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Preface

The 8th International Conference on Medical Imaging and Computer Assisted
Intervention, MICCAI 2005, was held in Palm Springs, California, USA, at the
Riviera Resort, October 26–29, 2005.

MICCAI has become a premier international conference with in-depth papers
on the multidisciplinary fields of medical image computing, computer-assisted
intervention and medical robotics. The conference brings together clinicians, bio-
logical scientists, computer scientists, engineers, physicists and other researchers
and offers them a forum to exchange ideas in these exciting and rapidly growing
fields.

The impact of MICCAI increases each year and the quality and quantity of
submitted papers this year was very impressive. We received a record 632 full
submissions (8 pages in length), an increase of 22% from 2004, from 36 different
countries and 5 continents (see fig. 2). Based on a decision of the MICCAI
board, this year’s conference employed a double-blind review procedure on a
trial basis. Our Program Committee was made up of 11 area chairs, each of
whom supervised the review of almost 60 papers. Four reviews were generated
for each paper from 262 reviewers and the area chairs. A final paper selection
meeting took place during two days in early June 2005 in Chapel Hill, North
Carolina. We are especially grateful to Elizabeth Bullitt, Polina Golland, David
Haynor, Rasmus Larsen, Greg Hager and Daniel Rückert, who attended this
meeting and helped us make the final selections. Martin Styner provided valuable
help with information management and the Web-site, and James Stewart is
acknowledged for reliable and timely support of the Web-based reviewing system.
We are grateful to everyone who participated in the review process; they donated
a large amount of time and effort to make these volumes possible and insure a
high level of quality. Because of the overall quality of the submissions and because
of the limited number of slots available for presentation, paper selection was
especially challenging. The MICCAI 2005 Program Committee finally accepted
236 full papers. The normal mode of presentation at MICCAI 2005 was as a
poster; in addition, 46 papers were chosen for oral presentation. All of the full
papers accepted are included in these proceedings in 8-page format. We also
accepted 34 short communications (2 pages) which were presented as posters
but not included in the proceedings.

The first figure below shows the distribution of the 236 full paper contribu-
tions by topic; the topics are defined by the primary keyword of the submission.
The second figure illustrates the distribution of full paper submissions (a total
of 632) by region.

We note that this year’s program included some new features, including a
session on Celullar and Molecular Imaging and Analysis. We hope that all who
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attended the 2005 meeting felt as we do that the program was both strong and
diverse, within the range of topics covered by MICCAI.

It was our pleasure to welcome this year’s MICCAI 2005 attendees to Palm
Springs. Sitting in lush farming land, Palm Springs does not conform to any
typical image of the desert, embodying a mix of Spanish Colonial and mid-
twentieth century modern styling. Ever since Hollywood stars first came here
in the 1930s, laying claim to ranch-style estates, holing up in elite hotels, and
enjoying the clean dry air and sunshine, Palm Springs has been a special place to
visit. We hope that the attendees, in addition to visiting the conference, took the
opportunity to enjoy the hospitality and amenities of the Riviera Resort, and
to explore the city, the desert region, and other parts of Southern California.
For those unable to attend, we trust that these volumes will provide a valuable
record of the state of the art in the MICCAI disciplines.

We also want to thank both our sponsors who are listed below and our two
keynote speakers, Profs. Scott Fraser from Caltech and Arthur Toga from UCLA
for excellent and stimulating lectures.

Finally, we note that this year a landmark event occurred in the life of
MICCAI, namely the formation of the Medical Image Computing and Computer-
Assisted Intervention Society (the MICCAI Society) which was officially an-
nounced on December 9, 2004. The main focus of the society is our annual
international conference series (www.miccai.org) which has become the premier
conference in the field of medical image computing and computer-assisted in-
terventions, including biomedical imaging and robotics. The society is governed
and administered by the MICCAI Board of Directors. The society will continue
to publish the proceedings of the annual MICCAI conference in a prestigious
scientific series. Having a paper accepted for publication in this series is highly
meritorious and on a par with publication in highly regarded peer-reviewed jour-
nals in the field. The society is negotiating with three journals in the field of
MICCAI themes, each to become “an affiliated MICCAI journal”. These jour-
nals will offer significant benefits to members, including sharply discounted rates
for paper subscriptions and access to on-line content. The society will continue
to develop, enrich, and maintain a dynamic website with exclusive content for
members (www.miccai.org).

We look forward to welcoming you to MICCAI 2006, to be held October 2–4,
2006 in Copenhagen, Denmark, and chaired by Mads Nielsen.

October 2005 James Duncan and Guido Gerig
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MICCAI Student Awards

Every year MICCAI awards outstanding work written and presented by students.
Both oral and poster presentations are eligible for the awards, and the awards
are presented to the winners in a public ceremony. Student awards at MICCAI
2003 and 2004 were sponsored by Northern Digital Incorporation (NDI), and
NDI will also be the sponsor for the MICCAI 2005 awards.

MICCAI 2003 Student Awards

Robotics: Hashimoto, Ryuji: A Transurethral Prostate Resection Manipulator
for Minimal Damage to Mucous Membrane

Segmentation: Pichon, Eric: A Statistically Based Surface Evolution Method for
Medical Image Segmentation: Presentation and Validation

Image Guided Therapy Surgery: DiMaio, Simon: Needle Steering and Model-
Based Trajectory Planning

Medical Image Analysis: Fillard, Pierre: Quantitative Analysis of White Matter
Fiber Properties Along Geodesic Paths

Medical Image Processing and Visualization: Arsigny, Vincent: Polyrigid and
Polyaffine Transformations: A New Class of Diffeomorphisms

MICCAI 2004 Student Awards

Image Segmentation and Processing: Dikici, Engin: Quantification of Delayed
Enhancement MR Images

Image Registration and Analysis: Perperidis, Dimitrios: Spatio-temporal Free-
Form Registration of Cardiac MR Image Sequences

Image Guided Therapy and Robotics: Stoyanov, Danail: Dense 3D Depth Re-
covery for Soft Tissue Deformation During Robotically Assisted Laparoscopic
Surgery

Image Simulation and Display: Valtorta, Davide: Dynamic Measurements of
Soft Tissue Viscoelastic Properties with a Torsional Resonator Device
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Pierrick Coupé, Pierre Hellier, Noura Azzabou,
Christian Barillot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Self-Calibrating Ultrasound-to-CT Bone Registration
Dean C. Barratt, Graeme Penney, Carolyn S.K. Chan,
Mike Slomczykowski, Timothy J. Carter, Philip J. Edwards,
David J. Hawkes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

A Hand-Held Probe for Vibro-Elastography
Hassan Rivaz, Robert Rohling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

Real-Time Quality Control of Tracked Ultrasound
Emad M. Boctor, Iulian Iordachita, Gabor Fichtinger,
Gregory D. Hager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Fully Truncated Cone-Beam Reconstruction on Pi Lines Using Prior CT
Krishnakumar Ramamurthi, Norbert Strobel, Rebecca Fahrig,
Jerry L. Prince . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631



Table of Contents – Part I XXIII

C-arm Calibration - Is it Really Necessary?
Ameet Jain, Ryan Kon, Yu Zhou, Gabor Fichtinger . . . . . . . . . . . . . . . 639

Laser Needle Guide for the Sonic Flashlight
David Wang, Bing Wu, George Stetten . . . . . . . . . . . . . . . . . . . . . . . . . . 647

Differential Fly-Throughs (DFT): A General Framework for Computing
Flight Paths

M. Sabry Hassouna, Aly A. Farag, Robert Falk . . . . . . . . . . . . . . . . . . . 654

Panoramic Views for Virtual Endoscopy
Bernhard Geiger, Christophe Chefd’hotel, Sandra Sudarsky . . . . . . . . . 662

Computer Assisted Diagnosis

Toward Automatic Computer Aided Dental X-ray Analysis Using Level
Set Method
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R. Sierra, J. Zátonyi, M. Bajka, G. Székely, M. Harders . . . . . . . . . . . . 575

Brain Shift Computation Using a Fully Nonlinear Biomechanical
Model

Adam Wittek, Ron Kikinis, Simon K. Warfield,
Karol Miller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

Finite Element Model of Cornea Deformation
Jessica R. Crouch, John C. Merriam, Earl R. Crouch III . . . . . . . . . . . 591

Characterization of Viscoelastic Soft Tissue Properties from
In vivo Animal Experiments and Inverse FE Parameter
Estimation

Jung Kim, Mandayam A. Srinivasan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

A Fast-Marching Approach to Cardiac Electrophysiology Simulation
for XMR Interventional Imaging

M. Sermesant, Y. Coudière, V. Moreau-Villéger, K.S. Rhode,
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Abstract. This paper presents a method for classification of medical images, 
using machine learning and deformation-based morphometry. A morphological 
representation of the anatomy of interest is first obtained using high-
dimensional template warping, from which regions that display strong correla-
tions between morphological measurements and the classification (clinical) 
variable are extracted using a watershed segmentation, taking into account the 
regional smoothness of the correlation map which is estimated by a cross-
validation strategy in order to achieve robustness to outliers. A Support Vector 
Machine-Recursive Feature Elimination (SVM-RFE) technique is then used to 
rank computed features from the extracted regions, according to their effect on 
the leave-one-out error bound. Finally, SVM classification is applied using the 
best set of features, and it is tested using leave-one-out. The results from a 
group of 61 brain images of female normal controls and schizophrenia patients 
demonstrate not only high classification accuracy (91.8%) and steep ROC 
curves, but also exceptional stability with respect to the number of selected fea-
tures and the SVM kernel size.  

1   Introduction 

Morphological analysis of medical images is performed commonly in a variety of re-
search and clinical studies. Region of Interest volumetry (ROI) has been traditionally 
used to obtain regional measurement of anatomical volumes and investigate abnormal 
tissue structures with disease [1]. However, in practice, a priori knowledge about ab-
normal regions is not always available.  Even when good a priori hypotheses can be 
made about specific ROIs, a region of abnormality might be part of an ROI, or span 
multiple ROIs, thereby potentially reducing statistical power of the underlying mor-
phological analysis significantly. These limitations can be effectively overcome by 
methods falling under the general umbrella of High-Dimensional Morphological 
Analysis (we will refer to these methods as HDMA), such as voxel-based and defor-
mation-based morphometric analysis methods, e.g. [2-5]. However, a voxel-by-voxel 
analysis is limited by noise, registration errors, and excessive inter-individual vari-
ability of measurements that are too localized, such as voxel-wise displacement fields, 
Jacobians, or residuals. Most importantly, voxel-by-voxel mass-univariate analysis of 
transformations or residuals does not capture multi-variate relationships in the data. 
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Linear methods, such as PCA [6] are not effective in capturing complex relationships 
in high-dimensional spaces. 

In order to overcome these limitations, pattern classification methods have begun 
to emerge in the recent years in the field of computational anatomy [7-11], aiming at 
capturing nonlinear multivariate relationships among many anatomical regions, to 
more effectively characterize group differences. A major challenge in these methods 
has been the sheer dimensionality of HDMA-related measurements, which is often in 
the millions, coupled with the relatively small number of training samples, which is at 
best in the hundreds, and often just a few dozens. Accordingly, extracting a small 
number of most informative features from the data has been a fundamental challenge. 
A main emphasis of this paper is the extraction of distinctive, but also robust features 
from high-dimensional morphological measurements obtained from brain MR images, 
which are used in conjunction with nonlinear support vector machines (SVM) for 
classification. The proposed method is tested on classifying normal controls from 
schizophrenia patients in female participants. 

The key elements of the proposed approach are: 1) Regional volumetric informa-
tion is first extracted from a template warping transformation; herein we focus en-
tirely on volumetric information, such as atrophy, and don't consider higher order 
shape characteristics. 2) The anatomy of interest (the brain, herein) is partitioned into 
a number of regions, via a watershed algorithm applied to the correlation map be-
tween clinical status and regional volumetric measurements; various techniques are 
applied to estimate the correlation map, in order to achieve robustness to outliers. 3) 
An SVM-RFE technique is applied to the previously rank-ordered features that are 
computed from the extracted regions, in order to select the most important feature set 
for classification. 4) A nonlinear SVM classifier is applied and tested via cross-
validation and ROC analysis. 5) Group differences are visually displayed via a dis-
criminative direction method [7,11]. We now detail the methodology. 

2   Methods 

Our classification method involves three steps: feature extraction, feature selection, 
and nonlinear classification, which are detailed next. 

2.1   Feature Extraction 

As mentioned in the Introduction, the features used for brain classification are ex-
tracted from automatically generated regions, which are determined from the training 
data. Several issues are taken into consideration here. First, morphological changes of 
brain structures resulting from pathological processes usually don't occur in isolated 
spots, but rather they occur in regions that can have irregular shapes and are not 
known a priori.  Second, noise, registration errors and inter-individual anatomical 
variations necessitate the collection of morphological information from regions much 
larger than the voxel size, which must additionally be distinctive of the pathology of 
interest. Third, multivariate classification methods are most effective and generaliz-
able when applied to a small number of reliable and discriminative features. Accord-
ingly, features irrelevant to classification must be eliminated.  
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In the following, we detail the procedure for automatically generating adaptive re-
gions from a training dataset, by first introducing the method to extract local morpho-
logical features, then defining the criteria for adaptively clustering voxels into re-
gions, and finally extracting overall features from each region. 

Construction of a morphological profile of the brain. In order to obtain the mor-
phological profile from an individual brain image, warping the image into a template 
space is often a first step, leading to various morphological measurements (e.g. de-
formation field, Jacobian determinant, tissue density maps, or residuals) that are in the 
same space and therefore directly comparable across individuals. Herein we follow 
the framework that was proposed in [5], and which is based on a mass-preserving 
shape transformation framework; a similar method is used within the SPM software 
and is often referred to as "Jacobian modulation". We have used this approach be-
cause it is robust to registration errors, due to the mass preservation principle, in con-
trast to the determinant of the Jacobian that is directly affected by registration errors. 

The approach in [5] uses images that are first segmented into three tissues, namely 
gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF)--we used the 
segmentation method of [12] in our experiments. Then, by using a high-dimensional 
image warping method [13] these segmented images are spatially transformed into a 
template space, by preserving the total tissue mass; this is achieved by increasing the 
respective density when a region is compressed, and vice versa. As a result, three tis-
sue density maps, )(0 uf , )(1 uf , )(2 uf , are generated in the template space, each re-
flecting local volumetric measurements corresponding to GM, WM, and CSF, respec-
tively, at location u. These three tissue density maps give a quantitative representation 
of the spatial tissue distribution. Regional atrophy is reflected by reduction in the re-
spective tissue density map. Representative tissue density maps are shown in Fig.1. 

Learning-based generation of adaptive regions. Brain regions are generated by spa-
tial clustering of morphological features of similar classification power. For each 
morphological feature, its classification power is highly related to its discriminative 
power and reliability. The discriminative power of a feature can be quantitatively 
measured by its relevance to classification as well as its generalizability for classifica-
tion. The relevance of a feature to classification can be measured by the correlation 
between this feature and the corresponding class label in a training dataset (e.g. nor-
mal or pathologic). In machine learning and statistics for relevance analysis, the cor-
relation measures can be broadly divided into linear correlation and non-linear corre-
lation. Most non-linear correlation measures are based on the information-theoretical 
concept of entropy, such as mutual information, computed by probability estimation. 
For continuous features, probability density estimation is a hard task especially when 
the number of available samples is limited. On the other hand, linear correlation 
measures are easier to compute even for continuous features and are robust to over-
fitting, thus they are widely used for feature selection in machine learning. Here, we 
used the absolute Pearson correlation coefficient, closely related to T-test [14] in the 
context of extracting group differences, to measure the relevance of each feature to 
classification. Given an image location u , the Pearson correlation between a feature 

)(ufi  of tissue i , and class label y , is defined as 
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where j  denotes the j th sample in the training dataset. Thus, )(ufij  is a morphologi-

cal feature of tissue i  in the location u  of j th sample (the tissue density map, here), 

and )(ufi  is the mean of )(ufij  over all samples. Similarly, jy  is a class label of the 

j th sample, and y  is the mean of jy  over all samples. In addition to the relevance, the 

generalizability of a feature is equally important for classification. A bagging strategy 
[15] is adopted to take the generalization ability into account, when measuring the dis-
criminative power of a feature by absolute Pearson score. That is, given n  training 
samples, a leave-one-out procedure is used to measure the discriminative power of 
each feature )(ufi  by a conservative principle that selects the minimal absolute Pear-
son score from n  resulted scores as this feature's discriminative power, defined as  
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where )(uikρ  is the k th leave-one-out Pearson correlation at location u  of tissue map 
i . Maximizing the measure in (2) would select features that maximize the margin 
from 0 , i.e., from no discrimination at all. 

The spatial consistency of a feature is another important issue in classification, 
since morphological features are locally extracted and thus might not be reliable due 
to registration errors and inter-individual anatomical variations. A feature is spatially 
consistent if it is similar to other features in its spatial neighborhood, implying that 
small registration errors will not significantly change the value of this feature. For 
each feature )(ufi , we measure its spatial consistency, )(uRi , by an intra-class corre-
lation coefficient that is computed from all features in its spatial neighborhood and all 
samples in the training dataset [16]. In our applications, the value of )(uRi  is con-
strained to lie between 0 and 1. 

For each feature, its discriminative power score )(uPi  and its spatial consistency 

score )(uRi  are both non-negative, with high score indicating better feature for classi-
fication. We combine these two measurements into one by the following equation, 

,0,,)()()( >= rpuRuPus r
i

p
ii  (3) 

thus obtaining a single score )(usi  for each feature )(ufi , which reflects the classifi-
cation power of this feature for the particular classification problem. Three score 
maps are produced for GM, WM and CSF, respectively. 

As we mentioned above, the disease-affected brain regions generally occur in the 
clusters of spatially contiguous voxels. Therefore, a watershed segmentation method 
[17] is employed to partition a brain into different regions according to the scores 

)(usi , and finally to obtain separate partitions for each tissue. A typical brain region 
partition result, with all regions generated from three tissue density maps, is shown in 
Fig. 1, on the right. 
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Fig. 1. Typical tissue density maps (GM, WM, CSF, from left to right) and automatically gen-
erated brain regions in which high grey-levels indicate discriminative power 

Feature extraction from generated brain regions. For each region generated as de-
scribed above, its corresponding volumetric measure is computed by summing up all 
tissue density values in this region, which effectively calculates the volumes of the 
corresponding regions in individual anatomies. Volumetric measures from all WM, 
GM, and CSF regions constitute an attribute vector to represent morphological infor-
mation of the brain. Although currently we focus on local tissue volumetric informa-
tion, other types of information could also be considered. 

2.2   Feature Selection via SVM-RFE 

Although the number of regions determined in Sec. 2.1 is dramatically smaller than 
the original number of brain voxels, measures obtained from many regions are less ef-
fective, irrelevant and redundant for classification. This requires a feature selection 
method to select a small set of the most informative features for classification. We 
have experimented with several feature selection methods, and determined that the 
SVM-RFE algorithm has the best performance. SVM-RFE is a feature subset selec-
tion method based on SVM, initially proposed for a cancer classification problem 
[18]. It was later extended by introducing SVM-based leave-one-out error bound cri-
teria in [19]. The goal of SVM-RFE is to find a subset of size r  among d  variables 
( dr < ), which optimizes the performance of the classifier. This algorithm is based on 
a backward sequential selection that removes one feature at a time. At each time, the 
removed feature makes the variation of SVM-based leave-one-out error bound small-
est, compared to removing other features. In order to apply this subset selection to our 
problem in a reasonable time cost and to avoid local optima, we first remove the most 
irrelevant features by the feature ranking method [14] in which the rank score is com-
puted by a Pearson correlation based bagging strategy as we described above, and 
then apply the SVM-RFE algorithm on the set of remaining features. 

2.3   SVM-Based Classification 

The nonlinear support vector machine is a supervised binary classification algorithm 
[20]. SVM constructs a maximal margin linear classifier in a high (often infinite) di-
mensional feature space, by mapping the original features via a kernel function. The 
Gaussian radial basis function kernel is used in our method. 
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SVM is not only empirically demonstrated to be one of the most powerful pattern 
classification algorithms, but also has provided many theoretic bounds on the leave-
one-out error to estimate its capacity, for example, the radius/margin bound, which 
could be utilized in feature selection. Another reason for us to select SVM as a classi-
fier is its inherent sample selection mechanism, i.e., only support vectors affect the 
decision function, which may help us find subtle differences between groups. 
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Fig. 2. Performance of ranking based feature selection (left plot) and SVM-RFE feature selec-
tion (right plot). Plotted are the average classification rates for different SVM kernel sizes and 
different feature numbers. Notably, the SVM-RFE algorithm starts selecting subsets of features 
from 69 features, which are top-ranked features, selected by ranking-based feature selection 
method. The SVM-RFE algorithm performs a robust selection of features and leads to stable 
performance. 

3   Results 

We tested our approach on MR T1 brain images, in order to compare the brain differ-
ences between female schizophrenia patients (N = 23) and normal controls (N = 38).  

A full leave-one-out cross-validation is performed in our experiments. In each 
leave-one-out validation experiment, one subject was first selected as testing subject, 
and the remaining subjects are used for the entire adaptive regional feature extraction, 
feature selection and training procedure described in Section 2. Then, the classifica-
tion result on the testing subject using the trained SVM classifier was compared with 
the ground-truth class label, to evaluate the classification performance. Absolutely all 
feature selection and training steps were cross-validated, i.e. the testing image had no 
influence on the construction of the classifier. By repeatedly leaving each subject out 
as testing subject, we obtained the average classification rate from 61 leave-one-out 
experiments. Finally, these experiments were repeated for different numbers of fea-
tures, in order to test the stability of the results. The best average correct classification 
rate was 91.8% by using 37 features, selected by SVM-RFE algorithm, as shown in 
Fig. 2. Although a reasonably good performance was achieved just via the feature 
ranking method according to the scores computed by a bagging strategy [15], as  
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shown in Fig. 2-left, more stable performance was achieved by incorporating the 
SVM-RFE method (Fig. 2-right), since simple feature ranking does not consider  
correlations between features. Furthermore, these plots also indicate that the described 
algorithm is quite robust with respect to the SVM Gaussian kernel. The ROC curve of 
the classifier that yields the best classification result is also shown in Fig. 3, which in-
dicates that our classifier has large area under ROC curve. 

Besides using a classifier to determine the abnormality of brains, we can also use it 
for detecting group difference. In [7,11], the discriminative direction method was 
used to estimate the group difference from the classification function. Here, we util-
ized a similar method to estimate the group difference. The group differences are 
overlaid on the template brain, highlighting the most significant and frequently de-
tected group differences in our leave-one-out experiments (Fig. 4). 
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Fig. 3. ROC curve 

 

Fig. 4. Regions of most representative of the 
group differences, found via decision function 
gradient.(high light indicates more significant) 

4   Discussions and Conclusions 

We have presented a statistical classification method for identification of brain ab-
normality based on regional morphological information. The classifier is built on 
adaptive regional feature extraction and feature selection. In particular, brain regions 
are generated automatically by grouping local morphological features with similar 
classification power. This adaptive regional feature extraction method aims at over-
coming the limitations of the traditional ROI methods that need prior knowledge of 
what specific regions might be affected by disease, and the limitations of the voxel 
based morphometry (VBM) methods that use an identical isotropic filter to collect 
regional morphological information in all brain locations. The robust feature selec-
tion method used in this paper further removes features that are irrelevant and redun-
dant to classification, thus improving the classification performance. The experimen-
tal results indicate that this method can achieve high classification rate in a 
schizophrenic study. 
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Abstract. We present a novel multi-scale bone enhancement measure that can be
used to drive a geometric flow to segment bone structures. This measure has the
essential properties to be incorporated in the computation of anatomical models
for the simulation of pituitary surgery, enabling it to better account for the pres-
ence of sinus bones. We present synthetic examples that validate our approach
and show a comparison between existing segmentation techniques of paranasal
sinus CT data.

1 Introduction

Pituitary gland tumors represent the third most common primary intracranial tumors en-
countered in neurosurgical practice. In the majority, a surgical intervention is required.
A neurosurgeon typically enters through the nose, has to break thin paranasal sinus
bones and remove soft tissues while avoiding nerves and blood vessels to reach the
pituitary gland (Fig.1). This requires extensive practice and precise knowledge of the
anatomy, the absence of which can have serious implications on the patient [1]. Cur-
rently, the only way to train a neurosurgery resident for such an operation is by multiple
observation and by elementary maneuver attempts supervised by an expert neurosur-
geon. This is why for the past several years, there has been a growing interest in build-
ing a surgical simulator to provide a tool for such training. Existing surgical simulators
generally involve a generic anatomical model elaborated on the basis of extensive hu-
man supervision, interacting with a fast but constitutively limited biomechanics engine.

Fig. 1. Endoscopic pituitary surgery

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 9–16, 2005.
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Fig. 2. Sagittal slice of CT data set in region of interest for pituitary gland surgery (see Fig. 1)

The goal of our research is to formulate a minimally supervised method for producing a
set of patient-specific anatomical models, from MR and CT data sets, in a manner that
can interact with a hierarchical finite-element based biomechanics engine. To do so, we
need a precise 3-dimensional (3D) partition of tissue classes into bone, air, vessel, nerve
and soft-tissue.

In this paper, we focus on paranasal sinus bone enhancement and segmentation from
CT data. The usual methods for segmentation of bone in CT are based on thresholding
followed by some image connectivity measures or manual editing which is quite tedious
and prone to human error. At a coarse scale, segmentation by thresholding is quite good
due to the 3-class nature of CT images and the known Hounsfield value range for bone.
Air has close to no signal and bone has much higher signal than surrounding tissues
(see Fig. 2). However, from Fig. 2(b), we can clearly see that thin bones can have
holes and diffusive boundaries. True bones do not have these features, they are due to
partial volume effects and noise present in CT data sets. For such thin bones, a simple
thresholding procedure gives unsatisfying results.

In this paper, we introduce a novel algorithm for bone enhancement filtering and
segmentation based on the multi-scale second order local structure of the image. We
exploit the eigenvalue decomposition of the Hessian matrix which is known to give
valuable local information on the blob-like, tube-like and sheet-like behavior of iso-
intensity level sets in the image [5,6,3,4,2]. We propose a sheetness measure that can
be used to drive an active surface to segment bone. This is motivated in part by Frangi’s
tubular structure enhancement filtering measure [3] and Descoteaux et al [2] multi-
scale geometric flow. We illustrate the power of the approach with segmentation results
in regions with holes and low Hounsfield values in CT data and compare them to results
from [9] based on local structure extraction with the structure tensor. We also validate
the approach quantitatively on synthetic data. To our knowledge, our method is the first
flow-based approach for paranasal sinus bone segmentation.

2 Using Local 3D Structure for Filtering and Segmentation

In this section, we investigate medical image filtering algorithms using the tensor ma-
trix, T and the Hessian matrix, H as shape descriptors. For a 3D image I, they are
defined as

T = ∇IT∇I =

⎛⎝IxIx IxIy IxIz

IxIy IyIy IyIz

IxIz IyIz IzIz

⎞⎠ H =

⎛⎝Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

⎞⎠ .
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In both cases, an eigenvalue analysis is performed to extract the local behavior of iso-
intensity level sets in the image. Many methods have been developed for blood vessel
segmentation using these models [5,6,3,4,2]. We review only a selection of the repre-
sentative techniques for our bone segmentation problem.

2.1 Modeling Sheet-Like Structures with the Tensor Descriptor

As mentioned before, the usual method for bone segmentation for CT data is simple
thresholding which fails on thin bone structures. Recently, Westin et al. [9] have in-
troduced an adaptive thresholding approach using the structure tensor to segment thin
bones around the eye socket and in the paranasal sinus area. The idea is to evaluate
the structure tensor at every voxel of the data and determine the degree to which its
shape resembles a line, a plane or a sphere. Letting λ1, λ2, λ3 (0 ≤ λ1 ≤ λ2 ≤ λ3)
be the eigenvalues of the structure tensor, the interest is when the structure tensor
can be approximated by a plane (see [9] for details). The authors describe a planar
measure cplane = λ3−αλ2

λ3
such that in theory, it has a value of 1 for plane struc-

tures and 0 for others. This measure is used to adaptively threshold the input data set,
t(x) = t0 − αcplane(x), where t0 is a global threshold modified locally and α is a
weight factor for the planar measure.

In Section 5, we demonstrate several properties of this approach. In particular, since
the tensor is based on first order variation, the cplane measure is strong at boundaries
(where the gradient is strong) and weak inside the bone structure. For our application,
we seek a measure that is high at the center of the structure with a fall off at boundaries
where a priori, our confidence in a voxel being strictly bone or strictly soft tissue is
weak. Such a confidence index can guide the subsequent surface and volume meshing
of bone tissue relevant to the simulation of pituitary surgery. We explore the properties
of the Hessian shape operator to define such a measure.

2.2 Modeling Sheet-Like Structures Using the Hessian Operator

The Hessian matrix encodes important shape information. An eigenvalue decomposi-
tion measures the maximum changes in the normal vector (gradient vector) of the under-
lying intensity iso-surface in a small neighborhood. Hence, it can differentiate between
tube-like, sheet-like and blob-like structures. The classification of Table 1 was first ex-
plored by Sato et al. [6], and Lorenz et al. [5] separately. In [3], Frangi defines three
ratios using tube-like properties of the eigenvalues of Table 1 to separate blood vessels
from other structures. Derivatives of the Hessian matrix are computed with multi-scale

Table 1. Local structure classification assuming |λ1| ≤ |λ2| ≤ |λ3|

eigenvalue conditions local structure examples
λ1 ≈ λ2 ≈ 0 , λ3 >> 0 sheet-like bone, skin
λ1 ≈ 0 , λ2 ≈ λ3 >> 0 tube-like vessels, nerves
λ1 ≈ λ2 ≈ λ3 >> 0 blob-like nodule
λ1 ≈ λ2 ≈ λ3 ≈ 0 noise-like background, noise
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Table 2. Theoretical properties of the ratios defined to construct the sheetness measure

Ratios sheet tube blob noise
Rsheet = |λ2|/|λ3| 0 1 1 undefined
Rblob = |(2|λ3| − |λ2| − |λ1|)| / |λ3| 2 1 0 undefined
Rnoise =

√
λ2

1 + λ2
2 + λ2

3 λ3
√

2λ3
√

3λ3 0

γ-parametrized Gaussian kernels and the three quantities are integrated in a vesselness
measure designed to be maximum when computed at the scale corresponding to the
radius of the tubular objects. The vessel index is thus maximum nearby the vessel cen-
ter and is zero outside. In [2] a vesselness measure is used to find putative centerlines
of tubular structures along with their estimated radii and is then distributed to create a
vector field which is orthogonal to vessel boundaries so that the flux maximizing flow
algorithm of [8] can be applied to recover them. This method can recover low contrast
and thin vessels from standard anatomical proton density weighted data sets.

Inspired by these approaches, we propose a multi-scale sheetness measure that en-
hances bone structures and then use it to drive a deformable surface that stops at bone
boundaries. At every voxel, we determine wether the underlying iso-intensity surface
behaves like a sheet. In this case, we know that the eigenvectors corresponding to the
null eigenvalues span the plane of the plate structure and the other eigenvector is per-
pendicular to it. We define three ratios, Rsheet, Rblob, Rnoise, to differentiate sheet-like
structures from others. Their behavior is described in Table 2. Then, just as in [3], we
can define the sheetness measure, S, as the maximum response over all scales σ at
which the derivatives of the Hessian are computed,

S = max
σ∈Σ

S(σ) =

{
0 if λ3 > 0
(exp
(

−R2
sheet

2α2

)
)(1 − exp

(
−R2

blob

2β2

)
)(1 − exp

(
−R2

noise

2c2

)
), (1)

where Σ is a finite set of scales chosen by the user in the range of smallest to thickest
possible bone structure (0.5 ≤ σ ≤ 3.0) in the data and parameters α, β, c are set to
0.5, 0.5 and half the maximum Frobenius norm (Rnoise) respectively as suggested in
[3,2].

Each term of the equation has a function and depends on the characteristics of Ta-
ble 2. To avoid division by a null λ3 in the case of noise, the undefined can be set to
obtain the desired behavior. Breaking down the terms of Eq. 1, we have

1. exp
(

−R2
sheet

2α2

)
is a sheet enhancement term, where the maximum occurs for sheet-

like structures and the minimum for others. We set undefined to 1.

2. (1 − exp
(

−R2
blob

2β2

)
is a blob and noise elimination term since it is zero for both.

Moreover, the term is high for a sheet and lower for a tube. We set undefined to
zero.

3. (1 − exp
(

−R2
noise

2c2

)
is a background or noise reduction term. Rnoise is known as

the Frobenius norm and is high only in the presence of structure.

Note that we do not define a tube elimination term as the curved ends of bone struc-
tures have a behavior that is both tube-like and sheet-like. Thus, the sheetness measure
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is designed to be maximum for sheet-like voxels, less important for tube-like regions
and zero for other structures. The power of this approach resides in the fact that after
this sheetness computation, we have a confidence sheet-like score at each voxel and in
addition, for high score locations, we have the scale estimate of the radius of the sheet
as well as the normal vector to the plane.

3 A Geometric Flow for Segmenting Bone Structures

There have been a few deformable model methods proposed for bone segmentation
which are quite different from our approach because they are suited to 2D images from
different modalities and different bones. In [7], the segmentation of carpal bones of the
hand in CT images is faced with similar challenges as in our sinus bone CT data sets. A
skeletally coupled curve evolution framework is proposed that combines probabilistic
growth with local and global competition. Promising results are shown on 2D images
with gaps and diffused edges. However, the method is based on skeletal points which
would be difficult to determine in one or two voxel wide bone structures such as those
in the paranasal sinuses.

In our application, we propose to use the bone enhancement measure of Eq. 1 to
drive a 3D surface evolution. We construct a vector field that is both large in magnitude
and orthogonal to bone structures. The key idea is to distribute the sheetness measure,
which is concentrated on the center sheet, to the bone boundaries implied by the local
scale and direction estimates coming from the multi-scale sheetness measure. At each
voxel where the sheetness index is high, we consider a disc or flat ellipsoid with its two
semi-minor axes aligned with the estimated plane orientation and its semi-major axis
equal to the approximated radius. The sheetness measure is then distributed over every
voxel on the boundary of the disc. We define the addition of the extensions carried out

Input Sheetness measure Speed: div(
−→
V ) Segmentation

Fig. 3. Experiment on synthetic objects. We show slices of the input volumes, the sheetness mea-
sure, the speed term and a surface rendering of the segmentation
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independently at all voxels to be the φ distribution. The extended vector field is now
defined as the product of the normalized gradient of the original image with the above
φ distribution,

−→V = φ ∇I
|∇I| . This vector field is an ideal candidate for the static vector

field in the flux maximizing geometric flow St = div(
−→V )

−→N . The flow evolves the

surface S to converge to the zero-crossing of the speed term to a div(
−→V ) (see Fig. 3).

The flow is topologically adaptive due to its implementation with levelset methods, is
computationally efficient and requires minimal user interaction. We refer the reader to
[2] for further details.

4 Quantitative Validation on Synthetic Objects

In order to validate the extension of the sheetness measure to boundaries and to evaluate
the effectiveness of the speed term driving the geometric flow, we constructed several
binary synthetic objects of varying widths and centerline curvatures. Each volume was
then smoothed using 2 iterations of mean curvature smoothing to simulate partial vol-
ume effects at their boundaries. Ground truth surface points were obtained as the 0.5
crossings of each object, obtained by linear interpolation on the voxel grid. We then
added white Gaussian noise to each voxel to simulate typical noise levels in a CT ac-
quisition process (we used a 10% signal-to-noise ratio) and followed the steps detailed
above to construct the sheetness measure, obtain the φ distribution and then build the
vector field

−→V , using the same parameters throughout. Empirical surface points were
defined as the zero-crossings of the speed term div(

−→V ) in the geometric flow.

Table 3. Agreement level between reconstruction and binary ground truth

object average distance error (voxels) maximum error (voxels) ratio (%)

plate 0.22 1.00 95
rib 0.25 1.12 95

spiral 0.26 1.22 91

A visualization of the important terms is shown in Fig. 3. We evaluated the accuracy
of the zero-crossings of the speed term by computing the average and maximum Eu-
clidean distance errors between each empirical surface voxel and its closest ground truth
surface voxel. We also computed the ratio between classified voxels in the segmentation
and bone voxels in the binary volume. The results, shown in Table 3, indicate that the
average error is typically less than 0.3 voxels and that the agreement between the re-
constructed and original volume is above 90%. We have determined empirically that the
maximum errors occur at the two ends of each synthetic object, which is to be expected
since mean curvature smoothing causes the most shrinkage there.

5 Bone Enhancement and Segmentation on CT Data

In order to compare our algorithm with Westin et al.’s adaptive thresholding method and
simple thresholding, we cropped a 53 mm x 89 mm x 98mm region of a CT data sets
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original CT tensor norm hessian norm sheetness measure

conservative thresh aggressive thresh [9] segmentation Our segmentation

Fig. 4. Comparison between different segmentation methods. Our method connects most of the
thin bone structure and reconstructs more bone than the approach in [9] and than thresholding.

around the paranasal sinuses and ran the segmentation methods. The original volume
was first resampled to a 0.468mm3 isotropic grid.

We make several qualitative observations from Fig. 4. First, we see that both the
algorithm of [9] and our method work better than simple thresholding. Second, our
method appears to better exploit tissue contiguity and connect more bone structure than
Westin’s segmentation. This is to be expected since our geometric flow method is de-
signed to evolve and connect as much sheetness information as possible whereas [9]
remains a thresholding method, albeit one that accounts for local structure. We have
chosen adaptive thresholding (cplane) parameters which we thought gave the best re-
sults and it is clear that, as the authors suggest, if incorporated in an deformable model
framework a better segmentation could be obtained. In our experiments with the ap-
proach, we have found that the structure tensor picks out the direction of maximum
change in intensity but spatially, it does not behave well for our application. The cplane

measure is strong mostly at boundaries and tends to thicken the edges as seen in the
tensor norm response in Fig. 4. Our method has the advantage of extracting locations
at the center of bone structures where the underlying iso-intensity level set behaves like
a plane. The sheetness measure combined with a flow designed to evolve and stop at
boundaries performs better as it is able propagate along low sheetness regions. Most
importantly, on its own, the sheetness measure has suitable characteristics to be incor-
porated in a surgical simulator for pituitary intervention. The measure is high on the
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center plane of bones and decreases towards the boundaries where there is an uncer-
tainty about the tissue classification of a voxel. Hence, it can allow a surface mesh
model to account for uncertainty in determining triangulated bone boundaries, to better
model sinus bones in the simulation. For our application, it is thus more useful to have a
confidence measure for all voxels than a binary segmentation of bones which certainly
still has missing segments and no notion of distance to the boundaries.

6 Conclusions

We have presented a general multi-scale bone enhancement measure that can be used
to drive a geometric flow to segment sheet-like structures. The key contribution is the
introduction of a the sheetness measure based on the properties of the multi-scale Hes-
sian shape operator which has well-founded differential geometric theory and is stable
under the presence of noise. The measure gives a confidence index on the presence of
bones and for voxels with high values, the scale and direction of the local bone struc-
ture is directly obtained. We are able to detect and connect very thin and diffusive bone
structure boundaries. In current work, we are trying to use both the bone segmentation
as well as the sheetness, vesselness and other tissue classification cues from the CT and
corresponding MR data to use a global class competition levelset framework.
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Abstract. In this paper, we present a novel variational formulation of
the registration assisted image segmentation problem which leads to solv-
ing a coupled set of nonlinear PDEs that are solved using efficient numer-
ical schemes. Our work is a departure from earlier methods in that we
have a unified variational principle wherein non-rigid registration and
segmentation are simultaneously achieved; unlike previous methods of
solution for this problem, our algorithm can accommodate for image
pairs having very distinct intensity distributions. We present examples
of performance of our algorithm on synthetic and real data sets along
with quantitative accuracy estimates of the registration.

1 Introduction

In Medical Imaging applications, segmentation can be a daunting task due
to possibly large inhomogeneities in image intensities across an image e.g., in
MR images. These inhomogeneities combined with volume averaging during
the imaging and possible lack of precisely defined shape boundaries for certain
anatomical structures complicates the segmentation problem immensely. One
possible solution for such situations is atlas-based segmentation. The atlas once
constructed can be used as a template and can be registered non-rigidly to the
image being segmented (henceforth called a target image) thereby achieving the
desired segmentation. Many of the methods that achieve atlas-based segmen-
tation are based on a two stage process involving, (i) estimating the non-rigid
deformation field between the atlas image and the target image and then, (ii) ap-
plying the estimated deformation field to the desired shape/atlas to achieve the
segmentation of the corresponding structure/s in the target image. In this pa-
per, we develop a novel technique that will simultaneously achieve the non-rigid
registration and segmentation. There is a vast body of literature for the tasks
of registration and segmentation independently however, methods that combine
them into one algorithm are far and few in between. In the following, we will
briefly review the few existing methods that attempt to achieve simultaneous
registration and segmentation.
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In one of the earliest attempts at joint registration & segmentation, Bansal
et al., [1] developed a minmax entropy framework to rigidly register & segment
portal and CT data sets. In [2], Yezzi et al., present a variational principle for
achieving simultaneous registration and segmentation, however, the registration
part is limited to rigid motions. A similar limitation applies to the technique
presented by Noble et al., in [3]. A variational principle in a level-set based
formulation was presented in Pargios et. al., [4], for segmentation and registration
of cardiac MRI data. Their formulation was again limited to rigid motion and
the experiments were limited to 2D images. In Fischl et al., [5], a Bayesian
method is presented that simultaneously estimates a linear registration and the
segmentation of a novel image. Note that linear registration does not involve
non-rigid deformations. The case of joint registration and segmentation with
non-rigid registration has not been addressed adequately in literature with the
exception of the recent work reported in Soatto et al., [6] and Vemuri et al.,
[7]. However, these methods can only work with image pairs that are necessarily
from the same modality or the intensity profiles are not too disparate.

In this paper, we present a unified variational principle that will simul-
taneously register the atlas shape (contour/surface) to the novel brain image
and segment the desired shape (contour/surface) in the novel image. In this
work, the atlas serves in the segmentation process as a prior and the registration
of this prior to the novel brain scan will assist in segmenting it. Another key
feature/strength of our proposed registration+segmentation scheme is that it
accommodates for image pairs having very distinct intensity distributions as in
multimodality data sets. More details on this are presented in section 2.

2 Registration+Segmentation Model

We now present our formulation of joint registration & segmentation model
wherein it is assumed that the image to be segmented can be modeled by piece-
wise constant regions, as was done in [8]. This assumption simplifies our pre-
sentation but our model itself can be easily extended to the piecewise smooth
regions case. Additionally, since we are only interested in segmenting a desired
anatomical shape (e.g., the hippocampus, the corpus callosum, etc.), we will only
be concerned with a binary segmentation i.e., two classes namely, voxels inside
the desired shape and those that are outside it. These assumptions can be easily
relaxed if necessary but at the cost of making the energy functional more com-
plicated and hence computationally more challenging. Let I1 be the atlas image
containing the atlas shape C, I2 the novel image that needs to be segmented
and v be the vector field, from I2 to I1 i.e., the transformation is centered in
I2, defining the non-rigid deformation between the two images. The variational
principle describing our formulation of the registration assisted segmentation
problem is given by:

minE(v, C̃) = Seg(I2, C̃) + dist(v(C), C̃) + Reg(I1, I2,v). (1)

Where, the first term denotes the segmentation functional. C̃ is the boundary
contour (surface in 3D) of the desired anatomical shape in I2. The second term



Simultaneous Registration and Segmentation of Anatomical Structures 19

measures the distance between the transformed atlas v(C) and the current seg-
mentation C̃ in the novel brain image i.e., the target image and the third term
denotes the non-rigid registration functional between the two images. Each of
these functionals are given the following form:

Seg(I2, C̃) =
∫

Ω

(I2 − u)2dx + α

∮
C̃

ds (2)

Where, Ω is the image domain and α is a regularization parameter. u = ui if
x ∈ C̃in and u = uo if x ∈ C̃out. C̃in and C̃out denote the regions inside and
outside of the curve, C̃ representing the desired shape boundaries in I2.

For the non-rigid registration term in the energy function, we use the recently
introduced information theoretic-based criteria [9] called the cross cumulative
residual entropy (CCRE). In [9], CCRE was shown to outperform MI-based
registration in the context of noise immunity and convergence range, motivating
us to pick this criteria over the MI-based cost function. The new registration
functional is defined by

Reg(I1, I2,v) = −
(
C(I1(v(x)), I2(x)) + μ

∫
Ω

(
||∇v(x)||2

))
(3)

where, cross-CRE C(I1(), I2()) = E(I1) − E[E(I1/I2)] and E(I1) = −
∫
R+

P (|I1|
> λ) logP (|I1| > λ)dλ with R+ = (x ∈ R;x ≥ 0). v(x) is as before and μ is the
regularization parameter and || · || denotes Frobenius norm. Using a B-spline rep-
resentation of the non-rigid deformation, one need only compute this field at the
control points of the B-splines and interpolate elsewhere, thus accruing compu-
tational advantages. Using this representation, we derived analytic expressions
for the gradient of the energy with respect to the registration parameters. This
in turn makes our optimization more robust and efficient.

In order for the registration and the segmentation terms to “talk” to each
other, we need a connection term and that is given by

dist(v(C), C̃) =
∫

R

φv(C)(x) dx (4)

Where, R is the region enclosed by C̃, φv(C)(x) is the embedding signed distance
function of the contour v(C), which can be used to measure the distance between
v(C) and C̃. The level-set function φ : R2 → R is chosen so that its zero level-set
corresponds to the transformed template curve v(C). Let Edist := dist(v(C), C̃),
one can show that ∂Edist

∂C̃
= φv(C)(C̃)N where N is the normal to C̃. The corre-

sponding curve evolution equation given by gradient descent is then

∂C̃

∂t
= −φv(C)(C̃)N (5)

Not only does the signed distance function representation make it easier for us to
convert the curve evolution problem to the level-set framework (refer to section
3), it also facilitates the matching of the evolving curve C̃ and the transformed
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template curve v(C), and yet does not rely on a parametric specification of either
C̃ or the transformed template curve. Note that since dist(v(C), C̃) is a function
of the unknown registration v and the unknown segmentation C̃, it plays the
crucial role of connecting the registration and the segmentation terms.

Combining these three functionals together, we get the following variational
principle for the simultaneous registration+segmentation problem:

minE(C̃,v, uo, ui) =
∫

Ω

(I2 − u)2dx + α1

∮
C̃

ds + α2 dist(v(C), C̃)

− α3C(I1(v(x)), I2(x)) + α4

∫
Ω

‖∇v(x)‖2dx.
(6)

αi are weights controlling the contribution of each term to the overall energy
function and can be treated as unknown constants and either set empirically or
estimated during the optimization process. This energy function is quite distinct
from those used in methods existing in literature because it is achieving the
Mumford-Shah type of segmentation in an active contour framework jointly with
non-rigid registration and shape distance terms. We are now ready to discuss
the level-set formulation of the energy function in the following section.

3 Level Set Formulation

We now present a level-set form of our formulation described earlier. For our
model where the equation for the unknown curve C̃ is coupled with the equations
for v(x), uo, ui, it is convenient for us to use the level set approach as proposed in
[8]. Taking the variation of E(.) with respect to C̃ and writing down the gradient
descent leads to the following curve evolution equation:

∂C̃

∂t
= −
[
−(I2 − ui)2 + (I2 − uo)2 + α1κ + α2φv(C)(C̃)

]
N (7)

Note that equation (5) is used in the derivation. Equation (7) in the level-set
framework is given by:

∂φ

∂t
=
[
−(I2 − ui)2 + (I2 − uo)2 + α1∇ · ∇φ|∇φ| + α2φv(C)(C̃)

]
|∇φ| (8)

where ui and uo are the mean values inside and outside of the curve C̃ in the
image I2.

As mentioned before, we use a B-spline basis to represent the displacement
vector field v(x, μ), where μ is the transformation parameters of the B-spline
basis.

∂E

∂μ
= α2

∂
∫

R φv(C)(x) dx

∂μ
−α3

∂C(I1(v(x)), I2(x))
∂μ

+α4
∂
∫

Ω
‖∇v(x)‖2dx
∂μ

(9)
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The first term of equation(9) can be rewritten as follows:

∂
∫

R φv(C)(x) dx

∂μ
=
∫

R

∂φv(C)(x) dx

∂μ

=
∫

R

∂φv(C)

∂v

∣∣∣
v=v(x,μ)

· ∂v(x, μ)
∂μ

dx

(10)

where
∂φv(C)

∂v is the directional derivative in the direction of v(x, μ). The second
term of equation(9) is more involved and tedious. We simply state the result
here without the derivations for the sake of brevity,

∂C
(
I2, I1 ◦ v(x;μ)

)
∂μ

=
∑
λ∈I1

∑
k∈I2

log
P (i > λ, k;μ)

pI2(k)P (i > λ;μ)
· ∂P (i > λ, k;μ)

∂μ
(11)

where P (i > λ, k;μ) and P (i > λ;μ) are the joint and marginal cumulative
residual distributions respectively. pI2(k) is the density function of image I2.
The last term of equation(9)leads to,

∂
∫

Ω ‖∇v(x)‖2dx
∂μ

= 2
∫

Ω

∇v · ∂v
∂μ

dx (12)

where both the matrices ∇v and ∂v
∂μ are vectorized before the dot product is

computed.
Substituting equations (10), (11) and (12) respectively back into the equation

(9), we get the analytical gradient of our energy function with respect to the B-
spline transformation parameters μ. We then solve for the stationary point of
this nonlinear equation numerically using a quasi-Newton method.

Algorithm Summary

Given atlas image I1 and the unknown subject’s brain scan I2, we want the
segmentation result C̃ in I2. Initialize C̃ in I2 to be C, set initial transformation
parameters μ0 to be zero.

1. Optimize μi using equation (9) with Quasi-Newton method for one step.
Update the deformation field v(x;μi).

2. Evolve φ in I2 using equation (8) for one step, update Ci as the zero level-set
of φ.

3. Stop the registration process if the difference in consecutive iterates is less
than ε = 0.01, a pre-chosen tolerance, else go to Step 1.

4 Implementation Results

In this section, we present several examples results from an application of our
algorithm. The results are presented for synthetic as well as real data. The first
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Source MR T1 Image Registered Source Image Target MR T2 Image

Estimated deformation fieldGroundtruth deformation field Segmented Target

Fig. 1. Results of application of our algorithm to synthetic data (see text for details)

three experiments were performed in 2D, while the fourth one was performed in
3D. Note that the image pairs used in all these experiments have significantly
different intensity profiles, which is unlike any of the previous methods, reported
in literature, used for joint registration and segmentation. The synthetic data
example contains a pair of MR T1 and T2 weighted images which are from
the MNI brainweb site [10]. They were originally aligned with each other. We
use the MR T1 image as the source image and the target image was generated
from the MR T2 image by applying a known non-rigid transformation that was
procedurally generated. In this case, we present the error in the estimated non-
rigid deformation field, using our algorithm, as an indicator of the accuracy of
estimated deformations.

Figure 1 depicts the results obtained for this image pair. With the MR T1
image as the source image, the target was obtained by applying a synthetically
generated non-rigid deformation field to the MR T2 image. Notice the significant
difference between the intensity profiles of the source and target images. Figure1
is organized as follows, from left to right: the first row depicts the source image
with the atlas-segmentation superposed in white, the registered source image
which is obtained using our algorithm followed by the target image with the un-
registered atlas-segmentation superposed to depict the amount of mis-alignment;
second row depicts ground truth deformation field which we used to generate
the target image from the MR T2 image, followed by the estimated non-rigid
deformation field and finally the segmented target. As evident, the registra-
tion+segmentation are quite accurate from a visual inspection point of view.
As a measure of accuracy of our method, we estimated the average, μ, and the
standard deviation, σ, of the error in the estimated non-rigid deformation field.
The error was estimated as the angle between the ground truth and estimated
displacement vectors. The average and standard deviation are 1.5139 and 4.3211
(in degrees) respectively, which is quite accurate.

Table 1 depicts statistics of the error in estimated non-rigid deformation
when compared to the ground truth. For the mean ground truth deformation
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(magnitude of the displacement vector) in Column-1 of each row, 5 distinct
deformation fields with this mean are generated and applied to the target image
of the given source-target pair to synthesize 5 pairs of distinct data sets. These
pairs (one at a time) are input to our algorithm and the mean (μ) of the mean

Table 1. Statistics of the error in
estimated non-rigid deformation.

μg μ of MDE σ of MDE
2.4 0.5822 0.0464
3.3 0.6344 0.0923
4.5 0.7629 0.0253
5.5 0.7812 0.0714

deformation error (MDE) is computed over
the five pairs and reported in Column-2
of the table. MDE is defined as dm =

1
card(R)

∑
xi∈R ||v0(xi)−v(xi)||, where v0(xi)

v(xi) is the ground truth and estimated dis-
placements respectively at voxel xi. ||.|| de-
notes the Euclidean norm, and R is the vol-
ume of the region of interest. Column-3 de-
picts the standard deviation of the MDE for
the five pairs of data in each row. As evident,
the mean and the standard deviation of the
error are reasonably small indicating the ac-
curacy of our joint registration + segmentation algorithm. Note that this testing
was done on a total of 20 image pairs (=40) as there are 5 pairs of images
per row.

For the first real data experiment, we selected two image slices from two
different modalities of brain scans. The two slices depict considerable changes
in shape of the ventricles, the region of interest in the data sets. One of the
two slices was arbitrarily selected as the source and segmentation of the ven-
tricle in the source was achieved using an active contour model. The goal was
then to automatically find the ventricle in the target image using our algorithm
given the input data along with the segmented ventricles in the source image.
Figure 2 is organized as follows, from left to right: the first row depicts the
source image with the atlas-segmentation superposed in black followed by the
target image with the unregistered atlas-segmentation superposed to depict the
amount of mis-alignment; second row depicts the estimated non-rigid vector field
and finally the segmented target. As evident from figures 2, the accuracy of the
achieved registration+segmentation visually very good. Note that the non-rigid
deformation between the two images in these two examples is quite large and
our method was able to simultaneously register and segment the target data sets
quite accurately.

The second real data example is obtained from two brain MRIs of different
subjects and modalities, the segmentation of the cerebellum in the source image
is given. We selected two “corresponding” slices from these volume data sets
to conduct the experiment. Note that even though the number of slices for the
two data sets are the same, the slices may not correspond to each other from
an anatomical point of view. However, for the purposes of illustration of our
algorithm, this is not very critical. We use the corresponding slice of the 3D seg-
mentation of the source as our atlas-segmentation. The results of an application
of our algorithm are organized as before in figure 3. Once again, as evident, the
visual quality of the segmentation and registration are very high.
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Fig. 2. Results of application of our algo-
rithm to a pair of slices from human brain
MRIs (see text for details)

Fig. 3. Corpus Callosum segmentation on
a pair of corresponding slices from distinct
subjects

Fig. 4. Hippocampal segmentation using our algorithm on a pair of brain scans from
distinct subjects. (see text for details)

Finally we present a 3D real data experiment. In this experiment, the in-
put is a pair of 3D brain scans with the segmentation of the hippocampus
in one of the two images (labeled the atlas image) being obtained using the
well known PCA on the several training data sets. Each data set contains 19
slices of size 256x256. The goal was then to automatically find the hippocam-
pus in the target image given the input. Figure 4 depicts the results obtained
for this image pair. From left to right, the first image shows the given (atlas)
hippocampus surface followed by one cross-section of this surface overlaid on
the source image slice; the third image shows the segmented hippocampus sur-
face from the target image using our algorithm and finally the cross-section of
the segmented surface overlaid on the target image slice. To validate the ac-
curacy of the segmentation result, we randomly sampled 120 points from the
segmented surface and computed the average distance from these points to the
ground truth hand segmented hippocampal surface in the target image. The
hand segmentation was performed by an expert neuroanatomist. The average
and standard deviation of the error in the aforementioned distance in estimated
hippocampal shape are 0.8190 and 0.5121(in voxels) respectively, which is very
accurate.
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5 Conclusions

In this paper, we presented a novel variational formulation of the joint (non-rigid)
registration and segmentation problem which requires the solution to a coupled
set of nonlinear PDEs that are solved using efficient numerical schemes. Our work
is a departure from earlier methods in that we have a unified variational principle
wherein non-rigid registration and segmentation are simultaneously achieved,
our algorithm can also accommodate for image pair having distinct intensity
distributions. We presented several examples (twenty) on synthetic and (three)
real data sets along with quantitative accuracy estimates of the registration in the
synthetic data case. More extensive experimentation under different amounts of
noise and varying degrees of non-rigidity needs to be performed prior to drawing
conclusions on the accuracy of the proposed model. This will be the focus of our
future efforts.
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Abstract. Validation and method of comparison for segmentation of
magnetic resonance images (MRI) presenting pathology is a challeng-
ing task due to the lack of reliable ground truth. We propose a new
method for generating synthetic multi-modal 3D brain MRI with tumor
and edema, along with the ground truth. Tumor mass effect is modeled
using a biomechanical model, while tumor and edema infiltration is mod-
eled as a reaction-diffusion process that is guided by a modified diffusion
tensor MRI. We propose the use of warping and geodesic interpolation
on the diffusion tensors to simulate the displacement and the destruction
of the white matter fibers. We also model the process where the contrast
agent tends to accumulate in cortical csf regions and active tumor regions
to obtain contrast enhanced T1w MR image that appear realistic. The re-
sult is simulated multi-modal MRI with ground truth available as sets of
probability maps. The system will be able to generate large sets of simula-
tion images with tumors of varying size, shape and location, and will ad-
ditionally generate infiltrated and deformed healthy tissue probabilities.

1 Introduction

The segmentation of brain tumor from magnetic resonance (MR) images is a
vital process for treatment planning and for studying the differences of healthy
subjects and subjects with tumor. The process of automatically extracting tu-
mor from MR images is a challenging process, and a variety of methods have
been proposed [1,2,3]. The typical standard for validation of the different seg-
mentation methods is comparison against the results of manual raters. However,
manual segmentation suffers from the lack of reliability and reproducibility, and
different sites may have different methods for manually outlining tumors in MRI.
The true ground truth may need to be estimated from a collection of manual
segmentations [4]. Validation of the segmentation of structures other than brain
tumor is typically not done since manual segmentation of edema or of the whole
brain are very challenging tasks and might not represent truth very well.

Brain MRI with tumor is difficult to segment due to a combination of the
following factors:
� This work was supported by NIH-NIBIB R01 EB000219.
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1. The deformation of non-tumor structures due to tumor mass effect.
2. Infiltration of brain tissue by tumor and edema (swelling). Edema appears

around the tumor mainly in white matter regions.
3. There is gradual transition from tumor to edema, often it is difficult to

discern the boundary between the two structures.
4. The standard MR modality used to identify tumor, T1w with contrast en-

hancement (typically using gadolinium), is not always ideal. Blood vessels
and cortical cerebrospinal fluid (csf) tend to be highlighted along with tu-
mor, while parts of tumor that are necrotic tissue do not appear enhanced
at all. It is generally impossible to segment tumor by simply thresholding
the contrast enhanced T1w image.

Rexilius et al.[5] proposed a framework for generating digital brain phantoms
with tumor. They used a biomechanical finite element model to simulate the tu-
mor mass effect. The phantom for a healthy subject is deformed and a tumor
structure from a real subject is inserted to the MRI. Their model for edema is
computed from the distances to the tumor boundary and the white matter mask.
This is insufficient to simulate some real infiltration properties because infiltra-
tion is not only influenced by distance to tumor. Typically, edema infiltration
occurs following the white matter fibers. Their framework only considers contrast
enhancement inside tumors, without enhancement of vessels and csf regions.

We propose a method for generating simulated brain tumor MRI which in-
cludes most of the difficulties encountered in real MR images. The MR images
produced by the method presents the four challenges as listed above. Tumor
mass effect is simulated using a biomechanical model. Infiltration of brain tis-
sues by tumor and edema is simulated as a reaction-diffusion process that is
guided by a modified diffusion tensor MR image (DT-MRI). We also simulate
the process where the contrast agent accumulates in some fluid regions and outer
tumor regions to generate contrast enhanced T1w MRI that reflect challenges
encountered in real tumor MR images.

2 Method

The input for our method is a ground truth of a healthy subject, which is a
set of spatial probabilities for white matter, gray matter, and csf as shown in

Fig. 1. The input for our phantom generation framework: ground truth for a healthy
subject. From left to right: axial view of the spatial probabilities for white matter, gray
matter, and csf.
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Figure 1. We generate new spatial probabilities for tumor and edema, and modify
the healthy probabilities to account for mass effect and infiltration. The new
set of probabilities is used to simulate MR images given training data that is
obtained from real brain MRI with tumors. The probability that a particular
location contains contrast agent is computed to determine regions that appear
highlighted in T1w MRI.

The brain tumor MRI simulation system includes the following steps:

1. Selection of a MRI of a healthy subject with probabilistic tissue segmenta-
tion. This provides the initial healthy ground truth that will be transformed
into pathological ground truth.

2. Selection of a region for the initial tumor probability that describes the initial
state of the tumor. Tumor growth is then simulated through deformation and
infiltration.

3. Computation of a deformation field using a biomechanical model. The prob-
abilistic maps and the DT-MRI are warped using the deformation.

4. Modification of the DT-MRI to account for destruction of white matter
fibers.

5. Simulation of tumor and edema infiltration using the modified DT-MRI.
6. Simulation of the process of accumulation of contrast agent in fluid and

tumor regions.
7. Generation of multi-modal MRI given the final healthy tissue, tumor, and

edema probability maps.

2.1 Tumor Mass Effect

Given an initial tumor region that is obtained through user interaction, the
growth of the tumor is modeled as a deformation process. The initial tumor
region can also be automatically drawn at random given some prior knowledge of
the spatial distribution. Meningiomas, for example, often appear near the brain
periphery. The initial tumor region can have arbitrary shape and influences the
resulting deformation. In the initial tumor region, the tumor probabilities are set
to be one, ptumor(x) = 1 and tissue or fluid probabilities are set to be zero. The
set of spatial probabilities, with the addition of the new spatial tumor probability
are deformed according to a biomechanical model.

We have chosen to use the linear elastic finite element model used in [6,5].
The external force for the system is a radial force that originates from the initial
tumor region, and this force weakens by distance.

2.2 Tumor and Edema Infiltration

We use the registered and reoriented DT-MRI to simulate the tissue infiltration
process, similar to the approach done by Clatz et al.[7,8]. However, registration
and reorientation are generally insufficient to account for the mass effect. White
matter fibers around tumor tend to be displaced, and as observed by Lu et al.[9],
in regions near the tumor the mean diffusivity (MD) tends to be increased while
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Before Modification After Modification

MD FA MD FA

Fig. 2. Visualization of the diffusion tensor MRI through the axial views of the 3D
Mean Diffusivity (MD) and Fractional Anisotropy (FA) images. The modified DT-
MRI has higher MD and lower FA in the regions surrounding tumor, which models
the destruction of the fibers. The MD image shows that the ventricle near the tumor
is slightly deformed. The FA image shows that the white matter fibers near the tumor
region are pushed away.

the fractional anisotropy (FA) tends to be decreased. This effect can be seen as
a reflection of the destruction of white matter fibers due to tumor growth.

The influence of tumor mass effect on DT-MRI is modeled using a combi-
nation of image warping and non-linear interpolation. The DT-MRI is warped
following the strategy described in [10], where a rigid rotation is applied to each
individual tensors. The rigid rotation for each tensor is computed based on the
local warping property. The destruction of white matter fibers is simulated by
interpolating each individual tensor with an isotropic tensor that has higher
mean diffusivity. Figure 2 shows the registered DT-MRI before and after the
modification that models the influence of tumors.

The interpolation between a warped tensor D and its isotropic version E
is calculated using the geodesic interpolation strategy proposed by Fletcher et
al.[11]. The isotropic tensor E is formulated to have two times the determinant
value of D, E = (2|D|) 1

3 I3×3. The weight α for the interpolation between D
and E is inversely proportional to the amount of deformation. We use α(x) =
exp(−K(x)

2σ2
K

) where K(x) = max(1, |J(x)|)− 1 with J being the Jacobian matrix
of the spatial coordinate mapping function and σK is the rough estimate of
the amount of deformation that destroys fibers. The modified tensor we use for
computing infiltration is D′(x) = interpolate(D(x) : α,E(x) : (1 − α)). With
our formulation of α, volume expansion destroys fibers while volume compression
does not change the original tensors. This is done because we observed that in
real tumor DT-MRI some fibers can appear condensed without being destroyed.

The spatial probability that a particular location is infiltrated by pathological
cells, pinfiltrated = φ, is evolved using the modified DT-MRI as follows:

∂φ

∂t
= div(a D′ ∇φ) + b φ(1 − φ)

The first term is the DT-MRI guided diffusion, with an additional parameter
a that depends on the tissue type. White matter is more likely to diffuse than
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white matter, while csf is not likely to be infiltrated at all. The second term is the
growth term, with b being a constant. The diffusion tensors D′ are normalized so
that the trace of the tensors is within the range of [0, 1]. The initial values for φ
is chosen to be higher for regions with high tumor and white matter probability,
φ(x, t = 0) = pwhite(x) ptumor(x). The evolution is stopped when the volume of
infiltrated brain voxels is higher than a fraction of the brain tissue volume.

Tumor may not only deform tissue, but also infiltrate nearby tissue. We
model this by attributing the early stages of infiltration to tumor and the
later stages to edema. The probability of infiltrated tumor or edema is the
probability that a location is both infiltrated and part of brain tissue. More
precisely, ptumor(x) = pwarped tumor + φ(x, tearly) ptissue(x) and pedema(x) =
(φ(x, tfinal) − φ(x, tearly)) ptissue(x). The probability of observing brain tissue
is ptissue(x) = pwhite(x) + pgray(x). The value tfinal is the time where evolution
stops, and tearly is a time value earlier in the process, tearly < tfinal. The choice
for the value of tearly depends on the type of tumor being modeled. For example,
meningiomas tend to have less tumor infiltration compared to glioblastomas.

2.3 Generation of MR Image Intensities

One of the particular challenges in segmenting brain tumor from MRI is the in-
consistencies in the contrast enhanced T1w image. Due to the biological process,
the contrast agent is almost always accumulated in regions other than tumor,
mainly in the cortical csf and the blood vessels. Additionally, the necrotic parts
of the tumor do not accumulate the contrast agent at all. Tumor necrosis are
typically found in the core tumor regions.

Our method models the accumulation of the contrast agent in the active
tumor tissue and the cortical csf in order to generate more challenging images.
The spatial probability for the accumulation of contrast agent, pacc = η is evolved
using the following reaction diffusion equation:

∂η

∂t
= div(u∇η) + I{x ∈ Xsource} vη − I{x ∈ Xsink} wη

where v and w are constants and I is the indicator function. The value of u
depends on the tissue type at location x, contrast agent is modeled to be more

Fig. 3. Axial view of the generated probabilities related to contrast enhancement. From
left to right: probability for highlighted csf or tumor, probability for non-highlighted
tumor, and probability for non-highlighted csf.
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likely to spread in csf than in tumor tissue. Xsource and Xsink are the sets of
points that act as sources or sinks respectively, the points are chosen at random.
Locations with high csf probability and low distance to brain boundary are more
likely to be source points. Within tumor, the outer regions are more likely to
be source points while the core regions are more likely to be sink points. We
initialize η so that the voxels in the source regions are equally likely to have
accumulated contrast agent or to have no contrast agent at all, η(x, t = 0) =
I{x ∈ Xsource} 0.5.

The probability that a voxel would appear highlighted in contrast enhanced
T1w MRI is the probability that the voxel is csf or tumor and has accumulated
contrast agent, penhanced(x) = pacc (pcsf (x) + ptumor(x)). Figure 3 shows the
generated enhancement probabilities. Our model accounts for the fact that cor-
tical csf and active tumor regions are highlighted and that necrosis regions are
not enhanced. However, it does not account for the fact that blood vessels can
also appear enhanced.

Given the modified spatial probabilities of the healthy ground truth, the MR
images are generated as linear combinations of a set of mean intensities for each
class:

Im(x) =
Nm∑
i=1

pCi(x) μi

where m is the modality, Nm is the number of classes, Ci is one of the classes
used for that modality, and μi is the mean intensity for class Ci. The mean class
intensities are obtained from real brain tumor MRI. For T1w and T2w images,
the set of classes C is composed of white matter, gray matter, csf, tumor, and
edema. For the contrast enhanced T1w image, the set of classes C is composed
of white matter, gray matter, non-enhancing csf, non-enhancing tumor, edema,
and the class for all contrast enhanced voxels.

3 Results

The synthetic brain tumor MRI is shown together with an example of a real
brain tumor MRI in Figure 4. In both cases, tumor deforms other structures
and edema infiltrates brain tissue. The contrast enhanced T1w MR images also
show complex highlight patterns. Figure 5 shows the ground truth for the syn-
thetic MRI. Ground truth is presented as a set of probability maps for tissue
and pathology, similar to the one provided by BrainWeb [12] for healthy sub-
jects. This has significant advantage over binarization since validation can use
probabilistic statistical analysis rather than simple volume comparison.

4 Discussion and Conclusion

We have presented a method for generating synthetic multi-modal MR images
with brain tumors that present similar difficulties as real brain tumor MR im-
ages. Using sets of such images with variations of tumor size, location, extent of
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Fig. 4. The synthetic MR images compared to real MR images of a subject with menin-
gioma and surrounding edema. Top: axial view of the synthetic MR images generated
using our method. Bottom: axial view of real MR images. From left to right: contrast
enhanced T1w, T1w, and T2w images.

Fig. 5. Axial view of the ground truth for the synthetic MR images. From left to right:
the class probabilities for white matter, gray matter, csf, tumor, and edema.

surrounding edema, and enhancing regions, segmentation methods can be tested
on images that include most of the challenges for segmentation. The synthetic
MRI and the ground truth allows for the validation of the segmentation of the
whole brain, which includes white matter, gray matter, csf, tumor, and edema.
This capability is novel as most validations done so far were focused on tumor
only but not on infiltrated tissue and on deformed healthy tissue.

A possible extension to the method we proposed is the inclusion of vessel in-
formation to determine additional regions where contrast agent tend to accumu-
late. Blood vessel information can also be combined together with deformation
and infiltration to generate more precise simulation of the tumor growth and the
development of necrosis. This could lead to development of a texture model for
the tumor and edema regions.

It is important to note that our goal is to generate sufficiently realistic MR
images that are difficult to segment. The accurate modeling of tumor and edema
growth is beyond the scope of our current work. Such an effort would require
the modeling of the complex interactions between the deformation process, the
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infiltration process, and the development of blood vessels [13]. Here, we focus
on the generation of test images that empirically simulate pathology as seen in
real images, with the main purpose to use simulated images and ground truth
for validation and cross-comparison.

The method presented here may also be applied for multi-focal lesions, for
example in cases of vascular strokes or multiples sclerosis. Such cases generally
present multiple regions with small scale local deformation and tissue infiltration,
which can be generated using our framework.
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Abstract. Accurate automatic extraction of a 3D cerebrovascular sys-
tem from images obtained by time-of-flight (TOF) or phase contrast
(PC) magnetic resonance angiography (MRA) is a challenging segmen-
tation problem due to small size objects of interest (blood vessels) in
each 2D MRA slice and complex surrounding anatomical structures,
e.g. fat, bones, or grey and white brain matter. We show that due to
a multi-modal nature of MRA data blood vessels can be accurately
separated from background in each slice by a voxel-wise classification
based on precisely identified probability models of voxel intensities. To
identify the models, an empirical marginal probability distribution of
intensities is closely approximated with a linear combination of discrete
Gaussians (LCDG) with alternate signs, and we modify the conventional
Expectation-Maximization (EM) algorithm to deal with the LCDG. To
validate the accuracy of our algorithm, a special 3D geometrical phan-
tom motivated by statistical analysis of the MRA-TOF data is designed.
Experiments with both the phantom and 50 real data sets confirm high
accuracy of the proposed approach.

1 Introduction

Accurate cerebrovascular segmentation is of prime importance for early diag-
nostics and timely endovascular treatment. Unless detected at early stage, seri-
ous vascular diseases like carotid stenosis, aneurysm, and vascular malformation
may cause not only severe headaches but also a brain stroke or a life-threatening
coma [1]. Non-invasive MRA is a valuable tool in preoperative evaluation of
suspected intracranial vascular diseases. Three commonly used MRA techniques
are TOF-MRA, phase contrast angiography (PCA), and contrast enhanced MRA
(CE-MRA). Both TOF-MRA and PCA use flowing blood as an inherent con-
trast medium, while for CE-MRA a contrasting substance is injected into the
circulatory system.

A variety of today’s most popular techniques for segmenting blood vessels from
TOF-MRA data can be roughly classified into deformable and statistical models.
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c© Springer-Verlag Berlin Heidelberg 2005
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The former methods iteratively deform an initial boundary surface of blood vessels
in order to optimize an energy function which depends on image gradient infor-
mation and surface smoothness [2]. Topologically adaptable surfaces make classi-
cal deformable models more efficient for segmenting intracranial vasculature [3].
Geodesic active contours implemented with level set techniques offer flexible topo-
logical adaptability to segment MRA images [4] including more efficient adapta-
tion to local geometric structures represented e.g. by tensor eigenvalues [5]. Fast
segmentation of blood vessel surfaces is obtained by inflating a 3D balloon with
fast marching methods [6]. Two-step segmentation of a 3D vascular tree from CTA
data sets in [7] is first carried out locally in a small volume of interest. Then a
global topology is estimated to initialize a new volume of interest. A multi-scale
geometrical flow is proposed in [8] to segment vascular tree from MRI images.

The statistical approach extracts the vascular tree automatically, but its ac-
curacy depends on underlying probability data models. The TOF-MRA image
is multi-modal in that signals in each region-of-interest (e.g. blood vessels, brain
tissues, etc) are associated with a particular mode of the total marginal prob-
ability distribution of signals. To the best of our knowledge, up-to-now there
exists only one adaptive statistical approach for extracting blood vessels from
the TOF-MRA data proposed by Wilson and Noble [9]. They model the marginal
data distribution with a mixture of two Gaussian and one uniform components
for the stationary CSF, brain tissues, and arteries, respectively. To identify the
mixture (i.e. estimate all its parameters), they use a conventional EM algorithm.
Furthermore, a region-based deformable contour for segmenting tubular struc-
tures was derived in [10] by combining signal statistics and shape information.

2 LCDG-Model of a Multi-modal TOF-MRA Image

Let q; q ∈ Q = {0, 1, . . . , Q− 1}, denote the Q-ary gray level. The discrete Gaus-
sian (DG) is defined as the probability distribution Ψθ = (ψ(q|θ) : q ∈ Q) on Q
such that ψ(q|θ) = Φθ(q+0.5)−Φθ(q−0.5) for q = 1, . . . , Q−2,ψ(0|θ) = Φθ(0.5),
ψ(Q−1|θ) = 1−Φθ(Q−1.5) where Φθ(q) is the cumulative Gaussian probability
function with a shorthand notation θ = (μ, σ2) for its mean, μ, and variance, σ2.

We assume the number K of dominant modes, i.e. regions, objects, or classes
of interest in a given TOF-MRA image, is already known. In contrast to a
conventional mixture of Gaussians and/or other simple distributions, one per
region, we closely approximate the empirical gray level distribution for a TOF-
MRA image with an LCDG having Cp positive and Cn negative components
such that Cp ≥ K:

pw,Θ(q) =
Cp∑
r=1

wp,rψ(q|θp,r)−
Cn∑
l=1

wn,lψ(q|θn,l) (1)

under the obvious restrictions on the weights w = [wp,., wn,.]: all the weights are
non-negative and

Cp∑
r=1

wp,r −
Cn∑
l=1

wn,l = 1 (2)
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To identify the LCDG-model including the numbers of its positive and nega-
tive components, we modify the conventional Expectation-Maximization (EM)
algorithm to deal with the LCDG.

First the numbers Cp −K, Cn and parameters w, Θ (weights, means, and
variances) of the positive and negative DG components are estimated with a
sequential EM-based initializing algorithm. The goal is to produce a close initial
LCDG-approximation of the empirical distribution. Then under the fixed Cp and
Cn, all other model parameters are refined with an EM algorithm that modifies
the conventional one in [11] to account for the components with alternating signs.

2.1 Sequential EM-Based Initialization

Sequential EM-based initialization forms an LCDG-approximation of a given em-
pirical marginal gray level distribution using the conventional EM-algorithm [11]
adapted to the DGs. At the first stage, the empirical distribution is represented
with a mixture of K positive DGs, each dominant mode being roughly approx-
imated with a single DG. At the second stage, deviations of the empirical dis-
tribution from the dominant K-component mixture are modeled with other,
“subordinate” components of the LCDG. The resulting initial LCDG has K
dominant weights, say, wp,1, . . . , wp,K such that

∑K
r=1 wp,r = 1, and a number

of subordinate weights of smaller values such that
∑Cp

r=K+1 wp,r−
∑Cn

l=1 wn,l = 0.
The subordinate components are determined as follows. The positive and

negative deviations of the empirical distribution from the dominant mixture are
separated and scaled up to form two new “empirical distributions”. The same
conventional EM algorithm is iteratively exploited to find the subordinate mix-
tures of positive or negative DGs that approximate best the scaled-up positive
or negative deviations, respectively. The sizes Cp −K and Cn of these mixtures
are found by sequential minimization of the total absolute error between each
scaled-up deviation and its mixture model by the number of the components.
Then the obtained positive and negative subordinate models are scaled down
and then added to the dominant mixture yielding the initial LCDG model of the
size C = Cp + Cn.

2.2 Modified EM Algorithm for LCDG

Modified EM algorithm for LCDG maximizes the log-likelihood of the empirical
data by the model parameters assuming statistically independent signals:

L(w,Θ) =
∑
q∈Q

f(q) log pw,Θ(q) (3)

A local maximum of the log-likelihood in Eq. (3) is given with the EM process
extending the one in [11] onto alternating signs of the components. Let p[m]

w,Θ(q) =∑Cp
r=1 w

[m]
p,rψ(q|θ[m]

p,r )−
∑Cn

l=1 w
[m]
n,l ψ(q|θ[m]

n,l ) denote the current LCDG at iteration
m. Relative contributions of each signal q ∈ Q to each positive and negative DG
at iteration m are specified by the respective conditional weights
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π[m]
p (r|q) =

w
[m]
p,rψ(q|θ[m]

p,r )

p
[m]
w,Θ(q)

; π[m]
n (l|q) =

w
[m]
n,l ψ(q|θ[m]

n,l )

p
[m]
w,Θ(q)

(4)

such that the following constraints hold:

Cp∑
r=1

π[m]
p (r|q) −

Cn∑
l=1

π[m]
n (l|q) = 1; q = 0, . . . , Q− 1 (5)

The following two steps iterate until the log-likelihood changes become small:
E– step[m+1]: Find the weights of Eq. (4) under the fixed parameters w[m],

Θ[m] from the previous iteration m, and
M– step[m+1]: Find conditional MLEs w[m+1], Θ[m+1] by maximizing L(w,Θ)

under the fixed weights of Eq. (4).
Considerations closely similar to those in [11] show this process converges to a
local log-likelihood maximum. Let the log-likelihood of Eq. (3) be rewritten in
the equivalent form with the constraints of Eq. (5) as unit factors:

L(w[m],Θ[m])=
Q∑

q=0

f(q)

⎡⎣ Cp∑
r=1

π[m]
p (r|q) log p[m](q)−

Cn∑
l=1

π[m]
n (l|q) log p[m](q)

⎤⎦(6)

Let the terms log p[m](q) in the first and second brackets be replaced with the
equal terms logw[m]

p,r + logψ(q|θ[m]
p,r )− log π[m]

p (r|q) and logw[m]
n,l + logψ(q|θ[m]

n,l )−
log π[m]

n (l|q), respectively, which follow from Eq. (4). At the E-step, the condi-
tional Lagrange maximization of the log-likelihood of Eq. (6) under the Q restric-
tions of Eq. (5) results just in the weights π[m+1]

p (r|q) and π
[m+1]
n (l|q) of Eq. (4)

for all r = 1, . . . , Cp; l = 1, . . . , Cn and q ∈ Q. At the M-step, the DG weights
w

[m+1]
p,r =

∑
q∈Q f(q)π[m+1]

p (r|q) and w
[m+1]
n,l =

∑
q∈Q f(q)π[m+1]

n (l|q) follow from
the conditional Lagrange maximization of the log-likelihood in Eq. (6) under the
restriction of Eq. (2) and the fixed conditional weights of Eq. (4). Under these lat-
ter, the conventional MLEs of the parameters of each DG stem from maximizing
the log-likelihood after each difference of the cumulative Gaussians is replaced
with its close approximation with the Gaussian density (below “c” stands for
“p” or “n”, respectively):

μ
[m+1]
c,r = 1

w
[m+1]
c,r

∑
q∈Q

q · f(q)π[m+1]
c (r|q)

(σ[m+1]
c,r )2 = 1

w
[m+1]
c,r

∑
q∈Q

(
q − μ

[m+1]
c,i

)2
· f(q)π[m+1]

c (r|q)

This modified EM-algorithm is valid until the weights w are strictly positive.
The iterations should be terminated when the log-likelihood of Eq. (3) does not
change or begins to decrease due to accumulation of rounding errors.

The final mixed LCDG-model pC(q) is partitioned into the K LCDG-
submodels P[k] = [p(q|k) : q ∈ Q], one per class k = 1, . . . ,K, by associat-
ing the subordinate DGs with the dominant terms so that the misclassification
rate is minimal.
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3 Experimental Results

Experiments were conducted with the TOF-MRA images acquired with the
Picker 1.5T Edge MRI scanner having spatial resolution of 0.43 × 0.43 × 1.0
mm. The size of each 3D data set is 512 × 512 × 93. The TOF-MRA images
contain three classes (K = 3), namely, darker bones and fat, brain tissues, and
brighter blood vessels. A typical TOF-MRA slice, its empirical marginal gray
level distribution f(q), and the initial 3-component Gaussian dominant mixture
p3(q) are shown in Fig. 1. Figure 2 illustrates basic stages of our sequential EM-
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Fig. 1. Typical TOF-MRA scan slice (a) and deviations between the empirical distri-
bution f(q) and the dominant 3-component mixture p3(q) (b)
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Fig. 2. Deviations and absolute deviations between f(q) and p3(q) (a), the mixture
model (b) of the absolute deviations in (a), the absolute error (c) as a function of the
number of Gaussians approximating the scaled-up absolute deviations in (a), and the
initial estimated LCDG-models for each class (d)
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Fig. 3. Final 3-class LCDG-model overlaying the empirical density (a), the log-
likelihood dynamics (b) for the refining EM-iterations, the refined model components
(c), and the class LCDG-models (d)



Automatic Cerebrovascular Segmentation 39

based initialization by showing the scaled-up alternating and absolute deviations
f(q)−p3(q), the best mixture model estimated for the absolute deviations (these
six Gaussian components give the minimum approximation error), and the ini-
tial LCDG-models for each class. The scaling makes the sums of the positive
or absolute negative deviations for q = 0, . . . , Q − 1 equal to one. Figure 3
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Fig. 4. Wilson-Noble’s model [9]: the estimated distribution (a) and the class models (b)
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Fig. 5. Each row relates to one patient: our segmentation before (a) and after (b) noise
and small fat voxels are eliminated with the connectivity filter, the Wilson-Noble’s
segmentation (c) after the connectivity filter, and the differences between (b) and (c);
the green voxels are missed by the Wilson-Noble’s approach and the red ones are
detected by the both approaches
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presents the final LCDG-model after refining the initial one with the modified
EM-algorithm and shows successive changes of the log-likelihood at the refine-
ment iterations. The final LCDG-models of each class are obtained with the best
separation thresholds t1 = 57 and t2 = 192. First nine refining iterations increase
the log-likelihood from −5.7 to −5.2.

To highlight the advantages of our approach over the existing one, Fig. 4
shows results obtained with the model of Wilson and Noble [9]. To measure the
estimation quality, we use the Levy distance between two distributions [12] and
the absolute error. The Levy distance between the empirical distribution and its
estimated model is 0.11 and 0.00013 and the absolute errors are 0.123 and 0.0002
for the Wilson-Noble’s and our approach, respectively. The larger Levy distance
and absolute error indicate the notably worse approximation which strongly
affects the accuracy of separating the blood vessels from the background. Because
of a typically higher separation threshold, e.g. t2 = 214 versus our t2 = 192 in
this particular example, the Wilson-Noble’s approach misses some blood vessels,
as shown in Fig. 5.

Both the approaches have been compared on 50 data sets. Results of the
three tests are depicted in Fig. 5. As the first column, (a), suggests, TOF-MRA
is sensitive to tissues like subcutaneous fat with a short T1 response that may
obscure the blood vessels in the segmented volume. To eliminate them, the vol-
ume is processed with an automatic connectivity filter which selects the largest
connected tree structures using a 3D volume growing algorithm [13]. The results
after applying such a filter to our and Wilson-Noble’s segmentation in Fig. 5
show that the latter approach fails to detect sizeable fractions of the vascu-
lar trees which are validated by the expert (radiologist) that the green parts
which are detected by our approaches follow the topology of the brain vascu-
lar tree.

4 Validation

It is very difficult to get accurate manually segmented complete vasculatures
to validate our algorithm. Thus to evaluate its performance, we have created a
wooden phantom shown in Fig. 6(a) with topology similar to the blood vessels.
Furthermore, the phantom mimics bifurcations, zero and high curvature that
exist in any vasculature system, and it has a varying radius to simulate both
large and small blood vessels. The phantom was scanned by CT and then man-
ually segmented to obtain the ground truth. The blood vessel and non-vessel
signals for the phantom are generated according to the distribution p(q|3) and
p(q|1), p(q|2), respectively, in Fig. 3(d) using the inverse mapping methods. The
resulting phantom’s histogram was similar to that in Fig. 3(a).

Let the total segmentation error be a percentage of erroneous voxels with
respect to the overall number of voxels in the manually segmented 3D phantom.
Figure 6 shows our approach is 15 times more accurate than the Wilson-Noble’s
one (the total errors 0.31% and 4.64%, respectively). The error constituents per
each 2D slice for both the approaches are also plotted in Fig. 6.
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Fig. 6. The 3D geometrical phantom (a), our (b) and Wilson-Noble’s (c) segmentation,
and total errors per each phantom’s slice for both the approaches (d)

5 Conclusions

We presented a new statistical approach to find blood vessels in multi-modal
TOF-MRA images. The LCDG-model accurately approximates the empirical
marginal gray level distribution yielding the high quality segmentation. The
accuracy of our approach is validated using a specially designed 3D geometrical
phantom.

Our present implementation on C++ programming language using a single
2.4 GHZ Pentium 4 CPU with 512 MB RAM takes about 49 sec for 93 TOF-
MRA slices of size 512x512 pixels each.

The LCDG-model is also is suitable for segmenting PC-MRA and CTA im-
ages which are not presented due to space limitations.
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Abstract. In the context of stroke therapy simulation, a method for the segmen-
tation and reconstruction of human vasculature is presented and evaluated. 
Based on CTA scans, semi-automatic tools have been developed to reduce data-
set noise, to segment using active contours, to extract the skeleton, to estimate 
the vessel radii and to reconstruct the associated surface. The robustness and 
accuracy of our technique are evaluated on a vascular phantom scanned in dif-
ferent orientations. The reconstructed surface is compared to a surface gener-
ated by marching cubes followed by decimation and smoothing. Experiments 
show that the proposed technique reaches a good balance in terms of smooth-
ness, number of triangles, and distance error. The reconstructed surface is suit-
able for real-time simulation, interactive navigation and visualization. 

1   Introduction 

Stroke is a leading cause of death. Our team is developing a real-time neuro-
interventional radiology simulation system where physicians will be able to learn and 
practice without putting patients at risk. This kind of application requires a stream-
lined data processing from a patient’s computer tomography angiogram (CTA) to a 
computer representation of the vasculature. Therefore, the reconstructed vascular 
network has to be smooth for visualization, structured for blood flow computation, 
and efficient for real time collision detection/collision response between interventional 
tools and vessel wall. The method presented in this paper generates virtual vasculature 
through segmentation and surface reconstruction.  

Current techniques for processing vascular images can be divided in two main ap-
proaches: techniques for centerline enhancement, including multi-scale approaches, 
usually based on the Hessian matrix; and techniques for contour extraction, including 
statistical approaches: Expectation Maximization [1], random Markov fields, and 
geometrical approaches: region growing, adaptive thresholding, active contours that 
can be explicit, like snakes, or implicit, like level sets [2, 3]. These techniques usually 
perform better after noise reduction. A topological representation of the vascular 
network can be obtained from both approaches either by computing ridges or by ap-
plying a thinning technique like homotopic skeletonization. 
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The result of the segmentation is then processed to generate an efficient and struc-
tured representation of vascular structure for our purpose. Bühler et al. [4] presents a 
comprehensive and up-to-date survey on surface reconstruction techniques. Our sur-
face reconstruction algorithm improves upon [5] in that the coarse base mesh genera-
tion is followed by smoothing through surface subdivision. The base mesh and multi-
scale subdivision approach, as shown in subsequent sections, is proved to be a robust 
framework for real-time physics-based flow computation, smooth tissue/tool interac-
tion, as well as high-fidelity anatomical visualization.  

Section 2 will describe our semi-automatic tools which reduce dataset noise, seg-
ment using active contours, compute the skeleton, estimate the vessel radii and recon-
struct the associated surface. In section 3, we present different tests performed on the 
phantom and used to evaluate the robustness and the accuracy of our method. Finally, 
discussion and conclusion are presented in the last section. 

2   Materials and Method 

Our process consists in the following pipeline: anisotropic diffusion, level set evolu-
tion, skeletonization, pruning, connection and smoothing, radius estimation, recon-
struction. This approach preserves the topology at junctions and gives semi-
automatically a skeleton requiring little interaction before surface reconstruction. 

2.1   Segmentation 

The first step of the segmentation is to apply an anisotropic diffusion filter based on 
[6]. This filter reduces the noise while preserving small vascular structures enabling 
better segmentation which is important in the region of the brain. Next, we remove 
the skull bones, the sinuses and the skin, who the similar intensity as the vessels and 
might disturb the segmentation process, using morphological operations. 

We then segment the vessel contours by the means of a level set evolution. For ef-
ficiency, we initialize the active contour using a threshold on the image intensity. The 
level set equation [7, 2], evolves a surface according to three different forces: an ad-
vection force that pushes the surface towards the edges of the image, a smoothing 
term that keeps the surface smooth and a balloon force that allows expansion of the 
contours within vascular structures. The smoothing term is proportional to the mini-
mal curvature of the surface [8]. The balloon force relies on the intensity statistics to 
either expand or shrink the evolving contour. This force is expressed as exp(-(I-
m)2/ 2)-  where I is the intensity, m stands for the mean intensity of the vessels,  is 
their standard deviation, and  is a threshold (0.2 by default) that allows shrinking the 
contour when the position is unlikely to belong to a vessel. A 3D model of the vessels 
is obtained as the iso-surface of intensity zero from the result of the level set evolu-
tion, using the Marching-Cubes algorithm [9]. From the result of the level set, a skele-
tonization technique is applied to obtain a simple topological representation of the 
vascular network. It is based on homotopic thinning where voxels are removed in the 
order of the Euclidean distance to the segmented surface. Voxels are iteratively re-
moved if they are simple [10] and if they are not end-points, such that they have more 
than one neighbor in a 3x3x3 neighborhood. 



 A Segmentation and Reconstruction Technique for 3D Vascular Structures 45 

After the skeletonization, small vessels can still have connectivity discrepancies 
along the centerlines near small branches. Consequently, a pruning is applied to re-
move small leaves (lines with at least an extremity which is not a junction). We then 
connect the lines that are close but disconnected because of the resolution of the 
medical dataset. This connection is made only if the lines are close to each other and 
their directions are matching within a small difference, which could be induced by the 
vessel curvature. At this step, some manual work is often needed. This work consists 
in connecting lines that are too far to be connected automatically or in removing lines 
that are too long to be deleted. 

Once the connected skeleton is finished, the radius of the lines is extracted from 
the dataset. This is done using the intensity gradient in the binary image obtained 
from the level set evolution. Starting from the centerline, we grow a circle in the plan 
of the cross-section and stop when there is a relevant local maximum of the intensity 
gradient, thus giving estimated radii along the centerlines. 

2.2   Surface Reconstruction 

The goal of our surface reconstruction is to generate a smooth surface that can be 
easily refined to suit the needs of efficient collision detection/response, stable vessel 
deformation, real-time flow simulation, also multi-scale anatomical visualization. Our 
algorithm improves over [5] in four main areas: 

1. Handling directed graphs with loops and multiple roots. 
One branch is allowed to have multiple parents and children. Artery vessels can form 
loops, e.g. circle of Willis. One branch can connect to a single branch forming 1-
furcation. This is useful to construct a unified directed graph for both artery and ve-
nous sides. Multiple trees can be reconstructed at the same time. 

2. Trunk branch selection based on angle and radii variance. 
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Fig. 1. Left: Trunk branch selection: using both vessel average radii and branching angle to 
determine the continuation trunk branch. Although i, B1

in is chosen as the trunk branch of 
B0

in, due to the similarity of their average radii. Middle: Cross section distribution gets denser at 
thinner regions of a vessel. Right: the density is higher where a vessel turns or twists. 

To patch the surface at vessel joints, both algorithms define at a trunk branch with 
respect to the current branch and form polygons to connect the trunk surface and other 
joint branches base meshes. Since ni, the cross section normal at the beginning or end 
of branch Bi, is computed by differentiating neighboring sampling points, the approxi-
mation can be misleading when centerlines are under sampled. Our scheme considers 
both branching angle and vessel radii to reduce under-sampling artifacts which im-
proves the reconstruction robustness. First, ni

in where i>0 are reversed. Then, we com-
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pute the disparity i , where [0,1] is the weight balanc-
ing the influence of branching angle and of the average radii variance. The algorithm 
picks the branch with minimal  as the trunk branch. In the left half of Fig. 1, although 

, B1
in is chosen due to the similarity of their average radii.  

3. Adaptive cross sections distribution. 
Our cross section distribution scheme (2) considers radii and centerline curvature: 
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where xi is the curvilinear coordinate of the cross section center. ri and i [11] are the 
corresponding radius and Gaussian curvature, respectively, obtained by linear interpo-
lation between two adjacent raw skeleton samples where >0 is the desired spacing 
scalar and >0 is the weight on curvature influence. Eq. (2) states that after filtering, 
the centers of two adjacent cross sections are placed closer if the vessel is thin or 
turns. A straight branch does not need many cross sections to resemble its original 
geometry. Assembling (2) for all i yields (Nseg-1) nonlinear algebraic equations with 
(Nseg-1) unknowns, since x0 and xN are set to be the curvilinear coordinates of the 
vessel end nodes. Broyden’s method [12] is used to solve for all xi. 

4. Robust joint tiling: end-segment-grouping and adjacent-quadrant-grouping. 
We connect every branch to its trunk using both end segments regardless the branch-
ing angles so that a single recursive joint tiling is needed. End-segment-grouping, 
unifies all the outgoing branches together such that the connecting patches connect 
the bottom of the outgoing branch’s base mesh with both end segments of the trunk 
branches, i.e. Seg(N-1) and Seg(0), demonstrated in the left half of Figure 2. 

Trunk Centerline

Seg(N-1)

Seg(0) Child(i)

Forward

Trunk Centerline

Seg(N-1)

Seg(0)
Child(i)

Child(j) Child(j)

         Traverse view of trunk cross section at the joint

V3

V0

Q3

Trunk cross section

Child(i)

V3

V0

Q3

Trunk cross section

Child(i)

Q0Q0

 
     (a)  (b)       (c)  (d)  

Fig. 2. (a) Felkel’s method connects forward Child(j) to Seg(0) and backward Child(i) to 
Seg(N-1). (b) End-segment-grouping connects Child(i) and Child(j) both Seg(N-1) and Seg(0). 
The bottle-neck effect is reduced. When Child(i) lies close to the boundary of Q3, (d) adjacent-
quadrant-grouping uses both Q0 and Q3 eliminates twisting artifact by using only Q3 in [5] (c). 

When the outgoing centerline forms a small angle with the trunk centerline, using 
single end segment produces bottle-neck effect. The artifact is reduced when both end 
segments are deployed for the joint tiling. When the outgoing centerline lies in or 
close to the bisection plane of two trunk centerlines, using a single end segment loses 
the symmetry. This symmetry is nicely preserved by connecting the mesh of Child(i) 
to the same sides of Seg(N-1) and Seg(0). End-segment-grouping not only reduces the 
patching artifacts in both extreme cases, but yields smoother trunk-to-branch transi-
tion under all branching configuration. 

We improve the joint tiling not just in the trunk centerline direction. Adjacent-
quadrant-grouping is designed to use 2 adjacent sides of the end hexahedron seg-
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ments. When a child centerline lies close to the boundary of 2 quadrants, tiling with 
only one quadrant introduces twists. This artifact is eliminated by adding the 
neighboring quadrant into the tiling, e.g. Q0 and Q3 are grouped together as a whole 
when tiling Child(i) to the trunk mesh. When Child(i) lies close to a quadrant center, 
our approach uses only current quadrant for the tiling as in [5]. 

With these improvements, the proposed reconstruction scheme is able to handle 
more general directed graph. It is less prone to artifacts due to initial data sampling. It 
is also more robust to present full range of bifurcation configuration. The recon-
structed smooth vascular surface is suitable for the purpose of efficient and stable 
physics modeling, and smooth visualization. 

3   Tests and Evaluation 

Our vascular phantom, in Fig. 3(a), is composed of a Plexiglas box filled with silicon 
gel and nylon tubing forming a simplified vasculature. Vessel radii range from 
0.78mm (simulating small brain vessels) to 2.34mm (simulating the middle cerebral 
artery). After CTA scans of the phantom, the segmentation leads to a skeleton from 
which the reconstruction module generates a smooth surface as shown in Fig. 3(b). 

 

Fig. 3. (a) The silicon phantom with nylon tubing. (b) Reconstruction of the 3D surface 

To evaluate the rotational invariance and robustness of our method, we scanned 
this phantom in 12 different orientations. The phantom orientations are obtained via 
a 45° or 90° rotation on one or more axes. The CTA scan resolution is 0.6 x 0.6 x 
1.25 mm. 

3.1   Evaluation of the Robustness of the Vessel Lengths and Radii 

The segmentation method, described in section 2, was applied to those datasets with 
following parameters: 1000 level set iterations; using intensity threshold of 2300 
with standard deviation (SD) of 750; 5mm pruning; 2mm maximal distance for gap 
connection; radius estimation with gradient computed from the derivatives of a 
Gaussian kernel with SD 0.4mm. Line orientation was manually corrected before the 
final surface reconstruction (Fig. 3(b)). To evaluate the results, the lengths and the 
radii have been analyzed through the Brand-Altman method [13]. Fig. 4 shows that 
length variation stays within 1.0mm, while 2  length=3.5mm. In only 6 out of 204 
cases (17tubes x 12scans), the radius variation is out of [-2  radius, 2  radius], 
where 2  radius=0.2mm. 

(a) (b) 
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Fig. 4. Brand-Altman plots for (a) the tube lengths and (b) the average radii. The upper and the 
lower limits represent 2 . Very few length and radius values are away from their average. 

3.2   Evaluation of the Mesh Accuracy and Smoothness 

We measure surface smoothness and the distance between two surfaces. Hausdorff 
distance is computed using MESH software1. Smoothness is measured as the RMS of 
the minimal and the maximal surface curvatures, respectively. They are 
computed by fitting a 2nd polynomial to each vertex and its direct neighbors: using 
this small region considers the surface noise in the smoothness measure. The lower 
the value, the smoother the surface is. Fig. 5(a) depicts the distance between our re-
constructed model at 3 subdivision levels, L0, L1, L2 and the surface, S0, obtained from 
the Marching Cubes algorithm applied to the result of the level set segmentation. The 
RMS is always less than one voxel (<0.6mm) and lower than 0.4mm on L1. 
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Fig. 5. (a) Root Mean Square (RMS) distance error for 12 data sets at 3 subdivision. (b) RMS 
distance error on M7 versus the number of triangles, after different decimations of the original 
iso-surface. (c) RMS of the min curvature, versus the number of triangles. (d) Smoothness 
evolution for different smoothing levels compared to the smoothness our model at level 1. 

                                                                 
1 http://mesh.berlioz.de 
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We compared the smoothness and the distance error on M7 obtained from our re-
construction to the ones obtained using the VTK2. Fig. 5(b) shows the distance between 
S0 and L0, L1, L2 compared to the distance between S0 and its decimations S0

d, d [0,9] 
using vtkDecimatePro. The RMS after decimation is always smaller, because most 
errors occur at vessel extremities or junctions. However, our model allows simpler 
mesh, with reasonable error (RMS<0.6mm) and good smoothness shown in Fig. 5(c). 
This figure displays the RMS of  on L0, L1, L2 and on S0

d. It is almost constant (0.03) 
for all levels and much better than any S0

d (between 0.3 and 0.7). For completeness, we 
also depict the RMS of  for L1 and S0

8 having similar number of triangles. 
Fig. 5(d) plots the evolution of these smoothness measures according to the number of 
smoothing iterations, where we smooth S0

8 by applying the vtkSmoothPolyDataFilter. 
The RMS of  always increases with the smoothing due to vessel shrinkage, and the 
RMS of  decreases to 0.25 while L1 have a value of 0.03. This shows our model 
smoothness superiority over VTK smoothing. 

3.3   Results on a Clinical Dataset 

Before evaluating on a full clinical dataset, we apply our method to a portion of a 
patient vascular network in Fig. 6(a). The testing data contains the end of the vertebral 
arteries, joining into the basilar artery which then split into the posterior cerebral 
arteries. A local level set, ignoring the small vessels, followed by an iso-surface re-
construction allowed getting those arteries shown in Fig. 6(b). After skeletonization 
and surface reconstruction shown in Fig. 6(c), both surfaces are compared. Fig. 6 (b) 
shows the color code of the distance between the two surfaces. The RMS distance 
error is lower than 0.4mm with 5% of iso-surface triangles. The result of our stream-
lined process, on a full CTA dataset, is depicted in Fig. 6(d). 

                   

Fig. 6. (a) Anatomy of the circle of Willis; (b) segmented iso-surface; (c) reconstructed surface. 
The color code in (b) ranges from blue (0.0mm) to red (3.0mm), (d) reconstructed arterial side. 

4   Discussion and Conclusion 

The method presented in this article deals with the segmentation and the reconstruc-
tion of the vascular network. The final reconstructed vascular surface is aimed to be 
integrated in a neuro vascular training and procedural planning simulator. The goal of 
our method is to streamline the process from the CTA scan of a patient to a structured, 
                                                                 
2 Visual Tool Kit library available at http://www.vtk.org 

(a) (b) (c) (d)
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smooth, and efficient vascular model with minimum manual interactions. It has 
shown interesting results in term of accuracy and robustness. Indeed, its evaluation on 
the phantom in 12 different orientations produces homogeneous skeletons and radii. 
The generated surfaces are close to the reference ones and are much smoother. The 
main drawback of our method is that it is not fully automatic and it estimates circular 
vessel cross sections.  

In future work, the main effort will focus on reducing the amount of manual work. 
On the segmentation side, one main difficulty is to separate tangent vessels, which are 
merged at the current imaging resolution. Another difficulty is to fully detect small 
vessels. Both tasks would benefit from an a priori knowledge based on an anatomical 
atlas. As a perspective, we would like to integrate a labeling tool in the skeletoniza-
tion step. This feature could give the name of the arteries and veins and consequently 
help in the training/learning process of our simulator. An automatic correction of 
centerline orientation is also under investigation based on graph theory. For the esti-
mation of the cross-sections, fitting an ellipse instead of a circle would help to match 
their real geometry without sacrificing the smoothness and the low complexity of the 
mesh. Finally, testing the whole method on more patients would help to validate it on 
large scale networks before integrating it in the neuro-vascular intervention training 
system mentioned above. 
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Abstract. Precise segmentation of three-dimensional (3D) magnetic
resonance angiography (MRA) image can be a very useful computer
aided diagnosis (CAD) tool in clinical routines. Our objective is to de-
velop a specific segmentation scheme for accurately extracting vascula-
ture from MRA images. Our proposed algorithm, called the capillary
active contour (CAC), models capillary action where liquid can climb
along the boundaries of thin tubes. The CAC, which is implemented
based on level sets, is able to segment thin vessels and has been ap-
plied for verification on synthetic volumetric images and real 3D MRA
images. Compared with other state-of-the-art MRA segmentation algo-
rithms, our experiments show that the introduced capillary force can
facilitate more accurate segmentation of blood vessels.

1 Introduction

Magnetic resonance angiography (MRA) is a noninvasive medical imaging
modality that produces three-dimensional (3D) images of vessels and cavities.
Accurate extraction of 3D vascular structures from MRA images has become
increasingly important for diagnosis and quantification of vascular diseases.

Existing MRA segmentation techniques can be broadly divided into two
categories: skeleton-based and nonskeleton-based. Skeleton-based techniques are
those indirect methods which segment and reconstruct the vessels by first de-
tecting the centerlines of the vessels. Several methods have been developed based
on this principle and multiscale schemes to allow for the diversity of vessel
sizes [1, 2, 3]. In these approaches, the centerline models can be generated ex-
plicitly, implicitly or via postprocessing by vessel modeling methods. Contrary
to above methods, nonskeleton-based techniques are those that compute the
vessels in 3D directly. In this category, deformable model based methods have
received considerable attention and success.

Klein et al. [4] proposed to reconstruct 2D vessel boundaries or 3D vessel walls
using deformable surface models represented by B-spline surfaces. However, it is
not possible to employ parameterized deformable models to effectively deal with
whole vessel trees, as the models would be required to change topology during
evolution. Yim et al. [5] proposed a deformable surface model based on triangu-
lated meshes for vessel construction in 3D. Nevertheless, it may be problematic
to apply these methods [4,5] for segmentation of vessels from low contrast MRA

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 51–58, 2005.
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Fig. 1. Capillary action. (a) Capillary tube, (b) Surfaces of a three-phase system.

images. Geometric deformable models based on level set theory [6,7], which can
freely adapt into complex topologies of objects, were then proposed and applied
on MRA images segmentation. Chen and Amini [8] employed a hybrid model
using both parametric and geometric deformable models for segmentation of an
entire vascular tree. However, these methods may have difficulty in extracting
tiny vessels from 3D images. Small vessels and their branches, which exhibit
much variability, are very important in planning and performing neurosurgical
procedures. Greater details can provide more precise navigation and localiza-
tion information for computer guided procedures. Lorigo et al. [9] proposed the
“CURVES” algorithm to extract thin vessels, which uses geodesic active con-
tour [7] based on the co-dimension two level set method [10]. However, to make
the evolving curve stop at the object boundaries, the evolution speed needs to
be multiplied by a heuristic factor.

Our work aims to develop an image segmentation methodology for automat-
ically extracting the whole vasculature from 3D angiography. Inspired by the
capillary action associated with thin tubes as shown in Fig. 1(a), in which liq-
uid climbs up to some height without external pulling force, an algorithm for
vasculature extraction is proposed. In the capillary action, the thinner the tube,
the higher the liquid level in the tube. The situation is very similar to the seg-
mentation of blood vessels if we imagine thin blood vessels as capillary tubes.
Hence, it may be useful to employ this mechanism for segmenting thin vessels in
low contrast situations. By modeling this phenomenon and fitting it into image
segmentation problem, the capillary active contour (CAC) is obtained for MRA
image segmentation.

2 Capillary Geodesic Active Contour

The capillary action can be understood as an energy minimization process, which
involves surface tensions. We first introduce the energy functional associated
with the free surface and wetted surface. Following that, the volume constraint
of the fluid is considered. To minimize the overall energy functional, the Euler-
Lagrange equations are computed for each part and these derived parts are
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integrated together to get the final evolution equation of the fluid surface. Since
the capillary force is incorporated, the derived method is called capillary active
contour.

2.1 Free Surface Energy

Free surface is the part of the liquid surface that is not in contact with the solid
boundaries. Capillary action can only be observed when the adhesion tension
between molecules of fluid and molecules of solid is larger than the cohesion
tension between fluid molecules. Therefore, molecules on the free surface tend
to be attracted toward the solid boundaries. Fluid molecules will have lower
potential energy when they are nearer to solid boundaries and this energy will
be minimized when they are on the solid boundaries.

The gradient magnitude |∇I| is calculated to indicate possible boundaries,
where I : [0, a] × [0, b] × [0, c] → R

+ denotes an image. A uniform decreasing
function g : [0,+∞[→ R+ is defined, where g(r) → 0 as r → +∞. Function
g(|∇I(S(q))|) is used to describe the energy coefficient associated with the sur-
face S(q) : [0, 1] → R

3, which is the surface tension coefficient in physics. Let
Sf (t) denote the free surface of the liquid at time t. The capillary energy of free
surface can be expressed as

E(Sf (t)) =
∫

q

g(S(q))
∣∣∣∣∂S(t, q)

∂q

∣∣∣∣ dq (1)

by integrating over q, where S(t, q) ∈ Sf (t). By computing the Euler-Lagrange
of (1), the evolution equation of the free surface is obtained as

St = gκN − (∇g ·N )N , (2)

where κ is the Euclidean curvature, and N is the unit normal vector of the
surface.

2.2 Wetting Surface Energy

Since the adhesion force is larger than the cohesion force, the fluid molecules will
be attracted to the solid boundaries and the unwetted surface is then converted
into wetted surface. The total energy involved in this dynamic process can be
modeled as

E(Sw(t)) = βSw + β∗S∗
w, (3)

where Sw is the area wetted by the fluid and S∗
w is the area in contact with the

outer medium (unwetted surface). Since Sw can be extended in an arbitrarily
continuous way into S∗

w, we have

E(Sw(t)) = β̂S∗
w (4)

where β̂ = β∗ − β. Thus, minimizing the wetted surface energy is equivalent to
minimizing the surface S∗

w through evolving the contact line. However, solving
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this problem directly in 3D is problematic, because the surface to be minimized
is not enclosed by the contact line. Since we are only interested in an immediate
neighborhood of the contact line, it is always possible to find some view point
that all the surface area is under the contact line (see Fig. 2). In addition, the
3D surface can be “cut” along a line and then stretched to becoming a 2D plane
as shown in Fig. 2.

Let C(t, x) : [0, 1] → R
2 denote the contact line between the fluid surface and

the unwetted surface. The length of the curve
∫
|∂C(t,x)

∂x |dx is considered as a
regularization term to keep the curve smooth. Thus, the energy associated with
the wetted surface can be written as

E(Sw(t)) =
∫
C(t, x)dx + λ

∫ ∣∣∣∣∂C(t, x)
∂x

∣∣∣∣ dx. (5)

where λ is a real positive constant parameter. Then the 2D evolving equation of
contact line C is obtained as

Ct = (1 + λκ̂)N Γ , (6)

where κ̂ and N Γ are the Euclidean curvature and the unit normal vector of
the contact line in 2D, respectively. However, when working in 3D, the curva-
ture κ̂ of the 2D contact line becomes a co-dimension two curvature κ̂2 [10, 9].
Furthermore, as we are considering the evolution of liquid along vessel walls,
the direction of evolution should be parallel to the wall at each point, i.e., the
tangential direction T sb as shown in Fig. 3. Then (6) is changed into

Ct = (1 + λκ̂2)T sb. (7)

The tangential subvector can be calculated as

T sb = N − ∇g
|∇g| cos θ, (8)

where cos θ = N · ∇g
|∇g| .
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Thus, the overall evolution equation describing the energy of wetting surfaces
can be written as

St = (1 + λκ̂2)
(

N − ∇g
|∇g| cos θ

)
. (9)

2.3 Volume Constraint

The volume constraint is considered as E(V ) = cV , which can be expanded as

E(V ) = c

∫
S(t, q)dq,

where c is a Lagrange multiplier. By applying the gradient descent minimization,
we have evolution equation St = cN , which is a constant velocity for minimizing
the volume enclosed by the surface. Since liquid is bounded by solid, the fluid
surface will snap to the boundaries. Thus, the constant velocity is multiplied by
function g and then the evolution equation is modified into

St = g(S(q))cN . (10)

2.4 Evolution Equation

Based on the results obtained separately in the above sections, the final evolution
equation is obtained by integrating these terms

St = g(κ + c)N − (∇g ·N )N + α(1 + λκ̂2)
(

N − ∇g
|∇g| cos θ

)
, (11)

where parameter α is a real positive constant. The constant term c in (11) acts
like balloon force in [11], which facilitates the evolving surface snapping to solid
boundaries. Comparing the new speed function (11) with those of the geodesic
active contour [7], the third term is new which comes from the capillary action.
The new term makes the fluid surface move along the solid boundaries. The
capillary action term is expected to facilitate the evolving surface adapting into
thin parts of objects, e.g. thin vessels.

2.5 Level Set Evolution Equation

According to the level set theory and noting the fact that

N = − ∇Ψ
|∇Ψ | ,

evolving a surface S under the speed function (11) is equivalent to updating a
volumetric map Ψ with

Ψt = g(κ + c)|∇Ψ |+∇g · ∇Ψ + α(1 + λκ̂2)|∇Ψ |(1 − cos2 θ) (12)

where S is the zero level set embedded in Ψ and

cos θ =
∇Ψ · ∇g
|∇Ψ ||∇g| . (13)



56 P. Yan and A.A. Kassim

3 Results and Discussion

3.1 Capillary Force

Fig. 4 shows the application of the CAC in a computer generated cylinder,
which illustrates the effects of the capillary force. Starting from the initialization
visualized in Fig. 4(b), evolution is done according to the level set speed function
in (12). In our experiment, all the parameters are fixed except that α is varying.
The evolution results with different parameter settings after 50 iterations are
visualized in Fig. 4.

(a) (b) (c) (d) (e) (f)

Fig. 4. Illustration of the effects on varying capillary force coefficient α. (a) Generated
cylinder. (b) Initialization of the algorithm. (c) α = 0. (d) α = 0.25. (e) α = 0.5. (f)
α = 0.75.

When α is set to zero, the CAC in fact evolves exactly like a geodesic active
contour [7]. The evolution of the free surface in the axial direction of the tubular
object is driven by the mean curvature κ and constant speed c in (12). Since this
term is multiplied by the uniquely decreasing function g, its contribution will be
small when the surface is near the object boundary, and becomes zero when the
surface is on the edges. Hence, we can see the free surface is convex as shown
in Fig. 4(c). When the tubular object becomes much thinner, the evolution may
stop because of the small value of g at everywhere. After incorporating the cap-
illary force, the free surface is attracted by the unwetted surface when near the
solid boundaries and meniscus [12] can be observed as shown in Fig. 4(d)(e)(f).
With larger value of α, the surface evolution along the object boundary will be
stronger and faster. Therefore, the capillary force can facilitate the evolution of
the free surface even when the vessels are very thin.

3.2 MRA Segmentation

The CAC method is also applied on 3D MRA images of cerebral vasculature.
The image size is 512×512×120 voxels with spacing 0.43mm×0.43mm×1.2mm.
The initial surface is obtained by thresholding the raw dataset. The MIP of
MRA data set used in our experiments is shown in Fig. 5. To make the results
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(a) MIP (b) Region of interest

Fig. 5. MIP of the cerebral MRA data set

(a) (b) (c) (d)

Fig. 6. MRA segmentation results using CURVES

clearer, a region of interest (ROI) is extracted (Fig. 5(b)) and only vessels inside
the ROI are segmented and visualized.

We have compared our proposed CAC method with the state-of-the-art
CURVES [9]. Identical parameter settings in the evolution equations are used
for both methods except for the capillary force coefficient, which is specific to
the CAC. The segmentation results of CURVES and CAC are shown in Fig. 6

(a) (b) (c) (d)

Fig. 7. MRA segmentation results using CAC
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and Fig. 7 with different points of view. The CURVES algorithm successfully
extracts much of the vasculature but fails to identify some parts when compared
with the CAC.

4 Conclusions

In this paper, we propose the capillary active contour and apply it to both 3D
synthetic and cerebral MRA images segmentation. The incorporated capillary
force adapts the evolving surface into very thin branches of blood vessels and
obtains more accurate segmentation as demonstrated in our experiments. Com-
pared with other techniques, the CAC can achieve more details of vasculature.
Our approach is geometric in nature and topology free due to that implicit rep-
resentation of the evolving surface is used.
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Abstract. Graph methods that summarize vasculature by its branching
topology are not sufficient for the statistical characterization of a popu-
lation of intra-cranial vascular networks. Intra-cranial vascular networks
are typified by topological variations and long, wandering paths between
branch points.

We present a graph-based representation, called spatial graphs, that
captures both the branching patterns and the spatial locations of vascular
networks. Furthermore, we present companion methods that allow spatial
graphs to (1) statistically characterize populations of vascular networks,
(2) generate the central vascular network of a population of vascular
networks, and (3) distinguish between populations of vascular networks.
We evaluate spatial graphs by using them to distinguish the gender and
handedness of individuals based on their intra-cranial vascular networks.

1 Introduction

Intra-cranial vasculature varies across individuals to such an extent that only a
few of the largest intra-cranial vessels are sufficiently consistent to depicted and
labeled in anatomical atlases [13]. Variations in the location and connectivity of
even those named vessels are common in a healthy population [2]. Furthermore,
between branchpoints, intra-cranial vessels will often follow long and wandering
walks. These walks must be preserved to truly capture the form and function
(filling regions, etc.) of intra-cranial vasculature. Our interest in characterizing
intra-cranial vasculature arises from the mounting evidence that a genetic rela-
tionship exists between mental disorders and vascular network formation [10][15].

We have developed a novel, graph-theoretic method for representing and an-
alyzing the intra-cranial vascular networks of individuals and populations. Our
”spatial graphs” capture the anatomical locations, branching patterns, and tor-
tuous paths of intra-cranial vascular networks. Spatial graph formation begins
with a centroid voronoi tessellation (CVT) [11] of intra-cranial space. Those CVT
regions are potential nodes of a spatial graph. A vascular network, overlaid on a
voronoi tessellation of space, defines a spatial graph by recording the branching
sequence of CVT nodes visited by the network. These branching sequences can
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be equivalently recorded as weighted, asymmetric adjacency matrices. Adjacency
matrix and node-specific statistics, such as the centrality [3] and branch proba-
bility at each node, can be collected for a population of vascular networks. We
have defined a method whereby those statistics can be used to probabilistically
generate vascular networks that are central to a population. We have also devel-
oped a method with which those statistics can be used to compute membership
scores for an individual’s vascular network; an individual’s membership scores
from different population-specific graphs and be used to classify that individual.

Forming graph representations of vascular networks is not a new concept. In
1993 Dr. Gerig presented [9] an intra-cranial vessel segmentation technique and
illustrated the reduction of those segmentations to graphs that represent their
topology. Such branch-based graphs are the basis of much of the vessel-based
liver lobe and heart vessel segmentation work being conducted in a variety of
labs [8][14]. In computer-vision, graph theory has been applied to the character-
ization of the medial structure of objects [12]. To the best of our knowledge, a
method has not been previously demonstrated that applies graph theory to the
characterization, generation, and discrimination of populations of intra-cranial
vascular networks.

In the next section we present our methods. The subsequent section describes
three evaluations of our methods: (1) visually assessing the central vascular net-
work generated from the spatial graph statistics from right-handed males, (2)
using male and female-specific spatial graphs of intra-cranial vasculature to de-
termine the gender of testing individuals, and (3) using a right-handed-specific
population graph to determine the handedness of testing individuals.

2 Methods

This section is divided into three subsections: forming spatial graphs, generat-
ing vascular networks that are central to population of vascular networks, and
computing graph membership measures. While these method descriptions fo-
cus on intra-cranial vasculature, these methods are applicable to any branching,
directed, cyclic, space-occupying structure.

2.1 Forming Spatial Graphs

Spatial graph formation involves vessel extraction, inter-subject registration,
space partitioning, and recording graph statistics. These steps are detailed next.

1) Extract the vascular networks from the individuals’ MRA data. These
encodings must capture the location of vessels, their directions of blood flow,
and their branchpoints to accurately encode a spatial graph as a directed graph.
We have developed a vessel network that has been shown to produce accurate
localizations [1] and accurate flow direction and branch point information [4].
Our method works for contrast CT and time-of-flight MR angiograms (MRA).

2) Align the individuals’ vascular networks to a common coordinate frame.
We achieve this by (a) rigidly registering, using mutual-information, the indi-
viduals’ MRA to their T1 images; (b) performing an affine, mutual information
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registration between the T1 images and the BrainWeb T1 atlas [7]; (c) compos-
ing the corresponding MRA-to-T1 and T1-to-atlas transforms; and (d) applying
the composed transform to the extracted vessels. [6]

3) Partition intra-cranial space. The goal of this step is to define a partition-
ing that captures vascular locations, branches, and paths in intra-cranial space.
This information is best captured when each partition has equal likelihood of
containing a vessel; otherwise under-utilized partitions would offer less discrimi-
natory information. We therefore partition space using expected vascular density
as follows.

Expected vascular density is computed using the vascular distance maps for
a population [6]. Specifically, for each vascular network, the squared distance to
the nearest vessel is computed throughout intra-cranial space. Those distance
maps are then inverted so that points nearer the vessels have larger values; thus,
intensity is related to likelihood of finding a vessel at that point. A mean distance
map is computed as a voxel-by-voxel average of those maps.

An equi-probable partitioning of expected vascular density is computed using
centroid voronoi tessellation (CVT) [11]. For this paper, 1000 CVT regions are
resolved using a probabilistic version of Lloyd’s method [11]. This algorithm is
computed for 1000 iterations using 100,000 new, randomly generated samples
per iteration. Random samples are generated from the mean density map using
the rejection method [11], so, the likelihood of selecting a voxel as a sample
is proportional to the image intensity at that voxel. Each iteration, the mass
centroids of the voronoi regions are updated using a new set of samples. Results
are illustrated in Fig. 1.

4) Recording graph statistics. The adjacency matrix and node-specific statis-
tics summarize how vascular networks map onto the CVT regions.

For adjacency matrix computation, as each vessel’s directed traversal crosses
from CVT region i to the next region j, the corresponding position Aij in the

Fig. 1. An axial slice (at the level of the Circle of Willis) through the mean vessel
distance map and CVT partitioning formed from 18 individuals. The fuzzy (red) object
in the background is the expected vascular density. The crisp (green) overlay uses
random intensities to depict the computed CVT regions.
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population’s adjacency matrix is increased by 1/(total number of vessels in that
individual’s network). This weighting compensates for level-of-detail variations
in the vascular networks.

Node statistics summarize local and connectivity information. At each node
we record (a) the number of times it contains a branch point, (b) the mean
radius of the vessel points that are contained within it, and (c) the number
of times a root artery, e.g., a carotid or basilar artery, originates from within
it. Additionally, in this paper, we compute node centrality as a local summary
of connectivity. Our node centrality computation is an adaptation of a method
developed for determining the ”popular people” in a social network, i.e., the most
”central person” in directed communications [3]. To compute such centrality, a
value ei represents the externally defined status of person i in the network. A
parameter α is set to weight the influence of that external status on internal
exchanges. The centrality ci of a node/person is then computed as

c = (I − αAt)−1e (1)

where A is the asymmetric adjacency matrix and I is the identity matrix. We
applied this measure to our vascular networks by giving every CVT node equal
external status, i.e., ei = 1 for all i, and setting α = 0.01 to reduce the influence
of external status. In the future, it may be useful to relate external status to the
volume of a vessel’s fill region or its radius. We also removed the transpose of A
so that the directed links in our networks are inverted; all vessels are made to
flow to their roots, e.g., the carotids. After applying Equ. 1, the node that most
often contains the root of the largest tree receives the largest centrality value.
The next distal node is the adjacent node with the highest centrality value, and
so forth. Using adjacency and node statistics, vascular graphs can be generated
and classified, as described next.

2.2 Generating Central Vascular Networks

Generating the most central vascular network from a population’s spatial graph
involves a greedy traversal of the population’s adjacency matrix and the consid-
eration of the branch probabilities at its nodes. Since each node correspond to
a volume in space, a branching sequence of nodes defines a branching network
passing through those volumes in space. Our generation process involves two
user specified threshold values. The first threshold θA indicates the minimum
level of adjacency required for a vessel traversal to continue. The second thresh-
old θb indicates the minimum branch-support required for a branch point to be
taken. Branch-support from a node i to node j is defined by the product of the
probability of branching at node i and the adjacency weight from i to j.

Generation begins at the most likely root node, as reported by the recorded
node statistics. The largest weighted adjacency from that node is then chosen as
the next transition in the generated graph. Adjacent nodes, not selected for con-
tinued generation, are searched for branch-support values above θb. If a branch
node is found, it is queued for generation after the current vessel’s generation
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terminates. A vessel’s generation terminates when it encounters a node from
which none of the adjacent nodes have an adjacency value above θA. Future
research should consider statistics regarding radius, mean curvature, etc. when
generating vessels.

2.3 Graph Membership Measures

Membership scores for a new vascular network, represented by the spatial graph
g, are conditional on a population’s spatial graph G. We evaluate two member-
ship scores in this paper: ΣA(g|G) is the sum of the adjacency weights in G
for all transitions that also exist in g, and Σc(g|G) is the sum of the centrality
values for the CVT nodes in G that are also touched by g. Both of these values
should be maximized when a vascular network is compared with a graph that
represents the population to which that vascular networks belongs. The next
section describes experiments which test this theory.

3 Results

Three experiments were conducted to evaluate spatial graphs. Each of these is
an unsolved problem in medical image analysis.

For these experiments, MRA and T1-weighted MR images were collected on
a Siemens Allegra head-only 3T MR system. MRA data was acquired using a
time-of-flight sequence at 0.5x0.5x0.8mm3 voxel spacing. T1-weighted MR data
was acquired at 1x1x1mm3.

The images from an individual were either used for training or testing, but
never for both. Individuals were labaled by gender and handedness.

All of the experiments began with a common CVT partitioning of intra-
cranial space. Specifically, vascular networks from 9 training-data, right-handed
males (ages 22-55, mean age 34.4) and 9 training-data, right-handed females
(ages 20-54, mean age 35.3) were combined to produce a common mean den-
sity map. The CVT of that map was computed once. Adjacency matrices, node
centrality, and other measures were computed using the designated individu-
als’ vascular networks combined with this common CVT partitioning. Using a
common CVT partitioning may have reduced sensitivity and specificity, but it
allowed node statistics to be compared across the populations’ spatial graphs.
This CVT partitioning is depicted in Fig. 1.

3.1 Experiment 1: Vascular Graph Generation

The first experiment demonstrates the generation of the central vascular network
for right-handed males. Using the 9 training-data, right-handed males, a right-
handed, male population spatial graph was computed. The vascular network
generation method described above was then applied. For visualization, the mid-
points on the lines between the centroids of each generated sequence of nodes
were used as the control points for a b-spline curve through space. A constant
radius of 0.5 mm was used for visualizing the vessels as tubes.
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Fig. 2. Left: A vascular network generated from the right-handed male graph. Right:
A vascular network from one of the training right-handed males. Carotids, circle of
willis, vascular groups, other vascular patters are evident in the generated network.

The generated central vascular network is visualized in Fig. 2. Subjectively,
there are striking similarities between the generated and actual intra-cranial vas-
cular networks. The generation method’s threshold values can be manipulated to
produce various levels of branching detail. The image shown used a low branch-
ing threshold, θb = 0.001, so as to simulate extensive branching detail. Major
vascular groups, the carotids, circle of willis, basilar artery, communicating ar-
teries, and other major vessels are evident. Using b-splines to visualize the node
adjacency sequence may have exaggerated intra-node vessel curvature.

3.2 Experiment 2: Distinguishing Gender

The second experiment involved distinguishing males from females based on
intra-cranial vasculature. Two population-specific spatial graphs were computed:
one using 9 training-data, right-handed males and the other using 9 training-
data, right-handed females. For each population-specific graph, the membership

Table 1. (Upper Table) Mean difference for each membership measure for testing
individuals given gender-specific population graphs. (Lower Table) Mean differences
for each membership measure for testing individuals given right-handed and mirrored-
right-handed population graphs. Items in bold highlight population-specific graphs that
correctly classified every individual in the corresponding testing data.

ΣA(g|Gmale)-ΣA(g|Gfemale) Σc(g|Gmale)-Σc(g|Gfemale)
Testing Males μ=76.6 σ=5.08 μ=-7.4 σ=0.89

Testing Females μ=-18.6 σ=5.02 μ=-15.1 σ=0.75

ΣA(g|Gright)-ΣA(g|Grightmirrored) Σc(g|Gright)-Σc(g|Grightmirrored)
Testing Right μ=5.83 σ=3.40 μ=-4.01 σ=18.5
Testing Left μ=-82.5 σ=12.62 μ=9.06 σ=21.8
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measures ΣA(g|G) and Σc(g|G) were computed for 3 testing-data, right-handed
males (ages 23, 26, 57) and 3 testing-data, right-handed females (ages 33, 43,
and 57).

Gender classification results are shown in Tab. 1. The ΣA measure produced
correct classifications for every testing-data male and every testing-data female.
Results for Σc contained 50% classification error: mislabeling every testing-data
male as female. The success of ΣA and failure of Σc implies that gender differ-
ences are not based on the location or number of vessels, but it is the directed
vascular paths throught space that distinguish males from females. Further re-
search is focusing on visualizing these differences.

3.3 Experiment 3: Determining Handedness

Our third experiment involved analyzing brain lateralization to determine the
self-reported handedness of individuals. To study brain lateralization, instead
of creating a population-specific spatial graph for left-handed males, we mir-
rored the right-handed graph along its x-axis. This mirroring approximates brain
lateralization since the BrainWeb atlas’ mid-sagittal plane is at the center of
and normal to the x-axis. Using these right-handed male and mirrored-right-
handed-male population-specific spatial graphs, membership measures ΣA(g|G)
and Σc(g|G) were computed for the 3 testing-data right-handed males and for 3
testing-data left-handed males (ages 19, 26, and 29).

Results from handedness classification using intra-cranial vasculature are
shown in Tab. 1. Again the adjacency membership measure ΣA(g|G) lead to
correct labels for all testing-data individuals. The centrality measure Σc(g|G)
had a 66% classification error; mislabeling two right-handed individuals as left-
handed and two left-handed individuals as right-handed. Again, the success of
ΣA(g|G) and the failure of Σc(g|G) suggests that the direct paths of intra-cranial
vasculature is key to distinguishing these populations.

4 Discussion

We have developed spatial graphs as a technique which is well suited for charac-
terizing intra-cranial vasculature. Initial results indicate that spatial graphs can
be used to classify the gender and handedness of individuals. These successes
suggests that spatial graphs can be used to study the genetic relationship that
may exists between mental disorders and vascular network formation [10][15].

One particularly interesting finding is that when various membership mea-
sures are compared, classification experiments suggest that it is the paths taken
by the vessels in a network (their adjacency matrices), not their centrality, that
distinguishes genetic vascular variations.

While these results are encouraging, we are very cautious about drawing any
conclusions beyond the limited data involved. It is critical that these methods
be applied to larger datasets before suggesting that any general ”truths” have
been revealed. Future work will also pursue more advanced statistical analysis
techniques.
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Abstract. The spherical harmonic (SPHARM) description is a powerful surface
modeling technique that can model arbitrarily shaped but simply connected 3D
objects and has been used in many applications in medical imaging. Previous
SPHARM techniques use the first order ellipsoid for establishing surface corre-
spondence and aligning objects. However, this first order information may not be
sufficient in many cases; a more general method for establishing surface corre-
spondence would be to minimize the mean squared distance between two corre-
sponding surfaces. In this paper, a new surface matching algorithm is proposed
for 3D SPHARM models to achieve this goal. This algorithm employs a useful
rotational property of spherical harmonic basis functions for a fast implementa-
tion. Applications of medical image analysis (e.g., spatio-temporal modeling of
heart shape changes) are used to demonstrate this approach. Theoretical proofs
and experimental results show that our approach is an accurate and flexible sur-
face correspondence alignment method.

1 Introduction

Surface representation and shape modeling play increasingly prominent roles in many
computer vision and image processing applications. Medical image analysis is one of
the most important applications. Many techniques have been developed for modeling
and inspecting anatomic structures in the diagnosis and treatment of disease. The spher-
ical harmonics approach has been used for the representation of shapes in many types
of biomedical image data to help perform functional information analysis or classify
different pathological symptoms.

Many spherical harmonic based shape descriptions have been developed for medi-
cal image analysis. Chen et al. [1] use this method to model and analyze left ventricular
shape and motion. Matheny et al. [2] and Burel et al. [3] use 3D and 4D surface har-
monics to reconstruct rigid and nonrigid shapes. Since they start from an initial radial
surface function r(θ, φ), their method is capable of representing only star-shaped or
convex objects without holes. Brechbühler et al. [4] present the SPHARM description
that is an extended spherical harmonic method for modeling any simply connected 3D
object. The object surface is represented as v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T and
spherical harmonics expansion is used for all three coordinates. Gerig and Styner have
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applied SPHARM in many medical imaging applications (e.g., shape analysis of brain
structures [5,6,7]). It has also been used for shape modeling and functional analysis for
cardiac MRI [8].

In order to compare different SPHARM models, a shape registration step is often
necessary for aligning these models together and extracting their shape descriptors (i.e.,
excluding translation, rotation, and scaling). Like shape registration using ICP [9], two
important substeps are involved in aligning SPHARM models: (1) creating surface cor-
respondence, and (2) minimizing the distance between the corresponding surface parts.
Once the surface correspondence is established, the distance minimization becomes rel-
atively easy. Thus, the focus of this paper is on creating surface correspondence for two
3D SPHARM models.

Previous studies [5,6] used the first order ellipsoid for shape registration. The pa-
rameter net on this ellipsoid is rotated to a canonical position such that the north pole
is at one end of the longest main axis, and the crossing point of the zero meridian and
the equator is at one end of the shortest main axis. The aligned parameter space creates
surface correspondence between two models: two points with the same parameter pair
(θ, φ) on two surfaces are defined to be a corresponding pair. This alignment technique
works only if the first order ellipsoid is a real ellipsoid, as in the case of hippocampal
data [6], but not if it is an ellipsoid of revolution or a sphere. There are also other cases
in which first order ellipsoid alignment may not work. One example is given in Fig. 1
for the heart ventricle case.

In this paper, instead of aligning the first order ellipsoid, we employ a more general
metric for establishing surface correspondence: minimizing the mean squared distance
between two SPHARM surfaces. A fast surface alignment algorithm is proposed to
achieve this. Based on the rotational properties of harmonics analysis, we prove that a
new set of SPHARM coefficients after a rotated parametrization can be directly gen-
erated from the original set. Thus we can easily obtain a new SPHARM model for a
re-parameterized object by rotating its parametrization along the surface. This process
is faster than a standard recalculation (e.g., solving a linear equation) of SPHARM co-
efficients for a re-parameterized object. This work is motivated by the need for better
shape modeling and analysis in current medical applications. Some of these applications
are used to demonstrate our algorithm in this paper.

2 Methods

2.1 Surface Description Using SPHARM

The SPHARM technique [4] can be used to model arbitrarily shaped, simply connected
3D objects. The object surface is represented by using spherical harmonics expansion
for all three coordinates,

v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T =
∞∑
l=0

l∑
m=−l

cm
l Y m

l (θ, φ). (1)

The coefficients cm
l = (cm

lx, c
m
ly , c

m
lz )T are 3D vectors. Their components, cm

lx, cm
ly , and

cm
lz are usually complex numbers. The coefficients up to a user-desired degree can be
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estimated by solving a set of linear equations in a least square fashion. The object
surface can be reconstructed using these coefficients, and using more coefficients leads
to a more detailed reconstruction. Thus, a set of coefficients actually form an object
surface description.

2.2 Fast Rotation Theorem for Spherical Harmonic Parametrization

Theorem (Parametrization Rotation). The parametrization spatial rotation on the
surface can be decomposed into three rotations of mapping parameter meshes onto
the x-sphere, y-sphere, and z-sphere. Let v(θ, φ) =

∑∞
l=0
∑l

m=−l c
m
l Y m

l (θ, φ) be a
SPHARM parametric surface. After rotating the parameter net on the surface in Euler
angles (α, β, γ), the new coefficients cm

l (αβγ) is

cm
l (αβγ) =

l∑
m′=−l

cm′
l Dl

mm′(αβγ). (2)

Proof. According to Euler’s rotation theorem, any rotation of the coordinate system
(e1, e2, e3) can be decomposed into three elementary rotations R(α, β, γ). The SO(3)
harmonics provide the tool to express the rotated version of a function on the sphere
extended by spherical harmonics [10]. The effect of such a rotation on the spherical
harmonic basis functions is [11]

RZY Z(αβγ)Y m
l (θ, φ) =

l∑
m′=−l

Y m′
l (θ, φ)Dl

m′m(αβγ), (3)

where RZY Z(αβγ) represents the rotation operator dependent on the Euler angles; the
rotation matrices Dl

m′m(αβγ) (also called the SO(3) matrix elements) are calculated
by

Dl
m′m(αβγ) = e−im′αdl

m′m(β)e−imγ ,

where

dl
m′m(β) =

min(l+m,l−m′)∑
t=max(0,m−m′)

(−1)t ×
√

(l + m)!(l −m!)(l + m′)!(l −m′)!
(l + m− t)!(l −m′ − t)!(t + m′ −m)!t!

×
(
cos

β

2

)(2l+m−m′−2t)(
sin

β

2

)(2t+m′−m)

.

Since we employ the SPHARM surface modeling technique, the surface coordinate
information of a 3D object is coded onto three unit spheres: an x-sphere, a y-sphere,
and a z-sphere. These three spherical functions are expanded using spherical harmonics
and represented by f(θ, φ) (f ∈ {x, y, z}). We denote f ′(θ, φ) as the new function after
applying a rotation operator RZY Z(αβγ) to f(θ, φ) on the f -sphere:

f ′(θ, φ) = RZY Z(αβγ) f(θ, φ), (4)
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thus
v′(θ, φ) = Robj(αβγ) (x(θ, φ), y(θ, φ), z(θ, φ))T (5)

where Robj(αβγ) = [RZY Z(αβγ) 0 0; 0 RZY Z(αβγ) 0; 0 0 RZY Z(αβγ)].
Then v′(θ, φ) = Robj(αβγ)v(θ, φ) represents the new parametrization on the sur-

face, which can be generated by rotating the original parametrization along the object’s
surface about Euler angles (α, β, γ). In other word, the result of applying the rotation
matrix RZY Z(αβγ) on the mapping meshes of x, y, z-sphere is to rotate the parameter
mesh on the object’s surface at the same orientation. Because of the distortions intro-
duced by spherical parameterization, the result of rotation is not identical to the result
of applying Euler angles on the sphere, but both will have nearly the same orientation.
Thus we only use Robj , which we refer to as the parametric rotation matrix, for rotating
the parameter mesh along the surface of an object. Substituting Eq. (1) and Eq. (3) into
Eq. (4) gives

L∑
l=0

l∑
m=−l

cm
lf (αβγ)Y m

l (θ, φ) = f ′(θ, φ) = RZY Z(αβγ)
L∑

l′=0

l′∑
m′=−l′

cm′
l′fY

m′
l′ (θ, φ) =

L∑
l′=0

l′∑
m′=−l′

cm′
l′f RZY Z(αβγ) Y m′

l′ (θ, φ) =
L∑

l′=0

l′∑
m′=−l′

cm′
l′f

l′∑
n=−l′

Y n
l′ (θ, φ)Dl′

nm′(αβγ)

and multiplying Ȳ j
k (θ, φ) on both sides (adjusting the k from 0 to L and j from −k

to k) and integrating on the sphere. Since all Kronecker delta values are zero except at
k = l = l′ and j = m = n, we get the following:

cm
lf (αβγ) =

l′∑
m′=−l′

cm′
l′fD

l′
mm′(αβγ) =

l∑
m′=−l

cm′
lf Dl

mm′(αβγ). (6)

According to the above derivation, the harmonics expansion coefficients transform
among themselves during rotation. Each new spherical harmonic coefficient cm

lf (αβγ)
after applying a rotated function RZY Z(αβγ) is a linear combination of the coefficients
cm
lf of the original function f(θ, φ) (f ∈ {x, y, z}). We can use this property to calculate

the new SPHARM model v′(θ, φ) for the object surface after a rotated parametrization,
and we only need the old coefficients {cm

lx, cm
ly , cm

lz} and rotation matrices Dl
mm′(αβγ).

2.3 Surface Correspondence Difference Measure

The surface correspondence alignment problem is generally formulated in terms of the
optimal parameters, such as (α, β, γ), that minimize some surface distance function. In
this paper, we adopt the Euclidean distance as the distance function between surfaces.
Formally, for two surfaces given by v1(s) and v2(s), their distanceD(v1,v2) is defined
as [6]

D(v1,v2) = (
∑

f∈{x,y,z}

L∑
l=0

l∑
m=−l

(cm
lf1
− cm

lf2
)2)1/2. (7)
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2.4 Fast Surface Alignment Algorithm

We use a sampling-based search algorithm, which fixes one parameter mesh and rotates
the other to carry out a greedy search on its surface with a small step size, to align the
surface correspondence by minimizing the surface distance defined in Eq. (7). First, we
uniformly distribute sample points on the surface as the new north poles locations, and
the new SPHARM coefficients can be calculated by using Eq. (2) with new Euler angles
set (α, β, γ). For each candidate north pole, the parameter mesh is counterclockwise
rotated along the new north-south aixes (the rotation angle ω ranges from 0 to 2π). In
order to calculate the coefficients of the new rotated parameter mesh using Eq. (2), we
must transform the rotation angle ω into the Euler angles (α, β, γ).

The original north and south poles of a surface’s parameter mesh are mapped onto
the axis e3 = (0 0 1) and −e3 = (0 0 − 1) in the x-, y-, and z-sphere. After ro-
tation using Euler angles (αp, βp, γp), the north and south pole coordinates switch
from v(θ, φ) to v′(θ, φ) = Robj(αpβpγp)v(θ, φ), (θ = 0 or π). Simultaneously the
axis e3 in the coordinate systems of the three mapping spheres is changed to ê3 =
RZY Z(αpβpγp)(0 0 1)T . Because ê3 also contains the origin and has unit length direc-
tion, we apply the Rodrigues’ rotation formula [13] for computing the rotation matrix
Rê3 ∈ SO(3) corresponding to a rotation by an angle ω about the fixed axis ê3

Rê3 (ω) = I + Ssinθ + S2(1− cosθ), S =

⎡⎣ 0 −ê3x ê3y

ê3z 0 −ê3x

−ê3y ê3x 0

⎤⎦ ,
where I is the identity matrix. We can obtain the Euler angles (α, β, γ) by solving the
equation RZY Z(αβγ) = Rê3 (ω). These Euler angles can then be used to calculate the
coefficients of new parameter mesh using Eq. (2).

In the second step, we use the BFGS algorithm [14] to locally minimize Eq. (7)
starting from the result of the first step. Because the result of the first step is already
close to the target, this step generally needs only a few iterations. Although the dimen-
sion of the Jacobian matrix is large, the matrix is quite sparse. The computational time
of this step is very low.

3 Experiments and Discussions in Medical Image Analysis

The fast alignment algorithm for surface correspondence described above was used for
shape analysis in selected medical image analysis applications. Based on segmented
MRI data of heart, we use the SPHARM method to do surface reconstruction and apply
the surface alignment algorithm presented in this paper to determine a correspondence
between shapes. This aligned correspondence allows researchers to access more func-
tional details.

3.1 Comparison of Methods

In previous shape analysis study using the SPHARM description [5], researchers choose
to use the three major axis of the first order ellipsoid (which is computed from the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Comparison of methods: (a) shows the reconstructed SPHARM surface of left ventricle,
(b) is the first order ellipsoid of surface (a); (c) shows the reconstructed SPHARM surface of
right ventricle, (d) is the first order ellipsoid of surface (c). By using the previous method, the first
order ellipsoids and parametrizations are rotated to the positions in (f) and (h), and the SPHARM
surfaces and parametrizations are rotated as (e) and (g). By using our algorithm, (i) shows the
result of poles alignment. North and south poles are aligned close to the poles of (a). And the
parameter mesh is rotated along the north pole. After using the BFGS algorithm [14] in the
second step, the last alignment result is shown in (j).

first order SPHARM coefficients) as the intrinsic coordinate system. Parametrization is
rotated in the parameter space for normalization so that three main ridges of the first
order ellipsoid are moved to the equator [5,6]. Their method works well if two or more
objects have a similar orientation (e.g., aligning hippocampal shapes). However this
method may not work in some cases.

Fig. 1.(a) and Fig. 1.(c) show the reconstructed surface of two ventricles of the heart
(left ventricle and right ventricle). We separate the parametrization on the surface into
eight regions using five lines (θ = π/2 in middle line, in north pole θ = 0, in south
pole θ = π, the other four lines separately represent φ = 0, π/2, π, 3π/2, 2π). The cor-
respondences between surfaces in Fig. 1.(a) and Fig. 1.(c) are unordered as the visual-
izations. Fig. 1.(b) and Fig. 1.(d) show their first order ellipsoids. By using the previous
method, the first order ellipsoids and parametrizations are rotated to the positions in
Fig. 1.(f) and Fig. 1.(h). Three main directions of the ellipsoids are moved to the equa-
tor. The surface correspondence is created when the first order ellipsoid is aligned. As
the result, the SPHARM surfaces and parametrizations should be rotated as Fig. 1.(e)
and Fig. 1.(g). A limitation of this approach is that it may not represent the real surface
correspondence between two surfaces. The reason for this is that the left ventricle and
right ventricle have two very different orientations of their first order ellipsoid that are
obvious in Fig. 1.(b) and Fig. 1.(d). Thus, although the first order ellipsoids are rotated
to the normalized positions, the surfaces are rotated to the opposite orientations.

Our new alignment algorithm produces a correct alignment in these cases, because
it is a general surface alignment method that does not depend on any orientation infor-
mation. Fig. 1.(i) and Fig. 1.(j) show the results generated by our algorithm. Fig. 1.(a)
is the fixed surface and the parametrization in Fig. 1.(c) is rotated to Fig. 1.(j).

The effectiveness of our algorithm can also be demonstrated by computing the sur-
face correspondence distance defined in Eq. (7). The surface correspondence distance
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between surfaces in Fig. 1.(e) and Fig. 1.(g) is 258.6536mm, but the surface correspon-
dence distance between surfaces in Fig. 1.(a) and Fig. 1.(j) is 62.4798mm. Our surface
alignment algorithm derives a better result.

3.2 Alignment for Temporal Heart Sequences

This new surface alignment algorithm also provides a promising method for studying
spatio-temporal structures. In the previous research [15], surface tracking techniques
(tracking points on 3D shape using 2D images) are used to create temporal sequence
descriptions for points on the left ventricle inner surface through each heart cycle. Such
temporal sequence descriptions can quantify the ventricular mechanical asynchrony or
synchrony, which has important diagnostic and prognostic values, and can help deter-
mine optimal treatment in heart failures where a heart has a highly asynchronous con-
traction. Because the points are tracked on 2D images and mapped to a 3D surface, this
method can only describe the heart contraction and dilation along the plane direction,
and is not accurate for the perpendicular direction.

(a)

(b)

Fig. 2. (a) shows a shape sequence of a left ventricular inner surface during one heart cycle before
surface alignment. The shape sequence in (b) is the result after surface alignment.

Combining the SPHARM description and our surface alignment methods offers a
set of spatio-temporal surface correspondences for medical image analysis research.
Our new algorithm generates more reasonable surface correspondences for the left ven-
tricle sequence, and these surface correspondences describe the heart contraction and di-
lation in every direction of 3D space. Based on this new model, more valuable diagnos-
tic and prognostic information can be derived for helping make clinical determinations.

Fig. 2.(a) is a shape sequence of a left ventricular inner surface during one heart
cycle. Before surface alignment, the parametrization of every surface is unordered. The
shape sequence in Fig. 2.(b) is the result after surface alignment. During the alignment
procedure, every shape is aligned with its anterior shape.

4 Conclusions

This paper addresses the problem of finding surface correspondencesbetween SPHARM
parametric surfaces. We propose a theorem based on the SPHARM rotational property
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to easily calculate SPHARM coefficients of the new parameter mesh along the surface.
The distance between surfaces is defined as the objective function. Its efficacy is demon-
strated in experiments based on several medical research problems, where we observe a
significant improvement in robustness relative to existing shape modeling and analysis
techniques.

There are several future directions. 1) The current algorithm can be integrated into
an ICP-like framework for registration of 3D parametric surfaces. After finding the cor-
responding points on the surfaces, we can use an ICP-like algorithm to minimize the
value of the correspondence. 2) Considerable research has focused on generating an
equal area parametric mesh for a given surface. Our alignment algorithm can be com-
bined with such parametrization methods to produce a better surface correspondence.
These results are very useful for the shape and functional analysis in medical imaging.
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Abstract. We propose an algorithm for jointly performing registration point se-
lection and interactive, rigid, surface-based registration. The registration is com-
puted using a particle filter that outputs a sampled representation of the distribu-
tion of the registration parameters. The distribution is propagated through a point
selection algorithm derived from a stiffness model of surface-based registration,
allowing the selection algorithm to incorporate knowledge of the uncertainties in
the registration parameters. We show that the behavior of target registration error
improves as the quality measure of the registration points increases.

1 Introduction

One method of registering a patient to preoperative 3D medical images for use in image-
guided surgery is to digitize anatomical registration points and match them to surface
models derived from the images. A problem that has gone largely unexplored in this
framework is how to intraoperatively guide the surgeon to regions of the anatomy that
might contain good registration points.

A few selection algorithms have been described that could be applied to preoper-
atively choosing registration point sets. Simon [13] proposed to choose surface model
points that maximized the noise amplification index [11] of a 6 × 6 scatter matrix.
Gelfand et al. [2] used the condition number of Simon’s scatter matrix to optimize ICP
registration stability when aligning pairs of surfaces with significant overlap. Uniform
sampling of the sphere of normal vectors was proposed by Rusinkiewicz and Levoy
[12] as a method of point selection for registering pairs of range images. We [9] showed
that Simon’s scatter matrix was equivalent to the well known spatial-stiffness matrix of
an unactuated, kinematically unconstrained elastic mechanism; we proposed a point-
selection algorithm based on the coordinate frame invariant analysis of Lin et al. [8].

The problem with applying these kinds of selection algorithms to online guidance is
that they all attempt to optimize some criteria based on points and surface normals de-
fined in the model coordinate frame, but these features are uncertain during the course
of a registration. If the true registration was known, then the model features could be
inferred by finding the model points that corresponded to the patient registration points.
One possible solution is to use the current set of N patient points and a registration algo-
rithm to estimate the corresponding model points, and then use the selection algorithm
to suggest the next best model registration point. A possibly superior approach is to use
a registration algorithm that estimates the uncertainties of the registration parameters

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 75–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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and propagates the uncertainties through the selection process. If the algorithm repre-
sents the uncertainties as a covariance matrix, for instance Lavallée et al. [7], then the
uncertainties can be propagated as a finite set of estimates of the registration parameters
using a technique such as the unscented transform of Julier and Uhlmann [6].

In this article we unify our point selection algorithm [9] with our sampling-based
registration algorithm [10] to produce a filter-selection algorithm that estimates the dis-
tribution of the registration parameters (instead of only the covariance) and computes
which regions of the model are likely to contain good registration points.

2 Stiffness-Based Point Selection

We [9] proposed an algorithm for sequentially constructing a set of model registration
points by greedily maximizing a quality measure derived from a stiffness model of
shape-based registration. Our approach considers the N registration points pi to be the
attachment locations for unloaded linear springs with orientations given by the surface
normal vectors ni. This configuration of springs leads to a stiffness relationship

w = Kt (1)

force
torque

[
f
τ

]
=

(
N∑

i=1

[
ni

pi × ni

] [
ni

pi × ni

]T)[
υ
ω

]
linear displacement

rotational displacement

where w is the wrench representing the reaction force and torque, and t is the twist
representing the applied linear and rotational displacement.

Simon [13] analyzed K by examining its singular values, which are not frame in-
variant and are not directly comparable to one another because rotational and transla-
tional displacements have differing units. Frame-invariant quantities, called the princi-
pal translational and rotational stiffnesses, can be calculated from K (Lin et al. [8]);
moreover, by considering a task-specific point target, the rotational stiffnesses can be
scaled so that they are directly comparable to the translational stiffnesses. The scaled
stiffnesses are called the equivalent rotational stiffnesses, and a stiffness quality mea-
sure is Q = min(μeq,1, μeq,2, μeq,3, σ1, σ2, σ3) where the μeq,i are the equivalent rota-
tional stiffnesses and the σi are the translational stiffnesses. Q characterizes the least
constrained displacement of the mechanism; maximizing Q will minimize the worst-
case displacement of the mechanism. Our algorithm [9] takes as input a set of N model
registration points pi with normal vectors ni and a surface model from which to se-
lect points. The quality measure Q is calculated and heuristics are used to find the
model point pN+1 that maximizes the increase in Q. At least six point/normal vec-
tor pairs are required by the selection algorithm because K does not have full rank
otherwise.

3 Distribution of Registration Parameters

We [10] proposed an algorithm that used a particle filter described by van der Merwe
et al. [15] to estimate the distribution of the registration parameters. The registration
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parameters are represented by a state vector xt = [θ φ δ dx dy dz]Tt where θ, φ, and
δ are the three rotation parameters, dx, dy, and dz are the three translation parameters,
and t is the time index equal to the current number of registration points processed. The
patient registration point acquired at time t is treated as a control input ut. The state
space model we used was

xt+1 = xt +N (0,Qt) (2)

yt =

⎡⎢⎣r(θt, φt, δt)(u1 + [dxt dyt dzt]T )
...

r(θt, φt, δt)(ut + [dxt dyt dzt]T )

⎤⎥⎦+N (0,Rt) (3)

Equation 2 is called the process model and it describes how the state evolves in one
time step; the model has a time-invariant state, except for the additive process noise,
because the registration state is constant. The zero-mean Gaussian process noise with
covariance Qt allows the filter to move from initial estimates of the state to succes-
sively better estimates. Qt is annealed towards 0 over time as the estimates become
better.

The observation model is given by Equation 3 where r(θt, φt, δt) is a rotation about
a remote center and [dxt dyt dzt]T is a translation vector. We use rotational param-
eters that surgeons are most familiar with, measured as order-independent angles of
rotation in the coronal, sagittal, and transverse planes. The form of the rotation matrix
r(θ, φ, δ) can be found in Iyun et al. [5]. In this article, we consider [dxt dyt dzt]T

to be the translation to a remote center of rotation. The model is simply the estimated
registration transformation applied to the patient registration points concatenated into a
single vector; the length of the vector at time t is 3t. We assume additive, zero-mean
Gaussian noise with covariance Rt; the noise is the displacement of each transformed
registration point to the surface of the model. Like the process noise covariance Qt, the
measurement noise covariance Rt must be annealed.

The output of the particle filter is a set of P equally weighted samples (particles)
representing the posterior distribution of the registration parameters. T o conserve space
in this article we refer the reader to the article by van der Merwe et al. [15] for details
on the mechanics of the specific particle filter we use. Note that the particle filter is not
restricted to using Gaussian noises.

3.1 Establishing an Initial Distribution

A prior distribution x0 needs to be specified for the particle filter. Strictly speaking,
the prior is supposed to be independent of the observations. A non-informative prior (a
uniform distribution over the 6-dimensional state space) is impractical because an un-
wieldy number of particles would be required to adequately sample the space. We take
a pragmatic approach and estimate an initial distribution using the first four registration
points. The first registration point is used to estimate the translation to a remote center
of rotation and the remaining three points are used to estimate the rotation. We assume
that each of the first four points comes from a predefined region of the accessible sur-
face of the bone. A small number of samples s1, s2, s3, and s4 are drawn from the four
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Fig. 1. Distributions of rotation parameters (θ, φ, and δ from left to right) obtained using the first
four registration points

regions and the patient registration points are registered to all s1 · s2 · s3 · s4 configura-
tions of model registration points. This sets the number of particles as P = s1 ·s2 ·s3 ·s4
and yields an initial distribution from which we can start the filter. The resulting dis-
tributions (see example in Figure 1) are surprisingly wide in the range of rotation
parameters.

4 A Unified Filter-Selection Algorithm

Our filter-selection algorithm uses the output of a particle filter registration algorithm to
propagate the distribution of registration parameters through a point selection process.
Each of the P registration estimates (particles) is applied to the set of patient registra-
tion points and the corresponding model points are inferred by performing a nearest
neighbor calculation; correspondences weighted by distance (for instance, [1], [3], or
[4]) could also be used. Each of the P sets of model correspondences is used as input
to the point selection algorithm that calculates the increase δQ in quality measure Q for
each of the M model points. This calculation requires O(PM) time and is the major
drawback of this algorithm. If we stored the distribution of δQ for each model point
then we would also require O(PM) storage; we compute only the mean increase ΔQ
for each model point which requires O(M) storage.

If we examine the model points with mean quality measure higher than a certain
value—for example, the 95th percentile—then what we find is that those model points
tend to come from one or more continuous regions of the model. This presents the sur-
geon with the task of locating any point inside a region, which is much easier than trying
to locate a single point. Examples of point-selection regions are shown in Figure 2. The
unified filter-selection algorithm is shown in Figure 3.

Fig. 2. Regions (in black) with mean quality measure greater than the 95th percentile after 7, 8, 9,
and 10 (from left to right) registration points have been processed using the algorithm described
in Figure 3
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– Digitize 6 registration points U so that the stiffness matrix K has full rank.
– For i = 6, 7, ..., N (main loop)

• Update the particle filter to obtain P registration samples {x1, ..., xP }.
• Initialize ΔQ[1..M ] = 0 where M is the number of model points. ΔQ[m] is the mean

increase in the quality measure for the mth model point, where the mean is calculated
over the P particles.

• For j = 1, 2, ..., P
∗ Apply the estimated registration transformation to U: Y = T(xj)U.
∗ Find the model points P closest to Y.
∗ Compute the quality measure Q of P.
∗ For k = 1, 2, ..., M

· pk = kth model point
· nk = normal vector at pk

· ΔQ[k] = ΔQ[k] + δQ(pk,nk)/P where δQ(pk,nk) is an approximation
of the increase in quality measure if point pk with normal nk is added to the
current set of estimated model registration points P; see [9] for details.

• Find the model points with ΔQ in the range [lo, hi ] (lo and hi might be the 95th and
100th percentiles, for example) defining regions on the model that contain good registra-
tion points. Digitize a patient point ui+1 corresponding to a point inside these regions.

• U = {U, ui+1}.

Fig. 3. A filter-selection algorithm

5 Materials and Methods

Bone-surface models of a distal radius, proximal femur, and proximal tibia were used
to validate the proposed filter-selection algorithm. The models were derived from CT
scans of patient volunteers. The surgically accessible area and a target were defined on
each model. These features are shown in Figure 4. Four regions were defined on each
phantom from where the initial four points needed to initialize the particle filter were
drawn from; an additional two large regions were defined on each phantom to yield the
requisite six points for the selection phase of the algorithm. The number of particles
used was 74 = 2401 for the radius and tibia, and 8 × 73 = 2744 for the femur. The
simulations were run on a PC with an AMD Athlon 2400 CPU and 256MB of RAM.

Registration simulations were run using each model with 200 trials, each trial ex-
ecuting the steps shown in Figure 5. The total number of registration points N was

distal radius proximal femur proximal tibia

Fig. 4. Features used in the experimental validation of integrated point selection and registration.
Accessible regions are shown in gray and targets are shown as cubes.
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1. Randomly select registration points from the six predefined regions; U = {u1,u1, ..., u6}.
2. Add Gaussian noise N (0, (0.35mm)2) to the x, y, and z components of the points in U.
3. Displace U by the inverse of the randomly selected registration transformation.
4. Calculate the initial state distribution (Section 3.1).
5. For i = 6..N

(a) Apply one iteration of the main loop of the filter-selection algorithm (Figure 3).
(b) Add Gaussian noise drawn from N (0, (0.35mm)2) to the new registration point ui+1

Fig. 5. Simulation steps for the experiment described in Figure 3

20. We took Qt to be uncorrelated with initial variances of (3◦)2 and (3mm)2 for the
rotational and translational components. We took Rt to be uncorrelated with initial
variances of (2mm)2 in each of the x, y, and z components of the observation vector.
Because we used a relatively small number of registration points, the annealing factors
were both chosen to be the relatively small value of 0.7 and we annealed for a total of
10 time steps. Three different ranges of [lo, hi ] were used to determine if point selec-
tion had an effect on registration precision and accuracy; the ranges used, in percentiles
of δQ, were [50, 55], [75, 80], and [95, 100]. The component-wise median of the filter
distribution was used as the estimate of the registration state.

6 Results

The mean of the 200 estimated registration states was within 0.2◦ in each of the true
rotation states, and within 0.1mm of the true translation states; this was true regardless
of the model used or the range of [lo, hi ]. This strongly suggests that there is no bias
in the filter estimates of registration. The standard deviations of the 200 estimated reg-
istration states are shown in Table 1 for each model and range of [lo, hi ]. There was
a trend towards decreasing variance as points that lead to increasing ΔQ values were
used. This is more clearly seen in Figure 6 which shows the distributions of target regis-
tration error (TRE). There was almost no difference in the distribution of TRE between
point sets with ΔQ values of [50, 55] and [75, 80]. There was clear improvement in TRE

Table 1. Standard deviations of the registration state parameters

Model [lo, hi ] θx θy θz tx ty tz

[50, 55] 0.57◦ 0.58◦ 1.57◦ 0.47mm 0.27mm 0.45mm
radius [75, 80] 0.50◦ 0.55◦ 1.55◦ 0.48mm 0.21mm 0.40mm

[95, 100] 0.38◦ 0.38◦ 1.22◦ 0.47mm 0.18mm 0.35mm
[50, 55] 0.95◦ 0.56◦ 1.32◦ 0.23mm 0.48mm 0.38mm

femur [75, 80] 0.70◦ 0.52◦ 1.22◦ 0.27mm 0.49mm 0.38mm
[95, 100] 0.87◦ 0.55◦ 0.91◦ 0.19mm 0.32mm 0.41mm
[50, 55] 1.59◦ 0.82◦ 1.05◦ 0.45mm 0.36mm 0.79mm

tibia [75, 80] 1.49◦ 0.87◦ 0.97◦ 0.47mm 0.40mm 0.64mm
[95, 100] 1.09◦ 0.71◦ 0.73◦ 0.34mm 0.32mm 0.51mm
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Distal radius Proximal femur Proximal tibia

Fig. 6. Distribution of target registration errors over 200 trials for each model and range of ΔQ
values [lo, hi ]

when using the highest range, [95, 100], of ΔQ values; however, the actual decrease in
expected TRE was very small. The computation time to process 20 registration points
was between two and three minutes on a relatively low-cost PC.

7 Discussion

Estimating the translation to a remote center of rotation appears to be an effective state-
space model for rigid registration. This produces a better initial distribution than the
random sampling approach taken in [10]; we used fewer particles and obtained more
accurate registrations. Granger and Pennec [3] noted that their EM-ICP registration al-
gorithm was most sensitive to errors in the translational component of the initial trans-
formation estimate. This appears to be true for the particle-filter registration method as
well. Figure 1 shows that the range of the rotation prior is at least 60◦ in each compo-
nent for the tibia model. If this observation is true in general, then the initial distribution
could be established using a single region to estimate the translation to the remote cen-
ter of rotation; the rotation parameters could be estimated by having the surgeon hold a
tracked target to approximately indicate the directions of the anatomic axes.

One feature of online point selection is that the surgeon is given a clear visualization
of where good registration points are likely located. This may be an advantage when
the surgeon has little experience performing registration, such as when attempting a
particular procedure for the first time, or during adoption of image-guided surgery.

Both the particle filter and the point-selection algorithm can exploit parallel compu-
tation, and this would be one way to provide integrated point selection at an acceptable
speed. A better approach might be to replace the particle filter with a more efficient type
of filter. In particular, the family of Gaussian mixture sigma-point particle (GMSPP) fil-
ters described by van der Merwe and Wan [14] are reportedly much more efficient in
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terms of computation than particle filters. These filters represent the posterior using a
Gaussian mixture model. Because there is a deterministic way to draw a small number
of samples from a Gaussian distribution (for example, see Julier and Uhlmann [6]) that
preserves all of the relevant information, only a small number of particles might need
to be considered during point selection if a GMSPP filter is used.

This work shows that it is possible unify surface-based registration, optimal selec-
tion of the next point from the patient’s anatomy, and estimation of the uncertainty in
the resulting registration. Optimization of the algorithm will bring it into the timeframe
required in orthopedic surgery. Extensions to this work might include application to de-
formable atlas-based registration and to volumetric registration of one image to another.
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Abstract. 3D registration of ultrasound images is an important and
fast-growing research area with various medical applications, such as
image-guided radiotherapy and surgery. However, this registration pro-
cess is extremely challenging due to the deformation of soft tissue and
the existence of speckles in these images. This paper presents a novel
intra-modality elastic registration technique for 3D ultrasound images.
It uses the general concept of attribute vectors to find the corresponding
voxels in the fixed and moving images. The method does not require any
pre-segmentation and does not employ any numerical optimization proce-
dure. Therefore, the computational requirements are very low and it has
the potential to be used for real-time applications. The technique is im-
plemented and tested for 3D ultrasound images of liver, captured by a 3D
ultrasound transducer. The results show that the method is sufficiently
accurate and robust and does not easily get trapped with local minima.

1 Introduction

Ultrasound is an easy-to-use, inexpensive and real-time imaging tool with no
ionizing radiation which is widely used for diagnosis applications. Recently, there
has been major interest in the employment of this imaging technique for intra-
operative registration in radiotherapy and image-guided surgery. Furthermore,
ultrasound registration could be used for measuring tissue mechanics properties.
However, due to speckles and shadowing effects, the registration of this imaging
modality is a challenging process. Previous attempts include the development of
techniques for registration of ultrasound to the other image modalities such as
CT and MRI [1–5], as well as intra-modality registration of these images [6–9].

