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Abstract. The spherical harmonic (SPHARM) description is a powerful surface
modeling technique that can model arbitrarily shaped but simply connected 3D
objects and has been used in many applications in medical imaging. Previous
SPHARM techniques use the first order ellipsoid for establishing surface corre-
spondence and aligning objects. However, this first order information may not be
sufficient in many cases; a more general method for establishing surface corre-
spondence would be to minimize the mean squared distance between two corre-
sponding surfaces. In this paper, a new surface matching algorithm is proposed
for 3D SPHARM models to achieve this goal. This algorithm employs a useful
rotational property of spherical harmonic basis functions for a fast implementa-
tion. Applications of medical image analysis (e.g., spatio-temporal modeling of
heart shape changes) are used to demonstrate this approach. Theoretical proofs
and experimental results show that our approach is an accurate and flexible sur-
face correspondence alignment method.

1 Introduction

Surface representation and shape modeling play increasingly prominent roles in many
computer vision and image processing applications. Medical image analysis is one of
the most important applications. Many techniques have been developed for modeling
and inspecting anatomic structures in the diagnosis and treatment of disease. The spher-
ical harmonics approach has been used for the representation of shapes in many types
of biomedical image data to help perform functional information analysis or classify
different pathological symptoms.

Many spherical harmonic based shape descriptions have been developed for medi-
cal image analysis. Chen et al. [1] use this method to model and analyze left ventricular
shape and motion. Matheny et al. [2] and Burel et al. [3] use 3D and 4D surface har-
monics to reconstruct rigid and nonrigid shapes. Since they start from an initial radial
surface function r(θ, φ), their method is capable of representing only star-shaped or
convex objects without holes. Brechbühler et al. [4] present the SPHARM description
that is an extended spherical harmonic method for modeling any simply connected 3D
object. The object surface is represented as v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T and
spherical harmonics expansion is used for all three coordinates. Gerig and Styner have
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applied SPHARM in many medical imaging applications (e.g., shape analysis of brain
structures [5,6,7]). It has also been used for shape modeling and functional analysis for
cardiac MRI [8].

In order to compare different SPHARM models, a shape registration step is often
necessary for aligning these models together and extracting their shape descriptors (i.e.,
excluding translation, rotation, and scaling). Like shape registration using ICP [9], two
important substeps are involved in aligning SPHARM models: (1) creating surface cor-
respondence, and (2) minimizing the distance between the corresponding surface parts.
Once the surface correspondence is established, the distance minimization becomes rel-
atively easy. Thus, the focus of this paper is on creating surface correspondence for two
3D SPHARM models.

Previous studies [5,6] used the first order ellipsoid for shape registration. The pa-
rameter net on this ellipsoid is rotated to a canonical position such that the north pole
is at one end of the longest main axis, and the crossing point of the zero meridian and
the equator is at one end of the shortest main axis. The aligned parameter space creates
surface correspondence between two models: two points with the same parameter pair
(θ, φ) on two surfaces are defined to be a corresponding pair. This alignment technique
works only if the first order ellipsoid is a real ellipsoid, as in the case of hippocampal
data [6], but not if it is an ellipsoid of revolution or a sphere. There are also other cases
in which first order ellipsoid alignment may not work. One example is given in Fig. 1
for the heart ventricle case.

In this paper, instead of aligning the first order ellipsoid, we employ a more general
metric for establishing surface correspondence: minimizing the mean squared distance
between two SPHARM surfaces. A fast surface alignment algorithm is proposed to
achieve this. Based on the rotational properties of harmonics analysis, we prove that a
new set of SPHARM coefficients after a rotated parametrization can be directly gen-
erated from the original set. Thus we can easily obtain a new SPHARM model for a
re-parameterized object by rotating its parametrization along the surface. This process
is faster than a standard recalculation (e.g., solving a linear equation) of SPHARM co-
efficients for a re-parameterized object. This work is motivated by the need for better
shape modeling and analysis in current medical applications. Some of these applications
are used to demonstrate our algorithm in this paper.

2 Methods

2.1 Surface Description Using SPHARM

The SPHARM technique [4] can be used to model arbitrarily shaped, simply connected
3D objects. The object surface is represented by using spherical harmonics expansion
for all three coordinates,

v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T =
∞∑

l=0

l∑

m=−l

cm
l Y m

l (θ, φ). (1)

The coefficients cm
l = (cm

lx, cm
ly , cm

lz )T are 3D vectors. Their components, cm
lx, cm

ly , and
cm
lz are usually complex numbers. The coefficients up to a user-desired degree can be
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estimated by solving a set of linear equations in a least square fashion. The object
surface can be reconstructed using these coefficients, and using more coefficients leads
to a more detailed reconstruction. Thus, a set of coefficients actually form an object
surface description.

