstructed image is generally low, we introduce a novel
asymmetric mutual information similarity measure, which is able to cope with
low image quality as well as with different imaging modalities. The novel
3D/2D registration method has been evaluated using standardized evaluation
methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray im-
ages of two spine phantoms [1], for which gold standard registrations were
known. In terms of robustness, reliability and capture range the proposed
method outperformed the gradient-based method [2] and the method based on
digitally reconstructed radiographs (DRRs).

1 Introduction

In image-guided therapy, preoperative three-dimensional (3D) computed tomography
(CT) or magnetic resonance (MR) images and models of anatomical structures, ob-
tained by image segmentation, serve for preoperative planning and simulation, and as
“background” shown on the monitor in the treatment room onto which models of
surgical instruments or of radiation beams are projected. The link between a preopera-
tive 3D image and intraoperative physical space of the patient is established by regis-
tration of the preoperative image either directly to the patient or to intraoperative
images of the patient. When two-dimensional (2D) images are acquired intraopera-
tively the pre- to intraoperative image registration is called 3D/2D registration. In the
last decade, different 3D/2D image registration methods have been proposed. The
segmentation-based 3D/2D registration methods [3-6] minimize the spatial distance
between positions of corresponding geometrical features that have previously been
extracted from pre- and intraoperative images. The drawback of these methods is that
intraoperative segmentation errors propagate to errors in registration. Intensity-based
3D/2D registration methods [7-10] rely on image intensities or intensity gradients of
pixels and voxels. The most popular intensity-based 3D/2D registration method opti-
mizes the similarity measure calculated from overlapping CT-based digitally recon-
structed radiographs (DRRs) and X-ray images [7-10]. Intensity-based 3D/2D regis-
tration methods are considered to be more accurate than segmentation-based methods
but slower due to time consuming calculation of DRRs. Hybrid methods combine
elements of segmentation- and intensity-based methods with the purpose to achieve
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the speed of segmentation-based methods and the accuracy of intensity-based meth-
ods [2, 11, 12]. From validation results provided by the authors of intensity-based and
hybrid methods and from a recent comparison study of van de Kraats et al. [1], it is
obvious that some of these methods are highly accurate when registering a CT image
to two or more X-ray images. However, their capture ranges are rather small and they
are not robust enough. Besides, 3D/2D registration of MR to X-ray images remains a
challenging problem.

In this paper we propose a novel 3D/2D image registration method which first re-
constructs a 3D image from a few 2D X-ray images and then matches this image to
either a CT, MR, or 3DRX pre-operative image. The quality of a 3D image, recon-
structed from a small number of 2D images will definitively be low. The similarity
measure applied in such a registration should therefore be able to cope, among others,
with low image quality of one image as well as with differences in imaging modalities.
For this purpose we introduce a novel and powerful similarity measure, which we call
asymmetric multi-feature mutual information measure. The measure is based on the
multi-feature mutual information measure, recently proposed by TomazZevic at al. [13].

2 Asymmetric Multi-feature Mutual Information

Let the two images to be registered be denoted as floating image A and reference
image B and represented by vector functions z,(x) and z,(x) of position x in image
space, respectively. Each vector function z(x) is comprised of values of K image fea-
tures, z(x)=(z;(x),..., Zxg(x)). Let, for a given spatial transformation 7, SM denote the
similarity measure between corresponding feature sets z,(x) and z,(7(x)). Registration

seeks the spatial transformation T that maximizes SM

T = argmax SM (z,(x),z,(T(x))) . (1)

Let the values of z,(x) and z,(x) be the observed values of vectors of random variables
Z, and Z,, respectively. In terms of entropy, multi-feature mutual information (MMI)
[13], which represents a generalization of the widely used single-feature mutual in-
formation criteria [14, 15], is defined as

MMI(Z,.2,)=H(Z,)+H(Z,)~H(Z,Z,) )

where H(Z,), H(Z,) and H(Z,Z,) are entropies of vectors of random variables
12.=Z,1,....2u5), L= (Zy,....2x) and (Lo, Zp)=(Z 1, - ., ZugsZpy,- - - Zik), respectively. In
general, entropy of a K-dimensional random variable Z, Z=(Z,,...,Zy) is defined as

H(Z) =~ [p@)log p@)dz == [... [ (2,0, 2108 P20 2 ) oz 3)

In case Zi,...,Zx are discrete random variables, entropy H(Z) is obtained as

H(Z)=-) p(@)log p(z) == ..>" p(2jss 24 )10g p(2)ener 2g) - 4)

K
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As for single-feature mutual information, the multivariate probability distributions
p(z,), p(z,) and p(z,,2;) can be estimated from joint histograms [16]. Unfortunately,
even in case of two features, the four-dimensional histogram #k(z,,z;), will probably be
so sparse that a meaningful estimation of p(z,,z,) will become practically impossible.
For this reason, Tomazevi¢ et al. [13] proposed to decompose the floating and the
reference image features into a basic feature i(x) and additional features v(x), i.e.
Z,(0)=(1,(x),v,(x)) and z,(x)=(i,(x),V,(x)). For the purpose of registering a preoperative
image to a reconstructed image we propose that only one vector function, say z,(x), is
divided, resulting in z,(x)=(i,(x),v,(x)). Using the known property of entropy [17] that

H(Z)= H(Zk)+H((Z],...,Zk_],Zk+],...,Z,()|Zk) , (5)
MMI is obtained as
MMI(Z,,2,)=H(Z,)+H(Z,)-H(Z,,Z,) = (6)
=H(,V)+H(Z,)-HU,V,Z,)=
=H(I)+H(V,JI)+H(Z,)~H(,)~H(V,Z|I,) =
=HZ,)+H\V, |[,)-H(,,Z,I,)

where H(Z,) is the entropy of Z,;,, and H(V,II,) and H(V,,Z,\l,) are entropies of V, and
V.Z, under the condition I,, respectively. We call this similarity measure the asym-
metric MMI (AMMI). Assuming that distributions of Z,, V li, and V,Z,li, are normal,
and knowing the distribution p(i,) and covariance matrices X,, X, ;. and X, ., en-
tropy H(Z,;) and conditional entropies H(V,ll,) and H(V,,Z,ll,) may be defined by

H(Y )= p()H(Y i), ()

H(Y)= %10g|2y| +glog(27re) ®)

Covariance matrices X, ;, and X, ., are estimated for every feature value i,. This
approach requires much fewer samples than the estimation through high dimensional
histograms. Moreover, in the case of AMMI, a one-dimensional histogram h(i,) is
needed to estimate the probability distribution of the basic feature. With a one-
dimensional histogram more samples become available for estimation of an individual
covariance matrix. Entropies H(Z,), H(V I,) and H(V,Z,ll,), estimated by Egs. 7 and
8 are monotonically increasing functions of variances of random variables Z;, V,li,
and V,Z,li,, respectively. The condition that random variable Z,, and conditional
random variables Vi, and V,Z,li, are normally distributed will, generally, not be
fulfilled in practice. Nevertheless, Eqs. 7 and 8 may be used to estimate entropies
needed to calculate AMMI as long as the real, but unknown entropies are also mono-
tonically increasing functions of variances of Z,, V li, and V ,Z,li,.

3 Experiments

The proposed method has been evaluated and compared to the gradient-based method
of TomaZevi¢ at al. [2] using publicly available image data [1]. The image dataset
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comprised 2D fluoroscopic X-ray images and 3D 3DRX, CT and MR images of two
defrosted segments of a vertebral column. The first vertebral column consisted of
three thoracolumbar vertebrae bodies while the second segment comprised five tho-
racic vertebrae bodies. Some soft tissue was still present around both segments. The
2D fluoroscopic images were obtained with a clinical 3DRX system (Integris
BV5000, Philiphs Medical System, Best, The Netherlands). A set of 100 X-ray im-
ages was acquired for each spinal segment in 8 seconds run of 180 degrees rotation
around the imaged object. For each vertebral column, a 3DRX image was recon-
structed from a set of 100 X-ray images using a filtered back-projection reconstruc-
tion technique [18]. The two CT-images were acquired with a clinical 16-detector-
row multi-slice CT scanner (MSCT, Philips Medical System, Best, The Netherlands).
The MR images were obtained with a clinical 1.5 Tesla MR scanner (Gyroscan NT,
Philips Medical System, Best, The Netherlands) using a sagittal 3D turbo spin echo
acquisition and turbo factor of 29, TR/TE of 1500 ms/90 ms. The MR images were
corrected with the retrospective intensity inhomogeneity correction method based on
information minimization [19]. The ground truth registration between 3DRX images
and 2D projection images was established in the process of creating 3DRX images,
while the gold-standard registration between CT and MR images with 2D fluoro-
scopic images was obtained by 3D/3D rigid registration of CT and MR images to
corresponding 3DRX images using the mutual information maximization registration
method [16]. Eight volumes of interest (VOIs), each containing a whole vertebra body
and less than a quarter of neighboring vertebrae, were manually determined on 3DRX
image volumes. VOIs in CT and MR images corresponding to 3DRX VOIs were
defined by the gold standard registration. Examples of fluoroscopic, 3DRX, CT, and
MR images of a VOI are shown in Fig. 1.

Fig. 1. Fluoroscopic (left) and transversal (top row) and lateral planes (bottom row) of corre-
sponding VOIs taken from 3DRX (second column), CT (third column) and MR volumes (right
column)

The gradient-based method was implemented as in [2]. The 2D X-ray images were
blurred with a Gaussian kernel of 0.5 mm, the 3D images were isotropically resam-
pled to 0.96 mm voxel sizes by linear interpolation, while the threshold to extract
bone edges from VOIs was set to 18 for 3DRX and CT images and 15 for MR im-
ages. 3DRX and CT VOIs were registered to 3 X-ray images while MR VOIs were
registered to 11 X-ray images because of the larger difference in modalities. The
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angle between each of the 3 (11) image views was approximately 60° (15°). For the
novel method, the 3D image of a whole spinal segment was reconstructed from the
same 3 and 11 X-ray images by the SART reconstruction method [20]. The sizes of
reconstructed 3D images were 128x128x128 and 128x188x128 image elements for
the first and second spinal segment, respectively, with isotropic spatial resolution of
0.63 mm. The preoperative 3D image was taken as the floating image A and the re-
constructed image as the reference image B. Both feature sets z,(x) and z,(x), charac-
terizing the preoperative and reconstructed image, respectively, consisted of image
intensity i(x) and image intensity gradient v(x) features, i.e. z,(x)=(i,(x),v,(x)) and
Z,(x)=(1(x),v,(x)). To reduce sensitivity to image noise and non-isotropic image ac-
quisition, the gradients of all 3D images were obtained after convolving 3D intensities
with a Gaussian. Kernel scales of 0.5 mm and 0.35 mm were applied to the original
3D images and 3D reconstructed images, respectively. The AMMI similarity measure
(Eq. 6) was used to measure the match between z,(x) and z,(7(x)). Image intensity of
the preoperative (floating) image i,(x) was the only feature whose probability distribu-
tion was estimated by using one-dimensional histogram h(i,) of intensity values. A
histogram, having 64 bins was used to assure statistical power. Assuming normal
distribution of Z, V,li, and V,Z,li,, the multivariate probability distribution p(z,) was
estimated through the covariance matrix X,, while the distributions p(v,li,) and
p(v,,z,li,) were estimated through conditional covariance matrices X, ;, and X,,,,,.,
respectively, for every intensity value i,. Powell’s optimization method [21] was used
in both methods to optimize the given similarity measure for six rigid-body transfor-
mation parameters (t,, t,, t,, &, @, @.).

Both 3D/2D registration methods were evaluated using the standardized evaluation
methodology of van de Kraats et al. [1]. The evaluation methodology uses the mean
target registration error (MTRE) to measure the distance of a VOI position from the
gold standard before and after registration. The positions of all image elements in a
VOI were used as target points. For evaluating the capture range and robustness of a
3D/2D registration method, van de Kraats et al. [1] provided 200 starting positions for
each VOI. The 200 starting position were randomly generated around the gold stan-
dard position in such a way that the distance from gold standard measured by mTRE
was uniformly distributed in the interval of 0-20 mm. For each of 3DRX, CT or MR
modalities 1600 registrations to X-ray images (reconstructed images) were thus per-
formed, 200 per each of the 8 VOIs. Each registration was considered successful, if
mTRE after registration was lower than 2 mm. The registration error was defined as
mTRE of all successful registrations, while the capture range was defined as the dis-
tance from gold standard for which the registration had proved to be successful in at
least 95% of all cases.

4 Results and Conclusion

The registration errors, capture ranges and percentages of successful registrations for
both methods and different modalities are shown in Tablel. The novel method is a
little less accurate, has a somewhat larger capture range, especially for MR to X-ray
registrations and is much more robust that the gradient-based method. Fig. 2 shows
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Table 1. Mean TREs, capture ranges and percentage of successful registrations for the gradi-
ent-based (GBM) and reconstruction-based (RBM) methods

Modality | Views mTRE (mm) Capturing Successful
range (mm) registrations
(%)
GBM RBM | GBM RBM | GBM RBM
3DRX 3 0.19 0.33 7 68% 89%
CT 3 0.32 0.37 7 63% 78%
MR 11 0.50 0.67 2 23% 84%
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Fig. 2. Registration results of 3DRX (first row) and CT VOIs (second row) to 3 X-ray images
and MR VOIs to 11 X-ray images (third rows). Scatter diagrams of displacements before and
after registration for the gradient-based method (GBM) (left column) and the reconstruction
based method (RBM) (middle column), and the proportions of correct registrations (right
column).
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the results in more detail. The results are in the form of scatter diagrams of displace-
ments (MTRE) before and after registration and proportions of successful registrations
(convergence) with respect to the initial displacement. For all modalities the proposed
reconstruction-based method was successful in a significantly larger number of regis-
trations than the gradient-based method. As expected, the proportion of successful
registrations fell with the extent of initial displacement.

The proposed novel approach to 3D/2D registration based on 3D integration of 2D
information is general and does not make any constraints on the modalities and
anatomies involved in the registration. The experimental results show that the pro-
posed method outperforms the gradient-based method with respect to capture range
and proportion of correct registrations.
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Abstract. Accurate 3D/2D vessel registration is complicated by issues of image
quality, occlusion, and other problems. This study performs a quantitative
comparison of 3D/2D vessel registration in which vessels segmented from
preoperative CT or MR are registered with biplane x-ray angiograms by either
a) simultaneous two-view registration with advance calculation of the relative
pose of the two views, or b) sequential registration with each view. We
conclude on the basis of phantom studies that, even in the absence of image
errors, simultaneous two-view registration is more accurate than sequential
registration. In more complex settings, including clinical conditions, the relative
accuracy of simultaneous two-view registration is even greater.

1 Introduction

The objective of 3D/2D registration is to align spatial data to projective data. Given a
3D model and its 2D projection, 3D/2D registration determines the pose (orientation
and position) of the model at which its 2D image was taken. This paper discusses the
registration of 3D vessels, segmented preoperatively from computed tomographic
(CT) or magnetic resonance (MR) images, to biplane, x-ray angiograms.

The driving clinical problem is the Transjugular Intrahepatic Portosystemic Shunt
(TIPS) procedure, which creates a channel between the portal and hepatic veins [1].
We are currently developing an image-guided system for this procedure. One of the
major challenges has been achieving accurate 3D/2D registration under conditions in
which the x-ray angiograms are noisy and contain severe projection overlap (Fig. 1).

Several groups have described effective methods of 3D/2D vascular registration
[2,3,4,5]. The purpose of the current paper is not to evaluate a specific registration
metric, but rather to compare the efficacy of simultaneous, two-view registration with
sequential registration. This issue has received little attention, although one paper
notes in passing that simultaneous, two-view registration appears more effective than
single-view registration [6]. However, no quantitative assessment or detailed analysis
was provided.

This study uses phantom and clinical data to evaluate accuracy in registering a
presegmented, 3D vessel model to biplane fluoroscopic images under two conditions.
In the first, the relationship between cameras capturing the two views is determined in
advance and the 3D model is registered simultaneously to the two views. In the
second, the 3D model is registered sequentially and independently to each view.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 239 —246, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Sample AP (left) and lateral (right) portograms used in the TIPS procedure. Note the
thickness of the vessels and the projection overlap.

We conclude that the simultaneous approach is more accurate than the sequential
approach even under ideal conditions. In the presence of image errors, the difference
between the performance of the two methods increases. Although this report employs
a particular registration metric [5], the findings in regard to sequential/simultaneous
registration should be applicable to 3D/2D registration methods using other metrics.

2 Methods

2.1 Phantom Studies

The purpose of the phantom studies was to evaluate registration accuracy under
conditions of known ground truth and varying image quality. All tests were performed
in blinded fashion, with the individual performing the registration unaware of the 3D
pose of the vessels until after study completion.

Simulated angiograms were created by generating projections of four different
portal venous trees, each segmented from the CT or MR of a different patient, and
each containing 7-15 vessels. The fields of view ranged from 9° to 16.5°, and the
relative angle between the two views ranged from 80° to 90°, with arbitrary
placement and rotation of the 3D model within the imaged field. Two sets of
pseudoangiogram pairs were generated for each of the four vascular models, using
different model poses and different combinations of camera intrinsics. For each 3D
vessel point, a circle was projected upon the view-plane with radius calculated using
the vessel radius and rules of projection geometry. Using a combination of buffers and
summing image intensities, the generated images simulate angiograms with vessel
overlap (Fig. 2).

For simultaneous registration, the operator was given the camera intrinsics and the
relationship between the two views, and registration was performed on both views
simultaneously, giving one set of registration matrices for each view. For sequential
registration, the operator was given each view’s camera intrinsics and registration was
performed individually, also giving one set of registration matrices for each image.
Single-view registrations are independent and the order in which they are carried out
unimportant. Both AP and lateral views were registered in order to make a complete
comparison with results of simultaneous registration. The initial estimate of 3D model
pose was up to 16° off and up to 65 mm away from the actual position of the model.
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3D/2D registration was performed using a metric that optimizes a view-plane based
disparity measure based on the iterative closest point algorithm between the 3D vessel
skeletons and the skeletons of the vessel projections seen on angiograms [5]. Three
different phantom studies were performed:

1) Ideal case pseudoangiograms: Registrations of the 8 image pairs with their
respective 3D models were evaluated under conditions of projection overlap, but
without added noise and with perfect one-to-one correspondence between vessels of
the 3D model and their projections on pseudoangiograms. Fig. 2 illustrates a
perspective projection of the 3D model and its AP and lateral pseudoangiograms.

2) Noisy pseudoangiograms: This study was identical to the one above, but with
Gaussian noise of standard deviation 2.5 added to the pseudoangiograms. The
addition of noise both obscures smaller vessels and can confuse the determination of
vessel skeletons (Fig. 3).

3) Noisy pseudoangiograms without one-to-one vessel correspondence: This study
was identical to the two above, but with the deletion of 3-8 branches from the 3D
model. This situation provides a partial simulation of the actual clinical condition, in
which a noisy x-ray angiogram can show vessels that the 3D model does not.
Similarly, the 3D model may contain vessels that are not visible in the angiogram.

Registration accuracy was measured by comparing the location of each point in the
3D model following registration with its known location during synthetic image

e
Y

Fig. 2. An example of ideal-case simulated pseudoangiograms (gray), AP (left) and lateral
(right). Also shown is a perspective projection of the 3D segmented vasculature (red).

Fig. 3. Simulated angiograms with added noise. Vessels have the same pose as shown in Fig. 2
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generation. Mean 3D point placement errors were calculated for each case during
each study. One result was reported per case when simultaneous registration was
employed, and two results were reported per case (one each for Anterior-Posterior
(AP) and Lateral images) when sequential registrations were employed.

2.2 Clinical Studies

A comparison of simultaneous and sequential two-view registration was also
performed on three clinical cases using AP and lateral angiographic images obtained
during TIPS procedures. Preoperative images of the 3D liver vasculature were
acquired by CT (a Siemens Somatom Plus system was used with collimation
0.56x0.56x2.5 mm) or MR (on a Siemens MagicVision 1.5T system with collimation
0.86x0.86x3 mm). Voxel size was variable, but around 1.5x1.5x3 mm.

Extraction of the portal venous tree from 3D image data involved 3 steps:
definition of a seed point, automatic extraction of an image intensity ridge
representing the vessel’s central skeleton, and automatic determination of vessel
radius at each skeleton point [7]. Vessels are represented as sets of 4-dimensional
points with an (x,y,z) spatial position and an associated radius.

A Siemens Neurostar biplane digital angiographic unit was used to obtain x-ray
angiograms as biplane views, separated by approximately 90°. The fields of view
ranged from 8.7° to 16.5°. Images were captured and stored as 8-bit 884x884 pixel
images. Fig. 4 shows sample clinical images.

Fig. 4. AP (left) and lateral (right) abdominal angiograms obtained intra-operatively. Note the
noisiness of the data and the significant projection overlap induced by wide-diameter vessels.

For patient studies, the relationship between the two fluoroscopic views was
calibrated using a Plexiglas phantom containing a known arrangement of 5 mm
diameter metallic spheres. The projection matrix for each view was calculated by
taking an x-ray image of the phantom and minimizing the distance between observed
pixel coordinates and ideal projection of each control point [8]. Intrinsic camera
parameters were calculated using the same phantom.

