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Abstract. In this paper, we present a novel variational formulation of
the registration assisted image segmentation problem which leads to solv-
ing a coupled set of nonlinear PDEs that are solved using efficient numer-
ical schemes. Our work is a departure from earlier methods in that we
have a unified variational principle wherein non-rigid registration and
segmentation are simultaneously achieved; unlike previous methods of
solution for this problem, our algorithm can accommodate for image
pairs having very distinct intensity distributions. We present examples
of performance of our algorithm on synthetic and real data sets along
with quantitative accuracy estimates of the registration.

1 Introduction

In Medical Imaging applications, segmentation can be a daunting task due
to possibly large inhomogeneities in image intensities across an image e.g., in
MR images. These inhomogeneities combined with volume averaging during
the imaging and possible lack of precisely defined shape boundaries for certain
anatomical structures complicates the segmentation problem immensely. One
possible solution for such situations is atlas-based segmentation. The atlas once
constructed can be used as a template and can be registered non-rigidly to the
image being segmented (henceforth called a target image) thereby achieving the
desired segmentation. Many of the methods that achieve atlas-based segmen-
tation are based on a two stage process involving, (i) estimating the non-rigid
deformation field between the atlas image and the target image and then, (ii) ap-
plying the estimated deformation field to the desired shape/atlas to achieve the
segmentation of the corresponding structure/s in the target image. In this pa-
per, we develop a novel technique that will simultaneously achieve the non-rigid
registration and segmentation. There is a vast body of literature for the tasks
of registration and segmentation independently however, methods that combine
them into one algorithm are far and few in between. In the following, we will
briefly review the few existing methods that attempt to achieve simultaneous
registration and segmentation.
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In one of the earliest attempts at joint registration & segmentation, Bansal
et al., [I] developed a minmax entropy framework to rigidly register & segment
portal and CT data sets. In [2], Yezzi et al., present a variational principle for
achieving simultaneous registration and segmentation, however, the registration
part is limited to rigid motions. A similar limitation applies to the technique
presented by Noble et al., in [3]. A variational principle in a level-set based
formulation was presented in Pargios et. al., [4], for segmentation and registration
of cardiac MRI data. Their formulation was again limited to rigid motion and
the experiments were limited to 2D images. In Fischl et al., [5], a Bayesian
method is presented that simultaneously estimates a linear registration and the
segmentation of a novel image. Note that linear registration does not involve
non-rigid deformations. The case of joint registration and segmentation with
non-rigid registration has not been addressed adequately in literature with the
exception of the recent work reported in Soatto et al., [6] and Vemuri et al.,
[7). However, these methods can only work with image pairs that are necessarily
from the same modality or the intensity profiles are not too disparate.

In this paper, we present a unified variational principle that will simul-
taneously register the atlas shape (contour/surface) to the novel brain image
and segment the desired shape (contour/surface) in the novel image. In this
work, the atlas serves in the segmentation process as a prior and the registration
of this prior to the novel brain scan will assist in segmenting it. Another key
feature/strength of our proposed registration+segmentation scheme is that it
accommodates for image pairs having very distinct intensity distributions as in
multimodality data sets. More details on this are presented in section

2 Registration+Segmentation Model

We now present our formulation of joint registration & segmentation model
wherein it is assumed that the image to be segmented can be modeled by piece-
wise constant regions, as was done in [§]. This assumption simplifies our pre-
sentation but our model itself can be easily extended to the piecewise smooth
regions case. Additionally, since we are only interested in segmenting a desired
anatomical shape (e.g., the hippocampus, the corpus callosum, etc.), we will only
be concerned with a binary segmentation i.e., two classes namely, voxels inside
the desired shape and those that are outside it. These assumptions can be easily
relaxed if necessary but at the cost of making the energy functional more com-
plicated and hence computationally more challenging. Let I; be the atlas image
containing the atlas shape C, I the novel image that needs to be segmented
and v be the vector field, from I to I i.e., the transformation is centered in
I, defining the non-rigid deformation between the two images. The variational
principle describing our formulation of the registration assisted segmentation
problem is given by:

minE(v,C) = Seg(Iy,C) + dist(v(C),C) + Reg(I1, Iz, V). (1)

Where, the first term denotes the segmentation functional. C' is the boundary
contour (surface in 3D) of the desired anatomical shape in I5. The second term
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measures the distance between the transformed atlas v(C) and the current seg-
mentation C' in the novel brain image i.e., the target image and the third term
denotes the non-rigid registration functional between the two images. Each of
these functionals are given the following form:

C

Seg(I,,C) :/

]

(Iy — u)?dx + a]{ ds (2)

Where, §2 is the image domain and « is a regularization parameter. u = u; if
z € Ciy and u = u, if © € Cous. Ci, and Cuyy denote the regions inside and
outside of the curve, C' representing the desired shape boundaries in I5.

