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Abstract. This paper presents a method for classification of medical images, 
using machine learning and deformation-based morphometry. A morphological 
representation of the anatomy of interest is first obtained using high-
dimensional template warping, from which regions that display strong correla-
tions between morphological measurements and the classification (clinical) 
variable are extracted using a watershed segmentation, taking into account the 
regional smoothness of the correlation map which is estimated by a cross-
validation strategy in order to achieve robustness to outliers. A Support Vector 
Machine-Recursive Feature Elimination (SVM-RFE) technique is then used to 
rank computed features from the extracted regions, according to their effect on 
the leave-one-out error bound. Finally, SVM classification is applied using the 
best set of features, and it is tested using leave-one-out. The results from a 
group of 61 brain images of female normal controls and schizophrenia patients 
demonstrate not only high classification accuracy (91.8%) and steep ROC 
curves, but also exceptional stability with respect to the number of selected fea-
tures and the SVM kernel size.  

1   Introduction 

Morphological analysis of medical images is performed commonly in a variety of re-
search and clinical studies. Region of Interest volumetry (ROI) has been traditionally 
used to obtain regional measurement of anatomical volumes and investigate abnormal 
tissue structures with disease [1]. However, in practice, a priori knowledge about ab-
normal regions is not always available.  Even when good a priori hypotheses can be 
made about specific ROIs, a region of abnormality might be part of an ROI, or span 
multiple ROIs, thereby potentially reducing statistical power of the underlying mor-
phological analysis significantly. These limitations can be effectively overcome by 
methods falling under the general umbrella of High-Dimensional Morphological 
Analysis (we will refer to these methods as HDMA), such as voxel-based and defor-
mation-based morphometric analysis methods, e.g. [2-5]. However, a voxel-by-voxel 
analysis is limited by noise, registration errors, and excessive inter-individual vari-
ability of measurements that are too localized, such as voxel-wise displacement fields, 
Jacobians, or residuals. Most importantly, voxel-by-voxel mass-univariate analysis of 
transformations or residuals does not capture multi-variate relationships in the data. 
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Linear methods, such as PCA [6] are not effective in capturing complex relationships 
in high-dimensional spaces. 

In order to overcome these limitations, pattern classification methods have begun 
to emerge in the recent years in the field of computational anatomy [7-11], aiming at 
capturing nonlinear multivariate relationships among many anatomical regions, to 
more effectively characterize group differences. A major challenge in these methods 
has been the sheer dimensionality of HDMA-related measurements, which is often in 
the millions, coupled with the relatively small number of training samples, which is at 
best in the hundreds, and often just a few dozens. Accordingly, extracting a small 
number of most informative features from the data has been a fundamental challenge. 
A main emphasis of this paper is the extraction of distinctive, but also robust features 
from high-dimensional morphological measurements obtained from brain MR images, 
which are used in conjunction with nonlinear support vector machines (SVM) for 
classification. The proposed method is tested on classifying normal controls from 
schizophrenia patients in female participants. 

The key elements of the proposed approach are: 1) Regional volumetric informa-
tion is first extracted from a template warping transformation; herein we focus en-
tirely on volumetric information, such as atrophy, and don't consider higher order 
shape characteristics. 2) The anatomy of interest (the brain, herein) is partitioned into 
a number of regions, via a watershed algorithm applied to the correlation map be-
tween clinical status and regional volumetric measurements; various techniques are 
applied to estimate the correlation map, in order to achieve robustness to outliers. 3) 
An SVM-RFE technique is applied to the previously rank-ordered features that are 
computed from the extracted regions, in order to select the most important feature set 
for classification. 4) A nonlinear SVM classifier is applied and tested via cross-
validation and ROC analysis. 5) Group differences are visually displayed via a dis-
criminative direction method [7,11]. We now detail the methodology. 

2   Methods 

Our classification method involves three steps: feature extraction, feature selection, 
and nonlinear classification, which are detailed next. 

