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Abstract. Accurate automatic extraction of a 3D cerebrovascular sys-
tem from images obtained by time-of-flight (TOF) or phase contrast
(PC) magnetic resonance angiography (MRA) is a challenging segmen-
tation problem due to small size objects of interest (blood vessels) in
each 2D MRA slice and complex surrounding anatomical structures,
e.g. fat, bones, or grey and white brain matter. We show that due to
a multi-modal nature of MRA data blood vessels can be accurately
separated from background in each slice by a voxel-wise classification
based on precisely identified probability models of voxel intensities. To
identify the models, an empirical marginal probability distribution of
intensities is closely approximated with a linear combination of discrete
Gaussians (LCDG) with alternate signs, and we modify the conventional
Expectation-Maximization (EM) algorithm to deal with the LCDG. To
validate the accuracy of our algorithm, a special 3D geometrical phan-
tom motivated by statistical analysis of the MRA-TOF data is designed.
Experiments with both the phantom and 50 real data sets confirm high
accuracy of the proposed approach.

1 Introduction

Accurate cerebrovascular segmentation is of prime importance for early diag-
nostics and timely endovascular treatment. Unless detected at early stage, seri-
ous vascular diseases like carotid stenosis, aneurysm, and vascular malformation
may cause not only severe headaches but also a brain stroke or a life-threatening
coma [1]. Non-invasive MRA is a valuable tool in preoperative evaluation of
suspected intracranial vascular diseases. Three commonly used MRA techniques
are TOF-MRA, phase contrast angiography (PCA), and contrast enhanced MRA
(CE-MRA). Both TOF-MRA and PCA use flowing blood as an inherent con-
trast medium, while for CE-MRA a contrasting substance is injected into the
circulatory system.

A variety of today’s most popular techniques for segmenting blood vessels from
TOF-MRA data can be roughly classified into deformable and statistical models.
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The former methods iteratively deform an initial boundary surface of blood vessels
in order to optimize an energy function which depends on image gradient infor-
mation and surface smoothness [2]. Topologically adaptable surfaces make classi-
cal deformable models more efficient for segmenting intracranial vasculature [3].
Geodesic active contours implemented with level set techniques offer flexible topo-
logical adaptability to segment MRA images [4] including more efficient adapta-
tion to local geometric structures represented e.g. by tensor eigenvalues [5]. Fast
segmentation of blood vessel surfaces is obtained by inflating a 3D balloon with
fast marching methods [6]. Two-step segmentation of a 3D vascular tree from CTA
data sets in [7] is first carried out locally in a small volume of interest. Then a
global topology is estimated to initialize a new volume of interest. A multi-scale
geometrical flow is proposed in [8] to segment vascular tree from MRI images.

The statistical approach extracts the vascular tree automatically, but its ac-
curacy depends on underlying probability data models. The TOF-MRA image
is multi-modal in that signals in each region-of-interest (e.g. blood vessels, brain
tissues, etc) are associated with a particular mode of the total marginal prob-
ability distribution of signals. To the best of our knowledge, up-to-now there
exists only one adaptive statistical approach for extracting blood vessels from
the TOF-MRA data proposed by Wilson and Noble [9]. They model the marginal
data distribution with a mixture of two Gaussian and one uniform components
for the stationary CSF, brain tissues, and arteries, respectively. To identify the
mixture (i.e. estimate all its parameters), they use a conventional EM algorithm.
Furthermore, a region-based deformable contour for segmenting tubular struc-
tures was derived in [10] by combining signal statistics and shape information.

2 LCDG-Model of a Multi-modal TOF-MRA Image

Let q; q ∈ Q = {0, 1, . . . , Q − 1}, denote the Q-ary gray level. The discrete Gaus-
sian (DG) is defined as the probability distribution Ψθ = (ψ(q|θ) : q ∈ Q) on Q
such that ψ(q|θ) = Φθ(q+0.5)−Φθ(q−0.5) for q = 1, . . . , Q−2, ψ(0|θ) = Φθ(0.5),
ψ(Q−1|θ) = 1−Φθ(Q−1.5) where Φθ(q) is the cumulative Gaussian probability
function with a shorthand notation θ = (µ, σ2) for its mean, µ, and variance, σ2.