Several methods have been used for elastic registration of ultrasound im-
ages. Shekhar et al. [6] investigated the registration of ultrasound volumes based
on the mutual information measure. Median filter was found to be the proper
smoothing filter for this method. The results of different transformation modes
were presented. Krucker et al. [7] developed a subvolume-based algorithm for
elastic ultrasound registration. The image was divided into subvolumes inter-
actively and local rigid registrations were computed. Connectivity of the entire
volume was ensured by global interpolation using thin-plate splines after each
iteration. Xiao et al. [8] used a correlation-based approach for registration of 3D
free-hand ultrasound images of the breast. Deformable registration of cardiac
images has been investigated more specifically in [9, 10].
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In this paper, we propose a novel technique for 3D elastic registration of
ultrasound images. In our approach, the concept of attribute vector, introduced
in [11], is employed to find corresponding voxels in the ultrasound volumes. The
elements of the attribute vector are revised to meet the requirements of ultra-
sound images. Using the attribute vectors, some leading points are automatically
selected in the moving image, and their corresponding points in the fixed image
are found. Finally, the moving image is warped into the fixed image.

This paper is organized as follows. Section 2 talks about the methodology and
details of the implementation. Experimental results on 3D liver images are pre-
sented in Section 3. Section 4 concludes the paper and presents the future work.

2 Method

The proposed algorithm is demonstrated in Figure 1. At the first step, both fixed
and moving images are passed through a Gaussianfilter. This filter is used to gener-
ate more robust attribute vectors by reducing the effect of speckle, while providing
different scales of images by adjusting its variance. In the next step, the elements of
attribute vectors are calculated in two different scales for each voxel in both fixed
and moving images. After this, the leading points with the highest magnitude at-
tribute vectors are selected and registered, and finally the moving image is warped
to the fixed image. The following paragraphs explain these steps in details.

Fig. 1. The registration process

2.1 Attribute Vectors

Inspired by [12], we have used the concept of attribute vectors to extract corre-
sponding feature points from the two ultrasound images. In [12] GMIs (geometric
moment invariants) calculated from local spatial intensity histograms, form the
attribute vector, which is assigned to each voxel in the image. Each attribute vec-
tor reflects the underlying anatomy and distinguishes between different features
in an image.

Due to the presence of speckles in ultrasound images, our experiments show
that GMIs do not generate robust attribute vectors, as they mainly character-
ize the speckle pattern. Depending on the properties of the imaging modality,
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other elements could be selected for the attribute vector. Our proposed method
replaces GMIs with a set of new elements explained in the following paragraph
to consider the properties of ultrasound images.

The first element of our attribute vector is the intensity of the voxel, which
guarantees that the bright voxels will not be registered to the dark ones and
vice versa. The other two elements are the magnitude of the gradient and the
second derivative (Laplacian of the Gaussian), which are selected to extract
the boundary information of the features in the images. All the elements are
calculated in two scales. The scale with higher variance reveals the more general
specifications, and the one with lower variance depicts the more detailed features.
The generated attribute vector is able to robustly find the correspondence across
the images taken from the same anatomy at different times. All the elements are
normalized between zero and one in order to fit the similarity function, described
later. The variance of each element could also be used in the normalization
process. The next step is to select the leading points which is described in the
following section.

2.2 Leading Point Selection

One of the major advantages of our proposed technique is its fast computational
speed. To this end, instead of searching for corresponding voxel points for all the
voxels within the moving and fixed image data sets, the algorithm automatically
selects distinct major features of the moving image and registers them to the
fixed image. The displacement of the rest of the voxel points are simply calculated
based on the major feature points’ displacements. This selection process includes
the calculation of an importance function for each voxel. The importance of voxel
v is simply defined as:

im(v) =
n∑

i=1

(wi × ei(v)) (1)

where ei(v) is the i’th element of attribute vector at point v, and n is the number
of elements of attribute vector. wi is the weight selected for i’th element. The
points that their importance function is greater than a threshold are selected as
leading points. Our experiments show that the number of leading points is not
very sensitive to the selected threshold. These leading points are processed in
a descending order based on the values assigned from Equation (1) to each of
them. Once a leading point is selected, no more points within a certain radius
to that point are selected in order to decrease the number of leading points,
and hence, increase the speed of registration. In the current implementation the
radius size is set to 1.2 mm. This is done by setting the importance function
around the selected point to zero, after its selection.

Registration of the selected points has lower risk of local minima, since they
are usually located on the edge points in images. These boundary voxels have
characteristics that are clearly distinguishable from neighbor areas using our
proposed attribute vectors.
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2.3 Matching

Let ei(v) be the i’th element of attribute vector assigned to voxel v. Then, the
similarity of two voxels v1 and v2 is measured with:

Sim(v1, v2) =
n∏

i=1

(1− ‖ei(v1)− ei(v2)‖)wi (2)

where Sim(s1, s2) shows the similarity of attribute vectors at points s1 and s2,
which is one for maximum similarity and zero for no similarity. wi depicts the
contribution of i’th element of attribute vector in similarity function. If wi’s
are all set to one, all the elements of the attribute vector will have the same
contribution in determining the similarity.

To find the corresponding voxels in the fixed and moving images, the mini-
mum of an energy function is found in a search area around the coordinates of
the voxel in the fixed image. The energy function uses the described similarity
function for several points around the two center points. The size of the search
area is application dependent, and is directly proportional to the amount of de-
formation between the two data sets being registered. The advantage of using a
limited search area is to reduce the computational complexity of the algorithm,
as well as reducing the possibility of getting trapped in local minima. Our energy
function is similar to but not exactly the same as the ones defined in [8, 11]: Let
pi be the i’th voxel in the neighborhood of the center point p, and qj be the
j’th voxel in the neighborhood of the center point q. The energy function, when
examining the correspondence of p and q, will be:

Eng(p, q) =
∑

i w(i)(1 − Sim(pi, qi))∑
i w(i)

+ αd(p, q) (3)

where wi is a weighting function which is maximum in the center of search area,
d(p, q) is the distance of p from q, and α is a small coefficient. When the two sets
of pixels pi’s and qi’s are similar, the energy function is minimized. The second
term causes the energy function to be minimum at closer points to the center,
when there is no absolute minimum. The reason for adding this term is that
when there are two candidates for the corresponding voxel, the probability that
the closer voxel is the right choice is higher.

Due to shadowing effects and the nature of ultrasound images, it is possible
that a feature disappears from one image to the other. To face this phenomenon,
when a match is found, the energy function at the matching point should be less
than a threshold. Otherwise, that point is removed from the list of leading points.
In all of our experiments for different data sets and deformations in the volumes,
a single threshold value was used.

2.4 Warping

The final step of the registration process is to calculate the movement of all
the voxels of the moving image with respect to the fixed image, based on the
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calculated displacement of the leading feature points. The displacement of each
voxel is mainly determined by the leading voxels that are close to that point.
Displacement of each leading voxel is distributed to the points around it by
a Gaussian function, which means that the displacement is faded through the
neighbors. The variance of the function is set according to the volume scale
factors. The faded displacement vectors of leading points could not be simply
added together. Otherwise, since the selected leading voxels might be anywhere
in the image, the displacement of the points between two corresponding leading
voxels in the moving and the fixed images might get much larger than the original
displacement. Therefore, the leading voxels contribute to the displacement of
each point, inversely proportional to their distance to the point. The following
equation is used in the warping process for voxel v:

Disp(v) =
∑nlead

i=1 fv(di)G(di)Disp(li)∑nlead

i=1 fv(di)
(4)

where li’s are the leading voxels, and nlead is the number of them. di is the
distance of v to li, and fv(di) is the inverse proportional function defined as 1

d2
i +ε

,
where ε is a small positive number. G is the Gaussian function that fades the
effect of far leading voxels. The inverse proportional function causes the leading
points to be warped exactly to their corresponding voxels, found in previous
step.

3 Results

Ultrasound images were captured by a GE Voluson 730 3D/4D ultrasound ma-
chine. The RAB4-8P transducer was used to collect 3D images from two volun-
teers’ livers, and the images were saved in Cartesian format. These images were
captured at multiple locations under different forces applied to the abdomen by
various operator’s hand pressures on the transducer. The deformation in ultra-
sound volume data sets was also caused by respiration, heartbeat and changes
in the physical position of the volunteers. For each volunteer, five sets of images
were captured. Each set of images, consisted of two volumes at two different mo-
ments of the breathing cycle, were taken from one part of the volunteer’s liver.
For each set, one of the volumes was selected as the fixed image, and the other
one (moving image) was registered to it. The average displacement between the
images in each set was estimated to be 8.7 voxels with a maximum displacement
of 20.8 voxels (the scale factor was set to 0.6 mm/voxel).

The code has been implemented using MATLABTM. The matching and warp-
ing parts are written in C, and compiled with the C compiler of MATLABTMto
reduce the computation time. Figures 2(a,b,c) demonstrate one slice of the fixed,
moving and registered data sets. The difference images shown in Figures 2(d,e)
depict the accuracy of the alignment of features after registration. It should
be noted that the registration is performed in 3D, therefore some out-of-plane
features, which may not exist in the demonstrated moving and fixed images,
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(a) (b) (c)

(d) (e)

Fig. 2. (a) is a middle slice of the fixed volume, (b) is the same slice in the moving
volume, and (c) is the same slice in the registered volume. (d) shows the absolute
of difference between the fixed and the moving volumes, and (e) is the absolute of
difference between the fixed and the registered volumes.

have been warped to the shown registered slice. Figure 3 shows the results of an-
other experiment. Three slices in three orthogonal planes are demonstrated. The
experiments show that the algorithm is robust, accurate and not sensitive to lo-
cal minima, when the maximum displacement caused by deformation is less than
the radius of the search area.

To evaluate the accuracy of the technique, two experiments were carried out.
First, eight voxels on distinct features of the fixed and the registered volumes
were manually selected. The distance between the corresponding voxels were
then considered as the registration error. Using this method, the average error of
registered images was about two voxels on average considering the uncertainties
in the images and poor quality of them. In the second experiment, the matri-
ces of displacement vectors generated in the previous experiments were used to
simulate natural deformation. The original volumes were then registered to the
deformed volumes, and the results were compared to the original displacement
matrices. The average of mean error for 20 volumes deformed with this method
was 1.50 voxels.

For two 185x113x199 voxels volumes, the program took about 436 seconds
to finalize registration on a Pentium 4 2.4GHz with 512MB RAM machine.
Pre-filtering and calculating the attribute vectors took about 74 seconds; The
time required for selection of leading points and registering them was about 203
seconds, and warping took the rest of time.
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(a) fixed (b) moving (c) registered

(d) fixed (e) moving (f) registered

(g) fixed (h) moving (i) registered

Fig. 3. (a),(b), and (c) are the slices of fixed, moving, and registered volumes, parallel
to ZY plane; (d) to (f) are the slices parallel to ZX plane, and (g) to (i) are the slices
parallel to XY plane

4 Conclusion and Future Work

We have developed a new method for 3D elastic registration of ultrasound im-
ages, which is robust and flexible and is intended eventually for intra-operative
surgical applications. The algorithm does not require any pre-segmentation or
numerical optimization, and as a result, the running time is decreased. There
are a number of parameters, such as the size of the search area, that should
be set correctly for the algorithm to function properly. However, as long as the
search area size is larger than the deformation between the two image data sets,
the performance of the technique is not very sensitive to the changes in these
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parameters. Future work will include the optimization of the code to reduce the
running time of the algorithm to within an acceptable range for intra-operative
applications, as well as improving the normalization method of the elements of
the attribute vector. The algorithm should also be tested for the registration of
ultrasound images of other anatomical parts in addition to the liver.
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Abstract. Motion during time-series data acquisition causes model-
fitting errors in quantitative dynamic contrast-enhanced (DCE) MRI
studies. Motion correction techniques using conventional registration cost
functions may produce biased results because they were not designed
to deal with the time-varying information content due to contrast en-
hancement. We present a locally-controlled, 3D translational registration
process driven by tracer kinetic modeling that successfully registers ab-
dominal DCE-MRI data at high temporal resolution and compare this
method to a similar approach based on registration to the time series
mean image in data from 8 patients. When the registration is driven by
an appropriate model, we find significant improvements in model-fitting.
Also, model-driven registration influences parameter estimates and re-
duces repeat study variability in measurements of blood volume.

1 Introduction

The quantitative, model-based, analysis of contrast agent uptake kinetics in dy-
namic contrast enhanced MRI (DCE-MRI) at high temporal resolution allows
us to estimate the magnitude and spatial distribution of physiological kinetic
parameters such as Ktrans (the volume transfer coefficient of contrast agent
between capillaries and the extravascular extracellular space — EES), ve (the
volume of the EES per unit volume of tissue) and vp (the blood plasma vol-
ume per unit volume of tissue). These parameters provide useful information on
microvascular status for studies of tumors and inflammatory conditions [1,2,3].

These parameters are usually estimated by deriving a contrast agent con-
centration time course and fitting a tracer kinetic model (e.g. [4,5]) within each
voxel in a volume of interest (VOI). Model fitting errors arise because patient and
physiological motion during data acquisition alters the voxel-to-tissue mapping.
Conventional motion correction (e.g. registering each image volume in the time
series to the time series mean [6]) has limited success because the passage of the
contrast agent introduces new image features. The resulting time-varying infor-
mation content is problematic even for inter-modal cost functions (e.g. mutual
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information [7,8], correlation ratio [9]), which are most effective with a consistent
information content between the input and reference images.

Other investigators have registered pre-contrast to post-contrast images [10]
and incorporated a simplified tracer kinetic model directly into a registration
cost function [11], but it has not yet been practicable to register an entire DCE-
MRI time-series at high temporal resolution using a more detailed physiological
model of enhancement in abdominal tumors. We propose a novel, tracer kinetic
model-driven registration method that uses a computationally efficient, locally-
controlled, 3D translational registration focused on the tumor VOI.

2 Method

2.1 Modelling

We used the standard [4] and extended [5] Kety models as applied to DCE-
MRI data. The former assumes that the blood plasma volume, vp, is small by
comparison with the EES volume, ve, and estimates Ktrans and ve only. This
approximation fails in “rim-enhancing” tumors where angiogenesis may be pro-
nounced [12], so in tumor studies it is usually more appropriate to use the ex-
tended Kety model, which includes a vascular term, vp, and has the following
integral form (note that the standard Kety model lacks the vpCp(t) term):

Ct(t) = vpCp(t) + Ktrans

∫ t

t′=0
Cp(t′)exp

[
−Ktrans (t− t′)

ve

]
dt′. (1)

In Equation 1, Ct(t) is the tracer concentration in the tissue (mMol), which
varies with time, t; Cp(t) is the tracer concentration in blood plasma (mMol)
and Ktrans is expressed in min−1.

Each model requires the contrast agent concentration in the arterial supply,
Cp(t). This arterial input function (AIF) must be measured or a functional form
must be assumed. The standard Kety model [4] used a bi-exponential AIF based
on contrast agent concentrations measured from blood samples taken at intervals
after injection of Gd-DTPA in healthy volunteers. However, this simple AIF may
cause significant errors in the estimation of tracer kinetic parameters [13] and
where possible we derive a measured AIF from the DCE-MRI time series [14].

The models are expressed in terms of a contrast agent concentration time
course, Ct(t). We compute this from the MR signal intensities using the standard
relations for a spoiled gradient echo acquisition [15]. We estimate the parameters
Ktrans, ve and vp by fitting the above models to the measured data using a voxel-
by-voxel simplex optimization [16].

2.2 Data Acquisition

We acquired abdominal images on a Philips 1.5 T Intera MRI scanner using
the whole body coil for transmission and reception. The conversion to Ct(t)
used a baseline T1 measurement comprising 3 axial spoiled gradient echo (Fast
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Field Echo) volumes with 2◦, 10◦ and 20◦ flip angles and 4 signal averages.
The dynamic series comprised 75 consecutively-acquired axial volumes with a
20◦ flip angle, 1 average and a 4.97 s temporal resolution. All studies used 25
slices, 375× 375 mm2 field of view, 128× 128 matrix, 4.0 ms TR, and 0.82 ms
TE. Slice thickness was 4 or 8 mm. Tumor VOIs were defined independently
of the registration study by an expert health professional, based on co-localized
T2-weighted and T1-weighted pre- and post-contrast image volumes.

Motion was graded (also independently of the registration study) on a 4 point
scale. For registration, we selected 10 data sets from 8 patients with abdominal
tumors who scored “moderate” or “severe” on this scale. In 5 patients we were
also able to assess the reproducibility of fitted parameters via scan-rescan tests.

2.3 Registration

We assumed the tumors to be small relative to the abdomen, and to be more rigid
than their surrounding tissues [17]. This allowed us to use a 3D translational reg-
istration procedure that calculated the registration cost function only within the
tumor VOI but applied the resulting translation to the whole image volume. All
registrations used FLIRT [18] (from the FSL package http://www.fmrib.ox.
ac.uk/fsl) with the following iterative scheme.

Step 1 : Fit the chosen model to the original, motion-corrupted, time series
data within the tumor VOI to obtain initial estimates of Ktrans, ve and vp.

Step 2 : Output 3D maps (volumes) of the signal intensities generated by the
model fit (back-converted from the modelled concentration values) for each time
point in the dynamic series. These 3D maps are synthetic image volumes for
which the intensity in each voxel is the output of a model fit that depends on
the whole original time series. The synthetic maps therefore display no motion
from time point to time point and can be used as reference volumes to drive the
registration of the original time point image volumes.

Step 3 : Perform a 3D translational registration using a standard FLIRT
cost function, matching each original time point volume to its corresponding
synthetic reference volume. To achieve local control, we calculate the registration
cost function only within the tumor VOI. For robustness, we reject registrations
where the translation magnitude (extracted from the translation matrix output
by FLIRT) exceeds visually-defined extremes of motion for the given data set.

Step 4 : Re-fit the chosen model to the registered time series.
Step 5 : Repeat Steps 2–4 until a minimum is found in the median model fit

sum of squared errors within the tumor VOI, at each stage fitting the model to
the “last-registered” time series to generate new synthetic reference images then
registering the “last-registered” time series to the new synthetic images.

We tested the registration using synthetic reference images from the standard
Kety model with the bi-exponential AIF (labelled STD-EXP) and the extended
Kety model with a measured AIF (EXT-MSD). For comparison with a more
standard registration procedure, we also used the time-series mean image as the
synthetic reference (we may view the time series mean as the simplest model of
time-varying signal). In this case the EXT-MSD model was applied to the data
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after each time-series mean registration loop and the SSE calculated to compare
results with the model-driven registration.

3 Results

Figure 1 compares the sum of squared errors (SSE) on the model fits after model-
driven registration and registration to the time series mean. As localized failures
in the voxel-by-voxel fitting process may give outliers in the individual voxel
SSE, for robustness we quote the median SSE over the tumor VOI. Registration
significantly reduced the SSE (i.e. reduced model fitting errors) for 8 of the
10 data sets in each group. The SSEs were generally lower for registration to
the time series mean than for model-driven registration, implying that the time
series mean image was a more effective registration target. However, this global
statistic hides some important details that we will discuss later. Note that the
magnitudes of the recovered translations were always less than 15 mm in the
through-plane (i.e. superior-inferior) direction and less than 8 mm in the in-
plane directions, which is reasonable for these data sets.

Figure 2 quantifies the changes from the pre-registration median tumor VOI
estimates of Ktrans, ve and vp after EXT-MSD model-driven registration and
registration to the time-series mean. Model-driven registration resulted in greater
changes for all three parameters.

Figure 3 plots the model fits and data for a small VOI within the enhancing
rim of a tumor in one data set, before and after registration. The data show the
expected features of a “first pass” peak in contrast agent concentration, followed
by a prolonged washout. In each case the post-registration data (circles) cluster
more tightly around the fitted curve than the pre-registration data (crosses),
consistent with a reduced SSE. However, STD-EXP model-driven registration
and registration to the time series mean distorted the data behavior around the
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Fig. 3. Model fit curves with data before and after registration. The lines are the fitted
models, the crosses pre- and the circles post-registration data. (a) Pre-registration
fits for EXT-MSD (solid) and STD-EXP (dashed). Post-registration fits for (b) STD-
EXP and (c) EXT-MSD model-driven registration and for (d) an EXT-MSD fit after
registration to the time-series mean.
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Fig. 4. Maps of the estimated parameters before registration (center column) and after
registration to the time series mean (left) and EXT-MSD model-driven registration
(right). In each set, the left-hand map is the axial view, the center map the sagittal
view and the right-hand map the coronal view. Gray scale values are consistent for
each parameter and lighter shading corresponds to higher parameter values. Gray scale
ranges: Ktrans 0–0.4 min−1; ve 0–0.8; vp 0–0.2.
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first-pass peak, while EXT-MSD model-driven registration did not (we discuss
this point more fully later in the paper).

Figure 4 shows the effect of registration on the spatial localization of param-
eter estimates. There are clear differences when comparing post-registration pa-
rameter maps to pre-registration maps for EXT-MSD model-driven registration
— in particular, the maps of vp and Ktrans show a more clearly-defined enhanc-
ing rim with higher parameter values. However, the differences after registration
to the time series mean are less evident. These observations are compatible with
the post-registration changes in the median VOI parameter values, which were
always of greater magnitude after model-driven registration (Figure 2).

For 5 patients, we were able to perform scan-rescan tests to establish whether
registration could reduce inter-visit variability in parameter estimates. We found
only one significant reduction after EXT-MSD model-driven registration (in vp,
P < 0.05 for a paired one-tailed t-test on the absolute percent changes in param-
eter estimates between 2 visits, before and after registration) and no significant
reductions after time series mean registration.

4 Discussion

Conventional motion correction using standard registration cost functions does
not cope well with features that appear and disappear between images, as hap-
pens when using a contrast agent. Investigators have observed biased output
when using mutual information in a non-rigid registration algorithm for pre- vs.
post-contrast MR images of focal breast lesions [19], and addressed this by adding
a constraint to the cost function to penalize the artefactual deformations arising
in the enhancing region of post-contrast images [20]. Another group successfully
incorporated a simplified analytical form of a kinetic model into a non-rigid
registration cost function [11].

Neither of these approaches can be directly applied when fitting more com-
prehensive kinetic models to DCE-MRI time series data from abdominal tumors
at high temporal resolution. We have therefore developed a locally-controlled,
3D translational registration method that employs synthetic reference images
generated from tracer kinetic model fits or from the time series mean and eval-
uated its performance using the standard and extended Kety models. We sig-
nificantly reduced the SSE for 8 / 10 data sets in each group, indicating that
in general registration to a synthetic reference image reduces motion corruption
in the time series. Registration to the time series mean gave the greatest SSE
reduction, implying that the mean image provides the best reference, but the
SSE is a global statistic that hides some important details that contradict this
conclusion.

We can see these details by looking at the data and model fits for a small
VOI within the enhancing rim of a tumor (Figure 3). Both registration to
the time series mean and standard Kety model-driven registration distorted
the time-series data in a manner that is inconsistent with the expected and
experimentally-observed behavior of DCE-MRI data. Registration to the time
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series mean reduced the height of the first-pass peak in contrast agent concen-
tration and gave raised concentrations during the washout phase, showing that
the averaging process reduces the scatter in the data at the expense of impor-
tant genuine structure. Standard Kety model-driven registration also reduced
the height of the first-pass peak — it is significant that this model does not
account for the blood plasma pool and so cannot accurately model this peak.
Such distortions were not observed with the extended Kety model, which does
account for the blood plasma pool. Therefore, if kinetic model-driven registra-
tion is to be successful, we must use a model that adequately characterizes the
time course.

Extended Kety model-driven registration gave greater changes in median tu-
mor VOI estimates of Ktrans, ve and vp than registration to the time-series mean,
but the interpretation of these changes is unclear, partly because these are me-
dian values from a heterogeneous volume. In the 3D parameter maps, extended
Kety model-driven registration gave higher localized values of Ktrans and vp,
with a more defined enhancing rim pattern consistent with typical tumor struc-
ture. However, without ground truth data we cannot determine whether these
changes are “correct” (future studies will address this problem using synthetic
images for which ground truth is available). It is nevertheless significant that
Ktrans and vp depend strongly on the first-pass peak, which we have seen to
be distorted by time series mean registration but maintained by extended Kety
model-driven registration.

Only extended Kety model-driven registration gave a statistically signifi-
cant reduction in the variability of parameter estimates across 2 DCE-MRI
studies in 5 patients, and only with vp. Nevertheless, this suggests that model-
driven registration may reduce variability and thereby improve the sensitivity of
quantitative DCE-MRI to genuine parameter changes — a factor of significant
interest to clinical trials of novel anti-vascular and anti-angiogenic drugs (see
e.g. [3]).

It is encouraging to have obtained such positive results from a simplified
registration procedure. Our 3D translational registration is clearly not sufficient
to fully recover tumor motion, which will include rotations and shape changes,
requiring a non-linear or warping registration, and we hope to address this in
future work. Despite its limitations, our registration process has reduced the
adverse effects of motion in quantitative DCE-MRI studies, and shown that the
kinetic model must be sufficiently detailed to avoid distorting the time-course
data. Our implementation is fast enough for routine use (c. 2 hours to register
75 time point image volumes on a standard PC).

Based on the evidence in this paper, we propose that kinetic model-driven
registration is a useful additional tool for the quantitative analysis of DCE-MRI
data that addresses the problem of changing image information content (due to
contrast enhancement) that can confound conventional registration methods.
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Abstract. Effective validation techniques are an essential pre-requisite for seg-
mentation and non-rigid registration techniques to enter clinical use. These al-
gorithms can be evaluated by calculating the overlap of corresponding test and 
gold-standard regions. Common overlap measures compare pairs of binary la-
bels but it is now common for multiple labels to exist and for fractional (partial 
volume) labels to be used to describe multiple tissue types contributing to a sin-
gle voxel. Evaluation studies may involve multiple image pairs. In this paper 
we use results from fuzzy set theory and fuzzy morphology to extend the defini-
tions of existing overlap measures to accommodate multiple fractional labels. 
Simple formulas are provided which define single figures of merit to quantify 
the total overlap for ensembles of pairwise or groupwise label comparisons. A 
quantitative link between overlap and registration error is established by defin-
ing the overlap tolerance. Experiments are performed on publicly available la-
beled brain data to demonstrate the new measures in a comparison of pairwise 
and groupwise registration. 

1   Introduction 

Effective validation techniques are an essential pre-requisite for segmentation and 
non-rigid registration techniques to enter clinical use. Registration for medical appli-
cations seeks a mapping from one image (or set of images) to another such that struc-
tural or functional correspondence is achieved i.e. identifiable features or regions are 
correctly mapped between images. In medical image segmentation, the objective is to 
identify regions that have some functional or structural significance. If a pre-labeled 
image can be correctly registered to another image then the labeling problem is solved 
for that image. Conversely, if a pair of images contains corresponding labeled regions 
then the registration problem is at least partially solved by constructing a mapping 
between corresponding labels. Two common scenarios are that automatic image regis-
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tration has been performed on the basis of voxel intensity information or that a novel 
segmentation technique has been applied to an image. The problem with validating 
these cases at present is the paucity of metrics of quality, especially where the seg-
mentation or registration technique generates fuzzy (i.e. fractional or probabilistic) 
labels or is evaluated over multiple test images. To date most evaluation has relied on 
the use of simple measures of regional overlap, defined for single labels, which as-
sume that each voxel is either labeled or not labeled. In this paper we use results from 
fuzzy set theory and fuzzy morphology to extend existing definitions of overlap to (i) 
measure overlap of partial volume labels (ii) compute overlap measures for multiple 
labels defined on multiple image pairs (iii) compute overlap measures for groupwise 
registration and (iv) establish a link between measures of overlap and estimates of 
target registration error. Experiments are performed to establish the behavior of the 
new overlap measures and to compare pairwise and groupwise registration performed 
on publicly available data.  

We consider an existing labeling (E) and a test labeling (T) that may have been ob-
tained by a new segmentation technique or by using the result of image registration to 
map a label set from one image to another. The most obvious quantitative comparison 
of regions is by volume [1] however two labelings may have similar volumes but very 
different shapes, or even locations. The Hausdorff-Chebyshev metric defines the 
largest difference between two contours or surfaces but can be computationally ex-
pensive to compute and is not symmetric between E and T (although it can be made 
so). The Modified Williams Index has been developed for comparison of multiple 
expert observers boundaries against computer generated boundaries and is the ratio 
between the average computer-to-observer agreement and the average inter-observer 
agreement [2].  

For a comparison of voxel-wise binary labelling the number of true and false posi-
tives and negatives can be determined and measures of region overlap can be com-
puted. These are generally of the form: 

( )
( )ETN

ETN
O

∪
∩= ,  or ( )

( )EN

ETN ∩ or ( )
( ) ( )ENTN

ETN

+
∩2  (1) 

In equation 1 N(E) indicates the number of voxels which belong to the label E etc. In 
this work we will concentrate on the first (left-most) expression (the Tanimoto coeffi-
cient) although a similar development could be made with the other forms. These and 
other overlap measures are reviewed from the perspective of the so-called “overlap-
ping area matrix” by Beauchemin and Thomson [3]. Measures of correspondence 
based on information theory have also been proposed [4]. For labels defined in a 
probabilistic fashion, Gerig [5] suggests a probabilistic overlap and has provided 
software to compute this and other overlap measures. 

The work in this paper extends previous overlap definitions to cope with contem-
porary applications. The motivation is to develop regional overlap measures that can 
be intuitively pooled across labels and subjects to provide single figures of merit. 
Potential applications include assessment of registration of ensembles of subjects, 
particularly in group-wise (“target-less”) applications. We also take the opportunity to 
formalize a previously suggested link between overlap measures and target registra-
tion errors in registration via the definition of the overlap tolerance, . 
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2   Methods 

We first redefine the overlap measure for fuzzy labels. In equation 1, the overlap is 
obtained by summing the number of distinct voxels in the label intersection and un-
ion. However, both binary labels which have been interpolated following registration 
and those which model partial occupancy at a voxel can be characterized by a number 
[0, 1] at each voxel that defines the fraction of voxel that is labelled. Results from 
fuzzy set theory for the intersection and union of two fuzzy sets can immediately be 
applied to rewrite equation 1 to give an overlap, OF which is a function of the label 
values at each voxel summed over all voxels, i, in the image.  
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Equation 2 computes the overlap of a single pair of fuzzy labels defined on a pair of 
images. The numerator and denominator can be accumulated across multiple labels 
and multiple image pairs to compute a single overlap figure, OPMF, which describes 
the total overlap of a set of fuzzy labels defined on a set of image pairs. The overlap is 
the ratio of the total fuzzy intersection to the total fuzzy union. 
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In equation 3, αl is a label-specific weighting factor that affects how much each label 
contributes to the accumulated overlap and βk is a pair-specific weighting factor that 
affects the relative contribution of each image pair to the accumulated overlap. We 
defer a discussion of the possible values of αl and βk to section 2.2. There are now 
emerging techniques where a single groupwise registration is performed instead of 
multiple pairwise registrations. A groupwise overlap measure, OGMF, can be con-
structed by considering permutations of image pairs within the group and applying 
equation 3 Note that there is no simple relationship between multiple overlaps evalu-
ated separately using equation 2 and the ensemble overlap evaluated using equation 3. 

2.1   Overlap and Target Registration Error: Overlap Tolerance 

The overlaps described above do not consider the proximity of the non-overlapping 
label portions that may also provide important information. One previously proposed 
method of determining this proximity is the tolerance, τ [6]. The standard overlap 
measures can be considered to be τ=0 since pairs of label voxels have to occupy the 
same space to be considered overlapping. However, τ > 0 allows labels to be consid-
ered overlapping if they lie within τ mm of each other. Therefore as the tolerance 
increases, the fractional overlap 1 as the condition for overlapping voxels is re-
laxed. Previously this has been described for binary labels and integer values of the 
tolerance. We now define overlap for fractional labels and non-integer tolerances. 
Starting from the definition of overlap for fractional labels, OF,  (equation 2) the defi-
nition of fuzzy overlap to a tolerance,τ, can be written: 
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In equation 4, Dτ is a fuzzy dilation operator that can be represented as a voxel mask 
of dilation coefficients centered on each voxel of interest with τ specifying the extent 
of the operator. In 1D, where the voxel dimension is 1mm for example, D0={1}, 
D1={1, 1, 1}, D2={1, 1, 1, 1, 1} etc. When considering fractional tolerances then 
Dγ={γ, 1, γ}, D1+γ={γ, 1, 1, 1, γ} etc where 0 ≤ γ ≤ 1. Then the fuzzy dilation applied 
at a single voxel located at the origin, L(0), in 1D can be written as 

( ) ( ) ( ))(0* iLiDMAXL τ=  where i is in the range [-k, +k] and k = (int)(1+τ). This defini-

tion is consistent with that of [7]: ( )( ) ( ) ( )[ ]{ }SyyxytxD ∈−= ,,sup μυμυ
 where S is the 

image-space, ν is a structuring element, μ is a fuzzy set and x, y are both elements of 
S. t is a t-norm which in our case is simply defined as t(a, b) = ab.  

Note that OF( ) is an increasing function of  for   0.The maximum possible 
overlap given by equation 4 can be established by assuming that both D and T have 
fractional labels in the range [0, 1]. Then when  >> 1 the numerator reduces to 
MAX(Ti, Ei)  and the maximum overlap is therefore 1 as expected. Now consider a 
pair of misregistered images where every voxel is independently labeled and the same 
set of labels exists in each image but are not necessarily coincident. Then the overlap 
of any pair of labels can be computed as described above. For each labeled voxel in 
the target image the smallest tolerance, τ1, for which the overlap with its partner in the 
source image is 1, can be computed. Then the map of tolerances is a map of target 
registration error. For labels spanning multiple voxels, τ1 estimates the maximum 
displacement between non-overlapping voxels belonging to corresponding labels. 

2.2   Parameter Choices 

In equation 3, weights α and β were introduced to respectively define the relative 
contribution of labels and subjects to the overlap measures. With α=1, all labels are 
implicitly weighted by their volume. This may not be desirable as smaller labels may 
represent a greater registration or segmentation challenge. Two alternative choices are 
to set α either to (i) the inverse mean volume of the current label pair to give all labels 
equal weighting or (ii) the inverse mean volume squared of the current label pair to 
weight by the inverse volume. We examine the effect of these different α values be-
low. In the experiments reported in this paper we have set β=1 but β could be used to 
weight inversely with the variance of labeling accuracy. 

3   Experiments A, B and C 

Nine T1-weighted MR-brain images with labels from the Internet Brain Segmentation 
Repository1 were used. Each image had ten binary anatomical labels, one for each of 
the following structures: amygdala, caudate, cerebellum, cortex, hippocampus, lateral 
ventricle, pallidum, putamen, thalamus and white matter.  
                                                           
1 http://www.cma.mgh.harvard.edu/ibsr 
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Experiment A investigates the decrease in overlap measures in response to forced 
misregistration. Each of the nine images (the targets) was paired with a copy of itself 
(the sources) and the accumulated overlap measure was computed for each pair. Then 
a non-rigid misregistration algorithm, which acted to reduce an image similarity 
measure, was applied to each source image and associated labels using tri-linear in-
terpolation. The mean misregistration displacement over each pair was computed 
together with the new accumulated overlaps. The overlaps were also computed for a 
single label, S constructed from the union of the ten labels above. 

Experiment B examines the relationship between the overlap tolerance and the 
misregistration error. For each of the misregistered labels in experiment A including 
the combined label, S, the tolerance was found for which the overlap OF was 0.99 and 
compared with the mean misregistration error computed for each label from the ap-
plied transformations. 

Experiment C compares a group of pairwise registrations and a groupwise regis-
tration. The 9 images from experiment A were (i) each registered independently to a 
tenth image in a pairwise fashion using a B-spline approach [8] and (ii) registered in a 
groupwise fashion to a common reference frame representing the average shape of the 
population, also using a B-spline approach [9]. Both techniques overlay a mesh of 
uniformly spaced control points onto each of the images; deforming the control points 
deforms the underlying images. The control points are manipulated until the normal-
ised mutual information is maximised. The groupwise technique does not use an ex-
plicit anatomical reference; instead an average shape is calculated implicitly by con-
straining the sum of all the deformations to be equal to zero using a Gradient Projec-
tion Method.  The cases were compared by assuming that both had been performed in 
a groupwise fashion and computing the groupwise overlap measure, OGMF by permut-
ing and accumulating all possible pairwise overlaps as in equation 3.  

4   Results 

Experiment A. Fig. 1 plots the accumulated overlap against the mean applied misreg-
istration  for  the  three  different  label  weightings, α, for each  pair in experiment A.  
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Fig. 1. The results of experiment A. The overlap accumulated over 10 labels plotted against the 
mean applied misregistration error for 9 image pairs. ♦=Volume-weighting, =Equal-
weighting, =Inverse Volume-weighting, * = Union Label S and  = Simple Average. 



104 W.R. Crum et al. 

Also plotted are the overlap for the single union label S and the average overlap com-
puted for each pair. It can be seen the trend is for the measured overlap to decrease as 
a function of increasing applied misregistration. There is a distinction between the 3 
different weighting schemes with the inverse volume weighted overlaps decreasing 
fastest. This is to be expected, as the overlap of smaller regions will be more sensitive 
to misregistration. The average overlap for each pair is nearly coincident with the 
equally weighted accumulated overlap as expected. The overlap of large structures (as 
deduced from the volume-weighted and union plots) does not always strictly decrease 
with increasing misregistration. This result is considered in section 4.  
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Fig. 2. Results for experiment B. (a) The smallest tolerance that gives an overlap of 0.99 
against the applied misregistration error for each of 10 label-pairs on 9 subjects. (b) The results 
of (a) averaged over each subject. 

Experiment B. Fig. 2a plots the tolerance computed iteratively using equation 4 for 
each label on each pair against the mean applied misregistration for that label. Figure 
2b plots the tolerance averaged over all the labels on each pair against the mean ap-
plied misregistration calculated over the aggregated label S. In both cases there is a 
strong linear relationship between the tolerance and the applied misregistration. 
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Fig. 3. Results for experiment C. The total accumulated overlap computed in a groupwise 
fashion for the unregistered, pairwise registered and groupwise registered images. Results are 
shown for volume-weighting, equal weighting and inverse volume-weighting between labels. 
Error bars represent the standard deviation of the overlap computed over all subject pairs. 
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Experiment C. Fig. 3 shows the groupwise overlap, OGMF, for the unregistered, pair-
wise and groupwise registered images for volume weighting, equal weighting and 
inverse volume weighting between structures. The overlap consistently ranks the 
pairwise overlaps above the groupwise overlaps. While the pairwise registration was 
refined to a control point spacing of 2.5mm, the groupwise was only refined to a spac-
ing of 5mm for computational efficiency. Therefore the scale of non-rigid deforma-
tions is restricted in the groupwise registration compared to the pairwise. Also the 
minimization of the groupwise cost function is more complex and therefore more 
likely to find local minima; this is an area of continuing research. A more interesting 
observation is that the inverse volume weighted overlaps are far more similar than the 
equal and volume weighted overlaps indicating that small structures are being regis-
tered more consistently. This is probably because the small, deep brain structures 
have relatively consistent anatomy whereas the larger structures such as cortex and 
white matter are known to vary significantly between individuals.  

5   Discussion and Conclusion 

We have developed overlap measures to allow comparison of multiple fuzzy labels 
defined on multiple subjects. The specific case of pairwise and groupwise registration 
has been considered here but these measures could also be applied to related problems 
of segmentation. We have re-introduced the idea of overlap tolerance and used it to 
relate registration error to overlap. We have demonstrated a linear relationship be-
tween the overlap tolerance and the applied misregistration in one experiment but this 
cannot be considered a completely general result. The misregistration acted normally 
to edge features so preferentially displaced high-contrast boundaries of structures 
rather than rearranging low-contrast features. The tolerance would be an insensitive 
indicator of registration error if the mis-registrations were occurring within labels; this 
is a property of labels rather than these overlap measures. Another application for the 
tolerance might be to initialize registration problems where labels exist on some parts 
of the image. 

The framework presented in this paper allows single overlap measures that encom-
pass multiple labels defined on multiple image pairs to be generated in a natural way. 
Weighting can be applied to prefer smaller labels and/or to accommodate other prior 
information about the images. Such evaluation tools are necessary for the clinical 
adoption of new registration and segmentation techniques. 
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Uncertainty in White Matter Fiber Tractography
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Abstract. In this work we address the uncertainty associated with fiber paths
obtained in white matter fiber tractography. This uncertainty, which arises for
example from noise and partial volume effects, is quantified using a Bayesian
modeling framework. The theory for estimating the probability of a connection
between two areas in the brain is presented, and a new model of the local water
diffusion profile is introduced. We also provide a theorem that facilitates the es-
timation of the parameters in this diffusion model, making the presented method
simple to implement.

1 Introduction

When estimating a quantity based on some available data, it is natural to ask what uncer-
tainty is associated with this estimate. In white matter fiber tractography, connections
in the brain are estimated by tracing the direction of maximal water diffusion in diffu-
sion weighted MRI images. In this process, uncertainty arises due to noise and partial
volume effects, i.e., crossing, merging and splitting fiber tracts. Uncertainty is naturally
quantified by means of probability, and in this work we are interested in the probability
of a fiber connection between two points A and B in the brain, given the measured dif-
fusion data D. We write this probability p(A → B|D). There is some previous work
in the literature on this subject [1–6], but most of these approaches account for uncer-
tainty in heuristic ways. Exceptions are Tuch [3] and Behrens et al. [6], who were the
first to present approaches with stronger theoretical support. In this paper we build on
the work by Tuch and Behrens et al., and present a more detailed theory as well as a
computationally tractable solution.

2 Global Modeling and Estimation

A fiber can be modeled as a finite length path, described by a train of vectors v1:n =
{v1, . . . ,vn}. Denote by Ωn

A the set of all possible paths of length n that originate in a
point A, and assume that we can assign a probability p (v1:n) to each path in this space.
Hence, ∫

Ωn
A

p (v1:n) = 1 and
∞∑

n=1

∫
Ωn

A

p(n)p (v1:n) = 1, (1)

where p(n) is the probability of length n path. If we have any prior information about
the expected path lengths this can be encoded in p(n). Without prior knowledge, p(n)

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 107–114, 2005.
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is chosen to be a uniform distribution over a range of reasonable lengths. Integrals over
path spaces, like the ones in Eq. 1, also arise for example in quantum mechanics [7] and
computer graphics [8]. Now, let Ωn

AB be the set of all paths of length n between A and
another point B. We can then find the probability of a fiber going from A to B, given
the diffusion data D, by summing the probabilities for all paths of all lengths between
these points:

p (A→ B|D) =
∞∑

n=1

∫
Ωn

AB

p(n)p (v1:n|D) . (2)

In the above equation we have suppressed the dependence of the path length n on D.
The integrations in Eq. 2 are performed over 2n-dimensional path spaces Ωn

AB , and we
cannot hope to find analytical solutions. Hence, we must resort to numerical integration,
and it is only by applying Monte Carlo methods we can hope to estimate such high-
dimensional integrals. Since Ωn

AB ⊂ Ωn
A, we can approximate the integrals by drawing

a large number of random paths vk
1:n, k = 1, . . .Nn, from p (v1:n|D) over the domain

Ωn
A, i.e., with starting point in A, and calculate the fraction of paths that reach B. This

technique is known as Rejection sampling. Formally, by defining an indicator function

I
(
vk

1:n
)

=

{
1 vk

1:n ∈ Ωn
AB

0 Otherwise
, we have p (A→ B|D) ≈

∞∑
n=1

Nn∑
k=1

p(n)
I
(
vk

1:n
)

Nn
.

Instead of calculating p (A→ B|D), Tuch [3] consider the path of maximal proba-
bility between A and B. As a measure of connectivity between A and B, the maximal
probability path has the interesting property of being symmetric. In general, this does
not hold for p (A→ B|D); the probability will depend on whether we start sampling
paths in A or in B. The reason is that p (A→ B|D) pertains to the probability for a
single fiber, which cannot split or merge. Furthermore, note that in order to calculate
p (A→ B|D), there is no need to explicitly evaluate the path probabilities p (v1:n|D);
it is sufficient if we can draw sample paths. In contrast, to find the maximal proba-
bility path, the path probabilities must be computed. In the approach described in the
following sections, both alternatives are possible.

2.1 Sampling Paths

To implement the above scheme we need a method for drawing random paths v1:n =
{v1, . . . ,vn} from a probability density function (pdf) p (v1:n). Since the sampled
paths are models of actual fibers, a certain regularity must be imposed upon them. For
simplicity and notational convenience we assume that the vector vk only depends on
the previous vector vk−1, and not on vk−2, . . . ,v1. This assumption is trivially relaxed.
We also assume a pre-determined vector length, i.e., a step length, so that we can work
with normalized vectors v̂k. The probability for a path of length n then factorizes into

p (v1:n|D) = p1 (v̂1|D)
n∏

k=2

pk (v̂k|v̂k−1,D) . (3)

Hence, random paths can be built sequentially by first drawing a random direction v̂1,
then a random direction v̂2 given v̂1, and so on. This procedure is known as Sequential
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Importance Sampling [1]. An interpolation problem arises because we only have the
diffusion data D on a discrete grid, whereas the sampled paths do not have such a
restriction. Due to the probabilistic framework we can use the method suggested in [6],
which uses the diffusion data at a grid point chosen at random based on the distance to
the current sample point. The sequential sampling is terminated when the path reaches
an area where the uncertainty regarding the next step is too high.

3 Local Modeling and Estimation

The goals in this section are to find a pdf of the local fiber orientation p (v̂k|v̂k−1,D)
and to draw random samples from this pdf. Examples of pdf’s are shown in Fig. 1a. The
local pdf’s should take the uncertainty arising from partial volume effects and measure-
ment noise into account. There are a few different ways to approach this problem. For
example, with q-ball imaging [3], it is possible to resolve complex fiber neighborhoods
and to obtain a detailed description of the local diffusion profile. The drawback with this
technique is that it does not account for the uncertainty stemming from noise. Another
approach is to acquire several diffusion data sets and generate a pdf by bootstrapping
[9], with the obvious disadvantage that several data set are required. The most com-
monly used approach in diffusion weighted imaging is to use an explicit model for
the water diffusion profile. As pioneered by Behrens et al. [6], the uncertainty in fiber
direction can then be inferred via Bayes’ theorem, as described below.

3.1 Local Bayesian Modeling

Assume that we have a model that relates the diffusion measurements D with the un-
derlying tissue properties and architecture. Such a model necessarily contains at least
one fiber direction v̂k and a set of nuisance parameters collectively denoted by θ. By
applying Bayes’ theorem we have

p(v̂k,θ|v̂k−1,D) =
p(D|v̂k,θ)p(v̂k|v̂k−1)p(θ)

p(D)
, (4)

where we have assumed that the prior distribution can be factorized p(v̂k,θ|v̂k−1) =
p(v̂k|v̂k−1)p(θ). To find p (v̂k|v̂k−1,D) we need to marginalize Eq. 4 over the nui-
sance parameters θ. Furthermore, the normalizing factor

p(D) =
∫
v̂k,θ

p(D|v̂k,θ)p(v̂k|v̂k−1)p(θ) (5)

is in general difficult to evaluate because of the high-dimensional integral and an in-
tractable integrand. The posterior in Eq. 4 has to be calculated in every step in the
sequential sampling of the fiber paths, and unless an approximation for the integral in
Eq. 5 is found the cost of the Bayesian approach will be prohibitive. Behrens et al. [6]
avoid evaluating the integral by applying Markov Chain Monte Carlo (MCMC) meth-
ods for drawing samples from the posterior. In the following sections we describe an
alternative method, and discuss different observation models p (D|v̂k,θ) and priors,
p(v̂k|v̂k−1) and p(θ), that allow fast computation of the posterior.
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Observation Model. The true underlying voxel intensities μi in the diffusion weighted
images depend on the local water diffusion profile, and the fiber orientation is generally
assumed to coincide with the direction of largest diffusivity. In Table 1, three models
of how the voxel intensity is modulated by the water diffusion are listed. The gradient
directions ĝi and the b-values bi are known experimental parameters. In these models,

Table 1. Three models of how the voxel intensity μi depends on the water diffusion profile

Gaussian model μi = μ0 e−biĝ
T
i Dĝi

Constrained model μi = μ0 e−αbi e−βbi(ĝT
i v̂)2

Compartment model μi = μ0
[
(1 − f)e−bid + fe−bid (ĝT

i v̂)2]

the diffusion tensor D or the local fiber direction v̂ are parameters of interest. The
remaining parameters are nuisance parameters. The Gaussian model is widely used in
diffusion imaging [10], and the Compartment model was proposed by Behrens et al.
[6] (although here it is given in a reparameterized version). We propose the Constrained
model, which is obtained if we assume that the two smallest eigenvalues of D are equal,
i.e., λ2 = λ3 = α. This gives

D = λ1v̂1v̂
T
1 + α(v̂2v̂

T
2 + v̂3v̂

T
3 ) = (λ1 − α)v̂1v̂

T
1 + αI = β v̂1v̂

T
1 + αI, (6)

which after substitution into the expression for the Gaussian model yields the Con-
strained model. The Constrained model describes cigar-shaped diffusion profiles, with
a sphere and a line as extremes. While all three models in Table 1 describe diffusion
profiles, the Constrained model and the Compartment model can also be viewed as
modeling the effect of an underlying fiber. They can also be extended to handle mul-
tiple fiber directions. In this work, however, we assume that there is only one fiber
direction in each voxel, and any deviations from this model will be captured as uncer-
tainty in this direction via the posterior in Eq. 4. The reason we prefer the Constrained
model over the Compartment model is out of mathematical tractability, as will become
clear later.

The voxel intensity yi in a diffusion weighted image is a noisy observation of μi.
Moreover, the intensity decays exponentially with the water diffusivity, as implied by
the models in Table 1. Hence, by taking the logarithm of the observations, zi = ln yi,
we obtain a more linear relationship between observations and model parameters. In
references [10, 11] it is shown that zi = lnμi + ε, where ε ∈ N

(
0, σ2/μ2

i

)
, is a good

model for the observation noise. That is, after taking the logarithm the noise can be
modeled as additive Gaussian with a variance that depends on the voxel intensity. The
joint distribution for the observed (log-)data D = [z1, . . . , zN ] is then

p (D|v̂,θ) =
N∏

i=1

μi√
2πσ2

e−
μ2

i
2σ2 (zi−lnμi)2 , (7)

where μi is to be replaced by the expression for any of the models in Table 1, and θ
denotes the nuisance parameters in this model. This expression is used in the equations
for the posterior, Eq. 4 and Eq. 5.
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Priors. Via the probability functions p(v̂k|v̂k−1) and p(θ) we encode our prior knowl-
edge about fiber regularity and nuisance parameters. Starting with the fiber regularity, a
simple family of distributions is given by

p(v̂k|v̂k−1) ∝
{(

v̂T
k v̂k−1

)γ
v̂T

k v̂k−1 ≥ 0
0 v̂T

k v̂k−1 < 0
with γ ≥ 0. (8)

This prior gives preference to continue in the previous step-direction, with a decreasing
probability for sharper turns until it reaches a zero probability for turns of 90 degrees
and above. The γ-parameter controls the sharpness of the distribution, i.e., the regularity
of the path. In our experiments we use γ = 1. Turning to the nuisance parameters in the
models in Table 1, e.g. the Constrained model for which θ =

{
μ0, α, β, σ

2
}

, we gen-
erally do not have any detailed prior information, except that these parameters should
be non-negative. Considering the computational effort required to evaluate the integral
in Eq. 5 we choose dirac impulses as priors for the nuisance parameters, for example
p (θ) = δ(μ0−μ̂0) δ(α−α̂) δ(β−β̂) δ(σ2−σ̂2). That is, we fix the nuisance parameters
to some values μ̂0, α̂, β̂ and σ̂2. The integral in Eq. 5, as well as the posterior pdf in Eq.
4, is then evaluated over the unit sphere. Hence, they are easily calculated numerically
and significant computational savings are made. Also, note that the Constrained model
and the Compartment model in Table 1 differ only in the way the nuisance parameters
enter, and once these parameters are fixed the models are essentially equivalent.

3.2 Point Estimates of Local Model Parameters

To define the priors above, or to initialize an MCMC process for drawing samples from
the posterior, it is important to have access to good point estimators of the parameters in
the observation models in Table 1. For the Gaussian model, point estimates are readily
obtained by means of linear least squares estimation [10, 11]. The parameters in the
Constrained model can be found through the following non-trivial theorem:

Theorem. Let D be a symmetric 3 × 3 matrix with eigenvalue factorization D =
λ1v̂1v̂

T
1 + λ2v̂2v̂

T
2 + λ3v̂3v̂

T
3 , λ1 ≥ λ2 ≥ λ3. The closest, in terms of the Frobenius

norm, symmetric matrix C with the two smallest eigenvalues equal is given by

C = λ1v̂1v̂
T
1 +

λ2 + λ3

2
(v̂2v̂

T
2 + v̂3v̂

T
3 ). (9)

A proof of this theorem is left out due to space restrictions. Hence, we can find the
parameters of the Constrained model by first solving for the full diffusion tensor D in
the Gaussian model and then setting α = (λ2 + λ3)/2, β = λ1 − α and v̂ = ê1.
The Compartment model is more difficult to handle mathematically and we need to
apply computationally demanding non-linear optimization techniques to find accurate
estimates of its parameters.

3.3 Drawing Samples from the Posterior

Finally, to perform the sequential sampling of fiber paths, we need to draw random
samples of the fiber direction from the posterior in Eq. 4. For drawing samples from
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complicated and high dimensional pdf’s one can always resort to MCMC techniques.
However, while MCMC sampling is conceptually simple there are implementational
issues, such as convergence and so-called mixing of the chain, that complicate practical
use. In contrast, with the dirac priors suggested above we need only draw samples from
a pdf defined on the unit sphere. This can be accomplished by evaluating the pdf at
a sufficiently large number of points evenly spread over the unit sphere, effectively
approximating the continuous pdf with a discrete pdf, from which it is straightforward
to draw random samples. We must make take care to sample the continuous pdf densely
enough so that high probability areas are covered well. In our experiments we evaluate
the posterior at 2,562 predefined unit length vectors obtained by a fourfold tessellation
of an icosahedron.

4 Results

Here we show results obtained by applying the methodology described in the above
sections to a diffusion weighted data set with 31 different gradient directions and a b-
value of 1000 s/mm2. Figure 1a shows example pdf’s of the fiber orientation in three
different voxels in this data set. To produce sample fiber paths we sequentially draw
fiber orientations from such pdf’s. A Matlab implementation typically produces a few
sample paths per second on a high-end PC, and the sampling process is trivially paral-
lelized. Figure 1b shows 3,000 sample fibers originating in one point in the splenium of
Corpus callosum (marked in Fig. 1c). The fibers have been colored according to how
the probability evolves along the paths (Eq. 3). From the sampled fibers in Fig. 1b, the
probability map in Fig. 1c was produced as described in Section 2. This map indicates
the probability, or our belief, of a single fiber going from the starting point to any other
point in the image slice. Finally, Fig. 1d shows more examples of sampled fiber paths,
started in four different points in the axial slice. Note how the stochastic framework
handles splitting fiber bundles and partial volume effects. For example, a single sample
fiber in the Cingulum bundles (red and yellow fibers) easily slips into the underlying
Corpus callosum bundle, but the massive sampling approach gives a robust delineation.

5 Discussion

To conclude this paper, we have presented a method for assessing uncertainty in white
matter fiber tractography. The main contribution is a novel way of obtaining pdf’s of the
local fiber direction, including a new model of the water diffusion suitable for a stochas-
tic tracking framework, and a theorem that allows fast computation. Also, while the pro-
cedure for calculating the probability of a connection has been used before [2, 4, 5, 6],
the theoretical justification in Section 2 has not been described previously. Among the
cited works, the approach presented by Behrens et al. is closest to the one presented
here. The essential difference lies in how the posterior pdf of the fiber orientation is
approximated in order to obtain a computationally feasible solution. We use simplified
priors for the nuisance parameters, which result in an algorithm that is computationally
fast and easy to implement. Since some of the priors are estimated from the data, the
approach can be classified as empirical Bayesian. In contrast, the approach presented
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Fig. 1. a) Example pdf’s of the local fiber orientation taken at three different locations. A uniform
prior for the step direction was used when generating these pdf’s, i.e, the previous step direction
has no influence. b) 3,000 fiber samples originating in a point located at the splenium of Corpus
callosum (marked in c)). Each fiber is colored according to how the probability evolves along its
path. c) Probability map of the existence of a fiber going from the marked point to all other voxels
in the image slice. The map was generated using the fiber samples in b). d) More examples of
fiber samples. The sampling was started in the four different points marked by the arrows, and
the fibers are colored accordingly.
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by Behrens et al. employs full Bayesian modeling of the priors combined with MCMC
sampling, which is slower but has the theoretical advantage of taking uncertainty in
nuisance parameter estimates into account. However, to exploit this advantage we need
to assess convergence and adaptively control the mixing of a large number of Markov
chains automatically, which we have found difficult. Further work is required to in-
vestigate if there are any interesting differences in result between the faster empirical
Bayesian and the full Bayesian approaches.
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Abstract. Computations on tensors have become common with the use
of DT-MRI. But the classical Euclidean framework has many defects,
and affine-invariant Riemannian metrics have been proposed to correct
them. These metrics have excellent theoretical properties but lead to
complex and slow algorithms. To remedy this limitation, we propose new
metrics called Log-Euclidean. They also have excellent theoretical prop-
erties and yield similar results in practice, but with much simpler and
faster computations. Indeed, Log-Euclidean computations are Euclidean
computations in the domain of matrix logarithms. Theoretical aspects
are presented and experimental results for multilinear interpolation and
regularization of tensor fields are shown on synthetic and real DTI data.

1 Introduction: Calculus on Tensors

Tensors, i.e. symmetric positive-definite matrices in medical imaging, appear
in many contexts: Diffusion Tensor MRI (DT-MRI or DTI) [2], modeling of
anatomical variability [7], etc. They are also a general tool in image analysis,
especially for segmentation, motion and texture analysis (see [1] for references
on this subject). Many approaches have been proposed in the literature to pro-
cess tensors [13, 15, 14, 4, 5]. But in order to carry out general computations on
these objects, one needs a consistent operational framework. This is necessary to
completely generalize to tensors statistical tools and Partial Differential Equa-
tions (PDEs). The framework of Riemannian metrics has recently emerged as
particularly adapted to this task [11].

One can directly use a Euclidean structure on square matrices to define a met-
ric on the tensor space, for instance with the following distance: dist2(S1, S2) =
(Trace((S1 − S2)2)). This is straightforward and leads a priori to simple com-
putations. But this framework is practically and theoretically unsatisfactory for
three main reasons. First, symmetric matrices with null or negative eigenval-
ues appear during Euclidean computations. And from a physical point of view,
in DTI, a diffusion exactly equal to zero is impossible: above 0 Kelvin, water
molecules will move in all directions. Even worse, a negative diffusion is mean-
ingless. This occurs during iterated Euclidean computations, for instance during
the estimation of tensors from diffusion-weighted images, the regularization of
tensors fields, etc. To avoid going out of the tensor space, it has been proposed
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to regularize only features extracted from tensors, like first eigenvectors [5] or
orientations [4]. The regularization is propagated to tensors in a second step.
This is not completely satisfactory, since it would be preferable to regularize
tensors directly in order to take into account all the information they carry.

Second, a tensor corresponds typically to a covariance matrix. The value of
its determinant is a direct measure of the dispersion of the associated multivari-
ate Gaussian. The reason is that the volume of associated confidence regions are
proportional to the square root of the covariance determinant. But the Euclidean
averaging of tensors leads very often to a tensor swelling effect: the determinant
(and thus the dispersion) of the Euclidean mean can be larger than the original
determinants! In DTI, diffusion tensors are assumed to be covariance matrices
of the local Brownian motion of water molecules. Introducing more dispersion
in computations amounts to introducing more diffusion, which is physically un-
acceptable. For illustrations of this effect, see [4].

Third, the Euclidean metric is unsatisfactory in terms of symmetry with
respect to matrix inversion. The Euclidean mean for tensors is an arithmetic
mean which does not yield the identity for a tensor and its matrix inverse. When
tensors model variability, one would rather have in many cases a geometric mean.

To fully circumvent these difficulties, affine-invariant Riemannian metrics
have been recently proposed for tensors in [12, 8, 9, 10]. With them, negative
and null eigenvalues are at an infinite distance, the swelling effect disappears
and the symmetry with respect to inversion is respected. The price paid for
this success is a high computational burden, essentially due to the curvature
induced on the tensor space. Practically, this yields slow and hard to implement
algorithms.

We propose a new Riemannian framework to fully overcome these computa-
tional limitations while preserving excellent theoretical properties. It is based on
new metrics named Log-Euclidean, which are particularly simple to use. They
result in classical Euclidean computations in the domain of matrix logarithms. In
Section 2, we give an overview of the theory of Log-Euclidean metrics, detailed in
[1]. In particular, we briefly compare these new metrics to affine-invariant met-
rics. In Section 3, we highlight the differences between the three frameworks with
experimental results on synthetic and real DT-MRI data in interpolation and
regularization. Computations are very simple and experimentally much faster in
the Log-Euclidean than in the affine-invariant framework.

2 Presentation of the Log-Euclidean Framework

Complete proofs for all the results presented in this Section are given in [1].

Existence and Uniqueness of the Logarithm. A tensor S has a unique
symmetric matrix logarithm L = log(S). It verifies S = exp(L) where exp is the
matrix exponential. Conversely, each symmetric matrix is associated to a tensor
by the exponential. L is obtained from S by changing its eigenvalues into their
natural logarithms, which can be done easily in an orthonormal basis in which
S (and L) is diagonal.
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A Vector Space Structure on Tensors. Since there is a one-to-one mapping
between the tensor space and the vector space of symmetric matrices, one can
transfer to tensors the addition “+” and the scalar multiplication “.” with the
matrix exponential. This defines on tensors the logarithmic multiplication � and
the logarithmic scalar multiplication �, given by:{

S1 � S2
def
= exp (log(S1) + log(S2))

λ� S
def
= exp (λ. log(S)) = Sλ.

(1)

The logarithmic multiplication is commutative and coincides with matrix mul-
tiplication whenever the two tensors S1 and S2 commute in the matrix sense.
With � and �, the tensor space has by construction a vector space structure,
which is not the usual structure directly inherited from square matrices.

Log-Euclidean Metrics. When one considers only the multiplication � on
the tensor space, one has a Lie group structure [11], i.e. a space which is both
a smooth manifold and a group in which algebraic operations are smooth map-
pings. Among Riemannian metrics in Lie groups, the most convenient in prac-
tice, when they exist, are bi-invariant metrics, i.e. distances that are invariant
by multiplication and inversion. For the tensor Lie group, bi-invariant metrics
exist and are particularly simple. We have named such metrics Log-Euclidean
metrics, since they correspond to Euclidean metrics in the domain of logarithms.
From a Euclidean norm ‖.‖ on symmetric matrices, they can be written:

dist(S1, S2) = ‖ log(S1)− log(S2)‖. (2)

Boundary Problems and Symmetry. Contrary to the classical Euclidean
framework on tensors, one can clearly see from Eq. (2) that matrices with null or
negative eigenvalues are at an infinite distance from tensors and will not appear
in practical computations. Moreover, distances are not changed by inversion.

Invariance by Similarity. Log-Euclidean metrics are not affine-invariant.
However, some of them are invariant by similarity (orthogonal transformation
and scaling). This means that if tensors are covariance matrices, computations
on tensors using these metrics will be invariant with respect to a change of coor-
dinates obtained by a similarity. The similarity-invariant Log-Euclidean metric
used throughout this article is given by:

dist(S1, S2) =
(
Trace

(
{log(S1)− log(S2)}2)) 12 . (3)

Euclidean Calculus in the Logarithmic Domain. The tensor vector space
with a Log-Euclidean metric is in fact isomorphic (the algebraic structure of
vector space is conserved) and isometric (distances are conserved) with the
corresponding Euclidean space of symmetric matrices. As a consequence, the
Riemannian framework for statistics and analysis is extremely simplified [1]. In
particular, the Log-Euclidean mean of N tensors with arbitrary positive weights
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(wi)N
i=1 such that

∑N
i=1 wi = 1 is a direct generalization of the geometric mean

of positive numbers and is given explicitly by:

ELE(S1, ..., SN) = exp

(
N∑

i=1

wi log(Si)

)
. (4)

This is remarkable: in this framework, the processing of tensors is simply Eu-
clidean in the logarithmic domain. Final results obtained on logarithms are map-
ped back to the tensor domain with the exponential. Hence, statistical tools or
PDEs are readily generalized to tensors in this framework.

Comparison with Affine-Invariant Metrics. As shown experimentally in
Section 3, Log-Euclidean computations provide results similar to their affine-
invariant equivalent, presented in [12]. The reason is the two families of metrics
provide two generalizations of the geometric mean of positive numbers on ten-
sors. Contrary to the Log-Euclidean mean, there is in general no closed form
for the affine-invariant mean but rather a barycentric equation. Nevertheless, the
determinants of the two means are both equal to the scalar geometric mean of
the determinants of the averaged tensors [1]. This explains their likeness and
the absence of swelling effect in both cases. This resemblance between the two
means propagates to general computations which involve averaging, such as in-
terpolation, extrapolation and regularization. The two means are even identical
in a number of cases, in particular when averaged tensors commute. Yet they
are not equal in general: Log-Euclidean means are slightly more anisotropic.

3 Experimental Results

3.1 Bilinear and Trilinear Interpolation

Often, voxels in clinical DT images are quite anisotropic. But algorithms tracking
white matter fascicles are more efficient with isotropic voxels [3]. An adequate
interpolation method is therefore important for such algorithms.

Fig. 1 shows the results obtained for the bilinear interpolation of four ten-
sors with three methods: Euclidean (linear interpolation of coefficients), affine-
invariant and Log-Euclidean bilinear interpolations. There is a pronounced swel-
ling effect in the Euclidean case, which is not physically acceptable. On the con-
trary, both Riemannian interpolations provide the same geometric interpolation
of determinants. There is a slightly larger anisotropy in Log-Euclidean means,
which is a general effect discussed in [1]. The computation of the affine-invariant
mean is iterative (we use the Gauss-Newton method described in [12]), whereas
the closed form given by Eq. (4) is used directly in the Log-Euclidean case.
This has a large impact on computation times: 0.003s (Euclidean), 0.009s (Log-
Euclidean) and 1s (affine-invariant) for a 5× 5 grid on a Pentium M 2 GHz.

To compare the Euclidean and Riemannian bilinear interpolations on real
data, we have reconstructed by bilinear interpolation a down-sampled DTI slice.
One column out of two and one line out of two were removed. The slice was
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Fig. 1. Bilinear interpolation of 4 tensors at the corners of a grid. Left:
Euclidean interpolation. Middle: affine-invariant interpolation. Right: Log-Euclidean
interpolation. Note the characteristic swelling effect observed in the Euclidean case,
which is not present in both Riemannian frameworks. Note also that Log-Euclidean
means are slightly more anisotropic than their affine-invariant counterparts. The col-
oring of ellipsoids is based on the direction of dominant eigenvectors.

Fig. 2. Bilinear interpolation in a real DTI slice. Left: Original DTI slice, before
down-sampling. Middle: Euclidean interpolation. Right: Log-Euclidean interpolation.
Half the columns and lines of the original DTI slice were removed before reconstruction
with a bilinear interpolation. The slice is taken in the mid-sagittal plane and displayed
in perspective. Note how the tensors corresponding to the corpus callosum (in red,
above the large and round tensors corresponding to a part of the ventricles) are better
reconstructed (more anisotropic) in the Log-Euclidean case.

chosen in the mid-sagittal plane where strong variations are present in the DT
image. The results in Fig. 2 show that the tensors corresponding to the corpus
callosum are better reconstructed in the Log-Euclidean case. Affine-invariant
results are very close to Log-Euclidean results and not shown here.

3.2 Regularization of Tensor Fields

DT images are corrupted by noise, and regularizing them can be a crucial pre-
liminary step for DTI-based algorithms that reconstruct the white matter con-
nectivity. As shown in [12], Riemannian metrics provide a general framework
to provide such a regularization. We focus here on a typical Riemannian crite-
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rion for the regularization of tensor fields. An anisotropic regularization can be
obtained by the minimization of a Φ-functional [4] Reg(S) given by:

Reg(S) =
∫
Image

Φ(‖∇S‖S(x)(x))dx. (5)

Φ(s) is a function penalizing large values of the norm of the spatial gradient ∇S
of the image. Here, we use Φ(s) =

√
1 + s2/κ2. Contrary to the Euclidean case,

the norm of ∇S depends explicitly on the current point S(x) and is given by:

‖∇S‖2
S(x) =

d∑
i=1

∥∥∥∥ ∂S∂xi
(x)
∥∥∥∥2

S(x)
. (6)

In general and in particular in the affine-invariant case, this dependence on the
current point leads to complex resolution methods. Practically, this implies in
the affine-invariant case an intensive use of matrix inverses, square roots, expo-
nentials and logarithms [12]. But in the Log-Euclidean framework, the general
Riemannian formulation is extremely simplified. The reason is that the depen-
dence on the current tensor disappears on logarithms [1]:

‖∇S‖S(x) = ‖∇ log(S)‖. (7)

Consequently, the energy functional can be minimized directly on the vector field
of logarithms. The regularized tensor field is given in a final step by the matrix
exponential of regularized logarithms. Interestingly, mathematical issues such as
existence and uniqueness of PDEs on tensors in the Log-Euclidean framework are
simply particular cases of the classical theory of PDEs on vector-valued images.

In the following experiments, the minimization method used is a first-order
gradient descent with a fixed time step dt. We use an explicit finite difference
scheme on logarithms in the Log-Euclidean case and the geodesic marching
scheme described in [12] in the affine-invariant case. In the Euclidean framework,
we also use affine-invariant geodesic marching rather than a classical explicit
scheme to limit the appearance of non-positive eigenvalues, proceeding simi-
larly as in [4]. Homogeneous Neumann boundary conditions are used, κ = 0.05,
dt = 0.1 and 100 iterations are performed.

As a first example, we restore a noisy synthetic image of tensors. Results are
shown in Fig. 3: the negative impact of the Euclidean swelling effect is clearly
visible. On the contrary, both Riemannian frameworks yield proper results, the
only (small) difference being slightly more anisotropy for Log-Euclidean results.

Let us now turn to a real DTI volume of the brain with 128×128×30 voxels
with spatial dimensions of 1.875×1.875×4mm3. The b-value is 1000s.mm−2. As
shown in Fig. 4, both Riemannian results are qualitatively very satisfactory: the
smoothing is done without blurring the edges. They are also very similar to each
other, with only slightly more anisotropy in the Log-Euclidean case. As before,
the Euclidean results are marred by a pronounced swelling effect. Computations
are much faster in the Log-Euclidean case: 30 minutes instead of 122 minutes
for affine-invariant results on a Pentium Xeon 2.8 GHz with 1 Go of RAM.
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Fig. 3. Regularization of a synthetic DTI slice. Left: original synthetic data.
Middle Left: noisy data. Middle Right: Euclidean regularization. Right: Log-
Euclidean regularization. The original data is properly reconstructed in the Log-
Euclidean case, as opposed to the Euclidean case where the result is marred by the
swelling effect.

Fig. 4. Regularization of a real DTI volume. Left: close-up on the top right
ventricle and nearby. Middle Left: Euclidean regularization. Middle Right: Log-
Euclidean regularization. Right: highly magnified view (×100) of the absolute value
(the absolute value of eigenvalues is taken) of the difference between Log-Euclidean and
affine-invariant results. Note that there is no tensor swelling in the Riemannian cases,
contrary to the Euclidean case. Log-Euclidean and affine-invariant results are very
similar, the only difference being slightly more anisotropy in Log-Euclidean results.

4 Discussion and Perspectives

In this work, we have presented a particularly simple and efficient Riemannian
framework for tensor calculus, called Log-Euclidean. As in the affine-invariant
case, the defects of the Euclidean framework are corrected with Log-Euclidean
metrics, but without any unnecessary technicality. Indeed, Riemannian compu-
tations on tensors are converted into Euclidean computations on vectors in this
novel framework. In practice, classical statistical tools and PDEs for vectors
can be directly used on the matrix logarithms of tensors, which are simple vec-
tors. Moreover, all usual operations on tensors can be efficiently carried out in
this framework, like the joint estimation and smoothing of DTI from diffusion-
weighted images, as shown in [6].

In future work, we will study in further details the restoration of noisy DT
images. In particular, we plan to quantify the impact of the regularization on
the tracking of fibers in the white matter of the human nervous system. We also
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intend to use this new framework to better model and reconstruct the anatomical
variability of the human brain with tensors [7].
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Abstract. We develop a differential geometric framework for regular-
izing diffusion MRI data. The key idea is to model white matter fibers
as 3D space curves and to then extend Parent and Zucker’s 2D curve
inference approach [8] by using a notion of co-helicity to indicate com-
patibility between fibre orientation estimates at each voxel with those
in a local neighborhood. We argue that this provides several advantages
over earlier regularization methods. We validate the approach quantita-
tively on a biological phantom and on synthetic data, and qualitatively
on data acquired in vivo from a human brain.

1 Introduction and Related Work

In this article, we consider the problem of regularizing orientation fields obtained
using either Diffusion Tensor Imaging (DTI) [1] or High Angular Resolution Dif-
fusion Imaging (HARDI) [12] measurements. We view both cases in a differential
geometric setting where white matter fibers are modeled as 3D space curves. We
extend Parent and Zucker’s 2D curve inference approach [8] by using a notion
of co-helicity to model the compatibility between orientation estimates in 3D. In
this context, curvature and torsion play key roles in the interpretation of a tan-
gent bundle, where average local support is maximized using relaxation labeling
techniques. We demonstrate that using 3D curve inference for the regularization
of such data has advantages over earlier methods, including: 1) the possibility
of representing multiple orientations at the same voxel, 2) applicability to both
DTI and HARDI data, 3) numerical robustness in the vicinity of sparse mea-
surements and 4) estimates of curvature and torsion at each voxel, which can be
useful to guide fiber tracking algorithms.

We begin by briefly mentioning some of the key approaches to diffusion MRI
regularization. Poupon et al. [9] use a “spaghetti plate” model for the regulariza-
tion of DTI data. Westin et al. [7] regularize the individual elements of each DTI
tensor using a six-dimensional, multivariate Gaussian Markov Random Field. Ve-
muri et al. [13] propose a constrained variational principle for the simultaneous
estimation and regularization of DTI tensors directly from diffusion weighted
images. Coulon et al. [5] combine variational and anisotropic diffusion meth-
ods to separately regularize orientation fields and diffusivities. Tschumperlé and
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Deriche [11] also propose variational methods for regularizing orientation fields
in DTI data while preserving discontinuities, with the constraint that orthonor-
mality between the eigenvectors at each location is preserved.

All of the above algorithms have the inherent limitations that: 1) they were
designed explicitly for DTI data and cannot be trivially extended to handle
HARDI data and 2) they assume (explicitly or implicitly) a single fiber ori-
entation at each voxel and thus cannot handle branchings or crossings. To our
knowledge the only algorithms which address these concerns, at least in part, are
those proposed in [10, 3, 4]. Whereas some of these latter methods have been val-
idated on synthetic data, few (or none) have been demonstrated on a biological
phantom with known ground truth fiber orientations.

2 3D Curve Inference

We assume as input a 3D curve orientation distribution function sampled on
a regular (typically rectangular) 3D lattice. Following Parent and Zucker’s 2D
curve inference methodology [8], local curve orientation estimates can be inter-
preted as an initial tangent bundle at each location in the lattice. Our goal is to
obtain estimates of the trace, tangent, curvature and torsion fields of curves in
the 3D volume. This is done by using a notion of co-helicity between three tan-
gents, which is the natural extension to 3D of Parent and Zucker’s co-circularity
constraint between a pair of tangents in 2D [8]. In this framework, an osculating
helix (which has constant curvature and torsion) is used to approximate a curve
passing through a given point.

2.1 Properties of a Helix and Co-Helicity

A circular helix is a curve inscribed on the surface of a cylinder, such that at
all points on the curve, the associated tangent vector forms a constant angle
with the cylinder’s axis. Consider such a helix, parametrized by t, with its axis
coinciding with the z− axis. Its equations and those of its unit tangent and unit
normal are given by:

Fig. 1. An illustration of co-helicity between three vectors v1, v2 and v3
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x(t) = (x(t), y(t), z(t)) = (r cos(t), r sin(t), ct) , (1)
x′(t)

‖x′(t)‖ = (x′(t),y′(t),z′(t))
‖(x′(t),y′(t),z′(t))‖ = (−r sin(t),r cos(t),c)√

r2+c2 , (2)

x′′(t)
‖x′′(t)‖ = (x′′(t),y′′(t),z′′(t))

‖(x′′(t),y′′(t),z′′(t))‖ = (− cos(t),− sin(t), 0) . (3)

Here r is the radius of the helix and c is a constant defining the vertical separation
of the helical loops (measured along the helix axis). The orthographic projection
of a helix onto the xy plane is a circle with radius r.

Definition 1. Three orientations or vectors in 3D are co-helical if there is a
helix to which all three are tangent.

The concept of co-helicity is illustrated in Fig. 1, which shows a helical arc, three
of its tangent vectors labeled v1, v2 and v3, along with the helix axis and its
orthogonal plane Π . The orthographic projection of the helix onto Π is a circle
(shown with a dashed curve), and the projections of v1, v2 and v3 onto Π are
labeled Π(v1), Π(v2) and Π(v3). These three projections are co-circular [8],
since they are all tangent to the same circle in plane Π .

Theorem 1. Given three unit vectors v1, v2 and v3 in R3 specified at three
locations, it is possible to determine whether or not they are co-helical. Further-
more, if they are co-helical, it is possible to recover the parameters of the helix
passing through these locations and having v1, v2 and v3 as tangent vectors.

Owing to space restrictions we omit the proof, but present an algorithm (Algo-
rithm 1) for determining whether or not v1, v2 and v3 in R3 are co-helical, and
if so, for recovering the parameters of the helix.

2.2 Relaxation Labeling

In Parent and Zucker’s 2D curve inference framework [8], tangent fields are es-
timated over a 2D image by maximizing the average local support, defined by
A(p) =

∑n
i=1 si(λ)pi(λ). Expressions of this type can be maximized using the

relaxation labeling algorithm of [6]. Here pi(λ) indicates the confidence in ori-
entation λ at pixel i and its (local) neighborhood support given by si(λ) =∑n

j=1
∑m

λ′=1 rij(λ, λ′)pj(λ′). Each j denotes a node (i.e. pixel) in the neighbor-
hood of i, λ′ is an orientation at that node, rij(λ, λ′) represents the compatibility
between orientation λ at node i and orientation λ′ at node j, and there are a
total of m orientations and n nodes. The compatibility coefficients are designed
so that co-circular tangents lend one another support, while other configurations
are suppressed. This imposes a constraint on the variation of curvature, while
providing as a bi-product local estimates of curvature as well. The compatibility
coefficients are further refined to include a partitioning into curvature classes [8].

The key to extending the above 2D curve inference framework to 3D is to
replace the notion of co-circularity between two tangents with one of co-helicity
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Algorithm 1: Determining co-helicity between three orientation estimates

Data : Three 3D vectors v1,v2,v3

Result : 1 if there is a helix to which v1,v2,v3 are tangent, 0 otherwise.

1. (testing for a special case) If the three vectors are collinear, return 1.
2. Define a vector n as the cross-product of the difference vectors v3−v2 and v2−v1.

This is the axis of the putative helix.
3. Compute the projections Π(v1), Π(v2) and Π(v3) of v1, v2,v3 onto the plane that

has n as its normal vector. That fixes the value of the parameter r in the helix
equation (1). That is, r is the radius of the circle, lying in the plane orthogonal to
n, to which Π(v1), Π(v2) and Π(v3) are all tangent.

4. Without loss of generality we can set the parameter t (see (1)) of v1 to t1 = 0, the
parameter t of v2 is then simply the angle t2 = arccos

(
〈 Π(v1)

‖Π(v1)‖ , Π(v2)
‖Π(v2)‖ 〉

)
.

5. Using (1) and (2), it is easy to show that

〈v1,v2〉 =
r2 cos(t2 − t1) + c2

r2 + c2 (4)

(assuming that v1 and v2 have been normalized to unit length). With the values
for r, t1 and t2 obtained in steps 1 and 2, we can derive c using (4).

6. Given c, we can calculate (using (2)) the angle that the tangent vectors should
make with the helix axis, as well as the displacement in the direction of the helix
axis of the position of v1 and v2 ((1)). It is possible to verify whether v1 and v2

possess indeed these properties. If so, return 1. If not, return 0.
7. If any of the above steps fail (e.g. there is no one circle to which Π(v1), Π(v2)

and Π(v3) are all tangent in step 3) return 0.

between three tangents. The compatibility condition obviously has to be gener-
alized to a notion of higher order compatibility. Following [6], this is done by
replacing the support function by

si(λ) =
∑
j,λ′

∑
k,λ′′

rijk(λ, λ′, λ′′)pj(λ′)pk(λ′′). (5)

Here rijk(λ, λ′, λ′′) represents the compatibility (co-helicity) between orientation
λ at node i, orientation λ′ at node j and orientation λ′′ at node k, as determined
using Algorithm 1.

2.3 Implementation

The 3D curve inference algorithm can use an arbitrarily large label set. In our
implementation, we use a label set of 90 unit direction vectors distributed isotrop-
ically over a hemisphere, obtained using an electrostatic charge repulsion algo-
rithm. The relaxation labeling technique is implemented according to Algorithm
8.2 in [6], together with the radial projection method (Appendix A in [8]). The
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support coefficients are calculated in a spherical neighborhood of each voxel. We
obtain a significant increase in efficiency by precomputing the co-helical configu-
rations of tangent triplets and storing these in a look-up table. The initial values
for pi(λ) are obtained from the value of the orientation distribution function
(ODF) along orientation λ at voxel i, and a discretization of the allowed range
of variation of curvature and torsion (the 3D extension of the curvature classes
in [8]) is implemented. Note that the output of our algorithm is not an ODF any
longer, but a regularized tangent bundle, which is an indication of confidence in
the underlying curve (i.e. white matter fibre) orientations at each voxel.

3 Validation

Quantitative Validation On a Biological Phantom: A biological phantom was cre-
ated from two excised Sprague-Dawley rat spinal cords embedded in 2% agar.
Two diffusion-weighted datasets were acquired using this phantom, with 90 dif-
fusion encoding directions, with b values of 1300 s/mm2 and 3000 s/mm2, re-
spectively. The first was used for diffusion tensor reconstruction of the diffusion
ODF and the second for high angular resolution reconstruction, using the q-ball
technique [12]. A T1-weighted image of this phantom is shown in Fig. 2 (top left).
The ground truth orientations were determined by extracting the centerlines of
each cord using the technique of [2] and then smoothly extending the orientation
estimates in the center to the boundary of the cord, for each cord (Fig. 2, top

Fig. 2. Top Row: A biological phantom created by overlaying two rat cord spinal
cords (left), ground truth orientation estimates shown separately for the two cords
(middle), and the principal eigenvector orientations of the DTI image in the vicinity
of the crossing (right). Bottom Row: The regularized orientation estimates obtained
using the technique of [11] (left), those obtained using 3D curve inference on the DTI
reconstruction (middle), and the regularized HARDI reconstruction using 3D curve
inference (right).



128 P. Savadjiev et al.

middle). Fig. 2 (top right) shows the principal components of the diffusion ten-
sors in the region of the crossing, indicated by a rectangle in Fig. 2 (top left). The
bottom row of Fig. 2 shows the results obtained using Tschumperlé and Deriche’s
orthonormal vector regularization [11] (OVR-DTI) (left), curve inference on the
DTI dataset (CI-DTI) (middle) and curve inference on the HARDI dataset (CI-
HARDI) (right). The average orientation errors in degrees (± 1 std. deviation)
between the ground truth dataset and the unregularized as well as regularized
datasets for each case are shown in Fig. 3 (left). Observe that the results obtained
using curve inference give significantly lower errors. Furthermore, the lowest er-
ror is obtained by applying curve inference to HARDI data. The phantom data
is challenging because of eddy current induced artefacts in many boundary vox-
els, where the measured principal direction of diffusion is perpendicular to the
ground truth orientation. In the case of the curve inference experiments, the
error is measured between the maximally supported orientation at each voxel in
the regularized data, and the corresponding ground truth orientation.

Quantitative Validation On Synthetic Data: A synthetic DTI dataset in a 100×
50×100 voxel grid was created by placing anisotropic diffusion tensors with their
principal direction vector aligned with one of three curves: a planar sine wave,
and two helices with different curvature and torsion. Partial volume averaging
effects were simulated in voxels where the helices intersect the sine wave, and
background voxels were filled with isotropic (spherical) tensors. All tensors had
a mean eigenvalue of 3. In anisotropic regions the principal eigenvalue was set
to 7 and the others to 1. In voxels with crossings, the two principal directions
had eigenvalues of 4, and the other eigenvalue was set to 1. The two angles
describing the orientation of each tensor were perturbed (independently) by
adding Gaussian noise, with mean 0 and a standard deviation of 22.9◦ (0.4 rad).
The original (noiseless) dataset was treated as the ground truth. One view of
the noisy dataset is shown in Fig. 3 (right); it is important to note that the
helices are non-planar curves. Validation results are shown in the right column
of the table in Fig. 3 (left). Observe that once again curve inference (CI-DTI)
achieves a significant reduction in orientation error, compared to both the noisy
unregularized data, as well as the result obtained with OVR-DTI [11].

Qualitative Validation On Human Brain Data: We conclude with regularization
results using in vivo human brain data. Fig. 4 (top left) shows a slice through
the data, which consists of a DTI reconstruction of the diffusion ODF. The data
covers an area with multiple fibre directions, including voxels with partial volume
averaging effects, as well as voxels with cerebro-spinal fluid and grey matter that
do not exhibit high diffusion anisotropy. Fig. 4 (top right) shows one region of
interest (ROI) of the regularization result using 3D curve inference, and Fig. 4
(bottom left) shows a slice through the corresponding 3D fractional anisotropy
image of the brain, with a white rectangle indicating the ROI. A zoom-in on the
bottom-left part of the regularization result is given in Fig. 4 (bottom right),
showing the recovery of multiple fibre directions in voxels with partial volume
averaging effects. Qualitatively, intra-voxel crossings and the apparent variation



3D Curve Inference for Diffusion MRI Regularization 129

Phantom Synthetic
Unreg. DTI 27.1 ± 29.0◦ 24.9 ± 14.5◦

Unreg. HARDI 21.0 ± 21.9◦ N/A
CI-DTI 11.0 ± 16.3◦ 11.2 ± 8.2◦

CI-HARDI 10.3 ± 17.3◦ N/A
OVR-DTI 24.0 ± 22.2◦ 21.2 ± 12.9◦

Fig. 3. Left: Table of validation results showing average orientation errors in degrees
for the biological phantom data set and the synthetic data set. Right: A snapshot of
the noisy synthetic data set, prior to regularization.

Fig. 4. A ROI through the brain DTI data (top left) with the regularization results
using curve inference (top right). A slice through the associated fractional anisotropy
image (bottom left) with a white rectangle enclosing the ROI. A zoom-in on the result
from a different viewpoint in a region of partial volume averaging effects (bottom right).

of curvatures are recovered well from the DTI data. Quantitative evaluation of
these results is difficult, due to the lack of ground truth.

4 Conclusion

We have presented a differential geometric framework for regularizing diffusion
MRI data, where a notion of co-helicity is used to compute support for orienta-
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tions given neighbouring orientation estimates. Since multiple orientations can
receive support in the same voxel, the algorithm is applicable to configurations
of crossings or branchings, and it handles DTI and HARDI data in an identical
way. It can also be applied to the regularization of any set of ODFs distributed
over a discrete 3D lattice. As a bi-product of the algorithm, we obtain discrete
estimates of the curvature and torsion of the likely curves at each voxel, which
could be used to guide fiber tracking algorithms. We have validated the algo-
rithm quantitatively on a biological phantom and on a synthetic data set, and
qualitatively on in vivo human brain data.
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Abstract. Diffusion tensor imaging (DTI) has become the major modality to
study properties of white matter and the geometry of fiber tracts of the human
brain. Clinical studies mostly focus on regional statistics of fractional anisotropy
(FA) and mean diffusivity (MD) derived from tensors. Existing analysis tech-
niques do not sufficiently take into account that the measurements are tensors,
and thus require proper interpolation and statistics based on tensors, and that re-
gions of interest are fiber tracts with complex spatial geometry. We propose a
new framework for quantitative tract-oriented DTI analysis that includes tensor
interpolation and averaging, using nonlinear Riemannian symmetric space. As a
result, tracts of interest are represented by the geometry of the medial spine at-
tributed with tensor statistics calculated within cross-sections. Examples from a
clinical neuroimaging study of the early developing brain illustrate the potential
of this new method to assess white matter fiber maturation and integrity.

Keywords: Diffusion tensor interpolation, diffusion tensor statistics, DTI anal-
ysis, fiber tract modeling.

1 Introduction

Diffusion tensor imaging of brain structures measures diffusion properties by the lo-
cal probability of self-motion of water molecules. A tensor field is calculated from di-
rectional gradient images and characterizes amount and locally preferred directions of
local diffusivity. While diffusion can be considered isotropic in fluid it appears highly
anisotropic along neural fiber tracts due to inhibition of free diffusion of intra- and extra-
cellular fluid. DTI has become the preferred modality to explore white matter properties

� This research is supported by the NIH NIBIB grant P01 EB002779, the NIMH Silvio Conte
Center for Neuroscience of Mental Disorders MH064065, and the UNC Neurodevelopmental
Disorders Research Center HD 03110. The work is also funded by the National Institutes of
Health through the NIH Roadmap for Medical Research, Grant U54 EB005149-01, project
NAMIC. We acknowledge the Insight Toolkit community for providing the software frame-
work. Dr. Weili Lin, UNC Radiology, is acknowledged for active support of developing an
improved neonatal DT MRI acquisition technique.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 131–139, 2005.
© Springer-Verlag Berlin Heidelberg 2005



132 I. Corouge et al.

associated with brain connectivity in vivo. The literature proposes a variety of DTI pro-
cessing techniques, ranging from tensor field computation to quantitative analysis, and
including visualization, regularization, registration, tractography and population statis-
tics. Few of these methods make use of the full tensor information though most would
benefit from an appropriate mathematical framework for tensor operations and tensor
statistics calculation. For instance, tensor interpolation is required in regularization, reg-
istration and spatial normalization. Tensor statistics calculation becomes necessary for
statistical DTI analysis in population studies. So far, analysis schemes have mostly fo-
cused on measuring properties in regions of interest and to a lesser extent along fiber
bundles [1], [2], and they have not made use of the full tensor information. Conse-
quently, clinical studies have mostly been limited to statistics of FA or MD maps on a
voxel-by-voxel basis [3].

As opposed to voxel-based analysis, we propose an object-oriented approach in
which the fiber tracts act as coordinate systems for quantitative DTI analysis. Our con-
cept provides a complete representation of each individual bundle, describing both ge-
ometry and diffusion properties. The representation includes model of the geometry of
individual bundles and statistics of diffusion tensors to be associated with the geomet-
ric model. In this paper, we focus on the computation of DTI tensor interpolation and
DTI tensor statistics. Tensor information is integrated across cross-sections and repre-
sented along bundles. We thus supplement our previous model of tract geometry [4]
with statistics of diffusion tensors, from which we derive diffusion properties.

2 Theoretical Framework

We denote the space of all diffusion tensors, i.e., the space of all 3 × 3 symmetric,
positive-definite matrices, as PD(3). Averaging and interpolation of diffusion tensors
can be formulated as a least-squares minimization problem in this space. This definition
depends on the choice of metric, or distance, on the space PD(3). Treating diffusion
tensors as vectors in the space R

9, one can define a linear average of N diffusion ten-
sors p1, . . . , pN as μ = 1

N

∑N
i=1 pi. This definition minimizes the Euclidean metric on

R9. However, linear averages suffer from a “swelling” effect where diffusion tensors
with the same determinant will have an average with a larger determinant. Linear in-
terpolation of diffusion tensors suffers from this same effect. We adopt a more natural
metric for averaging and interpolation by treating PD(3) as a curved manifold, or more
specifically, a Riemannian symmetric space. We use tensor averaging and interpolation
methods, first presented in [5], [6], that are based on the notion of geodesic distance
within this space. In a similar approach [7], interpolation is limited to only two tensors,
whereas our work applies to averaging and interpolation of an arbitrary number of ten-
sors and thus allows a full 3D interpolation of DTI data. The symmetric space metric
does not suffer from the swelling effect of the linear metric, that is, diffusion tensors
with the same determinant will have an average with the same determinant.

Symmetric spaces [8] arise from transformation groups on manifolds. The Rieman-
nian metric is chosen to be invariant under the group transformations. The symmetric
space structure of PD(3) arises from transformations by GL(3), the group of positive-
determinant matrices. The transformation of a diffusion tensor p ∈ PD(3) by a matrix
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g ∈ GL+(3) is given by p �→ gpgT . Because of the algebraic nature of the symmet-
ric space structure, distance and geodesic computations on PD(3) are also algebraic in
nature. For instance, the geodesic distance between two tensors p1, p2 ∈ PD(3) can be
computed using singular-value decomposition (SVD) as follows:

- Let p1 = UΛUT be the SVD of p1, set g = U
√
Λ.

- Compute the action of g−1 on p2: y = g−1p2(g−1)T .
- Again using SVD, compute the eigenvalues σi of y.

- The geodesic distance is d(p1, p2) =
(∑3

i=1 log(σi)2
) 1

2
.

2.1 Statistics of Diffusion Tensors

We now define the mean and variance of diffusion tensors respecting the geometry of
the space. Following Fréchet [9], we define the average as the minimum mean squared
error estimator under the natural Riemannian metric defined above. Given a set of dif-
fusion tensors p1, . . . , pN ∈ PD(3) the mean is defined as

μ = arg min
p∈PD(3)

N∑
i=1

d(p, pi)2. (1)

This minimization problem can be solved using a gradient descent method as described
in [5]. This is analogous to the algorithm for computing the intrinsic mean given by
Pennec [10]. Having defined the mean, we define the sample variance of the data as the
expected value of the squared geodesic distances from the mean:

σ2 =
1
N

N∑
i=1

d(μ, pi)2. (2)

2.2 Interpolation of Tensors

For developing consistent interpolation between diffusion tensors we extend the above
definition of the mean to weighted averaging. Using a least-squares criterion, we define
the weighted average of diffusion tensors p1, . . . , pN ∈ PD(3) as

Ave({wi}, {pi}) = arg min
p∈PD(3)

N∑
i=1

wid(p, pi)2, (3)

Fig. 1. Synthetic examples of weighted averages of tensors. The white ellipsoids average to the
red ellipsoid with the geodesic method and to the blue ellipsoid with the linear method. Left:
weights = {0.5,0.5}. Right: weights = {0.75,0.25}. It can be observed that the linear method
does not preserve the determinant.
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where w1, . . . , wN are positive real weights that sum to 1. Figure 1 provides synthetic
examples of weighted averages of tensors.

For interpolating tensors within a voxel, trilinear weights may be used for the wi.
In this paper, we only focus on trilinear weights although higher order interpolation
may be defined using the same concept. This interpolation is a natural generalization
of trilinear interpolation of scalar values, i.e., if we replaced the diffusion tensors in
the above definitions with real numbers, we would arrive at trilinear interpolation. It
follows easily from the use of trilinear weights that the interpolation function does
indeed interpolate the corner points. It can also be shown that the interpolation function
is continuous on [0, 1]3 (see [6] for a proof).

3 Fiber Tract Modeling and Analysis Methodology

Interpolation and averaging of tensors is applied for quantitative fiber tract-oriented
analysis of DTI. The geometry of an individual fiber tract is modeled, basically with
what is commonly called a point distribution model (PDM) [11]. Diffusion tensor statis-
tics are computed across fiber tract sections and are associated with the mean geometric
model, resulting in a compact description of diffusion properties along the fiber tract.
An overview of our framework is illustrated in Fig. 2.

Fig. 2. Overview of the DTI analysis framework

3.1 Preprocessing: Tensor Field Computation and Fiber Extraction

The tensor field is computed from DTI data by solving the Stejskal-Tanner’s diffu-
sion equation system [12]. A tractography algorithm [13] extracts streamlines follow-
ing the principal diffusion tensor directions between source and target regions of in-
terest, with sub-voxel precision. Our latest version of the tractography tool includes
tensor interpolation as described in Sect. 2.2. Except at branching or crossing points,
the extracted 3D curves are assumed to represent the most likely pathways through the
tensor field.
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3.2 Geometric Modeling

An individual fiber tract, described by a set of streamlines, acts as a training set from
which we estimate a template shape, the mean shape, and statistical deviations by learn-
ing its inherent shape variability. A brief review of the geometric modeling of one indi-
vidual fiber tract is presented below (see [4] for a more comprehensive description).

First, fibers represented as polylines are reparametrized by cubic B-spline curves.
This ensures an equidistant sampling along each fiber as well as a consistent sampling
for all fibers. Second, an origin, which can be reliably identified across subjects, is de-
fined for each fiber tract. This is either a geometric criterion, e.g., a cross-section with
minimal area, or anatomical information like intersection with the midsagittal plane.
Points with the same arc-length along the fiber tract are defined as homologuous. This
explicit point to point matching has been proven relevant in [2] where we demonstrated
that it properly aligns local shape features across all curves in a fiber bundle. Given this
correspondence, the alignment of all curves in the training set is achieved by Procrustes
analysis [14]. Only estimated translations and rotations are applied to fibers. Indeed, a
size normalization is not desirable since the training fibers belong to the same individual
fiber tract. Given the set of aligned shapes, the mean shape is estimated by averaging
the spatial coordinates at each corresponding location over the tract. Additionally, sta-
tistical shape deviations from this template shape along the tract can be characterized
by extracting the principal modes of deformation via a principal component analysis.

3.3 Attributing the Geometric Model with Diffusion Tensor Statistics

The estimated mean shape models the geometry of the fiber tract. A complete repre-
sentation of the tract, describing both geometry and diffusion properties, is obtained
by attributing each location along the mean curve with statistics of diffusion tensors
calculated over cross-sections.

Computing the Mean Tensors along the Fiber Tract. First, each sample point x from
the set of reparameterized fibers is assigned a tensor p. Since the tensor field is defined
on the discrete voxel grid while x lies on a continuous curve, a geodesic interpolation
(see Sect. 2.2) is required to compute the tensor p at the location x. The tensor p is
given by the weighted average of the eight voxel tensor values in the nearest 2× 2× 2
neighborhood of x, the weights being defined by trilinear interpolation (see (3)). Let P
be the set of obtained tensors, P = {pf,i} with f indexing the reparameterized fibers
across the tract and i the location along each reparameterized fiber. Then, the tensor
set P is aligned by rotation. Let Rf ∈ SO(3) be the rotation estimated by Procrustes
analysis for the reparameterized fiber f . Each tensor pf,i lying on f is rotated to the
tensor p ′

f,i by the group action Rf : p ′
f,i = Rfpf,iR

T
f , ∀i. Last, at each corresponding

location i along the tract, the mean tensor μi is computed from the set of aligned ten-
sors, {p ′

f,i}, as defined in (1). In addition, tensor diffusion variability can be assessed
at each location of the average curve by computing the geodesic standard deviation
according to (2). For visualization purposes, each average tensor is translated to its cor-
responding average location on the average curve. Since diffusion tensors are invariant
to translation, this does not affect any diffusion property.
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Deriving Diffusion Properties. At each location along the template curve, diffu-
sion properties are derived from the average tensor. We consider the measures: i) the
three eigenvalues of the average diffusion tensor, λ1, λ2, λ3, which represent the dif-
fusivities along the three principal directions of the tensor, ii) the mean diffusivity,
MD, defined by the first moment of the diffusion tensor eigenvalues, iii) the fractional
anisotropy, FA, which is a normalized measure of the tensor shape and defines a dis-
tance to isotropy.

4 Experiments and Results

We have applied our new fiber tract-oriented DTI analysis technique to image data of
a prospective study of neonatal brain structure in children at high risk for schizophre-
nia [15]. This study includes 3-Tesla MRI and DTI of neonates at 2 weeks of age with
follow-up at 1 year. Local diffusion properties in white matter as measured by DTI
have been implicated to be associated with axon density, degree of myelination and
density of fluid. DTI of neonates in general present a decrease of FA and an increase
of MD from central to peripheral regions, reflecting the typical pattern of early struc-
turing of white matter. Over the first few months till age 1 and further, there is a rapid
development of myelination of white matter. This is expected to be demonstrated by a
thinning of local tensors and therefore by an increase of FA and a decrease of MD as
a function of age. We will focus on the commissural bundles of the corpus callosum,
specifically on the genu and splenium fiber tracts which connect prefontal cortices and
parts of the temporal, parietal and occipital lobes, respectively. It is known that the sple-
nium is myelinating earlier than the genu, and that the presence of myelin sheaths has
a significant effect on ability of water to diffuse [16].

Diffusion Tensor Image Data. Neonates and follow-ups were scanned on a Siemens
head-only 3T scanner (Allegra). A single shot echo planar (EPI) diffusion tensor se-
quence with total scan time of approximately 4 minutes was used. The imaging param-
eters were: TR/TE/TH=4219ms/92.2ms, isotropic voxels with 2mm slice distance and
inplane resolution = 2× 2mm, 5 averages, and number of slices ranging from 44 to 65.
Seven images were acquired for each slice, one without diffusion gradient (b=0) while
the remaining six with b=1000s/mm2 and diffusion gradients along the standard orien-
tations [17]. We selected 8 cases from our large image database: 4 neonates at 2 weeks
and 4 infants at age 1 year. For all cases, the genu and splenium tracts were extracted
by tractography (see Fig. 3), the regions of interest being manually defined on the FA
image using our SNAP tool.

Average of Diffusion Tensors in Cross-Sections Along Tracts. The geometric model
and associated diffusion tensor statistics are computed for both tracts of each subject
as described in Sect. 3. The Procrustes alignment for clustering of dispersed bundles
has been skipped in these experiments, because tracking resulted in coherent, compact
bundles. Figure 4 shows the mean tensors along the mean curve for each selected fiber
tract for typical neonate and one year-old cases. As expected, the one year-old case
presents much sharper and more elongated mean tensors than the 2 weeks-old case,
which is explained by myelination of these white matter tracts.
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a b c d

Fig. 3. DTI data with fiber tracts overlaid on axial sections of FA images. Genu and splenium of:
a), b) one typical neonate case, c), d) one typical one year-old case.

a b c d

Fig. 4. Average tensors calculated in cross-sections displayed along central spine of each bundle.
Genu and splenium of: a), b) one typical neonate case, c), d) one typical one year-old case.
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Fig. 5. Diffusion properties derived from average tensors plotted as a function of arc-length. From
left to right: Eigenvalues, MD and FA for the genu (top row) and the splenium (bottom row) of
one typical neonate (dashed lines) and one typical one year-old (solid lines). Last column displays
FA for all 8 subjects: 4 neonates (dashed lines) and 4 one year-old (solid lines).

Diffusion Properties Along Fiber Tracts. The diffusion properties computed from the
mean tensors, confirm the observation of increase of tensor elongation (see Fig. 5). For
both tracts, the maximum diffusivity, λ1, appears quite similar for all cases, whereas the
median and mininum diffusivities, λ2 and λ3, are definitely higher in the two weeks-old
cases (see dashed versus solid lines). Similarly, the mean diffusivity is much higher in
the two weeks-old cases compared to the one year-old cases. This is consistent with
the FA plots that, on the contrary, show higher values for the one year-old cases. These
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observed diffusion properties complies with the fact that white matter becomes more
and more dense and structured with age. The overall pattern of each diffusion property
for all subjects is similar. This indicates an early local structure of unmyelinated fiber
tracts at birth, possibly explained by high axonal density, that develops into a more
organized structure due to myelination with increasing age.

Validation. A preliminary validation of our quantitative DTI analysis framework has
been performed on the basis of 6 repeated DTI scans of the same subject with slight
change of head position [18]. The analysis is applied to 3 callosal bundles and the
uncinate fasciculus from each single scan and an average DTI computed after rigid
body alignment. Diffusion properties along tracts are compared between scans. Stan-
dard deviation from the set of 6 scans lies with 5% for FA and MD and 2% for λ1. This
test/re-test validation demonstrated a good reproducibility of the methodology.

5 Discussion

We have presented a new framework for fiber tract-oriented quantitative analysis of
DTI data. It combines a geometric model of fiber tracts with diffusion tensor statis-
tics. Unlike most other statistical analysis of DTI data, we do not compute statistics on
scalar measurements derived from tensors but we compute statistics on diffusion ten-
sors followed by calculation of tensor properties. We use non linear statistics for tensor
interpolation and averaging. The extended set of features provided by the new method-
ology which includes integrated measurements across bundles and along fiber tracts
seems to be suitable to study white matter fiber tract properties in cross-sectional and
longitudinal studies. The new quantitative DTI analysis technique describes properties
of tracts and is therefore superior to conventional region-of-interest measurements and
might lead to an improved understanding of MRI/DTI findings and its association to
normal/abnormal brain development at early age. Our analysis confirms earlier find-
ings in regard to decrease of FA and increase of MD towards peripheral regions. The
expected change over the first year of development is clearly demonstrated by FA and
MD plotted as a function of arc-length. Analysis of the three associated eigenvalues
reveals more insight, namely that the FA increase is due to decrease of the second and
third eigenvalue whereas the diffusion along the major tensor direction remains simi-
lar. Further analysis on a larger population with extended age range might reveal more
insight into the trajectory of growth as measured by DTI and measured as a function
of anatomical location. We presently have 60 neonates and will increase this number
to a total of 125. Ultimately, the proposed compact representation of the geometry of
a tract and of associated diffusion properties aims at being used for inter-subject com-
parison and statistical analysis. This implies correspondence issues that are currently
investigated by arc-length parameterization and could include local shape features of
curves which have been shown to yield typical patterns along major fiber tracts [2].
Group comparison in clinical studies would require more advanced statistical tech-
niques, for instance for comparison of probability distributions of tensors and hypothe-
sis testing.
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Abstract. We present a novel method for finding white matter fiber
correspondences and clusters across a population of brains. Our input
is a collection of paths from tractography in every brain. Using spectral
methods we embed each path as a vector in a high dimensional space.
We create the embedding space so that it is common across all brains,
consequently similar paths in all brains will map to points near each other
in the space. By performing clustering in this space we are able to find
matching fiber tract clusters in all brains. In addition, we automatically
obtain correspondence of tractographic paths across brains: by selecting
one or several paths of interest in one brain, the most similar paths in all
brains are obtained as the nearest points in the high-dimensional space.

1 Introduction

Diffusion MRI measures water diffusion in tissue. Where many cells have similar
orientations, such as in muscle or nervous tissue, the MRI measurements de-
scribe that local cellular pattern. Starting from these measurements of diffusion
(represented as diffusion tensors) in the brains of several subjects, we produce
an approximation of the neural fiber tract anatomy of the population.

Due to the complexity of the data, manual exploration of diffusion tensor im-
ages for the purposes of segmentation, registration, diagnosis, surgical planning,
etc. is currently very difficult. One may choose to visualize tensors directly using
small glyphs, or attempt to reconstruct anatomical structure by interpolating
paths that follow the principal direction of diffusion. Detailed three-dimensional
neuroanatomical knowledge is necessary to pinpoint the expected location of a
white matter fiber, so it is not easy to choose a region of interest for display
of the glyphs or paths. By creating an automatic segmentation of all possible
paths, one could reduce this data interaction problem to a simple choice of which
group of paths to display. Not only would this aid in visualization of the data, but
also in the automatic quantification of properties of interest such as anisotropy
measures, and in finding cross-patient anatomical correspondences.

Early work in grouping of tractographic paths by Brun et. al has used color
to enhance visual perception of connectivity using information from spectral
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embeddings [2, 1]. Related work in segmentation of tractographic paths has em-
ployed clustering approaches which divide the problem into two parts: the deci-
sion of how to quantify distance (or similarity) between paths, and the choice of
clustering method. Several distance measures have been proposed in the litera-
ture. In one of the earliest approaches, Ding et al. calculate the mean distance
separating paths using pointwise correspondences between path segments [4].
Their method is specific to paths which have been seeded in one image slice,
but in later approaches more general distances have been defined. Brun et al.
introduced a 9-D vector for tract shape approximation which they define as the
mean and lower triangular part of the covariance matrix of the points on a path
[1]. They compute the distance between paths as the Euclidean distance between
the corresponding 9-D vectors. Gerig et al. and Corouge et al. propose distances
that do pointwise comparison of tract shapes: they define three measures related
to the Hausdorff distance [6, 3]. In more recent work by Jonasson et al. (who use
paths through high angular resolution diffusion data) a path similarity measure
is calculated based on the number of times two paths share the same voxel [7].
Two general types of clustering methods have been employed in the literature,
hierarchical clustering [3, 6, 10], and the spectral clustering approach [1, 7].

To our knowledge, there is little prior work on the topic of matching tracto-
graphic paths across patients. In work by Zhang et al., a two-step process first
performs clustering on each patient, then describes the clusters with 9-D vec-
tors (the average start point, end point, and “middle point” of all paths in the
cluster). These feature vectors are used to match clusters across patients [10].

2 Methods

Our method has several steps: tractography, estimation of distances/similarities
between paths, spectral embedding, and finally clustering and/or anatomical re-
gion of interest (ROI) selection in the population. Figure 1 illustrates this process
using data from the population of brains described further in Section 3. In the rest
of this section we explain each step in our algorithm and its parameters.

Path Comparison Multi-Brain Embedding Clusters/ROI Selection

Fig. 1. Visual overview of the method using data from the population: two paths, a
random sample of 500 embedding vectors, and population tract clusters in one brain

2.1 Tractography

We perform tractography using open-source software (www.slicer.org), which
does second-order Runge-Kutta integration. We produce paths starting at all
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points in a region of interest that covers most of the brain. Paths stop when the
FA (fractional anisotropy) or curvature become too low or high, respectively.
For the experiments in this paper, the region of interest was the area with FA
greater than 0.3, and the settings used for the thresholds were FA of 0.1 and
curvature of 1.1. In addition, to limit the number of paths, paths shorter than
a length cutoff of approximately 30mm were discarded. To give an idea of the
numbers of paths involved, there are about 256× 256× 50, or 3 million, voxels
in a dataset, of which we select approximately 300,000 for path seeding. After
pruning the number of paths is between 5,000 and 25,000 for one brain.

2.2 Similarity Measure for Tract Paths

We use a symmetrized Hausdorff distance, as suggested in [6], and we compare
paths in all brains. The Hausdorff distance Hij is defined as the maximum of
pointwise minimum distances between a pair of curves i and j. We symmetrize
the distance by averaging Hij with Hji. In the common case where a short
and long path are aligned, the average distance is a more forgiving measure
than the maximum distance, but it preserves some information about the length
mismatch, unlike the minimum distance. We convert the distance measure to a
similarity measure Wij using a Gaussian kernel where σ controls the distance
over which paths can influence each other. For the experiments in this paper, σ
was set to 10.

Wij = e−Hij/σ2
(1)

2.3 Spectral Clustering

Spectral clustering methods group data using eigenvectors of a data affinity
matrix. The method we employ is described in [8] and is identical to the k-way
normalized cuts procedure from [5], except we do not need to postprocess the
clusters to correct for oversegmentation. First the symmetric tract similarity
matrix W is scaled using a diagonal matrix D whose entries are the row (or
column) sums of W . This produces L:

L = D− 1
2WD− 1

2 (2)

Embedding vectors are then calculated from the eigensystem of L (L =
UΛUT ) by applying a scaling to the rows of U . The scaling converts the eigen-
vectors to the solution one would get by solving the generalized eigensystem
(D −W )y = Dλy, which minimizes the Normalized Cut [9]. From [5], the em-
bedding vector for the jth tract is

Ej =
1√
Djj

(Uj,2, Uj,3, ..., Uj,n) (3)

where n is the number of eigenvectors chosen for the embedding, and the column
index of U starts at 2 in order to skip the first (major and smoothest) eigenvec-
tor. Care is needed in choosing n because the eigenvectors become noisy as the
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eigenvalues decrease. For the experiments in this paper we have set n to 20. In
spectral clustering, the next step is to cluster the embedding vectors, usually by
k-means.

2.4 The Nystrom Method

In our application it is important to avoid computing the full W matrix, which
for 5 brains would be at least 25, 000×25, 000. The Nystrom method is a way to
interpolate values of a function, using known values and interpolation weights.
We use this method to approximate the eigenvectors of W , as described in [5].

Instead of computing W directly, a random subset of paths is selected for
comparison, and the similarity measure is calculated between each path and that
subset. The matrix A contains similarities between paths in the subset, and the
matric B contains similarities between other paths and the selected subset. From
[5], the approximate eigenvectors of W are calculated as

Ū =
[

U
BTUΛ−1

]
(4)

where U = AUΛ−1 and the ordering of the rows of Ū is such that those corre-
sponding to rows of A are first, followed by those corresponding to rows from
BT . To get an intuition for why this works, imagine that you have performed
clustering using the information in A and you would like to add some new data
to the problem without starting over. Since A = AT we can rewrite equation 4 as

Ū =
[
ATUΛ−1

BTUΛ−1

]
(5)

So this process can be thought of as estimating the rows of Ū by projecting the
new data from B into the same space where the old data in A were projected.

There are two more details when using this approximation method. First of
all, the normalization of A and B using row sums of W must be performed some-
how before calculating Ū . In [5] this is shown to be possible without computing
W itself. The second detail is that the estimated eigenvectors of W (the columns
of Ū) should be orthonormal. In [5] the authors give two methods for orthogo-
nalizing the columns. However we have found this to be unnecessary because in
practice, after the columns of Ū are normalized to length one, we have always
found ŪT Ū to be close to the identity matrix.

3 Results

We employed our method to cluster tractographic paths in a population of 5
brains. For each, the input to tractography was a DTI scan with voxel size
0.86× 0.86× 5mm. The total number of tract paths from all brains was 36,003.
We randomly selected 1000 tract paths from the population, and compared all
other paths to these in order to generateA, B, and Ū We then performed spectral
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Fig. 2. Anterior, right, and superior views of the five brains in the population. The
colors show correspondence via spectral embedding.
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clustering to generate 100 clusters, a number that we find in practice is large
enough to avoid grouping very dissimilar tracts. Interesting anatomical clusters
exist at many size scales so choosing the number of clusters is not easy.

The output clustered/embedded brains are shown in Figure 2. The corre-
spondence of the colors directly shows the correspondence in embedding space.

Fig. 3. Anatomical correspondences: selected clusters, displayed in all 5 brains. The
two leftmost images show the corpus callosum viewed superiorly and from the right. Of
the 100 clusters found, 10 were manually chosen as belonging to the corpus callosum.
The third images from the left show a single cluster containing the cingulum bundles,
viewed superiorly. Finally, the rightmost images show the two clusters that contain the
left and right uncinate fasciculi, viewed anteriorly and from the right.
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To generate this visualization, the paths in each cluster were colored based on
the centroid of that cluster in the embedding space. Mapping the centroid vec-
tors to colors was performed as described in [1], where the first three components
of the embedding vector are used to define red, green, and blue.

In Figure 3 we show more detailed anatomical correspondences. Using the
same 100 clusters, one of the brains in the population was visualized in order to
identify clusters of interest. The cluster indices aren’t in themselves significant,
but clusters 3, 8, 12, 14, 19, 33, 54, 66, 77, and 81 were found to correspond to the
corpus callosum, cluster 31 happened to correspond to both cingulum bundles,
and clusters 29 and 42 represented the uncinate fasciculi. After selecting these
clusters in one brain, the same clusters were then displayed in all brains to
demonstrate correspondence.

4 Discussion

The first issue with the presented method is that it depends on paths from
tractography, a process prone to errors due to noise and partial voluming, with
limited validity in regions of low tensor anisotropy. The alternative approach of
working directly in voxel space by defining a suitable voxel-to-voxel similarity
measure is possible, however capturing long range connectivity may be more
difficult. Also in principle our method could be applied to paths produced by
another algorithm or paths through data with another diffusion model.

Another issue of interest is that because the scan protocol was chosen to
acquire the images in a consistent way, in this work we explored performing
clustering without rigid alignment. This can be seen especially in the fourth
brain from the top in Figure 2, where the brain stem is angled very differently
from the rest of the brains. This may be the reason for the less-structured unci-
nate fasciculus clusters for that brain in Figure 3. The robustness of the method
is shown by the overall success of the correspondence, however we believe cor-
respondence in the population will improve with rigid and potentially nonrigid
alignment and perhaps normalization for brain size.

A question that might be posed about our choice of method is whether we
could instead use a sparse W and sparse eigensolvers. Our W matrix is not
particularly sparse, unlike the case of a W matrix that comes from similari-
ties between pixels, because neighborhood relationships between paths are not
limited by a rectangular grid. In addition, in [5] it is shown that the Nystrom
approximation has comparable performance and much better running time when
compared to a sparse solver.

It also makes sense to ask how this method will scale to a large population of
brains. Our current implementation would likely scale up to a small clinical study,
but for population sizes in the 100’s a more memory-careful implementation
would be necessary. One difficulty is holding all embedding vectors in memory
to perform k-means clustering. But if a subset of the embedding vectors is chosen
for clustering, and the subset is representative enough of the population, possibly
the cluster centroids would be close to those obtained by doing the full clustering.
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Another potential extension is the incorporation of additional information
into the creation of the affinity matrix. For example if there already exist seg-
mentations of the brains in question, the affinity should increase for two paths
that pass through similar segmented anatomy. Another important point about
the affinity matrix is that the choice of Hausdorff distance is somewhat arbi-
trary (though reasonable) and we hope to be able to compare various distance
measures now that we have a working framework for clustering studies.

5 Conclusion
We have presented a novel method for obtaining anatomical clusters and cor-
respondences across brains using paths from tractography through DTI data.
To our knowledge, this is the first method for obtaining dense correspondences
(path-to-path correspondences), as well as cluster-to-cluster correspondences
across a population of brains. We believe there are many interesting future ap-
plications for this method, including studies of anatomy in populations and DTI
visualization using automatic segmentation and labeling of tract clusters.
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Abstract. Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging 
(DTI) are widely used in the study and diagnosis of neurological diseases involving 
the White Matter (WM). However, many neurological and neurodegenerative 
diseases (e.g., Alzheimer’s disease and Creutzfeldt-Jakob disease) are generally 
considered to involve the Grey Matter (GM). Investigation of GM diffusivity of 
normal aging and pathological brains has both scientific significance and clinical 
applications. Most of previous research reports on quantification of GM diffusivity 
were based on the manually labeled Region of Interests (ROI) analysis of specific 
neuroanatomic regions. The well-known drawbacks of ROI analysis include 
inter-rater variations, irreproducible results, tediousness, and requirement of a 
priori definition of interested regions. In this paper, we present a new framework of 
automated 76-space analysis of GM diffusivity using DWI/DTI. The framework 
will be evaluated using clinical data, and applied for study of normal brain, 
Creutzfeldt-Jakob disease and Schizophrenia. 

1   Introduction 

DWI/DTI has been widely used to study the WM abnormality associated with disease 
progression [1], as DTI yields quantitative measures reflecting the integrity of WM 
fiber tracts, by taking advantage of the intrinsic directionality of water diffusion. 
However, many neurological diseases, including Alzheimer’s disease, are considered 
to involve the GM [2, 5]. The diffusivity of GM is widely believed to be able to reflect 
the neuropathological changes in the neurological and neurodegenerative diseases [2, 
5], and can be quantified by the apparent diffusion coefficient (ADC), which provides 
information on the degree of restriction of water molecules. 

To date, applications of DWI/DTI in quantification of GM diffusivity have been done 
via manual ROI analysis. However, ROI analysis has several notable drawbacks, 
including inter-rater variations, irreproducible results, tediousness, and requirement of a 
priori definition of interested regions. In this paper, we present a computational 
framework of automated 76-space analysis of GM diffusivity. The framework has been 
evaluated against clinical data, and has been applied to study the GM diffusivity of 
normal brains, as well as the GM diffusivity abnormalities occurring in Creutzfeldt-Jakob 
disease and schizophrenia. 
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2   Methods 

2.1   Overview 

The computational framework of 76-space analysis of GM diffusivity is composed of 
seven steps, as summarized in Figure 1. The first two steps automatically segment the 
SPGR brain image into CSF/GM/WM tissues [3], and the GM map is further 
parcellated into 76 fine-detailed neuroanatomic regions (called 76-space) using the 
high-dimensional hybrid registration method [3]. The third step performs 
pre-processing in the DWI/DTI space, e.g., eddy current correction, ADC/FA 
(Fractional Anisotropy) image generation, reslicing, and co-registration of the 
B0/ADC/FA images with SPGR image. However, due to potential problems such as 
EPI geometric distortion, partial volume effect, image reslicing errors, and 
inaccuracy of co-registration algorithm, the warped B0/ADC/FA images would not 
be in exact anatomic correspondences with SPGR image. The inaccurate alignment of 
ADC/FA images with SPGR image prevents us from applying the GM parcellation in 
the SPGR space directly to the ADC/FA images, as the GM in SPGR space may 
correspond to heterogeneous tissues e.g., CSF and WM, in the DWI/DTI space. To 
overcome this problem, Step 4 and 5 segments the brain into CSF/GM/WM tissues in 
the DWI/DTI space by utilizing the tissue contrasts existing in the ADC image and 
FA image. Afterwards, Step 6 combines the tissue segmentation results from both 
SPGR space and DWI/DTI space, and takes the union of the GM maps in both spaces. 
This AND operation of GM maps results in a GM-Union map, which is classified as 
GM by both SPGR image segmentation and DWI/DTI image segmentation. Finally, 
we perform the automated 76-space analysis of GM diffusivity, represented by Step 7 
in Figure 1.  
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Fig. 1. Illustration of the computational framework of 76-space analysis 
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2.2   GM Parcellation in SPGR Space  

We employ a high-dimensional atlas-based warping method [3] to automatically 
segment the subject brain SPGR image into 76 neuroanatomic structures. Meanwhile, 
we apply tissue segmentation on the subject SPGR image, and use the resulted GM map 
to mask the automatically labeled SPGR image, generating the labeled GM map. 
Finally, we remove other non-GM tissues by looking at the GM neuroanatomy table, 
and obtained the 76 GM structures for the following step of 76-space analysis. 

2.3   Tissue Classification in DWI/DTI Space  

2.3.1   Pre-processing 
For the DWI/DTI data, firstly, we perform the eddy current correction by using the 
Oxford FSL FDT tools. We calculate the diffusion tensor, and generate the ADC and 
fractional anisotropy (FA) images using our in-house built tools. Then, we co-register 
the B0 (no diffusion gradient) image, ADC image and FA image with the SPGR 
structural image using the linear multimodality registration method of Oxford FSL 
Flirt. To obtain better co-registration, we further use a non-linear registration method, 
UCLA-AIR, to produce a more accurate co-alignment between ADC and FA images 
and SPGR structural image.  

2.3.2   Motivation 
Although the Oxford FSL Flirt and UCLA-AIR algorithms can produce reasonably 
good co-registration results, a couple of resources still render the possibility that GM 
regions in SPGR space may include heterogeneous tissues (e.g., CSF and WM) in the 
DWI/DTI space, and measurements of GM diffusivity may fail to reveal real changes 
occurring in the GM tissue, if we directly apply the GM segmentation in the SPGR 
space into the DWI/DTI space. Given that the GM is a laminar with thickness of about 
3.0 mm, and the ADC values of the CSF are more than twice as high as the GM values, 
small errors in co-registration may lead to significant deviation of the measured ADC 
value in the GM region.  

There are multiple reasons causing the problem of heterogeneous tissues. First, there 
could be geometrical distortions in EPI-generated diffusion tensor images, due to the 
rapid sampling of the gradient echo train. Second, there is the partial volume effect in 
MRI. Thirdly, we usually need to reslice the DWI/ADC/FA images, and this reslicing 
and interpolation process would inevitably generate certain inaccuracies. Fourthly, the 
accuracy of co-registration methods could be limited. Our solution is to remove the 
heterogeneous tissues in the GM ADC map by utilizing tissue contrasts existing in the 
ADC and FA images. The ADC values in the CSF are more than twice as high as the 
GM and WM values, because water diffusion in CSF is much less restricted than that in 
the GM and WM tissues. Therefore, it is straight-forward to use the ADC image to 
segment CSF from non-CSF tissues. Meanwhile, the FA image can be used to separate 
WM from non-WM tissues, since highly directional white matter structures have much 
larger fractional anisotropy values. Importantly, the ADC image and FA image are 
intrinsically in the same DWI/DTI space, and we can combine the results of 
CSF/non-CSF and WM/non-WM segmentation results into a complete CSF/GM/WM 
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segmentation map in the DWI/DTI space, which is independent of the SPGR space. 
Then, after taking the union of the GM map in SPGR space and the one in DWI/DTI 
space, we can substantially remove heterogeneous tissues on the GM ADC map. 

2.3.3   Tissue Classification 
2.3.3.1   HMRF-EM Algorithm. Other than segmenting brain tissues into three classes 
as in structural MR images, we classify brain tissues into two classes: CSF and 
non-CSF in ADC images, and WM and non-WM in FA images. We apply a Hidden 
Markov Random Field (HMRF) model and the Expectation-Maximization (EM) 
algorithm for the two-class tissue segmentation, which is akin to that in [4].  

2.3.3.2   Initialization. As both EM model fitting and MRF ICM labeling converge 
locally [4], the selection of the initial parameter set is thus very important. In the 
literature, automated selection of initial centroids methods using k-means classification 
is widely used for the initial estimation [4]. However, applying k-means method to 
ADC images for automated selection of initial centroids might be problematic. Figure 2 
shows the distribution of the ADC values in the whole brain, in which there are no clear 
boundaries between different tissues. The k-means method might fail to select the 
desired initial centroids, rendering difficulty for the MRF ICM labeling and EM model 
fitting to converge desirably. This may result in the HMRF-EM algorithm being 
trapped in a local minimum. Recall that we already have the tissue segmentation using 
SPGR image. We assume that the volume percentage of each tissue (CSF, GM, and 
WM) segmented in SPGR space should be the same, or close to, that obtained in 
DWI/DTI space. Hence, the volume percentage of each tissue class obtained in SPGR 
space can be used as a prior knowledge to guide the automated selection of initial 
centroids for HMRF-EM segmentation of the ADC image, as illustrated in Figure 2. In 
Figure 2, we know that the WM and GM occupy 82.4 % of the whole brain volume. 
This percentage is used to set the ADC threshold, below which are the GM and WM, 
and their volume sum is the same as 82.4 %, as shown in Figure 2. In a similar way, the 
volume percentage of CSF and GM obtained in SPGR segmentation can be used to set 
the FA threshold.  

 

Fig. 2. Initialization for HMRF-EM segmentation of ADC image. ADC scale is 10-3 mm2/sec. 
The threshold is set such that the total volume percentage below it is exactly the same as 0.824. 
The estimated parameters and fitted Gaussian models are overlaid. 
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2.4   Multi-channel Fusion 

The SPGR channel has complete segmentation of CSF, GM and WM (Figure 3b), while 
the ADC channel has segmentation of CSF and non-CSF (Figure 3f), and the FA 
channel has segmentation of WM and non-WM (Figure 3j). The aim of multi-channel 
fusion is to take the union of the SPGR GM map (Figure 3c), the ADC non-CSF map 
(Figure 3g), and the FA non-WM map (Figure 3k), by performing an AND-like 
operation, and generating a GM-Union map, as shown in Figure 3o. The AND-like 
operation ensures that the GM-Union map is the consensus of all three channels. To 
demonstrate that multi-channel fusion greatly removes heterogeneous tissues, Figure 
3d shows the overlap of SPGR GM map (Figure 3c) and ADC CSF map (Figure 3h). 
Clearly, there are large overlapping areas between CSF tissue in DWI/DTI space and 
GM tissue in SPGR space. Likewise, Figure 3p shows the overlap of the SPGR GM 
map (Figure 3c) and the FA WM map (Figure 3l). There are also large overlapping 
areas  of  WM tissue in the DWI/DTI space and GM tissue in the SPGR space. By using  

 

Fig. 3. Multi-channel data fusion. The “AND” means taking the union of two maps 
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the method in Subsection 2.2, we automatically segment the GM into 76 spaces, as 
shown in Figure 3m. Then, we combine the GM-Union map (Figure 3o), the labeled 
GM map (Figure 3m), and the original ADC map (Figure 3e) together, and we have the 
GM ADC map (Figure 3n) for 76-space analysis.  

3   Evaluation and Validation 

3.1   Tissue Classification 

In the absence of digital DTI phantoms, we evaluate tissue classification on ADC and 
FA images by measuring volume agreement between the segmentation result in 
DWI/DTI space and that in SPGR space. The average volume agreements for WM, GM 
and CSF over fifteen cases are 0.88, 0.94 and 0.92, respectively. These high agreements 
indicate that the tissue segmentation in DWI/DTI space has good consensus with that in 
SPGR space. Notably, the volume agreement for GM is the highest, which is mostly 
desired for GM diffusivity analysis. 

3.2   Heterogeneous Tissue Removal 

A side-effect of the proposed multi-channel fusion is that certain GM regions will be 
shrunk after the heterogeneous tissue removal. The average volume-shrinking 
percentage caused by heterogeneous CSF and WM removals over fifteen cases are 15% 
and 17%, respectively. This result further confirms that the problem of heterogeneous 
tissues in co-registration of DWI/DTI and SPGR images is very common. Not 
surprisely, the heterogeneous CSF tissues could significantly increases the average 
ADC values. Averaging over the 76 GM structures, the heterogeneous CSF caused an 
increase of 9% of the ADC value. For particular GM structures, e.g., the right thalamus 
in one case, the increased ADC value caused by heterogeneous CSF reaches 29%. After 
both the heterogeneous CSF and WM removal, the average ADC value slightly 
increases by 2%. This is expected, as the ADC value of WM is lower than that of GM, 
and removal of WM would decrease the average ADC in GM. 

3.3   Manual Labeling 

Without digital DTI phantoms, we evaluate our automatic measurements of GM 
diffusivity by the manual labeling. We randomly selected two normal subjects in our 
dataset, and two neuroanatomy experts manually painted ten GM ROIs for the two 
normal brains. The manual tracing was performed on the ADC image directly, and 
avoidance of including heterogeneous tissues in GM was especially taken care of. In 
the first case, the averaged differences between computerized results and two manual 
labeling results over the ten GM ROIs are 1% and 6% respectively. As for case 2, the 
average differences are 6% and 8%, respectively. Overall, the averaged difference 
between computerized result and manual labeling is about 5%, which is reasonably low 
considering the inter-rater difference of 5%. 
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4   Applications 

4.1   GM Diffusivity Study of Normal Brains 

We applied the 76-space analysis method to fifteen normal brains. The ages of the 
fifteen normal controls are between 29-51. All of them are male. Figure 4 shows the 
color-coded GM ADC distribution, where the ADC values of GM structures are 
mapped onto GM/WM surface of an atlas. The visualization shows that the parietal 
lobe has higher ADC values, while the temporal lobe has lower ADC values. Also we 
observed that deep GM structures have much lower ADC values. Figure 4 exhibits that 
there is no visible difference between the ADC on the right and left hemispheres.     

 

Fig. 4. Color-coded ADC distribution of GM. ADC scale is 10-3 mm2/sec 

4.2   GM Diffusivity Study of Creutzfeldt-Jakob Disease  

We automatically measured the ADC values of the 76 GM structures of 4 CJD patients. 
We found eight GM structures have significant differences (p-value < 0.05) between 
CJD and normal brains. Our results show that basal ganglia are frequently involved in 
these CJD cases, which is in agreement with other research reports [5]. Specifically, the 
average ADC values of putamen, thalamus, and globus palladus of CJD patients are 
much lower than those of normal brains. The average ADC values of CJD patients’ 
right and left putamen dropped 29% and 26% respectively, compared to those of 
normal brains. The ADC droppings are confirmed by expert manual tracing.   

4.3   GM Diffusivity Study of Schizophrenia  

We applied the 76-space analysis to study the GM diffusivity of six schizophrenia 
patients. Their ages are in the range of 28-40. Their genders are all male. Our results 
show that there are no significant difference (p-value > 0.05) between ADC values of 
GM structures of schizophrenia patients and those of normal brains, except that the 
right and left temporal pole of schizophrenia patients have significant lower ADC 
values than those of normal brains (p-value: 0.0186 and 0.012). These ADC droppings 
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in temporal pole of schizophrenia patients are confirmed by expert manual tracing. In 
the literature, it is widely reported that temporal pole might be involved in 
schizophrenia [6]. However, our results need to be verified by future studies involving 
larger datasets, and its biological meanings are to be further investigated.   

5   Conclusion 

We proposed a new framework of 76-space analysis of GM diffusivity, in which 
structural information in SPGR image and diffusivity information in DWI/DTI images 
are integrated through two enabling technologies: high-dimensional hybrid registration 
and multi-channel fusion. The framework has been applied to study normal brains, CJD 
and schizophrenia, and produced meaningful results. 
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Abstract. This paper introduces a new, accurate and fast method for
fiber orientation mapping using high angular resolution diffusion imaging
(HARDI) data. The approach utilizes the Fourier relationship between
the water displacement probabilities and diffusion attenuated magnetic
resonance (MR) signal expressed in spherical coordinates. The Laplace
series coefficients of the water displacement probabilities are evaluated
at a fixed distance away from the origin. The computations take under
one minute for most three-dimensional datasets. We present orientation
maps computed from excised rat optic chiasm, brain and spinal cord im-
ages. The developed method will improve the reliability of tractography
schemes and make it possible to correctly identify the neural connections
between functionally connected regions of the nervous system.

1 Introduction

The diffusional attenuation of MR signal has been exploited to characterize
diffusional anisotropy in fibrous tissues such as white-matter of the central ner-
vous system (CNS) [1]. When the duration of the applied diffusion sensitizing
gradients (δ) is much smaller than the time between the two pulses (Δ), the
fundamental relationship between the MR signal attenuation E(q) and average
displacement probabilities P (R) is given by a Fourier integral [2]:

P (R) =
∫

E(q) exp(−2πiq ·R) dq , (1)

where R is the displacement vector and q is the reciprocal space vector defined
by q = γδG/2π, where γ is the gyromagnetic ratio and G is the gradient vector.

In fibrous tissues the orientations specified by large displacement probabili-
ties are expected to coincide with the fiber orientations. One could in principle
estimate the values of P (R) by using Eq. 1 and fast Fourier transform (FFT),
however, this would require data points all across the space spanned by the dif-
fusion gradients (or q vectors) necessitating very high gradient strengths and
long acquisition times that are difficult to achieve in clinical settings.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 156–163, 2005.
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More than a decade ago, Basser et al. introduced diffusion tensor imaging
(DTI) [3] that employed a symmetric, positive-definite, second order tensor to
characterize the signal attenuation. This model enabled simple measurement and
estimation of diffusional anisotropy, and predicted a fiber orientation specified by
the principal eigenvector of the diffusion tensor. Despite its modest requirements,
DTI has been very successful in most areas of white-matter in the CNS, and
enabled the mapping of anatomical connections [4].

DTI assumes a displacement probability characterized by an oriented Gaus-
sian probability distribution function (PDF) whose covariance matrix is pro-
portional to the diffusion tensor. Such a PDF has only one orientational mode
and as such can not resolve more than one fiber orientation inside a voxel. This
shortcoming of DTI has prompted interest in the development of more sophis-
ticated models. Tuch et al. introduced the HARDI method [5] which suggested
that apparent diffusivities could be evaluated along many orientations indepen-
dently. The result is an angular distribution of diffisuvities, D(u), henceforth
refered to as the diffusivity profile. It has been shown that the diffusivity profile
has a complicated structure in voxels with orientational heterogeneity, and it is
possible to represent the diffusivity profile using a Laplace series (LS) expan-
sion [6, 7]. However, the peaks of the diffusivity profile do not necessarily yield
the orientations of the distinct fiber populations. In [8] it was shown that the
spherical harmonic transform (SHT) approach could be thought of as a gener-
alization of DTI since the coefficients of the LS (obtained from the SHT of the
diffusivity profile) are related to the components of higher order Cartesian ten-
sors. Later Özarslan et al. proposed to use this generalization to generate signal
values on the three-dimensional q-space, and evaluated a FFT to approximate
the displacement probabilities [9]. Jansons and Alexander proposed a method to
compute a displacement probability map [10] also from HARDI datasets by en-
forcing the condition that the probabilities are nonzero only on a spherical shell.
Although the results are encouraging, both of the schemes are computationally
expensive.

In this work, we introduce a new method, called the diffusion orientation
transform (DOT), that describes how the diffusivity profiles can be transformed
into probability profiles. Our approach is described in more detail in Ref. [11].
The constructed function is a LS expansion of the displacement PDF at a fixed
radius. Our method is robust, fast and does not employ any model fitting. The
requirements of our method makes it suitable for the clinical environment.

2 Theory

The Fourier transform as given in (Eq. 1) can be expressed in spherical coordi-
nates. This is a consequence of the pointwise convergent expansion of the plane
wave in spherical coordinates [12] given by

e±2πiq·R = 4π
∞∑
l=0

l∑
m=−l

(±i)ljl(2πqR)Ylm(u)∗ Ylm(r) , (2)
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Table 1. Al(u) and Bl(u) functions up to l = 6. In this table, β stands for β(u)

l Al(u) Bl(u)

0 1 0

2 − (1 + 6β−2) 3

4 1 + 20β−2 + 210β−4 15
2

(
1 − 14β−2)

6 − (1 + 42β−2 + 1575
2 β−4 + 10395β−6) 105

8

(
1 − 36β−2 + 396β−4)

where q = qu and R = rr, with q = |q| and r = |R|. Here jl(x) denotes the
l-th order spherical Bessel function whereas Ylm(r) are the spherical harmonics.
Inserting this expression into Eq. 1, we get

P (R0r) =
∞∑

l=0

l∑
m=−l

(−i)l Ylm(r)
∫

duYlm(u)∗ Il(u) , (3)

where
Il(u) = 4π

∫ ∞

0
dq q2 jl(2πqR0) exp(−4π2q2tD(u)) . (4)

Here t is the diffusion time, r was set to a particular radius R0 and it is as-
sumed that signal attenuation along each radial line in q-space is dictated by
the Stejskal-Tanner relationship [13] where the rate of this attenuation is char-
acterized by the diffusivity profile D(u). Note that the function P (R0r) is the
probability of finding the particle, initially at the origin, at the point R0r, i.e.,
we will be interested in the probability values on a sphere of radius R0. The
integral in Eq. 4 can be evaluated and it is given by

Il(u) =
Rl

0 Γ ( l+3
2 )

2l+3 π3/2 (D(u)t)(l+3)/2 Γ (l + 3/2) 1F1

(
l + 3

2
; l +

3
2
;− R2

0

4D(u)t

)
,

(5)
where 1F1 is the confluent hypergeometric function. Using the recurrence rela-
tions of the confluent hypergeometric functions [14] iteratively, these functions
can be written in the following form:

Il(u) = Al(u)
exp(−β(u)2/4)
(4πD(u)t)3/2 + Bl(u)

erf(β(u)/2)
4πR3

0
, (6)

where
β(u) =

R0√
D(u) t

. (7)

Al(u) and Bl(u) values for functions up to l = 6 are given in Table 1. Note
that only the even order terms will be included which is a consequence of the
antipodal symmetry of the diffusivity profiles as well as the displacement PDFs.

In Figure 1 we plot the square root of Il as a function of R0 calculated with
double precision using Eq. 6 with D = 1.5 × 10−3mm2/s and t = 25ms. Very
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Fig. 1. a. Dependence of the square root of the radial integral,
√

Il, on R0. The curve
is drawn for l values ranging from 0 to 8. b. Probability maps estimated on a sphere
of radius 8 to 16μm in equal steps of 2μm (from left to right) for voxels with a single
orientation (top row) and two distinct orientations (bottom row).

large values taken by the higher order terms near the origin are due to round-off
errors. However, this is not a big concern because we will mostly be interested
in the values of this function in the 10−20μm range. Note that the contribution
from higher order terms is rapidly collapsing for R0 values in this range.

In order to estimate the probability on the surface of a sphere of radius R0,
we go back to Eqs. 3 and 4, and expand Il(u) in Laplace series, i.e.,

Il(u) =
∞∑

l′=0

l′∑
m′=−l′

αll′m′ Yl′m′(u) , (8)

where

αll′m′ =
∫

Yl′m′(u)∗Il(u) du . (9)

Comparing the integration over u in Eq. 3 with the expression in Eq. 9, it is
easy to see that

P (R0r) =
∞∑

l=0

l∑
m=−l

(−i)lαllmYlm(r) , (10)

which is just a LS expansion of P (R0r). Note that coefficients of this LS for
some l value come from the l-th order LS coefficients of Il(u).

2.1 Implementation Aspects

In summary, the estimation of the probability of finding the particle at the point
R0r away from the origin involves the following steps:

1. Compute the diffusivity profile D(u) using the Stejskal-Tanner relation.
2. Compute Il(u) using Eq. 5 or 6 with Table 1.
3. Compute αllm, the l-th order SHT of Il(u).
4. Evaluate Eq. 10.
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Implementation of the items 1, 2 and 4 above are trivial. Our data acquisition
scheme involves sampling the sphere on the vertices of a tessellated icosahedron.
This way, 46 or 81 points are sampled on the unit hemisphere from second or
third order tessellations respectively. Following [15], we compute the SHT by
discretizing the integrals on the sphere with integration weights calculated from
the areas of the polygons specified by the dual tessellation. The computation
of the αllm coefficients take 25 to 60s for the entire dataset depending on the
matrix size and number of sample points using a modest AMD Athlon XP 1800
processor.

3 Simulations

We have applied the scheme described above to the simulations of single fiber
and crossing fiber systems. The simulations employed the exact form of the MR
signal from particles diffusing inside cylindirical boundaries [16]. Fig. 1b shows
that increasing R0 gives rise to the sharpening of the displacement PDFs. This
could be predicted from Fig. 1a which clearly indicates that for small R0 the
largest contribution comes from I0 which upon the SHT forms the isotropic part
of the constructed probabilities. Therefore, when R0 is small compared to the
characteristic length

√
6Dt associated with the diffusion process and the radii of

the cylinders, distribution of probability on the surface becomes more uniform.
We have also computed the probability surfaces for a simulated image of

fiber crossing shown in Figure 2. The surfaces are consistent with the underlying
known fibrous structure. The circular and linear fiber bundles were chosen so that
a distribution of crossing angles is achieved across the region with orientational
heterogeneity. We notice that distinct fiber orientations are better resolved when
the different fiber bundles make larger angles with each other. Fig. 2a shows the
probability profiles when there is no noise added to the signal values. Similar to
the simulations in [10], we added Gaussian noise of increasing standard deviation
to the real and complex parts of the signal. When the signal intensity in the image
with no diffusion weighting is taken to be centered around 1, and Gaussian noise

Fig. 2. a.The probability maps from a simulated image of two crossing fiber bundles
computed using the DOT method. b-e.Surfaces in the framed area of panel a recom-
puted under increasing levels of noise.
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of standard deviations 0.02 through 0.08 is added (in equal steps), the probability
profiles shown in Fig. 2b-e are obtained. Note that in our standard HARDI
protocol, we obtain SNR values in excess of 30 in diffusion weighted scans and
about 100 in non-diffusion weighted images. Therefore, in real experiments, one
can expect to achieve results that will be of similar or better quality with the
image presented in Fig. 2b.

4 Results

In order to test the performance of the DOT method on real tissue, we computed
the orientation probabilities on data from three anatomical regions (all from ex-
cised rat tissue): optic chiasm, brain and spinal cord. The images were acquired
at 17.6T (brain) and 14.1T (spinal cord and optic chiasm) using Bruker Avance
imaging systems. Diffusion weighted images were acquired along 81 (brain) and
46 (spinal cord and optic chiasm) directions with a b-value of 1500mm2/s (brain
and spinal cord) and 1250mm2/s (optic chiasm) along with a single image ac-
quired at b ≈ 0. Resolution of the images were 33.6×33.6×200μm3, 150×150×
300μm3, 60× 60× 300μm3 for optic chiasm, brain and spinal cord data respec-
tively. The optic chiasm images were signal averaged to 67.2 × 67.2 × 200μm3

resolution prior to probability calculations.
For visualization purposes, we have overlaid the orientation surfaces on gener-

alized anisotropy (GA) maps [17] computed from the displacement probabilities.
The directionality of the probability profiles on the image plane is readily avail-
able from the surfaces. In order to visualize the peakedness through the image
plane, we color coded the surface so that as the orientation of the surface varies

Fig. 3. a. Probability maps computed from a rat optic chiasm dataset. Every other
pixel of the image is included for clarity. b. Probability maps computed from a diffusion-
weighted dataset acquired from an excised rat brain.
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Fig. 4. Probability maps computed from a diffusion-weighted dataset acquired from
an excised rat spinal cord

from −z-axis to +z-axis, its color changes from blue to green. In all calculations
R0 was set to 16μm.

Optic chiasm is a distinct white-matter structure with well-known crossing
fiber architecture. Therefore, it provides a perfect sample for a validation of
the DOT method. Probability maps reconstructed as shown in Figure 3a ap-
pear to detect decussating fibers from the temporal visual fields in the center
of the optic chiasm. Figure 3b shows the displacement probabilities computed
from the excised rat brain data set. At the top left is a diffusion-weighted im-
age that shows the selected ROI. The probability maps computed on this ROI
demonstrate several interesting cytoarchitectural features of the rat brain. For
example, the border between cortex and subcortical white matter contains fibers
penetrating from the corpus callosum that cross the radial diffusivities of the
cortex.

Finally, we show the probability maps computed from the excised spinal
cord data set in Figure 4. Orientation maps from selected pixels of this image
are enlarged at the left and rightmost sections of the figure. These surfaces were
rotated by −90◦ about the x-axis so that the up-and-down direction in the indi-
vidual surfaces shown in blue correspond to in-and-out direction in the images in
red. The magnified surfaces clearly indicate the secondary fiber orientations that
represent subtle differences in the connectivity of white matter in those regions.

5 Conclusion

The DOT method introduced in this work provides a direct estimation of dis-
placement probability surfaces within each voxel from HARDI data. The tech-
nique is robust and fast. It provides a parametric description of the probability
surfaces. As a result high resolution probability surfaces can be reconstructed
easily from the calculated Laplace series coefficients. The potential applications
of our approach include more accurate estimates of anisotropy and fiber orien-
tations that will improve the existing fiber tractography schemes.
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Abstract. We present an automated approach to the problem of conn-
ectivity-based partitioning of brain structures using diffusion imaging.
White-matter fibres connect different areas of the brain, allowing them to
interact with each other. Diffusion-tensor MRI measures the orientation
of white-matter fibres in vivo, allowing us to perform connectivity-based
partitioning non-invasively. Our new approach leverages atlas-based seg-
mentation to automate anatomical labeling of the cortex. White-matter
connectivities are inferred using a probabilistic tractography algorithm
that models crossing pathways explicitly. The method is demonstrated
with the partitioning of the corpus callosum of eight healthy subjects.

1 Introduction

Diffusion-weighted MRI (DW-MRI) offers insight into the structure of white-
matter fibres in the brain. From DW-MRI we can infer the local fibre orien-
tation [1], and “tractography” algorithms use this information to reconstruct
entire fibre pathways [2]. The possibility to parcellate brain structures based on
their anatomical connectivity has important implications since it may help to
identify functionally distinct subregions of the brain [3, 4]. Correspondence be-
tween anatomical connectivity and functional activation has been shown in the
thalamus [5].

In this paper, we present an automated approach to brain region parcellation
based on connectivity to cortical grey-matter inferred from fibre tractography.
Compared to earlier efforts [3, 4, 6], our work’s original contributions can be out-
lined as follows. Firstly, we leverage advances in atlas-based image segmentation
to produce cortex parcellation of subjects automatically. Secondly, we resolve
crossing fibres and use a novel model of uncertainty when two fibre bundles
are present within a voxel. We begin by reviewing the basic concepts of diffu-
sion imaging, tractography and connectivity-based parcellation. We then present
methods and results of our approach, followed by a discussion of future works.
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1.1 Diffusion-Tensor MRI

In diffusion-tensor MRI (DT-MRI) [7], we fit a Gaussian model of the displace-
ment density

p(r, t) = G(r; D, t) = ((4t)3 det(D))−
1
2 exp(−rTD−1r(4t)−1) (1)

of diffusing water molecules after time t, where r is the displacement and D
is a second-order symmetric tensor, with eigenvalues λ1 ≥ λ2 ≥ λ3 and corre-
sponding eigenvectors e1, e2 and e3. A useful statistic from D is the fractional
anisotropy [8], which quantifies the anisotropy in the diffusion with a value be-
tween 0 (isotropic diffusion) and 1 (displacement is nonzero only along e1).

In voxels containing a single bundle of axonal fibres with a common orienta-
tion, λ1 � λ2 � λ3, and the principal direction e1 provides an estimate of the
direction of the fibre bundle. However, when the tissue structure in the voxel is
more complex, such as at fibre crossings, the Gaussian model is a poor approxi-
mation of p, and e1 is not a reliable indicator of the fibre orientation. A variety
of techniques exist to resolve the orientations of crossing fibres [9].

1.2 Tractography

Diffusion-tensor MRI provides estimates of the local fibre orientation in each
voxel, which typically occupies a volume on the order of 10−9m3. Tractography
uses the local fibre-orientation measurements to reconstruct entire axonal paths.

Simple tractography calculates streamlines, which follow the local fibre-orien-
tation estimate from voxel to voxel. Streamline trajectories are sensitive to noise,
and authors often reduce false-positive connections by imposing limits on the
streamline curvature, which can be as low as 45 degrees, and by specifying a
minimum anisotropy for tracking to continue, since the fibre orientation is not
well defined at low anisotropy [10].

Monte-Carlo based probabilistic methods, such as those proposed by Behrens
et al [6] and Parker et al [11], define a probability density function (PDF) on
the true fibre orientation in each voxel from the DW-MRI data. Streamlines
are tracked repeatedly from a single seed point. Each time, fibre orientations are
drawn from the PDF in each voxel. Over a large number of iterations, the process
yields a connection probability from the seed point to any other voxel v, which
is the fraction of streamlines that pass through v. The PDF is less concentrated
when there is high uncertainty in the fibre orientation, for example in voxels
with low anisotropy. This means that the set of streamlines passing through
regions of high uncertainty disperse rapidly, which results in lower connection
probability. Since probabilistic algorithms give a measurement of the confidence
in each potential connection, they do not require restrictive thresholds.

1.3 Connectivity-Based Parcellation of the Brain

Tractography, combined with anatomic labeling of cortex, makes possible the
non-invasive study of anatomical connectivity between distinct cortical struc-
tures. Connectivity-based parcellation is a method for segmenting a region of
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interest in the brain based on anatomical connectivity to other brain regions.
Given a segmentation of the brain into distinct labelled regions, the method uses
tractography to determine which labelled region is most likely to be connected
to each voxel in the region of interest.

The method can be performed using either deterministic or probabilistic
algorithms. However, the anisotropy threshold in deterministic algorithms limits
their ability to identify pathways near to grey-matter areas, such as cortex, and
the tight curvature restriction penalizes genuine pathways demonstrating high
curvature. Although such algorithms have been applied to parcellate the corpus
callosum [3, 4], their known limitations require extra care in interpreting the
results they produce.

Behrens et al [6] use a probabilistic approach to partition the thalamus, a deep
grey-matter structure. Behrens uses a Bayesian method to define a single-fibre
PDF. The cortex is segmented into several functional zones, and probabilistic
streamlines are tracked from seed points in the thalamus. The cortical zone with
the highest connection probability to the seed point is the zone that contains
the most probabilistic streamlines. The thalamic segmentation is consistent with
previous postmortem histological studies of connectivity.

2 Method

We will refer to the brain region of interest as the seed region and each voxel in
the seed region as a seed point. We define the “connectivity map” for each seed
point as the collection of probabilistic streamlines emanating from the seed.

The algorithm to partition the seed region is as follows:

1. Label the grey-matter regions of the subject in the space of the diffusion
data.

2. Generate the connectivity map for each seed point from the diffusion data.
3. For each seed point, determine the labelled grey-matter region with the high-

est connection probability.

Steps 1 and 2 of the algorithm are described in detail below. In step 3, we use
the same approach as Behrens et al, which we described in section 1.3.

2.1 Cortical Region Labeling

We require cortical regions to be defined in the same space as the connectivity
maps. However the diffusion-weighted images lack the resolution for accurate
delineation of cortex. Thus a high resolution T1-weighted image of the subject
is acquired, on which the cortical regions of interest are defined. These regions are
then transferred onto the diffusion data after co-registration of the T1-weighted
to a non-diffusion-weighted image acquired as part of the diffusion MRI sequence,
hereafter refered to as the [b=0] image.

One feature of our method is the automation of the cortical region labeling
step by warping an atlas into alignment with the T1-weighted image. Figure 1 de-
picts the brain atlas and its warped version after registration to the T1-weighted



An Automated Approach to Connectivity-Based Partitioning 167

Fig. 1. Atlas-based brain image segmentation. (Left) A surface rendering of the labeled
atlas used in this work. (Middle) The grey-matter labels for one hemisphere are shown
superimposed on the underlying structural image of the atlas. (Right) The atlas is
registered to the T1-weighted image of one subject, and the warped grey-matter labels
for one hemisphere are shown superimposed on the subject’s structural image. The
partition results of the subject’s corpus callosum is shown in figure 2, which also con-
tains the color-coded list of the cortical regions delineated in the atlas, further details
of which can be found in [12].

image of one subject. To improve the quality of the co-registration between the
T1-weighted and [b=0] images, we also acquire a high-resolution EPI image,
which is used as an intermediate representation of the brain configuration in the
diffusion data space. Specifically, the T1-weighted image is non-rigidly aligned
to the EPI image, which in turn is non-rigidly registered to the [b=0] image.
The corresponding transformations are computed to enable atlas labels defined
on the T1-weighted image to be transferred to the [b=0] image. The non-rigid
registration algorithm used optimizes an intensity cross-correlation metric un-
der the constraints of a diffeomorphic transformation model in multiresolution
fashion [13].

2.2 Generation of Probabilistic Streamlines

Before we generate probabilistic streamlines, we must complete three stages of
pre-processing of the DW-MRI data: first classifying voxels as containing zero,
one, or multiple fibre bundles, then determining fibre orientations in each voxel,
and finally calibrating fibre-orientation PDFs. The first two steps must be com-
pleted for each subject, while the last is performed once.

Fibre-Orientation Estimation. In a similar way to Parker and Alexander
[14], we use the spherical-harmonic classification and fibre-orientation estimation
algorithm of Alexander et al [15] to determine which voxels contain zero, one,
or multiple fibre populations. When the algorithm detects multiple fibres, we
use a mixture of two zero-mean Gaussian distributions to model p, otherwise we
use the single Gaussian as in DT-MRI (Eq. 1). We use Levenberg-Marquardt
optimization to fit the parameters of the models to the data. We reduce the
complexity of the two-fibre model by assuming two Gaussian compartments in
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the voxel, mixed in equal proportion, and that the diffusion tensors are both
cylindrically symmetric, so λ1 ≥ λ2 = λ3. The principal eigenvector of each
tensor provides a separate fibre-orientation estimate.

Calibration of the Fibre-Orientation PDF. In single-tensor voxels, we use
an existing PDF proposed by Cook et al [16], based on the Watson distribu-
tion [17]:

f(x) = W (±x; μ, κ) = M

(
1
2
,
3
2
, κ

)−1

exp
(
κ(μTx)2

)
, (2)

where M denotes the confluent hypergeometric function of the first kind and x
is a unit axis. The parameter κ determines the concentration of samples about
the mean axis μ. We construct a lookup table that predicts κ from the tensor
shape parameters λ1

λ3
and λ2

λ3
. These indices are sufficient to fully specify a tensor,

because the trace λ1 + λ2 + λ3 is approximately constant in brain tissue. For
each entry in the lookup table we synthesize measurements predicted by p(r) =
G(r,D, t), add complex Gaussian noise and fit the diffusion tensor to the noisy
measurements. We repeat this process to obtain a large sample of noisy principal
directions, xi, 1 ≤ i ≤ 10, 000, from which we estimate κ numerically [17].

In voxels containing two fibre populations, we use a Watson PDF for each
fibre bundle. We calibrate the PDF by adding noise to the synthetic signal from
p(r) = 0.5(G(r,D1, t) +G(r,D2, t)), but we compute fewer samples than for the
single-fibre PDF because generating two-fibre samples is more computationally
expensive. The resulting samples xi, 1 ≤ i ≤ 4, 000 contain both fibre-orientation
estimates from each trial. We estimate the concentration of both distributions
simultaneously by maximising the log-likelihood l of the axes:

l(W1,W2) =
4000∑
i=1

log
(

1
2

[W1(xi; μ1, κ1) + W2(xi; μ2, κ2]
)
. (3)

Previously, Parker and Alexander [14] constructed a two-fibre PDF by sorting
the samples into two groups and fitting a Gaussian model to each. The objective
function in Eq. 3 requires no assignment of axes to a particular fibre, and hence
avoids any potential bias from incorrect assignment. We optimize l(W1,W2) with
repeated runs of the Levenberg-Marquardt algorithm. We construct a lookup
table that gives κ1 and κ2 as a function of the fractional anisotropy of each
tensor, and the angle at which the two principal directions cross.

Tractography. We use no anisotropy threshold in the tractography, and we
apply a minimal curvature threshold to prevent streamlines from looping back
on themselves and inflating the connection probability. We track by following the
principal direction in each voxel, without interpolation. In voxels containing two
fibres, we make a probabilistic choice of whether to sample from W1 or W2 based
on the previous direction of the streamline, xp. The probability of sampling W1
is p1 = W1(xp; μ1, κ1)[W1(xp; μ1, κ1)+W2(xp; μ2, κ2)]−1, and the probability of
choosing W2 is (1− p1). We track fibres from the seed points in both directions,
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and we stop tracking if the streamline either curves by more than 80◦ over the
length of one voxel, reaches the brain surface, or intersects itself.

3 Results and Discussions

We demonstrate the method by partitioning the corpus callosum (CC), the struc-
ture through which the two cerebral hemispheres communicate, using the brain
images from 8 healthy volunteers. The diffusion imaging sequence uses 60 dif-
fusion weighted measurements in each voxel. The first 54 measurements are at
a fixed | q | giving b = 1050smm−2, with the gradient directions spread evenly
on the hemisphere to minimise dependence of the tensor upon the orientation
of the tissue relative to the gradient directions. Six of the 54 diffusion-weighted
measurements are repeated with b = 260smm−2, and six measurements are made
with b = 0. We estimate the signal to noise ratio in each [b = 0] image to be
approximately 14 in white-matter.

Because the fibre bundles originating from the CC extend to both the left
and right cortex, we construct two connectivity maps for each seed point. Each
map represents the connections to one side of the brain and is used to derive the
partitioning for the corresponding hemisphere. An example of the partitioning
is shown in figure 2.

A useful statistic is the relative sizes of the partitions which are computed
for all subjects and shown in fig. 2. Evidently there are four primary partitions
in the CC. Although this is consistent with the earlier study [3], in our study
the cortical connectivity is better localized because we have chosen a signifi-
cantly finer cortical labeling. The voxels within these partitions are most likely
to connect to the superior frontal gyrus, the superior parietal gyrus, the occipi-
tal gyrus and the parahippocampal gyrus, respectively. On average, over all the
controls, the sizes of the largest partitions found, computed as a percentage of

Fig. 2. The partitioning of the corpus callosum. On the left is the partitioning of the
subject used in figure 1 for the left (top) and right (bottom) hemispheres. In the centre
are the relative sizes of each partition as a percentage of the total area of the corpus
callosum, for the left and right connectivity maps from all 8 subjects. On the right is
the color-coded list of the cortical regions delineated in the atlas shown in fig. 1.
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the size of the corpus callosum, are 53%, 22%, 7% and 5% for the left hemi-
sphere, and are 55%, 26%, 5% and 5% for the right hemisphere. Despite the
finer cortical labelling scheme, it appears that the majority of the connections
through the corpus callosum are restricted to several large cortical regions. Ad-
ditionally, several regions, notably the middle and inferior temporal gyrus, the
occipitotemporal gyrus and the supramarginal gyrus, are not found in the par-
titions. It is possible that the connections to these regions are mediated through
other regions, either by ipsilateral or U-fiber connections. Equally likely is that
other connections exist across the corpus callosum but are more difficult to track
reliably using current methods. Certain connections may be relatively difficult
to track for several reasons, for example the fibre bundles may be smaller, or the
bundles may extend through complex fibre architecture such as fibre crossings.

Also worth noting is the difference in the partitioning results from the left
and the right hemispheres. postmortem studies [18] show that there are wide-
spread heterotopic commissure connections across the corpus callosum. Parti-
tioning studies such as this have the potential to offer new evidence of the ex-
istence of the heterotopic connections and, furthermore, possibly locate where
such connections traverse the corpus callosum.

4 Conclusion

We have presented a method for parcellating brain structures based on con-
nectivity maps derived from diffusion MRI data. The method is demonstrated
with the partitioning of the corpus callosum. We construct connectivity maps
using a novel probabilistic tractography algorithm that resolves crossing fibres.
One feature of our method is the automated cortical region labeling based on
our atlas-based and registration-driven segmentation technique. Future work in-
cludes quantitatively assessing the quality of the automated labeling compared
to a manual delineation of the cortex.
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Abstract. In this paper we present a novel deformable registration algo-
rithm for diffusion tensor (DT) MR images that enables explicit analytic
optimization of tensor reorientation. The optimization seeks a piecewise
affine transformation that divides the image domain into uniform re-
gions and transforms each of them affinely. The objective function cap-
tures both the image similarity and the smoothness of the transformation
across region boundaries. The image similarity enables explicit orienta-
tion optimization by incorporating tensor reorientation, which is neces-
sary for warping DT images. The objective function is formulated in a
way that allows explicit implementation of analytic derivatives to drive
fast and accurate optimization using the conjugate gradient method. The
optimal transformation is hierarchically refined in a subdivision frame-
work. A comparison with affine registration for inter-subject normal-
ization of 8 subjects shows that our algorithm improves the alignment
of manually segmented white matter structures (corpus callosum and
cortio-spinal tracts).

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI)[1] is a water diffusion
imaging technique that has been used to provide unique insight into the white
matter (WM) organization in human brains [2, 3]. Diffusion describes the ran-
dom movement of molecules. The rate of diffusion at a point, as a function of
spatial direction, is refered to as a diffusion profile. This function can be sam-
pled by acquiring a series of MR images sensitized to diffusion in a set of selected
directions. In DT-MRI, diffusion profiles are assumed to be Gaussian and are
defined by 2nd-order symmetric tensors. A DT image is produced by fitting this
model to sampled diffusion profiles in each voxel of the MR series. The way in
which DT describes local water diffusion can be best understood through its
eigenvectors and eigenvalues. The eigenvectors of a DT coincide with the three
principal directions of diffusion while the corresponding eigenvalues measure the
rates of diffusion in those directions. In fibrous tissue, such as WM, although wa-
ter is free to diffuse along the axis of the axon fiber bundles, diffusion is hindered
in perpendicular directions by myelin that bound the axons. Consequently, the
principal eigenvectors of the DTs measured in these regions tend to be parallel
to the axis of the axon bundles. Compared to conventional MR images, this
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unique ability of DT images to reveal the orientation of axon bundles makes the
modality an ideal choice for understanding and analyzing WM structures.

The ability to detect WM differences between pairs and groups of subjects
is essential in studying the pathology of various neurological disorders that are
associated with WM abnormalities and may prove useful in early detection. To
enable such group comparison analysis using DT images, a registration method
is required [4, 5]. Compared to registering scalar images, the registration of DT
images is particularly challenging not only due to the multi-dimensionality of
the data, but also because one must ensure that the DT orientations remain
consistent with the anatomy after image transformations [6]. Current DT reg-
istration techniques either circumvent tensor reorientation by registering scalar
images derived from DT images, thus discarding the orientation component of
the data, or perform tensor reorientation iteratively rather than analytically,
thus precluding direct applications of gradient methods (see [7] for a survey).

In this paper we describe a novel algorithm for deformable registration of
DT images that incorporates explicit optimization of tensor reorientation in an
analytic manner. The optimization seeks a piecewise affine transformation that
divides the image domain into uniform regions, each of which is transformed
affinely. The objective function optimizes both the image similarity and the
smoothness of the transformation across contiguous regions. The piecewise na-
ture of the candidate transformations allows us to express the image similarity
as the sum of the region similarities. Individual region similarity is computed
using our previously published affine registration algorithm [8] which incorpo-
rates tensor reorientation in its objective function analytically, allowing explicit
orientation optimization. The smoothness criterion imposed on the transforma-
tion is adapted from classic optical flow estimation [9], and it takes an analytic
form as well. The resulting algorithm is based on analytic derivatives and uses
the conjugate gradient method for optimization. By applying our algorithm to
inter-subject registration, we demonstrate the algorithm is computationally ef-
ficient and improves the quality of image alignment.

In section 2, we will first briefly review the properties of DT images and the
affine registration algorithm, then present our new piecewise affine formulation,
and finally discuss the details of registration evaluation. The results of applying
our algorithm to eight different subjects and their evaluations are shown and
discussed in section 3.

2 Method

A diffusion tensor D is a symmetric and positive-definite (SPD) 2nd-order tensor,
which is related to a Gaussian diffusion profile dD(k̂) by the quadratic form

dD(k̂) = k̂TDk̂, (1)

where k̂ is a unit vector defined over the unit sphere S2. By measuring values of
dD(k̂) for different k̂, D can be determined through (1) by least square fitting.
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Fig. 1. The axial slice 24 of the DT image chosen as the template in this study. From
left to right are the trace, the FA and the color-coded principal eigenvector maps. The
latter is scaled by the FA map and the directions encoded by each color channel are
mediolateral for red, anteroposterior for green and superoinferior for blue.

Because D has six independent components, measurements from a minimum of
6 independent directions have to be acquired.