2.2 Fast Rotation Theorem for Spherical Harmonic Parametrization

Theorem (Parametrization Rotation). The parametrization spatial rotation on the
surface can be decomposed into three rotations of mapping parameter meshes onto
the x-sphere, y-sphere, and z-sphere. Let v(θ, φ) =

∑∞
l=0

∑l
m=−l c

m
l Y m

l (θ, φ) be a
SPHARM parametric surface. After rotating the parameter net on the surface in Euler
angles (α, β, γ), the new coefficients cm

l (αβγ) is

cm
l (αβγ) =

l∑

m′=−l

cm′

l Dl
mm′(αβγ). (2)

Proof. According to Euler’s rotation theorem, any rotation of the coordinate system
(e1, e2, e3) can be decomposed into three elementary rotations R(α, β, γ). The SO(3)
harmonics provide the tool to express the rotated version of a function on the sphere
extended by spherical harmonics [10]. The effect of such a rotation on the spherical
harmonic basis functions is [11]

RZY Z(αβγ)Y m
l (θ, φ) =

l∑

m′=−l

Y m′

l (θ, φ)Dl
m′m(αβγ), (3)

where RZY Z(αβγ) represents the rotation operator dependent on the Euler angles; the
rotation matrices Dl

m′m(αβγ) (also called the SO(3) matrix elements) are calculated
by

Dl
m′m(αβγ) = e−im′αdl

m′m(β)e−imγ ,

where

dl
m′m(β) =

min(l+m,l−m′)∑

t=max(0,m−m′)

(−1)t ×
√

(l + m)!(l − m!)(l + m′)!(l − m′)!
(l + m − t)!(l − m′ − t)!(t + m′ − m)!t!

×
(

cos
β

2

)(2l+m−m′−2t) (
sin

β

2

)(2t+m′−m)

.

Since we employ the SPHARM surface modeling technique, the surface coordinate
information of a 3D object is coded onto three unit spheres: an x-sphere, a y-sphere,
and a z-sphere. These three spherical functions are expanded using spherical harmonics
and represented by f(θ, φ) (f ∈ {x, y, z}). We denote f ′(θ, φ) as the new function after
applying a rotation operator RZY Z(αβγ) to f(θ, φ) on the f -sphere:

f ′(θ, φ) = RZY Z(αβγ) f(θ, φ), (4)
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thus
v′(θ, φ) = Robj(αβγ) (x(θ, φ), y(θ, φ), z(θ, φ))T (5)

where Robj(αβγ) = [RZY Z(αβγ) 0 0; 0 RZY Z(αβγ) 0; 0 0 RZY Z(αβγ)].
Then v′(θ, φ) = Robj(αβγ)v(θ, φ) represents the new parametrization on the sur-

face, which can be generated by rotating the original parametrization along the object’s
surface about Euler angles (α, β, γ). In other word, the result of applying the rotation
matrix RZY Z(αβγ) on the mapping meshes of x, y, z-sphere is to rotate the parameter
mesh on the object’s surface at the same orientation. Because of the distortions intro-
duced by spherical parameterization, the result of rotation is not identical to the result
of applying Euler angles on the sphere, but both will have nearly the same orientation.
Thus we only use Robj , which we refer to as the parametric rotation matrix, for rotating
the parameter mesh along the surface of an object. Substituting Eq. (1) and Eq. (3) into
Eq. (4) gives

L∑

l=0

l∑

m=−l

cm
lf (αβγ)Y m

l (θ, φ) = f ′(θ, φ) = RZY Z(αβγ)
L∑

l′=0

l′∑

m′=−l′

cm′

l′fY m′

l′ (θ, φ) =

L∑

l′=0

l′∑

m′=−l′

cm′

l′f RZY Z(αβγ) Y m′

l′ (θ, φ) =
L∑

l′=0

l′∑

m′=−l′

cm′

l′f

l′∑

n=−l′

Y n
l′ (θ, φ)Dl′

nm′(αβγ)

and multiplying Ȳ j
k (θ, φ) on both sides (adjusting the k from 0 to L and j from −k

to k) and integrating on the sphere. Since all Kronecker delta values are zero except at
k = l = l′ and j = m = n, we get the following:

cm
lf (αβγ) =

l′∑

m′=−l′

cm′

l′fDl′

mm′(αβγ) =
l∑

m′=−l

cm′

lf Dl
mm′(αβγ). (6)

According to the above derivation, the harmonics expansion coefficients transform
among themselves during rotation. Each new spherical harmonic coefficient cm

lf (αβγ)
after applying a rotated function RZY Z(αβγ) is a linear combination of the coefficients
cm
lf of the original function f(θ, φ) (f ∈ {x, y, z}). We can use this property to calculate

the new SPHARM model v′(θ, φ) for the object surface after a rotated parametrization,
and we only need the old coefficients {cm

lx, cm
ly , cm

lz} and rotation matrices Dl
mm′(αβγ).