For the non-rigid registration term in the energy function, we use the recently
introduced information theoretic-based criteria [J] called the cross cumulative
residual entropy (CCRE). In [9], CCRE was shown to outperform MI-based
registration in the context of noise immunity and convergence range, motivating
us to pick this criteria over the MI-based cost function. The new registration
functional is defined by

Reg(fl,fz,w—(cul(v(x)),Iz(x))w / <|vV<x>|2)) 3)

where, cross-CRE C(I1(), I2()) = E(I1) — E[E(I1/]2)] and E(I1) = — fR (T4
> A)log P(|I1] > A)dA with R4 = (z € R;z > 0). v(x) is as before and p is the
regularization parameter and ||-|| denotes Frobenius norm. Using a B-spline rep-
resentation of the non-rigid deformation, one need only compute this field at the
control points of the B-splines and interpolate elsewhere, thus accruing compu-
tational advantages. Using this representation, we derived analytic expressions
for the gradient of the energy with respect to the registration parameters. This
in turn makes our optimization more robust and efficient.

In order for the registration and the segmentation terms to “talk” to each
other, we need a connection term and that is given by

dZSt / ¢V(C’) (4)

Where, R is the region enclosed by C , ¢v(5) (x) is the embedding signed distance
function of the contour v(C), which can be used to measure the distance between
v(C) and C. The level-set function ¢ : R? — R is chosen so that its zero level-set
corresponds to the transformed template curve v(C). Let Egis¢ := dist(v(C), 0),
one can show that B—EM = ¢v(c (C)N where N is the normal to C. The corre-
sponding curve evolutlon equation given by gradient descent is then

oC
ot
Not only does the signed distance function representation make it easier for us to

convert the curve evolution problem to the level-set framework (refer to section
[3), it also facilitates the matching of the evolving curve C and the transformed

= 6, (C)N (5)
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template curve v(C'), and yet does not rely on a parametric specification of either

C or the transformed template curve. Note that since dist(v(C'), C') is a function

of the unknown registration v and the unknown segmentation C, it plays the

crucial role of connecting the registration and the segmentation terms.
Combining these three functionals together, we get the following variational

principle for the simultaneous registration+segmentation problem:

minE(C’, V, U, Uj) = /

(I — u)?dz + oy j{ ds + ay dist(v(C),C)
o ¢

(6)
—asc(h(V(X))Jz(X))+a4/9||VV(X)||2dX-

«; are weights controlling the contribution of each term to the overall energy
function and can be treated as unknown constants and either set empirically or
estimated during the optimization process. This energy function is quite distinct
from those used in methods existing in literature because it is achieving the
Mumford-Shah type of segmentation in an active contour framework jointly with
non-rigid registration and shape distance terms. We are now ready to discuss
the level-set formulation of the energy function in the following section.

3 Level Set Formulation

We now present a level-set form of our formulation described earlier. For our
model where the equation for the unknown curve C is coupled with the equations
for v(x), e, u;, it is convenient for us to use the level set approach as proposed in
[§]. Taking the variation of E(.) with respect to C' and writing down the gradient
descent leads to the following curve evolution equation:

oC .
S == [ =) + (12— w0)? + awr + 026, (O)| N (7)
Note that equation (B]) is used in the derivation. Equation (7)) in the level-set
framework is given by:

¢ _

Vo
ot |

|:—(IQ —ui)? + (Iy — uo)? + a1V - |V— + a2¢v(6)(é)] Vol (8)

where u; and u, are the mean values inside and outside of the curve C in the
image I5.

As mentioned before, we use a B-spline basis to represent the displacement
vector field v(x, p), where p is the transformation parameters of the B-spline
basis.

