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Abstract. In this paper, we present an evaluation of seven automatic
brain tissue classifiers based on level of agreements. A number of agree-
ment measures are explained, and we show how they can be used to
compare different segmentation techniques. We use the Simultaneous
Truth and Performance Level Estimation (STAPLE) of Warfield et al.
but also introduce a novel evaluation technique based on the Williams’
index. The methods are evaluated using these two techniques on a pop-
ulation of forty subjects, each having an SPGR scan and a co-registered
T2 weighted scan. We provide an interpretation of the results and show
how similar the output of the STAPLE analysis and Williams’ index are.
When no ground truth is required, we recommend the use of Williams’
index as it is easy and fast to compute.

1 Introduction

In today’s medical imaging field when one introduces a new segmentation tech-
nique, one has to thoroughly validate it and compare it to previously published,
well accepted techniques. If a true segmentation exists this task is relatively
easy as one only needs to choose a metric measuring differences between the
ground truth and the output of the segmentation algorithm. Common metrics
are volume differences or measures of overlap [1]. Unfortunately, ground truths
or even human expert segmentations are rarely available especially for brain
tissue classification where labeling a single brain into gray matter (GM), white
matter (WM), cortical spinal fluid (CSF) and background (BG) would take days.
Nevertheless, in recent years, novel evaluation procedures have been developed
to overcome this problem, and it is now possible, to a certain degree, to rate
different methodologies even when a ground truth is not available [2, 3]. In this
work, we introduce a novel technique to evaluate brain segmenters based on
agreement level and compare it to evaluating each segmenter with STAPLE’s
estimated ground truth. Seven different classifiers are tested over a data set of
40 different subjects. Our findings show few differences between the results of
our technique and those of STAPLE, except for the fact that our evaluation is
much faster.
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2 Measuring Segmentation Quality

2.1 Williams Index

Consider a set of r raters labeling a set of n voxels with labels {1, ·, l}. Let D
denote the set of all labeled voxels (the label map) of all raters. Dij represents the
label of rater j for voxel i; Dj denotes the label map of rater j; and a(Dj ,Dj′)
is the agreement between rater j and j′ over all n voxels. Several agreement
measures can be used and a few will be defined in section 2.3. Williams’ index
Ij for rater j is defined as [4]:

Ij =
(r − 2)

∑r
j′�=j a(Dj ,Dj′ )

2
∑r

j′�=j

∑j′

j′′ �=j a(Dj′ ,Dj′′ )
(1)

If the upper limit of the confidence interval of this index is greater than one,
it can be concluded that rater j agrees with the other raters at least as well as
they agree with each other [4]. Using the agreements defined in section 2.3 we
can study the statistics of Williams’ index for each algorithm, for each label and
for each subject.

2.2 Multi-label STAPLE Algorithm

In this section, we describe the multi-label version of the Simultaneous Truth
and Performance Level Estimation (STAPLE) Algorithm [3]. This algorithm
calculates an estimated ground truth label map out from a set of r given seg-
mentations (raters). Consider a label map with n voxels taking one of l possible
labels. Let θj be an l× l matrix. Each element θj(s′, s) describes the probability
that rater j labels a voxel with s′ when the true label is s. The perfect rater will
have θj equal to the identity matrix. Let θ = [θ1, . . . , θr] be the unknown set of
all probability matrices characterizing all r raters. Let T = (T1, . . . , Tn)T be a
vector representation of the unknown ground truth segmentation and D an n×r
matrix whose columns are the r known segmentations. D is the incomplete data
and (D,T) the complete data. STAPLE is an estimation process based on the
EM algorithm which can estimate the ground truth T and the parameter matrix
θ at the same time by maximizing the complete data log likelihood f(D,T|θ).
We refer the reader to [3] for the technical details of the optimization process.
Once the ground truth is known, we can use any of the normalized metrics de-
fined in section 2.3 for each algorithm, for each label and for each subject and
study the resulting statistics.

2.3 Similarity Measurements

Consider two binary images I1 and I2 defined over a finite grid (lattice) L of N
spatial sites x. Let X = {x ∈ L, I1(x) = 1} and Y = {x ∈ L, I2(x) = 1}, and let
us define four scalar measurements, a1 = |X ∩ Y |, a2 = |X | − a1, a3 = |Y | − a1
and a4 = N − |X ∪ Y | as shown schematically in figure 1. We can then express,
using these four values, the following similarity measurements, all of them taking
values between 0 and 1.
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Fig. 1. Schematic diagram for sets X and Y and scalar values a1 (white), a2 (light
gray), a3 (dark gray) and a4 (black)

– Jaccard (JC) [5]: a1
a1+a2+a3

= |X∩Y |
|X∪Y | . It is zero when X and Y are disjoint

and one when the sets are equal, i.e. a2 = a3 = 0.
– Tanimoto (TN) [6]: a1+a4

a1+2a2+2a3+a4
= |X∩Y |+|X∪Y |

|X∪Y |+|X∩Y | where X is the set
L − X . It is zero when X and Y are disjoint and X ∪ Y = L and it is one
when the sets are equal.