We assume the number K of dominant modes, i.e. regions, objects, or classes
of interest in a given TOF-MRA image, is already known. In contrast to a
conventional mixture of Gaussians and/or other simple distributions, one per
region, we closely approximate the empirical gray level distribution for a TOF-
MRA image with an LCDG having Cp positive and Cn negative components
such that Cp ≥ K:

pw,Θ(q) =
Cp∑

r=1

wp,rψ(q|θp,r) −
Cn∑

l=1

wn,lψ(q|θn,l) (1)

under the obvious restrictions on the weights w = [wp,., wn,.]: all the weights are
non-negative and

Cp∑

r=1

wp,r −
Cn∑

l=1

wn,l = 1 (2)
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To identify the LCDG-model including the numbers of its positive and nega-
tive components, we modify the conventional Expectation-Maximization (EM)
algorithm to deal with the LCDG.

First the numbers Cp − K, Cn and parameters w, Θ (weights, means, and
variances) of the positive and negative DG components are estimated with a
sequential EM-based initializing algorithm. The goal is to produce a close initial
LCDG-approximation of the empirical distribution. Then under the fixed Cp and
Cn, all other model parameters are refined with an EM algorithm that modifies
the conventional one in [11] to account for the components with alternating signs.

2.1 Sequential EM-Based Initialization

Sequential EM-based initialization forms an LCDG-approximation of a given em-
pirical marginal gray level distribution using the conventional EM-algorithm [11]
adapted to the DGs. At the first stage, the empirical distribution is represented
with a mixture of K positive DGs, each dominant mode being roughly approx-
imated with a single DG. At the second stage, deviations of the empirical dis-
tribution from the dominant K-component mixture are modeled with other,
“subordinate” components of the LCDG. The resulting initial LCDG has K
dominant weights, say, wp,1, . . . , wp,K such that

∑K
r=1 wp,r = 1, and a number

of subordinate weights of smaller values such that
∑Cp

r=K+1 wp,r−
∑Cn

l=1 wn,l = 0.
The subordinate components are determined as follows. The positive and

negative deviations of the empirical distribution from the dominant mixture are
separated and scaled up to form two new “empirical distributions”. The same
conventional EM algorithm is iteratively exploited to find the subordinate mix-
tures of positive or negative DGs that approximate best the scaled-up positive
or negative deviations, respectively. The sizes Cp − K and Cn of these mixtures
are found by sequential minimization of the total absolute error between each
scaled-up deviation and its mixture model by the number of the components.
Then the obtained positive and negative subordinate models are scaled down
and then added to the dominant mixture yielding the initial LCDG model of the
size C = Cp + Cn.

2.2 Modified EM Algorithm for LCDG

Modified EM algorithm for LCDG maximizes the log-likelihood of the empirical
data by the model parameters assuming statistically independent signals:

L(w,Θ) =
∑

q∈Q

f(q) log pw,Θ(q) (3)

A local maximum of the log-likelihood in Eq. (3) is given with the EM process
extending the one in [11] onto alternating signs of the components. Let p

[m]
w,Θ(q) =

∑Cp
r=1 w

[m]
p,r ψ(q|θ[m]

p,r )−
∑Cn

l=1 w
[m]
n,l ψ(q|θ[m]

n,l ) denote the current LCDG at iteration
m. Relative contributions of each signal q ∈ Q to each positive and negative DG
at iteration m are specified by the respective conditional weights
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π[m]
p (r|q) =

w
[m]
p,r ψ(q|θ[m]

p,r )

p
[m]
w,Θ(q)

; π[m]
n (l|q) =

w
[m]
n,l ψ(q|θ[m]

n,l )

p
[m]
w,Θ(q)

(4)

such that the following constraints hold:

Cp∑

r=1

π[m]
p (r|q) −

Cn∑

l=1

π[m]
n (l|q) = 1; q = 0, . . . , Q − 1 (5)

The following two steps iterate until the log-likelihood changes become small:
E– step[m+1]: Find the weights of Eq. (4) under the fixed parameters w[m],