Two useful transformation-invariant scalar indices for D are its trace and
fractional anisotropy (FA). The trace is proportional to the mean diffusivity.
Because the cerebrospinal fluid (CSF) has the most freely diffusing water, it
appears the brightest in trace maps. The FA values vary from 0 for isotropic
diffusion, such as in CSF and grey matter (GM), to 1 for anisotropic diffusion,
such as in WM. Thus the WM is highlighted in FA maps. To illustrate WM fiber
bundle orientation, a popular method is to use the principal eigenvector map [10]
scaled by FA in which the orientation is encoded in terms of color. The stark
difference between FA and principal eigenvector maps is the best illustration of
the rich orientation information contained in DT images. An example of these
maps is shown in fig. 1.

When measuring the similarity of two DTs, various metrics are available.
Given no clear consensus on what the best metric may be, we have chosen to com-
pare three different metrics that are defined using the following inner products:

< D1,D2 >=

⎧⎪⎨⎪⎩
Tr(D1)Tr(D2) (for trace distance)

Tr(D1D2) (for Euclidean distance)

2Tr(D1D2) + Tr(D1)Tr(D2) (for L2 distance)

,

with the actual distance given by ‖D1 −D2‖ =
√
< D1 −D2,D1 −D2 >. The

trace distance (TD) between two tensors is the absolute value of the difference
of their traces and is proportional to the difference of their mean rates of diffu-
sion. The Euclidean distance (ED) is the Frobenius norm of the difference of two
tensors. The ED reflects the relative orientation of the tensors and it is shown to
perform better than the TD for DT registration [7]. The L2 distance (LD) is de-
fined in the functional space of diffusion profiles which is, generically, an infinite
dimensional Hilbert space [8]. When applied to DTs, the LD is a weighted sum
of the ED and the TD and our prior work suggests that it affords more robust
registration over small regions [8] than each of those metrics does on its own.
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2.1 Affine Registration Algorithm

The unique feature of our affine registration algorithm [8] is that the tensor
reorientation is incorporated into the analytic objective function for explicit
orientation optimization. This is accomplished by the combination of a special
way of parameterizing the affine transform and a particular tensor reorientation
strategy, which are described below.

An affine transformation F is parameterized as

F (x) = Mx + T = (QS)x + T , (2)

where M , the Jacobian matrix of F , is parameterized based on its polar decom-
position in terms of Q, an orthogonal matrix with determinant 1 representing
pure rotation, and S, a SPD matrix representing pure deformation. The matrix
Q can be represented using the 3 Euler angles, the matrix S has 6 independent
components and the translation T has 3 components. We use these 12 variables
to parametrize the affine transformation F , and denote them by vector p.

For tensor reorientation, we use the finite strain (FS) reorientation strat-
egy [6]. We choose FS over the more accurate method, the preservation of prin-
cipal directions (PPD), because the PPD method is not analytic but algorithmic,
computationally expensive, and the difference in accuracy between the two meth-
ods is minor [7]. When an orthogonal transformation Q is applied to a tensor
D, the corresponding reorientation is given by QDQT [6]. For a non-orthogonal
transformation M , the FS strategy finds the best orthogonal approximation,
QM , to M and uses it for reorientation. Our method leverages the fact that the
pure rotation component of the polar decomposition of M is precisely the best
orthogonal approximation of M . Thus, in the framework of our method, FS reori-
entation can be formulated analytically, rather than using eigen-decomposition,
as done in other methods.

The objective function of registration is then

O(p) =
∫

R3
‖Ds((QS)x + T )−QDt(x)QT‖2 dx , (3)

where Dt and Ds are the template (fixed) and subject (moving) DT images
respectively. The derivatives of O(p) can be computed analytically; for example,
the derivative with respect to ti, the i-th component of the translation T is

∂O

∂ti
=
∫

R3
2 <

∂Ds

∂xi
,Ds((QS)x + T )−QDt(x)QT > dx.

2.2 Piecewise Affine Algorithm

The piecewise algorithm we propose involves using our affine algorithm for
region-wise matching, enforcing the overall smoothness of the warp via smooth-
ness constraints on interfaces of regions.

We subdivide the template Dt into equal size regions denoted Ωi. In general,
each region, Ωi, has 6 neighboring regions and thus 6 different interfaces. For
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each region Ωi in the template, the goal of the piecewise algorithm is to find
an affine transformation Fi that gives the best match with the subject, under
certain smoothness constraints that are described below.

We will refer to the collection of Fi over all possible regions as a piecewise
affine transformation, denoted as F. Because the transformation within each re-
gion is affine, the smoothness within a region is guaranteed. The smoothness
of the piecewise affine transformation thus needs to be imposed only on region
interfaces. Following the standard approach in optical flow estimation [9], we
minimize the transformation discontinuities across interfaces, which is formu-
lated for neighboring regions Ωi and Ωj as∫

Ωi∩Ωj

‖Fi(x)− Fj(x)‖dx. (4)

Similar to (3), analytic derivatives can be derived for (4).
If the number of regions in each dimension is n, the parameter space of

this optimization problem has a dimension of 12n3. We subdivide the template
hierarchically with n being 4, 8 and 16. At the finest subdivision level, the
dimension of the parameter space is 49152. The ability to compute derivatives
of (4) analytically allows us to take advantage of the conjugate gradient method,
which is generally more efficient than optimization techniques that do not use
derivatives, such as the Powell’s direction set.

By construction, discontinuities across interfaces in the piecewise affine trans-
formation can be minimized but not eliminated. Therefore, after the piecewise
affine approximation to the underlying trasformation is estimated at the finest
level, it is interpolated using the standard approach [11] to generate a smooth
warp field which is then used to deform the subject into the space of the template
with the PPD reorientation strategy discussed in section 2.1.

2.3 Registration Evaluation

Here we outline two voxel-based measures that are specific to DT images to
quantify the quality of image alignment. They are used to evaluate our inter-
subject registration results.

To evaluate the overall quality of matching, we compute the average overlap
of eigenvalue-eigenvector pairs (AOE) [12] of all the WM voxels (FA ≥ 0.3) in
the template and the corresponding voxels in the image to compare. The AOE
measures, on average, the extent to which two tensors at each voxel are aligned;
it is defined as

1
N

N∑
i=1

∑3
j=1 λ

i
jλ

′
j
i(εij · ε′j

i)2∑3
j=1 λ

i
jλ

′
j
i

, (5)

where λi
j , ε

i
j and λ′

j
i, ε′j

i are the j-th eigenvalue-eigenvector pair at the i-th voxel
location in the pair of images, and N is the total number of voxel locations to
compare.

To assess the quality of local matching, we compute the average angular
separation of the principal eigenvector (AAS) [6] in a region-specific manner as
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in [13]. The AAS measures specifically how well the principal eigenvectors are
aligned; it is defined as ∑N

i=1

√
μiμ′

i arccos |εi1 · ε′1
i|∑N

i=1

√
μiμ′

i

, (6)

where μi, εi1 and μ′
i, ε

′
1
i are the FA and the principal eigenvector at the i-th voxel

location in both images. The two regions we have chosen are the corpus callosum
(CC) and the cortico-spinal tracts (CST), which are manually segmented from
the template.

3 Results

Here we report the results of inter-subject registration of eight subjects to the
template shown in fig. 1. The DT images are of the size 128× 128× 48, with the
voxel spacings 1.72× 1.72× 3.0 mm3. Each subject is registered to the template
first using our affine registration algorithm and followed by the new piecewise
affine algorithm. The transformation estimated from the affine registration is
used to initialize the following piecewise affine registration.

For visual inspection, the color-coded principal eigenvector maps of one sub-
ject after affine registration and after piecewise affine registration are shown
together with the template in fig. 2. Notice that the genu, splenium and internal
capsules are better aligned after piecewise registration. Moreover, the alignment
of the CC after piecewise registration is significantly better than after affine
registration.

Fig. 2. The color-coded principal eigenvector maps of the axial slice 24 (top row) and
the sagittal slice 64 (bottom row) of one of the subjects in this study together with the
template. From left to right are the subject after affine registration and after piecewise
affine registration, and the template.
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Fig. 3. Quantitative evaluation of registration results: In each graph, the x-axis repre-
sents the list of 8 subjects and the y-axis is some evaluated quantity. From left to right,
the quantity evaluated are the AOE of all the WM voxels, the AAS of the voxels in the
manually segmented CC, and the AAS of the voxels in the manually segmented CST.
For each subject, there are six data points in each graph that correspond to six differ-
ent registration methods, the affine (grey symbols) and piecewise affine (black symbols)
registrations with three different DT metrics: TD (inverted triangles), ED (circles) and
LD (triangles), and larger AOE or smaller AAS correspond to better alignment.

Quantitative evaluations are done as outlined in section 2.3. The results are
summarized in fig. 3. It is evident that, consistent with the observation from
visual inspection, the new piecewise algorithm outperforms its affine counterpart
consistently for all the metrics tested. The two tensor metrics perform similarly
well and they do sligntly better than the scalar metric TD.

Finally, the algorithm is computationally efficient. Running on a 3.0GHz
Pentium 4 Xeon processor, the computation time of registering each subject is
less than 10 minutes.

4 Conclusion

In conclusion, we have presented a piecewise affine algorithm that demonstrates
explicit orientation optimization required for optimal matching of DT imagery
can be accomodated in deformable registration. Morever, our novel formulation
enables fast and accurate optimization using analytic derivatives. Results from
inter-subject registration demonstrate the algorithm improves image alignment
in a region-specific manner over affine registration. Future work includes more
quantitative assessment of the algorithm using larger datasets and analyzing the
effect of smoothing of the piecewise affine transformations.
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Abstract. This paper describes a new framework for white matter trac-
tography in high angular resolution diffusion data. A direction-dependent
local cost is defined based on the diffusion data for every direction on
the unit sphere. Minimum cost curves are determined by solving the
Hamilton-Jacobi-Bellman using an efficient algorithm. Classical costs
based on the diffusion tensor field can be seen as a special case. While the
minimum cost (or equivalently the travel time of a particle moving along
the curve) and the anisotropic front propagation frameworks are related,
front speed is related to particle speed through a Legendre transforma-
tion which can severely impact anisotropy information for front propa-
gation techniques. Implementation details and results on high angular
diffusion data show that this method can successfully take advantage of
the increased angular resolution in high b-value diffusion weighted data
despite lower signal to noise ratio.

1 Introduction

The development of Diffusion Tensor MRI has raised hopes in the neuroscience
community for in vivo methods to track fiber paths in white matter. Diffusion
Tensor Magnetic Resonance Imaging (DT-MRI) measures the self-diffusion of
water in biological tissue [1]. The utility of this method stems from the fact
that tissue structure locally affects the Brownian motion of water molecules and
will be reflected in the DT-MRI diffusion measurements. In classical theory,
diffusion follows a Gaussian process which can be described locally by a second
order tensor.

A simple and effective method for tracking nerve fibers using DT-MRI is to
follow the direction of maximum diffusion at each voxel [2, 3, 4, 5]. Although this
method is widely spread and used in various ways the fiber trajectory is based
solely on local information which makes it very sensitive to noise. Moreover the
major direction of diffusion can become ill-defined for example at fiber crossings.

It has been proposed to shift from the Lagrangian, particle1 based streamline
approach described above to a Eulerian front propagation approach that can use

1 In this work, “particle” refers to the position of a fictitious evolving point
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full tensor information and is more robust to noise [6, 7]. This can be set in a
Riemannian framework [8, 9].

The Gaussian assumption of diffusion tensor imaging does not hold for ex-
ample if several fibers with different directions co-exist within the same voxel.
Extensions to the tensor model have been proposed [10]. High angular resolution
diffusion modalities such as Q-Ball imaging [11] acquire diffusion information
in potentially hundreds of directions thus measuring direction information in
a non-parametric way. Hagmann et al. [12] extend the streamline technique to
multi-valued vector fields and Campbell [13] proposes a front evolution approach
based on high angular resolution data.

In this work tractography is set in a continuous minimum cost framework.
This is different from [12, 13] who do not propose variational (cost minimizing)
techniques. Local costs are defined for every direction on the unit sphere based
on high angular resolution diffusion imagery. Equivalently this can be consid-
ered a minimum arrival time framework in which the speed of fictitious particles
would be the inverse of the cost. We show that while the minimum arrival time
and anisotropic front propagation frameworks are deeply related, front speed
is related to particle speed through a Legendre transformation [14] which can
severely impact anisotropy information for front propagation techniques (Sec-
tion 2). Implementation details for our technique are discussed (Section 3) along
with considerations on the definition of the cost and the use of prior information
(Section 4). Finally, the technique is illustrated on high angular resolution diffu-
sion imagery (Section 5). Due to space constraints, full details will be published
in [15].

2 Theory

2.1 Direction-Dependent Local Costs

Minimum cost approaches have been used extensively in image segmentation.
In active contour models, an initial curve Γ (t = 0) is continually deformed
using calculus of variations in a way that optimally minimizes a global cost
C(Γ (t)). This global cost is obtained by integrating along the curve a local
cost, Ψ : R

n → R+ based on image information. The Live-Wire algorithm [16]
determines all the optimal curves between a seed region and any pixel of the
image using dynamic programming.

We propose to extend these two techniques to directional data by considering
direction-dependent local costs of the form2 Ψ : Rn × Sn−1 → R+. The global
cost of a given curve Γ , is then defined to be

C(Γ ) �
∫

Γ

Ψ(Γ , Γ̂ s) ds, (1)

which depends locally not only on the position of the curve but also on the
direction of its unit tangent Γ̂ s.
2 A position p in n-dimensional space R

n is written in bold, and a hat denotes a
direction d̂ of the unit sphere S

n−1.
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2.2 Calculus of Variations

The first variation of the functional (1) can be computed which leads to the
optimal minimizing deformation

∂Γ

∂t
= −P

Γ̂
⊥
s
( ∇ΓΨ −

∂

∂s
∇Γ̂ s

Ψ ) + ΨΓ ss, (2)

where P
Γ̂

⊥
s

is the projection onto the plane normal to Γ̂ s and any user-defined

direction-dependent cost Ψ(Γ , Γ̂ s) can be used. This result extends minimizing
flows for functional of the form C(Γ ) =

∫
Γ

v.Γ̂ s ds, proposed independently for
tractography [13, 17].

2.3 Dynamic Programming

This technique is based on defining a value function C∗(p) that represents, for
any point p in the domain, the minimum cost over all curves between p and the
region S. From any p, the optimal curve back to S is obtained by descent on C∗.
It can be shown that the value function C∗ satisfies the Hamilton-Jacobi-Bellman
equation

max
d̂∈Sn−1

{ ∇C∗(p).d̂− Ψ(p, d̂) } = 0. (3)

The cost Ψ can be interpreted as the inverse of the speed of a particle traveling
along the curve. C∗(p) is then the minimum arrival time at p. Alternatively, an
infinite number of particle departing from S at the same time would propagate
as a front geometrically evolving in the direction of its normal with a speed
F . The corresponding equation is ‖∇C∗(p)‖F (p,∇C∗(p)/‖∇C∗(p)‖) = 1. The
two speeds F and 1/Ψ are not identical because particles are not restricted to
moving along the normal of the evolving front. Front speed and cost (or its
inverse, particle speed) are related through the Legendre transformations [14]

F (p, n̂) = 1/ min
d̂.n̂>0

{ Ψ(p, n̂)
d̂.n̂

} and Ψ(p, d̂) = max
d̂.n̂>0

{ (d̂.n̂)/F (p, n̂) }. (4)

Anisotropic front propagation techniques are not set in a Hamilton-Jacobi-
Bellman framework. Consequently it is the front speed F which is defined from
the diffusion data. Curves will then be determined that are optimal for C, which
can only be interpreted as a cost (or an arrival time) in terms of Ψ . The max
operator present in the definition of Ψ from F will tend to filter out the highest
values of the front speed F that correspond to the preferred spatial directions
(and therefore potential fibers) while preserving the slowest directions. Simu-
lations and further analysis show that this distortion affects particularly speed
functions with very localized direction information such as those encountered
in high angular resolution diffusion imagery and can even result in loss of in-
formation. This problem can be avoided by setting directly the problem in a
minimum cost framework (as proposed) or taking into account the Legendre
transformation (4) when defining F .
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Given the boundary condition C∗ = 0 on some seed region S the Hamilton-
Jacobi-Bellman equation (3) can be solved for the value function C∗ as well as
the characteristic direction d̂

∗
. Then, from any point p, an optimal curve Γ ∗(p)

can be determined back to S by following the characteristics d̂
∗
. By construction,

C(Γ ∗(p)) equals the optimal cost C∗(p). For these C-optimal curves, the value of
another global cost, K, corresponding to a different local cost Φ can be computed
by solving the transport equation

∇K(p).d̂
∗
(p) = Φ(p, d̂

∗
(p)) (5)

with boundary condition K = 0 on the seed region S. In particular the length
L(Γ ∗(p)) =

∫
Γ ∗(p) 1 ds of these optimal curves corresponds to Φ = 1. The cost

per unit length K/L can be used to define a validity index and rank curves that
are optimal for one criterion using another criterion as in [6, 7].

3 Implementation

The HBJ equation (3) can be solved using a fast sweeping numerical scheme
proposed by Kao et al. [18], similar to the one used in [7]. The algorithm

Algorithm 1. Sweeping algorithm to solve the Hamilton-Jacobi-Bellman equa-
tion (3), see [18]
Require: seed region S, direction-dependent local cost Ψ
1: Initialize C∗(·) ← +∞, except at starting points s ∈ S where C∗(s) ← 0
2: repeat
3: sweep through all voxels p, in all possible grid directions
4: d̂

′ ← arg mind∈Sn−1 fC∗,Ψ (p, d̂)
5: if fC∗,Ψ (p, d̂

′
) < C∗(p) then C∗(p) ← fC∗,Ψ (p, d̂

′
) and d̂

∗
(p) ← d̂

′

end if
6: end sweep
7: until convergence of C∗

8: return value function C∗, characteristics d̂
∗

sweeps through all points p in search of the least expensive direction. The cu-
mulated cost to reach p from direction d̂ is fC∗,Ψ (p, d̂) � (

∑n
k=1 αkC

∗(p+δk)+
Ψ(p, d̂))/(

∑n
k=1 αk), where the n neighbors3 p+ δ1, . . . ,p + δn of p in direction

d̂ are interpolated using the components of the vector α � [δ1 | . . . | δn]−1d̂.
For example, if d̂ = δk/‖δk‖ (i.e., d̂ points directly at one of the neighbor-
ing voxels) then f = C∗(p + δk) + Ψ(p, d̂)‖δk‖. While this is reminiscent of
Dijkstra’s algorithm, the search for the optimal direction is not restricted to

3 In 3D, this is n = 3 neighbors among 26.
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discrete grid directions. In our implementation the minimization is performed
over 100 directions sampled uniformly on the sphere and the coefficients α(d̂)
are pre-computed.

Once the vector field d̂
∗

is known, a slightly modified4 version of Algorithm 1
is used to solve transport equations.

4 Application to High Angular Diffusion MRI
Tractography

4.1 Constructing the Direction-Dependent Cost

Most front propagation techniques for diffusion tensor tractography use some ad
hoc function f of the quadratic form d̂

t
Dd̂. If the Gaussian assumption holds,

the diffusion weighted images follow S(p, d̂) � S(p,0) exp(−b d̂
t
D(p)d̂). Tensor

based techniques can formally be extended to high angular resolution diffusion
datasets by setting

Ψ(p, d̂) � f(−1
b

log(
S(d̂)
S(0)

)) (6)

Notice that Q-Ball datasets [11] and direction-dependent local costs Ψ are both
defined on the same space R

3 × S
2.

However, due to the low signal to noise ratio of these datasets, it is desirable
to consider more than one value at a time. The anisotropic cost can be defined
by some decreasing function f ′ of the Funk-Radon transform5 of the attenuation
S(p, ·)/S(p,0).

Ψ ′(p, d̂) � f ′(
∫

v̂⊥d̂

S(v̂)
S(0)

dv̂) (7)

The cost Ψ ′(p, d̂) will therefore be small if and only if there is limited diffusion
loss over the corresponding equator, i.e., if diffusion does not occur normal to d̂.

4.2 Using Prior Knowledge

Mumford [19] showed that variational techniques, such as the one proposed here,
can be set in an elegant and principled Bayesian framework by considering
the cost Ψ = Ψdata + Ψprior. The extreme simplicity of this construction con-
stitutes another advantage over non-variational front propagation approaches.
Here, Ψdata would be as described above and Ψprior could be obtained from an
atlas of neural tracts.

The problems of generating such an atlas and registering it to the dataset
at hand are well beyond the scope of this paper. Note however that masking off
(with infinite cost values) the non white matter regions of the brain is a trivial
and widely employed use of prior knowledge.
4 No minimization needs to be performed.
5 Interestingly, the FRT is also central to the Q-Ball technique [11].
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5 Results

Here we show results obtained by applying the methodology described in the
above sections to diffusion weighted data sets acquired using a single-shot diffusion-
weighted EPI sequence, with 31 different gradient directions with b-values of 500,
1000, and 1500 s/mm2, on a 1.5 Tesla GE Echospeed system. The data was ac-
quired with different b-values to enable comparisons of the results. Traditional
eigenvector based tractography is normally carried out in data with b-values in
the range of 700-1000 s/mm2. Higher b-values give data with higher angular
contrast but at the expense of more noise.

Cost per unit length, which can be interpreted as a validity index for the
putative tracts was determined for all b-values Fig. 1. All curves are optimal
given their starting point. The cost per unit length is a measure of how good

(a) b = 500 (b) b = 1000 (c) b = 1500

Fig. 1. Cost per unit length of end points of optimal curves for different b-values is a
validity index (see text). Best results are achieved for the highest b-value.

(a) (b)

Fig. 2. Fiber tracking from high angular resolution dataset (b=1500 s/mm2)
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Fig. 3. Proposed technique on high angular resolution data (blue) compared with
streamline technique on tensor field (red) (b=1500 s/mm2)

they are compared to each other. The best contrast (corresponding to the most
coherent set of “super-optimal” tracts for a given seed point posterior of the cor-
pus callosum) was obtained at the highest b-value available. This could indicate
that the algorithm was was able to take advantage of the higher angular contrast
in spite of the lower SNR.

Tract results for several user defined seed points are presented on Fig. 2.
Finally the proposed technique was compared to a streamline technique for the

needs of which the tensor field was computed (Fig. 3). While validation is a very
challenging task due to the unavailability of ground truth, it canbe noted that both
algorithm give similar results even though their inputs are different. The tracts of
the proposed technique tend to be more coherent as any noise in the data might
set the streamline off course whereas the proposed technique is more global.

6 Conclusion

A novel technique has been proposed for fiber tractography from high angular
resolution diffusion imagery. In difference to [12, 13] this is based on a prin-
cipled minimum cost (or arrival time) approach. By setting front propagation
techniques in a variational light the proposed technique gives some insights on
the interpretation of front speed versus particle speed. Preliminary results show
that the technique performs better for high b-values when directional resolution
is higher. Further research topics include detailed validation as well as the use
of prior information.
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Abstract. A new framework is presented for clustering fiber tracts into
anatomically known bundles. This work is motivated by medical appli-
cations in which variation analysis of known bundles of fiber tracts in
the human brain is desired. To include the anatomical knowledge in the
clustering, we invoke an atlas of fiber tracts, labeled by the number of
bundles of interest. In this work, we construct such an atlas and use it to
cluster all fiber tracts in the white matter. To build the atlas, we start
with a set of labeled ROIs specified by an expert and extract the fiber
tracts initiating from each ROI. Affine registration is used to project the
extracted fiber tracts of each subject to the atlas, whereas their B-spline
representation is used to efficiently compare them to the fiber tracts in
the atlas and assign cluster labels. Expert visual inspection of the result
confirms that the proposed method is very promising and efficient in
clustering of the known bundles of fiber tracts.

1 Introduction

Diffusion tensor MR imaging (DT-MRI) non-invasively measures the diffusivity
of water molecules within the tissue [1]. It thus provides some knowledge about
the direction and density of the fiber tracts in the brain, as the water diffusion
is restricted in the direction normal to the fibers. While anisotropy measures
are being used to assess the density of the fiber tracts and or the degree of
myelination in different regions of the brain, tractography methods have been
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developed to track the fibers (e.g. [2]), extract the fiber bundles, and estimate
the interconnectivity of different regions of the brain [3].

To date, significant work has been devoted to providing tools for processing
the images [4], tractography schemes [2, 4], visualization [5], and recently quan-
titative analysis of the extracted tracts [6]. However, limited work has been done
to address the inter-subject similarity/variability of the fiber tracts in the human
brain, which is our ultimate goal. Toward this goal and to quantitatively analyze
the fiber tracts in a population, the first step is to identify the fiber tract clusters
in each case. This process would be very inefficient if an expert were needed to
specify all regions of interest in every case under study. An alternative approach
is to extract all of the tracts in the whole brain and then automatically cluster
the desired bundles.

Clustering of fiber tracts has attracted significant attention recently. The
tracts have been successfully clustered into bundles using spectral clustering
[7, 8], normalized cuts [1], agglomerative hierarchical clustering [9], fuzzy c-means
[10], k-nearest neighbors [11]. However, in the absence of any expert knowledge
or atlas to assign the actual anatomical structures to the clusters, there is no
guarantee that a particular clustering algorithm yields the desired bundles. The
algorithm might easily over- or under-cluster the fiber tracts. So, a clustering
scheme is desired that is able to automatically cluster large numbers of tracts to
the bundles of interests, and takes into account available anatomical knowledge.
Such an algorithm should be also flexible enough to cluster either to the whole
anatomical structure or into sub-structures. Accuracy and time-efficiency are
also required as in any other application.

In this paper, we present a new method which satisfies the above require-
ments. We propose to use a labeled atlas of the fiber tracts of the whole brain
to perform clustering on the subjects under study. The essence of the proposed
method is as follows: First, all tracts in the white-matter tissue are extracted
and then projected to the atlas. The applied transformation matrix is obtained
by registering the baseline image of the subject (the images obtained without
applying any gradient in the magnetic field) to that of the atlas. The final step
is to assign a cluster label to each projected tract. This is done by taking the
cluster label of the most similar tract in the atlas. The details of each step will
be described in the next sections. The preliminary results show the efficiency of
the proposed method. The next section describes how we develop the atlas, while
the clustering method is explained in Section 3 along with the results obtained
at each step. Conclusions and future work are discussed in Section 4.

2 Constructing the Fiber Tract Atlas

2.1 Specifying the Regions of Interest

High-resolution DT-MRI data were achieved from healthy volunteers on a 3T
General Electrics Signa scanner (Milwaukee, WI) with repetition time/echo time
of 2500/70 ms, b-factors 50 of 5 and 750 s/mm2, and six gradient directions. Raw
data were converted to derive tensor information, and were loaded into 3D slicer
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(a) (b) (c)

Fig. 1. Sagittal (a),(b) and anterior (c) view of the ROIs for some of the fiber tract
bundles specified by an expert. The internal capsula are removed in (b) to show the
inner structures.

(www.slicer.org). The region of interests (ROIs) were outlined by an expert based
on information from the map of the fractional anisotropy (FA), and a map, which
color-codes the direction of the main eigenvector, both generated in the slicer.
The expert specified major association, projection and commissural tracts as the
ROIs which are used as starting points for tractography (See Fig. 1).

2.2 Tractography

The tractography approach we implemented is categorized as a stochastic ap-
proach. Various stochastic tractography methods have been proposed to allevi-
ate the shortcomings of deterministic approaches in crossing regions by adding
some randomness to the deterministic tractography. Instead of defining an ad-
hoc stochastic component, we used the assumption of a Gaussian distribution
for finding a particle at a distance r from its initial position when diffusing in
an anisotropic medium, as described by Basser [12]. If we represent the diffusion
tensor at each voxel, r, by D(r), with eigenvalues and corresponding eigenvectors
denoted by λi and Ei for i = 1, 2, 3, we get a Gaussian displacement distribu-
tion [12]:

lim
r→∞

Pr(r,Δ) =
1√

|D|(4πΔ)3
exp(−rTD−1r

4Δ
) (1)

where Δ is the diffusion time. Diagonalization of the tensor D gives:

lim
r→∞

Pr(r,Δ) =
1√

λ1λ2λ3(4πΔ)3
exp(− r2

1

4Δλ1
− r2

2

4Δλ2
− r2

3

4Δλ3
) (2)

where the ri’s are the components of r in the base described by the Ei ’s. This
means that the stochastic term is composed of three Gaussian distribution func-
tions along each Ei , whose variance is equal to the corresponding λi.

Using the proposed tractography method, we extract all the tracts starting
from all voxels of the ROIs obtained in section 2.1. Fig. 2 shows the extracted
fiber tracts, colored based on the cluster to which they belong. This data, i.e. the
labeled fiber tracts, is used as the reference model or atlas throughout the work.
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(a) (b) (c)

Fig. 2. The constructed atlas of fiber tracts shown for the obtained bundles in the
sagittal (a),(b), and anterior view. Internal capsula’s tracts have been removed in (b)
to show the inner bundles.

3 Clustering Framework

Having constructed the atlas, the whole brain fiber tracts are extracted from
DT-MRI of each subject and then will be clustered using the atlas as will be
described in this section. The method was applied to 10 DT-MRI data sets
acquired from healthy volunteers with voxel size of 1.054× 1.054× 2 mm.

3.1 Whole Brain Tractography

The white matter of the whole brain is segmented using a k-NN algorithm [13],
and used as the starting point for the tractography. The tracts are then extracted
through the stochastic approach described in Section 2.2. From each starting
point, two tracts are extracted in opposite directions and connected together to
form the complete fiber tract. The tractography algorithm stops for each tract
when an FA value of less than 0.2 is reached.

3.2 Projection

The second step is to project the extracted tracts to the reference subject (atlas).
To obtain the transformation matrix, we register the baseline images of the
subject to that of the atlas. Fig. 3 shows the results of affine registration using
a block matching algorithm [14] for one of the subjects under study.

3.3 Clustering

The main and final step is to assign each projected tract to the proper cluster,
considering the fact that the tracts of the atlas are already labeled based on
the ROI to which they belong (Sec. 2.2). There are several possibilities: The
simplest idea is to use the nearest neighborhood technique such that for each
projected tract, the nearest tract in the atlas is identified and its cluster label
is assigned to the projected tract. The nearest tract can be defined as the tract
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(a) (b) (c)

Fig. 3. (a) A set of fiber tracts extracted from one of the subjects under study, overlaid
on an axial slice of its baseline image. (b) Same as (a) for the reference subject. (c) The
projected tracts overlaid on the registered baseline image of the subject. The pairwise
comparison is performed between tracts in (b) and (c) to assign cluster labels to the
tracts in the subject.

which minimizes either the closest point distance, the mean of the closest dis-
tance, or the Hausdorff distance between the two tracts [6]. Such methods are
usually computationally expensive. An alternative approach is to use a curvature
and torsion of the 3D curves (tracts), which has the advantage of being invari-
ant to translation and rotation [15]. Such approaches in fact compare a shape
model of the curves and neglect the spatial distance between the two curves.
Thus, this is not be the best choice for our purpose where spatial location of
the tracts is also important. Also, computing the curvature and torsion requires
3rd order differentiation of the data, which is prone to noise and quantization
errors. Quintic splines are sometimes used to smooth out the data and to per-
form the differentiation through convolution with spline kernels instead of simple
differentiation [15].
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Fig. 4. (a) Two neighboring fiber tracts and their corresponding 3D spline representa-
tion. Knot points are marked with circles and connected with a short line to guide the
eye. (b) The corresponding curvature along each of the two tracts calculated based on
their spline representation. The curvature values are shifted with an arbitrary offset
for ease of comparison.
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In our clustering approach, we use the B-spline representation [16] of the fiber
tracts for pairwise comparison of the fiber tracts extracted from the subject to
those from the atlas. The spline representation contains information of both
spatial location and shape of the tracts. We used quintic splines to preserve the
information needed to calculate the curvature and torsion of the 3D curves. A 20-
knot representation proved sufficient. Figure 4(a) shows the spline representation
of two neighboring tracts from the corpus-callosum, while Figure 4(b) shows the
corresponding curvatures computed along the tracts.

Once the spline representation is computed, each tract from the subject is
compared to the tracts in the atlas. In doing so, a hierarchical scheme was used
so that the projected tracts are first compared with the major bundles in the
atlas and then with the smaller ones. For the atlas shown in Fig. 2, this leads
to a significant drop in computation time once the corpus-callosum and capsula-
interna bundles are clustered. The maximum number of bundles clustered is
equal to the number of labeled bundles in the atlas. Also, note that since our
atlas does not include all of the structures, some tracts are left unclustered.

(a) (b) (c)

Fig. 5. Sagittal (a),(b) and anterior (c) view of the clustered fiber tracts in of one of
the subjects under study

Fig. 6. Sagittal view of the clustered corpus callosum in four different subjects
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Fig. 7. The average and variation of the curvature along the tracts for the (a) corpus
callosum and (b) pons. Dotted lines represent the average ± the standard deviation.

These tracts can be further clustered with a non-atlas based algorithm to re-
veal those structures not present in the atlas, or the atlas can be extended to
include more structures. Fig. 5 shows different views of the fiber tracts from
a subject clustered to the bundles based on the atlas of Fig. 2. Finally, Fig. 6
shows the sagittal view of the clustered corpus-callosum bundle in four different
subjects.

In our framework it is also possible to include shape information, such as
curvature and torsion when clustering the bundles. For example, for a structure
such as the corpus callosum that can be described by a single shape model [17],
the tracts with such shape characteristics can be clustered based on their shape
representation. This can be performed even without the need to project the
subject tracts to the atlas and by comparing only to a single shape representation
obtained as the average shape of the tracts for that particular bundle in the
atlas. Fig. 7 shows the curvature along the tract for the corpus callosum and
the pons.

4 Conclusions and Future Work

In this paper, we presented for the first time an atlas-based clustering frame-
work for fiber tracts of the whole human brain. Preliminary results prove the
efficiency of the proposed method to cluster the fiber tracts into anatomically
known bundles. The correspondence of clusters in different subjects is defined
by default thus unlike most clustering methods proposed for this application, no
post-processing is required. The proposed framework has also the flexibility to
use different similarity measures, such as spatial distance or shape similarity or
a combination of them, for different structures.

Since the atlas has a significant impact on the clustering results, modification
and improvement of the atlas, in terms of accuracy of ROIs, and the inclusion
of more cases when constructing the atlas are of great importance. Quantita-
tive analysis and study of the variability of particular fiber tract bundles in a
population is currently underway.
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3 Institut Fédératif de Recherche 49 (Imagerie Neurofonctionnelle), Paris

Abstract. This paper proposes a method to infer a high level model of the white
matter organization from a population of subjects using MR diffusion imaging.
This method takes as input for each subject a set of trajectories stemming from
any tracking algorithm. Then the inference results from two nested clustering
stages. The first clustering converts each individual set of trajectories into a set of
bundles supposed to represent large white matter pathways. The second clustering
matches these bundles across subjects in order to provide a list of candidates for
the bundle model. The method is applied on a population of eleven subjects and
leads to the inference of 17 such candidates.

1 Introduction

In the recent past, the development of diffusion tensor imaging (DTI) has led to a new
field of opportunities for the study of brain white matter [11]. A possible approach
for such studies lies in the usual spatial normalization framework. For this purpose,
the development of methods for warping tensor fields using full tensor information is
a promising undertaking, because it may improve the normalization computed from
standard anatomical images [10, 20]. Spatial normalization can be used for instance
for voxel-based statistical analysis. Combining normalization with fiber tracking tech-
niques can also lead to statistical parametric maps reflecting variability of bundle loca-
tion and thickness. Other morphometric approaches can be developped from dedicated
parameterizations of the bundles [8, 6].

One of the difficulties for bundle morphometry stems from the poor anatomical
knowledge about white matter organization of the human brain. Most of the anatomical
techniques used to trace tracts can not be used in the human brain. Therefore, the current
knowledge built from Klinger method or observation of Wallerian degeneration after
lesion is relatively sparse [7, 13]. There is a need for computational methods aiming at
infering a model of the main bundles making up the human brain white matter from
MR diffusion imaging. This paper explores this direction of research.

A lot of methods have been proposed to compute fiber related pathways from dif-
fusion-weighted MR images. The simplest approaches follow trajectories of maximum
diffusion [14, 5, 1]. More sophisticated methods try to overcome partial volume prob-
lems induced by fiber crossing using either high angular resolution acquisitions [18, 15],
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regularization [19, 16], front propagation [12, 9] or Monte Carlo sampling [3, 2]. Most
of these techniques convert the raw MR diffusion data into a huge set of trajectories
supposed to correspond to putative fascicles. These fascicles can be used to create con-
nectivity matrices related either to functional or anatomical regions of interest (ROIs)
[5]. These fascicles can also be organized into larger bundles using clustering algo-
rithms [4], which is addressed in this paper. This last approach is interesting because
the potential influence of erroneous definitions of the ROIs is discarded.

The proposed method aims at the inference of a model of the bundles that can be
detected in most of the subjects. Some of these bundles should be related to the current
anatomical knowledge, but the ultimate goal is to enrich the current understanding of
white matter organization. The method is made up of two nested clustering algorithms.
The first clustering is performed subject by subject in order to reduce the complexity of
the full set of fascicles to a small set of large bundles (cf. Fig. 1). The second clustering
is performed across subjects in order to match similar bundles that may correspond to a
generic anatomical pathway (cf. Fig. 3 and 4). This second stage relies on a simple affine
spatial normalization computed from the diffusion-free T2-weighted image included
in the dataset. The work described in this paper is exploratory. Therefore, we do not
address the current weaknesses of the tracking algorithms that may provide spurious
fascicles. Moreover, we use a very simple clustering algorithm in order to get a first
insight into the problem before designing more sophisticated dedicated methods.

2 Method

2.1 Clustering the Fascicles

The first clustering is performed subject by subject according to the following scheme:

Global fascicle tracking. The computation of the initial set of fascicles is performed
with brainVISA (http://brainvisa.info), an open software implementing Mori’s algo-
rithm [14]. Simply speaking, the fascicles are trajectories of highest diffusion recon-
structed step by step from the diffusion tensor field. A mask of the brain is computed
from the T2-weighted image and one trajectory is obtained for each voxel, leading to a
set of about 500000 fascicles. In this paper, we have chosen to focus on long bundles
which led us to discard the fascicles whose length is less that 5cm. The final set includes
about 20000 fascicles (see Fig.1.A).

ROI map. The clustering is not performed directly on the fascicles but on a set of Re-
gions of Interest (ROIs) defined from Talairach proportional system. The Talairach grid
is split into cubic ROIs that are transformed to the subject referential using affine spatial
normalization of the T2-weighted image performed via SPM2 (http://www.fil.ion.ucl.-
ac.uk/spm) (see Fig.1.B). For the study described in this paper, the spatial resolution
of the grid of ROIs is 5mm. After masking this grid with a mask of the subject white
matter (see Fig.1.D), the final set is made up of about 5000 ROIs.

Connectivity matrix. An anatomical connectivity matrix A is computed for the set of
ROIs mentioned above. For each pair of ROIs (i, j), Aij is the number of fascicles
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Fig. 1. Clustering the fascicles of one subject: A: The set of long fascicles to be clustered into
bundles. B: The same set of fascicles embedded into the Talairach grid used to define cubic ROIs
of 5mm resolution. C: The connectivity matrix of the ROIs with 2 levels of zoom (about 5000
ROIs). Each point in the matrix is the number of fascicles linking the two related ROIs. D: Result
of the clustering for the ROIs. Each color denotes a cluster. Each ROI shape is a cube in Talairach
space masked by the subject white matter. E: Result of the clustering at the level of the fascicles.
The garbage clusters have been filtered out.

crossing i and j (see Fig.1.C). In order to focus the clustering on the strongest connec-
tivity information, this matrix is binarized using a threshold on the number of fascicles.
For the experiment described further, this threshold has been set to the mean of non null
coefficients plus one standard deviation, namely about 40 fascicles depending on the
subject.

Clustering. In the matrix A, each row stands for the connectivity of one ROI with the
other ROIs. The ROIs belonging to the same bundle should have similar connectiv-
ity patterns. Therefore, we perform a clustering among the ROI set using a distance
between ROI corresponding to the Euclidean distance betwwen the rows of A. The
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clustering is performed using the standard k-means with random initialization of the
centers (see Fig.1.D). K-means algorithm assigns each ROI to a cluster, which lead us
to assume that the largest cluster in a kind of garbage collector that is discarded before
further processing.

Fascicle bundles. The final step of the clustering consists in moving back to the fascicle
world. Each cluster of ROIs is used to extract a subset of fascicles from the global set.
For robustness purpose, a fascicle only needs to be partly included in the ROI cluster to
be selected. In practice, a fascicle is selected when at least 60% of its sampling is in-
cluded (see Fig.1.E). A last processing aims at splitting the resulting set of fascicles into
connected components, which is required to deal with some unpredictable behaviour of
the K-means. The clustering, indeed, gathers sometimes two bundles symmetric across
interhemispheric plane, which calls for the use of better algorithms in the future. This
postprocessing can not be performed directly at the level of the ROI clusters because the
ROIs including fiber crossing can be assigned to only one cluster, leading sometimes
to disconnect a cluster of ROIs corresponding to a reasonable bundle. The analysis of
the connectedness of a fascicle set is performed via embedding of the fascicles into a
3D volume. It should be noted that this postprocessing implies that the final number of
fascicle bundles depends on the subject.

2.2 Clustering the Bundles Across Subjects

The goal of the second stage of clustering is the inference of a model of the bundles that
should be found in any human brain. The underlying idea is that a simple clustering
performed to match similar bundles could provide a list of candidates for such a model.
These candidates would not have to be found in any brain during this inference stage,
but should be included in the model of the white matter used to design further pattern
recognition systems. What we have in mind is a model of the bundles used to label the
fascicles of any new brain in a way similar to what has been developped to deal with
cortical sulci [17].

Similarity measure for bundles. In order to match bundles across subjects, a shape-
based similarity measure is required. Relying on iconic representations of the bundles
allows the definition of discriminant measures stemming from the spatial normalization

Fig. 2. The block-based structure of the matrix of similarity measures between bundles. Each
M ij block corresponds to the one to one correlation coefficients computed between the bundles
of the subject i and the bundles of the subjects j. The Oii blocks would be zero-based without
smoothing of the binary representations.
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towards Talairach space. For this purpose, each fascicle bundle is converted first into a
binary representation lying into Talairach space. Then, to reduce the influence of the non
perfect affine spatial normalization, these binary representations are convoluted with a
Gaussian kernel with 3mm standard deviation. Finally, for each pair of bundles (i, j),
the similarity Cij is computed as the correlation coefficient between their respective
smoothed representations. With a subject-based ordering of the bundles, the similarity
matrix C has a block structure (see Fig. 2 and 3).

Clustering. The second stage of clustering is also performed with a K-means algorithm.
Each bundle is represented by a row of the similarity matrix C. It should be noted that

Sagittal Coronal

Axial

Fig. 3. Clustering the bundles across subjects: The matrix of correlation coefficient computed
for all pairs of bundles and three orthogonal views of the result of the clustering. All subjects
bundles have been gathered into Talairach space. Each color denotes a cluster of bundles that
may correspond to a generic anatomical entity. Garbage clusters have been filtered out. Among
the clusters that are candidates to stand for some known anatomical pathways, we noticed the
following: (black) ALIC: Anterior Limb of Internal Capsule; (pink) ATR: Anterior Thalamic Ra-
diation; (red) ILF: Inferior Fronto-Occipital; (red) IFO: Inferior Longitudinal Fasciculus; (braun
and dark blue) GCC: Genu of Corpus Callosum; (dark green and violet blue) SCC: Splenium of
corpus callosum; (light yellow) FX: Fornix.
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the K-means can merge several bundles of the same subject into the same cluster. It
should be noted also that a cluster does not have to include a bundle of each subject. It
should be noted finally that the K-means has to assign each bundle to a cluster. These
remarks highlight the fact that a postprocessing is required to clean up the clustering
before building the bundle models. The idea is first to get rid of the clusters that are not
reasonable representation of a bundle, second to get rid of the bundles that look like
outliers in the cluster they belong to.

Let N be the number of subjects. For the results presented in the following, the clus-
ters gathering less than N/2 bundles were discarded because of a lack of reproductibil-
ity across subjects. The clusters made up of more than 2 ∗N bundles were discarded as
garbage collector clusters. Finally, inside each clusters, the statistics of the distance to
the cluster center were computed. The outlier bundles were defined as those beyond one
mean plus one standard deviation. The remaining clusters are considered as candidates
to represent one of the building block of the human brain white matter organization.

3 Results

3.1 Clustering the Fascicles

Eleven subjects were processed. Their diffusion data have been acquired on a 1.5T
with 41 different directions for the diffusion-weighting gradient. The resulting 3D vol-
umes have a 128x128x60 resolution with 1.875x1.875x2 voxel sizes. BrainVISA soft-
ware was triggered with 42x42x20 5mm cubic ROIs. The K-means was applied with
20 classes for each subject. After the connectivity-based postprocessing, we obtained
between 20 and 25 bundles for each subject. An example of result can be found in
figure 1.

3.2 Clustering the Bundles Across a Population

The second clustering was applied on the eleven subjects with a 25 classes K-means.
After cleaning up the result, we obtained 17 reasonable clusters. The result can be vi-
sualized in figures 3 and 4. Some of these clusters seem to fit some well known bundles
described in anatomical atlases, while the various bundles resulting from the split of the
corpus callosum may have less anatomical meaning.

4 Discussion

The inference of a model of the white matter organization will become mandatory to
fully exploit the information embedded into MR diffusion-weighted images. While a
straightforward approach for this purpose lies in the iconic atlas and spatial normal-
ization principles, this paper advocates an alternative which aims at infering a higher
level model of the bundle organization. The work proposed in this paper is still very
preliminary. However, it provides an overview of the various difficulties that have to
be addressed to tackle the inference of such a model. A lot of the ad hoc choices pre-
sented above could be questioned and more sophisticated methods should be derived in
the future.
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Fig. 4. Clustering the bundles across subjects: The result of the clustering for ten of the eleven
subjects. For each subject two views are presented. Each color denotes a cluster that gathers
bundle across most of the subjects.

The key idea proposed in our preliminary work is the two stage inference strat-
egy: building first a bundle-based representation before trying to match bundles across
subjects. This idea allows the matching to deal with reasonable data sizes. The first clus-
tering, however, can not be questioned during the matching stage which is problematic.
Therefore, future approaches may lead to build multiscale representations of the in-
dividual data. For instance, each individual bundle may be split further into smaller
bundles using one more non supervised clustering. Some other multiscale representa-
tions could stem from selecting other ranges of fascicle length in order to deal with
short pathways like U-fiber bundles.
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As mentioned above, the model inference does not have to find each anatomical
entity in every brain. This could be the job of a dedicated pattern recognition system
developed to process large databases of diffusion-weighted data. Such a system would
face a simpler situation where brains are processed one by one. Hence, the matching
with the bundle model could be performed at the fascicle level. Each fascicle would
have to be labelled with the name of one of the entities of the model. Such a system
would open the door to massive morphometric analysis of the white matter bundles,
which would lead to numerous applications in neurosciences.
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Abstract. This work presents a framework driven by parcellation of brain gray 
matter in standard normalized space to classify the neuronal fibers obtained 
from diffusion tensor imaging (DTI) in entire human brain. Classification of 
fiber bundles into groups is an important step for the interpretation of DTI data 
in terms of functional correlates of white matter structures. Connections 
between anatomically delineated brain regions that are considered to form 
functional units, such as a short-term memory network, are identified by first 
clustering fibers based on their terminations in anatomically defined zones of 
gray matter according to Talairach Atlas, and then refining these groups based 
on geometric similarity criteria. Fiber groups identified this way can then be 
interpreted in terms of their functional properties using knowledge of functional 
neuroanatomy of individual brain regions specified in standard anatomical 
space, as provided by functional neuroimaging and brain lesion studies. 

1   Introduction 

Delineation of functional brain networks is an important issue for understanding brain 
function. Most of what is known about functional organization of the brain is based 
on contributions of gray matter regions distributed across the brain. Relating this 
knowledge to structural organization of white matter has become possible with recent 
DTI methods, [1]. Tractography allows characterization of connectivity patterns 
across cortical and subcortical regions by specifying extent and orientations of the 
neural fibers in the white matter. With this information, normal brain function, its 
development, pathologies, and the effects of normal aging can be better understood if 
the principles of white matter organization can be described [2]; the nature of the 
interactions between functionally related brain regions but geometrically separated 
can be investigated. Conversely, functional interpretation of white matter fiber 
bundles can be made in reference to the gray matter regions that they connect. 

An important goal in this area of research is to achieve systematic identification and 
characterization of axonal fiber tracts. Current attempts for manually and automatic 
grouping and labeling tend to focus on similarities between geometric properties of 
fibers. Ding et al. [3] combined a corresponding segment ratio with the mean distance 
over the segments to delineate the similarity between two streamlines generated from a 
region of interest (ROI), and grouped the geometrically similar streamlines with nearby 
seeding points into the bundle. Corouge et al. [4, 5] defined three distance measures 
based on the point sets on the pair of streamlines, and classified a set of streamlines 
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within specified ROI(s) into meaningful bundles. However, variations across subjects in 
white matter pathway organization can make extracting and labeling the fiber paths by 
hand time-consuming and error-prone. The task becomes more challenging when 
classifying the paths over the entire brain instead of a ROI since no human input about 
the path information will be implied. Zhang et al. [6] explored an unsupervised 
classifying algorithm on a dense set of paths over the entire brain, and used a serial of 
strategies in setting seeding points, path constraints, culling distance and setting distance 
metrics to minimize the misclassifications. Brun el al [7] compared the fiber path 
pairwise to create a weighted undirected graph that was partitioned into coherent sets 
using the normalized cut criterion.  

Our approach starts by identification of commonalities in terminations of white 
fibers in gray matter. For this, we use a standard brain atlas which provides a 
parcellation scheme for brain gray matter [Talairach and Tournoux, 1986], which is 
used by most functional neuroimaging studies for assigning functional roles to 
individual brain regions in a common standard space. The rationale is that fibers that 
connect neighboring gray matter regions that are considered to form functional units 
are most likely to be part of the same white matter tract. At this stage of analysis, 
alternate pathways between the same regions may appear to form a single tract, and 
fibers whose gray matter terminations are nearby but labeled differently in the atlas 
might be assigned to different clusters. After this initial classification, subsequent steps 
eliminate unlikely fibers, determine subgroups of fibers based on pairwise comparisons 
of geometric properties and blend groups of fibers with similar trajectories. This 
approach also considerably reduces computational load, since not all possible 
comparisons between fibers need to be computed. Additional anatomical constraints 
related to global organization of brain structures, as well as functional neuroimaging 
results, can easily be incorporated into this procedure for fiber classification.  

Another reason why it is desirable to use the spatial organization of gray matter as 
a reference point for identifying white matter pathways is that this might make easier 
to combine tractography data across subjects, and to make comparisons across group. 
Once pathways within an individual brain have been identified, there is also the 
problem of deciding which pathways across individuals correspond to the same 
anatomical tract so that quantitative comparisons can be made. Variability of spatial 
extents of pathways across individual brains is currently not well known. 
Correspondences in the relative positions of gray matter structures have been better 
characterized, and addressed by spatial normalization methods. More concretely, a 
tract connecting two cortical regions, such as dorsal frontal and posterior parietal 
cortices, might show considerable variability in its trajectory, so that spatial overlap 
of its extent across individuals might be poor. Choosing tracts based on the regions 
that they connect rather than the regions that they cover in space might be a better 
basis for comparing the properties of tracts across individuals. 

2   Materials and Methods 

2.1   Tracking Streamlines 

The extraction of fiber paths for the entire brain is performed with the tractography 
tool described in [8]. The tracking algorithm used is based on the STT algorithm. In 
brief, tensor components are calculated from a voxel size of 1.85 × 1.85 × 1.85 mm3 
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diffusion weighted images acquired along 13 gradient directions. Streamlines 
following the principal diffusion directions are produced from seed points along a 
regular 1.85 mm grid, constrained only to voxels with fractional anisotropy (FA) value 
exceeding 0.15, and following a local continuity constraints. The integration stops at 
points where FA value falls below 0.15, which indicate low diffusion directionality. 

Figure 1 shows whole-brain streamline sets extracted by this method from a test 
dataset, and transformed to a common stereotactic space using the Montreal 
Neurological Institute (MNI) T2 template with SPM2 software. There are more than 
46,700 paths which are longer than 20mm. Since the tracking results are not 
constrained by geometric criteria, a significant portion these 40K paths can be due to 
effect of noise and include multiple outliers.  

  

Fig. 1. Whole-brain streamline sets extracted by the method from a test dataset 

2.2   Atlas-Based Labeling and Classification of the Fiber Bundles Based on 
Initial Labels 

As a first step, Talairach brain atlas is used to provide labels for each streamline or 
path and for each fiber bundle separately on the basis of coordinates of two end-
points. The labeling of each streamline is done as following: 

• If both of two end-points of the streamline fall within regions labeled as gray 
matter in the atlas space, the streamline is labeled with the names of the regions 
that it connects (eg., “BA 7_Thalamus”). 

• If only one end-point of the streamline falls into labeled gray matter, the second 
termination is not identified in the atlas as gray matter, the streamline is marked 
as the name of the gray matter and unidentified (eg., ‘‘BA7_ unidentified’’’). 

• If both end-points of the streamline are within regions not identified in the atlas 
as gray matter, it is marked as “unidentified_unidentified”. 

Streamlines that can actually be interpreted as corresponding to axonal fibers 
should be connecting functional brain regions, and organized in groups (fiber bundles) 
that correspond to white matter tracts. After the first label assignment, the streamlines 
are classified into the groups of fiber bundles based on correspondence of atlas labels 
for  their  terminations.  Figure  2  shows  the  fiber  bundles  that connect left and right  
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hemisphere and classified into more than 150 
bundles in the step. Since the robustness of 
fiber tracking remains limited at junctions and 
in noisy regions, the extracted fiber set 
contains outlier paths, paths that are part of 
other anatomical tracts, and spurious paths 
linking between anatomically unrelated tracts. 
These paths should be removed or classified 
into the correct bundles during the initial 
classifying stage: 

• All streamlines linking between 
identified anatomic or functional gray 
matter structures are grouped into the 
different fiber bundles according to their names. For instance, all streamlines 
labeled as “BA7_Thalamus” are incorporated into a single group. 

• The streamlines named as ‘unidentified _unidentified’ are assigned to one of the set 
of the fiber bundles defined for the whole brain based on the  similarity measures 
defined in the next section. Figure 3 shows that red color fiber bundle is the source 
bundle that is within left hemisphere regions 
not identified in atlas as gray matter, and 
incorporated into the white color fiber bundle 
based on the similarity. 

• The streamlines labeled as “gray matter 
_unidentified” are incorporated into one of 
the set fiber bundles which share the 
identified gray matter label for this streamline 
as a termination based on the similarity. 

• Streamlines that are shorter than 30 mm or 
that cannot be assigned to any fiber group 
based on the similarity measure are removed. 

2.3   Classifying Fiber Bundles 

The way the fibers bundles are clustered in 3D space, the degree to which fibers in the 
same bundle run parallel, and their distinct physical and geometric properties should 
match the properties that brain white matter tracts have in general to be biologically 
plausible. Low spatial resolution of DT images, limited robustness of fiber tracking 
methods at junctions and in noisy regions, and interindividual variability of white 
matter anatomy introduce errors into the fiber tracking procedure. Therefore, the fiber 
bundles generated by the steps above may contain biologically implausible outlier 
paths and paths forming spurious bridges between fiber bundles that correspond to 
actual pathways. The next classification stage is introduced to address these problems. 
The goals of classifying are removing the outliers, partitioning the fibers in the bundle 
into natural clusters, and agglomerating the clusters into correct bundles according to 
the position and shape similarity of fibers. Two measures of similarity between pairs 
of single fibers are defined below. 

 

Fig. 2. Fibers connecting the left and 
right hemisphere are classified into the 
bundles viewed with different colors 

ï

Fig. 3. Red-color fiber bundle is 
incorporated into the white-color 
fiber bundleï
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Similarity Measure. Two fibers are considered similar when they have comparable 
length, similar shape, and are separated by a short distance. Two pairwise distances 

between fibers iF  and jF  are used for the similarity measure:  

1. Mean distance Md : 
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The mean distance Md  is a good indicator of shape similarity and spatial 

closeness of a pair of fibers. When two fibers that have comparable length are similar 

in shape and close in location, Md is small; when the distance between two fibers is 

large, or their shapes are different, Md  is large. On the contrary, the Hausdorff 

distance Hd  being a worst-case distance, it is a useful metric to reject outliers and 

prevent classifying paths with high dissimilarity.  

Classifying Fiber Bundles. Classifying the fibers in the bundle involves finding 
subsets of fibers that correspond to natural anatomical groups by identifying fibers that 
are clustered closely together in 3D space, running parallel to each other, and have 
distinct physical and geometric properties. If a bundle formed in Section 2.2 contains 
more than one such group, it is split into natural sub-clusters. After splitting of bundles, 
similarities between neighboring sub-clusters are assessed in order to identify those 
that are likely to belong together in the same tract, so that they are regrouped into a 
new bundle, and to reject sub-clusters containing small numbers of fibers and showing 
low similarity with other groups as outliers that are likely to be due to artifacts.  

Splitting approach begins with the calculation of pairwise Md of the fibers in the 

same bundle. It is not a time-demanding task since the number of fibers in a bundle is 

not high generally. Supposed calculating the pairwise Md  between the fiber iF ψand 

the fiber jF ψin the bundle C , ij ≠ . If tFFd jiM <),(  (a threshold to be chosen), 

iF  and jF are in the same sub-cluster, and vice versa. After calculating a table of 

pairwise Md , the approach propagates from neighboring fiber to neighboring fiber. 

The threshold t  depends on the position and shape of the fiber bundle. The larger t  
value is, the lower the number of sub-classes will be, and vice versa. 

Finding the neighbor candidates of the fiber bundle, and limiting the similarity 
measurement between sub-cluster fibers and the candidate-bundle fibers are very 
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important to searching approach. The pairwise Md  comparison of all fiber paths is a 

time-consuming task because the number of fiber paths in entire brain is huge. So the 
fiber bundle properties of anatomic position, direction, shape, length, end-points, the 
mass center, and connectivity are introduced for the finding of neighbor bundle 
candidates in order to limit the number of similarity measurements.  

The following steps are involved to reject a sub-cluster or group it into the neighbor 
fiber bundle or keep it as a natural fiber bundle: 

1) For a fiber iF  in the sub-cluster, the fiber candidates are found in the candidate 

bundles. These candidates and fiber iF  have similar in shape and direction, and 

the mass centers of them are the neighbors. 

2) Similarity (mean distance Md ) between iF  and each of the fiber candidates are 

calculated, and a similarity threshold value is set. 

3) One fiber in candidates is located, whose similarity is greatest ( Md  is 

smallest). 
4) If the similarity in step 3 is accepted, 

the sub-cluster is merged into the 
bundle with the found fiber in step 3 
and the processing is stopped. If the 
similarity is unaccepted, another fiber 

jF  in the sub-cluster will be chosen 

and steps 1-4 are repeated. 

5) When all fibers F in the sub-cluster 

are checked and the sub-cluster cannot 
be merged into other bundle, if the 
average fiber length of the sub-cluster 
is less than 30 mm and the number of 
fibers is less than 3, the sub-cluster is 
rejected forcedly. Otherwise, the sub-cluster is kept and waited for checking 
manually by an expert. 

Repeating the above steps for all sub-clusters and fiber bundles, the algorithm 
partitions the set of fibers into different fiber bundles. Figure 4 shows the processed 
results of the fiber bundles that connect left and right hemisphere, there are 14 fiber 
bundles left. 

3   Results 

The neuronal fiber classification and quantification method was implemented in 
Matlab, and tested on the fiber paths from real DTI datasets. Figure 1 shows the 
streamlines with the length greater than 20 mm before classifying and the path set 
without the constraint. There are about 46,700 paths; some are short paths stopping 
within the ambiguous white matter regions and being the part of other paths, which 
could potentially create artificial links between fiber bundles. Figure 5A shows the 

 

Fig. 4. The processed results of the fiber 
bundles that connect left and right 
hemisphere 
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bundles formed after the first step, based on common gray matter projections 
determined by atlas labels. The final results, derived by redistribution and pruning of 
fibers based on similarity measurements are shown in Fig 5B. 

a b  

Fig. 5. (a) shows the bundles formed after the first step, there are more than 3000 bundles. (b) 
The final results, derived by redistribution and pruning of fibers based on similarity 
measurements, there are 264 bundles left. 

4   Discussion and Conclusion 

The focus of this work is on classification fiber paths derived from DTI data into 
bundles associated with distinct anatomical and functional structures. The fiber 
classification procedure is centered around knowledge of anatomical and functional 
subdivisions of gray matter obtained from the Talairach atlas. Fibers are first grouped 
based on common projections to parts of gray matter designated as distinct regions in 
the atlas. Subsequent stages refine the initial distribution of fiber groups, so that the 
final set of bundles contain fibers that share similar physical and geometrical 
properties, and connect gray anatomically and functionally related regions of gray 
matter. This approach reduces the computational load of whole brain fiber analysis, 
and automatically produces groups of fibers that can be interpreted in an intuitive 
manner.  

The algorithm extracts whole-brain streamlines from naive dataset, transforms the 
streamlines to a common stereotactic space using the MNI T2 template with SPM2 
software, and names the fiber and fiber bundle with the region names of two end-
points of the fiber and fiber bundle. The transform accuracy and interindividual 
variability do influence the name of one fiber and may put the fiber in an incorrect 
bundle at initial stage, the algorithm re-classifies the fibers into natural anatomical 
bundles by identifying fibers that are clustered closely together in 3D space, running 
parallel to each other, and have distinct physical and geometric properties. If the 
difference between the individual brain and Atlas is large, some fiber bundles 
connecting small cortical areas may have an incorrect label names.  

Low spatial resolution of DT images and limited robustness of fiber tracking 
methods at junctions and in noisy regions may issue tracts that are locally consistent 
but incorrectly connected. The algorithm cannot handle the case currently, and the 
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fiber bundles have to remove manually. Our future work will focus to validate the 
fiber tracts and to explore the relationship between the physical and geometric 
properties of the fiber tracts and the brain diseases and brain development. 
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Abstract. In this study we address the problem of extracting a robust
connectivity metric for brain white matter. We defined the connectivity
problem as an energy minimization task, by associating the DT-field to
a physical system composed of nodes and springs, with their constants
defined as a function of local structure. Using a variational approach we
formulated a fast and stable map evolution, which utilizes an anisotropic
kernel smoothing scheme equivalent to a diffusion PDE. The proposed
method provides connectivity maps that correlate with normal anatomy
on real patient data.

1 Introduction

Magnetic Resonance Diffusion Tensor Imaging (DT-MRI) is the only known
technique that provides information about the geometry of fibrous structures,
such as the fibers in the human brain, in vivo. DT-MRI is based on measuring the
diffusion of water molecules. The diffusion process is approximated by a second
order tensor. It was shown that at fiber positions, the principal eigenvector of
this tensor is correlated with the underlying fibrous structures’ orientation [3].
So, DT-MRI has been accepted as a promising tool to get information about the
connections in human brain. Despite its promise, DTI has its drawbacks: Low
order approximation to the diffusion process and insufficient spatial resolution.

There are two basic approaches in utilizing the information DTI data pro-
vides: Fiber tractography and connectivity mapping. The former attempts to
answer the following question: Can we reconstruct the fiber that passes through
a given seed point? Among different approaches, the Runge-Kutta method has
been widely accepted [1]. However, fiber tracking is prone to cumulative errors
and can not overcome the partial volume effect [2, 3]. The second group of ap-
proaches attempts to utilize the nature of the DTI data, i.e. the diffusion process,
by estimating a connectivity map. They consider each and every possible connec-
tion with weights set by the DTI data. Koch et al. used a Monte-Carlo simulation
of the random walk model [4], yet their approach uses successive jumps whose
curvature is restricted to be less than 90 degrees and requires multiple runs for
� This work was in part supported by EU 6th Framework SIMILAR NoE
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University Research Funds (SK/DTIcad).
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generating the final connectivity map. Hagmann et al. extended this method in
a supervised fashion by incorporating the white matter fiber tract curvature [5],
again treating the problem as a random process. Chung et al. applied adaptive
kernel smoothing of the transition probabilities of the underlying diffusion pro-
cess, which is governed by the DTI tensor field [6]. Their approach relatively
being faster and more deterministic than the first two, is shown to be equivalent
to the Monte Carlo method. It remains to be a numerical diffusion simulation,
and needs to be masked with the FA map in order to be a heuristic approxi-
mation of connectivity. Batchelor et al. solved the anisotropic diffusion equation
set by the DTI data with the initial conditions being a set of seed points set to
an initial nonzero (unity) concentration of virtual diffusing particles [7]. Lenglet
et al., on the other hand, recasted the connectivity problem to Riemannian dif-
ferential geometry framework where they defined their local metric tensor using
the DTI data and solved for geodesics [8].

In this work, we propose aphysical setup of unit-mass nodes (voxels) and
springs. The constants of spring linking adjacent nodes are set according to the
local connectedness of the node pair. The local connectedness is measured using
the so called mutual diffusion coefficent. It approximates the ellipsoidal volume
overlap of a given tensor pair in �3. The system is perturbed by setting the seed
node to constant potential and computing the stationary potential map, which
is the connectivity map, evoked. The method is evaluated on real petient data.

2 Method

In general, connectivity can be interpreted as a measure which is proportional
to the qualitative similarity and spatial proximity of the units contained in data
to be analyzed. In the case of DT images, where we are trying to reveal a func-
tional connectivity, qualitative assessment of tensors becomes crucial in order
to construct an appropriate model. We have to consider some certain features
embedded in a DT image as indicators of connectivity. In general, the connec-
tivity measure between two tensors can be visualized in terms of the volume
overlap of their ellipsoids centered at the corresponding voxel coordinates. This
interpretation will take the relative features of tensors into consideration such as
their respective locations, sizes, orientations and shapes. A similar but simpler
metric, that we proposed and used in this study is the so-called distance scaled
mutual diffusion coefficient K. Given two tensors D1 and D2, located at r1 and
r2, respectively, we define their connectivity K12 as:

K12 =
[(vT D1v)(vT D2v)]γ

δ2 (1)

where v = (r1− r2)/δ and δ = ‖r1− r2‖2. Thus, K reflects the mutual influence
of tensor pairs by giving the distance scaled product of their diffusion coefficients
evaluated in the unit direction of their Euclidean link and raised to the power γ,
which will be used as a tuning parameter. For the time being we take γ to be 1.
We can construct a physical system, based on Kij ’s which reflect the connectivity
pattern within DTI data.
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Fig. 1. Illustration of proposed spring system for a 1D curve (solid line), dots represent
the nodes, spring constants are given for the specific node up

Let Ω = [0, a] × [0, b] × [0, c] ⊆ �3 be our image domain, and let D : Ω →
�3 × �3 be the given tensor field. We propose that the sought connectivity
map u : Ω → � with respect to a given seed point (x0, y0, z0) ∈ Ω is the
stationary pattern of a physical spring system defined as follows: Each voxel of
the domain corresponds to a node and potential at seed node u(x0, y0, z0) is set
to 1, which is kept constant in time. For each pair of adjacent nodes, a spring is
associated with a stiffness, that is set to the mutual diffusion coefficient (Eqn.
1) evaluated for the adjacency of that particular pair. Thus, if we consider 6-
neighborhood (N6) on a regular 3D grid with δ-spacing in all directions, this
model will correspond to 6 ”neighbor springs” acting on each node and a node
at ri = (x, y, z)T would share the following spring constant with respect to its
immediate neighbor rj = (x− δ, y, z)T :

K1(x, y, z) =
(eT

1 D(x, y, z)e1)(eT
1 D(x− δ, y, z)e1)

δ2 (2)

where e1 = (1, 0, 0)T //(ri − rj) is the unit vector of the orthonormal basis.
Remaining constants of neighbor springs K2, ...,K6 are defined similarly with
e2 = (0, 1, 0)T and e3 = (0, 0, 1)T . We set spring elongations as the local direc-
tional differences of u (for instance as u(x, y, z)−u(x− δ, y, z) for K1), such that
they force u to be equal to the corresponding immediate neighbor. Finally, an
extra spring, the so-called ”ground spring” with a constant stiffness κ, is also
attached to all nodes, with the elongation being u and forcing u to be 0. This is
necessary to justify our model for revealing connectivity, which will be explained
next. The resulting spring system can be visualized in Figure 1 for a 1D curve.
With this model, total potential energy stored will be given as:

Vsprings =
1
2
κu2 +

6∑
n=1

Vn (3)

where V1 = 1
2K1[u(x, y, z) − u(x − δ, y, z)]2 and V2, ...V6 are defined similarly.

In order to associate this potential energy to the point (x, y, z) rather than to
the springs, the latter six energy terms due to the neighbor connections should
further be halved, as if they are equally shared with the corresponding neigh-
bor. We let δ → 0 assuming that we have infinite resolution, such that V can
be approximated to a continuous function, enabling us to interpret the system
better. Inserting Kn’s common denominator δ2 and taking the limit, we obtain:



216 E. Yörük, B. Acar, and R. Bammer

V (u, ux, uy, uz) =
1
2
(κu2 + d2

11u
2
x + d2

22u
2
y + d2

33u
2
z) (4)

where djj (j = 1, 2, 3) are the diagonal elements of D as can easily be derived
from Equation 2. We can put the current problem into a variational one, where
the connectivity map u with respect to the seed at (x0, y0, z0) can be found by
minimizing the following energy functional:

J(u) =
∫

Ω
V (u, ux, uy, uz)dΩ (5)

assuming Neumann boundary conditions on ∂Ω, and an extra seed condition
u(x0, y0, z0) = 1. Corresponding Euler-Lagrange equation is:

κu− d

dx
(d2

11ux)− d

dy
(d2

22uy)−
d

dz
(d2

33uz) = 0 (6)

It is easy to show that fixing u(x0, y0, z0) to 1 for an interior point of Ω, does
not change the Euler-Lagrange equation since J(u) can be rewritten as a sum
of several integrals evaluated at Cartesian subregions, each having (x0, y0, z0)
at their boundaries and sharing the same integrand. The physical interpretation
of our model is as follows: A connected spring system, which is only lifted at
(x0, y0, z0) to a constant level of 1 and kept there, achieves its stationary pattern
by minimizing its total potential energy. Nodes other than the seed try to come
to zero due to the ground springs, but they will be lifted up as well, in proportion
to their connectivity to the stationary seed node. Hence, the stationary pattern
will be equivalent to the sought connectivity map with respect to the seed node.

Temporally evolving a given initial u0 at a rate determined by the negative
of the left term of Equation 6, by a steepest descent scheme, we obtain the
following PDE:

ut = −κu +
d

dx
(d2

11ux) +
d

dy
(d2

22uy) +
d

dz
(d2

33uz) = −κu +∇ • (D̃∇u) (7)

where D̃ is a diagonal matrix with squared diagonal entries of D. The same equa-
tion could be obtained with another D̃, using different neighborhood (and/or
spring) definitions. In any case, resulting PDE can be considered as a modified
diffusion process, with a seed condition u(x0, y0, z0) = 1 and an extra term −κu,
keeping u attached to the ground. Thus, as t → ∞, u does not get totally flat.
If we interpret the model in 2D, a structure sensitive tent-like pattern will be
obtained with its maximum at the seed.

Numerical implementation of such a map evolution scheme can easily be
accomplished by anisotropic diffusion filters with the specified modifications and
an initial map:

u0(x, y, z) =
{

1 if (x, y, z) = (x0, y0, z0)
0 otherwise (8)
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Keeping the model in its discrete form from the beginning, we can get the
discrete version of Equation 5 as:

J(u) =
∑

p

{κu2
p +

1
2

N∑
n=1

Kpn(up − upn)2} (9)

where p is the voxel index and N is the number of neighbors. upn and Kpn

stand for the nth neighbor of the pth node and its associated spring constant,
respectively. 1

2 scales the potential energy of neighbor springs, since they are
counted twice in the outer summation. Now, writing the discrete Euler-Lagrange
equation of this functional, we obtain:

κup +
N∑
n

Kpn(up − upn) = 0 (10)

This equation says that along an extremal, the total spring force applied to each
node is zero. This could also be observed by rewriting Equation 6 in a discrete
form where space derivatives are replaced with central differences.

Seeking for the connectivity as a PDE evolution with diffusion filters, will
bring the common trade-off between stability and rate of convergence.We pro-
pose, another map evolution technique, which mimics the diffusion process in
the light of the balanced force condition imposed by discrete Euler-Lagrange
equation. The idea is, not to calculate the update ut, but iteratively solve for a
new up, which makes ut vanish at p. ”Balance in the neighborhood” condition
dictated by Equation 10, locally and explicitly gives:

up =
∑N

n Kpnupn

κ +
∑N

n Kpn

(11)

This scheme with κ = 0 would be the same as assigning a weighted neighbor-
hood average to each up, but with a spatially varying kernel coming from the
local image structure. In fact, this adaptive directional smoothing constitutes
the essence of the diffusion filtering, hence it can be interpreted to be equiva-
lent to the diffusion process [6]. Equation 11 has a similar computational cost
to Equation 7, but a higher convergence rate. Moreover, stability is naturally
provided by the bounds specified by local neighborhood of upn’s.

3 Results

In order to validate the computed connectivity maps, we used a simple tracking
module, that follows coherence directions in converged u. As in [9], we first
compute the structure tensor of u, which is obtained by taking the tensor product
of its gradient and componentwise smoothing the resulting matrix:

S(u) = Gσ ∗ (∇u ⊗∇u) =
[
ω1 ω2 ω3

] ⎡⎣λ1 0 0
0 λ2 0
0 0 λ3

⎤⎦⎡⎣ωT
1

ωT
2

ωT
3

⎤⎦ (12)
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where Gσ is a Gaussian kernel with variance σ2. S(u) is a symmetric positive
semidefinite matrix, which is invariant under sign changes of the gradient. Its mag-
nitude ordered eigenvalues λ1 ≥ λ2 ≥ λ3 give the amount of u’s fluctuation, along
the corresponding eigenvectors. Thus, as ω1 will be parallel to the smoothed gra-
dient, the smallest eigenvector ω3, which is also called the coherent direction, will
correspond to the orientation with least decrease in the connectivity. Starting from
the seed, we can easily follow ω3 vectors for tracking the candidate fiber.

We used a real patient data in our experiments. The scans were single-shot
EPI scans with diffusion encoding along 12 non-collinear directions plus one
reference without diffusion-weighting. The FOV was 25-26cm, TE was minimum
with partial k-space acquisition. TR was ∼ 10s and b-value was ∼ 850s/mm2.

Experiments are comparatively conducted based on 26 neighborhood for dif-
ferent seed points. Note that, with N26, spring constants for corners of a 3×3×3

Fig. 2. a) Axial slice of FA map with the seed indicated, b) Converged connectivity
map (γ = 1), c-e) Converged maps for γ = 2, 4, 10, f) computed tracts for γ = 10
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neighborhood cube, appear with weights 1
2 and 1

3 due to the denominator δ2.
Stiffness for the ground springs is empirically taken to be 1

100 of the mean neigh-
bor stiffness of the whole domain and converged maps are visualized in the log-
scale. Convergence of the iterations was assumed when the mean absolute change
in u dropped below 10−4 with u ∈ [0, 1]. Qualitative evaluation of the results
were done based on the computed connectivity maps and the tracts computed
from u maps.

Figure 2 shows axial cross-sections of the computed 3D connectivity maps
with different γ values, ranging from 2 to 10 and the computed tracts. Note
the correlation between the connectivity map and the brain anatomy as well as
the assigned connectivity values with respect to the seed point. The anatomy
is enhanced as the γ increases. The tracts in Figure 2f were computed based
on the coherence directions of u as defined in [9]. They also correlate with the
underlying fiber structure.

The overall computation time is independent of the number of seed points.
It took less than 100 seconds with Matlab R14 using a PC with P4 2.4 GHz
processor and 2GB RAM to process a 128× 128× 38 volume.

4 Discussion

In this study we proposed a novel method for computing the connectivity in
white matter. We associated the DT-image to a physical spring system, and
interpreted the underlying connectivity to be its stationary pattern. We followed
a variational approach, which aims to minimize the total spring potential energy
and showed that the PDE evolution scheme coming from the Euler-Lagrange
equation corresponds to a modified diffusion process. Reformulating the energy
minimization problem in the discrete domain enabled us to replace the PDE
with an alternative directional averaging method, which guarantees stability
and exhibits a higher convergence rate.

The proposed method is computationally inexpensive and provides several
advantages. The model is valid for different definitions of neighborhood and
spring constants. It provides a tuning parameter γ that allows one to continu-
ously trade-off between using the complete DTI data with using the principal
diffusion direction only. At one end, our method corresponds to the tractography
approach (large γ) and at the other hand it corresponds to complete connectivity
model (γ = 1).

The proposed method allows to set multiple seed points, even regions. Thus,
one can easily incorporate a-priori information about the anatomy into the con-
nectivity map computation. Potentially, one can search for the most probable
path between two given points by simply setting them as the seed points, com-
puting the associated connectivity map and running a tractography algorithm
on this map.

As mentioned above ground springs are necessary for preventing total flat-
tening of u, such that we obtain meaningful maps that monotonically decrease
as we get away from the seed. The stiffness κ of the ground springs does not
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make much difference as long as it is nonzero. κ should be sufficiently small, such
that the farthest point of the brain can also attain a nonzero connectivity value
and should be large enough so that the converged map does not become nearly
flat. We empirically set it to be 1

100 of the mean of neighbor spring constants.
Further research is required to evaluate the method.
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Abstract. A 3D Partitioned Active Shape Model (PASM) is proposed
in this paper to address the problems of the 3D Active Shape Mod-
els (ASM). When training sets are small. It is usually the case in 3D
segmentation, 3D ASMs tend to be restrictive. This is because the al-
lowable region spanned by relatively few eigenvectors cannot capture the
full range of shape variability. The 3D PASM overcomes this limitation
by using a partitioned representation of the ASM. Given a Point Distri-
bution Model (PDM), the mean mesh is partitioned into a group of small
tiles. In order to constrain deformation of tiles, the statistical priors of
tiles are estimated by applying Principal Component Analysis to each
tile. To avoid the inconsistency of shapes between tiles, training samples
are projected as curves in one hyperspace instead of point clouds in sev-
eral hyperspaces. The deformed points are then fitted into the allowable
region of the model by using a curve alignment scheme. The experiments
on 3D human brain MRIs show that when the numbers of the training
samples are limited, the 3D PASMs significantly improve the segmenta-
tion results as compared to 3D ASMs and 3D Hierarchical ASMs.

1 Introduction

Object segmentation is a prerequisite of many medical image analysis applica-
tions. The 2D Active Shape Model (ASM) [1] provide a promise to improve the
robustness of the model to local minimum by restricting the deformation within
the allowable region.

However, in 3D segmentation, 3D ASM often constrains itself from catching
details during deformations. This is because the number of eigenvectors/eigenmodes
cannot exceed the number of training samples, in the case of the dimension of
the model being large, which is usually the case in 3D segmentation, as the di-
mension of the model is typically two or three orders of magnitude higher than
the number of training samples. It is difficult to estimate a high-dimensional
probability distribution from a small training set. Therefore, the allowable re-
gion spanned by the relatively few eigenvectors limits the deformation of ASM
to catch details. A solution is by using large training sets. However, it requires
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manually segmenting 3D images slice by slice, which is very laborious. Therefore
it is inconvenient to build a large training set.

There have been various attempts to address this limitation. ASM combined
with elastic models has been proposed in [1], but the detailed deformations
are regulated by elastic forces, which do not reflect true shape variability. In
[2], Davatzikos et al. proposed 2D Hierarchical Active Shape Model (HASM), a
hierarchical scheme based on 2D curve partition and 2D curve wavelet decom-
position to keep details. Their experiments have shown promising results in this
“short of samples ” scenario.

However, in [2], the spatially partitioned representations of objects, both
curve segmentation and wavelet decomposition, introduce shape inconsistency.
Because in [2], the allowable regions/plausible areas of bands are independent
to each other, illegal shapes could be tolerated during model fitting. As a result,
this model could be vulnerable to noises and low contrasts. The authors use a
hierarchical representation and a deformation scheme to subdue this problem.
However the approaches only partially solve this problem.

Another issue of HASM in [2] is that the distribution is assumed as Gaussian
distribution. In 3D applications, this assumption is debatable because the num-
ber of training samples is usually so limited that the distribution is sparse. For
non-Gaussian distributions, Cootes uses a mixture of Gaussians approximation
to a kernel density estimate of the distribution in [1]. But for partitioned repre-
sentations, sole non-linear estimation is not adequate, because the estimations
are still independent between tiles/bands.

In this work, a 3D Partitioned Active Shape Model, which uses curve align-
ment to fit models during deformations, is proposed. In 3D PASM, each training
sample and deformed model is represented as a curve instead of a point as ASM
and HASM. After the model has deformed to find the best match in the im-
age, the deformed model is projected back. The curve representing the deformed
model is aligned with the closest training sample by undergoing an affine trans-
formation. Furthermore, to investigate the strength and weakness of 3D PASM,
the 2D HASM in [2] is extended to 3D HASM in this work based on the mesh
partitioning algorithm proposed in this paper.

2 A 3D Partitioned Active Shape Model

A 3D Partitioned Active Shape Model is described in this section. It is assumed
the vertices of manual segmentations have been corresponded to construct a
Point Distribution Model (PDM). It means that N training samples are available
as sets of K corresponding landmarks in the 3D space.

2.1 Construction of Allowable Regions

In conventional ASMs, the training samples are aligned by using Procrustes
alignment. The vectors Xn, n = 1, . . . , N are then formed by concatenating the
coordinates of K landmark points of N samples. Therefore, the dimension of X
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is 3K×N . To reduce the dimension of X , Principal Component Analysis (PCA)
is applied to X . The eigenvectors e0, . . . , eN−1, which are corresponding to the
nonzero eigenvalues of the covariance matrix of X , are calculated. In the 3D case,
it is typical that N � 3K. Therefore it is likely that S, spanned by e0, . . . , eN−1,
cannot include the full range of shape variation. As a result, 3D ASM, which
projects the tentative shape by using S, tends to reconstruct a shape without
fine details.

3D PASM solves this problem by a partitioned representation of 3D ASMs.
Because a 3D ASM is represented as a mean mesh and its eigen variations of
individual tiles, the partitioned representation of the ASM is the partitioned
mean mesh and eigen variations of tiles. Mesh partition means that a mesh is
partitioned into a group of surface patches, which are called tiles in this study.

If only the statistical prior of a small tile, which comprises of K
′
vertices, of

the whole mesh is required, N samples will be adequate to include the variation
of this tile, as long as the K

′
is small enough. Thus fine details of this tile could

be captured in the allowable region.
Therefore, the mesh is partitioned into tiles so that the tiles cover all faces of

the mesh and each tile consists of roughlyK
′
vertices. PCA is then independently

applied to each tile to form a statistical prior for each tile.

2.2 Mesh Partitioning

In this section, an algorithm is described to partition a mesh M into a group of
tiles. A result of applying this algorithm is shown in Fig. 1, where the tiles are
shown in red and the boundaries are shown in blue. This algorithm segments
mesh M into tiles τ1, . . . , τs which cover all faces of M , given a set of sites
positioned at the centroids of the site faces S = f1, . . . , fs. A face of M is
randomly selected as the initial site. Once the tile associated with the site stops
growing, another face of M from the faces not covered by grown tiles is selected
as the next site. The procedure is repeated until all faces of M are covered by
tiles. In other words, the algorithm stops when all faces of M are included in tiles.

A tile τi is a collection of faces for which the closest site face is fi. The
measure of distance between faces is an approximation of the geodesic distance
over the mesh. It is defined by constructing a dual directed graph of the mesh
M , i.e. the nodes of the graph correspond to faces of M . The edges of the graph

Fig. 1. A partitioned mesh. Tiles are shown in red; boundaries are shown in blue. The
blue boundaries are enlarged for visualization.
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connect nodes of adjacent faces. The cost of edges in this directed graph is set
to the distance between centroids of the corresponding faces. This distance is
defined as the length of the path in this directed graph.

Constructing a tile is a single-source shortest path problem in the graph,
which is solved by a variant of Dijkstra’s algorithm . The algorithm grows a tile
until the size of the tile reaches the maximum. The size of a tile is defined as
the number of vertices included in the faces of the tile. The maximum is set by
K ′

max =
√
K×1.2, where the K is the number of vertices of mesh M . The K ′

max

is set so that the number of tiles is not much bigger than the sizes of individual
tiles. More partitioned objects are available at www.unc.edu/∼kurtzhao.

2.3 Model Fitting Scheme

In ASM, after applying PCA, each training sample is represented as one point
in a hyperspace. The training set constructs a cloud in this space. The allowable
region can be estimated from the distribution of this cloud of points/samples.

In PASMs, PCA is independently applied to the coordinates of vertices of
each tile. Each training sample is then represented as points in H hyperspaces,
one point in each hyperspace. In order to represent samples in one hyperspace,
the indices of tiles are introduced as another dimension, the H hyperspaces are
then combined to one hyperspace. As a result, each training sample is represented
as a curve in the new hyperspace instead of points in many hyperspaces. The
curves are called sample curves. During deformation, the model points move
to find the best match in a test image. The deformed model is then projected
back to this hyperspace as a curve called the model curve. The closest sample
curve, in terms of Euclidean distance, is chosen as the target. The model curve is
then aligned with the target by undergoing an affine transformation. The affine
invariant alignment can be estimated by using the Least Square method in [3].
The affine transformation is chosen because it strike a balance between keeping
the shape of the model plausible and allowing the model approaching the target.

The model fitting scheme of the 3D PASM is shown in the left figure in Fig.
2, where solid lines indicate models, the broken lines stand for training samples.
Assume that the model/mesh is partitioned into 3 tiles and the dimension of the
3 hyperspaces is 1D after individual PCA applications. The indices of the tiles are
introduced as another dimension. The two training samples are then represented
by two curves. To fit the deformed model points, the curve representing the
deformed model is aligned with the curve representing training sample 1 by
using an affine transformation, which is the closest sample to the model curve.
As a result, the shape of the fitted model cannot be far from the closest sample.
The inconsistency between tiles is avoided, because the relationship between the
shapes of tiles from the samples are enforced. On the contrary, the model fitting
of the traditional HASM [2] and the 3D HASM shown in the right figure in
Fig. 2 treats training samples as individual points in individual hyperspaces of
the tiles. The deformed model points are fitted to the model by a truncation. It
could tolerate the inconsistency of shapes because the shape of the fitted model
could be different from any training sample.
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Fig. 2. The model fitting schemes of the 3D PASM and the 3D HASM

There are two forms of 2D HASM. One uses curve segmenting and the other
one use wavelet decomposition. The 3D extension of the 2D HASM uses the
mesh partitioning instead of wavelet decomposition because the wavelet based
decomposition of a mesh is difficult to implement and unreliable.

3 Experimental Results and Discussion

In this section, the experimental results and quantitative analysis of the perfor-
mance of 3D ASM, 3D PASM and 3D HASM are presented. The 2D HASM in
[2] is extended to 3D HASM based on mesh partitioning in this study to compare
with 3D PASM. The 3D HASM uses overlapping tiles and statistics in coarser
scales to avoid the inconsistence of shape between tiles.

3.1 Image Data

The training sets and images used in this work are from the Internet Brain
Segmentation Repository (IBSR) [4], which is an open online database. There
are two sets of human brain MR images and their manual segmentations used in
this work. The first set is IBSR v1.0. They are 20 normal T1-weighted MR brain
3D images and their manual segmentations. The second set is IBSR v2.0. They
are 18 normal T1-weighted MR brain 3D images and their manual segmentations.
The objects to segment are Lateral Ventricles extracted from IBSR v1.0, Lateral
Ventricles extracted from IBSR v2.0, Left Thalamus Propers extracted from
IBSR v2.0 and Left Hippocampuses extracted from IBSR v2.0. For simplicity,
they are called LV1, LV2, LTP and LH in this study, respectively.

These three objects and two sets of images are chosen because of their di-
versity. Images of IBSR v1.0 are noisy. Images of IBSR v2.0 have higher quality
and are free from noise. The contrast of the region around lateral ventricles is
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sharp. On the contrary, the contrast of the regions around thalamus propers and
hippocampuses is relatively vague.

3.2 A Comparative Study of Segmentation Using Various Models

Standard 3D ASMs, 3D HASMs and 3D PASMs are applied to segment LV1,
LV2, LTP and LH from test images. For comparison purpose, the initialization
and parameters of the three models are exactly the same. The “leave-one-out”
method is used in this experiment. The “segmentation error” is used to mea-
sure the accuracy of the segmentations. The error is defined as the distances
between the segmentation results and the corresponding manual segmentations.
This metric is defined in [5]. In short, it is the shortest distance between two
normalized meshes. If a segmentation error is bigger than 1/3 of the initialization
error, this segmentation is considered as a “failure” in this study.

Table 1. The average segmentation errors (in voxels)

LV1 LTP LH LV2
3D ASM 2.6364 4.6983 9.1490 1.5470

3D HASM 1.6282 2.6014 4.4104 1.5609
3D PASM 1.2469 1.1717 4.2943 1.5104

One example of the manual segmentation, initialization and the segmenta-
tion results of models are illustrated in Fig. 3. The segmentation by models
are overlayed with cross-sections (in gray contours) and the 3D surface of man-
ual segmentations, where the dark surface is the segmentation by the models
and the bright one is the manual segmentation. The quantitative results are
shown in Fig. 4. Their average is listed in Table 1. More results are available at
www.unc.edu/∼kurtzhao.

In several cases, the standard 3D ASMs failed to find the desired boundaries,
because 19 or 17 samples are not sufficient for ASMs to accurately estimate the
distribution of samples. During iterations, the rigidity of ASMs tends to keep
model points from moving to approximate appropriate shape details. The accu-
mulation of errors in iterations could lead to segmentation failures. Furthermore,
model points have difficulty to find their best match in noisy images. As a result,
during iterations, when a few points find their best matches, the shape of the
model cannot change accordingly to guide other points, because 3D ASMs are
too restrictive.

3D HASMs have partitioned representation, so they do not have this “rigid-
ity” problem. But they still failed to accurately segment in a few cases because
they tolerate illegal deformations, i.e. their allowable regions are not plausible.
On the contrary, the 3D PASM improved the segmentation accuracy signifi-
cantly because of the partitioned representation and the model fitting scheme
using curve alignment. The improvements by 3D PASMs on LV2 are not as sig-
nificant as other objects because of the images of LV2 are very clear and the
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(a) Manual Segmentation (b) Initialization: 5.5668

(c) ASM: 10.2965 (d) 3D HASM: 5.4502 (e) 3D PASM:1.1381

Fig. 3. The comparative study of the accuracy of segmentations for LTP by using
different models
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lateral ventricles have strong contrasts. However, if the images are noisy or the
contrasts are low, 3D PASM brings significant improvements over 3D ASM and
3D HASM.

4 Conclusion and Discussion

A 3D Partitioned Active Shape Model is proposed in this work to solve the
“short of training samples” problem. The experimental results show that 3D
PASM brought significant improvement on the accuracy of segmentation over
ASM and HASM. The PASM differs from HASM in how they avoid the incon-
sistency/discontinuites of shape caused by the mesh partitioning. The HASM
uses overlapping tiles, as well statistics in coarser scales. The PASM uses a more
systematic approach: considering the statistics of all tiles simultaneously. As
the results show, the PASM is more robust to noisy images and low contrasts.
Currently, the tiles are constructed so that they have similar numbers of faces.
However, it is worth to investigate to take into consideration the shape varia-
tion of tiles. There are two extreme conditions: 1) a mesh consisting of N faces
is partitioned into N tiles; 2) a mesh is partitioned into one tile only. In these
two extreme, the PASM is not expected to improve the performance over ASM.
However, K ′, the number of tiles is set to avoid these two extremes.
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Abstract. This paper introduces a novel solver, namely cross entropy
(CE), into the MRF theory for medical image segmentation. The solver,
which is based on the theory of rare event simulation, is general and
stochastic. Unlike some popular optimization methods such as belief
propagation and graph cuts, CE makes no assumption on the form of
objective functions and thus can be applied to any type of MRF models.
Furthermore, it achieves higher performance of finding more global op-
tima because of its stochastic property. In addition, it is more efficient
than other stochastic methods like simulated annealing. We tested the
new solver in 4 series of segmentation experiments on synthetic and clin-
ical, vascular and cerebral images. The experiments show that CE can
give more accurate segmentation results.

1 Introduction

As the core concept of Bayesian image analysis, Markov random field (MRF)
theory has aroused great interest in the field of medical image processing. Re-
searchers have applied MRF to various applications such as image enhancement
[1], object detection [2], data modeling [3], tissue classification (segmentation)
[4], etc. The reasons why MRF modeling has so many successful applications in
medical image analysis are that it can easily incorporate spatial interaction and
convert a problem in image processing or computer vision into a mathematical
optimization problem by means of maximum a posteriori (MAP). The former
property allows us to consider contextual constraints in images and the latter
makes many delicate problems computationally tractable.

The most important part of the MRF modeling is the problem formulation
in which we specify the posterior probability to be maximized or the energy
function to be minimized. However, it remains a major open problem in MRF
theory to optimize the objective function. Due to the large number of pixels in
usual images, the configuration space of MRF in image analysis is huge. This
makes the brute force methods to search for the optima infeasible in practice.
Actually, it is proved that obtaining the global optimum of an arbitrary objective
function is NP-hard [5]. Therefore, it has been an active research topic to design
a ”good” solver for MRF models over the past two decades. The goodness of a
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solver lies in whether it can efficiently find a local optimum which is as optimal
as possible (e.g., the lower energy, the better).

One of the earliest efforts to optimize MRF objective functions was made
by Kirkpatrick et al. [6] who proposed the solver, simulated annealing (SA). SA
can guarantee to converge to a global minimum as long as the temperature is
decreasing slowly enough which makes SA too slow for practical use especially
for clinical data. Another pioneering work was done by Besag [7], where the
iterated conditional modes (ICM) was presented. This is a fast solver at the cost
that it finds local optima in a neighborhood where only one site label is allowed
to change. After those two methods, quite a few solvers were introduced [8], such
as mean field approximation (MFa), relaxation labeling (RL), graduated non-
convexity (GNC), etc. Recently two efficient and fairly accurate solvers, belief
propagation (BP) [9] and graph cuts (GC) [5], were proposed. These two solvers
are now often used for MRF models because they give good accuracy in an
efficient way, which means they can find ”global” optima within a rather large
neighborhood while maintaining acceptable time complexity. However, since the
perfect solver is not existing unless P = NP, there is still space to get more
accurate results. Moreover, BP and GC are not applicable to all types of objective
functions. They obtain their accuracy at the cost of function form restrictions.
For example, standard BP is only proper for pairwise MRFs and generalized BP
is either not for all functions [9]. So we cannot solve by BP such MRF models as
FRAME [10] or multi-level logistic (MLL) with more than two sites in a clique
[8]. The same situation occurs for graph cuts because GC will work only when
the energy function is regular [11]. These may considerably limit the usage of
the two popular solvers.

In this paper, we proposed a new simple stochastic solver for MRF modeling,
called cross entropy (CE). This idea is originated from the field of operations
research to simulate rare events [12]. This paper combines the idea of CE with
MRF theory for the first time and applies the whole model to medical image
segmentation. The CE solver is a general and stochastic optimization method
that can be applied to any kind of MRF formulation. Unlike BP and GC, CE
makes no assumption on the form of the objective function so it is able to solve
more complicated MRF models. The efficient CE solver is completely insensitive
to initialization and more importantly, as a stochastic method, CE tends to
find more global optimum than deterministic solvers like BP. This statement is
supported by the experiments on four sets of synthetic and clinical data, which
shows CE has higher segmentation accuracy than BP. It is believed that the
accuracy of BP is comparable to that of GC [13]. Although CE is stochastic, it
is efficient but expends more time than deterministic solvers like BP and GC.

2 The Cross Entropy Method

The cross entropy (CE), also known as Kullback-Leibler cross entropy, has been
used in combinatorial and multi-extremal optimization, and rare event simula-
tion. Owing to its simplicity and accuracy, it has quite a few successful applica-
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tions in operations research and machine learning [14]. In this section, we will
present the CE method as a novel simple accurate solver for MRF modeling.

Consider the following general energy minimization problem of MRFs. Let
F be the configuration space of MRF, F , and f is one configuration of F . The
energy minimization of MRFs is formulated by

f∗ = argmin
f∈F

E(f), (1)

where E(·) is the energy function to be minimized and f∗ is the wanted F con-
figuration. CE method associates an estimation problem with the optimization
problem (Eq. 1). We first define an indicator function I{event}, which is equal to
1 when the event is true otherwise 0. Then, suppose p(·; v) is a family of discrete
probability density functions (pdf) on F and v is its parameter. Let us estimate
the following probability

Pv(E(F ) ≤ e) =
∑

x

I{E(f)≤e}p(f ; v), (2)

where Pv is the probability measure and F is a vector of configurations that
has pdf p(·; v). If e = minf∈F E(f) and p(·; v) is a uniform density on F , Eq.
1 and Eq. 2 are connected. Note that Pv(E(F ) ≤ e) is typically 1/|F|, which
is very small. This is similar to the situation of rare event simulation. Thus,
we can borrow the idea of CE from rare event simulation to construct a multi-
level optimization approach for MRF energy, where we generate a sequence of
levels e1,e2,. . . ,eT and parameter vectors v1,v2,. . . ,vT such that eT is close to
the optimal e∗ and vT is the density that assigns high probability mass to the
configuration which corresponds to a low energy.

Suppose m is the size of the label space of the MRF model and there are n
sites altogether. The CE solver for MRF labeling can be described as follows.

CE Algorithm for MRF energy minimization
1. Set level t = 1 and the initial parameter vector v0 = {v0,1, . . . , v0,n}. Each

vt,i = {v1
t,i, . . . , v

m
t,i} is a vector with m elements for site i.

2. Generate a collection of samples F1, . . . , FN (F = {f1, . . . , fn} is one MRF
configuration) from the density p(·; v) and compute the energy Ei(Fi) for every
i ∈ {1, . . . , N}.

3. Sort all the Ei(Fi) in a non-increasing order to {E1, . . . , EN}. Then pick
et = E�(1−ρ)N�.

4. Use the samples F1, . . . , FN to update vt by

vj
t,i =
∑N

k=1 I{Ek(Fk)≤et}I{Fki=j}∑N
k=1 I{Ek(Fk)≤et}

, (3)

for i = 1, . . . , n and j = 1, . . . ,m.
5. If et remains unchanged for several iterations, go to step 6; else, set t = t+1

and go to step 2.
6. The final EN (FN ) of T -th iteration is the estimated minimal MRF energy.

The corresponding configuration is embodied by the parameter vector vT , where
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each element vj
T,i assigns most probability mass to a preferable label among m

labels for site i. �

Function p(·; v) can be any kind of pdf but the simple m-point Bernoulli
distribution is usually enough. This means each label j is randomly chosen for
site i according to the probability of vj

t,i. Two parameters need to be pre-defined,
ρ and N . Usually, ρ is a small value between 1% and 10%. When the site number
n is large, we tend to choose a large value of ρ. Regarding the sample size N , we
set N = cn, where c is a constant and often between 1 and 10. Notice that there
are other alternative stopping criteria, such as when the parameter vt converges
to a binary (0 or 1) vector.

3 Experimental Results

In this section, we use CE and BP as MRF solvers to solve the same model for
medical image segmentation and compare the results. We perform experiments
on four sets of data of synthetic and clinical, vascular and cerebral images. Before
that, we need to formulate the MRF energy function first.

3.1 MRF Formulation

We adopt the MAP-MRF framework for maximizing the posterior probabil-
ity P (X |Y ) ∝ P (X)P (Y |X), where X and Y are the labeling MRF and the
observed data, respectively. We use multi-level logistics (MLL) and Gaussian
distribution as the MRF prior and likelihood energy, which is one of the most
often used models for medical image segmentation [8, 15, 16]. The MRF prior
energy is expressed by

U(X) =
∑
i∈S

∑
j∈Ni

I{xi �=xj}, (4)

where Ni is the neighborhood of site i (we use the 4-neighborhood system) and
S is the set of all sites. The likelihood energy is defined as

U(Y |X) =
∑
i∈S

m−1∑
j=0

δ(xi − j) · (yi − μj)2

2σ2 , (5)

where if x = 0, δ(x) = 1, else δ(x) = 0, and μj represents the mean intensity
of region j. In the comparisons below, all the parameters, e.g., μ, σ, are set the
same for both solvers.

3.2 Synthetic Data

We first test the model on two sets of synthetic data, one simulates blood vessels
following the style in [4] and the other is obtained from BrainWeb, a widely-used
simulated brain database [17].
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It is a binary segmentation problem to extract blood vessels. We synthe-
size alternate bars and circles to simulate the vessels and add various levels of
Gaussian noise to produce corrupted images with different signal-to-noise ratios
(SNR) (Fig. 1). The results of minimal energy values found by two solvers and
segmentation errors are listed in Tab. 1. Regarding brain images, we segment
the BrainWeb T1-weighted data into four classes {white matter, gray matter,
cerespinal fluid, others} and perform several experiments with different levels
of noise. Results are shown in Tab. 2. In both experiments, CE algorithm is re-
peated for 5 times to give means and standard deviations because it is stochastic.
We do not repeat BP because it is deterministic. It can be found that the CE
solver can reach lower energy than BP and the segmentation accuracy is also
higher than BP for both synthetic images thanks to the ability of CE to find
more global minima.

Fig. 1. Synthetic images for binary segmentation. The left two images are truth pat-
terns and the right two images are corrupted images.

Table 1. Results of the MRF model for binary segmentation on synthetic images

BP CE

image SNR minimum error minimum error
bar 2 2215505 18.65% 1656942±7707 9.01%±1.53%

(width=3) 3 1848604 7.54% 1577403±17069 3.52%±0.69%
4 1598662 2.25% 1523299±17271 1.44%±0.96%
5 1526652 0.59% 1501826±2126 0.22%±0.28%

bar 2 2101877 19.29% 1319552±4612 1.20%±0.37%
(width=6) 3 1659417 8.30% 1242550±1923 0.59%±0.20%

4 1408863 3.13% 1232195±2309 0.03%±0.06%
5 1250346 0.68% 1216728±2223 0.07%±0.12%

circle 2 2241872 17.58% 1721610±6633 11.45%±1.04%
(width=3) 3 2000580 8.59% 1691143±3865 6.72%±0.54%

4 1817165 4.49% 1672465±2259 3.37%±0.40%
5 1774078 2.34% 1675028±926 1.91%±0.20%

circle 2 2178246 18.65% 1348983±3880 4.45%±1.11%
(width=6) 3 1715610 8.30% 1295023±1162 1.98%±0.25%

4 1516673 4.39% 1278273±3337 1.86%±0.08%
5 1380865 1.86% 1269815±634 1.37%±0.08%



234 J. Wu and A.C.S. Chung

Table 2. Results of the MRF model for multi-class segmentation on BrainWeb data

BP CE

noise level minimum error minimum error
3% 348740 4.25% 211878.3 ± 2737.2 2.77% ± 0.08%
5% 488391 6.00% 257021.0 ± 1505.7 4.14% ± 0.06 %
7% 487083 6.58% 229624.5 ± 1184.7 3.57% ± 0.02%
9% 691409 11.65% 525039.5 ± 768.6 9.08% ± 0.01%

3.3 Clinical Data: Vascular and Cerebral Datasets

We then apply the model to clinical vascular and cerebral datasets, and compare
the performance of the two solvers.

The first dataset used is phase contrast magnetic resonance angiographic
(PCMRA) images (size of 308 × 355) obtained from the University Hospital
of Zurich, Switzerland. We test on 8 sets of data and the overall mean energy
obtained by the CE solver is 174338.81 ± 765.84, which is smaller than the
energy 177475.56 ± 769.93 obtained by BP. Fig. 2 shows one example of the
experiments. Although we do not have the ground truth to compare the two
solvers quantitatively, we still can find by visual inspection that the CE acquires
a little better segmentation than BP which is consistent to the smaller energy
values. BP may be trapped in those local minima caused by the noise which
can be seen in the middle subfigure in Fig. 2 and CE can alleviate the problem
although not completely solve it.

The second dataset used is acquired from the Internet Brain Segmentation
Repository (IBSR) [18] which we can get some segmented data as ground truth.
There are three labels {white matter, gray matter, others} and the image is
141× 149 large. We again test the model on 8 datasets and calculate the energy
and accuracy obtained by the two solvers, which is shown in Tab. 3. We repeat
the CE algorithm for 5 times and calculate the means and standard deviations
considering its stochastic property.

Results on both synthetic and clinical data show that the CE solver is able
to find lower energy (which means more global) than BP. The improvement is
usually from 5% to 45% and accuracy can be increased by 1 to 7 percentage
points. It is worth pointing out that lower energy does not always give better
segmentation results unless the formulation is good enough, but this is not the

Fig. 2. The left is a region of interest of an original PCMRA image (contrast enhanced).
The middle and right are the segmented images solved by BP and CE, respectively.
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Table 3. Results of the MRF model for multi-class segmentation on IBSR brain data

BP CE

dataset minimum error minimum error
1 19361 3.32% 15103 ± 39 2.29% ± 0.08%
2 28049 4.85% 24665 ± 24 3.70% ± 0.14%
3 34641 7.72% 30657 ± 28 6.87% ± 0.24%
4 31483 4.98% 25458 ± 12 2.94% ± 0.02%
5 22104 3.08% 18008 ± 15 1.80% ± 0.08%
6 35652 8.27% 31274 ± 59 5.50% ± 0.16%
7 37561 8.07% 31646 ± 39 6.23% ± 0.24%
8 29782 4.72% 25317 ± 24 2.86% ± 0.16%

goal of solvers, which should find energy as low as possible. The running time
of CE algorithm for one of the clinical vascular images is around 300 minutes
(BP needs about 15 minutes) and for one of the clinical brain images around
60 minutes (BP needs about 9 minutes) on a computer with 1.3GHz CPU and
500 MB memory. Decreasing the parameter ρ will reduce the required number of
iterations and thus the computation time of CE at the cost of likely increasing
the energy value found in the end.

4 Discussion and Conclusion

In general, the CE algorithm is very simple and easy to implement. It is an
iterative procedure and in each iteration, a sequence of samples is generated
according to a certain probability distribution. The method chooses one thresh-
old of objective function value and just focuses on those samples whose per-
formance (e.g., lower energy) is better than this threshold. Then CE updates
the distribution parameters according to these good samples. This completes
one iteration. We can see that CE is stochastic and no deterministic decision
is made, which gives CE the ability to find more global optima than determin-
istic methods. Compared with other stochastic solvers like simulated annealing
(SA), CE is obviously more efficient because it concentrates on a few high-
performance samples among a large collection of random samples and quickly
converges to states which have good performance. Moreover, the CE algorithm
only evaluates the energy values and requires no specific energy form. Thus
it can be applied to any type of objective functions. This makes CE a more
general solver than BP and GC. Another advantage of CE lies in its insensi-
tivity to initialization because CE’s initialization is unchanged for any inputs,
i.e., the parameter vector v0 is always set to uniform distribution and every
element is 1/m.

The study on the computational complexity of CE algorithm is still an open
problem partly because CE can apply to all kinds of different applications and the
necessary total number of iterations is different. For some applications like max-
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cut and partition problems [14], the theoretical complexity of CE is O(n3 lnn)
and its empirical complexity is O(n lnn). The CE solver is not as efficient as
BP or GC. But, since the architecture of CE algorithm is inherently parallel
and its steps are all simple, it has large potential to speed up. Regarding space
complexity, CE can occupy a lot of space if we store all the samples. However,
the problem can be solved by keeping a small portion of them since CE just uses
the high-performance part.

In this paper, we have introduced a new MRF solver, namely cross entropy
(CE), applied it to medical image segmentation and shown some advisable prop-
erties of it compared to an existing popular MRF solver, belief propagation (BP).
CE algorithm is a general solver that can be applied to any type of MRF models
and it is stochastic and iterative, which endows it with the capability to find more
global optima than BP. This makes CE useful in medical image segmentation
or any other tasks which can be formulated as energy minimization problems.
However, CE requires more computation time and space than deterministic op-
timization methods. Since it has parallel architecture and is very simple in itself,
CE has potential to be accelerated by parallel processing or algorithm optimiza-
tion. This will be the major work to be done in the future.
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Abstract. This paper investigates the techniques required to produce
accurate and reliable segmentations via grayscale image matching. Find-
ing a large deformation, dense, non-rigid transformation from a template
image to a target image allows us to map a template segmentation to
the target image space, and therefore compute the target image segmen-
tation and labeling. We outline a semi-automated procedure involving
landmark and image intensity-based matching via the large deformation
diffeomorphic mapping metric (LDDMM) algorithm. Our method is ap-
plied specifically to the segmentation of the caudate nucleus in pre- and
post-symptomatic Huntington’s Disease (HD) patients. Our accuracy is
compared against gold-standard manual segmentations and various au-
tomated segmentation tools through the use of several error metrics.

1 Introduction

Shape and volume change of the basal ganglia structures, which include the cau-
date nucleus and putamen, have been the focus of investigation in clinical studies
of Huntington’s Disease [1] and other neuro-degenerative disorders. In order to
study shape and volume changes, segmentation of the basal ganglia structures
in an MRI image is the first processing step. Manual segmentation by a trained
rater is the current anatomic gold standard, but this technique requires a sizable
amount of time from an anatomic expert. Manual segmentations by different
anatomic experts also suffer from inter-rater reliability issues. Reliable and ac-
curate semi-automated segmentation of the caudate nucleus is limited by the
following factors: limited resolution of MRI scans, inhomogeneous intensities
throughout the caudate, and ill-defined boundaries. Successful segmentation al-
gorithms built on automatic to semi-automatic algorithms making use of some
form of expert prior knowledge are likely to overcome the mentioned difficulties.
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The LDDMM tool [2] provides non-rigid registration between two grayscale
anatomical images, which we use to develop our system for automated segmen-
tation. Given a template image, target image, and template segmentation, the
non-rigid mapping of the template image to the target image can be used to prop-
agate the template segmentation, generating a target segmentation. In this way,
we are able to use anatomic expert priors, namely a manually generated tem-
plate segmentation, to produce target segmentations. In this paper, we present
the validation of this method for accuracy and reliability.

2 Method

2.1 Data

MRI scans used for this study were all acquired on a GE 1.5T scanner. Three
types of scans were analyzed: (1) 1.5 mm SPGR (spoiled gradient recalled echo
in steady state) coronal series, TR = 35; TE = 5, NEX = 1, flip angle = 45o,
voxel size = 0.9735 mm in x and y direction, from subjects with known caudate
atrophy (patients with Huntington’s disease); (2) 1.5 mm SPGR axial series, TR
= 18 TE = 3, NEX = 2, field of view = 24 cm, flip angle = 20o, voxel size =
0.9735 mm in x and y direction, from subjects with possible caudate atrophy
(pre-symtomatic carriers of the HD gene); and (3) 1.2 mm SPGR sagittal series,
TR = 11.1, TE = 2.2, NEX = 1, field of view = 24 cm, flip angle = 25o, voxel size
= 0.9735 mm in x and y direction, from children with no known caudate atrophy.

Scans were of varying levels of quality for the segmentation program (with the
NEX=2 scans have the most defined borders between caudate and white matter)
and represented groups will have varying levels of caudate volume. Scans were
stripped of all identifying information.

Computation of automated segmentations via image matching involves the
use of a template and a target image. Our Series 1 data consisted of patients
scanned on two separate occasions, therefore one scan was chosen as a template
image, and the other scan was chosen as a target image. Series 2 and Series 3 data
did not include multiple scans from the participants, restricting us from using
the same patient as template and target. For the Series 2 data, one patient image
was chosen as a template to compute segmentations for the other Series 2 patient
images. Series 3 segmentations were computed similarly. In total, 17 automated
segmentations were produced, five Series 1, seven Series 2, and five Series 3.

2.2 Registration and Pre-processing

Global alignment of the basal ganglia structures is required before intensity-
based image matching can take place; rigid landmark-based registration was
used to accomplish this task. We chose to place landmarks on the surfaces of the
lateral ventricles because of their unique properties: adjacency to the caudate
nucleus during all stages of atrophy, well-defined boundaries, and homogeneous
intensities within these boundaries. Furthermore, placement of landmarks on a
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3D surface as opposed to a 3D volume limits the degrees of freedom in placement
hence resulting in lower variability. Aside from registration, landmarks placed on
the ventricular surface are subsequently used in image matching to calculate an
initial template to target mapping which is later refined by image intensity-based
alignment. The ventricle segmentation used for surface generation is produced by
global thresholding with user guidance and takes a trained user approximately
five minutes to complete.

Landmarks are placed interactively by the user on the inferior surface of
the ventricles, which is adjacent to the superior surface of the caudate nucleus.
Landmarks are placed on the ventricular surface of the template first, then the
target; the user attempting to place the landmarks in the same relative location
on the surface. After placing 6-7 landmarks on each side of the ventricles, the
target landmarks on the left target ventricle are rigidly deformed to the template
landmarks on the left template ventricle, generating the target image deformed in
accordance with the left set of landmarks. The landmarks on the right ventricles
are transformed in the same manner producing another target image deformed in
accordance with the right set of landmarks. A six-parameter translation/rotation
least squares landmark matching algorithm is used to rigidly rotate and translate
the landmarks and the corresponding images.

After the left and right rigid transformations, the left template and target
caudates, and the right template and target caudates are globally aligned. We
then define a region of interest (ROI) to include the caudate nuclei. We isolate
our ROI by inspecting the boundaries of the caudates in the template image
and cropping a bounding box surrounding these areas. The template and tar-
get images are then preprocessed with edge-preserved smoothing [3], histogram
matching, and intensity stretching for noise reduction, intensity matching and
contrast enhancement respectively.

2.3 Image Matching

Image matching is achieved through the solution of the large deformations dif-
feomorphic metric mapping (LDDMM); a detailed derivation and discussion of
this can be seen in [2]. Template and target images, I0 and I1, represented
by functions I : Ω → IR, are mapped via the transformation ϕ : Ω → Ω,
where Ω ⊆ IR3. The diffeomorphic transformation generated is smooth and has
a smooth inverse, hence, smoothness of anatomical features is preserved and
coordinates are transformed consistently.

Globally registered and image intensity equalized images are input into the
image matching (LDDMM) program. Our computations were carried out on a 64-
bit symmetric multi-processor, with computation times not exceeding one hour.
Composition of the target segmentation is achieved by composing the template
binary segmentation with the appropriate LDDMM mapping. Rigidly deforming
the target segmentation back to the patient space and combining the left and
right sides produces the final automated segmentation.

A graphical summary of our method for obtaining a mapping between a
template and target image is shown in Figure 1.



Semi-automated Basal Ganglia Segmentation 241

Template

Target

Cropping Pre−processing Image Matching

Mapping

Rigid Registration

Fig. 1. Procedural flow outlining the generation of a template to target diffeomorphic
mapping for one side (left) of the brain. The target is deformed rigidly to the template,
both images are cropped and pre-processed, and LDDMM image matching is used to
compute the final mapping. Images shown are representative slices taken from a Series
3 patient.

3 Results

To facilitate comparison of our continuous automated segmentations with the
binary manual segmentations, the manual segmentations are slightly smoothed.
The L1-distance between segmentations is reported as the L1 error, and caudate
volumes are also computed.

We have also developed a boundary distance metric which aims to provide
correspondence between two surfaces by computing the LDDMM mapping from
an automated segmentation to a manual segmentation. Applying this mapping
to the template surface displaces each point on the template to its correspond-
ing point on the target surface. Since the LDDMM matching is in the inexact
framework, a template surface point may not map exactly to a target surface
point. However since the deformed template surface closely approximates the
target surface, choosing the nearest point on the target surface to a point on
the template surface is likely to provide very good correspondence. Using this
correspondence we can compute the boundary distances for each point on the
template surface to a point on the target surface. The average for the surface is
calculated and is reported as the mean boundary distance.

Another estimate of surface distance, namely the maximum surface distance,
is given by the Hausdorff distance. Calculation of this metric is carried out as
described in [4].

Segmentation accuracy results were compiled by computing the metrics de-
scribed above for each automated segmentation. We report the average and
standard deviation of these metrics for each dataset series. These results are
shown in Table 1. L1 error and volume error results for individual Series 1 pa-
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Table 1. Caudate nucleus LDDMM segmentation results

Error Metric Series 1 Series 2 Series 3
Volume Error (%) 5.10 ± 3.60 8.08 ± 3.72 7.72 ± 6.18

L1 Error (%) 27.94 ± 6.51 36.21 ± 5.51 30.17 ± 6.99
95% Sym. Hausdorff (mm) 2.10 ± 0.98 2.27 ± 0.75 2.19 ± 0.70
Mean Boundary Dist. (mm) 1.12 ± 0.57 1.17 ± 0.47 0.94 ± 0.20

This table shows the computed results for our automated segmentations, reporting the
mean and standard deviation (μ ± σ) for each dataset. High L1 error is mainly due
to discrepancies on the boundaries of the automated segmentations. Small boundary
distance metrics (Hausdorff, mean boundary distance) indicate that the overall shape
is accurate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Patient 5Patient 4Patient 3Patient 2Patient 1

L1
 E

rr
or

Segmentational Matching

Image Matching with Smoothing

Image Matching without Smoothing

Rigid Matching

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Patient 5Patient 4Patient 3Patient 2Patient 1

V
ol

um
e 

E
rr

or

Segmentational Matching

Image Matching with Smoothing

Image Matching without Smoothing

Rigid Matching

Fig. 2. L1 errors (left) and volume errors (right) for Series 1 segmentations using dif-
ferent transformations. Segmentational matching refers to using binary segmentations
as template and target images, image matching with smoothing is our regular system,
image matching without smoothing skips the noise-reduction step, and rigid matching
does not use any image matching transformation.

tients are shown in Figure 2. We compare results we get choosing from different
mappings strategies: rigid rotation/translation, intensity-based image matching
with and without edge-preserving smoothing, and pure segmentational match-
ing. Representative slices for two different Series 1 patients displaying automated
and manual caudate segmentations are shown in Figure 3.

Our caudate nucleus segmentation results are in the same range as other com-
parable methods reported in literature [5], with less requirements on parameter
tuning and user input.

Proven reliability of our segmentation system is essential for its use in clinical
studies. Our reliability study consisted of performing the segmentation proce-
dure 8 times each for two different Series 2 patients, generating a new caudate
nucleus segmentation each time. Ideally, for an inter-rater reliability calculation,
8 different raters would rate each patient, however, we were limited to using a sin-
gle rater, computing segmentations on different days. For each image matching
computation (total of 16), the ventricles were segmented, landmarked, and the
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Patient A - automated segmentation Patient B - automated segmentation

Patient A - manual segmentation Patient B - manual segmentation

Fig. 3. Three coronal slices of the left caudate nucleus of two Series 1 patients shown
with automated binary threshold segmentations (Top) and manual segmentations (Bot-
tom) outlined in white. (Left) Patient A: L1 error = 26.45%, mean boundary distance
= 0.6223 mm. (Right) Patient B: L1 error = 34.82%, mean boundary distance =
1.3409 mm.

average caudate nucleus intensity was chosen; as usual, the same template im-
age was used for all segmentations. Segmentations for the left and right caudates
were derived for each of these cases, and their volumes were used to calculate the
intra-class correlation coefficient. Although technically an intra-rater reliability
coefficient, because each segmentation was done on a different day, it is our best
approximation to inter-rater reliability. This is because the day to day variabil-
ity for a single rater segmenting the ventricles, landmarking and choosing the
average caudate intensity should be similar to the variability between different
raters, especially when the system as a whole is considered.

The simple replication reliability study uses a one-way random effects model
to calculate the intra-class correlation coefficients (ICC) and confidence inter-
vals for the caudate nucleus volumes as dictated by [6]. The calculated ICC for
Series 2 caudates is 0.937 with a 95% confidence interval of (0.759, 0.994). Ac-
cording to [7], ICC > 0.74 corresponds to excellent reliability, which suggests
our segmentation system is sufficiently reliable.

4 Discussion

One difficulty in producing automated segmentations of the caudate nucleus is
determining the location of the most inferior axial slice. This is defined to be
the most inferior slice when the caudate and putamen are visibly separated by
the internal capsule with the brain aligned in AC-PC orientation. Generating an
automated segmentation which follows the same strict guidelines is difficult at
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best, and determining the inferior axial cut-off is a task better suited for the user.
Using a template segmentation which includes the caudate nucleus, putamen,
and the nucleus accumbens would produce a target segmentation that can be
manually bisected to produce caudate and putamen segmentations cut-off at the
correct axial plane.

User involvement in our semi-automated segmentation scheme is minimal and
does not require expertise in brain anatomy. The user is necessary for four tasks:
1. automated thresholding-based segmentation of the ventricles, 2. landmarking
of the ventricular surfaces, 3. definition of the bounding box to delineate the
image region for matching, and 4. identification of average caudate intensities
for intensity equalization. As discussed earlier, our procedure for lateral ventricle
segmentation is fast and easy since high accuracy is unnecessary as only a small
area of the surface is used for landmarking. Placing landmarks is also an easy
task once landmark positions have been standardized. Definition of a bounding
box is only necessary for template images, as image registration should ensure
that the target images will fit in the template bounding box by always padding
the template bounding box by a tolerance of about 10 voxels or such. Identifying
the average intensity for the target structures is subject to some variability, but
as our reliability study shows, these variations do not amount to notable changes
in the segmentations.

The automated and the manual segmentations are found to differ on the exte-
rior boundary of the caudate. Due to the elongated, narrow shape of the caudate
nucleus, the ratio of the number of voxels on the surface of the caudate to the
total number of caudate voxels is very high, on average being 71±9%. Therefore,
the partial volume effects are likely to be a heavy influence in calculation of the
L1 distance which measures the difference in voxel labeling between the auto-
mated and the manual segmentation, especially since there are a large number
of these on the exterior of the caudate that are not exactly matched due to regu-
larization constraints placed in computing dense diffeomorphic transformations.
Examination of Figure 3 reveals that accurate delineation of the caudate nuclei
is still present in segmentations possessing relatively high L1-distance errors.
Further improvement in accuracy is likely through the use of a template image
representing the average of the study population. We are currently working on
geodesic shooting methods in LDDMM to produce an average image.

Concluding, the results we have shown demonstrate that our semi-automated
image matching system reliably segments the caudate nucleus with accuracy
comparable to current automated methods. Segmentation of the basal ganglia
via image matching is the initial step in shape analysis as the diffeomorphic
mapping defines the necessary correspondence between images. Application of
our procedure to other structures should also prove successful, as our findings
indicate that the general image matching segmentation concept is robust.
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Abstract. In this paper we propose a Particle Filter-based approach for the seg-
mentation of coronary arteries. To this end, successive planes of the vessel are
modeled as unknown states of a sequential process. Such states consist of the
orientation, position, shape model and appearance (in statistical terms) of the
vessel that are recovered in an incremental fashion, using a sequential Bayesian
filter (Particle Filter). In order to account for bifurcations and branchings, we
consider a Monte Carlo sampling rule that propagates in parallel multiple hy-
potheses. Promising results on the segmentation of coronary arteries demonstrate
the potential of the proposed approach.

1 Introduction

Cardio-vascular diseases are the leading cause of deaths in the USA (39%) and therefore
there is a demand for constant improvement of diagnostic tools to detect and measure
anomalies in the cardiac muscle. Coronary arteries are thin vessels that feed the heart
muscle in blood. Therefore, their segmentation provides a valuable diagnostic tool for
clinicians interested in detecting calcifications, and stenosis. Because of the low contrast
conditions, and the coronaries vicinity to the blood pool, segmentation is a difficult task.
Computer Tomography (CT) and Magnetic Resonance (MR) imaging of the heart have
became standard tools to medical diagnosis resulting to a substantial number of patients
being imaged.

On one hand, vessel segmentation techniques consist of model-free and model-
based methods. Vessel enhancement approaches [6] and differential geometry-driven
methods [11] do not segment vessels per se, but allow a better visualization. Region
growing [21], flux maximization [2], morphological operators [5] and skeleton-based
techniques [19] are more advanced vessel segmentation techniques. On the other hand,
model-based techniques use prior knowledge and features to match a model with the
input image and extract the vessels. Prior knowledge refer either to the whole structure,
or to the local vessel model. Tracking approaches recover the vessel centerline - given
a starting condition - through processing information on the vessel cross section [10].
Vessel template matching [17], generalized cylindrical models [15] as well as paramet-
ric/geometric deformable models [18] are alternatives to vessel tracking and seek to
minimize an objective function computed along the model.
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Level sets [16] is an established method to address such minimization [12]. One
can refer to the fast marching algorithm and its variant for vessel segmentation using
the minimal path principle [1]. To discourage leaking, a local shape term that constrains
the diameter of the vessel was proposed in [14].

One can claim that existing approaches suffer from certain limitations. Local opera-
tors, region growing techniques, morphological filters as well as geometric contours
might be very sensitive to local minima and fail to take into account prior knowl-
edge on the form of the vessel. Parallel to that, cylindrical models, parametric active
contours and template matching techniques may not be well suited to account for the
non-linearity of the vessel structure, and require particular handling of branchings and
bifurcations. Tracking methods can often fail in the presence of missing and corrupted
data, or sudden changes. Level sets are very computational time-consuming and the
Fast Marching algorithm loses all the local implicit function properties.

In this paper, we propose a particle-based approach to vessel segmentation where
we re-formulate the problem of recovering successive planes of the vessel in a proba-
bilistic fashion with numerous possible states. One can consider the problem of vessel
segmentation as a tracking problem of tubular structures in 3D volumes. Thus,given a
starting position, the objective is to consider a feature vector that, upon its successful
propagation, provides a complete segmentation of the coronaries. In the proposed tech-
nique, unlike standard techniques where the most probable hypothesis is maintained, a
discrete number of states (possible solutions) remain active and are associated with a
probability density function. The final paradigm consists of a fast multiple hypothesis
adaptive propagation technique where the vessel structure and its appearance are suc-
cessfully recovered. Such a framework allows to naturally address the non-linearities of
the geometry and the appearance of coronaries and is compared in a favorable fashion
with the existing approaches.

The remainder of this paper is organized as follows. In section 2, we motivate vessel
segmentation and introduce the concept of the proposed approach and Particle Filters,
while vessel segmentation is presented in section 3. Implementation and validation are
part of section 4, while discussion is part of the last section.

2 Preliminaries and Particle Filters

To explain our method at a concept level, let us assume that a segment of the vessel
has been detected: a 2D shape on a 3D plane. Similar to region growing and front
propagation techniques, our method aims to segment the vessel in adjacent planes. To
this end, one can consider the hypotheses ω of the vessel being at a certain location (x),
having certain orientation (Θ), and referring to certain shape - an elliptic model is a
common choice (ε) - with certain appearance characteristics (pvessel).

ω =

⎛⎜⎝x = (x1, x2, x3)︸ ︷︷ ︸
position

,Θ = (θ1, θ2, θ3)︸ ︷︷ ︸
orientation

, ε = (α, β, φ)︸ ︷︷ ︸
shape

, pvessel︸ ︷︷ ︸
appearance

⎞⎟⎠
Then, segmentation consists in finding the optimal parameters of ω given the observed
3D volume. Let us consider a probabilistic interpretation of the problem with π(ω)
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being the posterior distribution that measures the fitness of the vector ω with the obser-
vation. Under the assumption that such a law is present, segmentation consists in finding
at each step the set of parameters ω that maximizes π(ω). However, since such a model
is unknown, one can assume an autoregressive mechanism that, given prior knowledge,
predicts the actual position of the vessel and a sequential estimate of its corresponding
states. To this end, we define:

– a state/feature vector ω,
– an iterative process to predict the next state and update the density function, that

can be done using a Bayes sequential estimator and is based on the computation of
the present state ωt pdf of a system, based on observations from time 1 to time t
z1:t: π(ωt|z1:t). Assuming that one has access to the prior pdf π(ωt−1|z1:t−1), the
posterior pdf π(ωt|z1:t) is computed according to the Bayes rule:

π(ωt|z1:t) =
π(zt|ωt)π(ωt|z1:t−1)

π(zt|z1:t−1)
.

The recursive computation of the prior and the posterior pdf leads to the exact
computation of the posterior density.

– a distance between prediction and actual observation, based on the observation.
Kalman filter is the most popular variant of this model, a well known linear approach
able to track vessels with limited variation in appearance and geometry. Cardiac vessel
trees are highly irregular. Random bifurcations, branches of variable width, non-linear
visual properties because of the presence of calcifications, stents, stenosis and diseased
vessel lumen are some examples demonstrating the non-linearity of the vessel tree as
shown in [Fig. (1)].

Consequently simple parametric statistical models will fail to account for the statis-
tical and geometric properties of the vessel leading to the consideration of more com-
plex distributions. To this end, instead of one single prediction, a collection of hypothe-
ses can be generated at each step and being evaluated using the distance between predic-
tion and actual observation. Nevertheless, in practical cases, it is impossible to compute
exactly the posterior pdf π(ωt|z1:t), which is to be approximated. An elegant approach
to implement such a technique refers to the use of particle filters where each given hy-
pothesis is a state in the feature space (or particle), and the collection of hypothesis is a
sampling of the feature space.

Particle Filters [3, 9] are sequential Monte-Carlo techniques that are used to esti-
mate the Bayesian posterior probability density functions (pdf) [7, 20]. In terms of a
mathematical formulation, such a method approximates the posterior pdf by M random
measures {ωm

t ,m = 1..M} associated to M weights {λm
t ,m = 1..M}, such that

π(ωt|z1:t) ≈
M∑

m=1

λm
t δ(ωt − ωm

t ), (1)

where each weight λm
t reflects the importance of the sample ωm

t in the pdf.The samples
ωm

t are drawn using the principle of Importance Density [8], of pdf q(ωt|xm
1:t, zt), and

it is shown that their weights λm
t are updated according to

λm
t ∝ λm

t−1
π(zt|ωm

t )π(ωm
t |ωm

t−1)
q(ωm

t |ωm
t−1, zt)

. (2)
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(a) (b) (c) (d)

Fig. 1. (a) calcification, (b) stent (high intensity prosthesis), (c) branching with obtuse angles, (d)
stenosis (sudden reduction of vessel cross section diameter)

Once a set of samples has been drawn, π(ωm
t |ωm

t−1, zt) can be computed out of the ob-
servation zt for each sample, and the estimation of the posteriori pdf can be sequentially
updated.

3 Vessel Segmentation

We now consider the application of such a non linear model to vessel segmentation
and tracking. Without loss of generality, one can assume that the root of a coronary is
known, either provided by the user or through some prior automatic procedure. Simple
segmentation of that area can provide an initial guess on the statistical properties of the
vessel appearance. It is reasonable to assume irregularity in the appearance pvessel of
the vessel because of the presence of calcifications, stents, stenosis and diseased ves-
sel lumen [FIG. (1)]. Therefore simple parametric statistical models on the appearance
space will fail to account for the statistical properties of the vessel and more complex
distributions are to be considered. We consider a Gaussian mixture model that consists
of two components to represent the evolving distribution of the vessel, the contrast en-
hanced blood (PB , μB, σB) and the high density components, such as calcifications or
stent, (PC , μC , σC) subject to the constraint [PC + PB = 1] leading to the following
state vector:

ω = (x, Θ, ε, (PB , μB, σB), (PC , μC , σC)) (3)

The vessel state vector consists of the 3D location of the vessel x , the tangent vector
Θ, its shape model at a given cross-section (the model used here is an ellipse (α (major
axis radius), β (minor axis radius), φ (orientation)) and the appearance pvessel , mixture
of two gaussians.

Once such a recursive paradigm is built, the next and last issue to be addressed is the
definition of a measure between a prediction and the actual observation. To this end, we
are using mostly the image terms, and in particular the intensities that do correspond
to the vessel in the current cross-section. The observed distribution of this set is ap-
proximated using a Gaussian mixture model according to the expectation-maximization
principle.

Let us now consider a random state vector ω, that refers to a certain segmentation
hypothesis that is to be evaluated (p(ω|D)) where D is the observed 3D volume. Such
a hypothesis should refer to a region that has consistent visual properties with the ones
expected (pvessel). While the separation of the vessels from the cardiac muscle is a
rather tedious task (blood is present in both organs), one can claim that their separation
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from the liquid of the vascular structure is possible and can be used to validate the
goodness of a hypothesis.

For the vessel lumen pixels distribution pvessel, the probability is measured as the
distance between the hypothesized distribution and the distribution actually observed.
The distance we use is the symmetrized Kullback-Leibler distance Dap between the
model p(ω) = pvessel and the observation q(ω):

Dap =
∫

p(ω)log
(
p(ω)
q(ω)

)
+ q(ω)log

(
q(ω)
p(ω)

)
dω,

which have important values when the distance between these two distributions is sig-

nificant. Therefore, one can consider the following measure

[
p(ω|Dap) = e

− |Dap|
σap

]
where σap is a normalization factor. Toward discriminating the vessel from the vascular
liquid one can consider a ribbon measure

Drb =
{
−∞ , μint ≤ μext
μint−μext

μint+μext
, otherwise

where μin is the mean within the ellipse and μext is the mean within a ring centered
at the ellipse center with greater radius (the ring area is equal to the inner circle area).
Such a measure aims at maximizing the distance between the mean values of the inte-
rior and the exterior region [13], based on the fact that the coronary arteries are brighter
than the background, and can also be used to measure the fitness of the segmentation:[
p(ω|Drb) = e

− |Drb|
σrb

]
. We assume that the two conditions are independent and there-

fore one can multiply the two measures to determine the goodness of the hypothesis
under consideration.

Given a starting point and a number of particles, one now performs random pertur-
bations to each particle in the feature space. Once a perturbation has been applied, the
corresponding hypothesis is evaluated using the visual matching and the ribbon mea-
sure introduced earlier. At each step of the process, segmentation refers to a weighted
linear combination of the state vectors (the particles) [EQ. (1)].

4 Implementation

After certain iterations, such a process will remove most of the particles and only the
ones that express the data will present significant weights. Consequently the model will
lose its ability to track significant changes on the pdf. At the same time, in the presence
of bifurcations, new hypotheses are to be introduced in order to capture the entire vessel
tree. Therefore, a resampling procedure has to be executed on a regular basis. Such a
process will preserve as many samples as possible with respectful weights. One can
find in the literature several resampling techniques. We chose the most prominent one,
Sampling Importance Resampling, for its simplicity to implement, and because it allows
more hypothesis with low probability to survive, compared to more selective techniques
such as Stratified Resampling [4].
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(a)

(b)

Fig. 2. (a) branching points between LCX and LAD for three patients with the particles’ mean
state overlaid, (b) the particles , clustered using K-means, follow up the two branches

The Sampling Importance Resampling (SIR) algorithm [7] consists in choosing the
prior density π(ωt|ωt−1) as importance density q(ωt|ωm

1:t, zt). This leads to the follow-
ing condition, from [EQ. (2)]: λm

t ∝ λm
t−1π(zt|ωm

t ).
The samples are updated by setting ωm

t ∝ π(ωt|ωm
t−1), and perturbed according to

a random noise vector. The SIR algorithm is the most widely used resampling method
because of its simplicity from the implementation point of view. Nevertheless, the SIR
uses mostly the prior knowledge π(ωt|ωt−1), and does not take into account the most
recent observations zt. Such a strategy could lead to an overestimation of outliers. On
the other hand, because SIR resampling is performed at each step, fewer samples are
required, and thus the computational cost may be reduced with respect to other resam-
pling algorithms.

Particular attention is also to be paid during the resampling process to address
branching and bifurcations. When a branching occurs, the particles split up in the
two daughter branches, and then track them separately (see [Fig. (2)]). Although Par-
ticle Filters track the two branches, experiments have shown a branching detection
heuristics improves the results. To this end, a simple K-means approach on the joint
space (position+orientation) of the particles is considered. When the two clusters are
well separated, the number of particles is doubled and equally dispatched in the two
branches.

Regarding the initial configuration, the use of approximatively 1, 000 particles gave
sufficient results for our experiments. We perform a systematic resampling according
to the Sampling Importance Resampling every time the effective sampling size Neff =∑

i 1/λ2
i (where λi is the weight of the ith particle) falls below half the number of

particles. The preference for SIR, compared to Stratified Resampling [4], is motivated
by the robustness of the segmentation.

5 Discussion

In this paper, we have proposed a particle-filter based approach to vascular segmenta-
tion. Experiments were conducted on several healthy and diseased patients CTA data
sets, segmenting both the Left Main Coronary Artery and the Right Coronary Artery.
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Fig. 3. Segmentation of the Left anterior descending coronary artery and Right coronary artery in
CTA (in red) for four patients, and full view with heart

Validation is a challenging but required step for any coronary segmentation method.
The algorithm has been evaluated on 34 patients, and has successfully recovered all the
main arteries (RCA, LAD, LCX) for each patient as shown in the following table, while

vessel name RCA Acute Marginal LAD First Septal LCX Obtuse Marginal
% of cases segmented 100% 85.3% 100% 94% 100% 94%

a small portion of visual results are also presented in [Fig. (3)]. The table indicates the
number of branches (in percentage) successfully segmented.

These results were achieved with a one-click initialization. From the first point pro-
vided by the user, the initial direction is determined as the direction of minimal gradient
variation. All patients presented some kind of artery pathologies in one, at least, of their
coronary vessels. This means the Particle Filter successfully segmented both healthy
and unhealthy coronaries. The method successfully detects all the main branchings,
while in some cases smaller branchings at the lowest parts of the vessel tree, have been
missed. Nevertheless, one can argue that their clinical use is of lower importance.

In this paper, we have shown that Particle Filters can be used for vascular segmen-
tation. In the context of vascular segmentation, Particle Filters sequentially estimate
the pdf of segmentations in a particular feature space. The case of coronary arteries
was considered to validate such an approach, where the ability to handle discontinuities
on the structural (branching) as well as appearance space (calcifications, pathological
cases, etc.) was demonstrated. The main advantage of such methods is the non-linearity
assumption on the evolution of samples. The use of an image term and a statistical
model makes the probability measure both robust to pathologies, and yet, drives the
segmentation toward the most probable solution given the statistical prior.

Future work consists in learning the variation law that rules the feature space toward
better tests for hypotheses validation, as well as the one that controls process noise, to
better guide the resampling stage toward an intelligent reduction of the required number
of particles.
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Abstract. Associating specific gene activity with functional locations in the
brain results in a greater understanding of the role of the gene. To perform such
an association for the over 20,000 genes in the mammalian genome, reliable auto-
mated methods that characterize the distribution of gene expression in relation to
a standard anatomical model are required. In this work, we propose a new auto-
matic method that results in the segmentation of gene expression images into dis-
tinct anatomical regions in which the expression can be quantified and compared
with other images. Our method utilizes shape models from training images, tex-
ture differentiation at region boundaries, and features of anatomical landmarks, to
deform a subdivision mesh-based atlas to fit gene expression images. The subdi-
vision mesh provides a common coordinate system for internal brain data through
which gene expression patterns can be compared across images. The automated
large-scale annotation will help scientists interpret gene expression patterns at
cellular resolution more efficiently.

1 Introduction

With mammalian genomes of over 20,000 genes [1] now sequenced, the next challenge
facing the biomedical community is to determine the function of these genes. Knowledge
of gene function is important for a better understanding of diseases and the development
of potential new therapies. The mouse is a well-established model system for explor-
ing gene function and disease mechanisms. Consequently, determining where genes are
active in different mouse tissues can lead to a greater understanding of how gene prod-
ucts affect human diseases. Non-radioactive in situ hybridization (ISH) is a histological
method that can be applied to reveal cellular-resolution gene expression in tissue sec-
tions [2]. This is an appropriate resolution for addressing the questions about the role of
genes in cell identity, differentiation, and signaling. Robotic ISH enables the systematic
acquisition of gene expression patterns in serially sectioned tissues [3]. By organizing
a large collection of gene expression patterns into a digital atlas, ISH data can be used
to make great advances in functional genomics as DNA sequence databases have done.

A major step toward efficient characterization of gene expression patterns is the au-
tomatic segmentation of gene expression images into distinct anatomical regions and

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 254–261, 2005.
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(a) (b) (c)

Fig. 1. Variation in the shape of the brain and expression pattern of (a) Npy, (b) Cbfat2t1h, and
(c) Neurog2 genes in mouse brain images

subregions. This is a challenging task, mainly because each gene is expressed differ-
ently from region to region leading to a substantial variation in the appearance of each
image. There is also a natural variation in the shape of anatomical structures, com-
pounded by the non-linear distortion introduced during sectioning of the brain. More-
over, there are many regions where no edges or intensity variation can be visually ob-
served. Figure 1 depicts typical gene expression images.

To compare gene expression patterns across images, Ju et al. [4] constructed a
deformable atlas based on subdivision surfaces which provide a common coordinate
system when fitted to sagittal sections of the mouse brain. The 2D brain atlas is rep-
resented as a quadrilateral subdivision mesh, as shown in Fig. 2(a). Subdivision is a
fractal-like process of generating a smooth geometry from a coarse shape [5]. Starting
from an initial mesh, subdivision generates a sequence of refined meshes with increas-
ing smoothness. In our application, the mesh is partitioned by a network of crease edges
into sub-meshes, each modeling a particular anatomical region of the brain. The atlas
was fitted to images using affine transformation to account for rotation and translation,
and local deformation based on iterated least-squares to account for shape variation.
However, the accuracy of the local fitting, and interior coordinate system resulting from
the segmentation, is limited by its reliance on tissue boundary detection only. Thus,
manual deformation of the internal regions of the atlas must still be performed.

In our previous work [6], we have extended that approach by identifying selected
anatomical landmarks in expression images and using them to guide the fitting of inter-
nal regions of the mesh. Our method improved the general fitting of the internal regions,

(a) (b) (c)

Fig. 2. (a) The atlas at subdivision level 2. (b) Feature-extracting templates overlaid on selected
anatomical landmarks. (c) A typical gene expression image manually segmented into anatomical
regions.
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ensuring that specific landmarks were placed in appropriate regions. However, the re-
gion boundaries did not always match those drawn by neuroanatomists. In this paper,
we propose a new hybrid segmentation framework that combines texture variation at
region boundaries with textural features of specific landmarks to deform the subdivi-
sion atlas. In the rest of the paper, we explain the hybrid segmentation framework in
detail in Section 2 and present results from using our algorithms in Section 3. Section 4
summarizes our work.

2 Hybrid Segmentation Framework

Our hybrid model is a triplet {S,B, L} where S represents the shape of the subdivi-
sion mesh, B represents the appearance of the quads on the boundaries of anatomical
regions, and L models the texture features of selected anatomical landmarks. The shape
and boundary quad appearance are obtained for multiple mesh subdivision levels. Our
framework consists of training and deployment stages. Training is performed on sev-
eral mouse brain gene expression images which were previously fitted with a standard
subdivision atlas by neuroanatomists (Fig. 2(c)). Deployment involves fitting the atlas
to new gene expression images in order to segment them into anatomical regions.

2.1 Training

Shape: The shape term, S, defines the geometry and topology of the subdivision atlas
(Fig. 2(a)) that will be fitted to each image. The geometry is a collection of the co-
ordinates of the vertices of the mesh at a given subdivision level while the topology
denotes the relationships between the vertices to form anatomical regions. The geom-
etry is modeled as xk = [x1, x2, ..., xn, y1, y2, ..., yn]T for a mesh at subdivision level
k, where [xi, yi] are the Euclidean coordinates of vertex i. For all N meshes in the

training set, the mean shape is obtained as: x̄k = 1
N

N∑
i=1

xk. A training instance that is

close to the mean was selected as a standard mesh. The shape is obtained for different
subdivision levels of the mesh in a multi-resolution approach.

Boundary quad features: The second element, B, of our hybrid model captures infor-
mation about the features at the anatomical region boundaries. It can be observed that
the cell density pattern in the cerebellum is different from that of its neighbors in most
images. A texture variation can similarly be observed along the boundaries of the cortex,
septum, and thalamus. This slight variation in the texture patterns of anatomical regions
is utilized to model the boundary quads at subdivision level k as Bk = [Bk

1 Bk
2 . . . Bk

s ]
for s selected segments in the mesh boundary. A boundary segment is a collection of
adjacent crease edges and has quads from no more than two anatomical regions attached
to it (Fig. 3). By separating the regional boundaries into segments, optimal features for
each segment can be chosen, since no set of features will be equally optimal for all re-
gion boundaries. For each segment, Bj = {Qj, F j , pj} where Qj is the set of all quads
attached to segment j and distinguished by the side of the segment they belong to, F j

is the set of optimal features, and pj is the set of classifier parameters to distinguish
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(a) (b)

Fig. 3. Boundary quads at subdivision level (a) 2, and (b) 3

between quads on either side of the boundary segment. For purposes of this research,
we have selected the Support Vector Machine (SVM) [7] classifier due to its ability to
obtain a good decision boundary even on sparse data sets. The optimal feature set, F j ,
and classifier parameters, pj , for each segment are obtained as follows:

Step 1: Extract features from quads. Each image was filtered with Laws’ texture filters
[8] to obtain a bank of 25 texture energy maps. The 1st, 2nd, and 3rd moments of the
distribution of intensity values of all pixels in each quad on either side of the boundary
were used as feature for the quad in each filtered image [4].

Step 2: Feature normalization. The feature values vary widely, necessitating normaliza-
tion. A few feature normalization techniques were considered, including linear scaling
to unit range, linear scaling to unit variance, transformation to uniform random vari-
able, and rank normalization [9]. We obtained the best performance with rank normal-
ization in which the feature values f1, f2, . . . , fm are first ordered to obtain their ranks
(1 . . . m), where m is the number of samples in the boundary segment. Each feature
value is then replaced by f̃i = Rank(fi)−1

m−1 .

Step 3: Optimal feature selection. The relevance of each feature f is computed us-
ing the Information Gain (IG) metric [10] after discretization using Fayyad and Irani’s
minimum description length algorithm [11]. The features were then sorted according
to the relevance indices assigned by IG and each feature is included one-at-a-time in
a feature set, F j . The average error, Ec, of classifying with the feature set F j is then
obtained in a 10-fold cross-validation and the smallest set of features, F j , with a stable
and sufficiently low value of Ec is selected.

Step 4: Model parameter computation. For each segment j, a SVM classifier was
trained to distinguish between quads on either side of the boundary segment based on
the optimal features. Best performance was obtained by using the Radial Basis Func-
tion (RBF) kernel [12] with SVM. The optimal values for the kernel parameter and
error penalty parameter are obtained by cross validation and used to compute SVM
model parameters, pj , for each segment as part of the hybrid model.

Anatomical landmark features: In addition to the region boundary quads, a few
anatomical landmarks were modeled with respect to their texture features. Each land-
mark is associated with a vertex and they are used to guide the general position and
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orientation of the mesh during fitting. Each landmark i is modeled as Li = {vi, F
i, pi},

where vi is the coordinates of the vertex that it is attached to at subdivision level 3,
the highest level used in the model. The set of optimal features, F i, that can be used to
distinguish a landmark from its surrounding area and the set of classifier parameters, pi,
are computed as described above. To extract the features for the landmarks, a rectan-
gular template was overlaid on the landmark in each of the texture maps and summary
statistics for sub-windows in the template were used as features. Similar features were
extracted from a 4-neighborhood (Fig. 2(b)) of the landmark to serve as non-landmark
examples as described in our previous work [6].

2.2 Deployment

Given a new image, the model is fitted to the image by minimizing a quadratic energy
function E(xk) of the form: E(xk) = Ef (xk) + Ed(xk) using a linear solver such as
conjugate gradient. The energy term Ef (xk) measures the fit of the mesh at subdivision
level k to the image and Ed(xk) measures the energy used in deforming the mesh. The
fitting term Ef (xk) is: Ef (xk) = αEU (xk) + βEB(xk) + γEL(xk), where EU (xk)
is the fitting error of the outer boundary of the mesh to the outer boundary of the image,
EB(xk) measures the fitting error of the regional boundaries resulting from the classi-
fication of the boundary quads, and EL(xk) measures the error of fit of the anatomical
landmarks. The formulation of EU (xk) and the deformation energy term Ed(xk) are
the same as in [4]. The method for obtaining the other terms EL(xk) and EB(xk) is
described below.

Step 1 - Shape Initialization: First, a global alignment of the reference shape to the
image is performed. The image was segmented from the background using a flood-
filling approach after a simple intensity threshold. Principal Component Analysis was
applied to obtain the principal axes of the segmented image. The principal axes of the
reference mesh are also obtained and an affine transformation of the mesh is performed
to align the two pairs of axes [4].

Step 2 - Using the Landmarks for Fitting: Second, the fitting error, EL(xk), of the
mesh to the landmarks is computed as

∑
i(li − vi)2, where vi is the vertex of the mesh

associated with landmark i detected at location li. Specifically, for each landmark, fea-
tures are extracted for the pixels around the expected location and classified using the
model parameters obtained at the training stage. For efficiency, classification is per-
formed on every third pixel initially before conducting a pixel-by-pixel search around
the area with the highest SVM decision values. This is possible because the decision
values were found to monotonically increase towards the expected ground truth in all
the images tested [6].

Step 3 - Using Boundary Quads for Fitting: Finally, for each segment j on the boundary
at subdivision level 1, optimal features F j are extracted for the quadsQj in the segment
and the model parameters pj are used to classify each quad. There are four possibilities
when two quads on opposite sides of a crease edge are classified with respect to the
model. When the classification of both quads is in agreement with the model (Fig.
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(a) (b) (c) (d) (e)

Fig. 4. Classifying opposite quads on a boundary crease edge (the background depicts two re-
gions): (a) both are classified in accordance with the model, no displacement at the vertices. (b,c)
Displacement of the boundary edge towards the misclassified quad. (d) Rare case of opposite
quads being simultaneously incorrectly classified with respect to the model: position the quads
on either side and select best match. (e) Various scenarios of quad classification and the resulting
displacement at the vertices.

4(a)), the force exerted by the corresponding vertices is zero. When either of the quads
is classified contrary to the model (Fig. 4(b,c)), the vertices exert a force pulling the
boundary edge in the direction of the misclassified quad. The decision value returned
by SVM gives an estimate of the confidence in the classification. In the event that both
quads are incorrectly classified with respect to the model (this is very rare since the
mesh boundaries are already quite close to the image boundaries after global fitting),
the two quads are temporarily positioned on both sides of the segment and the position
that results in correct classification is retained (Fig. 4(d)). If both positions still result
in misclassified quads, the vertices are left unchanged. The various possibilities are
illustrated in Fig. 4(e).

This process is performed iteratively until a specified ratio of the quads (e.g., 95%)
are correctly classified, in which case the process is repeated at a finer subdivision level,
up to level 3. With increasing subdivision level, the size of the quads decreases. This
reduces the displacement of the vertices, resulting in a smooth fit.

3 Results and Discussion

Our experimental data are 2D images of sagitally sectioned (level 9) postnatal day 7 (P7)
C57BL/6 mouse brains on which in situ hybridization has been performed to reveal the
expression of a single gene. For computational efficiency, the images were scaled down
by 25% from their original size of approximately 2000x3500 pixels. We trained our
framework on 36 images manually fitted with subdivision meshes by neuroanatomists,
and tested on 64 images. The weights for the terms EU (xk), EB(xk), and EL(xk) in
the energy minimization equations were selected experimentally.

To quantify the quality of fit using our hybrid segmentation approach, we com-
pared individual anatomical regions as delineated by our framework with those manu-
ally delineated by neuroanatomists. The number of overlapping pixels in both meshes
was further normalized by the total number of pixels in the manually fitted mesh.
In Fig. 5(a-e), the accuracy of fit of five major anatomical regions is compared for
all 64 images. In regions where the distinction along the boundaries is pronounced
such as the cortex, cerebellum and their adjoining regions, we expect to have higher
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison of the accuracy of the fit in the (a) cortex, (b) medulla, (c) midbrain, (d)
hypothalamus, and (e) pons in 64 expression images. (f) Mean accuracy of the fit in the 64 images
across 14 regions using our hybrid segmentation framework. The error bars indicate the standard
deviation. The letters indicate the following regions: A-cerebellum, B-cortex, C-basal forebrain,
D-hippocampus, E-hypothalamus, F-medulla, G-midbrain, H-olfactory bulb, I-pons, J-septum,
K-striatum, L-thalamus, M,N-ventral striatum.

(a) (b)

Fig. 6. The result of fitting the standard mesh on (a) ChAT, and (b) BMALI gene expression
images

accuracy in delineating the boundaries. Similarly, we expect lower accuracy in re-
gions where this distinction is minimal, such as in the forebrain and the ventral stria-
tum. This is confirmed by our results summarized for all 14 regions in Fig. 5(f). Note
that the two sub regions of the ventral striatum are treated as two separate regions
for purposes of comparison. Examples of fitting using our approach are illustrated
in Fig. 6.
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4 Conclusion

Due to its many advantages, subdivision surface modeling is becoming increasingly
popular for geometric modeling and is also starting to appear in medical applications.
For example, in gene expression images, subdivision surface modeling facilitates the
comparison of expression patterns not only in regions, but also in subregions of the
brain. The challenge is to fit a subdivision-based atlas to expression images accurately
and automatically. Our approach combines the detection of selected anatomical land-
marks with feature differentiation at regional boundaries using trained classifiers. Our
results have been very encouraging.
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Abstract. In this paper, we focus on automatic kidneys detection in
2D abdominal computed tomography (CT) images. Identifying abdomi-
nal organs is one of the essential steps for visualization and for providing
assistance in teaching, clinical training and diagnosis. It is also a key
step in medical image retrieval application. However, due to gray lev-
els similarities of adjacent organs, contrast media effect and relatively
high variation of organ’s positions and shapes, automatically identify-
ing abdominal organs has always been a challenging task. In this paper,
we present an original method, in a statistical framework, for fully au-
tomatic kidneys detection. It makes use of spatial and gray-levels prior
models built using a set of training images. The method is tested on over
400 clinically acquired images and very promising results are obtained.

1 Introduction

Recently, a clinically operational Content-based image retrieval (CBIR) system,
based on a semi-supervised learning approach and dedicated to help osteo-
articular diagnosis on Magnetic Resonance (MR) images, is developed by our
research team [1]. Needless to emphasis that the retrieval success is highly de-
pendent on the images description stage. The purpose of our actual work is to
develop an extension of the system to be applied to computed tomographic (CT)
images of the abdomen, specifically to kidneys cysts. Unlike, the osteo-articular
MR images, abdominal CT images present a higher variability. Indeed, different
tissues (soft and hard) with different sizes and shapes across individuals and
across slices may appear. This increases the complexity and the hardness of the
image description step in a sense that a description index constructed using the
whole image may be inefficient in the retrieval step. Salient features and rele-
vant descriptors, in our application, are those which encode information about
the kidney and the cysts. All other features, salient or not, could be considered
as outliers. Therefore, the detection of the regions of interest (kidneys in our
case) is a prerequisite step for the success of the retrieval process.

Automatically identifying organs from abdominal CT images series is chal-
lenging. Typically, the identification task is related to the segmentation problem,
and few works treated this problem. For instance, Lee et al [2] solve the identi-
fication problem using fuzzy rules established based on knowledge of anatomy.
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Overlap information from consecutive slices is also used to guide the recognition
process. Kobashi and Shapiro [3] integrate the recognition process with the seg-
mentation one. The authors use anatomy knowledge to dynamically constrain a
thresholding based segmentation. Here too shape constraints and overlap infor-
mation from consecutive slices are used. These methods operate on 3D data and,
to our knowledge, on healthy organs. The problem we address in this paper is a
fully automatic detection of kidneys with cysts in a 2D CT slices. The presence of
cysts makes the task more difficult because of the considerable increase of shape
variability and intensity inhomogeneity. This discards the use of active shape
models (ASM) or even appearance models (AAM) to guide the identification
process. The construction of a probabilistic atlas is a potential alternative (see
eg. [4]). Unfortunately, we are considering the problem in 2 dimensions1 and the
slice level may differ significatively making the approach unsuitable as differ-
ent organs may appear/disppear. Besides this type of methods requires elastic
registration, which adds a computational complexity to the problem.

In this paper, an original solution to the problem is proposed in a statistical
framework. The outline of this paper is as follows. First, we start by the descrip-
tion of the mathematical modeling of the detection method and by specifying
the different terms of the optimization problem to be solved. Section 3 describes
the preprocessing steps and the models building. Section 4 presents results on
clinically acquired data, and the summary and conclusion appear in Section 5.

2 Modeling

Our approach for the automatic kidneys detection makes use of spatial and
gray-levels prior models built using a set of training images. Then, the detection
problem is solved as a minimization of a cost function that takes into account
the observed image and the prior models. This is described in details next.

2.1 Prior Information

Let Ω be the image spatial support and L denotes the set of image gray-level
values. We suppose that each image is a realization of a random field Y =
{Ys, s ∈ Ω} and we define a binary random field X = {Xs, s ∈ Ω} where Xs = 1
means that the pixel s is in the Kidney and Xs = 0 otherwise.

– Spatial prior model: Given a set of N training images {yi, i = 1...N}, we
can construct on each image i, a realization xi of the random field X i by
segmenting manually the kidney regions. Then, we empirically estimate a
spatial prior pdf, pK(s), of the kidney areas using the mean field as follow:

pK(s) =

∑N
i=1

xi
s

ni

N
, (1)

1 The application (CBIR) imposes the 2 dimensional constraint; as well as the need
for a fully automatic solution to the problem.
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where ni is the number of pixels of the ith image such as xi
s = 1. Using the

above equation, we can build a spatial prior pdf for the left and right kidneys
pKl

and pKr respectively.

– Gray-level prior: We define ω a random variable taking values in L and we
suppose that the random field Y is an ergodic process in the same tissue (ie.
Xs = 1). In the same manner as the spatial model, we can build empirically
a prior pdf of the kidney’s gray-level values. Given the above assumptions,
the prior gray-level pdf, pω(w) is position independent and is given by:

pω(w) =
1
N

N∑
i=1

⎧⎨⎩ 1
ni

∑
s/xi

s=1

δ(yi
s − w)

⎫⎬⎭ . (2)

Here yi
s is the gray-level value of pixel s in image i and δ is the Delta function.

2.2 Cost Function Definition

The proposed kidney identification method takes the form of an optimization of
a cost function in order to detect two square windows Rl and Rr, of side length
2n + 1, respectively in the left and right kidneys. The general form of the cost
function J(Rl, Rr), to be minimized, is defined as follow:

J(Rl, Rr) =
∑

j={l,r}

{
Dint(Rj) + Dspat(Rj)

}
+ Ssym(Rl, Rr) . (3)

Here, Dint(Rj) is the data term for region Rj , Dspat(Rj) is the spatial prior
probability of region Rj and Ssym(Rl, Rr) is a similarity term between the left
and the right window. These terms will be detailed in the following paragraphs.

a) Data term: It measures how likely the gray-level distribution, pωj (w), of
the given region Rj , j ∈ {l, r} is similar to the prior pdf pω(w) given by
(eq. 2). This is a classical goodness-of-fit problem and several measures
could be used. Two statistical measures are chosen, namely, Kuiper statistic
DKP (pω, pωj ) and Kullback-Leiber divergence DKL(pω , pωj).

b) Left/Right similarity measure: Recall that both square windows be-
long to the two kidneys and therefore are statistically dependant. Hence,
we expect a high similarity between the two regions Rl and Rr. Here too,
several criterions could be used to measure this similarity. We select two
measures, widely used by the computer vision community: the normalized
cross-correlation NCC(Rr , Rl) which measures the linear dependance and
the mutual information MI(Rr, Rl), which measures the statistical depen-
dance of the two areas. Note that both measures have to be maximized 2.

c) Spatial prior probability: Let Ωj be the spatial support of the region Rj

and Sj = {s, pKj(s) > 0}, j ∈ {r, l}. Using the spatial prior model (eq. 1),
the probability that Ωj ⊂ Sj is given by: P (Ωj) =

∑
s∈Ωj

pKj (s).

2 Because the left kidney would probably be a reflected version of the right, a left-right
flipping operation is performed before similarity calculation.
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Now that we defined all the different terms, we rewrite eq. (3) as follow:

J(Rl, Rr,Θ) =
∑

j={l,r}

{
D.(pωj , pω)− λ1 ln(P (Ωj))

}
− λ2 S.(Rl, Rr) , (4)

where D.() = DKP () or DKL(), S.() = NCC() or MI() and λ1 ∈ R+, λ2 ∈ R+

are hyperparameters. The above cost function is minimized with respect to the
variable Θ = {sl, sr} representing the respective left and right window centroid.

The optimization algorithm employed uses the Nelder-Mead simplex search
algorithm for multidimensional unconstrained minimization [5]. It is determin-
istic method that attempts to minimize a scalar-valued function without any
gradient information. The major problem of such local minimizer is the ini-
tialization. For our case, we choose to initialize the algorithm with 8 random
candidates points with nonzero spatial pdf.

3 Kidneys Detection Algorithm

A block diagram of our new fully automatic kidneys detection approach is shown
in Fig. 1. In this section we give algorithmic details about the preprocessing steps,
the model building and the whole kidney delineation algorithm.

3.1 Images Database

All our images are routine acquisition in a public hospital. The images are ac-
quired by several radiologists over 1 year time period (# patients: 35 male, 12
female; age range: 19 to 88 years). In some cases a contrast media is admin-
istered, and 1 to 3 acquisitions are performed at different time delays. Conse-
quently, there are images with injection of contrast media (+IV) and other with-
out (−IV). The images are acquired using different spatial resolutions (0.5703 to
0.9746 mm) and slice thicknesses. An experienced radiologist selected 502 images
(435 test images and 67 training images), representatives of the different cysts,
which form our data set.

Fig. 1. Block diagram of the proposed automatic kidney detection method
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3.2 Preprocessing

In order to build or to make use of the spatial prior model, all the images must
be in the same spatial referential. Ideally, all the images have to be elastically
registered to a chosen reference image. Unfortunately, 2D elastic registration is
not appropriate and will fail in several cases because of the high variability of
the images content. Here, the variability is not only due to the soft nature of the
tissues but also because of the significative variation, across individuals, of the
position of the slice of interest. We found out that an accurate detection of the
body area (without the skin and the fatty layer) is sufficient for our application.
The detection algorithm and the resizing operation are detailed hereafter:

a) Region of interest (ROI) delineation:
A first threshold is used to detect the field of view and creates a binary
mask, the exterior mask. Morphological operations (holes closing, opening
and erosion) are then used to erase the staff table and reduce the mask
in order to erase the skin. A second threshold, higher than the first one is
chosen, to eliminate the fatty layer under the skin, followed by morphological
operation to remove detected isolated pixels in the fatty layer. Finally, the
two binary masks are combined and used to delineate the region of interest
(ROI). We have tested this algorithm on the whole date base and found it
very efficient with 100% success.

b) Resizing operation: Recall that the images in the database have different
spatial resolutions. Hence, first a resizing operation is used to make all the
ROIs have the same pixel size (1mm2). The result, is a set of ROIs with a high
variability of dimensions (xi, yi) and more importantly with different aspect
ratios. In order to put all the images in the same reference, we have to resize
all the ROIs at a given fixed dimension (x, y). This operation will introduce
shape distortions (i.e differences in axis resolution). We found that (x̂, ŷ) =
(E[xi],E[yi]) is close to the optimal minimizer of the expected normalized
quadratic error of the resolution differences between the two axis:

E

⎡⎣( x
xi − y

yi

x
xi + y

yi

)2
⎤⎦ , where

(
x
xi ,

y
yi

)
represent pixel resolutions.

3.3 Models Building

For the construction of the spatial and gray-levels prior models, we use a training
set of 67 images (30 (-IV) and 37 (+IV)), randomly selected from the database.
The images are manually segmented and preprocessed as detailed above. Then,
two spatial models are built separately, for the right and left kidney. Two gray-
levels pdfs are also built for the images with and without contrast media.

3.4 Kidneys Detection

Starting from the detected window Rl (or Rr) inside the kidney, we utilize
the corresponding segmentation map of the image in order to detect the whole
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kidney. The segmentation is performed, in a Bayesian framework, using a maxi-
mum a posteriori criteria (MAP) where the data term is modeled using a finite
gaussian mixture model and the prior term is modeled by means of a hidden
markov random field (HMRF). Specifically, we use the HMRF-Expectation-
maximization algorithm, proposed by Zhang et al. [6]. However, the minimization
is performed using a coarse to fine strategy based on a combination of a multi-
resolution model (for the observed data) and a multiscale model (for the hidden
field) [7]. The segmentation is fully automatic.

Our kidney delineation algorithm operates on the connected components of
the segmentation map obtained using Suzuki’s et al. algorithm [8]. An erosion
operation on the fatty cluster - easily detected given its HU (Hounsfield Units)
densitometric range - is first applied before the labeling operation in order to
disconnect the kidney from other close organs (liver, spleen). This segmentation
imperfection happens when the usual fatty layer surrounding the kidneys is too
thin because of the closeness of the two organs. Hence, the delineation algorithm
takes as input data the set of labels included in the previously detected window
Rj , j ∈ {l, r}. Then, based on prior knowledge of abdominal anatomy, we define
a set of IF THEN rules (� 7 rules) operating on a set of region’s properties
(related to shape, position, densitometric range, relative position, predefined
prior models) in order to delineate the whole kidney. Briefly, we search for the
bounding box that surely includes the kidney and the cysts, defined as the union
of all the regions included in Rj (the regions included in the defined bounding box
constitute our candidates set). An adjusting operation utilizing the predefined
rules is then performed. The selected regions constitute the kidney+cyst area.

4 Results

The proposed method is tested on the abdominal CT database detailed in sec-
tion 3.1 (435 images, i.e without the training images). Illustrative detection results
are shown in figure 2. The original images are viewed between -135 and 215 HU.
The detected windows (Rl, Rr), the rectangle delineating the whole kidney and
the rectangle delineating the ROI are highlighted. We can observe images without
(first 2 columns) and with (next 2 columns) contrast media. These examples illus-
trate the robustness of our automatic kidneys detection approach and underline
the high variability of image content, in which the kidneys have neither the same
appearance nor the same spatial positions. The last column shows typical cases of
failure, mainly due to small kidneys (the circles show the correct kidneys location).