– Volume similarity (VS): 1− |a2−a3|
2a1+a2+a3

= 1− ||X|−|Y ||
|X|+|Y | . It is one when the

number of elements in both sets are equal, and zero when one of the sets is
empty. The positions of the points is irrelevant, only their number counts.

3 Experiments

3.1 Segmentation Pipelines

Data Set: Our data set consists of forty female subjects. The acquisition pro-
tocol involves two MR pulse sequences acquired on a 1.5-T GE scanner. First,
a SPoiled Gradient-Recalled (SPGR) sequence yielded a coronal MR volume of
size 256 × 256 × 124 and voxel dimensions 0.9375 × 0.9375 × 1.5mm. Second, a
double-echo spin-echo sequence gave two axial MR volumes (proton density and
T2 weighted) of size 256×256×54 and voxel dimensions 0.9375×0.9375×3mm.
For each subject, both axial volumes were co-registered and resampled to the
SPGR volume coordinate space using a Mutual Information rigid registration
algorithm [7]. Due to limitations on the number of inputs of some of the classifi-
cation algorithms, only the resampled T2 weighted and the original SPGR were
used for segmentation.

Segmentation Techniques: Seven different automatic classifiers were evaluated.
The task given was to segment the brain into four classes: BG, CSF, GM and
WM. The algorithms were used “as is” with no special tuning of the parameters.
A description of each segmenter follows:

– kNN: A statistical classification, whose core is a k Nearest Neighbor classifier
algorithm trained automatically by non linear atlas registration [8].

– MINC: A back-propagation Artificial Neural Network classifier, trained au-
tomatically by affine atlas registration [9], the pipeline also includes its own
bias field correction tool [10].
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Table 1. Segmentation Pipeline Features. The “O” marks a missing feature in the
pipeline. In such cases, standard tools were used (see text).

kNN MINC FSL SPM EM EMAtlas Watershed
Filtering O X X X X X O
Bias Correction O X X X X X O
Brain stripping O O X O O X X

– FSL: A classification algorithm which makes use of a Hidden Markov Ran-
dom Field Model and the Expectation-Maximization Algorithm [11].

– SPM: A mixture model clustering algorithm, which has been extended to
include spatial priors and to correct image intensity non-uniformities [12].

– EM: The original implementation of the Expectation Maximization algo-
rithm designed by Wells et al. [13].

– EMAtlas: An EM based segmentation incorporating a Markov Random
Field Model, and spatial prior information aligned to subject’s space by non
linear registration [14].

– Watershed: A watershed based segmentation which also incorporates spa-
tial prior information in the form of a non linearly aligned atlas [15].

For atlas based classifiers, all techniques use differently defined spatial priors,
except for EMAtlas and Watershed which share the same atlas.

Pre- and Post-Processing: Most segmentation techniques are usually a full
pipeline involving (i) filtering, (ii) bias field correction, (iii) tissue classification
and (iv) brain stripping. As shown in table 1, some methods did not have the
all these tools embedded in their framework. We thus used the following three
techniques when necessary: filtering, the data was smoothed using a diffusion
based anisotropic filter [16]; bias field correction, was done using the tech-
nique of Wells et al. [13]; brain stripping, the brain was extracted using the
Brain Extraction Tool [17].

3.2 Statistical Analyses

Let Xil = {x,Di(x) = l} be the set of voxels labeled l by rater i. Let T be the
estimated ground truth computed by STAPLE from all seven label maps, with
Tl the set of voxels labeled l in T . For each subject, for each label, four different
types of analysis were done. First, Williams’ index was computed for each label
using the seven Xil as input and all three agreement measures (Williams 1). The
mean and standard deviation of the index over all subjects for each label and
segmentation algorithm are shown in table 3. Second, for each rater, the three
agreement measures between Xil and the estimated ground truth for that label
Tl were computed (Staple 1). The mean and standard deviation of the index over
all subjects are shown in table 2. Third, Cl = ∩1≤i≤rXil, the set of all points
with the same label l in all r label maps was computed. Williams’ index was
then calculated for each label l using all seven Xil − Cl as input (Williams 2).
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Table 2. Staple 1

