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Abstract. We develop a differential geometric framework for regular-
izing diffusion MRI data. The key idea is to model white matter fibers
as 3D space curves and to then extend Parent and Zucker’s 2D curve
inference approach [8] by using a notion of co-helicity to indicate com-
patibility between fibre orientation estimates at each voxel with those
in a local neighborhood. We argue that this provides several advantages
over earlier regularization methods. We validate the approach quantita-
tively on a biological phantom and on synthetic data, and qualitatively
on data acquired in vivo from a human brain.

1 Introduction and Related Work

In this article, we consider the problem of regularizing orientation fields obtained
using either Diffusion Tensor Imaging (DTI) [I] or High Angular Resolution Dif-
fusion Imaging (HARDI) [12] measurements. We view both cases in a differential
geometric setting where white matter fibers are modeled as 3D space curves. We
extend Parent and Zucker’s 2D curve inference approach [§] by using a notion
of co-helicity to model the compatibility between orientation estimates in 3D. In
this context, curvature and torsion play key roles in the interpretation of a tan-
gent bundle, where average local support is maximized using relaxation labeling
techniques. We demonstrate that using 3D curve inference for the regularization
of such data has advantages over earlier methods, including: 1) the possibility
of representing multiple orientations at the same voxel, 2) applicability to both
DTI and HARDI data, 3) numerical robustness in the vicinity of sparse mea-
surements and 4) estimates of curvature and torsion at each voxel, which can be
useful to guide fiber tracking algorithms.

We begin by briefly mentioning some of the key approaches to diffusion MRI
regularization. Poupon et al. [9] use a “spaghetti plate” model for the regulariza-
tion of DTT data. Westin et al. [7] regularize the individual elements of each DTI
tensor using a six-dimensional, multivariate Gaussian Markov Random Field. Ve-
muri et al. [I3] propose a constrained variational principle for the simultaneous
estimation and regularization of DTI tensors directly from diffusion weighted
images. Coulon et al. [5] combine variational and anisotropic diffusion meth-
ods to separately regularize orientation fields and diffusivities. Tschumperlé and
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Deriche [11] also propose variational methods for regularizing orientation fields
in DTT data while preserving discontinuities, with the constraint that orthonor-
mality between the eigenvectors at each location is preserved.

All of the above algorithms have the inherent limitations that: 1) they were
designed explicitly for DTI data and cannot be trivially extended to handle
HARDI data and 2) they assume (explicitly or implicitly) a single fiber ori-
entation at each voxel and thus cannot handle branchings or crossings. To our
knowledge the only algorithms which address these concerns, at least in part, are
those proposed in [10,3L[4]. Whereas some of these latter methods have been val-
idated on synthetic data, few (or none) have been demonstrated on a biological
phantom with known ground truth fiber orientations.

2 3D Curve Inference

We assume as input a 3D curve orientation distribution function sampled on
a regular (typically rectangular) 3D lattice. Following Parent and Zucker’s 2D
curve inference methodology [§], local curve orientation estimates can be inter-
preted as an initial tangent bundle at each location in the lattice. Our goal is to
obtain estimates of the trace, tangent, curvature and torsion fields of curves in
the 3D volume. This is done by using a notion of co-helicity between three tan-
gents, which is the natural extension to 3D of Parent and Zucker’s co-circularity
constraint between a pair of tangents in 2D [8]. In this framework, an osculating
heliz (which has constant curvature and torsion) is used to approximate a curve
passing through a given point.

2.1 Properties of a Helix and Co-Helicity

A circular helix is a curve inscribed on the surface of a cylinder, such that at
all points on the curve, the associated tangent vector forms a constant angle
with the cylinder’s axis. Consider such a helix, parametrized by ¢, with its axis
coinciding with the z— axis. Its equations and those of its unit tangent and unit
normal are given by:

Fig. 1. An illustration of co-helicity between three vectors vi, va and vs
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Here r is the radius of the helix and c is a constant defining the vertical separation
of the helical loops (measured along the helix axis). The orthographic projection
of a helix onto the xy plane is a circle with radius r.

Definition 1. Three orientations or vectors in 3D are co-helical if there is a
helixz to which all three are tangent.

The concept of co-helicity is illustrated in Fig.[I] which shows a helical arc, three
of its tangent vectors labeled vi, vo and vs, along with the helix axis and its
orthogonal plane II. The orthographic projection of the helix onto II is a circle
(shown with a dashed curve), and the projections of v1, vo and vs onto IT are
labeled IT(vi), II(ve) and II(v3). These three projections are co-circular [§],
since they are all tangent to the same circle in plane IT.

Theorem 1. Given three unit vectors vi, vo and vz in R> specified at three
locations, it is possible to determine whether or not they are co-helical. Further-
more, if they are co-helical, it is possible to recover the parameters of the helix
passing through these locations and having vi, vo and vs as tangent vectors.

Owing to space restrictions we omit the proof, but present an algorithm (Algo-
rithm [I]) for determining whether or not vy, vo and v in R?3 are co-helical, and
if so, for recovering the parameters of the helix.