The algorithm presented in this paper has three free parameters that needed
to be optimized, namely, n for the window size and (λ1, λ2) the tradeoffs be-
tween the different energy terms of the cost function. Experiments are carried
out for different combinations of the statistical measures presented earlier in
section 2.2 in order to choose the best parameter setting. To this end, we use
the success rate as the selection criterion: we consider a case to be successful if
a kidney (left or right) is correctly detected. That means that we calculate the
success rate according to the number of kidneys not according to the number
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Fig. 2. Results of kidneys detection (see text for description)

Table 1. Best success rate of the window localization: comparison of different combi-
nations of the statistical measures. n = 16 is the best window size of all combinations.

# images Kuiper test Kullback test
(−IV) 196 NCC 97.95% (λ1, λ2) = (1.0, 0.00) 97.44% (λ1, λ2) = (2.2, 0.37)

MI 97.44% (λ1, λ2) = (1.3, 0.12) 97.44% (λ1, λ2) = (2.2, 0.37)
(+IV) 239 NCC 95.78% (λ1, λ2) = (1.6, 0.37) 94.06% (λ1, λ2) = (2.2, 0.00)

MI 94.91% (λ1, λ2) = (1.4, 0.37) 94.72% (λ1, λ2) = (3.6, 0.25)

of images. The three free parameters are optimized for each combination of the
statistical measures (see table 1). Two conclusions can be drawn from this ex-
periment. First, the success rates for the images (−IV) are significatively better
than those of the images (+IV) and this is true for all measures combinations of
the statistical measures presented earlier. This result is expected considering the
increase of heterogeneity caused by the injected contrast media. Second, there is
no significant differences, in terms of success rate, between all the different com-
binations. However, we can argue that Kullback-Leiber divergence needs a higher
weight for the spatial prior (λ1). Notice that the data term has always a weight
of 1 in our formulation. We also present in Table 2 preliminary results, however
promising, for the delineation of the whole kidney, which of course are expected
to be lower than those for the window localization (about −2%; indicating an
acceptable success rate for the delineation algorithm of about 95%).

Finally, in order to asses the importance and the efficiency of the prepro-
cessing step, we carried experiments in the same conditions as for the results
shown in table 1, however, without the preprocessing step. We recorded a drop
of performances of about 20% for all combinations.
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Table 2. Success rate detection for the Kuiper-NCC combination

# images Rate of Rj localization Rate of kidney detection
Kidneys (−IV) 196 97.49% 95.01%
Kidneys (+IV) 239 95.78% 93.75%

5 Conclusion

In this paper, a fully automatic approach for kidneys detection in 2D abdominal
CT images is proposed. It involved a two steps approach. A localization step,
which make use of a statistical spatial and gray-levels priors, followed by de-
lineation step of the whole organ. An efficient and fast preprocessing step was
also proposed in order to make all the images in the same spatial referential.
The success rate of the proposed method was satisfactory; especially for images
without contrast media (above 97%). Therefore, this approach will be useful to
compute relevant descriptors of the regions of interest (kidney + cysts) to be
utilized in a CBIR system. Further work is in progress in order to improve the
detection on images with contrast media (currently � 95%). We mainly focus on
improving the optimization method and on defining a confidence measure for the
detection process by automatically identifing false detections. In addition, while
in the current work, the main focus was on the localization of the kidney, in
future work, we will concentrate on improving the kidney delineation algorithm.
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Abstract. This paper presents a novel approach for image segmenta-
tion by introducing competition between neighboring shape models. Our
method is motivated by the observation that evolving neighboring con-
tours should avoid overlapping with each other and this should be able to
aid in multiple neighboring objects segmentation. A novel energy func-
tional is proposed, which incorporates both prior shape information and
interactions between deformable models. Accordingly, we also propose
an extended maximum a posteriori (MAP) shape estimation model to
obtain the shape estimate of the organ. The contours evolve under the
influence of image information, their own shape priors and neighboring
MAP shape estimations using level set methods to recover organ shapes.
Promising results and comparisons from experiments on both synthetic
data and medical imagery demonstrate the potential of our approach.

1 Introduction

Segmentation of anatomical structures from medical images is often the first step
in computer aided diagnosis. Further analysis highly depends on the quality of
the segmented structures. In recent years, geometric deformable models, or level
set methods [1, 2], have been applied to medical image segmentation. During
the past decade, tremendous efforts have been put into different medical image
segmentation applications based on level sets [3]. Many new algorithms have
been reported to increase the precision and robustness of level set methods.

When segmenting or localizing an anatomical structure, prior knowledge is
usually very helpful. The incorporation of more specific prior information into
deformable models has received great attention. Several methods of incorporat-
ing prior shape information into boundary determination have been developed.
Cootes et al. [4] made a breakthrough by constructing statistical shape models
using corresponding points across a set of training images for image segmenta-
tion. Leventon et al. [5] incorporate statistical shape influence into the evolution
process of geodesic active contours [6] by embedding each shapes in the training
data set as the zero level set of level set maps. Qu et al. [7] add an enriched speed
term incorporating curvature, shape and texture information into the speed func-
tion. More recently, Xie et al. [8] utilize both texture and shape priors when
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defining their energy functional and segmentation is achieved through minimiz-
ing the functional. Nevertheless, it should be noticed that while most of level set
based methods applied in medical image segmentation deal with only one level
set and try to incorporate more prior information to achieve robust results, not
much attention has been put into either multiple initializations of level sets or
the interactions between multiple distinct level sets. Actually, structures to be
segmented are usually surrounded by one or more adjacent anatomical struc-
tures. Taking the neighboring structure into consideration may contribute to
overcoming the four drawbacks of level sets mentioned in [3], such as leaking
through gaps, embedding of the objects.

Zeng et al. [9], proposed two coupled surfaces under level set framework
to segment cortex from 3D MR images, which is mainly based on the near
constant thickness of the cortical mantle. Most recently, Yang et al. [10] introduce
neighbor-constrained 3D segmentation using a level set based deformable model.
However, the neighboring contours may intersect with each other under some
conditions because intersection is not penalized in the modeling process.

In medical images, distinct boundaries may not exist between the organs to
enable edge detection of organ boundaries. Furthermore, the boundaries may be
blurred and ambiguous due to partial volume effects [11]. These problems make
the segmentation of neighboring organs a challenging task.

In this paper, we present our method which introduces interactions between
neighboring contours when carrying out the segmentation process. A novel ap-
proach is proposed for segmenting multiple neighboring objects using both prior
shape information and interactions between models. The idea of introducing
model competition is inspired by the observation that the radiologists segment
organs with poorly defined boundaries by considering the anatomical neighbor-
ing structures. In our algorithm, the contours evolve locally based on both image
forces and interactions between neighboring shape models. They are also under
the influence of their own shape estimates globally to extract the organ contours.

2 Segmentation of Neighboring Organs

2.1 Model Description

Consider an image I that has M objects of interest, which may connect with each
other and have similar intensities or texture. Due to partial volume effects, the
boundaries may be blurred, which renders many segmentation methods to fail.
Our method integrates mutual prior shape information and repulsive interaction
between evolving neighboring curves into the segmentation process.

In our approach, curves Ci (i = 1, . . . ,M) are used to approach the contours
of the objects. These curves are allowed to evolve simultaneously to segment
the image. These curves evolve partly according to image information as in
[12]. Each object has its own shape estimate Ĉi (estimation details are given in
Section 2.3), to guide the evolution of the curve Ci in segmentation process. To
achieve this, the non-overlapping area of regions enclosed by Ci and Ĉi needs to
be minimized. Similarly, the repulsive force between different curves is defined
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through minimizing the overlapping area between them. To make the algorithm
robust and with lower complexity, the overlapping areas of curve Ci and other
objects’ shape estimates Ĉj (j = 1, . . . ,M and j �= i), instead of other curves
Cj , are considered. The overall energy functional E is defined by

E =
M∑
i=1

{
λ1i

∫
in(Ci)

|I(x, y)− c1i|2dxdy + λ2i

∫
out(Ci)

|I(x, y)− c2i|2dxdy
}

+
M∑
i=1

μi

∮
Qi

dq +
M∑
i=1

νiAi +
M∑
i=1

ξiA(NONoverlap(Ci, Ĉi))

+
M∑
i=1

M∑
j=1,j �=i

ωijA(overlap(Ci, Ĉj)) (1)

where λi, μi, νi, ξi, and ωij are real positive parameters. Parameter ξi controls
the influence of its own shape estimate. Parameter ωij controls the repulsive
force on the ith object from the jth object, while A denotes area in 2D or volume
in 3D.

2.2 Level Set Evolution of the Model

In the level set formulation, contour let Ci denote the contour of the ith object
being segmented, which is embedded as the zero level set of a level set map
Ψi, i.e., Ci(t) = {(x, y)|Ψi(x, y, t) = 0}. The signed distance transform is used
to generate the level set function Ψi according to contour Ci. Ψi is defined to
be positive outside Ci and negative inside Ci. Each of the M objects being
segmented in the image has its own contour Ci and corresponding Ψi.

The energy functional (1) is formulated in level sets using regularized versions
of the Heaviside function H and the Dirac function δ, denoted by Hε and δε [12],
respectively.

E =
M∑
i=1

{
λ1i

∫
Ω

|I(x, y)− c1i|2 (1−Hε(Ψi(x, y))) dxdy

+λ2i

∫
Ω

|I(x, y)− c2i|2Hε(Ψi(x, y)dxdy
}

+
M∑
i=1

μi

∫
Ω

|∇Ψi(x, y)|δε(Ψi(x, y))dxdy +
M∑
i=1

νi

∫
Ω

(1−Hε(Ψi(x, y))) dxdy

+
M∑
i=1

ξi

∫
Ω

{
(1−Hε(Ψi(x, y)))Hε(Ψ̂i(x, y))

+Hε(Ψi(x, y))
(
1−Hε(Ψ̂i(x, y))

)}
dxdy

+
M∑
i=1

M∑
j=1,j �=i

ωij

∫
Ω

(1−Hε(Ψi(x, y)))
(
1−Hε(Ψ̂j(x, y))

)
dxdy (2)
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where Ω denotes the image domain. Keeping each c1i and c2i fixed and mini-
mizing energy E in (2) with respect to Ψi(x, y) (i = 1, 2, . . . ,M), the associated
Euler-Lagrange equation for each unknown level set function Ψi(x, y) is deduced.
After parameterizing the descent direction by an artificial time t ≥ 0, the evo-
lution equation in each Ψi(t, x, y) is

∂Ψi

∂t
= δε(Ψi)

{
λ1i|I − c1i|2 − λ2i|I − c2i|2 + μi · div

(
∇Ψi

|∇Ψi|

)
+ νi

+ξi

(
2Hε(Ψ̂i)− 1

)
+

M∑
j=1,j �=i

ωij

(
1−Hε(Ψ̂j)

)⎫⎬⎭ (3)

2.3 MAP Shape Estimation

In order to incorporate the influence of prior shape model to the evolution process
as in (3), the shape and the pose of each model must be correctly estimated.
Let Ψ̂i denote the estimated curve of the ith object. At each step of the curve
evolution, it is estimated by

Ψ̂iMAP = argmax
Ψ̂i

p
(
Ψ̂i |Ψi, T̂i,∇I

)
(4)

where T̂i = {Ψ̂k|1 ≤ k ≤ M and k �= i}. To compute the MAP curve, we
expand (4) using Bayes’ Rule.

p
(
Ψ̂i |Ψi, T̂i,∇I

)
=

p
(
Ψi, T̂i|Ψ̂i

)
p
(
∇I|Ψi, T̂i, Ψ̂i

)
p
(
Ψ̂i

)
p
(
Ψi, T̂i,∇I

) (5)

The normalization term in the denominator of (5) can be discarded since it does
not depend on the estimated shape of the ith object. In addition, by assuming
that other estimated shapes are independent of each other, we have

p
(
Ψi, T̂i|Ψ̂i

)
= p
(
Ψi|Ψ̂i

) M∏
k=1,k �=i

p
(
Ψ̂k|Ψ̂i

)
(6)

p
(
Ψi|Ψ̂i

)
= exp

(
−A(insideCi and outside Ĉi)

)
p
(
Ψ̂k|Ψ̂i

)
= exp

(
−A(insideCi and inside Ĉk)

)
The second term in (5) computes the probability of seeing certain image gradients
given the current curve and the estimated curves. Since the gradient is a local
feature, it is reasonable to assume that this probability does not depend on other
estimated curves. Thus, we have

p
(
∇I|Ψi, T̂i, Ψ̂i

)
= p
(
∇I|Ψi, Ψ̂i

)
(7)
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3 Experimental Results

In our experiments, we set λ1i = λ2i = 0.2, μi = 0.05 · 2552, and νi = 0 so that
only parameters ξi and ωij need to be adjusted to balance the influence of self
shape prior and model competition.

3.1 Evaluation of Model Competition by Simulations

Our method was first applied on a 2D synthetic image which consists of one black
arrow composed of a triangle and a rectangle, with no defined boundaries between
them. They are of same intensity and Gaussian noise is added. For each object,
a training set of 12 sample contours are used. It is difficult to avoid leakage using
only prior shape information. Fig. 1 shows an example of severe leakage where the
contours of the triangle and the rectangle leak into other’s region. In Fig. 2, model
competition is taken into account where the same parameters are adopted except
for ω12 = ω21 = 0.1. In Fig. 1 and Fig. 2, yellow curves illustrate the initial MAP
shape and pose. Green curves illustrate the final MAP shape and pose. Red curves
show the initial contours (small red circles) and final contours. In Fig. 2, leakage
is avoided by introducing competition between two statistical models.

(a) (b) (c)

Fig. 1. Results without model competition (ξ1 = ξ2 = 0.2): (a) the original synthetic
image, (b) the segmentation results for rectangle, and (c) the results for triangle

(a) (b) (c)

Fig. 2. Results with model competition. Parameters are the same as in Fig. 1 except
ω12 = ω21 = 0.1: (a) the initial curves and estimated shapes. (b) the segmentation
results of rectangle, and (c) the results for triangle.
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3.2 Applications to Medical Imagery

Fig. 3 shows the segmentation of the amygdalae and hippocampus in a 2D MR
image. In Fig. 3, the first column shows the initial contours; the second column
shows intermediate evolving contours. The third column shows the final segmen-
tation results. The top row, which are the results without any prior knowledge,
shows that the two evolving contours become undistinguishable due to extremely
poorly defined boundaries and very similar intensities. The middle row shows the
results of using only prior shape information but without any model competition
(refer to [5] for details). It is clear that the final results, which incorporates shape
priors are more meaningful. However, there exist overlapping areas marked by
red and green contours due to ill defined boundaries. The overlapping is un-
avoidable unless the neighboring organ imposes constraint on the evolution of
the contour. The third row presents the results of using both shape priors and
model competition. Other parameters are the same as for the middle row except

Fig. 3. Three steps in the segmentation of amygdalae and hippocampus in a brain
image. (top) Results without prior knowledge. (middle) Results using only self prior
shape information with ξ1 = ξ2 = 0.2. (bottom) Results using both shape priors and
model competition, where ω12 = 0.2, ω21 = 0.1, and other parameters are the same as
for the middle one. (The upper structure is object 1 and the lower one is object 2).
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(a) (b)

Fig. 4. MAP shape estimates of the segmentations shown at the middle and bottom
rows of Fig. 3. (a) MAP shape estimate with only individual prior shape informa-
tion. (b) MAP shape estimate with prior shape information and competition between
two models.

ω12 = 0.2 and ω21 = 0.1. In the final results (column 3 of Fig. 3), the two struc-
tures are nicely segmented only when model competition is incorporated (the
bottom image in column 3). We also note the overlap is avoided in the corre-
sponding intermediate stage (the bottom image in column 2). Compared with
the case of using only prior shape information (middle row), our method does
not result in overlapping. Furthermore, in Fig. 4, we can see that introducing
competition between models into the multiple object segmentation process will
not only prevent overlapping of evolving neighboring contours but also benefit
the shape estimation.

In Fig. 4, it can be seen that the final MAP shape estimates are improved
after introducing interactions between models. With only shape priors, segmen-
tation processes for each organ are treated independently. When leakage occurs,
(as in the second image of the middle row in Fig. 3), an incorrect MAP shape
estimate will be obtained, which tends to misguide further evolution of the con-
tour. The final MAP shape estimates are shown in Fig. 4(a). After incorporating
interactions between models, evolution of the contours and MAP shape estimates
will tend to minimize the overlaps with others as well (see (1) and (6)). Each
shape estimate will become less probable when it overlaps with others (see (5)
and (6)). Thus, as shown in Fig. 3 and Fig. 4, allowing model competition will
both benefit shape estimation and the contour evolution process to obtain good
and robust segmentation results.

4 Discussions and Conclusion

In this paper, we focus on how to introduce interactions between neighboring
contours and effectively incorporate them into the segmentation process. We
have proposed a novel approach for segmenting multiple neighboring objects us-
ing prior shape information and competition between models, which intuitively
describes the relationship between evolving contours and their own shape esti-
mates, and the relationship between evolving contours and others’ shape esti-
mates (see (1)). Without repulsive interaction, our approach degrades to just
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another formulation of active contours with prior shape influence [5]. Our ap-
proach is mainly designed for situations where prior shape information is not
sufficient to achieve a good and robust estimation due to poorly defined bound-
aries and very similar intensities. With our method, multiple neighboring objects
can be detected simultaneously without suffering from intersection problems and
MAP shape estimates can be improved as well. Experiments on synthetic data
and MR images show promising results. The proposed method can be applied
to 3D medical image segmentation directly since implicit representations of the
curves are used.
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Abstract. Conventional level set based image segmentations are performed upon
certain underlying grid/mesh structures for explicit spatial discretization of the
problem and evolution domains. Such computational grids, however, lead to typi-
cally expensive and difficult grid refinement/remeshing problems whenever trade-
offs between time and precision are deemed necessary. In this paper, we present
the idea of performing level set evolution in a point-based environment where the
sampling location and density of the domains are adaptively determined by level
set geometry and image information, thus rid of the needs for computational grids
and the associated refinements. We have implemented the general geometric de-
formable models using this representation and computational strategy, including
the incorporation of region-based prior information in both domain sampling and
curve evolution processes, and have evaluated the performance of the method on
synthetic data with ground truth and performed surface segmentation of brain
structures from three-dimensional magnetic resonance images.

1 Introduction

The geometric nature of the geometric deformable models (GDMs) gives them sev-
eral often desired properties, i.e. independence from parametrization, easy computation
of geometrical characteristics such as curvatures, and natural compatibility with topo-
logical changes [1, 7]. Nevertheless, trivial level set sampling using structured image
grid could significantly decrease the computational efficiency when computer memory
becomes the bottleneck of the segmentation process, especially for large 3D medical
images which have been becoming increasingly available. Fast marching scheme and
the narrowband search have sofar provided some reliefs.

However, since most GDMs rely on the finite difference computational schemes, the
resolutions of the final results are fundamentally dependent on the computational grids
used to solve the discreteized level set partial differential equations (PDEs). Adaptive
grid techniques to locally modify the grid structure based on certain criteria is a popular
solution. The local refinement methods place additional grid points when (i.e. during
narrowband refinement) and where (i.e. high gradient areas) they are needed to avoid
expensive global refinement procedure [3]. More recently, moving grid methods have
been proposed as simpler alternatives to the local refinement methods [4]. But the local
sampling rate for such moving grid strategy is still upper-bounded by the number of
initial grid lines used. Regardless of the choices of computational grids, task-specific
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incorporation of image force and prior knowledge also plays essential roles in achieving
accurate and attractive segmentation results, especially for medical images [2].

In the Lagrangian formulation of parametric deformable models (PDMs) and mo-
tion tracking, meshfree particle methods have been introduced as more efficient and
possibly more effective object representation and computation alternatives because of
their trivial h− p adaptivity [6]. In addition, it has been shown that, for arbitrary shape
modeling, point-sampled representation allows user-defined large deformations on the
object shape [10]. Following the same spirit, it is easy to see that if general level set
PDE computation can be conducted in a point-based environment for both shape and
evolution (deformation) domains, we can almost freely adjust the sampling rate of the
domains without many extra efforts. This can be achieved through point-wise continu-
ous approximations of the domain and of the level set functions through polynomials
fitting using local point cloud. With such inspiration, we have introduced a point-based
numerical scheme for domain representation and computation [5].

In this paper, we extend the numerical scheme of [5] to point-based geometric de-
formable models (GDMs) for medical image segmentation. In particular, through adap-
tive sampling points distribution and level set formulation, our curve evolution formu-
lation incorporates region-based prior information, which is especially useful for brain
segmentation because the intensity homogeneity of the brain structures can compensate
noisy or confusing boundary information. Spatial derivatives of the point-sampled level
set function are obtained through moving least squares (MLS) approximation. Because
of the h − p adaptive nature of the sampling points, our strategy naturally possesses
multiscale property and performs fast marching and local refinement concurrently.

2 Methodology

2.1 Geometric Deformable Models

Level Set Formulation: Suppose we want to model a dynamic deformable contour
C(t) ∈ Rd under a known velocity field F (x, C(t)), where x ∈ Rd and the initial
contour C(0) is given. The dynamic equation for the moving contour is then:

dC(t)
dt

= F (x, C(t)) (1)

where F is known as the speed term that determines the particular way under which
C(t) deforms. If we want C(t) to stop at certain locations in space, such as object
boundary in image segmentation cases, then those locations should afford small or zero
F (x) values. If the targeted object is complex or the image data is noisy, the actual F
field could be very complicated and the resulted C(t)|t→∞ requires flexible and high
precision representation. Therefore, changing the representation of C(t) into implicit
forms had been developed, known as the level set methods [8].

The basic idea of level set methods is to implicitly represent the moving surface
C(t) by the zero level set of a higher dimensional hypersurfaceφ (the level set function),
i.e. the signed distance transformation of C(t) in R

d, such that C(t) = {x |φ(x, t) =
0 ∀x ∈ Rd}. The curve evolution is then driven by F in normal directions and we solve
for convergence of the dynamic equation by time-domain finite difference:
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k=20 , F =F1 k=20 , F =F2 k=12 , F =F2

Fig. 1. Brain segmentations using same set of sampling point cloud with different forces in Eqn.
(2) and samples per influence domain (k). The 1st figure was segmented without region-based
prior model while the 2nd and 3rd are significantly improved results by using both boundary
image information and regional priors. In the rightmost two figures, larger k makes the surface
smoother while smaller k reduces computation but is more noise sensitive.

φt+Δt = φt + ΔtF |∇φ| (2)

Construction of the Speed Term F : To achieve desirable segmentation results, task-
specific incorporation of image force and other knowledge for the speed term F plays
essential roles [7, 9]. One of the most popular F formulations states:

F1 = β g κ− (1− β) g v̂ · ∇φ|∇φ| (3)

where g = 1
1+|∇G∗I| is the image gradient force, κ is the contour curvature, v̂ is the

gradient vector flow (GVF), β ∈ [0, 1] is a weighting parameter, and G denotes the
gaussian smoothing kernel. This F form, however, may not produce appropriate seg-
mentation results. In Fig.1, the less detailed surface in the leftmost figure was segmented
using F1. An initial guess surface was first placed inside the brain structure and then ex-
panded outward driven. When the surface encountered sharp edges, the GVF force be-
came dominant and attracted that portions of surface towards their nearest sharp edges.
However, the image intensity gradient at certain areas of the brain image is too weak to
slow down the surface expansion. Further, GVF itself is a diffusion process such that
weak edges would be covered by the impact of nearby sharp edges. In the brain image,
the skull layer actually has sharper boundaries than the brain surface, and thus would
make the whole surface move outward beyond its proper location.

To address this problem, we further constrain the surface expansion by region-based
information so that the surface would expand only if it is likely to be inside our target.
The likelihood is defined by the similarity between local image intensities and a sta-
tistical mean intensity Im with variance σ2, constructed from prior knowledge of the
structure. With this additional information, we define our new speed term as:

F2 = α g κ− β g v̂ · ∇φ|∇φ| + γ(Fa − e−
1

n σ2
∑

|Ix−Im|) (4)

where α, β and γ are three weighting constants. We assume our C(t) surface evolves
outward. Fa is an additional natural expanding speed. To avoid excessive expansion,
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α and β should be smaller than the original weighings in F1. In the third term of F2,
we modify the natural speed by prior information: Im ∈ [0, 1] and σ2 ∈ R. Ix ∈
[0, 1] are image intensities around point x and n is the number of neighboring points.
Then,
∑
|Ix − Im|/n, the average inconsistence of local intensities will slow down the

surface C(t) motion. We would like to suggest Fa > 1 such that the whole third term
will be positive if x is inside the target and negative if outside. This would have similar
effect as the GVF force in the second term.

2.2 Numerical Implementation of Point-Based GDMs

Adaptive Domain Sampling with Data- and Prior-Driven Point Cloud: Rather than
using image grid or other mesh structures, we use a set of adaptively distributed points
xi ∈ Rd to dynamically sample the spatial domains for Eqn. (2) [5]. The position of
these sampling points can be flexible and adaptive, and we design to put more points
near areas of richer features (i.e. image gradient, geometrical characteristics of the
evolving contour, prior knowledge of boundary likelihood from experience or train-
ing images, etc.) in order to achieve higher precision for the φ function. On the other
hand, for relatively featureless or uninteresting areas such as the background or homo-
geneous region inside the object, we only need to maintain a minimal amount of points
to support proper φ evaluation for C(t) contour propagation.

Obtaining Derivatives of φ: While the unstructured sampling point cloud affords
greater adaptivity towards data and priors, the calculation of∇φ is no longer as straight-
forward as the conventional finite difference implementations because the relationship
between the sampling points are no longer directly defined.

Assuming that the φ function at any location x is a well-behaved polynomial sur-
face within a small area around x, we can use φ(xi) of the neighboring nodes xi in
that area to recover the coefficients of φ surface by performing the moving least square
(MLS) approximation [6]. Calling such local area the influence domain or support re-
gion of x, all nodes inside the influence domain will have certain amount of effects
on the recovered coefficients, weighted by their relative distance to x. In our particu-
lar implementation, we actually select the proper number of neighboring nodes k for

Rx

C(t) meshfree samplings x
around C(t)

construct φ(x) using
signed distance to

C(t)

search all x within an
influence domain sized

Rx

perform least square fit
to a polynomial surface

Fig. 2. From left to right: steps to construct |∇φ| on point cloud using moving least square fitting.
The fitting is done on the φ(x) values. Once the polynomial coefficients have been recovered, the
derivative of the fitted surface (∇φ) can also be calculated. Then the φ can be updated by Eqn.(2)
and C(t + Δt) is obtained by Eqn.(7). Finally, we substitute C(t) by C(t + Δt) and the process
can be repeated iteratively until C converges.
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x instead of determining the size of influence domain. Since the node distribution is
feature-driven, choosing a fixed number of nearest neighboring nodes for x effectively
imply a feature-adaptive determination of the influence domain size. Fig. 2 gives an
overview of the use of influence domain in the point-based GDM implementation.

Let φ̃ be the MLS-approximated φ with the form: φ̃(x) =
∑m

j pj(x)aj(x) ≡
pT (x)a(x), where p is the polynomial basis, m is the order of polynomial, and a is the
coefficient vector. To get φ̃(p) at arbitrary location x, we determine a through minimiz-
ing the weighted approximation error J of the φ(xi) values of the k-nearest neighboring
nodes xi, defined as the followings:

J =
k∑
i

W (
|x− xi|
Rx

)[pT (xi)a(x) − φ(xi)]2 (5)

W (d̄) =

⎧⎨⎩
2
3 − 4d̄2 + 4d̄3 for d̄ ≤ 1

2
4
3 − 4d̄+ 4d̄2 − 4

3 d̄
3 for 1

2 ≤ d̄ ≤ 1
0 for d̄ > 1

(6)

where W is a cubic spline decaying weight function, |x − xi| is the spatial distance
between x and xi, and T denotes vector transpose. The derivative ∇φ can then be
approximated by the derivative of the recovered polynomial φ̃.

Detecting Zero Crossings of φ: In any level set method, φ is only a medium for
evolving C(t) while the ultimate goal is to properly localize the C(t) surface as the
zero level set of φ. However, for the point-based GDMs, the detection of the zero level
set can no longer be performed using the widely used Marching Cubes algorithm that
requires a grid structure. Instead, we opt to detect the zero-crossings of evolved φ [8]:

zi = xi − φ(xi, t)
∇φ(xi, t)
|∇φ(xi, t)|

(7)

where zi is the nearest φ = 0 position from point xi. The equation assumes φ is a
signed distance function of C(t) and ∇φ denotes the normal direction towards nearest
C(t) position. The set of zi becomes the discrete representation of C(t).

3 Experiments

3.1 Grid- and Point-Based Implementations: Comparison on Synthetic Images

A synthetic image with known boundary (Fig.3) is used to evaluate the grid- and point-
based implementations. To make fairer comparison, for the point-based GDMs, we dis-
tribute sampling points according to the image gradient magnitude only, where the total
number of sampling points is roughly one quarter fewer than the grid-based case. In
the grid-based implementation, the Marching Cubes algorithm is used to detect the
zero-crossings of φ and the image grid is used as the sampling grid. For both imple-
mentations, F1 speed term is used, the image gradient |∇I| is computed using central
difference, and narrow band speedup is adopted [7].

Different levels of Gaussian noises are added to the phantom image, and the perfor-
mance of the two implementations are tabulated in Fig.4. For the mean squared errors
(MSE), the point-based GDMs are slightly better than the conventional finite difference
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Fig. 3. From left to right: synthetic 3D image, underlying ground truth object, and sampling point
cloud for experiments in Fig. 4

Synthetic image with noise
(3dB)

Segmented surface using
grid-based method

Segmented surface using
point-based method

SNR: 10dB 7dB 5dB 3dB
Time: 90sec 98sec 86sec 171sec

Grid-Based MSE: 0.1619 0.1867 0.2180 0.1970
Implementation Std Deviation: 0.2410 0.2623 0.3438 0.3222

Max Error: 1.3762 1.5169 1.7272 1.9957
Time: 100sec 84sec 102sec 100sec

Point-Based MSE: 0.1544 0.1892 0.2017 0.1951
Implementation Std Deviation: 0.1869 0.2185 0.2392 0.2625

Max Error: 1.2911 1.6274 1.4755 1.4260

Fig. 4. Error comparison between point-based and grid-based (finite difference) GDMs on seg-
mentation of 3D synthetic noisy images with known ground truth

GDMs. However, due to the smoothing effect of MLS, they are much more stable in
terms of the error standard deviations, especially when the noises are more significant.
We also want to point out that, while the MLS procedure is computationally expensive,
adaptive point sampling can efficiently limit the total amount of needed points and thus
the point-based GDMs are still computationally comparable to the grid-based GDMs
for practical usages, as indicating by the processing time.

3.2 Segmentation of Brain Structures

In Fig. 1, with uniformly distributed sampling points, we show the effect of the number
of points k per influence domain 1, or equivalently the sizes of the influence domain. In

1 k is lower bounded to ensure that the MLS system of equations is invertible.
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Fig. 5. Comparison between grid-based (left) and point-based (right) brain surface segmentation

general, larger k would produce smoother segmented surface (at higher computational
cost), desirable for larger structures and flatter regions. On the other hand, smaller k
efficiently yields rougher results, which is actually needed for geometrical details. Our
point-based GDMs, however, adopt feature-driven point distribution scheme and thus
automatically take care of the selection of k or influence domain size.

Comparison of the point- and grid-based implementations is made for brain surface
segmentation (Fig. 5), both using regional priors. We first obtain a coarse segmentation
using fewer sampling points which covers the whole image, and then distribute huge
amount of points around the coarse segmentation results, with even more points in high
image gradient areas. While the difference between the two results is not significant
at smooth regions, around extremely thin structures as we have explicitly pointed out,
sampling insufficiencies are uncovered by sharp changes of normal directions of the
triangles in the grid-based results, extracted by the Marching Cubes algorithm.

Suppose that we have some prior knowledge about the rough locations of certain
brain structures, we distribute sampling points around (inside and outside) those areas
with higher point density for high probability area. Example of point distribution is

Fig. 6. Left: A Brainweb image (http://www.bic.mni.mcgill.ca/brainweb), T1 weighted, 3% noise.
Middle: Sampling nodes are distributed according to prior shape information obtained from train-
ing images. These nodes are used to sample the level set function φ during surface evolution
(Fig.7). Right: Sampling points on one specific slice of the 3D image.



Point-Based Geometric Deformable Models for Medical Image Segmentation 285

Fig. 7. Top: Brain ventricle segmentation with prior-driven node distribution. Bottom: Segmented
brain ventricle surface using point-based GDM, and the intersections of surface with image slices.

shown in Fig. 6 for brain ventricle segmentation, and the point-based GDM evolution
process and segmentation results are shown in Fig. 7.
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Abstract. A new variational PDE based level set method for a simultaneous im-
age segmentation and non-rigid registration using prior shape and intensity infor-
mation is presented. The segmentation is obtained by finding a non-rigid registra-
tion to the prior shape. The non-rigid registration consists of both a global rigid
transformation and a local non-rigid deformation. In this model, a prior shape is
used as an initial contour which leads to decrease the numerical calculation time.
The model is tested against two chamber end systolic ultrasound images from
thirteen human patients. The experimental results provide preliminary evidence
of the effectiveness of the model in detecting the boundaries of the incompletely
resolved objects which were plagued by noise, dropout, and artifact.

1 Introduction

Segmentation and registration play an important role in image processing, image anal-
ysis, and computer vision. There have been several different approaches to solve image
segmentation and registration problems. In the past, solutions of these two problems
have been studied separately from each other.

Segmentation techniques have been developed to capture the object boundary by
several different approaches; edge-based methods mainly using active contour models,
region-based methods, or the combination of the two by using Geodesic Active Region
models. However, these methods may not be able to accommodate all types of imag-
ing difficulties. The prior shape and intensity information has been incorporated into
the geodesic active contour model [13, 12, 1, 4, 3, 2] to make the resulting segmenta-
tion more accurate. Recently, the prior shape and intensity information has been also
incorporated into deformable models [10, 9].

Image registration is the process of overlaying two or more images of the same
scene taken at different times, and/or by different sensors. Area based methods or fea-
ture based methods have been developed to match given images. For the details of the
image registration techniques, please refer to [29]. Several approaches have been also
made in establishing the application of mutual information for non-rigid registration
[7, 16, 14, 8, 24]. Instead of intensity information, a feature based model combines re-
gion matching and segmentation with free boundary conditions in [23], but the model
in [23] can be applied only in the single regions of interest.

However, segmentation or registration technique alone, dependence of segmenta-
tion on registration methods, or dependence of registration on segmentation methods
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do not solve the image segmentation and registration problems completely. A joint
segmentation and registration methods have been developed through active contours
[27, 1, 4, 2, 3, 26]. An explicit combination of registration with segmentation has been
developed in a variational framework through active contours [27]. The algorithms of
[27] was extended in [15] to joint segmentation and of an object in two images. The
morphing active contours algorithm is combined with the joint segmentation and regis-
tration with an application to CT scans for radiotherapy treatment planning [26].

In this paper, a new variational partial differential equation (PDE) based level set
method for a simultaneous image segmentation and registration is presented with an ap-
plication to two chamber human heart end systole ultra sound images. The purpose of
the model is to segment the endocardial borders of the given images. The segmentation
is obtained by finding a non-rigid registration to the prior shape. The model performs
a simultaneous segmentation and registration in a similar way from [27, 1, 3] through
active contours. But the model differs from [27, 1, 3] by using a shape prior as an initial
contour. Since the shape prior is used as an initial contour, the level set form of the
model is fixed which does not require the re-initialization process during the numerical
calculation. The model in this paper is similar to [12, 3, 2] by utilizing both prior shape
and prior intensity information to get better segmentation, but the segmentation in this
model is obtained by finding the non-rigid deformation to the prior shape. This paper
follows the idea from [22, 21, 25, 10, 9] for matching nonequivalent shapes by the com-
bination of a global rigid transformation and a local non-rigid deformation. However,
the model differs from [22, 21] by having an intensity matching term in the energy func-
tion which provides the difference of the intensity variation across the prior shape and
the shape of interest. Minimizing the difference of the gradients of the intensity between
smoothed prior image and the smoothed given image is more accurate than minimizing
the gradient term in the given image, due to the loss of the information of the gradient
near the edge of the desired object. This paper is organized as follows: In section 2,
the model is proposed for a simultaneous segmentation and non-rigid registration and
the level set form of the proposed model is described. In section 3, numerical methods
pertaining to the model are explained. Experimental results of the model which were
applied to human heart two chamber end systole ultrasound images are also showed in
this section. In section 4, the conclusion follows and future work is stated.

2 Description of the Proposed Model

2.1 A Simultaneous Segmentation and Non-rigid Registration

A new variational PDE based level set method for a simultaneous image segmentation
and non-rigid registration is presented in this section. The purpose of the model is to
segment endocardial borders of the given image using a prior shape and intensity in-
formation. The segmentation is obtained by finding a non-rigid registration to the prior
shape. Only small non-rigid deformation is considered in the registration. The notion of
shape is independent of scaling, rotation, and translation in the model.

LetC∗(p) = (x(p), y(p))(p ∈ [0, 1]) be a differentiable parameterized curve, called
shape prior, in an associated prior image I∗. The domain N(C∗) is the neighborhood
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of the prior shape. Let Gσ(x) = 1
σ ∗ e−

|x|2
4σ and g(|∇I|) can be chosen as g(|∇I|) =

1
1+β∗|∇(Gσ∗I)|2 , where β > 0 is a parameter. The model is aimed to find u, v, a, μ, R, T
by minimizing the energy functional:

E(u, v, a, μ,R, T ) = λ1
∫

N(C∗) |∇(Gσ ∗ I∗)(x, y) − a∇(Gσ ∗ I)(ũ, ṽ)|2dx̄
+λ2
∫

N(C∗)(|u|
2 + |v|2)dx̄ + λ3

∫
N(C∗)(|∇u|

2 + |∇v|2)dx̄
+λ4
∫ 1
0 g(|∇I|)(ũ, ṽ)(C∗(p))|(C∗)′(p)|dp,

(1)

and the vector

[
ũ(x, y)
ṽ(x, y)

]
= μ ∗ R ∗

[
x
y

]
+ T +

[
u(x, y)
v(x, y)

]
, where μ is a scaling, R

is a rotation matrix with respect to an angle θ, and T is a translation. A prior image I∗,
a novel image I , the prior shape C∗, and the neighborhood N(C∗) of C∗ as a domain
are given and λi > 0(i = 1, 2, 3, 4) are parameters balancing the influences from four
terms in the model.

The first term minimizes the difference of the intensity variation across the prior
shape and the shape of interest. Minimizing the difference of gradients of the intensity
between smoothed prior image and the smoothed given image is more accurate than
minimizing the gradient term in the given image, due to the loss of the information of
the gradient near the edge of the desired object. Since images may have different levels
of intensity, the model is also minimized over the scale factor variable a. The second

term is minimizing the magnitude of the non-rigid deformation term

[
u
v

]
. Smoothing

the non-rigid term

[
u
v

]
is in the third term. Final term is the energy functional of ac-

tive contours [5] and [11], that measures the amount of high gradient under the trace of
the curve and increases the attraction of the evolving curve toward the boundary of the
object. Since the prior shape C∗ is used as an initial contour and the domain is taken as
the neighborhood of the prior shape, it helps the numerical solutions converge faster. In
addition, when the model is formulated into the level set form in Equation (2), the level
set form of the active contour in this model is fixed. Therefore, re-initializing process
in the calculation is not needed which decreases the numerical calculation time. In the
model, a simultaneous segmentation and non-rigid registration performs. The segmen-
tation is obtained by finding a non-rigid registration to the prior shape. A registration
consists of global rigid transformation and local non-rigid deformation.

2.2 Level Set Formulation of the Proposed Model

Level set methods of [17] are extensively used in the problems of curve evolution in-
cluding snakes and active contours, since they allow the curve to develop cusps, cor-
ners, and topological changes. Now, a variational level set approach is given from
[28] and [6]. Let the contour C∗ be the zero level set of a Lipschitz function w such
that {z|w(z) > 0} is the set inside C∗. Let H(z) be the Heaviside function, that is
H(z) = 1 if z ≥ 0, and H(z) = 0 if z < 0, and δ = H ′(z)(in the sense of distribu-
tion) be the Dirac measure. Then, the length of the zero level set of w in the conformal
metric ds = g(|∇I|)|(C∗)′(p)|dp can be measured by

∫
N(C∗) g(|∇I|)|∇H(w)| =
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N(C∗) δ(w)g(|∇I|)|Dw|, where N(C∗) is the given image domain. Therefore, the

level set formulation of the model is to find u, v, a, μ, R, T by minimizing the energy
functional:

E(u, v, a, μ,R, T ) = λ1
∫

N(C∗) |∇(Gσ ∗ I∗)(x, y) − a∇(Gσ ∗ I)(ũ, ṽ)|2dx̄
+λ2
∫

N(C∗)(|u|
2 + |v|2)dx̄ + λ3

∫
N(C∗)(|∇u|

2 + |∇v|2)dx̄
+λ4
∫

N(C∗) δ(dC∗)g(|∇I|)(ũ, ṽ)|∇dC∗ |dx̄,
(2)

where dC∗ is the distance function from the prior shape C∗, g(|∇I|) can be chosen

as g(|∇I|) = 1
1+β∗|∇(Gσ∗I)|2 , β > 0 is a parameter, Gσ(x) = 1

σ ∗ e− |x|2
4σ , and in a

similar way, the vector

[
ũ(x, y)
ṽ(x, y)

]
= μR

[
x
y

]
+ T +

[
u(x, y)
v(x, y)

]
. A prior image I∗,

a novel image I , and the prior shape C∗ are given and λ1,λ2, λ3, and λ4 are positive
parameters.

3 Numerical Methods and Experimental Results

In this section, numerical methods to solve the Equation (2) are explained and the re-
sults of applications to the thirteen human heart two chamber end systole ultrasound
images are showed. The Equation (2) was solved by finding a steady state solution of
the evolution equations. The evolution equations are associated with the Euler-Lagrange
equations of the Equation (2). Following the approach from [17], H and δ are replaced
by the regularized versions of them during the numerical calculation. A finite difference
scheme and the gradient descent method is applied to discretize the evolving equations.

Prior shape C∗ and prior intensity I∗ of 13 Human heart two chamber end systole
ultra sound images which have 0.62mm resolution in each pixel were generated by the
method from [2]. The prior intensity information and a prior shape are in Figure 1 (a)
and (b). The Figure 1 (a) represents the average image as prior intensity information.
The solid red line in Figure 1 (b) is the average curve as a prior shape.

To show the effectiveness of the local non-rigid deformation term in the model, a

global rigid transformation model is created without non-rigid deformation term

[
u
v

]
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Fig. 1. (a). An average image as a prior intensity information. (b). An average curve with a solid
line as a prior shape.
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in Equation (2). Numerical calculation is done without non-rigid term. To validate ex-
perimental results of the model, distance measurements to the results of the model from
expert’s borders from Figure 2 to Figure 4 are followed in the Table 1. Table 1 provides
the effectiveness of the suggested model which is better than the global rigid transfor-
mation model.

From Figure 2 to Figure 4, A solid red line in (a) is the initial contour in a novel im-
age. A prior shape is used as an initial contour. The solid red line in (b) is the model’s
result with the local non-rigid deformation term. The expert endocardium border is
compared as a dotted white line. The solid red line in (c) is the result of the model
without a local non-rigid deformation term in the Equation (2). In a similar way, the
expert endocardium border is compared as a dotted white line. From the Figures and
the distance measurement results from the expert’ border in Table 1, it is easily seen
that the performance of the suggested model is better than the model without a local
non-rigid deformation in the Equation (2). In Figure 2, the distance result from the
model with non-rigid term is 1.8442(1.1434mm) which is better than the distance
result 2.2160(1.3739mm) from the global rigid transformation model. In Figure 3,
the distance result from the model with non-rigid term is 2.2301(1.3826mm) which
is better than the distance result 2.8891(1.7912mm) from the global rigid transfor-
mation model. In Figure 4, the distance result from the model with non-rigid term is
2.0686(1.2825mm) which is better than the distance result 3.0470(1.8891mm) from
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Fig. 2. (a). Solid line is an initial contour in the novel image. (b). The results from the model with
non-rigid term (solid) and expert’s border (dotted) in an image. (c). The results from the model
without non-rigid term (solid) and expert’s border (dotted) in an image.
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Fig. 3. (a). Solid line is an initial contour in the novel image. (b). The results from the model with
non-rigid term (solid) and expert’s border (dotted) in an image. (c). The results from the model
without non-rigid term (solid) and expert’s border (dotted) in an image.
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Fig. 4. (a). Solid line is an initial contour in the novel image. (b). The results from the model with
non-rigid term (solid) and expert’s border (dotted) in an image. (c). The results from the model
without non-rigid term (solid) and expert’s border (dotted) in an image.

Table 1. Distance measurements of the result of the model from expert’s border from Figure 2 to
Figure 4

Figures (a)Initial (b)Result with non-rigid term (c)Result with rigid term only

Figure 2 25.1354 (15.5839mm) 1.8442(1.1434mm) 2.2160 (1.3739mm)
Figure 3 107.2969 (66.5240mm) 2.2301 (1.3826mm) 2.8891 (1.7912mm)
Figure 4 4.4458 (2.7563mm) 2.0686 (1.2825mm) 3.0470 (1.8891mm)

the global rigid transformation model. Since the local deformation is assumed small in
the model, the distance difference between the model with non-rigid term and the global
rigid transformation only model is not big. However, the Table 1 shows the effectiveness
of the suggested model.

4 Conclusions and Future Work

A new variational method for a simultaneous segmentation and non-rigid registration
that incorporates the shape and intensity priors is proposed. Numerical results showed
the effectiveness of the model to capture the boundary of the given images in detail.

From Figure 2 to Figure 4, the model performance to the given images which is
compared to expert borders is showed. The global rigid transformation model was cal-

culated in the Equation (2) without

[
u
v

]
term. The distance measurements to the results

of the model from the expert’s borders by using the distance function are followed in
the Table 1. The results show the effectiveness of the model to capture the boundary of
the given image, which is better than the model with global rigid transformation term
only. These results were obtained through Matlab and the computational time in each
iteration was about 1 second utilizing a Pentium 4 CPU running at 2.4 GHZ with 512
MB of RAM. Windows XP Home Edition was used as the operating system.

Due to the inhomogeneity, dropout, and loss of some information near the edges in
heart images, parameters are adjusted in each image to get desired results. Some of the
images with a diminishing problem which depends on the parameters are observed in
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the experiments. Since the shape prior is used as an initial contour, the level set form
of the model is fixed which does not require the re-initialization process during the nu-
merical calculation. The intensity matching term in the energy function of the model
provides the difference of the intensity variation across the prior shape and the shape of
interest. Minimizing the difference of the gradients of the intensity between smoothed
prior image and the smoothed given image is more accurate than minimizing the gradi-
ent term in the given image, due to the loss of the information of the gradient near the
edge of the desired object. Moreover, this model can be extended to 3-d cases and any
other types of images. Generalization of the model to global non-rigid deformation is
needed in the future work.
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Abstract. The cerebral cortex is composed of regions with distinct lami-
nar structure. Functional neuroimaging results are often reported with re-
spect to these regions, usually by means of a brain “atlas”. Motivated by
the need for more precise atlases, and the lack of model-based approaches
in prior work in the field, this paper introduces a novel approach to par-
cellating the cortex into regions of distinct laminar structure, based on
the theory of target tracking. The cortical layers are modelled by hidden
Markov models and are tracked to determine the Bayesian evidence of
layer hypotheses. This model-based parcellation method, evaluated here
on a set of histological images of the cortex, is extensible to 3-D images.

1 Introduction

The cerebral cortex is divided into specialised regions that are likely to be char-
acterised by their laminar structure [see Figure 1(i)]. Many brain functions are
localised to individual regions, and a major challenge of functional neuroimag-
ing research involves the correlation of these regions to specific brain functions.
Functional neuroimaging studies typically report results with respect to a struc-
tural atlas, the most popular in current studies being that of Brodmann [1] [see
Figure 1(ii)]. However, the embryonic and post-natal formation of these regions
is influenced by a combination of personal experience (environmental) and ge-
netic influences, leading to unknown degrees of inter-subject variability in the
overall cortical structure. Thus, individualised structural maps have applications
in understanding normal human brain function as well as in the diagnosis and
treatment of neurological and psychiatric diseases.

Inconsistencies arose in early postmortem atlases due to differences in exper-
imental conditions and subjective layering schemes [2]. More recently, analytical
techniques [2–4] have focused on automatic, objective identification of homoge-
neous regions of cortical structure in digitised images of postmortem brain sec-
tions. However, these classification methods all use inferential statistics without
directly modelling the layering structure. Therefore, these schemes are sensitive
to relative layer depth changes, which occur due to factors such as curvature of the
cortex and the obliqueness of histological slice cuts, and are difficult to account for.
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(i) (ii)

Fig. 1. (i) High-magnification image of haematoxylin and eosin (H & E) stained his-
tological section of primary visual cortex from a baboon brain, with Roman numerals
denoting the layering structure. (ii) Brodmann’s cytoarchitectonic atlas for the human
cortex, lateral view, from [1].

The limited number of parcellation schemes that directly model the laminar
structure and are extensible to a 3D setting motivate this paper [5]. We propose
a novel target tracking-based method that models the cortical layers using hid-
den Markov models and computes Bayesian evidence of layering to determine
parcellation. Our method is grounded in the work of Xie and Evans [6], who
track dominant frequencies in noisy time-varying signals using hidden Markov
models. We present this paper as work that forms the basis for a method that
is able to parcellate the cortex in a 3D Magnetic Resonance Image (MRI) of a
living subject, as visualised in a number of recent experimental papers [7–9].

2 Method

2.1 Image Acquisition and Sampling

Coronal sections of a baboon cortex were stained with haematoxylin and eosin
(H&E) and the histological images, of resolution 14μm x 14μm, were captured
using a Nikon LS-2000 slide scanner [see Figure 2(i)].

We sample the cortex using a procedure that is directly extensible to 3-D,
based on the method of Jones et al. [10], which solves Laplace’s equation (∇2Ψ =
0). Here Ψ is a potential function defined subject to the Dirichlet boundary condi-
tions on the White Matter/Grey Matter (WM/GM)boundary (Ψ(WM/GM) = 0)
and the Grey Matter/Cerebral Spinal Fluid (pial) boundary (Ψ(pial) = 1). Finite
differences are used to determine a solution to Laplace’s equation. The tangent
field to this solution can be traced to define lines that span the cortex.

The raw intensity profiles resulting from this method are extremely noisy due
to the high degree of texture variation in the images caused by the histological
staining processes. For this reason the data is mean filtered prior to parcellation,
thus smoothing the local image intensity variations. Choice of the optimal filter
size is discussed in Section 3.

The inherent ordering in the set of sampled profiles implies a sequence
of vectors, equivalently a matrix. When visualised as a 2D image, this ap-
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Fig. 2. (i) Histological slice of baboon cortex, with a section of the WM/GM and pial
boundary contours and a sub-sample of the lines overlaid. (ii) Intensity profile 100
(dashed line = original, solid line = mean-filtered), arrows indicate centres of troughs.
(iii) “Straightened” representation of section in Fig.(i).

pears to be a “straightened” representation of the sampled section of the cor-
tex [see Figure 2(iii)]. We denote by YT

1 = [y1, . . . ,yT ] the sequence of T fil-
tered line profiles, where each profile is a K-vector of image intensity values,
yt = [y1,t, . . . , yK,t]′, yk,t ∈ R.

2.2 Tracking-Based Parcellation of the Cortex

The strongest visual cue to the identification of laminar structure in the cortex is
the presence of dark bands [see Figure 2(iii)]. Each distinct region in the cortex
as observed in a typical histology image [see Figure 2(i)] occupies an extensive
area. Thus, the dark bands that constitute these regions extend across hundreds
of sampled profiles. However, the boundaries between bands in individual profiles
are not always sharp and in some cases small, transient bands exist. Therefore,
while a visual parcellation of the images is possible, constructing an algorithm that
is able to mimic this level of non-local information processing is a difficult task.

After appropriate filtering, the dark bands manifest as troughs in the inten-
sity profiles [see Figure 2(ii)]. The bottom of the troughs in a profile are the
estimated centres of the dark bands that exist in that profile.
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We have used a target tracking paradigm, since that cortical layers have
predictable local dynamics well-suited to Markov modelling [11]. That is, by
considering the profile index to be a temporal variable, the probabilistic centroid
of a dark band is a “target” that we wish to track, taking into account its
“movement” up and down through “time”.

The Markov chain state is used to denote the position of a track in the image,
with the movement up and down of the bands captured by suitable choice of the
transition probability matrix. The profiles are the noisy observations of these
underlying states (band positions).

Introducing notation for these concepts, we define a track to be a sequence
of pixel indices delineating the probabilistic centre of a dark band in the image
that starts at position, (k0, t0), and exists for a length of n pixels:

d(k0,t0,n) =
[
d
(k0,t0,n)
t0 = k0, d

(k0,t0,n)
t0+1 , . . . , d

(k0,t0,n)
t0+n−1

]
(1)

where d(k0,t0,n)
t ∈ {1, . . . ,K}, ∀ t = t0 + 1, . . . , t0 + n− 1. Let Ω = {(k0, t0, n)}

denote the set of all track parameter 3-tuples.
We assume first-order Markov dynamics for the tracks, whereby the position

of the track in profile t depends only on the position of the track in profile t− 1.
Thus we define a transition probability matrix, A, with elements,

a(j, k) = p
(
d
(k0,t0,n)
t = k

∣∣∣d(k0,t0,n)
t−1 = j

)
(2)

The transition matrix A is constructed to be diagonally dominant, reflecting
the biological constraint that limited local “movement” is more probable than
drastic “movement.”

The likelihood of a profile given a track state is constructed by assuming
firstly only local dependence of the data, within a window size m,

p
(
yt

∣∣∣ d(k0,t0,n)
t = k

)
= p
(
[yk−m,t, . . . , yk,t, . . . , yk+m,t]

∣∣∣ d(k0,t0,n)
t = k

)
(3)

and secondly, that a quadratic fitted to the data [yk−m,t, . . . , yk,t, . . . , yk+m,t]
will have it’s turning point, (k̂, t̂), close to pixel (k, t) if this pixel is at the centre
of a trough, and further away when the pixel is not at the centre of a trough.
We therefore construct the likelihood function as

p
(
y
∣∣∣ d(k0,t0,n)

t = k
)

= p
(
ρ||(k, t)− (k̂, t̂)||

∣∣∣ d(k0,t0,n)
t = k

)
(4)

ρ||(k, t)− (k̂, t̂)|| ∼ N(0, 1) (5)

where ρ ∈ R scales distance measure to make unit variance applicable.
Having thus formulated the hidden Markov model of the tracks, we describe

the algorithm for parcellation based on this model. We calculate the evidence for
the hypothesis, Hk,t, that a pixel (k, t) is situated at the probabilistic centre of a
dark band. Evidence is measured by the posterior probability of the hypothesis
given the data:

p(Hk,t |YT
1 ), ∀k = 1, . . . ,K, t = 1, . . . , T (6)
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A pixel is situated at the probabilistic centre of a dark band if and only if a
track, as defined in (1), passes through that point. That is, that there exists some
(k0, t0, n) for which d(k0,t0,n)

t = k. Therefore by the law of total probability, (6) can
be expressed in terms of a sum of posterior probabilities over all possible tracks:

p(Hk,t |YT
1 ) =

∑
{k0,t0,n}∈Ω

p(d(k0,t0,n)
t = k |YT

1 ), ∀k = 1, . . . ,K, t = 1, . . . , T (7)

The posterior probability of pixel (k, t) belonging to track d(k0,t0,n) is rewrit-
ten using Bayes’ rule as

p(d(k0,t0,n)
t = k|YT

1 ) =
p(YT

1 |d
(k0,t0,n)
t = k)p(d(k0,t0,n)

t = k)
p(YT

1 )
(8)

The prior in (8) is considered to contain a local and a global term:

p(d(k0,t0,n)
t = k) = ploc(d

(k0,t0,n)
t = k) pglob(d

(k0,t0,n)
t = k)

The local prior is the first-order Markov assumption discussed above. The global
prior is a weighting term on the length of the track, such that longer tracks are
more probable than shorter ones. This local/global factorisation of the prior term
is used as a tool in image processing methods that attempt to capture both short
and long range properties of an object of interest [12].

We make a conditional independence assumption on the image data; profiles
that are not between t0 and (t0 + n − 1) are independent of the track state
d
(k0,t0,n)
t . Let Yt0+n−1

t0 be the sequence of profiles between t0 and t0 + n − 1.
Then, by cancelling independent data in numerator and denominator, and by
reverse application of Bayes’ rule, (8) becomes

p(d(k0,t0,n)
t = k|Yt0+n−1

t0 ) ∝ ploc(d
(k0,t0,n)
t = k|Yt0+n−1

t0 ) pglob(d
(k0,t0,n)
t = k)

Here, ploc(d
(k0,t0,n)
t = k|Yt0+n−1

t0 ) is a state occupancy probability, computed by
the polynomial-time hidden Markov model (HMM) smoother, commonly known
as the forward-backward algorithm [11]. The HMM smoother computes the state
occupancy probability via

ploc(d
(k0,t0,n)
t = k|Yt0+n−1

t0 ) = αt(k)βt(k) /
( K∑

k=1

αt(k)βt(k)
)

(9)

where αt(k) and βt(k) are determined in forward and backward sweeps through
the data respectively (see [11] for details).

The initial condition that the track starts in pixel (k0, t0) is reflected by the
initialisation of the forward variable:

αt0(k) =
{

1, k = k0
0, otherwise (10)

The backward variable is initialised to reflect that the track can end in any state:

βt0+n−1(k) = 1, ∀k = 1, . . . ,K (11)
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The computational requirement in running an HMM smoother for all possible
track parameters, (k0, t0, n), to calculate the posterior probability of the evidence
(7) at each pixel is prohibitive. Instead, we limit the size of the parameter space,
Ω, by considering only a set of points that are highly likely to be the start of
tracks, as measured by a large change in likelihood between two horizontally-
neighbouring pixels.

Having computed the posterior probability (7) for all pixels in the image, we
sweep the image left-to-right and classify regions according to the appearance
and disappearance of tracks.

3 Results

The results of applying the proposed method to three example histological im-
ages acquired as described in Section 2 are shown in Figures 3. The size of the
mean filter was chosen to be 10 × 100 pixels, optimising the trade-off between

(i)
1

100

200

S
am

pl
e 

In
de

x 1

100

200

Profile Index

1 874 1749

(ii)
1

100

200

S
am

pl
e 

In
de

x 1

100

200

Profile Index

1 1338 2676

(iii)
1

100

200

S
am

pl
e 

In
de

x 1

100

200

Profile Index

1 1903 3807

Fig. 3. (i)–(iii) Three histological sections of baboon cortex from different parts of a
single brain. In each, Top: “straightened” representation of profiles, Middle: posterior
probability map, dark indicates higher probability, Bottom: parcellation of line pro-
files; note that there is no correspondence between regions with the same colour in
different figures.
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unwanted image blur and noise texture smoothing. The likelihood normalising
factor was set to ρ = 200, while the global prior was chosen to be a N(T, 500)
distribution, where T is the width of the image, and σ2 = 500 was chosen to ap-
propriately weight a range of longer tracks, i.e. those tracks more likely to within
a dark band. The tuning parameters, ρ and σ2, while somewhat arbitrary, are
analogous to tuning parameters in target tracking schemes which are in general
also arbitrarily chosen.

As is evidenced in Figure 3, the parcellation into regions of distinct laminar
structure has been accomplished by the proposed method. The small transition
region (grey region between black and white) in Figure 3(ii) is caused by the
extension of the bottom dark band past the termination of the topmost dark
band. The transition region in Figure 3(iii) is caused by an erroneous weak trough
attaching to a stronger dark trough. We are currently investigating likelihood
models that suppress weak troughs more effectively.

4 Conclusions

The probabilistic, model-based method proposed in this paper improves on previ-
ous parcellation schemes, both in it’s applicability to 3D data, and it’s modelling
of the layer structure known to be present in the data. In this latter regard, our
algorithm makes use of the prior information known about the data, i.e. direct
identification of the biological structure underlying the problem, and is therefore
more robust and generalisable than methods based solely on inferential statisti-
cal measures. We have demonstrated that our method produces a parcellation
that contains contiguous regions that correspond to discernible regions of homo-
geneous laminar structure.

The target tracking paradigm we employ models the probabilistic centres of
the dark bands in the cortex by hidden Markov models and tracks their position
through the data. A notion of causality is imposed on the data by considering the
horizontal axis to be a temporal variable, which is possible due to the sequential
organisation of the profiles.

Parcellation in 3D is considerably more difficult, namely that the 1D linear
profile arrangement is replaced by a 2D graphical organisation. This 2D arrange-
ment has no notion of causality, which is exploited in a target tracking paradigm.
However, certain fundamental aspects of the algorithm, such as robustness to
band depth changes and image artifacts will form the basis of a 3D parcellation
algorithm, which is the focus of current work.
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Abstract. The Large Scale Digital Cell Analysis System (LSDCAS) de-
veloped at the University of Iowa provides capabilities for extended-time
live cell image acquisition. This paper presents a new approach to quan-
titative analysis of live cell image data. By using time as an extra dimen-
sion, level set methods are employed to determine cell trajectories from
2D + time data sets. When identifying the cell trajectories, cell cluster
separation and mitotic cell detection steps are performed. Each of the
trajectories corresponds to the motion pattern of an individual cell in the
data set. At each time frame, number of cells, cell locations, cell borders,
cell areas, and cell states are determined and recorded. The proposed
method can help solving cell analysis problems of general importance
including cell pedigree analysis and cell tracking. The developed method
was tested on cancer cell image sequences and its performance compared
with manually-defined ground truth. The similarity Kappa Index is 0.84
for segmentation area and the signed border positioning segmentation
error is 1.6 ± 2.1 μm.

1 Introduction

1.1 Living Cells

Study of living cells including cell death, cell motility, measurement of intracel-
lular pro-oxidant species, and the determination of phenotypic changes observed
using adenovirus-mediated gene expression systems and many other aspects will
help to diagnose and assess the natural course of many diseases.

The need for investigation of cell behavior and movement led to the develop-
ment of automated systems designed to quantify the reaction of cells in different
environments. An automated system, the Large Scale Digital Cell Analysis Sys-
tem (LSDCAS) was designed to analyze large numbers of cells under a variety of
experimental conditions in the Real-Time Cell Analysis Laboratory, Department
of Biomedical Engineering, University of Iowa, in the previous years. The LSD-
CAS is capable of monitoring thousands of microscope fields over time intervals
of up to one month. LSDCAS was originally designed to study stress-induced
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mitotic catastrophe [1]. Current efforts concentrate on providing imaging and
data modeling/visualization technologies that will be useful in many areas of
biological research.

1.2 Previous Work and Associated Problems

Corresponding to changing properties of a variety of cells, many distinctive meth-
ods have been proposed and employed in the analysis of cellular structure.

A part of the methods which have been widely used in cellular imaging seg-
mentation and tracking are model-free approaches, such as thresholding [2], me-
dian filtering [3], watershed segmentation [4], and others. However, these ap-
proaches provide no or only poor descriptions of the cellular shape. Even worse,
they frequently do not produce closed-object contours and require extensive
post-processing steps [5]. These approaches often fail to correctly track multiple
cells in sequences exhibiting cell-cell contacts [6].

Model-based techniques, such as active contours [7], are also frequently used.
These active contours may be parametric format, geometric, or may use region
based models. The methods produce closed and smooth object boundaries, and
may provide a first guess through the interactive initialization step. They al-
low keeping track of object identity in an obvious manner through automatic
initialization based on the segmentation of the previous image[8, 5]. With the
introduction of the Level Set Methods [9], a powerful mathematical tool to solve
the problem of cusps, corners, and automatic topological changes, the active
contour methods became well suited to cell image analysis.

It is not sufficient to rely on pure image information for cell analysis. Pattern
recognition based segmentation method of cell nuclei in tissue section analysis
was utilized in [10]. Neural network [11] and genetic algorithms [12] were applied
to cell image analysis. The pattern recognition techniques helped achieve cell
analysis objectives in specific cases. However, defining and computing the rules
as well as performing the training steps is difficult.

Little effort was devoted to quantitative living tumor cell analysis largely
due to its complicated nature: cell shape variability; contact between cells; weak
cell boundaries, etc. Many existing methods are only effective in low-density
situations and temporal context is frequently not considered.

2 Methods

2.1 Cell Trajectories Extraction

To identify trajectories of moving cells, time is taken as an extra dimension
and the level set method-based geometric active contour is directly applied onto
a 2D+time image sequence. For each frame, image boundary is taken as the
initial location of the moving front. Using the Fast Marching method, the front
is moved inward through the gradient defined on the cost image until it stops at
the location close to the cell or cell cluster boundary. Next, Narrow Band Level
Set method is applied to achieve a more accurate segmentation.
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(a) (b)

Fig. 1. Trajectory model.(a) The cell trajectory model in 2D + time space, each disk
represents a cell or cell compound at a single time and the model is showing a normal
cell division. (b) A cell trajectory, with 2 cells in the field, the total number of frames
being 300, the time span between frames was 5 minutes and the total time span was
1500 minutes.

The cell trajectory model behind this method is shown in Fig. 1. An example
of the real cell trajectory segmented from the LSDCAS data set is also shown.

In this step, the multi-channel cost image is used for level set segmentation,
which is f(intensity)+ g(localvariance), a combination of the different kinds of
information from the original image. f() is the function of the image intensity
and g() is the function of the local variance.

A special-designed edge enhancement step is included to prevent the moving
front evolving into the internal portion of the cells which have weak boundary
areas. Let θ(x, y) : R2 → R and the arc be defined as: dθ = ∂θ

∂xdx+ ∂θ
∂ydy. Based

on Riemannian geometry standard notation, we have:

λ± =
sxx + syy ±

√
(sxx − syy)2 + 4sxy

2
(1)

where second order derivative sxx = ( ∂θ
∂x ).( ∂θ

∂x), syy = ( ∂θ
∂y ).( ∂θ

∂y ), sxy = syx =
( ∂θ

∂x ).( ∂θ
∂y ). These derivatives are approximated using forward difference method

and in 0 - 1 scale. In the image, the maximal and minimal changes at a specific
location are provided by the eigenvalues λ±. In our approach, we define the
driving force for the moving front as F = e−ρ∗(λ+−λ−).

2.2 Mitosis Detection

In the life cycle of living cells, mitosis (cell division) may provide extra in-
formation. Mitosis typically involves a series of steps consisting of prophase,
metaphase, anaphase, and telophase, and results in the formation of two new
nuclei each having the same number of chromosomes as the parent nucleus. Mi-
totic cells tend to be circular and have a larger percentage of bright pixels than
non-mitotic cells. Once mitosis is detected, the change of the number of the cells
in current field is observed. In a long temporal sequence, the frames between
mitotic states have the same number of cells (not considering cells moving in or
out of the current field of view).

The mitosis detection is done according to the following procedure:

1. Apply an optimal threshold method [13] to remove the effect from non-
mitotic cells in the cell compound identified in the cell trajectory and to get
the Region of Interest (ROI) for the mitotic candidates.
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(a) (b) (c) (d) (e) (f)

Fig. 2. Mitosis detection. (a) The original image at frame 12. (b) The profile of the cell
trajectory at frame 12. (c) After threshold and movement under curvature via level set
methods at frame 12, the ROI properties are P = 144, A = 1540, AI = 237, C = 0.933.
(d) The original image at frame 13. (e) The profile of the cell trajectory at frame 13.
(f) After threshold and curvature-based smoothing via level set methods at frame 13,
the ROI properties are P = 176, A = 2072, AI = 236, C = 0.841. (P and A in pixels).

2. Apply Level Set Methods based on moving under curvature [9] to smooth
the ROI boundary.

3. Compute ROI properties: area, perimeter, circularity, etc.
4. In adjacent frames t and t+1, only the ROI whose area A increases, perime-

ter P increases, circularity C decreases, and average intensity AI remains
unchanged are considered a mitosis.

The mitosis detection uses a classifier trained on an independent training set.
An example of the mitosis detection procedure is shown in Fig. 2.

2.3 Cell Separation and Segmentation

The next step is extraction of the cell trajectory between the already identified mi-
totic frames. If there is nomitosis detected fromthe trajectory, thewhole trajectory
has a fixed number of cells (possibly more than 1 if cell compounds are present).
Backwardand forward adjacent frame separation and segmentation are attempted
for the trajectories which have cell compounds exhibiting cell-cell contact.

A special data structure is utilized which helps to generate an effective descrip-
tion of the trajectory. Importantly, it sets up a connection graph through the tra-
jectory. Each node stores the information for the individual region corresponding
to each time frame. The information includes: area, perimeter, average intensity,
father identifier (the connected individual region in the previous frame), father
label, son number (the connected individual region at next frame), son label.

We applied marker-based watershed method for the cell separation. The wa-
tershed method is implemented via rain falling simulation [14]. The separation is
directional because, in addition to the number of cells, the separating cell border in
adjacent frame helps to segment and separate the cell cluster in the current frame.

For a non-mitosis example, in Fig. 3 (a) and (b), which are the connection
graph and the separation result, node 13 is the first cluster to be separated using
nodes 8 and 9 as the reference markers. The processing direction at node 13 is
forward. Node 53 will be the second to be separated using nodes 57 and 58 as a
reference and the processing direction here is backward. Basically, the separation
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(a) (b) (c) (d)

Fig. 3. Cell connection graph and cell segmentation/separation. (a) No mitosis de-
tected. The arrow in the graph is representing the time change and links the connected
node at the adjacent frame. The gray circles are the very first clusters to be separated,
where cell contact happens. (b) The cell separation corresponding to (a). The first
image is corresponding to frame at the first gray circle 13. The second image is for
the frame at gray circle 53. The third image is for the frame at gray circle 65. The
fourth image is for the frame at gray circle 145.(c) With mitosis detected. The gray
diamond in this graph represent the labeled mitotic cell. The merging in this graph
with gray circle is due to the cell contact and the cell trajectory generated by the level
set methods was not able to separate them. (d) The cell separation corresponding to
(c). The first image is for the frame at gray diamond 5, which is a mitotic cell. The
second image is for the frame just after mitosis detected, at circle 6. The third image
is for the frame at gray circle 23. The fourth image is for the frame at gray circle 26.

strategy is from known to unknown, from large number of cells or cell clusters
per frame to a smaller number.

Similarly for a mitosis example, in Fig. 3 (c) and (d) in which a mitotic cell
is detected at node 5, the whole trajectory is divided into 2 parts. The first part
starts at node 1 (not shown in the image) and ends at node 5. The second part
of the trajectory starts at node 6. For each new trajectory, the same method was
applied as was used for the trajectory where there was no mitosis detected.

3 Experimental Methods

Image Data

The performance of our cell sequence analysis was tested in field images acquired
using the LSDCAS. All the cells were U87-MG cells.
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Validation

The manually identified independent standard was defined using a user-friendly
border tracing program. Automated segmentation was obtained for all the cells in
each of the data sets. The independent standard was used to determine the signed
(bias) and unsigned mean border positioning errors as well as the maximum
border positioning errors.

Positioning error: For each pixel along the automatically-identified (AI) bor-
der of individual cell, a nearest counterpart is found on the manually-identified
(MI) border of the same cell and the distance between these two pixels is com-
puted. If the counterpart is inside of the AI contour, we define the distance
as positive. Otherwise the distance is negative. For each cell, the average value
of the absolute distances was taken as the unsigned positioning error and the
average value of the signed distances is taken as the signed positioning error.

Area error: Let A denote the AI segmentation area, M the MI segmentation
area representing the ground truth. Ratios of overlapping areas were assessed
by applying the similarity Kappa Index (KI)[15] and the overlap, which are
defined as:

KI = 2× A∩M
A+M ; overlap = A∩M

A∪M

4 Results

The reported method successfully identified the individual cells in 50 2D + time
microscopy data sets collected from the LSDCAS system. A total of 3368 frames
containing 6654 cells was analyzed. There are totally 26 mitoses among all the
data sets and our method successfully made the detection and recorded the
mitosis time and location of all of them.

The analysis errors obtained with no manual interaction or editing are shown
in the following table.

Table 1. Segmentation and separation errors

validation indices in pixel in μm
Mean absolute positioning errors 4.2 ± 2.8 2.6 ± 1.7
Mean signed positioning errors 2.6 ± 3.4 1.6 ± 2.1

The area error KI was 0.84± 0.09 and the overlap index was 0.74± 0.12.

5 Discussion and Conclusion

Quantitative analysis of living cells is a very complex task. It has strict require-
ments on hardware for data acquisition as well as on software for advanced quan-
titative analysis. All the processing modules, including preprocessing, segmenta-
tion, detection of cell splits, etc. are of great importance to the overall result. In
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this paper, we introduced a new fully automated method for cell segmentation,
separation and spatial cell state detection. Our approach helps solving one of
the most crucial problems facilitating quantitative analysis of living cells.

The connection graph, as a by-product, gives a complete description of the
cell-dividing temporal data set. Each cell trajectory can be directly used to
describe behavior of a specific cell. For the cell trajectory with mitotic events,
a pedigree tree can be generated by combining all nodes on each branch of the
connection graph.

Under some circumstances involving abnormal cancer cells, atypical cell divi-
sions may happen when the cell reaches the mitotic state. Compared to normal
cell division when the cell begins as a single round entity and then splits into two
completely separate objects, the abnormal cell division states include a multi-
polar state (when one cell moves into 3 or more distinct circular shapes), fuse
state (which is defined as a cell which attempts to divide but is interrupted
internally and re-forms as a single cell), and cell death (cell ceases to continue
intracellular activities). These abnormal situations bring additional difficulty to
the trajectory analysis since the a priori information used in our approach can-
not be reliably extracted using the presented mitosis-detection method. A more
powerful classifier combining cell trajectory analysis with cell status assessment
is under development, which is based on Hidden Markov Models (HMMs) us-
ing time varying information from bright object sequences found in the cell
compounds. The robustness of the HMM-based classifier shall provide reliable
information helping to guide the segmentation of cancer cells in the image
sequences.

Overall, the reported method is a substantial improvement in comparison
with most existing cell analysis approaches. The temporal information is fully
utilized, yielding more robust segmentation results compared to the previous
frame-by-frame approaches [4].
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Abstract. We present a statistical framework that combines the registration of an
atlas with the segmentation of magnetic resonance images. We use an Expectation
Maximization-based algorithm to find a solution within the model, which simul-
taneously estimates image inhomogeneities, anatomical labelmap, and a mapping
from the atlas to the image space. An example of the approach is given for a brain
structure-dependent affine mapping approach. The algorithm produces high qual-
ity segmentations for brain tissues as well as their substructures. We demonstrate
the approach on a set of 22 magnetic resonance images. In addition, we show that
the approach performs better than similar methods which separate the registration
and segmentation problems.

1 Introduction

With notable exceptions, segmentation and registration have been treated as two sep-
arate problems in medical imaging research. However, these techniques complement
each other. For example, segmentation simplifies the registration of anatomical struc-
tures with ambiguous intensity patterns [1]. On the other hand, aligning an atlas to these
anatomical structures aids the detection of indistinct boundaries and therefore simpli-
fies the segmentation problem [2]. In this paper, we describe a simultaneous solution to
both problems by combining them in a unified Bayesian framework.

The idea of the unified Bayesian framework was motivated by boundary localiza-
tion techniques, such as [3, 4], which align an atlas to the subject and simultaneously
estimate the shape of a structure. These methods relate both problems to each other
by extending the definition of the shape to include its pose. This paper describes an
integrated segmentation and registration approach for voxel-based classification meth-
ods. In contrast to boundary localization approaches, voxel-based classification meth-
ods consider the anatomical structure associated with each voxel. In addition, they often
explicitly model the image inhomogeneities of Magnetic Resonance Images (MRI) to
segment large data sets without manual intervention.

Voxel-based classification methods have coupled registration and segmentation of
misaligned images [5, 6], however, we wish to align an atlas to MRI and separate the
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images into anatomical structures. Previous voxel-based classification methods perform
this task sequentially [7, 8, 2] increasing the risk of systematic biases [1]. In contrast, our
new approach is based on the principle of least commitment so that an initial imperfect
estimation converges to a good approximation for each problem.

Similar to [8, 9, 1], this paper is based on an instance of the Expectation Maximiza-
tion Algorithm (EM) using non-stationary priors to outline structures with indistinct
boundaries and to estimate image inhomogeneities. Instead of sequentially performing
registration and segmentation [8, 9, 1], we propose in Section 2 a Bayesian framework
describing the relationship between atlas registration, intensity correction, and image
segmentation. This framework is based on a Maximum A posteriori Probability (MAP)
estimation formulation approximating the solution to these three interrelated problems.

Section 3 applies the concept to a hierarchical registration framework modeling
global- and structure-dependent deformations. The limits and benefits of the implemen-
tation are illustrated in Section 4 by presenting a study comparing the robustness of our
algorithm with respect to other EM implementations. In this study, the automatic meth-
ods outline a set of 22 MRIs into the major brain tissue classes as well as the thalamus
and caudate, which are structures with indistinct boundaries.

2 Deriving an EM Framework for Simultaneous Inhomogeneity
Correction, Registration, and Segmentation

The accuracy of segmenting structures that have indistinct boundaries on MR images
with tissue classification methods significantly depends on properly modeling the image
inhomogeneities as well as correctly registering the atlas to the subject. In this section,
we develop a unified framework which performs segmentation, registration and inho-
mogeneity correction simultaneously.

2.1 A Maximum a Posteriori Probability Estimation Problem

Due to their complex dependencies, it is very difficult to extract the inhomogeneities
B and the registration parameters R from the MRI I without the explicit knowledge
of the unknown true segmentation. However, this problem is greatly simplified within
an EM framework where it is formulated as an incomplete data problem marginalizing
over all possible segmentations T . To determine B and R within this framework, we
define the following MAP estimation problem over the incomplete data model:

(B̂ , R̂ ) = argmaxB,R logP(B ,R |I ). (1)

In general, this results in a system of equations for which there is no analytical solution.
To estimate a solution for this problem, we propose an EM model that improves the

initial estimate (B ′,R ′) by solving the following MAP estimation problem:

(B ′,R ′)← argmaxB,R ET |I ,B ′,R ′ (logP(I |T ,B)+ logP(R |T )+ logP(B)) (2)

The relationship between Equation (1) and Equation (2) is described in detail in our
technical report [10]. This report shows that the update rule of Equation (2) yields a
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better estimate of (B ′,R ′) as measured by Equation (1). In addition, this EM framework
guarantees convergence to a local maxima of the objective function [11].

Based on the derivation of [10], the solution of Equation (2) improves (B ′,R ′) by
iterating between the Expectation-Step (E-Step) and Maximization-Step (M-Step). The
E-Step calculates the posterior of an anatomical structure a with respect to voxel x

Wx(a) =
P(Ix|Tx = ea,B ′

x) ·P(Tx = ea|R ′)
P(Ix|B ′

x,R ′)
(3)

with Tx being the indicator random vector at voxel x. ea is zero but at position a, where it
is one. The M-Step updates the estimates by solving the following two MAP problems

R ′ ←argmaxR ∑x ∑a
Wx(a) · logP(Tx = ea|R )+ logP(R ) (4)

B ′ ←argmaxB ∑x ∑a
Wx(a) · logP(I |Tx = ea,B)+ logP(B) (5)

A variety of closed-form solutions for Equation (5) have been proposed in the literature
such as [8] and [12].

The remainder of this paper focuses on modeling Equation (4). Before doing so we
must point the method’s sensitivity towards uncommon characteristics favored by the
atlas; a minor drawback of this formulation. The aligned atlas is represented in Equa-
tion (4) and Equation (3) by P(Tx = ea|R ). To match the atlas with the segmentation
weights, the algorithm compensates for any biases through intensity correction and atlas
realignment. For example, if the atlas does not properly capture the brain intensity dis-
tribution, the algorithm might identify the neck as part of the brain. The inhomogeneity
correction will then normalize the intensity pattern of the neck to the once inside the
brain and the registration might scale the atlas of the brain to cover both brain and neck.
This causes the algorithm to converge to a suboptimal solution but a re-calibration of
the atlas to the intensity pattern of the MRI protocol can overcome this problem.

In summary, we find a local maxima to the difficult MAP problem of Equation (1)
by solving it within an EM framework. The E-Step determines W of Equation (3) and
the M-Step solves for the MAP estimates specified by Equation (4) and Equation (5).

2.2 Defining a Hierarchical Registration Approach

To solve the MAP estimation problem of Equation (4), we define the registration pa-
rameters R , logP(T |R ), and P(R ). The parameters R model a hierarchical registra-
tion framework, which distinguishes between global- and structure-dependent defor-
mations. We then apply the registration framework to the MAP estimation problem and
find a solution with another optimization algorithm.

The hierarchical registration parameters R capture the correspondence between at-
las, brain, and structures within the brain. The parameters R can be structure-dependent
or -independent. Structure-independent parameters capture the correspondence between
atlas and image space. When limited to affine interpolation, the degrees of freedom of
R are too low to capture the characteristics of individual brain structures ([13]). The
alternative is a more general non-rigid framework which often has problems aligning
structures with indistinct boundaries [1].
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Our Structure-dependent registration parameters treat the relationship between at-
las and image space for each structure independently. Since most of the misalignment is
structure-independent, e.g the patient’s head is not aligned with the atlas space, we ex-
pect small differences between structure-dependent parameters of different structures.
We model this dependency with a hierarchical registration framework R = (R G,R S).
R G are the global registration parameters, which describe the non-structure dependent
deformations between atlas and image. R S � (R1, . . . ,R N) are the structure dependent
parameters of structure 1, . . . ,N, which represent the residual structure-specific defor-
mations not adequately explained by R G. The similarity between structure specific pa-
rameters is encoded in Equation (4) through the prior probability P(R ) enforcing tight
bounds on R S and weak constraints on R G.

The mapping of the atlas to the image space is performed by an interpolation func-
tion r(R G,R a,x), which maps voxel x into the coordinate system of structure a. Unlike
global affine registration methods, this results in structure dependent coordinate systems
represented by (r(R G,R 1, ·), . . . ,r(R G,R N , ·)) that are not aligned with each other.

Let R a of R S be the parameters specific to structure a with a ∈ {1, . . . ,N}. If we
define fa as the probability over voxel location in the atlas space conditioned on struc-
ture a then fa (r(R G,R a, ·)) is defined in the structure specific coordinate system of the
patient. Thus, we can model the conditional structure probability:

P(Tx = ea|R ) � fa (r(R G,R a,x))
∑a′ fa′ (r(R G,R a′ ,x))

(6)

Substituting Equation (6) into Equation (4) changes the MAP problem to

R ′←argmaxR ∑x ∑a

[
Wx(a) ·

(
log fa[r(R G,R a,x)]−log∑a′ fa′[r(R G,R a′ ,x)]

)]
+ logP(R ) = argmaxR Q(R )

(7)

where the objective function Q(·) of Equation (7) is defined as

Q(R )�∑x∑aWx(a) · log( fa [r(R G,R a,x)])−log
(
∑a fa [r(RG,Ra′ ,x)]

)
+logP(R ) (8)

Q(·) measures the disagreement between between fa(·) and Wa(·) (see Figure 1.) One
can also show that Q(·) relates to the Kullback-Leibler divergence. The objective func-
tion is therefore maximized with respect to R if fa(r(R G,R a,x)) is made as close

high

low
(a) MRI (b) fa(·) (c) Wa(·) (d) Q(·)

Fig. 1. Image (a) shows an MRI, which is segmented by our EM implementation using the mis-
aligned spatial atlas of the brain fa(·) in (b). W in (c) is the result of E-Step and Q(·) in (d) is
the initial cost function of the M-Step. Q(·) measures the disagreement between fa(·) and Wa(·)
with black indicating agreement and white showing disagreement between the two instances.
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as possible to Wx(a). For example, if voxel x is clearly assigned to structure a′ with
ya � r(R G,R a,x) being the coordinate of voxel x in the atlas space of structure a then
Wx(a′) = 1 and fa′(ya′) = ∑a fa(ya). The value of the sum across all structures of Equa-
tion (8) at x is zero as

∑a
[Wx(a) log( fa(ya)]− log( fa′(ya′)) = log( fa′(ya′))− log( fa′(ya′)) = 0.

In summary, we developed a hierarchical registration framework guided by global
and structure specific deformations. We transformed Equation (4) into Equation (7),
whose objective function Q(·) measures the disagreement between the current align-
ment of the atlas space and the segmentation weights.

3 Affine Registration Implementation

This section describes an implementation of the approach presented in Section 2.2. We
will give an example of an interpolation function r(·, ·, ·), the corresponding registra-
tion parameters R , a Probability Density Function (PDF) P(R ), and a maximization
algorithm to solve the MAP problem defined in Equation (7).

The interpolation function r(·, ·, ·) of Section 2 can model various mapping ap-
proaches. For simplicity, we choose an affine interpolation so that R z = (−→tz t ,−→rz

t ,−→sz
t)t

with z∈ {G,1, . . . ,N} define displacement−→tz , rotation−→rz, and scaling−→sz . The mapping
is defined as r(·, ·, ·) : R 12×12×3 → R,(R G,R a,x)→ AR G ·AR a · (xt ,1)t where AR z is
an affine transformation matrix based on the parameter setting R z.

We do not assume correspondence between the atlas and the image space so that we
choose a uniform prior for the global registration parameter R G. As opposed to R G,
the structure specific parameters R S � (R 1, . . . ,R N) describe the residual of structure
specific deformations that are not well explained by R G. In general, our model should
penalize large deviations of R S from the expected mean, which is approximated by
the average structure-specific registration parameters of the training data. We enforce
this penalty by modeling the PDF of R S as a Gaussian distribution N(μR S ,ϒR S) with
structure independent mean μR S

and variance ϒR S
based on the mapping parameters of

the training data. We choose a Gaussian distribution as small variance ϒR S
discourages

large deformations from the mean μR S . In addition, Gaussian distributions simplify the
calculations in the M-Step [11].

Based on the previous modeling assumptions the objective function is defined as

Q(R ) � ∑x ( ∑a

(
Wx(a) · log

[
fa(AR G ·AR a · (x t ,1)t)

])
− log
[
∑a

fa(AR G ·AR a · (x t ,1)t)
]
)− 1

2
(R S−μR S)

tϒ−1
R S

(R S−μR S).

Determining a closed form solution to the MAP problem defined by Q(·) is difficult.
Instead, we estimate the solutions through the Powell’s method [14]. We also decouple
the search for R G and R S as their dependencies can cause instability. The pseudo code
for this implementation is given below.
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Algorithm 1: SEGMENTATION AND REGISTRATION()

repeat
E-Step: Update soft assignment of anatomical structures

Wx(a)← 1
Z P(Ix|Tx = ea,B ′

x) · fa
(
r(R ′

G,R
′
a,x)
)

M-Step: Update parameter space
B ′ ← Estimation of the image inhomogeneities based on W
R ′

G ← Result of Powell’s method with Q((·,R ′
S))

R ′
S ← Result of Powell’s method with Q((R ′

G, ·))
until B ′ and R ′converge
define labelmap: Tx ← argmaxa Wx(a)

4 Comparative Experiment on 22 Test Cases

The section compares three EM methods which differ in the mapping of the atlas to
the patient. The first approach (EM-NonRigid) aligns the atlas using an intensity based
non-rigid registration approach and then runs our EM implementation without regis-
tration parameters [1]. The second approach (EM-Affine) is similar to EM-NonRigid
but uses the affine mapping method by [15] as the preprocessing step. The third ap-
proach (EM-Integrated) is our new algorithm solving registration and segmentation si-
multaneously. All three methods use the same atlas which was generated according
to [1]. In order to compare the three methods, each of them segments 22 test cases
into the three brain tissue classes and further parcellates grey matter into the subcorti-
cal structures thalamus and caudate. We then measure the agreement of the automatic
segmentations of the subcortical structures to manual ones, which we view as ground-
truth.

This experiment focuses on the thalamus and caudate as they are challenging struc-
tures for registration and segmentation. Purely intensity based methods, such as EM
without spatial priors, cannot segment these structures because part of the boundary is
invisible on MRI (Figure 3). Consequently, EM relies heavily on spatial priors making
it sensitive towards misaligned priors. The registration of the priors is also a challenge.
Intensity based alignment methods, such as [16], have difficulties mapping the priors
to the thalamus because of the structure’s similar intensity properties to the adjacent
white matter; affine registration methods, such as [15], are too constrained to properly
capture the bending within the horn-shaped caudate. In conclusion, a detailed analy-
sis of the segmentation of thalamus and caudate highlights the differences between the
three methods.

To measure the quality of the automatic generated results, we compare them to the
manual segmentations of the thalamus and caudate using the Dice volume overlap mea-
sure. The graph in Figure 3 shows the mean and standard error of the Dice measure
for the three algorithms. For the thalamus, EM-NonRigid (NRigid) performed worst
because the intensity based registration method is too unreliable for structures with
smooth boundaries. The method often overestimates white matter and underestimated
the thalamus in this region (Figure 3(EM-NonRigid)). EM-Affine (Affine) performs
much better than EM-NonRigid but the method is sensitive towards initial misalign-
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ments. For example, EM-Affine cannot properly address the unusual pose of the patient
in Figure 2 (Sagittal) causing a bias in the segmentation (Figure 3 (EM-Affine)).

For the caudate, EM-NonRigid performs much better than EM-affine. In contrast
to the thalamus, the caudate has a different intensity profile than white matter. Only
the relatively small portion of the boundary neighboring the putaman, another subcor-
tical structure, is invisible on MRI. Thus, the intensity based registration method of
EM-NonRigid correctly registers the spatial priors to this region. However, the affine
registration method of EM-Affine does not have enough degrees of freedom to cap-
ture the patient specific bending of the horn-shaped caudate. This causes EM-Affine
to misclassify voxels especially at the tip of the structure, which explains the lower
score.

EM-Integrated (Integr.) generally outperformed the other two methods (Figure 3).
For the thalamus, the method was significantly more reliable than the other two methods
(mean Dice and standard error of EM-Integrated : 89.2± 0.4%, EM-Affine: 86.9±
1.2%, EM-NonRigid: 81.4±1.3%). For the caudate, EM-Integrated ( 86.3±0.6% ) was
still significantly better than EM-Affine ( 83.2± 1.7% ), but only slightly more robust
than EM-NonRigid (85.8± 1.1% ). However, the standard error of EM-Integrated is
lower than EM-NonRigid indicating a higher predictive power of our new approach.

Our new approach performed much better than the two other method on cases,
where the deformation between atlas and image space was complex. As the example
of Figure 2 illustrates the accuracy of registration and segmentation greatly depend on
each other. Initially, the algorithm only correctly outlines corticospinal fluid, whose
disposition between the atlas and image space guides the registration (see also Figure
1(d)). As the method progresses, the overall accuracy of the registration as well as seg-
mentation increases. In this example it took 30 iterations until the algorithm converged
and correctly segmented the subcortical structures whose boundary is outlined in black.

Sagittal/Coronal Initial 10 Iterations 30 Iterations

Fig. 2. The top row shows an MRI with unusual head position and the corresponding 3D models
of our segmentations of the thalamus and caudate. The button row shows the coronal MRI with
black indicating the two manually outlined structures. The segmentations to the left are produced
by our method, which initial performs poorly but converges closely to the experts’ results.
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Manual / MRI Affine NRigid Integr.

Fig. 3. The graph shows the mean and standard error of the three methods segmenting the tha-
lamus and caudate in 22 cases. For both structures, our new approach EM-Integrated (Integr.)
outperformed EM-Affine (Affine) and EM-NonRigid (NRigid). The segmentations to the right
highlight deficiencies of EM-Affine and EM-NonRigid, such as the general underestimation of
the thalamus by EM-NonRigid and the misalignment of the caudate by EM-Affine due the low
degree of freedom. In the MRI as well as 2D segmentations the thalamus is outlined in black.

We have demonstrated that our method performs better than EM-Affine and EM-
NonRigid as a consequence that our approach directly maps the spatial priors of the
structures to the segmentation model. In contrast, EM-Affine and EM-NonRigid align
an MRI in the atlas space to the image of the patient, using the resulting deforma-
tion map to align the spatial priors. This inherently increases the risk of systematic
biases in the model. Another explanation for the increased accuracy of our approach
is the explicit modeling of dependency between segmentation and registration, which
constrains the space of possible solutions and thus simplifies the segmentation
problem.

5 Conclusion

We have presented a statistical framework combining inhomogeneity estimation, atlas
registration, and segmentation of MRI. Unlike other voxel-based classification meth-
ods, our framework models these three problems as a single MAP estimation problem.
We implemented the framework as an instance of an EM algorithm using a hierarchical
affine mapping approach for anatomical structures. Our approach was validated by au-
tomatically segmenting 22 sets of MRIs into the major brain tissue classes and the sub-
cortical structures thalamus and caudate that are structures with indistinct boundaries.
Using manual segmentations, we then compared our results to other EM implementa-
tions which sequentially register and segment. In general, our method performed much
better than the other segmentation methods. The improvement is due primarily to the
seamless integration of registration into the performance estimation problem.
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Abstract. Intravascular ultrasound (IVUS) produces images of arteries
that show the lumen in addition to the layered structure of the vessel
wall. A new automatic 3D IVUS fast-marching segmentation model is
presented. The method is based on a combination of region and con-
tour information, namely the gray level probability density functions
(PDFs) of the vessel structures and the image gradient. Accurate results
were obtained on in-vivo and simulated data with average point to point
distances between detected vessel wall boundaries and validation con-
tours below 0.105 mm. Moreover, Hausdorff distances (that represent the
worst point to point variations) resulted in values below 0.344 mm, which
demonstrate the potential of combining region and contour information
in a fast-marching scheme for 3D automatic IVUS image processing.

1 Introduction

Intravascular ultrasound (IVUS) is a medical imaging technique that produces
cross-sectional images of the vascular wall as a catheter is pulled-back inside
blood vessels. The ability of IVUS to characterize the vascular wall was ini-
tially proven in 1989 [1]. Since then, it has become very useful for studying
atherosclerotic disease because quantitative assessment of the wall, information
about the nature of atherosclerotic lesions as well as plaque shape and size are
provided. IVUS is expected to play an important role in atherosclerosis research;
for example, to achieve precise evaluation of the disease in progression-regression
therapies [2]. Experts agree that IVUS imaging adds precious complementary in-
formation to angiography which only shows a projection of the lumen [3].

A typical intravascular ultrasound acquisition contains several hundred of
images making non-automatic analysis of the data long, fastidious and subject
to high intra- and inter- observer variabilities. These could be serious constraints
against the clinical usage of IVUS. There is also some quality issues related to
IVUS imaging due to speckle noise, imaging artifacts and shadowing of parts of
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the vessel wall by calcifications. It is thus necessary to develop specific segmen-
tation methods that take into account the nature of IVUS images.

So far, a number of segmentation techniques have been developed for IVUS
data analysis. A great portion of this work was based on local properties of
image pixels, namely gradient-based active surfaces [4] or multi-agents [5] and
pixel intensity combined to gradient active contours [6]. Graph search was also
investigated using different edge operators [7, 8, 9]. Another portion of the IVUS
segmentation work was based on more global or region information. Texture-
based morphological processing was considered [10]. Gray level variances were
then used for the optimization of a maximum a posteriori (MAP) estimator
modeling ultrasound speckle and contour geometry [11]. However, some of these
methods are semi-automatic and others focus on either region or contour infor-
mation without combining them.

The aim of this work was thus to achieve automatic IVUS image analysis
by combining region and contour features in a segmentation model. Since pixel
gray values are distributed according to Rayleigh probability density functions
(PDFs) in B-mode imaging of uniform scattering tissues [12], PDF features can
be of value for IVUS segmentation. In a previous semi-automatic 2D segmen-
tation model[13], gradient- and PDFs-based methods were compared and both
provided results with similar variability (PDFs parameters were calculated from
manually traced regions). The combination of the region statistics and of the
gray level gradient contour information, that are complementary, is thus hypo-
thetically more suitable for IVUS image analysis, especially when the vascular
wall edges are weakly defined. These features were included in a multiple inter-
face fast-marching segmentation [14], that enables simultaneous segmentation of
different parts of the vessel wall. In this paper, automatic estimation of the PDF
parameters and initial contours is also presented.

2 Methods

2.1 Fast-Marching Segmentation

The fast-marching method was derived from the level-set model; they both allow
the following of an interface propagating under a speed function F [15]. Fast-
marching can be applied to image segmentation by interpreting an image contour
as the propagating interface final position [16]. To stop the evolution of the
interface on image boundaries, the speed function, that is defined in terms of
image or shape features, should become close to zero when the propagating front
meets with object boundaries.

In the fast-marching formulation, where an interface propagates under a uni-
directional speed function, the evolution of the contour is expressed in terms of
the arrival time T (x) of the front at point x = (x1, x2, ..., xn) ∈ �n. The T func-
tion satisfies Eq. 1, stating that the arrival time difference between two adjacent
pixels increases as the velocity of the contour decreases.

| ∇T | F = 1 . (1)
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The propagation of the interface is done in 3D via the construction of the
arrival time function map (T map). The construction algorithm [17] selects the
interface point having the smallest arrival time and calculates the arrival times
of its neighbors. Neighbor arrival times are updated by solving a discrete 3D
approximation of Eq. 1. This is repeated until the interface has propagated across
the whole image or until the interface front is considered stationary (when the
time gradient is sufficiently high).

In IVUS imaging, multiple contours (lumen and media) must be identified to
characterize plaque development, consequently segmentation was done via a mul-
tiple interface extension of the fast-marching algorithm [14]. For this particular
case, a boundary is defined by the meeting position of two contours propagating
in opposite directions. A speed function must then be determined for each prop-
agating interface; it is defined according to the PDF of the anatomical structure
in which the interface is evolving. The T map is built by selecting the point with
the smallest arrival time value from all interfaces1. For the current study, the
multiple interfaces evolved according to the speed function given by Eq. 2, which
is based on the gray values occurring probability and gradient.

Fm(i, j, k) = 1
Nν

∑
s∈ν pm(Is) + 1/(1 + g(Is)). (2)
g = |∇Gσ ∗ I| (3)

where Is is the gray level value of pixel s in image I; ν is the set of the Nν

neighbors of the pixel positioned at (i, j, k) (the neighbors window size is 7×7×3);
pm(Is) is the occurring probability of pixel Is in the region m; g(Is) is the value
of the gradient g at pixel Is and Gσ is a gaussian smoothing filter of standard
deviation σ = 2. According to the first term of Eq. 2, the velocity of interface m
will take higher values when it is inside a region having a grayscale distribution
close to pm; it will decrease when approaching the boundary since the neighbors
are distributed under other component PDFs.

2.2 Pre-processing

The pre-processing calculations involved the catheter artifact detection and re-
moval; and the feature extraction (PDF mixture parameters and image gradient).

The pixels near the catheter with gray level values that correlated through
the whole IVUS pullback were labeled as being part of the ring-down artifact.
The catheter artifact was removed from the images by subtracting the average
ring-down gray level values from each IVUS 2D frame. The catheter artifact had
to be detected before each segmentation because it is specific to each pullback.

The speed function of Eq. 2 uses the gray level distributions pm(Is) of the
different vessel wall structures. The distribution of a whole IVUS pullback was
thus estimated by a mixture of Rayleigh PDFs, each corresponding to the lumen,
plaque structure of the intima, media, and adventitia plus surrounding tissues.
The mixture PDF pX|Θ with parameters Θ = {(ωm, a2

m)}M
m=1 is:

1 A detailed description of the T map construction algorithm can be found in [14].
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pX|Θ(x | Θ) =
M∑

m=1

ωmpm(x | a2
m). (4)

pm(x | a2
m) =

x

a2
m

exp
(
− x2

2a2
m

)
(5)

where X represents the pixels’ gray level taking values in [0, ..., 255] (with x > 0);
M is the number of different tissue structures; ωm is the proportion of the
mth component of the mixture; and pm(x | a2

m) is the mth tissue Rayleigh
probability density function with parameter a2

m, which is related to the variance
σ2

m = a2
m(4− π)/2 of the distribution.

The mixture parameters Θ were estimated with the Expectation-
Maximization algorithm (EM) that is an iterative computation technique of
maximum likelihood estimates for incomplete data [18].

2.3 Automatic Initialization

Initial contours must be computed to initialize the fast-marching segmentation.
These contours were found on one every three frames to diminish computational
load without losing their 3D continuity.

An initial lumen contour was first automatically detected from the IVUS
data. The log-likelihood of the lumen Llum was calculated for each pixel accord-
ing to Eq. 6 and by using the previously estimated lumen distribution of the
PDF mixture.

Llum(i, j, k) =
1
Nν

∑
s∈ν

log plum(Is) . (6)

where plum(Is) is the estimated occurring probability of pixel Is in the lumen
region.

The initial lumen contour was set as a smooth closed curve, not necessarily
circular to preserve the irregular lumen shape, containing the catheter and the
pixels maximizing Llum. The initial media contour calculation was performed
similarly to the lumen initialization. An elliptical contour surrounding the pre-
viously found lumen was grown radially to maximize the media log-likelihood
Lmed also calculated according to Eq. 6 but with the estimated media distribu-
tion pmed(Is). An elliptical contour was searched because the media boundary
is generally smooth and regular (it appears as a hypoechoic ring, see Fig. 2).

These automatically computed initial contours were only rough estimates of
the wall boundaries; they were used to initialize the fast-marching segmentation
that allowed obtaining more precise contours. The initial contour points were
spline-interpolated axially and longitudinally while being forbidden to overlap
to preserve the layered structure of the vessel wall. The fast-marching requires
the initial front to be inside the object to segment, the contours were thus each
shifted radially (10 pixels) in the 2 opposite directions to compute the 2 pairs of
3D tube-like initial interfaces. The interfaces propagating in opposite directions
(and including the exact object border) were thus separated by 20 pixels.
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2.4 In-Vivo Data and Numerical Simulation

An in-vivo IVUS pullback of 600 frames from a diseased superficial femoral artery
was acquired with a Volcano Therapeutics equipment (In-vision gold, California,
USA) using a 20 MHz transducer. Images of size 10 x 10 mm were digitized on
384 x 384 pixel matrices and stored using the DICOM standard. The acquisition
was done at a 10 images/sec frame rate and the catheter pullback velocity was
set to 1 mm/sec generating 0.1 mm thick 2D slices.

In addition to the in-vivo data, realistic simulations of IVUS data were con-
ducted. Since the exact geometry of simulated data is known, direct calculation
of the detected boundary performance could be obtained. A detailed description
of the image-formation model used to simulate IVUS echograms can be found
in [19]. To generate a realistic vessel geometry, the vessel boundaries (lumen,
plaque of the intima, media) were created from manually traced contours on an
in-vivo IVUS series. The simulated pullback contained 86 IVUS 2D frames.

The automatic 3D segmentation method was applied to the in-vivo and sim-
ulated IVUS images. For validation purpose, the in-vivo IVUS segmentation
results were compared with manually traced contours on 1 every 10 frames;
boundary position from 60 IVUS frames were thus available. Results on simu-
lated data were compared with the exact geometry. The average and Hausdorff
point to point contour distances [20], and wall layer area differences were calcu-
lated. Hausdorff distance represents the worst case, it is the maximum distance
between between corresponding contour points.

3 Results

As part of the pre-processing, the EM algorithm was applied to the IVUS series to
evaluate the PDF mixture parameters. An example of an automatically detected
Rayleigh PDF mixture and corresponding IVUS pullback histogram is shown in
Fig. 1.

Segmentation results for the automatic 3D fast-marching method combin-
ing PDFs and gradient are shown in Fig. 2. The lumen and media detected
boundaries are presented for typical cross-sectional IVUS images of the whole
3D in-vivo and simulated pullbacks. Table 1 shows the average and Hausdorff
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Fig. 1. Illustration of an automatically detected Rayleigh PDF mixture and corre-
sponding IVUS gray level histogram
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Fig. 2. Segmentation examples on in-vivo and simulated data. Typical IVUS cross-
sectional image (a). Lumen and media detected contours (b). Simulated IVUS cross-
sectional image (c). Lumen and media detected contours (d).

Table 1. Average distances, Hausdorff distances and area differences between detected
contours on in-vivo and simulated data and the validation contours

In-vivo Data
Lumen Media

Average Distances (mm) 0.083 ± 0.111 0.105 ± 0.094
Hausdorff Distances (mm) 0.344 ± 0.237 0.300 ± 0.104
Area Differences (mm2) -0.24 ± 1.07 (r=0.974) -0.47 ± 1.14 (r=0.890)

Simulated Data
Average Distances (mm) 0.059 ± 0.069 0.066 ± 0.061
Hausdorff Distances (mm) 0.235 ± 0.105 0.224 ± 0.064
Area Differences (mm2) 0.18 ± 0.65 (r=0.997) -0.65 ± 0.73 (r=0.976)

The pixel size is 26 x 26 μm2.

distances and the area differences between the detected contours and the vali-
dation boundaries for the in-vivo and simulated IVUS pullbacks.

4 Discussion

The goal of this work was to demonstrate the feasibility of a fully automatic 3D
fast-marching method for the segmentation of IVUS images when using PDFs
and gradient in the same model.
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No ground truth value was available to evaluate the precision of the calcu-
lated mixture parameters, however a rough comparison, in Fig. 1, of the pull-
back gray level histogram with the estimated Rayleigh PDF mixture showed
good agreement. A qualitative analysis of the automatic fast-marching segmen-
tation combining region and contour information in Fig. 2 revealed detected
contours that were very close to all vessel layers. Fig. 2 also showed that non-
circular lumen contours could be precisely found. For the simulated images, Ta-
ble 1 showed that the detected contours were very close to the simulated vessel
boundaries with average point to point distances below 0.066 mm (2.5 pixels).
Similar distances were obtained for the in-vivo IVUS data with average dis-
tances between 0.083 and 0.105 mm (3 to 4 pixels). Hausdorff distances, which
represent the highest distance between the contour and the validation bound-
ary position, resulted in values below 0.344 mm (13 pixels), this demonstrates
the efficiency of the segmentation method. Area differences between detected
and validation contours showed in Table 1 were slightly higher than the ones
reported in [5, 8] (between −0.14 ± 1.01 and 0.27 ± 0.49 mm2), but the data
was acquired on a femoral artery that is larger than the coronary arteries of
these studies.

These preliminary segmentation results showed that this new IVUS segmen-
tation approach is promising for the processing of large pullbacks without user
interaction. In the near future, the segmentation method will be applied to sev-
eral IVUS series acquired from different patients before and after undergoing
balloon angioplasty to characterize the lumen and wall volumic changes over a
whole vessel segment. The complete validation of the segmentation method will
also include several experts’ manually traced contours repeated in time to assess
the performance in terms of intra- and inter-user variabilities.
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Abstract. Osteoarthritis is characterized by the degeneration of the ar-
ticular cartilage in joints. We have developed a fully automatic method
for segmenting the articular cartilage in knee MR scans based on super-
vised learning. A binary approximate kNN classifier first roughly sepa-
rates cartilage from background voxels, then a three-class classifier as-
signs one of three classes to each voxel that is classified as cartilage by
the binary classifier. The resulting sensitivity and specificity are 90.0%
and 99.8% respectively for the medial cartilage compartments. We show
that an accurate automatic cartilage segmentation is achievable using a
low-field MR scanner.

1 Introduction

Osteoarthritis (OA) is one of the major health concerns among the elderly today
[1]. The main effects of OA is the degradation of the articular cartilage together
with remodeling and overgrowth of bone, a process causing loss of mobility of the
joints. It typically affects large weight bearing joints as hips and knees. Currently,
the treatment of OA is restricted to symptom control, because as yet there are
no disease-modifying drugs [2].

MRI allows for quantitative evaluation of the cartilage [3],[4], and cartilage
deterioration can be detected using this technique [5]. MRI also has the advan-
tage of being a non-invasive technique.

When assessing the cartilage, the MR scans can be manually segmented
slice-by-slice by experts, but for clinical studies manual methods are too time
consuming and are also prone to inter- and intra-observer variability. When au-
tomating the cartilage segmentation, the main challenges are the thin structure
of the cartilage and the low contrast between the cartilage and surrounding soft
tissues. The progression of OA is very often slow and it can take many years
before the cartilage is reduced from its typical thickness of a few millimeters to
possible total loss. It is therefore important to have high accuracy and precision
of the cartilage assessment technique in order to detect statistically significant
changes. This enables the correlation of the method with the effects of drugs, and
the evaluation of their benefit to the joint in reducing the signs of the disease.
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Several groups have developed automated methods for cartilage segmenta-
tion. 2D methods has limited continuation between slices and since they have
to be converted into a 3D segmentation when finding for example thickness
maps, it is advantageous to perform segmentation in 3D directly. Among the
3D techniques that have been developed, Grau et al. [6] use a semi-automatic
segmentation method that is based on a watershed approach. The method is eval-
uated on 7 scans from 4 subjects and has an average sensitivity and specificity
of 90.0% and 99.9% respectively. Pakin et al. [7] have developed an automatic
segmentation method based on region growing followed by two-class clustering.
It is evaluated on one scan with resulting sensitivity and specificity of 66.2%
and 99.6%. The semi-automatic segmentation method of Warfield et al. [8], [9]
iterates between a classification step and a template registration step, and has
a lower variability compared to repeated manual segmentations on the scan it
was evaluated on. Naish et al. [10] use a data set that consists of a longitudinal
study of OA patients and local intensity changes over time is used as a measure of
cartilage degradation. However, the cartilage is manually or semi-automatically
segmented.

All of the methods mentioned (except for the one of Naish et al. but they have
not focused on the segmentation part) have only been evaluated on a handful of
scans, and the only fully automatic segmentation produces low sensitivity and
specificity values compared to the semi-automatic methods.

In this paper, we present a method for segmenting the tibial and femoral
medial cartilage in 3D MR scans of knees. The segmentation is based on an
three class approximate kNN classification scheme and is improved by selecting
the largest connected component from the result of the classification. The seg-
mentation method works directly in 3D, not in 2D slices, and is fully automatic.
This is an improvement of previous work [11] which was a method for locating
tibial medial cartilage for the initialization of a shape model, a method based
on a two class kNN classifier without any feature selection incorporated.

Our segmentation algorithm aids the automatization of cartilage assessment
and is intended for clinical studies on a low-field MR scanner. Though the image
quality of the scanner we are using is slightly lower compared to the conven-
tional high-field scanners, we propose to examine if accurate automatic cartilage
segmentation is achievable also on a low-field scanner. If such a scanner can be
used in clinical studies it would reduce the costs significantly. It has been shown
that low-field dedicated extremity MRI can provide similar information on bone
erosions and synovitis as expensive high-field MRI units [12] comparing manual
segmentations, but there has to our knowledge not been published any work
on automatic segmentation of cartilage on low-field MRI. From the automatic
segmentation, relevant quantitative measures such as the cartilage volume and
thickness can be calculated either globally or locally in a point or a small area.
In the latter case comparison between patients or temporal studies of the same
patient will require establishing geometric or anatomical correspondence either
by expert annotations or by automated modeling of landmarks. An automated
approach for this is planned for future work and will not be part of this paper.
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2 Methods

2.1 Image Acquisition

An Esaote C-Span low-field 0.18 T scanner dedicated to imaging of extremities
acquires Turbo 3D T1 scans (40◦ flip angle, TR 50 ms, TE 16 ms). The scans
are made through the sagittal plane with a voxel size in the range 0.7031 ×
0.7031× (0.7031/0.7813/0.8594)mm3. Among the total of 71 scans, 50 have the
resolution 0.7031×0.7031×0.7813mm3, 3 the resolution 0.7031×0.7031×0.7031
mm3 and the remaining 18 scans have the resolution 0.7031 × 0.7031× 0.8594
mm3. The scans all have the size 256 × 256 × 104 voxels, but we only use the
central 170× 170× 104 voxels because only they contain information.

The scans have been manually segmented on a slice-by-slice basis by a ra-
diologist. A scan slice with the tibial and femoral medial cartilage manually
segmented is shown in Figure 1.

Fig. 1. To the left, a slice from a knee MR scan where the tibial medial and femoral
medial cartilage is segmented manually by radiologists. The size of this slice is 170x170
pixels. To the right is the result from our automatic segmentation for the corresponding
slice. The sensitivity and specificity for this scan are 92.52% and 99.82% respectively,
with a dice similarity coefficient of 0.83.

The 71 scans in the data set are of both left and right knees. In order to
treat all scans analogously, the right knees are reflected about the center in the
sagittal plane. The test subjects are both males and females aged between 21
and 72 years. They have no or mild OA symptoms, diagnosed by radiologists as
being between 0 and 3 on the Kellgren and Lawrence Index [13].

2.2 Cartilage Classification

For the segmentation of cartilage we use an approximate kNN classifier, which is
implemented in an Approximate Nearest Neighbor (ANN) framework developed
by Mount and colleagues [14]. The ANN classifier is in principle the same as a
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kNN classifier, but with the modification that you can allow for a small amount
of error in the search for nearest neighbors which may improve the run time sig-
nificantly. An error bound, ε, is introduced, so instead of returning the k nearest
neighbors from a data set, the ANN search algorithm returns k points such that
the ratio of the distance between the ith reported point (1 ≤ i ≤ k) and the
true ith nearest neighbor is at most 1 + ε. We have found empirically that ex-
amining the 100 nearest neighbors yields a good balance between computational
complexity and accuracy, and we set ε = 2, a value that only marginally lowers
the accuracy while reducing computational time significantly.

In this work we examine the medial cartilage since OA is more often observed
in this compartment [15] and in particular in the medial tibial part [16], thus
these compartments are of major interest when it comes to finding disease mark-
ers for OA. In order to separate different types of cartilage from one another we
use a three class classifier, where the classes are tibial medial cartilage, femoral
medial cartilage and background.

The classification is hierarchical, and the first step is a two class classification
where the voxels are roughly separated into cartilage or background. The kNN
produces class probabilities for every voxel, and in this step we set the threshold
at 0.65 yielding a sensitivity for medial cartilage close to 99%. This also results
in a large amount of false positives, but since typically only a few percent of the
total volume within the knee belongs to the cartilage, this first step is a way of
reducing data significantly. In the second step, the voxels classified as cartilage
in the first step are reconsidered. This time we use a three class classifier, where
the three classes are tibial and femoral medial cartilage and background, and
class membership is decided based on a majority vote. The three class classifier
contains more features and the features are optimized to separate the three
classes whereas the classifier in the first step has features optimized to separate
cartilage from background. A sketch of the hierarchical classification scheme is
illustrated in Figure 2.

We have also tested a direct partitioning into the three classes, but the hier-
archical approach yields better results and is faster, since the first step has less
features and thus lower computational complexity. The classifier in the first step
has a set of 28 features compared to the three class classifier in the second step
that contains 52 features.

Cartilage

All Voxels

Background

Background Tibial Cartilage Femoral Cartilage

Fig. 2. Tree representation of the hierarchical classification scheme
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2.3 Features and Feature Selection

In order to find a feature set that performs well for our classification scheme, we
here introduce our set of candidate features and the subsets of the features that
were found from our feature selection method [17], which consists of sequential
forward selection followed by sequential backward selection.

When a radiologist examines an MR scan for cartilage, she or he takes the
location and the intensity in the image into consideration. We therefore consider
these as candidate features. Both the raw intensity and the Gaussian smoothed
intensities on three different scales (0.65mm, 1.1mm, 2.5mm) are examined.

One can also consider features that are related to the geometry of the ob-
ject in question. The 3-jet, which is all first, second and third order deriva-
tives with respect to (x, y, z) forms a basis which can describe all geometric
features up to third order [18] and are listed as candidate features. All the
derivatives mentioned in this section are Gaussian derivatives and are defined as
Ii1,...,in =

∫
Ĩ(x̄)Di1,...,ing(x̄, σ1)dx̄, where g is a Gaussian, D a differential oper-

ator and σ1 is the scale. All features are examined on the three scales, selected
to cover the range of different cartilage thicknesses, mentioned above.

Cartilage can be described as a thin curved disc in 3D. The Hessian (H),
which is the symmetric matrix containing second order derivatives with respect
to the coordinates (x, y, z),

H =

⎛⎝ Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞⎠ ,

is therefore considered. The eigenvectors of the Hessian points in the directions
of the principal curvatures and its eigenvalues corresponds to the curvature in
those directions. A thin disc such as cartilage will locally yield one large and
two small eigenvalues. The eigenvalues as well as the three eigenvectors are
candidate features.

A feature that has been shown to be significant in the detection of thin struc-
tures such as fingerprints is the structure tensor (ST) [19]. It is a symmetric matrix
containing products of the first order derivatives convolved with a Gaussian,

ST = Gσ2 ∗

⎛⎝ IxIx IxIy IxIz

IyIx IyIy IyIz

IzIx IzIy IzIz

⎞⎠ ,

where σ is not necessarily the same scale as the one used for obtaining the deriva-
tives. The ST examines the local gradient distribution at each location (x, y, z).
The directions of the eigenvectors depend on the variation in the neighborhood.
The eigenvalues and eigenvectors of the ST were considered as potential features
with a combination of three scales of σ1 and three scales of σ2.

The third order derivatives with respect to (x, y, z) can be conveniently rep-
resented in the third order tensor Iijk . Examining the third order structure in the
local gradient direction (Ix, Iy , Iz) can be described using Einstein summation as

Lwww = IijkIiIjIk/(IiIi)3/2.
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The third order tensor is examined in the gradient direction on three different
scales, which were considered as possible features.

2.4 Selected Features

The features used in the two class classifier are the position in the image, the
Gaussian smoothed intensities on three different scales (0.65mm, 1.1mm, 2.5mm)
and the raw intensities, the first order Gaussian derivatives on scales 0.65mm
and 2.5mm, the eigenvalues and the eigenvector corresponding to the largest
eigenvalue of the structure tensor with σ1 = 0.65mm and σ2 = 2.5mm, and the
eigenvalues of the Hessian on scales 1.1mm and 2.5mm.

The features in the three class classifier consist of combinations of first, second
and third order Gaussian derivatives on the three different scales mentioned, the
Gaussian smoothed intensities on three different scales (0.65mm, 1.1mm, 2.5mm)
and the raw intensities, the position, the eigenvector corresponding to the largest
eigenvalue of the ST with σ1 = 0.65mm and σ2 = 1.1mm, the eigenvalues of the
ST with σ1 = 1.1mm and σ2 = 2.5mm, the eigenvalues of the Hessian on scales
1.1mm and 2.5mm.

The features selected as most significant are the Hessian and the structure
tensor along with the intensity and the position in the image. The features
were normalized between zero and one. Normalization for unit variance was
also examined, but the normalization of values between zero and one produces
slightly better results.

3 Results

From our data set of 71 scans we use 25 for training and 46 for the evaluation
of our algorithm. The results of our automatic segmentation is compared to the
manual segmentation made by radiologists, resulting in an average sensitivity
and specificity of 90.0% (±2.6% st.d.) and 99.8% (±0.06% st.d.) respectively

Fig. 3. On the left is the manually segmented medial cartilage from a knee MR scan.
To the right is the corresponding automatic segmentation. For this scan, the sensitivity
and specificity are 94.82% and 99.79% respectively, with a dice of 0.81.
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for the test set for the medial cartilage compartments. A comparison between a
golden standard segmentation and an automatically segmented knee MR scan
can be seen in Figure 3. A slice by slice comparison is displayed in Figure 1.
The dice similarity coefficient (DSC) measures spatial volume overlap between
two segmentations, A and B, and is defined as DSC(A,B) = 2×|A∩B|

|A|+|B| . The
Dice similarity coefficient between our automatic segmentation and the golden
standard segmentation is for the test set on average 0.80 (±0.03 st.d.).

4 Discussion

The average sensitivity and specificity of our method compared to the results of
methods with similar evaluation though on different data is presented in Table 1.
Comparing our method with the fully automatic segmentation algorithm (Pakin
et al. [7]), we get a distinctly higher sensitivity and a slightly better specificity.
Though slightly worse, the sensitivity and specificity of our method are compa-
rable to those of Grau et al. [6]. They have a higher volume overlap (DSC=0.90)
however their method is semi-automatic. We have evaluated our segmentation al-
gorithm on more scans than the other two methods. Some of the semi-automated

Table 1

Our method Method of Pakin [7] Method of Grau [6]
Sensitivity 90.01% 66.22% 90.03%
Specificity 99.80% 99.56% 99.87%
Data set 25+46 1 7
Interaction time 0 0 5-10 min

segmentation techniques described in section 1 have been evaluated in terms of
inter- and intra-observer variability of the method compared to manual segmen-
tation. As for our method, future work will involve inter-scan variability, and we
will also examine intra-user variability for the manual segmentations.

Our segmentation algorithm performs well compared to two leading carti-
lage segmentation schemes, which leads us to the conclusion that accurate, fully
automatic cartilage segmentation is achievable in low-field MR scanners.
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Abstract. We present a fully automatic 3D segmentation method for
the left ventricle (LV) in human myocardial perfusion SPECT data.
This model-based approach consists of 3 phases: 1. finding the LV in
the dataset, 2. extracting its approximate shape and 3. segmenting its
exact contour.

Finding of the LV is done by flexible pattern matching, whereas seg-
mentation is achieved by registering an anatomical model to the func-
tional data. This model is a new kind of stable 3D mass spring model
using direction-weighted 3D contour sensors.

Our approach is much faster than manual segmention, which is stan-
dard in this application up to now. By testing it on 41 LV SPECT
datasets of mostly pathological data, we could show, that it is very robust
and its results are comparable with those made by human experts.

1 Introduction

Heart diseases, especially heart infarcts, are one of the most common causes
of death in the western world. Modern functional medical imaging techniques
can contribute significantly to diagnosis and particularly to the quantitative
assessment of these diseases.

Myocardial perfusion SPECT provides functional, three-dimensional images
of the human left ventricle (LV) (figure 1a), where infarct-affected regions can
be seen as gaps within the well-perfused LV (figure 1b). For the qualitative
and quantitative assessment of the damage of the LV, anatomical knowledge is
needed (figure 1c).

LV segmentation is often performed manually, which is very time-consuming.
Automatic registration of an anatomical model with functional data either re-
quires extensive training based on segmented data, or a flexible model supple-
menting information, if perfusion and anatomy do not coincide.

2 Related Work

A lot of literature exists on the segmentation of the LV, but only little of it deals
with SPECT data. SPECT data is noisy and the level of detail is low. Anatomy
may be extracted from it only if an external model is supplied.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 335–342, 2005.
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a b c

Fig. 1. (a) thorax 3D SPECT data slice. (b) enlarged LV section with gap due to
infarct (arrow). (c) manual segmentation.

[1] gives an overview on previous approaches to segment the LV in SPECT
data. They conclude, that many approaches (threshold-based, region-based, etc.)
lead to bad results due the lack of model knowledge. Existing model-based tech-
niques either need user interaction, or they use unflexible and simple models, so
that no adequate segmentation of the LV is possible. No method exists, to cope
with perfusion gaps, which are typical for infarct patients.

The approach in [2] tries to solve this problem by using superquadrics, fol-
lowed by free form deformation. These implicit dynamic 3D shape models have
already been used in [3] for tracking the segmented LV in 4D-SPECT data. In [2],
a very simple model is used for an initial segmentation. Subsequent fine-tuning
via free-form deformation does not use model knowledge, but searches the data
slicewise for points supporting the interpolation. A bounding box of the LV must
be provided by the user for initial placement of the implicit mode.

The most promising of these methods all use some kind of model knowl-
edge. However, up to now, no appropriate automatic approach exists for the
segmentation of the LV in 3D-SPECT data.

3 Requirements

Our approach to automatic segmentation of the LV in 3D-SPECT data registers
a dynamic model with the data. We use mass spring models, known from the
linear elasticity theory ([4]), which are a special kind of deformable models.

Unlike active contours and snakes ([5]) these models are shape models in that
they model a specific shape intrinsically. They are governed by internal forces
(from springs) and external forces (from sensors at the mass points). They also
differ from mass spring models used in surgery simulation in that they do not
try to simulate a physically correct world. Our models use forces only in order
to find good segmentations.

Furthermore, the mass points do not represent exact locations with special
semantic meaning like in ASMs [6]. They are (beside their function in the model
dynamics) placeholders for sensors, searching for certain image features.

These mass spring models have several advantages. They can easily be applied
to 3D data. No training is necessary (in contrast to stochastic models). Local
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adjustment is easy, making interaction possible in a intuitive way. But also two
major disadvantages exist:

– Mass spring models are already very instable in a 2D environment, which is
even more so in 3D.

– A new mass spring model needs to be generated for every specific segmen-
tation task. Its topology and shape must be adequate.

To overcome these difficulties, we have developed a new kind of stable 3D mass
spring model that stabilizes itself by the use of an additional internal force,
the torsion force ([7]), even if it is only sparsely interconnected. Stability in
traditional models stems from a dense spring meshing that makes them inflexible,
expensive to compute and difficult to control.

Furthermore, we developed a technique to generate complex 3D mass spring
models automatically from an arbitrary sample segmentation ([8]). Models are
composed of substructures representing the features of the sample segmentation;
the level of abstraction can be controlled.

4 Segmentation Process

We now describe the automatic segmentation process. Its strategy is first search-
ing the object in the dataset, then segmenting its region roughly and finally
tracing its exact contour. So, the segmentation process consists of 3 phases:

1. Initial placement of the model: This step is crucial for the success of the
following phases, since dynamic models can only adapt locally.

2. Shape adaptation of the model: Here, shape, size and direction of the model
are fitted to the data.

3. Contour adaptation of the model: Now the model will be adapted to the
contour of the object to segment. The shape fitting of phase 2 as a starting
point will give this process a stable context.

4.1 Initial Placement

In the literature, the first and important phase of initially placing the model
is usually performed interactively or discussion is omitted completely. However,
shape models provide excellent possibilities to automate this step.

We generate a voxel template P from the intrinsic shape of our LV model,
which we employ for a flexible pattern matching on the 3D-SPECT dataset D to
find the approximate position of the LV in the data as a good initial position for
our model. This approach is possible, as the size and direction of the LV never
change dramatically in our datasets. Besides, there is always only one LV-shaped
object in the dataset, so that no ambiguities need to be resolved. Since our model
is very robust with respect to initial placement errors, a rough pattern matching
should provide sufficient information.
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a b c

Fig. 2. (a) contour cross section of the relaxed model. (b) according slice of the gener-
ated voxel template. (c) correlation image of the slice: bright means high correlation.

The template P is constructed from the relaxed model with no external forces
acting. The contour substructure of the model is treated as a polygonal mesh,
which is converted to a 3D voxel template (figure 2b) by 3D polygon filling.

For the pattern matching, we use two alternative techniques. One is based
on correlation, which can computed very fast by FFT. The other technique is
based on the pattern vector angle. It is reasonably fast, but much more robust
to brightness artefacts in the data.

Correlation. The SPECT dataset has only non-negative values, which repre-
sent the counts in a voxel. We apply the generated LV template P to the data.
P is a 3D voxel matrix with value 1 at the bright LV wall, value −1 in the dark
LV interior and value 0 at unspecified outer regions (figure 2b). So, both the
strong signal LV wall values and the weak LV interior values contribute to high
correlation values (see figure 2c).

The similarity measure eCorr we use is proportional to a 3D discrete correla-
tion. Correlation is susceptible to intensity artefacts (figure 3a). In such cases,
the second technique described in the following section is a better option.

Pattern vector angle (PVA). A fairly fast pattern matching technique that
does not rely on intensity levels can be realized by the use of the pattern vectors.
These are comprised of all the voxel values from a region in a fixed order. If
one measures the similarity of two equally-sized patterns via the angle between
them, it does not depend on the intensity level of the data but on the shape
([9]). The shape is represented by the direction of the pattern vectors, whereas
their lengths depend on this intensity level. Equation 1 shows the calculation of
this angle at position p, i.e. the similarity measure ePVA.

ePVA(p) = cos∠(D(p),P (p)) =
〈D(p),P (p)〉

‖D(p)‖ · ‖P (p)‖ (1)

The method is less susceptible to artefactual intensity peaks (compare fig-
ures 3a and 3b) at the expense of higher computation times.
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a b

Fig. 3. (a) correlation image and (b) PVA image in Y direction. Bright regions depict
high similarity values. An artefact in the dataset (red, left arrow) is only in (a) cal-
culated with a higher similarity value than the correct position (yellow, right arrow),
which has in (b) the highest similarity value.

4.2 Shape Adaptation

After initial placement, the model starts adapting to the dataset. The primary
goal in this step is a rough adaptation of the model shape.

This is achieved by running the model with the external forces from its inten-
sity sensors only. These sensors drive the mass points towards certain intensity
levels in the data. They are evenly spread over the model and intensity informa-
tion is present all over the dataset. The model therefore has good data support
to adapt its rough shape quickly to it. Gaps in the LV are not critical in this
phase, because they are surrounded by enough intensity information on which
the model can rely. Contour sensors, which act on mass points towards contours,
are not used in this phase. This way, a fast, flexible and robust model adaptation
is achieved without disturbing the model by too many details too early.

The model movement is simulated until the model dynamics reach an equi-
librium. The criterion for this is that every mass point stays within a small
neighborhood around its position for a fixed number of simulation steps (equa-
tion 2, where mit is the position vector of the ith mass point at time step t).

∀ i ∀ 0 ≤ j < n− 1 :
∥∥mit−j −mit−(n−1)

∥∥ ≤ ε for t ≥ n (2)

4.3 Contour Adaptation

The goal of this last step is the exact model adaptation to the data. This phase
is similar to the previous phase, but now contour sensors are also active. Due to
the previous step they should find the correct contour very close to their starting
point. This leads to a fast and robust segmentation in this final phase.

In the case of gaps in the bright LV wall, where no such contour can be found,
the still active intensity sensors in this region will stabilize the model. This way,
these gaps are interpolated by the model.

Because of the high complexity in 3D, there are normally many potential
contours close to a sensor. We therefore developed a directionally sensitive sensor,
which takes the gradient direction of the 3D contour into account ([10]).
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5 Evaluation

For our tests, we developed a prototype, which was running on a standard PC
(1,3 GHz Pentium M, 512 RAM) with a modern 3D graphics card (NVidia
GeForce-Go5200 64MB). The concept of dynamic cached sensor cards (see [10]
for that) for each sensor in the model allows for a very fast model dynamics
simulation, so that the model motion can be visualized in real time. This way it
is much easier to assess the model behavior on the data.

We tested our method on 41 3D-SPECT datasets of human LV’s from 25
different patients (128 x 128 voxel slices, 25 to 38 slices per dataset, cubic voxels
with 4.795 mm edge length). For evaluation, we used a subset of 7 datasets,
which were mostly (5 of 7) affected by infarcts (up to 25 %). We used manual
segmentations from a medical professional as gold standard.

For a quantitative assessment, we used several measures (relative segmen-
tation error, Hausdorff distance and average surface distance) to calculate the
similarity between the gold standard and the binary voxel segmentation.

The model was generated automatically from one of the 7 datasets. It con-
sisted of 153 mass points, 630 springs and 124 contour faces. The average spring
degree at a mass point was 8.24. This is not a very complex 3D model, but it is
already too complex to be generated by hand.

We weighted external model energy in the simulation 10 times stronger than
the internal energy and used a damping of 2 %. For a detailed review of all these
mostly non critical parameters see [10].

5.1 Segmentation Process Evaluation

Table 1 shows the results of the two techniques for initial placement discussed
in section 4.1. Correlation was fast (below 1 sec) and mostly correct. It failed
only in one case, when the dataset had a bright artefact. PVA had no problems
with this artefact, as expected, but was noticeably slower (35 sec). Thus, it was

Table 1. correctness of the initial model placement by means of correlation respectively
pattern vector angle (PVA)

Similarity / Dataset 1 2 3 4 5 6 7
Correlation correct correct correct wrong correct correct correct

PVA correct correct correct correct correct correct correct

Table 2. effect of phase count on the average automatic segmentation quality on the
datasets 1 to 3

Phase Count False Seg. Hausdorff. Aver. Dist.

2-phases approach 27.3 % 1.79 vox 0.410 vox
3-phases approach 26.4 % 1.71 vox 0.398 vox
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only selected in datasets with bright artefacts being recognizeable by abnormal
high count values.

Several of the parameters for the automatic segmentation process were de-
termined on a subset of the 7 datasets (dataset 1 to 3), so that their values
could be verified on the remaining 4 datasets. These tests prove the 3-phases
approach to be reasonable, since without the second phase for the approximate
model adaptation (section 4.2), the segmentation quality decreases (table 2).

5.2 Segmentation Results

Table 3 shows the results of the automatic segmentation of the 7 datasets. They
are compared with the results of the manual segmentations by two experienced
users. It can easily be seen, that the automatic technique is much faster than
the manual process. Its quality is slightly better. In all cases, it lies within in the
inter-observer variance. This fact is illustrated by figure 4, which gives a visual
impression of the segmentation quality.

Table 3. average segmentation results of the automatic process and the manual seg-
mentations by two experienced users (A and B)

Segmentation Duration False. Seg. Hausdorff. Aver. Dist.

Auto. Seg. 25.3 sec 29.4 % 2.21 vox 0.436 vox
Seg. by A 15.6 min 36.5 % 2.81 vox 0.667 vox
Seg. by B 21.4 min 30.6 % 2.39 vox 0.534 vox

Qualitative inspection of the results on the remaining datasets, where no
gold standard existed, confirmed these results: Phase 1 always detected a correct
initial model position and the next phases adapted the model visually correct to
the LV (similar to figure 4).

a b c

Fig. 4. results (yellow, bright) of automatic and manual segmentation in comparison
to the gold standard (blue, dark). (a) automatic segmentation process. (b) manual
segmentation of user A. (c) manual segmentation of user B.
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6 Discussion

Our automatic segmentation method found and segmented the LV in all datasets
correctly. It needs only a small fraction of the time required to achieve an equiv-
alent result by hand. The 3-phases approach and the direction-weighted contour
sensors have proven effective for the successful segmentations. Furthermore, the
good results of phase 1 make the interactive initial model placement obsolete.

Our stable 3D mass spring model and the technique to generate it automat-
ically from a sample segmentation were crucial for the good results. It enabled
bridging gaps caused by reduced perfusion while being able to adapt to the
individual shape of each LV.

The segmentation method was fast and robust on noisy, low-resolution data.
In the next step, we will investigate its performance on more complex data.
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Abstract. Vulnerable plaques are dangerous atherosclerotic lesions that
bear a high risk of complications that can lead to heart attacks and
strokes. These plaques are known to be chronically inflamed. The vasa
vasorum (VV) are microvessels that nourish vessel walls. Proliferation
of VV is part of the “response to injury” phenomenon in the process
of plaque formation. Recent evidence has shown strong correlations be-
tween neovessel formation and macrophage infiltration in atheroscle-
rotic plaque, suggesting VV density as a surrogate marker of plaque
inflammation and vulnerability. We have developed a novel method for
imaging and analyzing the density and perfusion of VV in human coro-
nary atherosclerotic plaques using intravascular ultrasound (IVUS). Im-
ages are taken during the injection of a microbubble contrast agent
and the spatiotemporal changes of the IVUS signal are monitored us-
ing enhancement-detection techniques. We present analyses of in vivo
human coronary cases that, for the first time, demonstrate the feasibility
of IVUS imaging of VV.

1 Introduction

Vulnerable plaques are subsets of atherosclerotic lesions that rupture and cre-
ate blood clots resulting in acute coronary syndrome and sudden cardiac death.
Plaque inflammation plays a central role in its vulnerability to future complica-
tions (e.g., rupture, hemorrhage, distal emboli, and acute stenosis). The search
for an intracoronary technology capable of imaging both plaque morphology
and activity (inflammation) is currently a very active topic in the cardiology
community [1]. Despite major advances in the development of other intravas-
cular imaging techniques, intravascular ultrasound (IVUS) remains the most
widely-available technology to interventional cardiologists. However, the major
drawback of IVUS has been its inability to gauge plaque inflammation.

The vasa vasorum (VV) are microvessels that nourish vessel walls (Fig. 1(a)).
In conditions with extensive neovessel formations such as atherosclerotic plaques,
tumor angiogenesis, and diabetic retinopathy, most are fragile and prone to
leak or rupture. In the field of atherosclerosis, recent evidence indicates that
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(a) (b) (c)

Fig. 1. (a) Vasa vasorum histology (reprinted from [9]) in relation to (b) a typical IVUS
frame and (c) its labeled regions (from the center outward: the catheter; the echofree
lumen; the plaque area with the intima, its membranous leading edge; the echofree
media; and the adventitia)

proliferation of VV is a preceding or concomitant factor associated with plaque
inflammation and instability [2, 3].

We have developed a novel method which, for the first time, enables IVUS
imaging of atherosclerotic plaque inflammation based on quantification of VV
density and perfusion. Our primary contributions are: 1) an IVUS acquisition
protocol which utilizes a recently-developed ultrasound contrast agent to in-
duce echogenicity in the VV, and 2) an automated algorithm for the detection,
quantification, and visualization of VV in the resulting contrast-enhanced image
sequences.

Related work includes plaque characterization [4, 5] and the imaging of my-
ocardial perfusion [6] and angiogenesis [7]. Recent research into IVUS imaging
has been primarily aimed at automating the segmentation task for the major
IVUS features [8] (Figs. 1(b)-(c)). To the best of our knowledge, there have been
no previous reports of automated detection and imaging of VV.

2 Materials and Methods

IVUS System: We use both a solid-state phased-array 20 MHz scanner (Volcano
Therapeutics Inc. – InvisionTM) and a rotating single-crystal 40 MHz scanner
(Boston Scientific Inc. – GalaxyTM).

Microbubbles: We use OptisonTM, a new ultrasound contrast agent composed of
albumin microspheres filled with octafluoropropane gas.

VV Imaging Protocol: 1) Acquire IVUS frames for several minutes to obtain un-
enhanced signal (“pre-injection” period); 2) inject contrast agent, temporarily
washing out the frames due to luminal saturation (“during-injection” period);
and 3) acquire frames for several minutes further to obtain signal indicating po-
tentially enhanced areas due to perfusion into the VV (“post-injection” period).
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During all periods, the IVUS catheter is held fixed; 1 min into the final period,
5 cc normal saline is injected to flush out remaining microbubbles.

Imaging Vasa Vasorum Density: Following acquisition, our VV detection, quan-
tification, and visualization method consists of three steps.

• Step 1: Track cardiac motion throughout the sequence to allow compensation
for relative catheter/vessel movement (Sect. 2.1).

• Step 2: Perform enhancement detection using difference-imaging and statis-
tical techniques (Sect. 2.2).

• Step 3: Quantify and visualize the resulting enhancement (Sect. 2.3).

2.1 Step 1: Motion Compensation

In stationary-catheter IVUS studies, maintaining a fixed catheter position with
regard to an anatomic point of reference is impossible in practice due to the
periodic motion of the heart. Relative motion between the catheter and vessel
produces image sequences in which each frame deviates from its predecessors;
this deviation makes analysis of a specific anatomic region-of-interest (ROI)
difficult. Our studies were performed on IVUS sequences which lacked associated
electrocardiogram gating data. Consequently, to track cardiac motion, we have
developed a method inspired by Zhu et al. [10], in which cardiac phase is derived
from the IVUS sequence itself. This allows us, in subsequent processing, to select
frames according to their position in phase (and, by extension, their physical
orientation). Phase extraction is accomplished through ROI selection, intensity
metasignal generation, and filtering and signal reconstruction, as follows.

ROI Selection: We select a fixed ROI in the IVUS frame to monitor the changes
in intensity in this region over time. We do not analyze data from the entire
frame because the lumen/catheter region has little useful signal and the adven-
titial region has a very low signal-to-noise ratio. Instead, the intensity study is
concentrated on the region between the luminal border and the adventitia. The
ROI need not be a perfect segmentation of this region, however; we may simply
compute an average frame over a particular time range (e.g., one cardiac period)
and create a mask which on average contains the entire ROI.1

Intensity Metasignal Generation: To produce these metadata, we use one of two
techniques: average intensity or inter-frame difference. The average intensity g
at frame i over our ROI is given by gi = 1

n

∑
(x,y)∈ROI

Fi(x, y), where F is an IVUS

frame. The inter-frame difference d between frame i and the previous frame i−1
is given by di = 1

n

∑
(x,y)∈ROI

|Fi(x, y)− Fi−1(x, y)| (in both cases, n is the area in

pixels of the ROI). Here we use these techniques interchangeably; typically the
only difference in the methods is a phase shift between the resulting signals.

Filtering & Signal Reconstruction: Due to the spurious extrema present in the
signal (Fig. 2(a)), it is necessary to apply a filter to isolate those maxima and
1 As we rely on a fixed ROI here, we do not employ a segmentation algorithm.
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Fig. 2. (a) Plot of gi for the first 201 frames of Case 1 and (b) the filtered result

minima which represent the motion we are interested in. A Butterworth bandpass
filter is applied, H(ω) = 1

/√
1 + [2(ω − ωc)/Δω]2m, where the filter frequency

ωc is centered at the dominant cardiac frequency, the width Δω = 0.6(ωc), and
the order m = 4. We have found stationary-catheter IVUS studies to be robust
with regard to automatic cardiac phase extraction as signals produced with this
method exhibit a prominent peak in the frequency domain; this makes algorith-
mic determination of ωc much more feasible than in previous pullback studies.
While this peak is generally obvious to the human viewer, we have noted two
other common sources of low-frequency noise which must be appropriately ig-
nored: these include a prominent DC component related to the mean intensity
or inter-frame difference, and other low-frequency components due to the mi-
crobubble washout during acquisition, which causes a varying mean grey-level
to occur in the ROI over time. Once the signal is collected, transformed to the
Fourier domain, ωc is determined, and the signal is filtered, it is returned to the
time domain (Fig. 2(b)). The set of frames associated with, e.g., the peaks in
this time-domain signal are considered correlated by our definition.

2.2 Step 2: Enhancement Detection

The goal of enhancement detection is to localize and quantify the subtle inten-
sity changes in the IVUS image sequence due to the presence of perfused VV in
the field of view of the IVUS sensor following microbubble injection. For detec-
tion to be reliable, it must be invariant both to motion and to the presence of
ultrasound (US) speckle noise in the image. The former issue was discussed previ-
ously (Sect. 2.1) while, to address the latter, our enhancement detection method
combines difference imaging with temporal averaging to attenuate speckle.

Difference imaging, broadly, involves a “before” image (Ib) and an “after”
image (Ia). Here, Ib is a baseline frame derived from a set of phase-correlated
pre-injection frames which are pixel-wise averaged for noise reduction. That is,
if we have a set of k phase-correlated pre-injection frames F ≡ {F1 . . . Fk}, then

Ib = 1
k

k∑
i=1

Fi. The number of frames averaged to produce this image may be
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fairly large as we are interested only in highly temporally-coherent features of
the sequence for this baseline. The image Ia is either a single post-injection
frame or an average of correlated post-injection frames. Single frames are useful
if producing a video sequence, while temporal averaging of the post-injection
set to produce Ia will suppress speckle noise along with temporally incoherent
enhanced regions (e.g., passing microbubbles).

Once Ib (baseline) and Ia (post-injection) images are available, a difference
image is produced by pixel-wise subtraction, Id = Ia − Ib, with negative values
thresholded to zero. This raw difference image shows areas of true enhance-
ment in addition to low-valued areas of false enhancement due to US artifacts.
Consequently, further thresholding must be applied to reduce the noisy appear-
ance of the image, but this is done conservatively to avoid suppressing rele-
vant enhancement. In this context, we have developed an automatic threshold-
ing technique inspired by classical expectation-maximization algorithms and the
work of Bruzzone and Prieto [11]. A grey-level threshold is determined for Id

under the assumption that it is a Bayesian mixture of probabilities p(X) =
p(X/υu)P (υu) + p(X/υe)P (υe) where p(X) is the overall probability density
function (PDF) of the difference image, p(X/υu) and p(X/υe) are the PDF’s of
the unenhanced (u) and enhanced (e) pixels respectively, and P (υu) and P (υe)
are the a priori probabilities of these classes (unknown quantities are initially
estimated from histogram statistics). Following global thresholding, a Markov
modeling technique is applied to account for spatial relationships. This takes
the strength of a point of detected enhancement into consideration along with
its neighborhood to determine whether the enhancement is salient; this has the
effect of reducing spot noise while refining the edges of enhanced regions. Note
that for the purposes of estimating probabilities and enhancement levels, only
the pixels in a ROI of the frame are taken into consideration: typically the
intimo-medial region where we expect to find VV. As per Sect. 2.1, this ROI is
fixed and need not perfectly segment the region.

Video sequences may be generated to show the changes in microbubble per-
fusion over time. In this case, the baseline Ib remains as defined previously, while
the comparison images are a sequence of running averages of phase-correlated
post-injection frames. That is, if a sequence of k correlated post-injection frames
C ≡ {C1 . . . Ck} is available and a p-frame running average is used (where p is
odd), an h-frame video sequence may be produced, where h = k− p+ 1 and the

raw difference image for a particular frame i ∈ [1, h] is Id = (1/p
p∑

j=1
Ci+j−1)−Ib.

In addition, by binning the frames by cardiac phase into a convenient data
structure, it is trivial to extend this method to utilize all post-injection frames
by associating each frame in a sequence with its p− 1 correlated neighbors.

2.3 Step 3: Quantification and Visualization of Enhancement

To quantify enhancement over time, a signal is produced composed of the av-
erage enhancement per enhanced pixel (AEPEP) of each frame. This is defined
as follows. If P ≡ {P1, . . . , Pq} is the set of intensities of all pixels labeled “en-
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hanced” in the ROI of the difference image after thresholding and refinement,
then the AEPEP value for the frame is given by ε = 1

q

∑
p∈P

p. A useful feature of

the AEPEP metric is that it remains relatively constant in spite of changes in the
apparent area of the enhanced regions due to US distortion. Metrics utilizing the
entire ROI were found to be too noisy as measures of enhancement. In addition,
we fit an approximating spline to the resulting AEPEP signal to highlight trends
for the human observer. Where results are presented as color-coded images, the
unit of intensity is a percentage indicating an enhanced pixel’s difference level
divided by the maximum grey-level difference (255).

3 Results

We conducted microbubble contrast-enhanced IVUS imaging on seven patients
with coronary artery disease using the ACESTM (Analysis of Contrast-Enhanced
Sequences) software developed for this project. Due to space limitations, data
collected from one typical case is presented in detail and six cases presented in
summary.2

(a) (b) (c)

Fig. 3. Case 1: (a) raw difference image, and (b)-(c) thresholded difference images at
frames 600 and 800, respectively. Unit of intensity is %, as discussed in Sect. 2.3.

Case 1: This sequence consists of 1,073 frames sampled at 10 frames/s. Contrast
agent (CA) first appears in the lumen in frame 404, complete washout due to
lumen echo-opacity occurs from frames 452-490, and CA reaches a minimum
in the lumen around frame 530. Figure 3(a) illustrates a raw difference image
showing marked enhancement in the plaque region, particularly at 6 o’clock (note
relation to calcified plaque in Fig. 4(a)) and from 10-12 o’clock. Auto-thresholded
difference images (Figs. 3(b)-(c)) exhibit the changes in enhancement over time
due to diminution. A magnification of an area of enhancement is shown in Fig. 4;
this highlights the difficulty of imaging the echo-transparent VV under normal
circumstances. Enhancement is plotted over time in Figs. 5(a) and 5(b) for the
intimo-medial/plaque and adventitial regions respectively.
2 Additional figures are available from http://www.vcl.uh.edu/CARDIA.
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(a) (b) (c)

Fig. 4. (a) Unenhanced frame from Case 1, (b) a magnified ROI of the frame, and (c)
the ROI with an overlay showing enhanced features invisible in (b). Observe conceptual
agreement with histological observations reported in the literature (Fig. 1(a)).

(a) (b)

Fig. 5. Case 1: AEPEP over time for the (a) intimo-medial region and (b) adventi-
tia. Pre- and post-injection means are shown (dotted horizontal lines; graph has been
translated to 0% pre-injection mean). Injection start and peak are marked by vertical
lines. Solid areas indicate the injection and return-to-baseline periods.

Summary: Enhancement statistics for six additional cases whose analyses were
identical to that of Case 1 are presented in Table 1. The pre-injection mean
AEPEP (μpre) scores report a positive value due to random speckle events oc-
curring above each frame’s enhancement threshold. Hence, the most meaningful

Table 1. Representative results from seven case studies.

μpre μpost R

Case 1 2.41% 9.13% 3.79
Case 2 1.90% 2.80% 1.47
Case 3 1.53% 3.97% 2.59
Case 4 1.88% 3.35% 1.78
Case 5 1.48% 2.27% 1.53
Case 6 2.50% 2.70% 1.08
Case 7 4.00% 5.50% 1.37
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global enhancement metric we have found is the ratio of the post-injection mean
(μpost) to pre-injection mean, R = μpost

μpre
. This ratio appears to correlate well

with the strength and quantity of visible enhancement in our studies.

4 Discussion

We have described a novel method which, for the first time, enables IVUS imag-
ing of VV presence. Due to the inherent limitations of in vivo human coronary
IVUS studies, we were unable to correlate our findings with histopathological
evidence of VV density. However, the significant changes in the IVUS signal
after microbubble passage leave no doubt as to its ability to show contrast en-
hancement. Knowing that almost all blood perfusion in plaques comes through
VV capillaries, we hypothesize that the enhancement is related to the density of
VV in the vessel wall. A comparison of our images with the μCT and pathology
images of VV reported in the literature [9] shows a conceptual agreement.

In vitro studies are currently underway to further gauge the accuracy and
robustness of our technique. We are also investigating high-speed acquisition of
the raw radiofrequency signal in order to more effectively measure the subtle
changes in the backscatter from inside the plaque and adventitia. A clinical
discussion of our results may be found in [12].
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Abstract. Analyses of fMRI brain data are often based on statistical
tests applied to each voxel or use summary statistics within a region
of interest (such as mean or peak activation). These approaches do not
explicitly take into account spatial patterns in the activation signal. In
this paper, we develop a response surface model with parameters that
directly describe the spatial shapes of activation patterns. We present
a stochastic search algorithm for parameter estimation. We apply our
method to data from a multi-site fMRI study, and show how the esti-
mated parameters can be used to analyze different sources of variability
in image generation, both qualitatively and quantitatively, based on spa-
tial activation patterns.

1 Introduction

Functional magnetic resonance imaging (fMRI) is one of the primary techniques
for studying how the brain functions when triggered by external stimuli. Neural
activity in local areas of the brain changes the oxygenated blood level, changes
that in turn can be detected by MRI scanners. The data collected in an fMRI
session consist of a time-series of voxel images, containing both temporal and
spatial information about brain activation patterns. The temporal aspect of the
data is often aggregated by fitting a linear regression model that relates the
activation data at each voxel to the stimulus signal and perhaps other predictors
as well. The regression coefficients of the stimulus signal at each voxel (often
denoted as β) or other regression summary (e.g., t-statistic) can then be used as
a statistical parametric map of activity [1]. There is a significant body of prior
work using techniques such as hypothesis testing and thresholding to search these
statistical voxel images for activated brain regions. Test statistics used in these
techniques include the maximum activation intensity within a selected region
of interest, or the spatial extent of the largest set of contiguous voxels above a
threshold [2, 3].

An important aspect of the data that is typically not considered in these
studies is the spatial pattern of activation across voxels. Voxels with a high
activation level tend to appear in spatial clusters in the β-maps, forming what
looks like a bell shape for each activation cluster. These spatial clusters can
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be explained to first order by assuming that the underlying true activations
are point sources that are then spatially smoothed (convolved) by Gaussian-like
filters.

In this paper we characterize fMRI activation patterns in the brain by mod-
eling the shape of each “activation cluster” by (a) its height or peak value,
representing the amount of activation, and (b) the location of the cluster, mod-
eling the center of activation in voxel-space. We represent these features using
a parametric model of the functional form of the surface with free parameters
for the heights and center locations of the “bumps.” These parameters can be
estimated in a statistical manner from the β activation maps.

In terms of relevant prior work, Hartvig [5] also used a similar parametric
function for modeling spatial activation patterns. However, the focus in this ear-
lier work was on extracting activated voxels by thresholding after the model
parameters were estimated. In the work described in this paper we are inter-
ested in the shape features themselves, and analyze the activation pattern at the
feature level rather than at a voxel level. In our experiments we show how the es-
timated features of the local activation clusters can be used in a multi-site study
of fMRI to analyze sources of variability. Evidence in this direction is suggested
by Fig. 1, where the locations of the peaks of activation are more consistent
in the four runs of the same subject within the same site (MRI scanner), than
between the two sites.

Multi-site fMRI studies are not currently common, but are becoming more
so as the need is growing to combine imaging data across sites to create larger
datasets than would be possible at a single site. These datasets allow imaging
experiments in rare diseases where few subjects would be available at any given
site, or with very complex hypotheses where a single site study would be under-
powered. In particular, in one multi-site study of signal reliability across sites
[4] the activation levels and locations were similar, but the pattern of activation
across sites was very different. The ability to assess such patterns of activation
provides the primary motivation for the method proposed in this paper.

The paper is organized as follows. In Sect. 2, we briefly describe the data

(a) Duke (4T) site

(b) Iowa site

Fig. 1. Raw data (β maps) for a cross section
at z = 53 of the right precentral gyrus of four
runs within visit 2 of subject 3

collection process and preprocessing
steps used to produce the activa-
tion maps analyzed in this paper.
In Sect. 3, we introduce a spatial
model for activation patterns, de-
scribe inference procedures for this
model and present experimental re-
sults based on fitting this model to
multi-site fMRI data. In Sect. 4, we
show how the shape features esti-
mated from the surface modeling
can be used to investigate multi-site
variability. Sect. 5 concludes with a
brief discussion on future work.
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2 Multi-site Data Collection and Preprocessing

fMRI scans for the same five control subjects were collected from 10 different
scanners (UCSD, UCI, Stanford, Duke (1.5T), Duke (4T), New Mexico, Min-
nesota, Iowa, BWH, MGH) as part of a multi-site study of functional brain
images, known as FIRST BIRN (Functional Imaging Research on Schizophrenia
Test-bed Biomedical Informatics Research Network), also known as Function
BIRN or fBIRN. For each subject there were two visits to each site, and at
each visit fMRI data were collected for four runs of a sensorimotor task and two
runs of breathholding, resting, and two cognitive tasks. A primary goal of this
data collection is to better understand the variability of fMRI response patterns
across runs, visits, scanners (sites) and subjects, so that future data collected
across sites and subjects can be analyzed collectively and consistently. In this
paper, we use the data from the sensorimotor task, and we focus on activation
within specific regions of interest such as the right precentral gyrus and the left
superior temporal gyrus that are relevant to this task.

Each run of the sensorimotor task produces a series of 85 scans that can be
thought of as a large time-series of voxel images. The set of scans for each run
is preprocessed in a standard manner using SPM99, with the default settings.
The preprocessing steps include correction of head motion, normalization to a
common brain shape (MNI template), and spatial smoothing.

A general linear model is then fit to the time-series data for each voxel. A
β-map is a voxel image of the regression coefficients (β’s) that summarizes the
activation across time as an activation map. Binary masks for regions of interest
from the normalized atlas were then used to extract the β values for all voxels
within the region.

3 Activation Surface Modeling

3.1 Model

We model the spatial activation pattern (β-map) for a region of interest as a
superposition of multiple Gaussian-shaped surfaces, with a constant background
term for non-activation, and with additive Gaussian measurement noise. Be-
low we develop the model for the case of 2-dimensional slices of pixels—the
3-dimensional case can be derived directly as an extension of the 2-dimensional
case, but is not pursued in this paper.

Assuming the number M of Gaussian surfaces for a 2-dimensional slice of
a region is known and fixed, the model for the activation value β at position
x = (x1, x2)′ is defined as

β = μ+
M∑

m=1

kmexp (−(x− bm)′(x− bm)/σm) + ε, (1)

where ε is distributed as N(0, σ2), and μ is the background level. θm = {km,bm,
σm}, m = 1, . . . ,M , is the set of parameters for the mth Gaussian surface,
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corresponding to activation centered around bm = (b1m, b2m)′ with height of
km, and σm controlling the volume under the surface. By using σm instead of a
2×2 covariance matrix, we assume a spherical shape with no correlation between
x1 and x2 directions.

In the Bayesian estimation setting, we are interested in the posterior dis-
tribution of the unknown parameters p(μ, σ, θ1, . . . ,θM |β). Using Bayes’ rule,
we write p(μ, σ,θ1, . . . ,θM |β) = p(β|μ, σ,θ1, . . . ,θM )p(μ, σ,θ1, . . . ,θM )/p(β),
where p(β| μ, σ,θ1, . . . ,θM ) is the likelihood of the β values β = {β1, . . . , βN}
for a region with N voxels given the model in (1). Assuming independent priors
for (μ, σ2), and θm’s, we choose a uniform prior p(μ, log σ) ∝ 1 for (μ, log σ),
p(km) ∝ 1 for km’s, where km > 0 for positive activations, and assign a Gamma
(a, b) prior on σm with hyperparameters a and b. Given that it is reasonable
to believe that the center of activation bm is located inside (or close to) the re-
gion of brain under consideration, we assume p(bm) is uniform inside or within
one pixel of the region. It is straightforward to verify that this choice of prior
distributions yields a proper posterior distribution.

3.2 Parameter Estimation Using Stochastic Search

Because of the nonlinearity of the model described in Sect. 3.1, it is not possible
to determine the posterior distribution of the parameters analytically, and we
need to rely on simulation methods to obtain samples from the posterior. In this
work, we use a combination of the Gibbs sampler and the Metropolis algorithm.

In the Gibbs sampler, starting from initial values for the unknown parame-
ters, at each iteration we update each parameter in turn by replacing it with a
sample from its conditional posterior distribution given the data and the most
recent samples of the other parameters. By repeating this update, the Gibbs
sampler converges (under mild conditions) to a state where the samples can be
presumed to be coming from the joint posterior distribution of interest. Direct
sampling from the conditional posterior distribution is possible for μ and σ2,
but not for the θm’s. The Metropolis algorithm is used to sample θm’s inside
the Gibbs sampler. We describe the details of the sampling algorithm below.

1. Sample a new value for μ from its conditional posterior distribution p(μ|σ,θ1,

. . . ,θM ,β) = N(μ̂, σ2/N), where μ̂ = (
∑N

i=1(βi−
∑M

m=1 kmexp(−(xi−bm)′

(xi − bm)/σm)))/N .
2. Sample a new value for σ2 from its conditional posterior distribution. Given

the prior p(log σ) ∝ 1, which is equivalent to p(σ2) ∝ σ−2, the condi-
tional posterior distribution for σ2 can be found as p(σ2|μ,θ1, . . . ,θM ,β) =
Inv-gamma

(
ν/2, (ν/2)s2

)
, where the degree of freedom ν = N and s2 =

(
∑N

i=1(βi − μ−
∑M

m=1 kmexp(−(xi − bm)′(xi − bm)/σm))2)/N .
3. For m = 1, . . . ,M ,

(a) Sample k∗m from the jumping distribution N(km, (τk)2) and compute
r = (p(β|k∗m,θ−km)p(k∗m))/(p(β|km,θ−km)p(km)), where θ−km repre-
sents all parameters other than km. If r > 1, accept k∗m as a new value
for km, otherwise, accept it with the probability r.
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(b) Update bm as in 3a, but using the jumping distribution N2(bm, (τb)2I).
(c) Update σm as in 3a but using the jumping distribution N(σm, (τσ)2).

Before the start of the sampler, the values for (τk)2, (τb)2, and (τσ)2 in Step 3
are adjusted to values that keep the acceptance rate at roughly 30-50%.

In the results described below we summarize the posterior distributions via
“point estimates” (specific values of the parameters), corresponding to the mean
values for each parameter over the samples (i.e., the estimated posterior mean).

3.3 Results from Surface Fitting

Raw data Estimated surface

Right precentral
gyrus at z = 53

Left superior
temporal gyrus
at z = 33

Fig. 2. Raw data vs. estimated surfaces from
run 3, visit 2, and subject 3 at Iowa site

In this section, we discuss results
of our modeling procedure for two
cross sections, one at z = 53 of
the right precentral gyrus and an-
other at z = 33 of the left supe-
rior temporal gyrus, for subjects
1 and 3 in our study, for the sen-
sorimotor task at all sites.

From visual inspection of the
images, we set the number of
Gaussians in the model to M = 1
for subject 1, and M = 2 for sub-
ject 3 in the case of the right precentral gyrus, and M = 2 for both subjects in
the case of the left superior temporal gyrus. From an exploratory analysis of the
data, the hyperparameters a and b of the gamma prior distributions of the σ’s
were set so that the mode and variance are approximately 15 and 160 (a = 3.0
and b = 0.1365). With this setting of the model, we ran the Markov chain sim-
ulation for 20,000 iterations for each image until convergence, and output the
mean of the samples from the last 10,000 iterations to provide point estimates
of the parameters.

A typical example (for a particular run, visit, and subject) is shown in Fig.
2, comparing the raw β maps with the activation maps for the fitted model
based on point estimates of the parameters from the same raw data. The shapes
of the activation pattern in the estimated surfaces such as the locations of the
peaks are consistent with what we see in the raw data. Table 1 shows an average
across multiple images of the sum of squared errors (across voxels) between
the fitted model and the data, divided by the voxel variance in each image and
expressed as a percentage—in effect, the average amount of variability in the

Table 1. Percentage of variance not explained by the models

subject 1 subject 3
Right precentral gyrus (z = 53) 15.4% 7.1%
Left superior temporal gyrus (z = 33) 16.1% 5.6%

data not ex-
plained by the
model. Both
Fig. 2 and Table
1 suggest that
while the func-
tional form of
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the model is a result of various simplifying assumptions it nevertheless provides
a good fit to the observed spatial activation patterns.

4 Modeling Sources of Variability

We can think of the estimated parameters of the model as features that summa-
rize the activation pattern, and analyze the statistical variation of these features
rather than that of the raw data. Fig. 3 visually shows the variabilities in the
estimated location parameters of the local activation centers at each of run, visit,
and site levels for the cross section z = 53 of the right precentral gyrus of sub-
ject 3. The estimated locations are represented as o’s for visit 1 and +’s for visit
2. The two bumps are connected with a line if they come from the same run.
Across certain groups of sites (e.g., UCI and UCSD) there appears to be little
cross-site variability in the estimated spatial locations, but between other pairs
(e.g., MGH and UCI) the cross-site variation is much larger than the within-site
variation. Qualitatively similar results are obtained for other cross-sections.

In this section, we attempt to quantify the contributions of site, visit, and run
effects to variation in features of the local activations within each subject. In the
case of M = 2, we first find the correspondence of the two bumps across images
from different sites, visits and runs based on the estimated location parameters
using a simple heuristic algorithm, and consider each bump seperately in the vari-
ance component analysis. In Sect. 4.1 we discuss a Bayesian hierarchical model for
a variance component analysis. In Sect. 4.2 we present the results from the model.

4.1 Bayesian Variance Component Analysis

A traditional variance components analysis can be used to decompose the ob-
served variation in signal into portions attributable to site, visit, and run vari-
abilities. One such model that we choose to use in our analysis is yijk = μ+ si +

UC Irvine UC San Diego Stanford Duke 1.5T Duke 4T

Minnesota New Mexico MGH BWH Iowa

Fig. 3. Variability in locations parameters estimated from right precentral gyrus at
z = 53 of subject 3. o’s are visit 1, and +’s are visit 2. Two locations are connected
with a line if they come from the same image.
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vij +rijk , where yijk is the response measure, μ is an overall mean, si is a site ef-
fect, vij is a visit effect and rijk is a run effect (essentially all sources of variation
not included in previous terms). The responses yijk’s considered in this analysis
are the estimated locations and heights of each of the Gaussian components.
Each of the effects (site, visit, run) is further modeled as a Gaussian random
variable with mean zero and variance/covariance parameter that characterizes
the contribution to overall response variability of the particular source. It is the
variance parameters, or the variance components, that are of interest.

Parameters are estimated as means of the posterior distribution of the vari-
ance components from a Bayesian analysis with weak prior distributions on the
variance components. The prior distributions for the analyses reported here are
N(0, 1010) for μ (a common vague prior for the mean of a Gaussian distribu-
tion), gamma with mean 1 and variance 100 on the one dimensional precision
parameters (reciprocals of the variances), and Wishart distribution with degree
of freedom 2 and scale parameters estimated empirically from the yijk’s for the
covariance matrices. Samples of the variance parameters from their posterior dis-
tribution given the data are obtained using WinBugs, a freely available software
implementation of the Gibbs sampler. The Gibbs sampler was run for 1,000,000
iterations by which time the draws were determined to be representative of the
posterior distribution. The means of the last 200,000 draws are reported as es-
timates for the variance components.

4.2 Results

We compute the variance components for sites, visits, and runs of location and
height parameters, and show the proportions of variance with respect to the
total variation in Tables 2 and 3. For the 2 × 2 covariance matrices of location
parameters, we use the absolute value of the determinant of the matrix as a
summary of the amount of variation instead of the full matrix.

In the cross section of z = 53 of the right precentral gyrus the effect size due
to sites is consistently larger than visit and run effects across different bumps and
subjects in both locations and heights. The visit effects account for the smallest
proportion of the total variabilities. Note also that the relative sizes of variance
components (for sites, visits, runs) are similar for both subjects.