2.1   Feature Extraction 

As mentioned in the Introduction, the features used for brain classification are ex-
tracted from automatically generated regions, which are determined from the training 
data. Several issues are taken into consideration here. First, morphological changes of 
brain structures resulting from pathological processes usually don't occur in isolated 
spots, but rather they occur in regions that can have irregular shapes and are not 
known a priori.  Second, noise, registration errors and inter-individual anatomical 
variations necessitate the collection of morphological information from regions much 
larger than the voxel size, which must additionally be distinctive of the pathology of 
interest. Third, multivariate classification methods are most effective and generaliz-
able when applied to a small number of reliable and discriminative features. Accord-
ingly, features irrelevant to classification must be eliminated.  
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In the following, we detail the procedure for automatically generating adaptive re-
gions from a training dataset, by first introducing the method to extract local morpho-
logical features, then defining the criteria for adaptively clustering voxels into re-
gions, and finally extracting overall features from each region. 

Construction of a morphological profile of the brain. In order to obtain the mor-
phological profile from an individual brain image, warping the image into a template 
space is often a first step, leading to various morphological measurements (e.g. de-
formation field, Jacobian determinant, tissue density maps, or residuals) that are in the 
same space and therefore directly comparable across individuals. Herein we follow 
the framework that was proposed in [5], and which is based on a mass-preserving 
shape transformation framework; a similar method is used within the SPM software 
and is often referred to as "Jacobian modulation". We have used this approach be-
cause it is robust to registration errors, due to the mass preservation principle, in con-
trast to the determinant of the Jacobian that is directly affected by registration errors. 

The approach in [5] uses images that are first segmented into three tissues, namely 
gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF)--we used the 
segmentation method of [12] in our experiments. Then, by using a high-dimensional 
image warping method [13] these segmented images are spatially transformed into a 
template space, by preserving the total tissue mass; this is achieved by increasing the 
respective density when a region is compressed, and vice versa. As a result, three tis-
sue density maps, )(0 uf , )(1 uf , )(2 uf , are generated in the template space, each re-
flecting local volumetric measurements corresponding to GM, WM, and CSF, respec-
tively, at location u. These three tissue density maps give a quantitative representation 
of the spatial tissue distribution. Regional atrophy is reflected by reduction in the re-
spective tissue density map. Representative tissue density maps are shown in Fig.1. 

Learning-based generation of adaptive regions. Brain regions are generated by spa-
tial clustering of morphological features of similar classification power. For each 
morphological feature, its classification power is highly related to its discriminative 
power and reliability. The discriminative power of a feature can be quantitatively 
measured by its relevance to classification as well as its generalizability for classifica-
tion. The relevance of a feature to classification can be measured by the correlation 
between this feature and the corresponding class label in a training dataset (e.g. nor-
mal or pathologic). In machine learning and statistics for relevance analysis, the cor-
relation measures can be broadly divided into linear correlation and non-linear corre-
lation. Most non-linear correlation measures are based on the information-theoretical 
concept of entropy, such as mutual information, computed by probability estimation. 
For continuous features, probability density estimation is a hard task especially when 
the number of available samples is limited. On the other hand, linear correlation 
measures are easier to compute even for continuous features and are robust to over-
fitting, thus they are widely used for feature selection in machine learning. Here, we 
used the absolute Pearson correlation coefficient, closely related to T-test [14] in the 
context of extracting group differences, to measure the relevance of each feature to 
classification. Given an image location u , the Pearson correlation between a feature 