2.2 Relaxation Labeling

In Parent and Zucker’s 2D curve inference framework [g], tangent fields are es-
timated over a 2D image by maximizing the average local support, defined by
A(p) = >, si(A)pi(N). Expressions of this type can be maximized using the
relaxation labeling algorithm of [6]. Here p;()) indicates the confidence in ori-
entation A at pixel ¢ and its (local) neighborhood support given by s;(A) =
E;;l SNy i (A N)p;(N). Each j denotes a node (i.e. pixel) in the neighbor-
hood of 4, \" is an orientation at that node, r;; (A, \') represents the compatibility
between orientation A at node 7 and orientation A at node j, and there are a
total of m orientations and n nodes. The compatibility coefficients are designed
so that co-circular tangents lend one another support, while other configurations
are suppressed. This imposes a constraint on the variation of curvature, while
providing as a bi-product local estimates of curvature as well. The compatibility
coefficients are further refined to include a partitioning into curvature classes [§].

The key to extending the above 2D curve inference framework to 3D is to
replace the notion of co-circularity between two tangents with one of co-helicity
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Algorithm 1: Determining co-helicity between three orientation estimates

Data : Three 3D vectors vi,va, Vs
Result : 1 if there is a helix to which vi,vs,vs are tangent, 0 otherwise.

1. (testing for a special case) If the three vectors are collinear, return 1.

2. Define a vector n as the cross-product of the difference vectors v — vz and va —vy.
This is the axis of the putative helix.

3. Compute the projections IT(v1), II(v2) and I1(vs) of vi, va, vs onto the plane that
has n as its normal vector. That fixes the value of the parameter r in the helix
equation (). That is, r is the radius of the circle, lying in the plane orthogonal to
n, to which I7(v1), II(ve) and I1(v3) are all tangent.

4. Without loss of generality we can set the parameter ¢ (see ([l)) of vy to ¢, = 0, the

parameter t of va is then simply the angle to = arccos ((%, %))

5. Using (@) and (@), it is easy to show that

r? cos(te —t1) + c?

(vi,va) = I (1)

(assuming that vi and v2 have been normalized to unit length). With the values
for r, t1 and t2 obtained in steps 1 and 2, we can derive ¢ using ().

6. Given ¢, we can calculate (using (2))) the angle that the tangent vectors should
make with the helix axis, as well as the displacement in the direction of the helix
axis of the position of vy and vo ((l)). It is possible to verify whether vi and va
possess indeed these properties. If so, return 1. If not, return 0.

7. If any of the above steps fail (e.g. there is no one circle to which I7(vy), II(v2)
and II(vs) are all tangent in step 3) return 0.

between three tangents. The compatibility condition obviously has to be gener-
alized to a notion of higher order compatibility. Following [6], this is done by
replacing the support function by

$iA) =YY rie (NN X )pi (N )pr(X). (5)

j,)\/ kN

Here ;5 (A, X', \'') represents the compatibility (co-helicity) between orientation
A at node 7, orientation A’ at node j and orientation A" at node k, as determined
using Algorithm [I

2.3 Implementation

The 3D curve inference algorithm can use an arbitrarily large label set. In our
implementation, we use a label set of 90 unit direction vectors distributed isotrop-
ically over a hemisphere, obtained using an electrostatic charge repulsion algo-
rithm. The relaxation labeling technique is implemented according to Algorithm
8.2 in [6], together with the radial projection method (Appendix A in [§]). The
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support coefficients are calculated in a spherical neighborhood of each voxel. We
obtain a significant increase in efficiency by precomputing the co-helical configu-
rations of tangent triplets and storing these in a look-up table. The initial values
for p;(\) are obtained from the value of the orientation distribution function
(ODF) along orientation A at voxel 7, and a discretization of the allowed range
of variation of curvature and torsion (the 3D extension of the curvature classes
in [8]) is implemented. Note that the output of our algorithm is not an ODF any
longer, but a regularized tangent bundle, which is an indication of confidence in
the underlying curve (i.e. white matter fibre) orientations at each voxel.