Validation of Registration Results

The evaluation of clinical results is difficult since ground truth is unknown.
Registration accuracy was estimated in these cases by reconstructing into 3D, a point
that could be identified in both AP and lateral views, and comparing the location of
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this reconstructed 3D point to that of its corresponding point in the 3D model
following registration. One subject (‘Patient 1’ in Table 2) had a metal clip in the liver
as a result of previous surgery, and this clip was visible in the preoperative CT and on
both projection views. The same subject also had 2 vessel branch-points that, with the
help of an expert radiologist, could be associated on the AP and lateral projection
views. Patients 2 and 3 had 3 and 2 vessel branch-points, respectively, that could
similarly be associated on the AP and lateral views.

3 Results

3.1 Phantom Studies

For each test case, registration errors are presented for ideal pseudoangiograms, noisy
pseudoangiograms and noisy pseudoangiograms without one-to-one vessel
correspondences. For each of these pseudoangiogram pairs, accuracy is reported for
simultaneous, sequential AP, and sequential lateral registrations.

Addition of noise to the image obscures small vessels and distorts vessel shape,
making an accurate registration harder. The lack of one-to-one vessel correspondence
is another source of error. For example, the image on the left in Fig. 5 shows a
trimmed 3D model registered with the pseudoangiogram. On the right, the model has
all branches present. The dark curves identify the position of previously deleted
branches, thus highlighting the error.

Fig. 5. Registration difficulties in presence of noise and without one-to-one correspondence

Vessel registration errors for the phantom studies, presented in Tables 1 and 2 and
Fig. 6, 7 and 8, are calculated as described in section 2.1.

3.2 Clinical Studies

Table 3 contains the registration accuracy data for the clinical trials, calculated
as detailed in section 2.4. For patient 1, the registration error given is the mean of
the error over three points - a surgical clip and two vessel branch-points. For patients
2 and 3, the mean registration error for 3 and 2 branch-points, respectively, is
presented.
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Table 1. Registration errors for phantom studies for the ideal and noisy pseudoangiograms.

Errors are in mm and are presented in the ‘mean (maximum)’ format.

Ideal pseudoangiograms Noisy pseudoangiograms
Case Sequential Simult- Sequential Simult-
Registration aneous Registration aneous
AP Lateral Regn. AP Lateral Regn.
1 L1201 1.1(2.1) | 0.3(0.6) 4.3 (4.8) 0.7 (1.7) 0.5(1.9)
2 3.1(3.9) 1.1 (2.0) [ 0.3(0.6) 2.1(3.6) 1.1 (2.0 0.7 (1.1)
3 1.022) | 0305 | 03(0.5) 1.4 (2.0) 5.0(5.5) 0.9 (1.2)
4 2829 | 3741 | 0.7(09) 6.3 (6.9) 1.3(1.4) 1.0(1.2)
3 3.1(5.3) 1.1(1.5) | 0.2(0.2) 1.7 (2.2) 1.7 (2.2) 1.1 (1.6)
6 4142 | 38353 | 0202 2044 1.9(3.8) 1.0 (2.6)
7 0.6(1.0) | 0.6(1.0) | 0.2(0.2) 82(9.2) 3.4(4.5) 1.1(14)
8 0.5 (1.0) 1.0(1.7) | 0.4(0.6) 23(3.8) 4.9 (6.1) 0.6 (0.7)

Table 2. Phantom registration errors in mm for noisy pseudoangiograms without one-to-one

correspondence
Noisy pseudoangiograms without 1-to-1 correspondence
Case Sequential Registration Simultaneous
AP Lateral Registration
1 1.1 (2.9) 1.9 (2.2) 0.5 (1.1)
2 3.4(5.5) 1.1 (2.0 1.1(2.3)
3 1.4 (4.5) 6.8 (7.0) 1.0 (1.4)
4 5.3(7.4) 5.0(6.9) 1.0 (1.5)
3 7.3(8.2) 6.0 (6.9) 1.2 (2.0)
6 38(54) 7.7 (8.7) 1.1 (2.9)
7 8.7(9.3) 8.0 (8.8) 0.8 (1.4)
8 1.2(1.9) 4.2 (6.8) 0.6 (0.9)

Table 3. Registration errors in mm for clinical trials. Errors are in ‘mean (maximum)’ format.

. Sequential Simultaneous
Patient . . . .
Registration Registrations
1 6.1(7.2) 1.9 (2.12)
2 5.509.6) 2.6 (3.7)
3 4.0 (4.8) 2.4 (2.5)
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Fig. 8. Mean errors for phantom studies with noise and without one-to-one correspondence

4 Discussion and Conclusion

This paper compares the accuracy of simultaneous and sequential two-view
registration in both phantom and clinical images of abnormal hepatic vasculature. The
magnitude of the error we report for sequential-view registration is larger than the 1-2
mm error generally described in the literature [3,4,5]. Almost all prior studies
evaluating 2D-3D vessel registration accuracy have used noiseless images, thin
vessels, and one-to-one vessel correspondence, however. As shown by Figure 1, the
images generated during TIPS are often of low quality and many vessels are thick -
the main branch of the portal vein may be over 1 cm wide. Thick vessels increase
projection overlap and complicate both centerline and branch-point definition. The
difficulty of accurate 2D-3D registration is thus high in this actual clinical situation.
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The current study details the behavior of the two registration methods with changes
in image quality. Even under ideal conditions, one might expect simultaneous two-
view registration to perform superiorly since with single-view registration, translation
of an object along the depth axis produces relatively little change on projection.
Simultaneous use of two orthogonal views allows each registration to correct the
depth estimate of the other. Our phantom studies confirm this hypothesis, with
improvement of accuracy by simultaneous registration even under ideal conditions.

The difference between the two approaches becomes more pronounced under
conditions of noise and lack of one-to-one vessel correspondence — factors
incorporated both in our phantom studies and in clinical data. Indeed, in two of the
three clinical cases, the error in simultaneous registration was more than twice the
magnitude of the error for sequential registration. This finding may result from the
ability of one view to compensate for regional ambiguities in the other.

We conclude that simultaneous, two-view registration produces significantly
more accurate results than sequential view registration. These findings should be
applicable to a variety of 2D-3D registration metrics, and are of interest to those
involved in the guidance of endovascular surgery.
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Abstract. Voxel based non-rigid registration of images involves finding
a similarity maximising transformation that deforms a source image to
the coordinate system of a target image. In order to do this, interpo-
lation is required to estimate the source intensity values corresponding
to transformed target voxels. These interpolated source intensities are
used when calculating the similarity measure being optimised. In this
work, we compare the extent and nature of artefactual displacements
produced by voxel based non-rigid registration techniques for different
interpolators and investigate their relationship to image noise and global
transformation error. A per-voxel similarity gradient is calculated and
the resulting vector field is used to characterise registration artefacts
for each interpolator. Finally, we show that the resulting registration
artefacts can generate spurious volume changes for image pairs with no
expected volume change.

1 Introduction

A common step in medical image processing is the application of voxel based reg-
istration techniques to 3D image volumes. Non-rigid registration is increasingly
used to produce displacement fields that, with the emergence of deformation
based morphometry [1] [6], have been used to provide data for further analysis.
For example, the transformations estimated by registration can be used to gen-
erate Jacobian determinant maps in order to estimate volume changes [2] [6] [9].
Clearly, errors during non-rigid registration can lead to artefacts in the resulting
transformations or in subsequent data. This implies a need to characterise the
extent and nature of such artefactual displacement.

When registering images, interpolation of intensities at non-grid locations
plays a part in the generation of artefacts and this has been the subject of a va-
riety of previous studies [11] [21] [10] [7] [13] [23] [15]. It is possible, for example,
to study interpolators in spectral terms in order to determine how close they
are to the ideal low pass filter [11]. Generalised interpolation is described in [21]

* The authors would like to thank Dr Nick Fox and the Dementia Research Centre for
their aid in this study.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 247-254, 2005.
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where interpolators are assessed using approximation theory and according to
performance. A review of the literature on interpolator performance in various
image processing tasks is given in [10] where the kernels and spectral properties
are described. In the context of registration, interpolators have been been stud-
ied in a variety of ways. It is possible to assesses interpolators for artefacts by
identifying local optima in the similarity metric under known misregistrations
[23]. The effect of grid alignment under misregistration on joint histogram dis-
persion is investigated in [15] to demonstrate how optima in the similarity metric
can be created (linear and partial volume interpolation). Mutual information in
particular has been shown [12] to be less susceptible to false local optima using
partial volume interpolation in comparison with linear and nearest neighbour
interpolation during rigid registration.

Previous work on registration artefacts has, as far as we are aware, focused on
rigid and affine transformations where local optima in the similarity metric are
identified as a single affine parameter varies. Non-rigid registration, however,
can generate small localised displacements suggesting an increased chance of
artefact. An example could be a sharp contrast boundary, blurred by a linear
interpolator, being sharpened by local (artefactual) contraction. In this paper we
characterise interpolation artefacts in non-rigid registration. We show that the
gradient of the similarity metric can be used to indicate the degree of artefacts.
We have also assessed the effects of noise and global registration error in non-
rigid registration. Finally, using repeat MR scans for 11 subjects, we demonstrate
that non-rigid registration can generate spurious volume change where they are
not expected.

2 Methods

Theoretically, registering an image pair created by sampling the same under-
lying continuous signal at different locations should produce no displacement.
This can only occur if the constraints of the sampling theorem are met and the
interpolator used has ideal spectral properties (uniformly one in pass-band and
zero elsewhere). Thus, the departure of the registration from the ideal behaviour
(zero displacement) can be used to measure the extent of interpolation arte-
facts. In most non-rigid registration algorithms the course of the registration is
determined by the gradient of the similarity metric. Thus, the gradient of the
similarity metric provides an alternative measure to characterise interpolation
artefacts. In particular, this measure is independent of the particularities of any
non-rigid registration algorithm such as the representation of the displacement
field. In this paper the similarity metric investigated is the sum of squared dif-
ferences (SSD).

Similarity Gradient. Many non-rigid registration algorithms rely on the min-
imization of a similarity measure like sums of squared differences using gradient
descent techniques [4] [22] [14]. Let S and T be the images to be registered such
that S is the interpolated source image and T is the target image. For a current
transformation estimate f, from T to S, the SSD is calculated using a set of grid
locations x; in image 7" and their transformed locations f(z;) in image S.
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where the S(f(z;)) and T'(z;) represent the intensities at the corresponding lo-
cations in S and T. Generally, S(f(x;)) represents an interpolated intensity. The
chain rule can be used to derive the SSD gradient with respect to displacements
of individual voxels

a(SSD)

D =
VvSsS 95

2
VSt = | (S(f(2x)) = T(@)) VSl 1)
The estimate for the source image gradient VS| (,,) is obtained using central
differences from the transformed source image S(f(z;)).

Interpolators. In this paper we investigated four different interpolators: Linear,
piece-wise continuous cubic (PCC) spline [8,16], cardinal spline (based on a cubic
B-Spline kernel) [24] and a sinc-based interpolator that was apodised using a
width 12 Hanning window and was renormalised [20].

3 Results

We have used simulated and real data to assess non-rigid registration artefacts.
In addition we have used data from a routine clinical study to assess non-rigid
registration artefacts by estimation of global volume changes.

Simulated Data. For our simulations we used a 2D slice from the Montréal
Neurological Institute (MNI) simulated MR image [5] to create a second image
with sample locations offset by half a pixel in the x direction. This was done by
applying a linear phase shift to the Fourier spectrum of the original image so
that, as far as possible, both images have the same spectral content. Using the
global transformation of a half voxel shift along the z axis and each of the inter-
polators, the SSD gradient field was calculated for the simulated image pair. The
magnitudes of the field are shown in figure 1 as a cumulative frequency curves
for each interpolator. If the cumulative frequencies for an interpolator reach high
percentiles quickly, the SSD gradient magnitudes tend to be low indicating a low
artefact potential. Figure 1 shows a clear order for the interpolators from best
to worst as : sinc, cardinal, PCC then linear.

For comparison, the images were registered using a non-rigid registration al-
gorithm [17]. The magnitudes of the resulting displacements are shown as cumu-
lative frequencies in the left of figure 1. The clear separation of the interpolators
is preserved and their order matches that shown by the SSD gradient. However,
the cumulative frequency curves for the displacements appear smoothed relative
to those for the SSD gradient, something that can be explained by the intrinsic
smoothness of displacement fields represented by B-splines [17].

Separate experiments were conducted to determine the robustness of the
relative ordering of the interpolators with respect to noise. The order of the
interpolators remained stable until high SNR values are reached (= 12). Beyond
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Fig. 1. Left: Cumulative frequency curves showing the distribution of magnitudes for
the SSD gradient fields evaluated from the simulated MR image pair using each of the
interpolators. Right: Cumulative frequency curves for the displacement fields obtained
by registering the same images.

SSD gradient, 75th percentile

0 1 I . 1
025 03 035 04 045 05  OS!
Applied shift

Fig. 2. A graph to show the effect of global registration error on the 75th percentile
of the SSD gradient field. The horizontal axis shows the shift used as the global trans-
formation estimate when calculating the SSD gradient. A shift of 0.5 voxels represents

the ’true’ transformation.

this point the linear interpolator performs best, something that can be explained
by the relatively high degree of blurring it performs.

The effect of global misregistration was tested by varying the transformation
estimate in equation (1). The size of the SSD gradient field, represented by its
75th percentile, is plotted against the applied shift in figure 2 where, for example,
it can be seen that at an applied shift of 0.6, an error in the global transformation
of a tenth of a voxel, there is little to distinguish the sinc, PCC and cardinal
interpolators.

Real Data. To assess non-rigid registration artefacts in real data, two T1
weighted volumes were used that were acquired from a single subject on the
same day. They were acquired on a 3T Intera system (Philips Medical Systems,
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Best, The Netherlands) using an MP-RAGE sequence with an acquired resolu-
tion of 0.937 x 1.15 x 1.2mm? reconstructed to 0.9375 x 0.9375 x 1.2mm? voxels.
A single rigid registration was carried out using a linear interpolator to obtain
an estimate for the global transformation prior to calculating the SSD gradient
field.

Each of the grids for the real images, after global transformation, varies in
its alignment relative to the other. This contrasts with the simulated images for
which the relative grid alignment is uniform at all locations. Because the differ-
ences between interpolators are clearer where the image grids are misaligned, an
‘interpolation map’ was created showing the distance from each globally trans-
formed target voxel to the nearest source voxel. High values in the interpolation
map indicate regions where the interpolation plays a more significant role.

The statistics of the SSD gradient were calculated where the brain region
intersected the interpolation map thresholded at 75%. Figure 3 shows part of
the resulting cumulative frequencies. Again, this correlates very well with the
displacements generated from a non-rigid registration of the volumes (figure
3, right). The order of performance of the interpolators is well preserved. In
both cases, the sinc and cardinal interpolators are however hard to distinguish,
although both of these perform better than the PCC interpolator which in turn
out-performs the linear interpolator.

Clinical Data. A common clinical application of non-rigid registration that
could be affected by artefacts is the identification of volume differences between
two sets of images. Recently, the use of transformations and their Jacobian
determinants has been a useful tool in such volumetric approaches [2] [6] [9].
To test the effect of artefacts on volume change estimation a separate experi-
ment was carried out using images from 11 subjects. All subjects were scanned
twice on the same day using a 1.5T Signa Unit (GE Medical Systems, Mil-
waukee) with an IR-prepared spoiled GRASS sequence (TE, 6.4ms; TT, 650ms;
TR 3000ms; Bandwidth 16KHz; 256x256x124 matrix; 240x240x186-mm FOV).
Non-uniformity was corrected using N3 [19].

Deformation Magnitudes ~ FFD Real Data

)

Cumulative Frequency (%)

8 0.01 0.015 0.02 0.025 0.03 0.035
Gradient Magnitude. x10° Deformation magnitude

Fig. 3. Left: Cumulative frequency curves for the SSD gradient magnitudes derived
using 2 acquired volumetric images. Each curve corresponding to a particular choice
of interpolator. Right: The same curves for the displacement fields generated by regis-
tering the MR volumes.
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Fig. 4. Left: Volume changes generated by cardinal and linear based registrations for
all 22 registrations (forward and reverse). Right: Volume consistency: Values of Cy
calculated per subject for each of the linear (red) and cardinal (green) interpolators.

The departure of each registration from an expected zero volume change
can be used to assess artefacts. The pairs were registered using the free-form
deformation algorithm [17] in each direction producing 'forward’ and 'reverse’
transformations for both the linear and cardinal interpolators. The global volume
change in the brain region was estimated for each transformation by integrating
its Jacobian determinant (Figure 4 left). The mean volume changes were -0.22%
and -0.11% for linear and cardinal interpolators respectively. A t-test showed this
difference to be significant (¢ = 12.5, p = 0.01 gives critical value of ¢t = 2.5/2.8
for 1/2 tailed tests). The volume changes were also highly correlated (r? = 0.97).

Given previous interest in registration consistency [18] [3], an estimate of
volume change consistency was also calculated as a separate artefact measure. If
Drp g represents the product of the forward and reverse volume changes then a
measure of volume consistency Cy (symmetric for expansions and contractions)
was defined as Cy = |log(Dpgr)|. Cy should be zero for registrations that are
truly volume consistent and higher values indicate increasing volume inconsis-
tency. The values for all subjects are shown on the right of figure 4 which shows
clearly better volume consistency for registrations using cardinal interpolation.
Near identical results were obtained by evaluating the volume change directly
from the composition of the forward and reverse transformations.

4 Discussion

In this paper we have shown how artefacts in non-rigid registration can be as-
sessed using spectrally similar images the gradient of the similarity metric. Using
SSD, the relative performance of different interpolators was assessed under ’ideal’
conditions ("true’ global transformation, zero noise) and under the effect of global
misregistration and noise. This work has focused on interpolation artefacts in
non-rigid registration while previous studies have concentrated on rigid and/or
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affine registration. The relative performance of the interpolators as indicated
by the SSD gradient compares favourably with that indicated by the results of
registration. The metric investigated here was SSD although we recognise that
other metrics can be more appropriate depending on the circumstances. If in-
tensity based measures (e.g. canonical cross correlation) are used, for example
with single modality images of the same subject acquired months apart, then
the method presented can be readily extended. Information theoretic measures
(e.g. Mutual Information) are often used for inter-modality registrations, in this
case the definition of the similarity gradient (for example whether it has an ana-
lytic or numeric representation) will depend on how the measure is implemented.
Registrations using an optimisation method other than first order gradient de-
scent would require a modified version of an artefact estimator. For example,
the Hessian should be a better estimator if second order descent is used.

In general, the results suggest that, for images with a reasonable noise level
and a sufficiently accurate global registration step, there appears to be benefit
in using more sophisticated interpolators (e.g. cardinal) over simpler ones (e.g.
linear). The noise level also needs to be quite high before before interpolators
become comparable in terms of artefact whereas a reasonably small global reg-
istration error can nullify the benefit of using a sophisticated interpolator. The
results based on clinical data showed a significant difference between the volume
changes generated by linear and cardinal interpolators. The high correlation of
their volume changes indicates the degree to which image content determines
artefactual effects. If the inter or intra-subject volume differences in a study are
sufficiently small then the results can be affected by the choice of interpolator
with the ability to discriminate groups better served by the use of a more so-
phisticated interpolator. Our results suggest that the use of the cardinal over the
linear interpolator could mean a potentially shorter interval between scans in a
longitudinal study or the use of fewer subjects in a cross-sectional study. Our
results also show that registrations are more volume consistent using a cardinal
interpolator compared to a linear interpolator.
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Abstract. The need for non-rigid multi-modal registration is becom-
ing increasingly common for many clinical applications. To date, how-
ever, existing proposed techniques remain as largely academic research
effort with very few methods being validated for clinical product use. It
has been suggested by Crum et al. [1] that the context-free nature of
these methods is one of the main limitations and that moving towards
context-specific methods by incorporating prior knowledge of the under-
lying registration problem is necessary to achieve registration results that
are accurate and robust enough for clinical applications. In this paper,
we propose a novel non-rigid multi-modal registration method using a
variational formulation that incorporates a prior learned joint intensity
distribution. The registration is achieved by simultaneously minimizing
the Kullback-Leibler divergence between an observed and a learned joint
intensity distribution and maximizing the mutual information between
reference and alignment images. We have applied our proposed method
on both synthetic and real images with encouraging results.

1 Introduction

Non-rigid multi-modal image registration in medical applications has become
increasingly important to physicians in recent years. The fusion of complimentary
image information has been shown to be particularly beneficial to physician’s
diagnosis. Furthermore, new imaging techniques such as molecular imaging pose
a huge demand for multi-modal image registration in order to show functional,
anatomical, and/or molecular image information in a single fused image.
Multi-modal image registration is a challenging problem. It has been strongly
influenced by the introduction of an information theoretic similarity measure,
the well-known mutual information (MI), into the medical registration domain
in 1995 [2, 3]. Amongst others, MI has been applied successfully to rigid as
well as non-rigid multi-modal registration of medical images. Surveys regard-
ing this topic have also been published recently [4, 5]. Nevertheless, drawbacks
of MI became apparent especially when the underlying transformation is not
originated from a low dimensional parameter space, i.e. for non-parametric or
non-rigid transformation models. Both the non-convexity of MI and an uncon-
strained transformation model make non-rigid multi-modal image registration a

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 255-262, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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very challenging problem. Extensive research along this direction has been per-
formed in recent years including variational formulations using advanced regular-
izers [6, 7], and local similarity maximization [6, 8]. Most non-rigid multi-modal
registration work proposed so far focuses on methods that do not consider the un-
derlying context of the registration such as the intensity mapping relationship of
the class of images to be registered, statistics of modalities to be registered, and
other prior information about the registration problem. It has been suggested
by Crum et al. [1] that the context-free nature of these non-rigid registration
methods is one of the main limitations for them to be clinically useful and that
moving towards context-specific methods by incorporating prior knowledge of
the underlying registration problem is necessary to achieve accurate and robust
registration results.