OF 0Jr o) dx  9C(L(v(x). L(x) | [, IVv(x)|?dx
— = Q9 — Q3 + g
o ou ou o

9)
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The first term of equation(@l) can be rewritten as follows:

d[np @ v(C) x) dx :/ aqﬁv(g)(x) dx
o R op

_ / 9%y )
R 8’1}
9% @

where —5 < is the directional derivative in the direction of v(x, 1z). The second
term of equation(d)) is more involved and tedious. We simply state the result
here without the derivations for the sake of brevity,

10
ovix, ) 1o

dx
v=v (%, 1) o

OC (I3, I o v(x; >)\k: OP(i > A\ k;
e N
Nel, kel p[z Z> ,/L) M
where P(i > A k;p) and P(i > A;p) are the joint and marginal cumulative
residual distributions respectively. pr, (k) is the density function of image Io.
The last term of equation(@)leads to,

3 [, | Vv(x)|*dx / v
=2 [ Vv —dx 12
o Q o (12)

where both the matrices Vv and g—; are vectorized before the dot product is
computed.

Substituting equations (I0), (IT]) and ([I2) respectively back into the equation
@), we get the analytical gradient of our energy function with respect to the B-
spline transformation parameters p. We then solve for the stationary point of
this nonlinear equation numerically using a quasi-Newton method.

Algorithm Summary

Given atlas image [, and the unknown subject’s brain scan I, we want the
segmentation result C in I2. Initialize C' in I3 to be C, set initial transformation
parameters pg to be zero.

1. Optimize p; using equation ([@) with Quasi-Newton method for one step.
Update the deformation field v(z; ;).

2. Evolve ¢ in I, using equation (&) for one step, update C; as the zero level-set
of ¢.

3. Stop the registration process if the difference in consecutive iterates is less
than e = 0.01, a pre-chosen tolerance, else go to Step 1.

4 Implementation Results

In this section, we present several examples results from an application of our
algorithm. The results are presented for synthetic as well as real data. The first
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Source MR T1 Image Registered Source Image Target MR T2 Image

Groundtruth ion field 1 field

Fig. 1. Results of application of our algorithm to synthetic data (see text for details)

three experiments were performed in 2D, while the fourth one was performed in
3D. Note that the image pairs used in all these experiments have significantly
different intensity profiles, which is unlike any of the previous methods, reported
in literature, used for joint registration and segmentation. The synthetic data
example contains a pair of MR T1 and T2 weighted images which are from
the MNTI brainweb site [I0]. They were originally aligned with each other. We
use the MR T1 image as the source image and the target image was generated
from the MR T2 image by applying a known non-rigid transformation that was
procedurally generated. In this case, we present the error in the estimated non-
rigid deformation field, using our algorithm, as an indicator of the accuracy of
estimated deformations.

Figure [I] depicts the results obtained for this image pair. With the MR T1
image as the source image, the target was obtained by applying a synthetically
generated non-rigid deformation field to the MR T2 image. Notice the significant
difference between the intensity profiles of the source and target images. Figurdll
is organized as follows, from left to right: the first row depicts the source image
with the atlas-segmentation superposed in white, the registered source image
which is obtained using our algorithm followed by the target image with the un-
registered atlas-segmentation superposed to depict the amount of mis-alignment;
second row depicts ground truth deformation field which we used to generate
the target image from the MR T2 image, followed by the estimated non-rigid
deformation field and finally the segmented target. As evident, the registra-
tion+segmentation are quite accurate from a visual inspection point of view.
As a measure of accuracy of our method, we estimated the average, p, and the
standard deviation, o, of the error in the estimated non-rigid deformation field.
The error was estimated as the angle between the ground truth and estimated
displacement vectors. The average and standard deviation are 1.5139 and 4.3211
(in degrees) respectively, which is quite accurate.