A slightly different pattern is observed in the cross section of z = 33 of the left
superior temporal gyrus. The contribution from visit effects is still the smallest,

Table 2. Proportions of variance components for right precentral
gyrus at z = 53

Subject 1 Subject 3
Height Location Height Location

Bump 1 Bump 2 Bump 1 Bump 2
Site 0.51 0.86 0.50 0.58 0.67 0.90
Visit 0.22 0.07 0.13 0.18 0.02 0.03
Run 0.27 0.07 0.37 0.24 0.31 0.07

but the run vari-
ability is often
larger than the
site variability.
Overall we see
more consis-
tent patterns of
variance com-
ponents in the
right precentral
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Table 3. Proportions of variance components for left superior temporal gyrus at z = 33

Subject 1 Subject 3
Height Location Height Location

Bump 1 Bump 2 Bump 1 Bump 2 Bump 1 Bump 2 Bump 1 Bump 2
Site 0.25 0.52 0.05 0.06 0.49 0.59 0.40 0.45
Visit 0.42 0.25 0.18 0.03 0.12 0.05 0.04 0.02
Run 0.33 0.23 0.77 0.91 0.39 0.36 0.56 0.53

gyrus than in the left superior temporal gyrus. The right precentral gyrus is
considerably smaller in size, therefore, is less affected by the limitation that we
are looking at a 2 dimensional cross section instead of taking into account the
variability in all of the three dimensions.

An alternative non-Bayesian method of moments approach provides similar
results with the exception of some negative estimates of variances (a known
disadvantage of this approach).

5 Conclusions

We have shown that spatial modeling of fMRI activation patterns in local brain
regions can extract reliable and useful information providing (for example) a
basis for statistical analysis of variability. Future work includes analyzing more
regions of interest with all 5 subjects in the study, extending the model to 3-
dimensional voxel data, and developing techniques for automatically selecting
the number of bumps M .
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Abstract. Understanding of the dynamic behaviour of the levator ani is 
important to the assessment of pelvic floor dysfunction. Whilst shape modelling 
allows the depiction of 3D morphological variation of the levator ani between 
different patient groups, it is insufficient to determine the underlying behaviour 
of how the muscle deforms during contraction and strain. The purpose of this 
study is to perform a subject specific finite element analysis of the levator ani 
with open access magnetic resonance imaging. The method is based on a 
Mooney-Rivlin hyperelastic model and permits dynamic study of subjects under 
natural physiological loadings. The value of the proposed modelling framework 
is demonstrated with dynamic 3D data from nulliparous, female subjects.  

1   Introduction 

The levator ani is a tripartite, striated muscle group of the pelvic floor and consists of 
the pubococcygeus, the iliococcygeus and the puborectalis. Childbirth has been 
shown to be one of the primary causes of injury to the levator ani with symptoms 
ranging from pain or constipation to faecal or urinary incontinence [1]. In current 
clinical settings, diagnoses are made either with full clinical examinations or using 
magnetic resonance imaging (MRI) in mid-sagittal and mid-coronal planes with 
measurements made from the position of organs to the pubococcygeal line [2], and  an 
evacuation scan is popular with this method. Treatments for pelvic floor dysfunction 
include pelvic floor exercises and surgery. The usual surgical treatment of the pelvic 
floor is divided between the urologist, gynaecologist and proctologist. Existing 
research has shown that among women who have had surgery, approximately 20% 
require a second operation. This is partially due to the current surgical practice and 
the general lack of quantitative assessment in guiding the surgical procedures. A more 
unified way of understanding the levator ani in 3D, as well as the location of any 
injuries is essential for reducing the rate of repeated operation. 

Hoyte, et al, [3,4] initiated the use of 3D models of the levator ani in asymptomatic 
and symptomatic women. Each shape was manually segmented and the groups were 
compared by measurements. Lee et al. extended 3D modelling of the levator ani with 
statistical shape models that allowed the identification of the main modes of variation 
of the shape of the levator in normal subjects at rest, on maximal contraction, and on 
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maximal strain [5,6]. Whilst these techniques provide the visualisation and 
understanding of the 3D morphology of the levator, they do not provide an insight 
into how the muscle strains during the performance of pelvic floor exercises.   

To elucidate dynamic behaviour of the soft tissue, finite element models (FEM) 
have been widely used to model biological tissues such as bone, myocardium, brain 
deformation and breast tissue deformation. For example, Pathmanathan, et al. [7] 
have modelled breast deformation when the patient is standing, supine and 
compressed during mammography. d’Aulignac, et al, [8] used shell elements (thin-
walled structures) to build a FEM of the levator ani. The model took into account the 
direction of the muscle fibres and the incompressibility of the tissue, and used 
geometrical data obtained by Janda, et al, [9-11], where morphological parameters of 
the levator ani, including geometry of the muscle fibres and muscle sarcomere length, 
are measured from cadavers. Force-length curves, which determine the maximal force 
in certain positions, were derived and the material properties of the muscle were 
investigated by using 20mm2 samples of the cadaver tissue to determine the biaxial 
stress-strain [10].  

In this study, a FEM based on patient specific data, rather than idealised models 
with a constant thickness throughout the muscle sheet, is used to predict dynamic 
properties of the pelvic floor under different physiological loadings. Pelvic floor 
exercise involves extensive tissue deformation during maximal contraction or 
maximal strain. Linear models are inappropriate in this case as linear constitutive 
laws, such as Hooke’s law, do not hold. A Mooney-Rivlin hyperelastic model is used 
instead in this study. The value of the proposed modelling framework is demonstrated 
with dynamic 3D data from three nulliparous, female subjects using open access MRI. 

2   Methods 

2.1   Hyperelasticity 

Hyperelasticity is a classical modelling framework that is applicable to biological 
tissues. It can account for both mechanical and geometric non-linearities in the 
mathematical formulation. A material is considered elastic when the stress S at a point 
X depends on the deformation gradient F. A material is considered hyperelastic when 
the stress S can be derived from both the deformation gradient F and a strain energy 
function W: 

E
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∂
∂=  (1) 

where E is the Lagrangian strain tensor, defined as: 
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where U is the right stretch tensor and is obtained from the deformation gradient F by 
polar decomposition: 
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RUF = . (3) 

In Eq. (3), R is a proper orthogonal tensor and U is positive definite and symmetric.  
As it is practically difficult to test the muscle material of a levator ani in vivo, a 

five parameter Mooney-Rivlin hyperelastic material model was adopted with the 
parameters from the work by [12]: c10 = 2.5kPa, c20 = 0.625kPa, c01 = 0, c02 = 0, c11 = 
0. Such models have been used to model the human tongue (and in turn was originally 
developed for the myocardium and other general soft tissues) and facial muscles [13]. 
The Mooney-Rivlin model approximates the energy function W: 
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where I1 and I2 are the first and second invariants of the strain tensor E. An 
examination of a square centimetre of the material shows that stretch causes a 
reduction in width in the direction perpendicular to the stretch.   

2.2   Magnetic Resonance Image Acquisition 

The anatomical structure of the levator ani during different levels of stress were built 
from magnetic resonance images acquired from a 0.5T GE iMR open access scanner. 
Each 3D data set was acquired with a turbo spin echo sequence (TR = 4900ms, TE = 
102ms, slice thickness = 5.5mm) for each of 3 nulliparous, female subjects with a 
total scan time of approximately 5 minutes. The ages for Subjects 1, 2 and 3 were 24, 
31 and 23, respectively.   

2.3   Finite Element Modelling 

For this study, dynamic 3D morphological segmentation of the levator ani was based 
on the work by Lee et al [6]. The node correspondence for each levator ani surface 
was automatically determined by using a harmonic embedding framework developed 
by Horkaew et al [14]. The optimisation also took into account the thickness 
information at each node, calculated to be the minimal distance from the bottom 
surface of the levator to its corresponding top surface. Each shape is defined by a total 
of 2401 nodes (with a specific thickness at each node) and 4608 elements. Each 
levator ani was subsequently modelled using SHELL181 elements in ANSYS with 
the nodes in the areas connected to the pelvic bone, ligament and coccyx fixed in 
translation but left free to rotate. There are no fixed degrees of freedom on all other 
nodes. Thickness information was added at each node. Pressures were applied to each 
surface to simulate contraction and strain of the levator ani.  

3   Results 

The morphological change for each of the three subjects can be seen in Figure 1. The 
shape variation associated with contraction and strain is consistent with the expected 
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anatomical change. The contraction shows a lifting of the levator ani while the strain 
leads to a downward movement and spread of the levator ani wings. The von Mises 
stress for each surface is displayed in Figure 2, where the stress distribution is consistent 
with areas involving the most significant movement during pelvic floor exercise.  

 

Fig. 1. The morphological changes of the levator anis for the three subjects simulated during 
different levels of stress: rest, contraction and strain 

In Figure 3, we examine the von Mises stress in the mid-coronal plane. The graph 
in Figure 3b shows that greater stress is located in the anterior rather than the 
posterior of the levator ani. This is to be expected since this area bears most of the 
pressure and is responsible for straightening of the anal canal, which is required 
during defecation.  

To assess the reliability of the model, we have evaluated the change in maximal 
von Mises stress when the thickness of the model is changed. The levator ani 
surface was constructed with equal thickness at each node. In this case, the average 
thickness (rounded to 3mm) was used and the results are summarised in Table 1. It 
is evident that small variation in thickness does not result in a large change in the 
stress values.  

To illustrate the convergence behaviour of the model, the reaction force at each 
time-step is plotted in Figure 4, where the load was applied in substeps from time 0 
to 1.  
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Fig. 2. The von Mises stress for each surface during contraction and strain 

Table 1. Changes in the maximal von Mises stress when thickness is varied 

Thickness Maximal von Mises stress Percent change 
+10% 0.427622 7.68% 
+5% 0.445193 3.89% 
3mm 0.463207 - 
-5% 0.481528 3.96% 

-10% 0.499974 7.94% 
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Fig. 3. (a) Mid-Coronal MR images of the pelvic floor with the levator ani (white arrow) in at 
rest (left) and at maximal strain downwards (right) and (b) the corresponding von Mises stress 
in the elements of the modelled levator ani lying on the mid-coronal plane 

 

Fig. 4. Convergence behaviour of the L2 norm of the force over time 
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4   Discussion and Conclusions 

The FEM simulation based on patient specific data has shown that stress occurs 
mostly in the pubococcygeus and puborectalis. The associated morphological 
variation corresponds well with existing clinical findings as well as current work on 
anatomical modelling of the levator ani. We have shown quantitatively that the 
support to the rectum is affected most and to our knowledge, this is the first subject-
specific FEM study of the levator ani with data from dynamic MR images under 
natural physiological stress conditions.  It is worth noting that the assessment of the 
accuracy of the current method is limited to evaluating the internal consistency and 
convergence behaviour of the model in addition to its sensitivity to potential 
morphological errors. In practice, in vivo quantitative validation of the model is 
difficult without the use of invasive means. Nevertheless, it is possible to indirectly 
gauge the strength of the levator ani by using vagina perineometer pressure 
measurements with a balloon catheter connected to a pressure gauge to determine the 
amount of squeeze by the pelvic floor muscles. The method, however, can be too 
intrusive to nulliparous subjects. In conclusion, the use of subject-specific FEM 
allows an improved understanding of the dynamics of a levator ani. Our results have 
shown consistent behaviour of the pelvic floor in normal subjects during both 
contraction and strain. This provides information that would not normally be available 
from traditional imaging techniques, thus permitting its practical use in real clinical 
settings.  
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Abstract. A detailed visualization of the dental occlusion in 3D image-
based planning environments for oral and maxillofacial planning is im-
portant. With CT imaging however, this occlusion is often deteriorated
by streak artifacts caused by amalgam fillings. Moreover, more detailed
surface information at the level of the dental cuspids is often desired.

In this paper, a double scan technique is introduced to image the dental
occlusion by means of a newly designed 3D splint. The patient wears this
splint between the upper and lower teeth during CT-scan. In a second step,
the splint is positioned between the plaster casts of the upper and lower
jaw, and this setup is scanned. Based on markers in the 3D splint, both
data sets are fused and a combined visualization is possible. The accuracy,
robustness and applicability in clinical routine is shown.

This technology enables meticulous 3D cephalometric analysis, de-
tailed maxillofacial planning and opens possibilities towards intraopera-
tive support.

1 Introduction

In 3D image-based planning environments for oral and maxillofacial surgery [1],
it is important to inspect the dental occlusion carefully. For total and partial
edentulous patients, it is important to co-visualize the denture with the bone. In
this way, oral implant planning is not only driven by bone related issues, but also
by prosthetics. This improves the esthetic result. For patients with a complete
dentition facing orthognatic surgery, the surgical planning implies optimizing
the occlusion. Therefore, an accurate visualization of the occlusion is important.

To visualize bony structures of the head, CT (computerized tomography)
is the preferred modality. However, some important drawbacks are identified:
amalgam fillings generate important streak artifacts, and the acrylic resin that
is used to make dentures, shows the same Hounsfield units as soft tissues.
� This work partly belongs to the Flemish government IWT GBOU 020195 project

on Realistic image-based facial modelling for forensic reconstruction and surgery
simulation and the IWT-040310 project on fusion of medical CT image volumes
with digitizations of synthetic models.
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In the field of oral implant planning, we introduced the double scan proce-
dure [2]. With this CT protocol, the patient wearing a denture equipped with
gutta percha markers is CT-scanned in a first step. Then, the prosthesis alone
is CT-scanned. From this scan, the prosthesis is robustly segmented. Based on
the markers, visible in both scans, the prosthesis is rigidly registered towards
the scan of the patient.

Nkenke et al. [3] add a digitization of plaster models, acquired by optical
surface scanning or CT imaging, to the patient’s CT image volume by registra-
tion of surfaces of teeth. They show that the accuracy of this method strongly
reduces with the presence of artifacts.

Gateno et al. [4] explain an in vitro test of the fusion of a laser scanned dental
impression with a CT scan of a patient wearing this impression. Some extra
characteristic shapes are attached to the impression. Based on these shapes, the
registration is performed. However, as such, this technique is not applicable in
clinical routine. No patient examples are shown. Moreover, special equipment is
needed for the laser scan.

In this paper, we show that the double scan procedure can be extended to
robustly image the dental occlusion of patients with a full dentition with a high
detail. The registration was performed fully automatically. The method has been
validated on 10 cadaver skulls, and 7 patients.

2 Method

2.1 3D Splint

During orthodontic treatment, and for diagnostic work-up of orthognatic surgery,
plaster casts are routinely made. These plaster casts are an accurate copy of the
actual dentition of the patient. To record the relative position of the plaster casts
of the dental arches, a splint is produced.

During CT-scan, the patient gently bites on this splint. In a second scan,
the plaster models with that splint are CT-scanned. If a rigid registration of the
splint in both scans is possible, the CT-scan of the plaster models is fused with
the patient scan.

For this purpose, the splint is modified. Spherical gutta percha markers are
added to the splint. This causes bright spots on the CT images of the patient and
the plaster models. This will be the basis for the matching procedure. There is a
trade-off for the size of the markers. To make them easily detectable, rather large
balls are preferred. However, larger balls generate also CT artifacts. A diameter
of 1.5 mm is found to be optimal after extensive tests.

Since the splint has an almost planar structure, an extension perpendicular
to the occlusal plane is added to improve the registration accuracy. To have a
comfortable solution for the patient, this extension is mounted on a bar leaving
the mouth. In this way, the natural shape of the face is not disturbed.

This 3D splint (see figure 1) is the key to obtain an accurate visualization of
the occlusion. This 3D splint is produced with a hard, radiolucent acrylic resin
which is not toxic. It can be easily produced and it is cheap.
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Fig. 1. The 3D splint is equipped with gutta percha markers and has an extraoral
extension. The patient wears this splint during CT-scan. The splint is also scanned
together with the plaster models.

2.2 Registration

Gutta percha is very radio-opaque. Therefore, candidate markers are extracted
by thresholding. To classify these candidates into markers and other structures,
two measures are computed:

1. The Normalised Shape Index (NSI), defined in equation 1, expresses the
resemblance of an object to sphere. k is defined so that NSI = 1 for a sphere.
NSI must be smaller then a threshold value to be a marker.

NSI = k
volume
surface

(1)

2. The volume of the object needs to be larger then a threshold value to exclude
small structures due to noise or artifacts.

To find the rigid registration matrix based on the centers of the markers in
both image volumes, the correspondence between both sets is needed. Given the
sparse set of points, algorithms like Iterative Closest Points (ICP) [5] often fail.
Since we aim for a fully automatic procedure, a dedicated approach is needed.

The Euclidean distance between two markers of set 1, equals the distance
between two markers of set 2. This holds for all distances between possible marker
pairs. If markers a and b correspond with markers a′ and b′, then is marker c′

a corresponding marker to c if ||ac|| − ||a′c′|| < threshold, and ||bc|| − ||b′c′|| <
threshold. Since an initial set of corresponding points is not known, the algorithm
is applied for all candidate correspondences, and the solution with the largest
set of corresponding markers is kept.

The translation and rotation matrix are finally computed using a least squares
approach [6].
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3 Results

This method was tested and validated on a set of 10 cadaver skulls. For each
skull, a 3D splint and plaster models were produced. The skulls and plaster
models were CT-scanned (GE LightSpeed QX/i, 120 kV, 100 mAs, spiral CT). In
order to reduce the number of axial slices affected by streak artifacts, the occlusal
plane was positioned perpendicular on the CT-table. For the models, the smallest
available slice thickness was selected and the axial slices were reconstructed with
a bone kernel and voxel size of (0.3, 0.3, 0.3) mm. The patients were scanned
with a lower resolution, to reduce the radiation dose, and the axial slices were
reconstructed with a bone kernel and voxel size of (0.35, 0.35, 1.0) mm.

The registration results are listed in table 1. A mean error of 0.14 mm is a
fairly acceptable accuracy for the application of 3D image-based planning given

Table 1. This table lists the registration results for 10 cadaver skulls

Skull Nr markers Mean error Standard deviation Max. error Min. error
(mm) (mm) (mm) (mm)

1 10 0.13 0.05 0.19 0.08
2 9 0.14 0.04 0.17 0.09
3 10 0.14 0.07 0.28 0.03
4 9 0.17 0.07 0.25 0.08
5 9 0.12 0.03 0.16 0.06
6 11 0.18 0.06 0.30 0.10
7 8 0.11 0.04 0.20 0.07
8 11 0.08 0.03 0.13 0.03
9 8 0.12 0.04 0.21 0.08
10 12 0.18 0.08 0.35 0.07

Overall mean error 0.14 mm
Overall standard deviation of error 0.03 mm

Table 2. This table lists the registration results for 7 patients

Skull Nr markers Mean error Standard deviation Max error Min error
(mm) (mm) (mm) (mm)

1 5 0.13 0.04 0.19 0.09
2 6 0.17 0.06 0.28 0.09
3 4 0.15 0.07 0.24 0.10
4 4 0.15 0.04 0.20 0.11
5 8 0.16 0.05 0.24 0.10
6 9 0.21 0.10 0.41 0.09
7 14 0.15 0.07 0.34 0.04

Overall mean error 0.16 mm
Overall standard deviation of error 0.03 mm
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(a) (b)

(c) (d)

Fig. 2. This figure shows how the registration with the 3D splint enables detailed
imaging of the occlusion. Streak artifacts corrupt CT images (a). Plaster models can
be accurately imaged with CT-imaging (b). Based on the 3D-splint, both data sets can
be fused (c) and the surface description extracted from the plaster model scan replaces
the corrupted data (d).

the resolution of the CT data sets. Therefore, this technique was applied on
patients with amalgam fillings or orthodontic brackets with steel wires.

Seven patients with severe amalgam fillings were selected for this test. All
of them received a 3D-splint, and the double-scan technique is applied. An ex-
cessive amount of gutta percha markers is inserted in the splint because some
of them will be submerged in the artifacts. All registrations are performed fully
automatically with a mean registration error of 0.16 mm as shown in table 2.

The registered surfaces are co-visualized and the teeth surface from the plas-
ter models replaces the teeth surface from the patient scan (see figure 2). In this
way, a very detailed dental occlusion is visualized.
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4 Discussion

The double scan procedure is a protocol that enables robust visualization of the
dental occlusion. First the patient is scanned with an adapted material at the
level of the occlusion. Then this adapted material is scanned alone.

(a) (b) (c)

Fig. 3. This figure illustrates the evolution of a denture for a complete edentulous pa-
tient (a), over a partial denture (b) towards the 3D splint (c). Based on these materials,
an accurate visualization of the dental occlusion becomes possible.

When the patient is edentulous, the prosthesis equipped with gutta percha
markers is used to visualize the occlusion. For partial edentulous patients, a
partial prosthesis, equipped with gutta percha markers and, if needed, support
on the neighboring teeth is applied. A bite index is applied to secure the correct
occlusion during CT-scan. For dentate patients, the “prothesis” reduces to the
3D splint. This is illustrated in figure 3.

Some salient features of this approach can be enumerated:

1. The second scan can be performed with a very high resolution since the
patient is not involved and thus radiation dose is not relevant.

2. Since the patient gently bites on the 3D splint, the referring clinician knows
that the occlusion during CT-scan is correct. In current clinical practice, this
is not guaranteed because the patient is laying on the CT table in stead of
sitting on a chair and the patient might be not at ease for the CT exam.

3. Although the patient scan might have excessive streak artifacts, the second
scan lacks artifacts. By this method, the clinical hindrance caused by those
artifacts is reduced.

4. The markers are robustly detected and the scans are accurately registered
as shown in the results.

5. This double scan technique is easy to implement in daily clinical routine.
6. It is a cheap procedure. The cost of inserting gutta percha markers and

making the 3D splint is almost negligible.

This technology has several applications in the field of orthodontics, max-
illofacial surgery and plastic surgery. Detailed visualization of the dental oc-
clusion allows accurate 3D cephalometric analysis including landmarks located
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on the dental occlusion. Surgical optimization of the dental occlusion can be
meticulously planned, and intraoperative surgical support to obtain the planned
solution can be derived.

5 Conclusion

The double scan procedure is a robust and accurate method to visualize the
dental occlusion. Since the information needed to visualize the occlusion is ac-
quired in a second scan without the patient, a highly detailed artifact free scan
can be obtained. Through the use of a large number of gutta percha points, the
registration is shown to be accurate and fully automatic.

This technology is useful for detailed 3D cephalometric analysis, accurate
maxillofacial surgery planning and intra-operative support.
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Abstract. Focal cortical dysplasia (FCD), a malformation of cortical
development, is an important cause of medically intractable epilepsy.
FCD lesions are difficult to distinguish from non-lesional cortex and
their delineation on MRI is a challenging task. This paper presents a
method to segment FCD lesions on T1-weighted MRI, based on a 3D
deformable model, implemented using the level set framework. The de-
formable model is driven by three MRI features: cortical thickness, rela-
tive intensity and gradient. These features correspond to the visual char-
acteristics of FCD and allow to differentiate lesions from normal tissues.
The proposed method was tested on 18 patients with FCD and its per-
formance was quantitatively evaluated by comparison with the manual
tracings of two trained raters. The validation showed that the similar-
ity between the level set segmentation and the manual labels is similar
to the agreement between the two human raters. This new approach
may become a useful tool for the presurgical evaluation of patients with
intractable epilepsy.

1 Introduction

Malformations of cortical development (MCD) have been increasingly recognized
as an important cause of medically intractable focal epilepsy. Focal cortical dys-
plasia (FCD) [1], a malformation due to abnormal neuroglial proliferation, is
the most frequent MCD in patients with intractable extra-temporal epilepsy [2].
Epilepsy surgery, consisting in the removal of the FCD lesion, is an effective
treatment for these patients. However, freedom from seizures after surgery is
closely related to the resection of the whole lesion [3]. The precise delineation of
lesions is thus important for surgical planning in epilepsy.

Magnetic resonance imaging (MRI) plays a pivotal role in the presurgical
evaluation of patients with intractable epilepsy. Although MRI has allowed the
recognition of FCD in an increased number of patients, standard radiological
evaluation fails to identify lesions in a large number of cases due to their subtlety
and the complexity of the cortex convolution [3]. Moreover, the spatial extension
of the lesions is difficult to define on the MRI. The segmentation of FCD is thus
a challenging image analysis application as the lesions are often subtle, difficult
to differentiate from the normal cortex, of variable size, position and shape, and
with ill-defined boundaries.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 375–382, 2005.
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Recently, image analysis techniques have been developed to detect FCD
lesions automatically on MRI, relying on different types of voxel-wise analy-
sis [4, 5]. In particular, computational models of FCD characteristics [6] and a
Bayesian classifier for lesion detection [4] were previously proposed by our group.
While these approaches successfully identify the FCD in a majority of patients,
they provide a very limited coverage of the lesion (about 20%) and thus can-
not be considered as segmentation techniques. Therefore, to our knowledge, the
question of FCD segmentation has never been addressed.

This paper presents a method for segmenting focal cortical dysplasia (FCD)
lesions on T1-weighted MRI, based on a level set deformable model driven by
MR features of these lesions. The method partly relies on our aforementioned
detection approaches [6, 4]. However, our target application is FCD segmentation
and not detection. The computational models of FCD features are used to drive
a level set deformable model and the FCD classifier is used only to obtain a
starting point for the segmentation procedure.

2 Methods

Our approach relies on a 3D deformable model, based on the level set method.
Driving the deformable model with image gray levels would be inadequate as
this attribute is insufficient to distinguish the lesion from the normal cortex.
Instead, we propose a model guided by a probability map derived from FCD
features. These features correspond to the visual characteristics of FCD: cortical
thickening, a blurred transition between gray matter (GM) and white matter
(WM), and hyperintense signal within the dysplastic lesion [7].

Additionally, it is necessary to provide a starting point for the level set evolu-
tion. To this purpose, we used our previously developed FCD classifier [4], under
supervision of an expert user.

2.1 Probabilistic Modeling of FCD Features

To quantitatively evaluate the visual MR characteristics of FCD, we made use of
our previous computational models (more details can be found in [6]). A cortical
thickness map, denoted as Th, is computed by solving Laplace’s equation over the
cortical ribbon. Hyperintense signal is represented using a relative intensity index
defined as RI(x) = 1−|Bg− I(x)|/Bg where I(x) is the intensity at voxel x and
Bg is the boundary intensity between GM and WM. Blurring of the GM/WM
transition is modeled with a gradient magnitude map, denoted asGr. These three
characteristics define a vector-valued feature map f(x) = (Th(x), RI(x), Gr(x))
at each point x in the image space.

We then performed a supervised learning to estimate the probability of dif-
ferent tissue classes in the brain given the feature vector f . Four different classes,
denoted as c, were considered: gray matter (GM), white matter (WM), cerebro-
spinal fluid (CSF) and the FCD lesion (L). Normal tissues were segmented us-
ing a histogram-based approach with automated threshold, while the FCD le-
sions were painted by trained observers (see Section 3). Conditional probabilities
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P (f(x)|c) for each class c were modeled using a trivariate normal distribution
and estimated using the maximum likelihood on a learning set of patients. The
posterior probabilities P (c|f(x)) were then obtained by Bayes’ rule. As the size
of FCD lesions is variable, we assumed equal prior probabilities for the different
classes.

Figure 1 presents an example of the three feature maps and of the posterior
probability maps in a patient with FCD.

Fig. 1. Probabilistic modeling of FCD features. Upper panels: T1-weighted MRI where
the FCD lesion is indicated by the arrow (A), cortical thickness map (B), relative
intensity map (C), gradient map (D). The lesion is characterized by higher cortical
thickness, higher relative intensity and lower gradient. Lower panels: probability maps
of the lesion class (E), GM (F), WM (G) and CSF (H).

2.2 Feature-Based Deformable Model

Based on the previous features, the deformable model was designed to separate
the lesion from the non-lesional regions. The region competition approach pro-
posed by Zhu and Yuille [8] is well adapted to our purpose. It aims at segmenting
an image into several regions by moving the interfaces between them. The evo-
lution of the interfaces is driven by functions indicating the membership to each
region. In our case, these functions can be derived from the FCD features.

We intended to isolate the FCD lesion from the non-lesional region, which is
composed of three different classes (GM, WM, CSF). However, the boundaries
between these three non-lesional classes were of no interest for our application.
Thus, region competition occurred in each point between the lesion class and
the most probable non-lesional class. The membership to the lesional region
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was defined as RL(x) = P (L|f(x)) which is the previously computed posterior
probability of the lesion class. The non-lesional region was modeled by RNL(x) =
max{P (GM|f(x)), P (WM|f(x)), P (CSF|f(x))}.

The feature-based deformable model describes the evolution of the inter-
face (or surface in 3D) S of the lesional region, according to those membership
functions and a regularization term. The motion of a point u belonging to S is
defined as:

∂u

∂t
= α[RNL(u)−RL(u)]nu + εκunu (1)

where nu is the inward normal to S at point u (directed towards the interior of
the lesion), κu is the mean curvature and α and ε are weighting coefficients.

In the previous equation, α[RNL(u)−RL(u)] is a feature-based term and εκu

is a regularity term producing a smooth surface. If RL(u) > RNL(u), meaning
that the most probable class for point u is the lesion, the surface S will be
expanded, in order to include this point. On the contrary, if RNL(u) > RL(u),
meaning that this point should belong to one of the three non-lesional classes,
the surface will be shrunk.

2.3 Level Set Evolution

The motion equation obtained for the feature-based deformable model was im-
plemented using the level set method [9, 10]. The principle of this method is to
define the surface S as the zero level set of a higher dimensional function φ,
called the implicit function:

φ(S(t), t) = 0 (2)

As an implicit function φ, we chose the classical signed distance to the surface S,
with negative values in the interior of S. The evolution was then performed on
the function φ and the embedded surface S was deformed implicitly. Level set
deformable models present several advantages over traditional ones: no param-
eterization of the surface is necessary, topology changes are handled naturally
and the result is less sensitive to the initialization.

Using the derivation from curve motion to level set evolution [10], the feature-
based deformable model can be described by:

∂φ

∂t
(u) = α[RNL(u))−RL(u)]|∇φ(u)| + εκu|∇φ(u)| (3)

The previous evolution equation can be seen as a particular case of the one
proposed in [11].

This equation was implemented using the numerical scheme proposed in [10–
chap.6]. To reduce the computational complexity, we made use of the narrow-
band method [12]. A sub-voxel reinitialization of the implicit function at fixed
time steps was performed to maintain the distance function [13].



Segmentation of Focal Cortical Dysplasia Lesions 379

3 Experiments and Results

3.1 Subjects and Image Preparation

We selected 24 patients (13 males, mean age ± SD= 24± 8 ) with MRI-visible
FCD. The Ethics Board of our Institution approved the study, and written in-
formed consent was obtained from all participants.

3D MR images were acquired on a 1.5T scanner using a T1-fast field echo
sequence (TR = 18, TE = 10, 1 acquisition average pulse sequence, flip angle=
30o, matrix size= 256 × 256, FOV= 256, thickness= 1mm) with an isotropic
voxel size of 1mm3. All images underwent automated correction for intensity
non-uniformity and intensity standardization [14], automatic registration into
stereotaxic space [15] and brain extraction [16]. Classification of brain tissue in
GM, WM and CSF was done using an histogram-based method with automated
threshold [6].

3.2 Manual Segmentation

Lesions were delineated independently on 3D MRI by two trained raters (VN
and DK) using a software which allows painting in each of the three directions
of the space. The corresponding manually labeled datasets are further denoted
as M1 and M2. Interrater agreement was assessed using the similarity index
S = 2 n{M1∩M2}

n{M1}+n{M2} (where n{M} is the number of elements in set M), which
is a special case of kappa statistic since the vast majority of voxels are non-
lesional [17].

3.3 Results

Initialization. The FCD classifier [4] is used to initialize the deformable model.
It successfully identified the lesion in 18 (18/24=75%) patients. We assessed the
possibility of segmenting the six undetected lesions with a manual initialization
of the procedure. However, the segmentation failed in these cases because their
features where not sufficiently discriminant. The evaluation was thus done on
the 18 detected lesions.

Manual Segmentation. For the 18 manual labels, the mean interrater simi-
larity index was 0.62± 0.19 (range=0.22 to 0.84).

Level Set Segmentation. We compared the automated segmentations to the
sets of manual labels using the similarity index S presented above. The evalu-
ation was performed using a leave-one-out approach: for the segmentation of a
given patient, this patient was excluded from the learning set (Section 2.1). This
approach avoids the introduction of bias in the result. All results were obtained
with α = 0.8 and ε = 0.2 in Equation 3. Moreover, we computed the similarity
obtained with the FCD classifier [4] to evaluate the added value of the level
set. Results are reported in Table 1. Figures 2 and 3 present the segmentations
obtained in two patients with FCD.
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Fig. 2. Results of FCD segmentation: level set segmentation (A), initialization (B),
manual tracing M2 (C), manual tracing M1 (D)

Table 1. The table presents the similarity indices for the level set and the FCD classifier
with respect to the two manual tracings, as well as the interrater similarity. Results
are reported as mean±SD with the range in parentheses.

M1 M2

Level set 0.62± 0.16 (0.32 to 0.84) 0.63± 0.12 (0.43 to 0.79)

Classifier 0.30± 0.17 (0.11 to 0.64) 0.31± 0.17 (0.07 to 0.59)

Interrater (M1 vs. M2) 0.62± 0.19 (0.22 to 0.84)

Fig. 3. Results of FCD segmentation. Left panels: level set segmentation (A), initial-
ization (B), manual tracing M2 (C), manual tracing M1 (D). Right panel: 3D rendering
of the FCD lesion segmentation together with the cortical surface.
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To assess the robustness of our method with respect to the choice of the
learning dataset, the procedure was also evaluated using a learning on the labels
M2 (in Table 1 the results are obtained using the labels M1 as a learning set).
Similarity indices for the level set (LS) were: LS vs. M1=0.62±0.16 (range=0.33
to 0.82) and LS vs. M2=0.62± 0.11 (range=0.43 to 0.77).

4 Discussion

In this study, we proposed and evaluated a method for segmenting FCD lesions
on MRI. We introduced a feature-based level set, driven by known MR charac-
teristics of FCD. Probability maps of these features corresponding to FCD and
normal tissue classes were estimated in order to guide the level set evolution.

On MRI, FCD lesions possess ill-defined contours and are not easily differ-
entiable from normal cortex. Moreover, there is no available gold standard for
evaluating the delineation of these lesions. For this reason, we compared the level
set segmentation to the manual tracings of two trained observers. The interrater
similarity was 0.62 which corresponds to a substantial agreement, in particular
when keeping in mind the difficulty of FCD segmentation. The level set seg-
mentations achieved a degree of similarity of 0.63 and 0.62 with the two sets of
manual labels, which again constitutes a good agreement.

The similarities achieved by the level set are also very close to the interrater
agreement (both were computed on the 18 detected lesions). A significant portion
of the remaining differences between automated and manual labels is probably
due to the interrater variability rather than to the unability of the level set to
recover the full extension of lesions. This can be seen in Figure 3 where the two
raters decided to exclude different parts of the lesion (Panels C and D) while
these parts were included in the automated segmentation (Panel A).

To our knowledge, there is no other published work on FCD segmentation
that could be used for comparison to our results. Nevertheless, compared to the
FCD classifier, our method achieved a similarity twice as large and therefore
constitutes a significant improvement. However, it should be noted that this
classifier was designed for FCD detection and not segmentation.

The results of the automated segmentation did not depend on the manual
tracings (by one rater or the other) used for the learning step. This shows the
robustness of our method with respect to the learning dataset. Moreover, no
fine-tuning of the level set parameters was necessary and the same parameters
were used for all patients. Furthermore, the method is fast thanks to the use of
the narrow-band and the subvoxel reinitialization approaches (the mean compu-
tation time for the level set evolution was 4 minutes on a PC 1.6GHz).

In conclusion, this paper demonstrates the effectiveness of a feature-based
level set approach for the segmentation of FCD lesions. We do not advocate
that the level set segmentation should be used in place of manual delineation
but rather that it is a complementary tool. It has the potential to reduce user
subjectivity and, more importantly, to unveil lesional areas that could be over-
looked by visual inspection. This new method may become a useful tool for sur-
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gical planning in epilepsy. Future work includes further validation using other
metrics, comparison with other image segmentation techniques and a detailed
study of cases that were not detected by the classifier.
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Abstract. A publicly available database of high-quality, multi-modal MR brain 
images of carefully screened healthy subjects, equally divided by sex, and with 
an equal number of subjects per age decade, would be of high value to 
investigators interested in the statistical study of disease. This report describes 
initial use of an accumulating healthy database currently comprising 50 subjects 
aged 20-72. We examine changes by age and sex to the volumes of gray matter, 
white matter and cerebrospinal fluid for subjects within the database. We 
conclude that traditional views of healthy aging should be revised. Significant 
atrophy does not appear in healthy subjects 60 or 70 years old. Gray matter loss 
is not restricted to senility, but begins in early adulthood and is progressive. The 
percentage of white matter increases with age. A carefully-designed healthy 
database should be useful in the statistical analysis of many age- and non-age- 
related diseases. 

1   Introduction 

Any automated, computerized assessment of disease requires establishment of healthy 
norms against which a test subject can be compared.  However, healthy aging induces 
brain changes [1], [2].  In young, healthy adults [3] and in nondemented older persons 
[4], analyses demonstrate that the aging process is a continuum with changes evident 
before senescence. An accurate assessment of disease by magnetic resonance imaging 
(MR) thus requires an image database of healthy subjects appropriately age and sex 
matched to the potentially diseased subject in question. 

The public establishment of such a healthy database would be of value to the 
scientific community. We are collecting high-resolution, 3T MR images of 100 
healthy subjects aged 20-60+, with 20 subjects per decade divided equally by sex. All 
subjects are screened for the presence of brain disease. Images include T1, T2, MRA, 
and diffusion tensor. Images will be made publicly available once collection is 
complete. 
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The current report describes the first use of this database at the 50% completion 
point (50 subjects equally divided by sex, with 5 men and 5 women included in each 
of five age decades). This first report does not analyze disease, but rather examines 
differences by age and sex within the healthy database itself. More specifically, we 
describe automated volumetric analysis of the three brain compartments comprising 
gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). We also 
examine lateral ventricular volume as a percentage of total CSF volume.  

Several papers have evaluated changes in ventricular volume with healthy aging 
[1], [5], [6], [7], [8], changes in GM-WM-CSF volumes with healthy aging [3], [4], 
[9], [10], [11]. These papers, however, examine different age group ranges, include 
variable male-female sex ratios, have not always screened healthy subjects carefully 
and have almost always employed low resolution MR images with large interslice 
spacing.  

This study is based upon the assumption that careful design of a healthy subject 
database can provide better assessment of differences between patient populations. 
Consistent with previous studies, our results show significant differences between the 
intracranial volumes of males and females and a significant loss of GM with normal 
aging. However, in contrast to previous work, our results show relatively little brain 
atrophy in healthy subjects over 60, a continual gradation in loss of GM that begins in 
early adulthood, and an apparent relative increase in WM that approximately parallels 
the loss of GM, raising new issues about the change of imaging characteristics of GM 
and WM over time. Moreover, total CSF volume remains relatively constant, which 
has not been reported before. These results underscore the importance of healthy 
subject selection, the use of high quality images and the employment of standardized 
methods when attempting to establish group differences.  

2    Clinical Material and Methods 

2.1   Patient Population and MR Acquisition 

The IRB-approved study included 50 volunteers (25 male, 25 female). Ten subjects, 
equally divided by sex, were imaged by decade (20-29, 30-39, 40-49, 50-59, and 60-
72). Subjects with diabetes, hypertension, psychiatric disease, or history of brain disease 
were excluded. All subjects consented to make their images available via the web.  

Images were obtained upon a head-only 3T MR unit (Allegra, Siemens Medical 
Systems Inc., Germany). A head coil was employed. T1 and T2 sequences, as well as 
additional image sequences, were obtained to cover the entire head. Voxel spacing 
was 1 x 1 x 1 mm for both T1 and T2 studies. For T1 images, acquisition parameters 
included TR=15, TE=7.1, fov=176x256 with a 0 gap, a matrix of 192x256, and a flip 
angle of 25. For T2 images, acquisition parameters included TR=7730, TE=80, 
fov=192x256 with a 0 gap, a matrix of 256 x 256, and a flip angle of 180. 

2.2   Tissue Segmentation 

The three brain compartments were defined using an expectation-maximization (EM) 
segmentation scheme that separated WM, GM, and CSF using both T1 and T2 
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images. A spatial probabilistic brain atlas [12] that represents expert prior knowledge 
about brain structures guided the segmentation. The registered atlas together with the 
set of prior probabilities for tissue were passed along with the T1 and T2 images as 
inputs to the segmentation algorithm. The segmentation algorithm used was based on 
the EM segmentation algorithm developed by van Leemput et al [13], [14] and re-
written as an integrated package in ITK (Insight Toolkit). The automatic tool 
includes inter-modality registration, atlas registration, bias field inhomogeneity 
correction, and calculation of binary and probabilistic segmentation maps for CSF, 
GM and WM. 

The lateral ventricular CSF was segmented using 3D snakes with region 
competition priors [15]. The snake was initialized near the ventricles and evolved 
based on the probability map for CSF, provided as input to the program. The GM, 
WM, total CSF and lateral ventricular volumes were calculated by integration over 
class-specific regions. Figure 1 illustrates results on an axial slice of one subject.  

 

 
 
 

 
(A) Original T1 axial image 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

(B) White Matter (C) Gray Matter (D) Total CSF 
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Fig. 1. Segmentation results: outputs from EM and 3D snakes segmentations 
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2.3   Statistical Analysis 

Subjects were divided into five age groups named Agegroups 1-5, representing 
respectively the age ranges 20-29, 30-39, 40-49, 50-59 and 60-72.  Absolute volumes 
were calculated for each of three compartments (WM, GM, and total CSF) as well as 
for the lateral ventricles. The total intracranial volume was viewed as the sum of 
WM+GM+CSF. Results were analyzed by age and sex not only for absolute volumes, 
but also for percentage of total volume occupied by each compartment. The 
percentage of the total CSF volume within the lateral ventricles was also examined.    

Logarithmic transformations were applied to each percentage measurement and the 
normality of the transformed variables was tested by using the Shapiro-Wilks test and 
the Kolmogrov-Smirnov test. The total volume and the total CSF volume were 
similarly tested for the presence of normal distributions. A generalized linear model 
was used to fit the data. In the model, the total volume, the CSF volume and the 
percentages of the three components were treated as repeated measurements in the 
same subject so their correlations were accounted for in the analysis. The list of 
independent variables included the factor of age group (5 levels), the factor of gender 
group (2 levels) and their interactions.  

Multivariable ANOVA test showed no significant interactions between age group 
and sex (p=0.88). Consequently, the final model only contained the main effects from 
age group and sex. The Tukey test was used to compare each measurement among the 
five age and two gender groups, after accounting for dependence among all the 
outcomes. Finally, the residue analysis post-model fitting showed that the model fits 
data well and that the model assumptions are thus presumably valid in this analysis.  

3   Results 

Results are presented in Tables 1 and 2 and illustrated in Figure 2. Table 1 shows the 
average total intracranial volume to be significantly smaller (p < 0.001) in females 
(1341 ± 100 cm3) than in males (1519 ± 106 cm3). Not surprisingly in this study of adult 
subjects, there is no significant difference in total intracranial volume by age (p = 0.31). 

In terms of the ratio of WM to total intracranial volume, there is no significant 
difference between males and females (p=0.07). However, significant differences 
were observed among the five age groups (p=0.002). In particular, there appears to be 
a significant trend towards WM increase with age beginning at approximately age 50.  
Agegroup1 displays a smaller percentage of WM than Agegroups 4 and 5 (p=0.05 and 
0.001), with Agegroups 2 and 3 displaying results similar to those of the younger 
group. On the average, the WM percentage for those aged 20-29 was 9.7% smaller 
than those 50-59, and 15% smaller than those 60 and above.1 

Males and females appear to have the same ratio of GM to total volume (p=0.23). 
However, GM volume tends to decrease with age (p<0.001). Agegroup1 has a 
consistently larger percentage of GM than their elders (p=0.007 for Agegroup3, 
<0.001 for Agegroups 4 and 5). Those aged 30-39 have a significantly larger 
percentage of GM than those 60 and above (p=0.001). On average, the percentage  
of  GM  in  those  20-29 is about 7.2% larger than those 40-49, about 8.6% larger than  
                                                           
1 Percentages are calculated as predicted differences of (% WM) / (% WM of compared group). 
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Fig. 2. Tissue volume evolution with healthy aging for overall groups 

Table 1. Average values of total intracranial, WM and GM volumes in normal adults 
Agegroups 1-5 represent ages 20-29-…-60+ respectively, SD = Standard Deviation, % is the 
percentage among Total Intracranial Volume 

Sex and  
Age Group 

Total Intracranial 
Volume (cm3±SD) 

WM  
(cm3±SD) 

WM 
(%±SD) 

GM 
(cm3±SD) 

GM 
(%±SD) 

Both sex 1430±136 530±83 36.98±3.32 710±68 49.75±2.97 
Agegroup1 1474±121 508±56 34.38±1.46 782±50 53.13±1.67 
Agegroup2 1386 ±92 513 ±67 36.97±4.05 699±52 50.52±2.80 
Agegroup3 1426 ±161 517 ±80 36.11±1.95 705±68 49.58±1.73 
Agegroup4 1407 ±116 532 ±63 37.78±2.88 689±70 48.94±1.70 
Agegroup5 1457 ±180 583±124 39.66±3.49 675±53 46.57±2.45 
All Females 1341±100 488±65 36.28±3.31 672±59 50.12±3.04 
Agegroup1 1387±77 472±50 33.94±1.72 751±39 54.15±1.52 
Agegroup2 1326±88 498±79 37.51±5.20 665±48 50.26±3.43 
Agegroup3 1310±120 461±67 35.04±2.03 650±45 49.77±2.08 
Agegroup4 1326±82 496±63 37.37±3.70 644±47 48.59±1.97 
Agegroup5 1358±144 512±78 37.54±1.92 648±54 47.83±1.83 
All Males 1519±106 573±77 37.68±3.24 749±54 49.37±2.90 

Agegroup1 1562±88 544±35 34.82±1.16 813±41 52.12±1.17 
Agegroup2 1445±48 527±58 36.43±3.02 733±29 50.79±2.40 
Agegroup3 1542±99 573±43 37.18±1.23 760±26 49.38±1.53 
Agegroup4 1488±86 568±42 38.19±2.15 734±61 49.28±1.53 
Agegroup5 1556±167 654±126 41.78±3.53 702±39 45.31±2.50 

those 50-59 and about 14.2% larger than those 60 and above. The percentage of GM 
in people aged 30-39 is about 8.5% larger than in people 60 and over. 

On the basis of literature studies, we anticipated a significant increase in CSF 
volume with age. The differences in CSF volume by age in the current study were 
relatively slight, however (Table 2), and much less marked than the age-associated 
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changes to GM and WM. For total CSF volume, there was no significant difference 
among the five age groups (p=0.12) or between genders (p=0.07).  A trend towards an 
increased ratio of ventricular CSF to total CSF may occur with age, but our data do 
not provide sufficient evidence to fully support this assertion. The only statistically 
significant difference between groups was between those 40-49 and those 60 and 
above, occurring at the p=0.04 level.  

Table2. Average values of CSF and lateral ventricles volumes in normal adults Agegroups 1-5 
represent ages 20-29-…-60+ respectively, SD = Standard Deviation, % is the percentage 
among Total Intracranial Volume, %* is the percentage among CSF volume 

Sex and  
Age Group 

CSF 
(cm3±SD) 

CSF 
(%±SD) 

Lateral Ventricles 
(cm3±SD) 

Lateral Ventricles 
(%*±SD) 

Both sex 189±29 13.27±1.89 21±13 11.19±7.05 
Agegroup1 184±33 12.48±1.74 18±11 9.50±4.31 
Agegroup2 174±30 12.51±1.87 14±5 8.36±3.07 
Agegroup3 203±29 14.31±1.63 17±10 8.10±3.94 
Agegroup4 186±25 13.28±2.06 25±12 13.66±7.18 
Agegroup5 199±24 13.77±1.80 32±19 16.31±10.80 
All Females 182±30 13.60±2.15 17±10 9.42±5.21 
Agegroup1 164±22 11.90±1.89 14±7 8.54±3.18 
Agegroup2 163±36 12.23±2.24 13±3 8.41±2.47 
Agegroup3 199±20 15.19±1.15 12±7 5.74±3.09 
Agegroup4 186±31 14.04±2.33 22±6 12.10±4.46 
Agegroup5 198±25 14.62±1.37 24±17 12.32±8.88 
All Males 197±27 12.95±1.57 25±15 12.95±8.23 

Agegroup1 204±30 13.06±1.55 22±13 10.46±5.42 
Agegroup2 184±21 12.79±1.64 15±7 8.31±3.89 
Agegroup3 208±38 13.44±1.66 22±10 10.46±3.38 
Agegroup4 186±21 12.52±1.65 27±16 15.22±9.49 
Agegroup5 200±26 12.91±1.90 39±19 20.31±12.00 

4   Discussion 

Age-associated changes in the volumes of the three intracranial compartments have 
interested many investigators. To our knowledge, however, the current study is the 
first to employ high-resolution MR, standardized protocols, careful screening of 
healthy subjects, and age and sex-matching of subjects by decade. Although many of 
our results are consistent with previous reports, some are not. We believe that these 
differences are most likely related to differences in image quality and subject 
selection.  

Consistent with the results of others [1], [10], our study indicates that males have a 
larger total intracranial volume than females and that the mean intracranial volumes 
of the younger and older groups are comparable. The total intracranial volume of our 
subjects, however, tended to be larger than reported in other adult studies [1], [10], 
[16].  This difference could be attributable either to the fact that our studies covered 
the entire brain, whereas other studies have not, or to the high resolution of our 
images, allowing more accurate volumetric measurements. 

Many investigators have reported brain shrinkage with age, attributed primarily to 
loss of GM [2], [3], [4], [10]. To our surprise, however, our study revealed relatively 
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little shrinkage of the total GM and WM with age. Indeed, total CSF volume 
remained relatively constant even for subjects in their 60s and 70s. Although the 
oldest subject in the current study was 72, other reports have indicated significant loss 
of brain tissue by this age [1], [2]. These differences are most likely related to the 
careful selection of healthy subjects employed in the current study, and suggest that 
tissue loss in these age groups may be related more to the effects of age-related 
diseases rather than to the aging process in isolation.  

We agree with other groups that there is a loss of GM over time [2], [3], [4], [10]. 
Guttmann et al [2] describe a particularly nice study that examines subjects over ages, 
but conclude that the only significant age-related difference in GM percentage was 
between subjects 18-39 and those in their 50s. By contrast, our study shows a steadily 
progressive decline in GM percentage by decade, affecting both males and females, 
well-evident by middle age, and with statistically significant differences between 
multiple groups.  

Another surprising finding was the statistically significant increase in the 
proportion of WM with age. To our knowledge, this finding has not been previously 
reported. Intuitively, it makes sense that the GM shrinks more than the WM with age-
related brain atrophy. GM shrinkage is presumably due to loss of neurons. Some of 
these neurons have axons that project into the WM and one would expect that losing 
these neurons would result in a corresponding loss of WM. However, there are also 
neurons in the cortex that have axons that stay within the cortex or only extend 
centripetally as far as the subcortical U fibers. Thus, if these neurons are lost, GM 
shrinkage would occur without corresponding shrinkage of the WM. This explanation 
is consistent with our finding of relative increases on WM with age. Another 
interesting possibility is that age produces changes to MR imaging characteristics so 
that GM becomes “less gray” as seen by MR and so becomes mistakenly classified as 
WM.  This is a potential area of future research. 

The ratio of ventricular volume to total CSF volume is of particular interest to the 
study of diseases such as normal pressure hydrocephalus. We were unable to find 
another age and sex matched study of healthy controls with which to compare our 
results. Our results suggest that there may be slight increase in both absolute 
ventricular volume and in ventricular/total_CSF ratio in our oldest age group (60+), 
but these results were statistically significant only when compared to the 40-49 years 
old group and even there did not reach a high level of significance. These results are 
in general agreement with those of Matsumae et al. [1], who studied ventricular 
volume with age. Our results may establish a basis upon which to study diseases such 
as normal pressure hydrocephalus at a later date.   

5   Conclusion 

Considered together, these results lead to the suggestion that the traditional view of 
age-related changes to intracranial compartments should be revised. Significant 
atrophy does not appear to occur in genuinely healthy subjects even into the late 60s 
and early 70s. Loss of GM with aging appears to be a steadily progressive process 
that begins relatively early in adulthood, and that may be associated with a relative 
increase in the proportion of WM.   
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This study raises several questions, however. First, the current study does not 
address the location of GM loss (cortex? basal ganglia? thalamus?), which could be 
an important area of research helpful in differentiating between healthy aging and 
pathology. Second, there is a real question of age-related changes in the MR imaging 
characteristics of GM and WM. Such changes in imaging characteristics could affect 
results, and could provide an important area of research. 

The major contribution of this study, however, is in the initiation of a high-quality, 
multi-modality image database of carefully screened healthy subjects, evenly divided 
by sex, and with an equal number of subjects per decade. This database could serve as 
an important resource to all investigators interested not only in normal aging but also 
in the statistical study of disease. 
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Abstract. The ability to predict a clinical variable from automated
analysis of single, cross-sectional T1-weighted (T1w) MR scans stands
to improve the management of patients with neurological diseases. We
present a methodology for predicting yearly Mini-Mental Score Exami-
nation (MMSE) changes in Mild Cognitive Impairment (MCI) patients.
We begin by generating a non-pathological, multidimensional reference
space from a group of 152 healthy volunteers by Principal Component
Analyses of (i) T1w MR intensity of linearly registered Volumes of In-
terest (VOI); and (ii) trace of the deformation fields of nonlinearly reg-
istered VOIs. We use multiple regression to build linear models from
eigenvectors where the projection eigencoordinates of patient data in
the reference space are highly correlated with the clinical variable of in-
terest. In our cohort of 47 MCI patients, composed of 16 decliners, 26
stable and 5 improvers (based on MMSE at 1 yr follow-up), there was
a significant difference (P = 0.0003) for baseline MMSE scores between
decliners and improvers, but no other differences based on age or sex.
First, we classified our three groups using leave-one-out, forward step-
wise linear discriminant analyses of the projection eigencoordinates with
100% accuracy. Next, we compared various linear models by comput-
ing F-statistics on the residuals of predicted vs actual values. The best
model was based on 10 eigenvectors + baseline MMSE, with predicted
yearly changes highly correlated (r = 0.6955) with actual data. Prospec-
tive study of an independent cohort of patients is the next logical step
towards establishing this promising technique for clinical use.

Keywords: MRI, Principal Components Analysis, Intensity, Deforma-
tion, Multiple Regression, Mild Cognitive Impairment, Mini-Mental
Score Examination.

1 Introduction

A number of neurological diseases exhibit pathologically-specific discriminatory
information in the form of local intensity variations and shape changes when ob-
served on magnetic resonance images (MRI). The goal of computer-aided diagno-
sis approaches is to focus and exploit those attributes in order to give physicians
a quantitative measurement related to the disease process. Example techniques
may perform analysis of the T1-weighted (T1w) signal intensity, serving as an
indicator of disease progression, as subtle changes may indicate an underlying
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pathological process before structure integrity is lost. Other approaches will em-
ploy co-registration, a process where individual subject images are aligned into a
reference space, allowing spatial comparisons to be made between cohorts either
at the voxel level, such as in voxel or deformation-based morphometry, or for
surfaces. Registration further enables the comparison of individual structures
once segmented; manual segmentation and volumetry are considered the gold
standard for many research areas. The most promising techniques however move
away from single-structure approaches to whole regions of interest, capturing
the interrelations between neighboring tissues, and combine individual intensity,
texture or registration information, such as in appearance-based approaches [1].

An important and valuable area of research for quantitative MRI analysis
resides in the prediction of clinically measured variables. An example of the
latter is the Mini-Mental State Examination (MMSE), a cognitive scale to assess
normality (MMSE = 30), mild impairment (23 ≤ MMSE < 30) or possible
dementia (MMSE ≤ 23) [2]. The assumption is that such neuropsychological or
neurological assessments will have a morphological correlate that is detectable
via MRI. The ability to categorize cognitive scores from baseline MRI may lead to
increased understanding of the disease in question. Further, the ability to predict
future scores (i.e., predict change) from baseline MRI is even more important,
as it would improve patients management.

1.1 Mild Cognitive Impairment (MCI)

MCI iswidely viewedas the transitionphasebetweennormal agingandAlzheimer’s
disease (AD) [3], and amnestic MCI individuals are known to be at risk for pro-
gression to AD. There is evidence that in those who will progress, measurable hip-
pocampal and entorhinal cortex atrophy, demonstrable on T1w MRI serves as a
moderate, though labor-intensive, predictor [4]. Microscopically the strongest pre-
dictor of premortem cognitive dysfunction appears to be the relative area of en-
torhinal cortex occupied by beta-amyloid deposition [5]. Existing MRI measures
that have been developped to predict decline are longitudinal, as for example a
study by Rusinek et al. [6] showing that an increased rate of atrophy in the MTL
predicted future cognitive decline.

In this work we attempt to solve the challenging problem of predicting MMSE
changes with a single, cross-sectional MRI measurement. An obvious advantage of
having a reliable means of assessing future cognitive decline (within the limits of
the MMSE) at baseline, or with one scan, resides in the potentially increased ther-
apeutic effect that comes with earlier detection and treatment. The disadvantage
of any cross-sectional approach is that the effect at hand may differ for individuals
enrolled in the study or be confounded by another variable, such as aging in the
case of MCI. It is important to note that not all MCI patients progress to clinically
defined AD, nor show MMSE decline at identical rates [7]. However, careful de-
sign and selection of the patient population should serve to improve homogeneity
of effect in the test population. Further, we believe that the rate of MMSE decline,
along with MTL atrophy, will be linear for MCI patients over the short duration
of the study, a reasonable assumption given long-term AD follow-up data [8].
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1.2 Hypothesis and Goal

Our general hypothesis is that in the case of neurological pathologies, micro-
scopic changes will be detected via their impact on the T1w MRI signal in-
tensity, while macroscopic alterations in structure shape will be noticed via
registration/deformation-based metrics. Consequently, we propose a prediction
methodology that (i) uses a large, non-specific Volume of Interest (VOI); (ii)
combines intensity and registration-based shape features; and (iii) generates a
high dimensional linear model from multiple regression of highly correlated eigen-
vectors. Our primary goal is to see if we can create such a model, and use MCI
patients as a test case of the methodology.

2 Methods

Our method can be summarized as follows. First, we generate a non-pathological
eigenspace from a large training group of young subjects (N = 152). This multi-
dimensional reference eigenspace is created by uniting results from four distinct
Principal Component analyses of (i) linearly registered intensity images of the
left and right VOIs; and (ii) an approximation of the determinant of the Jacobian
matrix of the deformation field within those VOIs. Secondly, patients data are
projected in the reference eigenspace and the correlation coefficient between the
projection coordinates and the clinical variable is used to identify eigenvectors
for the predictive model. The latter is generated via multiple regression against
the clinical variable. We compare predictive ability by computing F-statistics
based on the residuals of predicted vs actual values for the clinical variable. The
methodological details are elaborated in the following sections.

2.1 Subjects

The Ethics Committee of the Montreal Neurological Institute (Montreal, Canada)
and the IRCCS San Giovanni di Dio FBF (Brescia, Italy) approved the study
and informed consent was obtained from all participants. A total of 199 subjects
were included in this study. The reference group consisted in 152 young, neurolog-
ically healthy individuals from the International Consortium for Brain Mapping
database (ICBM) [9], whose scans were used to create the non-pathological, refer-
ence space. The training population consisted in 47 MCI patients (23 ≤MMSE<
30), seen at the IRCCS San Giovanni di Dio FBF Hospital, that have been followed
clinically a minimum of 12 months after their initial MR scan.

2.2 Preprocessing

MRI data for our 152 ICBM subjects was collected with a T1w MRI protocol
on a 1.5 T scanner (Philips Gyroscan, Best, Netherlands) using a fast gradient
echo sequence (TR = 18ms, TE = 10ms, 1 NEX pulse sequence, flip angle=30◦,
matrix size=256× 256, FOV = 256mm, slice thickness=1mm). Data for MCI
patients were acquired on a 1.0T scanner (Philips Gyroscan, Best, Nether-
lands) using an FFE sequence (TR = 19.7ms, TE = 6.9ms, sagittal acquisition,



Predicting Clinical Variable from MRI Features 395

0.9365× 0.9375 × 1.3mm3). All global MRI data were processed to correct for
intensity non-uniformity due to scanner variations [10]. The 152 ICBM subjects
were registered in a Talairach-like stereotaxic space in the context of the ICBM
project [9]. Most (33/47) of the MCI data were linearly registered (9 DoF) auto-
matically into stereotaxic space [11] while the remaining volumes were manually
registered due to high scalp brightness. All reference and training volumes were
resampled onto a 1mm isotropic grid [11].

Two VOIs were selected for this study, centered on the left and right medial
temporal lobe, using Talairach coordinates (start coordinates x = [−57,+2]
for the left and right side respectively, y = −53 and z = −52). Each VOI
measured n = 55 × 82 × 80 = 360800 voxels. The VOI was selected so that
its extent captured the hippocampus and neighboring MTL structures (e.g. ento
and perirhinal cortex, parahippocampal gyrus), irrespective of normal inter- and
intra-individual variability. After extraction, each VOI was linearly registered (9
DoF) to the reference volume to further reduce local distortions, and its mean
intensity scaled to the mean intensity of the reference VOI, which serves to
eliminate the first-order drift in signal measurement between patients.

2.3 Multi-dimensional Reference Space and Model Creation

Two image features at each voxel location were retained. The first feature is the
grey level intensity consisting in the rasterized data from the intensity-scaled
VOIs. The second feature is the trace or the first-order approximation of the
determinant of the Jacobian matrix of a non-linear registration-derived defor-
mation field. The latter is calculated to map each subject’s VOI to our reference
ICBM target. The trace represents an estimate of local volume change. Prin-
cipal Components Analysis (PCA) is used to reduce the dimensionality of the
input training data and generate linear variation models based on the N = 152
datasets from our ICBM normal subjects. The resulting four PC models were
each p = N − 1 (or 151-dimensional). Most of the variation can usually be ex-
plained by a smaller number of modes, l, where l << n and l < p. We proceded
in selecting 535 eigenvectors in total from our four models (left/right inten-
sity/trace VOIs), that accounted to a per-model variance of 99.7%.

Rasterized vectors of the processed VOI intensity and trace data for each test
subject are then projected into the training space, and thus form eigencoordinate
vectors. While a number of possible features can be calculated on the distribu-
tion of the projected data, our predictor is based on the position along the PC
axes. The distribution of eigencoordinates along any principal component for a
given population is normally distributed as assessed via Shapiro-Wilke statistics.
For each eigenvector the correlation of the eigencoordinate distribution with the
clinical variable is then computed. We selected a number q of vectors based on
an arbitrarily predefined threshold for the correlation coefficient of r > |0.30|.
A predictive model is then built from those eigenvectors using multiple regres-
sion (JMP IN, SAS Institute, Cary, N. Carolina) and the model is then used to
predict the future value of the clinical variable of interest. Residuals and cor-
relation are computed between predicted vs actual value, and F-tests are used
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to determine if the models improve the prediction of our clinical variable from
MRI features.

2.4 Experiments

Four experiments were completed. Experiment 1 served as a baseline for the
classification of our patient population into 3 groups based on their MMSE
changes at 1 year follow-up from clinical variables (age, sex, baseline MMSE).
Experiment 2 attempted the same 3-group classification but this time based
on the projection eigencoordinates in the reference space. Experiment 3 served
as a baseline for the prediction of yearly MMSE decline by building a lin-
ear model based on clinical variables (”Clinical”). Experiment 4 attempted
the same prediction but with a model based on projected eigencoordinates, as
per the methodology described above (”MRI”), while in Experiment 5 we
added baseline MMSE as an additional variable to the projected eigencoordi-
nates (”MRI+baseline MMSE”).

3 Results

When comparing MMSE results between baseline and 12 months follow-up, we
can separate the 47 patients in the test population into three distinct groups:
16 decliners (> −1 point negative change in MMSE or cognitive decline), 5
improvers (> 1 point positive change in MMSE or cognitive improvement), and
26 stable individuals (MMSE change between [−1, 1]). Demographic information
about each group can be found in fig. 1. There was no statistically significant age
difference between either groups, as assessed from ANOVA and Tukey-Kramer

Groups Decliners Stable Improvers

Subjects 16 26 5

Mean age (yrs) 72.4 67.6 71.8
Std dev (4.7) (8.5) (5.4)

Baseline MMSE 27.5 27.8 24.8
Std dev (1.3) (1.4) (1.8)

Mean MMSE Δ -2.9 0 2.4
Std dev (1.2) (0.8) (0.6)

x y

z

Stable

Decliners

PC 40PC 40
PC 70PC 70

PC 100PC 100

Improvers

Fig. 1. (LEFT) Demographic information. (RIGHT) Leave-one-out, forward stepwise
linear discriminant analysis of the patient eigencoordinates in the reference space was
100% accurate at classifying groups (decliners, stable, improvers). The data is shown
here projected on the 3 most discriminating eigenvectors. Our goal was to find an
independent basis for the classification and creation of a predictive model, rather than
the optimal reference space in which to represent our population.
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HSD (P > 0.05, DF = 2). There was a statistically significant baseline MMSE
difference between the decliners and improvers (P = 0.0003, DF = 2), but no
other significant difference between groups for baseline MMSE. The improvers
had the lowest mean baseline MMSE of all three groups.

The classification is based on a leave-one-out, forward stepwise linear dis-
criminant analyses (SYSTAT 10.2, Georgia, PA; P − to− enter < 0.05) of either
clinical variables (age, sex and baseline MMSE) or eigencoordinates along the
535 reference space eigenvectors. The clinical classifier of Experiment 1 was
53% accurate in separating the 47 patients into decliners, improvers and stable
subjects (DF = 2, Wilk’s λ = 0.69), while the 3-way classifier based on projec-
tion eigencoordinates of Experiment 2 was 100% accurate, with 31 significantly
discriminant eigenvectors (P − to−enter < 0.05, DF = 31, Wilk’s λ = 0). Fig. 1
displays the data plotted along the three most discriminating eigenvectors.

While Experiments 1 and 2 classified the data into groups, in the following 3
experiments our goal was to predict the magnitude of the yearly MMSE change.

Table 1. Results from prediction models

Model Features r r2 SD F stat P F stat P
to Clin. to MRI

Clinical 3 0.429 0.176 1.86 - - - -
MRI 10 0.668 0.446 1.53 2.499 0.003 - -

MRI+MMSE 11 0.696 0.484 1.48 2.691 0.002 2.585 0.002
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Fig. 2. (A) Clinical model built from multiple regression of age, sex and baseline MMSE
against 1 year MMSE changes. (B) Residuals for the ”Clinical” model. The correlation
of predicted vs actual values was r = 0.429. (C) MRI+Baseline MMSE model built
from multiple regression of the 10 most correlated reference space eigenvectors plus
baseline MMSE. (D) Plot of residuals. With a correlation between predicted vs actual
yearly MMSE changes of r = 0.6955, this model was a significant improvement over
the ”Clinical” one (F − stat = 2.691, P = 0.002).
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Baseline MMSE, age and sex were all negatively and weakly correlated with
1 year MMSE change (r = −0.25, r = −0.21 and r = 0.15, respectively). In
contrast, out of the 535 reference space eigenvectors, 10 had a correlation ratio of
r > |0.30|. We predicted MMSE change for all patients using each linear model.
The number of input features to the model, the resulting correlation (r) and
squared correlation (r2) of predicted vs. actual values, the standard deviation
of the predicted score and F-test values (against ”Clinical” and ”ICBM”) are
shown in table 1. Recall that the first predictive model (Experiment 3) is
based on the 3 clinical variables (”Clinical”), the second (Experiment 4) on
the 10 selected eigenvectors (”MRI”) and the last (Experiment 5) using the
10 eigenvectors plus the baseline MMSE (”MRI+baseline MMSE”). The linear
fit for the ”Clinical” and ”MRI+baseline MMSE” models are shown in fig. 2,
alongside their residual plots. The best model was the ”MRI+baselineMMSE”
of Experiment 5, with a correlation between predicted and actual value of
r = 0.6955. It was also significantly better than either the ”Clinical” model
(Fstat = 3.39, P = 0.0001, DF1 = 43, DF2 = 35) or the ”MRI” model (Fstat =
2.59, P = 0.002, DF1 = 36, DF2 = 35).

4 Discussion

Our goal was to demonstrate the application of a generic, multidimensional
reference space from MR features for the classification and prediction of a clinical
variable. We proceded with analysis of a cohort of 47 Mild Cognitive Impairment
patients and achieved 100% classification accuracy with 31 eigenvectors. We
succeeded in creating an 11-variable linear model that predicted yearly MMSE
changes, explaining 48.4% of the variability in the actual data.

Our approach has been to create a model eigenspace based on subjects from
the ICBM database, in which we projected our MCI patients. While such a
space built from young, neurologically healthy individuals may not be optimal
to represent the MCI cohort, it should be noted that our primary goal was to
find an independent basis for the creation of a predictive model, and not to
find the best representation (mathematical, clinical or otherwise) of the patient
population. As the training set is composed of ICBM subjects that are separate
from the test set subjects, there is no issue of overdetermination in the creation of
the reference space from PCA of the ICBM data. If we are to use this technique
for a prospective or retrospective study, we will need either to use a separate
test set or to use a leave-one-out technique in order for our regression model to
remain independent of any and all training data.

The use of intensity features from MRI raises the question of calibration and
normalization. Absolute intensities are rarely used in MRI, since they vary with
machine calibration, shimming, and patient-induced variations. We have tried to
limit those variations by (1) using the same scanner within groups in the study;
(2) ensuring that the same quality assurance procedures were followed for each
acquisition at each site; (3) by acquiring subject scans in random group order;
and (4) scaling with respect to the reference image.
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Not all macroscopic changes will be capture by the registration process. Point
homology in nonlinear registration is of course approximate: in regions where
there is complete homology, the displacement field will be nearly exact; and
in regions where it is not, the result will be noisy. This uncertainty however is
rejected in the PCA model, as it is uncorrelated and non-covarying, and therefore
only changes associated with the pathology should remain.

While the classification procedure ought to be tested for generalizability in
another set of patients, the leave-one-out classification test (Experiment 2) in-
dicates that it is possible to predict 1-year MMSE changes based on a single MRI
scan. This has important ramifications for patient treatment, since success for
most therapies is expected to increase with earlier detection of cognitive changes
and appropriate treatment. Furthermore, the ”MRI + baseline MMSE” linear
model (Experiment 5) yields an estimate of the amount of change expected
in MMSE over the course of one year. Such data could be used to better taylor
therapy for specific patients.

5 Conclusion

The ability to perform both classification and prediction of a clinical variable
from a single, cross-sectional T1w MRI scan stands to benefit tremendously
physicians in the management of patients with MCI. We have explained our
methodology for model creation and demonstrated its application to the predic-
tion of yearly MMSE changes in a cohort of MCI subjects. A prospective study
on an independent cohort of patients is the next logical step towards further
acceptance of this technique in the medical community.
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Abstract. Motivated by the need for methods to aid the deformable
registration of brain tumor images, we present a three-dimensional (3D)
mechanical model for simulating large non-linear deformations induced
by tumors to the surrounding encephalic tissues. The model is initial-
ized with 3D radiological images and is implemented using the finite
element (FE) method. To simulate the widely varying behavior of brain
tumors, the model is controlled by a number of parameters that are re-
lated to variables such as the bulk tumor location, size, mass-effect, and
peri-tumor edema extent. Model predictions are compared to real brain
tumor-induced deformations observed in serial-time MRI scans of a hu-
man subject and 3 canines with surgically transplanted gliomas. Results
indicate that the model can reproduce the real deformations with an ac-
curacy that is similar to that of manual placement of landmark points
to which the model is compared.

1 Introduction

Accurate deformable registration of 3D brain tumor images into a common
stereotactic space is needed for the construction of brain tumor atlases. Such
atlases will be useful in planning neuro-surgical tumor operations and thera-
peutic approaches by linking the functional and structural information provided
by multi-modality images to variables such as tumor size, grade, subsequent
progression, therapeutic approach and outcome [1–4].

Currently available image registration approaches applied to a register a nor-
mal brain atlas and a tumor-bearing image have limited accuracy in and around
the tumor area. This is due to the inability of these approaches to account for
topological differences between the two images, severe deformation in the vicin-
ity of the tumor, and the confounding effects of edema and tumor infiltration.
Approaches that introduce a small tumor “seed” in the atlas brain and rely
on image information to subsequently adapt the atlas to the subject’s images
produce acceptable registration results for some tumor cases, however, patients
with large tumors and substantial brain tissue deformation still present a major
challenge [3, 4]. For such cases, the lack of a physically realistic model of brain tis-
sue deformation, derails the image matching process and causes the deformable
registration to fail near the tumor.
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In this paper, a 3D finite element (FE) model of the mass-effect of brain
tumors is presented. The model is controlled by a number of parameters that
are related to variables such as the tumor size, location, and peri-tumor edema
extent. The exact value of these parameters for a particular tumor patient can
only be found within the context of inverse problem solving based on the patient’s
images. The goal behind the model presented here is not to predict tumor growth,
or the mass-effect for a particular tumor patient, but rather to use this model for
generating a large number of brain anatomies deformed by simulated tumors for
a range of the model parameters. These simulated anatomies will act as training
samples for a statistical estimator of the model parameters for particular brain
tumor cases. Once the model parameters are estimated, they can be used to
introduce a tumor in the atlas and simulate the associated mass-effect, prior
to applying a deformable image registration approach to the two images. This
paper is dedicated to presenting the details of a mechanical model for tumor
mass-effect and its partial validation via a number of real tumor cases. The
integrated approach for image registration is described in [5].

In contrast to previous similar models that used 2D simulations and included
only bulk tumor mass-effect [1, 2, 6], the model presented here is fully 3D and
includes the mass-effect of the tumor as well as that of peri-tumor edema. Most
of the mass-effect of many real tumors is attributed, not to the bulk tumor itself,
but to the peri-tumor edema [7]. Additionally, the model employs a non-linear
constitutive material model for brain tissues and a non-linear FE formulation
which allow the simulation of realistic, large-deformation tumor cases. The de-
tails of the approach are presented in Sect. 2.

Another contribution of this work is the quantitative comparison of model’s
predictions to deformations caused by real tumors and observed in a dataset of
serial MRI scans. This dataset is composed of brain images of a brain tumor pa-
tient, and uniquely available scans of three canines with surgically transplanted
tumors. Results reported in Sect. 3 show that the presented model can reproduce
a large percentage of the deformations caused by the real tumors. The paper is
concluded with a discussion of the results in Sect. 4.

2 Methods

The aim of the proposed model is to simulate only the mass-effect component of
tumor growth via a mechanical FE model constructed from 3D medical images.
Since tumor growth is not purely a mechanical process, but involves a host of
interacting biological, biochemical and mechanical mechanisms, it is essential to
initialize the model simulations with a configuration for the brain from which
the target configuration (that deformed by the tumor at the desired stage of
tumor growth) is reachable by solving a contiuum mechanics problem.

The proposed approach can be understood by aid of Fig. 1. Let κo be the
initial configuration of the brain before the tumor emergence. The stresses in κo

are assumed negligible. Let κt be the configuration of the brain at the target
stage of tumor development. The bulk tumor denoted by Tt, is assumed to be
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Fig. 1. A schematic showing the three configurations involved in the model. κo is the
brain before tumor development, κt is brain at the desired stage of tumor growth, and
κr is the corresponding relaxed configuration. Tt and Dt are the bulk tumor and peri-
tumor edema regions in κt respectively, while Tr and Dr are the corresponding regions
in κr. In κr, the ventricles are denoted by BV , and ∂B01 denotes the outer surface of
the brain except for ∂B02 where the falx meets the skull.

composed of proliferative, quiescent and necrotic tumor cells [6]. A region Dt of
brain tissue swollen by edema may also be associated with the tumor.

If Tt were resected, the edema were diffused, and the stresses were allowed
to relax, brain tissues will reach a relaxed configuration κr. There is a relaxed
configuration associated with every κt and it is, in general, different from both
κt and κo. Given κr, the stresses caused by the bulk tumor, and the swelling
due to edema, the deformation map ϕ can be obtained by solving the mechanics
problem described below. For real tumor cases, these parameters are not known,
but they can be estimated from the measured pattern of deformed anatomy as
described [5]. For simulating mass-effect of tumors starting with normal brain
images, approximations of these parameters are used as explained next.

Defining κr involves specifying the geometry of the brain and that of Tr

(which corresponds to brain tissue that is no longer present in κt) and Dr (which
corresponds to brain tissue that is swollen by edema in κt). These regions are
highly variable for different tumor cases and types. For tractability, herein, we
will consider the approximation of Tr and Dr with two concentric spheres. Since
expansion due to edema happens mainly in white matter (WM) [7, 8], Tr is
restricted to WM tissues. The center and radii of Tr and Dr are treated as
model parameters. It is worth noting that the shape of the final tumor depends
on the generated surrounding stresses and need not be spherical [1].

To account for the mass-effect of the bulk tumor, we follow the work of
Wasserman and Acharya [6] and assume that the expansive force of the neoplasm
can be approximated by a constant outward pressure P acting on the tumor
boundary. P is a parameter that determines the mass-effect of the bulk tumor,
and therefore, to a large extent, the final tumor size.
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Edema expansion in WM is mostly perpendicular to the direction of the
fibers [7, 8]. Here, we assume no knowledge of WM fibers’ orientation and an
isotropic expansive strain e is applied to Dr by using analogy to thermal expan-
sion. Studies of brain edema that measured a volume expansion of 200%–300%
in WM [7, 8] imply e ∈ [0.26, 0.44]. For simulations starting with normal brain
scans, a value of e = 0.35 is adopted.

Continuum Mechanics Problem Statement

Given the time scale of the tumor growth process, the deformation of brain
tissues may be modeled as a quasi-static process. Additionally, if the effect of
gravity is ignored, the required deformation map ϕ : κr → κt can be found by
solving the static equilibrium equation Div(S) = 0, where S is the first Piola-
Kirchhoff tensor which is related to strain via the material constitutive law [9].

Based on simulations using several of material constitutive laws for brain
tissues suggested in the literature, we adopted the isotropic and homogeneous
hyperelastic model proposed by Miller and Chinzei [10] while relaxing the perfect
incompressibility assumption and ignoring viscous effects (since the time involved
in tumor growth is much larger than the viscous time constants). Under these
conditions, the strain energy density function of the material becomes [9]:

W =
2μ
α2 (λ1

α
+ λ2

α
+ λ3

α − 3) +
1
D1

(J/J th − 1)2, (1)

where λi = J−1/3λi, λi, i = 1, 2, 3 are the principal material stretches, J =
det(F ) is the volume ratio, F is the deformation gradient, J th = (1 + eth)3 is
the thermal volume ratio, and eth is the thermal strain. The constants μ,D1 are
related to the Young’s modulus at zero strain Eo, and Poisson’s ratio ν by

μ =
Eo

2(1 + ν)
and D1 =

6(1− 2ν)
Eo

. (2)

The value α = −4.7 determined in [10] was adopted here. Since the brain biome-
chanics literature includes varying accounts of brain tissue compressibility and
stiffness, in the experiments described below, the effects of μ and D1 (equiva-
lently μ, ν) on the proposed model were investigated. The following boundary
conditions (BCs) complete the statement of the problem (refer to Fig. 1):

ϕ(X) ·N (X) = 0, X ∈ ∂B01 and ϕ(X) = 0, X ∈ ∂B02 (3)

eth(X) = e, X ∈ Dr and eth(X) = 0, X ∈ BB (4)

SN (X) = PJF−T N(X), X ∈ ∂BT (5)
SN (X) = 0, X ∈ ∂BV (6)

where N(X) is the outward surface normal at X in the relaxed configuration.
Equation (3) implies a sliding BC over the brain surface except for locations
where the falx meets the inner surface of the skull which are assumed pinned [11].
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Equation (4) implies that the expansive strain due to edema is restricted to Dr.
Equation (5) is the traction BC implied by the tumor pressure, expressed in
terms on normals in κr. The ventricles are assumed void and eqn. (6) implies
negligible intra-ventricular pressure [1].

3 Experiments and Results

Here, we provide partial validation results for the model by quantitatively com-
paring its predictions to the deformations observed in four brain tumor cases.
The same dataset is used to guide the selection the material model parameters.
Finally, a model simulation on an MRI of a normal subject is demonstrated.

Assuming that canine brain tissue properties and tumor growth process are
reasonably representative of their counterparts in humans, three of the studied
tumor cases were for dogs with surgically transplanted glioma cells [12] (DC1,
DC2, DC3). A baseline scan was acquired before tumor growth, followed by
scans on the 6th and 10th day post-implantation. Gadolinium-enhanced T1 MR
images were acquired (MPRAGE for DC1, DC2). Tumors grow rapidly to a
diameter of 1− 2cm by the 10th day on which the animals were sacrificed, and
prior to the presentation of significant neurological complications. The fourth
dataset (HC) comes from a series of T1 MRI scans of a human with a low-grade
glioma transforming into malignancy. Two scans were used with approximately
2.5 years in between. Increase in the tumor mass and significant swelling due to
edema were observed. The dataset is described in Tab. 1 and example images
are shown in Fig. 2.

To compare the model predictions to actual deformations in the available
datasets, values of the model parameters (center, radii of Tr and Dr, and P )
for these cases must be determined. To avoid optimizing all parameters for each
tumor case, the first images after tumor development (6th day scan for dog cases,
and the first scan for the HC) were used to approximate κr. This approxima-
tion involves the assumption of negligible edema spread and tumor infiltration

Table 1. Description of the image scans and results for the dog cases (DC1, DC2,
DC3) and the human case (HC). Optimal values of the model parameters P and e
for μ = 842Pa and ν = 0.485 are provided. The number of landmarks, landmark
deformation statistics (lmrk def: mean/max/std. dev.) and model residual errors (Error,
mean/max/std. dev.) for the landmark points are reported.

DC1 DC2 DC3 HC
Image dimensions 256x256x100 256x256x100 256x256x124 256x256x124
Voxel size, mm 0.39x0.39x0.7 0.39x0.39x0.7 0.47x0.47x1.0 0.94x0.94x1.5
P , Pa 8000 7000 15000 8000
e 0.3 0.15 0.4 0.3
Num. landmarks 25 21 20 21
lmrk def, mm 2.16/3.9/1.06 1.77/2.83/0.58 1.82/3.04/0.78 4.53/6.09/0.9
Error, mm 1.11/2.5/0.73 1.13/2.1/0.42 1.19/2.24/0.52 1.7/3.09/0.77



Finite Element Modeling of Brain Tumor Mass-Effect 405

Fig. 2. Example cross sectional images from the starting (left column) and target
(middle left column) 3D images for DC1 (upper row) and HC (lower row) compared to
the deformed images obtained via the optimal model parameter values (middle right
column). Tumors in simulated images are assigned similar intensities to the real images.
The right column shows the outer surface of the used FE meshes.

between this scan and final scan, which corresponds to κt. Additionally, since
tumors in the starting images are small, the stresses and deformation are as-
sumed to be negligible. Under these assumptions, Dr and Tr are obtained from
segmentations of the tumor and edema in the starting images. Since the starting
images already had some edema, e was treated as a parameter with e ∈ [0.1, 0.4].

Since loads in the proposed model are in the form of a pressure, P , and
a prescribed strain e, the resulting deformation depends on e and the ratio
P/Eo, but not P alone (confirmed by actual simulations). Given this, the value
of μ = 842Pa suggested in [10] was chosen. Experiments were performed to
determine ν, and P , e for each tumor case according to the following procedure.

First, rigid registration of the target (final) scan to the respective starting
scan (used to approximate κr) was performed [13]. At least, 20 pairs of corre-
sponding landmarks were manually identified by a human rater in the starting
and target images. The landmarks were selected near the tumor, where large
deformation occurs. A combination of manual and automatic segmentation of
the starting images into brain, ventricles, falx, tumor and edema was then per-
formed. A tetrahedral FE mesh was generated from the segmented images [14],
and for each value of P , e, and ν, the FE simulation environment ABAQUS [9]
was used to solve the continuum mechanics problem described above. The re-
sulting deformation map ϕ for each simulation was used to deform the starting
images and the locations of the landmark points in those images. Errors between
deformed landmark coordinates and the corresponding rater’s coordinates in the
target scan were computed.

Experiments with different values of ν, P , e were performed in the following
sequence. With ν = 0.49 [11] (which implies Eo = 2109Pa, D1 = 4.75e−5Pa−1),
e and P ∈ [1, 16]KPa were varied for each case, the mean error in model predic-
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Fig. 3. Left: Mean residual errors between model predictions and deformed landmark
points for HC for different values of P and ν with e = 0.3, μ = 842Pa. Right: 2D slices
through a T1-weighted MRI of a normal subject before and after simulation (radius of
Tr was 5mm, P = 9kPa and no edema). The simulated tumor volume is 37cc.

tions was computed, and the value of e for minimum error was recorded. With the
value of e determined for each case, simulations were then run for ν ∈ [0.3, 0.499]
and P ∈ [1, 16]KPa. The minimum mean error occurs for ν ∈ [0.475, 0.499] for
all cases, which supports that the brain tissue is almost incompressible. We adopt
the value ν = 0.485 – near the middle of this range. With this value of ν and
e determined above for each case, the optimal value of P was found. Final val-
ues of P and e and the corresponding residual errors in the model predictions
are reported in Tab. 1. The residual errors for some individual landmark points
were down to 15% of the deformation observed. For HC, the model is able to
predict more than 62% of the deformation, on average. Simulated images using
the optimal values of all parameters are compared to the real ones in Fig. 2. Due
to space limitations, we provide an example of the error curves for only for HC
for different values of ν in Fig. 3 where we also present the result of applying
our model on a normal T1-weighted brain MRI.

To quantify the accuracy of the rater’s placement of landmarks in the target
image scans, for DC1, landmarks in the target image were found by two raters.
The mean inter-rater variability in this case was 1.12mm with a maximum of
3.29mm which are similar to the respective values obtained for residual model er-
rors. In fact, the distribution of the inter-rater distances and the average residual
errors (over the two raters) were statistically indistinguishable (p-value=0.95).

4 Discussion and Conclusions

A 3D FE model for simulating brain tumor mass-effect due to the bulk tumor
and edema was presented. Comparison between the predictions of the model to
deformations caused by four real brain tumors was performed. The results in-
dicate that the residual errors are mostly caused by inaccuracies in the rater’s
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tracking of the landmark points, as well as other errors such as modeling as-
sumptions, errors in rigid registration and manual segmentation. In particular,
in experiments on the real tumor cases, the use of segmentations of images at
initial stages of the tumor to approximate the relaxed configuration makes the
model unable to account for increase in infiltration and edema extent. Increase
in tumor infiltration, particularly for the aggressive dog glioma tumors, may also
be the reason behind perceived compressibility of brain tissues in these cases.

Future work includes investigating the relationship between model parame-
ters and clinical variables, such as tumor type and grade. While cases studied
in this paper did not involve contact between opposite walls of the ventricles,
we plan to investigate the modeling of this phenomenon by using a FE contact
condition, or filling the ventricles with a material that is softer than the brain tis-
sues. The use of the presented model in establishing registration between normal
brain images is presented in [5].
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Abstract. We propose to segment Multiple Sclerosis (MS) lesions over-
time in multidimensional Magnetic Resonance (MR) sequences. We use a
robust algorithm that allows the segmentation of the abnormalities using
the whole time series simultaneously and we propose an original rejec-
tion scheme for outliers. We validate our method using the BrainWeb
simulator. To conclude, promising preliminary results on longitudinal
multi-sequences of clinical data are shown.

1 Introduction

Multiple Sclerosis (MS) is an inflammatory autoimmune disorder of the central
nervous system. MS is a disease with a high variability in symptoms, clinical
course, neuro-radiological appearance of the lesions, response to therapy and
pathological mechanisms [1].

Nowadays, MRI is widely used for disease diagnosis, patient follow-up, vali-
dation of therapies, and more generally for the understanding of MS. For in-
stance, Gadolinium (Gd) enhanced areas in T1-weighted (T1-w) images and
hyper-intense areas in T2-weighted (T2-w) and PD-weighed (PD-w) images are
often considered as markers of clinical relapses, whereas brain atrophy (evalu-
ated in T1-w or T2-w images) and hypo-intense areas in T1-w images are often
seen as markers of the neuroaxonal loss [2]. These measures complement and
enrich the clinical observations based on scales such as the expanded disability
status scale (EDSS) or the MS functional composite (MSFC) whose drawbacks
are numerous. Clinical observations are inherently subjective, show poor inter-
and intra-rater reliability, have limited sensitivity, etc. These drawbacks are par-
ticularly critical when dealing with hundreds of subjects as in phase III clinical
trials. On the other side, such large-scale studies, composed of multiple subjects,
image modalities, time points, and acquisition centers, require automated image
processing pipelines for the efficient computation of MR markers.

Many statistical approaches have been developed for the automatic segmen-
tation of brain structures in MR data. A particularly convenient framework
consists in modeling the distribution of the intensities as a finite mixture of
Gaussians. Such a Gaussian Mixture Model (GMM) allows the modelization of
the image intensities with a reduced number of parameters. These parameters
can then be estimated within a well-defined statistical framework based on the
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Maximum Likelihood Estimator (MLE) using optimization methods such as the
Expectation-Maximization (EM) algorithm. Such an approach is unfortunately
unadapted to pathological cases characterized by abnormal intensities in MRI.
Some authors have proposed modifications of this classical approach to handle
outlying intensities caused by MS lesions. Schroeter et al. [3] add an uniform
component into the GMM to model lesions intensities. Van Leemput et al. [4]
introduce a weight reflecting the degree of typicality of each brain voxel, the lat-
ter being consider as an outlier if its Mahalanobis distance with respect to each
mixture component is greater than a threshold. Dugas-Phocion et al. use the Ma-
halanobis distance directly within the EM [5]. All these “robust” EM algorithms
are computed for multi-sequences but only for one time point. On the other
hand, few methods have been proposed to study the MS evolution over time
[6, 7, 8, 9] using statistical tests or deformation fields. Shahar et al. [10] propose
a combination of these two approaches for the spatio-temporal segmentation of
lesions. They perform both lesions segmentation at one time point and lesions
evolution over time from 2D T2-w images using a multifeature EM algorithm.

We propose an original multidimensional (multiple sequences and time
points) robust algorithm using 3D + t MR data to segment MS lesions over
time in a standardized clinical protocol. Our method consists in originally mod-
eling the multidimensional problem. The MLE is replaced by a robust estimator,
the Trimmed Likelihood Estimator (TLE). We propose an iterative scheme to
compute this estimator. In the last step, we refine the segmentation using both
the Mahalanobis distance and prior information coming from clinical knowledge
on lesion appearance across sequences. The method is described in Section 2,
and the experimental results are presented and discussed in Section 3. Finally,
we conclude and address future work in Section 4.

2 Method

We first detail a classical algorithm for the segmentation of multi-sequence MR
data (see Section 2.1). Then, we present several adaptations for the robust seg-
mentation of MS lesions in multidimensional MR data (see Section 2.2).

2.1 A Classical Parametric Multi-sequence Segmentation Method

Modelization stage. MRI noise is known to follow a Rician distribution, which
can be fairly approximated by a Gaussian distribution [11]. Assuming that the
distribution of intensities within each brain structure is also well approximated
by a Gaussian law, it is common to consider that the image intensities are gen-
erated by a Gaussian Mixture Model (GMM). When considering m different
sequences simultaneously, each voxel i, i ∈ {1, . . . , n}, is described by a m-D
intensity vector yi = (y1

i , . . . , y
m
i ), which can be modeled by a m-D GMM de-

fined by:

p(yi; θ) =
k∑

j=1

αj(2π)−m/2|Σj |−1/2. exp(−1
2
(yi − μj)TΣ−1

j (yi − μj)), (1)
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k is the number ofmixture components and θ = (α, μ,Σ) is the hyper-parameter of
the GMM where: (i) (αj)j∈{1,...,k} are the mixture proportions, (ii) (μj)j∈{1,...,k}
are the mean vectors, (iii) (Σj)j∈{1,...,k} are the covariance matrices.

In MRI, three structures have relatively homogeneous intensities in the intra-
cranial cavity, and constitute the components of the GMM: White Matter (WM),
Grey Matter (GM), Cerebro-Spinal Fluid (CSF). The aim is to give a label xi to
each voxel vector yi, with xi ∈ {c1, . . . , ck} and cj being one of the three GMM
components. The output X = (x1, . . . , xn) is the desired image segmentation of
the MR data Y = (y1, . . . ,yn).

Estimation stage. The computation is based on the ML estimation of the
GMM hyper-parameter: θ̂ = arg maxθ

∏n
i=1 p(yi; θ). It can be seen as an incom-

plete data problem, since neither the voxels memberships xi nor the Gaussian
mixture parameters are known but only the voxel intensities yi.

Optimization stage. The EM algorithm [12] is a well established method to
tackle this type of problems. It consists in iterating two steps until convergence:
labelization of the image based on a prior knowledge of the unknown param-
eters (Expectation step) and estimation of the mixture proportions and class
parameters based on this labelization (Maximization step).

Practically, this EM algorithm is not directly ran on the m MR images, but
rather on a m-D joint histogram built from the m images, which is computa-
tionally much more efficient.

Classification stage. The final probabilities P (xi = cj |Y ; θ̂) are a natural out-
put of the EM algorithm and are used to compute the segmentation X .

2.2 The Proposed Spatio-Temporal Robust EM: STREM

Spatio-temporal model. For the patient follow-up, the longitudinal study is
essential. In this context, we propose to perform a multi-sequence segmentation
with time points (1, . . . , t) with a robust estimation approach. The whole dataset
can then be named Y = {Y (1), . . . , Y (t)}, Y (l) = (y1

(l), . . . ,yn
(l)) being the

multi-sequence MR dataset at time point l. Once the images are preprocessed
(cf. Section 3), a m-D joint histogram is computed for each time-point and
these histograms are merged into a global m-D joint histogram containing the
information from all sequences and all time-points. As all time points are merged,
we omit the l index for the vectors yi in the following paragraphs.

Trimmed Likelihood Estimator (TLE). In order to make the classification
less sensitive to noise, registration error, partial volume effects (PVE) and last
but not least pathological abnormalities (e.g. MS lesions) which do not fit well
the GMM model, we propose to replace the MLE by the TLE proposed by
Neykov et al. [13].

The TLE is defined by: θ̃ = arg maxθ

∏h
i=1 p(yν(i); θ), where ν(i) are the

permutations of i = {1, . . . , n} such as rν(i) ≤ rν(i+1), ri = − log p(yi; θ) being
the residuals. The TLE and the MLE are related to each other in the same way
as the LTS (Least Trimmed Square) and the LS (Least Square) criteria.
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Optimization. We propose an iterative scheme to estimate θ̃. We name this
scheme the STREM algorithm. This scheme converges at least to a local mini-
mum of the criterion [13]. It can be summarized in the following way:

1. computation of the MLE on the whole data set using an EM giving a first
estimation of the hyper-parameter θ̃;

2. sorting of the residuals : ri = − log p(yi; θ̃);
3. computation of the MLE on the voxels with the h smallest residuals (h > 50%

of data), giving a new estimation θ̃′ (still using an EM);
4. back to step 2 until convergence.

Classification. Once healthy tissue model parameters are robustly estimated
using STREM, we extract MS lesions as outliers of this model using the Maha-
lanobis distance (STREM-1), then we refine the segmentation using MS a priori
information (STREM-2). We term the lesions class ck+1.
1. For each vector yi in the joint histogram, the Mahalanobis distance

di,j = (yi − μj)TΣ−1
j (yi − μj)

between each class cj is computed and gives a measure of how yi fits the
model. These distances follow a chi-square distribution with m degree of
freedom (χ2

m). For a vector yi, if the Mahalanobis distance between each
class j is greater than the critical value of χ2

m distribution for a given p value,
then the vector is considered as an outlier and belongs to ck+1.

2. This potential lesions set still includes partial volume effects, noise or vessels.
To discriminate real lesions from these false positives, we bring some a priori
knowledge about MS and its manifestations in MRI. This a priori knowledge
is summarized in Tab.1, where −1, +1 and 0 denote respectively hyposignal,
hypersignal and normally appearing with respect to the WM. Among the
outliers extracted using the Mahalanobis distance those which follow the
rules in Tab.1 belong to ck+1.

Finally, the segmented images X = (X(1), . . . , X(t)), X(l) = (x(l)
i , x

(l)
i ∈ {c1, . . . ,

ck+1}) being the segmentation at time point l, are constructed.
The advantage of such a multidimensional analysis is twofold: from a com-

putational point of view, it increases the signal-to-noise ratio of the dataset and
thus gives a more precise segmentation; from a clinical point of view, we use the
information from various sequences, and we study the temporal variations.

Table 1. A priori knowledge about MS. Inflammatory MS lesions are hyper-intense
with respect to the WM in T2-w and PD-w images. Young (4 to 6 weeks) lesions are
hyper-intense in Gd T1-w images. Necrosis MS lesions are hypo-intense in T1-w images.

T1-w Gd T1-w T2-w PD-w
young inflammatory lesions 0 +1 +1 +1
others inflammatory lesions 0 0 +1 +1

necrosis -1 0 +1 +1
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3 Validation and Clinical Experimentation

Before applying the STREM algorithm, we extract the intra-cranial contents
using a level set method [14]. Then, a bias field correction is done to reduce the
radio-frequency inhomogeneities [15]. Finally, the various sequences and time
points are rigidly registered [16], and global intensity changes between consecu-
tive scans are corrected [17].

We first quantitatively validate the method using the BrainWeb database.
Then, we show preliminary results on real data.

3.1 Quantitative Validation Using BrainWeb

BrainWeb is used for validation purposes. We simulate T1-w, T2-w and PD-w
synthetic 3D MR images [18] with a 1mm slice thickness and 3% noise level. We
simulate a set of healthy images (set A) and a set of MS images (set B).

The Dice Similarity Coefficient (DSC) is used to compare segmentations.
Given two targets R1 and R2, the DSC is defined by:

DSC(R1, R2) = 2.card (R1 ∩R2)/card (R1 + R2).

First, we prove the impact of using multiple sequences and, second, the im-
pact of using longitudinal data. The third paragraph shows the improvement
brought by the two previously proposed refinements (STREM-1 and -2).

Impact of multi-sequence analysis. We previously stressed the importance
of such a multi-sequence analysis from a clinical point of view in MS study. Here,
we focus on the computational improvement of using multiple sequences even
for the segmentation of healthy tissues (set A). We empirically show that using
several sequences improves the segmentation doing three experiments:

– (i) mono-sequence STREM on T2-w giving XT2 and on PD-w giving XPD;
– (ii) multi-sequence STREM on T2-w and PD-w giving XT2,PD;
– (iii) multi-sequence STREM on the whole set A giving XT1,T2,PD.

The obtained DSCs are compared and show that (i) < (ii) < (iii) (see Tab. 2).
Values for CSF are not mentioned because it is not well segmented using only
the PD-w sequence. We use h = 96%.

Impact of the longitudinal analysis. The longitudinal analysis allows to de-
tect both MS lesions and their evolution. Our method treats in a unified manner
the segmentation and tracking of MS lesions. That is to say, the segmentation at
a given point is used to allow better tracking of lesions over time, and, conversely,
all the information over time is used to allow better segmentation of lesions at
a given time point.

As shown in the previous section, using three sequences jointly (T1-w, T2-w
and PD-w) improves the segmentation. In this second experiment, we simulate
a longitudinal dataset with two time points. The first time point is the set A,
YA = YT1,T2,PD. The second time point is the set B, YB = YT1MS ,T2MS ,PDMS .
The following experiments are done:
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– (i) multi-sequence STREM-1 on YA giving XA(=XT1,T2,PD);
– (ii) multi-sequence STREM-1 on YB giving XB;
– (iii)multidimensional STREM-1 onY = (YA, YB) givingX = (XA/B, XB/A).

MS lesions are rejected by STREM-1: h = 96% and p value = 0.025.
We compare the DSCs between multi-sequence segmentation and multidi-

mensional segmentation for YA and YB. The multidimensional (multi-sequence
and longitudinal) analysis improves the segmentation (see Tab. 3).

Table 2. Set A. The DSCs increase when
using several sequences simultaneously for
the hyper-parameter estimation.

WM GM
XT2 0.86 0.84
XPD 0.88 0.83

XT2,PD 0.93 0.88
XT1,T2,PD 0.95 0.89

Table 3. Set A and B. The DSCs increase
with the number of time points, particu-
larly for all tissues in set A and MS lesions.

WM GM CSF lesions
XA 0.95 0.89 0.56 -

XA/B 0.96 0.95 0.65 -
XB 0.95 0.90 0.59 0.48

XB/A 0.95 0.90 0.58 0.75

Impact of refinements. We perform the three following experiments:

– (i) STREM on Y = (YA, YB) with h = 96%;
– (ii) STREM-1 on Y with h = 96% and p value = 0.025;
– (iii) STREM-2 on Y with h = 96% and p value = 0.025.

Table 4. DSC measures for XB/A. The DSC of MS lesions increases with the refine-
ments.

WM GM CSF lesions
STREM 0.95 0.90 0.58 0.58

STREM-1 0.95 0.90 0.58 0.75
STREM-2 0.95 0.90 0.58 0.76

For STREM, we consider as outliers the vectors that have the bigger residuals.
STREM-1 performs better than STREM in terms of DSC because it is more spe-
cific. STREM-2 is still more specific than STREM-1 without being less sensitive
and thus performs better. The increment is not obvious on this data because
there are only few outliers which are not MS lesions (cf. Tab.4).

3.2 Results on a Real Multidimensional Data Set

To be more complete, we present a robust segmentation on a multidimensional
clinical data set. This multidimensional MR dataset was acquired on a GE 1.5T
scanner and corresponds to a patient follow-up every three months during one
year. Each acquisition is composed of three sequences: PD-w (TR = 2740 ms, TE
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Fig. 1. STREM-1 on clinical data set (h = 95% and p value = 0.01). A young le-
sion appears at time point 1 and disappears at time point 2. Preliminary results for
multidimensional segmentation show the detection of a small and evolving lesion.

= 22.9 ms), T2-w (TR = 2740 ms, TE = 91.7 ms), and T1-w images after gadolin-
ium injections (TR = 460 ms, TE = 20.0 ms), with a slice thickness of 3mm.

The STREM-1 is ran on the three sequences and the five time points simulta-
neously. Results for the first two time points are presented (there is no more evo-
lution after). The refinement based on lesion intensity rules is not yet computed
which explains the false positives (localizated in the CSF). Even considering its
small size, a lesion is segmented at time point 1 (see Fig. 1). This result is very
promising because even very small structures are recovered. In addition, these
small and evolutive lesions correspond to early stage of the pathology where MR
lacks specificity. This encouraging result should even be improved by applied the
lesion intensity rules to make the segmentation even more specific.

4 Conclusion

We proposed a consistent robust multidimensional iterative scheme to segment
MS lesions over time. The advantages of this method are numerous. Using several
sequences and time points increases the signal to noise ratio and thus improves
the hyper-parameter estimation. From a clinical point of view, such a multi-
sequence approach allows to take into account all types of MS lesions, while using
the longitudinal data allows to handle the segmentation of static and evolving
MS lesions in an unified manner. Our robust estimation scheme, coupled with
refinements steps using Mahalanobis distances and a priori knowledge allows to
differentiate MS lesions from other voxels showing abnormal intensities.
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In the future, we will validate our algorithm on larger clinical databases, by
comparing our classifications of lesions with ones manually segmented by an ex-
pert according to their type (young, inflammatory, necrosis) and their evolution
characteristics over time.
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Abstract. In the last five years, Deep Brain Stimulation (DBS) has
become the most popular and effective surgical technique for the treat-
ment of Parkinson’s disease (PD). The Subthalamic Nucleus (STN) is
the usual target involved when applying DBS. Unfortunately, the STN
is in general not visible in common medical imaging modalities. There-
fore, atlas-based segmentation is commonly considered to locate it in the
images. In this paper, we propose a scheme that allows both, to perform
a comparison between different registration algorithms and to evaluate
their ability to locate the STN automatically. Using this scheme we can
evaluate the expert variability against the error of the algorithms and we
demonstrate that automatic STN location is possible and as accurate as
the methods currently used.

1 Introduction

Deep Brain Stimulation (DBS) involves implantation of an electrode deep inside
the brain. This electrode delivers electric current to specific brain cells shutting
down parkinsonian symptoms. After hundreds of surgical interventions, The Sub-
thalamic Nucleus (STN) has turned out to be the most effective target for DBS.
A typical DBS procedure starts with the placement of the stereotactic head
frame, fixed to the patient’s skull, that will be used as a coordinate reference.
Next, an imaging study is taken in order to select pre-operatively the target
to be stimulated and to plan the trajectories for introducing the electrodes.
Usually two kind of images are taken to be able to visualize different tissues,
MR T1-weighted and MR T2-weighted images. In our state-of-the-art protocol,
the selection of the STN target is performed on a coronal T2-weighted image
acquired perpendicularly to the AC-PC axis and crossing the anterior limit of
� This work is supported by the Swiss National Science Foundation under grant num-

ber 205320-101621.
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the Red Nucleus. STN target selection depends on each institution. Common
methods are the use of a stereotactic atlas of the brain [1] and the use of visible
surrounding anatomical landmarks [2]. Then, the target coordinates are reported
to a T1-weighted image where the trajectories are planned. Once in the operat-
ing room the head frame is fixed to the operating table, a small hole is drilled
into the patient’s skull according to the pre-operative trajectories. Because of the
difficulty to directly see the STN on medical images, the selected pre-operative
target is only an estimation of the real location. Therefore the electrode’s lo-
cation has to be adjusted intra-operatively using electrophysiological recordings
and from stimulation tests.

This paper focuses on three main goals. First of all, the construction of a ref-
erence which is used as a ground truth for the position of the STN. Secondly, the
study of the intra and inter -expert variability in identifying the STN location
visually. Thirdly, to evaluate the possibility of automatically locating the STN
using existing registration techniques and to compare their performance and
usability. The construction of a STN location ground truth from the experts
knowledge is as follows. First, a patient is chosen as atlas and each individual
patient mapped back to this atlas using various registration methods. Then, an
estimation of the STN location is obtained and compared to the real location
given by the ground truth. Using accurate registration algorithms we demon-
strate that automatic STN localization is possible and as accurate as the meth-
ods currently used. As far as we know, only one study to evaluate a standard
mutual information-based non-rigid registration algorithm for automatically lo-
cating the STN has been published [3]. As opposed to us, they use post-operative
coordinates as a ground truth, making the assumptions that the surgical team is
able to place the electrode within the STN and that the intra-operative guidance
system provides the accurate position of the electrodes.

2 Materials and Methods

2.1 Data

For each patient of our bilaterally implanted parkinsonian patient’s database (37
patients, 74 STNs) two kinds of images were acquired pre-operatively: a 3D T1-
weighted magnetization-prepared rapid acquisition gradient echo (MPRAGE)
MRI sequence (Siemens Vision �, 1.5T, Erlangen, Germany) TR 9.7 ms, TE
4 ms, number of slices/slice thickness: 164/1.40 mm, FOV 280x280, matrix
256x256, pixel size 1.09x1.09 mm, and few coronal slices (due to the acquisi-
tion time required for this kind of imaging sequence) of an inversion recovery
(IR) T2-weighted, TR 2,560 ms, TE 4 ms, number of slices/slice thickness: 7/3
mm, FOV 300x300, matrix 512x512, pixel size 0.59x0.59 mm. Taking profit from
the fact that in some rare cases the STN is visible in MR T2-weighted images,
a reference is constructed and used as a ground truth. To do this, neurosurgeon
experts were asked to select patients with clearly visible STN in MR T2-weighted
images amongst our patient’s database. After exhaustive inspection 8 patients
were selected (16 STNs).
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2.2 Ground Truth and Validation Scheme

Two experts, one neurosurgeon and one radiologist, both with wide experience
in Parkinson’s disease (PD) surgery and targeting, have been asked to click the
target point (2 STN per patient) for each selected T2 series. This process has
been repeated 5 times for each patient at different days to avoid that the experts
be influenced by previous targeting choices. With this data we were able to com-
pute statistics about intra and inter -expert variability. Inter -expert targeting
differences have turned out to not be statistically significant as shown in section
3.1. Thus, we can use the two sets of points to compute statistical mean target
point coordinates, called real targets, and which are considered the ground truth.
Amongst the 8 selected subjects, the experts have selected the one with the most
clearly visible STN as a reference subject, both for the right and left sides. These
data together with the real targets allow us to consider our reference subjects as
an atlas. Then, by non-rigidly registering the 7 other patient’s images with the
atlas, we obtain a projection of the STN of the patient in the atlas, an estimation
of the STN position given by the registration method used. The procedure is as
follows. First, for each patient, we perform a T1-T2 rigid registration [4] and
project the real target coordinates into the T1 space. Next, we apply each of the
4 registration algorithms under study to get an estimation of the position of the
STN. This estimation is obtained by registering the MR T1-weighted image of
the patient under study with the MR T1-weighted image of the atlas. Finally,
repeating this for the 7 datasets (14 STNs) involved in this study (leaving out
the reference subjects), Euclidean distances from estimated to real targets for
each STN are calculated and statistics are extracted to evaluate the performance
of the different methods.

2.3 Atlas-Based Targeting and Registration Algorithms

In this study, the following registration methods have been applied and tested
because of their wide use in medical image processing:

– Atlas-based (AC-PC) targeting. AC-PC referential together with brain at-
lases is one of the methods used to target the STN in medical environment,
mainly when STN is not clearly visible in MR T2-weighted images which
is the usual case. Neurosurgeons have to locate the anterior and posterior
commissures (AC-PC points). Then, using a stereotaxic atlas and taking as
the origin the midcommissural point (MCP), this procedure estimates that
the STNs are located at coordinates (following Schaltenbrand-Wahren [1]):
anteroposterior (AP) −3mm, lateral (LAT) ±12mm (left and right side) and
vertical (VERT) −4mm.

– Affine registration. We used an independent implementation based on the
work of Maes et al. [4]. The 12 degrees of freedom (translation, rotation, scal-
ing and shearing) are optimized in order to maximize the mutual information
between the images to be registered [5] using a multiscale approach and a
two-step optimization. First a global search using genetic algorithms [6] and
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next a local optimization using the steepest descent method [7]. Affine reg-
istration is also used as a pre-alignment step for non-rigid transformations
described below.

– Demons algorithm is an intensity-based algorithm proposed by Thirion [8]
and based on the concept of optical flow. The problem of image matching is
approached as a diffusion process, in which object boundaries in the refer-
ence image F are viewed as semi-permeable membranes. The other (so-called
floating) image G is considered as a deformable grid, and diffuses through
these interfaces driven by the action of effectors situated within the mem-
branes. In the case of voxel-by-voxel intensity similarity, the instantaneous
displacement vector for each voxel is

−→
d = − (g − f)−→∇f

|−→∇f |2 + (g − f)2
,

where f and g are the intensity image of F and G respectively. The deforma-
tion algorithm is applied by iterating in a hierarchical coarse-to-finemultiscale
way. The smoothness of the displacement field is imposed by smoothing with
a Gaussian filter of standard deviation σ (elasticity parameter) chosen em-
pirically [9]. In our case, parameter σ has been chosen by exhaustive search,
between 0.6 and 2.0mm by steps of 0.2mm, minimizing the distance between
the estimated STN and the real targets. Finally, σ of 1mm has been chosen.

– B-splines algorithm. It is a mutual information-based free-form deformation
algorithm whose displacement field is modelled as a linear combination of B-
splines lying in a regular grid (uniformly spaced control points) similar to the
method proposed by Rueckert et al. in [10]. The deformation that maximizes
the mutual information between the two images involved is computed at each
grid point placed on the floating image. The transformation is propagated to
the rest of the image using the standard B-spline expansion with cubic splines:

d(x) =
∑
k∈Z

c(k)β3(x− k),

where β3(x) = β0 ∗ β0 ∗ β0 ∗ β0(x), c(k) are the B-spline coefficients and β0

a rectangular pulse. To speed up the optimization process the algorithm has
been implemented using the communication utilities for distributed memory
architectures using the MPICH implementation of the Message Passing In-
terface (MPI) [11]. The good interpolation properties and the suitability for
multiscale processing of the B-splines are well known [12] and its deforma-
bility can be controlled by changing the spacing between the control points
of the grid which we have set at 12mm.

3 Results

3.1 Target Selection and Expert Variability

In order to evaluate the repeatability or intra-expert variability of the expert
targeting, we have computed the centroid of each cloud of STN points targeted



Cross Validation of Experts Versus Registration Methods 421

Table 1. Expert variability statistics

(a) Intra-expert variability.

m ± s Expert 1 Expert 2
centroid 1.06 ± 0.61mm 0.80 ± 0.52mm

(b) Intra-expert variability. References.

m ± s Left Ref. Right Ref.
Exp. 1 1.10 ± 0.32mm 0.75 ± 0.38mm

Exp. 2 0.79 ± 0.30mm 0.38 ± 0.25mm

by the expert and we have calculated the Euclidean distances from the centroid
to each of these points, called centroid variability. In table 1(a) these statistics
are shown for the two experts. These quantities allow us to get an idea of the
surgeon variability and its accuracy when clicking over the pre-operative target.
If we only consider the 2 STNs used as a reference we obtain a centroid variability
that is shown in table 1(b) for the left and right sides respectively and for the
different experts.

In order to construct our ground truth a paired T-test of the hypothesis
that the target coordinates selected by each expert come from distributions
with equal means has been performed over each coordinate (x, y, z) at a 1%
significance level. The results show that the hypothesis can not be rejected.
Therefore our reference can be considered as the mean of two cloud of points
given by each expert. The inter -expert variability calculated as the Euclidean
distances from each expert click to the ground truth gives a mean and unbiased
standard deviation of 1.61 ± 0.29mm and 1.40 ± 0.38mm for the expert 1 and
2 respectively. These statistics have been obtained by generating one error per

(a) L-STN Coronal. (b) L-STN Sagital. (c) L-STN Axial.

(d) R-STN Coronal. (e) R-STN Sagital. (f) R-STN Axial.

Fig. 1. Reference STN expert targeting
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Table 2. Mean STN coordinates of the dataset and errors given by the methods

(a) STN coordinates referred to MCP.

Coordinates mean ± std

AP −3.286 ± 0.94mm

LAT ±12.90 ± 0.93mm

VERT −3.23 ± 0.78mm

MCP-distance 13.90 ± 0.87mm

(b) Estimation Errors.

Methods mean ± std

Affine 2.42 ± 0.84mm

Demons 1.77 ± 0.65mm

B-Splines 1.72 ± 0.48mm

AC-PC 1.96 ± 0.90mm

STN and per expert in the following manner. Each error is the Euclidean distance
between the mean of the 5 points targeted by the expert and the ground truth.

In figure 1 the points targeted by the experts for the left (figures 1(a), 1(b),
1(c)) and right (figures 1(d), 1(e), 1(f)) STNs chosen as a reference can be seen.
In blue the targeting of the expert 1, in red the targeting of the expert 2 and
in black the mean point used as a reference. For visualization purposes, each
point has been projected onto the three orthogonal planes passing through the
centroid and showed using a circle (radius of 1mm).

We can also decompose these distances in anteroposterior (AP), lateral (LAT)
and vertical (VERT) coordinates which allows comparing directly the mean STN
location for our database with usual STN coordinates from the atlases (e.g. [1]).
In table 2(a) we show the mean and standard deviation of the coordinates re-
ferred to the MCP for the 16 STNs used in this study as well as their mean
distance to the MCP.

3.2 Target Estimation and Evaluation of the Methods and Experts

The statistics, mean and unbiased standard deviation, of the errors committed
when applying the 4 methods under study to locate the STN as described in 2.3
are shown in table 2(b). In order to compare the results statistical tests were
performed. A one-way analysis of variance (ANOVA) of the hypothesis that the

(a) ANOVA statistical box plot. (b) Multi-comparison test.

Fig. 2. Statistical tests of the errors committed using different methods and by the
experts (using the anova1 and multcompare functions of MATLAB�)
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(a) L-STN Coronal. (b) L-STN Sagital. (c) L-STN Axial.

(d) R-STN Coronal. (e) R-STN Sagital. (f) R-STN Axial.

Fig. 3. STN estimation using B-splines

errors come from distributions with equal means has been performed over the
errors produced by each method and by the experts at a 5% significance level.
In figure 2(a) a statistical box plot produced by this test is shown as well as
the result of a multi-comparison test of the means (see figure 2(b)). Two key
conclusions can be drawn from these results. First that the errors committed
with B-splines, demons and AC-PC based methods and the errors committed by
the experts are not significantly different. Secondly that the results show that
affine registration is significantly different from the B-splines method and from
the experts. In figure 3 we show the projection of each STN estimation (in red)
onto the reference subject (in black) using the B-splines registration algorithm.
Each point is represented by a circle of 1mm of radius whose coordinates are
projected onto the three orthogonal planes passing through the reference subject
point coordinates (in black) in order to visualize the points in each view. The
estimated targets are located very close to the real target and forming tight
clouds of points showing that this kind of automatic estimation is reliable and
well suited for this application.

4 Discussion and Perspectives

The main conclusion one can extract from these results is that automatic STN
location is possible and accurate. As we can see by simple inspection of the
numerical results, the B-splines method shows the best performance with the
smallest mean error and unbiased standard deviation but closely followed by
demons and AC-PC methods. The points project on tight clusters showing the
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robustness of this kind of estimation method. The statistical tests have shown
that global affine registration is not enough for our application while there are no
significant differences between the errors committed using the B-splines, Demons
or AC-PC referential-based techniques and, most importantly, that there are no
significant differences between the errors committed with these three techniques
and by the experts. Although the AC-PC referential-based method shows an
acceptable performance its estimation needs AC and PC point’s identification
by an expert and does not take into account inter-patient variability, which
is very important at a single patient level. Although the choice of the STN of
reference can influence the results, the methods have been tested using 6 different
combinations of STN-pairs (left and right references) and the results were similar.
The automatic estimation of the STN can also be used as a first and fast pre-
operative target estimation that can be refined by the neurosurgeon criterion.
In a near future, more registration methods, mainly local ones, and experts will
be added to this study. Moreover, further work will include the construction of
a post-mortem atlas of the STN which will provide a ground truth without the
variability produced by expert targeting over a point.
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Abstract. Tachyarrhythmias are pathological fast heart rhythms often
caused by abnormally conducting myocardial areas (foci). Treatment by
radio-frequency (RF) ablation uses electrode-catheters to monitor and
destroy foci. The procedure is normally guided with x-rays (2D), and
thus prone to errors in location and excessive radiation exposure. Our
main goal is to provide pre- and intra-operative 3D MR guidance in XMR
systems by locating the abnormal conduction pathways. We address the
inverse electro-mechanical relation by using motion in order to infer elec-
trical propagation. For this purpose we define a probabilistic measure of
the onset of regional myocardial activation, derived from 3D motion fields
obtained by tracking tagged MR sequences with non-rigid registration.
Activation isochrones are then derived to determine activation onset.

We also compare regional motion between two different image ac-
quisitions, thus assisting in diagnosing arrhythmia, in follow up of treat-
ment, and in determining whether the ablation was successful. Difference
maps of isochrones and other motion descriptors are computed to deter-
mine abnormal patterns. Validation was carried out using an electro-
mechanical model of the heart, synthetic data, a cardiac MRI atlas of
motion and geometry, MRI data from 6 healthy volunteers (one of them
subjected to stress), and an MRI study on a patient with tachyarrhyth-
mia, before and after RF ablation. A pre-operative MRI study on a
second patient with tachyarrhythmia was used to test the methodology
in a clinical scenario, predicting the abnormally conducting region.

1 Introduction

Superventricular tachyarrhythmias are pathological fast heart rhythms most
commonly caused by an extra electrical propagation pathway (foci) between the
atria and ventricles. Treatment by radio-frequency (RF) ablation uses electrode-
catheters to monitor endocardial electrical activity. An ablation electrode is then
used to apply a RF current, inducing hyperthermia and thus destroying the ab-
normally conducting areas. The procedure is normally guided with x-rays (2D),
and thus prone to errors in location and excessive radiation exposure.
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Our main objective in this work is to provide pre- and intra-operative 3D MR
guidance [1, 2] in XMR systems (combined X-ray and MRI room) by detecting
the onset of regional motion and relating it to the electrical activation pattern.
For this purpose we define a probabilistic measure of regional motion activation
derived from a 3D motion field extracted by using non-rigid 3D registration of
tagged MR (SPAMM) image sequences. Since we address the inverse electro-
mechanical problem, trying to infer time of electrical activation by extracting
information from the cardiac motion, we use an electro-mechanical model of
the heart to validate these results. Isochrones computed from MR motion are
compared between different image acquisitions, and also to those isochrones
obtained with the model. A cardiac MR atlas of motion and geometry is also
used to validate results in a realistic but relatively noise-free case.

Another objective of this work is to detect changes in regional motion pat-
terns between two different image acquisitions. The purpose of this being the
follow up of medical treatment in general, and in particular of patients that
have undergone RF ablation. For these patients the method can aid in the iden-
tification and localisation of abnormal or changing motion patterns, and also
can help determine whether the ablation had the desired effect of regularising
cardiac contraction. For validation we use MR images of 6 healthy volunteers
(one subjected to stress), synthetic data generated with a cardiac motion simu-
lator of MR images, and pre- and post-intervention MR images on a patient with
tachyarrhythmia. Difference maps of isochrones and other motion descriptors are
computed on the anatomically meaningfully subdivided myocardium.

In order to test accuracy and feasibility in clinical use, a pre-operative MRI
study of a second patient with tachyarrhythmia was used for predicting the ab-
normally conducting region and results compared against those of three experts.

2 Methods

2.1 Registration for Motion Tracking

We use a non-rigid registration algorithm [3] to track the motion and deformation
of the heart in a sequence of 3D short- and long-axis tagged MR images. The
goal of the non-rigid registration is to align each time frame of the tagged MR
image sequence with the end-systolic (ES) time frame of the image sequence by
maximising the normalised mutual information of both time frames. To model
cardiac motion we use a free-form deformation based on cubic B-splines. The
output of the registration is a continuous time varying 3D motion vector field,
F(p, t), where F : �4 → �3 and p ∈ �3 is the spatial coordinate (x, y, z).

2.2 Coordinate System and Myocardial Segmentation

A manual segmentation of the myocardium at end-diastole (ED) is used to deter-
mine the region of interest (myo) for the registration at time t = 0. Using F, the
myocardial region can be automatically propagated over the entire cardiac cycle.
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In order to be able to compare different image acquisitions, a common (cylin-
drical) coordinate system based on the left ventricle is defined for each subject,
thus avoiding potential misregistration errors due to subject motion between
scans. We then express the F in terms of radial, circumferential and longitudinal
directions, and subdivide the myocardium (myo) into small meaningful regions
or segments s. For the purpose of comparing motion between different scans we
use S = 12 segments (similar to those suggested by the AHA): 4 sections around
the z-axis that correspond to septum, lateral, anterior and posterior walls, and
3 sections along the z-axis, corresponding to base, middle region and apex.

2.3 Differential Motion Descriptors and Changes in Motion
Patterns

Some differential features derived from the motion field F(p, t) are useful to
describe myocardial non-rigid motion. We write them as the set of functions

Fm = Fm(p, t) where m ∈ μ = {D,R,C, Z, Ṙ, Ċ, Ż, E, r, c, z, ṙ, ċ, ż} (1)

and Fm : �4 → � are defined as the total deformation or displacement FD =
||F||, the radial, circumferential and longitudinal components of the deformation
(FR, FC and FZ) with respect to the cylindrical coordinate system and their
corresponding time derivatives or velocities (F Ṙ, F Ċ and F Ż), the magnitude
of the strain matrix FE = ||Ei,j ||, the radial, circumferential and longitudinal
components of the strain (F r, F c and F z), and their time derivatives (F ṙ, F ċ

and F ż), all with respect to the the same cylindrical coordinate system.
The values of Fm(p, t) are first computed for each voxel, and then averaged

for each of the myocardial segments s, for all time frames during the cardiac cycle:

Fm(s, t) =
1∫

p∈s
dp

∫
p∈s

Fm(p, t)dp for all regions s ∈ myo. (2)

In order to evaluate changes in the motion patterns between two data sets
F1 and F2, for instance those corresponding to pre- and post-ablation scans, the
difference between the two functions Fm

1 and Fm
2 is computed for each segment,

integrated over time and normalised using the maximum value of the function
for the specific segment. This normalization of the values compensates for the
differences in the dynamic behaviour expected in the various regions of the heart
(like apex and base for instance). A statistical measure is derived from the above
combined quantities [4] and each segment is assigned a measure of motion change
and classified as having either no, small or significant changes.

2.4 Activation Detection

Although the study of myocardial electrical phenomena such as the excitation-
contraction relation, re-entries and patterns occurring inside the myocardium re-
main open problems for study (see references in [5, 6]), in this work we use the un-
derling assumption that we can relate the onset of regional motion, derived from
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the images sequences, to the electrical activation (i.e. using the inverse relation
of electro-mechanical coupling). Ideally the onset of regional contraction could
be inferred from the motion field simply from strain, but we use a more robust
measure because of noise and the relatively low space and time resolution of the
images and the extracted motion fields. For this purpose we investigate the sub-
set of differential descriptors Fm where m ∈ M = {R,C,Z, Ṙ, Ċ, Ż, E, ṙ, ċ, ż}.

The first step to characterise the regional motion of the heart during the
cardiac cycle is to measure the regional (TES(s)) and global (TES) end-systolic
times, as well as the critical times for each motion descriptor. We therefore
define Tm

max(s) = t∗ such that Fm(s, t∗) ≥ Fm(s, t)∀ t ∈ [0, TES(s)] and
Tm

min(s) = t∗ such that Fm(s, t∗) ≤ Fm(s, t)∀ t ∈ [Tm
max(s), TES(s)]. Notice

that for Tm
min the search interval begins at Tm

max, i.e. when the maximum value
has been reached (it is the late minimum value of Fm that will help us define the
end-systolic time, not the small values at the beginning of the cycle). Computing
these values requires a first (visual) estimate of the end-systolic time, however a
short iterative process rapidly provides a better estimate for TES(s).

In the case of displacement and strain, the end-systolic time is linked to their
maximum values, while in the case of velocity and rate of change of strain it cor-
responds to their minimum values (when the heart has paused its contraction).
Therefore,

Tm
ES(s) =

⎧⎨⎩
Tm

max(s) for m ∈ {R,C,Z,E}

Tm
min(s) for m ∈ {Ṙ, Ċ, Ż, ṙ, ċ, ż}

(3)

and combining these times we obtain an estimate that corresponds to the regional
time of end-systole: TES(s) =

∑
m∈M wmTm

ES(s). The weights wm are normalised
(i.e.
∑

m∈M wm = 1) and reflect the confidence we have on each of the differen-
tial motion descriptors m. At present we assign these weights manually, but a
statistical measure derived from the data will be used to compute them automat-
ically. In order to obtain a global estimate for end-systolic time for each feature
we integrate those values over the entire myocardium: TES =

∫
s∈myo TES(s)ds.

Using the above equations we define a probabilistic measure of the activation
for every voxel in the myocardium, at any time during the cardiac cycle:

A(s, t) =
∑

m∈M

wm

∫ t

0

Fm(s, τ)∫ T m
max(s)

0 Fm(s, τ ′)dτ ′
dτ (4)

where we impose Fm(s, t) = 0 if t > Tm
max(s) in order to keep the values nor-

malised (notice that some motion descriptors like the velocities and the time-
derivatives of strain reach their maximum values before end-systole).

The value of A(s, t) monotonically increases from zero to one as we expect
every voxel to have been activated by the time the motion descriptors reach the
maximum value at time Tm

max(s). In order to avoid singularities in the equation
we excluded from the computation, and labelled as not active, those voxels that
might remain relatively static (i.e. those for which Fm(s, Tm

max(s)) ≈ 0). By
integrating over time we obtain an accumulated probability and we can therefore
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set a (percentage) threshold P , between 0 and 1, to define the time ta at which
the activation of a segment s takes place. That is, if A(s, ta) = P then s becomes
active for t = ta. The activation isochrones are then defined, for a given threshold
P , as the function A(s) = ta, for all s ∈ myo.

2.5 Cardiac Motion Simulator for Tagged MRI

In order to validate the proposed methodology with a controlled case we also
implemented and modified a cardiac motion simulator for tagged MRI [7]. The
motion simulator is based on a 13-parameter model of left-ventricular motion
developed by Arts et al. [8] and is applied to a volume representing the LV that
is modeled as a region between two confocal prolate spheres while the imaging
process is simulated by a tagged spin-echo imaging equation [9].

A pair of sequences of synthetic tagged LV images was produced in the
following manner: first, a ‘post-intervention’ (normal) sequence computed us-
ing the standard model parameters, and secondly, a ‘pre-intervention’ (abnor-
mal) sequence computed for which the motion parameters were modified in a
small region of the myocardium by bringing the contraction slightly forward in
time [4].

3 Results and Discussion

3.1 Changes in Regional Motion Patterns

The detection of changes in motion patterns was evaluated on synthetic data as
well as real MR data. In order to test the algorithm when the ground truth
is available, results on the ‘pre-’ and ‘post-intervention’ sequences of synthetic
tagged LV images were compared in two cases, with different parameters and
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Fig. 1. Time plots of differential motion descriptors. (a) Similar F m curves of a
typical myocardial segment obtained from two independent scans of a healthy volunteer
demonstrate reproducibility. (b) A myocardial segment of a healthy volunteer, with
and without stress. There are no significant changes in the motion pattern between the
first two image acquisitions. In the third image acquisition (under stress) a noticeable
alteration was detected. (c) A myocardial segment of patient before and after RF
ablation. Significant change can be seen in the faster and more pronounced motion of
the post-intervention sequence, indicating successful regularisation of the contraction.
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regions of abnormal motion (see Section 2.5). In both cases the abnormal seg-
ments were accurately located, while the remaining ones were correctly classified
as having no significant change [4]. We also acquired MR data from six vol-
unteers. For each of them two separate sets of image sequences were acquired
with only a few minutes between the scans. Since no change is expected in
these pairs of image acquisitions, this allowed us to verify the reproducibil-
ity of the motion fields computed by the algorithm and to test the compari-
son method against false positive detection. The motion patterns encountered
were very similar and no region was classified as having a significant change
(Figure 1a).

With another volunteer we acquired three sets of image sequences with only
few minutes between the scans. The first two were normal scans as described
above, but the third one was acquired while inducing stress on the volun-
teer by placing one of his feet into a bucket of ice-cold water. This experi-
ment allowed us to compare normal motion patterns against those obtained
under stress, and again, to validate the method regarding reproducibility and
false positives. No segment showed a significant difference between the two nor-
mal acquisitions, but few segments did when compared to the stress acquisition
(Figure 1b).

Finally, MRI data was acquired from an eight year old patient with acute
super-ventricular tachyarrhythmia, before and after RF ablation. The image
acquisition and catheter intervention were carried out with an XMR system [1].
Our results confirmed that the motion pattern changed in most parts of the my-
ocardium (visual inspection of the reconstructed 3D surfaces and displacement
vectors also showed pronounced changes in the overall contraction pattern), while
the largest changes were found in five segments. Examples of the compared mo-
tion also show the corrective effect of the intervention (see Figure 1c).

3.2 Activation Detection

Figure 2 shows results of activation detection obtained for the MR stress study
described in Section 3.1. The times of activation of different regions of the my-
ocardium are shown as different colours over the end-diastolic myocardial surface

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Isochrones of stress data. Motion-derived activation isochrones computed from
two normal MR scans, (a) and (b), and a third one acquired while the volunteer was
subjected to stress (c). The anatomical MR image and LV surface skeleton shows the
display orientation in (d). Isochrones subtraction maps: the difference between the two
normal repetition scan in (e), and the difference between a normal and the stress scan
in (f). Isochrones computed from the electro-mechanical model are shown in (g). The
colour scales go from blue to red: isochrones maps from 0 to 500ms, with green approx.
200ms, and in isochrones subtraction maps from 0 to 100ms approx.
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(activation isochrones maps). The first three images in the figure compare the
isochrones obtained from the three MR data acquisitions of the same subject:
two repetition scans with no changes in between them, and a third scan acquired
while the volunteer was subjected to stress. Results of subtracting pairs of
isochrones maps are also shown: the difference between the two normal repeti-
tion acquisitions, in Figure 2e, and the difference between a normal and the stress
acquisition, in Figure 2f. We can see that the difference between the isochrones
of the two normal acquisitions is small, thus validating the method regarding
reproducibility, while on the other hand some larger changes can be appreciated
between the isochrones of the normal and the stress scans, thus highlighting the
regions that were most affected by stress.

Since we are addressing the problem of inverse electro-mechanical coupling,
that is, trying to infer the time of electrical activation by extracting informa-
tion from the cardiac motion images, we have also used a forward 3D electro-
mechanical model of the heart [5] to validate the activation detection results.
The segmentation of the myocardium of a healthy volunteer at end-diastole was
used as geometric input for the model. The muscle fiber orientation and the
Purkinje network location were fitted to the geometry from a-priori values of
the model. Figure 2g shows the isochrones values computed using the electro-
mechanical model applied to the subject of the stress study. Good correlation
can be seen between these and the isochrones derived from MR motion.

We also used a cardiac atlas of geometry and motion, generated from 3D
MR images sequences of 14 volunteers, to test our activation measure in a real-

(a) (b) (c) (d)

Fig. 3. Isochrones of cardiac atlas. Isochrones were computed for the atlas using both,
the electro-mechanical model ((b) and (c)), and the proposed activation measure de-
rived from the motion field ((d)). The colour scale goes from blue to red (earliest to
latest activation time). The orientation of the left and right ventricle can be seen on
the MR images of the subject used as a reference for the atlas ((a) and (b)).

(a) (b) (c) (d)

Fig. 4. LV surface with activation times derived from the motion field of a patient
with WPW syndrome. The orientation of the left and right ventricles can be seen on
the tagged image (a), and in two views ((b) and (c)) of the high resolution anatomical
image. In order to highlight the area of earliest motion ((d)), fed by the abnormal con-
duction pathway, the colour scale in this figure goes from red (earliest) to blue (latest).
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istic but smooth and virtually noise-free data set [10]. For the purpose of com-
paring activation detection results to those obtained with the high-resolution
electro-mechanical model, a larger number of smaller segments was used (also,
segments can be very small in this case since there is little noise in the data).
Figure 3 compares the isochrones for the atlas computed by both, the electro-
mechanical model, and the proposed activation measure derived from the
motion field. Promising agreement can be seen on these results of activation
detection.

In order to test the accuracy and feasibility in clinical use, a pre-
operative MRI study of a second patient with tachyarrhythmia (Wolff-Parkinson-
White (WPW) syndrome) was processed before the RF ablation, and the loca-
tion of the abnormal conduction pathway automatically estimated as the region
of earliest activation. To increase the accuracy of the estimated position, in-
stead of using 12, we used 120 segments for the LV: 24 subdivisions around
the z-axis and 5 from apex to base. The geometric centre of the earliest acti-
vated segment was used as the automated estimated position of the pathway
(Figure 4).

For the purpose of validation, two experts involved with the patient’s RF
ablation were separately asked to estimate the location of the abnormal pathway
based on careful visual inspection of a 3D anatomical MR image sequence of the
patient. This anatomical scan, acquired immediately after the tagged one, had
higher time resolution, thus facilitating the visual assessment of the earliest site
of motion. With respect to the expert’s estimations, the distances (errors) of
the automatically estimated position were 5.01mm and 5.27mm. The distance
between the expert’s positions was under 2mm. Further confirmation of this
result came from the analysis of the patient’s ECG recordings by a third expert
who estimated the location of the pathway to be in the posterior-septum.

4 Conclusions and Future Work

Despite current limitations such as distinguishing between epi- and endo-cardial
activation patterns, the methodology seems promising for the assessment of inter-
vention results and could also be used for the detection of arrhythmia, ischaemia,
regional disfunction, and follow-up studies in general. Because acquisition of
tagged images can be carried out in less than 20 minutes, either immediately
before the RF ablation or the day before the intervention, the proposed analysis
is suitable for clinical practice in guiding and monitoring the effects of ablation
on ventricular arrhythmias, with little extra discomfort added to the patient. As
has been shown, the error in the location of the abnormal pathway can be as
small as 5mm, as independently confirmed by two experts. In order to account
for possible changes in the heart rate between the pre- and post-intervention
acquisitions (or for instance, in the case of the stress study where there was
a small change in the heart rate), we intend to re-scale one of the image se-
quences in the time domain, by using the 4D registration technique described
in [10].
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Abstract. This paper presents a method for the initial detection of
ductal structures within 3D ultrasound images using second-order shape
measurements. The desire to detect ducts is motivated in a number of
way, principally as step in the detection and assessment of ductal carci-
noma in-situ. Detection is performed by measuring the variation of the
local second-order shape from a prototype shape corresponding to a per-
fect tube. We believe this work is the first demonstration of the ability
to detect sections of duct automatically in ultrasound images. The de-
tection is performed with a view to employing vessel tracking method to
delineate the full ductal structure.

1 Introduction

Most research into breast ultrasound analysis concerns the detection and diag-
nosis of lesions, therefore the detection of mammary ducts may seem somewhat
peripheral. However, this is not the case; the role of the duct is central to the
function of the breast, and consequently the ductal structures are an impor-
tant area for analysis. Most malignancies originate in the epithelial tissues of
the ducts, and it has been suggested that ductal echography, a process whereby
the breast volume is systematically scanned along the line of duct, is the best
way to manually find and diagnose lesions [1]. The automatic detection of the
ductal structure from 3D ultrasound could direct the reslicing and visualisation
of the ultrasound data along the axis of each duct for clinical analysis, or enable
automatic detection of anomalous ductal structure as early indicator of possible
tumor development [2]. The analysis of the duct may also have a role in the
analysis of detected lesions, since the detection of duct-size features has been
found to be an indicator of malignacy [3]. To this end, comparison with the
normal appearance of ducts in ultrasound images is required for diagnosis by
ductal echography, although it should be noted that this appearance changes
with age [4,1].

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 434–441, 2005.
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The extent of each lobe of the ductal system is also of importance. Typically,
a carcinoma will spread along a duct, as ductal carcinoma in situ (DCIS), prior
to any invasive spreading. As observed by Going and Moffat [5]:

If duct systems are independent of each other, then defining their bound-
aries prior to surgery for DCIS could assist in achieving complete removal
of the affected ‘lobe’ while sparing the unaffected tissue.

Even in cases where the tumor is invasive, the ductal spread will be extensive
and the lobe must be considered the minimum excision margin. However, the
presence of any ductal anastomoses must be detected if the complete extent of
possible spread is to be correctly assessed [6].

Once a ductal anomaly has been identified, ductal endoscopy and lavage
provide possible routes for minimally invasive diagnosis. However, some lobular
systems are not openly accessible on the nipple surface [5]. A complete tree
of the ductal system would facilitate assessment of whether the duct can be
accessed in such a way. Furthermore, a map of the 3D ductal structure would
also facilitate registration based on anatomy [7], which would have application
in assessing tumor changes following of treatment. Applications may also be
found in assessment of problems associated with lactation [8], and in research
into mammary development [9].

Thus, the reasons motivating the automatic detection and segmention the
ductal structure of the breast are:

– A method for the detection and diagnosis of lesions by comparison with
normal ductal appearance.

– A Guide to excision margins by considering the possible intraductal spread.
– An aid for ductal endoscopy to assess access and navigation.
– Facilitation of anatomy-based registration for treatment assessment.
– An aid to the assessment and diagnosis of problems associated with lactation.
– Facilitation of mammary development research and other temporal studies

of the breast.

In this paper, we review previous tube (mostly vascular) detection and track-
ing methods to motivate shape-based detection. A simple method for the initial
detection of ductal structures is proposed and demonstrated. We believe this is
the first demonstration of the ability to detect sections of duct automatically in
ultrasound images. The paper concludes with a brief discussion of the direction
of future research.

2 Method

2.1 Previous Tube Detection and Tracking Approaches

The detection of tubular structures has mostly been focused on the detection
of vessels with MRA and CT and of bronchial tubes in CT. The approaches
taken can be broadly divided into intensity-based segmentation and shape-based
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detection and tracking. Intensity-based detection (e.g. [10]) is not suitable for
small ultrasound structures, such as ducts, since at a fine scale the image in-
tensity is not directly representative of the tissue type. (At a coarse scale some
tissue/intensity relationship may be noticed.) However, shape-based detection
may show promise since the approximate structure of the tubes is still evident
in the images, although significantly corrupted by speckle.

The second-order structure (the Hessian) of image intensity is often consid-
ered to be a good measure of the local shape. Frangi et al. [11] and Danielsson
et al. [12] develop measures which describe the local 3D shape and “curvedness”
based on the principal curvatures. Their work can be considered an extension of
the shape index (SI), introduced by Koenderink and van Doorn [13], into 3D.
The measures in [12,14] are sufficient to uniquely describe the local second-order
shape of an image. Subsequently, both authors develop further specific measures
to detect vascular structure based on their local shape measures. Similarly, Sato
et al. [15] use the principal curvatures of the image intensity to calculate mea-
sures of second-order structure corresponding to a sheets, tubes and spheres.
These are used heuristically to segment image data from a range of modali-
ties. All three authors demonstrate the detection of tube-like structure for the
purpose of vessel segmentation in MRI volumes.

A number of effective methods have been developed for tracking of tubular
structures. These can be roughly divided into those which track second-order
structures (e.g. [16,17]) and those based on medial node tracking (e.g. [18,19]).
The use of medial-nodes has be demonstrated for ultrasound data at a large scale
[20], however the small size and poorly defined boundaries of ducts mean that
this approach is not suited to the application of ductal tracking. Both of these
approaches require initialisation. For the MRI and CT data, on which the meth-
ods have been demonstrated, the majority of initialisations have been achieved
using an intensity threshold of the image data. However, intensity thresholding
for the initial detection of ducts would be ineffective within ultrasound images.
Section 2.2 addresses this initialisation problem, proposing a method for the ini-
tial detection of ducts within 3D ultrasound images, with a view to employing
a tracking method to find the complete ductal structure.

2.2 Simplified Detection Method

In this section we propose a simple method for the detection of specific second-
order shape features directly from the principal curvatures, which could be used
as an initialisation to the centerline tracking methods discussed previously. Al-
though Danielsson’s angular measures of shape provide a way to express the
complete range of second-order shapes from volumes, the tubular shape mea-
sures introduced in [11,12,14,15] to detect vessels are unnecessarily complicated.
We propose a simplified approach to tube detection. Any shape of interest within
the second-order space can be uniquely expressed in terms of the three principal
curvatures (the eigenvalues of the Hessian). Consequently, it is desirable to be
able to measure the variation from a specific shape description expressed in terms
of these curvatures. Therefore, we opt to detect tubular shapes directly from the
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principal curvatures, rather than introducing further measures of shape. The
desired tube-shape prototype and the local shape can be expressed as vectors of
the form

shape-vector =

⎛⎝κ1
κ2
κ3

⎞⎠ (1)

where κ1, κ2 and κ3 are the three principal curvatures. The orientation of this
vector describes the local shape, while its length describes the degree of local
curvedness. For a tubular shape the prototype is

tube =

⎛⎝ 1√
2

1√
2

0

⎞⎠ . (2)

We propose to measure the deviation of the local shape from the prototype shape
as the normalised dot product between their shape vectors, as shown in equation
3, which can be thought of as an angular distance measure. This gives a result
of 1, for a perfect match, -1 for a perfect match of the opposite sign (i.e. same
shape but opposite intensity structure), and zero where the local shape can be
considered to be as far away as possible from the desired shape.

tubeness =

⎛⎜⎝
κ1√

κ1+κ2+κ3
κ2√

κ1+κ2+κ3
κ3√

κ1+κ2+κ3

⎞⎟⎠ ·
⎛⎝ 1√

2
1√
2

0

⎞⎠ = cos θtube (3)

Normalisation of the shape vectors ensures that this shape measure is in-
variant to contrast. Tubes are detected at multiple scales using scale normalised
Gaussian convolution to generate progressively coarser scales [21]. The shape
detected at a particular location may vary over the scales, as finer features are
removed, e.g. A duct may be detected as tube like at a fine scale, but the more
spherical shape of the local glandular tissue may be more prominent at a larger
scale. Therefore, it is necessary to choose an appropriate scale to detect features
of interest. We achieve this in a number of ways. First, we only process the
scales over which we know the features exist, i.e. in looking for ducts we only
search smaller scales. Second, we opt choose the scale at which each location
looks most similar to the prototype shape vector. Detection of tubular features
is achieved by accepting areas which do not deviate too far from the desired
shape, and which have a high curvedness at the scale chosen. As noted in [12],
curvedness, measured as

√∑
κ2

i is not shape invariant; a spherical shape hav-
ing higher curvedness than a tube-like one. However, we have chosen to detect
features matching a single shape prototype, therefore using this measure is not a
problem since we are comparing the curvedness of features with similar shapes.

2.3 3D Ultrasound Acquisition

In-vivo acquisitions were carried out with consenting patients in accordance with
an ethically approved protocol, using the radial scanning system described in
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[22,23], a Technos ultrasound scanner (Esaote S.p.A, Genova, Italy), and linear
array probe (LA532 10-5) at 9MHz. The pathologies present were assessed by
a clinician at the time of scanning, and subsequently by reviewing the full 3D
data available. The 3D images were reconstructed on a 1mm3 voxel array. The
radial scanning system is appropriate for the detection of ducts for a number
of reasons: ducts are oriented approximately radially from the nipple, therefore
scanning radially allows sections of duct to be viewed along their length [1];
the scanning system also uses low compression reducing the possibility that the
ducts will collapse under the pressure of the probe during scanning; and the
majority of the breast tissue volume is imaged, allowing the ductal structure to
be viewed for most of the breast.

3 Results

For the examples given, features were detected by accepting voxels whose shape
vectors were within 32◦ of the prototype shape vector (cos θtube = 0.85). Empir-
ically this was found to give good results, however the optimum distance has not
been investigated. The curvedness used for feature acceptance was set for each
3D image as a percentage (typically in the range 40% to 60%) of the maximum
curvedness found for the tube feature over all scales. The exact value was found
qualitatively in these examples, depending on the dynamic range and maximum
curvedness of the particular scan. The scales used for detecting ducts and vessels
had a Gaussian standard deviation ranging σ = 1 to 3 voxels. This equivalent
to a one standard deviation width of between 2 and 6mm, similar to the size of
enlarged ducts [8]. Detection was performed on a voxel-by-voxel basis.

Figures 1 and 2 demonstrate the potential of this system (both the radial
scanner and detection method) to detect the ductal system in the breast. Figure

Fig. 1. The detection of ducts and vessels in a paracystic breast. Additional less inter-
esting tube structures have been detected at cyst edges. However, these features still
appear tube-like at the scale selected.
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Fig. 2. The detection of ductal extension. A duct has been detected extending from the
primary tumor. A possible secondary has also been detected within the same ductal
tree, illustrating the importance of ductal tracking in assessing tumor invasiveness.
Sphere-like structures (shown in red in the online proceedings) were also detected
using a different shape prototype.

1 is a scan from a breast displaying polycystic changes and some ductal ectasia.
Both vessels and ducts have been detected, although a number of less interesting
detections have occurred at the edge of cysts. This is expected, since the edge
of spherical objects appear tube-like in shape at small scales, and the cysts have
high contrast resulting in high curvedness. Figure 2 shows the detection of ductal
extension from a tumor in a breast containing a malignant ductal carcinoma.
The extension of the tumor along the duct affects patient management, making
mastectomy, rather than excision, the preferred option. The figure indicate areas
which have been detected using a sphere-like structure prototype, rather than a
tube-like one (shown in red in the online proceedings).

4 Discussion, Conclusion and Future Work

In this paper we have presented a method of tube-like feature detection for 3D
ultrasound. Several methods of shape analysis and shape-based feature detection
from the existing literature were considered. The method presented here simpli-
fies these by detecting specific shapes directly from the principal curvatures,
via comparison with a prototype feature, rather than introducing intermediate
steps. The performance of this feature detector was demonstrated on 3D ultra-
sound data of breast volumes from two patients, showing the detection of ducts
and vessels.

Several observations can be made from these results. First, that the detected
objects correspond to perceptually significant image structures. However, inter-
esting image structure does not necessarily equate to interesting pathology. This
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is not unexpected, since we are seeking a low-level shape feature rather than an
anatomical feature. However, some knowledge-based constraints (e.g. we expect
ducts to be long connected tubes) must be introduced to remove non-anatomical
features for clinical use. Second, it is also noted that the shape of the detected
volume does not correspond to the shape of the object itself. This is expected
since a perfect tube will only be detected at its centre (see [18] for a discussion).
Although the shape-measure itself cannot be used for accurate segmentation, it
does give a pointer to scale and approximate tube position. Therefore, this detec-
tion method could be used as an initialisation for a centreline tracking method,
such as in [16,17].

The challenge presented in [2] to provide a method for automatically de-
tecting the entire ductal tree structure is significant. We believe this work is
the first demonstration of the ability to detect sections of duct automatically in
ultrasound images. Future work will consider the use of centerline tracking, by
finding the connecting line which best corresponds to a tube as in [16], to form
a continuous ductal tree structure. Quantitative evaluation of this tree structure
will be performed by comparison with manual delineations. The extension of this
ductal tree delineation to the normal breast, with non-enlarged ducts, is a long
term goal.
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Abstract. We have been developing an approach for automatically
quantifying organ motion for adaptive radiation therapy of the prostate.
Our approach is based on deformable image registration, which makes it
possible to establish a correspondence between points in images taken on
different days. This correspondence can be used to study organ motion
and to accumulate inter-fraction dose. In prostate images, however, the
presence of bowel gas can cause significant correspondence errors. To ac-
count for this problem, we have developed a novel method that combines
large deformation image registration with a bowel gas segmentation and
deflation algorithm. In this paper, we describe our approach and present
a study of its accuracy for adaptive radiation therapy of the prostate.
All experiments are carried out on 3-dimensional CT images.

1 Introduction

One major treatment method for prostate cancer is external beam radiation
therapy, which uses high energy x-rays that are delivered in a series of 40 or
more daily treatments. To be safe and effective, the radiation dose to the cancer-
containing prostate should be as high as possible while the dose to surrounding
organs such as the rectum and bladder must be limited. This effect is achieved
by using multiple radiation beams that overlap on the tumor and are shaped to
exclude normal tissue as much as possible. However, internal organ motion and
patient setup errors present a serious challenge to this approach. The prostate,
rectum, bladder and other organs move in essentially unpredictable ways, and
even small changes in their position can result in either tumor under-dosing,
normal tissue over-dosing, or both.

Adaptive radiation therapy (ART), which uses periodic intra-treatment CT
images for localization of the tumor and radiosensitive normal structures, is being
investigated to meet this challenge. In this method a feedback control strategy [1]
is used to correct for differences in the planned and delivered dose distributions
due to spatial changes in the treatment volume early in the treatment period.

Although in-treatment-room CT scanners provide the enabling imaging hard-
ware to implement ART, no software methods or tools for automatic image
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Fig. 1. Axial CT slice of the same patient acquired on different days, showing the effect
of bowel gas

processing exist to enable the incorporation of these images in the adaptive
treatment of prostate or other cancer. As a result, all such work must be done
manually. However, manual segmentation of the tumor and neighboring organs
places an impractical burden on highly skilled and already overburdened per-
sonnel. Moreover, clinically significant inter- and intra-user variability of manual
segmentations introduces a source of treatment uncertainty that current adap-
tive radiation therapy techniques do not address [2, 3].

We have been developing an approach for automatically quantifying organ
motion over the course of treatment. Our approach is based on deformable im-
age registration, which makes it possible to establish a correspondence between
points in images taken on different days. This correspondence can be used to
study organ motion and to accumulate inter-fraction dose.

In prostate images, however, the presence of bowel gas can cause significant
correspondence errors as no correspondence exists for pockets of gas across differ-
ent days. Shown in Figure 1 are two rigidly aligned axial images of a patient taken
on two different days. Due to the transient nature of bowel gas, it is present in one
of the days but absent in the other. To account for this problem, we have developed
a novel method that combines large deformation image registration with a bowel
gas segmentation and deflation algorithm. In this paper, we describe our approach
and present a study of its accuracy for adaptive radiation therapy of the prostate.

Several deformable image registration methods are currently being investi-
gated for alignment of serial CT data [4, 5, 6, 7]. However, none of these studies
address the problem of bowel gas for deformable registration of CT images. Also,
while some authors present validation studies based on known transformations
or phantoms, to our knowledge none have presented an analysis of the accuracy
of their methods for automatic segmentation of a large number of treatment
images based on physician drawn contours.

2 Methods

We use the CT taken at planning time, the planning image, as a reference. On
each treatment day, the patient is positioned and then, prior to treatment, a
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new CT scan is acquired using an in-treatment-room CT scanner that shares a
table with the linear accelerator. Each treatment image characterizes the patient
configuration at that treatment time.

If there were absolutely no organ motion then the planning and treatment
images should all be the same, except for noise from the imaging device. How-
ever, because there is organ motion, these images will differ, and the difference
characterizes the organ motion. We have understood the motion when we can
tell, for each point in the planning image, which point in the treatment image it
corresponds to. In this way organ motion and image registration are linked—we
can understand organ motion if we can estimate image correspondence.

We can view an image as a function I from the spatial domain Ω ⊂ R
3 to an

intensity value in R. Image correspondence is expressed as a function h : Ω → Ω,
called a deformation field. For x ∈ Ω, h(x) is the point in the treatment image,
IT , that corresponds to the point x in the planning image, IP .

The transformation h is estimated as follows. First, the planning and treat-
ment CT data sets are rigidly registered. This quantifies the rigid patient setup
error. In order to accommodate bowel gas we apply our algorithm for segmenting
and deflating bowel gas to produce deflated images IPd

and ITd
. Finally, IPd

and
ITd

are registered using a high dimensional large-deformation image registration
algorithm. h is defined as the composition of these transformations.

Rigid Registration. The planning and treatment images are thresholded so
that only bone is visible. The region of interest is restricted to the pelvis as it
remains fixed while the femurs and spine can rotate or bend. The rigid transfor-
mation, r, is estimated using an intensity based gradient descent algorithm [8].

Accommodating Bowel Gas. As the contrast between gas and surrounding
tissue is very high in CT images, we create a binary segmentation of the gas in
an image using a simple thresholding operation. We refine this binary segmen-
tation using a morphological close operation, which eliminates small pockets of
gas. Next, we construct a deflation transformation s based on a flow induced by
the gradient of the binary image. Points along the gas-tissue border, where the

(a) (b) (c)

Fig. 2. Gas Deflation Algorithm. (a) Axial slice CT image with large pocket of bowel
gas. (b) Zoomed in on the gas pocket. The gas is segmented using simple thresholding.
Gas is deflated by a flow induced by the gradient of the binary image. (c) The image
after application of the deflation transformation.
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gradient is non-zero, flow in the direction of the gradient. As a result, gas filled
regions collapse toward their medial skeletons—deflating like a balloon. Impor-
tantly, we do not aim to simulate the true motion of the tissue but to deflate
the gas so that the image may be accurately registered.

More precisely, we construct a non-diffeomorphic deflation transformation
s : Ω → Ω such that I(s(x)) is the image I(x) after a deformation that deflates
gas. The transformation s is constructed by integrating velocity fields v(x, t)
forward in time, i.e. s(x) = x+

∫ 1
0 v(s(x, t), t) dt. These velocity fields are induced

by a force function F (x, t) = ∇(I◦st)(x) that is the gradient of the binary image.
The force function and velocity fields are related by the modified Navier-Stokes
operator (α∇2 + β∇ (∇· )+ γ)v(x, t) = F (x, t). We solve for s using an iterative
greedy method.

Figure 2 shows the result of our gas deflation algorithm. The large pocket of
gas present in the image has been deflated, resulting in an image that can be
accurately registered using deformable image registration.

Deformable Image Registration. We apply the theory of large deformation
diffeomorphisms [9, 10] to generate a deformation hdef : ΩPd

→ ΩTd
that defines

a voxel-to-voxel correspondence between the two gas deflated images IPd
and

ITd
. The registration is determined by finding the deformation field hdef that

minimizes the mean squared error between IPd
and the deformed image ITd

◦hdef ,

D(h) =
∫

x∈Ω

|IPd
(x)− ITd

(hdef(x))|2 dx.

The transformation is constrained to be diffeomorphic by enforcing that it satisfy
laws of continuum mechanics derived from visco-elastic fluid modeling [10, 9].

Composite Transformation. Correspondence between the original images IP

and IT is estimated by concatenating the rigid, deflation, and deformable regis-
tration transformations, i.e.

hP→T = r(sT (hdef(s−1
P (x))))).

That is, the point x in the planning image corresponds to the point hP→T (x)
in the treatment image. This composite transformation is not guaranteed to
be diffeomorphic. However, the non-diffeomorphic part of the transformation is
restricted to the region of the rectum that contains gas—where no correspon-
dence exists.

Figure 3 shows an example of the application of method described above.
Panel (b) shows the result of automatic segmentation using only large deforma-
tion image registration. Manually drawn contours of the prostate and rectum are
mapped, using this correspondence, from the reference image (a) onto the daily
image. Manual contours are drawn in red while mapped contours are drawn in
yellow. Notice the misalignment of the manual and automatically generated con-
tours in the daily image; the presence of bowel gas has caused correspondence
errors around the rectum. A more accurate correspondence between the refer-
ence and daily images is established by concatenating registration and deflation
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(a) (b) (c)

Fig. 3. Automatic segmentation of the prostate and rectum. Manually segmented struc-
tures in the planning image (a) are mapped to the daily image (b) before accounting
for bowel gas, and (c) after accounting for bowel gas with our gas deflation algorithm.
Manually drawn contours are shown in red and mapped contours are shown in yellow.

transformations as shown in panel (c). Notice the close alignment between the
manual contours and the contours generated by our method.

3 Results

We now present detailed statistical analysis of the application of our methods
to a set of 40 CT images from 3 patients undergoing ART in our clinic. Each
CT scan was collected on a Siemens Primatom CT-on-rails scanner with res-
olution 0.098 × 0.098 × 0.3 cm. We analyze the accuracy of our method by
comparing automatically generated segmentations to manual, hand-drawn, seg-
mentations. Because of inter-rater variability, however, there is no ground truth
manual segmentation to compare against. We therefore compare our automati-
cally generated segmentations with the segmentations from two different manual
raters, and then make the same comparisons between the segmentations from
the manual raters.

The experimental setup is as follows. The planning image for each patient is
manually segmented by rater A. Each treatment image is manually segmented
twice, once by rater A and once by rater B. For each patient, our method is
used to compute the transformations hi that map the planning image onto the
treatment image for each day of treatment i. An automatic segmentation is
generated for each treatment image by applying hi to the segmentation in the
planning image. We can consider our automatic method for producing treatment
image segmentations as rater C (for “computer”).

Each segmentation is represented by a triangulated surface. For manual seg-
mentations, the surface is constructed by applying the power crust algorithm [11]
to a set of contours drawn in the axial plane by the manual raters. For automatic
segmentations, the surface is generated by applying a transformation h to the
vertices of the surface given by the manual segmentation in the planning image.

For each patient and for each treatment day, we make three comparisons:
CA, automatic segmentation verses manual segmentation by rater A; CB, au-
tomatic segmentation verses manual segmentation by rater B; and BA, manual
segmentation by rater B verses manual segmentation by rater A. It should be
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emphasized that the automatic segmentations are produced by transforming
manual planning segmentations produced by rater A, not rater B. Thus, we
expect the CA comparisons to be more favorable than the CB comparisons.

In the rest of this section, we present the results of this experiment when
comparing centroid differences and relative volume overlap of segmentations.

Centroid Analysis. The centroid of the prostate is especially important for
radiation treatment planning and therapy because it is the origin, or isocen-
ter, for the treatment plan. To measure the accuracy of our automatic seg-
mentations with respect to centroid measurement, we compare the centroid of
each automatic segmentation with the centroids of the corresponding manual
segmentations. The differences in the lateral (X), anterior-posterior (Y), and
superior-inferior (Z) directions are measured separately.

Figure 4 shows box and whisker plots of these differences for CA, CB, and BA
comparisons. All measurements are made in centimeters. Additional summary
statistics are presented in table 1.

Shown in Table 1 are the 99% confidence intervals for the true mean of each
distribution of centroid differences. The confidence intervals for the means of the
CA and CB differences both overlap with the confidence interval of the differ-

(a) (b) (c)

Fig. 4. Centroid differences in the lateral (X), anterior-posterior (Y), and superior-
inferior (Z) directions (cm). The horizontal lines on the box plots represent the lower
quartile, median, and upper quartile values. The whiskers show the extent of the rest
of the data. Outliers, which fall outside 1.5 times the interquartile range, are denoted
with the ‘+’ symbol.

Table 1. Summary statistics showing mean, median, standard deviation, and 99%
confidence interval of the mean for centroid differences

Centroid Difference Summary (cm)
Lateral (X) A-P (Y) Sup-Inf (Z)

CA CB BA CA CB BA CA CB BA
mean -0.026 -0.007 -0.022 0.035 -0.052 0.070 0.022 0.065 -0.046

median -0.018 -0.004 -0.015 0.040 -0.104 0.089 0.030 0.028 -0.054
std. dev. 0.06 0.07 0.08 0.14 0.23 0.20 0.24 0.38 0.38

99% CI min -0.047 -0.030 -0.049 -0.010 -0.129 0.007 -0.054 -0.058 -0.167
99% CI max -0.006 0.016 0.004 0.081 0.023 0.133 0.10 0.189 0.073
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ences between human raters (AB), and are on the order of one voxel. Note that
the superior-inferior (Z) direction has a slice thickness of 0.3 cm. We conclude
that the automatic segmentation method is as accurate for estimating centroids
as human raters and, as seen by the standard deviations, just as reliable.

Relative Volume Overlap Analysis. A measure often reported for compari-
son of segmentations is relative volume overlap. This measure has been defined
in several ways. For this study, we use the Dice Similarity Coefficient (DSC) [12]
which is defined for two segmentations S1 and S2 as

DSC(S1, S2) =
Volume(S1 ∩ S2)(

Volume(S1∪S2)+Volume(S1∩S2)
2

) . (1)

Figure 5 (a) shows a box and whisker plot of the relative volume overlap
for the CA, CB, and BA comparisons. To statistically quantify the difference
between the relative volume overlaps of the three segmentations A, B, and C,
we performed right sided t-tests with the alternative hypothesis X > Y . Fig-
ure 5, panel (c), reports the P-values of these tests. It can be seen from the
table that the volume overlap measures for the CA comparisons are signifi-
cantly higher than the volume overlap measure for the manual rater comparison
BA. There is also no statistically significant difference between the relative vol-
ume overlaps from the CB comparison with the two manual raters. Also note
that the automatic segmentations have a significantly better overlap with rater
A than with rater B. This is expected as the planning image was segmented
by rater A.

(a)

Volume Overlap Summary
CA CB BA

mean 0.82 0.79 0.79
median 0.84 0.80 0.80
std. dev. 0.06 0.07 0.06

(b)

P-Values of right sided T-tests
X > Y Y=CA Y=CB Y=AB
X=CA 0.500 0.020 0.014
X=CB 0.980 0.500 0.523
X=BA 0.986 0.476 0.500

(c)

Fig. 5. (a) Relative volume overlap as measured by Equation 1. (b) Volume overlap
summary statistics. (c) P-value results of right sided t-test comparing the relative
volume overlaps between the various raters.
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4 Conclusion

We have presented an approach for automatically quantifying organ motion for
adaptive radiation therapy of the prostate. This method extends deformable
image registration to accommodate bowel gas, which creates image regions where
no correspondence exists. We statistically analyzed the accuracy of our automatic
method against the standard of manual inter-rater variation. We showed that for
centroid and volume overlap of the prostate, the automatic method is statistically
indistinguishable from human raters. We are currently working on applying our
method to a larger number of patients and evaluating the clinical effect of organ
motion by measuring effective delivered dose and biological effect.
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Abstract. A method is presented for the calculation of perfusion parameters in 
dynamic contrast enhanced MRI. This method requires identification of 
enhancement curves for both tumor tissue and plasma. Inter-operator variability in 
the derived rate constant between plasma and extra-cellular extra-vascular space is 
assessed in both canine and human subjects using semi-automated tumor margin 
identification with both manual and automated arterial input function (AIF) 
identification.  Experimental results show a median coefficient of variability (CV) 
for parameter measurement with manual AIF identification of 21.5% in canines 
and 11% in humans, with a median CV for parameter measurement with 
automated AIF identification of 6.7% in canines and 6% in humans. 

1   Introduction 

Dynamic contrast enhanced MRI (DCE-MRI) has demonstrated considerable utility in 
both diagnosing and evaluating the progression and response to treatment of 

malignant tumors.[1,2]  DCE-MRI involves the periodic acquisition of T1 -weighted 

images before, during and after injection of a gadolinium labeled tracer such as 
gadopentetate dimeglumine.  The change over time in signal intensity in a voxel or 
region of interest in this time series can then be related to tracer concentration.  By 
making use of a two-compartment model, with one compartment representing blood 
plasma and the other extra-vascular extra-cellular space (EES), the observed 
enhancement curves in tissue and plasma can be used to estimate various 
physiological parameters [3,4,5,6].     

The parameter of primary interest in this work is the volume transfer constant 
between blood plasma and EES, commonly referred to as transK  [7].  This parameter 
is related to both blood flow and endothelial permeability-surface area product, and is 
therefore a good endpoint for assessing the blood supply to a target malignancy. 

One of the primary challenges in estimating perfusion parameters is identifying an 
accurate arterial input function (AIF).  One common approach is to avoid this 
problem by making use of a general concentration-time curve such as that utilized by 
Weinmann et al. [8], as described by Tofts  and Kermonde  [9].  However, using a 
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theoretical AIF ignores differences in injection rate and cardiac output, which may 
vary from subject to subject and even with a single subject over time [10].  These 
differences can greatly reduce measurement reproducibility.  Galbraith et al. have 
reported thresholds for statistically significant change over time in transK  in a single 
tumor using this method of -45% and +83% [11].  A second option is for an analyst to 
draw a manual ROI within an artery, and use the mean enhancement curve within that 
ROI as the subject-specific AIF, as described by Vonken et al. [12]. This approach is 
complicated by the fact that the MR signal in arteries is frequently corrupted by flow 
artifacts, with the result that regions of interest at different points in the same artery or 
in other nearby vessels can provide grossly different enhancement curves.  It should 
be noted that these artifacts are sequence dependent, and are worse for 2D methods 
than for central regions of 3D methods.   This problem is illustrated in Fig. 1.   
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Fig. 1. Raw enhancement curves for two ROIs taken from the aorta of one human subject, with 
an automatically identified ideal AIF. Note that aorta 1 and aorta 2 show significantly different 
enhancement curves. Moreover, neither vessel shows the distinctive sharp peak and subsequent 
plateau characteristic of plasma enhancement following injection of a tracer bolus. 