BG kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.00(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00)
TN 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.98(0.01)
VS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.99(0.00) 1.00(0.00)
GM kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.85(0.09) 0.77(0.03) 0.73(0.23) 0.82(0.03) 0.72(0.03) 0.77(0.03) 0.87(0.03)
TN 0.98(0.01) 0.97(0.01) 0.96(0.04) 0.97(0.01) 0.96(0.00) 0.97(0.01) 0.98(0.00)
VS 0.98(0.01) 0.96(0.02) 0.96(0.06) 0.97(0.01) 0.98(0.02) 0.98(0.02) 0.98(0.02)
CSF kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.73(0.11) 0.46(0.14) 0.63(0.24) 0.60(0.12) 0.36(0.11) 0.42(0.12) 0.62(0.10)
TN 0.98(0.01) 0.97(0.01) 0.98(0.02) 0.98(0.01) 0.97(0.01) 0.96(0.01) 0.98(0.01)
VS 0.96(0.04) 0.76(0.11) 0.89(0.12) 0.91(0.07) 0.52(0.12) 0.81(0.07) 0.86(0.06)
WM kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.87(0.09) 0.80(0.04) 0.80(0.13) 0.82(0.03) 0.80(0.03) 0.83(0.03) 0.90(0.02)
TN 0.99(0.01) 0.98(0.00) 0.97(0.02) 0.98(0.00) 0.98(0.00) 0.98(0.00) 0.99(0.00)
VS 0.98(0.01) 0.97(0.02) 0.92(0.10) 0.91(0.02) 0.89(0.02) 0.96(0.03) 0.97(0.02)

The rationale for this process is to try to get a more focused analysis on the
differences between raters. The results are show in table 5. Finally, the three
agreement measures between Xil −Cl and Tl −Cl was calculated (Staple 2). The
results are shown in table 4. In all the tables the best score is in bold and the
second best score in italic.

4 Results

Table 2 shows results for Staple 1. We can see that for BG, none of the three
agreement measurements give meaningful results. For GM and WM, Watershed
is best one followed very closely by kNN when looking at JC and TN. Using
VS, kNN performs slightly better than Watershed, which is similar to EM and
EMAtlas for GM and similar to MINC for WM. For CSF, kNN is best, and
Watershed and SPM rank second.

Table 3 shows the results for Williams 1. Similarly to Staple 1, none of the
measurements are meaningful for BG. For GM, using JC and TN, Watershed is
best followed closely by kNN. Using VS, kNN and EMAtlas are slightly better
than Watershed. For WM, using JC and TN, Watershed is also best, followed by
kNN for JC and SPM and EMAtlas for TN. Using VS, kNN is best, MINC and
Watershed are second. All of these results mostly agree with the ones using Staple
1. Finally, for CSF, SPM is best followed by Watershed using JC. Watershed is
best using TN and VS. In this case, Staple 1 and Williams 1 only agree for TN,
and there is disagreement for JC and VS.

Table 4 shows the results for Staple 2. In comparison to Staple 1
(table 2), similar rankings are obtained for GM, CSF and WM for all the agree-
ment measures. The main difference are in evaluating BG. More significance is
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Table 3. Williams 1

BG kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
TN 1.00(0.00) 1.00(0.00) 0.99(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
VS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
GM kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.07(0.10) 1.00(0.07) 0.90(0.25) 1.03(0.05) 0.94(0.07) 1.00(0.07) 1.09(0.06)
TN 1.01(0.01) 1.00(0.01) 0.99(0.03) 1.00(0.01) 0.99(0.01) 1.00(0.01) 1.01(0.01)
VS 1.01(0.01) 0.99(0.03) 0.97(0.06) 1.01(0.02) 1.00(0.02) 1.01(0.01) 1.01(0.02)
CSF kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.04(0.12) 1.08(0.14) 0.79(0.36) 1.23(0.08) 0.81(0.17) 0.99(0.13) 1.18(0.09)
TN 0.99(0.01) 1.00(0.00) 0.99(0.01) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.01(0.00)
VS 1.00(0.05) 1.04(0.08) 0.99(0.05) 1.08(0.06) 0.72(0.13) 1.09(0.04) 1.11(0.04)
WM kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.04(0.09) 0.97(0.04) 0.96(0.13) 0.99(0.04) 0.98(0.05) 1.01(0.05) 1.07(0.03)
TN 1.00(0.01) 1.00(0.01) 0.99(0.02) 1.00(0.00) 1.00(0.01) 1.00(0.00) 1.01(0.00)
VS 1.04(0.02) 1.03(0.02) 0.97(0.09) 0.96(0.03) 0.94(0.04) 1.02(0.03) 1.03(0.02)