In the case of rigid multi-modal image registration several approaches have
been proposed to use prior information during optimization [9, 10, 11]. Leventon
and Grimson were the first to use a prior learned joint intensity distribution [9],
where the registration is obtained by maximizing the log likelihood of the im-
ages to be registered. Zollei et al. showed that this method makes some implicit
assumptions about the desired solution which do not always hold [12]. Chung et
al. found empirically that the minimization of the Kullback-Leibler (KL) diver-
gence between an observed and a learned joint intensity distribution is superior
to maximizing the log likelihood [10, 11]. For non-rigid multi-modal image reg-
istration, however, very few work has been published so far. In [6], Hermosillo et
al. proposed a supervised non-rigid registration algorithm using ML. Although
KL divergence has been used in context-free non-rigid registration work [13],
context-specific non-rigid multi-modal registration using KL divergence, to the
best of our knowlege, has not been reported to date.

In this paper, we propose a variational formulation that incorporates prior
knowledge by minimizing the KL divergence between an observed and a learned
joint intensity distribution. In addition to the KL divergence term, our formu-
lation also incorporates a regularization term that regularizes the displacement
field and a term that maximizes the MI between reference and alignment images.
Our work can be seen as an extension to the variational formulation work by
Hermosillo et al. [6].

The outline of the paper is as follows. Section 2 describes the proposed
method, the derivatives used for the optimization process, and its implementa-
tion. In Section 3, experiments on both synthetic and real images are presented
to validate the proposed method. We conclude in Section 4 with a discussion
and future developments.

2 Description of Method

2.1 Registration by Driving Mutual Information with Prior
Knowledge

In order to non-rigidly match images from two different modalities, several strate-
gies have been proposed in the past. Generally speaking, there are two categories
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of solutions available. The first approach, studied extensively in recent years, con-
siders maximizing one or multiple similarity measures defined on both reference
and alignment images such as intensity, gradient, edges, landmarks, shapes, and
so on. The second approach uses prior knowledge obtained from pre-registered
trained data to get a solution that is more meaningful in the clinical context.
Our proposed method combines both perspectives into a unified formulation by
simultaneously encouraging the observed joint intensity distribution to resem-
ble the expected joint intensity distribution learned a priori and maximizing a
similarity measure. This can be intuitively understood as guiding a context-free
similarity measure by prior knowledge.

We define our combined registration framework as the minimization of the
following cost functional

JW) = alya(u) + (1 - a)TxL(u) + \R(w), ac[0,1], e R, (1)

where u is a displacement field, R defines regularization or smoothing on u,
and A is a positive constant that decides the amount of regularization. Zkjy,
measures the KL divergence between observed and learned data, and Zygr de-
notes an expression for MI of the observed data. Here, we realize the role that
prior knowledge plays. A displacement field that maximizes MI is being steered
by prior information to achieve accurate alignment. The factor a controls the
amount of guidance through prior knowledge. For o« = 0 the registration problem
is solely based on the prior information. For a = 1 the registration is defined as
the classical optimization of MI without any prior information. For « € (0, 1), the
maximization of MI is driven by clinical context in the form of prior knowledge
captured by the minimization of the KL divergence.

This prior knowledge can be acquired in several ways and has become more
accessible recently. One can use the expert knowledge of a physician who manu-
ally aligns the images or one can leverage the fused imaging data acquired using
the dual-modality (PET/CT, SPECT/CT), also known as hybrid, scanners. The
latter provide extensive amounts of pre-registered data, which is very important
for avoiding patient specific training data. In order to increase robustness, one
may learn a joint density distribution that represents a mean prior information
of n pre-aligned images. But it has to be examined carefully as most scanners
cannot correct the misalignment due to organ movement.

2.2 Derivative of Kullback-Leibler Divergence and Mutual
Information

In the following we will refer to the two images that are to be registered by the
functions f; : Q@ C IR" — R and f5 : Q C IR™ — IR. The images are registered by
retrieving the underlying displacement field. Given the images, a displacement
field can be modeled by a mapping u : 2 — €. Without loss of generality, we
can denote f; as the reference image and fo> as the alignment image during the
registration process.
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We indicate by p$(f1), p3(f2) and p?(f1, f2) the marginal and joint intensity
distributions estimated from f;(x) and f» (x + u(x)) respectively. p’(f1, f2) is an
estimate for the joint intensity distribution of the training data. In practice, the
distributions are estimated by using a non-parametric Parzen window estimator
with a Gaussian as the windowing function.

We incorporate prior knowledge by minimizing the KL divergence between
observed and trained data. The KL divergence for a given displacement field u
can be expressed as:

NN AGH))
Iu:/f’lz,zlnu_,dx 2
kL (u) P (i1,42) P (in, i) (2)
where i1 = fi1(x) and i2 = f2 (x + u(x)). The MI-based objective function is
defined as the negate MI between the reference image and the alignment image
transformed by u and can be expressed as:

IMI(U) = _/po (il iQ) In pfl(“’zz) dx (3)

o pe(i)ps(iz)
We notice that MI can be viewed as the KL divergence between the observed
joint density and the product of the observed marginals, whereas in Zky, the
product of the marginal densities is replaced by the prior knowledge learned
from training data. Note that we use the negate of the MI here to define a cost.
The minimum of (1) can be found by means of variational calculus. We may

descend the gradient of the combined functional with respect to the displacement
field. The gradient of (1) is defined as,

Vud = aVaZlu + (1 — @) VaZkr + AVaR (4)

The gradient of MI has been derived by Hermosillo et al. in [6]. To derive the
gradient of the KL divergence, we use the definition for a non-parametric Parzen
density model. After some manipulation, VZky, can be written as follows,

[ (Pt 000 6] (e ot )

-V fa(x + u(x)). (5)

VuIkL = —

Here, G, is a two-dimensional Gaussian with standard deviation o, do is the
partial derivative of a function with respect to its second variable, and N is a
Dap? (iryiz) _ O2p®(i1,in)
P (i1,i2) pt(i1,i2)
the comparison function of our registration method. This comparison function
is evaluated repeatedly during the registration. In fact, alignment is achieved
by continous adjustments of the joint intensity model until it resembles the
learned joint intensity distribution. Furthermore, this assessment shows the cen-
tral difference of our KL-based approach from the ML approach in [6], where
the observed joint intensity distribution remains static.

normalizing constant. We immediately notice the term as
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2.3 Implementation

Variational calculus allows us to compute the minimizing displacement field by
descending along the gradient V,J. We get the classical gradient flow:

uy =-VuJ

u(-,0) =ug (6)
with uy being a suitable initial guess for the displacement field. In this paper,
we use a Tikhonov model for regularization, i.e. R[u] = éfﬂ [Vu(x)|? dx. Its
gradient expression is: VyR[u] = div (?V/[url] Vu) = div(Vu) = Au, where A

denotes the Laplace operator. Starting from an initial guess, we will follow a
gradient descent strategy to find a solution for (1). In order to recover a larger
class of deformations, to decrease computational cost, and to avoid irrelevant
extrema of the non-convex functional, we pursue a coarse to fine scheme, i.e.
consecutively smoothing and subsampling the images.

3 Experiments

Phantom Registration. The following phantom images were created to point
out the importance of using context-specific information. Figure 1 visualizes an
ambiguous setting for non-rigid registration. A circle is registered non-rigidly to
another one that is of different intensity. However, its location is chosen such
that there is an overlap with two other circles, a smaller and a larger circle, in a
joint image. This setup suggests that there are at least two eqivalent optima for a
context-free distance measure to align the circles. We compare two methods, i.e.
minimizing (1) with @ = 1 and a = 0 respectively. We train that the circle should
align to the small circle. The MI method, o = 1, finds an optimum in registering
to the big circle, Figs. 1(d) and 1(e), whereas the KL approach, a = 0, registers
to the small circle, Figs. 1(f) and 1(g). Note that using the KL approach, we
could also train the algorithm to align to the big circle.

T1 - T2 MRI Registration. We tested the KL method (a = 0) on a simu-
lated T1/T2 MRI brain data set acquired from the Brain Web Simulated Brain

(a) (b) () (d)

Fig. 1. (a) reference image (512x512), (b) alignment image, (c) difference image, (d)

(
image (b
image (b
for(f)

aligned using MI criterion only, (e) retrieved displacement field for (d), (f)

< =

aligned using prior information only, and (g) retrieved displacement field
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(b) ()

Fig. 2. (a), (b) Training slices for T1-T2, (c) reference image, (d) alignment image, (e)
edge map of unregistered T2 slice superimposed on T1 slice, and (f) registered result

Database [14]. The coronal slices, Fig. 2(a) and 2(b), were used for training
whereas registration was performed on the sagittal slices, Fig. 2(c) and 2(d).
The T2 image has been deformed by an artificially created displacement field.
This experiment shows the strength of training joint intensity distributions that
are used successfully for non-rigid registration.

SPECT - CT Registration. Our next experiment is performed on two cor-
responding slices of a SPECT/CT data set acquired by a Siemens Symbia T2
SPECT/CT hybrid scanner. We generate our prior knowledge from those two
slices and deform the SPECT slice by an artificial displacement field. MI (o = 1)
and KL (a = 0) are compared for performance and the final registration results
are visualized in Fig. 3. Since we have the ground truth, we computed the dif-
ference between the warped SPECT images and the original image for visual
evaluation. From the difference images we notice that although we are using a
multi-resolution strategy, the MI-based approach gets trapped in an irrelavant
local minimum possibly due to its insensitivity to local deformation. This exper-
iment demonstrates the potential benefit of incorporating prior knowledge for
registration in clinical applications.

PET - CT Registration. Our last experiment describes a PET/CT regis-
tration from clinical practice involving a visual evaluation by an expert. The
imaging data acquired from a 70 year old male patient with multiple lesions
in the lung and was acquired by a Siemens Sensation 10 (CT) and a Siemens
Ecat 926 (PET). The PET was acquired 6 days after the CT. According to the

(c) (d)

Fig. 3. (a) Edge map of CT slice overlayed on SPECT slice as acquired from scan-
ner, (b) deformed SPECT difference image, (¢) SPECT difference image for MI based
approach, (d) SPECT difference image for KL based approach
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“1*1&3'3
(©) (f)

(d) (e)

(a) (b)
Fig. 4. Blended PET/CT images showing (a) training data, (b) misaligned slices, (c)

misaligned slices (zoomed), (d) pure MI registration (zoomed), (e) pure KL registration
(zoomed) (e) combined result (zoomed), 40% MI and 60% KL

evaluation of an expert physician, only parts of the volume were registered accu-
rately by a preceding manual fusion. For our experiment, we trained on two slices
that have been classified as good registration and performed our approach on a
misaligned slice. Figure 4 shows a collection of overlayed CT and corresponding
PET images. In addition to a strong misalignment of the cardiac ventricle, an
alignment deficit in the contours of the liver, the mediastinum and the thorax
can be seen in Fig. 4(b). Figures 4(d) and 4(e) show the results for both the pure
MI- (a = 1) and the pure KL-based (a = 0) registration, whereas Fig. 4(f) illus-
trates the registration result for our combined approach (o = 0.4). The physician
evaluated the combined approach as the most accurate one among all three reg-
istration results due to its accuracy not only in the alignment of the heart but
also in the matching of the thoracic, mediastinal and hepatical (liver) outlines.

4 Discussion and Conclusion

We presented a novel approach to non-rigid multi-modal image registration by
using prior information. The proposed framework allows flexible adjustment for
the available quality of prior knowledge. Preliminary experiments on syntheti-
cally created phantoms and on real MRI, SPECT/CT, and PET/CT data show
that prior knowledge can be crucial for retrieving the correct underlying dis-
placement field. In addition, we have shown that our method has improved
performance over a context-free registration. Future directions of research in-
clude the extension of our approach to 3D, an adaptive selection of the steering
parameter « across different levels of resolution, and an investigation of a more
comprehensive training data representation, which goes beyond using the mean
joint intensity distribution. In order to confirm the robustness and the accu-
racy of this approach for multi-modal datasets, a more complete qualitative and
quantitative experimental study must be carried out.
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Abstract. An approach to deformable registration of three-dimensional
brain tumor images to a normal brain atlas is presented. The approach
involves the integration of three components: a biomechanical model of
tumor mass-effect, a statistical approach to estimate the model’s param-
eters, and a deformable image registration method. Statistical properties
of the desired deformation map are first obtained through tumor mass-
effect simulations on normal brain images. This map is decomposed into
the sum of two components in orthogonal subspaces, one representing
inter-individual differences, and the other involving tumor-induced de-
formation. For a new tumor case, a partial observation of the desired
deformation map is obtained via deformable image registration and is
decomposed into the aforementioned spaces in order to estimate the
mass-effect model parameters. Using this estimate, a simulation of tumor
mass-effect is performed on the atlas to generate an image that is more
similar to brain tumor image, thereby facilitating the atlas registration
process. Results for a real and a simulated tumor case indicate signifi-
cant reduction in the registration error due to the presented approach as
compared to the direct use of deformable image registration.

1 Introduction

Deformable registration of normal brain images into a common stereotactic space
makes possible the construction of statistical atlases that are based on collective
morphological, functional, and pathological information [1]. Similar atlases con-
structed from tumor patients’ images can act as tools for optimal planning of
therapeutic and neuro-surgical approaches that deal with tumors by statistically
linking functional, and structural neuroanatomy to variables such as tumor size,
location, and grade to the surgical or treatment approach and outcomes [2,3,4,5].

A major hurdle preventing the construction of such brain tumor atlases is the
unsuitability of currently available deformable registration methods for adapt-
ing a tumor-bearing image to the stereotactic space of a normal neuro-anatomy
atlas image. This is due to the substantial dissimilarity between the two images

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 263-270, 2005.
© Springer-Verlag Berlin Heidelberg 2005



264 A. Mohamed, D. Shen, and C. Davatzikos

resulting from topological differences, tissue death and resorption, the confound-
ing effects of edema and tissue infiltration, and severe deformation in the vicinity
of the tumor beyond natural anatomical variability.

To account for topological differences between the atlas and the patient’s
images, Dawant et al. [4] proposed the introduction of a tumor “seed” in the
atlas image and relied on image features to drive the registration. Bach Cuadra
et al. [5] extended this idea with the use of a radially symmetric model of tumor
growth. The lack of a physically realistic model of tumor-induced deformation,
as well as the approximate determination of the seed location results in limited
accuracy of these approaches for large tumor cases. Kyriacou et al. [2] used a
biomechanical model of the deformation caused by tumors to register images of
tumor patients to anatomical atlases. However, this approach was only imple-
mented in 2D and relied on a computationally expensive regression procedure
to solve the inverse problem of estimating the tumor location in the atlas.

In order to register brain tumor images to a normal anatomical brain atlas,
here we present an approach that requires the integration of 3 components. The
first, is a biomechanical 3D model for the soft-tissue deformation caused by
the bulk tumor and peri-tumor edema. This model is implemented using the
finite element (FE) method and is used to generate a number of examples of
deformed brain anatomies due to tumors starting from normal brain images.
The second component is a statistical model of the desired deformation map
which approximates this map via the sum of two components in orthogonal
subspaces with different statistical properties. For any particular tumor case that
should be registered to the atlas, a partial observation of the desired deformation
map is obtained via a deformable image registration method, which is the third
component of the presented approach. Based on the constructed statistical model
of the deformation, this partial observation is used to estimate the corresponding
mass-effect model parameters that would have produced such a deformation.
Finally, the desired deformation is obtained by applying the mass-effect model
to the atlas image and the use of deformable image registration to match it to
the subject’s image. Details of the proposed approach are presented in Sect. 2.

In Sect. 3, we demonstrate our approach on real and simulated tumor cases,
and we show that the registration error decreases significantly with our approach
compared to the direct use of a readily available image registration method. The
paper is concluded with a discussion of future work in Sect. 4.

2 Methods

The proposed approach is explained with the aid of Fig. 1. The subject’s brain
Bgp includes regions Tsp (bulk tumor), and possibly Dsp (peri-tumor edema).
The main goal of the deformable registration problem is to find the homeomor-
phism x s : BA\T4 — Bsp\Tsp which maps points with coordinates X 4 in the
atlas image to points with coordinates X sp in the subject image. Another goal
is to identify T4, which corresponds to brain tissue that is no longer present in
the subject’s image (died or invaded by tumor).
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ATLAS SUBJECT

UNDEFORMED

Tumer Mass-effect
MMadel

DEFORMED

Inter-Subject Differences

Deformable Image Registration

Fig. 1. Illustration of the deformation maps involved in the proposed approach. X
is the map from the atlas to a subject’s tumor-bearing image. Regions Tsp and Dsp
denote the bulk tumor and edema regions in the subject’s images, and T4, D4 are the
corresponding regions in the atlas. x. is the mapping from the atlas to the subject’s
image before tumor mass-effect simulation (Bg is not known for non-simulated cases),
and x4 is that obtained through the simulation of tumor mass-effect. Simulating the
tumor mass-effect on the atlas results in x, and a deformed atlas image which can
then be registered to the deformed subject’s image through xs.

If an accurate model of the deformation induced by the tumor is available,
it can be used to simulate this deformation in the atlas and obtain x4, followed
by the application of deformable image registration to get X, and therefore
Xf = Xb © Xa- A model of the mass-effect caused by tumor growth is described
in Sect. 2.1. Estimates of region T4 as well as the other parameters affecting the
model’s behavior, such as the extent of peri-tumor edema and the mass-effect of
the bulk tumor, are still needed in order to apply this approach. Here, we solve
this inverse estimation problem by exploiting the statistical dependency between
x s and the mass-effect model parameters. Although an approximation of x
obtained by the direct application of deformable image registration is incorrect
in and around the tumor (region M4 in Fig. 1), the pattern of this deformation
outside that region can guide the estimation of the tumor model parameters. In
Sect. 2.2, we explain the collection of the statistics on xf = xa4 © X through
tumor mass-effect simulations on images of normal subjects. Estimation of the
mass-effect model parameters is explained in Sect. 2.3.

2.1 Tumor Mass-Effect Model

This model is initialized with a 3D normal brain image (free of tumor) and it
produces an estimate of the deformation due to the mass-effect of a simulated
tumor. We explain the model by assuming that it is applied to the atlas image,
although as explained later, the model may also be applied to other normal
images for statistical training.
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Fig. 2. Illustration of a tumor mass-effect simulation and the associated displacement
maps. Upper row (left to right): atlas image, normal subject’s MRI with an introduced
small tumor, and resulting image after simulation of tumor mass-effect. Lower row
(Left to right): displacement map u., displacement map x4 — X 5, displacement map
uy, and displacement map ugq.

With the assumption that the mass-effect is due to the bulk tumor and
the peri-tumor edema only, regions T4 and Dy are defined in the undeformed
(normal) atlas image. These correspond to the bulk tumor and peri-tumor edema
regions in the deformed atlas at the end of the simulation. Although these regions
are highly variable for different tumor cases and are not known in general, here for
tractability, we assume that T4 and D 4 are spherical and concentric with center
¢; and radii ¢ and rg respectively. It is important to note that this does not
restrict our approach to dealing with spherical tumors only since final simulated
tumors need not be spherical (see Fig. 2) and also these regions are later refined
through the deformable image registration component of our approach.

Brain tissue swelling due to edema is restricted to white matter in D4 and a
volume expansion of 250% is used. Swelling is simulated by analogy to thermal
expansion. We further assume that the expansive force of the bulk tumor may be
approximated with a pressure P normal to the boundary of T4 [6]. With these
assumptions, appending the necessary boundary conditions at the falx cerebri
and the brain surface [7], and using the material constitutive model suggested
in [8] for brain tissues, a mechanical problem is formulated and solved using
the FE method. More details on this tumor mass-effect model can be found
in [9]. The model parameters are collectively referred to by © = (e, 1,74, P).
The values of these parameters are not known for a real tumor case, but are
estimated using the statistical model of the deformation explained next.

2.2 Statistical Model Training

The goal of this step is to create a statistical model for the deformation x; that
will aid in the estimation of © for a particular tumor image. First, the defor-
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mation maps Xe,,% = 1,..,ns between the atlas and MRI images of ns normal
subjects are obtained using a deformable image registration approach [10]. Sim-
ulations of the mass-effect of tumor growth are then conducted for each subject
i for values ©;,5 =1,. s N covering a range of the model parameters to produce
the deformations xq, ;,i=1,..,n,j =1,.

