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Abstract. The Rho family of small GTPases is essential for morphological 
changes during normal cell development and migration, as well as during dis-
ease states such as cancer. Our goal is to identify novel effectors of Rho pro-
teins using a cell-based assay for Rho activity to perform genome-wide func-
tional screens using double stranded RNA (dsRNAs) interference.  We aim to 
discover genes could cause the cell phenotype changed dramatically.   Biolo-
gists currently attempt to perform the genome-wide RNAi screening to identify 
various image phenotypes. RNAi genome-wide screening, however, could eas-
ily generate more than a million of images per study, manual analysis is thus 
prohibitive. Image analysis becomes a bottleneck in realizing high content im-
aging screens. We propose a two-step segmentation approach to solve this prob-
lem. First, we determine the center of a cell using the information in the DNA-
channel by segmenting the DNA nuclei and the dissimilarity function is em-
ployed to attenuate the over-segmentation problem, then we estimate a rough 
boundary for each cell using a polygon. Second, we apply fuzzy c-means based 
multi-threshold segmentation and sharpening technology; for isolation of touch-
ing spots, marker-controlled watershed is employed to remove touching cells. 
Furthermore, Voronoi diagrams are employed to correct the segmentation errors 
caused by overlapping cells. Image features are extracted for each cell. K-
nearest neighbor classifier (KNN) is employed to perform cell phenotype classi-
fication. Experimental results indicate that the proposed approach can be used 
to identify cell phenotypes of RNAi genome-wide screens. 

1   Introduction 

High content screening by automated fluorescence microscopy is becoming an impor-
tant and widely used research tools to assist scientists in understanding the complex 
cellular processes such as mitosis and apoptosis, as well as in disease diagnosis and 
prognosis, drug target validation, and compound lead selection [1]. Using images 
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acquired by automated microscopy, biologists visualize phenotypic changes resulting 
from reverse-functional analysis by the treatment of Drosophila cells in culture with 
gene-specific double-stranded RNAs (dsRNAs) [2]. In a small scale study by manual 
analysis [3], biologists were able to observe a wide range of phenotypes with affected 
cytoskeletal organization and cell shape. Nonetheless, without the aid of computer-
ized image analysis tools, it becomes an intractable problem to characterize morpho-
logical phenotypes quantitatively and to identify genes as well as their dynamic rela-
tionships required for distinct cell morphologies on a genome-wide scale.  

In this paper, we will study image-based morphological analysis in automatic high-
content genome-wide RNAi screening for novel effectors of Rho family GTPases in 
Drosophila cells. About 21,000 dsRNAs specific to predicted Drosophila genes are 
robotically arrayed in 384-well plates. Drosophila cells are plated and take up dsRNA 
from culture media. After incubation with the dsRNA, expression of Rac1V12, 
RhoAV14 or Cdc42V12 is induced.  Cells are fixed, stained, and imaged by auto-
mated microscopy. Each screen will generate ~400,000 images, or millions if includ-
ing replicates. Clearly, there is a growing need for automated image analysis as high 
throughput technologies are extended to visual screens. Biologists have developed a 
cell-based assay for Rho GTPase activity using the Drosophila Kc167 embryonic cell 
line. Three-channel images are obtained by labeling F-actin, GFP-Rac and DNA.  
Fig. 1 gives an example of RNAi cell images of one well acquired with three channels 
for phenotypes of (a) DNA, (b) Actin, and (c) Rac. It is tough to segment the cells 
from (b) or (c). The three phenotypes are shown in Fig. 2. They are: S-spikey, R-
ruffling, and A-actin acceleration at edge. The question is how to identify the three 
phenotypes automatically for each image. To reach this aim, we propose the follow-
ing three steps: first, we segment each cell, then we calculate the morphological and 
textural features for each cell and built training data sets, finally we perform feature 
reduction and classify cellular phenotypes.  