)(ufi  of tissue i , and class label y , is defined as 
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where j  denotes the j th sample in the training dataset. Thus, )(ufij  is a morphologi-

cal feature of tissue i  in the location u  of j th sample (the tissue density map, here), 

and )(ufi  is the mean of )(ufij  over all samples. Similarly, jy  is a class label of the 

j th sample, and y  is the mean of jy  over all samples. In addition to the relevance, the 

generalizability of a feature is equally important for classification. A bagging strategy 
[15] is adopted to take the generalization ability into account, when measuring the dis-
criminative power of a feature by absolute Pearson score. That is, given n  training 
samples, a leave-one-out procedure is used to measure the discriminative power of 
each feature )(ufi  by a conservative principle that selects the minimal absolute Pear-
son score from n  resulted scores as this feature's discriminative power, defined as  
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where )(uikρ  is the k th leave-one-out Pearson correlation at location u  of tissue map 
i . Maximizing the measure in (2) would select features that maximize the margin 
from 0 , i.e., from no discrimination at all. 

The spatial consistency of a feature is another important issue in classification, 
since morphological features are locally extracted and thus might not be reliable due 
to registration errors and inter-individual anatomical variations. A feature is spatially 
consistent if it is similar to other features in its spatial neighborhood, implying that 
small registration errors will not significantly change the value of this feature. For 
each feature )(ufi , we measure its spatial consistency, )(uRi , by an intra-class corre-
lation coefficient that is computed from all features in its spatial neighborhood and all 
samples in the training dataset [16]. In our applications, the value of )(uRi  is con-
strained to lie between 0 and 1. 

For each feature, its discriminative power score )(uPi  and its spatial consistency 

score )(uRi  are both non-negative, with high score indicating better feature for classi-
fication. We combine these two measurements into one by the following equation, 

,0,,)()()( >= rpuRuPus r
i

p
ii  (3) 

thus obtaining a single score )(usi  for each feature )(ufi , which reflects the classifi-
cation power of this feature for the particular classification problem. Three score 
maps are produced for GM, WM and CSF, respectively. 

As we mentioned above, the disease-affected brain regions generally occur in the 
clusters of spatially contiguous voxels. Therefore, a watershed segmentation method 
[17] is employed to partition a brain into different regions according to the scores 

)(usi , and finally to obtain separate partitions for each tissue. A typical brain region 
partition result, with all regions generated from three tissue density maps, is shown in 
Fig. 1, on the right. 
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Fig. 1. Typical tissue density maps (GM, WM, CSF, from left to right) and automatically gen-
erated brain regions in which high grey-levels indicate discriminative power 

Feature extraction from generated brain regions. For each region generated as de-
scribed above, its corresponding volumetric measure is computed by summing up all 
tissue density values in this region, which effectively calculates the volumes of the 
corresponding regions in individual anatomies. Volumetric measures from all WM, 
GM, and CSF regions constitute an attribute vector to represent morphological infor-
mation of the brain. Although currently we focus on local tissue volumetric informa-
tion, other types of information could also be considered. 

2.2   Feature Selection via SVM-RFE 

Although the number of regions determined in Sec. 2.1 is dramatically smaller than 
the original number of brain voxels, measures obtained from many regions are less ef-
fective, irrelevant and redundant for classification. This requires a feature selection 
method to select a small set of the most informative features for classification. We 
have experimented with several feature selection methods, and determined that the 
SVM-RFE algorithm has the best performance. SVM-RFE is a feature subset selec-
tion method based on SVM, initially proposed for a cancer classification problem 
[18]. It was later extended by introducing SVM-based leave-one-out error bound cri-
teria in [19]. The goal of SVM-RFE is to find a subset of size r  among d  variables 
( dr < ), which optimizes the performance of the classifier. This algorithm is based on 
a backward sequential selection that removes one feature at a time. At each time, the 
removed feature makes the variation of SVM-based leave-one-out error bound small-
est, compared to removing other features. In order to apply this subset selection to our 
problem in a reasonable time cost and to avoid local optima, we first remove the most 
irrelevant features by the feature ranking method [14] in which the rank score is com-
puted by a Pearson correlation based bagging strategy as we described above, and 
then apply the SVM-RFE algorithm on the set of remaining features. 