A problem preventing the collectlon of statlstlcs on xg,,; directly is that
the domains of these maps are different for different values of ¢ and j. This
precludes the point-to-point comparison of these deformation maps. To overcome
this problem, for all tumor model simulations, regions T4, and D4, are defined
in the atlas space based on ©; and mapped to each subject’s space via x.,,? =
1,..,ns. Next, for X 4 € Ba\Ta;,i=1,..,ns,5 = 1,.., 1, we define

Ug,; ; (XA) = Xfi,; (XA) — Xe; (XA) = Xd;,; (ch‘, (XA)) — Xe; (XA) (1)
U, (XA) = Xe; (XA) -Xa (2)
uyp  (Xa) =xp,(Xa) = Xa = ue, (Xa) +uqg, (X a) 3)

For different i = 1, .., ns, but the same j = 1, .., n,,, the domains of ugy, ; are the
same. An example of a tumor model sunulatlon and the involved dlsplacement
maps is shown in Fig. 2

We construct discrete versions of the displacement maps u., and ug, ; by
sampling their cartesian components for all voxels in the atlas in Ba\M4 to
yield vectors U, and Uy, ; respectively. Assuming that U,,,i = 1,..,n, are in-
dependent realizations of a Gaussian random vector, principal component anal-
ysis (PCA) is applied to these vectors to yield the mean p. and the matrix V.
whose columns are eigenvectors corresponding to the first m, principal compo-
nents (m. < n, — 1). Next, we compute the component of Uy, ; in the subspace
orthogonal to the columns of V. as

Uy, =Ua,, — VoV Uy, . (4)

We further assume that, for each j, Ud ,4 =1,..,ns are independent realizations
of a Gaussian random vector and we perform PCA on these vectors to yield the
mean ptg, and the matrices V4; whose columns are eigenvectors corresponding to
the first mg; principal components (mg, < ns—1). Now, we can approximate the
discrete displacement map U y between the atlas and a subject with a simulated
tumor with parameters 6;,j = 1,..,n,, as follows:

Uf ~ e+ Vea + K, + Vd]. bj. (5)

The vectors a and b; each follows a a Gaussian distribution with decorrelated
components, with that of b; denoted by f;(b;).

2.3 Statistical Estimation

Given an approximate deformation map Xy (between a real tumor patient’s
images and the atlas) obtained by the direct use of deformable image registration,
the goal of the methods presented here is to obtain an estimate © of the tumor
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model parameters. The displacement map s defined in a similar manner to
eqn. 3 is also discretized over all the atlas voxels in B4\M4 and represented by
a vector U 7. Owing to the orthogonality of V4, to V. for all j, we can compute
the component of this displacement that is caused by the tumor by projection
as y .

Ud:Uf_Hc_Vc&7 (6)

where @ = VI (U ; — ). The likelihood of having U4 be generated with tumor
model parameters O; is defined as L; = f;(b;), where b; = ng (Ugq— pa,y), for
J=1,..,n,. We estimate the tumor model parameters as

6=03 1,0)/> L) ()
j=1

Jj=1

3 Experiments and Results

Results of applying the approach described above are reported here for two cases.
The first is an MRI of patient with a glioma and a large region of peri-tumor
edema. The second is a simulated tumor image obtained by applying the mass-
effect model described in Sect. 2.1 to an MRI of a normal subject. All images
used are T1-weighted MRI. The atlas image dimensions are 256x256x198 and a
voxel size of 1x1x1lmm. Other images used are of dimensions 256x256x124 and
voxel size 0.9375x0.9375x1.5mm.

The FE tumor mass-effect model simulations are the most computationally
intensive step of the presented approach. In order to make the statistical training
step tractable, we performed tumor simulations on ny, = 20 MRI brain images
of normal subjects. For each subject n,, = 64 simulations were performed with
2 values of each of the six model parameters covering the range expected for the
real tumor case. The parameter values were v, € {3,5}mm, rq € {20,27}mm,
P € {2,5}kPa and corners of a cube in the atlas for the simulated tumor center
locations. For the results reported here, all principal components of the displace-
ment U, were retained and we used mq;, = 1,5 = 1,..,np,.

i

Fig. 3. Results of applying the proposed approach to register the real tumor case to the
atlas. Left to right: Atlas image, subject’s image, warped atlas image in the subject’s
space with the use of deformable registration directly between the two images, and the
warped atlas image in the subject’s space with the use of the proposed approach.
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Table 1. Deformable registration error statistics for landmark points in the real tumor
(RT) and simulated tumor (ST) cases. For each case, the errors are provided for the
direct deformable image registration to the atlas (No Model), and the registration using
the approach described in this paper (with Model). 21 landmark points were used for
RT and 25 were used for ST.

Minimum Mean Maximum Standard Deviation

RT no Model, mm 1.06 8.70 24.87 6.19
RT with Model, mm  0.47 3.69 7.19 1.83
ST no Model, mm 2.54 6.39 10.91 2.62
ST with Model, mm  0.61 3.90 7.79 2.01

In Fig. 3, the result of applying our approach to the real tumor subject is
demonstrated. With the use of deformable registration to directly register the
(normal) atlas image to the subject’s MRI, the warping result is innaccurate
in the tumor area. Gray matter from the right cingulate region and adjacent
cortical CSF in the atlas were stretched to match the intensity of the tumor
and the surrounding edema in the patient’s image. The estimated tumor model
parameters were ¢;=(109, 86, 126), 7#,=3.9mm, 74=24mm and P=3.55kPa.

In order to quantitatively assess the improvement in the registration accuracy
due to the proposed model, 21 landmark points were selected around the tumor
area in the subject and corresponding points were identified by an expert in the
atlas. The point coordinates were mapped through the resulting transformation
with direct deformable registration and with our approach and the results are
presented in Tab. 3. The maximum error was reduced by 71% by the use of our
approach while the mean error was reduced by 57.6%.

Similar deformable registration experiments were performed for a simulated
tumor case based on an MRI scan of a normal subject. The simulation pa-
rameters were ¢;=(106, 86, 128), r,=4.5mm, r4=21mm and P=4.5kPa. Using
the approach described above, the estimated values of these parameters were
¢;=(109, 85, 128), #y=4.1mm, 74=23mm and P=3.6kPa. To evaluate the regis-
tration error in this case, 25 points were selected arbitrarily in the area around
the simulated tumor, and their corresponding coordinates (found through xgox.
which is available in this case) were computed in the atlas image and treated
as ground truth. The errors for the direct deformable registration and that ob-
tained by the proposed approach are also presented in Tab. 3. The maximum
error was reduced by 29% using the proposed approach and the corresponding
average error was reduced by 39%.

4 Discussion and Future Work

We introduced an approach for deformable registration of atlas to brain tumor
images. The approach utilizes a 3D biomechanical FE model of tumor-induced
deformation to introduce and simulate the tumor in the atlas followed by the
use of a readily available deformable image registration approach. To solve the
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inverse problem of determining the model parameters, we proposed a statistical
approach that relies on the decomposition of the desired deformation map into
the sum of two maps defined on the same domain, but with different statistical
properties that are learned via PCA from a number of training samples. These
maps are modeled via two orthogonal subspaces which allows the estimation of
the tumor model parameters via projection of a rough estimate of the required
deformation map on the subspace representing tumor induced-deformation.
The results of applying the proposed approach on a real tumor case and
a simulated one indicate significant reduction in the registration error. These
experiments should be regarded as a proof-of-concept study. More validation
experiments are need to asses the viability of the proposed approach for a variety
of tumor cases of different grades, types and sizes. In addition, the sensitivity of
the statistical estimator of the model parameters to the number of used principal
components and the number of training samples also will be investigated.
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Abstract. Tagged Magnetic Resonance Imaging (MRI) is currently the
reference MR modality for myocardial motion and strain analysis. NMI-
based non rigid registration has proven to be an accurate method to
retrieve cardiac deformation fields. The use of aMI permits higher dimen-
sional features to be implemented in myocardial deformation estimation
through image registration. This paper demonstrates that this is feasi-
ble with a set of Haar wavelet features of high dimension. While we do
not demonstrate performance improvement for this set of features, there
is no significant degradation as compared to implementing the registra-
tion method with the traditional NMI metric. We use Entropic Spanning
Graphs (ESGs) to estimate the aMI of the wavelet feature vectors WFVs
since this is not possible with histograms. To the best of our knowledge,
this is the first time that ESGs are used for non rigid registration.

1 Introduction

Tagged magnetic resonance imaging (MRI) is a well established technique used to
obtain regional information about the deformation of the left ventricle (LV)[1,2],
and thus potentially help to diagnose cardiovascular diseases. Basically, this tech-
nique consists in perturbating the magnetization of the myocardium in a specified
spatial pattern at end-diastole. These perturbations appear as dark stripes or
grids when imaged immediately after application of the tag pattern. Since the
myocardium retains knowledge of this disturbance, the dark grids experience the
same deformation the heart does as it contracts, allowing local strain parameters
to be estimated.

Several methods have been proposed to retrieve LV deformation field: op-
tical flow [3,4], Harmonic Phase (HARP) MRI [5,6], tag detection and track-
ing [7,8,9,10] and image registration [11,12]. The use of registration to estimate
cardiac motion has proven to overcome many drawbacks existent on previous
approaches.

The use of aMI permits higher dimensional features to be implemented in
myocardial deformation estimation and registration problems. In this paper,
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we aim to evaluate the performance of aMI based registration methods with
respect to gold standard measurements and with respect to NMI based image
registration. Specifically, we use Haar wavelet coeflicients at each pixel as feature
vectors (FVs) and ESGs to estimate the aMI of these vectors.

This paper is organized in six sections. Section 2 explains how to estimate car-
diac deformation fields by using image registration. In this section, the concept
of aMI and its estimation by using ESGs is also presented. Section 3 describes
the dataset used for the experiments. Results are presented in Section 4 and
discussed in Section 5. Finally, the conclusions can be found in Section 6.

2 Method

The registration algorithm we used, is based on the method originally developed
by Rueckert et al. [13] for detection of cancerous lesions in contrast enhanced
MR breast images. We modified this algorithm by replacing NMI with aMI
computed from Wavelet Feature Vectors (WFVs). The main problem derived
from using vectors instead of intensity values, is that the curse of dimensionality
forbids the use of histograms for probability density function (pdf) estimation.
Therefore, in order to compute the aMI of these vectors, we used kNN graph
estimators which completely bypass pdf estimation [14].

2.1 Motion Estimation

To track cardiac motion throughout multiple time frames we used Multilevel
Free Form Deformations (MFFDs) as suggested by Schnabel et al. [15], where
the transformation T(u,t) is represented as the sum of a series of local FFDs:

t

T(ll, t) = Z Tfocal (ll7 t) (1)

p=1

Thus, the motion estimation starts registering the first two frames of the se-
quence I(x,0) and I(x,1), and a single FFD is obtained. Then, for the next
frame I(x,2), a new FFD is added and the frame is registered to I(x,0) taking
as initial transformation the one obtained for I(x, 1). This process is repeated for
the remaining frames I(x,t) in the cardiac cycle. Once all the frames are regis-
tered to the first one, the MFFD consists of N FFDs that model the myocardium
deformation.

2.2 Similarity Measure

To recover the deformation field at time ¢, the image I(x,t) is registered to
I(x,0) by optimizing some cost function. Let Iy and I; be random variables
representing the source and target image, with pdfs p,(Is) and p;(I;) respectively.
Let pst(Is, I;) represent the joint pdf of Iy and I;. The o mutual information
(aMI) of I, and I; is defined as:
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Fig. 1. kNN graphs for a set of 200 points in the plane and k=5. (a) Uniform distri-
bution (SD=1). (b) Gaussian distribution (SD=1).

OMI = Do (paa(ls, 1) || po(T)pe(11)
1 —«
= L tos [ 8 ot (gl (1)Ll 2)

When o — 1, aMI converges to the standard (Shannon) MI
Dst (Isa It)
MI:/ (I, 1) 1o (
Ppst( t) log pe(L)pe(Ly)

According to Equation (2), aMI can be interpreted as a measure of dependency
between variables Iy and I, which is expected to be maximum at registration.

) dI,dI,. (3)

2.3 oaMI Estimation

Given a set Z = {21,...,2,} of n vectors in R?, the k-Nearest Neighbor Graph
(kNN Graph) is formed by the points z; and the edges with their k nearest points
Ni,i(Z). This graph belongs to a particular class of graphs known as Entropic
Spanning Graphs (ESGs), whose relationship to alpha entropy is described in
[14]. Figure 1 shows two examples of kNN graphs for different distributions.

Let Iy and I; be two images from which the sets of feature vectors Z; =
{251,y 2sn} and Z¢ = {z41,..., ztn} have been extracted. KNN graphs allow
for estimating aMI between these images as [16]

TN QA e (o zedl )
— Cip\Zsiy Zti
aMI = log , (4)
a—1 "ne ;1;1 (\/”eip(zsi)“ ”eip(zti)“>
where ||€;,(2si, 247)|| is the distance from the point (zs;, 2:;) € R?? to its p-nearest
neighbor in {zgj, 2¢; } ji, and ||e;p(2si)|| (||l€ip(22:)]]) is the distance from the point
zsi € RY, (24; € RY) to its p-nearest neighbor in {zs;}jzi ({215} j21)-

In this work we used a = 0.5, v = 2, n ~ 1000 (it depends on the LV area),
k =4 and € = 0.1, the maximum allowed error between a point and its nearest
neighbor.
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2.4 Feature Vectors

There are many possible feature vectors (FV) to be used in oMI based tech-
niques. In this work, in order to obtain the feature vector corresponding to the
point xg, we applied the Discrete Wavelet Transform (DWT) to decompose the
image I(x) into four subimages 1,1, (%)l (x), Igr(x) and Igg(x). Then, we
defined the FV of point xg by taking the corresponding wavelet coefficients as:

z=[Ipp(x) Ina(x) Inr(x) Inm (x)] (5)

This paper is not focused on finding the optimal feature for this particular ap-
plication, but on evaluating the effect of introducing spatial information into the
objective function. Therefore, for a first approach, we chose Haar wavelet coef-
ficients owing to its well known ability for edge detection and simplicity. This
basis was expected to perform well defining tags in MRI images and thus good
for guiding the registration process.

3 Materials

3.1 Dataset

Two tagged 2D sequences were acquired with a GE Genesis Signa 1.5T MRI
scanner. A cine breath-hold sequence with a SPAMM grid tag pattern was used,
with imaging being done at end expiration. The in-plane image resolution was
1.56mmx1.56mm. Cardiac cycle was sampled by acquiring a total of 16 frames.
However, only images from End of Diastole (ED) to End of Systole (ES) (sys-
tolic phase) were used in the experiments due to our interest on evaluating
deformation during heart contraction. The length of this cardiac cycle segment
is 5 frames.

3.2 Manual Measurements

In order to assess the method performance in tracking myocardial motion, tag-
intersection points were marked manually in each frame by two observers in two
independent sessions. For each sequence, 22 points were chosen to be tracked, and

(1) (2) (3) (4) ()

Fig. 2. Gold standard point positions in each frame from ED to ES for one of the

sequences used in this work
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thus 110 (22x5) points were marked. Gold-standard measurements were derived
for each tag-intersection point by taking the average of the measurements made
by the observers. Figure 2 shows the gold-standard landmarks for each frame in
sequence A.

4 Results

The mean error between the gold standard points and the corresponding po-
sitions assessed by the observers was calculated. Table 1 shows the intra and
interobserver variabilities of manual landmarking.

The deformation field of the myocardium was calculated with the method
explained in Section 2. The resulting transformations were then applied to the
gold standard pointset at ED to map these points to each phase. The mean
error between these mapped points and the actual positions according to the
gold standard was calculated. Figure 3 shows this error from ED to ES. With
both methods, subpixel accuracy was obtained for all the phases in patient A
and for the two first phases in patient B. Figure 4 shows the initial frames of
both sequences, along with an arrow plot showing the displacement field in the
myocardium during systole.

Table 1. Accuracy of manual measurements. Bias and standard deviation of the dif-
ferences, corrected for repeated measurements, between manual and gold standard
measurements

Observer A Observer B Observer A and B

Bias (mm) 0.01 0.06 0.03
SD (mm) 0.35 0.31 0.29
35 35
. aMI WFV PATIENT A PATIENT B oM WEY
1 aMi PX INT 1 aMI PX INT

307 mmm NMI 3.01 = v

25 25
z B
€

3

E 20 T 207
g g
= &
S s < 154
© o
3
s =

1.0 1.0

0517 0.5

0.0 0.0

1 2 3 4 1 2 3 4
Time Frame Time frame
(a) (0)

Fig. 3. Mean error in landmark correspondence between the gold-standard position
and the position of the landmarks in end-diastole after being transformed through the
computed deformation field. Results for the different registration metrics is provided.
(a) Patient A. (b) Patient B.
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Fig. 4. Displacement of myocardium points during heart contraction by using non-rigid
registration for sequence A (top row) and sequence B (bottom row). (a) ED frame. (b)
ES frame. (¢) Motion field close-up obtained by using aMI. (d) Motion field close-up
obtained by using NMI.

5 Discussion

In this paper we have applied an ESG estimation of aMI for myocardial motion
estimation. The results show low mean error values with respect to the gold
standard measurements, which demonstrate that this method allows retrieving
cardiac motion fields accurately.

For this particular application, and according to Figure 3, the use of NMI
seems to give better results. However, the standard deviations of the errors are
high, and therefore these differences are statistically not significant. A possible
explanation for these differences may derive from the feature definition. In this
work we have used Haar wavelet coefficients because of their well known ability
for edge detection, which was expected to perform appropriately in detecting
tag borders. However, Haar basis presents a lack of invariance to translation and
rotation which can be corrected by using ”cycle spanning” or complex wavelets.
Haar basis also has an inherent lack of sensitivity to edge deformations which
dominate the deformation feature space. Regarding this matter, a smoother basis
like Daubechies or Curvelets might have better potential.

Another explanation for the differences with respect to NMI, is that estimat-
ing aMI in multidimensional spaces may introduce more local minima in the
error surface than conventional NMI. Thus, the lower accuracy may arise as a
consequence of using a local optimization like the downhill method used in this
work. Finally, the image resolution of MRI may justify some of the disagree-
ment between measurements. ESGs allow to estimate aMI accurately when the
number of FVs used to calculate the graph is large. Given that the in-plane
resolution is 1.56mmx1.56mm and that only the LV was considered, less than
1000 points were available for aMI estimation.
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Figure 4 shows a good agreement between estimated displacements fields of
each metric for sequence B. For sequence A, there was clearly a different result
in the lower-right portion of the image. The frame at ES for this patient shows
completely vanished tags and poor image quality in the part of the myocardium
where the motion field is altered. Therefore, it could be hypothesized that the
incorporation of spatial features into the objective function makes the results
more dependent on the presence of such features in the target and source images.

With respect to the extension of this work to the three dimensional case,
the main drawback is that ESGs are computationally expensive. However, many
algorithms have been developed to compute graphs in an approximated manner,
allowing a significant speed up of the graph construction.

6 Conclusions

Entropic spanning graph estimation of aMI has been applied for non rigid reg-
istration for the first time and has proven to retrieve myocardial deformation
fields accurately. Although the results were quite satisfactory, even lower errors
have been obtained with NMI. However, the observed differences were statisti-
cally not significant and further research needs to be done to fully understand
the reason of this behavior. ESGs offer an increased flexibility in the kinds of
features one can use for these types of problems, and further research needs to
be done regarding this matter.
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Abstract. Robust 3D point registration is difficult for biomedical surfaces, es-
pecially for roundish and approximate symmetric soft tissues such as liver,
stomach, etc. We present an Iterative Optimization Registration scheme (IOR)
based on Hierarchical Vertex Signatures (HVS) between point-sets of medical
surfaces. HVSs are distributions of concatenated neighborhood angles relative
to the PCA axes of the surfaces which concisely describe global structures and
local contexts around vertices in a hierarchical paradigm. The correspondences
between point-sets are then established by Chi-Square test statistics. Specifi-
cally, to alleviate the sensitivity to axes directions that often affects robustness
for other global axes based algorithms, IOR aligns surfaces gradually, and in-
crementally calibrates the directions of major axes in a multi-resolution manner.
The experimental results demonstrate IOR is efficient and robust for liver regis-
tration. This method is also promising to other applications such as morpho-
logical pathological analysis, 3D model retrieval and object recognition.

1 Introduction

Automatic and robust registration between 3D images is very important for medical
image analysis. Three main purposes of this kind of registrations are: (1) Compare
two organ shapes of the same patient in different periods for diagnosis. (2) Register
tissue across individuals for physiological analysis. (3) Match 3D data of patients with
anatomical atlas for shape representation [1]. The possible primitives of 3D shape
registration include points, lines, curves, facets and surfaces [2]. Usually, point regis-
tration is also a key step to construct statistical deformable models [3].

The majority of the previous work dealing with 3D point-set registration came
from the computer vision community. Most of them were based on shape matching.
For example, a well-known method called “Iterative Closest Point” was proposed by
Besl and Mckay [4]. It provides a general solution for registration by minimizing the
distances between the nearest neighbors in an iterative procedure. However, the
process is computationally expensive. Cyr and Kamal generated a number of typical
sample 2D views from the 3D models and matched them against a given view [5].