The key issue is how to automatically segment cells of cell-based assays in a cost-
effective manner, as such fast screening generate rather poor image quality and tens 
and hundreds of millions of cells in each study.  There exist a number of publications 
on nuclei segmentation and cell segmentation. For example, Wahlby, et. al., [4] pro-
posed a cytoplasm segmentation based on watershed segmentation and rule-based 
merging and splitting of over-segmented and under-segmented objects. Marker-
controlled watershed segmentation is a popular method in cell segmentation [5-7]. In 
the literature, watershed methods with or without seeds are extensively studied. Al-
though the oversegmentation caused by watershed can be reduced by rule-based 
merging of fragmented objects, it is difficult to devise reliable rules to merge the 
example which consists of one cell with three nuclei inside the cytoplasm. Lindblad, 
et. al., recently studied a similar problem about automatic segmentation of cytoplasms 
and classification of Rac1 activation [7].  There are several different points between 
our work and Lindblad’s work.  First, their data source is Chinese hamster ovary hIR 
(human insulin receptor) cells transfected with GFP-Rac1 reporter protein, and ours is 
Drosophila Kc167 embryonic cell line transfected with an inducible GFP-RacV12 
protein.  Second their data is two-channel (nucleus and GFP-Rac1 channels) 3D im-
ages, while our data is three-channel (DNA, F-actin and GFP-RacV12 channels) 2D 
images from larger scale genome-wide screening. Third, the quality of their images is 
better as they employed automated confocal laser scanning microscopy (see Fig.2 in 
[7]) while we used more commonly available, standard automated epi-fluorescence 
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microscopy. So it is much more challenging to segment RNAi genome-wide images. 
To address this hard problem, we propose a two-step segmentation approach. We then 
quantitate the tens of millions of cells and classify the cell phenotypes.  

(a)−DNA channel

 

(b)−Actin channel

 

(c)−Rac12 channel

 

Fig. 1. RNAi cell images with three channels 

         
               (a)                         (b)                         (c)                                 (d) 

Fig. 2. Four different RNAi cell phenotypes: (a)-A-A, (b) N, (c) R and (d) 

2   A Two-Step Segmentation Approach 

Extracting rough boundary for each cell is the first step of our approach. It consists of 
two sub-steps: determine the center of each cell and determine the polygon for each 
cell.  We then propose a fuzzy c-means based segmentation and sharpening; marker-
controlled watershed is employed to extract each cell, and the Voronoi diagrams are 
further employed to correct errors due to some overlapping cells. 

2.1   Extracting Rough Boundary for Each Cell   

Large scale intensity variations as well as shading and shadowing effects in our im-
ages are often caused by uneven illumination over the field of view. A data-driven 
approach is employed to deal with this problem [4]. The algorithm works by itera-
tively making better distinction of the background of the image. A cubic B-spline 
surface is employed to model the background shading. After removing the shading, 
we adopt morphological transformation to enhance the image’s contrast. Morphologi-
cal filtering for enhancing images has been proposed by [8]. The first step of this 
method is to find peaks and valleys from original images. Peaks represent brighter 
spots of original image, and valleys represent the darker spots. Peaks are obtained by 
subtracting the morphologically opened image from the original image and valleys by 
subtracting the original image from morphologically closed image. The former is the 
Top-Hat transformation, and the later is the Bottom-Hat transformation. The contrast-
enhanced image is obtained by the summation of the original, the peak and the nega-
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tive valley image. Once the above two steps are completed, we then apply the 
ISODATA algorithm [9] to segment the nuclei in the DNA channel.  After the above 
image processing, the touching spots are reduced, compared with the threshold meth-
ods traditionally used after preprocessing.  

However, some nuclei may remain touching each other, we propose a method to 
segment touching cells.  The aspect ratio of a particle image p  is defined 

as )()()( maxmin pwpwpr = , where )(min pw  and )(max pw  are the minimum and 

maximum diameters of the particle area. Denote the average size of the particles in 
the whole image to be ℵ , and size of cell p to be )( ps . The following condition is 

employed to isolate the touching cells: 5.0)( <pr , ℵ>)( ps , and )(max pw  is bigger 

than or equal to the pre-defined value 90 by experience. If the above condition is 
satisfied, then split the touching spots into two spots at the location of )(min pw . The 

merging criterion is different from the traditional approach. As an example, take a 
case where three nuclei can be seen within a single original cell. However, when 
watershed over-segments the original object, it is extremely difficult to find a proper 
rule to merge the fragments back into a single object. From the watershed point of 
view, the large object should be separated into three smaller objects. On the other 
hand, biologically, the three small nuclei belong to one single cell such that the large 
object should not be separated at the first place.  Here we adopt the Hue transforma-
tion. Hue is a useful attribute in color segmentation since it is influenced by non-
uniform illumination such as shade and shadow.  The objective function used here is 
the square error of the piecewise constant approximation of the observed hue image 
H which is the hue transformation of the original three channels. Denote two cells 
regions as iΩ and jΩ .  Define the mean Hue value as )( iΩµ  and )( jΩµ  and the 