2.3 Surface Correspondence Difference Measure

The surface correspondence alignment problem is generally formulated in terms of the
optimal parameters, such as (α, β, γ), that minimize some surface distance function. In
this paper, we adopt the Euclidean distance as the distance function between surfaces.
Formally, for two surfaces given by v1(s) and v2(s), their distance D(v1,v2) is defined
as [6]

D(v1,v2) = (
∑

f∈{x,y,z}

L∑

l=0

l∑

m=−l

(cm
lf1

− cm
lf2

)2)1/2. (7)
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2.4 Fast Surface Alignment Algorithm

We use a sampling-based search algorithm, which fixes one parameter mesh and rotates
the other to carry out a greedy search on its surface with a small step size, to align the
surface correspondence by minimizing the surface distance defined in Eq. (7). First, we
uniformly distribute sample points on the surface as the new north poles locations, and
the new SPHARM coefficients can be calculated by using Eq. (2) with new Euler angles
set (α, β, γ). For each candidate north pole, the parameter mesh is counterclockwise
rotated along the new north-south aixes (the rotation angle ω ranges from 0 to 2π). In
order to calculate the coefficients of the new rotated parameter mesh using Eq. (2), we
must transform the rotation angle ω into the Euler angles (α, β, γ).

The original north and south poles of a surface’s parameter mesh are mapped onto
the axis e3 = (0 0 1) and −e3 = (0 0 − 1) in the x-, y-, and z-sphere. After ro-
tation using Euler angles (αp, βp, γp), the north and south pole coordinates switch
from v(θ, φ) to v′(θ, φ) = Robj(αpβpγp)v(θ, φ), (θ = 0 or π). Simultaneously the
axis e3 in the coordinate systems of the three mapping spheres is changed to ê3 =
RZY Z(αpβpγp)(0 0 1)T . Because ê3 also contains the origin and has unit length direc-
tion, we apply the Rodrigues’ rotation formula [13] for computing the rotation matrix
Rê3 ∈ SO(3) corresponding to a rotation by an angle ω about the fixed axis ê3

Rê3 (ω) = I + Ssinθ + S2(1 − cosθ), S =

⎡

⎣
0 −ê3x ê3y

ê3z 0 −ê3x

−ê3y ê3x 0

⎤

⎦ ,

where I is the identity matrix. We can obtain the Euler angles (α, β, γ) by solving the
equation RZY Z(αβγ) = Rê3 (ω). These Euler angles can then be used to calculate the
coefficients of new parameter mesh using Eq. (2).

In the second step, we use the BFGS algorithm [14] to locally minimize Eq. (7)
starting from the result of the first step. Because the result of the first step is already
close to the target, this step generally needs only a few iterations. Although the dimen-
sion of the Jacobian matrix is large, the matrix is quite sparse. The computational time
of this step is very low.

3 Experiments and Discussions in Medical Image Analysis

The fast alignment algorithm for surface correspondence described above was used for
shape analysis in selected medical image analysis applications. Based on segmented
MRI data of heart, we use the SPHARM method to do surface reconstruction and apply
the surface alignment algorithm presented in this paper to determine a correspondence
between shapes. This aligned correspondence allows researchers to access more func-
tional details.

3.1 Comparison of Methods

In previous shape analysis study using the SPHARM description [5], researchers choose
to use the three major axis of the first order ellipsoid (which is computed from the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Comparison of methods: (a) shows the reconstructed SPHARM surface of left ventricle,
(b) is the first order ellipsoid of surface (a); (c) shows the reconstructed SPHARM surface of
right ventricle, (d) is the first order ellipsoid of surface (c). By using the previous method, the first
order ellipsoids and parametrizations are rotated to the positions in (f) and (h), and the SPHARM
surfaces and parametrizations are rotated as (e) and (g). By using our algorithm, (i) shows the
result of poles alignment. North and south poles are aligned close to the poles of (a). And the
parameter mesh is rotated along the north pole. After using the BFGS algorithm [14] in the
second step, the last alignment result is shown in (j).

first order SPHARM coefficients) as the intrinsic coordinate system. Parametrization is
rotated in the parameter space for normalization so that three main ridges of the first
order ellipsoid are moved to the equator [5,6]. Their method works well if two or more
objects have a similar orientation (e.g., aligning hippocampal shapes). However this
method may not work in some cases.