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 279 -286, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Sundar et al. encoded the topological information of 3D shapes in the form of a skele-
tal graph and matched them for registration [6]. Modal matching technique performs
point registration between objects by their eigenmodes [7,8]. It provides a global to
local description of shape deformation; however, the technique requires very expen-
sive calculation for eigenmodes.

Another common approach for point-set registration is to match distinctive local
features between surface points such as geometric invariants [9]; these often fail be-
cause of insufficient local information and different viewpoint that radically alter
local feature appearance. Some authors resorted to stochastic approaches to let the
registration process be immune to noise and small deformations. Belongie and Malik
[10] introduced a 2D “shape context” which described the coarse distribution of
shape with respect to a given point. This descriptor offers a globally discriminative
characterization. Yamany et al. [11] presented a “surface signature” to capture the
surface curvature information seen from certain points. Chin [12] proposed a “point
signature” to describe the structural neighborhood of a point on the 3D surface. Sta-
tistics of the distance and relative angles are collected to characterize feature points.

However, these distributions cannot capture the location of the features and they
are not always able to provide sufficiently distinctive information to achieve one-to-
one point registration. This problem is more severe in medical/biomedical image
analysis. Usually, shapes of biomedical tissues are very different from those of the
man-made objects such as chairs, buildings, cars and aircrafts, etc., investigated in
most computer vision applications. There exist large classes of nature objects in bio-
medical applications that are smooth, rounded, curved, and sometimes approximately
symmetric such as livers, heart lenticels, stomachs and kidneys. Vertices on these
kinds of organ surfaces frequently share similar geometric features, which often
makes local geometric based matching fail.

In this paper, we propose an idea prompted by [11] and [12] to register point-sets
defined in segmented biomedical sense data, especially for blobby and approximate
symmetric soft tissues. The shapes of these tissues often differ from each other
through some form of non-linear deformations. The challenge posed by such models
is that it is frequently difficult to define landmarks or to obtain salient geometric fea-
tures from the surfaces. We present an intuitively simple but very effective and robust
feature descriptor called “Hierarchical Vertex Signature” (HVS) for describing the
distribution of shape structures in the context of a surface point. Our proposed de-
scriptor captures both global and local structures of the 3D surface from the point of
view of any vertex by associating each vertex with a probability distribution of angles
between vectors linking pairs of vertices and the major axes of the organs. Registra-
tion is then carried out based on the similarity between vertices on different surfaces.
Our approach is different from [11] and [12] in: (1)We calculate angles relative to
global axes (PCA axes) while they estimate angle values relative to local surface
normals. Therefore, our method is more robust to noise and more insensitive to sur-
face smoothness. More importantly, the extension of the relative angles (RAs) defined
in a global canonical frame makes HSV has the ability to indicate orientation of a
point relative to the whole surface. (2) We construct 1D signature for each point while
both of them employ 2D signature feature images so our method is more efficient and
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the similarity comparison is more intuitive and accurate. (3) Our proposed signature is
hierarchically defined in different neighborhood field of the vertex; therefore, it pro-
vides both local and global shape descriptions around a vertex. (4) Last but not least,
we design an Iterative Optimization Registration scheme (IOR) to calibrate the global
axes of surfaces continuously and in turn adjust the vertices’ signatures. This proce-
dure effectively alleviates the sensitivity of HVS to the major axes of the objects
being matched that may be ambiguous across individuals.

The rest of the paper is organized as follows. We present the definition of the Hi-
erarchical Vertex Signature (HVS) and describe the Iterative Optimization Registra-
tion (IOR) scheme in section 2. Experimental results in a liver database are shown in
section 3, and we conclude the paper in section 4.

2 Method

2.1 Hierarchical Vertex Signature (HVS) in Canonical Coordinate Frame

We treat the coordinates of the points on a 3D shape as random variables. Three prin-
cipal components (PCs) u, tou, are calculated from their covariance matrix C . They

are used to build up a canonical PCA coordinate frame. Suppose there are N vertices
on the surface, for each vertexv,, N—1 spoke vectors v_v; are derived. A Relative
Angle (RA) 6,(v,) is defined between the jih spoke vector of v, and the first principal

axis. Two base-planes I, (¢,”v,=0)and T, (e, v, =0 ) are formed, where e, and
e, are the second and the third eigenvectors of C respectively. They are employed as
reference planes to extend 6,(v,) from [0,7] to[-7,z]. Furthermore, RAs are normalized

to0~2z . For sake of paper space, please refer to our previous paper [14] to get the
accurate formulation of 6,(v,) .

Now what we want is investigating the distribution of these RAs in the different
fields of the vertex's neighborhood. The neighborhood relationship can be constructed
from the triangular meshes of surfaces. There are many standard algorithms to build
triangular meshes for an unorganized point-set such as [13]. Actually, the strict defini-
tion and exact connectivity of the meshes are not necessary for our method. Please
refer to [14] for the neighborhood construction. After obtain the neighborhood map of
the point-set, the distributions of the relative angles in different fields of neighbor-
hood are concatenated to form a Hierarchical Vertex Signature (HVS) for a given
surface point (ordered from near neighborhood fields to distant neighborhood fields).
Obviously, in this way, each HVS contains hierarchical shape description around a
vexel in a concise form. Since the RAs are calculated with respect to the major axes of
the organ, it captures the topological information of a point on a surface. We treat
HVSs as sufficient and salient shape descriptors to register vertices between tissue
surfaces. In practice, stochastic methods are employed to evaluate samples of HVSs,
and histograms are constructed by counting how many samples fall into certain sized
bins. Relative angles are rounded depended on the number of the histogram bins.
Promisingly, HVS has the following properties:
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(1) Invariance: One of the basic characteristics of angles is that they are invariant to
scale and rigid motions. In addition, since the RAs are defined in the global ca-
nonical reference frame, they are translation and rotation invariant. Therefore,
HVS can be directly employed for point registration without normalization.

(2) Robustness: As a bonus of stochastic methods, HVS is insensitive to noise, un-
smoothness, small perturbations and points missing of organ surface, which are
inevitably existed in 3D biomedical volumes recorded by different modalities.

(3) Efficiency: After obtaining the neighborhood map of a point-set, the complexity
of HVS extraction is O(N?). The neighborhood map can be established and
stored in advance prior to real-time registration.

(4) Hierarchy: HVS is a piecewise curve concatenated from the distributions in
different neighborhood fields of a point. It expresses the local features of a
surface when the layer of field is small, and represents the global shape when
the layer becomes large. The last piece of HVS (See Fig.3) represents the
distribution of the overall surface and provides a detailed and compact
description of the global shape context. Therefore, we can claim that HVS
captures both local and global spatial information around a given vertex in a
hierarchical paradigm.

2.2 TIterative Optimization 3D Point-Set Registration (IOP) Based on HVSs

Our hypothesis is that HVSs of the correspondence pairs on tissue surfaces should be
similar so the best matching distributions lead us to the most suitable point for regis-
tration. That is, we postulate that the HVSs associated with a pair of corresponding
points possess the same theoretical form, even though they may be subjected to some
forms of distortion and noise. As HVSs are represented as bins, it is natural to use
Goodness-Of-Fit y* test to measure the dissimilarity factor df between points:

& s, o0-pawEsnf
df v,v)) = J J
Fouy ; P (v)*S,(v)

ey

where v and v" are points in sample and target point-sets respectively. p, is probability
value of the k th bin, and S, is the vertex number in the / th field. The range of df is
[0,1], and the best registration result is achieved by searching for a point on the target
surface which has the minimum df with a given point on the sample surface.

We observe that very close vertices in dense point-sets may have similar global
RA distributions, but they have large differences between local structures (see the
first piece of the distribution curve in Fig. 4). However, local distributions col-
lected in the small neighborhood fields may contain much uncertainty and noise so
they are not as robust as the global ones. Intuitively, HVSs of coarse point-set
should be more distinctive since the vertices are sparse and distant so the spoke
vectors of neighbors may not have similar orientations. Here, we propose an Itera-
tive Optimization Registration scheme (IOR) for multi-resolution point-sets to per-
form accurate and robust registration in a hierarchical manner. The flowchart of I0S
is elaborated in Fig. 1.
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Fig. 1. The flowchart of the iterative optimization scheme for 3D point registration

Resolution Iteration

Our approach consists of two main nested iterative schemes: resolution iteration
and transformation iteration. During the resolution iteration, the registration
begins with the coarsest point-sets ' and the correspondence searching is conducted
in the range of the whole surface. After finding M corresponding pairs and obtain-
ing a rough alignment between surfaces by affine transformation, registration
moves to denser sampling (higher resolution) data. At this stage, since the basic
correspondence is established, the search range for a given vertex is limited to a
small region. As we have mentioned, RAs are calculated relative to the global coor-
dinate frame, slight deformation of shapes may change orientations of major axes
and accordingly influence the distributions of surface points. To achieve robust
registration, a transformation iteration is designed specifically to correct and
adjust the PCA axes continuously for the target point-set based on its affine trans-
formation (AI). The consistency of major axes improves significantly the matching
of the corresponding HVSs match (See Fig. 2). In the transformation iteration, at
least 10% of the best corresponding pairs are selected which are approximately
evenly distributed over the surface. The affine transformation matrix is calculated in
a minimum error sense by:

A=V VTV v 2

! Please note that too much sub-sampling may make the blobby surface hard to find rotations.
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3 Experiments and Results

We have implemented IOR using C++ on PCs (1.8 G CPU, 1G memory), and tested
it in a liver image database. Each liver volume is defined by 20-30 CT slices. Livers
are roundish and approximately symmetric soft tissues which frequently cause other
registration techniques to fail. Imaging and analysis of the livers are also challeng-
ing due to potentially significant deformations among individuals and the lack of
well-defined boundaries in the associated CT images. The shapes of the livers used
in this work are semi-automatically segmented from the CT volumes. It has taken 5
minutes to generate the neighborhood map for the densest point-sets (1474 points).
HVS extraction and point registration between two surfaces have taken less than 1
minute. The transform iteration usually converged after 3~5 iterations. Three differ-
ent resolution point-sets (98, 370 and 1474) have been used for the evaluation by
evenly sub-sampling the dense surfaces points. Fig. 2 shows an example of the
alignment process between the PCA axes of the aligning livers during the lowest
resolution point-set registration. The accuracy rates of the established point
correspondence between the 12 livers used in the experiment and a sample are plot-
ted in Fig. 2(d). The ground truth used here has been established in advanced by
radiography specialists.

Fig. 2. (a-c) Alignment between PCA axes and affine transformation between the sample (yel-
low meshes) and the target surfaces (green meshes), red, blue and black axes are u ,u, and u, .
(d) Accuracy rates comparison of point correspondence in different transformation iteration.

To demonstrate the highly discriminate ability of HVSs, in figure 3, we show the
established point correspondences between a few selected vertices on the liver sur-
faces. For better visualization, the surfaces are rendered by standard method. The
HVSs of point A and its registration partner A' are plotted in Fig. 3(b), 5 neighbor-
hood fields and 72 bins are used. It is not difficult to discover that the resulting regis-
tration is visually correct, and their profiles of the HVSs match rather well. To verify
that the distributions of corresponding points indeed follow the same theoretical func-
tion, we overlap the HVSs of the registration partners of point B on 14 liver surfaces,
using 3 neighbor fields and 72 bins (Fig. 3c). The shapes of the curves are highly
consistent.
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Fig. 3. (a) Point-set registration result (b) Overlapping HVSs of A and A'. (c) Overlapped
HVSs of 14 corresponding points of B.

Fig. 4. (a) 12 vertices (pink dots) which have the lowest df with a sample vertex (yellow dot)
(b) overlapping HVS curves of these vertices (Green curve is the distribution of sample vertex).

In Fig. 4a, we mark 12 vertices that have the lowest df value with a sample vertex.
We can find that the vertices which have the most similar HVS distributions converge
near the neighborhood of the sample vertex. The overlapping HVSs of these 12 verti-
ces are plotted in Fig. 4b. The plots show high consistency in the global shapes (the
last pieces of curves) but have large discrepancies in local structures, especially in the
first neighbor field (the first piece of curves).

4 Conclusion

It is a fundamental yet still an open problem in computer vision to match two
point-sets. In this paper, we propose a 3D point-set registration scheme for blobby
biomedical objects. The angles (RA) of the spoke vectors derived from a vertex
relative to PCA axes are defined and the concatenated distributions of the RAs in the
different neighborhood fields around a vertex are used to describe a Hierarchical
Vertex Signature (HVS). HVS has many good characteristics such as invariance,
robustness and hierarchy. It is also computation efficient. We have also proposed an
iterative optimization registration scheme (IOR) in which the directions of major axes
if the surfaces are calibrated incrementally according to affine transformation
alignment between multi-resolution point-sets. The experiments indicate that our
algorithm produces robust registration results for deformable organs such as the liver.
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The proposed techniques of registration and the establishment of 3D point correspon-
dences are applicable to many other applications such as morphological or pathologi-
cal analysis, 3D model retrieval and 3D object recognition.
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Abstract. Optimal port placement is a delicate issue in minimally in-
vasive endoscopic surgery, particularly in robotically assisted surgery. A
good choice of the instruments’ and endoscope’s ports can avoid time-
consuming consecutive new port placement. We present a novel method
to intuitively and precisely plan the port placement. The patient is reg-
istered to its pre-operative CT by just moving the endoscope around
fiducials, which are attached to the patient’s thorax and are visible in its
CT. Their 3D positions are automatically reconstructed. Without prior
time-consuming segmentation, the pre-operative CT volume is directly
rendered with respect to the endoscope or instruments. This enables the
simulation of a camera flight through the patient’s interior along the
instruments’ axes to easily validate possible ports.

1 Introduction

Ideal port placement is one of the key issues in minimally invasive endoscopic
surgery, particularly in robotically assisted surgery. The optimal choice of the
instruments’ ports provides full access to the whole operation region as well as
adequate surgeon dexterity. This can avoid time-consuming new port placement,
which is a strain on every patient.

In the current clinical work flow, the surgical staff selects all ports by palpa-
tion of external anatomic landmarks, primarily based on their previous experi-
ence. However, if these external landmarks do not correspond to the individual
internal anatomy of each patient, a misplacement of ports can occur. Several
methods have been proposed to improve and automate the optimal placement
of ports [1,2,3,4]. They all have two major disadvantages: 1) They rely on the
time-consuming manual or semi-automatic segmentation of pre-operative imag-
ing data from CT or MRI, which is essential to reconstruct models of any involved
anatomy, e.g. ribs, heart, and soft tissue. These 3D models are used to automat-
ically compute the port locations. 2) They lack a practical and accurate way to
transfer the planned port locations to the operating room, which is achieved by
registering the patient to the pre-operative data.

In any case, the patient registration process is based on matching anatomical
or artificial landmarks, which are visible on both the patient and its CT data.
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Adhami and Coste-Maniere use the end effectors of the da Vinci telemanipulator
to point to fiducials, which are attached to the patient [1]. Due to their shape and
intensity, the fiducials can be segmented automatically in the CT data. Intra-
operatively, they move the robot arm’s end effector to every single fiducial in
order to get its position in the robot coordinate frame. This is a time-consuming
and unnatural task. Similarly, Selha et al use the sensor of an additional elec-
tromagnetic tracking system [3] as a pointing device. However, they base their
registration on anatomical landmarks. Both electromagnetic tracking and the
use of anatomical landmarks introduce an inherent imprecision when determin-
ing corresponding landmarks.

We propose a fast, practical, and easy method to register the CT data to the
patient. Spherical CT visible self-adhesive fiducials are stuck on the patient’s
skin. They are segmented automatically in its CT data. Intra-operatively, instead
of pointing to the fiducials, we only move the tracked endoscope around the
fiducials and acquire a set of images from differing, but arbitrary poses. To
simplify the acquisition process, not all fiducials need to be seen by the camera
in a single image. By automatically detecting the fiducials in these images, we
reconstruct their 3D positions in the tracking (=world) coordinate frame. Point
based registration methods enable us to match them with the CT data. For port
placement, the surgical staff simply moves the tracked instruments or endoscope
to the positions where it wishes to place their corresponding ports. A virtual
camera is placed on top of the instruments’ end effectors or the endoscope’s
camera center. It is able to simulate a flight through the patient’s interior by
rendering the CT volume as it would be seen by the endoscope. In this natural
way, optimal port placements can easily be identified without prior segmentation
of patient’s anatomy or any tedious pointing device. Our method is applicable
to any tracked endoscope, no matter whether it is tracked by an optical tracking
system, a mechanical one such as da Vinci, or any other tracking system.

In order to reconstruct the 3D positions of the fiducials, the endoscope’s
pose and intrinsic parameters need to be determined. This is achieved by a one-
time hand-eye calibration, as described in section 2. In section 3, we present
our algorithms for 3D reconstruction and patient registration. Further details on
the provision of volume rendering for port placement can be found in section 4.
Our conducted experiments on a thorax phantom are described in section 5. We
conclude in section 6 with an evaluation of our presented methods and a short
outlook on future research.

2 Calibration of the Endoscope

For our application, the endoscope camera is rigidly attached to a sensor, e.g.
to a marker target seen by an optical tracking system or an actuated robot arm
as for da Vinci. The main purpose of calibrating the endoscope is to model
the transformation of a 3D world point onto the camera’s 2D image plane,
so the projection of a fiducial onto the endoscope’s image can be reproduced
mathematically.
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In detail, a point X, in the world frame is first transformed into the sen-
sor frame by ., T, from where it is transformed into the camera frame by (T,
and finally mapped onto the image plane by the camera’s calibration matrix K.
The transformation ,,7s can be directly received from the tracking system. The
rigid transformation ;7. from sensor to camera coordinate frame and the in-
trinsic camera parameters stored in K need to be computed once. Additionally,
the rather large radial and tangential lens distortion of endoscopes needs to be
corrected for.

To compute all unknowns, a classical hand-eye calibration approach is taken
[5,6,7]. Therefore, a flat checkerboard pattern is placed arbitrarily. The tracked
camera performs a series of n motions. At the pause of each motion, the camera
acquires an image of the pattern and the pose of the attached sensor is recorded.
Having at least two motions (rotations around distinguished axes) or three poses,
respectively, the offset (7T, along with the camera’s intrinsic parameters and
distortion coefficients can be computed as follows:

First, the intrinsics, distortion coefficients, and camera poses in the pattern
coordinate frame (,77 ..., T the transformations from pattern to camera co-
ordinate frame) are computed using the gold standard algorithms for camera
calibration [8,9].

Second, the rigid offset between sensor and camera is computed. All trans-
formations involved during a single motion from pose 7 to pose j can be seen
on figure 1(a). The camera motions can be easily computed from previous re-
sults. Analogous, the sensor motions can be received from the recorded poses.
To compute T, the following so-called hand-eye equation needs to be solved:

Vi=1...n,j=1...ni#j: .1 =TI T, (1)

This can be achieved by decomposing the involved matrices, as described by
Tsai/Lenz and others [5,6,7].
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Fig. 1. The principles of hand-eye calibration and epipolar geometry
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3 Automatic 3D Reconstruction for Patient Registration

For patient registration, three essential steps are required: 1) All fiducials must
be segmented in the CT volume to determine the positions of their centroids. 2)
Their positions in the tracking coordinate frame need to be reconstructed using
the images, which are acquired by the calibrated endoscope camera and show
the fiducials. 3) The resulting point sets need to be matched in order to register
the patient to its CT data set.

The automatic segmentation of the fiducials in the CT volume can be
achieved by using standard image processing techniques based on threshold-
ing, filling, morphology, and subtraction [10,11]. The centroids of all segmented
fiducials can be computed very precisely by weighing their associated voxel in-
tensities and incorporating partial volume effects.

For finding the 3D positions of the fiducials in the tracking coordinate frame,
two iterations are performed for each image ¢ containing an arbitrary number m
of fiducials. First, the 2D positions x{ ...z¢ of all visible fiducials are extracted
automatically after undistortion of the image. Similar techniques as for the seg-
mentation of the CT data are used, which also incorporate edge detection and
color information of the fiducials and patient’s skin [11]. Second, the proper-
ties of epipolar geometry are applied to reconstruct their 3D positions[9,12], as
illustrated on figure 1(b).

Next, all 2D point pairs corresponding to the same 3D point are used to
optimally reconstruct the 3D point. For all 2D points, their associated projection
rays r1...rs are constructed, which intersect the camera center C,. = .t! and the
point’s projection onto the image plane P, =  Ri (X?)i + ot!,, where R =

w?

(wR)T and i = —(,R))T,t.. They can be represented using the camera
center C. as starting point and a directional unit vector d,:
P.-C
=Cr+Mdr =Cr+ N " 2
Tr 7‘+ r Uy T+ T”Pr_Cr” ()

The associated midpoint X,, can be computed, which is closest in average to all
s rays. Therefore, following overdetermined system of linear equations has to be
minimized: .
D NIC + Ardr = X (3)
r=1
As stated by Sturm et al, this linear least squares problem may be solved using

the Pseudo-inverse [13]. Finally, these results can be further improved by using
the Levenberg-Marquardt iteration to minimize following equation:

s[4 -1

S

>

r=1

2

(4)

After the reconstruction of all 3D points from their associated 2D points, they
need to be matched with the points segmented in the CT data set. Therefore, the
correct point correspondences need to be identified and the transformation from
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the CT coordinate frame into the world coordinate frame, where the patient is
registered in, needs to be computed. This can be done by a distance-weighted
graph matching approach along with a point based registration algorithm [14,15].
Finally, the patient’s CT volume is registered in the same coordinate frame as
the patient.