3 Validation

Quantitative Validation On a Biological Phantom: A biological phantom was cre-
ated from two excised Sprague-Dawley rat spinal cords embedded in 2% agar.
Two diffusion-weighted datasets were acquired using this phantom, with 90 dif-
fusion encoding directions, with b values of 1300 s/mm? and 3000 s/mm?, re-
spectively. The first was used for diffusion tensor reconstruction of the diffusion
ODF and the second for high angular resolution reconstruction, using the g-ball
technique [12]. A T1-weighted image of this phantom is shown in Fig. 2 (top left).
The ground truth orientations were determined by extracting the centerlines of
each cord using the technique of [2] and then smoothly extending the orientation
estimates in the center to the boundary of the cord, for each cord (Fig. B top
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Fig.2. Top Row: A biological phantom created by overlaying two rat cord spinal
cords (left), ground truth orientation estimates shown separately for the two cords
(middle), and the principal eigenvector orientations of the DTI image in the vicinity
of the crossing (right). Bottom Row: The regularized orientation estimates obtained
using the technique of [I1] (left), those obtained using 3D curve inference on the DTI
reconstruction (middle), and the regularized HARDI reconstruction using 3D curve
inference (right).
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middle). Fig. 2l (top right) shows the principal components of the diffusion ten-
sors in the region of the crossing, indicated by a rectangle in Fig.[2 (top left). The
bottom row of Fig.[2lshows the results obtained using Tschumperlé and Deriche’s
orthonormal vector regularization [I1] (OVR-DTI) (left), curve inference on the
DTTI dataset (CI-DTT) (middle) and curve inference on the HARDI dataset (CI-
HARDI) (right). The average orientation errors in degrees (+ 1 std. deviation)
between the ground truth dataset and the unregularized as well as regularized
datasets for each case are shown in Fig.Bl(left). Observe that the results obtained
using curve inference give significantly lower errors. Furthermore, the lowest er-
ror is obtained by applying curve inference to HARDI data. The phantom data
is challenging because of eddy current induced artefacts in many boundary vox-
els, where the measured principal direction of diffusion is perpendicular to the
ground truth orientation. In the case of the curve inference experiments, the
error is measured between the maximally supported orientation at each voxel in
the regularized data, and the corresponding ground truth orientation.

Quantitative Validation On Synthetic Data: A synthetic DTT dataset in a 100 x
50 x 100 voxel grid was created by placing anisotropic diffusion tensors with their
principal direction vector aligned with one of three curves: a planar sine wave,
and two helices with different curvature and torsion. Partial volume averaging
effects were simulated in voxels where the helices intersect the sine wave, and
background voxels were filled with isotropic (spherical) tensors. All tensors had
a mean eigenvalue of 3. In anisotropic regions the principal eigenvalue was set
to 7 and the others to 1. In voxels with crossings, the two principal directions
had eigenvalues of 4, and the other eigenvalue was set to 1. The two angles
describing the orientation of each tensor were perturbed (independently) by
adding Gaussian noise, with mean 0 and a standard deviation of 22.9° (0.4 rad).
The original (noiseless) dataset was treated as the ground truth. One view of
the noisy dataset is shown in Fig. Bl (right); it is important to note that the
helices are non-planar curves. Validation results are shown in the right column
of the table in Fig. B (left). Observe that once again curve inference (CI-DTT)
achieves a significant reduction in orientation error, compared to both the noisy
unregularized data, as well as the result obtained with OVR-DTI [11].

Qualitative Validation On Human Brain Data: We conclude with regularization
results using in vivo human brain data. Fig. @ (top left) shows a slice through
the data, which consists of a DTI reconstruction of the diffusion ODF. The data
covers an area with multiple fibre directions, including voxels with partial volume
averaging effects, as well as voxels with cerebro-spinal fluid and grey matter that
do not exhibit high diffusion anisotropy. Fig. [ (top right) shows one region of
interest (ROI) of the regularization result using 3D curve inference, and Fig. @l
(bottom left) shows a slice through the corresponding 3D fractional anisotropy
image of the brain, with a white rectangle indicating the ROI. A zoom-in on the
bottom-left part of the regularization result is given in Fig. @ (bottom right),
showing the recovery of multiple fibre directions in voxels with partial volume
averaging effects. Qualitatively, intra-voxel crossings and the apparent variation
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Phantom | Synthetic
Unreg. DTT [27.1 +29.0°|24.9 + 14.5°
Unreg. HARDI|21.0 + 21.9° N/A
CI-DTI 11.0 £16.3°| 11.2 & 8.2°
CI-HARDI |10.3 £17.3° N/A
OVR-DTI (24.0 £22.2°|21.2 +12.9°

Fig. 3. LEFT: Table of validation results showing average orientation errors in degrees
for the biological phantom data set and the synthetic data set. RIGHT: A snapshot of
the noisy synthetic data set, prior to regularization.
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Fig.4. A ROI through the brain DTI data (top left) with the regularization results
using curve inference (top right). A slice through the associated fractional anisotropy
image (bottom left) with a white rectangle enclosing the ROI. A zoom-in on the result
from a different viewpoint in a region of partial volume averaging effects (bottom right).

of curvatures are recovered well from the DTI data. Quantitative evaluation of
these results is difficult, due to the lack of ground truth.

4 Conclusion

We have presented a differential geometric framework for regularizing diffusion
MRI data, where a notion of co-helicity is used to compute support for orienta-
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tions given neighbouring orientation estimates. Since multiple orientations can
receive support in the same voxel, the algorithm is applicable to configurations
of crossings or branchings, and it handles DTI and HARDI data in an identical
way. It can also be applied to the regularization of any set of ODF's distributed
over a discrete 3D lattice. As a bi-product of the algorithm, we obtain discrete
estimates of the curvature and torsion of the likely curves at each voxel, which
could be used to guide fiber tracking algorithms. We have validated the algo-
rithm quantitatively on a biological phantom and on a synthetic data set, and
qualitatively on in vivo human brain data.
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