Table 4. Staple 2

BG kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.37(0.16) 0.50(0.22) 0.28(0.11) 0.40(0.22) 0.40(0.23) 0.34(0.19) 0.41(0.22)
TN 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.98(0.01)
VS 0.68(0.23) 0.70(0.25) 0.65(0.26) 0.54(0.22) 0.54(0.24) 0.48(0.21) 0.56(0.24)
GM kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.71(0.11) 0.57(0.10) 0.55(0.24) 0.65(0.08) 0.47(0.10) 0.56(0.10) 0.74(0.07)
TN 0.98(0.01) 0.97(0.01) 0.96(0.04) 0.97(0.01) 0.96(0.00) 0.97(0.01) 0.98(0.00)
VS 0.96(0.03) 0.91(0.05) 0.93(0.08) 0.95(0.03) 0.94(0.05) 0.96(0.03) 0.95(0.04)
CSF kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.69(0.12) 0.36(0.17) 0.59(0.23) 0.53(0.14) 0.22(0.16) 0.32(0.15) 0.54(0.12)
TN 0.98(0.01) 0.97(0.01) 0.98(0.02) 0.98(0.01) 0.97(0.01) 0.96(0.01) 0.98(0.01)
VS 0.95(0.05) 0.68(0.16) 0.88(0.12) 0.90(0.09) 0.33(0.20) 0.76(0.10) 0.83(0.08)
WM kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.63(0.11) 0.46(0.08) 0.53(0.16) 0.38(0.12) 0.52(0.05) 0.48(0.11) 0.67(0.06)
TN 0.99(0.01) 0.98(0.00) 0.97(0.02) 0.98(0.00) 0.98(0.00) 0.98(0.00) 0.99(0.00)
VS 0.94(0.04) 0.90(0.06) 0.80(0.20) 0.58(0.13) 0.69(0.05) 0.84(0.12) 0.90(0.06)

achieved for JC and VS, but not for TN which is still not very meaningful. MINC
is performing best for BG using Staple 2, followed by Watershed using JC and
by kNN using VS.

Table 5 shows the results for Williams 2. Again, the results for GM, CSF and
WM are similar to Williams 1 (table 3) overall. The only difference is for JC and
for WM, for which Watershed is best for Williams 1, while EM is best, followed
by Watershed for Williams 2. With respect to BG, TN is still not meaningful.
Using JC and VS, there is significance for Williams 2. For JC, EM performs best
followed by SPM and for VS, Watershed is best followed by SPM and EM.
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Table 5. Williams 2

BG kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.36(0.23) 1.09(0.24) 0.26(0.09) 1.50(0.10) 1.54(0.09) 1.46(0.10) 1.42(0.12)
TN 1.00(0.00) 1.00(0.00) 0.99(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
VS 0.64(0.23) 1.14(0.09) 0.54(0.14) 1.25(0.05) 1.25(0.06) 1.14(0.08) 1.26(0.06)
GM kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.17(0.15) 1.00(0.13) 0.89(0.38) 1.10(0.09) 0.80(0.18) 0.95(0.14) 1.21(0.10)
TN 1.01(0.01) 1.00(0.01) 0.99(0.03) 1.00(0.01) 0.99(0.01) 1.00(0.01) 1.01(0.01)
VS 1.03(0.02) 0.97(0.06) 0.96(0.09) 1.01(0.03) 0.99(0.05) 1.02(0.03) 1.02(0.03)
CSF kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.20(0.17) 1.02(0.22) 0.93(0.46) 1.42(0.09) 0.52(0.33) 0.93(0.18) 1.29(0.13)
TN 0.99(0.01) 1.00(0.00) 0.99(0.01) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.01(0.00)
VS 1.05(0.09) 1.05(0.13) 1.03(0.08) 1.15(0.10) 0.52(0.24) 1.15(0.07) 1.19(0.08)
WM kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.19(0.22) 0.89(0.15) 1.10(0.22) 0.60(0.20) 1.27(0.12) 0.91(0.23) 1.21(0.13)
TN 1.00(0.01) 1.00(0.01) 0.99(0.02) 1.00(0.00) 1.00(0.01) 1.00(0.00) 1.01(0.00)
VS 1.17(0.06) 1.14(0.07) 0.99(0.22) 0.71(0.18) 0.87(0.11) 1.07(0.15) 1.13(0.07)

5 Discussion

We have investigated different approaches to evaluate the quality of a segmenta-
tion only based on agreement measures. A great number of similarities have been
found between Staple 1 and Williams 1, suggesting kNN is the most consistent
segmentation method. In general for GM, WM and CSF, all ranking techniques
give similar results. For BG, better significance is achieved for JC and VS after
discarding the common agreement among algorithms and focusing only on dif-
ferences (Williams 2 and Staple 2). Staple 2 presents MINC as the best method
for BG and Williams 2 has EM as the better technique. In general, FSL, SPM
and EMAtlas are less well ranked.

Overall, Williams’ index gives similar results to STAPLE, and unless one
absolutely needs the estimated ground truth of STAPLE for further processing,
using Williams’ index is sufficient. The biggest advantage is that of speed, as
STAPLE in our experimental setup can take as much as 20mn to process one
case, whereas Williams index takes a few seconds. We are now interested in
studying the probability matrices provided by STAPLE and also finding more
intuitive and compact ways to present the results of the evaluation.
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