2.3   SVM-Based Classification 

The nonlinear support vector machine is a supervised binary classification algorithm 
[20]. SVM constructs a maximal margin linear classifier in a high (often infinite) di-
mensional feature space, by mapping the original features via a kernel function. The 
Gaussian radial basis function kernel is used in our method. 
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SVM is not only empirically demonstrated to be one of the most powerful pattern 
classification algorithms, but also has provided many theoretic bounds on the leave-
one-out error to estimate its capacity, for example, the radius/margin bound, which 
could be utilized in feature selection. Another reason for us to select SVM as a classi-
fier is its inherent sample selection mechanism, i.e., only support vectors affect the 
decision function, which may help us find subtle differences between groups. 
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Fig. 2. Performance of ranking based feature selection (left plot) and SVM-RFE feature selec-
tion (right plot). Plotted are the average classification rates for different SVM kernel sizes and 
different feature numbers. Notably, the SVM-RFE algorithm starts selecting subsets of features 
from 69 features, which are top-ranked features, selected by ranking-based feature selection 
method. The SVM-RFE algorithm performs a robust selection of features and leads to stable 
performance. 

3   Results 

We tested our approach on MR T1 brain images, in order to compare the brain differ-
ences between female schizophrenia patients (N = 23) and normal controls (N = 38).  

A full leave-one-out cross-validation is performed in our experiments. In each 
leave-one-out validation experiment, one subject was first selected as testing subject, 
and the remaining subjects are used for the entire adaptive regional feature extraction, 
feature selection and training procedure described in Section 2. Then, the classifica-
tion result on the testing subject using the trained SVM classifier was compared with 
the ground-truth class label, to evaluate the classification performance. Absolutely all 
feature selection and training steps were cross-validated, i.e. the testing image had no 
influence on the construction of the classifier. By repeatedly leaving each subject out 
as testing subject, we obtained the average classification rate from 61 leave-one-out 
experiments. Finally, these experiments were repeated for different numbers of fea-
tures, in order to test the stability of the results. The best average correct classification 
rate was 91.8% by using 37 features, selected by SVM-RFE algorithm, as shown in 
Fig. 2. Although a reasonably good performance was achieved just via the feature 
ranking method according to the scores computed by a bagging strategy [15], as  
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shown in Fig. 2-left, more stable performance was achieved by incorporating the 
SVM-RFE method (Fig. 2-right), since simple feature ranking does not consider  
correlations between features. Furthermore, these plots also indicate that the described 
algorithm is quite robust with respect to the SVM Gaussian kernel. The ROC curve of 
the classifier that yields the best classification result is also shown in Fig. 3, which in-
dicates that our classifier has large area under ROC curve. 

Besides using a classifier to determine the abnormality of brains, we can also use it 
for detecting group difference. In [7,11], the discriminative direction method was 
used to estimate the group difference from the classification function. Here, we util-
ized a similar method to estimate the group difference. The group differences are 
overlaid on the template brain, highlighting the most significant and frequently de-
tected group differences in our leave-one-out experiments (Fig. 4). 
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Fig. 3. ROC curve 

 

Fig. 4. Regions of most representative of the 
group differences, found via decision function 
gradient.(high light indicates more significant) 

4   Discussions and Conclusions 

We have presented a statistical classification method for identification of brain ab-
normality based on regional morphological information. The classifier is built on 
adaptive regional feature extraction and feature selection. In particular, brain regions 
are generated automatically by grouping local morphological features with similar 
classification power. This adaptive regional feature extraction method aims at over-
coming the limitations of the traditional ROI methods that need prior knowledge of 
what specific regions might be affected by disease, and the limitations of the voxel 
based morphometry (VBM) methods that use an identical isotropic filter to collect 
regional morphological information in all brain locations. The robust feature selec-
tion method used in this paper further removes features that are irrelevant and redun-
dant to classification, thus improving the classification performance. The experimen-
tal results indicate that this method can achieve high classification rate in a 
schizophrenic study. 
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