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Abstract. We present a novel multi-scale bone enhancement measure that can be
used to drive a geometric flow to segment bone structures. This measure has the
essential properties to be incorporated in the computation of anatomical models
for the simulation of pituitary surgery, enabling it to better account for the pres-
ence of sinus bones. We present synthetic examples that validate our approach
and show a comparison between existing segmentation techniques of paranasal
sinus CT data.

1 Introduction

Pituitary gland tumors represent the third most common primary intracranial tumors en-
countered in neurosurgical practice. In the majority, a surgical intervention is required.
A neurosurgeon typically enters through the nose, has to break thin paranasal sinus
bones and remove soft tissues while avoiding nerves and blood vessels to reach the
pituitary gland (Fig[I). This requires extensive practice and precise knowledge of the
anatomy, the absence of which can have serious implications on the patient [1]]. Cur-
rently, the only way to train a neurosurgery resident for such an operation is by multiple
observation and by elementary maneuver attempts supervised by an expert neurosur-
geon. This is why for the past several years, there has been a growing interest in build-
ing a surgical simulator to provide a tool for such training. Existing surgical simulators
generally involve a generic anatomical model elaborated on the basis of extensive hu-
man supervision, interacting with a fast but constitutively limited biomechanics engine.

Fig. 1. Endoscopic pituitary surgery
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Fig.2. Sagittal slice of CT data set in region of interest for pituitary gland surgery (see Fig.[I))

The goal of our research is to formulate a minimally supervised method for producing a
set of patient-specific anatomical models, from MR and CT data sets, in a manner that
can interact with a hierarchical finite-element based biomechanics engine. To do so, we
need a precise 3-dimensional (3D) partition of tissue classes into bone, air, vessel, nerve
and soft-tissue.

In this paper, we focus on paranasal sinus bone enhancement and segmentation from
CT data. The usual methods for segmentation of bone in CT are based on thresholding
followed by some image connectivity measures or manual editing which is quite tedious
and prone to human error. At a coarse scale, segmentation by thresholding is quite good
due to the 3-class nature of CT images and the known Hounsfield value range for bone.
Air has close to no signal and bone has much higher signal than surrounding tissues
(see Fig. 2). However, from Fig. 2(b)] we can clearly see that thin bones can have
holes and diffusive boundaries. True bones do not have these features, they are due to
partial volume effects and noise present in CT data sets. For such thin bones, a simple
thresholding procedure gives unsatisfying results.

In this paper, we introduce a novel algorithm for bone enhancement filtering and
segmentation based on the multi-scale second order local structure of the image. We
exploit the eigenvalue decomposition of the Hessian matrix which is known to give
valuable local information on the blob-like, tube-like and sheet-like behavior of iso-
intensity level sets in the image [Sl6431412]. We propose a sheetness measure that can
be used to drive an active surface to segment bone. This is motivated in part by Frangi’s
tubular structure enhancement filtering measure [3]] and Descoteaux et al [2] multi-
scale geometric flow. We illustrate the power of the approach with segmentation results
in regions with holes and low Hounsfield values in CT data and compare them to results
from [9] based on local structure extraction with the structure tensor. We also validate
the approach quantitatively on synthetic data. To our knowledge, our method is the first
flow-based approach for paranasal sinus bone segmentation.

2 Using Local 3D Structure for Filtering and Segmentation

In this section, we investigate medical image filtering algorithms using the tensor ma-
trix, 7 and the Hessian matrix, 7 as shape descriptors. For a 3D image Z, they are
defined as

7 =vVI'vVvi=|171,1,7,T,1I. H=| Zuy Lyy T,-
1,1. 1,1, 1.7, Tor1yz 1.
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In both cases, an eigenvalue analysis is performed to extract the local behavior of iso-
intensity level sets in the image. Many methods have been developed for blood vessel
segmentation using these models [SL64314/2]. We review only a selection of the repre-
sentative techniques for our bone segmentation problem.