We have developed a method for the identification of an optimized AIF, described 
below, which is intended to eliminate this source of measurement variability and 
thereby increase the sensitivity to change of perfusion parameter measurements.  This 
method is similar in aim to those presented previously by Rijpkema et al. [13] and 
Murase et al. [14].  Our method differs from the former it is completely automated, 
whereas the Rijpkema method requires some operator interaction, primarily to 
eliminate voxels consistent with veins rather than arteries.  Our method is able to 
accomplish this without human interaction (see Fig. 2).  Our method differs from the 
Murase technique in that it searches the entire volume for possible arterial voxels, 
whereas the Murase method begins with a user-defined arterial ROI, then divides that 
region into two or more sub-regions and averages the voxels in the optimal sub-region 
to generate its AIF. The AIF generated by our method for one human subject is shown 
in Fig. 1.  Note that this curve shows a greater enhancement peak than that of either 
manually identified ROI, a smoother plateau, and a more characteristic shape.  The 
primary purpose of this study was to assess the reproducibility of vascular perfusion 
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parameter calculation using this automated AIF identification technique with respect 
to that which is achievable using manual AIF identification.  As a secondary point, we 
have also provided an example of the use of this technique to assess response to 
treatment of naturally occurring canine mammary tumors with an anti-vascular agent. 

      

Fig. 2. (l) Manually drawn arterial ROI used to derive “Aorta 1” AIF shown in Fig. 1. (r) Light 
gray shaded voxels show the automatically identified voxel set used to derive “Ideal AIF” 
shown in Fig. 1. 

2   Measurement Techniques 

Tumor margins were identified in this study using a computer-aided boundary finding 
technique [15].  The resulting contour was then converted into a snake [16] which 
could be interactively corrected by the analyst if the initial result was sub-optimal. 

After identifying the tumor margins, the analysts were required to identify a region 
of interest within an artery, preferably in close proximity to the tumor.  This was done 
using manual tracing with a computer mouse.   At this point, the identified arterial 
region was used for parameter calculation, as described below.  In addition, the 
identified arterial region was used to initialize an automated search algorithm whose 
intent was to identify an optimized AIF for the data set under consideration.  Each 
voxel in the data set was assigned a score based on time point of maximum 
enhancement, slope at maximum enhancement, peak value, and conformance to a 
gamma variate curve.  This was accomplished by sorting all voxels in the data set 
based on the first three inter-related parameters.  The highest scoring fifty voxels were 
then re-sorted based on the fourth parameter.  The highest scoring twenty-five voxels 
in this sub-set were then assigned to the ideal AIF region of interest, and the 
automated AIF was generated by averaging the enhancement curves observed in these 
voxels (see Fig. 2). 

After an arterial region of interest had been identified by either manual or 
automated means, enhancement curves were generated for both tumor and arterial 

plasma.  These were designated )(tCt and )(tC p , respectively.  In the interests of 

noise reduction, both plasma and tumor data were fit to gamma-variate curves (17).  
The vascular bed was modeled as a linear system, such that: 

                                         )(*)()( thtCtC pt =                                                 (1) 
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with impulse response h(t) given by: 

                                              ,)( tktrans epeKth −=                                      (2) 

where epk  is the rate constant between the EES and blood plasma.  Given )(tCt and 

)(tC p ,  transK  and  epk were estimated using a gradient-descent energy 

minimization scheme in which local minima were avoided through the use of multiple 
instantiations with different initial parameter settings.  

3   Experimental Procedure 

The experiments involved in this study were intended to assess the reproducibility of 
perfusion measurements using manual and automated plasma identification, and to 
determine the percentage of measurement variability due to differences in tumor 
margin and plasma region of interest, respectively.  Experimental data for the animal 
model were derived from three dogs with naturally occurring mammary tumors.  
These data were collected as part of an experiment testing an anti-angiogenic drug 
with vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitory 
activity at a maximally tolerated dose in dogs.  This drug was later discontinued from 
further development. Each animal was imaged three times over a period of 12 weeks. 
At each time point all animals were imaged in a single 48 hour period.  Images for 
this study were acquired using a GE 1.5T LX/CV scanner.  Three slices through each 
tumor were acquired using a cardiac coil.  Perfusion images used a GRE pulse 
sequence with a repetition time of 20ms, echo time of 1ms, and a flip angle of 40 
degrees.  Imaging time for each image set was seven seconds, with a two second 
scanner delay, yielding temporal resolution for the data set of nine seconds.  The 
reconstruction matrix was 256x192, FOV was 140mm, and slice thickness was 4mm.  

Experimental data from humans were taken from a subset of images collected as 
part of a Phase I clinical trial.  Twelve subjects with tumors of the lungs, liver, head 
or neck were imaged twice, at baseline (within 3 days before day 1 treatment with a 
VEGF/PDGFR/c-Kit tyrosine kinase inhibitor) and on day 2 (cycle 1) after the 
morning dose, at the estimated Cmax.  Images for this study were acquired using a GE 
1.5T Signa LX scanner.   Ten slices through each tumor were acquired using 
appropriate coils with respect to the area being imaged.  Dynamic contrast 
enhanced images used a 3DFSPGR pulse sequence with a repetition time set by the 
scanner of 6-7ms, echo time of min full (the minimum TE at which a full echo can be 
acquired – in this case 2ms), and a flip angle of 25 degrees.  Imaging time for the 
dynamic contrast enhanced scan consisted of 11 breath-holds at approximately 30 
seconds per breath-hold, with two phases being acquired per breath-hold. The 
reconstruction matrix was 256x128, FOV was kept to the smallest allowable so that 
no wrap in the images was present, and slice thickness was 5mm. 

Because a primary aim of this study was the assessment of inter-operator 
variability, four analysts were trained in the use of the analysis software.  Two 
analysts were experienced MR technicians, and two were radiologists with extensive 
oncology experience. All analysts were trained in the appearance of canine mammary 
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tumors and the selection of appropriate plasma regions using images from animals not 
included in this study.   Each analyst was then asked to identify and delineate both 
tumor and plasma in each of the nine included canine data sets as well as each of the 
24 human subject data sets.  When identifying arterial plasma, the analysts had the 
option to view the enhancement curve for the manually selected region at any time, 
and to erase, modify or replace the currently selected region.  In this way each analyst 
was able to manually select a reasonably optimized arterial plasma region. 

Once all regions of interest were delineated,   transK  values were calculated first 
using the regions of interest as identified by the analyst, and then using the analyst’s 
tumor identification with the automatically identified plasma enhancement curve.  By 
comparing the variance seen between analysts using manually identified AIF with that 
seen between analysts using the automatically identified AIF, which was identical 
across analysts, it was possible to isolate variability related to AIF selection from that 
related to differences in tumor margin identification. 

4   Results and Discussion 

Coefficients of variability in measurement of transK   among the four analysts, 
defined as measurement standard deviation divided by measurement mean, were 
calculated separately for manual and automatic AIF identification, and for each of the 
nine canine and 24 human cases examined.  For the nine canine manual AIF 
identifications, coefficients of variability ranged from 3.1% to 39.2%, with a root 
mean square average of 23.7% and a median value of 21.5%.  For the nine canine 
automated AIF identifications, coefficients of variability ranged from 3.1% to 11.8%, 
with a root mean square average of 7.0% and a median value of 6.2%.  For the 24 
human manual AIF identifications, coefficients of variability ranged from 1% to 32%, 
with a root mean square average of 14.1% and a median of 11%.  For the 24 human 
automated AIF identifications, coefficients of variability ranged from 1% to 24%, 
with a root mean square average of 11.2% and a median of 6%.  It should be noted 
that in the human data there was a single case where the analysts disagreed 
significantly over the correct tumor boundaries.  This case was the source of the high 
maximum variation in both the manual and automated AIF results. 

Bearing in mind that the same tumor margins were used for both the automated 
and manual AIF calculations, in the canine experiment it can be generally surmised 
that approximately two thirds of the variability seen in the manual measurements was a 
result of differing AIF identifications, with the remaining one third attributable to 
differing tumor margin identifications.  In the human experiments the median 
variability due to tumor margin identification was similar – approximately 6% -- while 
the variability due to AIF identification was significantly lower.  This is reasonable, as 
the smaller vessels and higher blood velocity present in the canines makes manual 
identification of an uncorrupted arterial region much more difficult than in the human 
case.  Additionally, the 2D imaging method used in the canine study is more sensitive 
to in-flow effects than the 3D method used in the human study. 

An examination of scatter-plots of transK  measurements using manual vs. 
automatic AIF identification for both canine and human data (see Fig. 3) shows that 
the correlation between the two measures is reasonable given the high variability of 
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the manual measurements.  It also shows a slope of 0.58 for the canine data and 0.85 
for the human data, indicating that on average the manual measurement gives a 

somewhat higher estimation of transK  than the automatic measurement, and that this 
effect is more pronounced in the canine data than in the human data.  This is as 
expected, since the general effect of flow artifacts will be to reduce the apparent 
plasma enhancement, thereby exaggerating the proportion of tracer apparently passing 
into the EES. 
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Fig. 3. Scatterplots of 
transK  values using manual and automatic plasma identification for 

canine (l) and human (r) data sets.  Note that in both cases the trend line slope is less than 1, 
due to the fact that manual values are generally over-estimated due to poor plasma 
identification.  This effect is less pronounced in the human data, and the correlation between 
manual and automated measurements is higher due to the improved manual reproducibility in 
the human data. 

An examination of the trend over time in transK  for canine subject 1 (see Fig. 4) 
using manual and automated AIF identification highlights the value of the reduced 
measurement variability afforded by the automated process.  Although both trend lines 

indicate that  transK  for this tumor is declining over time, higher variability makes that 
assumption statistically insupportable at time two for manual AIF identification, and 
marginally supportable after time three.  Using automated AIF identification, however, 
this subject may be confidently classified as declining after time 2. 

5   Conclusions 

The two most commonly used methods for AIF definition in current clinical and 
experimental practice are manual AIF identification and use of a theoretical or model-
based AIF.   The results of this study indicate that increased accuracy and sensitivity 
to change could be achieved by making use of an automated method for AIF 
identification such as the one described here.  Use of such a method allows AIF 
identification to be both consistent and repeatable among operators, and also patient 
and time-point specific.  Variability due to partial volume effects and artifacts is 
reduced with respect to that of manual AIF identification, while variability due to 
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differences in injection and cardiac output is reduced with respect to that seen with 
the use of a model AIF.   

In considering the differences between human and canine results given here, it 
should be noted again that the difficulty of identifying a suitable AIF is typically 
greater in smaller animals such as the canines used in this study than in humans.  This 
is due to small animals’ higher blood velocity, which exaggerates flow artifacts in the 
arteries, as well as to the lower signal to noise ratio that is achievable when imaging 
smaller anatomy.    

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Baseline Day 22 Day 84

K
tr

an
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Baseline Day 22 Day 84

K
tr

an
s

 

Fig. 4. Trend line using manual (l)  and automated (r) plasma identification for canine subject 
1. Note that the subject cannot be confidently classified as declining until time 3 using manual 
plasma identification, while the reduced variability of the automated measurements allows a 
confident classification after time 2. 
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Abstract. The Taylor spatial frame is a fixation device used to implement the
Ilizarov method of bone deformity correction to gradually distract an osteotomized
bone at regular intervals, according to a prescribed schedule. We improve the ac-
curacy of Ilizarov’s method of osteogenesis by preoperatively planning the cor-
rection, intraoperatively measuring the location of the frame relative to the pa-
tient, and computing the final shape of the frame. In four of five tibial phantom
experiments, we were able to achieve correction errors of less than 2 degrees of
total rotation. We also demonstrate how registration uncertainty can be propa-
gated through the planned transformation to visualize the range of possible correc-
tion outcomes. Our method is an improvement over an existing computer–assisted
technique (Iyun et al. [3]) in that the surgeon has the same flexibility as in the con-
ventional technique when fixating the frame to the patient.

1 Introduction

Rotational and translational deformities in the long bones are commonly corrected us-
ing a method of osteogenesis developed by Russian orthopaedic surgeon Gavril Ilizarov.
Ilizarov’s method is based on the biological principle of inducing new bone growth by
gradually distracting a fracture at regular intervals. More specifically, the method is
achieved by performing a corticotomy on the deformed bone, fixating the distressed
bone with a mechanical fixator, and distracting the bone according to a set sched-
ule of corrections. This technique has been successfully applied to treating malunions,
nonunions, bone defects, limb elongation, fractures, and angular deformities, to name a
few (Feldman et al. [2]).

Conventional surgical technique for the Ilizarov fixator is plagued by two sources
of error: (1) preoperatively planning the required correction requires the precise mea-
surement of 13 parameters from anteroposterior and lateral radiographs, and (2) angular
and translational errors may be present once the frame is mounted to the patient.

1.1 The Taylor Spatial Frame

The Taylor spatial frame (Smith & Nephew, Memphis, TN) is an external fixator that
combines gradual distraction principles of the Ilizarov method with deformity analy-
sis provided by a computer program. The frame consists of six telescopic rods (called
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struts) that connect two circular bases (or rings), in a symmetric configuration of a
Stewart–Gough platform [7]. By simply adjusting strut lengths, one ring moves with re-
spect to the other and can be positioned to mimic any deformity (Taylor and Paley [9]).

Preoperatively, the surgeon determines the nature of the deformity, the desired cor-
rection, and the final (or neutral) height of the frame. Six specific strut lengths are cal-
culated by a computer program using the initial and desired final frame configurations.
Intraoperatively, the frame is attached to the bone by placing each ring substantially per-
pendicular to the bone, lengthening the six struts according to the preoperative plan, and
fixating the frame with a combination of Kirschner wires, Steinman pins, and Rancho
cubes (for attaching the wires or pins to the rings). The correction schedule is prescribed
postoperatively by the surgeon. Once the correction schedule is complete and the frame
is in its neutral position, any residual deformity is corrected by applying a secondary cor-
rection schedule; this residual correction phase is usually required (Taylor and Paley [9]).

1.2 Related Work

Early work by Kochs [4] attempted to reduce complications due to incorrect preopera-
tive planning and inaccurate application of the frame by simulating the planned correc-
tion. Optimal joint positions and ring locations were obtained by simulation on images
acquired from hand–tracing radiographs and scanning these images. Postoperatively,
a radiograph was compared to the preoperative plan to determine the necessary resid-
ual corrections. Lin et al. [5] proposed a preoperative planning system for the Ilizarov
method by (1) creating a bone template using an ultrasonic digitizer, (2) manually char-
acterizing the deformity from radiographs and patient examination, (3) determining the
weight–bearing axis, (4) performing virtual osteotomies on the computer, (5) aligning
the bone fragments in the preoperative plan, (6) constructing the frame based on a phys-
ical examination of the patient, and (7) assembling the frame using a life–size diagram
of the fixator assembly output by the computer.

More recently, Iyun et al. [3] proposed a method to apply the inverse kinematics of
the Taylor spatial frame to calculate the initial position of the frame and fixation pins,
the strut lengths, and the daily schedule of corrections. This research combined preoper-
ative planning of the strut lengths with intraoperative guidance of the placement of the
Kirschner wires and Steinman pins. Their methodology has two impractical assump-
tions. The first and most significant assumption was that the frame is always mounted
using rigid pins or wires, which is not the case when a ring is mounted close to a
joint line (where weaker bone can result in deviations from the rigid–fixation assump-
tion). The second assumption was that the location and direction of the fixation pins
could be determined during the planning phase. In practice, the configuration of the
Rancho cubes, pins, and wires are best chosen intraoperatively because of anatomical
constraints that may not be apparent preoperatively. The laboratory study was further
limited by a learning effect present in the results; once the surgeon mounted the first
frame in the conventional manner, subsequent frames were mounted without error.

1.3 Our Approach

Rajacich et al. [6] observed that a single point of failure in applying the Ilizarov method
is planning the procedure. In the case of the Taylor spatial frame, 13 frame parameters
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must be measured from the patient and radiographs. Since the Taylor frame is tightly
coupled (Stewart [7]), errors in any one parameter propagate through the entire pre-
operative plan. A second source of error is the misapplication of the frame such that
translational and angular problems are introduced during surgery.

We aim to improve the efficacy of the Ilizarov method by (1) eliminating the need
to measure parameters preoperatively, (2) allowing the surgeon complete flexibility in
frame placement and configuration, and (3) improving the accuracy of the correction.
Our method relies on the idea that it is not necessary for the frame to end in a neutral,
or highly symmetric, configuration. The surgeon can simply mount the frame on the
patient and, based on the actual position of the frame relative to the patient, we can
compute the strut lengths and required schedule of adjustments to achieve the desired
correction.

2 Methodology

In this section, we describe the conventional surgical technique for applying Ilizarov’s
method using the Taylor spatial frame as well as the proposed computer–assisted tech-
nique.

2.1 Traditional Surgical Technique

In the conventional technique, the surgeon measures the deformity, plans the necessary
correction, and specifies the 13 mechanical parameters of the Taylor spatial frame. The
three rotational parameters are measured from plain X–ray images using anteroposterior
angulation, lateral angulation, and axial angulation views. The translational parameters
are measured in a similar way. The frame itself is described by the proximal and distal
ring diameters and the neutral frame height. The four remaining parameters are obtained
in clinic and measure the location and axial rotation of the reference bone fragment with
respect to the reference ring; the measurement of these four frame offset parameters is
described by Taylor [8]. The Taylor spatial frame is kinematically equivalent to the
Stewart platform, which is fully coupled (Stewart [7]); hence, any changes in the length
of any one strut results in changes to all six strut lengths. The 13 parameters are used
by the computer program supplied by the manufacturer of the frame to generate the six
specific strut lengths and the daily schedule of adjustments that must be made to the
struts by the patient (Taylor and Paley [9]).

There are three standard methods of surgically mounting the spatial frame. The
chronic deformity–correction method requires that the surgeon attach the deformed
frame (which would mimic the deformity) to the patient; the deformity is fully cor-
rected once the frame reaches its neutral shape with all six struts having equal length.
Alternatively, the rings–first method of deformity correction mounts the rings to the
patient prior to attaching the struts. Finally, the residual deformity–correction method
simply compensates for any residual deformity which may exist after either of the first
two methods is used. In each of these methods, the surgeon mounts the rings perpen-
dicular to the weight-bearing axis of the limb under fluoroscopic guidance using either
Steinman pins or flexible tensioned Kirschner wires and centers the frame on the bone
(Taylor and Paley [9]).
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2.2 Computer–Assisted Technique

Our proposed technique modifies conventional approaches to deformity correction us-
ing the Ilizarov method in four fundamental ways:

1. The need for the surgeon to preoperatively measure the 13 frame parameters is
removed.

2. The performed correction is based on the actual location of the frame with respect
to the anatomy; any translational or angular problems that occur while mounting
the frame are compensated for immediately thereby potentially removing the need
for residual correction.

3. The correction is calculated based on 3D coordinates from CT data rather than
measured from multi–planar radiographs.

4. The rings do not have to mimic the deformity; we essentially bypass the “chronic
deformity correction” step to the “total residual correction” phase.

Unlike the computer–assisted method described by Iyun et al. [3], our method al-
lows the surgeon to use any configuration of Rancho cubes, pins and wires.

We performed a small number of experiments using tibial phantoms (Sawbones,
Pacific Research Laboratories, Inc., Vashon, Washington, USA). Our apparatus con-
sisted of an Optotrak optical tracking system (Northern Digital Inc., Waterloo, Ontario,
Canada) dynamic reference bodies (DRBs) attached to the proximal and distal ends of
the tibia phantom, a tracked surgical probe, and 5 tibia phantoms1.

For each of the tibia phantoms, a 3D surface model was constructed from CT data.
Planning software was used to plan the necessary correction (a normal bone phantom
was deformed in an arbitrary way or a deformed phantom was corrected). The Taylor
spatial frame was mounted to the bone phantom using tensioned Kirschner wires and
Steinman pins. Note that we could have chosen to intraoperatively guide the placement
of the rings; however, for the purposes of this study, we chose to mount the rings arbi-
trarily in order to demonstrate that we can compensate for errors in frame placement. A
DRB was attached to the proximal and distal ends of the tibia phantom. We registered
the bone phantom to the 3D model using a registration algorithm based on Besl and
McKay’s [1] ICP algorithm. Approximately 20 registration points were collected from
the osteotomy region as well as from other surfaces that could be easily digitized per-
cutaneously, such as the shaft and medial malleolus of the tibia. We then digitized three
well–defined points on each ring of the frame. Using the ring measurements and the
registration transformation, we computed the location of the rings in CT coordinates.
Using the planned transformation of the mobile proximal fragment, we transformed
the location of the proximal ring to its planned corrected location and calculated the
necessary strut lengths. The tibia phantom was then cut and distracted by changing the
strut lengths to those calculated by our model. Figure 1 demonstrates the Taylor spa-
tial frame after correction is achieved. We chose three types of corrections which are
visualized in Figure 2.

1 We were limited to a small phantom study because our apparatus is used clinically by our
affiliated hospital.
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(a) (b)

(c) (d)

Fig. 1. Frame after correction in (a) axial and (c) lateral views and corresponding computer model
of the planned correction in (b) axial and (d) lateral views

(a) (b) (c)

Fig. 2. The three six–degrees–of–freedom planned corrections used in our experiments. The pri-
mary modes of correction were (a) axial rotation, (b) lateral opening wedge, and (c) medial open-
ing wedge.

3 Results

We originally attempted to track the motion of the distracted proximal end with re-
spect to the distal end by tracking both ends of the phantom, but we could not reliably
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Table 1. Alignment errors between planned and performed corrections

Correction Rotational Errors (deg) Translational Errors (mm)
θ φ δ Total x y z Total

axial rotation 0.7 1.2 -4.2 4.4 -1.4 -1.2 1.3 2.23
lateral wedge 0.3 -0.2 0.7 0.78 -0.1 0.8 0.1 0.84
lateral wedge -1.1 -0.2 1.4 1.82 7.1 -2.2 0.7 7.50
medial wedge 1.9 0.8 1.1 1.32 -0.9 -3.5 -2.5 4.37
medial wedge -0.4 0.1 1.1 1.16 2.8 6.5 1.3 7.22

maintain fixation of the reference targets during the cutting and distraction processes be-
cause of the intense vibration associated with the cutting process. Instead, we digitized
anatomic landmarks along with widely spaced registration points P and D separately
from the proximal and distal ends, respectively, not restricting ourselves to surgically
accessible surfaces. The registration transformation TD,CT of the distal end to CT coor-
dinates was calculated and applied to the proximal registration points. The transformed
proximal points P ′ = TD,CTP were registered to CT coordinates to obtain the transfor-
mation TP’,CT, and the displacement of the proximal end with respect to the distal end
in CT coordinates was the inverse of this transformation TPD,CT = T−1

P’,CT.
The rotation component RPD,CT of TPD,CT was compared to the rotation component

Rplan of the planned correction Tplan by computing the difference in rotation Δ where
RPD,CT = ΔRplan and converting Δ to its screw representation; the rotation about the
screw axis was the total angular error. We also calculated errors using Taylor’s rotation
matrix (Iyun et al. [3]) Rθ,φ,δ where θ, φ, and δ were the projected angles of rotation
measured in the anteroposterior, lateral, and axial views. The error in translation was
taken to be the difference between the center of the proximal ring under TPD,CT and
Tplan. All error measurements are tabulated in Table 1.

Retrospectively, we computed the uncertainty of the registration parameters for the
axial deformity case by using a particle filter as part of the registration algorithm, de-

Fig. 3. Uncertainty in the location and orientation of the mobile proximal fragment for the axial
rotation case. The total range of rotational uncertainty was 1.3◦ about the anteroposterior (AP)
axis (rx), 1.3◦ about the mediolateral (ML) axis (ry), and 5.4◦ about the long axis (rz) of the
fragment. The total range of translational uncertainty was 3.0mm along the AP axis (dx), 2.5mm
along the ML axis (dy), and 3.9mm along the long axis (dz).
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scribed by Ma et al. [10]. This algorithm produced a sampled distribution of the reg-
istration parameters rather than a single point estimate. The distribution of registration
transformations was used to predict the range of the expected location and orientation of
the mobile fragment. Figure 3 illustrates what happens to the three anatomical axes of
the mobile fragment when the distribution of registration transformations is propagated
through the planned correction transformation.

4 Discussion

It appears that the proposed method successfully implements the Ilizarov method of
deformity correction using the Taylor spatial frame with computer assistance. The ac-
curacy of our computer–assisted technique is better than the previous computer–assisted
technique by Iyun et al. [3], which reported mean rotational and translational error of
3.2 degrees and 5.4 degrees, respectively. The major source of error in our method
lies in the mechanical loading of the bone phantom when mounting the frame, which
resulted in some strain of the phantom; the stress was released when the phantom was
cut, displacing the bone fragments in the transverse (XY ) plane. This phenomenon does
not occur in a clinical setting. In the case of the large axial rotation correction, the final
configuration of the frame was very unusual. Consequently, we found that there was
significant rotational laxity about the vertical axis greater than our reported correction
error of −4.2 degrees. Since we were simulating a deformity rather than a correction in
this case, the laxity we observed would not occur clinically after a correction.

The primary disadvantage of our method is that a preoperative CT scan of the patient
is needed, which is not generally required by the conventional surgical technique, in or-
der to construct the 3D computer model. Furthermore, generating computer models and
preoperative plans can be labor intensive. However, manually computing the 13 frame
parameters in the traditional method requires approximately one hour to complete. In-
deed, surgeons are conditioned to planning corrections based on bi–planar radiographs
rather than 3D models; hence, it is unclear whether surgeons would be willing to visu-
alize the necessary corrections in 3D. Finally, our method does not rely on the existing
clinically used software provided by the frame manufacturer; therefore, significant test-
ing is required to ensure the correctness of our system. A weakness of this study is the
small sample size used in our experiments; we are attempting to perform more experi-
ments as clinical conditions permit.

In clinical practice, the preferred method of registration would probably be from
fluoroscopic images to the CT volume or anatomical atlas. We note that the registration
algorithm would need to cope with occlusion artifacts caused by the presence of the
metal rings of the frame. If we were able to register to an atlas, we would be able
to use this method for trauma cases as this would eliminate the need for a CT scan.
Registration remains the single point of failure in this method.

Practitioners of Ilizarov’s method for deformity correction using the Taylor spatial
frame admit that there is a steep learning curve in using the frame. It has been shown
by Feldman et al. [2] that increased surgical experience with the system decreases the
complication rate and increases the accuracy of correction using the frame. This is in
part due to the fact that it is difficult to accurately measure the 13 frame parameters
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and to mount the frame without some residual rotational and translational errors. Our
technique aims to reduce complications due to these factors by preoperatively plan-
ning the desired correction directly and reducing the possibility of errors introduced
during surgery by calculating the correction based on the actual location of the frame
with respect to the anatomy. Moreover, the surgeon has greater flexibility in choosing
the position of the rings since this technique does not depend on placing the rings in
a particular orientation. This relatively new approach of bypassing the “chronic de-
formity correction” stage directly to the “total residual correction” step is reported by
Feldman et al. [2].
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Abstract. Assessment of soft tissue in normal and abnormal joint motion today 
gets feasible by acquiring time series of 3D MRI images. However, slice-by-
slice viewing of such 4D kinematic images is cumbersome, and does not allow 
appreciating the movement in a convenient way. Simply presenting slice data in 
a cine-loop will be compromised by through-plane displacements of anatomy 
and “jerks” between frames, both of which hamper visual analysis of the 
movement. To overcome these limitations, we have implemented a 
demonstrator for viewing 4D kinematic MRI datasets. It allows to view any 
user defined anatomical structure from any viewing perspective in real-time. 
Smoothly displaying the movement in a cine-loop is realized by image post 
processing, fixing any user defined anatomical structure after image acquisition. 

1   Introduction 

Starting in the late eighties, MRI has been used for imaging of moving joints [1,2]. Most 
approaches were based on fast 2D imaging, which limited the study to a single prede-
fined view of a few anatomical structures. In addition, in order to keep the anatomy of 
interest stable in the imaging plane, devices are needed to restrain a part of the joint [3], 
thereby limiting the freedom of movement. As a result pathological behavior in the 
kinematics of the investigated structures might be alleviated or even not show up at all. 

MRI is capable of acquiring time series of 3D images, which gives a 4D examina-
tion that can be used for kinematic joint imaging of an unrestricted movement. Fur-
thermore, 4D data acquisition greatly simplifies scan planning, because it obviates the 
need for defining and tracking the diagnostically relevant 2D view during image ac-
quisition. However, slice-by-slice viewing of the 4D images is cumbersome, and does 
not allow to appreciate the movement. Simply presenting slice data in a cine-loop will 
be compromised by through-plane displacements of anatomy and “jerks” between 
frames, both of which hamper visual analysis of the movement. 

We have implemented a demonstrator for viewing 4D kinematic MRI datasets that 
addresses the following requirements: 1) The motion of any anatomy can be viewed 
from any perspective. 2) The user may define that object or region of interest, e.g. the 
distal femur in kinematic joint imaging of the knee, which should remain fixed in the 
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viewing plane during the movement. 3) The user interaction is reflected immediately 
in the viewing plane. 

2   Method 

2.1   Viewing Workstation  

The proposed viewing workstation for 4D kinematic studies comprises two main steps 
of user interaction: the definition of the anatomical structure to be stabilized in visu-
alization and real-time interaction with the video component in order to refine the se-
lection of the anatomical structure of choice as well as to control imaging parameters 
like the zoom factor. Fig 1 shows a typical configuration of the user interface. 

Viewing Component Video Component

Viewing ComponentViewing ComponentSystem Control

 

Fig. 1. User interface of the kinematic viewing station 

2.1.1   Definition of Anatomical Structure  
The viewing workstation allows the inspection of 4D data sets in three orthogonal 
viewing planes. It comprises the well-known 3D Orthoviewer functionalities depict-
ing one 3D data set. In addition it allows switching between n 3D data sets retaining a 
previously defined viewing perspective with respect to the scanner coordinate system. 
Viewing functionality is implemented to enable the user to navigate through the data 
sets by translation and rotation, to scale the data set, and to manipulate window and 
level. Thus the entire 4D data set can be inspected from any user selected perspective. 
The definition of an anatomical structure of interest is done in order to fix this   
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structure for visualization in cine mode. The fixation can be applied to virtually arbi-
trary regions and comprises two steps:  

First, the movement of an anatomical structure through all 3D data sets is calcu-
lated by motion tracking. Therefore, the object or region of interest is defined interac-
tively by setting reference points in one of the 3D data sets. The user has to set a 
minimum of 3 non-collinear reference points by clicking at any appropriate point 
within the viewing component. These points are propagated to all other data sets by 
using a motion estimation method. The propagation of the selected points for all data 
sets is calculated in advance by an elastic registration approach. The tracking of the 
object or region of interest is calculated by rigid point-based registration of the n sets 
of reference points using singular value decomposition [4]. Both methods are de-
scribed in Section 2.2 in detail. 

Secondly, the inverse of the transformation defined by the tracking is used to align 
the 3D data sets, such that the defined objects or regions of interest remain stable 
when presented in cine loop. 

2.1.2   Real-Time Interaction 
The anatomical structures to be inspected for medical examination do not necessarily 
match those being fixated. When the kinematics data set is presented in cine mode 
the ability to manipulate the visualized part in real-time is provided to the user. For 
that purpose, the previously described user-interactions of defining a viewing per-
spective and defining an anatomical structure to be stabilized are combined appro-
priately. The combination of image transformations is applied to each of n 3D data 
sets, showing the stabilized anatomy in the defined viewing perspective in cine 
mode. Every user interaction concerning viewing aspects like the selection of refer-
ence points or the change of the viewing perspective is reflected immediately in the 
video component. 

propagation of 
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Fig. 2. Methods of image post-processing for fixation of an anatomical structure 
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2.2   Image Post-processing 

The essential part of the proposed kinematic workstation is motion tracking and motion 
compensation, which is realized by two different registration approaches (see Fig. 2).  

2.2.1   Motion Estimation 
Motion estimation of the entire kinematic 3D images is used to propagate the user de-
fined reference points (see Section 2.1.2). The motion estimation is calculated by an 
elastic volumetric grey-value registration method based on a B-spline representation 
[5,6]. A mesh of control points with uniform spacing in each direction defines the 
transformation of the image. As cost function the sum of squared differences (SSD) 
over the total number of voxels is selected because the image contrast does not sig-
nificantly change in the series. The optimization routine then determines from a set of 
admissible displacements a transformation, which minimizes this cost function. The 
optimization needs special attention, since the large number of parameters involved 
may result in high computational costs. We therefore choose an iterative Levenberg-
Marquardt method. Furthermore the B-spline registration is embedded into a multi-
scale approach employing both an image pyramid and a parameter pyramid of three to 
four levels. The multi-scale approach provides additional regularization and an in-
creased capture range, and speeds up the overall algorithm.  

2.2.2   Motion Compensation 
Motion compensation is used to keep the user-defined anatomical region fixed in the 
viewing plane. Therefore the rotational and translational component of the region’s 
motion has to be estimated, based on the selected and propagated set of reference 
points. Due to the propagation, a correspondence between all sets of reference points 
has been installed. Thus a rigid, point-based registration approach can be used, with 
the aim to estimate the motion of consecutive sets of reference points. Following 
Arun et.al. [4] the motion can be estimated by minimizing the least square distance of 
corresponding points of  two 3D point sets. Using a singular value decomposition 
(SVD), the rotational matrix and based on it the translational vector can be calculated. 

Since the user is not restricted in the selection of reference points these do not neces-
sarily follow the same motion trajectories through the kinematic data sets. This might be 
desired in order to stabilize soft tissue structures like ligaments, but for reference point 
sets completely placed on solid structures like bones the point set should move in paral-
lel. Therefore the SVD error provides an easy control value to verify quantitatively the 
reliability of the registration results as well as to check for misplaced reference points. 

3   Result 

3.1   Viewing Component 

Our approach has been tested for different 4D kinematic MR data sets of the knee, the 
shoulder and the foot. The MR datasets were obtained using T1-weighted 3D gradient 
echo sequences for 7 different positions of the studied joint. Various anatomical ob-
jects within these data sets have been selected by (clinical) users, like the femur, the 
tibia, and the patella of the knee images, the scapula, and the tendon of the M. su-
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praspinalis of the shoulder images, and the tibia, fibula and talus in foot images. In all 
cases, the defined objects are fixed sufficiently, preventing in-plane and through-plane 
motion. The fixation of the femur is depicted in Fig. 3. The position of the distal part of 
the femur and the orientation of the femur’s shaft remain the same during the move-
ment from the fully stretched (Fig. 3 A) to the maximally inflected knee (Fig. 3 C).  

 

Fig. 3. A) Reference points are placed in the first frame. B) The motion of reference points is 
estimated from pre-computed elastic registration. C) The viewing plane is adapted to remove 
motion of reference points. 

Following any user interaction, e.g. changing the viewing perspective or redefining 
the anatomy of interest, a tracked kinematic sequence is calculated instantaneously 
from the 4D MR data set, the user-defined reference points, and the tracking of these 
points via the stored elastic registration. This enables the clinical user to explore the 
kinematic data in real time, and allows the inspection of complex anatomical struc-
tures that have never been seen in (stabilized) motion before. 

3.2   Image Post-processing 

The quality of the automatic propagation of reference points by the B-spline registration 
algorithm is evaluated.  Ideally, a reference point that has been propagated by motion 
estimation Mi,i+1 from image i to image i+1 and subsequently has been propagated back 
from image i+1 to i by motion estimation M i+1,i will be located at its initial starting posi-
tion. Thus the Euclidian distance of the original position of each reference point and its 
position can determine the consistency of the propagation after its propagation.  

C DBA C
 

Fig. 4. Reference points of A) the femur, B) tibia, C) a non-rigid structure and D) the shoulder 
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Table 1 shows the mean distances of different sets of reference points propagated 
between consecutive 3D images. The sets of reference points used in the knee and 
shoulder images are shown in Figure 4. 

Table 1. Mean distance of sets of reference points in consecutive 3D images defining the fe-
mur, the tibia and the shoulder  

Mean Distance 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 
Femur 1.9 mm 0.7 mm 0.4 mm 0.8 mm 0.9 mm 2.1 mm 
Tibia 1.2 mm 0.3 mm 0.4 mm 0.5 mm 1.2 mm 0.8 mm 
Shoulder  0.8 mm 0.3 mm 0.2 mm 1.9 mm 1.0 mm 0.5 mm 

Another crucial step is the definition of the anatomical object or region of interest 
by the user. The residual error of the motion compensation is minimal at the centre 
and linearly grows with the distance from the centre of the mass of all reference 
points. At least 3 non-collinear points are required to define an object, where the 
points should be distributed evenly at its borders. However, we have experienced that 
(re-) defining an object by clicking is very intuitive for clinical experts, especially if 
feedback on the result is provided immediately. 

In addition to the immediate visual feedback provided to the user table 3  
shows the mean distance of reference points propagated using the SVD result versus 
using the registration parameter at their individual location. This value gives a 
quantitative measurement of the rigidness of the selected structure given a robust 
image registration. As expected from visual inspection table 3 shows small mean 
distances for rigid structures, whereas fixation of non-rigid regions leads to signifi-
cant distances. 

Table 2. Singular value decomposition error 

Mean Distance 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 
Knee       
  femur 0.8 mm 0.4 mm 0.3 mm 0.3 mm 0.3 mm 0.7 mm 
  tibia 0.6 mm 0.4 mm 0.3 mm 0.5 mm 0.5 mm 0.4 mm 
  patella 0.4 mm 0.4 mm 0.3 mm 0.2 mm 0.4 mm 0.1 mm 
  non-rigid region 4.4 mm 2.6 mm 2.9 mm 5.5 mm 14.2 mm 12.1 mm 
Shoulder       
  ligament 1.2 mm 0.5 mm 0.8 mm 3.7 mm 2.2 mm 1.8 mm 

The B-spline registration has been embedded into a multi-scale approach. The im-
age and mesh resolution is given by Table 2. The original image size of the femur and 
tibia is 400x 400 x 180mm3 and the image size of the shoulder is 256 x 256 x 
150mm3. 
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Table 3. Multiscale resolution of image and parameter space 

Resolution Image [voxel3] Mesh [control point3] 
Femur and Tibia 36 x 36 x 16  

73 x 73 x 32   
256 x 256 x 36  

2 x 2 x 2  
4 x 4 x 4  
8 x 8 x 8  

Shoulder 62 x 62 x 36   
124 x 124 x 72  
256 x 256 x 100  

2 x 2 x 2  
4 x 4 x 4  
8 x 8 x 8  
16 x 16 x 16  

4   Conclusion 

In conclusion, we have developed a workstation that facilitates viewing of 4D kine-
matic data sets. It allows to view in real-time any user defined anatomical structure 
from any viewing perspective. Smoothly displaying the movement in a cine-loop is 
realized by image post processing, fixing any user defined anatomical structures after 
image acquisition. Unrestricted from any pre-defined viewing perspective the clinical 
expert is enabled to examine any (fixed) anatomical structure during the movement of 
the entire joint in a 4D kinematic study. 
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Abstract. Bio-engineered cartilage has made substantial progress over
the last years. Preciously few cases, however, are known where patients
were actually able to benefit from these developments. In orthopaedic
surgery, there are two major obstacles between in-vitro cartilage engi-
neering and its clinical application: successful integration of an auto-
loguous graft into a joint and the high cost of individually manufactured
implants. Computer Assisted Surgery techniques can potentially address
both issues at once by simplifying the therapy, allowing pre-fabrication
of bone grafts according to a shape model, individual operation plan-
ning based on CT images and providing optimal accuracy during the
intervention. A pilot study was conducted for the ankle joint, compris-
ing a simplified rotational symmetric bone surface model, a dedicated
planning software and a complete cycle of treatment on one cadaveric
human foot. The outcome was analysed using CT and MRI images; the
post-operative CT was further segmented and registered with the im-
plant shape to prove the feasibility of computer assisted arthroplasty
using bio-engineered autografts.

1 Introduction

Tissue-engineered articular cartilage has been a subject of research for a number
of years (eg. [1], [2]). Although difficulties with cartilage structure and integra-
tion still persist, techniques using combined grafts using cancellous bone and
autologous cartilage are approaching clinical application ([3], [4], [5]). Common
to all therapies with in vitro engineered autografts is the need for optimal fit of
the implant, which is imperative for screwless implantation and successful in-
tegration. Computer Assisted Surgery (CAS) techniques as used in orthopaedic
surgery (e.g. [6]) have the potential both to ensure the required accuracy and
simplify the therapy. A pilot study was hence conducted aiming at assembling a
set of methods to realise and prove the feasibility of computer assisted arthro-
plasty using bioengineered autografts. The ankle joint was chosen as a first target
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because of the lack of suitable alternatives: post-traumatic osteoarthritis can be
diagnosed in patients as young as 20 years, where classic therapies like total
ankle joint arthroplasty using an artificial prosthesis or arthrodesis with fixation
screws have considerable drawbacks (loss of mobility, poor long-term outcome
expectation, difficult revision).

At the Universitätsklinikum Freiburg, Germany, one case of post - traumatic
osteoarthritis has been treated with a bioengineered implant. The intervention
was conducted in two steps: one for arthrotomy and defect moulding, a second
for implanting the bio-engineered construct. Between the two operations several
weeks were needed to proliferate autologous chondrocytes and let them integrate
into a cancellous bone construct shaped after the defect mould. Albeit clinically
successful, this procedure does not lend itself well to routine application: the
two-step operation, the long period of treatment and the high cost of individu-
ally constructed autografts make it a time-consuming and costly alternative to
classical therapies. Using CAS technologies, the procedure can be significantly
simplified and generalised to allow pre-fabrication of implant parts. The revised
procedure consists of planning based on CT image data, harvesting mesenchymal
stem cells by needle biopsy, constructing the autograft according to the plan-
ning and conducting one single intervention for the arthrotomy and construct
implantation. The defect debridement has to be accurate enough to make the
pre-constructed graft fit without a screw; proving this accuracy in the context
of a complete cycle of treatment was a main goal of this initial study.

2 Methods

2.1 Rotational Symmetric Ankle Joint Model

Based on the hinge-like articulation of the upper ankle joint, a rotational sym-
metric joint was assumed in the region of interest for arthroplasty. This approach
allows shape determination using a small number of points on the joint surface,
effectively circumventing the need for CT segmentation. A new software was
developed to define the ankle joint shape model interactively on this basis. It
consists of two steps: determine the joint axis and define the rotational pro-
file. To determine the joint axis, arbitrary joint surface points are identified on
sagittal planes in the region of interest. On each plane the software performs a
least-mean-square fit of a circle to the points, storing the circle center as one
point on the rotation axis. A second least-mean-square fit is performed in 3D to
find the optimal fit of a line through all circle centers, yielding the joint axis.
The accuracy of this axis calculation depends on the number of points selected
and on the anatomy of the individual joint. Selecting 40 to 80 surface points in
a rotational symmetric region of Talus and/or Tibia usually gives good results;
in this study, about 100 points were used per axis calculation.

Once the joint axis is established, a model for the joint follows directly from
rotating a joint profile around the axis. Accordingly, the software allows inter-
active checking whether the target bone is sufficiently rotational symmetric in
the area of interest.
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2.2 Preoperative Planning and Construct Manufacturing

The axis determination software was further extended to allow the interactive
planning of ankle joint arthroplasty prior to the operation. The planning consists
of four steps:

1. Determine the joint axis
As described in chapter 2.1, arbitrary points are selected on sagittal planes
in the region of interest. The software performs an optimal fit of a rotational
symmetric body to the points selected to determine the joint axis.

2. Determine the lateral graft profile
A ”hub view” is defined along the joint axis. In this view, a ”U” profile
can be defined determining the front, bottom and rear face of the implant
(Fig. 1a). The hub view can be shifted along the joint axis to determine the
optimal section of the joint to be replaced.

a) lateral view b) frontal view

Fig. 1. Determine the implant profiles in the two characteristic views

3. Determine the frontal graft profile
A ”cut view” is defined through the joint axis. The axis is always shown hor-
izontally, with the current view rotating around it. In this view, a profile can
interactively be defined consisting of an ”U” shape and a spline-interpolated
curve following the joint surface (Fig. 1b). A landmark is set at an arbitrary
position to localise the U shape in 3D.

4. Visualize the resulting construct shape
Having defined the implant shape from hub view and from cut view, the vi-
sualisation is done using the CAD software SolidWorks R© (SolidWorks Cor-
poration, Concord, U.S.A.). The output of the shape is stored in a CAM
environment (construct manufacturing) as well as in our institute’s CAS
environment.

The CAD part description of the planned implant shape was used to program
a CAM device to manufacture the dummy implant. The implants were custom
milled according this plan in PU plastic ”ep-Dur” (Emaform AG, Gontenschwil,
Switzerland).
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2.3 Preparing the CAS Environment

At our institute a modular CAS platform has been developed allowing efficient
and re-usable implementation of applications for computer assisted surgery. This
study was conducted using an active Optotrak R© high resolution optical tracking
system from Northern Digital Inc., Waterloo, Canada. Tests have been carried
out with angled chisels to study their behaviour in human bone and the feasibility
limits of possible construct shapes. For navigated ankle joint arthroplasty, a set
of three chisels has been designed and tested: one chisel with a blade angled 90o,
one with a straight blade, 10mm tip bent by 45o and one chisel with a straight
blade, 9.5mm tip. Experiments on a human cadaver showed that the chisels
tested are well suited for generating the planned defects. Infrared markers were
attached to the bone under treatment and to every surgical tool used. In-house
image processing algorithms were used to establish the correspondence between
bone, tools and the visualised CT image by pair-point matching of landmarks
on the bone. The result was improved by matching arbitrary surface points.
The result of the preoperative planning, the implant shape and position, was
imported into the CAS system. The contours of the implant were visualised in
the CT image to allow navigated operation according to the plan. Surgical tools
were tracked by the Optotrak R© Camera and visualised at their proper position
in the CT volume. Instead of showing the actual physical appearance of the
chisels, aiming models were displayed as shown in Fig. 2a, allowing a precise
navigation of the tools (Fig. 2b).

a) Aiming guide b) Navigation screen

Fig. 2. Navigated Arthrotomy

2.4 Pre-trial Using a Plastic Model and First Accuracy Evaluation

A first trial combining the main elements of the target therapy was made us-
ing a plastic foot model from 3B Scientific GmbH, Hamburg, Germany. One
talar implant shape was planned based on a preoperative CT. The operation
was conducted using the chisels and analysed with postoperative CT. For this
preliminary trial, no dummy implant was manufactured. The defect was anal-
ysed comparing distances on pre-op and post-op CT images (see Fig. 3a) and
double-checking them with measures on the plastic model. The error measures
are shown in Fig. 3b and listed in Table 1.
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a) Postoperative CT, hub view b) Dimensions measured

Fig. 3. Postoperative analysis of the pre-trial

Table 1. Postoperative measurements of the pre-trial operation

Distance Planned Value Achieved Value Error
[mm] [mm] [mm]

a medial depth 14.58 14.10 0.48
b medial height 8.87 8.40 0.47
c rear width 15.45 15.20 0.35
d lateral height 11.02 9.50 1.52
e lateral depth 17.17 14.10 3.07

This analysis revealed a software error displaying the implant shape which
affected the lateral face of the planned defect. Measurement of the other distances
showed results well below 1mm.

3 Results

A trial operation was conducted on one cadaveric human foot. For the first
time a closed cycle of treatment was simulated from pre-operative planning to
implanting a custom graft shaped using the rotational symmetric model.

A first intuitive result is how well the implant fits into the defect made. In
the experiment, proper fixation of the graft was ensured by driving it into the
defect using a hammer and pestle. Visual inspection showed a good restoration
of the joint surface, with some locations where the surrounding bone had broken
off due to the chiseling. Live bone, being less brittle as cadaveric one, can be
expected to allow generally better results.

Second, the defect was measured manually in the post-operative CT image;
the results are shown in Fig. 4a, b (dorsal view) and Fig. 5a, b (lateral view). The
”U” shape of the graft profile is displayed on the post-operative image exactly
as planned preoperatively. Table 2 gives an overview over the dimensions as
observed in the postoperative image.

The outcome was further analysed by segmenting both pre- and post-operative
images, performing a normalized mutual information registration ([7]) and calcu-
lating the difference to obtain a surface model of the defect. A graphical view of
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a) Planned profile b) post-operative CT

Fig. 4. Dorsal view of the operative result

a) Planned profile b) post-operative CT

Fig. 5. Lateral view of the operative result

Table 2. Accuracy measurement using the post-operative CT image

Distance Planned Value Achieved Value Error
[mm] [mm] [mm]

a medial depth 15.80 15.1 0.7
b medial height 9.64 9.5 0.1
c rear width 10.27 9.3 1.0
d lateral height 9.11 10.3 1.2
e lateral depth 15.26 16.4 1.1

a) 3D view b) lateral view with 1mm tolerance

Fig. 6. Analysis of the segmented defect
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a) Preoperative MRI b) post-op MRI; damage encircled c) tibial cartilage damage

Fig. 7. Medial view of the operative result in MRI

this analysis is shown in Fig. 6a. The lateral profile (Fig. 6b) shows the defect sur-
face to be well within an error limit of 1mm, which can be considered clinically
successful.

A last analysis was conducted using post-operative MRI imaging (Fig. 7).
The dummy autograft, manufactured in PU plastic, is not visible. While showing
intact cartilage on the Talus side, the Tibia side has been damaged during the
operation; for clinical application, the tools used need to be further optimised
to avoid these injuries.

4 Discussion and Conclusion

The presented study does successfully prove that CAS techniques can be applied
to support ankle joint arthroplasty using bio-engineered autografts. It is possible
to make a custom-built bio-implant in a parameterisable shape planned on the
basis of CT images and to implant it successfully at the planned site.

The proof of this hypothesis was done assuming a rotational symmetric shape
model of the ankle joint surface, which is only correct for a limited part of talus
and tibia. A more general model (e.g. [8]) could improve the matching of im-
plant surface and surrounding joint surface, while at the same time making
the technique applicable to other joints with a different kind of articulation. A
big advantage of the rotational symmetric model is that no preoperative seg-
mentation of the CT volume is required - a task which is difficult to achieve
automatically, especially in joints with a narrow cavity. Manual segmentation is
a very time-consuming alternative and would make the method impractical for
clinical application. The determination of the ankle joint axis from the joint sur-
face as developed in this project could be an interesting base for further studies:
for example, the axis derived from the tibial or talar surface could be compared
with each other and used for diagnosis. For that purpose, a closer investigation
of its accuracy is required, which was not part of this study. By computing a
segmented profile of the difference between pre- and post-operative images, the
study tried to extract objective measures for surface errors of the resulting de-
fect. While being sufficient to show the general feasibility, further work is needed
to objectively analyse a series of interventions. This is particularly desirable for
the actual joint surface, which is the main clinically relevant parameter, provided
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the implant is properly fixed in the bone. Such a surface quality measure could
also be helpful to optimise the conditions for graft integration.
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Abstract. Subject motion appears to be a limiting factor in numerous
magnetic resonance imaging (MRI) applications. For head imaging the
subject’s ability to maintain the same head position for a considerable pe-
riod of time places restrictions on the total acquisition time. For healthy
individuals this time typically does not exceed 10 minutes and may be
considerably reduced in case of pathology. In particular, head tremor,
which often accompanies stroke, may render certain high-resolution 2D
and 3D techniques inapplicable. Several navigator techniques have been
proposed to circumvent the subject motion problem. The most suitable
for head imaging appears to be the orbital or spherical navigator meth-
ods. Navigators, however, not only lengthen the measurement because
of the time required for acquisition of the position information, but also
require additional excitation radio frequency (RF) pulses to be incorpo-
rated into the sequence timing, which disturbs the steady state. Here we
demonstrate the possibility of interfacing the MR scanner with an exter-
nal optical motion tracking system, capable of determining the object’s
position with sub-millimeter accuracy and an update rate of 60Hz. The
movement information on the object position (head) is used to compen-
sate the motion in real time. This is done by updating the field of view
(FOV) by recalculating the gradients and the RF-parameter of the MRI
tomograph during the acquisition of k-space data based on the tracking
data. Results of rotation phantom, in vivo experiments and the imple-
mentation in two different MRI sequences are presented.

1 Introduction

Patient motion remains a significant problem in many MRI applications, includ-
ing fMRI [1, 2], cardiac- and abdominal imaging as well as conventional acquisi-
tions. Many techniques are available to reduce or to compensate for bulk motion
effects, such as physiological gating, phase-encode reordering, fiducial markers
[3], special algorithms [4], fast acquisitions, image volume registration, or alter-
native data acquisition strategies such as projection reconstruction, spiral and
PROPELLER [5, 6]. Navigator echoes are used to measure motion with one or
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Fig. 1. The setup of the data handling to update the field of view depending on the
subject motion

more degrees of freedom [7]. The motion is then compensated for either retro-
spectively or prospectively. An orbital navigator (ONAV) echo captures data in
a circle in some plane of k-space, centered at the origin [8–10]. This data can be
used to detect rotational and translational motion in this plane, and to correct for
this motion. However, multiple orthogonal ONAVs are required for general 3D
motion determination, and the accuracy of a given ONAV is adversely affected by
motion out of its plane. Methods capable of correcting for head motion in all six
degrees of freedom have been proposed for human Positron Emission Tomogra-
phy (PET) brain imaging [11]. These methods rely on the accurate measurement
of head motion in relation to the reconstruction coordinate frame. Implementing
a similar technique in MRI presents additional challenges. Foremost the tracking
system and the MRI system have to be compatible. High magnetic fields ≥ 1.5
Tesla in MRI systems require that the tracking camera system be positioned
at a sufficient distance from the MRI system to ensure proper function and
safety. Aditionally, efforts need to be taken to ensure radiofrequency screening
on the tracking hardware. Functional MRI also proves challenging because of
the high spatial accuracy (root mean square (RMS) <0,3 mm) required by the
complete measurement chain with a small latency time of the tracking system.
A precise relationship between the spatially varying magnetic field gradients and
the spatial tracking information is necessary to compensate for motion artifacts.
Our initial trials using an external tracking system to compensate for movement
artifacts in MRI are published in [12].

2 Material and Methods

The technique was implemented on a Siemens Magnetom Trio 3T whole-body
system (Siemens Medical Systems GmbH) at the University Hospital Freiburg.
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Fig. 2. A volunteer with a mouthpiece inside the head-coil but outside of the scanner

The cameras of the optical motion tracking system (ARTrack1) together with an
own developed software has been used to create a stereoscopic reconstruction of
rigid bodies from gray scale images. The tracking system was capable of reporting
positions and orientations of rigid targets fitted with “passive” retro reflective
markers in six degrees of freedom (6DOF) using two progressive scan cameras
synchronized by a sync card [13]. The passive targets consisted of at least four
coplanar retro reflective markers. All markers were filled with doped water to
be detectable by both MR and the optical tracking system. The cameras were
equipped with infrared flashes to illuminate the scene with infrared light. Several
targets could be tracked simultaneously at a sampling rate of up to 60 Hz, with
a quoted positional accuracy less than 0.1 mm (RMS).

Our goal was to prospectively correct artifacts by tracking the head motion
by means of the camera immediately before performing the acquisition and then
use the motion data in order to internally re-position the coordinate system
of the scanner on-line for performing the next scan. A small latency between
measuring, scanner coordinates updating and scan performance is essential for
the success of the method. Communication with the measurement control unit
(MCU) of the MRI instrument took place over a TCP/IP connection. During
the calibration step (performed once) the point of origin of the tracking system
was transformed to the physical center of the gradient system and the corre-
sponding coordinate transformation matrix has been calculated to overlap both
coordinate systems. The information on the target position and orientation was
used by the MRI system to update the position of the imaging volume in real
time by means of respective transformations of gradients and radiofrequency
shifts. For this purpose the scanner software is changed as well. As a result,
scanning of sub-sequent planes or lines are aligned to the first acquisition and,
thus, the target appears to be virtually immobilised and without motion arti-
facts.

Phantom scans as well as in vivo imaging experiments were performed with
healthy volunteers. All experiments with human subjects were performed in ac-
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cordance with the guidance of the local institutional review board (IRB) regu-
lations and the informed consents were obtained prior to measurements.

2.1 Phantom Tests with Small and Large Rotations

The rotation of the phantom was realized manually in the MRI. No rotation,
small rotation up to 5 degree and large rotation up to 20 degree in each direction
were done by motion correction (Mo-Co) enabled/ disabled as can be seen in the
figure: 3. Every translation and rotation value (6DOF) is stored in a log file. The
motion correction was performed prospectively by updating the MR-gradients
(x,y,z) and the RF-parameter based on the tracking information.

2.2 Slice by Slice Correction for Echo Planar Imaging (EPI)

The EPI sequence was modified to enable real-time slice-by-slice feedback from
the MCU. The latter was communicating with the optical motion tracking sys-
tem and generating the feedback information for the measurement. Imaging pa-
rameters were as follows: FOV=256 mm, image matrix of 642, 32 slices, 4 mm
slice thickness, 1.2 mm slice gap, interleaved multi-slice acquisition, echo delay
time (TE) was 16 ms, repetition time (TR) was 1660 ms. In order to track po-
sition of the subject’s head a mouthpiece with 4 retro-reflective markers was
used. Subjects were instructed to bite the mouthpiece tightly to make sure it

Fig. 3. 2D spin echo images in the top raw are shown with motion correction (Mo-Co)
disabled and in the bottom raw the ones with Mo-Co enabled. Motion compensation
was done in real-time by using the data delivered by the tracking system to update
orientation and position of the imaging volume.
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remains in contact with the upper jaw in order to make the system of 4 markers
and the scull a rigid body. No head fixation pads were used in order to enable
exaggerated motion during the imaging experiments.

2.3 The Line by line Correction for Turbo Spin Echo (TSE)
Sequence

The TSE sequence is a pulse sequence characterized by a series of rapidly applied
180◦ rephasing pulses and multiple echoes which resulting in shorter scan times.
The product TSE sequence was modified to enable real-time line-by-line mo-
tion correction. Imaging parameters were: FOV=224 mm, image matrix of 2562,
TE=12 ms, TR=500 ms, phase-encoding dimension was vertical from anterior
to posterior (AP).

3 Result

The positional accuracy of the tracking system with an FOV of 50 cm3 was bet-
ter than 0.1 mm (RMS). The mean value of the measured reproducibility of the
rotation and translation was 0.008 degree/0.067 mm. No artifacts were detected
in the MR images originating from the possible interactions of the MR system
and the tracking system. The latency time of the whole measurement chain and
correction was 30 ms. The prospective slice-by-slice motion correction avoids un-
recoverable volume distortions. The remaining modulation may be attributed to
EPI geometric distortions, which are known to be position-dependent (figure: 4).

Fig. 4. Representative coronal images produced by re-slicing transversal EPI data from
the interleaved multi-slice acquisition. Severe displacements between the neighboring
slices are apparent when motion occurs during the acquisition of a single volume (left).
Adjusting the position of each slice circumvents the intra-volume distortion problem
(right). The remaining modulation and/or step-like structures at the surface of the
brain are due to geometric distortions of EPI, which can change with the orientation
of the head. The motion corresponds to a single continuous head rotation of yaw axis.
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Fig. 5. Brain spin-echo images in the absence of subject motion, motion correction
disabled (top left) and enabled (bottom left). Strong subject motion with Mo-Co dis-
abled (top middle) and enabled (bottom middle). Corresponding motion patterns are
presented (top/ bottom right). They are shown similar motion values to each other,
but the number of scanned lines was in the corrected one higher because of the rejected
k-lines including to much motion. Significant reduction of artifacts by the motion cor-
rection is apparent. In fact the corrected image shows effectively the same quality as
the reference one, while the uncorrected one is useless for medical purposes!

The result of the method demonstrate the advantages of optical motion track-
ing to correct for motion in echo-planar time series by not only enabling volume-
to-volume correction without additional computational overhead, but also slice-
by-slice correction without increasing the scanning time.

In figure: 5 a slice through the brain of a normal volunteer is presented,
acquired in 4 measurements. In the first two experiments the volunteer was in-
structed not to move the head. The figure: 5 top left was acquired with the motion
correction disabled and serves as a reference for the maximum achievable image
quality. Figure:5 bottom left was acquired with motion correction enabled but
still with unmoved patient in the gantry. Given the absence of subject motion,
the experiment has been done in order to visualise the effects of “camera noise”
or “jittering effects” visible as an increasing of image noise and slight artifacts in
phase encoding dimension due to the uncertainty of the position determination
generated by the noising of the optical motion tracking system. In our case these
effects were not only negligible compared to the usual physiological motion of the
head of living persons, but above this the acquired image shows even improved
sharpness and contrast as compared to each other with the software IQM (Image
Power Spectrum) [14] and 5 radiologists in an indepentent questioning.
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In the further two experiments the volunteer was instructed to move the
head during the acquisition. In figure: 5 top middle the resulting image quality
showing significant artifacts with the motion correction disabled. The figure: 5
bottom middle presents the image acquired with imaging coordinates updated
for each k-space line. The corresponding motion patterns are presented in fig-
ure: 5 top right and top left. As can be seen, for comparable motion patterns,
the motion artifacts are much reduced, when prospective motion correction is
performed.

4 Discussion

We presented a motion correction method which is working in real-time only
by updating the FOV of the MRI tomograph. The movement term, acquired
through the tracking system, is transfered to the MRI tomograph and used for
adapting the gradients and RF-parameter to compensate the complete motion.
The results show the feasibility of using an external optical motion tracking
system to correct for subject motion during the acquisition of a single image on
a line by-line basis (k-space line).

Even without any intended motion the image in figure: 5 bottom left is im-
proved in comparison to the reference in figure: 5 top left. This signifies that
the noise in the position data generated by the tracking system, introduces
less artifacts than the minimal, physiologically unavoidable movement of the
head during data acquisition. As a result, even such minimal movements can
be compensated resulting in visible quality improvements also for co-operative
patients. In case of moving subject, the corrected image acquired in the pres-
ence of motion (figure: 5 bottom middle) shows considerable quality improve-
ment in comparison to the image acquired in the presence of comparable mo-
tion without correction (figure: 5 top middle). The latency time of the whole
measurement chain was now reduced to approximately 30 ms. Doing movement
correction within echo- and repetition time to minimize phase effects appears
to be possible. This further improvement needs a movement detection and a
adjustment of the gradients and RF-parameter in less than 10 ms. One of the
limitation, correcting movement artifacts, is always the non linearity of the gra-
dients in the magnetic field. As further limitation can be seen the small inaccu-
racy of the cross-calibration between the MRI system and the tracking device
and the lag in the motion data can also contribute to the reduction of image
quality.

Expected benefits of our technique include a significant reduction in imag-
ing time since we perform prospective correction, no oversampling and we avoid
repeating acquisitions corrupted by motion. Therefore, our technique helps to
increase the clinical efficiency, the patient throughput and reduces measurement
redundancy. In the near future the proposed method may be used to exam-
ine non-cooperative patients, e.g. the difficult and dangerous tranquillisation of
children with sedatives is to become redundant.
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Abstract. This paper presents anovel approach that three-dimensionally
visualizes and evaluates stenoses in human coronary arteries by using har-
monic skeletons. A harmonic skeleton is the center line of a multi-branched
tubular surface extracted based on a harmonic function, which is the so-
lution of the Laplace equation. This skeletonization method guarantees
smoothness and connectivity and provides a fast and straightforward way
to calculate local cross-sectional areas of the arteries, and thus provides
the possibility to localize and evaluate coronary artery stenosis, which is a
commonly seen pathology in coronary artery disease.

1 Introduction

Stenosis is a commonly seen pathology resulting from atherosclerosis, which is
a systemic disease of the vessel wall that occurs in the aorta, carotid, coronary,
and peripheral arteries [1]. Atherosclerotic plaques that develop in vessel walls
can intrude into the vessel lumen and result in a narrowing (stenosis) of the
lumen. When stenosis occurs in coronary arteries, it will cause insufficient supply
of blood to the heart tissue, and sometimes leads to serious results such as
heart attacks. The detection of stenoses in vivo can greatly assist the diagnoses
and treatments of coronary heart diseases. The conventional way of identifying
stenoses is by using coronary angiography imaging, but this method is invasive,
and it only provides 2D projections of the vessel lumen, which may yield biased or
inaccurate evaluation of the stenosis. Thanks to the development of multislice-
CT (MS-CT), we are now able to acquire 3D volumetric data of the entire
coronary artery tree, and obtain the complete information of its geometry so
that we can perform more accurate measurements based on these data.

Numerous methods have been proposed to extract skeletons of tubular struc-
tures in the human body such as blood vessels, airways and colons. Most methods
in literature fall into the following two classes [4]: boundary peeling (also called
thinning, erosion, etc.) [5], and distance coding (distance transform) [2, 3]. Al-
though both classes of methods have yielded promising results, these methods
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usually have problems of preserving connectivity and being smooth. Also, direct
extension of these methods to 3D is usually difficult and may not guarantee a
unique solution for a single structure.

In this paper, we explore a skeletonization method based on the solution
of the Laplace equation with boundary conditions of the first kind (Dirichlet
problem) on the surface of a tubular structure. Since the solution of the Laplace
equation is a harmonic function, the skeleton extracted using this method is
called the harmonic skeleton [8]. The harmonic skeleton is easy to compute, is
guaranteed to be smooth, and can automatically give a viewing vector when
used as a guidance for fly-throughs for virtual endoscopy. Moreover the space
of harmonic functions is linear (as opposed to that of the distance transform on
which the ordinary skeleton is founded). The distance transform is commonly
used in endoscopy; see [9] and the references therein.

Further, we develop an effective way to determine the boundary conditions
for solving the appropriate Laplace equation, so that the points that form the
final skeleton are evenly distributed, without being too dense or too sparse,
thus guaranteeing the connectivity of the skeleton. Most importantly for our
applications, the cross-sectional area at a certain location on the artery can be
conveniently measured using the least squares plane that fits all the points on
the iso-value contour of the solution of the Laplace equation. This means that we
can acquire the cross-sectional areas throughout the artery in order to identify
stenoses.

We tested our method on CT data sets of both normal and diseased coronary
arteries and developed different ways to visualize and analyze stenoses of the
arteries. The method is described in detail in Section 2, and we show the results
in Section 3.

2 Methodology

2.1 Harmonic Skeleton

The harmonic skeleton can be obtained by solving the Laplace equation on
the surface of the artery. Let Σ denote the surface, which is topologically a
branched tube. Each branch has a boundary σi (i = 0, . . . , N − 1), which is
a closed contour, as shown in Figure 1. Here N denotes the total number of
boundaries including the root σ0, which can be selected arbitrarily or selected
based on physiological considerations. We have chosen the root σ0 to be at the
proximal section of the left main (LM) coronary artery. Note that we are working
on a triangulated representation of Σ, which makes it convenient for performing
numerical computations. The surface can be obtained by segmenting the MS-
CT images. In this case, we have used a segmentation approach that combines
Bayesian classification and active contours [6, 7] to get the required surface for
the skeletonization algorithm.

Next we can calculate the harmonic function u by solving the Laplace equa-
tion on Σ\σi(i = 0, . . . , N − 1):

Δu = 0 (1)
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Fig. 1. The segmented and open-
ended surface of left coronary ar-
teries with boundary contours at
each end; the surface is color-
painted with solved harmonic
function u, where dark color
means lower u, and light color
means higher u

with proper boundary conditions. To find these boundary conditions, we assign
the values at the boundaries in the following manner:

1. Set the boundary value of u at the root σ0 to be zero, and set StepNumber
= 0;

2. Label all the points on σ0 as “visited”;
3. Label all the neighbors of the “visited” points as “visited”;
4. StepNumber ++;
5. Repeat steps 3. and 4. until “visited” points reached another boundary σi;
6. Set the value at the current boundary σi to be the current value of Step-

Number.

In other words, we set the boundary value of σi to be the number of triangle
strips between σi and the root boundary σ0. In coronary arteries, there are
several branches, some of which are long and some of which are short. Note
that if we used standard Dirichlet boundary conditions in which u(σ0) = 0 and
u(σi) = 1 for all i’s, as for example, is done in [13], the resulting points that
form the skeleton will be denser for the short branches, and sparser for the longer
ones. Hence we employ the boundary conditions stated above to get more evenly
distributed skeleton points.

Having obtained the boundary conditions for the Dirichlet problem, we can
solve the Laplace equation Δu = 0 on the surface using finite element techniques
[6, 12]. From the standard theory [10], u exists and is unique, with the maximum
and minimum values on the boundaries. In Figure 1, the surface of the artery is
painted with the solved u, where brighter color indicates higher u, and darker
color indicates lower u.

Using the harmonic function u, we can now build the harmonic skeleton. We
first find the level sets of u on the surface, i.e., sets {x|u(x) = ν} for values of ν
ranging from 0 to max(u). Each level set corresponds to a group of points on the
surface that have the value of a certain ν. These points are not necessarily located
on the vertices of our original triangulation of the surface, so we obtain these
level points by linearly interpolating the coordinates of the vertices according to
the values of u.
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We also check the change in the topology of the level contours as we proceed,
and further partition these contours into sub-contours if not all the points are
connected to form a single contour. This means there is a bifurcation and one
contour splits into two at the current level of u. We assume one contour cannot
split into more than two contours, which is usually true for coronary arteries.
The centroid of each contour or sub-contour is then calculated: 1

MΣM
i=1xi, where

xi = (xi, yi, zi)′ is a point on the contour, and M is the total number of points
on the current contour. Each centroid contributes a point to the final harmonic
skeleton. By increasing ν from 0 to the maximum value of u, we can find a series
of centroids that can finally be connected to build a structured tree, which is
the harmonic skeleton.

For the sake of accuracy, an additional step can be performed to refine the
harmonic skeleton by replacing the previous boundary conditions with new val-
ues obtained as the distance along the skeleton from the root boundary to the
other boundaries. We then solve the Dirichlet problem with the new boundary
conditions and further obtain a refined harmonic skeleton.

2.2 Cross-Sectional Area Measurement

The harmonic skeleton obtained using the above method can be used as a guide
in calculating cross-sectional areas at specific locations along the vessels, and
the cross-sectional areas can in turn be used to precisely evaluate stenoses in the
coronaries. Cross-sectional areas are better than diameters because atheroscle-
rotic plaques are usually eccentric and asymmetric, and the cross-sections of the
narrowed vessel lumen may not be perfectly circular. The stenosis may be un-
derestimated if one uses only diameters for stenosis evaluation. Cross-sectional
areas, on the other hand, provide more information about the stenosis, and are
directly related to the flow rate of blood through the cross-section.

One straightforward way of obtaining the cross-sections of the artery is by
looking for a plane that is perpendicular to the skeleton to cut the tube at a cer-
tain location. But this strongly depends on the local properties of the skeleton,
and a plane that is perpendicular to the skeleton locally may not be perpen-
dicular to the vessel itself. What we do here is to start with the contours or
sub-contours obtained in Section 2.1, and measure the cross-sectional area at
the same time as we calculate the centroid.

The first thing to do is to find the cross-sectional plane. We have many
more points (about 50 points, somewhat more for wider contours and somewhat
less for narrower contours) on a level contour than what is necessary (3 points)
for determining a plane. Hence we need to use least squares to solve this over-
determined problem. Suppose we have a set of points X = (x1,x2, ...xN )′, where
xi = (xi, yi, zi)′, i = 1, . . . ,M is a point on the level contour, and we build a
matrix A = X − x0, where x0(x0, y0, z0)′ is the centroid of all the points on
the contour. Calculating the Singular Value Decomposition (SVD)[14] of matrix
A, we get A = USV T , where U and V are orthogonal matrices and S is a
diagonal matrix with non-negative diagonal entries in decreasing order. The
singular vector in V that corresponds to the smallest singular value in S is the
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cosine of the direction of the normal to the best-fit plane. The centroid and the
normal vector can now be used to uniquely determine the least squares plane.

We now use this plane to cut the surface of the vessel and get a series of
points on the surface that also belong to the least squares plane. Again, these
points may not coincide with the vertices of the triangulated surface, so we find
the points on the triangle edges, and connect them to form a polygon. We then
calculate the area of the polygon, and the result is the required cross-sectional
area at the current location on the vessel.

3 Results

3.1 Clinical Data

We tested our method on a healthy volunteer without any clinical symptoms and
a patient with plaques in left anterior descending (LAD) coronary artery. The
healthy volunteer was imaged using a GE LightSpeed16 CT scanner with a slice
spacing of 0.625mm and an in-plane resolution of 0.60mm, while the patient with
LAD plaques was imaged using a Siemens Sensation64 CT scanner with a slice
spacing of 0.75mm and a in-plane resolution of 0.39mm. Contrast agents were
used in both cases. The coronary arteries were extracted by image segmentation
using the techniques of [6, 7], and the triangulated surfaces were generated using
the Visualization Toolkit (VTK) [15]. We then performed our skeletonization
and cross-sectional area measurement methods on the triangulated surfaces.

3.2 Generation of Harmonic Skeletons

The harmonic skeletons of both cases were generated using the method described
in Section 2.1. Figure 2 (Left) and (Middle) show the surfaces in half-transparent
mode with the skeletons inside the surfaces, and Figure 2 (Right) shows the
skeleton of the diseased (Middle) coronary arteries. The skeletons provide the

Fig. 2. Left: Coronaries and the skeleton of a healthy volunteer. Middle: Coronaries
and the skeleton of a patient with plaques in LAD. Right: The skeleton of the middle
coronaries.
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basic information of the arteries, such as bifurcation sites, bifurcation angles and
curvatures along the vessels, but they themselves alone are not able to provide
much information about the stenosis.

At the bifurcation sites, some post-processing was performed to keep the skele-
ton smooth and natural. Increasing the value ofu and tracking the topology change
of the level contours, one contour will split into two at a certain u level, and there
will be a jump between the centroid of the single parent contour and the centroids
of the two daughter contours. If we connect the centroids directly, the resulting
skeleton may not be smooth where it bifurcates. To solve this problem, we start
from the daughter branches, and trace back until they reach the bifurcation site,
and then extend the branches further until they meet the parent branch. After the
post-processing, the skeleton is visually more natural at the bifurcation sites.

3.3 Stenosis Evaluation

We calculated cross-sectional areas along the vessel with a resolution of δu = 0.5,
which means we measure the cross-sectional area once we increase the harmonic
function u by 0.5. For each coronary artery, there are roughly 400 levels of cross-
sectional areas, and at each level, there are one or several cross-sectional areas
measured according to the number of branches at this level.

We can visualize the quantitative measurements in two different ways.The first
way is to specify a u value, and show the cross-sectional areas at this u level, as
illustrated in Figure 3 (Left). This is equivalent to showing the areas by specifying
a location on the vessel. The second way is to create a color map of the cross-
sectional area values, and paint the surface with the color of these values. This
provides an intuitive way to localize the stenosis, by showing different colors where
the cross-sectional area has an apparent change along the vessels, as indicated in
Figure 3 (Right). In this figure, lighter color indicates normal sized vessel lumen,
and darker color means the lumen is narrowed, thus implying stenosis.

Fig. 3. Cross-sectional area visualization. Left: The cross-sectional area of each branch
of the coronaries for a certain u. Right: Color-painted LAD indicates a stenosis site in
the vessel.
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Fig. 4. Cross-sectional area
along the LAD shown in Fig. 3
(Right). The left y-axis shows
the cross-sectional area in mm2,
and the right y-axis shows the
stenosis percentage.

Figure 4 is a plot of u versus cross-sectional area along the LAD of Figure 3
(Right). The left y-axis shows the cross-sectional areas in mm2, and the right
y-axis shows the stenosis percentage, which is an important measure for the
evaluation of stenosis. We can see from this plot that this LAD has two stenosis
sites, one mild (a little less than 40% blockage) and another more severe (60%
blockage). This is in consistent with what is shown in Figure 3 (Right).

4 Discussion and Conclusions

In this note, we have proposed an approach to extract harmonic skeletons of
tubular structures and applied it to both healthy and diseased coronary arteries.
The skeleton generated can be used as a guide for cross-sectional area measure-
ments in order to localize and evaluate stenosis of the arteries. The harmonic
skeleton is smooth and unique, and can also serve as a guide in other applications
such as virtual endoscopy.

Our algorithm is reasonably fast, taking 2-3 minutes in Matlab to generate
the harmonic skeleton from a surface consisting of about 30,000 triangles and
12,000 vertices, on a 1G Hz personal computer running Linux. If the skeleton
extraction and cross-sectional area measurement are performed at the same time,
it takes 6-7 minutes for the same sized data. This makes it possible to use this
algorithm in a real clinical setting.

We should also point out that this skeletonization and cross-sectional area
measuring approach is performed on a segmented surface of a tubular structure,
so the measurement results highly rely on the correctness of the image segmen-
tation. On the other hand, the cross-sectional area can also serve a measure for
the validation of segmentation to compare the values of a ground truth model
(such as a phantom or a vessel cast) and the segmentation result.
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Abstract. Although significant effort has been spent over the past decades to 
develop innovative image processing algorithms and to improve existing meth-
ods in terms of precision, reproducibility and computational efficiency, rela-
tively few research was undertaken to find out to what extent the validity of re-
sults obtained with these methods is limited by inherent imperfections of the 
input images. This observation is especially true for MRI based morphometry, 
which aims at precise and highly reproducible determination of geometrical 
properties of anatomical structures despite the fact that MR images are geomet-
rically distorted. We here present (a) a method for characterization of site-
specific geometrical distortions and (b) the results of a long term study designed 
to find out how precisely geometrical properties and morphological changes of 
brain structures can, in principle, be detected in images acquired with MRI 
scanners. Due to the long-term character of our study, our findings include ef-
fects resulting from limited hardware stability as well as from variations in pa-
tient positioning. Our results show that these effects can be strong enough to 
substantially confound MRI studies of small morphological changes. 

1   Introduction 

Over the last decade MRI based morphometry has experienced a remarkable gain in 
attention in medical research, one of the most prominent areas of application being 
the detection of statistically significant morphological differences in the brain be-
tween a population known to be affected by a certain disease and supposedly healthy 
controls. Recently, serial studies examining the progress of diseases over time have 
attracted attention, and it can be expected that in the future single subject applications 
of morphometry will become more and more important in the context of computer 
aided detection and staging of diseases. 

Even though there exists a great variety of methods that allow for these demanding 
morphological analyses [1-3], few research was undertaken to find out to what extent 
the validity of results obtained with these methods is limited by inherent imperfec-
tions in the data acquisition process. For a profound characterization of small phe-
nomena like beginning gray matter (GM) atrophy in early Alzheimer’s disease, how-
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ever, it is inevitable to exactly know to what extent the results obtained with state-of-
the-art morphometric methods might be confounded by these limitations. 

Only very little information concerning these effects could be found in the litera-
ture: Jovicich et al. either characterize distortions by the change and variance of a 
phantom’s total diameter [4] or evaluate the influence of gradient nonlinearity correc-
tion on hippocampus volumetry in single session repositioning experiments [5]. To 
our knowledge no publications are available concerning the precise quantification of 
the crucial long-term reproducibility of geometrical distortions on a local basis. We 
therefore developed a new method for characterization of site-specific geometrical 
distortions and used it for quantitative analyses of the previously mentioned limita-
tions in a long-term study carried out on state-of-the-art MR scanners. Our evaluation 
method is capable of determining positional and volumetric deviations on a dense 3D 
grid both in an absolute and in a relative way. We additionally compared our findings 
to results obtained from the analysis of head images of a healthy volunteer acquired in 
the same imaging sessions with identical protocols. 

1.1   Sources of Geometrical Distortion 

A detailed description of the different sources of geometrical distortions in MRI is 
beyond the scope of this paper, which is why we restrict our delineation of these error 
sources to a basic level. More information on this topic can be found in [6]. In short, 
there are four main sources of geometrical distortions in MRI: 

− Magnetic susceptibility differs between different materials which is why their 
larmor-frequency varies slightly. This leads to geometrical distortions mainly in 
frequency-encoding direction whose magnitude in image space is also depending 
on the imaging protocol’s bandwidth.  

− Static field inhomogeneities cause distortions in the same way as differences in 
magnetic susceptibility. Typically these errors are compensated for the most part 
by shimming. 

− Gradient coil nonlinearities cause distortions in all directions. Since gradient 
coils are designed to minimize these effects around the magnet’s isocenter, nonlin-
earities are stronger in outer regions. 

− Eddy currents are induced in conductive material within the scanner every time a 
gradient is changed in the course of the scanning process. As eddy currents cause 
dynamic magnetic fields, geometrical distortions arise. Quite obviously, errors 
caused by eddy currents are dependent on the actual imaging sequence and its 
parameterization. 

Whereas static field inhomogeneities, gradient nonlinearities and eddy currents are 
independent of the object being scanned (as long as it is not conductive), and thus, 
stationary in the coordinate system of the magnet, magnetic susceptibility artifacts are 
a characteristic of the object and can be thought of as approximately stationary in the 
object’s coordinate system. This distinction is important to take into consideration 
when analyzing relative distortions between two (or more) scans caused by slight dif-
ferences of the object’s position in the scanner. 
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2   Methods 

2.1   Data Acquisition 

Based on our literature research, MPRAGE was identified as the most commonly 
used sequence in brain morphometry today. In cooperation with sequence developers 
at Siemens Medical Solutions, Magnetic Resonance, Erlangen, the following protocol 
was defined for the Avanto 1,5T and the Trio 3T systems: TR 2300 ms, TI 1100 ms, 
TE 3.93 ms, flip angle 12°, matrix 224 x 256, bandwidth 130 Hz/pixel, asymmetric 
echoes allowed. All datasets were acquired in sagittal orientation and with an iso-
tropic resolution of 1.0 mm. 

Using this protocol, a phantom and a healthy volunteer (m, 28y) were regularly 
scanned over 6 months alternating between an Avanto and a Trio. The phantom is cy-
lindrically shaped (diameter 250 mm) with an integrated 3D grid of small spherical 
holes (4 mm radius) each having a distance of 20 mm to its nearest neighbor in x- and 
y-, and 19 mm in z-direction (979 spheres in total). These holes are connected in z-
direction by cylindrical bars (2 mm radius), and the complete system of cavities is 
filled with fluid. 

  

Fig. 1. Two slices of a phantom dataset acquired with the Avanto (left) and Trio (right). The in-
terruptions in the bright bars are caused by inclusions of air. 

2.2   Phantom Data Evaluation 

The method for evaluating each of the phantom datasets is a two-stage procedure: 
First, the ellipsoids’ center points are determined, and then this set of center points is 
compared to a reference phantom model G0 obtained from the analysis of a high-
resolution CT-scan (0.5 mm isotropic resolution). 

The identification of the ellipsoids, again, can be divided into two passes: In a 2D 
operation, they are first separated from the interconnecting bars by eliminating all 
those pixels that belong to an object whose bounding box is smaller than a user-
defined minimum. With the subsequent connected component analysis the remaining 
2D objects are combined into 3D blobs again: 
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smooth image; 
for each slice{ 
  binarize via Otsu separation [7]; 
  identify objects belonging to an ellipsoid; 
} 
do 3D connected component analysis; 

These blobs are then filtered by position (to eliminate irregular ellipsoids occurring as 
a result of wrap-around artifacts), and by shape (to eliminate degenerated objects re-
sulting from air inclusions). 

The second pass consists of a computationally more demanding determination of 
the remaining ellipsoids’ center points. Its principle idea is to determine the point-
symmetry center for each ellipsoid in the original image. To ease the optimization 
strategy, candidate center points need to be located on the interconnecting bar’s center 
line, which is determined via regression analysis. As a metric for symmetry the nega-
tive summed squared difference between each voxel and its mirrored counterpart (re-
sulting from 3rd order B-spline interpolation) was used: 

for each remaining blob{ 
  extract a small subimage (bounding box + margin); 
  for each slice in subimage{ 
    determine intensity-weighted center (centerX, 
          centerY) using the smoothed original image; 
  } 
  do regression analysis of centerX, centerY against z; 
  determine that point on the regression axes for which 
        the point-symmetry of the subimage is maximal; 
  store this point as ellipsoid’s center; 
} 

The resulting point set G1 is then compared to the previously mentioned reference 
phantom model G0: 

− The positional comparison is done straightforward and merely consists of a calcu-
lation of the absolute deviation in position for each sphere compared to its position 
according to the reference model G0. 

− For volumetric analysis G1 is subdivided into polyhedral cells by iteratively group-
ing eight adjacent center points together in order to form one cell, the shape of 
which can be intuitively described as a “degenerated cuboid”. For determination of 
the detected cells’ volumes, the polyhedrons are further divided into tetrahedrons, 
the volumes of which can be easily calculated; finally, each cell’s volume is com-
pared to the volume of the corresponding cell in G0. 

2.3   Head Image Evaluation 

Since this project’s main focus was the precise quantification of limitations in serial 
MRI based morphometry resulting from data acquisition alone, it was put more em-
phasis on the phantom experiments than on the head image evaluations, which were 
expected to be further confounded by movements during scan, morphological changes 
due to differences in the volunteer’s water balance and by a presumably less precise 
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segmentation procedure. The head image evaluation therefore was merely done for 
verification purposes. It was almost completely carried out with SPM2 [3]. 

After correcting each dataset for intensity inhomogeneities, a template image was 
created for each data series (one template for each scanner) by rigidly aligning all 
datasets to the series’ baseline scan. Having rigidly aligned each dataset to its tem-
plate, gray matter (GM) was automatically segmented in each image with SPM2.  

We then defined three regions of interest (ROIs) in the template images (see Fig. 2) 
and determined the GM volume as the sum of GM density within these ROIs. We 
chose large box-shaped ROIs that stretch across the complete slice stack in order to 
minimize effects resulting from remaining imperfections of the rigid registration. 

  

Fig. 2. ROI locations (anterior, medial, posterior) in the Avanto template image (left), and in a 
GM segmentation image (right) 

3   Results 

3.1   Validation 

Whereas the precision of the proposed phantom evaluation method is limited by noise 
and partial volume effects, the reproducibility of the detection of the ellipsoids’ center 
points is additionally limited by temporal drifts in the scanners’ resonance frequency 
during data acquisition and in between two scans. This error in frequency encoding 
results in a slightly varying discretization scheme in readout direction even within one 
scanning process. For two consecutive scans this effect looks similar to a slight shift 
in readout direction in image space. Practical test-retest experiments consisting of 
evaluations of datasets that were acquired directly one after the other with identical 
protocols without repositioning resulted in maximal relative positional differences of 
less than 0.15 mm for the Avanto, and less than 0.11 mm for the Trio in a subvolume 
relevant for brain morphometry (spherical subvolume around the isocenter with a ra-
dius of 100 mm). The corresponding numbers for relative volume differences are 0.35 
% respectively 0.26 % (relative to the volume of a standard cell in G0 of 7600 mm3). 
The slightly better results for the Trio most likely are a result of a higher signal-to-
noise ratio at 3T. 
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Analogous test-retest experiments for validation of the head image evaluation 
method resulted in the following volumetric changes for the Avanto: anterior  
ROI 0.50 %, medial ROI 0.16 %, and posterior ROI 0.35 %. The results for the Trio 
are: anterior ROI 0.25 %, medial ROI 0.39 %, and posterior ROI 0.12 %. Note  
that the test-retest datasets, too, were rigidly aligned to the template datasets before 
segmentation. 

3.2   Repositioning Influences 

An important influence on the long-term study’s results were expected to be slight 
differences in positioning. Due to the nonlinear character of the distortion field, a dif-
ferent position of an unaltered object in the scanner is accompanied by relative mor-
phological changes in image space. To get insight into the magnitude of relative geo-
metrical distortions that are purely caused by minor errors in repositioning, the 
outlined evaluation was performed on two datasets, that, again, were acquired directly 
one after the other with a slight difference in the phantom’s position in the scanner 
(rotation less than 5°, translation less than 2 mm, new selection of field of view, new 
shim). These changes produced positional deviations of up to 0.6 mm (for both scan-
ners), and relative volumetric changes of up to 1.2 % for the Avanto and 1.8 % for the 
Trio. Relative morphological changes were smaller for the Avanto due to the smaller 
spatial gradients of the absolute distortion fields (see Sect. 3.3).  

Again, analogous repositioning experiments were carried out with the human 
volunteer, resulting in the following volumetric changes for the Avanto: anterior 
ROI 0.78 %, medial ROI 0.57 %, and posterior ROI 1.32 %. The corresponding 
numbers for the Trio are: anterior ROI 0.95 %, medial ROI 0.43 %, and posterior 
ROI 0.16 %. 

3.3   Long-Term Absolute and Relative Distortions 

Absolute positional and volumetric distortions from the phantom’s reference 
model G0 were computed for the complete data collection for both scanners. It 
turned out that absolute geometrical distortions are smaller for the Avanto than for 
the Trio. As expected, geometrical distortions are depending on the object’s distance 
to the magnet’s isocenter. In summary, the maximum errors obtained were 2.0 mm 
positional deviation and –3.9 % volume mismatch for the Avanto, and 4.8 mm re-
spectively -16.5 % for the Trio within a volume relevant for brain morphometry 
(spherical subvolume around the isocenter with a radius of 100 mm). The difference 
between the scanners is mainly a result of different gradient coils being integrated  
in them. 

Relative positional and volumetric changes were determined by comparing posi-
tions of corresponding spheres, and volumes of corresponding cells with each other 
rather than against their reference values in G0. Not surprisingly, the magnitude of the 
distortions respectively volume changes is smaller for the relative than for the abso-
lute evaluations (see Fig. 3 and Fig. 4). 

In detail, the maximum relative morphological changes are: 1.0 mm positional, and 
2.0 % volumetric change (relative to a standard cell in G0 of 7600 mm3) for the 
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Avanto, and 0.6 mm and 2.0 % for the Trio. The slightly better results for the Trio 
most likely are a result of higher reproducibility in phantom positioning. 

  

Fig. 3. Distribution of relative positional differences (in mm) of detected spheres in dependence 
of their distance (in mm) to the isocenter: Avanto (left), Trio (right).  

  

Fig. 4. Distribution of relative volume change (in % of a standard cell’s volume in G0 of 7600 
mm3) in dependence of the cells’ distances (in mm) to the isocenter: Avanto (left), Trio (right) 

The results of the head image evaluation are given in table 1. 

Table 1. Results of head image evaluation: long-term variability in local GM volumetry esti-
mated by range divided by mean (given in brackets) 

 Avanto Trio 
anterior ROI 2.88 % (of 40773.8 mm3) 4.74 % (of 29693.4 mm3) 
medial ROI 2.69 % (of 187359.2 mm3) 2.60 % (of 184959.6 mm3) 
posterior ROI 5.24 % (of 68907.8 mm3) 4.78 % (of 86514.3 mm3) 
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4   Conclusions 

In this paper, the crucial long-term reproducibility of geometrical distortions in MRI 
was examined for the first time on a local basis. We quantified both practical limita-
tions in serial MRI based morphometry by analyzing head image series of a healthy 
volunteer acquired over a 6-months period of time on identical hardware, as well as 
purely acquisition-related limitations by analyzing analogous phantom data series.  

As a result of the high reproducibility of our phantom evaluation method (0.15 mm 
maximal relative positional difference and 0.35 % maximal volume difference includ-
ing effects caused by the scanners’ resonance frequency drift), the results obtained 
from our analyses can be considered a precise quantification of limitations imposed 
on serial MRI based morphometry by imperfections in the data acquisition process 
and by patient repositioning errors. To our understanding, the analysis of these effects 
is an indispensable prerequisite for a profound validation of image processing meth-
ods in the field of morphometry. 

In detail, the Avanto and the Trio proved to be equally suitable for serial mor-
phometric studies, as their long-term reproducibility of geometrical distortions was 
equally high: The maximal relative morphological changes were 1.0 mm positional 
and 2.0 % volumetric deviation on a 7600 mm3 cuboid. Any morphological changes 
detected in longitudinal studies carried out with these scanner types that are not larger 
than the given values have to be interpreted as not significant. 

The results of the phantom experiments are well reflected in the evaluations of the 
head images: Especially cortical areas that are relatively far away from the magnet’s 
isocenter are affected by geometrical distortions. As our volunteer was positioned 
with great care, and since he was mentally and physically fit and very cooperative, the 
numbers given in table 1 (up to 5.24 % insecurity in local gray matter volume deter-
mination) have to be considered a realistic estimation of serial reproducibility in state-
of-the-art MRI based morphometry of cortical areas in terms of a lower limit. 
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Abstract. In any medical domain, it is common to have more than one
test (classifier) to diagnose a disease. In image analysis, for example,
there is often more than one reader or more than one algorithm applied
to a certain data set. Combining of classifiers is often helpful, but de-
termining the way in which classifiers should be combined is not trivial.
Standard strategies are based on learning classifier combination functions
from data. We describe a simple strategy to combine results from clas-
sifiers that have not been applied to a common data set, and therefore
can not undergo this type of joint training. The strategy, which assumes
conditional independence of classifiers, is based on the calculation of a
combined Receiver Operating Characteristic (ROC) curve, using maxi-
mum likelihood analysis to determine a combination rule for each ROC
operating point. We offer some insights into the use of ROC analysis in
the field of medical imaging.

1 Introduction

It is often desirable in clinical practice to combine the results of two or more
diagnostic tests or classifiers in order to obtain a more accurate and certain
diagnosis. In the field of medical imaging, combinations of independent assess-
ments based on multiple imaging modalities can be combined to create a joint
classifier. See [2] for example. Results from segmentation or recognition algo-
rithms can also be combined [8, 3] to produce an improved estimate of ground
truth. Ideally, combination of classifiers would be done by joint training and
analysis on a common dataset to which all classifiers can be applied. Standard
methods in machine learning (logistic regression, PCA, SVMs, etc.) could then
be used to find an optimized combined classification scheme [5, 6]. In practice,
however, it is often the case that joint training data is not available, or is of
insufficient quantity. Indeed, there is a “power rule” involved: if it takes roughly
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N data points to estimate a distribution in order to train a single classifier, it is
reasonable to expect the need for on the order of N c data points to estimate the
joint distribution needed to train c classifiers. In light of initiatives established
to encourage the sharing of algorithms, such as the ITK project (www.itk.org),
the lack of sufficient quantities of data for joint training has become more ap-
parent. Accordingly, we have developed the following simple algorithm, used to
combine multiple classifiers without the need for joint training. It is based on
the maximum likelihood analysis of ROC curves of classifiers.

Although ROC analysis is widespread and standard in the medical field wher-
ever diagnostic tests are analyzed, it is far less common within the field of med-
ical image analysis [9]. We feel this is unfortunate, and that a wider use of these
techniques would help lead to general acceptance of image analysis algorithms,
e.g. algorithms for detection, segmentation and registration, within the clinical
community.

2 Background on ROC Analysis

We begin with some basic notions from the standard ROC theory. See [4] for
a review of its use in biomedicine. Let I be an image, depending on a bi-
nary random variable T ∈ {0, 1} representing unknown “truth” and suppose
we have a classification process, or test, A estimating T and depending on a
vector of parameters kA, so that A(I, kA) ∈ {0, 1}. A simple example would
be where I is a pixel in a CT image, kA = (Ilow , Ihigh) consists of a range
for Hounsfield units used to segment some structure, and A is then either
1 or 0, indicating the absence or presence of said structure, i.e. whether or
not the intensity lies in the range given by kA. A more sophisticated exam-
ple might be where A is a segmentation algorithm depending upon several
parameters.

For each setting of the parameter kA we define two probabilities, the true
positive rate tpA = Pr(A = 1|T = 1) and the false positive rate fpA = Pr(A =
1|T = 0). The true positive rate is also known as the sensitivity of the classifier,
while 1− fpA is known as A’s specificity. We would generally like a classifier to
be specific and sensitive. Thus, these notions give us a partial ordering of the
unit square [0, 1]2 : an operating point (fp1

A, tp
1
A) is superior to (fp0

A, tp
0
A) if

fp1
A ≤ fp0

A and tp1
A ≥ tp0

A.
The Receiver Operator Characteristic or ROC for A is the set of points

{(fpA(kA), tpA(kA))} ⊂ [0, 1]2, as kA ranges over all of its possible values. When
kA is a single scalar value, the ROC is a curve in the unit square parameterized
by kA. We will assume that our ROC curves are concave, and that tp ≥ fp for
each point one the curve. Concavity is a standard and mild assumption, for any
ROC can be made concave by adding a stochastic component to the classifier [7].
Given concavity, tp ≥ fp on the ROC curve as long as it contains some points
which are superior to (0, 0) and (1, 1). Our work is related to that of [7], who
used stochastic methods to create a combined classifier having an ROC equal to
the convex hull of the ROCs of the individual classifiers. Our method can pro-
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duce superior classifiers, in the sense of having an ROC superior to this convex
hull, but requires a conditional independence assumption.

3 Combining Classification Processes

3.1 Model Assumptions

Our model assumes that the classifiers A and B are conditionally independent.
This means that given some unknown truth, positive (T = 1) for example, we
assume that the output of A and B can be modeled as independent Bernoulli
processes with respective probability of success tpA and tpB, i.e. the true-positive
rates for the two processes. Note the we do not assume the independence of A
and B; only the much weaker assumption of independence conditioned on the
true underlying value is required. Conditional independence assumptions are
common in machine learning and statistical and information theoretic image
processing, especially in relation to maximum likelihood estimation. In the area
of ROC analysis, and application to combinations of classifiers, the role of con-
ditional independence is investigated in [1]. This work is related to our own, but
differs in the combination technique, estimation of priors, and derivation of a
joint statistic.

3.2 Maximum Likelihood Estimation

Let us assume we have two classifiers A and B, and that they are operating
according to respective parameters kA and kB . We assume we know the ROC
curves of the two processes, and the true positive and false positive rates for
every value of the parameters kA and kB. Given some input, processes A and B
will output either 0 (false) or 1 (true), giving us a total of 4 possible cases. For
each case we have an expression for the maximum likelihood estimate (MLE) of
the unknown truth T :

Table 1. Binary Output for Classifiers A, B and the Maximum Likelihood Combination

A B Combined MLE of Truth T

1 1 Pr(A = 1 , B = 1 | T = 1 ) ≥ Pr( A = 1 , B = 1 | T = 0 )
1 0 Pr(A = 1 , B = 0 | T = 1 ) ≥ Pr( A = 1 , B = 0 | T = 0 )
0 1 Pr(A = 0 , B = 1 | T = 1 ) ≥ Pr( A = 0 , B = 1 | T = 0 )
0 0 Pr(A = 0 , B = 0 | T = 1 ) ≥ Pr( A = 0 , B = 0 | T = 0 )

Each inequality (logical expression) in the rightmost column evaluates either
to 0 or 1, and the resulting value is the maximum likelihood estimate of the
truth T. If conditional independence is assumed, then Pr(A = 1 , B = 1 |T =
1 ) = Pr(A = 1 |T = 1 ) Pr(B = 1 |T = 1 ) = tpA tpB. See [1] for more details.
Proceeding similarly for the other terms in the rightmost column above, we get
the following table:



Combining Classifiers Using Their Receiver Operating Characteristics 509

Table 2. Binary Output for Classifiers A, B and the Maximum Likelihood Combination

A B Combined MLE of Truth T

1 1 tpA tpB ≥ fpA fpB

1 0 tpA(1 − tpB) ≥ fpA(1 − fpB)
0 1 (1 − tpA)tpB ≥ (1 − fpA)fpB

0 0 (1 − tpA)(1 − tpB) ≥ (1 − fpA)(1 − fpB)

From our assumptions detailed above, tpA tpB ≥ fpA fpB and (1− tpA)(1−
tpB) ≥ (1− fpA)(1− fpB), so the first and last rows of Table 2 are determined,
and whenever A and B are in agreement their common output is the maximum
likelihood estimate of T. Thus, only the middle two rows of the table above
need to be determined, resulting in one of 4 possible MLE combination schemes,
which we mnemonically name scheme “A and B,” scheme “A,” scheme “B,” and
scheme “A or B.” These are summarized in the following table:

Table 3. Schemes for Combining Processes A and B

A B Scheme “A and B” Scheme “A” Scheme “B” Scheme “A or B”
1 1 1 1 1 1
1 0 0 1 0 1
0 1 0 0 1 1
0 0 0 0 0 0

It’s easy to calculate the false positive fp and true positive tp rates for these
schemes, again using the assumption of conditional independence:

Table 4. False (fp) and True (tp) Positive Rates by Combination Scheme

Scheme fp tp

“A and B” fpA fpB tpA tpB

“A” fpA tpA

“B” fpB tpB

“A or B” fpA + fpB − fpA fpB tpA + tpB − tpA tpB

Thus, under the assumption of conditional independence, these rates can
be calculated from information contained in the ROCs for A and B alone. In
practice, this means that decision processes can be combined without retraining,
since there is no need to estimate joint distributions for the output of A and B,
nor the need to know the distribution of the underlying truth T.

3.3 Effect of the Combination Rules on Composite Accuracy

When operating under scheme “A and B,” we have fp = fpA fpB ≤ fpA and
similarly fp ≤ fpB, tp ≤ tpA, tp ≤ tpB. We see that when compared to A
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or B alone, this rule generally decreases sensitivity tp but increases specificity
1 − fp, as one might expect for a scheme that requires a consensus to return a
positive result. For the scheme “A or B,” we have fp = fpA + fpB − fpA fpB =
fpA + fpB (1 − fpA) ≥ fpA, and similarly fp ≥ fpB, tp ≥ tpA, tp ≥ tpB. So
the “A or B” rule generally increases sensitivity but decreases specificity, again
as one might expect. Thus in each of these cases the operating rate (fp, tp)
is not demonstratably superior to either (fpA, tpA) or (fpB, tpB). However, an
advantage is gained by an analysis of the entire range of operating rates, as we
describe below.

3.4 Calculating Attainable True and False Positive Rates

To combine processes A and B, we begin by calculating for each value of the
parameter pair (kA, kB), and corresponding 4−tuple of false-positive and true-
positive rates (fpA, tpA, fpB, tpB), the correct ML scheme to use according to
Table 2 above, and the resulting combined rates (fp, tp) for that scheme using
the formulas in Table 4. In practice, we take discrete values for kA and kB , say
by sampling them evenly. The resulting set of points (fp, tp) for two example
ROCs are shown in Figure 1.
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Fig. 1. Two ROCs (solid line, broken line), together with set of points (circles), the
outer boundary of which represents the ROC of the combined ML process

3.5 ROC Boundary Curve

The set of points (fp, tp) represent possible operating points for our joint pro-
cess. However, we do not need to consider points in the interior of the region
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containing these points. For each point in the interior, there is a point on the
outer boundary of the region which is superior, and thus a better operating
point. For example, there is a point on the boundary which has the same false
positive rate and a greater true positive rate. Thus, we discard these interior
points, and consider only those points along the outer boundary. These points
form a curve which is the ROC of our combined process. This combined ROC
is the graph of the combined true positive rate thought of as a function of the
combined false positive rate fp. We take fp ∈ [0, 1] to be the parameter of our
combined process. In practice, the outer boundary ROC can be estimated by
splitting the interval [0, 1] into a number of sub-intervals i.e. bins, and within
each bin finding the pair (fp, tp) having the largest value of tp. The choice of the
number of bins to use requires some care, but this is a common concern which
appears whenever data histogramming is required, and standard solutions can
be applied. We are currently researching a method by which an exact calculation
of the joint ROC curve can be obtained. Along with each point (fp, tp) on the
combined ROC curve, we keep track of a pair of parameters (kA, kB), and a ML
combination scheme which allows us to operate at (fp, tp).

3.6 Calculating a Combined Statistic

In theory, the classifiers A and B can be any binary decision process governed by
parameters kA and kB , where these parameters may be vector valued. In practice
however, it is often the case that kA and kB are simple thresholds applied to
scalar outputs sA and sB calculated as part of the A and B decision processes
respectively. Thus A returns the estimate T = 1 if and only if kA ≤ sA, and
similarly for B. In this case, it may be desirable to have a new derived statistic
s for the combined process. Let C denote our combined classifier, created as
described above. For a chosen operating point (fp, tp) on the ROC curve for
C, we have associated thresholds kA and kB and an MLE combination rule to
be applied in order to derive an estimate C ∈ {0, 1} of T based on the pair of
statistics sA and sB. We define our joint statistic s as a function of sA and sB

and the chosen operating level as follows:

Table 5. Formulas for Joint Statistic s

Scheme Formula for s
“A and B” min(sA − kA, sB − kB)

“A” sA − kA

“B” sB − kB

“A or B” max(sA − kA, sB − kB)

To use s, we treat it as a statistic and return C = 1 if and only if s ≥ 0.
It is easy to see that the true positive and false positive rates for this process
are the same as the rates associated with the point on the joint ROC at which
we wish to operate. We are currently refining a method by which a single joint
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statistic can be produced without the need for an a priori specification of an
ROC operating point.

4 Illustration of the Method

We illustrate the method described above on a synthetic example. In Figure 2
we show two normal distributions for each of two classifiers A and B. One is the
probability distribution for the statistic sA or sB given that T = 0, and the other
is for these statistics given T = 1. The thresholds to use, shown as vertical lines,
are determined by our algorithm after we choose an operating point (fp, tp) on
the combined ROC curve, shown circled on the in Figure 3. Also displayed in
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Fig. 2. Distributions associated with the statistics sA and of a thresholding classifica-
tion scheme. The thresholds to use are determined by our algorithm.
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Figure 3 are the ROC curves for A and B and the corresponding operating levels
which result from the thresholds our algorithm chooses.

5 Conclusion and Discussion

We have developed a simple algorithm for combining multiple classifiers without
the need for joint training, based on the maximum likelihood analysis of ROC
curves of classifiers. Our work has been motivated by the general paucity of joint
training data to use with a rapidly expanding array of new segmentation algo-
rithms and diagnostic tests. Future work will include the testing of the method
on a range of image and other clinical data, including an investigation of the
validity of the conditional independence assumption across this range.

As mentioned before, ROC analysis, though standard in the medical com-
munity, has not been as widely adopted in the medical image processing field.
Often, a segmentation or registration algorithm requires the specification of nu-
merous parameters, such as kernel sizes, time steps, thresholds, weights applied
in a weighted sum of functional terms, etc. The engineer typically varies these
parameters to find the single point which gives a good result for a training data
set, then applies them to a test data set. Yet finding this single point in param-
eter space is neither necessary nor desirable. What is more in tune with medical
research outside of image processing is to report the ROC for the entire range of
parameters, or the outer boundary of these possible operating points. Note that
in the latter case, the outer boundary effectively reduces the degrees of freedom
in the specification of parameters to one.

Medical image processing is maturing, with standardized algorithms for de-
tection, segmentation and registration readily available to the general commu-
nity in shared form through mechanisms like the ITK project. We believe more
widespread use of ROC analysis will lead to greater clinical acceptance.
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Abstract. In this paper, we present an evaluation of seven automatic
brain tissue classifiers based on level of agreements. A number of agree-
ment measures are explained, and we show how they can be used to
compare different segmentation techniques. We use the Simultaneous
Truth and Performance Level Estimation (STAPLE) of Warfield et al.
but also introduce a novel evaluation technique based on the Williams’
index. The methods are evaluated using these two techniques on a pop-
ulation of forty subjects, each having an SPGR scan and a co-registered
T2 weighted scan. We provide an interpretation of the results and show
how similar the output of the STAPLE analysis and Williams’ index are.
When no ground truth is required, we recommend the use of Williams’
index as it is easy and fast to compute.

1 Introduction

In today’s medical imaging field when one introduces a new segmentation tech-
nique, one has to thoroughly validate it and compare it to previously published,
well accepted techniques. If a true segmentation exists this task is relatively
easy as one only needs to choose a metric measuring differences between the
ground truth and the output of the segmentation algorithm. Common metrics
are volume differences or measures of overlap [1]. Unfortunately, ground truths
or even human expert segmentations are rarely available especially for brain
tissue classification where labeling a single brain into gray matter (GM), white
matter (WM), cortical spinal fluid (CSF) and background (BG) would take days.
Nevertheless, in recent years, novel evaluation procedures have been developed
to overcome this problem, and it is now possible, to a certain degree, to rate
different methodologies even when a ground truth is not available [2, 3]. In this
work, we introduce a novel technique to evaluate brain segmenters based on
agreement level and compare it to evaluating each segmenter with STAPLE’s
estimated ground truth. Seven different classifiers are tested over a data set of
40 different subjects. Our findings show few differences between the results of
our technique and those of STAPLE, except for the fact that our evaluation is
much faster.
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2 Measuring Segmentation Quality

2.1 Williams Index

Consider a set of r raters labeling a set of n voxels with labels {1, ·, l}. Let D
denote the set of all labeled voxels (the label map) of all raters.Dij represents the
label of rater j for voxel i; Dj denotes the label map of rater j; and a(Dj ,Dj′)
is the agreement between rater j and j′ over all n voxels. Several agreement
measures can be used and a few will be defined in section 2.3. Williams’ index
Ij for rater j is defined as [4]:

Ij =
(r − 2)

∑r
j′�=j a(Dj ,Dj′ )

2
∑r

j′�=j

∑j′
j′′ �=j a(Dj′ ,Dj′′ )

(1)

If the upper limit of the confidence interval of this index is greater than one,
it can be concluded that rater j agrees with the other raters at least as well as
they agree with each other [4]. Using the agreements defined in section 2.3 we
can study the statistics of Williams’ index for each algorithm, for each label and
for each subject.

2.2 Multi-label STAPLE Algorithm

In this section, we describe the multi-label version of the Simultaneous Truth
and Performance Level Estimation (STAPLE) Algorithm [3]. This algorithm
calculates an estimated ground truth label map out from a set of r given seg-
mentations (raters). Consider a label map with n voxels taking one of l possible
labels. Let θj be an l× l matrix. Each element θj(s′, s) describes the probability
that rater j labels a voxel with s′ when the true label is s. The perfect rater will
have θj equal to the identity matrix. Let θ = [θ1, . . . ,θr] be the unknown set of
all probability matrices characterizing all r raters. Let T = (T1, . . . , Tn)T be a
vector representation of the unknown ground truth segmentation and D an n×r
matrix whose columns are the r known segmentations. D is the incomplete data
and (D,T) the complete data. STAPLE is an estimation process based on the
EM algorithm which can estimate the ground truth T and the parameter matrix
θ at the same time by maximizing the complete data log likelihood f(D,T|θ).
We refer the reader to [3] for the technical details of the optimization process.
Once the ground truth is known, we can use any of the normalized metrics de-
fined in section 2.3 for each algorithm, for each label and for each subject and
study the resulting statistics.

2.3 Similarity Measurements

Consider two binary images I1 and I2 defined over a finite grid (lattice) L of N
spatial sites x. Let X = {x ∈ L, I1(x) = 1} and Y = {x ∈ L, I2(x) = 1}, and let
us define four scalar measurements, a1 = |X ∩ Y |, a2 = |X | − a1, a3 = |Y | − a1
and a4 = N − |X ∪ Y | as shown schematically in figure 1. We can then express,
using these four values, the following similarity measurements, all of them taking
values between 0 and 1.
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1a
2a

3a

4a

Fig. 1. Schematic diagram for sets X and Y and scalar values a1 (white), a2 (light
gray), a3 (dark gray) and a4 (black)

– Jaccard (JC) [5]: a1
a1+a2+a3

= |X∩Y |
|X∪Y | . It is zero when X and Y are disjoint

and one when the sets are equal, i.e. a2 = a3 = 0.
– Tanimoto (TN) [6]: a1+a4

a1+2a2+2a3+a4
= |X∩Y |+|X∪Y |

|X∪Y |+|X∩Y | where X is the set
L −X . It is zero when X and Y are disjoint and X ∪ Y = L and it is one
when the sets are equal.

– Volume similarity (VS): 1− |a2−a3|
2a1+a2+a3

= 1− ||X|−|Y ||
|X|+|Y | . It is one when the

number of elements in both sets are equal, and zero when one of the sets is
empty. The positions of the points is irrelevant, only their number counts.

3 Experiments

3.1 Segmentation Pipelines

Data Set: Our data set consists of forty female subjects. The acquisition pro-
tocol involves two MR pulse sequences acquired on a 1.5-T GE scanner. First,
a SPoiled Gradient-Recalled (SPGR) sequence yielded a coronal MR volume of
size 256× 256× 124 and voxel dimensions 0.9375× 0.9375× 1.5mm. Second, a
double-echo spin-echo sequence gave two axial MR volumes (proton density and
T2 weighted) of size 256×256×54 and voxel dimensions 0.9375×0.9375×3mm.
For each subject, both axial volumes were co-registered and resampled to the
SPGR volume coordinate space using a Mutual Information rigid registration
algorithm [7]. Due to limitations on the number of inputs of some of the classifi-
cation algorithms, only the resampled T2 weighted and the original SPGR were
used for segmentation.

Segmentation Techniques: Seven different automatic classifiers were evaluated.
The task given was to segment the brain into four classes: BG, CSF, GM and
WM. The algorithms were used “as is” with no special tuning of the parameters.
A description of each segmenter follows:

– kNN: A statistical classification, whose core is a k Nearest Neighbor classifier
algorithm trained automatically by non linear atlas registration [8].

– MINC: A back-propagation Artificial Neural Network classifier, trained au-
tomatically by affine atlas registration [9], the pipeline also includes its own
bias field correction tool [10].
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Table 1. Segmentation Pipeline Features. The “O” marks a missing feature in the
pipeline. In such cases, standard tools were used (see text).

kNN MINC FSL SPM EM EMAtlas Watershed
Filtering O X X X X X O
Bias Correction O X X X X X O
Brain stripping O O X O O X X

– FSL: A classification algorithm which makes use of a Hidden Markov Ran-
dom Field Model and the Expectation-Maximization Algorithm [11].

– SPM: A mixture model clustering algorithm, which has been extended to
include spatial priors and to correct image intensity non-uniformities [12].

– EM: The original implementation of the Expectation Maximization algo-
rithm designed by Wells et al. [13].

– EMAtlas: An EM based segmentation incorporating a Markov Random
Field Model, and spatial prior information aligned to subject’s space by non
linear registration [14].

– Watershed: A watershed based segmentation which also incorporates spa-
tial prior information in the form of a non linearly aligned atlas [15].

For atlas based classifiers, all techniques use differently defined spatial priors,
except for EMAtlas and Watershed which share the same atlas.

Pre- and Post-Processing: Most segmentation techniques are usually a full
pipeline involving (i) filtering, (ii) bias field correction, (iii) tissue classification
and (iv) brain stripping. As shown in table 1, some methods did not have the
all these tools embedded in their framework. We thus used the following three
techniques when necessary: filtering, the data was smoothed using a diffusion
based anisotropic filter [16]; bias field correction, was done using the tech-
nique of Wells et al. [13]; brain stripping, the brain was extracted using the
Brain Extraction Tool [17].

3.2 Statistical Analyses

Let Xil = {x,Di(x) = l} be the set of voxels labeled l by rater i. Let T be the
estimated ground truth computed by STAPLE from all seven label maps, with
Tl the set of voxels labeled l in T . For each subject, for each label, four different
types of analysis were done. First, Williams’ index was computed for each label
using the seven Xil as input and all three agreement measures (Williams 1). The
mean and standard deviation of the index over all subjects for each label and
segmentation algorithm are shown in table 3. Second, for each rater, the three
agreement measures between Xil and the estimated ground truth for that label
Tl were computed (Staple 1). The mean and standard deviation of the index over
all subjects are shown in table 2. Third, Cl = ∩1≤i≤rXil, the set of all points
with the same label l in all r label maps was computed. Williams’ index was
then calculated for each label l using all seven Xil − Cl as input (Williams 2).
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Table 2. Staple 1

BG kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.00(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.99(0.00)
TN 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.98(0.01)
VS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.99(0.00) 1.00(0.00)
GM kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.85(0.09) 0.77(0.03) 0.73(0.23) 0.82(0.03) 0.72(0.03) 0.77(0.03) 0.87(0.03)
TN 0.98(0.01) 0.97(0.01) 0.96(0.04) 0.97(0.01) 0.96(0.00) 0.97(0.01) 0.98(0.00)
VS 0.98(0.01) 0.96(0.02) 0.96(0.06) 0.97(0.01) 0.98(0.02) 0.98(0.02) 0.98(0.02)
CSF kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.73(0.11) 0.46(0.14) 0.63(0.24) 0.60(0.12) 0.36(0.11) 0.42(0.12) 0.62(0.10)
TN 0.98(0.01) 0.97(0.01) 0.98(0.02) 0.98(0.01) 0.97(0.01) 0.96(0.01) 0.98(0.01)
VS 0.96(0.04) 0.76(0.11) 0.89(0.12) 0.91(0.07) 0.52(0.12) 0.81(0.07) 0.86(0.06)
WM kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.87(0.09) 0.80(0.04) 0.80(0.13) 0.82(0.03) 0.80(0.03) 0.83(0.03) 0.90(0.02)
TN 0.99(0.01) 0.98(0.00) 0.97(0.02) 0.98(0.00) 0.98(0.00) 0.98(0.00) 0.99(0.00)
VS 0.98(0.01) 0.97(0.02) 0.92(0.10) 0.91(0.02) 0.89(0.02) 0.96(0.03) 0.97(0.02)

The rationale for this process is to try to get a more focused analysis on the
differences between raters. The results are show in table 5. Finally, the three
agreement measures between Xil−Cl and Tl−Cl was calculated (Staple 2). The
results are shown in table 4. In all the tables the best score is in bold and the
second best score in italic.

4 Results

Table 2 shows results for Staple 1. We can see that for BG, none of the three
agreement measurements give meaningful results. For GM and WM, Watershed
is best one followed very closely by kNN when looking at JC and TN. Using
VS, kNN performs slightly better than Watershed, which is similar to EM and
EMAtlas for GM and similar to MINC for WM. For CSF, kNN is best, and
Watershed and SPM rank second.

Table 3 shows the results for Williams 1. Similarly to Staple 1, none of the
measurements are meaningful for BG. For GM, using JC and TN, Watershed is
best followed closely by kNN. Using VS, kNN and EMAtlas are slightly better
than Watershed. For WM, using JC and TN, Watershed is also best, followed by
kNN for JC and SPM and EMAtlas for TN. Using VS, kNN is best, MINC and
Watershed are second. All of these results mostly agree with the ones using Staple
1. Finally, for CSF, SPM is best followed by Watershed using JC. Watershed is
best using TN and VS. In this case, Staple 1 and Williams 1 only agree for TN,
and there is disagreement for JC and VS.

Table 4 shows the results for Staple 2. In comparison to Staple 1
(table 2), similar rankings are obtained for GM, CSF and WM for all the agree-
ment measures. The main difference are in evaluating BG. More significance is
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Table 3. Williams 1

BG kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
TN 1.00(0.00) 1.00(0.00) 0.99(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
VS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
GM kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.07(0.10) 1.00(0.07) 0.90(0.25) 1.03(0.05) 0.94(0.07) 1.00(0.07) 1.09(0.06)
TN 1.01(0.01) 1.00(0.01) 0.99(0.03) 1.00(0.01) 0.99(0.01) 1.00(0.01) 1.01(0.01)
VS 1.01(0.01) 0.99(0.03) 0.97(0.06) 1.01(0.02) 1.00(0.02) 1.01(0.01) 1.01(0.02)
CSF kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.04(0.12) 1.08(0.14) 0.79(0.36) 1.23(0.08) 0.81(0.17) 0.99(0.13) 1.18(0.09)
TN 0.99(0.01) 1.00(0.00) 0.99(0.01) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.01(0.00)
VS 1.00(0.05) 1.04(0.08) 0.99(0.05) 1.08(0.06) 0.72(0.13) 1.09(0.04) 1.11(0.04)
WM kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.04(0.09) 0.97(0.04) 0.96(0.13) 0.99(0.04) 0.98(0.05) 1.01(0.05) 1.07(0.03)
TN 1.00(0.01) 1.00(0.01) 0.99(0.02) 1.00(0.00) 1.00(0.01) 1.00(0.00) 1.01(0.00)
VS 1.04(0.02) 1.03(0.02) 0.97(0.09) 0.96(0.03) 0.94(0.04) 1.02(0.03) 1.03(0.02)

Table 4. Staple 2

BG kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.37(0.16) 0.50(0.22) 0.28(0.11) 0.40(0.22) 0.40(0.23) 0.34(0.19) 0.41(0.22)
TN 0.99(0.00) 0.99(0.00) 0.99(0.00) 0.98(0.01) 0.98(0.01) 0.98(0.01) 0.98(0.01)
VS 0.68(0.23) 0.70(0.25) 0.65(0.26) 0.54(0.22) 0.54(0.24) 0.48(0.21) 0.56(0.24)
GM kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.71(0.11) 0.57(0.10) 0.55(0.24) 0.65(0.08) 0.47(0.10) 0.56(0.10) 0.74(0.07)
TN 0.98(0.01) 0.97(0.01) 0.96(0.04) 0.97(0.01) 0.96(0.00) 0.97(0.01) 0.98(0.00)
VS 0.96(0.03) 0.91(0.05) 0.93(0.08) 0.95(0.03) 0.94(0.05) 0.96(0.03) 0.95(0.04)
CSF kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.69(0.12) 0.36(0.17) 0.59(0.23) 0.53(0.14) 0.22(0.16) 0.32(0.15) 0.54(0.12)
TN 0.98(0.01) 0.97(0.01) 0.98(0.02) 0.98(0.01) 0.97(0.01) 0.96(0.01) 0.98(0.01)
VS 0.95(0.05) 0.68(0.16) 0.88(0.12) 0.90(0.09) 0.33(0.20) 0.76(0.10) 0.83(0.08)
WM kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.63(0.11) 0.46(0.08) 0.53(0.16) 0.38(0.12) 0.52(0.05) 0.48(0.11) 0.67(0.06)
TN 0.99(0.01) 0.98(0.00) 0.97(0.02) 0.98(0.00) 0.98(0.00) 0.98(0.00) 0.99(0.00)
VS 0.94(0.04) 0.90(0.06) 0.80(0.20) 0.58(0.13) 0.69(0.05) 0.84(0.12) 0.90(0.06)

achieved for JC and VS, but not for TN which is still not very meaningful. MINC
is performing best for BG using Staple 2, followed by Watershed using JC and
by kNN using VS.

Table 5 shows the results for Williams 2. Again, the results for GM, CSF and
WM are similar to Williams 1 (table 3) overall. The only difference is for JC and
for WM, for which Watershed is best for Williams 1, while EM is best, followed
by Watershed for Williams 2. With respect to BG, TN is still not meaningful.
Using JC and VS, there is significance for Williams 2. For JC, EM performs best
followed by SPM and for VS, Watershed is best followed by SPM and EM.
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Table 5. Williams 2

BG kNN MINC FSL SPM EM EMAtlas Watershed
JC 0.36(0.23) 1.09(0.24) 0.26(0.09) 1.50(0.10) 1.54(0.09) 1.46(0.10) 1.42(0.12)
TN 1.00(0.00) 1.00(0.00) 0.99(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
VS 0.64(0.23) 1.14(0.09) 0.54(0.14) 1.25(0.05) 1.25(0.06) 1.14(0.08) 1.26(0.06)
GM kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.17(0.15) 1.00(0.13) 0.89(0.38) 1.10(0.09) 0.80(0.18) 0.95(0.14) 1.21(0.10)
TN 1.01(0.01) 1.00(0.01) 0.99(0.03) 1.00(0.01) 0.99(0.01) 1.00(0.01) 1.01(0.01)
VS 1.03(0.02) 0.97(0.06) 0.96(0.09) 1.01(0.03) 0.99(0.05) 1.02(0.03) 1.02(0.03)
CSF kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.20(0.17) 1.02(0.22) 0.93(0.46) 1.42(0.09) 0.52(0.33) 0.93(0.18) 1.29(0.13)
TN 0.99(0.01) 1.00(0.00) 0.99(0.01) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.01(0.00)
VS 1.05(0.09) 1.05(0.13) 1.03(0.08) 1.15(0.10) 0.52(0.24) 1.15(0.07) 1.19(0.08)
WM kNN MINC FSL SPM EM EMAtlas Watershed
JC 1.19(0.22) 0.89(0.15) 1.10(0.22) 0.60(0.20) 1.27(0.12) 0.91(0.23) 1.21(0.13)
TN 1.00(0.01) 1.00(0.01) 0.99(0.02) 1.00(0.00) 1.00(0.01) 1.00(0.00) 1.01(0.00)
VS 1.17(0.06) 1.14(0.07) 0.99(0.22) 0.71(0.18) 0.87(0.11) 1.07(0.15) 1.13(0.07)

5 Discussion

We have investigated different approaches to evaluate the quality of a segmenta-
tion only based on agreement measures. A great number of similarities have been
found between Staple 1 and Williams 1, suggesting kNN is the most consistent
segmentation method. In general for GM, WM and CSF, all ranking techniques
give similar results. For BG, better significance is achieved for JC and VS after
discarding the common agreement among algorithms and focusing only on dif-
ferences (Williams 2 and Staple 2). Staple 2 presents MINC as the best method
for BG and Williams 2 has EM as the better technique. In general, FSL, SPM
and EMAtlas are less well ranked.

Overall, Williams’ index gives similar results to STAPLE, and unless one
absolutely needs the estimated ground truth of STAPLE for further processing,
using Williams’ index is sufficient. The biggest advantage is that of speed, as
STAPLE in our experimental setup can take as much as 20mn to process one
case, whereas Williams index takes a few seconds. We are now interested in
studying the probability matrices provided by STAPLE and also finding more
intuitive and compact ways to present the results of the evaluation.
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Abstract. We propose a novel method for the validation of vascular
segmentations. Our technique combines morphological operators and the
STAPLE algorithm to obtain ground truth of centerline extractions as
well as a measure of accuracy of the methods to be compared. Moreover,
our method can be extended to the validation of any open-curves. We
also present a comparison study of three vascular segmentation methods:
ridge traversal, statistical and curves level set. They are compared with
manual segmentations from five experts.

1 Introduction

Blood vessels and their branches vary considerably but are often critical in plan-
ning and performing neurosurgical and interventional procedures. In planning,
the feeding and drain vessels of a lesion must be defined. During surgery the
vessels serve as landmarks and guidelines to the lesion [1]. The more precise the
vascular segmentation is, the more accurate the plan and navigation.

Segmentation of tubular structures and more specifically vascular segmen-
tation has been of high interest in medical imaging, and several excellent tech-
niques have been developed, incorporating a variety of different approaches. For
instance, the curve evolution algorithm [4] produces accurate vascular segmen-
tations by combining the modified curvature diffusion equation (MCDE) with
a level-set based technique. On the other hand, Aylward et al. [2] use a ridge
traversal technique with width estimation to extract vascular centerline and es-
timated radius at each point along blood vessels. Wink et al. [6] have developed
a front propagation method for the extraction of blood vessels. Given a starting
point, a front wave is moved to fit the tubular structure.

Surveys have been conducted to contrast the vascular segmentation algo-
rithms [3], however, no direct comparison has been done on the accuracy of
these techniques. In this paper, we propose a measure for vessel segmentation
comparison and we apply it to the analysis of vascular segmentation algorithms
from 3-dimensional images of the liver (CT and MR combined). The rest of this
paper is structured as follow: first the STAPLE algorithm and its extension to
open curves is described, second the segmentation methods to be compared and
the results of the comparison are presented.
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2 Method

In this section we present the STAPLE algorithm [5] and detail how we extend
its use for open curves validation.

2.1 STAPLE Algorithm

The Simultaneous Truth and Performance Level Estimation (STAPLE) algo-
rithm generates ground truth volumes from a set of binary expert segmentations
as well as a simultaneous accuracy assessment of each expert.

STAPLE works as follow: considering p = (p1, p2, ..., pr)T a column vector
of R elements, with each element a sensitivity parameter characterising one of
the R segmentations, and q = (q1, q2, ..., qr)T a column vector representing the
specificity parameter of one of R segmentations. Let D be an N × R matrix
describing the binary decisions made for each segmentation at each voxel of the
image and T be an indicator vector of N elements representing the hidden binary
true segmentation. The complete data can be written as (D,T ) and the prob-
ability mass function of these data f(D,T |p, q). An expectation-maximization
algorithm then estimates the performance level of the experts characterized as
a tuple (p, q), where p represents the sensitivity (“true positive fraction”) and
q the specificity (“true negative fraction”), which maximizes the complete data
log likelihood function

(p̂, q̂) = argmaxp,qlnf(D,T |p, q) (1)

The STAPLE algorithm treats segmentation as a pixelwise classification,
which leads to an averaging scheme that accounts for systematic biases in the
behavior of experts in order to generate a fuzzy ground truth volume and simul-
taneous accuracy assessment of each expert. One can notice that for STAPLE
to work, the set of binary segmentations should overlap which is often not the
case for open curves. In order to overcome this issue, we propose an iterative
scheme to construct ground truth of open curve segmentations such as blood
vessels. First, each centerline extraction is discretized to form a binary image
volume - having an intensity of one on the centerline and zero outside. Sec-
ond, our method iteratively creates new morphologically dilated segmentations
from the initial volume. Each discretized centerline is dilated by the same kernel
(spherical operator of increasing radius). The STAPLE algorithm is then used
to compute the level of each expert as well as the ground truth at each stage of
the dilation process. The resulting output is a set of probability maps as well as
sensitivity and specificity levels of the experts for each dilation factor.

2.2 Toy Example

We illustrate the behavior of our technique using a simple example composed
of three segmentations (one per expert) of an horizontal straight line. Figure 1
shows the three original segmentations as well as the resulting probability map.
The sensitivity p and specificity q of the experts are shown in figure 2.
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fExpert 1

fExpert 2

fExpert 3

Fig. 1. Simple example composed of three segments representing segmentation of the
same structure by three experts (left) and the resulting probability map obtained by
averaging the ground truth probability volumes (right)
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Fig. 2. Sensitivity and specificity of the experts in the simple example of three straight
line segmentations. (Expert 1 and Expert 3 are overlapping).

In this example, the three initial segmentations were separated by three
pixels. As we can predict the expert levels graph shows high specificity and
very low sensitivity as long as the three binary segmentations do not overlap
(dilation < 3). As soon as the dilated segmentation start to overlap, the sensi-
tivity increases and the specificity decreases. One can notice that the sensitivity
of the second expert is higher than the two others which is the intended behavior
of the algorithm since the second expert has extracted the real structure. The sen-
sitivity will increase logarithmically since in the limit (dilation→∞) the sensi-
tivity will be one for all experts and specificity is undefined. The specificity graph
shows that all experts are following the same specificity until segmentations over-
lap, then, once again, the second expert outperforms the other two as expected.

2.3 Open Curves Validation

In order to validate our technique, we created simulated data composed of single
spiral going down the Z axis. A binary mask (high intensity inside the spiral, low
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Fig. 3. Simulated open-curve: a spiral (left) and the mean probability along the cen-
terline of the spiral given an increasing number of experts (right)

intensity outside) was computed from it. After a gaussian blurring of the binary
volume (σ = 2), six experts extracted the spiral using a manual (point and click)
segmentation technique. We then applied our validation method from n = 2
experts to n = 6 experts to create five normalized (I ∈ [0, 1]) probability maps
of the manually segmented spiral. We then superimposed the original spiral with
each probability map and computed the mean probability along the centerline.
A mean probability of 1.0 would mean that the segmented spiral is the exact
representation of the original. Figure 3 shows the results of the experiment.

As one can see the segmentation keeps improving with the number of experts.
This is due to the STAPLE algorithm which limits the contribution of “bad”
experts. A “bad” expert can be viewed as the one who produces segmentation
results significantly different compared to the other experts (because that ex-
pert has fewer experience for instance). From the probability map we can then
reconstruct the mean spiral.

3 Comparison of Segmentation Techniques

In this section we compared three vascular segmentation techniques on seven liver
datasets (CT and MR). CT volumes are contrast enhanced 1×1×3mm3 voxels and
MRA volumes are time-of-flight data with 1×1×1mm3 voxels. In order to estab-
lish truth, five experts have segmented vascular centerlines manually by point and
click. We then compared the expert segmentations with three other techniques: (a)
a ridge traversal and width estimation method, (b) a statistical segmentation tech-
nique using connected components and (c) a region growing via level set method
using the Curves algorithm. Next we present these three techniques in details.

3.1 Ridge Traversal and Width Estimation

This vessel extraction method extracts blood vessels from 3-dimensional images
using a scale space technique. The algorithm traverses a ridge in an intensity
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function F , using the Hessian at a point x. Let’s define α and β as ascending-
ordered eigenvalues of the Hessian at x, u and v as the corresponding eigenvectors
of the Hessian, and P and Q as the directional derivatives: P = u · F and
Q = v · F . Therefore, if x is exactly in the middle of the ridge the following
conditions must hold: α < 0 and P = 0. Given an initial starting point close to
the ridge, the intensity ridge is computed to minimize P using a direction search
with respect to the Hessian. The line search is performed from x in the direction
u to find the local minimum of P . If the resulting minimum is not within a
specified tolerance a new initial point is required. This vascular segmentation
method has shown sub-voxel accuracy but has never been compared with other
techniques on physical datasets.

3.2 Statistical Segmentation

The second segmentation technique to be compared uses statistics on the in-
tensity of the blood vessel as well as a region growing technique. First the user
specifies a set of points inside a blood vessel, then statistics are computed to
define a gaussian probability class corresponding to the blood vessel likelihood.
Second, a connected components algorithm is performed based on the previ-
ously defined class. Third and last, morphological operators are used to remove
unwanted structures and obtain a smooth segmentation.

Skeletization is then done using a ridge finding technique. Basically the binary
image volume is blurred by an amount proportional to the expected radius value
of the tubular structure and the ridge is tracked.

3.3 Segmentation Via Levelset

The third segmentation method is based on the Curves algorithm [4], an ex-
tension of geodesic active contours based on a level set implementation. The
evolution of the level set is driven by the curvature equation. In the case of a
1-dimensional curve in a 3-dimensional space, the following equation should be
minimized ∮ 0

1
g(|∇I(c(p))|)|C′(p)|dp (2)

where C(p) is the 1-dimensional curve, I the image, and g a strictly decreasing
function such that g(r) → 0 as r → ∞. By computing the Euler-Lagrange
equations, the curve evolution equation can be formulated as

Ct = kN − g′

g

∏(
H
∇I
|∇I|

)
(3)

where H is the Hessian of the intensity function. Therefore the equation for
embedding space is

νt = λ
(
∇ν(x, t),∇2ν(x, t)

)
+

g′

g
∇ν(x, t) ·H ∇I

|∇I| (4)

The output of the Curves algorithm is a binary image obtained from the zero
level set. Thereafter, the same skeletization technique as in 3.2 is used to obtain
the centerlines.
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Fig. 4. Sensitivity (top) and specificity (bottom) of the 5 experts and the 3 segmen-
tation methods to be compared
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3.4 Results

Given the centerline segmentations (5 experts and 3 automated) for the seven
datasets we applied our algorithm until a maximum dilation of 7 voxels. We
are interested in the sensitivity and specificity of each method; these two values
characterize the confidence level of a method and allow for comparisons. The
mean results are presented in figure 4.

One can notice that the ridge traversal technique outperforms the statistical
and curves method in both terms of sensitivity and specificity. Moreover, the
sensitivity of the ridge traversal and curves technique are close to the sensitivity
of the experts. However, the statistical method performs poorly compared to the
experts and the other automated techniques.

From the specificity graph, one can notice that the three automated meth-
ods have less specificity than the experts. There are two reasons for this. First,
the length of the segmented centerlines appear to be shorter for all the experts
segmentation. This can be explained by the noise present in the image which
makes small structures invisible to the human eye but the automated algorithms
are able to extend further into the tubular structure. Second, Curves and statis-
tical methods tends to “leak” outside of the structure making the skeleton less
reliable.

4 Discussion and Conclusions

We have presented a novel algorithm for validation of open-curve segmentation
and applied it to the evaluation of vessel segmentation methods. Our technique
quantifies the accuracy of different segmentation techniques and also produces
an accurate probability map of the ground truth segmentation. We have shown
that ridge traversal techniques can outperform level sets and statistical method
in localizing the centerline of a tubular structure.

The main drawback of our approach is that it discretizes centerlines to the
pixel level. Some segmentations can have a sub-voxel accuracy, but this technique
cannot be used to discern that accuracy. Moreover, we are currently extending
our method to estimate the radius of segmented tubular structures assuming a
constant radius at each centerline point.

This work benefited from the use of the Insight Segmentation and Registra-
tion Toolkit (ITK), an open source software developed as an initiative of the
U.S. National Library of Medicine and available at www.itk.org.

This work is funded in part by the Whitaker Foundation (TF-04-0008).
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Abstract. In this work, we aim at validating some soft tissue deforma-
tion models using high resolution Micro Computed Tomography (Micro-
CT) and medium resolution Cone-Beam CT (CBCT) images. These
imaging techniques play a key role in detecting the tissue deformation
details in the contact region between the tissue and the surgical tool
(probe) even for small force loads, and provide good capabilities for cre-
ating accurate 3D models of tissues. Surgical simulations rely on accu-
rate representation of the mechanical response of soft tissues subjected
to surgical manipulations. Several finite element (F.E.) models have been
suggested to characterize soft tissues. However, validating these models
for specific tissues still remains a challenge. For our validation, ex vivo
lamb liver is chosen to validate the linear elastic model (LEM), the lin-
ear viscoelastic model (LVEM), and the neo-Hooke hyperelastic model
(NHM). We found that the LEM is more applicable to lamb liver than
the LVEM for small force loads (< 40g) and that the NHM is closer to
reality than the LVEM for this same range of force loads.

1 Introduction

Computer-aided surgical simulation progressed significantly in the last decade [1,
3]. Careful planning is of great importance in order to limit the damage to healthy
tissue during surgery. In particular, accurate modeling of the mechanical behav-
ior of the tissues is required. To achieve accurate prediction, biomechanical F.E.
modeling of soft tissues is employed. The simplest one of such models is the
LEM which was used early to estimate the force driven left ventricular defor-
mation (e.g., [1]). Because of its simplicity, the LEM was widely used in early
surgical simulation and is still used frequently [2, 4]. With the increasing speed
of computer processing, the prediction accuracy attracts more attention. More
complicated biomechanical models have been then employed to predict the defor-
mations or registrations of brain, liver, skin and muscle tissues [4,5]. Some works
on the liver tissue modeling using the FEM were reviewed and reported in [3].
However, the validation of these models for the liver tissue is still a challenging
step in building a real surgical simulator for clinical use.

In this paper, we propose a validation framework and use it to validate the
LEM, the LVEM, and the NHM of liver tissue. The tissue’s mechanical properties

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 531–538, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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are acquired by material testing using a Dynamic Materials Analyzer (DMA). A
chamber consisting of a cylindrical plexiglass compartment, and a piece of liver
are used for Micro-CT and CBCT scanning (details of this design can be found
in [6]). These types of imaging can produce high resolution images. As a benefit,
the deformation details in the contact region between the tissue and the probe
can be captured and rendered even at small force loads ranging from several
grams to tens of grams. Two techniques are used to validate these models. Firstly,
we measure and compare the volume difference of the deformed object from
simulations and the deformed object from experiments, as well as the vertical
displacements of the probe from the experiments and the simulations. Secondly,
the displacements of each vertex of the F.E. mesh are acquired and their root
mean squares (RMS) for the three models, are computed and compared.

2 Finite Element Models of Soft Tissues

In this section, we will simply introduce the general framework of the LEM, the
LVEM, and the NHM.

2.1 Linear Elastic Model

For the LEM, the material is assumed homogeneous and isotropic: the stress σ
and strain ε are directly proportional to each other via the Hooke’s law σ = Dε.
The matrix D describes the material characteristics and depends on the Young’s
modulus and the Poisson’s ratio (e.g., [7,8]). The relation between the stress and
the displacement u can be written as ε = Bu. Linear tetrahedral elements are
used in our FE simulation. We denote by ue

i the four nodal displacements of such
elements. These displacements are used to compute the displacement inside each
element as a linear combination of the shape functions Ne

i (·). Figure 1 shows
the domain subdivision into finite elements and a linear tetrahedral element. For

Fig. 1. Left: Subdivision of the domain into finite elements. Right: linear tetrahedral
finite element. V e: element; Pi’s: nodes.
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each element V e, the potential energy in terms of the total element compound
displacement vector ue = [ueT

1 , ueT

2 , ueT

3 , ueT

4 ] is:

Ee(ue) =
1
2

∫
V e

(ue)T BeT

DBeuedV e −
∫

V e

feT

uedV e,

where fe is the external force acting on the element V e, and Be is a constant
matrix depending on the coefficients of the polynomial shape functions Ne

i (i =
1, 2, 3, 4) [9]. The global equilibrium equation, obtained by minimizing the total
potential energy (

∑
e E

e), can be derived as a linear equation: KU = F . The
dimension of the global stiffness matrix K is 3m× 3m and the dimension of the
global force vector F is 3m, where m is the total number of nodes.

2.2 Linear Viscoelastic Model

A viscoelastic material shows a combination of viscous and elastic effects. The
response of a viscoelastic material depends on both the current stress and the
stress history up to the current time. Some soft tissues, such as liver, exhibit the
viscoelastic property. One simple material model is the direct sum of the linear
elastic effect and the linear viscous effect: ε(t) = εe(t)+εv(t) where εe(t) and εv(t)
represent the strains in the elastic deformation and viscous flow respectively.
Note that σ(t) = Eεe(t), and σ(t) = ηε̇v(t) where η > 0 is the Newtonian
viscosity and E is the Young’s modulus. One can derive the constitutive equation
of this model as follows (e.g., [7, 10]):

ε̇(t) =
σ̇(t)
E

+
σ(t)
η

.

In our simulation, the F.E. software Abaqus [11] will use the stress relaxation
test data for the viscoelastic modeling.

2.3 Hyperelastic Model

Hyperelastic materials are described in terms of a strain energy potential. There
are several forms of strain energy potentials available in Abaqus FEM soft-
ware [11] to model hyperelastic materials. One of them is the neo-Hooke’s mod-
eling. The material is assumed isotropic, and the energy potential function W is
approximated as follows:

W = C10(Ī1 − 3) +
1
D1

(Jel − 1)2,

where C10 and D1 are material parameters; Ī1 is the first deviatoric strain invari-
ant defined as Ī1 = λ̄1

2 + λ̄2
2 + λ̄3

2, where the deviatoric stretches λ̄i = J−1/3λi;
J is the total volume ratio; Jel is the elastic volume ratio; and λi are the principal
stretches. The initial shear modulus and bulk modulus are given by μ0 = 2C10
and K0 = 2/D1. More details about the NHM and other hyperelastic models
can be found elsewhere (e.g., [9, 11]).
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3 Preprocessing of Soft Tissues

To perform F.E. analysis of soft tissue deformation, preprocessing is needed: im-
age segmentation, mesh generation, and estimation of the mechanical properties
of the tissue.

Mesh generation techniques have been developed for different contexts and
were aimed at different applications. In this work, we are interested in generating

Fig. 2. From left to right, image acquisition, segmentation, stl conversion, and volume
mesh generation

Fig. 3. Left to right: the DMA machine and deformed tissue with probe (top); the
shear relaxation modulus curve; the stress vs. strain curve for strain less than 10.5%
(zoomed) (bottom)
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high quality tetrahedral meshes that conform to the input surface meshes. For
this purpose, a level set based segmentation approach [12] is employed. Further-
more, the segmented images are converted to a stereolithographic file which is
input into NetGen [13] to generate a 3D mesh of the liver. The NetGen uses the
advancing front technique combined with Delaunay tessellation. Figure 2 shows
our procedure to generate volume meshes from a stack of medical images.

A second step of the preprocessing phase consists in measuring the mechan-
ical properties of the liver tissue. Generally, these properties can be measured
either in vivo [14, 16] or ex vivo [17]. In this work, we cut two pieces of lamb liver,
one with dimensions of 0.5× 2× 0.15 in that we use for an extension test. The
other piece, having a cylindrical shape with height of 0.5 in, is used for a compres-
sion test. These tests are performed using the DMA machine (Fig. 3:top-left).
The shear relaxation test data (Fig. 3: bottom-left) are used by Abaqus soft-
ware for the viscoelastic modeling. From the compression test, we got the global
stress-strain curve (Fig. 3:bottom-right). The portion of the stress-strain curve
for the strain less than 10.5% is used to compute the Young’s modulus yielding
E = 11055 Pa. The Poisson’s ratio of 0.4 is used from literature [16,17]. For the
NHM, the initial shear modulus μ0 = 3948 Pa and bulk modulus K0 = 18425
Pa are computed from the stress-strain curve for strain less than 10.5%.

4 Proposed Finite Element Model Validation System

In this section, we present a validation standard of F.E. models to verify the
LEM, and the LVEM, and the NHM.

Experimental Setup: We developed a general purpose device (“testing chamber”)
that can be used to induce measurable deformations, which can be captured by
two imaging sources: high resolution Micro-CT or medium resolution CBCT.
The testing chamber is formed of a cylindrical plexiglass compartment. The tis-
sue is placed on the bottom of the compartment and an aluminium probe with
flat tip touches the upper surface of the tissue. Forces are applied by adding
weights to a lever causing the probe to deform the tissue. The proposed soft
tissue validation procedure can be summarized as follows. We first scan a piece
of soft tissue using Micro-CT or CBCT machine to collect a stack of images of
the undeformed tissue. Four force loads (5, 10, 20 and 40 grams) are gradually
applied to the lever of the chamber. For each force load, we scan the deformed
tissue when the equilibrium is reached. The collected images, both for the unde-
formed tissue and the deformed tissues, are then segmented and volume meshes
are generated. We select a F.E. model (LEM, LVEM, or NHM) to perform F.E.
analysis on the meshed undeformed object with the same force loads and same
boundary conditions as those for the object in the experiment (see Fig. 3:top-
right for deformed object). Finally, we superimpose the deformed objects from
simulation and the corresponding ones in the experiment, and we compute their
volume difference and measure the vertical displacements of the probe tip in the
experiment and the simulation for comparison purpose.
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5 Validation Results

To compute the deformation volume difference between the deformed object from
simulation and the one from experiment, and its percentage with respect to the
real deformation volume, we use a cylinder with radius of 20 mm and height
of 20 mm to cover the deformed region. The cylinder is positioned vertically
and centered at the probe contact and the top surface of the cylinder takes
the shape of the undeformed liver surface. The deformed volume is computed
by the number of voxels between the deformed surface and the top surface of
the cylinder. The vertical displacements of the probe tip in real deformation
and simulation are estimated from the acquired images and from the simulated
object. For the LEM, the LVEM, and the NHM, all related volume differences,
volume difference ratios, and the vertical displacements of the probe tip are listed
in Table 1, where the abbreviations RD, LED, LVED and NHD stand for the
vertical displacements of the probe tip in real deformation, and in simulation
using the LEM, the LVEM and the NHD, respectively. RDV, LEVD, LVEVD,
NHVD, LEVDP, LVEVDP, and NHVDP stand for the real deformation volume,
the volume differences using the LEM, the LVM, and the NHM and their volume
difference percentages, respectively. Figure 4 shows the superimposing of the
deformed liver from simulation and the real deformed liver from experiments.
From Table 1 and Fig. 4, we see that for small force loads (< 40g), the LEM is
more applicable to the modeling of the lamb liver tissue. One can conclude that
the liver deformation using the LEM is gradually going deep with the increasing
force load. At the force load of 40 grams, the liver deformation using the LEM is
larger than the real deformation. The liver deformations using the LVEM and the
NHM are gradually approaching the real deformation with the increasing force
load but the later is approaching faster. The root mean square values of the
nodal displacements for each F.E. model are computed for different force loads
(Table 2). These results are consistent with the results in Table 1. The strain

Table 1. Vertical displacements of the probe tip, volume differences and their percent-
ages with respect to the real deformed volumes

RD LED LVED NHD RDV LEVD LEVDP LVEVD LVEVDP NHVD NHVDP
mm mm mm mm mm3 mm3 % mm3 % mm3 %

5 g 1.8 0.77 0.38 0.68 956 191 19.97 228 23.85 220 23.01
10 g 2.6 1.54 1.18 1.32 1075 240 22.33 316 29.40 302 28.01
20 g 4.2 4.39 2.36 2.57 1241 245 19.74 382 30.78 359 28.93
40 g 6.2 9.59 4.71 5.04 1527 299 19.58 506 33.14 476 31.17

Table 2. RMS values (mm) for each F.E. model for different force loads

5 g 10 g 20 g 40 g
LEM 0.0487956 0.097591 0.195182 0.394411
LVEM 0.025235 0.050470 0.100939 0.201876
NHM 0.030717 0.061107 0.121318 0.239742
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Fig. 4. Left to right: superimposing of the simulated livers and the real deformed ones
under the force load 40 grams for the LEM, the LVEM, and the NHM, respectively.
Wireframed zooms around the contact region are shown in the second row.

repartition plots from Abaqus for the three F.E. models and for force loads up to
40 grams, show that the maximal strains do not exceed 10%. This confirms that
all simulations are carried out in the small deformation framework. The viscous
component only governs the time dependent behavior of the tissue and the final
displacement for any given load will only depend on the elastic property. The
observed difference in displacements for the LEM and the LVEM is related to the
fact that the LVEM accounted for time behavior or the reported displacements
were not at the time of infinity, the elastic components of the two models might
be different. Also, it should be pointed out that there is a geometric nonlinearity
in the experiment and the simulation. As larger force is applied to the probe,
it pushes into more tissue. Consequently, there is more surface area in contact
with the probe to provide support. For the NHM, the geometric nonlinearity is
considered in simulation.

6 Conclusion

We presented F.E. modeling of soft tissues from Micro-CT or CBCT images.
These types of images show the volume and surface shape changes for small
force loads. The F.E. method was used to analyze the lamb liver deformations
under certain force loads using the LEM, the LVEM, and the NHM. The defor-
mations were measured from the models and compared to the real deformations
measured by the experiment setup. We found that the LEM is more applicable
to lamb liver than the LVEM for small force loads (< 40g) and that the NHM
is closer to reality than the LVEM for this same range of force loads. The com-
parability of the results presented herein to the in vivo tissue, which is valuable
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for future surgery simulation design, is beyond the scope of this work and will
be investigated in future studies.
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Abstract. We provided in [14] an augmented reality guidance system
for liver punctures, which has been validated on a static abdominal phan-
tom [16]. In this paper, we report the first in vivo experiments.

We developed a strictly passive protocol to directly evaluate our sys-
tem on patients. We show that the system algorithms work efficiently
and we highlight the clinical constraints that we had to overcome (small
operative field, weight and sterility of the tracked marker attached to the
needle...). Finally, we investigate to what extent breathing motion can
be neglected for free breathing patient. Results show that the guiding
accuracy, close to 1 cm, is sufficient for large targets only (above 3 cm
of diameter) when the breathing motion is neglected. In the near future,
we aim at validating our system on smaller targets using a respiratory
gating technique.

1 Introduction

The treatment of liver tumors by Radio-Frequency (RF) is a new technique which
begins to be widely used [11]. The guidance procedure to reach the tumors with
the electrode is generally made visually with per-operative 2D cross-sections
of the patient using either Ultra-Sound (US), Computed Tomography (CT) or
Magnetic Resonance Images (MRI). Practitioners empirically evaluate their tar-
geting accuracy around 3 mm. However, the insertion needs repetitive CT/MRI
images for needle adjustment (if CT/MRI guided) and sometimes several rein-
sertion attempts. This lengthens the intervention duration, and increases post
procedure complications and radiation exposure (when CT-guided). Moreover,
the targeting accuracy depends on the practitioner’s experience.

Some systems have already been designed for puncture application. However
they are quite expensive, or unsuitable for liver punctures. Some of them need
a robotic arm [4, 7] or a head mounted display associated to a cumbersome
reference structure attached to the MRI table [18]. Others [6] guide the needle
placement when it is contained in a single axial CT slice. Their system is suited to
the majority of cases but not to liver punctures. Indeed, most of liver punctures
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cannot be realized along an axial plane because of the critical structures that
have to be avoided (like vessels). Finally, the C-arm systems presented in [2, 12]
do not allow to visualize what structures are on the needle path, which prevents
their use for liver punctures.

To help practitioners, we developed in [14, 16] a low cost augmented reality
(AR) guidance system for CT/MRI assisted liver punctures: only one PC, two
cameras and some radio-opaque markers are necessary. Despite breathing mo-
tion, we choose to use a rigid model since the patient is usually under general
anesthesia and intubated to limit the pain (60% of CT-guided RF ablation are
done under general anesthesia at the Strasbourg Hospital). Thus it is possible
to ask for a breath control that can provide a tumor repositioning error about
1 mm (see [20, 1, 19]). This system was fully validated on a static abdominal
phantom [14, 16]: several surgeons and engineers were able to reach targets with
an accuracy of 2 mm and a duration under 40 sec.

In this paper, we report the first introduction of our system in the operating
room (OR) during interventions on patients. After a presentation of our system,
we explain how we evaluate its accuracy on patient with a safe protocol that we
developed. Then, we present encouraging results which show that a full validation
is possible with few additional constraints in the OR.

2 System Components

In our setup, two jointly calibrated cameras are viewing the skin of the patient
who is lying on the CT-table. A 3D model of the patient (including his skin, liver
and tumors) is automatically obtained from the first CT scan [17], and is rigidly
registered in the camera frame thanks to radio-opaque markers previously stuck
on the patient’s skin. The needle being tracked by the cameras, we display on a
screen its relative position with respect to the patient model.

In this section, we summarize the basic algorithmic principles of our system.
Firstly, we explain how we automatically extract and match the radio-opaque
markers (to avoid time loss). Then, we describe the 3D/2D criterion we use to
register the 3D patient model in the camera frame, and show how we track the
needle position in real-time. Finally, we present the guiding interface designed
with surgeons.

2.1 Automated Data Processing

The principle of the marker localization in the video images is based on a HSV
color analysis, followed by a component size and shape thresholding. The markers
in the CT-image are extracted by a top-hat characterization that emphasizes
small singularities on the skin surface.

The matching between the video markers is realized with epipolar geometry,
and the correspondences between video and CT markers are carried out by a
prediction/verification algorithm. A validation study [14] showed that these al-
gorithms are robust and that the overall computation time of the extraction and
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matching process is below 120 sec (CT marker extraction - done once - takes 118
sec. on average, video marker tracking and registration are refreshed at 10 Hz).

2.2 Registration of the Virtual Model in the Camera’s Frame

We choose a 3D/2D point registration approach to provide the rigid transfor-
mation that relates scanner frame and camera frame. The classical choice is to
optimize the SPPC criterion (see [15]):

SPPC(T ) =
S∑

k=1

N∑
i=1

ξk
i ·

‖ m̃(k)
i − P (k)(T " M̃i) ‖2

2 · σ2D
2

where S (resp. N) is the number of cameras (resp. markers), m̃(k)
i is the observed

2D coordinates of the ith markers in the kth video image, M̃i is the observed 3D
coordinates of the ith markers in the CT-image, P (k) the projective function, ξk

i

is a binary variable equal to 1 if the ith marker is visible in the kth video image
and 0 if not, and T the sought transformation. However, this criterion considers
that noise only corrupts the 2D data and that 3D data are exact. In our context,
this assumption is erroneous as the marker extraction from the CT-image is
corrupted by noise as well.

A more realistic statistical hypothesis is that we are measuring noisy versions
M̃i of the unknown exact 3D points Mi (more details are given in [15]). A
ML estimation of the transformation T and the auxiliary variables Mi leads to
minimize the Extended Projective Points Criterion (EPPC):

EPPC(T,M1, . . .MN ) =
N∑

i=1

‖ M̃i −Mi ‖2

2 · σ3D
2 +

S∑
k=1

N∑
i=1

ξk
i ·

‖ m̃(k)
i −m

(k)
i ‖2

2 · σ2D
2

2.3 Needle Tracking

To track the needle location and orientation in the camera frame, we attach
an oriented square marker whose corners are automatically localized on video
images in real-time using an adapted version of the ARTkit library [9]. Then,
knowing the size of the square, we are able to localize it in the camera reference
frame by minimizing the classical 3D/2D SPPC criterion. Calibrating the relative
needle position with respect to the square marker with the pivot method [10], we
are finally able to superimpose the virtual model on the real one on video images.
An accuracy evaluation realized in simulated clinical conditions (cameras 1.5 m
away from the needle with a test volume of 40× 30× 25 cm3), showed that the
average superimposition error of a radiofrequency needle was 0.95 mm.

2.4 A Secured and Ergonomic Guidance Interface

Our interface has been optimized with surgeons, in order to provide them a clear
and intuitive tool. It is divided into three screens (see Fig. 1) described below.
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Fig. 1. Illustration of the three screen guidance
interface

The bottom left screen dis-
plays one of the two video
images returned by our cam-
eras, on which can be super-
imposed the virtual needle and
the 3D patient model. The user
can check visually the regis-
tration quality by superimpos-
ing virtual elements (like skin
and radio-opaque markers). In
the right screen, the 3D vir-
tual scene, composed of the 3D
patient model and the needle
representation, is rendered from
a viewpoint controlled by the
user. Moreover, it is possible to
display the CT-scan from which the reconstruction is made, and navigate
through its slices. In the top left screen, we display a view that corresponds
to what would see a camera positioned on the needle tip and oriented along its
axis. This view facilitates the orientation of the needle toward the point to be
reached before its insertion.

3 Clinical Experiments on Patients

We have previously evaluated the whole system on an abdominal phantom [16],
and we have shown that, with simulated clinical conditions, our system accuracy
and ergonomy are fully validated. However, in an OR, we will undergo addi-
tional constraints (lack of room, luminosity variation, validity range of rigidity
assumption) that may hamper marker extraction, needle tracking and 3D model
registration accuracy.

To check the efficiency of a system in real clinical conditions, the standard pro-
cedure is to make several tests on animals (like Vogt [18] or Mourgues [13]). How-
ever, it does take a long time to get animal study authorizations (at least 6 months
in Strasbourg). Moreover, animals are not optimal models for evaluation: their
anatomy size and shape, skin color, vessel branching structure and tissue mechan-
ical properties are different from human ones. Thus, we propose to introduce our
system in the OR directly on human patients, thanks to a strictly passive setup: the
intervention is realized with the setup needed by our system, yet with the standard
CT-guided protocol. In these conditions, no ground truth is available to evaluate
the accuracy of our system (invasive technique are needed, which is not clinically
acceptable). Thus, we designed a protocol that allows to assess the system accuracy
w. r. t. the practitioner accuracy, without any risk for the patient.

In the sequel, we firstly describe the evaluation protocol we developed. Then
we present the first experiments we realized on patients. Let us highlight that
these experiments are not aimed at validating the system but just at evaluating



A Complete Augmented Reality Guidance System for Liver Punctures 543

it to determine the problems that need to be overcome to introduce it in the OR.
The standard protocol was not modified, which means that patients breathed
freely during the interventions. Then, it allowed us to see to what extent breath-
ing motion could be neglected or not.

3.1 A Safe Validation Protocol with Patients

The purpose of the method is to measure the distance between the real tumor
and the virtual tumor registered by our system. Since no ground truth is avail-
able (without modifying the intervention protocol with an invasive procedure)
for the real tumor position, we consider the final position of the needle as a
reference. Then, we measure, at the end of the needle insertion, the distance
between the needle tip and the target registered by our system. This target is
a point Cscan within the tumor that the practitioner defines (in the first acqui-
sition CT0) as the point he is targeting. Obviously, our reference depends on
the practitioner’s accuracy. Radiologists and surgeons evaluate their targeting
acurracy to 3 mm. Therefore, to show the equivalence between our system and
the practitioner, we have to obtain an average distance close to 3 mm (assuming
that both practitioner targeting and system registration errors are unbiased).

Figure 2 summarizes the different steps of our protocol and how we get a
measure. To be in our system setup, a square marker is attached to the needle,
radio-opaque markers are stuck on the patient skin, and we set our two cam-
eras in the OR. The practitioner performs the intervention with his radiological
protocol (repetitive CT acquisitions) without any advice nor instruction from
our system. Note that the radiation exposure is not negligible since 40 sets of 4
slices are at least taken for each tumor. When the needle insertion is completed,
the practitioner checks visually (using a control scan) that the needle tip was
sufficiently close to the initial target. This is done to avoid a bias. Then, we make
a stereoscopic video acquisition of the patient abdomen (with the radio-opaque

and introduced in the OR

Using the radio−opaque markers

Registration
3D/2D

Radio opaque markers are stuck on the
patient skin. The square marker is attached
on the needle. The cameras are calibrated

CT−scan acquisition: CTo

computed in the camera frame.
The needle tip coordinates are then 

and the needle.
Video acquisition of the patient 

Then, we can compute the coordinates of
CTo is registered in the camera frame.

Computation of the 3D distance

between the needle tip and C_cam
C_scan in the camera frame, resulting in C_cam

Following the standard radiological protocol
the expert inserts the needle and deliversThe expert localizes in CTo the

point he targets. the treatment.

Fig. 2. Description of the validation protocol without any risk for the patient. It allows
to obtain an assessment of the system guidance error with respect to the targeting error
of the practitioner.
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markers) and of the square marker attached to the needle. From this acquisition,
we estimate the needle tip position Pcam and register the target Cscan (originally
defined in CT0) in the camera frame. The registered target Ccam is the point
toward which we would have guided the practitioner if he had used our system.
Finally, our accuracy measure is given by the distance d(Pcam, Ccam).

3.2 Results

We have introduced our system three times in the OR. All the data processing
algorithms worked efficiently (marker extraction and matching, needle tracking,
3D/2D registration). Figure 3 shows several augmented images obtained during
the interventions. Quantitative accuracy results are shown in table 1.

The measured average accuracy is 9.5 mm, which is two to three times larger
than the value needed to show the equivalence between our system and a prac-
titioner. We think that most of the error can be attributed to the free breathing
of the patient during the intervention. Studies showed that the liver moves over
1 cm with respect to the skin with free breathing [5]. This means that the 3D

Fig. 3. Top left: visual check of the 3D model registration quality. The radio-opaque
markers of the 3D reconstructed model are well superimposed on these visible in the
video images. Top right: augmented view of the patient at the end of the needle in-
sertion. Bottom left: view in transparency of the patient. The edge of the patient skin
seemed perfectly superimposed with the 3D reconstruction edge. Bottom right: for this
patient, only 7 markers were detectable among the 18 initially stuck.
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Table 1. Results of the system evaluation on three patients

Tumor General Gas volume Number of Accuracy
type anesthesia monitoring markers used/stuck R-S (mm)

Patient 1 Liver no no 7 / 18 12.0
Patient 2 Bone yes no 16 / 19 6.7

Patient 3 : tumor 1 Liver no no 9 / 15 8.0
Patient 3 : tumor 2 Liver no no 9 /15 11.3

Average - - - 10.6 / 17.3 9.5

model reconstructed from the initial CT-scan was not close enough to reality to
obtain an accurate rigid registration.

The second error cause is the low number or radio-opaque markers used for
the transformation computation. Indeed, although we stuck around 17 markers
on the patient skin, only 10 on average were imaged in the initial CT-scan CT0
(one can see on Fig. 3 that the 3D model does not contain all the radio-opaque
markers). Moreover, on the first patient, the operative field was not large enough
(for sterility reasons) and reduced the number of visible skin markers. This issue
was solved afterward with the use of sterile transparent stickers that were stuck
on the patient skin (see top right Fig. 3). Another explanation of the error is the
relative position of the target with respect to the radio-opaque marker used for
the registration. Since many unused markers were the closest ones to the target,
the theoretical inaccuracy increased.

Note that we obtained our best accuracy result (6.7 mm) for the bone radio-
frequency intervention. For this patient, the target was far away from the upper
abdomen in a more static zone (see top left Fig. 3). Therefore, we are convinced
that we can provide better results if a respiratory gating technique is used.

4 Conclusion

In previous papers [14, 16], we developed and validated on phantom an AR sys-
tem to guide liver percutaneous punctures in interventional radiology. This video
based system tracks in real time the puncture needle and automatically registers
(at a 10 Hz rate) the 3D patient model in the camera frame using radio-opaque
markers. To show the robustness of the system in the OR (needle tracking,
marker detection), we proposed to introduce it passively during interventions on
patients. Since a passive approach limits the possibility of accuracy evaluation,
we designed a new protocol that allows to assess the system accuracy without
any risk for the patient. To our knowledge, it is the first time that an evaluation
of AR-guided liver punctures is experimented on patients.

The three experiments we realized were an essential step to refine the con-
straints for using our system in a clinical setup. Firstly, we needed to build a
square marker in sterile plastic for the needle tracking. On the one hand, it had
to be sufficiently light to avoid curving the needle once inserted. On the other
hand, its size had to be small to avoid touching the CT-gantry during the control
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scans (currently it is too large for an MRI gantry). Secondly, we have experi-
mented problems with the positioning and visibility of the radio-opaque markers.
They have to be stuck carefully in the liver range to be imaged in the first CT-
scan. Moreover, they are not visible in the video images if the practitioner does
not enlarge the operative field (this could be realized with transparent sterile
stickers). Finally, markers being non sterile, we could not stick them close to the
entry point, inducing a loss of registration accuracy. This has to be compensated
with a greater number of markers.

From a technical point of view, we showed that our system worked well in
clinical conditions. However, we observed a positioning error which is larger than
the practitioner’s one, due to the breathing motion. We can take this motion into
account either by modifying the clinical setup, i.e. by requiring a respiratory
gating technique, or by modifying our system, for instance using a non-rigid
model [3, 8]. Although the current accuracy of the final positioning is sufficient
only for large targets (diameter above 3 cm), practitioners estimate that the
system provides relevant informations for orienting the needle at the beginning
of the insertion. This initial guidance could avoid several insertion attempts.

In the next step, we will perform an evaluation with intubated patients under
breathing control. Practitioner movements will be synchronized on the respira-
tory cycle point corresponding to the first CT acquisition. These experiments
should show that the system can be used in pseudo static conditions.