Θ[m] from the previous iteration m, and
M– step[m+1]: Find conditional MLEs w[m+1], Θ[m+1] by maximizing L(w,Θ)

under the fixed weights of Eq. (4).
Considerations closely similar to those in [11] show this process converges to a
local log-likelihood maximum. Let the log-likelihood of Eq. (3) be rewritten in
the equivalent form with the constraints of Eq. (5) as unit factors:

L(w[m],Θ[m])=
Q∑

q=0

f(q)

⎡

⎣
Cp∑

r=1

π[m]
p (r|q) log p[m](q)−

Cn∑

l=1

π[m]
n (l|q) log p[m](q)

⎤

⎦(6)

Let the terms log p[m](q) in the first and second brackets be replaced with the
equal terms log w

[m]
p,r + log ψ(q|θ[m]

p,r )− log π
[m]
p (r|q) and log w

[m]
n,l + log ψ(q|θ[m]

n,l )−
log π

[m]
n (l|q), respectively, which follow from Eq. (4). At the E-step, the condi-

tional Lagrange maximization of the log-likelihood of Eq. (6) under the Q restric-
tions of Eq. (5) results just in the weights π

[m+1]
p (r|q) and π

[m+1]
n (l|q) of Eq. (4)

for all r = 1, . . . , Cp; l = 1, . . . , Cn and q ∈ Q. At the M-step, the DG weights
w

[m+1]
p,r =

∑
q∈Q f(q)π[m+1]

p (r|q) and w
[m+1]
n,l =

∑
q∈Q f(q)π[m+1]

n (l|q) follow from
the conditional Lagrange maximization of the log-likelihood in Eq. (6) under the
restriction of Eq. (2) and the fixed conditional weights of Eq. (4). Under these lat-
ter, the conventional MLEs of the parameters of each DG stem from maximizing
the log-likelihood after each difference of the cumulative Gaussians is replaced
with its close approximation with the Gaussian density (below “c” stands for
“p” or “n”, respectively):

µ
[m+1]
c,r = 1

w
[m+1]
c,r

∑
q∈Q

q · f(q)π[m+1]
c (r|q)

(σ[m+1]
c,r )2 = 1

w
[m+1]
c,r

∑
q∈Q

(
q − µ

[m+1]
c,i

)2
· f(q)π[m+1]

c (r|q)

This modified EM-algorithm is valid until the weights w are strictly positive.
The iterations should be terminated when the log-likelihood of Eq. (3) does not
change or begins to decrease due to accumulation of rounding errors.

The final mixed LCDG-model pC(q) is partitioned into the K LCDG-
submodels P[k] = [p(q|k) : q ∈ Q], one per class k = 1, . . . , K, by associat-
ing the subordinate DGs with the dominant terms so that the misclassification
rate is minimal.
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3 Experimental Results

Experiments were conducted with the TOF-MRA images acquired with the
Picker 1.5T Edge MRI scanner having spatial resolution of 0.43 × 0.43 × 1.0
mm. The size of each 3D data set is 512 × 512 × 93. The TOF-MRA images
contain three classes (K = 3), namely, darker bones and fat, brain tissues, and
brighter blood vessels. A typical TOF-MRA slice, its empirical marginal gray
level distribution f(q), and the initial 3-component Gaussian dominant mixture
p3(q) are shown in Fig. 1. Figure 2 illustrates basic stages of our sequential EM-
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Fig. 1. Typical TOF-MRA scan slice (a) and deviations between the empirical distri-
bution f(q) and the dominant 3-component mixture p3(q) (b)
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Fig. 2. Deviations and absolute deviations between f(q) and p3(q) (a), the mixture
model (b) of the absolute deviations in (a), the absolute error (c) as a function of the
number of Gaussians approximating the scaled-up absolute deviations in (a), and the
initial estimated LCDG-models for each class (d)
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Fig. 3. Final 3-class LCDG-model overlaying the empirical density (a), the log-
likelihood dynamics (b) for the refining EM-iterations, the refined model components
(c), and the class LCDG-models (d)
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based initialization by showing the scaled-up alternating and absolute deviations
f(q)−p3(q), the best mixture model estimated for the absolute deviations (these
six Gaussian components give the minimum approximation error), and the ini-
tial LCDG-models for each class. The scaling makes the sums of the positive
or absolute negative deviations for q = 0, . . . , Q − 1 equal to one. Figure 3
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Fig. 4. Wilson-Noble’s model [9]: the estimated distribution (a) and the class models (b)
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Fig. 5. Each row relates to one patient: our segmentation before (a) and after (b) noise
and small fat voxels are eliminated with the connectivity filter, the Wilson-Noble’s
segmentation (c) after the connectivity filter, and the differences between (b) and (c);
the green voxels are missed by the Wilson-Noble’s approach and the red ones are
detected by the both approaches
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presents the final LCDG-model after refining the initial one with the modified
EM-algorithm and shows successive changes of the log-likelihood at the refine-
ment iterations. The final LCDG-models of each class are obtained with the best
separation thresholds t1 = 57 and t2 = 192. First nine refining iterations increase
the log-likelihood from −5.7 to −5.2.