Table [1 depicts statistics of the error in estimated non-rigid deformation
when compared to the ground truth. For the mean ground truth deformation
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(magnitude of the displacement vector) in Column-1 of each row, 5 distinct
deformation fields with this mean are generated and applied to the target image
of the given source-target pair to synthesize 5 pairs of distinct data sets. These
pairs (one at a time) are input to our algorithm and the mean (u) of the mean
deformation error (MDE) is computed over

the five pairs and reported in Column-2

of the table. MDE is defined as d,, = Table 1. Statistics of the error in
#(R) ZriGR |[vo(a:) — v(z;)||, where vo(z;) estimated non-rigid deformation.

v(z;) is the ground truth and estimated dis-

placements respectively at voxel x;. ||.|| de- pig | of MDE|o of MDE
notes the Euclidean norm, and R is the vol- 2.4] 0.5822 0.0464
ume of the region of interest. Column-3 de- 3.3 0.6344 0.0923
picts the standard deviation of the MDE for 4.5 0.7629 0.0253
the five pairs of data in each row. As evident, 5.5| 0.7812 0.0714

the mean and the standard deviation of the

error are reasonably small indicating the ac-

curacy of our joint registration + segmentation algorithm. Note that this testing
was done on a total of 20 image pairs (=40) as there are 5 pairs of images
per row.

For the first real data experiment, we selected two image slices from two
different modalities of brain scans. The two slices depict considerable changes
in shape of the ventricles, the region of interest in the data sets. One of the
two slices was arbitrarily selected as the source and segmentation of the ven-
tricle in the source was achieved using an active contour model. The goal was
then to automatically find the ventricle in the target image using our algorithm
given the input data along with the segmented ventricles in the source image.
Figure [2 is organized as follows, from left to right: the first row depicts the
source image with the atlas-segmentation superposed in black followed by the
target image with the unregistered atlas-segmentation superposed to depict the
amount of mis-alignment; second row depicts the estimated non-rigid vector field
and finally the segmented target. As evident from figures 2] the accuracy of the
achieved registration+segmentation visually very good. Note that the non-rigid
deformation between the two images in these two examples is quite large and
our method was able to simultaneously register and segment the target data sets
quite accurately.

The second real data example is obtained from two brain MRIs of different
subjects and modalities, the segmentation of the cerebellum in the source image
is given. We selected two “corresponding” slices from these volume data sets
to conduct the experiment. Note that even though the number of slices for the
two data sets are the same, the slices may not correspond to each other from
an anatomical point of view. However, for the purposes of illustration of our
algorithm, this is not very critical. We use the corresponding slice of the 3D seg-
mentation of the source as our atlas-segmentation. The results of an application
of our algorithm are organized as before in figure Bl Once again, as evident, the
visual quality of the segmentation and registration are very high.
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Fig. 2. Results of application of our algo- Fig. 3. Corpus Callosum segmentation on
rithm to a pair of slices from human brain a pair of corresponding slices from distinct
MRIs (see text for details) subjects

Fig. 4. Hippocampal segmentation using our algorithm on a pair of brain scans from
distinct subjects. (see text for details)

Finally we present a 3D real data experiment. In this experiment, the in-
put is a pair of 3D brain scans with the segmentation of the hippocampus
in one of the two images (labeled the atlas image) being obtained using the
well known PCA on the several training data sets. Each data set contains 19
slices of size 256x256. The goal was then to automatically find the hippocam-
pus in the target image given the input. Figure [ depicts the results obtained
for this image pair. From left to right, the first image shows the given (atlas)
hippocampus surface followed by one cross-section of this surface overlaid on
the source image slice; the third image shows the segmented hippocampus sur-
face from the target image using our algorithm and finally the cross-section of
the segmented surface overlaid on the target image slice. To validate the ac-
curacy of the segmentation result, we randomly sampled 120 points from the
segmented surface and computed the average distance from these points to the
ground truth hand segmented hippocampal surface in the target image. The
hand segmentation was performed by an expert neuroanatomist. The average
and standard deviation of the error in the aforementioned distance in estimated
hippocampal shape are 0.8190 and 0.5121(in voxels) respectively, which is very
accurate.
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5 Conclusions

In this paper, we presented a novel variational formulation of the joint (non-rigid)
registration and segmentation problem which requires the solution to a coupled
set of nonlinear PDEs that are solved using efficient numerical schemes. Our work
is a departure from earlier methods in that we have a unified variational principle
wherein non-rigid registration and segmentation are simultaneously achieved,
our algorithm can also accommodate for image pair having distinct intensity
distributions. We presented several examples (twenty) on synthetic and (three)
real data sets along with quantitative accuracy estimates of the registration in the
synthetic data case. More extensive experimentation under different amounts of
noise and varying degrees of non-rigidity needs to be performed prior to drawing
conclusions on the accuracy of the proposed model. This will be the focus of our
future efforts.
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