following  dissimilarity function:  
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example the segmentation result of the DNA channel based on the original image. 
Our aim in this step is to find a rough boundary or polygon that encloses the entire 

cell whose center is the nuclei. The assumption is that one cell shape area cannot 
reach other nuclei’s area. Assume that we are studying the polygon of one cell whose 
center of the nuclei is denoted by ),( 000 yxP , we pick up those cells whose distances 

between the centers of their nuclei and the ),( 00 yx  is less than a pre-defined thresh-
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We then calculate the slope and the angle between ),( iii yxP  and ),( 000 yxP  as:  
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Then it is easy to determine in which region each point of NPPP ,...,, 21 is located. 

Without loss of generality, assume MPPP ,...,, 21  points are located in region 7. Pick 

up the center whose distance is the closest to ),( 000 yxP , say ),( 111 yxP . Denote the 

Euclidean distance between the two centers as 
10 , ppd , and the fitted radius of nuclei 

of ),( 111 yxP  as 1r . Denote a new radius d  as 2/1, 10
rdd pp −= . The point whose 

distance being d  to the center point ),( 000 yxP  in direction 23π  is the right vertex 
in region 7. The obtained 8 vertex points are the vertex points of the expected poly-
gon. The method proposed in this section gives us a rough boundary of each cell. 
Next we focus on how to segment each cell in this boundary. 

2.2   RNAi Cell Segmentation   

After using the above method to determine the boundary of each cell, then we can 
focus on this region and try to extract this cell. For our goal, we will first binarize 
the gray-level image. To effectively binarize the RNAi cells, we proposed the fuzzy 
c-means segmentation with sharpening method. Obviously, the segmentation can be 
treated as an unsupervised classification problem. In all clustering algorithms, the 
fuzzy c-means [10] is an attractive algorithm because its convergence property and 
low complexity, and thus is efficient to implement to screen large number of im-
ages. We first use the fuzzy c-mean clustering to partition the image pixels into 

3=K  classes. Assume the class k  is the right class we are interested in, and then 
we sharpen the pixels in this class by using fuzzy c-means clustering again. Here we 
present the sharpening technique. Because of the low contrast, it is necessary to 
adjust the membership values of kiu ,  (the ith pixel in the kth class) of the output 

from fuzzy system. Let )(yu p be the fuzzy membership value that indicates how a 

possible pixel y belongs to the set containing the notion of the measure of fuzzi-

ness to sharpen the fuzzy region of interest defined as 1 when 0)( uyu p ≥ , and 0 

otherwise, where 0u  is a fuzzy membership threshold. Pham, et. al., [11] proposed 

to select )( *
0 * yuu

c
= , where *y is the pixel with maximum intensity value, and *c  

is the right class which we are interested in. This choice of 0u  does not work in our 

images. Principally, the misclassified pixels mainly come from the closed member-
ship values between the biggest and the second biggest values. If they are too close, 
the classification results are not reliable.  Denote the difference between the biggest 

and the second biggest membership values in the class *c   to be v , i.e., 
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ζ,...,1      ),(max)(max ,, 0 =−= ≠ iuuv kikkkiki , where )(maxarg ,
0

ki
k

uk =  and ζ  is the 

total number of pixels in class *c . Here we propose to estimate the threshold 0u  

using fuzzy c-means again. We first partition the values of ζ,...,1, =ivi  into two 

classes. Denote the minimal of the bigger class as 1u , and the maximal of the smaller 

class as 2u . Then the 0u  is defined as the average of these two parameters. 

Isolating the touched cells is extremely challenging in automatic RNAi screening. 
If we adopt the watershed method, it can easily generate many false positives due to 
oversegmentation. It is difficult to remove the oversegmentation simply by applying 
certain heuristic rules or criteria [4, 6].  Since we already know the rough region and 
center of each cell, we propose to modify the marker function so that pseudo minima 
can be removed while the center of each cell can be kept. The catchment’s basins 
associated to the pseudo minima are filled by morphological reconstruction and then 
transformed into plateaus.  Then those minima will not generate different regions 
when watersheds are obtained. This method is called marker-controlled watershed 
algorithm.  The markers are the centers of cells which are obtained in the first step. As 
the boundary of many cells is weak, it is hard to extract their boundary by using inten-
sity gradient of pixels.  Thus, after we extract the binarized cells, we then calculate 
the Euclidian Distance map of the binary image developed with the proposed fuzzy c-
means segmentation and sharpening. We impose the markers to this Euclidian dis-
tance map, and then we applied watershed algorithm to segment the cells. Note that 
the above procedure is for segmenting a single cell. After we process all cells, it still 
could cause overlapping between a small number of cells. We finally apply the Vo-
ronoi diagrams [12] to correct the overlapped cells. Fig. 3 is the segmentation result 
by using the proposed approach. 