2.1 Modeling Sheet-Like Structures with the Tensor Descriptor

As mentioned before, the usual method for bone segmentation for CT data is simple
thresholding which fails on thin bone structures. Recently, Westin et al. [9]] have in-
troduced an adaptive thresholding approach using the structure tensor to segment thin
bones around the eye socket and in the paranasal sinus area. The idea is to evaluate
the structure tensor at every voxel of the data and determine the degree to which its
shape resembles a line, a plane or a sphere. Letting A1, A2, A3 (0 < A; < Ay < A3)
be the eigenvalues of the structure tensor, the interest is when the structure tensor
can be approximated by a plane (see [9] for details). The authors describe a planar
measure Cplgne = ’\3;\—?)‘2 such that in theory, it has a value of 1 for plane struc-
tures and O for others. This measure is used to adaptively threshold the input data set,
t(x) = to — acCpiane(x), where g is a global threshold modified locally and « is a
weight factor for the planar measure.

In Section[3l we demonstrate several properties of this approach. In particular, since
the tensor is based on first order variation, the cpqne measure is strong at boundaries
(where the gradient is strong) and weak inside the bone structure. For our application,
we seek a measure that is high at the center of the structure with a fall off at boundaries
where a priori, our confidence in a voxel being strictly bone or strictly soft tissue is
weak. Such a confidence index can guide the subsequent surface and volume meshing
of bone tissue relevant to the simulation of pituitary surgery. We explore the properties
of the Hessian shape operator to define such a measure.

2.2 Modeling Sheet-Like Structures Using the Hessian Operator

The Hessian matrix encodes important shape information. An eigenvalue decomposi-
tion measures the maximum changes in the normal vector (gradient vector) of the under-
lying intensity iso-surface in a small neighborhood. Hence, it can differentiate between
tube-like, sheet-like and blob-like structures. The classification of Table [ was first ex-
plored by Sato et al. [6], and Lorenz et al. [5] separately. In [3], Frangi defines three
ratios using tube-like properties of the eigenvalues of Table [l to separate blood vessels
from other structures. Derivatives of the Hessian matrix are computed with multi-scale

Table 1. Local structure classification assuming |[A1]| < |A2] < [As]

eigenvalue conditions local structure|examples
AR Ax0,A3>>0 sheet-like bone, skin
M0, dx A3 >>0 tube-like vessels, nerves
MR AR A3 >>0 blob-like nodule

AR A= A3~0 noise-like background, noise
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Table 2. Theoretical properties of the ratios defined to construct the sheetness measure

Ratios ||sheet| tube | blob | noise
Rsneet = |A2]/|A3] 0 1 1 |undefined
Ruior = [(2|A3] — [Aa] — [A1])] /[ As]|| 2 1 0 |undefined
Rnoise = /A2 + 23+ X2 As [V2X3|V3BAs] 0

~v-parametrized Gaussian kernels and the three quantities are integrated in a vesselness
measure designed to be maximum when computed at the scale corresponding to the
radius of the tubular objects. The vessel index is thus maximum nearby the vessel cen-
ter and is zero outside. In [2] a vesselness measure is used to find putative centerlines
of tubular structures along with their estimated radii and is then distributed to create a
vector field which is orthogonal to vessel boundaries so that the flux maximizing flow
algorithm of [8] can be applied to recover them. This method can recover low contrast
and thin vessels from standard anatomical proton density weighted data sets.

Inspired by these approaches, we propose a multi-scale sheetness measure that en-
hances bone structures and then use it to drive a deformable surface that stops at bone
boundaries. At every voxel, we determine wether the underlying iso-intensity surface
behaves like a sheet. In this case, we know that the eigenvectors corresponding to the
null eigenvalues span the plane of the plate structure and the other eigenvector is per-
pendicular to it. We define three ratios, Rspeet, Rbiob, Rnoise, to differentiate sheet-like
structures from others. Their behavior is described in Table 2l Then, just as in [3]], we
can define the sheetness measure, S, as the maximum response over all scales o at
which the derivatives of the Hessian are computed,

S =maxS(o) = ! -R2, ., _ Slob _if o> OR?LOM (D
cexr (exp( Sl ))(1 exp( T ))(1 eXp( )),

where X' is a finite set of scales chosen by the user in the range of smallest to thickest
possible bone structure (0.5 < o < 3.0) in the data and parameters «, 3, ¢ are set to
0.5, 0.5 and half the maximum Frobenius norm (R,,,;s.) respectively as suggested in
[342].