Fig. 1.(a) and Fig. 1.(c) show the reconstructed surface of two ventricles of the heart
(left ventricle and right ventricle). We separate the parametrization on the surface into
eight regions using five lines (θ = π/2 in middle line, in north pole θ = 0, in south
pole θ = π, the other four lines separately represent φ = 0, π/2, π, 3π/2, 2π). The cor-
respondences between surfaces in Fig. 1.(a) and Fig. 1.(c) are unordered as the visual-
izations. Fig. 1.(b) and Fig. 1.(d) show their first order ellipsoids. By using the previous
method, the first order ellipsoids and parametrizations are rotated to the positions in
Fig. 1.(f) and Fig. 1.(h). Three main directions of the ellipsoids are moved to the equa-
tor. The surface correspondence is created when the first order ellipsoid is aligned. As
the result, the SPHARM surfaces and parametrizations should be rotated as Fig. 1.(e)
and Fig. 1.(g). A limitation of this approach is that it may not represent the real surface
correspondence between two surfaces. The reason for this is that the left ventricle and
right ventricle have two very different orientations of their first order ellipsoid that are
obvious in Fig. 1.(b) and Fig. 1.(d). Thus, although the first order ellipsoids are rotated
to the normalized positions, the surfaces are rotated to the opposite orientations.

Our new alignment algorithm produces a correct alignment in these cases, because
it is a general surface alignment method that does not depend on any orientation infor-
mation. Fig. 1.(i) and Fig. 1.(j) show the results generated by our algorithm. Fig. 1.(a)
is the fixed surface and the parametrization in Fig. 1.(c) is rotated to Fig. 1.(j).

The effectiveness of our algorithm can also be demonstrated by computing the sur-
face correspondence distance defined in Eq. (7). The surface correspondence distance
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between surfaces in Fig. 1.(e) and Fig. 1.(g) is 258.6536mm, but the surface correspon-
dence distance between surfaces in Fig. 1.(a) and Fig. 1.(j) is 62.4798mm. Our surface
alignment algorithm derives a better result.

3.2 Alignment for Temporal Heart Sequences

This new surface alignment algorithm also provides a promising method for studying
spatio-temporal structures. In the previous research [15], surface tracking techniques
(tracking points on 3D shape using 2D images) are used to create temporal sequence
descriptions for points on the left ventricle inner surface through each heart cycle. Such
temporal sequence descriptions can quantify the ventricular mechanical asynchrony or
synchrony, which has important diagnostic and prognostic values, and can help deter-
mine optimal treatment in heart failures where a heart has a highly asynchronous con-
traction. Because the points are tracked on 2D images and mapped to a 3D surface, this
method can only describe the heart contraction and dilation along the plane direction,
and is not accurate for the perpendicular direction.

(a)

(b)

Fig. 2. (a) shows a shape sequence of a left ventricular inner surface during one heart cycle before
surface alignment. The shape sequence in (b) is the result after surface alignment.

Combining the SPHARM description and our surface alignment methods offers a
set of spatio-temporal surface correspondences for medical image analysis research.
Our new algorithm generates more reasonable surface correspondences for the left ven-
tricle sequence, and these surface correspondences describe the heart contraction and di-
lation in every direction of 3D space. Based on this new model, more valuable diagnos-
tic and prognostic information can be derived for helping make clinical determinations.

Fig. 2.(a) is a shape sequence of a left ventricular inner surface during one heart
cycle. Before surface alignment, the parametrization of every surface is unordered. The
shape sequence in Fig. 2.(b) is the result after surface alignment. During the alignment
procedure, every shape is aligned with its anterior shape.

4 Conclusions

This paper addresses the problem of finding surface correspondencesbetween SPHARM
parametric surfaces. We propose a theorem based on the SPHARM rotational property
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to easily calculate SPHARM coefficients of the new parameter mesh along the surface.
The distance between surfaces is defined as the objective function. Its efficacy is demon-
strated in experiments based on several medical research problems, where we observe a
significant improvement in robustness relative to existing shape modeling and analysis
techniques.

There are several future directions. 1) The current algorithm can be integrated into
an ICP-like framework for registration of 3D parametric surfaces. After finding the cor-
responding points on the surfaces, we can use an ICP-like algorithm to minimize the
value of the correspondence. 2) Considerable research has focused on generating an
equal area parametric mesh for a given surface. Our alignment algorithm can be com-
bined with such parametrization methods to produce a better surface correspondence.
These results are very useful for the shape and functional analysis in medical imaging.
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