4 Volume Rendered Port Placement

Once the CT volume is registered to the patient, it can be visualized with respect
to any tracked instruments, overlaid onto the real images of the endoscope,
displayed simultaneously with the real endoscopic images [16], or even be used
to extend the endoscopic images to improve the surgeon’s orientation. In our
case, the CT volume is directly rendered as it would be seen by virtual cameras
put in front of the tracked instruments or by the real endoscope camera. This
can be used for placing the instruments and endoscope or their corresponding
ports, respectively, in an optimal way. By virtually moving the camera in and
out the volume along the instruments’ or endoscope’s main axes the surgeon can
intuitively verify, whether the current poses of the instruments and the endoscope
are ideal to reach the whole operating region.

For rendering the volume, pre-defined transfer functions are offered to assign
specific colors and opacities to certain image intensities, which can be modified
interactively to the surgeon’s needs. This makes it easy to realistically visualize
only the anatomy, which is essential for the success of the intervention, e.g. for
cardiac surgery the bones, aorta, heart, and other main arteries such as the left
and right arteria mammaria interna, which were contrasted for CT. To provide
a fast and though detailed visualization during port placement in real time, our
volume renderer is using the graphic card’s GPU (graphical processing unit) to
perform the computations for 3D texture mapping.

Utilizing this approach of direct volume rendering without prior segmenta-
tion and generation of polygonal 3D models of the patient’s anatomy saves a
noticeable amount of time for planning the ports and leaves the control to the
surgical staff during port placement.

5 Experimental Results

For our experiments we used a 30 degrees laparoscope tracked by an optical
tracking system, which has a root mean square error of 0.53 millimeters for the
viewing axis and 0.32 millimeters for the other axes when tracking retroreflec-
tive markers. We implemented two classical hand-eye calibration methods by
Tsai/Lenz and Daniilidis [5,6]. Tsai and Lenz combine two QR decompositions
to determine the translation and rotation, whereas Daniilidis uses dual quater-
nions and a single singular value decomposition.

The intrinsic and extrinsic camera parameters were estimated from 32 frames.
For hand-eye calibration, 3 to 32 endoscope poses and all possible motions be-
tween them were used to estimate the transformation from sensor to camera,
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Fig. 2. Experimental reconstruction and augmentation error

resulting in 30 transformation matrices. To validate these matrices, the posi-
tions of 9 retroreflective spherical markers were reconstructed from 6 endoscopic
images. These reconstructions were compared to the measurements of the op-
tical tracking system. The average distance of the reconstructed points to the
measurements of the tracking system was computed for each transformation ma-
trix. As visualized in figure 2(a), a typical hand-eye calibration incorporating 10
to 25 poses gave errors between 1.4 and 2 millimeters. The described hand-eye
calibration is done off-line, so above results remain valid for a long period of
time and only need to be verified every now and then.

To determine the augmentation error during port placement, 13 CT visible
spherical fiducials with a diameter of 4 mm were attached to a plastic tho-
rax phantom containing a heart model. After a CT scan and segmentation of
all fiducials, the phantom was placed arbitrarily. The 3D positions of 4 fidu-
cials were reconstructed automatically by moving the tracked endoscope around
them, using 3 to 4 images from differing poses for each fiducial. The other 9 fidu-
cials were just used later for validating the augmentation from many different
viewing directions, so in practice they are not needed. Next, the CT-to-tracking
transformation of the 4 fiducials was computed.

Having the sensor-to-camera and CT-to-tracking transformations as well as
intrinsic camera parameters and distortion coefficients, the endoscopic images
can be undistorted and the CT volume can be augmented on them. To verify
the augmentation, the distances of all 13 fiducials from the real images to a
semi-transparent augmentation in an orthogonal view were measured. An aver-
age error of 2.6 mm could be determined. This is fully sufficient for a precise
port placement. We also compared our automatic 3D reconstruction method to
a pointer based approach. Therefore, a pointing device tracked by the optical
tracking system was used to record the positions of the 4 fiducials. Again, the
CT-to-tracking transformation was computed and used for the augmentation.
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(a) Real (b) Augmented (c) Virtual

Fig. 3. 3 visualization modes for the same endoscope pose: 3(a): Real camera image,
3(b): Transparent augmented view outlining fiducials, ribs, and heart (the virtual green
contours correctly match the white fiducials in the video image), 3(c): Purely virtual
view, which can be used for port placement to move the camera in and out

With this method, we only achieved an average error of 3.2 mm, i.e. our method
almost systematically performs better than the pointer based one. The compar-
ison is visualized in figure 2(b).

A port placement application was implemented offering three visualization
modes, as displayed on figure 3. In the first mode, the undistorted real endoscopic
image is displayed. The second mode additionally augments the volume on the
phantom in a half-transparent mode, so the accuracy of the overlay can be
verified by the surgeon. In a third purely virtual mode the surgeon can switch
the endoscope optics from 30 degrees to 0 degrees and move the camera in and
out the volume along the endoscope’s main axis to validate a possible port. The
augmentation of a 512x512x444 CT volume and undistortion of the camera
frames with a resolution of 800x600 pixels was achieved in real time (15 fps).

6 Conclusion

In this work we addressed and solved two substantial problems of current ap-
proaches dealing with the improvement and automation of port placement: Time-
consuming segmentation of patient’s anatomy and inadequate patient registra-
tion. Moreover, our technique not only supports the surgeon during port place-
ment, it also enhances the endoscopic images by undistortion. Besides the track-
ing system used to determine the endoscope’s pose no further tracking system
is needed. We reckon that our technique can supplement the current clinical
work flow easily, because we keep it simple and still leave the control to the
surgeon during port placement. Apart from the pre-operative attachment of 4
fiducials to the patient and a short and intuitive intra-operative patient registra-
tion procedure we do not alter the conventional clinical work flow. Our method
can be applied to any minimally invasive endoscopic procedure provided that
pre-operative patient data is available.

This method is more precise than the usual method of pointing the robot or
hand-held endoscope/instrument to each fiducial. It also fits more smoothly into
the surgical work flow, as it only requires the surgical staff to move the endoscope
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camera over the patient’s body. Our work does not address organ deformations
and motions caused by the insufflation of carbon dioxide and respiratory as well
as cardiovascular effects. In this sense, the system only provides an approximative
result and relies on the surgeon’s expertise for further considerations of possible
deformations.
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Abstract. We present a new algorithm to register 3D pre-operative
Magnetic Resonance (MR) images with intra-operative MR images of
the brain. This algorithm relies on a robust estimation of the defor-
mation from a sparse set of measured displacements. We propose a new
framework to compute iteratively the displacement field starting from an
approximation formulation (minimizing the sum of a regularization term
and a data error term) and converging toward an interpolation formula-
tion (least square minimization of the data error term). The robustness
of the algorithm is achieved through the introduction of an outliers rejec-
tion step in this gradual registration process. We ensure the validity of
the deformation by the use of a biomechanical model of the brain specific
to the patient, discretized with the finite element method. The algorithm
has been tested on six cases of brain tumor resection, presenting a brain
shift up to 13 mm.

1 Introduction

1.1 Image-Guided Neurosurgery

The development of intra-operative imaging systems has contributed to improv-
ing the course of intracranial neurosurgical procedures. Among these systems,
the intra-operative magnetic resonance scanner offers the possibility to acquire
full brain MR images in less than 4 minutes.

Intra-operative measurements show that the deformation of the brain is an
important source of error that needs to be considered. Indeed, imaging the brain
during the procedure makes the tumor resection more effective, and provides
additional guidance for the complete resections in critical brain areas. However,
even if the intra-operative MR scanner provides significantly more information
than any other intra-operative imaging system, it is not clinically possible to
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acquire image modalities like diffusion tensor MR, functional MR, or high reso-
lution MR images in a reasonable time during the procedure.

Non rigid registration algorithms provide a way to overcome the
intra-operative acquisition problem: instead of a time consuming acquisition of
images during the procedure (dt-MRI, -MRI or high resolution MRI), the intra-
operative deformation is estimated based on fast acquisition of intra-operative
images. This transformation is then applied to match the pre-operative images
on the intra-operative data.

1.2 Non-rigid Registration for Image-Guided Surgery

Simplified biomechanical linear models have been used to interpolate the full
brain deformation based on the measure of surface displacements (brain, ven-
tricles). Audette [1] measured the visible intra-operative cortex shift using a
laser range scanner. Ferrant [2] extracted the full cortex and ventricles surfaces
from intra-operative MR images. These interpolation-based registration meth-
ods however suffer from a decrease of accuracy when reaching internal structures
far from the measured surface.

These models are introduced through the energy minimization formulation
of the registration problem as a regularization component. In 1998, Yeung [3]
showed impressive registration results on a phantom using an energy minimiza-
tion formulation combining ultrasound speckle tracking with a mechanical finite
element model. Rohr et al. [4] combined elastic regularization with an improved
block matching (BM) algorithm relying on relevant anatomical landmarks and
taking into account the anisotropic matching error. In 2001, Rexilius [5] com-
bined feature point correspondences with a finite element biomechanical model
in an approximation formulation to capture brain shift.

2 Method

We have developed a patient-specific registration algorithm to measure the brain
deformation based on two images acquired before and during the brain surgery.
This algorithm can be decomposed into three main parts. The first part consists
in building a biomechanical model specific to the patient corresponding to his
position in the open-magnet scanner. The second part is the block (or template)
matching computation for selected blocks. The third part is the new iterative
hybrid solver which alternates an energy minimization step with an outlier re-
jection step.

In addition, we address the problem of discriminant information distribution
in the images (known as the aperture problem in computer vision) to make the
registration process dependent on the spatial distribution of the information
given by the structure tensor (see Section 2.1 for definition).

In the following section, we propose a description of the algorithm sequence,
making a distinction between off line (before the first MR acquisition to be
registered) and on-line computations.
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2.1 Pre-operative MR Image Processing

Segmentation. We use the Brainvisa software! to automatically segment the
brain in the pre-operative images (see Figure 1, B). The tumor segmentation is
manually delineated by the physician for the pre-operative planning.

Rigid Registration. An initial intra-operative MR image is acquired at the
very beginning of the procedure, before opening the dura-mater. This image
is used to compute the rigid transformation between the two positions of the
patient in the pre-operative image and the intra-operative image.

Biomechanical Model. The patient-specific brain tetrahedral mesh is build
from the previous segmentation using the GHS3D mesher [6]. The mesh gener-
ated has an average number of 1700 vertices (the surface mesh is displayed on
figure 1, B), which shows to be a reasonable trade-off between the number of
degrees of freedom and the number of matches.

We rely on the finite element theory and consider a quasi-incompressible linear
elastic constitutive equation to characterize the mechanical behavior of the brain
parenchyma: £ = 694 Pa and v = 0.45. Even if CSF is incompressible, the CSF is
free to flow between the ventricles and the subarachnoid space. We thus assume
very soft and compressible volumes for the ventricles: £ = 10Pa and v = 0.05.

Fig. 1. Illustration of the pre-operative processes. (A) pre-operative image. (B) seg-
mentation of the brain and mesh generation (we only represent the surface mesh for
visualization convenience). (C) Structure tensor visualization as ellipsoids (zoom on
the square area), the color encodes the fractional anisotropy. (D) Example of a sparse
displacement field computed with the block matching (BM) algorithm (5 % of the total
voxels are selected as blocks centers). Color encodes displacement.

Block Selection. The relevance of a displacement estimated with a block
matching (BM) algorithm depends on the presence of highly discriminant struc-
tures in this block. We use the variance of the block to measure its relevance, and
only select a fraction of all potential block positions based on this criterion. In
addition, we introduce the notion of prohibited connectivity between two block
centers to prevent two selected blocks to be too close from each other. We ob-
tained best results using the 26 connectivity, preventing two distinct blocks of
7 x 7 X 7 voxels to share more than 42% overlapping voxels.

! http://www.brainvisa.info/
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Computation of the Structure Tensor. We consider the normalized struc-
ture tensor T} defined in the image I at position Oy by:

~ trace [G x (VI(O))(VI(Ox))T]
Where G defines a convolution kernel (chosen constant in a block). Considering
the classical ellipsoid representation, the more the underlying image resembles to
a sharp edge, the more the structure tensor elongates in the direction orthogonal
to this edge (see Figure 1, C).

2.2 Block Matching Algorithm

The block matching (BM) algorithm makes the assumption that a global defor-
mation results in translation for small parts of the image: considering a block
B(Oy) in the reference image centered in Oy, and a similarity metric between
two blocks M (B, By), it consists in finding the positions Oj, that maximize the
similarity:

argmx (M (B (1), B (0'4)) (2)

In our algorithm, the BM is performed once and only in the sgmented brain, thus
restricting the displacements to the intra-cranial area (see Figure 1, D). Con-
sidering the mono-modal (MR-T1 weighted) nature of our registration problem,
the correlation coefficient appears as a natural choice for the similarity measure.

2.3 Iterative Hybrid Algorithm

The approximation problem can be formulated as an energy minimization, com-
posed of a mechanical and a matching (or error) energy:

-

Wapproz = U' KU~ +(HU — D)"'S(HU — D) (3)

Mechanical energy Matching energy

with:

— U the displacement vector (of mesh vertices), of size 3n, with n number of
vertices.

— K the mesh stiffness matrix of size 3n x 3n.

— H is the linear interpolation matrix in tetrahedra of size 3p x 3n.

— D the block-matching computed displacement vector of size 3p, with p num-
ber of matched points. Note that HU — D defines the estimated displacement
error vector.

— S is a block-diagonal matrix composed of 3 x 3 sub-matrices S; = gcka.
The influence of a block thus depends on two factors:

1. the value of the coefficient of correlation (cx): the better the correlation
is (coefficient of correlation closer to 1), then the higher the influence of
the block on the registration will be.
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2. The direction of matching with respect to the tensor of structure (T%):
we only consider the matching direction co-linear to the orientation of
the intensity gradient in the block.

The 117 factor is used to make the global matching energy independent of the
number of selected blocks.

The approximation formulation however entails a systematic error: the final dis-
placement of the brain mesh is a trade-off between the pre-operative rest position
and the BM positions. An alternative approach is the interpolation formulation.
The problem is turned into a mechanical energy minimization under the con-
straint of minimum data error, formalized with the Lagrange multipliers stored
in the vector F as:

Winterp - UTKU + FTHTS (HU — D) (4)

However, when some of the BM displacements are outliers, the minimization of
Equation 4 may lead to unrealistic deformations.
Therefore, we propose a new iterative formulation of the registration problem:

{Fi = KUi (5)
Uip1 < [K + HTSH] ™ [HTSD + F]

which first solves the approximation problem (Equation 3) and gradually con-
verges toward the interpolation solution (Equation 4). Equation 5 is iterated
until the displacement modifications are smaller than a threshold. At each itera-
tion, outliers are rejected, such that we get a more robust and unbiased estimate
of the displacement. Note that H, S and D thus have to be recomputed at each
iteration 1.

Outlier Rejections. We introduced a robust block-rejection step based on a
least-trimmed squares (LTS) estimator [7]. The LTS rejects a fraction of the total
blocks based on an error function £ measuring for block k the error between
the current mesh displacement and the matching target:

€ = |5k [(HU)r — D]l (6)
MDY +1

Dy, (HU)j and [(HU) — Dy respectively define the BM displacement, the
current mesh-induced displacement and the current displacement error for block
k. X\ is a parameter of the algorithm tailored to the error distribution on matches.
With such a cost function, the rejection criterion is more flexible with points that
account for larger displacements. In practice, this parameter was set to 0.5 for
all our registrations. Although the least trimmed squares estimator is a robust
estimator up to 50% of outliers [7], we experienced that a cumulated rejection
representing 25% of the total initial selected blocks is sufficient to reject every
significant outlier. The last parameter remaining in the algorithm is the matching
stiffness a. We chose a matching stiffness o = mws(K), reflecting the average
vertex stiffness (note that this value does not depend on the number of vertices
used to mesh the volume), so that at least half of the displacement is already
recovered after the first iteration step.
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Algorithm 1 Registration scheme

1: Get the number of rejection steps ngr from user
2: Get the fraction of total blocks rejected fr from user
3: for i =0 to ngr do
F; < KU;
U1 < [K + HTSH] ™' [HTSD + F)]
for all Blocks k do
Compute error function &
end for
9:  Reject z ’; blocks with highest error function &
10:  Recompute S, H, D
11: end for
12: repeat
13: F; < KU;
14 Uip1 < [K +HTSH] ' [HTSD + F)]
15: until Convergence

Implementation Issues and Time Constraint. We developed a parallel
version of the algorithm, reducing the computation time from 162 to 25 seconds
on an heterogeneous group of 15 PCs.

3 Results

3.1 Experiments

We evaluated our algorithm using the same parameters on 6 pairs of pre and
intra-operative?. Figure 2 presents the results for the slice showing the largest
displacement, in depth results can be seen on: http://splweb.bwh.harvard.
edu:8000/pages/ppl/oclatz/registration/results.html. The quantitative
accuracy of the algorithm has been evaluated by a medical expert selecting
54 corresponding feature points in the registration result image and the intra-
operative image. This landmark-based error estimation has been performed on
every image for 9 different points. Figure 3 shows the distribution of the
landmark-based registration error as a function of the displacement of the tis-
sue (left) and of the distance to the tumor (right). The average error on the 54
landmarks (0.75 mm) indicates that this algorithm is valuable for image guided
therapy. The error however tends to increase in the area close to the tumor (right
graph, Figure 3). We can observe that the quality of the brain segmentation has
a direct influence on the deformed image, for example patient 3 of Figure 2 had
a brain mask eroded on the frontal lobe which induces a missing part in the
registered image. The deformation field however does not suffer from the mask
inaccuracy, since the brain segmentation is not directly used to guide the reg-
istration. The assumption of local translation assumed in the block-matching

2 256 x 256 x 58 slice (0.86 mm, 0.86 mm, 2.5 mm) acquired with the 0.5 T open
magnet system of the Brigham and Women’s hospital.



Hybrid Formulation of the Model-Based Non-rigid Registration Problem 301

Fig. 2. Result of the non rigid registration of the pre-operative image on the intra-
operative image for the 6 patient of our dataset. For each patient, column A shows
the pre-operative image, column B shows the result of the registration and column
C shows the intra-operative image (target image). The algorithm could recover large
displacements (#5), and demonstrates robustness in presence of large resection (#4).

Displacement (mm) Distance to the Tumor Margin (mm)
0 2 4 6 8 10 12 14 0 20 40 60 80 100
3 3
25 _ 25
€ €
3 . £ 1
T 2 + Patient 1 = 2 - + Patient 1
5 P s - "
2 + Patient 2 = - + Patient 2
5  Patient 3 3  Patient 3
g 15 . . . Patient 4 £1s5 Patient 4
8 x x = Patient 5 g = Patient 5
2 1 e me e . . « Patient 6 E « Patient 6
L L oo . PR M
05 05
0 0
Landmark-Based ion of the ion Error as a Function Landmark-Based of the ion Error as a Function
of the Estimated Tissue Displacement of the Distance to the Tumor

Fig. 3. Measure of the registration error for 54 landmarks. (Left) as a function of the
initial arror. (Right) as a function of the distance to the tumor margin. Characteristic
figures: average displacement = 3.77 mm, maximum displacement = 13.18 mm, average
error = 0.75 mm, maximum error = 2.50 mm.

algorithm seems to be well adapted to the motion of the brain parenchyma. It
somehow shows limitations for ventricles expansion (patient 4 and 6 of Figure 2)

or collapse (patient 5 of Figure 2), where the error is approximately between two
and three millimeters.

3.2 Conclusion

We presented in this article a new registration algorithm designed for robust non-
rigid registration of intra-operative MR images. The algorithm has been moti-
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vated by the concept of using robust estimators to gradually move from an ap-
proximation to an interpolation formulation of the non rigid registration problem.

The results obtained with the six patients demonstrate the applicability of
our algorithm to clinical cases. This method seems to be well suited to capture
the mechanical brain deformation based on a sparse and noisy displacement
field, limiting the error in critical regions of the brain (such as in the tumor
segmentation). The remaining error may be due to the limitation of the linear
elastic model.

In the future, we wish to adapt multi-scale methods to our problem, to com-
pute near real-time deformations.

Acknowledgments. This investigation was supported by NIH grants R21
MH67054, R0O1 LM007861, P41 RR13218, P01 CA67165 and by a research grant
from the Whitaker Foundation.