Each term of the equation has a function and depends on the characteristics of Ta-
ble 2l To avoid division by a null A3 in the case of noise, the undefined can be set to
obtain the desired behavior. Breaking down the terms of Eq.[Il we have

1. exp (#) is a sheet enhancement term, where the maximum occurs for sheet-

like structures and the minimum for others. We set undefined to 1.

2. (1 —exp ( ““b) is a blob and noise elimination term since it is zero for both.

Moreover, the term is high for a sheet and lower for a tube. We set undefined to
Zero. 2
3. (1 —exp (%) is a background or noise reduction term. R, ,;se 1S known as

the Frobenius norm and is high only in the presence of structure.

Note that we do not define a tube elimination term as the curved ends of bone struc-
tures have a behavior that is both tube-like and sheet-like. Thus, the sheetness measure



Bone Enhancement Filtering: Application to Sinus Bone Segmentation 13

is designed to be maximum for sheet-like voxels, less important for tube-like regions
and zero for other structures. The power of this approach resides in the fact that after
this sheetness computation, we have a confidence sheet-like score at each voxel and in
addition, for high score locations, we have the scale estimate of the radius of the sheet
as well as the normal vector to the plane.

3 A Geometric Flow for Segmenting Bone Structures

There have been a few deformable model methods proposed for bone segmentation
which are quite different from our approach because they are suited to 2D images from
different modalities and different bones. In [7], the segmentation of carpal bones of the
hand in CT images is faced with similar challenges as in our sinus bone CT data sets. A
skeletally coupled curve evolution framework is proposed that combines probabilistic
growth with local and global competition. Promising results are shown on 2D images
with gaps and diffused edges. However, the method is based on skeletal points which
would be difficult to determine in one or two voxel wide bone structures such as those
in the paranasal sinuses.

In our application, we propose to use the bone enhancement measure of Eq. [I] to
drive a 3D surface evolution. We construct a vector field that is both large in magnitude
and orthogonal to bone structures. The key idea is to distribute the sheetness measure,
which is concentrated on the center sheet, to the bone boundaries implied by the local
scale and direction estimates coming from the multi-scale sheetness measure. At each
voxel where the sheetness index is high, we consider a disc or flat ellipsoid with its two
semi-minor axes aligned with the estimated plane orientation and its semi-major axis
equal to the approximated radius. The sheetness measure is then distributed over every
voxel on the boundary of the disc. We define the addition of the extensions carried out

Input Sheetness measure  Speed: diU(Y_/)) Segmentation

Fig. 3. Experiment on synthetic objects. We show slices of the input volumes, the sheetness mea-
sure, the speed term and a surface rendering of the segmentation
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independently at all voxels to be the ¢ distribution. The extended vector field is now
defined as the product of the normalized gradient of the original image with the above

—
¢ distribution, V = ¢%. This vector field is an ideal candidate for the static vector

. . . . . . TN
field in the flux maximizing geometric flow S; = div(V )N. The flow evolves the

surface S to converge to the zero-crossing of the speed term to a dz’v(v) (see Fig.[3).
The flow is topologically adaptive due to its implementation with levelset methods, is
computationally efficient and requires minimal user interaction. We refer the reader to
[2] for further details.

4 Quantitative Validation on Synthetic Objects

In order to validate the extension of the sheetness measure to boundaries and to evaluate
the effectiveness of the speed term driving the geometric flow, we constructed several
binary synthetic objects of varying widths and centerline curvatures. Each volume was
then smoothed using 2 iterations of mean curvature smoothing to simulate partial vol-
ume effects at their boundaries. Ground truth surface points were obtained as the 0.5
crossings of each object, obtained by linear interpolation on the voxel grid. We then
added white Gaussian noise to each voxel to simulate typical noise levels in a CT ac-
quisition process (we used a 10% signal-to-noise ratio) and followed the steps detailed
above to construct the sheetness measure, obtain the ¢ distribution and then build the
vector field 7 using the same parameters throughout. Empirical surface points were

defined as the zero-crossings of the speed term div(V) in the geometric flow.