We are currently adapting this work for laparoscopic application. We track
the endoscopic camera and surgical tools to provide surgeons with AR view
in the endoscope coupled with the relative position of tools. We hope to test
that new system on static organs linked to the spine in less than six months.
Eventually, since it would be more comfortable for patients and less complicated
for practitioners to avoid respiratory gating techniques, we intend to use a non-
rigid registration coupled with real time US images.
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Abstract. This paper describes a novel approach to forming high reso-
lution MR images of the human fetal brain. It addresses the key problem
of motion of the fetus by proposing a registration refined compounding
of multiple sets of orthogonal fast 2D MRI slices, that are currently ac-
quired for clinical studies, into a single high resolution MRI volume. A
robust multi-resolution slice alignment is applied iteratively to the data
to correct motion of the fetus that occurs between 2D acquisitions. This
is combined with an intensity correction step and a super resolution re-
construction step, to form a single high isotropic resolution volume of the
fetal brain. Experimental validation on synthetic image data with known
motion types and underlying anatomy, together with retrospective ap-
plication to sets of clinical acquisitions are included. Results indicate the
method promises a unique route to acquiring high resolution MRI of the
fetal brain in vivo allowing comparable quality to that of neonatal MRI.
Such data is highly valuable in allowing a clinically applicable window
into the process of normal and abnormal brain development.

1 Introduction

Ultrasound is the modality of choice for clinical evaluation of the developing
fetus. However, clinical diagnosis with ultrasound is sometimes unclear and in
these cases, alternative studies with magnetic resonance imaging (MRI) can be
essential [6, 4]. One such critical application, which is the focus of this paper,
is in the evaluation of isolated ventriculomegaly, which despite the absence of
other clinical findings, can be associated with neurodevelopmental disabilities in
childhood and infancy.

The development of ultrafast 2D acquisition sequences has led to significant
improvements in the clinical utility of fetal MRI ([10]). However, the slice acquisi-
tion time is still very critical and has to be as short as possible to reduce the impact
of fetal motion on the exam, since fetal MRI is performed without sedation. As a
result, sets of thick 2D slices are generally acquired in clinical studies, with motion
commonly occurring between slices. Overall, the resulting image data is limited in
its geometric integrity between slices due to motion, and in its through plane spa-
tial resolution. In addition, body coils used in the imaging processes do not provide
a homogeneous sensitivity over the field of view and, because of motion during the
acquisition, can produce different a distortion profile over time (see figure 2).

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 548–555, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Novel Approach to High Resolution Fetal Brain MR Imaging 549

This work is motivated by the observation that current clinical imaging pro-
tocols make use of multiple orthogonal 2D multi-planar acquisitions to study
the fetal brain. However, because of the motion between the slices, interpreta-
tion is limited to visual inspection by a trained radiologist, and does not allow
direct quantitative measurements to be made on the 3D anatomy. The aim of
this work is to develop and apply registration based reconstruction methods to
the problem of correcting motion and intensity distortions between the different
2D acquisitions, and to then reconstruct a single higher resolution MRI image
of the fetal brain.

As far as we know, this problem has not been discussed before in the litera-
ture. Moore et al. [8] built a high resolution dynamic heart model from isotropic
coronal slices. The misalignment was corrected by registering a volume with
sagittal and axial scout images. Image intensities were averaged together to gen-
erate a high resolution volume. Lötjönen et al. [7] have proposed an algorithm
to correct translation-only movement artifacts simultaneously from short- and
long-axis cardiac MR series. Locations of short-axis slices were optimized based
on data from long-axis slices and vice versa.

In this article we report our work on this challenging problem and describe
a fully automatic and accurate algorithm to correct slice misalignments, correct
intensity distortions, and reconstruct a single high resolution image from sets of
clinically typical low resolution fetal MRI data.

2 Method

The resolution of the low resolution source data is typically 1x1mm in plane
with 3mm thick slices. Multiple sets consisting of between 30 and 40 slices each
are acquired over a period of around 20 seconds for each set. The slices are
commonly acquired in an interleaved pattern (usually alternating odd-even) and
significant movement of a centimeter or more can occur during the acquisition of
one set of slices. Sets of slices are typically acquired in approximately orthogonal
axes (coronal, sagittal and axial), providing complementary resolution. It is rea-
sonable (and is confirmed visually for most slices) to assume that motion within
the time period of one slice is negligible. We are posed the task of recovering
the local relative alignment of each slice in 3 dimensions, but can make use of
the consistent geometry provided in the through plane direction of a slice that
is provided by the other orthogonal sets of slice data, to constrain the collective
alignment of the multiple low resolution images.

Notations. Let us consider n low resolution 3D images, denoted by Ii
LR, i ∈

{1...n}. A so-called low resolution 3D image is a stack of 2D thick slices. The
reconstructed high resolution 3D image is denoted by IHR.

2.1 Motion Correction

In order to correct fetal motion, we propose to use a registration based method.
Registration methods are usually classified as being either sparse (landmark)
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or dense (voxel) based. In the case of fetal brain MRI registration, because of
the 3D non-consistency of the scans, finding homologous 3D landmarks is a
very challenging task and have therefore approached the problem using a voxel
based method. Due to the motion and contrast artifacts corrupting fetal MRI,
it is highly desirable to use a similarity measure that is not based on strong
assumptions between the two images. We use the normalized mutual information
[11] which is: NMI(X,Y ) = h(X)+h(Y )

h(X,Y ) where h(X) is the marginal entropy of
X and h(X,Y ) is the joint entropy. Motion correction is performed by aligning
globally the low resolution images together and then by aligning every slice of
the low resolution images to the reconstructed high resolution image.

Low Resolution Image Registration. The first step consists of approxi-
mately globally aligning the n low resolution images. One low resolution image
is chosen arbitrarily as the reference image and is used to define a global co-
ordinate system. The other low resolution images are rigidly registered to the
reference image (6 degrees of freedom: 3 translations and 3 rotations). The 3D
rigid transformation between an image Ii

LR and the reference image is denoted
T i

1. The high resolution volume coordinate system is chosen to match with the
global coordinate system defined previously (see Figure 1).

SliceRegistration. Once the low resolution images are roughly globally aligned,
slice motion artifacts are corrected by rigidly registering a slice to the current re-
constructed high resolution volume. We register the slices of low resolution image
Ii
LR with the volume reconstructed using the n − 1 other low resolution images
Ij
LR, j ∈ {1...n, j �= i}. A local coordinate system is defined for every slice and the

transformation between a slice and the high resolution volume is composed by two
rigid transformations: yi

k = T i
1T

i
2k

xi
k where T i

2k
denotes the 3D rigid transforma-

tion from the slice k of the low resolution image i to the low resolution image i
coordinate system, xi

k is the slice pixel coordinates and yi
k the voxel coordinates

in the compounded high resolution volume (see Figure 1).

Optimization. For both image and slice registration, a gradient ascent method
is used to maximize the normalized mutual information. Concerning slice regis-
tration, we exploit the interleaved acquisition to propose a hierarchical approach

Fig. 1. Coordinate systems used during the slice and image registration
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to provide a starting estimate to the optimization procedure. Slices of a low reso-
lution image are ordered by acquisition time and are separated into two groups.
The optimization consists in finding the optimal rigid transformations T2 be-
tween the new groups of slices and the low resolution image coordinate system.
The similarity measure is computed between the current reconstructed volume
and the group of slices. This is performed for the n low resolution images. Once
the convergence criterion is reached, each group is divided into two groups and
the optimization procedure is then performed on these new groups of slices.

For the final phase of alignment, we maximize independently the normal-
ized mutual information between each slice and the current reconstructed high
resolution volume. This uses an iterative slice-by-slice scheme, looping over all
slices until the sum of the slice-to-volume criteria (called the global convergence
criterion) does not increase. For each 2D-3D registration step, a two-level mul-
tiresolution strategy is applied to avoid the pitfall of local optima.

2.2 Volume Reconstruction

As the volume reconstruction algorithm is required during registration process
and contrast correction algorithm, the reconstruction has to be as fast as possi-
ble. To deal with the computation time constraint, a local neighborhood approach
has been adopted. For each pixel x in the slices of the original low resolution scans,
the 3D coordinates y of x in the high resolution volume are calculated taking into
account the results of the image and slice registration. The intensity value of x is
injected into the reconstructed volume using a kernel f centered at y. To approx-
imate the slice profile of the MRI data, we have used a Gaussian kernel ([9]).

2.3 Contrast Correction

We employ a contrast correction step to correct the local relative intensity distor-
tion between the low resolution images to allow accurate compounding. Intensity
changes from one 2D slice to another are both global and local. To address this
issue, one low resolution image is used as a reference for tissue intensities and
the other low resolution images are corrected to it. We consider the relationship
between contrasts in the low resolution image to be corrected and the refer-
ence image as a spatially varying multiplicative field which is assumed to vary
smoothly over the field of view. A direct approach to estimation is used where
the two volumes are low pass filtered with a Gaussian kernel G. The relative
scaling in intensity βi(x) at location x of the low resolution image Ii

LR(x) is
estimated for all slice pixels x as follows:

βi(x) = ai ∗
G(IR(x))
G(Ii

LR(x))
with ai =

∑
x I

i
LR(x)∑

x I
i
LR(x) G(IR(x))

G(Ii
LR(x))

(1)

where IR is the intensity reference image, Ii
LR is the low resolution image con-

sidered and ai is used to keep the mean value of the image Ii
LR unchanged. IR

is an arbitrary low resolution image projected in the reconstruction space. The
corrected low resolution image Îi

LR is then: Îi
LR(x) = βi(x)Ii

LR(x).
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2.4 Overview of the Algorithm

The proposed method consists in the following steps:

1. Apply global rigid registration between all the low resolution images.
2. Create initial slice registration estimate by hierarchical application of Slice

Registration Algorithm
3. For each Resolution:

(a) Apply Slice Registration Algorithm
(b) Test Global Criteria Reached

4. Apply relative intensity distortion correction
5. Reconstruct the final high resolution volume

Where the slice registration algorithm is the following:

1. For each low resolution image Ii
LR:

(a) Reconstruct a high resolution volume using the low resolution images
Ij
LR, j ∈ {1...n, j �= i},

(b) For each slice in Ii
LR, perform the 2D-3D registration.

3 Material and Evaluation Procedure

3.1 Simulated Motions on Real MR Datasets

In order to perform the most realistic simulation possible, we used as a starting
point a 3D MRI acquisition of a premature neonate of similar gestational age (26
weeks gestational age) to the fetal MRI studies, but with high image quality and
no motion. The images consisted of a T1 weighted SPGR image with a spatial res-
olution of 0.7 x 0.7 x 2.1mm. The data were interpolated to 1mm isotropic voxels.

Anisotropic subsampled volumes with 6 DOF motion artifact were simulated
from the isotropic neonatal image. The resolution of these subsampled volumes
is 1 x 1 x 3mm. Motion artifacts were defined by the maximum magnitude of
the head motion and by the head motion type. The first simulated motion was
a sudden motion. It simulated a short fast movement of the head during a short
portion of the acquisition. The second type of motion was a temporally smooth
motion simulated using B-Splines. The displacements were chosen from a uniform
distribution between [-x,x]mm in each direction and between [-x,x]degrees for
each rotation, x ∈ {1, 5, 10}.

The accuracy was assessed by computing a registration error measured on a
set of 4 points (bounding square) Pi distributed within every slices as follows:

RMS =
√

1
n

∑n
i=1 TRE

2
i , where TRE is the target registration error defined as

follows: TREi = ‖Pi−T̂−1(T ∗(Pi))‖2. T ∗ denotes the theoretical transformation
and T̂ is the estimated geometric transformation.

3.2 Fetal Datasets

A typical clinical study of a fetus at our institute follows the following procedure:
a quick localizer sequence is obtained in less than 30 seconds during maternal
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free breathing in order to determine the location of the fetal head. No sedation
or contrast agents were administered during the study. Conventional Single-shot
Fast Spin-echo (SSFSE) T2-weighted images are then acquired during normal
maternal breathing (a single slice is acquired in less than one second). Sets of
slices were acquired in the axial, sagittal, and coronal planes with respect to
the fetal brain, based on the initial localizer. All images were acquired in an
interleaved manner to reduce cross-talk between slices. The in plane resolution
was about 1mm (3mm slice thickness).

4 Results

From the simulated motion experiments on premature neonatal data, we evalu-
ated the RMS registration error for four points at the corners of a box within the
brain tissue of size 100mm× 100mm for each slice. These are presented in Ta-
ble 1. For all cases the final overall slice alignment error was significantly reduced
by the alignment process. Overall, even with the presence of strong motion arte-

Table 1. Accuracy evaluation for the simulated data sets (RMS errors are expressed
in mm)

Maximum Magnitude Sudden Motion Smooth Motion
RMS start. RMS end RMS start. RMS end

±1 0.94 0.63 0.72 0.66
±5 4.79 0.78 2.55 0.73
±10 9.71 1.22 3.88 0.66

Fig. 2. Subject (a): acquired fetal MR coronal image data (top row) with a resolution
of 1x1x3mm. Lower row shows the resulting reconstructed high resolution image.
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Subject (b) Subject (c) Subject (d) Subject (e)

Fig. 3. Further examples of acquired fetal MR image data (top row) and reconstructed
high resolution images (bottom row) from four subject studies

facts, RMS errors remained about the in plane resolution which is 1mm. In all
the cases, visual inspection by clinicians revealed very promising reconstructed
image quality.

We then applied the algorithm to clinically acquired fetal MRI datasets using
the same optimization parameters. Results are summarized in Figures 2 and 3.
Figure 2 shows one original low resolution coronal image compared to the high
resolution reconstructed image for coronal, sagittal and axial views. Figure 3
shows results from four different datasets one original low resolution image and
the corresponding high resolution reconstructed image. These figures clearly
show the quality improvement in terms of resolution and motion correction pro-
viding by the proposed compounding method.

5 Discussion

The ability to study the developing fetal brain in high resolution promises to
provide a vital source of clinical information which could contribute directly to
a number of challenging clinical questions. It permits the application of many
quantitative morphometric analysis methods [12, 2] developed to study the adult
brain to probe the process of normal and abnormal brain development. Critically,
high resolution imaging is the key to seeing the process of cortical folding [5, 1, 3],
while consistent contrast allows us to study patterns of myelination. Such data
is valuable both to specific clinical questions and, more fundamentally, to an
improved understanding of the process of human brain development.

In this paper we have described a new methodology to reconstruct in vivo
high resolution 3D MRI scans of the fetal brain by proposing to compound
multiple sets of orthogonal 2D MRI slices. The method makes use of a novel
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combination of 2D to 3D registration, relative inhomogeneity correction and
high resolution reconstruction from sparse data. This is achieved by first glob-
ally registering the low resolution images, and then applying an iterative slice
alignment scheme which seeks to refine the 3D positioning of each slice with
respect to the current combined high resolution image. As a final step, a relative
intensity correction is applied between the low resolution images to remove the
differences in relative signal strength across the different acquisitions in each
region of the fetal brain.

Visual inspection of the obtained results on clinical data are very encourag-
ing. The developed algorithm automatically reconstructs a 3D high resolution
geometrically consistent image and it has proved to be robust to large artifacts.
This represents an important step towards 3D quantitative analysis of the fetal
brain. Further work is needed to better understand the capabilities and limita-
tions of the approach on a range of both fetal anatomies and fetal motion profiles.

This work was supported by a Whitaker foundation award RG-01-0115, a NIH
Grant R01-MH65392 and a NIH Biomedical Research Partnership grant, R01-EB0822.
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Abstract. Current methods of four-dimensional (4D) CT imaging of
the thorax synchronise the acquisition with a respiratory signal to re-
strospectively sort acquired data. The quality of the 4D images relies on
an accurate description of the position of the thorax in the respiratory
cycle by the respiratory signal. Most of the methods used an external
device for acquiring the respiratory signal. We propose to extract it di-
rectly from thorax cone-beam (CB) CT projections. This study implied
two main steps: the simulation of a set of CBCT projections, and the
extraction, selection and integration of motion information from the sim-
ulation output to obtain the respiratory signal. A real respiratory signal
was used for simulating the CB acquisition of a breathing patient. We
extracted from CB images a respiratory signal with 96.4% linear corre-
lation with the reference signal, but we showed that other measures of
the quality of the extracted respiratory signal were required.

1 Introduction

Four-dimensional (4D) CT imaging, defined by Keall [1] as the ”acquisition of a
sequence of CT image sets over consecutive segments of a breathing cycle”, consti-
tutes the first step of 4D radiotherapy, which is ”the explicit inclusion of the tempo-
ral changes in anatomy during the imaging, planning and delivery of radiotherapy”.
The 4D CT imaging of a free-breathing thorax must face one major technical prob-
lem: the time required (�0.5 second per scan) for acquiring several complete 3D
CT images along one respiratory cycle (�4 second). Mori et al [2] have proposed a
prototype 256-slice CT-scanner dedicated to real-time 4D imaging. Other meth-
ods currently in use address the slowness of actual CT acquisitions relatively to the
respiratory cycle on both scanner geometries: spiral/helical and cone-beam (CB).

The respiratory correlated method is based on the spatial periodicity of res-
piration: suppose a respiratory signal f(t), representing the periodic spatial vari-
ations of the position of the thorax in the respiratory cycle during acquisition;
it is possible to sort a posteriori acquired data into n bins and reconstruct n
3D images [3][4][5]. Different respiratory synchronization techniques have been
used: Vedam et al [3], Underberg et al [4] and Pan et al [5] synchronized CT
acquisition with the position of the thorax skin surface in the antero-posterior
direction; Low et al used a spirometer [6]; Damen et al [7] a thermometer under
the patient’s nose.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 556–563, 2005.
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Grangeat et al [8] also proposed a dynamic reconstruction algorithm with
CB projections obtained from a CBCT system with a fast rotative gantry,
without such synchronization signal. However, the gantry rotation of modern
CBCT systems coupled with a linear accelerator is too slow to apply Grangeat’s
dynamic reconstruction.

With the respiratory correlated method, the critical issue stands with the
quality of the respiratory signal, whatever the scanner geometry. Contradictory
studies have explored the accuracy of these signals. Depending on the studies,
the method using the antero-posterior position of the skin surface does not seem
totally accurate [9][10] whereas the air volume obtained with a spirometer seems
to have better results [11]. This is why some have proposed methods extracting
the signal directly from image data, without any marker, both on spiral CT scan
slices [5] and on CBCT projections [12].

We propose to analyze the motion of thorax CBCT projections obtained using
a CBCT scan system with a slow rotating gantry to accurate respiratory signal
extraction from image data. This study implied two main steps: the simulation
of a set of CBCT acquisitions from a 4D model and a respiratory signal, and the
extraction, selection and integration of motion information from the simulation
output to obtain the respiratory signal for the time of acquisition. The simulation
uses a reference respiratory signal, used as a gold standard for evaluating the
results of our method.

2 Cone-Beam CT Acquisition Simulation

Our simulation follows a temporal respiratory signal; at each instant t, the res-
piratory signal (section 2.1) gives the position f(t) in the respiratory cycle and
the 4D model (section 2.2) gives the corresponding 3D volume. Digitally Re-
constructed Radiographs (DRR) of the volume, i.e. CBCT projections, are then
computed using a home made shearwarp algorithm [13].

2.1 Respiratory Signal

For each given time t, the respiratory signal indicates the position of the thorax
in the respiratory cycle, denoted by f : R → Rn. We define that f must respect
the following properties: when f(t1) = f(t2), the thorax has the same spatial
configuration at times t1 and t2; f is continuous, meaning that the spatial con-
figuration at time t + ε is almost equivalent to the one at time t when ε is very
small. Previous studies [14] have suggested that the signal can be characterized
in first approximation by a 1D function (n = 1). It is pseudo-periodic with a
pseudo-period around 4 seconds and its extrema often correspond to maximal
expiration and inspiration.

2.2 4D Model

From f(t), we must determine the corresponding spatial volume (spatial posi-
tion) of the thorax, i.e. the corresponding 3D image. Our team had produced
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such a 4D model not elaborated from a complete 4D acquisition but from two
3D breathhold acquisitions, one at the end of normal expiration (I1) and one
at the end of normal inspiration (I2), acquired using spiral CT imaging and
the Active Breathing Coordinator (ABC, Elekta Oncology Systems) [15]. The
non-rigid registration of I2 on I1 produced a dense vector-field representing the
displacement of each point of I2 toward I1. From these displacements, and sup-
posing in first approximation that each point of the thorax moves on a line, we
could interpolate intermediate positions between the two extrema and produce
a 4D image. We computed the air volume of the lungs by thresholding and mor-
phological operations, indexing thus the different 3D images in the respiratory
cycle and obtaining our 4D model.

3 Respiratory Signal Extraction

Visual observation of the motion of a set of CBCT projections, acquired from
a free-breathing patient, intuitively led us to believe that the respiratory signal
could be extracted a posteriori from this set of images. Following the same path,
Zijp et al [12] have focused on the diaphragmatic cupola and projected their CB
projections in the cranio-caudal direction, which produced a set of 1D signals
from which they extracted the respiratory signal. The result is not compared to
a reference for validation of its accuracy.

We propose here a study of the motion in a sequence of 2D CBCT projections
for respiratory signal extraction. The method comports three sequential parts:
selection of points of interest, motion extraction and trajectory processing.

3.1 Points of Interest

Some specific parts of the thorax are generally observed for motion extraction
[14][12][10], like diaphragmatic cupolas or lung walls. Instead, we chose to con-
sider a uniform set of points constituting a sub-sampling of the pixels of CB
projections for a complete study of motion in sequential CBCT projections,
with no limitation to any anatomic part. We typically used between 100000 and
200000 points of interest in total.

3.2 Motion Extraction

Our aim was to follow each point from CB projection to CB projection, i.e. the
motion of points in the 2D projective space over the time of acquisition. We used
a Block Matching Algorithm (BMA) [8].

CBCT imaging does not provide the projection of 3D points in a 2D space,
but the integration of tissue densities on lines, which implies that the application
of the BMA in the 2D projective space does not follow the projection of a 3D
point, but the projection of a high tissue contrast 3D area, like chest and lung
walls. It is then almost inevitable to lose the trajectory of the projected area
after a significant rotation.



Respiratory Signal Extraction for 4D CT Imaging of the Thorax 559

We took this observation into account when using the BMA. Firstly, we com-
puted the most probable trajectory of each point of interest by using the BMA
from CB projection to CB projection, using the maximum linear correlation co-
efficient CC as similarity measure. Secondly, we detected when the BMA is not
following the original high contrast area projection: we compared each newly
detected block to the original block and stopped when the CC fell under a given
user-defined threshold.

3.3 Trajectory Processing

Motion analysis of the set of points of interest produced a set of trajectoriesE{T }
where T : N → N

2 defines the spatial position (x, y) in the 2D projective space of
a pixel, for CB projections Pi with 0 ≤ i < N , and N being the total number of
CB images. These pieces of signal were processed to reconstruct the respiratory
signal over the complete time of acquisition, respecting the characteristics of the
respiratory signal described in 2.1 above.

Trajectory projection. We obtained a 1D respiratory signal by transforming the
function T : N → N

2 into a function f : N → R, using a method that preserved
maximum motion information, i.e. variations of the position of the point of
interest over time. We firstly calculated the unit vector −→u corresponding to the
best approximation line of all positions Mi(x, y) with a linear regression and the
mean 2D spatial position of points in time C(x, y). Then, for each projection
i, the 1D projection value of the 2D spatial position Mi(x, y) was given by
fT (i) =‖ −−→CMi �−→u ‖ which is the norm of the projection of

−−→
CMi on the best-fit

line (figure 1).

Fig. 1. On the left: the bottom left profile of a simulated CB projection of the lungs,
with the selected trajectory (green) of an original block (red) and the best-fit line (blue).
On the right: the computed 1D piece of respiratory signal (green) compared to the
reference (red). The X axis represents the number of CB projections (chronologically
numbered) and the Y axis the respiratory signal value f(t).
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Fig. 2. On the left: a CBCT projection with points extracted by the BMA; on the
right: the selected final points. In between: the point (umax,CC) drawn for each piece
of signal demonstrates the efficacy of frequency selection. Most of the signal pieces
highly correlated to the reference have a period between 3 and 5 sec (0.33 and 0.2 Hz).

Filtering. These 1D pieces of signal generally contain information about the
respiratory signal, but this information is correlated with the motion due to
cone-beam rotation. As this motion corresponds to an ellipsoidal motion with
low frequency, we simply processed the data through a Fourier high pass filter.

Selection. Integration of the different pieces of signal provided good results, but an
individual visual observationof thedifferent trajectories showed thatmostwerenot
relevant to the respiratory signal and a selection was required. We first eliminated
short signals (< 7 seconds) or signals with weak mean absolute amplitude (< 2
pixels) because their spatial and/or temporal resolutions were not satisfactory.

To find an interesting selection parameter p, we refered to an important char-
acteristic of the respiratory signal, its temporal pseudo-periodicity. We measure
the higher amplitude value of the signal in the Fourier domain, i.e. p = umax with
F (umax) = max(|F (u)|), u→ |F (u)| being the Fourier amplitude spectrum. Se-
lected signals have p � pref , where pref corresponds to the pseudo-period of
respiration.
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This selection criterion was validated using the gold standard as reference
by calculation of CC for each piece of signal. After drawing CC(p) (figure 2),
we observed that p for all signal pieces with high CC approximated a particular
value pref � 4 sec., which confirms our supposition.

Integration. Selected signals represent pieces of the respiratory signal over over-
lapping intervals of the time of acquisition. We integrated all the signals to
determine the whole respiratory signal over the time of acquisition. We consid-
ered that extreme positions were matched for all thorax points, thus making
integration simpler. Firstly, we linearly normalized all signal pieces between 0
and 1 and eventually put them in phase when they were in phase opposition.
For each time t, the respiratory signal value was equal to the mean of the values
of all different pieces at this time.

4 Experiments and Results

Experiments. We simulated 720 CB projections, one every 0.5˚and every 0.36
second (Elekta Synergy parameter [12]), with a resolution of 600x460. Simulation
was based on a real respiratory signal (irregular in phase and amplitude), ac-
quired with an ABC system and two CT 3D breath-hold images of 512x512x65
voxels. Motion extraction used blocks of 40x40 pixels and stopped when CC
fell under 93%. We selected trajectories with a maximum period in the Fourier
domain between 3 and 5 seconds (0.33 and 0.2 Hz).

Measurement. The measure commonly used for evaluating respiratory signals
with respect to a reference is the CC [10][11]. Here we also calculated another
measure in direct relation with our use of the respiratory signal. We sorted
both the respiratory signal extracted from CB images (result bins) and the gold
standard (reference bins), then measured the percentage of misplaced samples
in the result bins compared to the reference ones. We also calculated σ, the
average of σ, the respiratory signal standard deviation from reference values
in each bin, for both reference and result bins, and their ratio σref/σres. The
smaller σ is, the more data in each bin were in phase with the respiratory cycle.
σref automatically decreases with the number of bins, but σres stops decreasing
when the number of bins is too big because of the inaccuracy of the respiratory
signal result. σref/σres is equal to 1 when both sortings are equally good and
decreases when the quality of the result sorting decreases.

Binning. There are different methods for sorting CB images with the respiratory
signal, depending whether one takes hysteresis into account and whether bins
have the same size. If bins have the same size, the 3D images have homogeneous
resolutions but variation of the respiratory signal in each bin is variable; else,
extrema have a higher resolution because there are more data used for their
reconstruction. We chose to take hysteresis into account and to divide the signal
into equal bins.

We extracted a respiratory signal with 96.4% correlation with the reference.
After sorting, we obtain:
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Number of bins Misplaced samples σref σres σref/σres

1 0 0.249 0.249 1
2 23 (3%) 0.123 0.127 0.97
4 57 (8%) 0.093 0.101 0.92
8 122 (17%) 0.055 0.068 0.81
12 184 (25%) 0.038 0.055 0.69

5 Discussion and Conclusion

An interesting result of this method is the location of selected trajectories on
CB images, i.e. points of CBCT images having a motion directly related to
respiration. Most of these points are located around the diaphragmatic cupola,
which corroborates Zijp et al [12] hypothesis, but others are also located on lung
walls in the inferior lobe (figure 2). Their motion direction depends on their
location: mostly cranio-caudal for points around the cupola, and perpendicular
to the lung walls otherwise. The location of the points of interest has now been
determined; future work will improve the method with a priori detection of the
points of interest.

The computed respiratory signal is visually very close to the reference, as
confirmed by the high CC. But the result bins has a proportion of misplaced
points compared to the reference bins which increases with the number of bins.
The impact of these misplacements is measured by σref/σres. It is unnecessary
to increase the number of bins if σref/σres is too low, and/or if it does not
decrease sufficiently σ. This measurement points out the importance of an ac-
curate respiratory signal for 4D imaging, and the not so good capacity for the
CC to measure this accuracy. However, the number of bins is limited because
the quantity of data in each bin is a primordial criterion for the quality of the
reconstruction.

4D CT images will be reconstructed with a number of bins deduced from
these observations. They will be used for modeling the thorax motion, and will
offer the possibility to take motion into account for treatment planning. Future
work will also include validation on real CBCT data.

Acknowledgement. This work was supported in part by Elekta Oncology
Systems.
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Registering Liver Pathological Images with Prior In Vivo 
CT/MRI Data 

Huadong Wu, Alyssa M. Krasinskas, Mitchell E. Tublin, and Brian E. Chapman 

Abstract. Liver transplantation affords a unique opportunity to assess and im-
prove radiological imaging of the liver, as the full explanted liver is available for 
review and comparison. Quantitative comparison between the explanted liver 
and in vivo images acquired prior to transplantation requires accurate registration 
of images of the explanted liver to the radiological images. However, this regis-
tration problem is challenging because the orientation change and the deforma-
tion magnitude between the two image sets exceed the level assumed for most 
registration algorithms. This paper suggests a two-step registration process to 
overcome the difficulty: to first align the orientation of 3D liver models built 
from two sets of image data using maximum volume overlap as their similarity 
measurement, and second to deform one model to match the other. The key con-
tribution of this paper is that it utilizes the global volumetric information and the 
asymmetry property of the liver model to determinately provide a simple and re-
liable initial point for further deformable model based registration. Our experi-
mental data demonstrate the effectiveness of this approach. 

1   Introduction 

1.1   Motivation 

Imaging of the liver is an important problem in radiology, particularly regarding can-
cer. Not only is the liver an important target for metastatic disease, but the incidence 
of primary liver tumors, such as hepatocellular carcinoma (HCC), has reach epidemic 
levels in some parts of the world. The health impact of HCC world-wide is tremen-
dous [8]. However, the early clinical and radiological manifestations of HCCs are 
subtle and optimizing imaging strategies for detecting them is difficult [9]. We be-
lieve that explanted livers provide a unique basis for optimizing MR or CT strategies 
for imaging the liver, particularly regarding the early detection of HCC.  

Correlating in vivo liver images with photographs of the sectioned explanted liver 
is difficult since the liver geometry changes dramatically when the flexible liver is no 
longer supported by its surrounding anatomic structures. Additional deformations oc-
cur due to loss of tissue distension from blood pressure and tissue relaxation when the 
liver capsule is cut. However, the liver boundary shape (3D surface) is a relatively 
rich feature for matching the pathology images to the in vivo images. This paper sug-
gests the overall geometric shape retains sufficient information to do a preliminary 
alignment of the ex vivo and in vivo images. Application of a deformable registration 
can then be applied to provide final alignment of the images. 
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1.2   Registration Challenge 

Modeling deformable anatomical structures with significant variability is currently be-
ing investigated. Deformable geometric models allow structures to change shape (from 
static point of view) or to evolve (from dynamic point of view) subject to constraints 
derived from physical principles. These models provide a reasonable basis for image 
registration [2], [4]. The most widely used physical assumption for static models is an 
elastic body, whose substrate responding naturally to applied forces and internal struc-
tural constraints. Dynamic models usually assume the viscous fluid property that the 
applied forces are proportional to the time rate of change in displacement [1], [3].  

Almost all registration methods today assume that the initial estimation of location 
and pose is close to the ground truth so that the optimal point can be assumed to be 
within a local optimum. Obviously our pathological liver registration situation vio-
lates this basic assumption. Therefore, for our liver registration problem we need to 
align the images so as to find an acceptable initial start in registration.  

The generally used approach to initialize the image registration process is to take 
course-to-fine multiple resolution registration scheme, using the result from the 
course-resolution registration as the initial point for the finer resolution registration. 
Ourselin et al. extended this approach (named “Block Matching” method) for rigid 
body registration, in which they use the majority of sub sets with maximized similar-
ity to estimate a start point [5]. Lau et al. also used a multiscale approach and ad-
dressed the initial estimation problem [6]. They build a deformation vector field by 
matching block sub-regions between the images using a voxel-similarity measure. A 
median filter is then used to ensure a locally smooth transformation [11].  

It is not difficult to conclude that these approaches are not suitable for our liver 
registration tasks, where orientation is totally lost, large deformation is assumed, and 
the voxel information from pathological images can be at best sparsely available due 
to the thick sectioning of the explanted liver1.  

Intuitively, the best solution to this challenge would require globally abstracting 
the geometry characteristics of the entity of concern. Using the medial axis descrip-
tion of geometric body, a research topic getting more popular recently, might be a 
good candidate to realize such abstraction [2]. However, the medial axis extraction 
process is intrinsically sensitive to surface variation of the object [7], and in our case 
the constructed 3D models from pathological images are not sufficiently stable in the 
sense that the slices are arbitrarily laid out2 and contour line transitions between adja-
cent images are not smooth.  

This paper will show that, because of the asymmetry characteristics of the liver 
geometric shape, the geometric principle axis description can be used as a simple but 
effective clue for the orientation alignment to be used as the initial step in the registra-
tion process. Following the gross alignment of the respective volumes using the geo-
metric principle axes, local deformations can easily be applied. 
                                                           
1  Even if the liver is well cut into slices during the pathology examination, the slices are usu-

ally 10~20 mm thick. Therefore, if a 3D volume model is built out of the slices, no real voxel 
information between slices is available, thus limiting the usefulness of truly 3D to 3D de-
formable registration techniques which are currently available (e.g. www.itk.org). 

2  The slices are laid out for photographing in a relaxed shape that resembles their in vivo nature 
status — but only according to the pathology technician’s own imagination. 
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2   Image Registration Via Volume Match 

2.1   Registration Process Overview 

First, a 3D model is built by segmenting the liver from the CT/MRI data on a slice by 
slice manner; this model serves as the reference model. The model is interpolated in 
the slice direction in order to obtain isotropic voxels.  

Second, a 3D model is built by stacking the photographs of the sectioned explanted 
liver, where adjacent slices are aligned via translation, rotation and scaling. Alignment 
is driven by voxel similarity. This 3D model is subsequently scaled to match the vol-
ume of the 3D model built from CT/MRI data.  

For these two 3D models, the centroid and voxel distribution are calculated respec-
tively. The voxel distribution is described for each volume using a covariance matrix. 
Decomposing the two covariance matrices respectively, we can find the geometric 
principle component axes (eigenvalues) of each object.  

Then, by rotating the CT/MRI 3D model around its centroid, we can align the 
geometric principle axes with respect to the corresponding geometric principle axes of 
the 3D model built from pathological images.  

This global orientation alignment provides an initial point for further model de-
forming. Currently we correlate pathological slice images with the CT/MRI 3D 
model’s corresponding intersections and do 2D image warping to increase the regis-
tration accuracy.  

2.2   Building 3D Models from CT/MRI Images 

The liver CT images are first hand-segmented from the reminder of the images in 
each cross section slice image, as shown in the left image of Fig. 1. The extracted 
liver model is represented as a 3-dimensional matrix where the value of pixels outside 
the liver is set to zero. To describe the overall geometric properties of the liver model 
( Ω ), we set the liver voxel 

iV to a unit value and calculate the centroid point coordi-

nates (the mass center as if the liver has unit density) 
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Since the covariance matrix is real, symmetric, and positive semi-definite, it can be 
eigen-decomposed into principle axes:  

1 2 3, [ , , ]T E E E= =Cov E D E E  (3) 
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Fig. 1. Left: CT image data with the liver manually segmented; Right: pathological sliced liver 
images 

The eigen vectors, 
1E , 

2E and 
3E , describe the 3 orthogonal directions, i.e., the ori-

entation of the geometric principle axes, in which the liver volume spans. The eigen 
values, or the element 1e , 2e and 3e  of the diagonal matrix D , correspondingly de-

scribe the voxel distribution in these principle axis directions: the larger the value the 
more the liver is spread-out in this direction.  

2.3   Building 3D Models from Pathological Liver Slice Images 

We create a 3D model by virtually stacking slices to form a 3D liver model. The 
physically analogy of this process is shown in Fig. 2. The images were first preproc-
essed to segment the liver region, with the background pixel values being set to zero 

and the voxel dimensions scaled to match 
the in vivo voxel size. Choosing a slice 
image that is close to the center of the liver 
as base, the stack grows out in both direc-
tions perpendicular to the base slice image, 
with local registration between adjacent 
slice images. Slice-to-slice alignment is 
achieved via translation, rotation around 
the center of the ROI (Region of Interest, 
i.e., the liver pixels inside the image), and 
isotropic scaling transformation T() . This 

is represented mathematically as: 

0 cos sin

0 sin cos
x x x

y y y

x x m T m
y m T my

+
= +

+
 (4) 

The pixel-wise mean square difference between the image A in the base stack and 
the transformed image (the image to be added to the stack) ( )T B  is used as the metric 

to optimize the transformation parameters. 

 

Fig. 2. Pathologists would stack slices in 
trying to register pathological findings 
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=A B  (5) 

where iA  and iB  are pixel values in image A and B, and N  is the number of total 

pixels considered.  
To achieve global optimization, the process is implemented in two steps. In the 

first step, the image pixel values are reduced to binary data with pixels inside or on 
the liver ROI set to 1 and the background set to 0. Starting at different initial rotation 
angles with increment of 10° , a coarse optimization is conducted. Then the best re-
sulting transformation parameters in the first step are used as the starting position in 
the second step, where a finer optimization step-length is used and the original gray-
scale image pixel value is used.  

With the calculated transformation parameters and by setting the scaling factor 
back to 1= , new slice images are added to the liver model stack. One image at a 
time, and taking the slice thickness into account, the 3D liver model is built from the 
2D pathological images. The volume of the resulting 3D liver model typically differs 
from the model built from the in vivo CT or MRI images. Since the precise nature of 
the volumetric changes is unknown, a uniform scaling scheme is used to approxi-
mately undo the effect.  

We use the same measurements described in Equation 1, 2, and 3 in previous sub-
section to present the characteristics of the model geometry. The eigen values from 
the largest to the least are denoted as 1e , 2e , and 3e , and their corresponding eigen-

vectors (geometric principle axes) are denoted as 1E , 2E , and 3E .  

2.4   Aligning the 3D Models 

Even though the 3D model built from in vivo CT scan images may seem substantially 
different from the 3D model built from the pathological images of the ex-transplanted 
liver slices, because of the geometric asymmetry, the two models can still be ap-
proximately aligned using their geometry principle axis properties. The alignment 
proceeds as follows. First we rotate the 3D liver model from CT images along the di-
rection vector: 

1 1RE E E= ×  (6) 

with an angle: 

1 1

1 1

arccos( )
E E
E E

=  (7) 

This aligns the largest geometric principle axis 1E  of the 3D liver model from CT 

images to the direction of the largest principle axis 1E  of the 3D liver model from 

pathological images. Second, the next-to-last geometric principle axis 2E  of the 

model is rotated to a new orientation as 2( )RE E . Third, we rotate the 3D liver model 

from CT images along the direction of 1E  with an angle: 

2 2

2 2
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arccos( )

( )
R

R

E E E
E E E

=  (8) 
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This rotation aligns the next largest geometry principle axes of the two models. If the 
two models have a similar geometry shape, their orientation should have now prop-
erly aligned in the sense that their second order voxel distribution moment has a 
maximum overlap. Fourth, since the difference of eigen values corresponding to sec-
ond and third geometry principle axes are typically less conspicuous, to make sure 
that the two models are best aligned in terms of volume overlap, fine search is con-
ducted via changing the rotation angle .  

2.5   2D Image Warping Deformation  

After application of our principle axes alignment and volume scaling, the images are 
sufficiently aligned to apply a deformable registration technique. For these initial ex-
periments we have implemented a 2D slice-by-slice deformation using the IDL func-
tion WARP_TRI(.) [10]. Thus our final registration accuracy largely depends on 
properly choosing the control points in the image warping process. 

3   Results  

Examples of the resulting models after rigid body alignment is completed are shown in 
Fig. 3. In this example, the geometric variation eigenvalues of the 3D model built from 

the in vivo CT images 
are:{3791.8, 1265.4, 538.6}, 
and the geometric variation 
eigenvalues of the volume-
normalized 3D model built 
from the pathological im-
ages are {5236.0, 678.5, 
523.4}. It seems that the 
geometric asymmetry prop-
erty is largely preserved but 
the spread-out effect has in-
creased the largest principle 
vector and decreased the 
next-largest principle vector. 

 
Fig. 4. Pathological liver slice image registration, b: pathological image with a tumor at lower-
left; a: human technician estimated corresponding CT scan slice (a failure); c: global geometry 
principle axis alignment scheme successfully finds the plane in CT data that contains the tumor; 
d: registration is improved by simple 2D image warping deformation 

 

Fig. 3. Two models’ orientation aligned 

tumor tumor tumor 

a b c d 
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Fig. 4 shows corresponding slices extracted from the rigidly aligned models. It  
is clear that although the two slices still differ by an in-plane bending, our registra-
tion scheme successfully finds the correct region. In this given example, the regis-
tration error in the direction parallel to the slice is in the range of 5~10 mm.  
Application of the 2D warping provides a nice alignment of the tumor in the two 
images. We estimated the accuracy of the registration by measuring the displace-
ment between tumor nodules in the in the radiological and pathological images.  
Using 10 tumors as landmarks, we estimated the residual displacement to be on the 
order of 10 to 30 mm. 

4   Conclusions and Discussion 

Because of large deformation due to tissue flexibility as well as the lack of consistent 
fiducial marks between modalities, correlating pathological findings in explanted liver 
slices to its prior in vivo radiological imaging manifestation poses a big challenge. Af-
ter a translation to make the centroids coincide, the key to solving this difficult prob-
lem is to properly align the geometric orientation of the 3D model — so that overall 
correspondence between models can be established and deformable model based reg-
istration process can have a proper initial starting point.  

The underlying principle for this registration initialization scheme is based on the 
assumption that although the liver has undergone dramatic deformation after being 
explanted and sliced for pathological examination, its overall asymmetric shape prop-
erty is still preserved in terms of the geometric principle axes’ orientation. In the cases 
where this condition fails to be held due to badly laid out slices (i.e., the overall shape 
is too far away from its natural status) or the slices were not evenly cut, our solution is 
to manually estimate the approximate orientation and then do a local optimum orien-
tation search based on maximum volume overlap.  

When available, a radiological image of the explanted specimen can be extremely 
useful, because it preserves an intermediate state of deformation (prior to sectioning). 
Such an ex vivo image can be used as an intermediate target to which the sectioned 
photographs and in vivo images can be independently matched.  

The aligned 3D model pair has global maximum volume overlap. However, the 
shape deformations that exist between the objects are still large and we believe that a 
large scale bending needs to be done prior to the application of a typical deformable 
registration model. We hypothesize that the bending can be estimated by examining 
the medial axes extracted from smoothed versions of our 3D models. Our results, 
however, are already good enough for practical visual correlation of the pathological 
and radiological images.  

Acknowledgement 

This work is supported in part by NIH grant CA095759. 



 Registering Liver Pathological Images with Prior In Vivo CT/MRI Data 571 

References 

1. D.L.G. Hill, P.G. Batchelor, M. Holden and D.J. Hawkes “Medical Image Registration,” 
Physics in Medicine and Biology vol. 46, no. 3, pp. 1-45, 2001. 

2. 2 S.M. Pizer, T. Fletcher, S. Joshi, A. Thall, J.Z. Chen, Y. Fridman and e. al. “Deformable 
M-Reps for 3D Medical Image Segmentation,” International Journal of Computer Vision 
vol. 55, no. 2/3, pp. 85-106, 2003. 

3. T. McInerney and D. Terzopoulos “Deformable Models in Medical Image Analysis: A 
Survey,” Medical Image Analysis vol. 1, no. 2, pp. 91-108, 1996. 

4. J. Montagnat, H. Delingette and N. Ayache “A Review of Deformable Surfaces: Topol-
ogy, Geometry and Deformation,” Image and Vision Computing vol. 19, no. 14, pp. 1023-
1040, 2001. 

5. S. Ourselin, A. Roche, S. Prima and N. Ayache “Block Matching: a General Framework to 
Improve Robustness of Rigid Registration of Medical Images,” Third International Con-
ference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’00) 
vol. 1935, pp. 557-566, 2000. 

6. Y. Lau, M. Braun and B. Hutton “Non-rigid Image Registration Using a Median-filtered 
Coarse-to-fine Displacement Field and a Symmetric Correlation Ratio,” Physics in Medi-
cine and Biology vol. 46, no. 4, pp. 1297-1319, 2001. 

7. S.M. Pizer, K. Siddiqi, J.N. Damon and S. Zucker “Multiscale Medial Loci and Their 
Properties,” International Journal of Computer Vision vol. 55, no. 2-3, pp. 155-179, 2003 

8. Hashem B. El-Sera and Andrew C. Mason “Rising Incidence of Hepatocellular Carcinoma 
in the United States,” the New. England Journal of Medecine Volume 340, no. 10, pp. 
745-750, March 1999 

9. Shahid Hussain, P. Zondervan et al. “Benign versus Malignant Hepatic Nodules: MR Im-
aging Findings with Pathological Correlation,” Radiology Graphics, vol. 22, no. 5, pp. 
1023-1039, 2000 

10. Robert J. Renka, “Interpolation of Data on the Surface of a Sphere and Triangulation and 
Interpolation at Arbitrary Distributed Points in the Plane,” ACM Transactions on Mathe-
matical Software, Vol.10, no. 4, pp.437-439, Dec. 1984 



Support Vector Clustering for Brain
Activation Detection

Defeng Wang1, Lin Shi2, Daniel S. Yeung1, Pheng-Ann Heng2,
Tien-Tsin Wong2, and Eric C.C. Tsang1

1 Department of computing, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong, China

{csdfwang, csdaniel, csetsang}@comp.polyu.edu.hk
2 Department of Computer Science and Engineering,

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
{lshi, pheng, ttwong}@cse.cuhk.edu.hk

Abstract. In this paper, we propose a new approach to detect activated
time series in functional MRI using support vector clustering (SVC). We
extract Fourier coefficients as the features of fMRI time series and cluster
these features by SVC. In SVC, these features are mapped from their
original feature space to a very high dimensional kernel space. By finding
a compact sphere that encloses the mapped features in the kernel space,
one achieves a set of cluster boundaries in the feature space. The SVC
is an effective and robust fMRI activation detection method because of
its advantages in (1) better discovery of real data structure since there
is no cluster shape restriction, (2) high quality detection results without
explicitly specifying the number of clusters, (3) the stronger robustness
due to the mechanism in outlier elimination. Experimental results on
simulated and real fMRI data demonstrate the effectiveness of SVC.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive tool to observe
the brain neural activities when the subject is undertaking cognitive or motor
tasks. Most activation detection techniques can be categorized as model-driven
and data-driven approaches. Apart from principle component analysis (PCA)
and independent component analysis (ICA), clustering is a family of effective
data-driven approaches to identify unknown responses in fMRI data. The aim of
clustering approach is to separate the time series into clusters — each contains
voxels with similar activation patterns. Existing clustering approaches to fMRI
data analysis include but not limited to crisp C-means [1], Kohonen clustering
neural network [2], fuzzy C-means (FCM) [3], hierarchical clustering [1], etc.

However, most existing methods are suffering from the problem of choosing
the number of clusters. The detected set of voxels varies significantly when the
number of clusters is set to different values. For example, in crisp C-means and
FCM, the user has to define a suitable value for the number of clusters C; in hier-
archical clustering, there is similar dilemma in determining a proper cut for the
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Fig. 1. fMRI Data Processing Scheme

dendrogram. Moreover, the existing fMRI clustering methods implicitly assume
the potential clusters are scattered in certain shapes, such as hyper-spherical
(when using Euclidean distance) and hyper-ellipsoidal (when using Mahalanobis
distance). This oversimplified assumption leads to partitions against the natural
data structure and thus achieves results with high false alarm rate.

Support vector machine (SVM) [4] is a preferred classifier in many theoretical
and empirical areas, due to its salient properties such as margin maximization
and kernel substitution for classifying data in a high dimensional kernel space.
Inspired by SVM, the support vector clustering (SVC) algorithm is proposed [5].

In this paper, we explore the application of SVC to solve the fMRI activation
detection problem. The whole scheme is illustrated in Fig. 1. We first extract
features from fMRI time series using the Fourier transform, and then apply SVC
to cluster these Fourier coefficients. They are mapped to a high dimensional ker-
nel space using a kernel function, e.g. the Gaussian kernel. In the kernel space,
we calculate the smallest sphere enclosing these mapped features, which appears
in the feature space as a set of contours enclosing the original features. These
contours are interpreted as cluster boundaries. The points within the same con-
tinuous region encompassed by the contour are considered as a cluster. SVC has
been shown to be able to generate clusters with arbitrary shapes and eliminate
the outlier by using a regularization constant that controls the compactness of
the sphere in the kernel space – points out of that sphere is considered as outliers.

2 Materials and Methods

2.1 Dataset

Simulated Dataset Generation. According to a new BOLD response mod-
eling technique [6], the BOLD response s(t) is modeled as the combination of
two gamma functions ga(t) and gb(t) convoluted with stimulus c(t):

ga(t) =
(
1− e−1/da

)2
(t + 1)e−t/da, gb(t) =

(
1− e−1/db

)2
e−t/db,

s(t) = fa(ga ∗ c)(t− d0) + fb(gb ∗ c)(t− d0) + fc(ga ∗ c)(t− d0)(gb ∗ c)(t− d0)
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Table 1. Parameters for the simulated data

Region fa fb fc da db d0

A 0.7 0.04 0.6 2 12 3
B (left and right) 0.5 0.3 0.5 3 6 2

C 0.35 0.1 1 5 5 4

To simulate the real-world fMRI data and to get concrete performance mea-
surements for comparison, we construct four artificial activation regions, i.e. A,
B(left and right), and C regions in Fig. 2(b), with three sets of values for the
parameters (see Table 1) in the above-mentioned BOLD response model. The
baseline image is constructed by averaging time courses on the 29th slice in the
processed real auditory fMRI dataset (cf. Fig. 2(a)) from Wellcome Department
of Cognitive Neurology at University College London. The size of simulated data
is 79 × 95 × 1, and the length for each time series is 200. Then we add onto all
the voxels the additive white Gaussian noise with intensities proportional to the
baseline voxel intensities. In the experiment, we simulate various contrast-to-
noise ratio (CNR).

In Vivo fMRI Dataset. We also use the auditory fMRI data acquired by
Wellcome Department of Cognitive Neurology at University College London to
validate the effectiveness of our method. We use it with the permission from the
Functional Imaging Laboratory. The experiment was conducted to measure the

(a) (b)

(c) (d) (e)

Fig. 2. Simulated Dataset (a) baseline slice generated from the 29th slice of real data;
(b) spatial layout of simulated BOLD activation; (c) average activation time series in
A; (d) average activation time series in B; (e) average activation time series in C
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activation in the subjects brain when given an auditory bi-syllabic stimulation.
This whole brain BOLD/EPI data was acquired with a modified 2-T SIEMENS
scanner and the TR is set to 7 sec. The spatial resolution of the volume data
is 64 × 64 × 64, and the size of each voxel is 3mm × 3mm × 3mm. In this
experiment, the subject is given a boxcar stimulation: first begins with rest, and
then switches between rest (6 scans, last for 42 sec) and stimulation (6 scans, last
for 42 sec). By discarding the first few scans, the acquired 96 scans are reduced
to 84 scans. The structural dataset that has been aligned with the function data
is also provided for reference.

2.2 Methods

Preprocessing. To remove the head motion effect in raw fMRI data, we first
spatially realign the slices with the first slice. Then the dataset is normalized
by subtracting the mean amplitude from each time series and adjust their vari-
ances to one in order to emphasize their variation patterns. The last prepro-
cessing step is first-order polynomial detrending [7] that removes the undesired
drift.

Data Analysis. (1)Data Reduction: To accelerate feature extraction and data
clustering, also to avoid ill-balance clustering result, we use t-test to remove
the data points that will definitely not be considered as the activated voxels.
All the voxels that are likely to be activated will be acquired by setting a
low threshold in the t-test. (2)Feature Extraction: BOLD response to the pe-
riodic stimulus can be well characterized by the Fourier coefficients [8]. As the
paradigm in our experiment is typical box-car, which is periodic, we use the
Fourier transform to acquire the features for clustering. Another merit of us-
ing Fourier transform to extract features is to avoid explicitly modeling the
delay from the stimulation, as the delay changes in various brain locations
and for different subjects. Suppose the fMRI dataset is Y, a T × N matrix,
where N is the number of time series, each with a length T . Columns in Y
are time series and rows in Y correspond to scans. Since we have performed
the normalization and detrending in the preprocessing stage, the columns of
Y are zero mean, zero drift time series. The harmonic components are calcu-
lated as

α�(t) = sin
(
#

2
ωt

)
· (# mod 2 + 1) + cos

(
# + 1

2
ωt

)
· (# mod 2), # = 1 . . . L,(1)

where ω is the fundamental frequency of the experimental paradigm, L ≤ (2π)/
("t ·ω) is the number of harmonic components, and "t is the temporal sampling
period. We then form a T × L design matrix A = [a1 . . .aL]. So far, the data
can be expressed as Y = A ·X + ε [9], where X is an L × N harmonic image
matrix containing the linear coefficients, and ε is the noise matrix. An estimate
of X can be computed using a least squares fit, i.e. X̂ = (AtA)−1AtY. We treat
X̂ as the input data in the next SVC step.
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Support Vector Clustering. There are two major steps in support vector
clustering: a training step to train a kernel radius function and a cluster labeling
step to assign a cluster index to each data point.

(1) Training: Assume X = {xi}, i = 1 . . .N is the input data. Using a non-
linear transformation, X can be transformed to a high-dimensional kernel space,
where we can find the smallest hyper-sphere that encloses the maps of {xi}, i.e.
{φ(xi)} with the radius R:

‖φ(xj)− a‖2 ≤ R2 + ξj , (2)

where a is the center and ξ ≥ 0 are the slack variables that enables soft bound-
aries calculation. Using the Lagrangian with a regularization constant C in its
penalty term, L = R2 −

∑
j

(
R2 + ξj − ‖φ(xj)− a‖2

)
βj −
∑

j ξjμj + C
∑

j ξj ,
problem (2) can be solved by dealing with its dual problem:

max W =
∑

j

φ(xj)2βj −
∑
i,j

βiβjφ(xi)φ(xj) (3)

s.t. 0 ≤ βj ≤ C,
∑

j

βj = 1, j = 1 . . .N. (4)

Support vectors are the points on the boundary of the sphere with 0 < βj < C.
The trained kernel radius function is defined as f(x) := R2(x) = ‖φ(x) −
a‖2 = K(x,x) − 2

∑
j βjK(xj ,x) +

∑
i,j βiβjK(xi,xj), where the kernel func-

tion K(xi,xj) substitutes the inner products φ(xi) · φ(xj). In this work, we use
the most commonly used kernel function, Gaussian kernel, which is defined as
K(xi,xj) = exp

(
−‖xi − xj‖2/2δ2

)
.

(2)Cluster labeling: As the trained kernel radius function is topologically
invariant, the level set of f(·) can be decomposed into several disjoint sets [10] ,
Lf(R̂2) := {x : f(x) ≤ R̂2} = C1 ∪ . . . ∪ Cp, where R̂ = R(xi), i = 1 . . .N is the
radius in kernel space, p is the number of clusters determined by f(·), and Ci,
i = 1 . . . p are different clusters.

3 Experiment and Results

3.1 On Simulated Dataset

For the simulated dataset, the data processing scheme (cf. Fig. 1) is performed.
After preprocessing, the t-test was used to reduce the dataset, which generated
the result as shown in Fig. 3(a). As there are three different activation patterns
in the simulated dataset, our target is to find four clusters: three contain three
types of activated voxels, and the fourth is for the non-activated voxels. The
performance of SVC is compared with those of crisp C-means, ICA [11], and
FCM. For crisp C-means and FCM, we set the number of clusters to be four. ICA
was constrained to generate three independent components. For the SVC, we set
the kernel width σ to 0.2 and the regularization parameter C to 103. Four clusters
are detected by SVC. In FCM, the cluster label for each voxel is determined by
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(a) (b) (c) (d) (e)

Fig. 3. Detection results from (a) after t-test (b) C-means (c) ICA (d) FCM (e) SVC

(a) (b)

Fig. 4. Performance of C-Means, ICA, FCM, and SVC (a) Sensitivity (b) Specificity

finding the largest membership value; and in ICA, each voxel is assigned to the
largest component. For the detected clusters, we find the ”activated” clusters
whose centroids are the most correlated ones to the stimulus paradigm.

Fig. 3 shows the detection results from C-means, ICA, FCM, and SVC, when
CNR is set to 1.2. When CNR increases from 0.4 to 2, the sensitivity (the per-
centage of voxels correctly detected as activated) and specificity (the percentage
of voxels correctly detected as non-activated) of the four methods are plotted in
Fig. 4. One can find that the proposed SVC achieves both higher sensitivity and
specificity than other methods under different CNR’s.

3.2 On In Vivo Dataset

For the in vivo dataset, as we do not know the desired number of clusters, in
order to achieve a set of finer clusters, we set the width parameter σ to 0.15 in
SVC; while for FCM and C-means, the number of clusters is set to 30. Other
settings are similar as discussed in 3.1. Fig. 5 shows that activated voxels on the
29th slice detected by C-means, FCM, ICA, and SVC cover the Brodmanns area
(BA) 42 (primary auditory cortex) and BA 22 (auditory associated area) when
they are superimposed on the accompanied structural data. But SVC detected
more continuous activated regions, which are demonstrated to have stronger
relationship with the stimulus (see Fig. 6(a)); however the voxels detected by
C-means, but not by SVC, are shown to be almost irrelevant (see Fig. 6(b)).
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(a) (b) (c) (d)

Fig. 5. The activated clusters detected by (a) C-means, (b) ICA, (c) FCM, (d) SVC

(a) (b)

Fig. 6. The in vivo activation detection results (a) the averaged signal detected by
SVC (b) The averaged signal detected by C-means but not by SVC

4 Discussions and Conclusion

The main contribution of this paper is finding an effective and reliable activation
detection method, support vector clustering (SVC), which is free of the cluster
shape assumption existing in most fMRI clustering approaches, and is able to
remove the outlier points. The experimental results show the effectiveness of
SVC in comparison with commonly used crisp C-means, FCM and ICA.

In the SVC algorithm that uses Gaussian kernel, the width parameter σ
determines how fine the samples are clustered. Users can have a control over
the clustering result by tuning this parameter: increasing σ will lead to a coarse
clustering result, and vice versa. Empirical value for σ is in the range from 0.1 to
3. The regularization constant C affects the amount of outlier points, and hence
influences the compactness of the generated clusters. Further research may be
on how to automatically determine the values for the two parameters in fMRI
activation detection by incorporating the field expert knowledge.
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Abstract. Noninvasive temperature measurement is feasible with MRI
to monitor changes in thermal therapy. Phase shift based MR thermome-
try gives an estimate of the relative temperature variation between ther-
mal and baseline images. This technique is limited, however, when ap-
plied on targets under inter-frame motion. Simple image registration and
subtraction are not adequate to recover the temperature properly since
the phase shift due to temperature changes is corrupted by an unwanted
phase shift. In this work, the unwanted phase shift is predicted from the
raw registered phase shift map itself. To estimate the unwanted phase
shift, a thin plate smoothing spline is fitted to the values outside the
heated region. The spline value in the heated area serves as an estimate
for the offset. The estimation result is applied to correct errors in the
temperature maps of an ex-vivo experiment.

1 Introduction

Local thermal ablation is becoming an established surgical technique for destroy-
ing tumors and metastases. A particularly attractive method to monitor thermo-
ablative treatment is by real-time MR thermometry based on the proton reso-
nance frequency (PRF) shift. The accuracy of PRF shift has been demonstrated
in immobile targets [1]. However, many targets for thermo-ablative interventions
are in the abdomen, where motion is ubiquitous. Since a subtraction technique is
used, errors in the temperature map may occur due to misregistration between
thermal and baseline images. Additionally, magnetic flux is dependent on posi-
tion, and any change in position will thus lead to a specific change in magnetic
field that confounds the phase shift. Therefore, although misregistration can be
solved using an image transformation, an unwanted phase shift map is not fully
compensated by subtraction techniques.

Relatively few publications deal with the issue of inter-frame motion cor-
rection. A correction technique was proposed in [2, 3] to avoid errors in the
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temperature maps due to accidental object motion. This method boils down to
excluding the (n)th temperature map to avoid error progression if motion occurs
between the (n − 1)th and the (n)th frame. To conserve temperature informa-
tion when a periodic motion occurs, multiple baseline images acquired in several
positions in the expected range of motion were used to generate temperature
maps [4]. Those correction techniques [2, 3, 4] have been validated under the as-
sumption that the largest amount of motion is along the static magnetic field
(superior/inferior) direction. Moreover, a temperature map is calculated only if
thermal and baseline images are scanned in the same location in order to avoid
unwanted phase shift problems. Therefore, the fraction of reliable temperature
maps in a series may be limited. In contrast with those correction schemes, a ref-
erenceless method is proposed in [5]. In this method, extrapolation of a surface
polynomial fit to values outside the heated region serves as the baseline. The ref-
erenceless method may work well for slightly shifted images in which the heated
region is always within some inner ROI frame. What is more, it is assumed that
a local phase change due to the interface between the thermal applicator and
tissues is insignificant. This condition may only be achieved if the selected scan-
plane orientation is perpendicular to the long axis of the thermal applicator. To
obtain an accurate prediction of thermal damage, however, a scan plane orien-
tation parallel to the long axis of thermal applicator is suggested[9]. Thus, the
local phase change cannot be neglected. In such a case, the referenceless method
may fail to determine temperature maps accurately.

In this work, we propose a dedicated image registration scheme for MR ther-
mometry. This scheme can be viewed as an extension of the multi-baseline ap-
proaches. An unwanted phase shift may arise if an image transformation is re-
quired to align thermal and baseline images. In order to solve for this, we explored
a strategy to estimate the distribution of the phase shift offset over the image.
Initially, a thermal image and a baseline image are registered to yield a raw reg-
istered phase shift map. Subsequently, we fit a thin plate smoothing spline to the
values of outside the heated region. The offset is corrected for by subtracting the
extrapolated spline values from the values inside the heated region. For valida-
tion, the method is tested to monitor temperature evolution during interstitial
laser therapy in an ex-vivo sample of the liver under 2D-inter-frame motion.

2 Methods

2.1 Temperature Calculation

We define the raw registered phase shift as

ΔΨ = arctan[I(−→r , T ).Γ{I∗(−→ro
bl, To)}] + Δφ(Γ ) (1)

where I(−→r , T ), I(−→rbl, To) are thermal and baseline images, respectively. Δφ(Γ )
is the offset phase shift and Γ is an image transformation that is required to
align image coordinates between I(−→r , T ) and I(−→rbl, To) and ∗ is the complex
conjugate operator.
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A proper relative temperature map is determined by

ΔT =
ΔΨ

γαBoTE
ΔΨ = ΔΨ −Δφ(Γ ) (2)

where ΔΨ is the corrected registered phase shifts, γ(=42.58 MHz.T−1) is the
gyromagnetic ratio, α (=0.01 ppm/oC) is the temperature coefficient for aqueous
tissue, TE is the echo time, Bo is the main magnetic field [1].

To calculate ΔΨ , one must select the appropriate I(−→rbl, To). However, the
number of baseline images may be limited, and we cannot ensure that each
I(−→r , T ) corresponds exactly to the selected I(−→rbl, To). If a significant transfor-
mation (Γ ) is required to align both images, the term Δφ(Γ ) may contribute
to a spatial offset in the temperature maps. Clearly, this must be eliminated to
avoid a systematic error. Therefore, a strategy to estimate Δφ(Γ ) is proposed,
and the result is used to obtain ΔΨ .

2.2 Image Registration

Image registration is needed to determine ΔΨ . We have chosen a modified optical
flow strategy to do so ([6]), because its formulation is elegant, and the resulting
computations are relatively fast and non-feature based. Standard optical flow
methods assume a constant brightness level over the image. The strategy de-
scribed in [6] extends the method to cope with intensity variations, eventually
yielding the six parameters of an affine transformation model.

Aligning temperature maps to a fixed target map is useful for a clinical applica-
tion. By doing so, the temperature is monitored with respect to a steady location
even though the heated region may move between frames. To do so, we choose one
of the baseline images as a fixed target. The transformation parameters among the
set of baseline images enables aligning the raw phase shift map to the fixed target.

2.3 Estimation of the Phase Shift Offset

Δφ(Γ ) may arise due to spatial magnetic field deviations that are not fully
compensated by registered image subtraction. It can be expected that the dis-
tribution of Δφ(Γ ) is a continuous function and that a pattern of φ(Γ ) may vary
relative to the center of imaging volume.

In the heated region, the registered raw phase shift may be corrupted by
Δφ(Γ ), resulting in errors in the temperature map. Fortunately, in thermal ther-
apy, usually only a small fraction of the image region is affected by temperature
change. Under this assumption, the raw phase shift values outside the heated
region may be used to estimate the phase shift offset in the heated region. In the
current implementation, first, a tissue region that covers both the non-heated
region and the heated-region is defined. This region is denoted by �high. Subse-
quently, the predicted area of the heated region (�hot) is selected (see e.g.[9]).
Finally, a ROI frame around the area to be heated (�ROI) is defined by sub-
tracting �hot from �high. Practically, the highest signal values in the intensity
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images can be used to guide the definition of �high. This is to increase the reli-
ability of the offset calculation (not letting it to be disturbed by noise values).
A threshold may be employed to do so.

Ideally �hot is a heated region for which the temperature at the boundary is
equal to the background temperature. It is important to determine �ROI outside
�hot, since a temperature change within �ROI will confound the extrapolation.
To anticipate the maximum area of �hot, the appropriate �hot may be calcu-
lated via a characteristic thermal response of laser irradiated tissue under ideal
conditions (e.g. neglecting a perfusion factor). To estimate the offset phase shift
in �hot, the fitted phase shift is extrapolated to the center of �ROI . We assume
that a thin-plate smoothing spline is appropriate to estimate Δφ(Γ ) in �hot.

Thin-Plate Smoothing Spline. Thin-plate splines are members of a family
of surface splines that result from the solution of a variational problem[7]. Given
the set of raw phase shifts in �ROI (xi, yi, ΔΨi), i = 1, ..,m, we now consider
the approximating thin-smoothing spline f , that takes the form

f(x, y) =
m∑

i=1

aiKi(x, y) + am+1 + am+2x + am+3y, (3)

where Ki(x, y) = 1
8πr

2
i (x, y)log(ri(x, y)) with ri(x, y) =

√
(x− xi)2 + (y − yi)2

(Ki = 0 when ri = 0).
The thin-plate smoothing spline f is the unique minimizer of the weighted

sum, given by S(λ) = 1
m

∑m
i=1(ΔΨi − f)2 +λJ2(f). The first term measures the

goodness of fit and the second term measures the smoothness associated with f .
The smoothness of a fit is measured by the integrated squared second derivative
J2(f) =

∫ ∫
((∂2f

∂x2 )2 + 2( ∂2f
∂x∂y )2 + (∂2f

∂y2 )2)dxdy where f belongs to the set of all
continuously differentiable functions with square integrable second derivatives
and λ is a positive constant. To determine an optimal smoothing parameter λ,
the method of generalized cross validation was applied. The spline parameters
ai, i = 1, ....,m+ 3 are determined as described in [7].

3 Materials

To generate inter-frame motion of a sample porcine liver, a custom made, au-
tomated and air-pressure driven table was used in the experiments. The table
moved along (S/I) and perpendicular to (R/L) the magnet’s main field direc-
tion (see Fig-1). The maximum range of the motion device is about 80 mm in
both directions. Over a range of 80 mm, 25 evenly spaced positions were de-
fined. A fiber optics laser catheter was inserted into a large sample of porcine
liver. We triggered the MR imaging when the sample was held stationary. MR
imaging was performed on a 1.5T GE scanner. For thermal imaging, we used
an echo shifted gradient echo sequence(θ/TE/TR = 15o/18ms/12ms) with 1.25
mm in-plane resolution, matrix 256x256, a slice thickness of 5 mm and a 3′′

surface coil.
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Fig. 1. (left) The custom made air-pressure driven table. (center)The approx. 25 dif-
ferent points (with a variation of ± 5mm). (right) Examples of ex-vivo liver images
placed on the 2D motion device.

Non Heating Experiment. Before heating started, the set of baseline im-
ages was selected by controlling the motion device to hold on the approximate
positions that are marked with black squares and the ellipse in Fig-1. As the
fixed target map, the baseline image scanned in the approximate central posi-
tion (marked by the ellipse in Fig-1) was selected. After that, we acquired a
series of images in various locations in about 6 minutes.

Fig. 2. Intensity image of the interstitial laser applicator inserted into a sample of liver
(left). The predicted area of �hot (middle). The tissue region defined as �ROI (right).

To validate the performance of the thin plate smoothing splines, we at-
tempted to extrapolate Δφ(−→Γ ) in the region predicted as �hot using the value of
ΔΨ on the location outside of the heated region �ROI .To define �ROI , we, first
defined a region of high SNR phase shift �high. It was guided using the signal
in the intensity images. Next, the shape of �hot was defined under the assump-
tion that the laser-induced thermal areas is roughly ellipsoidal[9]. We define the
length of long axis the �hot as about 125 mm, 45 mm longer than the length
of laser tip appearing in the intensity image. Next, the length of radial axis is
about 90 mm (See Fig-2-middle). Finally, the �ROI is defined as the subtraction
of �high and �hot (See Fig-2-right).

Heating Experiment. Using a similar setup as in the non-heating experiments,
we started the laser ablation (wavelength of 1024 nm, 20 W) to the liver sample,
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inducing focal heating at the diffuser tip. Images were acquired for about 14
minutes under heating and inter-frame motion.

4 Results

4.1 Non-heating Experiment

Examples of the raw ΔTback (without correction) in �hot for different positions
are shown in Fig-3. Notice that the outcome basically shows the offset maps,
since the temperature is constant. Only with translation parameters [0,0]mm,
the value is closest to the ideal offset of ΔTback(0oC). A planar slope and a
non-linear surface of offset-raw ΔTback can be seen in Fig-3 for other translation
parameters.

From 8 different selected translation parameters, we tabulate the values of
min., max. and mean square errors (MSE)(with respect to 0oC) of the raw
ΔTback in �hot. The results are shown in Table-1. Next, the estimation of the
offset value in �hot obtained by extrapolation using the thin plate smoothing
spline is validated. The estimated offset was subtracted from the raw ΔTback.
Again, we calculated value of min., max. and MSE of the corrected ΔTback. The
results are also tabulated in the Table-1.
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Fig. 3. Examples of the offset in raw (uncorrected) ΔTback in �hot for different trans-
lation parameters (in mm). The translation parameters (in mm) from left to right are
[0,0],[10,0] and [10,-12.5], respectively.

Table 1. Comparison of raw- and corrected background temperature (ΔTback)

raw ΔTback corrected ΔTback

Trans.(mm) Min Max MSE Min Max MSE
[0, 0] -2.07oC 1.97oC 0.92oC -0.73oC 0.75oC 0.35oC
[10, 0] -12.31oC 11.15oC 4.71oC -1.09oC 0.56oC 0.55oC

[−10, 0] -12.12oC 11.32oC 4.90oC -0.61oC 1.42oC 0.82oC
[0, 12.5] 5.21 oC 25.13oC 15.13oC -0.72oC 1.18oC 0.92oC

[0, −12.5] -22.74 oC -2.71oC 14.92oC -0.81oC 1.55oC 0.81oC
[−10, 12.5] 7.93 oC 28.40oC 15.21oC -0.31oC 0.53oC 0.94oC
[10, −12.5] -23.62 oC -3.10oC 13.10oC -0.32oC 0.85oC 0.56oC

[−10, −12.5] -21.61 oC -4.04oC 14.11oC -0.62oC 0.95oC 0.74oC
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4.2 Heating Experiment

After heating started, a series of images was acquired from an object under
frame-to-frame motion as described above. Furthermore, the raw- and corrected-
ΔT overlays in the fixed target maps are shown in Fig-4, and the temperature
profile in the defined �high along an aribitrarily chosen horizontal line during
heating at t1=5.4,t2=5.6 and t3=5.8 minutes are shown in Fig-5. We can see that
without correction, the raw ΔT profiles become unrealistic, since a longer dura-
tion of laser irradiation (t3) yields a lower ΔT profile than the shorter duration
(t1 and t2). We also tested the performance of our correction scheme to calculate
ΔT over time using the whole series of images during inter-frame motion and
heating. We chose averages of 3x3 voxels in the point indicated with an arrow

Fig. 4. Comparison of raw ΔT (top row) and corrected ΔT (bottom row) during
heating at t1=5.4,t2=5.6 and t3=5.8 minutes. One can see in the bottom images that
the hot area in the center is enclosed by a colder ”ring”. This distinction cannot be
made in the top images (specifically at t1 and t3).

Fig. 5. Profiles in �high along a horizontal axis of raw ΔT (left) and corrected ΔT
(right) during heating at t1=5.4,t2=5.6 and t3=5.8 minutes
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Fig. 6. The raw(left) and corrected(right) ΔT evolution. Each . cooresponds to an
acquired image in which the temperature is determined in a single point. It may seem
that two points coincide, but there is always an (albeit) small time interval). When the
absolute translation along both axes was < 1 mm, ΔT is marked with ’o’, indicating
the reference standard.

in Fig-5. The results are shown in the Fig-6. For reference, the ’true’ ΔT was
determined when absolute translation in both axis was less than 1 mm (then the
images are aligned and there is no offset, see Fig-3). An exponential function was
fitted to the reference result (MSE=0.13oC, R2=0.98). We found that the mean
difference and corresponding standard deviation between uncorrected tempera-
ture elevation and reference was -2.13oC ±10.71oC. The corrected temperature
elevation yielded a mean difference and standard deviation of 0.88oC±1.05oC,
indicating a significantly improved precision.

5 Conclusions

The results showed that inter-frame motion correction is feasible. Extrapolation
of a thin plate spline fit to the values outside the heated region served as an
estimation of the offset ΔTback in the heated region. Experimental results showed
that Δφ(Γ ) is a continuous function and that φ(Γ ) varies relative to the center
of the imaging volume.

We registered the raw phase shift maps to a fixed target in order to always
have a temperature map colocated with the same reference image (although the
actual heated area actually moves between frames).

To accurately define �hot, model calculations of laser-induced tissue coagu-
lation using Monte Carlo Simulation (MCS) [9] can be applied.

We demonstrated that a translation in S/I and R/L direction >10 mm can
induce an maximum offset in temperature change of >10oC. As long as the heat-
ing region can be maintained in the center of �ROI , the offset can be eliminated
by our correction scheme.

Considering the human liver as a target of thermal therapy, the average inter-
frame liver motion is 13 mm (range of 5-17 mm) under normal respiration [8]. In
many cases these values refer to the S/I direction. However, depending on the
tumor location in the liver, the liver motion in other directions often can not be
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neglected. Liver motion of less than 2 mm in other directions have been reported
under normal respiration conditions [8].

The challenge for future research is to apply the method to in-vivo acquired
liver images. The proposed scheme has the potential to work together with phys-
ical techniques such as MR active tracking or navigator echoes. Using such tech-
niques, an appropriate baseline selection is relatively straightforward since the
location is implicitly measured. The translation values provided by physical tech-
niques may also be used as an initial value for the image registration algorithms.
The undesired offset due to the image transformation can be eliminated by es-
timation of the background offset as described here.
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Abstract. The recent availability of real-time three-dimensional 
echocardiography offers a convenient, low-cost alternative for detection and 
diagnosis of heart pathologies. However, a complete description of the heart can 
be obtained only by combining the information provided by different acoustic 
windows. We present a new method for compounding 3D ultrasound scans 
acquired from different views. The method uses multiscale information about 
local structure definition and orientation to weight the contributions of the 
images. We propose to use image phase to obtain these image characteristics 
while keeping invariance to image contrast. The monogenic signal provides a 
convenient, integrated approach for this purpose. We have evaluated our 
algorithm on synthetic images and heart scans from volunteers, showing it 
provides a significant improvement in image quality when compared to 
traditional compounding methods. 

1   Introduction 

Real-Time 3D Echocardiography. Several imaging modalities (X-ray, angiography, 
MRI, 2D echocardiography) have been proven to be useful in cardiology. However, 
echocardiography presents unique characteristics that make it the most commonly 
applied imaging diagnostic technique in clinical practice. Traditionally, two-
dimensional echocardiography has been used widely as a relatively cheap, portable 
and real-time interactive assessment of heart function. Using a 2D imaging modality 
introduces disadvantages such as the difficulty to characterize three-dimensional 
structures or the dependence on the probe position, which makes it difficult to 
compare images if acquired by different clinicians or at different times. 

Recently developed technology has allowed, for the first time, to obtain three-
dimensional images of the heart in real time. This new imaging modality opens a wide 
range of possibilities for echocardiography in clinical routine. However, at its present 
stage, due to the limited field of view of the transducer, it is not possible to scan the 
whole heart in a single acquisition (and, in some cases, not even the left ventricle). 
Furthermore, some cardiac structures can be appreciated only from particular acoustic 
windows. For this reason, a complete diagnostic study in real time 3D ultrasound 
(RT3DUS) will consist of several acquisitions obtained from different positions. The 
development of tools to combine these acquisitions and present a single, optimal 
dataset to the clinician could greatly improve the clinical uses of the technology. 
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Compounding Ultrasound Scans. Compounding ultrasound images acquired at 
different times or from different locations is a common way to improve image quality, 
mainly through speckle reduction. Though using directly RF data for compounding is 
also possible, these data are not usually available in the clinical environment, so our 
research focuses on compounding intensity images. Usually, simple techniques, such 
as the mean or the maximum intensity, are used to combine the images. Little work 
has been done to explore alternative, more sophisticated compounding techniques. In 
[1], the authors propose to exploit the dependence of echo intensity on the angle of 
incidence of the ultrasound beam on a reflecting surface. Resulting images were 
significantly enhanced when compared to using the mean value to combine images. 
However, that method is based on an initial fitting of a surface to the data. This makes 
it difficult to apply to complex images, such as the cardiac ones, in which several 
structures are present and segmentation is a challenge. 

Phase-Based Image Analysis Using the Monogenic Signal. Phase-based analysis 
has been proposed as an alternative to intensity for many image processing tasks [4]. 
Phase provides invariance to changes in brightness and contrast within the image: this 
property makes it particularly fit for ultrasound images, in which beam attenuation is 
present and echo intensity depends on the angle of incidence of the ultrasound beam. 
Local phase is usually calculated by combining the output of a set of filters with 
different angles. In [2], the authors introduce a new approach to calculate phase in n-
dimensional signals: the monogenic signal, an isotropic extension of the analytic 
signal which preserves its basic properties. Analogous to the analytic signal for 1-D, 
to build the monogenic signal the Riesz transform, a generalization of the Hilbert 
transform for higher dimensional signals, is used. In the frequency domain, the Riesz 
transform of an N-dimensional image can be calculated by multiplying the original 
image with the filters Hi: 

( ) ,i
i

u
H =u

u
 (1) 

where u=[u1…uN]T, with ui representing the ith coordinate unit vector; there are thus 
as many filters as image dimensions. The monogenic signal is the combination of the 
original signal and the Riesz transform, so it assigns an N+1-dimensional vector to 
each spatial location. The angles defined by this vector represent the local phase and 
structure orientation, respectively. A complete explanation of the mathematical 
foundations and the equations needed to calculate phase and orientation from the 
monogenic signal can be found in [2]. 

In practice, it is interesting to localize features both in space and in frequency. To 
achieve this purpose, band-pass filters Gs(u) are combined with the Hi(u) filter in (1). A 
comprehensive analysis of different alternatives for band-pass filters was done in [3]. 

In this paper, we propose a novel compounding algorithm for ultrasound images 
in general, and for multi-view, RT3DUS echocardiography images in particular. The 
aim of the compounding algorithm is to maximize the information content of the 
combined images, for which we preserve those images which higher feature 
saliency; furthermore, we assign weights depending on the incidence angle of the 
ultrasound beam. We explore the use of phase to obtain information about both 
feature saliency and orientation: the monogenic signal constitutes a convenient 
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framework for this purpose. Preliminary results on both phantom and real-time 3D 
cardiac images are presented, showing significant improvement over common 
compounding techniques. 

2   Compounding Using Feature Saliency and Orientation 

Image Registration. Registering echocardiographic images obtained from different 
windows is a non-trivial task. Both temporal and spatial registration are required. In 
this paper, however, we focus on the combination of images, so we assume they have 
been previously registered with enough accuracy. For the algorithm evaluation 
presented in Section 3, we performed an initial rigid registration by aligning manually 
selected landmarks (the valve rings) followed by a manual fine correction of the 
result. For the temporal registration, we identified corresponding frames in the 
sequences, and performed a linear interpolation between them. 

Compounding Algorithm. In order to maximise the information content of the 
compound image, we need to keep the features which appear only in a subset of the 
original N images, without degrading these features by averaging them with the rest. 
Furthermore, it is well known that the backscattered energy, and thus the ultrasound 
image appearance, depends on the incidence angle (the angle formed by the 
ultrasound beam and the normal to the surface at the incidence point). Averaging the 
intensities obtained from two different views is not an optimal solution, as it would 
degrade the strong echoes generated by small incidence angles by introducing weaker 
echoes from more oblique incidences. Thus, where several images contain significant 
features, we should combine them giving preference to the ones in which the normal 
to the detected feature is better aligned with the ultrasound beam. For this purpose, we 
define two measures, Si(r) and Mi(r), 0 Si(r) 1, 0 Mi(r) 1, which quantify how 
important the information contained by image i at position r is, and how well aligned 
features at this location are with the ultrasound beam, respectively. The way we 
calculate Si and Mi in this study is described below. We can then define the following 
rules to identify the characteristics of an image point, and thus select the best strategy 
for combining the values: 

- If Si values are low in all images but one, the value from this image is 
adopted. 

- If Si values are high in more than one image, the values in the high Si images 
are combined according to their respective alignment values Mi (those 
images in which the point is better aligned will contribute a higher amount to 
the combination). 

- If Si values in all images are low, the point is treated as pure speckle, so the 
average value is taken. 

Here, the Si value is treated as the primary condition, and only in the case that it is 
not sufficient to determine the intensity value by itself, the alignment values Mi are 
considered. We can transform the if-then conditions described above into equations to 
calculate the weight that each image should have in the final compound image, if we 
treat Si and Mi as probabilities of having a significant feature and having a well-
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aligned feature, respectively. This can be done in a multiscale way by calculating 
multiscale decompositions of the images, applying the compounding process 
individually to each scale, and finally recombining the compound multiscale images. 
In the following, for simplicity, we have omitted scale subindices. As an example, we 
show the weighting factor for image 1, 1, in the case that three images are combined: 

 ( )

( )

1 1 2 3 1 2 3 1 2 1 2 3 1 3 1 2 3 1 2 3

1 2 3 1 2 1 2 3 1 3 1 2 3 1 2 3 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1
.

2
1

3 3

S S S S S S M M S S S M M S S S M M M

S S S M M S S S M M S S S M M M M M

S S S M M M M M M S S S

λ

α

= + + + +

+ + + + +

+ + +

L

L L

L

 
{2) 

with (1 )i iS S= − . Note that Si, Mi are not Boolean variables, but continuous 

probability values. 
We can intuitively interpret the four main terms in (2). The first three terms in 

square brackets correspond, respectively, to the probabilities of having just one, two 
or three of the images (always including image 1) containing significant, well-aligned 
features. Finally, the last term represents the probability of having no structural 
information (i.e., pure speckle) at this point. We have introduced here a coefficient 
0 1 which can be used for noise reduction. Note that =1 corresponds to an 
averaging of all images (the same effect produced by average compounding, but in 
this case applied only to regions with no feature information), while =0 produces a 
total elimination of detected speckle in the compound image. It is easy to generalize 
the above equation for any number of images. In our algorithm, a coefficient is would 
be calculated for each image i and for each scale s, using alignment coefficients Mis. 
Finally, the compound image is calculated by combining all scales. 

Using phase to calculate the feature significance and alignment parameters. The 
evolution of a phase measure across spatial scales can be used as a clue to 
differentiate image features from noise. One of the possibilities that have been 
proposed for this purpose is phase congruency [4].  

( ) [ ]

( )
0,2

( ) cos ( ) ( )
( ) max

( )

s s
s

r
s

s

A r r r
PC r

A rϕ π

ϕ ϕ

∈

−
=  (3) 

where As represents the amplitude of the s-th Fourier component of the signal, and s 
is the local phase of the Fourier component at position r . This parameter quantifies 
phase change over different scales. In [5], an alternative way to calculate the phase 
congruency was given. Phase congruency quantifies how phase varies across scales: a 
high value corresponds to a consistent phase value and is thus an indicator of a strong 
image feature. The utility of phase congruency to detect edges and lines in ultrasound 
images has been demonstrated before [6]. If the adequate scales are selected, phase 
congruency can be used to detect larger-scale structures, such as the ventricular walls 
in echocardiographic images. We can thus use ( ) ( )( )i iS r g PC r=  in Equation 2, 

where g(.) can be any monotonic function with g(0)=0 and g(1)=1. 
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As described in Section 1, the monogenic signal can be also used to calculate the 
orientation of image features. The incidence angle at scale s is defined as the angle 
between the ultrasound beam and the local image orientation at scale s, s. We define 
the parameter Mis=cos( is- ), where  is the angle of the ultrasound beam. 

To construct the multiscale image description required, many alternatives for band-
pass filter selection exist [3]. We have chosen the Difference of Gaussians (DoG), 
which allows us to easily recombine the band-pass images. The filter bank is formed 
by S filters: S-2 band-pass filters, plus a low-pass filter and a high-pass filter which 
are used to generate a complete representation of the original image. All band-pass 
filters in the bank are constructed with an equal bandwidth value. In the experiments 
presented, we have found S=5 to be an adequate value. 

3   Results and Discussion 

Tests Using a Synthetic Phantom. Simulated images were generated using the Field 
II program [7]. An elliptical ring phantom was generated and scanned using a 
simulated 5 MHz sector probe. In Fig. 1, the results of compounding two images, 
acquired with a difference of 80º, are shown. Improvement of contrast and better edge 
definition, when compared to intensity averaging, can be clearly appreciated. We 
calculated contrast to noise ratio (CNR) as the difference between the mean values of 
the ring and the background, divided by the standard deviation of background 
intensity. CNR obtained with our method is 37% higher than with intensity averaging. 
An important indicator of the quality of our method is its effect on the magnitude and 
direction of the intensity gradient at the object contours: this is a crucial parameter for 
edge-based segmentation methods. We have calculated the intensity magnitude 
gradient in the direction normal to the ring contour. The increase in this parameter in 
our method, compared to intensity averaging, is shown in Fig 1(h): where the 
differences in alignment are high, increases of more than 30% are obtained. 

Tests on Three-Dimensional Real-Time Echocardiographic Images. Finally, we 
applied our algorithm to RT3DUS images of the heart. Fourteen datasets were 
obtained by scanning two volunteers from both the apical and the parasternal 
windows. Images were registered and combined as explained in Section 2. Results 
from one of the volunteers are shown in Fig 2. When compared to intensity averaging 
(Fig 2(b)), our method with =1 (Fig 2(e)) shows a superior definition of significant 
heart structures. We have used smaller values of  to test the speckle reduction 
behaviour of the algorithm in a qualitative way: in Fig 2(c), where =0.9, speckle is 
reduced without a decrease in contrast in the important features. Finally, with =0.6 
(Fig 2(f)), the most salient features are predominantly kept. The reader can better 
appreciate the improvement in the time sequences available online at 
http://www.robots.ox.ac.uk/~mvl/htdocs/research/gallery.html. 

Discussion.  We have presented a method for compounding ultrasound images acquired 
from different views. The novel aspect of our work is that, unlike the traditional 
methods used for compounding (average, maximum,…) we introduce information about 
the structural content of the image and its orientation. We also propose a particular  way  
to calculate this information, based on the image phase, and implement it in an  
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Fig. 1. Two views of a synthetic phantom (a, e). Comparison of the compounding results using 
intensity averaging (b) and our algorithm (c). Magnified views of a smaller region are presented 
in (f), for the intensity averaging, and in (g) for our algorithm. Note the contrast increase and 
noise reduction. (d): schematic depiction of the location and orientation of the probe, relative to 
the scanned ring, in both scans. Points where the ultrasound beam is approximately normal to 
the ring are marked (1A, 1B, 2A, 2B). (h): Increase in gradient magnitude at the ring contour 
with our method, when compared to intensity averaging. The horizontal coordinate represents 
the orientation angle . As expected, the maximum increase is obtained where the beam is 
approximately perpendicular to the ring. 

integrated way by using the monogenic signal. The use of phase provides the benefit 
of contrast invariance, which can be key in ultrasound image processing. 

An additional advantage of the presented technique is that the framework we 
propose is independent on the actual selection of the functions that quantify structural 
information and orientation. For other applications, it would be possible to introduce 
alternatives, while keeping the main ideas from our work. Particularly, in some cases 
the successful use of phase congruency for the estimation of feature significancy can 
be quite dependent on the selected scales and the choice of function g(Si). Other 
techniques might prove to be more robust than phase congruency for this purpose. 

The introduction of a constant  in (2) allows to control the amount of speckle 
reduction depending on the application. For visual diagnosis, it can be dangerous to 
remove  information from the original image, as important information could be there;  

1A 

2A 

1B 

2B 

SCAN 2 

SCAN 1 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 2. Application of our method to RT3DUS images. (a): original apical image. (d): Original 
parasternal image. (b): Intensity averaging. (e): Our method with =1. Note the enhancement of 
the vertical structure on the right and left sides of the image. (c): Our method with  =0.9: apart 
from the structure enhancement, a significant noise reduction is obtained. (f): Our method with 

 =0.6: a strong noise reduction is applied without loss of structure definition. Differences are 
better appreciated in the animations provided online as additional material. 

while for automatic segmentation algorithms, a drastic reduction of the speckle 
content can be advisable. Another possibility would be to keep the speckle removed 
from one image (the last term in (2)) and display it separately: significant information 
about aspects such as motion could be obtained from it. Planned clinical studies will 
provide us with more insight on this. 

The band-pass filters used in the method have to be selected, depending on the size 
of the structures we want to detect. For applications in which the basic structures are 
always similar (e.g., echocardiography), filter frequencies can be kept unmodified for 
all patients. 

Though registration has not been addressed in the present work, it is a fundamental 
task and the results will depend dramatically on the registration accuracy. Initially, as 
the images are acquired from the same patient with a few minutes between them, we 
expect rigid registration to be accurate enough for our purposes; however, patient 
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movement or breathing may prove to produce heart deformation that would make an 
elastic registration step necessary. 

Preliminary results on simulated and real ultrasound images show a significant 
improvement, both in visual quality and quantitative measurements. Further 
validation, including segmentation algorithms applied on the original and combined 
images, is currently under way in our group. 
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Abstract. 3D freehand ultrasound imaging is a very attractive tech-
nique in medical examinations and intra-operative stage for its cost and
field of view capacities. This technique produces a set of non parallel
B-scans which are irregularly distributed in the space. Reconstruction
amounts to computing a regular lattice volume and is needed to ap-
ply conventional computer vision algorithms like registration. In this
paper, a new 3D reconstruction method is presented, taking explicitly
into account the probe trajectory. Experiments were conducted on dif-
ferent data sets with various probe motion types and indicate that this
technique outperforms classical methods, especially on low acquisition
frame rate.

1 Introduction

Due to its low cost, real time image formation capability and non invasive nature,
2D ultrasound is a popular medical imaging modality. Nevertheless, the lack of
3D information prevents reproductivity, longitudinal follow-up and precise quan-
titative measurements. 3D ultrasound imaging addresses these disadvantages in
order to obtain an objective representation of the scanned volume. Among the
various options to acquire 3D ultrasound, this work focuses on 3D freehand ul-
trasound. This technique consists in tracking in the space a standard 2D probe
by using 3D localizer (magnetic or optic). The tracking system continuously
measures the 3D position and orientation of the probe. Contrary to mechan-
ical built-in probes, freehand imaging is cheap, can address a large variety of
clinical applications and allows large organs examination. However, the recon-
struction step is still an acute problem with regards to computation time and
reconstruction quality.

The sparsity of data is the main difficulty to transform a non uniformly
distributed set of B-scans into a regular 3D volume. A correct reconstruction
should not introduce geometrical artifacts, degrade nor distort the images. The
most common techniques to resolve this problem are pixel nearest-neighbor
(PNN) [3], voxel nearest-neighbor (VNN) [6] and distance-weighted (DW) inter-
polation [1, 8]. These approaches are designed to reduce computation time, but
lead to a moderate reconstruction quality. More elaborated and recent methods

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 597–604, 2005.
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build on non rigid registration [2], radial basis functions (RBF) interpolation [4]
or Rayleigh model for intensity distribution [5]. Quality improvement is obtained
at the expense of computational burden.

Another strategy in 3D freehand imaging consists in analyzing the 3D volume
without reconstruction. The StradX system [3] is built on this approach. The
sequence of B-scans can be arbitrarily resliced and distance/volume measure-
ments are performed without reconstruction. This strategy is very powerful for
manual analysis of 3D datasets. However, we do think that 3D isotropic recon-
struction is still necessary for specific clinical context, especially when automatic
segmentation or registration procedures are required.

This paper is organized as follows. Section 2 describes the proposed recon-
struction method based on utilization of the probe trajectory (PT) information.
Section 3 describes briefly the evaluation framework and compare the proposed
method with pixel nearest-neighbor (PNN) and distance-weighted (DW) inter-
polation techniques.

2 Method

This work builds on the distance weighted (DW) interpolation and proposes
to incorporate probe trajectory information. The DW interpolation is first pre-
sented in section (2.1). Then the probe trajectory information is incorporated in
section (2.2).

2.1 Distance Weighted (DW) Interpolation

At each point X of the reconstructed volume, the linear interpolation amounts
to computing:

fn(X) =
1
G

∑
i∈Kn(X)

gif̃(Xi)

where Kn is the interpolation kernel. In other words,Kn is the set of the different
indexes of the B-scans that are involved in the interpolation. n is the interpo-
lation order. For a given interpolation degree, the n closest B-scans before X
and the n closest B-scans after X are considered. For the DW interpolation,
Xi is the orthogonal projected of X on the ith B-scan. f̃(Xi) is the intensity
on the position Xi and is obtained by a bilinear interpolation. Finally, G is the
normalization constant with G =

∑
gi, and gi is the distance between X and Xi

(see Fig. 1). It might happen that a part of the reconstructed volume is visible
at different time stamp (or view points) of the B-scans sequence. This is also
known as spatial compounding. These different time stamps are computed so as
to track this information and fully exploit the speckle decorrelation.

2.2 Probe Trajectory

Contrary to the classical DW interpolation approach where orthogonal projec-
tions are performed, the set of points Xi is defined as the intersection between



3D Freehand Ultrasound Reconstruction Based on Probe Trajectory 599
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XDW
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Fig. 1. Illustration of DW and PT principles. The two orthogonal projections for DW
interpolation method and the construction of a “virtual” plane πt containing X for PT
method.

the closest B-scans and the probe trajectory at point X . An option would be to
compute numerically this trajectory using a Runge-Kutta method. However, this
would be computationally prohibitive. This problem is solved by computing the
“virtual” plane that passes through X in the sense of the probe trajectory (see
Fig 1). For this purpose, we need first to compute the plane position in the 3D
space. This can be achieved by determining the probe position relative to this
“virtual” plane and then perform a rigid transformation to map from receiver to
transmitter coordinates. This transformation is based on six parameters position
(3 translations and 3 rotations) that allow a perfect localization of the plane in
the 3D space. The tracking of the probe motion over time provides six different
signals that corresponds of the variation of the position parameter with time.
Thus, computing the position of the “virtual” plane amounts to computing its
acquisition time. Let us denote πt this plane, two steps are necessary to deter-
mine the coordinates of X in πt. Firstly, the time stamp of πt must be evaluated.
Secondly, this time t is used to estimate the probe position at this moment.

Under the assumption that the probe speed is constant between two consec-
utive B-scans, the latency ratio is supposed to be equal to the distance ratio:

t =
dti+1

dti + dti+1
(ti) +

dti

dti + dti+1
(ti + 1)

where dti is the distance (in the sense of orthogonal projection) between the
current voxel and the B-scan of time stamp ti (dti = ‖X −XDW

ti ‖).
Once the time stamp of the “virtual” plane is computed, the probe position

can be interpolated. The second step is a cubic interpolation of position pa-
rameters at time stamp t. The Key function is used to carry out a direct cubic
interpolation and is defined as:

ϕ(t) =

⎧⎨⎩
(a + 2)|t|3 − (a + 3)t2 + 1 if 0 ≤ |t| < 1,
a|t|3 − 5at2 + 8a|t| − 4a if 1 ≤ |t| < 2,
0 if 2 ≤ |t|.
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With a = − 1
2 , ϕ is a C1 function and a third order interpolation is obtained [7].

In practice, four B-scans are used for cubic interpolation. This seems an optimal
trade-off between computational time and reconstruction quality. For example,
the interpolation of rotation parameter along x axis Rx reads as:

Rx(t) =
ti+2∑

k=ti−1

Rx(k)ϕ(t− k)

The “virtual” plane certainly not contains X numerically, despite the distance
is infinitesimal. Therefore, Xt is used as the projection of X on the “virtual”
plane (see Fig 1). Then, XPT

ti and XPT
ti+1 are obtained directly, since they have

the same 2D coordinates (defined in each B-scans) as Xt.

3 Results

3.1 Material

An Sonosite system with a cranial 7−4MHz probe was used to acquire the ultra-
sound images. The positions of the B-scans was given by a magnetic miniBIRD
system (Ascension Technology Corporation) mounted on the US probe. The
StradX software [3] was used to acquire images and 3D position data. A CIRS,
Inc.1 3D ultrasound calibration phantom was used. The phantom contains two
calibrated volumetric ellipsoids test objects. At the acquisition depth, only one
of the ellipsoids is in the field of view. The two sequences used for the experi-
ments are composed of 510× 441 B-scans (204 B-scans for fan motion and 222
B-scans for translation motion, see Fig. 2).

Fig. 2. B-scans sequences used during evaluation. Left: fan sequence. Right translation
sequence.

3.2 Evaluation Framework

In order to perform an objective evaluation, the performance of the proposed
method was compared with two other interpolation approaches: the voxel near-
est neighbor (VNN) technique used in StackX [3] and the distance-weighted
1 http://www.cirsinc.com
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(DW) interpolation method presented in [8]. For the VNN method, each voxel
is projected on the nearest B-scan and its luminance interpolated bilinearly. In
the DW interpolation technique, each voxel is projected orthogonally on the 2n
nearest B-scans and its luminance interpolated (see section 2.1 and Fig. 1). To
assess the reconstruction quality, evaluation data can be created from any image
sequence: given a sequence of 3D freehand US, each B-scan is removed from the
sequence and then reconstructed using the other B-scans of the sequence. This
technique, “leaves one out”, is performed in turn for each B-scan. Within this
evaluation framework, the influence of two parameters is studied:

– “External” parameter associated with the acquisition setup: the acquisition
frame rate. The sequence is sub-sampled thanks to SelectSX2, which simu-
lates a lower frame acquisition rate. The sub-sampling factor varies from 2
to 6, this means that we keep from one B-scan out of two (denoted by 1/2)
to one B-scan out of six (denoted by 1/6).

– “Internal” parameter associated with the reconstruction method: the inter-
polation degree. The removed B-scans are reconstructed with different meth-
ods and different interpolation degree (from 1 to 2 for DW interpolation and
PT method).

The Mean Square Error (MSE) is used as quality criterion:

MSE(t) =
1
P

P∑
j=1

(Ĩt(xj)− It(xj))2

where It is the original t image (removed from the sequence), Ĩt the reconstructed
image and P is the number of pixel in this B-scan. From MSE estimation for
all B-scans of the sequence, we compute the mean μ and the standard deviation
σ of reconstruction error.

μ =
1

N − 2

N−1∑
t=2

MSE(t)

σ2 =
1

N − 2

N−1∑
t=2

(MSE(t)− μ)2

N is the total number of B-scan in the sequence. The first and last B-scans are
rejected to avoid artifacts.

3.3 Experiments

Results are presented in Figure 3 and Table 1. Figure 3 shows the sub-sampling
influence on reconstruction error relatively to motion nature (i.e. translation
or fan), for interpolation degree equals to 1. In all cases, the Probe Trajectory

2 http://mi.eng.cam.ac.uk/˜rwp/stradx/utilities.html
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Fig. 3. Variation of error reconstruction relatively to sub-sampling factor with inter-
polation degree = 1. Left fan motion. Right translation motion. Three methods are
evaluated : VNN, DW and PT. The PT method outperforms others methods espe-
cially on sparse data.

Table 1. Error measures composed of mean μ and standard deviation σ for the dif-
ferent methods. Ltime is the time spent for labeling, while Itime is the time spent for
interpolation. Error measures indicate that the PT method obtains better results than
the VNN and DW methods. The improvement in terms of reconstruction quality is
obtained at the expense of a slight computational increase.

Sequence Order VNN DW PT
μ σ Itime μ σ Itime μ σ Itime

fan n = 1 33.4 13.5 20s 22.6 11.6 44s 21.5 11.0 114s
Ltime = 414s n = 2 26.2 12.5 46s 22.9 10.6 122s
fan 1/2 n = 1 60.7 21.6 21s 41.1 16.9 31s 33.0 14.2 114s
Ltime = 215s n = 2 46.6 17.6 44s 38.2 14.1 124s
fan 1/3 n = 1 89.4 25.2 20s 61.3 19.4 30s 47.8 15.9 111s
Ltime = 145s n = 2 67.6 18.6 43s 56.2 14.2 118s

translation n = 1 28.2 9.6 20s 15.9 4.8 37s 16.2 2.9 138s
Ltime = 42s n = 2 19.1 6.4 49s 18.3 3.5 149s
translation 1/2 n = 1 60.6 22.9 21s 36.3 13.9 32s 29.3 8.6 138s
Ltime = 27s n = 2 43.0 14.5 47s 35.8 8.7 147s
translation 1/3 n = 1 89.3 29.6 20s 57.1 18.3 31s 45.1 12.1 138s
Ltime = 20s n = 2 63.7 17.5 46s 52.9 11.1 146s

(PT) method outperforms VNN and DW methods especially on sub-sampled
sequences. On sparse data sets, the incorporation of probe trajectory leads to a
more robust reconstruction. In Table 1, error measures and computation time
are presented. Reconstructions were performed on P4 3.2 Ghz with 2Go RAM.
In order to only compare interpolation times, the total computational time was
split in two : Ltime corresponds to labeling step and second denoted by Itime

is interpolation time. The labeling step consist in Kn construction for each
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voxel X . Our implementation of methods can be largely optimized, as com-
pared to StackSX (22s for all reconstruction process within VNN method). Al-
though the labeling step need significant improvement, this study aims to com-
pare computation time between identical implementations. Increase in quality
for PT method is obtained at the expense of slight computation time increase.
Nonetheless, this side effect is reasonable with regards to quality reconstruc-
tion. Contrary to more elaborated techniques like non-rigid registration or RBF,
which are considerably computationally expensive, the PT approach offers an
attractive compromise between time computation and quality reconstruction.
Figure 4 shows the differences between original and reconstructed B-scan with
the VNN, DW and PT methods. Visually, the PT reconstruction appears closer
to the original B-scan, which is in agreement with the numerical results of Ta-
ble 1. Reconstruction results on real dataset are presented in Figure 5. The VNN
method leads to a lot of discontinuities. The differences between the DW and

VNN DW PT

Fig. 4. Differences between original and reconstructed B-scan for not subsampled fan
sequence. From left to right VNN, DW and PT methods. This shows that error between
reconstructed B-scan and “ground truth” is visually better with the PT method.

VNN DW PT

Fig. 5. Zoom on hepatic vessels extracted from liver reconstruction with degree= 1
and subsampling factor= 4. From left to right the VNN, DW and PT methods. The
images are extracted from 3D volume along the temporal axis (z) in order to under-light
inherent artifacts of the VNN (i.e. discontinuities) and the DW (i.e. blur) methods. The
PT method is more efficient at preserving the native texture pattern of US image than
the DW method.
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PT methods are less visible, as assessed by numerical results. Nevertheless, in
general the DW method smooths out the edges and spoils the native texture
pattern of US image more than the PT method (see Fig. 5).

4 Conclusion

This paper presented a 3D freehand US reconstruction method using probe trajec-
tory information. This method performs better than traditional reconstructionap-
proaches with a reasonable increase in computation time. Results on sub-sampled
acquisitions show that the probe trajectory brings a relevant information in the re-
construction process. The main limitation of PT method is the assumption of con-
stant probe speed between two slices. Nevertheless, for frame rate around 5-15Hz
and moderate care during acquisition (i.e. a relatively continuousmotion user) this
limitation can be easily overcome. Further work should pursue the comparison be-
tween the PT reconstruction approach and registration-based approaches [2]. Fi-
nally, our implementation should be largely optimized using graphic library imple-
mentation (ex : OpenGL) or even GPU one.
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Abstract. We describe a new self-calibrating approach to rigid registration of 
3D ultrasound images in which in vivo data acquired for registration are used to 
simultaneously perform a patient-specific update of the calibration parameters 
of the 3D ultrasound system. Using a self-calibrating implementation of a point-
based registration algorithm, and points obtained from ultrasound images of the 
femurs and pelves of human cadavers, we show that the accuracy of registration 
to a CT scan is significantly improved compared with a standard algorithm. 
This new approach provides an effective means of compensating for errors 
introduced by the propagation of ultrasound through soft tissue, which currently 
limit the accuracy of conventional methods where the calibration parameters are 
fixed to values determined preoperatively using a phantom. 

1   Introduction 

Freehand 3D ultrasound (US) has been proposed as an accurate and non-invasive 
method for intraoperative registration of bony anatomy during minimally-invasive 
orthopaedic, neuro- and skull-based surgery [1-3]. In this technique, an US probe is 
tracked by a 3D localizer and may be intuitively thought of as a non-invasive device 
for locating bone surfaces. This approach is an attractive alternative to standard clinical 
methods, which are highly invasive since they require the bone surface to be surgically 
exposed to allow digitization by contact with a tracked sterile pointer [4,5]. Using such 
methods, digitized bone surface points are matched to the corresponding surface 
extracted from a preoperative CT-scan or, more recently, a generic bone surface model, 
which is simultaneously morphed to adopt the shape of an individual patient’s bone 
[6].  Although such invasive techniques provide an accuracy that is widely accepted to 
be sufficient for surgical navigation, they potentially contribute to the risk of 
complications associated with soft tissue trauma, such as blood loss and infection.  

Fig. 1(a) illustrates a B-mode US probe with rigid attachment, which is tracked by 
an optical localizer to enable (freehand) 3D imaging. In order to achieve accurate 
bone registration using such a system, careful calibration is required to maximize the 
localization accuracy. Specifically, calibration is required to determine the rigid-body 
transformation (denoted by TPROBE←US in Fig. 1(a)) which relates the 3D co-ordinate 
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systems of the US image and the tracked object attached to the US probe. Numerous 
methods have been described for the calibration of freehand 3D US systems using a 
variety of special-purpose phantoms [7], but the accuracy of these methods is 
fundamentally limited by differences between the propagation of US in soft tissue 
compared and that in a phantom. These differences effectively introduce an unknown 
error into the calibration parameters when the system is used in vivo, limiting the 
localization accuracy, and, therefore, registration accuracy achievable using the 3D 
US technique. 

 

Fig. 1. (a) Left, a tracked B-mode US probe with attachment for freehand 3D US imaging. (b) 
Right, a schematic of the setup used for US-based registration during orthopedic surgery: (1) 
Optical localizer; (2) Segmented CT scan; (3) Tracked US probe; (4) Bone-implanted dynamic 
reference object (see text); (5) US image. The rigid-body transformations between 3D the co-
ordinate systems of the various components are indicated by the black arrows. 

A primary source of error arises from assuming a constant value for the speed of 
sound, typically 1540m/s. In reality, the average speed of sound in human tissue can 
vary from approx. 1400m/s (in fat) to 1650m/s (in muscle), with significant variations 
occurring between both anatomical regions and patients. Using a simplified model of 
US propagation, such variations can give rise to systematic error in locating the depth 
of a bone surface of up to about 5%, which may become particularly problematic in 
the obese patient. Non-linear propagation of the US beam may also become 
significant in some cases, potentially compromising the localization accuracy of a 3D 
US system further.  

In the remainder of this paper we describe a self-calibrating method for US-to-
CT bone registration, implemented within a point-to-surface registration scheme, 
which addresses these issues by updating the calibration parameters of the 3D US 
system using in vivo data acquired for the purposes of intraoperative bone 
registration.  
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2   Self-calibrating Point-Based Registration Algorithm 

Fig. 1(b) shows an example set-up for hip replacement surgery in which a handheld 
US probe (3), tracked by an optical localizer (1), is used to obtain images of the femur 
and pelvis. Bone surface points derived from these images are used to calculate the 
rigid-body registration transformation between a tracked physical reference object (4) 
and a preoperative CT scan (2) by matching the US-derived points to the bone surface 
extracted from a CT scan. In practice, the reference object is fixed to a rigid surgical 
attachment implanted into a bone, as illustrated in Fig. 1(b), and is referred to as a 
dynamic reference object (DRO).  DROs allow the patient to be repositioned during 
surgery without compromising the registration.  

The self-calibrating, point-based registration algorithm outlined here minimizes a 
least-squares criterion, but differs from the popular Iterative Closest Point algorithm, 
in that a general non-linear optimization scheme is used to perform a least-squares 
minimization. If S denotes the (CT-derived) bone surface, and ( )

US,inp is the 

(homogeneous) 3D position vector containing the co-ordinates of the nth bone surface 
point derived from the ith US image, the task of registering all points to the surface S 
can be posed mathematically as finding the parameter vector, ψ, which minimizes the 
cost function, C, of the form 

( )
= =

=
I

i

N

n
ini SdC

1 1
US,

2 ,),).(()( pT  (1) 

where d(p, S) represents the Euclidean distance between S and the US point, p, and 
the transformation matrix, Ti(ψ), is defined as 
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where the notation 
AB←

T  denotes a rigid-body transformation from 3D co-ordinate 

system A to B. In Eqn. (2) ‘US’, ‘PROBE’, ‘OPT’, and ‘REF’ denote the 3D co-
ordinate systems of the US image, the tracked object attached to the US probe, the 
(optical) 3D localizer, and the DRO, respectively (see Fig. 1(b)); 

],,[ CALREG, yx ss=  is a vector containing 6 rotations, 6 translations, and 2 

scaling parameters; and TSCALE is a diagonal scaling matrix included to convert the 
point co-ordinates from pixels to millimetres.  

Conventionally, the parameters in ψCAL which define the transformation, ,
USPROBE ←

T  

and the US image scaling parameters, sx and sy, are determined preoperatively from 
one or more calibration experiments, and remain fixed during registration. However, 
if we consider them to be free variables, then, given a reasonable starting estimate for 
ψ, a simultaneous registration and calibration can be carried out by optimizing all 14 
parameters of ψ to find the global minimum of C.  

In our implementation, C was minimized using the iterative region trust algorithm 
provided in the Matlab Optimization Toolbox v3.0 (The Mathworks Inc, Natick, MA, 
USA), and, on each iteration, point-to-surface distances were computed efficiently 
using a 3D Euclidean distance transform of the binary image of the bone surface 
generated from a pre-segmented CT scan [8].  
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In order to avoid local minima, a good initial estimate of the registration parameters 
(ψREG) was obtained by first performing a standard rigid registration with all of the 
calibration parameters fixed to values obtained from a prior phantom-based calibration 
(see Sect. 3.2 below). The performance of the self-calibrating registration algorithm was 
evaluated using data acquired from the pelvis and femurs of 3 complete female cadavers 
with intact tissue in experiments which simulated the conditions of hip replacement 
surgery. Importantly for this study, the use of cadavers allowed an accurate Gold 
Standard registration, based on bone-implanted fiducials, to be established. 

3   Evaluation of Registration Accuracy Using Cadaveric Data 

3.1   Cadaver Preparation and CT Scanning 

With the cadavers lying in the supine position, titanium bone screws with a 2mm 
diameter threaded tip were implanted into both femurs and each side of the pelvis. Four 
bone screws were inserted into each femur and 5 into each hemi-pelvis. A custom-
made fiducial marker filled with a radio-opaque contrast agent was then attached to the 
end of each screw, after which the cadavers were transported to the radiology 
department where a single high-resolution CT scan of each cadaver was performed 
using a Siemens SOMATOM Plus 5 spiral CT scanner. CT images were reconstructed 
with voxel dimensions between 0.7 and 0.8mm in the transverse plane and a slice 
thickness of 2mm. Following CT scanning, the cadavers were returned to the anatomy 
laboratory and the contrast-filled fiducial markers replaced with markers containing a 
3mm diameter divot, machined so that the centre of a ball-tip digitizer placed into the 
divot coincided with the centroid of the contrast-filled chamber of the imaged markers. 
The digitizer, US probe, and a DRO implanted into the femur were all tracked using an 
Optotrak 3020 optical localizer (Northern Digital Inc., Ontario, Canada).  

The Gold Standard image-to-physical registration transformation for each bone 
was found by registering the physical positions of the centroid of each contrast-filled 
fiducial marker, identified using the ball-tip digitizer, to the corresponding manually-
identified positions in the CT scan. The surface of each bone was segmented in the 
CT images using a combination of manual and semi-automatic tools provided by the 
software package Analyze v6.0 (Mayo Foundation, Rochester, MN, USA). From the 
segmented CT images, a binary image which just contained the bone surface voxels 
was generated, and this was used to compute a 3D Euclidean distance image for the 
point-based registration algorithm. 

3.2   Ultrasound Imaging 

The freehand 3D US system used in this study was developed by our research group 
and is based on a standard clinical US scanner (Philips-ATL HDI-5000, Philips 
Medical Systems, Bothell, WA, USA). A high-frequency linear-array probe (L12-5 
scan-probe; 5-12MHz broadband transducer) was chosen, which was tracked in 3D by 
attaching a custom-made cross-shaped piece with 20 IREDs attached as shown in Fig. 
1(a). Acquisition software, also developed in our laboratory, was used to synchronize 
the recording of the 3D position and orientation of the US probe (relative to the DRO) 
with US image capture using an analogue-to-digital converter. 
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Fig. 2. Example US images of the caderveric femur (left) and pelvis (right) obtained in this 
study. The arrows indicate the bone surface. 

To provide a reasonable starting estimate of the calibration parameters of the 3D US 
system, a pinhead immersed in a water-glycerol solution was scanned and the 
calibration parameters calculated using a previously published method [9]. The scaling 
of the captured US images was determined from electronic calliper measurements 
provided by the US scanner. During US scanning the probe was covered with a plastic 
sheath containing a small quantity of gel to ensure good acoustic contact. For each 
cadaver, B-mode US images of the surface of the femur and pelvis were acquired using 
realtime 2D compounding (“SonoCT™”) with a single focal zone and a maximum 
penetration depth of 6cm. Example US images are shown in Fig. 2. 

The bone surface was segmented manually from US images by defining a number 
of points on the maximum intensity of the ridge corresponding to the bone surface in 
each US image. Approximately 10 points were defined for each image in which the 
bone surface was clearly visible. Images with poor tracking data were excluded 
automatically by segmenting only those images where ≥10 out of 20 IREDs on the 
US probe attachment and ≥5 out of 6 IREDs on the DRO were visible to the Optotrak. 

3.3   Registration Experiments 

To test the accuracy and robustness of the US-based registration, 100 registrations 
were performed for each of the 9 bones (3 whole pelves and 6 femurs) using a random 
starting position for each trial. Starting positions were generated by simulating a 
simple intraoperative, point-based registration procedure in which the surgeon 
identifies a series of skin points adjacent to well-defined bony landmarks. To do this, 
points on the skin surface close to the landmarks were first identified by hand in each 
CT image. Three points were identified for each femur, near to the medial and lateral 
epicondyles, and to the greater trochanter. For each pelvis, 4 points were selected in 
the proximity of the left and right superior pubic ramus and left and right anterior 
superior iliac spines. To simulate errors associated with intraoperative identification 
of anatomical landmarks, a set of random points on the skin surface were computed, 
each within a sphere of radius 20mm centred at the corresponding manually-selected 
point. These points were then transformed to the co-ordinate system of the DRO using 
the Gold Standard registration transformation. The maximum error of 20mm was 
chosen to correspond to the upper limit on the error that might reasonably occur when 
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landmarks are digitized manually [10]. Greater accuracy could be obtained by using 
self-adhesive skin markers, for example. 

In the case of the femur, the estimated centre of rotation of the femoral head 
provided an additional anatomical point for calculating registration starting positions. 
The location of this point for each hip joint was determined experimentally by slowly 
pivoting the leg, while continuously tracking the DRO rigidly attached to the femur. 
A random offset of up to 10mm was added to this point to simulate the variability that 
might reasonably be expected using the pivot method intraoperatively.  

Random starting positions for the registration trials were found by registering the 
original set of manually-identified points in the CT image to the corresponding set of 
simulated anatomical points. As indicated in Sect. 2, each registration trial required an 
initial 2-step rigid registration with the calibration parameters fixed – once using all 
US points and then repeated with outliers removed – to obtain a good estimate of the 
registration parameters. Then, each time using these estimates as starting values, a 
self-calibrating registration was performed twice, once optimizing 7 parameters, 
including axial scaling (sy) as an additional free parameter, and then again with a full 
14 parameter optimization. For each registration trial, starting estimates of the 
calibration parameters were calculated using a randomly selected subset of 30 of the 
71 images of the calibration phantom to introduce variability into the starting 
calibration parameter estimates. In the case of the US scaling parameters, starting 
estimates were generated by adding a uniform random noise of up to +/-5% to the 
values determined using the standard calibration method.  

Registration accuracy was evaluated by calculating the target registration error 
(TRE) for each bone surface voxel extracted from the CT scan using the formula 

,)(TRE CT

GOLDREFCT

1

USREFCT
CTCT sTTss ⋅⋅−=

←

−

←

 (3) 

where sCT is the (homogeneous) 3D position vector of the centre of a bone surface voxel 
in CT co-ordinates, and the subscripts ‘US’ and ‘GOLD’ denote transformations 
computed using US-based and Gold Standard registrations, respectively. (Note: the 
magnitude operator in Eqn. (3) ignores the redundant 4th element of the vector 
operand). The root-mean-square (RMS) TRE was computed for all surface voxels of 
each bone. As a further clinically important measure of registration accuracy, the RMS 
TRE was calculated using a subset of voxels within the surgical region of interest 
(SROI). For the femur, the SROI was defined as the region proximal to the lesser 
trochanter, which includes the femoral head and neck, whereas for the pelvis the SROI 
was defined as the spherical region enclosing the acetabulum with radius 50mm and 
centred at the approximate centre of the femoral head. 

4   Results 

The predicted TREs for the Gold Standard registrations, calculated over the whole 
bone surface using the method of Fitzpatrick et al. [11], were submillimetre in all but 
one case (range: 0.13 to 1.32mm RMS), indicating excellent Gold Standard 
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registrations. The number of US images acquired was between 257 and 576, with 
between 124 and 510 images segmented, giving a total of between 960 and 6112 
surface points for each bone (~10 points per US image). 

Table 1. Average RMS TRE (absolute maximum TRE in brackets) in millimetres for US-to-CT 
bone registration from 100 trials of 9 datasets. Key: The “Initial TRE” results from the 
registration based on simulated anatomical landmarks, identified intraoperatively; “TRE1” is 
the TRE for a standard rigid registration using all available US points; “TRE 2” is the TRE 
after removing outliers and repeating the first registration using the remaining 90% of the 
original points; “TRE 3” is the TRE for a 7-parameter self-calibrating registration; and “TRE 4” 
is the TRE for a full 14-parameter self-calibrating registration. 

Region Initial TRE   TRE 1 TRE 2  TRE 3 TRE 4 

Whole Bone 10.25 (64.88) 2.57 (9.30) 2.20 (7.37) 1.87 (7.15) 1.59 (7.15) 

Surgical ROI 9.07 (39.22) 2.66 (6.89) 2.36 (7.16) 1.97 (5.13) 1.74 (5.44) 

The average RMS TREs for each US-based registration are summarized in Table 1. 
It can be seen from the results presented that, overall, the self-calibrating registration 
resulted in a marked improvement in registration accuracy (using the Kolmogorov-
Smirnov test, the differences between TREs 1 to 4 were found to be statistically 
significant at the 1% level). In particular, performing a full 14-parameter self-
calibrating registration (TRE 4) resulted in a reduction in TRE for the whole bone of 
approximately 28% compared with a standard point-based registration with automatic 
outlier removal (TRE 2).  With a failed registration defined as one for which the RMS 
TRE over the whole bone surface was >5mm, the number of failed registrations using 
a full self-calibration (TRE 4) was 46 from 900 trials (compared with 44 for the 
standard registration with outliers removed (TRE 2)) . However, of these, 39 occurred 
for one pelvis, resulting in a very low failure rate (<1%) if the results from this dataset 
are not considered. We believe that the reason for the relatively high number of 
failures for this dataset is likely to be due to the much higher initial TREs (Mean = 
20.07mm RMS) compared with the other datasets. 

5   Discussion and Conclusions 

In this paper we have demonstrated that optimizing the 3D US calibration parameters 
improves the accuracy of US-to-CT bone registration compared with a standard 
algorithm where calibration parameters are fixed. For the purposes of this study, 
manually segmented US/CT data and a point-based registration scheme were adopted, 
but future work will focus on developing a self-calibrating image-intensity-based 
registration algorithm to allow fully automatic registration, and devising an optimized 
clinical protocol for intraoperative US imaging of bone.  

Including calibration parameters into the registration optimization provides a 
useful method for compensating for unpredictable, patient-specific localisation errors 
introduced when imaging through soft tissue. Provided fairly accurate starting 
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estimates for the calibration parameters are available, updating the calibration 
parameters during registration also has the practical advantage that US scanner 
settings could be adjusted for individual patients within the operating theatre without 
compromising calibration or registration accuracy.  
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Abstract. Vibro-elastography is a new medical imaging method that
identifies the mechanical properties of tissue by measuring tissue mo-
tion in response to a multi-frequency external vibration source. Previous
research on vibro-elastography used ultrasound to measure the tissue
motion and system identification techniques to identify the tissue prop-
erties. This paper describes a hand-held probe with a combined vibration
source and ultrasound transducer. The design uses a vibration absorp-
tion system to counter-balance the reaction forces from contact with
the tissue. Simulations and experiments show a high level of vibration
absorption. The first elastograms from the probe are also shown.

1 Introduction

Elastography creates images that depict local tissue stiffness. Such images can
be a valuable tool for the diagnosis of disease. For example, prostate and breast
cancer are known to exhibit stiff tumors in surrounding softer tissue. Elastog-
raphy may compliment manual palpation techniques for early detection of the
tumors. Static elastography is a well-known technique that uses a quasi-static
compression of tissue and simultaneous imaging with ultrasound [5]. Local tis-
sue strain estimates can be obtained by analysis of the ultrasound images (e.g.
speckle tracking by cross-correlation of the radiofrequency (RF) signals). The
strain is subsequently related to the tissue stiffness.

Vibro-elastography (VE) is a new imaging technique that uses a dynamic
excitation source to create tissue motion over a range of frequencies [8]. Ultra-
sound images are used to capture the tissue motion at multiple locations and
time instants. The method then adapts techniques from system identification to
estimate the tissue properties from the ultrasound-based strain measurements.
In one version of VE, the tissue is modelled as a set of interconnected mass-
spring-damper elements. The values of the density-stiffness-viscosity are then
identified by solving an over-determined set of equations of motion. In another
version of VE, the tissue properties are identified directly from transfer func-
tions between local tissue regions. In either case, the VE images can be shown
to have better quality (lower standard deviation to mean values) compared to
static elastography, mainly due to the inherent averaging in the approach over
various levels and rates of tissue strain. Moreover, measurements of viscosity
and density are also possible with the dynamic approach. So far, good results
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for stiffness and viscosity measurements have been obtained with fixed or rigidly
mounted ultrasound transducers. Widespread clinical acceptance would be aided
by the development of a hand-held probe so that a standard ultrasound scan-
ning protocol can be performed. This paper describes a combined ultrasound
transducer and vibrator system as the next step in the development of VE.

For a hand-held probe, the reaction forces between the tissue and vibrator
act as an external disturbance on the probe assembly and will cause unwanted
vibration. These vibrations should be minimized to maintain the comfort of
the operator and the accuracy of the VE calculations. A light-weight probe can
exhibit a large vibration level because it has a low displacement-force impedance.
A heavier probe alleviates some vibration but at the cost of operator fatigue.
Therefore, the probe design should use some form of vibration absorption.

Four different methods for reducing the vibration are well known: vibration
isolation, passive vibration absorption, semi-active vibration absorption and ac-
tive vibration absorption. For vibration isolation, a spring-damper combination
is placed between the source of excitation force and the system to be isolated
(Figure 1a). In this figure, ki is the stiffness and bi is the viscosity of the isolat-
ing material and Fe is the excitation force. To minimize the transmitted force,
the spring and damper values should be selected according to the excitation fre-
quency [7]. For passive vibration absorption, an additional mass-spring-damper
trio is attached to the primary system (Figure 1b). In this figure, ma, ka and
ba are the absorber mass, stiffness and viscosity respectively. Unlike the previ-
ous method, passive vibration absorption adds one degree of freedom (DOF) to
the system. To minimize the vibration of the primary system (xp), the mass,
spring and damper values should be selected according to the frequency range
of vibration of the primary system [3]. Yet these absorbers can be designed for
only a narrow band of excitation frequencies. There is a trade-off between the
frequency bandwidth and the absorption level: the wider the bandwidth, the
lower the absorption. Semi-active vibration absorption follows the same idea as
passive absorption, but uses a tunable spring and damper (Figure 1c). Varying
the spring and damper values allows the absorber to be tuned to different exci-
tation frequencies [2]. For active vibration absorption, an actuator is added to
the mass-spring-damper trio of a passive absorber (Figure 1d). Active vibration
absorption differs from semi-active vibration absorption because it needs more
control effort to suppress the vibration, requiring an external energy source.
Semi-active and active vibration absorbers have the capability of cancelling the
vibration over a wider frequency range than the first two methods.

For VE, an excitation over the range of 10-50Hz is needed, so only active or
semi-active vibration absorption methods are suitable. In practice, VE rapidly
sweeps this range, and semi-active vibration absorbers have difficulty responding
with sufficiently speed. Moreover, the inherent damping produces sub-optimal
resonance properties at the frequency of excitation, offering low levels of absorp-
tion, especially in the miniature hand-held device.

In this paper an active vibration system is designed and built into the hand-
held probe. This paper describes the controller design then the design of the
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Fig. 1. Vibration reduction methods: (a) Vibration isolation (b) Passive vibration ab-
sorption (c) Semi-active vibration absorption (d) Active vibration absorption

overall device. Parameter identification of the absorber properties are then per-
formed to optimize performance. Simulations and experiments are then per-
formed to test the level of vibration absorption and the ability to create images
with VE. But first, simulations are used to demonstrate the level of errors in VE
that occur without vibration absorption.

2 The Effect of Probe Vibration

Like VE, the tissue is modelled as an n DOF mass-spring-damper model. The
tissue is vibrated from one side with the amplitude of 1mm and the position
of each mass is calculated at intervals in time. If the probe is stationary, the
positions measured from the ultrasound images should be the same as the posi-
tions calculated from the simulation. To simulate probe vibration, a portion of
the vibration displacement source is added to the simulation results and consid-
ered as measurements. The parameters of mass, viscosity and stiffness are then
identified from the measurements by the VE equations.

Figure 2 shows the relationship between the amplitude of probe vibration and
the relative error in estimating the tissue properties. The error is not the same
at all elements/nodes of the modelled tissue, so are averaged to produce a single
error value at each amplitude. As shown, there is a significant error introduced by
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Fig. 2. Simulations of probe vibration on the error in VE. The left, middle and right
plots corresponds to the error in the calculated mass, viscosity and stiffness respectively.
The tissue is excited at 1mm amplitude over a range of 10 Hz.
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the probe vibration. For example, an absorption of 90% of the vibration results
in a drop in the error in estimating viscosity from approximately 60% to 20%.

3 Controller Design

The vibration absorber on the probe should be designed to minimize the vi-
bration without requiring a large number of sensors (to minimize costs). A PI
controller is chosen here with measurement of only the absorber mass accelera-
tion. The control force of a PI controller with acceleration feedback is

Fc = Kpẍa + Kiẋa (1)

where Kp and Ki are the proportional and integral gain coefficients respectively
and xa is the position of the absorber mass. Having this force as the control
command, the equation of motion of the absorber mass is

maẍa + caẋa + kaxa = Kpẍa + Kiẋa (2)

Taking the Laplace transform one has mas
2 + cas + k = Kps

2 + Kis. By se-
lecting the Kp and Ki such that the roots of the above equation are placed on
the imaginary axis at ±jω, the absorber system will mimic a resonator at the
frequency of ω. This system can cancel the vibrations of the primary system at
the frequency ω. Solving the equation with s = ±jω, one has

Kp = ma − ka/ω
2, Ki = ca (3)

With an electromagnetic actuator, the control command is the applied voltage.
Therefore, the dynamics of the electromagnetic actuator must be considered. The
block diagram representation of the absorber system with the electromagnetic
actuator is provided in Figure 3. In this figure, L and R are the inductance
and the DC resistance and Kf and Kb are the force sensitivity and back emf
constants of the actuator. To get the velocity data from the acceleration data, a
first order Butterworth highpass filter with 0.5 Hz cutoff frequency is used before
integration to eliminate the low frequency drift of the accelerometer data.

Again, to have a vibration absorber at the frequency ω, Kp and Ki should be
selected such that the roots of the closed loop system are at ±jω. Finding the
closed loop transfer function of the whole system and forcing it to have poles at
±jω, the integrator and proportional gains can be found

Kp =
R(ka/ω

2 −ma)− Lca

Kf
(4)

Ki =
L(ka −maω

2) + Rca + KfKb

Kf
(5)

It is straightforward to show that the highpass filter has a very small effect on
Kp and Ki and therefore is neglected in (4) and (5).
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4 Hand-Held Probe Design

Figure 3 shows the hand-held device. Parts labelled as (c) and (d) are the pri-
mary actuator’s coil and magnet. This actuator vibrates the tissue, while the
ultrasound probe (a) images the tissue. The absorber actuator is mounted in
an opposite way: its coil (e) is fixed and the magnet (f) moves. Therefore the
absorber mass is simply the magnet of the actuator. This choice obviates an
additional absorber mass, making the hand-held device lighter. Part (g) is one
of the two absorber springs. There is no damper in the absorber; the inevitable
coulomb friction between the magnet and the housing and also the rods and the
bushings play the role of a damper. Parts (b) and (h) are the linear potentiome-
ter and piezoelectric accelerometer respectively. The accelerometer is mounted
on the absorber mass (the magnet) and provides the only feedback for the vi-
bration absorption algorithm. The potentiometer signal is only used to operate
the first actuator in closed loop for displacement control. Here a conventional
PID controller is used and since the mathematical model of the vibrator is un-
known, the coefficients of the PID controller are obtained by the Ziegler-Nicholas
method [4].

Fig. 3. Left: Controller for vibration absorber. Right: Exploded view of the hand-held
probe. (a) ultrasound transducer; (b) potentiometer; (c)and (e) actuator coils; (d) and
(f) actuator magnets; (g) absorber spring; (h) accelerometer.

The probe is designed for a desired frequency range of 10-50 Hz to cover a
sufficient bandwidth of the tissue response. The values of ma, ka and ba should
be chosen from the stability analysis of the absorber. To cover the desired band-
width, ma is 180 grams and ka is 650 N/m (implemented as two serried Spae-
naur B-646 springs). The value for ca can vary between 1 kg/s and 15 kg/s since
damping comes from friction.

5 Identification of the Absorber Parameters

After manufacturing the device, the exact values of ma, ka and ba need to be
measured. The value of ma was measured by a scale and is 199 grams. To mea-
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sure ka and ba, a free vibration test on the absorber mass was done and the
acceleration measured by the accelerometer. Assuming that the free vibration
is of the form x(t) = Ae−ζωntsin(ωdt + φ) where ωn =

√
(k/m) is the natural

frequency and ζ is the damping coefficient and ωd is the frequency of damped
oscillation, the two unknowns ωn and ζ can be found by matching the measured
motion to the free vibration equation. This gives ωn = 9.0 Hz and ζ = 0.5. These
translate into ka = 636.4 N/m, cad = 11 Kg/s, and ωd = 7.8 Hz. The coulomb
friction is the major source of damping (plus eddy currents induced by the mov-
ing magnet in the housing) and the given ca value is the result of linearization.
Because of its nonlinearity, the measured ca is valid for the frequency of the test
so is labelled cad. The ca at the frequency ω is then modelled as[7]

ca =
ωd

ω
cad (6)

6 Simulation Results

The performance of the proposed active vibration absorber is investigated by
simulation. Figure 4 compares the vibration of the probe with and without active
absorption. An excitation is applied to the probe held by a simple model of a
human arm (stiffness of 100 N/m and damping of 2 kg/s). An attenuation level
of 70 dB is achieved with the active vibration absorber after 5 sec.
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Fig. 4. Simulation of probe motion without and with the vibration absorber (left and
right respectively). Tissue is excited at 10Hz with an amplitude of 1 mm.

7 Experimental Results

Several experiments were carried out on the probe to show the effectiveness of the
active vibration absorber. A mechanical arm was built to hold the probe in order
to perform repeatable and comparable experiments. The arm has a stiffness of
140 N/m, mimicking the stiffness of the human arm holding the probe. Speckle
tracking is performed by a window-based cross-correlation algorithm [5]. An
OPTOTRAK 3020 (NDI, Waterloo, Canada) tracker with a measurement rate
of 400 Hz is used to track the motion of the probe. The OPTOTRAK is only
used to investigate the performance of the vibration absorber and is not used in
the vibration absorption control. In the first experiment, the probe vibrates a
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Fig. 5. Experimental results. (a) Probe vibration on a gelatin phantom with a mechan-
ical arm, before and after activating the vibration absorption (t=1.1 s). (b) Another
test looks at an increase in the excitation amplitude from 2 mm to 3 mm at t=1.3
s. Dashed and solid curves show the motion of the probe without and with the ac-
tive vibration absorber respectively. (c) Probe vibration for experiments with a human
operator on real tissue. The vibration absorber is turned on at t=0.7 s.

Fig. 6. left to right respectively: B-mode image, best-case example of static elastogram,
worst-case static elastogram, and the VE of a three layered phantom

phantom at a frequency of 10 Hz . Figure 5a shows that the amplitude of probe
vibration is reduced from 0.9 mm to 0.2 mm when the active vibration absorber
is turned on at t=1.1 s. To see the performance of the probe to absorb forces
with variable amplitude, two experiments with and without active vibration
absorption are done. In these experiments, the excitation amplitude is increased
from 2 mm to 3 mm at t=1.3 s (Figure 5b). The amplitude of vibration is
increased from 0.6 mm to 1.1 mm without vibration absorption and from 0.12
mm to 0.17 mm with the vibration absorption. The experiment shows an increase
in the attenuation level when the excitation force is increased. In Figure 5c, the
probe is held by a human operator on the forearm of a human subject. In this
experiment, the vibration absorber decreases the peak to peak motion from 1.28
mm to 0.13 mm. Because the probe is held by hand and applies a slightly uneven
pressure to the tissue, a net motion at a low 2 Hz frequency (compared to the
10 Hz vibration frequency) is seen. This motion is easily seen in the frequency
domain and excluded from VE. Experiments with a 20 Hz excitation frequency
show similar 0.9 mm to 0.2 mm vibration reduction. A B-mode ultrasound image
and three real elastograms obtained from a three layered gelatin phantom are
shown in Figure 6. The middle layer of the phantom is stiffer than the other
layers but exhibits the same acoustic properties. The stiff layer is not visible in
the B-mode image but it is detectable in the elastograms. The static elastograms
(second and third images) are obtained by applying a 0.01 compression to the
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phantom slowly and rapidly acquiring RF data during the compression, to ensure
high correlation coefficients between consecutive echo frames. A vibro-elastogram
is obtained from the same phantom by vibrating it with a 5 Hz band limited
white noise. Static elastograms can be noisy (e.g. third image in Figure 6), but
vibro-elastograms are more robust to noise due to their averaging step performed
in frequency domain.

8 Conclusions

Despite the uncertainties in the absorber model and the friction model, the
vibration absorber performed well. The control law of the active vibration ab-
sorber requires only the measurement of the absorber mass acceleration. Also,
the control law is decoupled from the primary system and the amplitude of the
excitation force. This property is inevitable for the probe because of two main
reasons. First, the properties of the primary system can change dramatically
since the probe can be held by various operators with various inertia, damping
and stiffness properties. Second, the probe vibrates various types of tissues with
various mechanical properties so the excitation force can vary considerably. As a
final note, the designed PI controller has the advantage of not requiring a double
integration from the acceleration data compared to the PD controller proposed
in [1]. Since the accelerometer data has a low frequency variable drift, it is im-
possible to twice integrate the acceleration data because of the accumulation of
error. By replacing the bushings with linear bearings and increasing the air gap
between the magnet and the housing to decrease the eddy currents, the per-
formance of the vibration absorber will be improved to the simulation results.
Given a working probe, work is now underway on clinical applications of VE.
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Abstract. The overwhelming majority of intra-operative hazard situations in 
tracked ultrasound (US) systems are attributed to failure of registration between 
tracking and imaging coordinate frames. We introduce a novel methodology for 
real-time in-vivo quality control of tracked US systems, in order to capture 
registration failures during the clinical procedure. In effect, we dynamically 
recalibrate the tracked US system for rotation, scale factor, and in-plane 
position offset up to a scale factor. We detect any unexpected change in these 
parameters through capturing discrepancies in the resulting calibration matrix, 
thereby assuring quality (accuracy and consistency) of the tracked system. No 
phantom is used for the recalibration. We perform the task of quality control in 
the background, transparently to the clinical user while the subject is being 
scanned. We present the concept, mathematical formulation, and experimental 
evaluation in-vitro. This new method can play an important role in guaranteeing 
accurate, consistent, and reliable performance of tracked ultrasound. 

1   Background and Significance 

Ultrasound (US) imaging has become a widely accepted guidance modality in 
medical interventions, because it is real-time, safe, and of low cost. Significant 
research has been dedicated to quantitative tracked ultrasound, involving tracking the 
US probe in 3D space with respect to a stationary frame of reference. While tracked 
US originates from interventional applications, it recently has become an 
indispensable tool in external beam radiation therapy (EBRT) guidance [1] that is 
expected to become the largest user of tracked ultrasound in the next couple of years. 
Each year in the United States 65,000 patients are treated for prostate cancer alone. 
Considering an average of 40 treatment fractions that each patient receives, the total 
number of procedures accumulates to 2.6 million a year. Tracked US guidance is also 
applicable to the EBRT of breast cancer, adding about 2 million more cases to the 
potential market. 

Typically, tracking is achieved by rigidly attaching 3D localizers to the US probe. 
The missing link, however, is the spatial transformation between the US image pixels 
and the 3D localizers on the probe, which requires calibration. Hence, calibration is 
ubiquitously present in all systems where ultrasound is used for quantitative image 
guidance. From our experience, the wide majority of intra-operative hazard situations 
in tracked US systems are caused by failure of registration between tracking and 
imaging coordinate frames, thereby manifesting in miscalibration of the tracked US. 
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The most typical form of errors is false reading of the tracker that occurs quite often 
in electromagnetic tracking systems due to invisible field distortions caused by metal 
objects or electromagnetic noise. Another typical problem related to tracking is 
deformation or physical damage of the tracking body attached to the probe, causing a 
latent misreading of pose. What makes these problems exceedingly dangerous is that 
they occur without apparent warning. Among human operator errors, inadvertent 
changes of lateral image polarity occur quite frequently and transparently to the 
clinical user. With regular off-line recalibration some of the aforementioned errors 
can be caught prior to procedure. The process is called Quality Control (Q/C), a 
mandatory routine in any clinical department. Typically, Q/C is performed annually, 
monthly, or weekly, which places a heavy financial burden on the department. In 
addition to increasing patient safety, reduction in Q/C costs clearly is an incentive. 

In all current calibration methods, a set of objects (often referred to as phantoms) 
of known geometrical properties are scanned and then various mathematical 
procedures are applied to discern the unknown transformation that maximizes the 
similarity between the US images and the phantom [3-6]. The use of special objects 
and phantoms, however, is cumbersome and foreign to the operating room where 
interrupting the procedure for the sake of probe calibration is not practical. What is 
required therefore is a paradigm shift in calibration technology to phantomless self-
calibration that is performed directly on the patient, intra-operatively, in real-time, 
transparently to the physician. 

Generally, full calibration involves six degrees-of-freedom (DOF) of rigid 
transformation and three dimensional scaling. However, according to a practical 
observation, the possibility of pure translational error in the calibration matrix is 
practically low. One atypical scenario would involve the rigidly attached sensor to slide 
without experiencing any relative rotation with US image reference frame. Thus for the 
purpose of Q/C, it is sufficient to recalibrate the system for the remaining degrees-of-
freedom. This paper presents the concept, mathematical framework, experimental 
implementation, and in-vitro evaluation of a phantomless real-time method that detects 
intra-operative failures of the tracked US while recovering the calibration matrix to a 2D 
scale factor and then achieve full calibration in an additional step. 

 2   Mathematical Formulation 

The key enabler of our self-calibration method is a closed-form mathematical 
formulation of the problem. Fig. 1 presents the coordinate systems for the 
mathematical formulation. A1, A2 are the 
transformations of US picture coordinate 
system (P) with respect to the fixed 
construction frame (C) at poses 1 and 2, 
respectively. Note that the actual selection of C 
is arbitrary and the only requirement is that it 
must be rigidly fixed during the calibration 
process. Using A1 and A2, we obtain the 
transformation between poses 1 and 2, as 
A=A2A1

-1. At the same time, the transformation 
between the two poses can be recovered using 

 
Fig. 1. Coordinate definitions in the 
closed form AX=XB
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a calibration phantom or recovered directly by matching the 2D ultrasound images 
acquired in these poses to a prior 3D model of the phantom object. B1 and B2 are 
readings from the tracker for the sensor frame (R) with respect to tracker reference 
frame (T), at poses 1 and 2 respectively. The relative pose between the sensor frame 
(R) at pose 1 and 2 is given by B = B2

-1B1. This yields the following homogeneous 
matrix equation: 
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the translation vector ua in voxel space to the US image frame translation vector ta 

(usually expressed in mm), such that: 
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It is important to account for the most general case where the scale factor λ (which 
again converts from voxel space to image space) is not known. This scenario typically 
occurs when A is recovered by registering the US image to some a priori known 
model (or phantom) given in voxel space. In the linear formulation of the problem, we 
use the linear operator vec and the Kronecker product (⊗)[8]. Using the following 
property of the Kronecker product ( ) )()( DvecECCDEvec T⊗= , we rewrite Eq. 1 as:  
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The solution for this homogeneous linear system could be given by finding the null 
space, which is a subspace in R15. Then the unique solution could be extracted from 
the null space using the unity constraint to the first 9 coefficients representing the Rx. 
However, a better solution is described in [9] where the system is solved in two steps: 
first extract the rotation, and then solve for the translation and scale. The complete 
algebraic analysis for this problem (where the scale factor is assumed to be the same 
in three directions) is given in [7], where it is proved that two independent motions 
with non-parallel axes is sufficient to recover a unique solution for AX=XB. We have 
extended this solution method to account for inhomogeneous scale in the three 
coordinate axes. As discussed in [5], two independent motions with A’s and B’s are 
sufficient to recover X. Therefore, our present task reduces to recover A’s as we are 
scanning real tissue and collecting the corresponding B’s from the tracker, and then to 
obtain the calibration by solving the homogenous linear system in Eq. 3. The 
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challenge lays in the full recovery of the A’s, including all six DOF. The in-plane 
motion parameters can be recovered with sub-pixel accuracy in real-time, using 
speckle based tracking algorithms applied to the B-mode images. The out-of-plane 
motion parameters are difficult to recover from B-mode and we performed this task 
only with RF or pseudo-RF data, the latter being decompressed B-mode data as 
described by Prager et al. [13]. Out-of-plane motion, however, is not necessary for 
our immediate task of Q/C, thus it is omitted from further discussion in this paper. 

Translation Motion:  
This motion scenario is realized by moving the 2D/3D US probe in translational 
sweep (without rotation) to collect nearly parallel stack of images and/or series of 3D 
slabs. Also it can be shown in a panoramic scan where the images can be stitched 
together without introducing a relative rotation. Given this kind of 
motion,

3IRaRb == , leading to 
aibi ttRx =∗ , where i denotes the motion. Using 

the property of the Kronecker product used in Eq. 1: 
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Three independent translations are sufficient to obtain a full-rank system. Solving for 
Rx and the three scale factors: 
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We have obtained a closed-form solution that recovers an anisotropically scaled 
rotation matrix from three independent translations. We can recover the three scale 
factors by applying the unit constraint on each column vector, and recover the 
underlying rotation by then rescaling the columns to be unit vectors. This basically 
proves that three independent motions are sufficient to recover the rotation and the 
three scale factors. However, the third motion is not even necessity. It can be shown 
[7] that given two independent motions tb1, tb2, the third constraint comes from the 
cross-product between tb1, tb2. 

In order to map this analysis to our application, several requirements must be 
considered. The ultrasound machine generates real-time 2D US pixel-map, meaning 
that we have only two unknown scale factors in x and y, denoted as λx and λy. With 
sweeping probe motion we obtain multiple poses that suggests folding the closed form 
representation into a least squares problem. Starting from the following equation:  
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The solution of this equation can be achieved in many ways. One can solve non-
linearly for the three rotations and the two scale factors ( x, y). Alternatively, one can 
solve linearly for the nine parameters of the scaled rotation and perform QR 
factorization with positive scale factor constraints. Or simply, apply the norm 
constraint on Eq. 4 as follows:  
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This allows solving for both ( x, y). After recalculating the scaled uai, we obtain two 
sets of points governed by an SO(3) rotation and recovered with Horn’s method[11]. 

Planar Motion: 
Planar motion is more general as it also allows, in addition to translation, in-plane 
rotation. This type of sweeping probe motion is commonly applied clinically. With 
this general motion, one can recover both rotation and anisotropic scale factors as 
shown before, but it will not yield a full recovery of the position offset tx. By applying 
Eq. 3 we obtain: 
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Note that when Rb=Ra=I3, Eq. 5 becomes similar to the pure translation case in Eq. 4. 
Also note that Eq. 6 is always under constraint as (I3-Ra) has rank 2, regardless to the 
number of in-plane rotations, meaning there is no single solution for tx and the general 
solution will have exactly one (the number of unknowns minus the rank) arbitrary 
scale factor . So the solution can take the form: 
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nx ttt *)( ζζ +=  (7) 

Where  is the unknown scale factor. t° is a unique solution in the plane of motion (2-
dimensional), since (I3-Ra) has rank 2. tn is the normal to the plane of motion. In our 
case, if the plane of motion is the US image plane (the x-y plane), tn may equal (0 0 
1)T, which is a unit vector in the z-direction and thus perpendicular to the plane of 
motion. In our US calibration and Q/C system, we can recover this unknown , if we 
have a collection of a previously scanned cross-wire tar get from different 
insonification angles, the idea being is that the cloud of reconstructed cross-wire 
targets will be the smallest (i.e. standard deviation minimal) for the correct value for . 

3   Experimental System 

In our experimental prototype (Fig. 2), we used a SONOLINE Antares US scanner 
(Siemens Medical Solutions USA, Inc. Ultrasound Division, Issaquah, WA), with a 
Siemens VF 10-5 linear array probe. The patient was replaced with a tissue 
mimicking agar phantom. The US probe was held 
against the phantom in a rigid acrylic holder 
mounted on an adjustable steady arm. The arm 
had dual purpose: to adjust the spatial position of 
the tracked US probe over the calibration 
phantom, and to ensure temporal synchronization 
between the tracker and the US scanner. Multiple 
optical markers were attached to the probe holder, 
which then were tracked by an OPTOTRAK 
device (Northern Digital Inc.).  

The tissue mimicking phantom provides 
realistic images of fully developed speckles. Its 
construction is based on a recipe by Fenster et al. 
[10]. Three percent by weight of agar gel (A-7002 
Agar, Sigma-Aldrich, St. Louis, MO) was added 
to distilled water, with three percent by weight 
50μm cellulose particles (S-5504 Sigmacell, 
Sigma-Aldrich), and with seven percent by 
volume glycerol (W25250, Sigma-Aldrich). The 
mixture was heated to 92 C°, stirred constantly, 
gradually cooled to 60 C°, and then poured into a 
container mold. We also introduced specular 
features and structures to mimic bone appearance 
and to allow for testing algorithmic performance 
under different echogenicity conditions. 

Algorithm Workflow 
The workflow in the real-time Q/C procedure is 
described in Fig 3. The Acquisition Module 
receives US video signal and tracker reading, from which it prepares synchronized 
indexed sequences of images and tracking information. The Motion Analyzer sorts out 

 

Fig. 2. In-vitro experimental setup 

 

Fig. 3. The Q/C workflow 
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the types of motions in these sequences and sends control signal for the Real-time 
Tracker, which recovers the A matrices. Finally, the AX=XB solver receives 
corresponding A’s and B’s data, recovers the X calibration matrix. The Quality 
Control unit analyzes the new calibration and compares it with previous runs. In case 
of suspected discrepancy, an appropriate Action is initiated to deal with the hazard 
condition. The action could range from generating a warning message to demanding 
to halt the procedure and fully recalibrate the system. It must be noted that a full 
recalibration is necessary only if a scale factor is found to be at fault, because the 
partial calibration recovers all other parameters during the Q/C process. The 
remaining scale factor can be easily recovered from a pre-scanned geometrical object, 
such as a cross-wire, as described earlier in relation to Eq. 7.  

Real-time Tracker 
As mentioned above, the role of Real-time Tracker is to recover the A matrices, the 
motion of the US image in construction frame, as it was described in Fig. 1. What is 
necessary is to compute the relative motion in pairs of ultrasound images for which 
the absolute (tracked) motion is known. We accomplish this using direct image 
registration methods similar to those described in [12]. Specifically, we introduce an 
intermediate “warped” image representation W defined as 

)*)((),;,( puRotIptuW += αα   

where u=(x,y)T is an image location, P is a translation offset, and α is an interframe 
rotation. Let W(t; p,α) denote the column vector constructed by stacking the value of 
W for all possible image locations u . We then compute an estimate of the offset  (Pt, 
αt) between images at time t and t+d by iterating the following equation: 
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where Jμ denotes the pseudo-inverse of the Jacobian matrix of W with respect to P  
and α. The values of (Pt, αt) is taken from the previous frame. 

4   Experiments and Results 

We used the experimental system to 
collect 5 datasets, altogether 
containing 20 motions in B-mode, 
of rectangular view and 8 cm depth. 
One of the datasets contained 4 
motions and was obtained under a 
faulty condition. We purposely 
flipped lateral polarity of the B-
mode image to simulate a common 
operator error. Table 1 shows the 
rotation and scale reported by the 
Q/C system.  In testing the image 
tracker, we used d=10 step size, for  
 

Table 1. Q/C system report on rotation and scale 

 
 Magnitude of 

rotation 
(Rodrigues 

form) 

Scale in x and y 
(mm/pixel)  

Dataset-1 3.163 0.22 0.26 

Dataset-2 3.072 0.23 0.26 

Dataset-3 2.992 0.23 0.27 

Dataset-4 3.008 0.23 0.29 

Dataset-5 0.086 0.24 0.27 
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which images were matched with an RMS gray-scale error of less than 2% of signal 
value, suggesting a registration error of less than 1/10 pixel [12]. The heart of the Q/C 
system, as seen in Fig. 3, are the real-time image tracker and AX=XB solver. The image 
tracker is sensitive to the step d between registered images, while the AX=XB solver is 
sensitive to the number and type of motions used to recover the calibration parameters. 
The upper graph in Fig. 4 illustrates the relation between the recovered scale and 
number of images and the step size d taken in the image registration algorithm, for 
“bad” (appears in the upper graph for the first 30 images) and “good” (lower graph). 
Note that number of images can be represented by the scanning time, where 1 second 
corresponds to 33 frames, sweeping over a certain distance covered with the given 
scanning velocity. The x-axis represents the number of frames used in the AX=XB 
solver and the y-axis is the scale ratio in mm/pixel. The upper figure is for λx, the lower 
is for λy. Figure 4 also shows convergence for the scale ratio under different image 
registration steps (small d: 1, 3, and 5; large d: 10, 20, 30, and 40). Note that as we 
increase the step size, we also introduce a delay equal to the step size before we start 
estimating a given parameter. (It is because we must wait for the dth image to come.)  

We have found that steps bigger than 40 are not reliable to track and predict the 
motions of the speckle-based images. At the same time, they are considered bad kernels, 
suggesting that we have to wait for about 2 Sec. to detect a problem. Yet smaller 
tracking steps need fewer readings to start convergence, due to the small motions they 
deliver to the AX=XB solver. Note that the convergence for d= 1, 2, and 3 appears after 
20 small motions for λy and appears after 30 small motions for λx, this is mainly due to 
the type of motions. The intuition behind this is, we can’t estimate a scaling parameter 
in a direction normal to the direction of motion. Similarly favorable results were 
obtained for the rotation component, not discussed here due limitation of space. We can 
conclude that given the right motion, a kernel of 10 steps (d=10) converges in 10-20 
steps, meaning 0.3-0.6 sec with a total travel of ~1.5mm (scanning speed @ 3mm/sec).   

 

Fig. 4. Recovered scale versus the number of images and step size 
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5   Conclusion and Future Work  

Our Q/C system, that reports the calibration matrix robustly and consistently, 
recovered the correct calibration parameters under normal working conditions by 
monitoring the constancy of calibration matrix and did not produce false alarm. It also 
managed to distinguish the faulty condition through catching the outlier calibration 
matrix. It is a work in current progress to extend the Q/C framework to estimate the 
out-of-plane motion of the US probe, thereby providing full calibration in-vivo, real-
time, as the patient is being scanned, which will obviate phantom-based calibration. 
The real-time performance of the Q/C system allows for averaging hundreds of 
independent calibrations from a single sweep, which in turn promises to retire cross-
wire based reconstruction accuracy evaluation and at last make US calibration free 
from any phantom, whatsoever. The key enabler to this is tuning the Real-time 
Tracker module to coping with out-of-plane motion components in the A matrix, for 
which speckle decorrelation techniques are under investigation. We will also compare 
the accuracy of our current partial recalibration against published off-line calibrations. 
Our present ability to reproduce calibration parameters to a 2D scale factor is most 
promising in this regard. Last but not least, the sensitivity and specificity of the Q/C 
system will be examined. A clinical-grade Q/C system must catch all faulty 
conditions (high sensitivity), yet it must not halt the clinical intervention with 
producing false alarm (high specificity). Altogether, the combined Q/C and 
calibration system appears to have high practical utility for clinical departments that 
use and maintain tracked ultrasound systems. Finally, the authors acknowledge the 
financial support from the NSF #EEC 9731478 and loan equipment from Siemens 
Corporate Research. 
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Abstract. C-arms are well suited for obtaining cone-beam projections
intra-operatively. Due to the compact size of the detector used, the data
are usually truncated within the field of view. As a result, direct ap-
plication of a standard cone-beam reconstruction algorithm gives rise
to undesirable artifacts and incorrect values in the reconstructed image
volume. When prior information such as a pre-operative CT scan is avail-
able, fully truncated cone-beam projections can be used to recover the
change within a small region of interest without such artifacts. A method
for integrating prior CT is developed using the concept of pi-lines and
tested on real flat-panel and simulated cone-beam data.

1 Introduction

Three dimensional image reconstruction from C-arm cone-beam projections has
been an area of growing practical interest over the last couple of decades. C-
arms can provide rotational cone-beam images that can be used for the purpose
of three dimensional reconstruction of anatomy. Filtered backprojection meth-
ods, such as Feldkamp’s method [1], are among the most popular approaches to
cone-beam reconstruction of C-arm images. These methods require a sufficiently
large angular sweep, and require that the anatomy being scanned is entirely cap-
tured in the detector. In intra-operative applications, such as in hip replacement
surgeries, these conditions cannot be practically met, due to patient size, orienta-
tion, and other objects such as tools, patient table, etc. that occlude the C-arm’s
view of the anatomy. These restrictions cause undesirable artifacts within the
reconstruction field of view (FOV) thus rendering the reconstructions unsuitable
for prognosis or planning. While intra-operative CT scans are quite impractical
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for such applications, prior CT scans of the same patient may provide valuable
information that can be used to compensate for aforesaid artifacts.

In this paper, we investigate the possibility of using prior CT information
in cone-beam reconstruction, from fully truncated C-arm images. Recent de-
velopments in fan-beam and cone-beam tomography [2, 3, 4, 5] have shown, by
introducing the concept of “Pi-lines”, that a certain degree of truncation (along
the width of the detector) is admissible. However, when data is truncated at both
ends of the detector these methods do not work. This is known as the interior
problem and it has been shown that a unique inverse does not exist [6] Our goal is
to show that in certain cases prior CT information can be used to convert the in-
terior problem into a sub-interior problem, i.e., a case where the aforementioned
Pi-lines technique can be used. Consider for example an application involving
the imaging of the pelvic bone during a sacroplasty procedure. Although a 3D
pre-operative CT is typically obtained to find the regions of sacral fracture, it
would also be helpful to obtain 3D reconstructions during the various steps of
the procedure itself. We approach this problem by modeling the effects of the
procedure as a change in the anatomy with respect to the prior CT. We show
how this change can be recovered within a small region of interest from a semi-
circular sweep of heavily truncated cone-beam projections. The x-ray source can
be collimated to as narrow a beam as required to cover this region of interest
thereby keeping radiational exposure to a minimum.

2 Background

2.1 Classical Framework

Cone-beam reconstruction techniques may be broadly classified based upon the
geometry of the source path: (a) Non-planar source paths and (b) Planar source
paths. Exact 3D reconstruction is possible only when the source path satisfies
Tuy’s [7] condition, according to which every plane passing through any point of
interest must intersect the source path non-tangentially at least once. It imme-
diately follows that, only non-planar source paths are capable of satisfying this
requirement for an entire volumetric region. Planar source paths can at best sat-
isfy this requirement only for points contained within the plane containing the
source path itself. In such cases it is simplest to develop cone-beam algorithms
by simply extending existing exact 2D fan-beam reconstruction techniques above
and below the mid-plane (the plane containing the source path). Feldkamp’s re-
construction method [1] for volumetric cone-beam reconstruction is an example
of this approach. It is an extension of classical exact 2D fan-beam reconstruction
algorithm on a circular path.

2.2 Recent Developments

In recent years, exact fan-beam reconstruction techniques have improved pro-
gressively by relaxing the requirements on the projection data. While classical
fan-beam tomography cannot handle truncated data and requires a minimum
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sweep of π + fan-angle (short-scan), Noo et al [8] proposed a method that could
work with a very short-scan sweep (less than a short-scan) for exact reconstruc-
tion in a region of interest (ROI) within the field of view (FOV). Truncation
is still not admissible in this method however. An extension of this method to
cone-beam tomography was proposed in [9, 10]. An important breakthrough in
handling data truncation in fan-beam tomography was presented in [11] by in-
troducing the idea of a virtual fan-beam re-binning technique. An alternate and
emerging approach for handling data truncation is to reconstruct the Hilbert
transform of the underlying function on pi lines [2, 3] by backprojecting the first
derivative of the projection data. The Hilbert transform is then inverted on these
lines to obtain the final reconstruction. These methods were largely inspired by
a method introduced in helical CT by Zou et al in 2004 [12]. The idea of pi-
lines has also been generalized for the purpose of cone-beam reconstruction from
arbitrary source paths [4, 5].

3 PI Lines Theory

For completeness, since this is a relatively new concept, we now briefly describe
the idea of cone-beam inversion on pi-lines [4]. For mathematical ease, we use the
notion of a virtual detector centered at the origin O (see Fig. 1). The orthonormal
vectors û, v̂ and ŵ define the orientation of the detector width, detector length,
and the position of the x-ray source a(λ). The cone-beam projection data is
given by a scalar function g(u, v, λ). The x-ray source assumes various positions
along its trajectory that is parameterized by λ ∈ Λ, a real interval. Without loss
of generality it is assumed that the detector is well oriented along these various
poses, i.e., a′(λ) the tangent to the source trajectory is always parallel to û.
A pi-line is defined as any line that connects two points of a connected source
trajectory. Figure 1 shows a pi-line Πλ∗λ that contains a(λ) and a(λ∗). The only
pi-lines that concerns us are those that intersect the virtual detector, since these
are ones that are actually measured. Consider a point x ∈ Πλ∗λ and let the
underlying x-ray attenuation function at this point be denoted as f(x). Since
Πλ∗λ is a measured line, it is safe to assume that f(x) is of finite support say

Fig. 1. Differentiated back projection in cone-beam geometry



634 K. Ramamurthi et al.

(πl, πu), on this line. Although truncation is admissible in general, it is strictly
required that this section of the pi-line Πλ∗λ be captured completely in all the
views from λ to λ∗. Under these assumptions it has been shown in [4] that the
Hilbert transform of f(x) along Πλ∗λ can be measured as follows:

Hλ∗λ [f(x)] =
1
2π

[∫ λ∗

λ

D ‖a′(λ)‖ gF (u∗(λ,x), v∗(λ,x), λ)
[(a(λ) − x) · ŵ]2

dλ

+
g(u∗(λ,x), v∗(λ,x), λ)

‖a(λ)− x‖

∣∣∣∣λ
∗

λ

]
, (1)

where (u∗(λ,x), v∗(λ,x)) is the point where Πλ∗λ intersects the virtual detector,
and

gF (u, v, λ) =
∂

∂u

[
D√

u2 + v2 + D2
g(u, v, λ)

]
. (2)

The Hilbert transform obtained in (1) is directed from a(λ∗) to a(λ). Let t
denote a scalar that specifies position on Πλ∗λ along this direction. A complete
measure of Hλ∗λ [f(t)] ∀ t ∈ (πl, πu) can then be obtained. Since the Hilbert
transform is shift-invariant, any particular choice for t = 0 will do. Under the
condition that f(t) vanishes outside the interval (πl, πu), the Hilbert transform
can be inverted by,

f(t) =
−1√

(t− πl)(πu − t)

∫ πu

πl

√
(t′ − πl)(πu − t′)H [f(t′)]

π(t− t′)
dt′ + C, (3)

where C is a constant of integration that can be determined by the knowledge
that f(t) = 0 outside this interval.

4 Methods

In this section we present the two main contributions of this paper. We first
show how to obtain the Hilbert transform on a set of parallel pi-lines from a
set of diverging fan-beam (or cone-beam in the mid-plane) projections. We then
show how to integrate prior information along these pi-lines from a prior CT.
Since the source geometry is planar the method is approximate above and below
the mid-plane. For explanatory purposes we use the “Popeye” phantom (see
Fig. 2a) defined in [3] to serve as the prior CT (fp(x)). A modified Popeye
phantom (fm(x) is then obtained by adding a long cylinder, and an ellipsoid,
changes that are assumed to occur during surgery (Fig. 2b). The goal is to
image a small ROI of this modified phantom using fully truncated cone-beam
projections obtained over a semi-circular source path.

4.1 Selective Differentiated Back-Projection

As shown in Fig. 2b, the size of the detector is clearly too small to capture the
modified Popeye phantom from any view angle (g(u, v, λ) is only known ∀ u ∈
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Fig. 2. (a) Popeye phantom serves as prior CT, (b) Selective backprojection to obtain
Hilbert transform on parallel lines of modified Popeye phantom

[um, uM ]). However, the local nature of the derivative operation in (2) allows for
accurate calculation of gF (u, v, λ)∀ u ∈ (um, uM ). Since the limits of the integral
in (1) are dependent on the reconstruction point x, a voxel-driven backprojection
summation algorithm cannot be directly used. In order to get over this hurdle,
we perform a selective differentiated backprojection of the data by defining a
modified data function defined as follows:

g̃F (u, v, λ) = gF (u, v, λ) ∀ u
ux<0

><
ux>0

ux. (4)

where ux corresponds to the column on the detector where the vertical pi-line
Πλ∗λ (see Fig. 2b) containing a(λ),x, and a(λ∗) intersects it. We backproject
this modified projection data over the entire semi-circle to obtain

Ĥy [fm(x)] =
1
2π

∫ π

0

D ‖a′(λ)‖ g̃F (u∗(λ,x), v∗(λ,x), λ)

[(a(λ) − x) · ŵ]2
dλ. (5)

Since the limits of the integration in (5) are not position dependent we can
process the data using a typical cone-beam backprojection summation algorithm.
The bounds in (4) ensure that for points lying on vertical pi-lines, backprojection
is effectively computed only over the range defined by the intersection of such a
pi-line with the source path. We have also ignored the second term of (1) arguing
that its contribution to the summation is significantly less than that from the
first term.

4.2 Integration of Prior CT

The selective backprojection of data on vertical pi-lines gives us a good estimate
of the Hilbert transform of fm(x) along the positive y axis. With the knowledge of
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fp(x) along the same pi-lines we can obtain an estimate of the Hilbert transform
of the change c(x) = fm(x)− fp(x) using the fact that the Hilbert transform is
a linear transform, i.e.,

Ĥy [c(x)] = Ĥy [fm(x)]−Hy [fp(x)] , (6)

where

Hy [fp(x)] = Hy [fp(x, y, z)] =
∫ +∞

−∞

fp(x, y′, z)
π(y − y′)

dy′. (7)

An estimate of c(x) can then be evaluated by using (3) to invert Ĥy [c(x)] over
the domain (πl, πu). This inversion is done over the entire FOV, and then added
back to the prior CT to obtain our final reconstruction result. This method works
well when c(x) = 0 outside the FOV covered by the fully truncated scan. In this
case since the change is a long object oriented along the x axis, it makes sense
to reconstruct along vertical pi-lines. It general it would be effective to perform
the selective backprojection such that the pi-lines are oriented orthogonal to the
longer dimension of the change.