References

1. Audette, M.: Anatomical Surface Identifcation, Range-sensing and Registration for
Characterizing Intrasurgical Brain Deformations. PhD thesis, McGill University
(2003)

2. Ferrant, M., Nabavi, A., Macq, B., Black, P., Jolesz, F., Kikinis, R., Warfield, S.:
Serial registration of intraoperative MR images of the brain. Medical Image Analysis
6 (2002) 337-360

3. Yeung, F., Levinson, S., Fu, D., Parker, K.: Feature-adaptive motion tracking of
ultrasound image sequences using a deformable mesh. IEEE Transactions on Medical
Imaging 17 (1998) 945-956

4. Rohr, K., Stiehl, H., Sprengel, R., Buzug, T., Weese, J., Kuhn, M.: Landmark-based
elastic registration using approximating thin-plate splines. IEEE Transactions on
Medical Imaging 20 (2001) 526-534

5. Rexilius, J., Warfield, S., Guttmann, C., Wei, X., Benson, R., Wolfson, L., Shen-

ton, M., Handels, H., Kikinisl, R.: A novel nonrigid registration algorithm and
applications. In: Medical Image Computing and Computer-Assisted Intervention
(MICCAT’01). Volume 2208 of LNCS., Springer (2001) 923-931,

. Frey, P.J., George, P.L.: Mesh Generation. Hermes Science Publications (2000)

7. Rousseeuw, P.: Least median-of-squares regression. Journal of the American Sta-
tistical Association 79 (1984) 871-880

(=]



Automatic Registration and Fusion of
Ultrasound with CT for Radiotherapy

Wolfgang Wein', Barbara Roper?, and Nassir Navab!

! Computer Aided Medical Procedures (CAMP) Group, TU Munich,
Boltzmannstr. 3, 85748 Garching, Germany
{wein, navab}@cs.tum.edu
2 Clinic and Policlinic of Radiation Oncology, Klinikum Rechts der Isar,
TU Munich, Ismaninger Str. 22, 81675 Munich, Germany
barbara.roeper@lrz.tum.de

Abstract. We present a framework for rigid registration of a set of
B-mode ultrasound images to a CT scan in the context of Radiother-
apy planning. Our main focus is on deriving an appropriate similarity
measure based on the physical properties and artifacts of ultrasound. A
combination of a weighted Mutual Information term, edge correlation,
clamping to the skin surface and occlusion detection is able to assess
the alignment of structures in ultrasound images and simulated slices
generated from the CT data. Hence a set of ultrasound images, whose
relative transformations are given by a magnetic tracking device, can be
registered automatically to the CT scan. We validated our methods on
neck data of patients with head and neck tumors and cervical lymph
node metastases.

1 Introduction

Overview. Registration of ultrasound images to three-dimensional tomographic
modalities such as CT and MRI is receiving a lot of attention in the past few
years. On one hand, many intra-operative procedures, especially in neurology
and orthopedics, can be guided with ultrasound while integrating pre-operative
information from CT/MRI. On the other hand, data fusion for diagnosis and
treatment planning can improve the outcome as well.

In the particular application of radiation treatment planning for inoperable
head and neck cancer the identification of metastatic neck lymph nodes is manda-
tory for the correct target volume delineation. This can be achieved with a re-
ported accuracy of 80-95% using high-frequency ultrasound [1]. However, the tar-
get volume definition is done on individual slices of a planning CT scan. In direct
comparison with ultrasonography, diagnostic CT was equally predictive in reveal-
ing lymph node size, but performed worse in depicting internal nodal architecture,
leading to a lower sensitivity and specificity than ultrasonography [2]. As in plan-
ning CTs for radiotherapy contrast medium is usually omitted, their diagnostic
properties are particularly poor. Therefore, transferring the diagnostic informa-
tion from ultrasound onto the CT data could yield a more precise treatment.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 303-311, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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In general, registration of multimodal data is especially desirable if they
provide complementary information. At the same time, this complementary na-
ture hampers image-based registration algorithms, which try to align structures
present in both modalities. In our work, we will try to overcome some of these
problems for ultrasound-CT registration.

Related Work. Due to the very different characteristics of ultrasound imag-
ing with respect to CT / MRT, a lot of research has been carried out on using
features extracted from the ultrasound images, in order to align them with cor-
responding structures in other modalities. Possible anatomical features comprise
vessels [3,4], bone surfaces [5], organ surfaces [6]. Pure intensity-based registra-
tion has been performed mainly for 3D ultrasonic data. Roche et al. [7] use an
adapted correlation ratio similarity measure in order to register the ultrasonic
data simultaneously to both the intensity and the gradient information of a MRI
scan. A registration involving an automatic mapping of MR and Ultrasound data
to Vessel probability values and successive registration of this information is pro-
posed in [8]. Using a CT data of a kidney, where the intensity values are enhanced
with strong edges from the gradient, a registration with freehand 3D ultrasound
is performed in [9]. Voxel-based registration of MRA scans with Power Doppler
ultrasound has been evaluated in [10].

2 Methods

2.1 Simulation from CT

Instead of a realistic simulation of ultrasound, we need an intelligent and efficient
intermediate representation of the CT data at arbitrary cut-planes, such that an
iterative registration can be performed in an acceptable time. These slices have
multiple components containing intensity, gradient and edge information, which
are used to derive various parts of a similarity metric, so that the correspondence
of anatomy contained therein with structures in 2D B-mode ultrasound images
can be determined.

In our approach, first the three-dimensional gradient vector values are com-
puted from the CT data set by convolution with a sobel filter cube. They are
stored in a 4-channel volume together with the original voxel intensity. The in-
terpolated slices contain four channels as well. For each pixel, the 4-vector is
computed from the volume using trilinear interpolation. In the first channel of
the slice, the original CT intensity is stored. The 3D gradient vector is scalar mul-
tiplied with each of the vectors indicating the horizontal and vertical slice plane
directions, respectively. The resulting values, corresponding to the 2D gradient
of the CT intensity within the slice, are stored in the second and third channel.

The 2D slice gradient values are then used to perform Canny edge-detection
on the slice data, storing the result in the fourth channel. The most time-
consuming steps within the Canny algorithm for 2D images are the computation
of the 2D gradients, as well as filtering them with a sufficiently large Gaussian
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kernel for smoothing. As we compute the 2D gradients directly from the pre-
computed 3D gradient values, we do not need to run a 2D filtering for gradient
computation. In addition, those gradients are very smooth, as they originate
from a three-dimensional Sobel filter using a 27-neighborhood. This makes fur-
ther Gaussian filtering unnecessary. The two remaining steps for the Canny al-
gorithm, non-maxima suppression and hysteresis thresholding, can be performed
each in one traversal of the 2D slice. The horizontal gradient is weighted with
a user-defined factor between 0 and 1, as the ultrasound data tends to show
mainly vertical edges.

Thus we are able to construct intermediate slices from the CT data at esti-
mated transformations of the US scan plane in very little time!. The individual
components of the slice pixels are then used to compute a similarity metric with
the ultrasound data.

2.2 Occlusion Handling

If an ultrasonic pulse hits bony structures, all image intensities in the ultrasound
image further along the specific ray are occluded, and mainly determined by
noise. Therefore, all ultrasound intensity values on a ray below such an occlusion
should be disregarded in the registration method. In our implementation, we
scan the US image from bottom to top, updating the variances for all ultrasonic
pulse rays. Where they exceed a threshold (which is easily determined in the
user interface), the first pixel to be considered is defined. Thus, our Region of
interest {2 is expressed by the following equations:

Q2 ={(z,9) | (y <yrop) N (y = b(x))} (1)
y—1 y—1 2
b(x) = miny ; Ul(x,y)* — (; Z U(ax,y)) < cr; (2)
i=0 i=0

By applying a median filter on the bottom function b(z), discontinuities are
removed before defining the ROI. In addition, we discard all pixels which are
located above yop = 190 sizey, as we observed that the anatomy is highly com-
pressed there due to the probe pressure on the patients skin. This compressed
region is very distinct from the remaining anatomical structures, its size (3.6mm)
being consistent on all data we obtained from patients (figure 1). This ROI def-

inition is similar to the ones used in [8] and [9)].

2.3 Similarity Measure

Based on both the physical properties of the imaging modalities, as well as
the visible appearance of their images, we developed several components for a
similarity measure, which can in turn be weighted to form a cost function value
with respect to the transformation parameters.

! 1.1ms for a 1282 pixel slice, interpolated from a 512% - 100 CT/gradient volume, on
an AMD Opteron 2.4 Ghz machine.
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Fig. 1. Two ultrasound images with ROI (red lines) and target, corresponding CT
slices, edges from CT, and overlay in 3D. The physical image size is 4 X 4cm.

Skin Surface Clamping. In the compressed fraction of the ultrasound image,
the interpolation from CT is done with 6 times the vertical scaling (figure 1 on
top). As result, the interface between skin and air always has to be within that
region, producing a large vertical gradient in the interpolated slice. When all
vertical gradient pixels are summed to ¢, high and low thresholds ¢, t; can be
defined in order to decide if the skin surface lies inside, outside or close to the
compressed region:

1 if t>t,
(1) = 0 if t<top; So=3f()*-2/®)°  (3)
(t —t;)/(tn — t;) otherwise

A cubic polynomial is used instead of the linear rise in order to avoid disconti-
nuities. Used as a cost function component, Sy penalizes transformations which
are physically impossible, as the patients skin is always on top of the ultrasound
images.

Edge Alignment. As we have detected the edges in the simulated images, we
would like to derive a similarity estimate based on the distance to edge structures
in the ultrasound images. The straight-forward approach would be to 1) compute
an edge-detection for the ultrasound images, 2) compute a 2D distance map for
those edges and 3) sum over the distance map values at the locations indicated
by the edges of the simulated data. Steps 1) and 2) need to be performed once
for each ultrasound slice, while 3) establishes a similarity metric and thus has
to be computed for each simulated slice during pose estimation.

However, due to the very different nature of CT and ultrasound data, de-
tected edges do not correspond in general. We therefore propose to skip the edge
detection from ultrasound data, instead using the original ultrasound intensity
just as indicator for edges.

Given a binary edge image, the distance of an image point x to the edge
structures Y = {y;} is d(x) = min; | — y;|. Instead of the euclidian distance,



Automatic Registration and Fusion of Ultrasound with CT 307

we can also express the proximity to edges by using a Gaussian expression, which
allows us to adjust the sensitivity of the cost function value with respect to the
distances, using o2:

d(x) = maxexp — )
[ g

Taking into account that we do not have precise edge information, a proximity
value can be defined as
(x —vi)?
w) = sz exp — 0_2 * (5)
i

where p; € [0...1] is the probability for the image pixel y; being an edge. Assum-
ing that the ultrasound image intensity directly scales with the edge probability,
a two-dimensional proximity function p(x) can be computed by just convoluting
the ultrasound image with a large gaussian kernel. The similarity measure com-
ponent arises from this as S1 = (pe — p)/0p, where p is the mean of all values in
the proximity image, p. the mean of just the pixels at locations where an edge is

present in the simulated image, and o, the standard deviation of the proximity
image values.

Statistical Correspondence. Different tissues in the anatomy cause different
scattering characteristics for ultrasonic waves. Higher scattering in turn causes
a larger portion of the ultrasound pulse to be reflected back to the transducer,
resulting in higher intensities in the ultrasound image. It is therefore applica-
ble to assess the statistical dependance of the CT intensities, which classify the
tissue according to the X-Ray attenuation property, with the intensity in the
ultrasound image. We therefore use Mutual Information on the CT and ultra-
sound intensities. The Normalized Mutual Information term uses the entropies
of the combined and individual images, which are computed with the Shannon
entropy from probability distributions of the image intensities:

NMI(U 5) — 2 2H(U, S)/(H(U) + H(S))
Zpu Ingu .]) H Zps IngG )

_Zzp Za.] Ing(’L,])
iog

Here U denotes an ultrasound image, and S the corresponding simulated image,
i.e. the slice interpolation of CT attenuation values. The probability distributions
can be estimated using histogram information from the images:

pali) = | {(w.9) € 2IUGy) = i) (©
pe(i) = @) € 2IS(y) = )] @

pd) = o) € 2UG9) =i S(wy) = 5} Q
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Here we assume that each intensity value is mapped into one histogram bin,
and ng = |{2] is the number of pixels in the region of interest. An equivalent
formulation for constructing the probability distribution from a histogram can
be written using a binary count function ¢,

pu(z) - nl Z Cu(mvy;i)3 cu(a:,yJ) = {1 ,Lf U(mvy) = 'L} (9)

0 0 otherwise
(z,y)ER

Due to the various physical effects in ultrasound imaging, both the chance that
an image intensity reflects the anatomy, as well as the Signal to Noise Ratio
(SNR), decrease with the distance from the ultrasound transducer. Thus we
would like to give more emphasis on image pixels which are closer to the probe,
i.e. with higher y values. In our approach, we introduce an integer weighting for
assembling the distribution:

. 1 .
p;@) = n' Z (y + CO)Cu<mvy7Z) (10)
2 (zy)en
ng—1Ytop—1

ng = Z Z (y + co) (11)
)

=0 y=b(z

Every intensity value is inserted y + ¢¢ times into the histograms and the joint
histogram. For ¢y — oo the original Mutual Information notation is obtained.
Our weighted Mutual Information component NMI’ of the similarity measure
is assembled by inserting all used ultrasound slice images and the corresponding
simulations into one histogram, as it increases the statistical significance of the
derived entropy terms.

Cost Function. The final similarity measure from a set of n ultrasound slices
{U;} and their CT simulations {S;} is

of = woi > So(Us, i) + wli > 51U 8i) + weNMI'({Ui}, {Si})  (12)

i=1 =1

2.4 Registration

In order to manually navigate the stack of ultrasound images to the desired
position within the CT data, the user picks a reference slice k, whose position
and orientation is changed by left-multiplication with a rigid transformation
matrix. At the same time, all other transformations are updated in order for the
relative locations to stay fixed, as they originate from the tracker.

For automatic registration, a non-linear optimization method maximizes the
cost function cf iteratively with respect to the parameters of a rigid transfor-
mation (6 DOF, translation and Euler angles), which is initialized with zero and
affects the location of all slices. We used three optimization schemes: simple hill
climbing, Powell-Brent and an exhaustive hill climbing. The latter one evaluates
all combinations of [forward, keep, backward] for all parameters, using the best
result of all 36 = 729 evaluations as estimate for the next iteration.
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3 Results

Three head and neck cancer patients with metastatic lymph node involvement
were thoroughly examined with a 11 MHz linear array ultrasound probe. The im-
ages were recorded using a frame grabber card, while an Ascension
microBIRD™magnetic tracking sensor provided the spatial encoding. A set of
3-10 slices from the right carotid artery of each patient was picked for registra-
tion. Figure 1 depicts two slices from the first patient alongside the registered
CT data.

A ground truth registration pose was established with manual registration
by the physician. This could be done with an estimated precision of 1mm in the
first data set, as the calcifications in the carotid artery (figure 1) represented
good anatomical landmarks.

In order to evaluate the robustness and accuracy of the automatic regis-
tration, 200 registrations were launched from initial transformations randomly
displaced up to 5mm/5° in each parameter around the ground truth pose. The
following table denotes both the root mean squared (RMS) error in the transla-
tional and rotational components, as well as the target registration error (TRE)
for the lymph node (figure 1) picked as target. This evaluation was done for all
three used optimization schemes on the data of patient 1.

trans. rot. TRE iterations time
Hill Climbing 1.2mm 3.7° 2.0mm 242 3s
Powell-Brent 1.0mm 2.8° 1.8mm 4 8s
Exhaustive H.C. 0.8mm 2.5° 1.2mm 189  144s

All optimization methods are able to converge precisely to the ground truth
registration, so that the registered data can be used reliably for therapy planning.
To do so, the slices from the original CT data set, which are used to outline

Fig. 2. Left: Overlay of registered ultrasound images, a slice from the CT data set, and
CT volume rendering. Right: Volume rendering of compounded 3D ultrasound.
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the target volume, are visualized together with the registered ultrasound slices
and optionally volume rendering of both the CT and a 3D ultrasound volume
spatially compounded from the tracking data (figure 2).

4 Conclusion

We developed methods which allow automatic registration of a set of ultra-
sound slices to a CT scan, despite the very difficult characteristics for reg-
istration of both modalities. The similarity metric is derived from the physi-
cal properties of ultrasound imaging, rather than from the particular anatomy
used in our experiments. Therefore the algorithms are also applicable on any
other part of the human body scanned with an external ultrasound probe.
The registration is performed within a few seconds, and is therefore capable
of supporting real-time applications, such as intra-operative navigation, as well.
We evaluated our methods in the context of radiotherapy for head and neck
cancer, where the use of registered data is beneficial for the treatment
planning.
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Abstract. Four-dimensional (4D) computed tomography (CT) image
acquisition is a useful technique in radiation treatment planning and
interventional radiology in that it can account for respiratory motion of lungs.
Current 4D lung reconstruction techniques have limitations in either spatial or
temporal resolution. In addition, most of these techniques rely on auxiliary
surrogates to relate the time of CT scan to the patient’s respiratory phase. In this
paper, we propose a novel 4D CT lung reconstruction and deformation
estimation algorithm. Our algorithm is purely image based. The algorithm can
reconstruct high quality 4D images even if the original images are acquired
under irregular respiratory motion. The algorithm is validated using synthetic
4D lung data. Experimental results from a swine study data are also presented.

1 Introduction

In radiation oncology, 4D CT is one technique that can account for respiratory motion
during treatment planning. 4D CT may allow for the reduction of target volume
margin to achieve increased tumor dose and decreased normal tissue dose [1]. While
the radiation dose to the patient may be an issue, particularly if multiple 4D datasets
are considered, in general the CT dose will be much less than the treatment dose
delivered during radiation therapy. 4D CT may also be used to investigate the motion
correlation between the internal tumor and external fiducials such as skin markers.
The tumor position could then be estimated during the treatment by tracking the
external fiducials. With sufficient 4D CT datasets, a respiratory model might also be
constructed to parameterize the respiratory motion.

Most 4D lung reconstruction algorithms reported in the literature can be grouped
into the following two approaches. The first approach requires controlling the
patient’s breath during image acquisition [2]. The respiratory cycle is divided into
several phases (usually 7-11). The respiration is halted in each phase while a 3D CT
volume is taken. A related technique is to use breathing tracking strategies such as
active breathing control [3], [4], [S] to monitor the patient’s breath at each phase. The
4D data acquired by this method has high spatial resolution, but very poor temporal
resolution. This low temporal resolution limits its usefulness in analyzing the
anatomical motion.
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The second approach does not try to monitor or control the patient’s breath. The
patient is allowed to breath freely on the CT table [2], [7]. The table is moved in small
increments and a continuous free CT scan is taken at each table position to cover at
least one complete respiratory cycle. Some external devices may be used during the
scan to synchronize the CT scanning time with the respiratory phase [6], [7]. After
image acquisition, all the free scan images are sorted into a sequence of 3D volumes
according to their respiratory phase and table positions. This method has high
temporal resolution at each table position. The major problem with this method is that
respiratory motion is not completely repeatable, so the time stamp of the free scan
image may not correlate well with the regular respiratory motion. In such a case, the
image quality of the 3D data reconstructed at each respiratory phase will be very poor.
It is usually very difficult to stitch these 3D volumes together into a 4D dataset.

Unlike prior methods, we propose a new 4D lung reconstruction method that has
good temporal resolution and high reconstruction quality. In addition, our method
does not rely on any external gating / tracking devices to synchronize the time of CT
scan and the respiratory phase. Therefore problems caused by the discrepancy
between the respiratory motion and the auxiliary surrogates are avoided.

2 Method

The outline of our 4D CT lung reconstruction method is as follows. First, a reference
3D CT volume is obtained under a long breath hold. Next, a continuous scan is taken
at every table position to obtain a series of 2D images, while the patient is breathing
freely. The 2D image series at every table position covers at least one complete
respiratory cycle. Using deformable registration, each 2D image is registered to the
reference volume to estimate the displacement field of the 2D image with respect to
the reference volume. The respiration signal is extracted from the displacement field
of each 2D image. This respiration signal is used to synchronize the 2D image series
to the respiratory cycle at every table position. After the synchronization, the
displacement field for the entire lung volume at every selected respiratory phase is
reconstructed, interpolated and smoothed. The 4D lung images are reconstructed by a
deformable transformation of the reference volume for the entire respiratory cycle.

2.1 Registration of 2D Image to Reference CT Volume

To calculate the deformation of the 2D image with respect to the reference volume,
we divide the 2D image into small overlapping disk regions, and register each of the
small regions piece by piece to the reference volume. The local registration algorithm
is based on minimizing the Zero Mean Sum of Squared Differences (ZSSD) between
a small region in the 2D image and a corresponding one in the reference volume.
Quadratic transformation is used to model the deformation between the two regions.
As a result, thirty parameters are estimated while the objective function is optimized.
The details of the local registration are described in [8].
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Since the registrations are performed at
each local region, there is no guarantee
that all the local registrations converge
correctly. A global regularization of the
registrations is necessary to remove
outliers. In an example shown in Fig. 1,
the regions are partially overlapped on
each other. Since pixel p is included in all
the disk regions A0, Al and A2, the
deformation of pixel p can be calculated
from every one of these regions. As
shown in equation (1), the final
deformation of pixel p is the weighted
average of all deformations obtained from
the overlapped regions.
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Fig. 1. Propagation of local registration

where d, is the pixel displacement obtained from the k™ region; 4 is the weighted
average of the displacement; r, is a function of the registration error of k™ region. r,
will be assigned a large value for small registration error, and vice versa. r;, will be
zero if the registration error of a region is above a threshold. ¢, is a function of the
registration consistency in the overlapping area between the current region k and the
previously registered region. ¢, will be large if the consistency is high, otherwise ¢;
will be small. ¢, will be zero if the difference between current registration results and
the previous registration results is too large. The assumption is that the results from
previous registrations are more likely to be correct, because they are the weighted
averages of many local registrations. w; is a Gaussian window function that is
centered on the center of region k, allowing the registration results of central pixels
to have larger weight. As a result, Equation (1) filters out failed and bad
registrations, and assigns large weight to good registrations. Unlike other registration
techniques going from coarse to fine resolution, this registration goes from local to
global. The algorithm iteratively propagates its local registrations, allowing the
regions without enough local texture to be correctly estimated. This is an advantage
over the spline-based registration [9] methods that rely on the local information of
the control points. This procedure also makes the displacement field of the whole
lung very smooth.