Table 3. Agreement level between reconstruction and binary ground truth

object || average distance error (voxels) | maximum error (voxels) | ratio (%)
plate 0.22 1.00 95

rib 0.25 1.12 95
spiral 0.26 1.22 91

A visualization of the important terms is shown in Fig.[3l We evaluated the accuracy
of the zero-crossings of the speed term by computing the average and maximum Eu-
clidean distance errors between each empirical surface voxel and its closest ground truth
surface voxel. We also computed the ratio between classified voxels in the segmentation
and bone voxels in the binary volume. The results, shown in Table 3] indicate that the
average error is typically less than 0.3 voxels and that the agreement between the re-
constructed and original volume is above 90%. We have determined empirically that the
maximum errors occur at the two ends of each synthetic object, which is to be expected
since mean curvature smoothing causes the most shrinkage there.

5 Bone Enhancement and Segmentation on CT Data

In order to compare our algorithm with Westin et al.’s adaptive thresholding method and
simple thresholding, we cropped a 53 mm x 89 mm x 98mm region of a CT data sets
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hessian norm sheetness measure

conservative thresh aggressive thresh  [9] segmentation ~Our segmentation

Fig. 4. Comparison between different segmentation methods. Our method connects most of the
thin bone structure and reconstructs more bone than the approach in [9] and than thresholding.

around the paranasal sinuses and ran the segmentation methods. The original volume
was first resampled to a 0.468mm? isotropic grid.

We make several qualitative observations from Fig. 4. First, we see that both the
algorithm of [9] and our method work better than simple thresholding. Second, our
method appears to better exploit tissue contiguity and connect more bone structure than
Westin’s segmentation. This is to be expected since our geometric flow method is de-
signed to evolve and connect as much sheetness information as possible whereas [9]
remains a thresholding method, albeit one that accounts for local structure. We have
chosen adaptive thresholding (cpiqane) parameters which we thought gave the best re-
sults and it is clear that, as the authors suggest, if incorporated in an deformable model
framework a better segmentation could be obtained. In our experiments with the ap-
proach, we have found that the structure tensor picks out the direction of maximum
change in intensity but spatially, it does not behave well for our application. The cpane
measure is strong mostly at boundaries and tends to thicken the edges as seen in the
tensor norm response in Fig. 4. Our method has the advantage of extracting locations
at the center of bone structures where the underlying iso-intensity level set behaves like
a plane. The sheetness measure combined with a flow designed to evolve and stop at
boundaries performs better as it is able propagate along low sheetness regions. Most
importantly, on its own, the sheetness measure has suitable characteristics to be incor-
porated in a surgical simulator for pituitary intervention. The measure is high on the
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center plane of bones and decreases towards the boundaries where there is an uncer-
tainty about the tissue classification of a voxel. Hence, it can allow a surface mesh
model to account for uncertainty in determining triangulated bone boundaries, to better
model sinus bones in the simulation. For our application, it is thus more useful to have a
confidence measure for all voxels than a binary segmentation of bones which certainly
still has missing segments and no notion of distance to the boundaries.

6 Conclusions

We have presented a general multi-scale bone enhancement measure that can be used
to drive a geometric flow to segment sheet-like structures. The key contribution is the
introduction of a the sheetness measure based on the properties of the multi-scale Hes-
sian shape operator which has well-founded differential geometric theory and is stable
under the presence of noise. The measure gives a confidence index on the presence of
bones and for voxels with high values, the scale and direction of the local bone struc-
ture is directly obtained. We are able to detect and connect very thin and diffusive bone
structure boundaries. In current work, we are trying to use both the bone segmentation
as well as the sheetness, vesselness and other tissue classification cues from the CT and
corresponding MR data to use a global class competition levelset framework.
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