To highlight the advantages of our approach over the existing one, Fig. 4
shows results obtained with the model of Wilson and Noble [9]. To measure the
estimation quality, we use the Levy distance between two distributions [12] and
the absolute error. The Levy distance between the empirical distribution and its
estimated model is 0.11 and 0.00013 and the absolute errors are 0.123 and 0.0002
for the Wilson-Noble’s and our approach, respectively. The larger Levy distance
and absolute error indicate the notably worse approximation which strongly
affects the accuracy of separating the blood vessels from the background. Because
of a typically higher separation threshold, e.g. t2 = 214 versus our t2 = 192 in
this particular example, the Wilson-Noble’s approach misses some blood vessels,
as shown in Fig. 5.

Both the approaches have been compared on 50 data sets. Results of the
three tests are depicted in Fig. 5. As the first column, (a), suggests, TOF-MRA
is sensitive to tissues like subcutaneous fat with a short T1 response that may
obscure the blood vessels in the segmented volume. To eliminate them, the vol-
ume is processed with an automatic connectivity filter which selects the largest
connected tree structures using a 3D volume growing algorithm [13]. The results
after applying such a filter to our and Wilson-Noble’s segmentation in Fig. 5
show that the latter approach fails to detect sizeable fractions of the vascu-
lar trees which are validated by the expert (radiologist) that the green parts
which are detected by our approaches follow the topology of the brain vascu-
lar tree.

4 Validation

It is very difficult to get accurate manually segmented complete vasculatures
to validate our algorithm. Thus to evaluate its performance, we have created a
wooden phantom shown in Fig. 6(a) with topology similar to the blood vessels.
Furthermore, the phantom mimics bifurcations, zero and high curvature that
exist in any vasculature system, and it has a varying radius to simulate both
large and small blood vessels. The phantom was scanned by CT and then man-
ually segmented to obtain the ground truth. The blood vessel and non-vessel
signals for the phantom are generated according to the distribution p(q|3) and
p(q|1), p(q|2), respectively, in Fig. 3(d) using the inverse mapping methods. The
resulting phantom’s histogram was similar to that in Fig. 3(a).

Let the total segmentation error be a percentage of erroneous voxels with
respect to the overall number of voxels in the manually segmented 3D phantom.
Figure 6 shows our approach is 15 times more accurate than the Wilson-Noble’s
one (the total errors 0.31% and 4.64%, respectively). The error constituents per
each 2D slice for both the approaches are also plotted in Fig. 6.
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Fig. 6. The 3D geometrical phantom (a), our (b) and Wilson-Noble’s (c) segmentation,
and total errors per each phantom’s slice for both the approaches (d)

5 Conclusions

We presented a new statistical approach to find blood vessels in multi-modal
TOF-MRA images. The LCDG-model accurately approximates the empirical
marginal gray level distribution yielding the high quality segmentation. The
accuracy of our approach is validated using a specially designed 3D geometrical
phantom.

Our present implementation on C++ programming language using a single
2.4 GHZ Pentium 4 CPU with 512 MB RAM takes about 49 sec for 93 TOF-
MRA slices of size 512x512 pixels each.

The LCDG-model is also is suitable for segmenting PC-MRA and CTA im-
ages which are not presented due to space limitations.
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