  

Fig. 3. left-DNA channel segmentation result; right- segmentation result 

3   RNAi Cell Phenotype Recognition 

In RNAi genome-wide screen, our goal is to identify all the possible cell phenotypes 
derived in the screening. In the meantime, we also need to consider some location 
features such as roundness and eccentricity.  The first set of features was based on 
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Zerike moments. We extracted 49 features. The second set are co-occurrence contex-
ture features. We extracted 28 textural features. The third set was based on cell hull 
location features [13].  Here we choose the three features which are the fraction of the 
convex hull area occupied by protein fluorescence, the roundness of the convex hull, 
and the eccentricity of the convex hull. We totally extracted 15 common image fea-
tures. Since the feature values have completely different ranges, an objective scaling 
of features was achieved by calculating z-scores. Principle component analysis 
(PCA), commonly used in microarray research as a cluster analysis tool, is employed 
to reduce features. KNN classifier is a non-parametric classifier, which is easy to 
implement. Hence we use KNN to finish up the cell phenotype classification. Four 
classes are defined which are shown in Fig. 2. The four classes are Spikey, Ruffling, 
Actin acceleration at edge, and Normal cells.  A training set is obtained for each class. 
We use KNN to classify test data. 

4   Results and Discussions 

In our study, four images of cells that had been visually classified are used to estab-
lish the training data sets. The limited amount of training data was due mainly to the 
tedious visual classification. We first used the proposed automated segmentation 
algorithm to segment each image, and then we asked the biologists to mark the cell 
with different phenotypes. Note that we actually have four classes in the training data 
sets as the other one is the class of normal cell which does not have significant change 
in their morphological shape. Cross-validation is employed to test the performance of 
the proposed automatic screening approach. We randomly split the data sets into 
training data set and test data sets, where 70% of cells are treated as training data and 
30% of cells are treated as testing data. The feature reduction and normalization are 
first done with the training data sets, and then applied the transformation matrix of 
feature reduction to the test data set and similar procedure applied to normalization. 
Then we run 100 times and calculate the mean of the recognition accuracy based on 
the test data. The recognition accuracy is listed in Table 1. It is seen that the recogni-
tion accuracy is between 62% and 75%. Our biological collaborators reckoned that 
70% accuracy should be adequate for the purpose of automatic screening.  To further 
improve the accuracy and specificity, we continue to improve the segmentation algo-
rithm, the phenotype definition, and the specific image features for extraction.  

In this study, we proposed a two-step segmentation approach to segment high con-
tent cell images automatically. Certain regular image features, Heraik contextual 
feature and Zerick moment features are extracted for each cell. KNN is employed to 
perform cell phenotype classification. Experiments show that the proposed approach 
can automatically and effectively identify cell phenotype. Although we have built an 
initial workable system for automated RNAi genome-wide screening, there are certain 
problems remains.  For example, we conjecture that the snake model in segmentation 
might be more effective than the marker-controlled watershed algorithm and Voronoi 
diagrams as the cells in GFP-Rac12 and F-actin have many different kinds of closed 
curves.  We are in the processing of testing this conjecture.  For feature extraction, 
additional image features specific to the different cell phenotypes, such as spiky re-
gion, ruffling region and actin acceleration region, would need to be identified.  Fur-
thermore, we would study how to automatically extract phenotypes hidden in cell 
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shapes by using cluster analysis. The ultimate goal is to score each image by estab-
lishing robust mathematic models to map the number of different phenotypes in each 
image to a scoring system which would let biologists easily find the novel candidate 
genes in their screens.   

Table 1. Recognition accuracy for RNAi cell phenotypes 

Phenotype Actin-A Ruffling-R Spiky-S Normal-N 
Actin 72.87% 8.6% 1.69% 16.8% 
Ruffling 8.68% 75.14% 6.13% 10.06% 
Spikey 6.97% 20.36% 62.83% 9.84% 
Normal 14.5% 6.54% 4.79% 74.17% 
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