The region-based algorithm assumes the pixels of the region to have approximately
the same type of motion. It is necessary that all the pixels in the region are lung
pixels. If the region includes other pixels such as heart pixels (Fig.2 (b)), the
registration is prone to fail, because the selected deformation models cannot explain
the pixel motion of the analysis window. For the same reason, the region cannot have
chest wall pixels (Fig.2 (a)), nor can the region have pixels from both the left and
right lungs (Fig.2 (c)). Therefore, accurate lung segmentation is necessary before the
registration, and the left and right lungs should be separated in the 2D images.
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Fig. 2. Undesired regions: (a) both lung pixels Fig. 3. The result of lung segmentation. Note

and chest-wall pixels are included; (b) both that (a) the blood vessels are preserved; (b)

lung pixels and heart pixels are included; (c) the heart and chest-wall are removed; (c) the

both left and right lungs are included (d) non- left and right lungs are separated; and (d) the

lung pixels are included marginal pixels are removed from the heart-
lung boundary.

We adopted the techniques of Hu [10] to automatically segment the lungs in the 2D
image. Base on their work, morphological closing is executed on the lung area to keep
the small to middle blood vessels in the lungs. Extra margin is also introduced in the
heart-lung boundary to exclude the artifact caused by the cardiac motion. The result
of lung segmentation is shown in Figure 3.

2.2 Four-Dimensional Lung Reconstruction

After all the 2D images are registered to the preoperative lung volume, the average
deformation of each image with respect to the reference volume is calculated, yielding
a 3D motion vector. For the images taken at the same table position, a sequence of
motion vectors is obtained. This vector sequence can be used as the respiration signal
to synchronize the 2D image series at different table positions. It is assumed that there
is no phase difference of respiratory motion in the craniocaudal direction. Since the
tumor’s respiratory motion is limited in a few centimeters, this assumption is valid.
As aresult, the two sequences of motion vectors at two adjacent table positions can be
correlated to synchronize the scanning time at the two table positions with respect to
the respiratory phase. The correlation is calculated using the following formula:

N-1 , , , (2)
S =arg max Z (AxkAx‘Hk + Ay A+ AzkAz‘Hk)

k=0

where N is the total number of frames to be correlated; (Ax,,Ay,,Az,) is the average
deformation of the k™ 2D image at the a table position; ( Ax],Ay.,Az;) is the average

deformation for the k™ image at another table position; S is the number of frame shift
between the two image sequences. By repeating this procedure at all table positions,
all the 2D images can be synchronized.

Using principal component analysis, the principal axis of the motion trajectory can
be obtained. By projecting the average motion on the principal axis, the one-
dimensional respiration signal can be extracted. Fig. 4 shows the extracted respiration
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Fig. 4. Respiration signal at two adjacent table positions extracted from swine study. The
vertical axis is normalized respiratory phase and the horizontal axis is time in frame number.

signals of two CT fluoroscopy image series obtained in a swine study at two adjacent
table positions with an interval of 4mm. It can be observed that the CTF scan time of
the two sequences was different with respect to the respiratory cycle. The two dots on
the peaks of the respiration signals show the result of synchronization.

After all the 2D image series are synchronized, the 4D lung can be reconstructed by
sorting the 2D images. As mentioned in Section 2, the 2D images come from different
respiratory cycles. Since the respiratory motion is not completely reproducible, the
direct 4D reconstruction by sorting the 2D images can result in very poor image
quality. Especially in the coronal and sagittal views, fuzzy edges are usually observed.
In response to this problem, we reconstruct the displacement field of the lung volume.
In section 2.1, the displacement field of each 2D image has already been calculated
from the deformable registration. Each 2D image has also been assigned to a
respiratory phase. We generate a displacement field for the entire lung volume by
combining the displacement fields of 2D images according to the table position and
respiratory phase. The resulting displacement field of the reference volume may not be
smooth because it is obtained from different respiratory cycles. However, the
displacement field can be smoothed. We use the cubic B-spline [9] to smooth and
interpolate the displacement in the cranial-caudal direction to obtain a very smooth
displacement for the reference volume. As a result, the 3D volume at any respiratory
phase can be computed from a deformable transformation of the reference volume.

3 Experimental Results

We used synthetic 4D data to validate the algorithm. The synthetic 4D data was
generated from two lung volumes obtained at the end of inspiration and the end of
expiration respectively. The two lung volumes were registered at Siemens Corporate
Research using 3D/3D deformable registration. The displacement field between the
two volumes was interpolated along the time axis such that the trajectory of each
pixel is a 3D curve in space instead of a straight line [11]. The resulting 4D data was
used as the ground truth to validate the reconstruction algorithm. The synthetic 2D
free scan image series was obtained by sampling the 4D data at the selected table
position. With the 2D image series and the lung volume at the end-of-expiration as the
reference volume, we ran the algorithm to recover the lung deformation. The pixel
size of both the preoperative CT volume and the 2D images was 0.7422mm. The slice
thickness of the preoperative CT volume was 1.25mm, and 3.75mm for the synthetic
2D free scan images. The results were first compared to the ground truth to validate
the deformable 2D/3D registration.
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Fig. 5. Displacement magnitude of a CT Fig. 6. Magnitude of reconstruction error in
fluoroscopy image with respect to the mm
reference CT volume in mm

Fig. 5 shows the deformation magnitude of a 2D image taken at the end-of-
inspiration, when the 2D image has the largest deformation with respect to the
reference CT volume. As shown in Fig. 6, most of the poor registrations happen on
the boundary pixels of the lung. This problem has three causes. First, for the region-
based algorithm, the registration accuracy is usually higher for the pixels near the
center of the analysis window. The boundary pixels of lung are usually far from the
center of the analysis window. Second, the boundary pixels (especially the boundary
pixels near the top of image) have larger deformation than the average. Third, and
perhaps most importantly, the areas near the lung boundary often have very little
texture information, which may not be enough for the local image registration.

Fig. 7 shows the average
— reconstruction error of the lung pixels
= compared to the average lung
“ = deformation. The maximum average
. error is 0.6mm. For the respiratory
T phase with large respiratory motion,
the average registration error is below

F lg 7. Avera'ge Teconstruction error vs. average 59, of the average lung deformation.
displacement in mm The algorithm was also tested on
the data collected from a swine study
as part of an approved animal protocol. This study was done at Georgetown
University Medical Center on a Siemens Volume Zoom four-slice CT scanner. The
reference volume was obtained at the end-of-expiration using a 1 mm slice thickness.
While the animal was mechanically ventilated, for the image acquisition the ventilator
was stopped and the animal was temporarily paralyzed to minimize any breathing
artifacts. The 2D image series were acquired using CT fluoroscopy with a sample rate
of 6Hz and a slice thickness of 4mm. Ten 2D image series were acquired. Fig. 8 and
Fig. 9 show the reconstruction results at the end-of inspiration which is the respiratory
phase of the maximum deformation with respect to the reference volume. As shown
in the figures, the reconstruction result of our algorithm is much smoother compared

to the standard image sorting method.
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Fig. 8. Sagittal view of 4D reconstruction Fig. 9. Coronal view of 4D reconstruction Top
Left image: image sorting method Right image: image sorting method Bottom image:
image: our method our method

LA

4 Discussion and Conclusions

This paper presents a new methodology to reconstruct the 4D lung image. The
temporal resolution of the method is high and the reconstruction provides good
quality images. Based on a synthetic CT data set, the average reconstruction
/registration error is under 5% of the average lung deformation, which is less than or
equal to 0.6mm of respiratory motion. Results from a swine study also showed good
correlation.

The algorithm is automated and software based. The algorithm does not need any
auxiliary surrogates to synchronize the CT scan with the respiratory phase. The
image reconstruction quality of the algorithm is very high even under irregular
respiratory motion. The drawback of the algorithm is that it is time consuming. It
takes about 5 minutes to register each 2D image to the reference volume. If
improved processing speed is needed, the algorithm can be implemented on a
parallel processing machine.

Although the algorithm was only tested on the synthetic data of the single slice CT
and in one swine study, it can be easily extended for use with multi-slice CT. Since
multi-slice CT allows the local region registration to have more texture information,
it is expected to see higher accuracy and better robustness of the algorithm.
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Abstract. This paper describes an automatic parameter optimization
method for anisotropic diffusion filters used to de-noise 2D and 3D MR
images. The filtering process is integrated into a closed-loop system where
image improvement is monitored indirectly by comparing the character-
istics of the suppressed noise with those of the assumed noise model at
the optimal point. In order to verify the performance of this approach,
experimental results obtained with this method are presented together
with the results obtained by median and k-nearest neighbor filters.

1 Introduction

High-resolution MR images are often affected by noise, causing undesired inten-
sity overlapping of represented tissues, making its posterior segmentation and
classification difficult. Traditional linear filters, such as mean or Gaussian filters,
commonly used to reduce the noise, do not consider the boundaries originated
from regions with different intensities, producing smoothing of these edges and
suppression of sharp details. As a result, the produced images are blurred and
diffuse.

Anisotropic diffusion filters overcome these shortcomings by adjusting the
smoothing (diffusion) strength to the boundaries, thus reducing the noise while
preserving edges. The anisotropic diffusion approach arose from the use of the
Gaussian filter in multi-scale image analysis [1]. Perona and Malik [2] modified
the isotropic diffusion equation (Eq. 1) by making the diffusion coefficient term
¢(z,t) a function of the magnitude of the gradient of the image intensity,

0

ot
where I(Z,t) stands for the processed image at time ¢, T = (z,y, z) the space
coordinates, ¢ the iteration step (time) and VI the image gradient.

The diffusion coefficient was defined as a monotonically decreasing function
c(z,t)=f(VI(z,t)|) of the gradient, which becomes small when the magnitude of

I(z,t) = div (c (z,1) VI(Z,1)) (1)
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the gradient is large and approaches one when the gradient is close to zero. Per-
ona and Malik [2] proposed two such diffusion functions, PMAD1 and PMAD2.

c1 (Z,t) = exp— (VI g’t))z e (Z,t) = - (|v11(x,t)|>2 (2)
k

Gerig et al. [3] introduced a discrete anisotropic (non-linear) diffusion algorithm
for de-noising MR images. Other diffusion functions were reported by Black et
al. [4] and Weickert [5]. Weeratunga et al. [6] assessed the de-noising performance
of several diffusion functions using medical and non-medical images. Suri and
Wau [7] give an overview of current trends and outlook on future development of
the anisotropic diffusion field.

The main parameters which control the behavior of the smoothing process
in anisotropic diffusion are the number of iterations (it) and the diffusion factor
k (Eq. 2), which determines the level of gradient intensity where diffusion is
at its maximum. For de-noising applications, the diffusion factor needs to be
adjusted according to the noise level. The noise is usually estimated with some
statistical methods that determine global characteristics (e.g. Black et al. [4]
used the median absolute deviation), or by hand-picking some homogeneous
areas and measuring the local variance. The number of iterations determines
how many times the smoothing process is repeated. This parameter is often
adjusted manually but it can also be done using an auto-stop criterion. In the
latter case, the program can consider the number of pixel (voxel) modifications
which occurred between the last two iterations to stop execution [4]. Either way,
selecting an appropriate set of parameters is generally quite complicated and
time-consuming.

In this work, an iterative method is presented that automatically adjusts
these two main parameters. In contrast to previous approaches the estimation of
the noise level is only used to determine the initial value of k. The optimization
of the parameter k is driven by the feedback output from an evaluation method
until a maximum response is reached. The novel evaluation method estimates
indirectly the improvement of the image by analyzing the suppressed information
and comparing its characteristics with those expected at the optimum. This is
repeated several times for different values of it. The best combination of the
two parameters, according to the evaluation method response, is then selected
to finally process the image. Figure 1 shows a diagram of the method described
here. The following sections will explain in detail our method and will present
achieved experimental results.

2 Method

The three basic modules of the automatic iterative system proposed here are the
de-noising filters, the evaluation method and the adjustment rules (Fig. 1). The
de-noising filters module contains several anisotropic diffusion functions for data
processing (e.g., PMAD2) as well as a set of anisotropic diffusion filters modeled
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Optimized parameters

Original a Filtered
De-noising
filters
Adjustment S Q —
0
1 Evaluation
method

Fig. 1. Diagram of the automatic anisotropic filter system

after Nordstrom’s [8] biased anisotropic formulation (e.g., PMAD2 bias). All
the filters use a regularized (smoothed) version of the gradient to estimate the
position of the edges [5] which should not be smoothed by the anisotropic filtering
process.

The key component of the system, the evaluation module, gives feedback on
image improvement or degradation during processing. Unlike other techniques,
such as image compression, de-noising techniques do not have access to un-
corrupted reference images to minimize the error between the reference and
the processed image. Also, since this method is used for pre-processing, the
only information available to it is that contained in the source image and that
obtained during processing, so that no a priori anatomical knowledge is used to
process the image. These conditions were set to keep the method as flexible and
independent as possible.

MR images can be seen as the combination of the intensity information of
the examined tissues and the noise generated during the measurement. After
processing an MR image with an ideal filter configured using ideal parameters,
the processed image would be perfectly clean of noise and only contain tissue
information. Hence, the residual image, obtained by subtracting the source image
from the processed one (Fig. 2), would consist only of the noise of the source
image. The evaluation method takes advantage of this residual information to
analyze the characteristics of the suppressed noise.

The characteristics of the noise for magnitude MR images are sufficiently
known and therefore used as reference. In this case, the noise has a Rice dis-
tribution and its strength is homogeneous across the entire data set [9]. The
closer the parametrization of k£ and it is to optimum, the more the residual im-
age will approximate the characteristics of the initial noise. The images on the
bottom row of Figure 2b were obtained by processing the image using succes-
sively increasing k values. The great variation in texture between the left and
the right image suggest that either the source image needed more filtering or it
was strongly smoothed and some anatomical structure have started to emerge in
the residual image. The image in the middle was obtained using near-optimum
parameters.
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Fig. 2. Residual information used to monitor the noise reduction; a) diagram; b) pro-
cessed (top) and residual images (bottom). The three pairs correspond to slightly
smoothed (left), near optimally smoothed (middle) and heavily smoothed MR images
(right).
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Fig. 3. a) Diagram of the evaluation method; b) results of the local variance (top)
and from the histogram (bottom) modules. The three images correspond to slightly

smoothed (left), near optimally smoothed (middle) and heavily smoothed MR images
(right).

The evaluation method consists of three modules (Fig. 3a). The first one is
a local variance operator which produces a picture of the noise, measuring the
variance within a 3x3 (3x3x3) local region every third pixel (voxel). The local
variance image is normalized to prevent bias during subsequent operations. The
second module is a histogram which extracts the distribution information of
the variance image. The results are smoothed with a low-pass filter to prevent
discontinuities. The third module is an evaluation function of the histogram
results which considers the maximum height, the width and the symmetry of the
histogram to produce a noise reduction index. The evaluation function formula
is shown in Equation 3.
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Fig. 4. a) Histogram characteristics considered by the evaluation function module; b)
results of the evaluation function

Its first term H represents the maximum value of the histogram. The inverse
of the Full-Width at Half-Maximum (FWHM) and the inverse of the Full-Width
at 20%-Maximum (FW20%M) terms are indicators of the variance dispersion,
and the two exponential terms are functions of the histogram symmetry based
on the right and left Half-Widths at 50% (HWHM) and at 20% (HW20%M) of
the maximum (Fig. 4a). This evaluation function yields large values when the
histogram function is close to a large and narrow Gaussian-type curve, reflecting
a homogeneous distribution of the local variance values. Figure 4b shows the
results of the evaluation function after evaluating part of the parameters interval
(it=1 to 25, k=1.838 to 26.290).

1 1
Mp=H 3
p=a <FWHM) ’ <FW20%M) * ®)
S 3 S 3
<1 —exp <_( ymn(;l;VVHM) )) « (1 —exp <_( ymmgzzo%l\/{) ))
where:
Left
SymmpwaM = .e HWHM 5 p Leftpwam < Rightawig
RightpwaMm
Right
SymmFWHM = P HWHM Zf LeftHWHM > RightHWHM
Leftawnwm
Left 4 . .
Symmepwaosn = o 1V 2M G f Leftpwaon < Rightmwaos
Rightewaoom
Rightrwaory . .
Symmepwao%m = & THW20%M if Leftawaoonm > Rightawaonm
Leftawao%m

The pairs diffusion factor-number of iterations corresponding to the ridge
values are considered to be close to optimum parameter configurations because
the response corresponds to a homogeneous distribution of the local variance.
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The adjustment rules module was implemented to avoid evaluating each com-
bination of parameters on the surface while searching for the optimum. This
search is greatly simplified if each parameter is analyzed independently. It is
more convenient if the continuous variable & is optimized first while the discrete
variable it is kept constant (represented as white lines in Fig. 4b). The optimum
k value of each sample it is obtained through a successive approximation scheme
which determines the new &k based on its current and previous values and on the
corresponding results produced by the evaluation function. This optimization
is repeated several times with different it values. From the optimum £k values
obtained, the median k value and its respective number of iterations are used
for the final filtering of the image.

3 Results

In order to evaluate the method proposed here, several real and simulated data
sets were processed (Fig. 5). For evaluation, three corrupted 3D data sets with
increasing noise intensity were generated. These data sets represent different
overlapping intensity levels between the tissue types cerebrospinal fluid, gray
and white matter. The reference image, taken from the Montréal Neurological
Institute (MNI) database [10], was an averaged T1-weighted image of 27 scans
of the same individual. Rician noise was added following the equation:

I=\/((Io +n1(0))? + (n2(0))?) (4)

where Iy is the original image and n1(c) and n2(c) are two independent 3D
images with zero-mean Gaussian-distributed noise. The standard deviations used
to produce three noisy data sets were 0=9.16, 13.75 and 18.33.

These data sets were processed with the automatic method using the second
Perona-Malik function PMAD2 (¢p in Eq. 2) and its biased implementation
PMAD?2 bias [8]. The same data sets were also processed using a median filter
(1 iteration) and a k-nearest neighbor (kNN) filter with k=14 (3 iterations). In
all cases, the data were processed using a 26 neighborhood. The PMAD?2 filter
approximated the original image quite well, although it failed to reduce some
speckle noise (Fig. 5e). The kNN filter also gave good results (Fig. 5f), although
not as smooth as those of the anisotropic filter.

The experimental results were evaluated together with the corrupted data
using the original MNI data set as reference. The evaluation was done using the
mean-absolute error (MAE), the root-mean-square error (RMSE), the signal-
to-noise ratio (SNR), the peak-signal-to-noise ratio (PSNR) and the structural
similarity index (SSIM) [11]. Figure 6 summarizes the obtained results. As can
be seen there, the automatic parameterization of the second Perona-Malik func-
tion (PMAD2) gave the lowest errors (MAE and RMSE) and the greatest ra-
tios (SNR, PSNR and SSIM). The biased implementation of the same filter
(PMAD?2 bias) gave comparable results to the k-nearest neighbor filter. Results
obtained using the median filter were consistently inferior. The computing time
for the MNI data set (181x217x181) was 47 min using a 2.6 GHz Pentium-4
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Fig.5. a) Real MR image; b) after automatic filtering; c) reference MNI image; d)

MNI image corrupted with Rician noise (0=18.33); e) results from the anisotropic
filter (PMAD?2) using the parameters obtained with the automatic method (it=10,
k=10.94); f) results from the k-nearest neighbor (kNN) filter

“Mean absolute error _Root-mean-square error

TTLETH
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D Rician noisc 6 = 9.16
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I] Rician noise o = 18.33

 Signal-to-noise ratio Peak-signal-to-noise ratio Structural Similarity Index

UPMADZ PMADZBias KNN  Medan Orgnalsrcise PMAD2 PWADZBas KNN  Medin Crignanose  PMADD PWADZ Bas KNN  Medien Crignaitnoise

Fig. 6. Experimental results obtained comparing the original MNI data set with the
corrupted and processed images
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CPU. Each iteration took 1.8 seconds during the iterative optimization (using
only 10 transaxial layers) and 33 seconds during the final filtering.

4 Discussion

The proposed evaluation function used to evaluate the filtering results is based
on the characteristics of the expected noise model and therefore enables the
implementation of a closed-loop system to automatically optimize the diffusion
filter parameters. The obtained results, when compared to those obtained with
median and k-nearest neighbor filters, indicate that our method is not only vi-
able but also produces better results. In future work, we intend to incorporate
adaptive versions of the diffusion filters into the de-noising filters module. These
filters will locally adjust the global diffusion factor value according to the time
(number of filter iterations) and to the local homogeneity of the image. In ad-
dition, we plan to optimize the behavior of the evaluation method according
to the Rician noise model. We expect that these measures further increase the
robustness and performance of the method.
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