5 Results and Discussion

We conducted two sets of experiments to test the method described in Sect. 4.
Using the Popeye phantom and its modified version we began with a simulated
experiment. We also conducted a real experiment using an anthropomorphic hip
section phantom known as the Alderson Rando Phantom. We first obtained a
complete CT scan of the entire hip phantom to serve as the prior CT for our
experiment. The phantom consists of several slabs (≈ 1 inch) that are stacked
vertically. This allowed for easy modification of the interior section of the phan-
tom. We drilled out 7 cylindrical plugs of varying diameters (3 to 7 mm) from
the most central slab (also coinciding with the mid-plane of the sweep). We then
replaced three of these with Aluminum plugs. Using a Siemens flat panel ceil-
ing mounted C-arm (Artis dTA), we then obtained well calibrated cone-beam
projections of this modified hip phantom over a semi-circular sweep. The poses
of the C-arm were accurately represented using projection matrices obtained by
scanning an offline calibration phantom. For the purpose of registration we used
a standard Levinson-Marquardt optimization routine that searched through a 6
parameter space to find a rigid body transformation that would take the prior
CT to the space of the C-arm projections. The cost function was the combined
error in the prediction of where some known external markers would be pro-
jected to on the image domain. We used two orthogonal views for this purpose.
The scan parameters for the two experiments are summarized in Table 1.

The results from the two experiments are shown in Fig. 3. In the case of
the real data experiment, it was sufficient to apply our method on pi-lines that
spanned only half of the FOV since there was no change outside this region.
The results are shown on slices that correspond to the mid-plane of the source
geometry. Figures 3a and 3d show instances of the prior CT in each case. For the



Fully Truncated Cone-Beam Reconstruction on Pi Lines Using Prior CT 637

Table 1. Scan Parameters

Simulated Data Real Data
Angular Range 180◦ 180◦

Angular Sampling 1◦ 0.4◦

Source to Detector 1040 mm 1180 mm
Source to Iso-center 570 mm 785 mm
Number of Rows 256 1024
Number of Columns 256 756
Row Spacing 2.554 mm 0.373 mm
Col Spacing 1.4 mm 0.373 mm
Prior CT grid (512,512,200) (512,512,200)
Prior CT size (640 mm, 640 mm, 250 mm) (380 mm, 380 mm, 200 mm)

Fig. 3. Integration of prior CT information along pi-lines reduces truncation artifacts
to a great extent

purpose of comparison, we show the results of applying the very short-scan FBP
algorithm on fully truncated projections. We juxtapose these results with the
prior CT outside the FOV in order to emphasize the mismatch in reconstructed
CT values (see Figs. 3b and 3e). The discrepancy in the values is not due solely
to a DC offset but also to an indeterminable cupping attenuation that is typical
of the interior problem. This is mainly an effect of the non-local nature of the
ramp-filter that is used in such methods. The characteristic strong edge on the
boundary of the FOV has been avoided by artificially setting the boundary value
of the ramp-filtered projections to zero. Using our method instead, we present the
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results of adding the recovered change within the FOV to the prior CT. As can
be seen in Figs. 3c and 3f, our method does a remarkably good job of consistently
fusing the two reconstructions. The improvement in the reconstructed values of
our method is a result of mathematically consistent compensation along pi-lines,
and not due to an ad-hoc scaling of values. In the case of real data however, we
had to determine a scalar scale in order to match the C-arm data to the prior CT
data. This was automatically done by comparing the average values ofHy [fp(x)]
and Ĥy [fm(x)] within the FOV.
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Abstract. C-arm fluoroscopy is modelled as a perspective projection,
the parameters of which are estimated through a calibration procedure.
It has been universally accepted that precise intra-procedural calibration
is a prerequisite for accurate quantitative C-arm fluoroscopy guidance.
Calibration, however, significantly adds to system complexity, which is
a major impediment to clinical practice. We challenge the status quo by
questioning the assumption that precise intra-procedural calibration is
really necessary. We derived theoretical bounds for the sensitivity of 3D
measurements to mis-calibration. Experimental results corroborated the
theory in that mis-calibration in the focal spot by as much as 50 mm still
allows for tracking with an accuracy of 0.5 mm in translation and 0.65o in
rotation, and such mis-calibration does not impose any additional error
on the reconstruction of small objects.

1 Introduction

C-arm fluoroscopy is ubiquitous in general surgery, due to its real-time nature,
versatility, and low cost. At the same time, quantitative fluoroscopy has not
found a large scale clinical acceptance, because of inherent technical difficulties
and needs to solve four major problems: (1) C-arm image distortion; (2) Calibra-
tion of model parameters; (3) Pose recovery or tracking when multiple images
are taken; and (4) Registration to imaging modalities. Some of the prominent
works that have tackled the above problems are [1, 2]. The driving application
of our research is prostate brachytherapy, where radioactive seeds are required
to be precisely placed into the prostate. Quantitative fluoroscopy could enable
a significant improvement in the current clinical practice.

If is known that both image distortion[3] and calibration[4] may vary signif-
icantly with pose. Image distortion usually has a consequential contribution to
reconstruction error and needs to be compensated. Thus the additional cost of a
full online calibration is not substantial. Recently developed advanced intensifier
tubes allow for lesser distortion, while modern flat panel detectors obviate dis-
tortion correction altogether. This fact brings up the question whether we need
to calibrate the C-arm fully at each pose. The question also leads to the broader
issue, that even if it is not pose dependent, how accurate does calibration need to
be. In spite of the importance of calibration in C-arm fluoroscopy, as far as the
authors are aware, there has been no prior work that conducts this analysis. The
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vision community has a similar problem [5, 6] when cameras are used for visual
serving of robots. We do not go into a detailed comparison for lack of space.

In quantitative C-arm fluoroscopy, we typically need to measure the spatial
transformation between two objects, such as a vertebra and a bone drill, as com-
pared to the transformation between an object and the C-arm itself. Thus the
central intuition of this paper is that while an incorrect calibration gives erro-
neous estimates for the absolute transformations, nevertheless it still provides
acceptable relative estimates. The consequence of this conjecture is potentially
far reaching, as it can turn fluoroscopy to an affordable quantitative measure-
ment tool in a large family of procedures. It should be however noted that we do
not claim that calibration would always be unnecessary, since there are many ap-
plications that require high reconstruction accuracy. The decision should always
be made case by case, experimentally. In this paper, we build a mathematical
framework to formally address this issue and lend credit to the intuition that
a loose estimate of the C-arm parameters might suffice in applications where
the relative pose of objects is to be measured. In particular, we prove in theory
and demonstrate experimentally that intra-operative dosimetry of brachyther-
apy implants is feasible with an un-calibrated C-arm.

2 Mathematical Framework

C-arm Imaging Model: Geometric aspects of fluoroscopic imaging can be
approximated as a perspective projection with five parameters[7]. There are a
total of five independent parameters that need to be evaluated by the calibration
procedure - the pixel sizes (two) and the focal spot (three). The pixel sizes are
fixed and remain unchanged throughout the life of the C-arm, reducing online-
calibration to just the focal spot. Though our framework can study sensitivity
due to any of the five parameters, we limit ourselves only to the focal spot.

2.1 Model for Reconstruction Space Transformation

As illustrated in Figure 1(a), let A & B (with reference frames FA & FB) be the
two objects being imaged. The assumptions are: (i) IFA,

I FB can be computed
from the images; (ii) A & B are not large in comparison to the focal length; (iii)
FA and FB are close by; and (iv) the quantity of interest is AFB = (IFA)−1 IFB .
Let f̄1 be the true focal spot and f̄2 = (f̄1 + D̄) be the mis-calibrated estimate.
We claim that even though the absolute locations of the objects are off, their
relative transformation might still be accurate.

A transformation is needed that can take the absolute location of an object
reconstructed with calibration f̄1, and compute its corresponding location with
calibration f̄2. We claim that the simplest transformation will be a linear affine
model T . The intuition derives from the observation that the image plane is the
same in both reconstruction spaces. Thus if P1 (not in homogenous coordinates)
projects to a point p on the image, then it is constrained to be on line L̄1
in the f̄1-space and on L̄2 in f̄2-space. Thus we seek a continuous invertible



C-arm Calibration - Is it Really Necessary? 641

1L

f1

f2

FA

IF

FA

FB

FB

P2

P1

L2

D

p

(a)

f2

Q2

θ

1

Q1

l2

P

l1

P

I

D
f

2

1

F

(b)

F

P

i

Q i

I

i

f

F

(c)

Fig. 1. Mis-calibration (a) shifts all reconstructed objects under an affine transforma-
tion; (b) rotates and scales a straight line segment; (c) Pose dependent calibration
might be successfully approximated by using the mean value

transformation that projects L̄1 to L̄2. By incorporating the above constraints,
T can be evaluated to be,

P2 = T · P1 =

⎡⎣1 0 Dx/f1z

0 1 Dy/f1z

0 0 1 + (Dz/f1z)

⎤⎦ · P1 = P1 + (d · Z/f1z)D̂ (1)

where with respect to (wrt) FI , D̄ = (Dx, Dy, Dz); d = ‖D̄‖2; D̂ = D̄/d;
f̄1 = (f1x, f1y, f1z); and P1 = (X,Y, Z). Each point is effectively translated in
direction D̂ by an amount proportional to its distance from the image. Experi-
ments measuring the correctness of this affine model are available in Section 3.
Thus to study sensitivity, it is sufficient to study the properties of T .

2.2 Changes in Length and Scale

T preserves the scale along the x , y-axes, but scales the space along the z -axis.
Let P1(X1, Y1, Z1) & P2(X2, Y2, Z2) be any two points (not necessarily close to
each other) in the f̄1-space at a distance of l1. T maps them to points Q1 & Q2
in the f̄2-space at a distance of l2 (Figure 1 (b)). It can be shown that

‖l2 − l1‖ ≤ d

f1z
|Z1 − Z2| (2)

It directly follows from Equation (2) that T does not alter the length sig-
nificantly. As an example, a 10 mm calibration error would affect the length of
a 30 mm thoracic pedicle screw at an angle of 45o by less than 0.2 mm (focal
length ∼ 1 m), which is significantly less than the error from other sources.
Thus FA, FB will not change their relative translation by a factor more than
that specified by Equation (2).
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2.3 Changes in Absolute Orientation

A change in orientation results from the object having a depth (Figure 1 (c)).
It can be shown geometrically that the orientation error is maximal when the
vector P1P2 is roughly orthogonal to D̄ and is purely in the vertical plane. The
amount (θ) and the axis (κ̂) of rotation, through a series of computations can be
shown to be as in Equation (3). The bound on the rotation error is dependent
only on origin mis-calibration and not on that in focal length . More importantly
it is independent of the height/depth of the object (as far as it is non-planar) and
its distance from the image plane. Thus FA, FB in Figure 1 will observe the same
absolute rotation, in effect not experiencing any relative rotation. Experimental
results corroborating this claim are available in Section 3.

|θ| ≤ arcsin
[√

D2
x+D2

y

f1z

]
∼
√

D2
x+D2

y

f1z
; κ̂ = 1√

D2
x+D2

y

(Dy,−Dx, 0) (3)

2.4 Error in Reconstruction of Point Features

In many applications (particularly in brachytherapy), C-arms are used to recon-
struct 3D point objects. This is done by obtaining multiple images at varying
orientations and then using triangulation to obtain the desired intersection. In
ideal circumstances, all the lines would intersect at a unique point. In practice
however, calibration (and other) errors lead to non-intersecting lines. We will
attempt to bound the error in this symbolic reconstruction of the point. Let
point P be imaged from N different poses and reconstructed in a tracker frame
FA, which is stationary wrt P . Let the ith pose have a focal spot error (in frame
FA) of D̄i. Without errors, each reconstructed line (li) would pass through P . It
can be shown that due to the calibration error D̄i, the new line passes through
a new point P̄ ′

A and undergoes a rotation φ.

P̄ ′
A ∼ P̄A + [0 0

(P̄A · D̄i)
fiz

]′ ; φ ∼ (l̂i · D̄i) sinθi

fiz
(4)

where θi is the angle that li makes with the z-axis of FA. The rotation is fairly
small and can be ignored. Thus PA is at a distance of (P̄A · D̄i)sinθi/fiz from
li. If Q is the symbolic intersection of all li’s, then it can be shown that Q is
no further away than (dmax

fz
sinθmax)‖PA‖ away from any of the lines. Moreover,

the reconstruction error (RE) can also be shown to be bounded by

RE = ‖(Q̄− P̄A)‖ <
√

2 dmax

fz
‖P̄A‖ (5)

where dmax is the maximum amount of mis-calibration and fz is the minimum
focal length. Thus a 10 mm focal length error causes an error less than 0.5 mm
for a point at a distance of 35 mm. Note that this is the worst case error analysis
and in practice the dot product in Equation (4) mutually cancels positive and
negative errors, leading to extremely low reconstruction errors (Section 3).
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2.5 The Optimal Choice for Calibration Parameters

Since the focal spot is pose dependant, and the results from Section 2.2, & 2.3
suggest robustness to mis-calibration, choosing a constant calibration for quan-
titative reconstruction might be viable. In the scenario that the focal spot might
vary as much as 10 mm from one pose to another, “what constant calibration
should be chosen to minimize error”?

Let us assume that we are imaging a point P from N different poses (Figure
1 (c)). Wrt frame FI , let the ith pose have the focal spot at f̄i = (fix, fiy, fiz) and
the point be at location Pi = (Xi, Yi, Zi). Note that we assume: (a) variations
in each of fix, fiy, fiz, Xi, Yi, Zi & pose are independent; (b) Pi’s are close to
the iso-center, i.e. variations in Xi, Yi, Zi are not high. We choose a constant
value of F̄ = (Fx, Fy, Fz) for the focal spot, which will displace the point Pi to
Qi = T (f̄i, F ) ·Pi. The aim is to choose an F̄ which minimizes the net variation
of ΔQi = Qi − μQ. Through a series of computations, it can be shown that

μQ = μP +
μz

μfz
(F̄ − μ̄f ) (6)

ΔQi = (Pi − μP ) + [
ΔZi

μfz
− μzΔfiz

μ2
fz

]F̄ +
μzΔfiz

μ2
fz

μ̄f −
ΔZi

μfz
μ̄f −

μz

μfz
Δf̄i (7)

where μQ, μP , μz, μfz, μ̄f are the mean values of Qj , Pj , Zj , fjz, f̄j ; Zj = μz +
ΔZj and likewise for fjz , f̄j, where j = 1 . . .N . In the above calculations, the
second order terms either summed to 0 due to the independence of the variables
or were too small in comparison. Our choice of F̄ should be the one that min-
imizes the variance(ΔQ) = var(ΔQx) + var(ΔQy) + var(ΔQz). It should be
noted that Fz scales the whole space, i.e. a lower value will decrease the vari-
ance, implying that the choice of Fz = 0 forces var(Qz) = 0 by forcing all Q′

is to
lie on a plane. Thus var(Qz) does not provide sufficient constraints for Fz . We
will first obtain Fx, Fy by minimizing the variance along x, y-axes (since there is
no scaling in these directions), and then will compute Fz . Notice that the first
term in Equation (7) is due to the relative movement in P , while the rest is due
to an error in the calibration. Since we are interested only in the variance due
to mis-calibration, we will ignore the variations in P . Minimizing var(ΔQ) and
enforcing independence of fix, fiy & fiz gives

F̄ = μ̄f −
ΣN

1 ΔfizΔf̄j

ΣN
1 Δf2

iz

μfz = [ μfx, μfy, 0 ]T (8)

As expected, Fz = 0 from above. To compute Fz , we need to impose length
preserving constraints. Thus if we measure a line segment of length l in each
image, use Equation (2) to derive the net length error, the minimization implies

Fz = μfz(1−
ΣN

1 Δf2
iz

Nμ2
fz

) ∼ μfz (9)

Thus F̄ = μ̄f (the mean), which is fairly intuitive and probably in common
practice. Likewise, this particular choice of Fx, Fy is also a length preserving
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constraint, i.e. it minimizes the error in lengths of line segments. Calibration
error in ΔQi now reduces to − μz

μfz
Δf̄i, which has a stable mean and low variance.

Equation (10) gives a bound on the error when the assumed value of F̄ is away
from the mean μ̄f by a distance d. A 10 mm variation in the focal length (var ∼
3 mm), P ′s roughly at the iso-center having a depth variation of 100 mm and
the assumed calibration unusually away from μ̄f by 50 mm still bounds the
maximum error by 0.75 mm. Thus large and constant mis-calibration in many
applications, might still provide sub-millimetric 3D quantitative measurements.

error ≤
√
d2var(Z) + μ2

zvar(‖f̄‖)
μfz

(10)

3 Phantom Experiments and Results

Validity of the Model: Equations (1) & (3) give the translation and rotation
transformations as predicted by the affine model, the accuracy of which would
furnish the validity of the model. We used the FTRAC fiducial (Figure 3), a
small image-based fluoroscope tracking fiducial, which (given the calibration) can
track a C-arm with an accuracy of 0.5 mm in translation and 0.65o in rotation
[7]. The fiducial was imaged using a Philips Integris V3000 fluoroscope and the
true calibration read off the machine display. The images were not corrected for
distortion. The pose of the fiducial (wrt to FI) was first evaluated using the
correct calibration, and then with the mis-calibrated parameters. The difference
between the pose change predicted by the equations and the one computed
using the non-linear pose estimation software, is displayed in Figure 2 (a) as a
function of maximum calibration error. Even when mis-calibration is as high as
50 mm, the model can predict the rotation-axis with an accuracy of 4o, amount of
rotation under 1o and translation under 1.5 mm. For extreme mis-calibrations
the translation error linearly increases, while rotation is still stable. Thus the
model seems to predict with an acceptable accuracy.

Accuracy of C-arm Tracking: The FTRAC fiducial was mounted on a 0.02o

accuracy rotational turntable, while the fluoroscope was kept stationary. The
turntable was rotated by known precise amounts (ground truth) and images
were taken. The relative poses were also computed using the pose estimation
software. The accuracy in the estimation of C-arm motion is given by the differ-
ence between the computed relative pose and the true relative pose. The tracking
accuracy is plotted in Figure 2 (b) as a function of mis-calibration. Even a high
mis-calibration of 150 mm adds no additional error in C-arm motion estimation,
fixing the value at 0.45 mm in translation and 0.6o in rotation. An unusually
high mis-calibration of 400 mm also only marginally decreases accuracy. Thus,
mis-calibration does not increase the error of C-arm tracking .

3D Quantitative Reconstruction using Multiple Images: In addition to
tracking a C-arm, it is equally important that multiple objects in the field of
view (eg. vertebrae and screws) be reconstructed accurately relative to each
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Fig. 2. Note the scale variation in x-axis. (a) An affine transformation is able to predict
the movement of 3D objects due to mis-calibration; (b) C-arm tracking is insensitive
to mis-calibration; 3D Reconstruction is insensitive to mis-calibration in (c) origin;
(d) focal length up to 50 mm, beyond which it starts to linearly drift away from the
tracking fiducial. Notice that the shape of the implant (relative err) is barely altered;
(e) 3D reconstruction error decreases with an increase in images used.

Fig. 3. An image of the seed phantom attached to the FTRAC fiducial (left). The seed
phantom can replicate any implant configuration, using the twelve 5 mm slabs each
with over a hundred holes. A typical X-ray image of the combination (right).

other. In order to validate our hypothesis that 3D reconstruction might not
be sensitive to mis-calibration, we use an accurate acetol phantom (Figure 3)
having 100 dummy radioactive seeds, approximating a brachytherapy implant
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(Figure 3). The true 3D coordinate of each seed wrt the fiducial is known by
rigid attachment. The C-arm is tracked using the FTRAC fiducial and the 3D
seed coordinates are computed by triangulation (an algorithm called MARSHAL
is used to establish correspondences). The difference between the computed and
the true seed location gives us the 3D reconstruction error for each seed (wrt
fiducial). The relative reconstruction error removes any consistent shift reflecting
any change in shape. These errors are plotted as a function of mis-calibration
in Figure 2 (c), (d). The reconstruction error is insensitive to mis-calibration in
origin and focal length errors of up to 50 mm. The shape of the implant is stable
even for large calibration errors. Figure 2 (e) shows a drop in reconstruction
error as the number of images increase. Thus mis-calibration does not decrease
reconstruction accuracy.

4 Conclusion

We modelled the the effects of mis-calibration on 3D reconstruction as an affine
transform, and proved its validity experimentally. We have derived bounds on
the amount of scaling, translation and rotation error. For pose dependant cali-
bration, we proved that using the mean calibration minimizes the reconstruction
variance. Phantom experiments with a radiographic fiducial indicate that C-arm
tracking is insensitive to mis-calibrations. We also showed that mis-calibration
up to 50 mm adds no additional error in 3D reconstruction of small objects,
beyond which the reconstructed objects begin to drift wrt the fiducial, while
still retaining the shape. In conclusion, a significant family of quantitative fluo-
roscopy applications involving localization of small markers can function without
cumbersome on-line calibration. A constant loose calibration might suffice.
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Abstract. We have extended the real-time tomographic reflection display of the 
Sonic Flashlight to a laser guidance system that aims to improve safety and 
accuracy of needle insertion, especially for deep procedures. This guidance 
system is fundamentally different from others currently available. Two low-
intensity lasers are mounted on opposite sides of a needle aimed parallel to the 
needle. The needle is placed against a notch in the Sonic Flashlight mirror such 
that the laser beams reflect off the mirror to create bright red spots on the flat 
panel display. Due to diffuse reflection from these spots, the virtual image 
created by the flat panel display contains the spots, identifying the projected 
destination of the needle at its actual location in the tissue. We have 
implemented our design and validated its performance, identifying several areas 
for potential improvement. 

1   Introduction 

In interventional radiology, it is often necessary to insert a needle outside the plane of an 
ultrasound scan. Because, in such cases, the tip of the needle is not visible until it 
reaches the ultrasound scan, a potential exists for the needle to miss the target, requiring 
multiple needle insertions and unnecessary trauma to the patient. Hence a method to 
accurately guide the needle to the target in just one attempt would be valuable. 

Typically, needle guides are attached to the ultrasound probe and restrict the 
needle to travel along a specific path within the ultrasound plane. They have been 
routinely used to perform needle biopsies of various organs, including the liver, 
kidney, prostate, and breast [1], [2], [3], [4]. The needle pathway is indicated on the 
monitor by means of guide lines superimposed on the ultrasound image. While 
steerable in-plane needle guides are currently being developed [5], the needle is still 
restricted to travel in the scanning plane. 

Needle guides have also been developed to operate out of the plane of the 
ultrasound scan. Two commercial systems are currently available. The PunctSURETM 
vascular access imaging system (Inceptio Medical Technologies, L.C., Kaysville, 
Utah) is a variation on traditional ultrasound systems, presenting real-time cross-
sectional and longitudinal B-mode scans simultaneously on the display side by side. 
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With the vein centered in the cross-sectional scan, the longitudinal ultrasound array is 
properly oriented parallel to the vein. The needle, when inserted in the plane of the 
longitudinal scan, can be visualized in its entirety, and no needle guide device is 
needed with the system.  

The second system is the Site-RiteTM, (CR Bard, Murray Hill, New Jersey) in which 
an out-of-plane needle guide attaches to the ultrasound probe, restricting the needle to a 
pathway that intersects the ultrasound scanning plane at specific depths, ranging from 
0.5 cm to 3.5 cm, in 1 cm steps.  The choice of depth depends on which of 4 disposable 
needle guides is attached to the probe. After guiding the needle into the vein, the guide 
can be separated from the needle, facilitating insertion of a catheter. 

Both guidance systems suffer from a lack of perceptual coupling between the act 
of needle insertion and visual feedback from the ultrasound image, with the display 
located separately from the transducer.  With the PunctSURE, the user can follow the 
needle trajectory, but must look away from the site of operation in order to do so. 
Such displaced hand-eye coordination causes attentional shifts and may introduce 
errors and variability in the operator’s performance. The mental imagery involved in 
locating the target is a demanding cognitive process, subject to error. The Site-Rite 
permits prediction of the needle trajectory, but restricts the insertion to a fixed number 
of pre-determined angles, depriving the operator of the ability to perform insertions 
along an arbitrary path. 

Another experimental needle-guidance system uses a 3D ultrasound machine with 
computer analysis to locate the needle [6]. Others required placing radio-opaque 
markers on the skin, CT-scanning, 3D segmentation, stereo-cameras, and tracking 
devices to localize the needle [7]. These systems are cumbersome and require 
extensive calibration and sophisticated software tools. 

We propose to solve these problems by using a new ultrasound guidance system 
called the Sonic Flashlight (SF), and adapting the needle with two small lasers.  As 
described below, the operator will use the lasers to illuminate targets in a virtual 
ultrasound image projected directly within the patient by the SF, and thereby “home 
in” on the target following a straight line.  The procedure will occur without looking 
away from the patient or physically restricting the angle of insertion.  

We start by reviewing the concept of Real-Time Tomographic Reflection behind the 
Sonic Flashlight in Section 2. We then explain our proposed method in Section 3 and 
present experimental results in Section 4. We conclude with a proposal for future work. 

2   Real-Time Tomographic Reflection 

Real-Time Tomographic Reflection (RTTR) was separately proposed by Stetten et al. 
[8], [9], [10], [11] and Masamune et al. [12]. Stetten's RTTR system was developed 
for real-time visualization of ultrasound. It functions by fixing the relative geometry 
of the ultrasound transducer, the display, and a half-silvered mirror to produce a 
virtual image of a tomographic slice (a sector-scan B-mode ultrasound image) at the 
actual scanned plane within the body (see Fig. 1). Through the half-silvered mirror, 
the ultrasound image is projected as if it "shines out" from the probe and illuminates 
the inner tissue, which is no longer occluded by the proximal surface of the skin. For 
that reason, this implementation of RTTR was named the Sonic Flashlight. Using the 
Sonic Flashlight, there is no need to track the observer, the patient, or the transducer, 
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due to the direct registration between the virtual image and the ultrasound beam. 
Moreover, the patient, the ultrasound image, the surgical instrument, and the 
operator's hands are merged into one perceptual environment for all observers looking 
through the half-silvered mirror, facilitating cooperation or training. 

 

Fig. 1. Optics of Real-Time Tomographic Reflection (RTTR) in the Sonic Flashlight 

3   Method 

We have applied the concept of RTTR to produce a new method of needle guidance, 
capitalizing on the fact that the optical geometry of RTTR works as well for light 
hitting the display as coming from it. If a low-intensity laser is aimed at a target in the 
virtual image, it can be used to define a straight path for needle insertion. As shown in 
Figure 2, if the laser beam hits the mirror, it will both reflect and pass through. The 
part that passes through the mirror will create a light spot on the skin, which shows 
the point the needle should enter the body. The part of the laser beam that reflects off 
the mirror will create another light spot on the flat panel monitor at exactly that point 
in the image displaying the target. As the image on the flat panel monitor reflects off 
the half-silvered mirror to create a virtual image, a diffuse reflection of the laser spot 
also shows up in that virtual image, at the actual location within the patient where the 
needle will intersect the ultrasound scan. 

In order to have the laser beams strike as closely as possible to the needle 
destination, we place the laser generators parallel to, and as close as possible to, the 
needle. As shown in Figure 3 two lasers are used so that the mid-point of the two 
spots in the virtual image flank the destination of the needle. Since the lasers must 
reflect off the half-silvered mirror, the needle is positioned in a small notch cut into 
the edge of mirror. 
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Fig. 2. Laser Needle Guide optics overview (see text) 

 

Fig. 3. Positional relationships between the two lasers and the needle 

4   Experimental Results 

We have tested two implementations of the laser needle guide described in Section 3. 
In the first implementation, we used an older Sonic Flashlight prototype (Model 4), and 
used it to guide the insertion of a needle into a water tank to hit a small spherical target 
mounted in the tank.  The water surface in the tank was covered with loose screening, 
which permitted penetration by the ultrasound beam and the needle. As shown in 
Figure 4, each of the lasers generates four pairs of bright spots, labeled 1-4 (the spots 
are red if you are reading a color version of this paper). The needle is difficult to see in 
the darkness, but was inserted into the tank to hit the target, while maintaining contact 
with a notch in the edge of the mirror. Following the paths of the laser beams, the four 
pairs of spots are as follows: The laser beams traverse the lower half of Figure 4 from 
left to right, striking the mirror (4) and splitting into two beams.  The upper (reflected) 

needle 

laser 1 

laser 2 
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beams reach the flat panel monitor (1) while the lower beams penetrate the mirror to 
product bright spots on the surface of the water covered by white screening (3). The 
virtual image (2) of the spots on the flat panel monitor (1) accurately flank the target at 
its actual location in the water tank. The photograph does not convey the strong 
perceptual depth of these spots felt by the observer.  By keeping the lasers aimed on 
either side of the target, we successfully and easily reached the target with the needle. 

 

Fig. 4. Using a two-laser needle guide with the Model 4 Sonic Flashlight (see text) 

In the second implementation of the laser needle guide, we used a more recent 
prototype of the Sonic Flashlight (Model 6), which is more compact and produces 
higher quality ultrasound images than the Model 4. In this case, a gel phantom 
containing a simulated vein was used as a target. Although a clear photograph of this 
apparatus in operation proved difficult to obtain, it was nonetheless easy to use. When 
we penetrated the phantom and pushed the needle toward the target, the needle bent 
slightly, changing its course. Since the lasers do not bend, the needle became mis-
aligned with the laser. This problem can be easily solved by using a stiffer needle or 
an unbendable biopsy gun.   
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4   Conclusions and Future Work 

We have demonstrated the feasibility of the two-laser needle guide with the Sonic 
Flashlight. Whereas the Sonic Flashlight with unaltered needles has shown good 
accuracy for relatively shallow targets such as veins in the arm, the addition of laser 
guidance may be appropriate for deeper procedures such as biopsies of the liver or 
kidney. The longer needles required for deeper procedures would lend themselves 
nicely to the apparatus, given the requirement that they maintain contact with the edge 
of the mirror. We are planning more extensive testing by examining human 
performance, in a special facility equipped with optical tracking. 

Several areas for potential improvement could be addressed. First, we would like to 
eliminate the laser spot visible on the half-silvered mirror itself, due to scattering 
within it and on the mirror’s surface. This spot is of no particular use and may be a 
potential distraction. The solution is to keep the mirror surface clean so as not to 
scatter light, and perhaps to find a different type of mirror that minimizes internal 
scattering. Another area for improvement is the specular surface of the flat panel 
monitor. Ideally we want the monitor to scatter the laser beam to create a red spot 
instead of reflecting (or absorbing) it.  This could be accomplished by adding an 
antiglare diffusive surface.  Finally, we are considering various schemes for reducing 
the number of lasers from two to one. 

Since lasers are involved in this system, a safety analysis of potential damage to 
the retina is warranted. A number of paths for the laser light are created by reflections.  
Although the light attenuates at each of these, potential danger still exists.  Our 
present apparatus uses two Class 3B lasers, which should not be viewed directly or in 
a specular reflection, but normally will not produce a hazardous diffuse reflection.  
Therefore the safe operation of the apparatus will depend on eliminating direct paths 
or specular reflections to the eye of the operator or patient. 

References 

1. Reid MH. Real-time sonographic needle biopsy guide. Am J Roentgenol 1983;140(1):162-3. 
2. Yeh HC, Mitty HA, Wolf BS. A simple ultrasound guide for needle puncture. J Clin 

Ultrasound 1976;4(1):53-4. 
3. Lindgren PG, Hemmingsson A. Percutaneous nephropyelostomy. A new technique. Acta 

Radiol Diagn (Stockh) 1980;21(6):759-61. 
4. Lindgren PG. Ultrasonically guided punctures. A modified technique. Radiology 

1980;137(1 Pt 1):235-7. 
5. Han D, Lan Seo Y, Soon Choi C, et al. A steerable guiding device: the new method in 

ultrasound guidance. Invest Radiol 2002;37(11):626-31. 
6. O. Chavanon, C. Barbe, J. Troccaz, L. Carrat, and D. Ribuot, C. aand Blin. Accurate 

guidance for percutaneous access to a specific target in soft tissues. Journal of 
Laparoendoscopic and advanced surgical techniques, 9(3):259-266, 1999. 

7. S. Nicolau, A. Garcia, X. Pennec, L. Soler, N. Ayache An Augmented Reality system to 
guide radio-frequency tumor ablation Journal of Computer Animation and Virtual World, 
2005, Vol. 16(1), p1-10. 

8. Stetten G, “System and Method for Location-Merging of Real-Time Tomographic Slice 
Images with Human Vision,” U.S. Patent no. 6,599,247, issue date, July 29, 2003.  



 Laser Needle Guide for the Sonic Flashlight 653 

9. Stetten GD, Chib V. Overlaying Ultrasound Images on Direct Vision. J Ultrasound Med 
2001;20(3):235-40. 

10. Stetten G., Chib V., & Tamburo R., "System for Location-Merging Ultrasound Images 
with Human Vision," IEEE Procedings of the Applied Imagery Pattern Recognition 
(AIPR) Workshop, Washington D.C., pp. 200-205, 2000. 

11. Chang WM, Stetten GD, Lobes Jr. LL, Shelton DM, Tamburo RJ. Guidance of retrobulbar 
injection with real time tomographic reflection. J Ultrasound Med 2002;21(10):1131-5. 

12. Masamune K,  Fichtinger G, Deguet A, Matsuka D, & Taylor RH: “An Image Overlay 
System with Enhanced Reality for Percutaneous Therapy Performed Inside CT Scanner”, 
Fifth International Conference on Medical Image Computing and Computer-Assisted 
Intervention, Lecture Notes in Computer Science, 2488, Part 2, pp. 77-84, Springer 
Verlag, 2002. 



Differential Fly-Throughs (DFT): A General
Framework for Computing Flight Paths

M. Sabry Hassouna1, Aly A. Farag1, and Robert Falk2

1 Computer Vision & Image Processing Laboratory (CVIP),
University of Louisville, Louisville, Kentucky, 40292

{msabry, farag}@cvip.uofl.edu
2 Director of medical imaging, Jewish Hospital, Louisville, Kentucky

robert.falk@jhhs.org

Abstract. In this paper, we propose a new variational framework based
on distance transform and gradient vector flow, to compute flight paths
through tubular and non-tubular structures, for virtual endoscopy. The
proposed framework propagates two wave fronts of different speeds from
a point source voxel, which belongs to the medial curves of the anatomical
structure. The first wave traverses the 3D structure with a moderate
speed that is a function of the distance field to extract its topology,
while the second wave propagates with a higher speed that is a function
of the magnitude of the gradient vector flow to extract the flight paths.
The motion of the fronts are governed by a nonlinear partial equation,
whose solution is computed efficiently using the higher accuracy fast
marching level set method (HAFMM). The framework is robust, fully
automatic, and computes flight paths that are centered, connected, thin,
and less sensitive to boundary noise. We have validated the robustness
of the proposed method both quantitatively and qualitatively against
synthetic and clinical datasets.

1 Introduction

Virtual endoscopy (VE) is a computer-based alternative to true fiber optic en-
doscopy (TE) for screening hollow organs. VE is not intended to replace TE,
but rather to complement it by providing additional supportive information.
For example VE: (1) allows the visualization of neighboring structures outside
the screened organ, and hence can assist in the pathology localization, (2) al-
lows viewing in forward and reverse directions, (3) visualize areas that are hard
to reach by TE, (4) has the ability to pass high grade stenoses, and finally (5)
VE is the only alternative offered to those patients that either refuse TE or are
severely ill [1, 2].

The extraction of 3D flight paths or discrete curve skeletons (CS) of anatom-
ical structures [3–10] is an important component of any VE system. We have
recently developed a level set based-framework for computing CS of 3D tubular
and articulated objects [11], which addresses several shortcomings of existing
techniques. The key idea is to propagate from a medial voxel wave fronts of dif-
ferent speeds. The first front propagates with a moderate speed to capture the

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 654–661, 2005.
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(a) (b)

Fig. 1. Computed CS for non-tubular structure by (a) [12]. (b) Proposed framework.

object topology, while the second one propagates much faster at medial voxels
such that CS intersect the propagating fronts at those voxels of maximum posi-
tive curvatures. The framework is slightly modified and quantitatively validated
to show that the computed CS can be used as reliable flight paths through tubu-
lar structures for VE [12]. In [12], if the structure’s cross section deviates too
much from the circle, for example, in case of a severe stenoses, where the cross
section is nearly rectangular, the computed paths are the shortest as shown in
Figure 1(a) rather than the centered as shown in Figure 1(b), which is generated
by the proposed framework of this paper.

In this paper, we extend our recent framework [12] to compute flight paths
for both tubular and non-tubular structures by utilizing the magnitude of the
gradient vector flow, because it does not form medial surfaces for 3D objects.

2 Methods

2.1 Gradient Vector Flow

The gradient vector flow (GVF) is a bi-directional external force field that moves
active contours in highly concave regions [13]. The GVF is the vector field V (x) =
[u(x) v(x) w(x)]T , which minimizes the following energy function,

E(V ) =
∫ ∫ ∫

μ|∇V (x)|2 + |∇f(x)|2|V (x)−∇f(x)|2dx (1)

Where x = (x, y, z), μ is a regularization parameter, and f(x) is an edge map
derived from the imaging volume I(x). For a binary volume, f(x) = −I(x). The
interpretation of Eq. (1) is that if |∇f(x)| is small, E(V ) is dominated by the
sum of squares of the partial derivatives of the vector field, yielding a slowly
varying field. On the other hand, if |∇f(x)| is large, E(V ) is dominated by the
second term, and is minimized by setting V = ∇f(x). This produces a vector
field V (x) that is nearly equal to the gradient of the edge map ∇f(x) when
it is large and slowly varying in homogeneous regions. V (x) can be computed
iteratively by solving the following decoupled partial differential equations in u,
v, and w [13].
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u(x, t + 1) = u(x, t) + Δt(μ∇2u(x, t)− (u(x)− fx(x))|∇f(x)|2) (2)
v(x, t + 1) = v(x, t) + Δt(μ∇2v(x, t)− (v(x)− fy(x))|∇f(x)|2) (3)
w(x, t + 1) = w(x, t) + Δt(μ∇2w(x, t)− (w(x)− fz(x))|∇f(x)|2) (4)

V (x, 0) = ∇f(x) (5)

The iterative process is guaranteed to converge if

"t ≤ ΔxΔyΔz

6μ
(6)

where Δx, Δy, and Δz are the data spacing of a given dataset. In [14], Xu has
shown that the GVF possesses as well some medial properties by suggesting two
different medialness functions based on the magnitude of the GVF, to measure
only how close a point from the skeleton of a 2D shape, rather than computing
the skeleton itself. One of the interesting properties of the GVF, V (x) over the
distance field D(x) is that it does not form medial surfaces for non-tubular 3D
objects [15] because only one boundary voxel contributes to the computation of
D(x), while more than one boundary voxels contribute to the computation of
V (x) during the diffusion process.

2.2 Single Flight Path Extraction

Consider the minimum-cost path problem that finds the path C(s) : [0,∞) −→
Rn that minimizes the cumulative travel cost from a starting point A to some
destination B in Rn. If the cost U is only a function of the location x in the
image domain, the cost function is called isotropic, and the minimum cumulative
cost at x is defined as

T (x) = min
∫ B

A

U(C(s))ds (7)

The path that gives the minimum integral is the minimum cost path. The solu-
tion of Eq. (7) is a nonlinear partial differential equation known as the Eikonal
equation[16] Eq. (8), where F (x) = 1/U(x), and T (x) is the time at which the
front crosses x.

|∇T (x)|F (x) = 1.0 (8)

In this paper, we solve the Eikonal equation using the higher accuracy fast
marching method (HAFMM) [17]. Let A and B be medial voxels. Assume that
A is a point source PS that transmits a high speed front Eq. (9), where λ(x)
is a medial descriptor function that distinguishes medial voxels from others and
α controls the curvature of the front at medial voxels. In [12], we showed that
the minimum cost path between A and B is the medial curve or centerline
connecting them. Since the GVF does not form medial surfaces in 3D, we propose
the following medial descriptor function Eq. (10), where the magnitude of GVF
goes to zero at medial voxels.

F (x) = eα λ(x) α ≥ 0 (9)
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λ(x) =
2.0

1.0 + ‖Vn(x)‖0.05 − 1, ‖Vn(x)‖ =
‖V (x)‖ − ‖V (x)‖min

‖V (x)‖max − ‖V (x)‖min
(10)

The propagating front is monotonically increasing in time; there is only one
global minimum over the cumulative cost field T , that is PS , which has zero
travel time. Then, the path between B and A can be found by backtracking
from B along the gradient of T until A is reached. The extraction process is the
solution of the ordinary differential equation Eq. (11). C(t) traces out the CS,
which is found by solving Eq.(11) using Runge-Kutta of order 2. The error of
the method is O(h3), where h is the integration step. h is set to 1.0.

dC

dt
= − ∇T (x)

|∇T (x)| , C(0) = B (11)

For Ci = [xi, yi, zi]T ,

f(Ci) = − ∇T (Ci)
‖∇T (Ci)‖

, k1 = hf(Ci), Ci+1 = Ci + hf

(
Ci +

k1

2

)
(12)

2.3 Multiple Flight Path Extraction

In order to extract the entire CS of an anatomical structure, we have to iden-
tify the starting voxel (node) of each CS as well as the merging voxel, if the
structure contains a loop. To achieve the goal, we follow the cluster graph (CG)
approach [11], which can be summarized as follows: Initially, we compute the
normalized distance field D(x) using the HAFMM. Then, we propagate a mod-
erate speed wave from PS , which results in a new distance field D1(x). The speed
of the front is given by Eq. (13).

F (x) = eβ D(x) (13)

D1(x) is discretized by computing its integer values. The Discretization converts
the structure into a cluster graph, whose root is the cluster containing PS . Each
cluster consists of a set of neighbor voxels with the same code. The CG contains
two main types of clusters; Extreme cluster (Xcluster), which exists at the tail
of the CG and Merging cluster (Mcluster), which exists if the structure contains
a loop. The point source PS is any medial voxel that belongs to the CS of the
structure, which is the found by searching the CG for the voxel with maximum
D(x). If there exists more than one voxels with the same maximum value, we
select the one with minimum ‖V (x)‖. The medial voxel of a cluster is computed
similarly to PS but with searching the cluster rather than the CG.

The proposed framework can be summarized as follows: (1) Construct the
gradient vector flow V (x) and then compute λ(x) Eq. (10), (2) Construct the
minimum distance field D(x), (3) Find the point source PS , (4) Propagate a
moderate speed wave from PS Eq. (13), discretize the resultant distance field
D1(x), and construct the CG, (5) Identify the extreme and merging nodes, (6)
Construct a new distance field D2(x) from PS by propagating a fast speed wave
Eq. (9), (7) If the object contains loops, extract their CS as suggested in [12],
and finally, (8) Extract those CS that originate from extreme nodes and ends
with PS or ends on a previously extracted path to prevent overlapped paths.
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3 Results and Discussion

We have quantitatively validated the proposed framework against ground truth
CS that are generated analytically and then discretized. Each phantom is created
by translating a sphere of a fixed or varying radius along its ground truth CS.
The phantoms are designed to mimic the geometrical and topological proper-
ties of anatomical structures such as: (1) high curvature and torsion (e.g., blood
vessels), (2) sudden change in the organ’s cross section (e.g., colon or aneurysm
in vessels), and (3) several branching nodes (e.g., blood vessels and tracheo-
bronchial trees). To study the sensitivity of the proposed method to noise, 50%
of phantom’s boundary voxels are corrupted by additive noise to simulate seg-
mentation error as shown in Figure 2. A quantitative analysis was carried out
by computing the amount of overlap, average, and maximum distance between
the ground truth and computed CS for both noise-free and noisy phantoms. The
quantitative results are presented in Table 1. Although the amount of overlap is
less than 90 %, the average and maximum distance never exceeded 0.42 and 1.41
mm (e.g., 1-2 voxels), respectively. In the presence of noise, the amount of over-
lap has been decreased by only 8 %, while the average and maximum distance
has been increased slightly. To conclude, the computed CS are always adjacent
to the ground truth ones, which is quite acceptable for flight paths in VE.

(a) Colon (b) Trachea (c) Vessels

Fig. 2. Noisy synthetic phantoms: (a) Colon. (b) Trachea. (c) Vessels. The voxels of
the ground truth, computed, and overlapped CS are represented by green, red, and
black spheres, respectively.

Table 1. Quantitative validation for noise-free and noisy phantoms

Phantom Colon Trachea Vessels
Size 200 × 357 × 50 200 × 357 × 50 220 × 110 × 210
State Noise-Free Noisy Noise-Free Noisy Noise-Free Noisy

Percentage of Overlap 72 % 65 % 82 % 76 % 65 % 64 %
Average Distance (mm) 0.33 0.42 0.18 0.19 0.42 0.46

Maximum Distance (mm) 1.41 2.0 1.0 1.41 1.41 2.0
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Case Study (Virtual Colonoscopy): The goal of this case study is to bring
about one of the important goals of virtual colonoscopy (VC) as a diagnostic
tool. The ideal scenario is that the segmented colon maintains the intricate
details of the real colon, and that the virtual camera projects views as detailed
as those shown in real colonoscopy. If that is achieved, then analysis of projected
views can be used for automatic colon scanning against abnormalities, and hence
an early detection of colon cancer using VC would be a strong possibility. Our
research group is currently pursuing this goal.

In order to illustrate the potential of this research in colonoscopy, the proposed
framework has been tested on several CT datasets acquired using Siemens Sensa-
tion CT scanner. The dataset volume is 512 × 512 × 580 with voxel size 0.74 ×
0.74× 0.75. All patients have undergone standard cleansing preparations prior to
scan. In Figure 3(e-l), we show different polyps captured by the virtual camera for
different colons as shown in Figure 3(a-d). The average running time for these large
datasets was 9 minutes on a 2.6GHz AMD Linux workstation with 4.0 GB RAM.

(a) Colon 1 (b) Colon 2 (c) Colon 3 (d) Colon 4

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Virtual Colonoscopy (a-d) Computed CS for different colon datasets (e-l) Polyp
views captured by the virtual camera
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The proposed framework is controlled by two main parameters α in Eq.(10),
which controls the centeredness of the computed flight path and β in Eq.(13),
which controls the generation of the CG. Experimental results showed that the
lower bound for α is equal to 15.0, while a suitable range of β is 2.0 < β < 4.0.
We automated the framework by setting α = 20.0 and β = 3.0.

We have slightly modified the original GVF to suit the nature of the problem
as follows: (1) f(x) = I(x) such that the vector field points towards the center
of the object. (2) The computation of the GVF is restricted to the internal
voxels of the structure and hence computationally more efficient than the original
GVF. (3) The GVF field is not normalized to maintain the medialness property,
otherwise the magnitude of the GVF is unity everywhere. The GVF parameters
are set as follows: μ = 0.15, Δt = 0.5, and the number of iterations is set to 100.

The complexity of the framework in the worst case for n voxels is O(3nlogn+
kn). The complexity of computing the distance field using the HAFMM and the
GVF is given by nlogn and kn, respectively, where k is the number of iterations.

4 Conclusion and Future Work

In this paper, we have proposed a general framework for computing flight paths
through tubular and non-tubular structures using partial differential equations
(PDE). Unlike all voxel-based methods, the framework does not require voxel
sizes to be isotropic because the solution of the PDE takes into account the data
spacing. The computed flight paths are highly centered, connected, topology
preserving, and forms a graph at no additional cost.

Most of the processing time of the proposed method is spent on the compu-
tation of the GVF because it requires extensive floating point operations. There-
fore, in the future, we intend to implement the GVF in the graphical processing
unit (GPU) to alleviate its computational complexity.

Acknowledgment. The colonoscopy dataset used in this paper were provided
by 3DR Inc., Louisville, Kentucky.
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Abstract. This paper describes a panoramic projection designed to in-
crease the surface visibility during virtual endoscopies. The proposed
projection renders five faces of a cubic viewing space into the plane in
a continuous fashion. Using this real-time and interactive visualization
technique as a screening method for colon cancer could lead to signifi-
cantly shorter evaluation time. It avoids having to fly through the colon
in both directions and prevents the occlusion of potential polyps behind
haustral folds.

1 Introduction

Virtual endoscopy is a non-invasive diagnostic procedure aimed at exploring
the inner surface of anatomical structures inside the human body. Using ad-
vanced image-processing techniques, 3D models are reconstructed from a se-
ries of high-resolution 2D images (e.g. CT or MR). A physician can then auto-
matically or interactively navigate through the 3D virtual model to perform a
diagnosis.

One of the most promising uses for virtual endoscopy is the screening of
patients for colorectal cancer. This technique mimics conventional colonoscopy
with the added advantage that it is less invasive and potentially more desir-
able as a screening method. An added benefit of virtual colonoscopy is the
ability to fly-through the colon in both an antegrade and retrograde direction,
significantly increasing the amount of surface displayed. Nevertheless, impor-
tant sections of the colon often remain obstructed behind haustral folds (see
Fig. 1).

Fig. 1. Limited visibility of a standard virtual camera projection

In this paper we introduce a real-time, interactive visualization technique
meant to increase the surface visibility while introducing very little deformation.
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2 Previous Work

A number of projections have been proposed in the literature to overcome some of
the limitations of the standard perspective volume rendering. These projections
seek to display more of the surface of the colon and thereby increase the polyp
detection sensitivity.

Serlie et al. [2] propose the use of a cubic viewing space with the virtual
camera located in the center of the cube and projecting on each face an image
with a 90-degree viewing angle. The cube is then unfolded into a single plane
presenting a 360-degree field of view of the colon surface. Off-line animated
image sequences are generated in [2] from a number of point samples selected
along the central path through the colon. Figure 2 shows a single frame of an
animated sequence using this cubing mapping. One of the main drawbacks of
this approach is that lesions can be split across several sides of the cube. In
addition, the layout is not very natural. It requires to focus on multiple regions
of the image to obtain an overall perception of the observed tissues. Similarly,
Tiede et al. [6] use the images corresponding to the six faces of the cube to
generate precomputed movies known as spherical panoramas.

TOP

FRONT RIGHT BACK

BOTTOM

LEFT

Fig. 2. Six sided unfolded cube projection

Paik et al. [1] suggest the use of map projections that visualize the entire
surface of a viewing sphere. Using Mercator and stereographic projections, the
surface of the sphere is transformed onto a flat surface. Unfortunately, the dis-
tortion introduced by these projections is too high specially near the poles.

Vilanova et. al. [4, 3] propose a method to visualize the complete inner colon
surface by virtually bisecting the colon along its centerline and unfolding it.
Although physicians are unfamiliar with the resulting view, it provides them
with a complete overview of the colon in a single image. However, unfolding
introduces geometric distortions that can make lesions difficult to identify.

3 Our Approach

We propose two panoramic endoscopic projections as variations of the unfolded
cubic view. They are designed to obtain a continuous projection, a large field of
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FRONT RIGHT

TOP

LEFT

BOTTOM

Fig. 3. Panoramic projection of the unfolded cube onto a square

FRONT RIGHT

TOP

LEFT

BOTTOM

Fig. 4. Panoramic projection of the unfolded cube onto a disk

view, and limited distortion. As in [2], we place the virtual camera in the center of
a cubic space and project the images into a single plane using a 90-degree viewing
angle. However, instead of using a straightforward unfolding, the front image is
mapped into a rectangular window at the center of the plane, the back projection
is removed, while the other four images are projected into trapezoidal shaped
windows arranged as shown in Figure 3. This approach removes the discontinu-
ities found in [2] and at the same time makes better use of the screen space.

A fast raycast algorithm is used to render each frame in real-time, providing a
fully interactive navigation. Figure 3 displays a single frame during a fly-through
sequence. The only distortion introduced arises from mapping the cubic walls
into trapezoidal views. In order to minimize these distortions, we propose a
second projection in which the front face is a mapped into a square while the
other four faces are mapped around it into a disk (see Fig. 4).

These projections are designed to guarantee a smooth transition between
the five faces. A careful comparison between these projections and the original
mapping shown in Figure 2 reveals some distortion closer to the disk periphery.
The deformation lessens towards the center of the disk, displaying the frontal
view without any deformation whatsoever.
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The size of the frontal view can be adjusted as desired. In the limiting case,
when the frontal view covers the entire window, both of these panoramic pro-
jections are equivalent to the standard projection with a single virtual camera
looking straight ahead.

4 Projections

Each endoscopic view is obtained by casting rays from the center of a virtual
endoscope positioned inside the volume. The intensity of a point in the endo-
scopic view is an arbitrary function of the volume intensity values along the
corresponding ray. From a given endoscope position, each ray is uniquely char-
acterized by a direction vector. Hence, we model a panoramic view as a vector
field (a collection of direction vectors).

In this section, we describe the direction fields corresponding to the proposed
panoramic views. These vectors are computed for a fixed endoscope position (we
assume the endoscope is placed at the origin of the volume coordinate system
and points in the z direction). Arbitrary location and orientation of the en-
doscope can be taken into account by translation and rotation of the vector
field.

The projection is a two-step process. First we find for each point in the
panoramic view the corresponding point in one of the faces of the unfolded
cube. Then, we find the corresponding direction vector. We focus here on the
first step, while the second step is briefly described in Section 4.3.

2
Lradius =

L
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2v
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1v

4v
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y z
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Fig. 5. Determining the coordinates (r, c) on the unfolded cube corresponding to a
vector −→p on the disk
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4.1 Continuous Panoramic Projection of the Unfolded Cube Onto a
Disc

The endoscopic view is modeled as a disk inscribed in a square of side length
L (i.e. the disk has a radius equal to L/2). Any point inside this square is
characterized by a position vector −→p with respect to its center (see Fig. 5). The
inner square of side length l corresponds to the front view of the unfolded cube.
The remaining sections of the disk contain transformed versions of the top, left,
right, and bottom views of the unfolded cube.

We introduce four unit vectors −→v 1,−→v 2,−→v 3,−→v 4. We denote −→v (i) the i-th
component of a vector −→v and ||−→v || its norm. The expression |x| denotes the
absolute value of a scalar x. The operator · denotes the scalar product of two
vectors. The scalar product of the vector−→p with−→v i determines the face (bottom,
top, right, left, i = 1, 2, 3, 4 respectively) used during the mapping.

We attach to each face of the unfolded cube a coordinate system (where (0, 0)
is the upper-left corner of a face and the side length is 1). On a given face, points
are located by a set of coordinates (r, c) (see Fig. 5). The mapping between the
disk and the cube’s faces is given by the following algorithm:

If ||−→p || > radius Then set the intensity value to zero
Else (the point is inside the disk)

If max(|−→p (1)|, |−→p (2)|) < l
2 Then (the point is in the front view)

r = 0.5 +
−→p (1)

l

c = 0.5 +
−→p (2)

l
Else

−→n =
−→p

||−→p ||

If −→n · −→v i >
√

2
2 Then

cos angle = −→n · −→v i

norm p inside front = 1
2·cos angle

r = radius−||−→p ||
radius−norm p inside front = d1

d2
(see Fig. 5)

c = 0.5 +
−→n (2)

2·cos angle (note: d3
l =
∣∣∣ −→n (2)
2·cos angle

∣∣∣)
End

End
End

4.2 Continuous Panoramic Projection of the Unfolded Cube Onto a
Square

This view is a variant of the previous approach, where the unfolded cube is
mapped onto a square. There is no region left unused, but image distortions are
more significant along the diagonals of the endoscopic view (see Fig. 6). The
main difference from the computational point of view is the calculation of the r
coordinate given below:
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Fig. 6. Determining the coordinates (r, c) on the unfolded cube corresponding to a
vector −→p on the square

r =
(radius/cos angle)− ||−→p ||

(radius/cos angle)− norm p inside front
=

d1

d2
.

4.3 Finding Direction Vectors from Unfolded Cube Coordinates

To each face of the unfolded cube corresponds a frustum (see Fig. 5 and Fig. 7).
A frustum is characterized by a front plane (a square of edge length lfront placed
at distance dfront of the endoscope location) and a back plane (a square of edge
length lback placed at distance dback of the endoscope location).

y

“TOP” Frustum

frontd

backd

backl

frontl

backl

frontl

ray

z

x

v
r

1p

2p

Fig. 7. Finding the direction vector −→v of the ray corresponding to the location (r, c)
on the cube faces
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The direction vector −→v = p2 − p1 of the ray corresponding to the location
(r, c) on one of the cube faces is given by:

p1 =

⎡⎣ lfront
2 − c · lfront

dfront

− lfront
2 + r · lfront

⎤⎦ and p2 =

⎡⎣ lback
2 − c · lback

dback

− lback
2 + r · lback

⎤⎦ .
Most of the previous operations can be combined to obtain a more com-

pact and efficient implementation. The symmetry of the vector field can also be
exploited to reduce the computational cost.

5 Results

Figure 8 shows a side by side comparison of the amount of the colon surface
visualized using a standard camera projection and the proposed panoramic pro-
jections. Voxels shown in red correspond to the areas not visible after a one-way
flight through the virtual colon. Since the panoramic projections show simulta-
neously a forward, left, right, up and down views, we get nearly 100% of surface
coverage with one single pass [5]. To achieve better coverage, a conventional
virtual navigation typically executes an additional fly-through in the reverse di-
rection. The added flight not only increases the reading time as some parts of
the surface are examined twice, but even then some areas remain hidden behind
haustral folds. The panoramic projections therefore could be used to speed up
the 3D reading as we can cut the fly-time in half.

Fig. 8. Global view of the colon after a one-way flight using a standard perspective
projection (left), a two-way flight using a standard projection (middle), and a one-way
flight using a panoramic projection (right)

Our implementation allows a real-time fly through and, as discussed before,
the geometry of the projection limits distortion. User studies are underway to
compare the detection rate, speed and general acceptance of the proposed pro-
jections. Preliminary results seem very positive, as features tend to stay in view
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for longer periods of time. The proposed projections are not restrictive to the
colon and therefore can potentially be used to display the inner surface of any
virtual organ.
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Spherical QuickTime-VR Panorama Views, in J. Westwood et al. (eds.): Medicine
meets Virtual Reality, Studies in Health Technology and Informatics 85, IOS Press,
Amsterdam, 2002, 523-528.



Toward Automatic Computer Aided Dental
X-ray Analysis Using Level Set Method

Shuo Li1, Thomas Fevens1, Adam Krzyżak1, Chao Jin1, and Song Li2
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Abstract. A Computer Aided Dental X-rays Analysis (CADXA) frame-
work is proposed to semi-automatically detect areas of bone loss and root
decay in digital dental X-rays. In this framework, first, a new proposed
competitive coupled level set method is proposed to segment the image
into three pathologically meaningful regions using two coupled level set
functions. Tailored for the dental clinical environment, the segmentation
stage uses a trained support vector machine (SVM) classifier to provide
initial contours. Then, based on the segmentation results, an analysis
scheme is applied. First, the scheme builds an uncertainty map from
which those areas with bone loss will be automatically detected. Sec-
ondly, the scheme employs a method based on the SVM and the average
intensity profile to isolate the teeth and detect root decay. Experimental
results show that our proposed framework is able to automatically detect
the areas of bone loss and, when given the orientation of the teeth, it
is able to automatically detect the root decay with a seriousness level
marked for diagnosis.

1 Introduction

The past few years has seen a great increase in the usage of digital dental X-rays
in dental practices in North America. Their adoption is motivated by the fact
that digital X-rays systems are more sensitive than X-ray film systems while
allowing for up to a 90% reduction in a patient’s exposure to X-rays compared
to traditional systems. With the higher resolution digital X-rays of sections of
the teeth, or of the entire jaw, comes the possibility of more accurate diagnoses.

Dental X-rays play an important role in detecting such pathological problems
such as periodontitis, chronic periapical periodontitis and bone loss that cannot
be seen during a visual examination. Periodontitis is a dental disorder that results
from the progression of gingivitis, involving the inflammation and infection of
the ligaments and bones that support the teeth. Early detection of bone loss
and root decay is very important since often they can be remedied by dental
procedures, such as a root canal, for example. Without early treatment, bone
loss may lead to loss of teeth or erosion of the jaw bone. In the dental X-ray film
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based environment, the dentist does the analysis of the X-ray in their head. With
the increasingly wide use of digital radiography, the dental X-rays are accessible
electronically which makes computer aided dental X-rays analysis possible.

However, although dental X-rays are widely used, it is a challenging task to
do automatic, or even semi-automatic, computer aided dental X-rays analysis.
Compared with other types of images, dental X-rays analysis is a challenging
problem for classical image processing methods due to the following character-
istics: (1) poor image modalities: noise, low contrast, and sample artifacts; (2)
very complicated topology; and (3) there may not be clear lines of demarcation
between regions of interest, which is especially true for dental X-rays since prob-
lem teeth tend to have very complicated structures and are normally coupled
with healthy teeth. Therefore dental X-rays are normally inspected by a dentist.
Although efficient, human inspection requires specialized training which is in-
creasingly expensive. In addition, human inspection gives a subjective judgment
which may vary from person to person, and, as such, does not give a quantita-
tive measurement. Inspection results could be affected by many factors, such as
fatigue and distraction by other features in the image, for example. Also, some
early bone loss may not be visible to the human eye. Early detection of bone
loss and root decay is very important since often they can be remedied by dental
procedures, such as a root canal, for example. Without early treatment, bone
loss may lead to loss of teeth or erosion of the jaw bone. All these issues indicate
a need for effective automatic dental X-rays analysis.

In this paper, we report on innovative work on computer aided dental X-rays
analysiswhich semi-automatically provides indications to the dentist aid in finding
bone loss and root decay, which are the primary reasons that X-rays are taken in
many countries. For this implementation, we will be dealing primarily with X-rays
which are close-up views of a few individual teeth, a common type of dental X-rays,
although the approachdeveloped here can be adapted to larger scale dentalX-rays.
Compared with panoramic dental X-rayswhich include the entire jaw region, close-
up images taken for these purposes are more challenging since the orientation of
the teeth may not be fixed and problem areas are either complicated, or easily
overlooked. To the best of our knowledge, we are the first group working towards
automatic computer aided dental X-rays diagnosis for the detection of bone loss
and root decay. This paper reports on our preliminary results towards this goal.

2 Proposed Framework

As shown in Fig. 1, the framework consists of two phases: segmentation and
analysis. First, we employ a new proposed competitive level set segmentation
method to segment the image into three regions using two coupled level set
functions. Based on the segmentation results, an analysis scheme is applied.
The scheme first builds an uncertainty map which is then used to automatically
mark any areas of bone loss. Subsequently, an average intensity profile based
method is employed to isolate the teeth and detect possible root decay. Finally
the estimated seriousness level of the root decay will be marked.
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Fig. 1. Framework diagram Fig. 2. Region modelling of dental
image (a), one level set segmentation
(b) and competitive level set (c)

2.1 Variational Level Set Segmentation

In this implementation, we propose a new variational level set segmentation
method driven by pathological energy modelling. The modelling explicitly in-
corporates regions of problems as part of the modelling, so the identification of
such areas would be an automatic product of the segmentation. The level set
method segments the dental X-rays into three regions: Normal Region (NR),
Potential Abnormal Region (PAR), Abnormal and Background Region (ABR)
using two competitive level set functions.

Competitive Level Set Segmentation. With an evolving curve C, one level
set function divides the image (u) into two parts: Normal Region ΩNR(“+”
region) and Abnormal Region ΩAR(“-” region) as shown in Fig. 2(b). The energy
functional is given by

E(Φ) = β1
∫

ΩNR

(u−cNR)2

σ2
NR

dxdy + β2
∫

ΩAR

(u−cAR)2

σ2
AR

dxdy, (1)

where ci is the mean grey value of the Ωi, σi is the variance and βi is a constant.
However for the diagnosis of pathological problems, potential problems areas

which might be between normal and abnormal regions are of particular interest.
Therefore we propose a competitive coupled level set model for two level set
functions to segment the image into three regions. As shown in the Fig. 2(a),
a X-ray image (u0) can be divided into four regions of interest: the Normal
Region (ΩNR), the Potential Abnormal Region (ΩPAR), the Abnormal Region
(ΩAR) and the Background Region (ΩBR). Since ΩAR and ΩBR is not separable
in terms of intensity values, so in the segmentation, we take ΩAR and ΩBR to
be a single region: the Abnormal and Background Region (ΩABR). The energy
functional for the two coupled level set functions (Φ1 and Φ2) can be modeled as:

E(Φ1, Φ2) = λ1
∫

ΩNR

(u−cNR)2

σ2
NR

dxdy + λ3
∫

ΩABR

(u−cABR)2

σ2
ABR

dxdy

+λ2
∫

ΩPAR
Min( (u−cPAR1)2

σ2
P AR1

,
(u−cP AR2)2

σ2
P AR2

)dxdy (2)

where the function Min(x, y) returns the smaller value of x and y, and λi is a
constant. The modelling is in the same spirit as multiphase modelling in [1].

Using competitive coupled level set functions, if both level set functions clas-
sify an area as a normal region, we take it as a normal region ΩNR; if both level
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set functions classify a region as an abnormal and background region, we take it
as an abnormal and background region ΩABR; however if only one of the level
set functions segments a region as a normal region, the region will be taken as a
potential abnormal region ΩPAR. Compared to three coupled level set functions,
two coupled level sets is able to achieve faster and more robust segmentation as
described in [1].

To achieve fast and robust segmentation, a hybrid coupled level sets func-
tional that combines minimal variance (Eq. 2), the optimal edge integrator [2]
and the geodesic active contour model [3] is used:

E = E(Φ1, Φ2)− γ1ELAP + γ2EGAC , (3)

where γi are constants.
The geodesic active contour (EGAC) and edge functional (ELAP ) are defined

in Eq. 4. The edge functional was proposed in [2] where the authors show that
a Laplacian edge detector Δu provides optimal edge integration with regards to
a very natural geometric functional.

EGAC(C) =
∫∫

g(C)dxdy (4)
ELAP (C) =

∫
C
< ∇,n > ds +

∫∫
ΩC

Ku|∇u|dxdy.

Here Ku is the mean curvature of the level set function, n is the unit vector
normal to the curve and ds is the arc length of curve C. Function g(x, y) is
an inverse edge indicator function introduced in [4], and defined as g(x, y) =
α2/(α2 + |∇u|2), where α is a constant and ∇ is the gradient operator. The level
set functions Φi are derived from the functional in Eq. 3 as shown:

∂Φ1

∂t
= δε(Φ1)

[
γ2div(g ∇Φ1

|∇Φ1| )−
(u−cNR)2

σ2
NR

H(Φ2) − (u−cPAR)2

σ2
P AR

(1 − 2H(Φ2))(5)

+ (u−cABR)2

σ2
ABR

(1−H(Φ2))− γ1uξξ

]
,

∂Φ2

∂t
= δε(Φ2)

[
γ2div(g ∇Φ2

|∇Φ2| )−
(u−cNR)2

σ2
NR

H(Φ1) + 2(u−cPAR)2

σ2
P AR

H(Φ1)

+ (u−cABR)2

σ2
ABR

(1−H(Φ1))− γ1uξξ

]
.

Here, H(·) is the Heaviside function, div(·) is the divergence operator, and uξξ =
Δu−Ku|∇u|.

Although we only apply competitive level set segmentation to dental X-rays,
the segmentation method can be extended to X-rays and some types of CT
images for three region segmentation using two level set functions.

Segmentation Phase. To apply the level set method in the clinical environ-
ment, we adapt the segmentation framework proposed by Li et al. [4, 5] which
uses a trained SVM to provide a good initial contour for the level set method
which greatly speeds up convergence of the coupled level set functions. Following
the same principle, we use an SVM to provide initial contours for two coupled
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level set functions. The purpose is not only to speed up segmentation conver-
gence, but also to use competitive couple level set functions to find regions of
interest, as discussed in section 2.1. The segmentation phase has two stages: a
training stage and a clinical segmentation stage.

During the training stage, manually chosen representative images are seg-
mented by hierarchical level set region detection using the Chan and Vese level
set method [6]. In the hierarchical level set region detection, first a level set
function is used to separate ΩABR from the rest of the image (ΩAR and ΩBR).
Then another level set function is used to separate ΩAR and ΩBR. Then these
results are used to train an SVM classifier.

During the clinical segmentation stage, dental X-rays are first classified by
the trained SVM. The classifier is able to classify three regions (ΩABR, ΩNR and
ΩPAR) based only on intensity which may not be accurate. Then two coupled
level set functions are used to further segment the images. For Φ1, we set classified
ΩNR as the “+” region and rest of the image as the “- ” region; for Φ2, we set
classified ΩNR and ΩPAR region as the “+” region and rest of the image as the
“-” region. Although SVM is only able to give a coarse segmentation, it provides
a very good and competitive initial contours for two coupled level set functions.
The final segmentation will be obtained by evolution of these two level set curves.

2.2 Analysis Phase

The analysis phase contains three steps: uncertainty map building, bone loss
detection and root decay detection. The first two are fully automatic. The only
manual input is the image orientation during root decay detection. This require-
ment is not difficult to accommodate in the dental clinical environment.

Uncertainty Maps. First for each image, an uncertainty map is built based
on following uncertainty measurement:

ψ = (u−cNR)τ1+(u−cP AR)(τ2−2τ1)+(u−cABR)(1−H(φ1))(1−H(φ2))
σNRτ1+σP AR(τ2−2τ1)+σABR(1−H(φ1))(1−H(φ2))

where τ1 = H(φ1)H(φ2) and τ2 = H(φ1) + H(φ2).

Bone Loss Detection. Areas of bone loss will generally occur in those re-
gions of high uncertainty. Therefore, we mark these areas with different levels of
emphasis according to the uncertainty measurement and region segmented.

Although the uncertainty map is an objective uncertainty measure, it fails to
provide direct visual cues. To achieve the visual assistance, the RGB channels of
the image are used to couple the intensity values of the image with the degree of
uncertainty at each pixel. For all regions, the G channel is used to represent the
intensity value of each pixel of the original dental X-ray image. The uncertainty
values are nonlinearly (For this implementation, users can interactively choose
the polynomial functions to get best visualization results.) scaled to the range
-255 to 255. To differentiate between the three regions, we apply the following
schemes to R and B channel for pixels in each region: 1) For ΩABR, B channel is
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Fig. 3. Teeth isolation. (a) Original image. (b) Rotated image. (c) Integrated intensity.
(d) Average intensity profile. (e) Two parts of a tooth: crown and root.

set to 0. The R channel is set to the uncertainty value if it is negative; otherwise
the R channel is set to 0. 2) For ΩPAR, both the R and B channels are set to
200 to emphasize this region. 3) For ΩNR, both the R and B channels are set to
the uncertainty value if it is negative; otherwise, both channels are set to 0.

Root Decay Detection. Root decay detection consists of three steps: tooth
isolation, root decay location and seriousness level evaluation. This is a semi-
automatic process in which the orientation of the teeth is supplied manually.

Teeth isolation: As suggested by Jain et al. [7], since the teeth usually yield
higher intensity values than the jaws and other tissues, the gap of teeth will
have a very low value on the integrated intensity value profile which are the
sums of the intensities of pixels along the vertical direction. However, unlike
dental X-ray images used for a forensic purpose which can be assumed to have
certain orientation, clinical dental X-rays used to detect root decay, etc., could
have any orientation. As shown in the Fig. 3(a) and (c), if the orientation varies,
this profile method will not able to obtain the correct isolation. Therefore as
a preliminary step, we assume that the orientation is given. Then we rotate
the image according to the given orientation so that the teeth are aligned in
a consistent direction. After rotation, instead of using an integrated intensity
value, we use the average of the intensity value (the integrated intensity value
divided by the number of pixels) as shown in Fig. 3(b) and (d). After rotation,
we use an SVM to judge where are the gaps in the teeth using a 1D window
based feature vector from average intensity profile for training and classification.

Root decay location and seriousness level evaluation: Three types of
regions are considered to be root decay if they are found at the root of teeth
with the following seriousness levels, in order of most serious to least serious: 1.
advise level: if the ΩABR is found at the root of the tooth; 2. warning level: if
the ΩPAR of any uncertainty is found at the root of the tooth; 3. attention level:
if a high uncertainty area of ΩNR is found at the root of the tooth.

3 Experimental Results

3.1 Segmentation

Figs. 4,5 and 6 show results of competitive level set segmentation. Since re-
gions of problems are incorporated as part of the modelling, the identification of
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Fig. 4. Segmentation Results. (a) Original
image. (b) Initial condition provided by
SVM. (c) Iteration 20. (d) Iteration 60.

Fig. 5. Segmentation Results. (a) Original
image. (b) Iteration 0 provided by SVM. (c)
Iteration 40. (d) Iteration 80.

such areas would be an automatic product of the segmentation. The pathological
meaningful segmentation can be used at the next stage of analysis. In additional,
as shown in Fig. 4 and 5, although the SVM only gives a rough approximate seg-
mentation, it is able to provide a good competitive initial contour for two level
set functions, Φ1 and Φ2, which accelerates the segmentation. Indeed, the com-
petitive level set segmentation is robust to the placement of the initial contours
so that even when the initial contour does not closely correspond to the final
segmentation, the level set functions can still achieve an accurate segmentation
as shown in Fig. 5.

3.2 Analysis

Based on the uncertainty map and segmentation results, the analysis is able
to indicated some possible areas in the image as shown in Fig. 6(c) in which
those bone loss areas are emphasized by the color channel scheme. The scheme
provides more direct visual cues which will greatly reduce the possibility that
those areas, the area pointed to by an arrow in Fig. 6(c) for example, might be
overlooked.

Figs. 6, 7 and 8 show results of teeth root decay detection. In these examples,
the segmentation and uncertainty map successfully locate the area of bone loss
and, after being given the orientation of the image, the area of root decay can
be automatically detected. Fig. 6 shows an interesting result of automatic root
decay detection. In this example, the system automatically detected three root

Fig. 6. Segmentation Results. (a) Original im-
age. (b) Segmentation results. (c) Bone loss area
marked with color channel method. (d) Root de-
cay detected.

Fig. 7. Root Decay Detection Re-
sults. (a) Segmentation Results. (b)
Root decay detected.
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Fig. 8. Root decay detec-
tion of Fig. 6

Fig. 9. Uncertainty maps of (a) Fig. 4 and (b) Fig. 6

problems with the orientation given. Two of them are warning level (pink area)
and one is attention level (orange area) as shown in Fig. 6(d). Fig. 9 shows
two of resulting uncertainty maps. The map is able to give a general idea for
the problem areas. And more importantly, it provides a digitized uncertainty
measurement. Altogether 50 dental X-rays with different levels of bone loss and
root decay are used to test the proposed framework and the results validated by
dentist. The experimental results show that the proposed framework is able to
help to find all the areas of bone loss. For the root decay detection, the proposed
framework is able to find all of them. But due to complexity of the dental X-rays,
there are still 4 misidentifications of root decay. One of these misidentifications
are indicated by arrows in Fig. 8.

4 Summary and Conclusions

Leveraging the transition towards a totally electronic format for dental X-rays, a
framework to semi-automatically detect areas of bone loss and root decay in these
images is proposed. The system is designed in particular for the dental clinical
environment through the use of a classifier to ensure accurate segmentation of
these images. Utilizing these segmentations and a computed uncertainty map,
regions of pathological abnormality are emphasized for the dentist’s attention.
Experimental results indicate that the system correctly identifies such problem
areas with a few misidentifications. To the best of our knowledge, this is the first
work on semi-automatic dental X-ray computer aided diagnosis.

References

1. L. Vese and T. Chan, “A multiphase level set framework for image segmentation
using the mumford and shah model,” International Journal of Computer Vision,
vol. 50, no. 3, pp. 271–293, 2002.

2. R. Kimmel and A. M. Bruckstein, “Regularized Laplacian zero crossings as optimal
edge integrators,” International Journal of Computer Vision, vol. 53, pp. 225–243,
July 2003.

3. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International
Journal of Computer Vision, vol. 22, pp. 61–79, 1997.



678 S. Li et al.
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Abstract. Functional Magnetic Resonance Imaging(fMRI) has enabled
scientists to look into the active human brain, leading to a flood of new
data, thus encouraging the development of new data analysis methods. In
this paper, we contribute a comprehensive framework for spatial and tem-
poral exploration of fMRI data, and apply it to a challenging case study:
separating drug addicted subjects from healthy non-drug-using controls.
To our knowledge, this is the first time that learning on fMRI data is
performed explicitly on temporal information for classification in such
applications. Experimental results demonstrate that, by selecting dis-
criminative features, group classification can be successfully performed
on our case study although training data are exceptionally high dimen-
sional, sparse and noisy fMRI sequences. The classification performance
can be significantly improved by incorporating temporal information into
machine learning. Both statistical and neuroscientific validation of the
method’s generalization ability are provided. We demonstrate that in-
corporation of computer science principles into functional neuroimaging
clinical studies, facilitates deduction about the behavioral probes from
the brain activation data, thus providing a valid tool that incorporates
objective brain imaging data into clinical classification of psychopatholo-
gies and identification of genetic vulnerabilities.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) has enabled scientists to look
into the active human brain by providing sequences of 3D brain images. This
has revealed exciting insights into the spatial and temporal changes underlying a
broad range of brain functions, including basic functions such as how we see, feel,
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move, understand. Concomitantly, this new instrumentation has led to a flood
of new data: a twenty-minute fMRI session with a single human subject pro-
duces a series of 3D brain images each containing approximately 150,000 voxels,
collected once a second (or two), yielding tens of millions of data observations.
Thus, developing appropriate data analysis methods is needed for truly com-
prehensive exploration of this ample volume of data. We suggest that through
incorporation of computer data analysis principles into functional neuroimag-
ing studies we will be able to identify unique patterns of variability in brain
states and deduce about the behavioral probes from the brain activation data
(in contrast to the reverse: deducing about brain activation data from behavioral
probes). We further propose that this interscientific incorporation may provide
a valid tool where objective brain imaging data are used for clinical purpose of
classification of psychopathologies and identification of genetic vulnerabilities.

Functional Magnetic Resonance Imaging (fMRI) [1][2] is based on the increase
in blood flow to the local vasculature that accompanies neural activity in the
brain, so that human cortical functions can be observed without the use of
exogenous contrast agents. To date, the analyses and interpretation of fMRI data
that are most commonly employed by neuroscientists depend on the cognitive-
behavioral probes that are developed to tap regional brain function. Thus, brain
responses are a-priori labeled based on the putative underlying task condition
(e.g., regions involved in reward vs. regions involved in punishment) and are then
used to separate a priori defined groups of subjects. A variety of machine learning
methods have also been used for exploratory analysis of fMRI data[3][4][5]. In
recent research[6][7][8][9], machine learning methods have been applied for fMRI
data analysis but only statistical maps [8][9] or the mean of each fMRI time
interval[7] are used while temporal information has yet to be fully employed.
Discarding temporal information results in more manageable data sizes; however,
the cost of such information loss is still unclear.

In this paper, we consider a different classification problem: separating dif-
ferent groups of human subjects based on the observed fMRI time sequences.
We contribute a comprehensive framework of spatially and temporally exploring
fMRI data, and apply it to a challenging case study: separating drug addicted
subjects from healthy non-drug-using controls based on their observed fMRI
time sequences. This learning problem is challenging for a number of reasons: 1)
oversized dimensionality of the fMRI BOLD sequences; 2) undersized data space;
3) increased inter-subject variability and intra-subject variability: even for the
same person, activations are different from trial to trial due to brain-behavior
complexity; and 4) decreased between group experimental heterogeneity. Fig. 1
shows time sequences of one voxel in three human brains.

To our knowledge, this is the first time that machine learning is performed
on the temporal information of fMRI data for classification purposes. In this
work, we aim to answer the following questions: 1) given the difficulties in-
herent in this type of the data, what are the most discriminative features for
this classification problem? 2) Will temporal/function information help us with
classification? We explore fMRI data in two different representations: 3D brain
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Fig. 1. In each row, the left three images show three slides of the a 3D fMRI scan in
different views with a white point representing the location of one voxel, followed by a
time sequence of this voxel across the 87 task-sequence time points

“video” and a set of voxel-specific time series. Dimensionality reduction and
feature selection techniques are proposed and examined in each representation.
Experimental results demonstrate that group classification is improved by select-
ing discriminative features and incorporating fMRI temporal information into a
machine learning framework. The automatically selected features prove reliable,
i.e., stable in cross-task validation. Furthermore, these blindly selected features
prove valid, i.e., they include voxels in regions previously implicated in the suc-
cessful performance of the core cognitive-behavioral task. Thus, our approach
is generalizable, as tested statistically and integrated in a wider neuroscience
context. For example, the anterior cingulate gyrus has been assumed to be es-
sential for error detection, conflict resolution, and in emotional regulation. The
emergence of anterior cingulate voxels, blindly selected through our analyses,
confirms its their central role in underlying the core characteristics of addiction
and its relevance to performing this specific sustained attention task.

Drug addiction is a complex disorder characterized by compromised inhibitory
control. Individuals with compromised mechanisms of control are difficult to iden-
tify unless they are directly subjected to challenging conditions. Solving this prob-
lem is essential because patterns of variability in brain states may be unique to a
certain psychopathology and could be therefore used for improving diagnosis and
prevention efforts (e.g. diagnosis of drug addiction, prevention of relapse or crav-
ing). In addition, the development of this “clinical machine learning framework”
can be applied to further our understanding of other human disorders and states
such as those impacting insight and awareness, that similarly to drug addiction
are currently identified based mostly on subjective criteria and self-report.

2 Methodology

Acquisition of fMRI data: In our experiments, data were collected to study
the neuropsychological problem of loss of sensitivity to the relative value of
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money in cocaine users[10]. MRI studies were performed on a 4T Varian scanner
and all stimuli were presented using LCD-goggles connected to a PC. The hu-
man participants pressed a button or refrained from pressing based on a picture
shown to them. They received a monetary reward if they performed correctly.
Specifically, three runs were repeated twice (T1, T2, T3; and T1R, T2R, T3R)
and in each run, there were three monetary conditions (high money, low money,
no money) and a baseline condition where a fixation cross was shown on the
screen; the order of monetary conditions was pseudo-randomized and identical
for all participants. Participants were informed about the monetary condition
by a 3-sec instruction slide, which visually presented the stimuli: or $0.45, $0.01
or $0.00. The feedback for correct responses in each condition consisted of the
respective numeral designating the amount of money the subject has earned if
correct or the symbol (X) otherwise. To simulate real-life motivational salience,
subjects could gain up to $50 depending on their performance on this task. 16
cocaine dependent individuals, 18-55 years of age, in good health, were matched
with 12 non-drug-using controls on sex, race, education and general intellectual
functioning.

In this work, we use Statistical Parametric Mapping (SPM)[11] to preprocess
(realignment, normalization/registration and smoothing) the fMRI sequences.

Methodology: In this paper, we aim to separate the drug-addicted subjects from
controls by applying machine learning methods to observed fMRI sequences. Fol-
lowing [7], the classification problem can be represented: f : 〈fMRI − sequence
(t1, t2)〉 → [DrugAddicted|Control] where fMRI-sequence(t1,t2) is the sequence
of fMRI images collected during the contiguous time interval [t1, t2]. The input
data is an extremely high dimensional feature vector, consisting of hundreds of
thousands of features (87 scans per sequence and 53 × 63 × 46 voxels per scan).
In order to evaluate the discriminative power of the extracted features, we first
perform classification using a simple Euclidean method that uses the Euclidean
distance on the original fMRI sequences. This is computationally expensive due
to the high dimensionality and yields inferior results due to the large number of
non-discriminative features. Feature selection is essential to achieve accurate clas-
sification when only a small number of data are available [12], hence we explore
a variety of approaches for dimensionality reduction and feature selection. We
group our approaches into two categories based on the different views of the fMRI
sequences:

2.1 fMRI: 3D Brain “Video”

The 4D input fMRI data (53 × 63 × 46 × 87) can be treated as sequences of
3D images. Previous work[13] demonstrated that, by traversing the 3D space of
fMRI images using the Hilbert space-filling curve[14], a 3D image can be linearly
mapped into 1D space(153594 × 1). A space filling curve defines a continuous
path in a multidimensional grid, visiting each point exactly once and never cross-
ing itself. Hilbert space-filling curve has been proven optimal in preserving the
locality and clustering properties of data[15]. The Hilbert space-filling proceeds
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in a recursive manner, following the same rotation and reflection pattern at each
vertex of the basic curve (details in [16]). By using this technique, the original
input fMRI sequences can be mapped into 2D spaces(153594× 87) where each
3D fMRI scan is linearly mapped into 1D space. Hence, two groups of dimen-
sionality reduction and feature selection techniques applied in the signal analysis
domain can be applied: those based on global information, such as Singular Value
Decomposition(SVD)[17]; and those based on local information, such as the Dis-
crete Fourier Transform (DFT)[18]. Due to the dimensionality of the input data,
we chose to use local dimensionality reduction techniques.

Dimensionality Reduction and Feature Selection: After mapping each of
the 3D scans into 1D space, the input fMRI sequences are transformed into 2D
matrices with one spatial dimension and one temporal dimension.

We applied two sets of signal analysis approaches for dimensionality
reduction:

1. 1D Transformation: by performing 1D DFT or DWT on the spatial dimen-
sion, the original input data can be represented by a small number of time series.
2. 2D Transformation: by performing 2D DFT or DWT on the 2D matrices di-
rectly, the original input data can be represented by a small 2D feature matrix.

After dimensionality reduction, we can perform classification either by: i)
employing the whole reduced feature space for classification or, ii) learning the
most discriminative features for classification. As expected, experimental results
in Sec. 3 demonstrate the need for learning discriminative features.

2.2 fMRI: A Set of Voxel-Specific Time Series

In Sec. 2.1, we treat each fMRI sequence as a time series of 3D images. Al-
ternatively, each fMRI sequence can also be thought of as a combination of
N time series where N is the number of the voxels. In this section, we examine
voxel-based feature selection methods for group classification. The most common
approach for feature selection[19] is to select those features that best discrimi-
nate the target classes: given the goal of learning a target classification function,
one common approach to feature selection is to rank the features by their mu-
tual information with respect to the class variable, then to select the n highest
scoring features. In our experiments, the information of each voxel is represented
by a time sequence of intensities representing BOLD brain activations. Distance
(dissimilarity) between voxel intensities is straightforward to define. However,
there are different ways to measure this distance when the features are voxel
time series. We examine varies time series analysis techniques. More specifically,
given training data Q and C, for the ith voxel, we propose to compute and ex-
amine the distance between two time series q1..T and c1..T by:

1. Raw Dist: Euclidean Distance Metric directly on the two time series of the
voxel: D(q, c) =

∑T
t=1(qt − ct)2;

2. Norm Dist: Euclidean Distance Metric on normalized time series, where
X ′ = (X − X̄)/σ(X) with X̄ and σ(X) the mean and standard deviation;
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3. Mean Dist: Distance of the mean values of the two series: D(q, c) = ‖q̄− c̄‖;
4. V ar Dist: Distance of the variances of the two series: D(q, c) = ‖σ2(q) −
σ2(c)‖;
In this paper, we choose to use a simple kth-Nearest Neighbor(KNN)[19] retrieval
scheme to evaluate classification using different sets of selected features.

3 Experiments and Results

In our data collection, there are totally 6 runs: T1, T2, T3, T1R, T2R and
T3R with the three latter repeating the three former, grouped into 3 data sets
T 1, T 2, T 3. The first set of experiments is to evaluate classification performance
in a ”leave-one-out” cross validation procedure. Each of the K human subjects
was used as a test subject while training on the remaining K − 1 subjects, and
the mean classification rate of the K experiments is reported.

For comparison purposes, in Table 1, we report the classification performance
of the plain Euclidean method(Sec.2) which uses the computationally expensive
Euclidean distance on the original fMRI sequences and yields classification re-
sults that are close to random. Table 1 also presents the classification perfor-
mance with the first 30 Fourier coefficients by applying DFT to the mapped
matrices using Hilbert space-filling curve. The results of DWT(double the num-
ber of features) are similar to the results reported in Table 1. After dimension-
ality reduction, most of the features are still non-discriminative and a feature
selection step can significantly improve classification although standard global
dimensionality reduction techniques such as SVD, which also perform feature
selection, cannot be applied.

Table 2 reports classification rates for voxel-specific time series analysis in
each data set individually. It also reports cross validation using the features se-
lected from voxel-based methods. Contrast map based classification rates in [9]
are listed in the last row for comparison since the creation of contrast maps can
be thought of a dimensionality reduction process using statistical inferences along

Table 1. 3D Brain “Video” Analysis: classification rates of the simple Euclidean
method on the original fMRI sequences are close to random due to the large number of
non-discriminative features. Classification using features computed from signal-based
methods (DFT). The “ALL” column shows classification rates using all the first 30
Fourier coefficients and the “Discrim” column reports rates using 5 selected discrimi-
native coefficients only. Experimental results demonstrate that in the locally reduced
feature space, appropriate features can significantly improve classification.

Euclidean Distance 1D DFT 2D DFT
1NN 5NN ALL Discrim ALL Discrim

T1 51.92% 53.84% 65.38% 84.62% 63.46% 84.62%
T2 51.92% 51.92% 61.54% 80.77% 63.46% 82.69%
T3 50% 52.08% 60.42% 72.92% 62.50% 68.75%
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Table 2. Voxel-Specific Time Series Analysis: classification rates using features
selected from voxel-based methods. Experimental results in each individual data set
demonstrate that classification performance can be significantly improved by incor-
porating temporal information into learning. Classification rates of using Contrast
maps Contrasts are the best reported in [9] that use the kNN classifier. Experi-
mental results across data sets demonstrate that the features selected using temporal
information(Raw Dist) stably perform better across data sets.

Training T1 T2 T3
Testing T1 T2 T3 T1 T2 T3 T1 T2 T3

Raw Dist 94.2% 90.4% 87.5% 92.3% 96.2% 91.7% 86.5% 88.5% 93.8%
Norm Dist 84.6% 75.0% 70.8% 78.9% 90.4% 72.9% 71.2% 75.0% 85.4%
Mean Dist 88.5% 76.9% 70.8% 80.8% 90.4% 75.0% 75.0% 76.9% 85.4%
V ar Dist 86.5% 82.7% 72.9% 80.8% 86.5% 75.0% 78.9% 78.9% 83.3%
Contrasts 88.5% N/A N/A N/A 86.8% N/A N/A N/A 85.7%

the temporal axis. Experimental results on each individual data set demonstrate
that classification performance can be significantly improved by incorporating
temporal information into learning. Classification rates of Raw Dist outper-
formed other methods. In time series analysis, temporal distortion is a common
problem. Dynamic Time Warping(DTW) has been successfully applied in many
time series analysis problems[20] but is inapplicable here due to dimensionality.
Luckily the nature of the data prevents significant temporal distortion (since
each 87 point sequence can be divided into 6 short sub-sequences). For valida-
tion purposes, we performed a set of DTW experiments on 5 selected features.
Experimental results demonstrate that DTW gives similar classification results
as the Euclidean distance method.

In the three data sets, subjects are performing exactly the same task whereas
the sequence of the monetary conditions is different. We address the generaliza-
tion question by examining classification performance when selected features
from one data set are applied onto other data sets. Table 2 reports the cross
validation results. The features that are automatically selected using tempo-
ral information(Raw Dist), prove very stable in cross-task validation. Hence,
by selecting the most discriminative features using temporal information, group
classification can be successfully performed.

We also examined the selected features under a neuro-scientific context: the
selected most discriminative voxels cluster into two prefrontal brain regions:
the middle frontal gyrus (dorsolateral prefrontal cortex) and the anterior cingu-
late gyrus (ACG). Those regions are known to be involved in sustained atten-
tion/working memory and in the processing of salient stimuli/inhibitory control,
respectively. It is very intriguing that these blindly selected voxels represent the
two core functions of the delayed forced-choice task used in this study. Further,
their location in the prefrontal cortex lends support to our working hypothesis
that this region is crucially involved in the underlying core characteristics of
drug addiction. Specifically, the involvement of the ACG, a region which has
been previously implicated in drug intoxication and craving[21], lends support
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to the dysfunction in drug addiction of this corticolimbic region (see [22] where
a hypofunctionality of the ACG to a GO/NO-GO task was reported in cocaine
users compared to controls).

4 Conclusions and Future Work

We have demonstrated that, by selecting discriminative features, group classifica-
tion can be successfully performed on a challenging case study although training
data are fMRI sequences that are exceptionally high dimensional, sparse and
noisy. We have also shown that classification rates can be significantly improved
by incorporating temporal information into machine learning analysis of such
data. To our knowledge, this is the first time that the temporal/functional infor-
mation of the fMRI data is explicitly explored for machine learning classification
purposes. This comprehensive framework of exploring spatial and temporal in-
formation of fMRI data for classification problems can be extended to many
other fMRI analysis applications. Our analyses provide an additional method
for validation of a regional-functionality specificity, however external validation
using a lesioned sample would still be necessary to confirm a particular region’s
role in a specific function (i.e., loss of a certain function in individuals lacking a
specific region).

Since feature selection is the key for pattern recognition problems, especially
when only a small number of data are available, as in most human subject
research, one of our future research directions is to explore efficient global di-
mensionality reduction techniques[23] that can be applied on extremely high
dimensional training data and examine more sophisticated classifiers. Another
future research direction is to apply grouping/clustering as a preprocessing step
to reduce dimensionality of the raw data and smooth noise. Finally, connectivity
and interactivity information play important roles in brain activation patterns.
For example, in the voxel-based feature selection part, voxels are considered to
be independent, however, this is not accurate for the human brain. After fur-
ther validation with other data sets (additional subjects with addiction or other
psychopathology), we aim to explore the connectivity and interactivity between
voxels to reveal more discriminative brain activation patterns.
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Abstract. Thin-slice computer tomography provides high-resolution images that
facilitate the diagnosis of early-stage lung cancer. However, the sheer size of the
CT volumes introduces variability in radiological readings, driving the need for
automated detection systems. The main contribution of this paper is a technique
for combining geometric and intensity models with the analysis of local curvature
for detecting pulmonary lesions in CT. The local shape at each voxel is repre-
sented via the principal curvatures of its associated isosurface without explicitly
extracting the isosurface. The comparison of these curvatures to values derived
from analytical shape models is then used to label the voxel as belonging to partic-
ular anatomical structures, e.g., nodules or vessels. The algorithm was evaluated
on 242 CT exams with expert-determined ground truth. The performance of the
algorithm is quantified by free-response receiver-operator characteristic curves,
as well as by its potential for improvement in radiologist sensitivity.

1 Introduction

State-of-the-art computer tomography (CT) scanners, with spatial resolutions of less
than a millimeter, routinely provide images of smaller and smaller nodules, character-
istic of early-stage lung cancer [1]. However, these gains in spatial resolution have led
to an explosion in the sizes of the image volumes that a radiologist has to review, re-
sulting in significant variability in radiological readings [2]. Figure 1 shows examples
of nodules detected by two expert radiologists but missed by a third expert.

Computer-aided detection (CAD) systems have been developed to aid radiologists
in reading CT exams. Brown et al [3] use simple shape- and intensity-based features
of segmented regions with a fuzzy classifier. The data consisted only of selected 2 cm
thick cross-sections of the lung, favoring the 3D segmentation technique upon which
the algorithm is dependent and avoiding the difficult apex region. McCulloch et al [4]
obtained encouraging results with a Bayesian classifier — 70% sensitivity at 8 false
positives per case operating on noisy low-dose screening data. Their method uses 2D
segmentation to generate candidates and the number of false positives grows with the
use of thinner slices in CT. Paik et al [5] use a geometric model and learn parame-
ters from training data. They report results on only 8 CT volumes and on nodules with
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Fig. 1. Three examples of structures missed by an expert radiologist but independently classified
as nodules by two other experts. These abnormalities were successfully detected by the algorithm
proposed here.

diameters above 6 mm, thus no solid conclusions can be drawn. Farag et al [6] report
numbers as high as 82.3% sensitivity with 9.2% false positive rate. However, the ma-
jority of their nodules are calcified and therefore clinically irrelevant [7] and over 80%
of their ground truth consists of nodules above 12 mm which are easy to detect. Others
have used local structure information alone to discriminate between particular shapes
[8, 9, 10]. However, in all of these methods the thresholds for classification are either
set empirically or learned from data.

This paper introduces a technique for the shape analysis of 3D images and demon-
strates its application to the detection of lung nodules in CT exams. The method is based
on a fully 3D algorithm that does not depend on segmenting or grouping the relevant
anatomical structures or any edge detection method. The proposed algorithm combines
geometric and intensity models with the eigenanalysis of the curvature tensor in order
to identify pulmonary nodules in CT. All parameters and thresholds are derived from
these models, eliminating the need for training data. Furthermore, no model fitting or
optimization is performed. All operations are local and therefore the proposed method
can be interpreted as a filter for highlighting nodule-like structures in the image.

2 Differential Operators on Volume Images

A volume image I is defined as a twice-differentiable (C2) mapping from a compact
domain V ⊂ R3 into R. For any given k, the equation

I(x) = k (1)

defines an isosurface Mk ⊂ V at the points x satisfying (1) and ∇I(x) �= 0 [11]. A
common descriptor for the local structure of an image I is its Hessian H [8]. Although
the eigenvalues of H provide an intuitive measure of local structure, they do not capture
the true underlying shape, which is more accurately described by the curvature of the
isosurfaces defined by (1). For example, consider an isotropic Gaussian intensity profile
(see Fig. 2). Hessian-based shape measures [8] would incorrectly signal the presence
of a cylinder at the inflection points of the profile, while the principal curvatures would
correctly flag the entire structure as spherical.
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2.1 The Curvature Tensor

It can be shown that, at the point x, the principal directions of the isosurface given by
(1) can be obtained directly from the implicit function by solving the eigenproblem

Fig. 2. Cross-section and top view
of Hessian responses on a 2D
Gaussian profile. The Hessian re-
sponse is spherical in the in-
nermost circle, cylindrical in the
dark band containing the inflection
point, and void in the outer band.

min
v̂

/max
v̂

−v̂TNTHNv̂
‖∇I‖ ,

subject to ‖v̂‖ = 1,
(2)

where N is the 3 × 2 matrix of the null space of
∇I . The principal directions v1 and v2 are given
by v1,2 = Nv̂1,2, where v̂1,2 are the solutions
of (2), and the corresponding principal curvatures
κ1 and κ2 are the eigenvalues of the 2 × 2 ma-
trix −NTHN/‖∇I‖, with κ1 ≤ κ2. The matrix
C = −NTHN/‖∇I‖ is herein defined as the cur-
vature tensor of the volume image.

Yoshida et al [9] present a method to compute
κ1 and κ2 for an implicit surface. Their technique
also estimates curvatures directly from an implicit
function. However, it requires the isosurfaces to be
amenable to a local parameterization via Monge
patches, which cannot be achieved everywhere on the
surface [12]. The solution from (2) circumvents this
problem and also avoids the rotation step required by
Vos et al [10].

2.2 Response of the Curvature Tensor

At points x for which the isosurface defined by (1) is well-approximated by a spherical
patch with surface normal pointing outward, κ1 and κ2 satisfy κ1 > 0 and κ2 > 0.
For cylindrical patches with an outward normal, κ1 ≈ 0 and κ2 > 0. Finally, saddle
points have κ1 < 0 and κ2 > 0. This suggests a methodology to discriminate between
spherical and cylindrical regions in volume images, such as nodules and vessels in CT
scans of the lung. The sphericalness and cylindricalness measures b(x) and c(x) for
the curvature tensor at the isosurface intersecting the point x are defined as

b(x) =

{
κ1
κ2

if κ1, κ2 > 0,

0 otherwise,
and c(x) =

{
1− κ1

κ2
if κ2 > 0,

0 otherwise.
(3)

3 Anatomical Modeling

The eigenvalues of the curvature tensor can be used to quantify the sphericalness or
cylindricalness of a voxel in a CT volume by thresholding the values attained by (3) at
that voxel. An important contribution of this work is the use of a model-based approach
to set these thresholds from generative models for the relevant anatomical structures.
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3.1 Anatomical Modeling of Local Shape

The eigenvaluesκ1 and κ2 of the curvature tensor are independent of any transformation
I ′(x) = aI(x) + b applied to the image volume I(x). In fact, κ1 and κ2 at a voxel x
depend only on the shape of the associated isosurface, not on its isovalue. Therefore one
only needs to take into account the local shapes of the relevant anatomical structures,
not the exact form of their intensity profiles.

Radiologists routinely model pulmonary nodules as spherical objects when attempt-
ing to measure quantities such as volume and growth rate [13]. In this work, the local
shapes of isosurfaces of relevant 3D anatomical structures — nodules and vessels —-
are approximated using ellipsoidal and toroidal surface patches.

Ellipsoidal model. Under the appropriate curvature-preserving mapping the implicit
equation of an ellipsoid E is

(a) (b)

Fig. 3. The local shape of the isosur-
faces of nodules is approximated by el-
lipsoidal patches (a) and that of vessels
is approximated by toroidal patches (b)

x2

a2 +
y2

b2
+

z2

c2
= 1, (4)

where a ≤ b ≤ c are the lengths of the ellipsoid’s
semi-axes, as shown in Fig. 3(a). The principal
curvatures κE

1 and κE
2 take on minimum values

κE
1,min =

a

c2
and κE

2,min =
a

b2
. (5)

Furthermore, the minimum and maximum values
of the ratio κE

r = κE
1/κ

E
2 , a component of the

measures defined in (3), are given by

κE
r,min =

a2

c2
, κE

r,max = max
(
a2

b2
,
b2

c2

)
. (6)

Toroidal model. A torus T with small radius r and large radius R, as shown in Fig.
3(b), can be parameterized as

T :

⎧⎪⎨⎪⎩
x = (R + r cosψ) cos θ
y = (R + r cosψ) sin θ
z = r sinψ

(7)

with (θ, ψ) ∈ (−π, π]2. Its principal curvatures κT
1 and κT

2 take on values

κT
1 =

cosψ
R + r cosψ

and κT
2 =

1
r
, (8)

and the minimum and maximum values of the ratio κT
r = κT

1 /κ
T
2 can be directly

computed from (8) by varying ψ.
The analysis for the bounds in κ1, κ2, and κr presented in this section can be directly

used to set an acceptable range for κ1 and κ2 and thresholds for (3). In the case of the
ellipsoidal model, the range of values for a, b, and c can be set based on the range of
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targeted nodule sizes. Given a, b, and c, we can set thresholds for κE
1,min, κE

2,min, and
κE

r,min. The lower bound on the aspect ratio for the ellipsoidal model was set at 1/2, by
assuming that nodules are roughly round. As for vessels, one typically has R� r, and
thus κT

1,min ≈ 0. However, the surface of vessel junctions can be modeled as highly
bending tori, which would result in κT

1,min � 0.

4 Application to Lung Nodule Detection

The algorithm was initially implemented using the open source Insight Toolkit (ITK)
[14], which provides a general framework for processingn-dimensional medical images
and includes basic libraries for image processing, segmentation and registration.

The volume image was first smoothed by

Fig. 4. Isosurfaces around the center of a
junction display sharp peaks, with strong
spherical responses along the centerline of
the surrounding vessels

Fig. 5. A maximum intensity projection im-
age showing spherical responses overlaid
on the original CT data

convolution with a Gaussian kernel to reduce
the effect of noise. Then the lung volume was
automatically extracted via region growing to
provide a region of interest (ROI) for subse-
quent operations. The eigenvalues of the cur-
vature tensor were computed at every voxel
in the ROI, and thresholds derived from the
anatomical models were used to label each
voxel as spherical, cylindrical, or neither.

A major source of false positives for the
Hessian are vessel junctions, since they dis-
play large second derivatives in all directions.
Junction isosurfaces, on the other hand, are
clearly non-spherical, as seen in Fig. 4. How-
ever, they have sharp peaks that cause the
curvature tensor to generate a thin streak of
spurious spherical responses along the cen-
terline of the vessels. These spurious re-
sponses can be easily removed by morpho-
logical closing of the surrounding cylindrical
responses.

The responses defined at individual vox-
els are sufficient for presentation to radiolo-
gists as a tool for highlighting spherical re-
gions, e. g., by overlaying the responses on
the original CT volume, as shown in Fig.
5. To quantify the algorithm’s performance
neighboring voxel responses were grouped
and counted as a single detection. Experi-
mental results and validation are presented in
the next section.

The algorithm was re-implemented with several optimizations, including special-
ized data structures for memory access and morphological operations. On a 500-slice
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(a) (b)

Fig. 6. (a) FROC curves showing the performance of the proposed algorithm compared to
two other commonly-used methods. (b) FROC curves showing the algorithm’s performance on
datasets from two different institutions with different acquisition protocols.

dataset with slice thickness of 0.625 mm, the optimized version ran in 10 seconds on
off-the-shelf hardware with dual 3.06 GHz Xeon processors and 2 GB of memory. The
algorithm works with physical coordinates, using the pixel and slice spacing informa-
tion contained in the CT images. For example, the standard deviation σ of the smooth-
ing kernel and the radii for the morphological structuring elements were specified in
millimeters and selected based on the anatomical models and clinical protocol. The
smoothing kernel has σ = 2 mm, targeted at detecting nodules of diameter 4 mm.

5 Experimental Results

The algorithm was validated on datasets from two different institutions, totaling 242
exams. The dataset from institution 1 consisted of 50 low-dose CT exams of high-risk
subjects acquired at 40 mAs and 120 kVp, with slice thickness of 1.25 mm. The exams
were independently read by three expert radiologists. Ground truth was defined as all
nodules marked by two or more radiologists and consisted of 109 non-calcified solid
nodules with diameter greater than 3 mm of which 80 had diameter greater than 4 mm.
The detections of the algorithm were considered true positives (TP) if they overlapped
with a ground truth nodule, and false positives (FP) otherwise. Free response receiver-
operator characteristic (FROC) curves were produced by sweeping the detections gen-
erated by the algorithm ranked in decreasing order of average spherical response.

For the nodules 4 mm and above in diameter, the algorithm achieved a sensitivity of
67.5% at 9.3 FP/case. These results were compared with those of two other well-known
and oft-used local shape descriptors: the Hessian [8] and the structure tensor [15]. At
the same rate of 9.3 FP/case, the Hessian and the structure tensor achieved sensitivi-
ties of only 40.0% and 17.5%, respectively. The FROC curves for all three techniques
are shown in Fig. 6(a), demonstrating the superior performance of the proposed tech-
nique. In another experiment, nodules with diameter between 3 mm and 4 mm were
also included, since 3 mm is the smallest diameter for which a clinical protocol has
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been defined [7]. In this experiment, the proposed algorithm achieved a sensitivity of
70.6% at 25.6 FP/case compared to sensitivities of 46.8% for the Hessian and 47.5%
for the structure tensor at the same FP rate (FROC curve not shown).

Table 1. The table shows, for each radiologist, the num-
ber of nodules missed, the radiologist sensitivity, the num-
ber of missed nodules detected by the algorithm, the algo-
rithm’s false positive rate, the sensitivity improvement, the
combined sensitivity of the radiologist and the algorithm,
and the average sensitivity improvement weighted by the
number of nodules on the ground truth for each radiolo-
gist. The difference in the algorithm’s false positive rate is
due to the different ground truth for each radiologist.

missed initial added FP/ sensit. final
radiol.

nod. sensit.detect. case improv. sensit.
A 6 86.4% 3 10.0 6.8% 93.2%
B 6 86.4% 4 10.0 9.1% 95.4%

in
st

.1

C 30 55.9% 19 9.5 27.9% 83.8%

D 18 85.4% 4 10.8 3.3% 88.6%
E 19 84.7% 16 10.8 12.9% 97.6%

in
st

.2

F 68 60.7% 36 10.5 20.8% 81.5%
avg. improv.: 14.2%

The dataset from institution
2 consisted of 192 low-dose CT
scans acquired using a differ-
ent protocol (20 mAs, 140 kVp,
with slice thickness of 2.5 mm).
Ground truth was defined as be-
fore and consisted of 210 non-
calcified solid nodules with di-
ameter above 4 mm. The al-
gorithm achieved a sensitivity
of 62.9% at 10.3 FP/case. As
seen in Fig. 6(b), there is only
a minor degradation in the algo-
rithm’s performance when com-
pared to the results on the pre-
vious dataset, even though that
was acquired at half the slice
thickness.

To estimate the improve-
ment in radiological sensitiv-
ity the algorithm’s detections
were combined with each radi-

ologist’s reads. Using a leave-one-out scheme the ground truth for each radiologist was
defined as only those nodules marked by the other two radiologists from the same in-
stitution. For institution 1, there were 38 nodules that were marked by all three radiol-
ogists. For radiologist A, 6 nodules were considered “missed,” i. e., marked only by B
and C. Therefore, the ground truth defined by radiologists B and C consisted of 44 nod-
ules (38 + 6), 38 of which were marked by A, yielding an initial sensitivity of 86.4%.
The algorithm added three more detections, which, when combined with those of A,
resulted in a final sensitivity of 93.2%, at a cost of 10 false positives per case. This pro-
cedure was repeated for radiologists B and C, and for the radiologists from institution 2.
The corresponding sensitivity improvements are shown in Table 1. The overall average
sensitivity improvement was 14.2%. Figure 1 shows examples of nodules detected by
the algorithm but not marked by one radiologist.

6 Conclusions

This paper introduces a technique for detecting pulmonary nodules in CT volume im-
ages of the lung that is based on combining geometric and intensity models with the
eigenanalysis of the curvature tensor. The method does not require either segmentation
of the relevant anatomical structures or sophisticated classifiers and can be viewed as
a filter that highlights specific anatomical shapes. Furthermore, the algorithm does not
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require any training data as values of all parameters and thresholds are derived analyti-
cally from the models. The method is robust to changes in scanning protocols, including
slice thickness, as demonstrated by the algorithm’s performance on multiple databases
with radiologist-provided ground truth.
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Abstract. We propose a navigation-based computer aided diagnosis
(CAD) system for the colon. When diagnosing the colon using virtual
colonoscopy (VC), a physician makes a diagnosis by navigating (flying-
through) the colon. However, the viewpoints and the viewing directions
must be changed many times because the colon is a very long and wind-
ing organ with many folds. This is a time-consuming task for physicians.
We propose a new navigation-based CAD system for the colon providing
virtual unfolded (VU) views, which enables physicians to observe a large
area of the colonic wall at a glance. This system generates VU, VC, and
CT slice views that are perfectly synchronized. Polyp candidates, which
are detected automatically, are overlaid on them. We applied the sys-
tem to abdominal CT images. The experimental results showed that the
system effectively generates VU views for observing colon regions.

1 Introduction

In Japan, the number of patients suffering from colonic cancer is increasing.
Colonic cancer can be cured completely if it is found in its early stage, i.e.,
colonic polyps. However, if found in its latter stages, a complete cure is difficult
due to metastasis. Therefore, screening of the colon for early detection of colonic
polyps is important. Colonoscopy, which is mainly performed in the clinical field,
is physically and mentally painful for patients. Furthermore, some problems are
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and for their useful comments from a medical perspective. The authors also wish
to thank our colleagues for their suggestions and advices. Parts of this research
were supported by the Grant-In-Aid for Scientific Research from the Ministry of
Education, the 21st-Century COE program, a Grant-In-Aid for Scientific Research
from the Ministry of Education, Culture, Sports, Science, and Technology, Japan
Society for Promotion of Science, and a Grant-In-Aid for Cancer Research from the
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that a physician needs much skill and experience to operate the colonoscope,
and it is time-consuming task due to the long and winding shape of the colon,
which has many folds.

In the clinical field, virtual colonoscopy (VC) is a new diagnostic tool that
is considered less-invasive, due to development of imaging devices such as multi
detector-row (MD) CT scanners. VC provides a virtual environment of the colon
based on 3D CT images of a patient and visualizes the inside of the colon ev-
erywhere a physician wants to observe. The CT images on a computer can be
regarded as the virtual human body of a real patient. A physician can diag-
nose the virtual human body while doing a fly-through the inside of it. We call
this diagnostic scheme navigation diagnosis. However, because the colon has a
complicated shape, a physician has to change viewpoints and viewing directions
many times. Thus, VC is still a time-consuming task. Therefore, a computer
aided diagnosis (CAD) system must be developed for the colon that has various
functions to assist physicians such as automated polyp detection and “easy to
observe” visualization, e.g., unfolded views of the colon.

Automated polyp detection has been researched by several groups [1, 2, 3, 4,
5]. They used curvature or intensity distribution information of colonic polyps.
Each method developed by them can detect polyps with high sensitivity, but false
positives also detected. Ways to reduce the false positives are being researched
now. Another important function for CAD is visualization. Even if CAD could
accurately detect polyp candidates, final decisions should be made by physicians
no matter how they use CAD. Therefore, we should also think about how to
efficiently visualize the colon. One possible solution is unfolding the colon.

Several studies have examined the virtual unfolding of the colon [6, 7, 8].
The unfolding must (1) be less distorted, (2) give a real-time rendering of the
unfolded views and (3) unfold using arbitrary cutting. Our system focuses on
requirements (2) and (3) to make diagnoses using CAD efficient.

The CAD system we propose here has automated polyp detection and real-
time visualization of unfolded views of the colon. A special characteristic of our
system is that three kinds of views are completely synchronized, i.e., ordinary CT
slice view, VC view and virtual unfolded (VU) view. For example, if a physician
finds a suspicious area in a VU view, he/she can seamlessly check it on both the
VC and CT slice views.

In Section 2, we describe the navigation-based CAD system we developed.
Experimental results of polyp detection and virtual unfolding are shown in Sec-
tion 3. A brief discussion is in Section 4.

2 Navigation-Based CAD System for the Colon

2.1 Overview

For a CAD system for the colon, functions that assist physicians such as au-
tomated polyp detection, navigation to suspicious areas, and “easy to observe”
visualization to reduce the inspection time are important. Because physicians di-
agnose patients’ CT data by flying through their virtual bodies, we call a CAD
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Fig. 1. Overview of navigation-based CAD system

system that uses this technique a navigation-based CAD system. Our system con-
sists of four parts: (a) preprocessing, (b) image generation, (c) system control,
and (d) observation assistance. An overview of the system is shown in Fig. 1.

The preprocessing part generates a central line of the colon for navigation
and unfolding. Polyp candidates are also detected here. The image generation
part generates VC, VU, and CT slice views. These views are synchronized by
the control part. The system control part also allows physicians to navigate to
polyp candidates detected in the preprocessing part. Of course, physicians can
fly-through inside the colon freely using intuitive input devices such as joysticks.
We explain each part below.

2.2 Preprocessing

Central line generation. First, we extract a colonic lumen region using a
region-growing method. Then, we generate a central line from the lumen region.

(1) Extraction of colonic lumen region. A colonic lumen region is seg-
mented using a region-growing method (Fig. 2 (a)). CT values of a lumen are
defined by -1000 to -700 H.U..

(2) Thinning and spurious branch elimination. A thinning algorithm
[9] is applied to extract the central line of a colonic lumen region. A thinning
result is shown in Fig. 2 (b). As you see, many spurious branches remain after
the thinning process. Those spurious branches are eliminated by calculating the
minimal path between the farthest two points on the thinned figure (Fig. 2 (c)).

(3) Central line generation using spline interpolation. A central line is
generated using cubic spline interpolation as follows. First, control points Pk(k =
0, ..., N) are allocated at intervals of 20 voxels on the thinned figure. Then, the
central line is obtained using cubic spline interpolation from Pk (Fig. 2 (d)).
Points on the central line are denoted as pi(i = 0, ...,M).
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(a) (b) (c) (d)

Fig. 2. Generation of central line of colon. (a) Extracted lumen region, (b) result of
thinning, (c) result of spurious branch elimination, and (d) generated central line.

Polyp candidate detection. Polyp candidates are detected using a detection
method [5]. Convex regions on the colonic wall are detected as polyp candi-
dates. The shape index and curvedness, which are calculated from curvatures
on the colonic wall, are used for shape classification. See Kitasaka et al. [5] for
details.

2.3 Image Generation

In this part, VC, VU, and CT slice views are generated. The VU view is generated
by controlling ray-casting directions in the volume rendering.

Fig. 3. Schematic illustration of unfolding process
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Virtual unfolding view. For each point on the central line pi, a ray is casted
along a direction vertical to the tangent, ti, of the central line at the voxel.
Let txi be a vector perpendicular to ti, and tyi be the vector perpendicular to
both ti and txi. Then, casting directions ri

j(0 ≤ j ≤ m;m = 2π/Δθ) at pi are
defined by

ri
j = txi cos(jΔθ) + tyi sin(jΔθ). (1)

That is, a VU view is generated by casting rays on an orthogonal plane, Πi,
toward the colonic wall side at each point, pi, on the central line (Fig. 3). Because
this unfolding is equivalent to a volumetric deformation, we can observe not only
the surface of the colonic wall but also blood vessels beyond the wall on a VU
view by adjusting rendering parameters (color, opacity, etc.).

2.4 System Control

This system uses a joystick as an intuitive input device. When the stick is inclined
right and left, the camera moves forward and backward along the central line.
When the stick is inclined back and forth, the VU view is rotated along the
central line; i.e., the cutting line of the colon is modifiable.

2.5 Observation Assistance

This part is to assist observation and diagnosis by synchronizing views and
coloring polyp candidates detected automatically and unobserved regions.

Synchronized views. Let pi be the point on the central line at the center of
a VU view. VU, VC, and CT slice views are synchronized as follows. In the VC
view, the viewpoint is the same as pi, and the view direction is set as ri

m/2 (the
vector that points to the center of the VU view). The CT slice that contains pi

is displayed.

Colored polyp candidates and unobserved regions. Polyp candidates are
overlaid on VU views and VC and a CT slice views. Because of the complicated
shape of the colon, polyps may be overlooked. Thus, our system detects unob-
served regions [10]. Physicians are shown which parts they have not observed
yet. Polyp candidates can be navigated to.

3 Experiments

We implemented the navigation-based CAD system on a PC platform (CPU:
Intel Xeon 3.6GHz, Memory: 2GByte). Four cases of the colonic wall were un-
folded by the system. The acquisition parameters of the CT data are: 512 × 512
pixels, 0.586 - 0.781 mm/pixel, 333 - 370 slices, 1.0 - 2.5 mm slice thickness, and
1.0 - 1.25 mm reconstruction intervals.

The results of the central line extraction are shown in Fig. 4. Examples of
unfolding are shown in Fig. 5. System overviews are shown in Fig. 6. The top,
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(a) (b) (c) (d)

Fig. 4. Results of central line generation. (a) Extracted lumen of Case 2, (b) central
line generated from (a), (c) extracted lumen of Case 3, and (d) central line generated
from (c).

Table 1. Ray intersection percentages

Case Ray intersection (%)
1 24.56
2 33.34
3 19.41
4 13.74

left-bottom, and right-bottom views are the VU, VC, and CT slice views. Polyp
candidates detected by the system are colored blue. In Fig. 6 (b), blood vessels
beyond the colonic wall can be observed. During VU view generation, some rays
cast from the central line intersect each other before they hit the colonic wall.
The percentages of rays that intersect are shown in Table 1. The rendering speed,
including the unfolding process, was approximately 0.1 second per frame. The
rendering resolutions of VU and VC views are 256 × 256 and 256 × 256.

4 Discussion

Our system can unfold the colon in real-time. As shown in Fig. 5, haustra are
clearly distinguished in VU views. However, we found that areas near sharp
bends are distorted. Rays intersected in such areas. As shown in Table 1, rays
intersected in all cases. As a consequence, a polyp may appear more than once
on the VU view, or a part of a polyp may switch its position with another part
of the colonic wall. To reduce this distortion, ray intersection must be reduced.
This subject will be addressed in future work.

As shown in Fig. 6, physicians can easily find polyp candidates in the VU
view and verify them on both the VC and CT slice views. Those three views
are completely synchronized in real-time. This allows physicians to feel free to
observe, i.e., comfortably navigate the colon. Furthermore, blood vessels beyond
the colonic wall can be observed in the VU view. The unfolding process used in
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(a)

(b)

Fig. 5. Results of unfolding of colon. (a) Case 1 and (b) Case 3.

(a) (b)

Fig. 6. Example of polyp candidate detection and its display in VU view for Case
3. Blood vessels are observed in VU view by changing transparency of colonic wall,
indicated by arrows.

the system volumetrically deforms the colon simply by controlling the directions
of ray-casting, so we can observe not only the surface of the colonic wall but also
beyond the wall by changing the rendering parameters.

5 Conclusion

We proposed a navigation-based CAD system for the colon. This system has
functions to assist physicians; automated polyp detection, virtual unfolding, and
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synchronized VU, VC, and CT slice views. We applied the navigation-based CAD
system to four cases of 3D abdominal CT data. By comparing synchronized
VU and VC views, we observed the entire colonic wall efficiently. Future work
includes further experiments using larger number of CT data, evaluations by
physicians, and reduction of distortion in VU views.
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Abstract. We propose a novel framework to predict pacing sites in the left ven-
tricle (LV) of a heart and its result can be used to assist pacemaker implantation
and programming in cardiac resynchronization therapy (CRT), a widely adopted
therapy for heart failure patients. In a traditional CRT device deployment, pacing
sites are selected without quantitative prediction. That runs the risk of subop-
timal benefits. In this work, the spherical harmonic (SPHARM) description is
employed to model the ventricular surfaces and a novel SPHARM-based surface
correspondence approach is proposed to capture the ventricular wall motion. A
hierarchical agglomerative clustering technique is applied to the time series of re-
gional wall thickness to identify candidate pacing sites. Using clinical MRI data
in our experiments, we demonstrate that the proposed framework can not only ef-
fectively identify suitable pacing sites, but also distinguish patients from normal
subjects perfectly to help medical diagnosis and prognosis.

1 Introduction

Heart failure, also called congestive heart failure, is a major health problem that con-
tinues to increase in prevalence. It is a disorder in which the heart loses its ability to
pump blood efficiently. Low cardiac output resulting from heart failure may cause the
body’s organ systems to fail. As one important part of the problems, the walls of the left
ventricle (LV) are unable to contract synchronously.

Over the past decade, investigators [2] have established the feasibility of placing
multiple pacing leads of pacemaker to improve the activation synchrony (sameness of
activation time) of LV and biventricle. Based on these studies, a promising therapeutic
option, called cardiac resynchronization therapy (CRT), has been proposed as an al-
ternative treatment in patients with severe, drug-refractory heart failure. It is aimed at
correcting contraction delays that result in different regions of the heart not working
optimally in concert [1].

Although clinical trials have confirmed that CRT improved clinical symptoms, in-
creased exercise capacity, and led to cessation or even reversal of chronic chamber
remodeling, a significant minority seem not to benefit. [3] There are a lot of potential
explanations for the CRT failure cases, and improper surgical placement of the LV lead
is one of the most important reasons. Improvements in the methods of identification of
likely responsive implantation placements are needed.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 704–711, 2005.
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The initial CRT device utilization incorporates right ventricle and LV pacing sites,
but a right ventricle pacing site is not required for hemodynamic benefit in many pa-
tients [4]. Since LV pacing alone has the almost similar benefit with biventricular pac-
ing, it is used more popular in the CRT system. Thus, in this paper, we focus on the
CRT with LV pacing sites.

The principal goal of the present study is to efficiently predict the optimal LV pac-
ing sites that should be stimulated by electrical impulses of pacemaker and provide
the corresponding parameters (timing delay, etc.) to help the programmable device.
In order to identify the optimal pacing sites, the mechanical dyssynchrony is directly
analyzed by the spatio-temporal modeling. Based on the fact that ventricular wall thick-
ening and motion reflect activation, we build an integrated framework to estimate the
most effective places for implanting the pacemaker to achieve maximized CRT benefit.
Given a stack of cardiac MRI, both endocardium and epicardium are reconstructed, and
the optimal correspondences between them are established by minimizing the surface
Euclidean distance. LV wall motion is described by the three dimensional (3D) wall
thickness change that is computed using the reconstructed LV surfaces. After applying
the hierarchical clustering method on a time series of wall thickness measurements, we
can find candidate pacing sites with abnormal local motion. Our experiments also show
that this study can be used to distinguish patients and normal subjects and judge the
disease degree.

2 Methods

2.1 Spatio-Temporal LV Motion Modeling

In order to quantify the ventricular mechanical asynchrony or synchrony that can di-
rectly help determine optimal treatment, we develop our spatio-temporal model to de-
scribe a temporal sequence of wall thickness changing during a heart cycle.

Surface reconstruction. We reconstruct both endocardium and epicardium of the
LV by using the spherical harmonic (SPHARM) method, which was introduced by
Brechbühler, Gerig and Kübler [5] for modeling any simply connected 3D object. The
object surface is parameterized as v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T using a pair
of spherical coordinates (θ, φ), where the parameterization aims to preserve the area
and minimize the angle distortion. Thus, v(θ, φ) becomes a vector of three spherical
functions that can be expanded using spherical harmonics Y m

l (θ, φ) as follows,

v(θ, φ) =
∞∑
l=0

l∑
m=−l

cm
l Y m

l (θ, φ),

where cm
l = (cm

lx, c
m
ly , c

m
lz )T are expansion coefficients that can be used to reconstruct

the object surface. SPHARM has been used by Gerig and Styner in many medical imag-
ing applications (e.g., shape analysis of brain structures [6, 7, 8]). It has also been used
for shape modeling and functional analysis of cardiac MRI [9]. Since SPHARM pro-
vides an implicit correspondence between surfaces of 3D objects, it is suitable to be
used to analyze the LV wall motion during heart cycle.
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In our cardiac MRI data sets, each MRI sequence holds seventeen temporal phases
per heartbeat. Since the LV deformation is exhibited by the thickness change of the
wall between endocardium and epicardium, we use 17 SPHARM reconstructed surface
pairs (including both endocardium and epicardium) to describe the LV contraction and
dilation during a whole heart cycle.

Surface correspondence. In order to measure the wall thickness at each surface loca-
tion as well as compare thickness changes between different time points, a registration
step is necessary for aligning all the reconstructed epicardial surfaces together. Given
two SPHARM models, we establish their surface correspondence by minimizing the
Euclidean distances between their corresponding surface locations. Formally, for two
surfaces given by v1(s) and v2(s), their distance D(v1,v2) is defined as [7]

D(v1,v2) = (
∮
‖ v1(s)− v2(s) ‖2 ds)1/2 = (

∑
f∈{x,y,z}

L∑
l=0

l∑
m=−l

(cm
lf1
− cm

lf2
)2)1/2.

The epicardial surface in the first time phase (diastolic phase in our MRI data) dur-
ing heartbeat is used as the template. For any other epicardial surface in the same se-
quence, we align it to the template by rotating its parameter net [10] so that the surface
distances D(v1,vi), (i = 2, ..., 17) between them is minimized. Given an aligned sur-
face sequence, we use the same method to align the endocardium to the epicardium in
the same timing phase.

Wall motion series. Because the wall thickness change of LV directly shows the wall
motion in 3D space during a heart cycle, we can use it as the wall motion descriptor.
In this study, we observe that the distance between the corresponding points (i.e., with
the same (θ, φ)) on the endocarium and epicardium surfaces, can be directly used to
approximate the wall thickness, since we have already minimized this distance in the
previous step. In addition, the underlying equal area parameterization implies the cor-
respondence relationships between any pair points on these two surfaces are reasonable
and effective.

After that, we create the wall motion series that includes the thickness values for
each corresponding surface location at each time phase during a heart cycle, from end-
diastolic phase to next end-diastolic one. Since we are only interested in the LV wall
motion, we ignore the points appearing on the top of reconstructed surfaces. Even if
only one point whose thickness value in the wall motion series appears on the top of its
surface, the whole motion series is discarded.

2.2 Clustering Based Pacing Sites Search

After the above steps, a set of motion series are used to present the LV wall contraction.
Given a pair of (θ, φ), we use w(θ, φ) = {w1(θ, φ), w2(θ, φ), ..., wn(θ, φ)} to denote
its corresponding wall motion series, where wi(θ, φ) is the wall thickness value of wall
motion phase i corresponding to the parametrized point (θ, φ) on the epicrdium.

Similarity measurement. Formlly, given two wall motion series w(θx, φx) and
w(θy, φy), we employ the following formulae to measure the distance or dissimilar-
ity between them:
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dcorr(w(θx, φx),w(θy, φy)) = 1− r(w(θx, φx),w(θy, φy)) =

1−
[

n∑
i=1

(
wi(θx, φx)− wmean(θx, φx)

σx

)(
wi(θy, φy)− wmean(θy, φy)

σy

)]
/n,

where σ =
√

(
∑n

i=1(wi(θ, φ)− wmean(θ, φ))2)/n. r(w(θx, φx),w(θy, φy)) is the
Pearson correlation coefficient of two wall motion series, wmean(θ, φ) is the mean of
wall motion series, and σ is the standard deviation of w(θ, φ). The Pearson correlation
coefficient is always between -1 and 1, and we normalize distance function as dcorr/2
(the result will change from 0 to 1) in our experiments.

Hierarchical clustering. By combining or clustering similar wall motion series we
can identify groups of wall motion series that are the main trend of LV contraction and
dilation for different locations in the 3D space. To group similar wall motion series
together, we employ hierarchical agglomerative clustering approach [11], which is a
bottom-up clustering method where clusters can have sub-clusters.

The hierarchical clustering result, a dendrogram, is a binary tree (see Fig. 1 for an
example) in which each data point corresponds to a leaf nodes, and distance from the
root to a subtree indicates the similarity of subtrees–highly similar nodes or subtrees
have joining points that are farther from the root.

Sweep line method. We move the horizontal sweep-line from top to bottom in the
dendrogram result (for example, the “sweep-line 1” in Fig. 1) to get the abnormal clus-
ters (small clusters) that have a large dissimilarity to the main cluster. Note that the
pacemaker system uses electrical impulses to adjust the sites whose contraction charac-
teristics are considerably different from other sites’. Thus, hierarchical clustering results
can help us to find these location candidates for installing the pacing leads.

2.3 Pacing Site Pre-filtering

Cross correlation. In order to set the electrical impulses in a pacemaker system, a
technician still needs to know the timing delay value between the pacing position and
a common position. Hence we use cross correlation method to acquire such a value
between the wall motion series. For two wall motion series w(θx, φx) and w(θy, φy),
the correlation function of two wall motion series is defined as:

ccxy(t) = w(θx, φx) " w(θy, φy) =
n∑

m=1

wm(θx, φx)wm+t(θy , φy)

where “"” is the correlation operator, and t = 0, 1, . . . , n − 1. If t = t0 satisfies
ccxy(t0) = max(ccxy(t)) for t ∈ [0, n − 1], then the wall motion series w(θx, φx)
shifts t0 to get the maximum correlation with the wall motion series w(θy, φy). Thus,
t0 is the timing shift (or delay). The timing period between two neighbouring phases
can be calculated using the heartbeat velocity. Thus, the timing delay can be calculated
by: timing delay = t0 × (a heartbeat period/the number of phases).
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Pacing sites selection. We introduce a filtering step on the pacing site candidates list,
because a few of them don’t have contraction timing delay to the normal activation.
After picking up the site candidates, there is a single big cluster in the dendrogram,
called the main cluster (see Fig. 1 for a marked sample main cluster). The wall motion
series (average motion series) of the main cluster is regarded as the normal wall motion
variation of the LV, for example the square-line in Fig. 2 and Fig. 3. Using the contrac-
tion timing delay between pacing site candidates and main cluster, we filter out the site
candidates without contraction delay.

In the implantation, a doctor still needs to test the lead to see whether a candidate lo-
cation is suitable for pacing, because the pacing lead cannot be placed into some regions
of left ventricle (such condition normally is created by epicardial scar or unacceptable
phrenic nerve stimulation, etc). Based on the dendrogram result, we provide the loca-
tion candidates for implanting and they are rated by the distances from the main cluster,
which is described below.

3 Results and Discussions

We have implemented our pacing site prediction framework using Matlab 6.5. To show
the effectiveness of this framework, we use cardiac MRI data from 20 patients in our
experiments, where half of them have heart failure problems. These experiments are
conducted on a PC with a 2.40GHz CPU and 512 MB main memory. Note that the
patients are diagnosed by specialized physicians, and these diagnostic results are used
to validate our results in the experiments.

For convenience, we allocate a number to each wall motion series. From apex to
basis of the LV, 1 ∼ 96 are used to mark the points of wall motion series level by level.
Therefore, the points represented by consecutive numbers are in the neighbour locations
on the surface, and the points with small numbers should be close to apex and the points
with large numbers should be close to the basis of the LV.

Fig. 1 shows the hierarchical clustering result of a patient with heart failure problem.
The dendrogram consists of a main cluster and several other small ones. The locations
corresponding to the motion series in those small clusters are selected as the candidate
pacing sites. Note that a single small cluster may include multiple regions on the LV,
since the different regions may have similar motion behaviors. In Fig. 1, {92, 93} (close
to the basis of LV) is the top-priority option for resynchronization therapy, and the next
pacing candidates that should be considered are {77, 78, 79} and {30, 31}.

Since the distance function used by us cannot discriminate the timing delay between
wall motion series, pre-filtering step should be executed here. Fig. 2 and Fig. 3 show
the pacing sites filtering step. In Fig. 2, the curve with square tags is the average motion
series of the main cluster in Fig. 1 and the curve with circle tags is the average motion
series of region {92, 93}. Because there is no timing delay between the main cluster and
this region, it is filtered out, although their average wall motion series is very different
from the main cluster’s. Regions {77, 78, 79} and {30, 31} still remain in the candidate
list, since obvious timing delays are observed in Fig. 3. After filtering step, our results
can be used for pacemaker implantation. As we mentioned before, the pacing lead can-
not be placed into some particular regions of the LV. The physician will test the pacing
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Fig. 1. Dendrogram result of a failing heart. The x-axis
label represents the number of wall motion series. The
y-axis label corresponds to the distance between clus-
ters. The dendrogram is cut into clusters by the “sweep-
line 3”.
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lead on candidate pacing sites according to the suggested site ordering until they find
a suitable region for fixing the tip of pacing lead. If the list is empty and a suitable
site isn’t found, we will continue to select a lower value sweep-line in the dendrogram
result, for example, the “sweep-line 2” and “sweep-line 3” in Fig. 1. Because the can-
didates list includes locations with notable asynchronous contraction and timing delay,
the optimal resynchronization therapy can be obtained after adding electrical pulse into
these candidates. These sites are potentially good candidates to implant the pacemaker
for a more efficient CRT. Furthermore, in some clinical cases, a physician may want to
use multiple sites in left ventricular pacing for cardiac resynchronization, and they can
select additional locations from the candidates list.

We test our methods on the MRI data of both normal and failing hearts. The dendro-
gram results of the normal hearts are very different from the failing ones. In the normal
heart dendrogram, see Fig. 4, if the value of sweep-line is selected as ≥ 0.3 (the dis-
tance between clusters), we obtain only one single main cluster without any other small
clusters. This matches our intuition, since the wall motion of a normal heart tends to be
synchronous and so the motion difference on different surface locations are very small.
Thus our analysis may be useful in identifying patient candidates for helping diagno-
sis. After obtaining twenty dendrograms for all subjects, for each single case, we move
the sweep-line from top to bottom until the result contains exactly two clusters. Fig. 5
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Fig. 4. Dendrogram result of a normal heart. The x-axis
label represents the number of wall motion series. The y-
axis label corresponds to the distance between clusters.
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summarizes the final values of these sweep-lines, sorted in two groups – one group
holds 10 low values, and the other one holds 10 high values. The clinical diagnosis in-
dicates that all low value points (circles) correspond to normal hearts and all high value
ones (squares) correspond to failing hearts. Note that there is a big gap between these
two lines, and so such hierarchical clustering results can actually separate subjects with
heart failure from normal subjects. This observation is helpful for heart failure diagno-
sis and prognosis. The value 0.4 ∼ 0.5 seems to be a good threshold for the sweep-line
to distinguish failing hearts from normal hearts in our data.

In the failing heart data set, we move the sweep-line to extract all small clusters (this
sweep-line may separate the main cluster into two or more main clusters). “Sweep-
line 3” in Fig. 1 is such an example and in this case we have five clusters: {92, 93},
{77, 78, 79}, {30, 31}, main cluster 1 and main cluster 2. Fig. 6 shows the number
of clusters gotten from these 10 abnormal subjects, without counting the main cluster.
In this result, the dendrogram result of patient #5 has more small clusters and the
patient also has worse heart failure symptom. It is often the case that, the more severe
heart failure the patient has, the more asynchronous wall contraction the LV performs.
Our results reveal such a reasonable relationship between the number of pacing site
candidates and the degree of patients’ symptom.

4 Conclusion

In this paper, we propose a new pacing sites prediction framework that is based on
spatio-temporal analysis of cardiac motion patterns and hierarchical clustering method.
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It can automatically generate the candidate site list to help a physician to localize the
pacing areas. Blinded analysis of clinical MRI data demonstrates that our approach can
not only identify pacing sites in the LV for assisting pacemaker implantation in CRT, but
also be used to help medical diagnosis of heart failure. Since the bi-ventricular pacing is
useful for some clinical cases, our further study will be carried out on the prediction of
its pacing sites. This further study will be combined with our current prediction system
to improve the accuracy and feasibility of estimated results.
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Abstract. Virtual colonoscopy is a relatively new method for the detec-
tion of colonic polyps. Their size, which is measured from reformatted CT
images, mainly determines diagnosis. We present an automatic method
for measuring the polyp size. The method is based on a robust segmen-
tation method that grows a surface patch over the entire polyp surface
starting from a seed. Projection of the patch points along the polyp axis
yields a 2D point set to which we fit an ellipse. The long axis of the ellipse
denotes the size of the polyp. We evaluate our method by comparing the
automated size measurement with those of two radiologists using scans of
a colon phantom. We give data for inter-observer and intra-observer vari-
ability of radiologists and our method as well as the accuracy and precision.

1 Introduction

Colorectal cancer is one of the most commonly diagnosed types of cancer. Specifi-
cally, the American Cancer Society predicts 145,000 new cases and 56,000 deaths
from colorectal cancer for 2005 [1]. Polyps are a well-known precursor to such
carcinoma. Not surprisingly, it has been shown that early removal of polyps
ensures a decrease in incidence [7].

In recent years, CT colonography has been proposed as a noninvasive alterna-
tive to traditional polyp detection by colonoscopy [9, 5]. In CT colonography, the
colon structure is often visualized from an endoluminal perspective by means of
surface or volume rendering. Recently, methods have been proposed to support
the inspection by a computer aided detection (CAD) system indicating suspect
locations [8, 4]. The size of a detected polyp is an important aspect for diagnosis
and decision making. It is generally accepted that polyps with diameter ¡ 5mm
require no direct further action, whereas larger polyps should be removed via
colonoscopy. Typically, the size of polyps is measured in colonoscopy by com-
parison with an open biopsy forceps. In CT colonography, it is usually measured
in reformatted images, in which the largest polyp diameter is selected for size

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 712–719, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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measurement. However, polyp sizes thus measured by human experts can show
significant inter- and intra-observer variability.

Clearly, an automated method is needed to enable more accurate measure-
ment of polyp size. As a side effect, such a procedure is also useful in CAD
algorithms. Automated polyp detection is usually based on sophisticated pat-
tern recognition techniques that take into account many features measured on
tentatively selected candidates (e.g. size, area, average shape index etcetera).
Proper segmentation is crucial to perform reliable feature measurement.

The existing methods for colonic polyp segmentation (such as Summers et
al. [3, 2] and Yoshida et al. [6]) are especially designed to work directly on
the 3D CT data. Such an approach is hindered by not operating on a specif-
ically defined region of interest c.q. the colon surface. Hence, segmentation of
polyps which are by definition protrusions of the colon surface is not a trivial
task.

In this paper we present a new method for semi-automatic segmentation
of polyp-like structures. Additionally, a technique is described to automatically
measure polyp sizes using this algorithm. Our method assumes that the colon
surface has been identified as a region of interest. Moreover, it is asserted that a
candidate location has been identified; in our system by a vertex detection step
based on the measured shape index [10]. We will compare the size measurement
by our algorithm with that of physicians in a set of phantom objects (in which
the size is known a priori).

2 Method

The description below assumes that the colon wall is described by a triangular
mesh. However, the basic ideas of the method are not restricted to a mesh based
surface representation of the colon wall; they can as well be implemented to
work on a voxel based model. An additional advantage of our method is that
the segmentation requires no user input, that is all parameters are drawn from
the underlying data.

Outline of segmentation procedure. Ideally, a polyp could be described as a
rather spherical, symmetric mound on a background shape (see e.g. Figure 2a).
One could intuitively delineate a polyp by the inflection points on both sides.
However, these points may not be easily identifiable due to the curvature of the
background shape (think of a fold).

Hence, we model a polyp to have a symmetry axis that goes through the
center point (Pc) in which the apical surface normals converge, and the mean
position (Pm) calculated from the polyps surface points. The edge of the polyp
is defined by the points at which the surface normals tend to deflect from the
center point (we will formalize this below).

Initially, a single position or a small patch indicates a point on the polyp
candidate [10]. Since the center and mean points may not be robustly determined
from such a seed patch, the polyp segmentation procedure is set up as an iterative
process. During each cycle of this process neighboring vertices are added if certain
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Fig. 1. Schematic overview of segmentation procedure

criteria are met. The process terminates when no more points are added. An
overview of the procedure is shown in figure 1.

Computing the center and mean points. As depicted in Figure 2a, the
surface normals on the polyp apex tend to converge in a center point. This point
(Pc) is found by minimizing the sum of the distances (di) to all normals (ni).
The surface normals are calculated by Gaussian derivatives the underlying 3D
CT data at a scale of 2mm. This scale was determined experimentally such that
no polyps are missed. The distances can be computed according to:

di = ‖ni × (Pi − Pc)‖ / ‖ni‖ (1)

where Pi is a point on the patch and x denotes the vector outer product. Addi-
tionally, a mean point (Pm) is associated with a patch. The position of the mean
is simply computed by averaging the positions of all vertices: Pm = 1

N

∑
Pi. The

mean and the center points define a centerline (dashed in Figure 2b). Henceforth
it is called the polyp axis.

Fig. 2. Schematic representation of a patch (dashed curve) on the colon wall. Figure
(a) shows how convergent normals define a center point; figure (b) shows how the
minimized distance di is defined for surface point Pi; figure (c) shows how the angles
α and β are defined.

Adding points to a seed patch Points are to be added to a seed patch until
the local surface normal tends to deviate from Pc. To formalize the stopping
criterion, consider first a sphere on a flat background. Let us define α as the
angle between the line from the center point (Pc) to the vertex (Pi) and the
normal at the position of the vertex (see Figure 2c). Clearly, on top of the polyp
α is small (exactly zero on a spherical cap, see Figure 3). The angle α increases
while moving to periphery of the polyp. Right outside the polyp the angle is
given by (compare with Figure 3):

αedge = arccos

[
Pedge − Pc) · n

‖Pedge − Pc‖ · ‖n‖

]
(2)
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in which Pedge is defined as in Figure 3 and n is the normal at point Pedge. We as-
sume that the ideal threshold-value lies somewhere between these extreme values
(respectively 0 and αedge). The required midway point is closely approximated
by the angle calculated via (compare with Figure 3):

αmid = arccos [(Pm − Pc) /R] (3)

Fig. 3. Schematic representation of a polyp (dashed curve) on a flat background (left)
and on a fold (right)

Thus, α < αmid yields a safe stopping criterion for adding neighboring ver-
tices to a polyp on a flat background. On a fold, however, the angle α remains
small (see Fig. 3). Let us define β as the angle between the polyp axis and the
line between the vertex and the center point (as in Figure 2c):

β = arccos

[
(P − Pc) · (Pm − Pc)
‖P − Pc‖ · ‖Pm − Pc‖

]
(4)

At the edge of the polyp β is given by βedge = αedge. Typically, β continues to
increase while moving onto the fold. Consequently, β < βedge yields a logical
stopping criterion for a polyp on a fold. It should be noticed that the two posed
criteria are mutually exclusive: the sidepoints of a polyp on a fold do not meet
the criterion of α < αmid. On the other hand, points besides a polyp on flat
background do not fulfill β < βedge. Also, the angles αmid and βedge are both
dependent on the shape of a polyp. Flatter polyps tend to have lower values
for αmid and βedge than more protruding polyps. In other words, the threshold
values automatically depend on the polyp shape.

All vertices neighboring a seed patch that match the conditions are accepted
and added at once to yield a new seed. Consequently, the outcome does not
depend on the order in which points are processed. Clearly, if none of the vertices
match the criteria, no points are added and the current patch is considered the
final, segmented polyp. Otherwise, all steps are iterated.

Automated size measurement. The size measurements for polyps are based
upon the segmented patches. The edges of these patches are projected along
the polyp axis onto a plane. An ellipse is fitted to these points in 2D space by
computation of the first and second order moments. This is in accordance with
the current medical practice in the Academic Medical Center where the polyp
size is characterized by its largest diameter.
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3 Experiments and Results

The performance of the method was assessed by comparing the automated size
measurement with those of radiologists using scans of a colon phantom. We have
looked into several aspects to test our approach:

– Inter-observer variability of radiologists
– Intra-observer variability of radiologists and our method
– Accuracy and precision of the radiologists and our method

Experimental data. All data was acquired using a Mx8000 multislice CT-
scanner (Philips Medical Systems, Best, the Netherlands) using the same scan-
ning protocol for all scans (scan parameters: 120 kV, 100 mAs, 4 x 2.5 mm
collimation, pitch 1.25, standard reconstruction filter, and a 180o interpolation
algorithm).

The phantom consisted of a lucite cylinder into which fabricated polyps were
inserted. At first, the phantom contained 10 hemispherical lucite objects of vari-
ous sizes, and 4 objects with reduced height (2 mm) in order to mimic flat lesions.
Subsequently, 8 asymmetric objects from plasticine were inserted in the phantom
(maximum width 6-19 mm). The size of all objects (see Table 1) was measured
by sliding calipers. The phantom was placed in a cylinder, 34 cm in diameter
that was filled with water to arrive at a signal to noise ratio comparable to that
in patient data. The two phantoms with lucite and plasticine polyps respectively
were scanned twice: in the axial plane of the cylinder, and an orthogonal plane
(see Figure 5).

Table 1. Dimensions of the phantom objects; of all lucite objects two specimens were
used

Object Lucite Objects (lengthxheight) [mm] Plasticine Objects (lengthxheight) [mm]

1 10.0 x 5.0 19 x 9

2 10.0 x 2.5 17 x 8

3 8.0 x 4.0 14 x 10

4 8.0 x 2.0 14 x 8

5 6.0 x 3.0 12 x 8

6 5.0 x 2.5 11 x 11

7 4.0 x 2.0 11 x 5

8 - 6 x 5

The size of all objects was measured in the CT scans by two radiologists and
by our automated method. The radiologists measured the objects in multiplanar
reformatted CT images. Each object was measured twice, along the main axes
as perceived by the physician. The largest value was taken as the polyp size. The
automatic measurements were done as described previously. For that purpose,
an arbitrary seed point was manually indicated somewhere on the polyp surface.

Inter-observer variability of the radiologists. Figure 4a,d contains the
graphs displaying the measurements of one radiologist against those of the other.
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Clearly, radiologist A tends to measure larger diameters compared to radiolo-
gist B. The average difference of their measurements was 1.2mm for the lucite
objects and 3.1mm for the plasticine objects. The standard deviation of the ab-
solute difference was 0.7mm for the lucite objects and 2.7mm for the plasticine
objects.

Intra-observer variability of the radiologists and the automatic method.
The intra-observer variability is assessed by the difference in size measured in the
axial scan versus the measurement on the same object in the orthogonal scan. It
must be conceded that this involves two different scans of the same object. We
assume, however, that it allows for a good approximation of the intra-observer
variability.

Figure 4b,e shows the measurements of the observers in one scan versus the
measurement in the other. Apparently, neither the radiologists nor the auto-
matic method shows a bias. The average absolute difference between the two
measurements on the lucite objects was 1.0mm and 0.8mm for the two radiol-
ogists and 0.5mm for the automatic technique. The standard deviation of the
absolute difference was 0.9, 1.0 and 0.5mm respectively. For the plasticine ob-
jects the average absolute differences were 2.6, 3.2 and 1.1mm and the standard
deviations 2.2, 2.1 and 1.1mm respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 4. First column: Inter-observer variability in polyp size for lucite (a) and plasticine
(d) objects. Middle column: Intra-observer variability in polyp size for lucite (b) and
plasticine (e) objects. Right column: Accuracy and precision of size measurement for
lucite (c) and plasticine (f) objects.
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(a) (b) (c) (d)

Fig. 5. Single slice from each scan. From a-d: lucite polyps axially, plasticine polyps
axially, plasticine polyps orthogonally and lucite polyps orthogonally

Accuracy and precision. The accuracy and precision of the observers is de-
fined by comparison to sliding calipers (see Figure 4c,e). The measurements of
both radiologists appear to be slightly biased. This can be explained by the
procedure of always selecting the larger of two measurements as the size of the
polyp. The bias in the automatic method is less pronounced, but not completely
absent. It can be explained by notifying that all points (except due to noise)
on a segmented hemispherical polyp surface are projected inside a circle with
the diameter of the polyp. An ellipse fitted through the contour points yields a
small underestimation of the true size. Clearly, one might correct for all these
biases in a calibration step. Specifically noticeable, is the higher precision of the
automatic method on the plasticine objects, indicated by the smaller spread of
values around the line of identity.

As shown in table 2, the automatic method shows a smaller systematic error
than the radiologists. There is no significant difference in the precision (std.
dev.) for the (symmetric) lucite objects between the automatic system and the
radiologists. However, for the irregular plasticine objects the precision of the
automatic system remains the same, whereas the precision of the radiologists
decreases significantly.

Table 2. Mean difference and standard deviation of difference between observers and
sliding calipers measurements for the lucite objects and the plasticine objects

Lucite Plasticine

mean diff. [mm] std. dev. [mm] mean diff. [mm] std. dev. [mm]

Rad. A 1.6 0.9 7 5

Rad. B 0.8 1.0 4 5

Automatic -0.2 1.2 -1 1.2

4 Conclusions and Future Work

The size of a colonographically detected polyp is important for diagnosis and
decision making. The size measurement by human observers is generally consid-
ered to be imprecise and inaccurate. In this paper we presented a method for
the automatic segmentation of polyp-like structures. The polyp size was auto-
matically derived from the segmentation result. It was shown that our algorithm
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yields a smaller bias than the measurements from radiologists: on average 1mm
or less for the automatic method and between 1 and 7mm for the radiologists,
depending on the irregularity of the object. Even more important, the algorithm
is consistent irrespective of the polyp shape. As opposed to that, the radiologists
show a four times larger variation for the irregularly shaped objects. It is this
irregularity which occurs in practice.

A good polyp segmentation algorithm is also useful for automatic polyp de-
tection algorithms. It allows for extraction of features such as volume, surface
area, average grey-value etcetera. Such features may improve the specificity of
CAD algorithms.
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Abstract. Automatic diagnosis of lung nodules for early detection of
lung cancer is the goal of a number of screening studies worldwide. With
the improvements in resolution and scanning time of low dose chest CT
scanners, nodule detection and identification is continuously improving.
In this paper we describe the latest improvements introduced by our
group in automatic detection of lung nodules. We introduce a new tem-
plate for nodule detection using level sets which describes various physi-
cal nodules irrespective of shape, size and distribution of gray levels. The
template parameters are estimated automatically from the segmented
data (after the first two steps of our CAD system for automatic nodule
detection) – no a priori learning of the parameters density function is
needed. We show quantitatively that this template modeling approach
drastically reduces the number of false positives in the nodule detection
(the third step of our CAD system for automatic nodule detection), thus
improving the overall accuracy of CAD systems. We compare the per-
formance of this approach with other approaches in the literature and
with respect to human experts. The impact of the new template model
includes: 1) flexibility with respect to nodule topology – thus various
nodules can be detected simultaneously by the same technique; 2) au-
tomatic parameter estimation of the nodule models using the gray level
information of the segmented data; and 3) the ability to provide ex-
haustive search for all the possible nodules in the scan without excessive
processing time – this provides an enhanced accuracy of the CAD system
without increase in the overall diagnosis time.

1 Introduction

Lung cancer screening is a major research activity worldwide. The goal is to
design a CAD system that will contribute to early diagnosis of lung cancer,
a major cause of death in various parts of the world. The work of our group
uses helical low dose thin slice (2 mm – 2.5mm) chest CT scanning (LDCT)
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which provides very high spatial, temporal, and contrast resolution of anatomic
structures. Automated detection of lung nodules in thoracic CT scans is an
important clinical challenge, especially because manual analysis by a radiologist
is time-consuming and may result in missed nodules. Furthermore, the amount
of image data to be analyzed continues to increase. We will not attempt an
exhaustive search on this subject because of the enormous size of literature on
early diagnosis of lung cancer, thus we will limit our scope to the image analysis
aspect of the CAD research on this subject. Specifically, we will focus on the
automatic detection and identification of lung nodules from the LDCT scanning.
Only sample studies will be referred to below as they pertain to our work.

Most of the CAD work in lung cancer screening involves two-stage detection
of lung nodules, such that initial candidate nodules are first selected and then
the false ones, called false positive nodules (FPNs), are partially eliminated while
preserving the true positive nodules (TPNs). For example, the conformal nodule
filtering [1] or unsharp masking [2] enhance nodules and suppress other struc-
tures at the first stage in order to separate the candidates from the background
by simple thresholding. To improve the separation, the background trend is cor-
rected within image regions of interest [3]. A series of 3D cylindrical and spherical
filters are used to detect small lung nodules from high resolution CT images [4].
Circular nodule candidates are detected by template matching [2, 5, 6] or other
pattern recognition techniques such as fuzzy clustering [7], linear discriminant
functions [8], rule-based classification [9], and patient-specific a priori model [10].
Also, cylindrical vascular models are used along with spherical nodular ones to
amplify the template matching [11].

The FPNs are excluded at the second stage by feature extraction and clas-
sification [12, 13]. Such features as circularity, size, contrast [12], or local cur-
vature [13] are extracted by morphological techniques, and artificial neural net-
works (ANN) are frequently used as post-classifiers [14].

Our CAD system detects the nodules in LDCT images in three main steps:
1) segmentation of the raw scanning information to isolate the lung tissues from
the rest of the structures in the chest cavity [Figs. 1(a) and (b)]; 2) extraction
of the 3D anatomic structures (e.g., blood vessels, bronchioles, alveoli, etc., and
possible abnormalities) from the already segmented lung tissues [Fig. 1(c)]; and
3) identification of the nodules by isolating the true nodules from other extracted
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Fig. 1. First two segmentation steps: (a) an initial LDCT slice, (b) separated lung
regions, (c) extracted objects (a nodule candidate is encircled), and (d) an empirical
marginal gray level distribution for the objects (here, the gray range is [98, 255])
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structures. The first two steps considerably reduce the search space by using
segmentation algorithms based on representing each CT slice as a sample of
a Markov–Gibbs random field of region labels and gray levels. Details of the
algorithms are presented in [15].

In this paper we focus on the third step that detects and classifies the nodules
among the extracted 3D structures. Both the nodules and normal objects have
almost the same marginal gray level distributions similar to that in Fig. 1(d) for
all the extracted objects in Fig. 1(c). Therefore, segmentation based solely on
gray level distribution (e.g, thresholding) will not work; we need to include geo-
metrical/shape information in this process. The approach proposed in this paper
includes a 3D deformable nodule prototype combined with a central-symmetric
3D intensity model of the nodules. The model closely approximates an empiri-
cal marginal probability distribution of image intensities in the real nodules of
different size and is analytically identified from the empirical distribution.

2 Detecting Lung Nodules with Deformable Prototypes

The detection step extracts, by shape and intensities, and classifies the nodule
candidates among all the 3D objects selected at the second segmentation stage.

2.1 Deformable Prototype of a Candidate Nodule

To extract the nodule candidates among the already selected objects like those in
Fig. 1(c), we use the deformable prototypes generated by level sets [16] that have
become a powerful segmentation tool in recent years. The evolving prototype’s
surface at time instant t◦ is a propagating zero-level front φ(x, y, z, t◦) = 0 of
a certain 4D scalar function φ(x, y, z, t) of 3D Cartesian co-ordinates (x, y, z)
and time t. Changes of φ in continuous time are given by the partial differential
equation:

∂φ(x, y, z, t)
∂t

+ F (x, y, z)|∇φ(x, y, z, t)| = 0 (1)

where F (x, y, z) is a velocity function and∇ =
[

∂
∂x ,

∂
∂y ,

∂
∂z

]T
. The scalar velocity

function controlling the front evolution depends on local geometric properties,
e.g. a local curvature, k(x, y, z), of the front, and on local input data parameters,
e.g. a 3D gradient, ∇I(x, y, z), of the segmented 3D image I.

In practice, the difference relationship replaces Eq. (1) and each next value
φ(x, y, z, tn+1) relates to the current one φ(x, y, z, tn) at respective time instants
tn+1 and tn such that tn+1 − tn = "t; n = 0, 1, . . ., as follows: φ(x, y, z, tn+1) =
φ(x, y, z, tn) − "t · F (x, y, z)|∇φ(x, y, z, tn)|. The velocity function F plays a
major role in the propagation process. Among variants in [17, 18], we have cho-
sen F (x, y, z) = −h(x, y, z)(1 + εk(x, y, z)) where h(x, y, z) and ε are a local
consistency term and a smoothing factor, respectively. Since the level set for a
segmented 3D image I can always be initialized inside an object, an appropri-
ate consistency term to evolve faster to the object boundary can be as follows:
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(a) (b) (c)

Fig. 2. Part of the separated 3D lung objects (a), the initialized level set (b) indicated
by red color, and the finally extracted potential nodule candidate (c)

h(x, y, z) = (1 + |∇I(x, y, z)|)−1. To keep the level set front from propagating
through blood vessels to which the nodules may be connected, we apply a low-
pass filter after each propagation step n. Figure 2 shows results of extracting
a potential nodule candidate with the deformable prototype. To check whether
the extracted object is really a nodule candidate, we should measure similarity
between grayscale patterns in the extracted part of the initial 3D image and the
intensity prototype of the nodule of that shape.

2.2 Similarity Measure for Grayscale Nodule Prototypes

Analysis of abnormalities in real 3D LDCT slices suggests that gray levels in
central cross-sections of a solid-shape 3D nodule or in a solid-shape 2D nod-
ule roughly follow a central-symmetric Gaussian spatial pattern such that the
large central intensity gradually decreases towards the boundary. Moreover, the
marginal gray level distributions for all 3D objects separated from the lung tis-
sues at the second segmentation stage (e.g. arteries, veins, bronchi, or nodules
of different size) are very similar to each other. The 3D Gaussian intensity pat-
tern in each grayscale nodule prototype ensures that the marginal gray level
distribution closely approximates the empirical one for each real nodule in the
LDCT data.

Let the prototype be a central-symmetric 3D Gaussian of radius R with the
maximum intensity qmax in the center so that the gray level q(r) at any location

(x, y, z) at radius r =
(
x2 + y2 + z2

) 1
2 with respect to the center (0, 0, 0) is given

by the obvious relationship:

q(r) = qmax exp
(
− (r/ρ)2

)
; 0 ≤ r ≤ R (2)

The scatter parameter ρ in Eq. (2) specifies how fast the signals decrease
towards the boundary of the prototype. The maximum gray level, qmax = q(0),
and the minimum one, qmin = q(R), on the boundary of the spherical Gaussian
prototype of the radius R uniquely determine this parameter as follows:

ρ = R (ln qmax − ln qmin)−
1
2 (3)
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Because all the prototype’s points with a fixed gray value q in the continuous
interval [qmin, qmax] are located at the spherical surface of the radius r(q) =
ρ (ln qmax − ln q)

1
2 , their density is proportional to the surface area 4πr2(q).

Therefore, the marginal probability density function for such a prototype is
ψ(q) = γr2(q) where γ is the normalizing factor such that

∫ qmax

qmin
ψ(q)dq = 1. It

is easily shown that this function has the following closed form:

ψ(q|qmin, qmax) =
ln qmax − ln q

qmax − qmin (1 + ln qmax − ln qmin)
(4)

The gray level parameters qmax and qmin are estimated from the empirical
marginal distribution for each segmented 3D object, e.g. qmax = 255 and qmin =
98 for the objects extracted in Fig. 1.

To evaluate similarity, the gray level nodule prototype is centered at the
centroid of the volume extracted with the deformable prototype.

2.3 Lung Nodule Detection Algorithm

1. Separate lung regions from a given CT scan using the segmentation algo-
rithms in [15]; see an example in Fig. 1(b).

2. Separate arteries, veins, bronchi, bronchioles, and lung nodules (if they exist)
from the above lung regions using the same segmentation algorithms in [15];
see an example in Fig. 1(c).

3. From the empirical marginal gray level distribution for the objects separated
at Step 2 calculate qmin and qmax; see an example in Fig. 1(d).

4. Stack all the voxels separated at Step 2.
5. Pop-up a top voxel from the stack as a seed for the deformable prototype

and let this latter propagate until reaching a steady state indicating that the
voxel set U enclosed by the final prototype constitutes an extracted object.

6. Calculate the centroid for the voxel set U extracted at the previous step;
find the maximum, Rmax, and the minimum, Rmin, radii from the centroid
of the boundary of that set; find the average radius R = (Rmin + Rmax)/2,
and estimate the scatter parameter ρ from Eq. (3).

7. Use Eq. (2) to assign the prototype gray levels Nx,y,z for each extracted
voxel (x, y, z) ∈ U.

8. Use the normalized cross-correlation CorrC,N between the actual extracted
object C = [Cx,y,z : (x, y, z) ∈ U] and its gray level nodule prototype
N = [Nx,y,z : (x, y, z) ∈ U] as the similarity measure (see Fig. 3).

9. If CorrC,N ≥ τ where τ is a pre-selected similarity threshold (in our experi-
ments below we set it to τ = 0.85 on the empirical basis), then classify the
extracted object as the potential nodule candidate.

10. Remove all the voxels of the extracted object from the stack.
11. If the stack is empty then stop, otherwise go to Step 5.

To reduce the error rate, the initially selected potential candidates are post-
classified just as in [19] to distinguish between the false (FPNs) and true (TPNs)
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Fig. 3. Detected nodule candidate: (a) slices of the extracted voxel set U, (b) the gray
level prototype N, and (c) the actual gray levels C; the correlation CorrC,N = 0.886
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Fig. 4. Estimated and empirical distributions for radial non-uniformity (a), mean gray
level (b), and 10%-tile gray level(c), and the radii dθ in 8 directions θ from the centroid
to the boundary that specify the radial non-uniformity maxθ(dθ) − minθ(dθ)

positive nodules. In contrast to [19], probability distributions of each feature
required by the classifier are accurately estimated with linear combinations of
Gaussians (LCGs) using our algorithms in [15]. The LCGs approximate the
empirical distributions for a training set of the nodules. Figure 4 shows the
empirical and estimated distributions of each feature for both TPNs and FPNs.

3 Experimental Results and Conclusions

The proposed algorithm was tested on the same LDCT scans of 50 screened
subjects. Among them, 16 subjects had abnormalities in their CT scans and
34 subjects were normal (this classification was validated by two radiologists).
The chest CT data used in this paper were obtained from Mansoura University,
Urology and Nephrology Center, Radiology department, Mansoura, Egypt as
follows: 1) The scanner: Multidetecor scanner (Light speed plus; GE), 2) Scan
mode: Helical, 3) Slice thickness: 2.5mm, 4) Field of view: large, 5) K.V.: 120,
6) M.A.: 200, 7) Exposure time: 20-25 sec., and 8) Window level: -500 & length
1500. Our approach extracted 113 potential nodule candidates out of the true 119
nodules and 14 FPNs. The post-classification has reduced the number of FPNs
to 4 but simultaneously rejected two true nodules. Thus, the final detection rate
of the TPNs was 93.3% (111 out of 119) with the FPNs rate of 3.36%. Both the
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Fig. 5. Large candidate nodules (shown in the red colour) detected with our approach

(a) Size 68.9 mm3 (b) Size 52.3 mm3 (c) Size 34.8 mm3

Fig. 6. Small candidate nodules (shown in the red colour) detected with our approach

Table 1. Recognition of different abnormalities with our present algorithm, the previ-
ous one in [19], and the algorithm in [5] w.r.t. the “ground truth” by two radiologists
(the corresponding numbers are bold, bold italic, italic, and regular, respectively)

Type of the True detected False detected True detected False detected
nodules nodules before nodules before nodules after nodules after

removing FPNs removing FPNs removing FPNs removing FPNs
Lung wall 28 : 28 : 14 : 29 3 : 8 : 86 28 : 27 : 13 : 29 1 : 2 : 17
Calcified 49 : 46 : 31 : 49 2 : 4 : 35 48 : 46 : 31 : 49 0 : 1 : 9

Non-calcified 17 : 12 : 14 : 18 3 : 5 : 25 17 : 12 : 14 : 18 1 : 3 : 14
Small 19 : 17 : 10 : 23 6 : 25 : 34 18 : 15 : 9 : 23 2 : 5 : 12

Total TPN rate 93.3% : 82.3% : 56.3%
Total FPN rate 3.4% : 9.2% : 43.6%

rates are notably better than 82.3% and 9.2% in [15], respectively. Figure 5 shows
several large lung nodules detected by our approach, and a few small detected
TPNs are depicted in Fig. 6.

Table 1 presents the above results in detail and also compares them to the
algorithm in [5], the only work known to us on detecting the lung nodules from
the LDCT scans using template matching. It uses fixed circular, semicircular and
approximate spherical templates with parameters which are manually derived
from a training data set. This algorithm, after the post-classification, gives the
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overall TPN rate of 56.3% (67 out of 119) with the FPN rate of 43.6%. It is felt
that this algorithm fails to detect a large number of the true nodules because of
the fixed-size templates and manual specification of their gray level patterns. At
times these patterns change from one LDCT slice to another depending on the
scanned cross section and internal organs that appear in that cross section. In
our present algorithm, these patterns are analytically adjusted to each extracted
shape by applying Eq. (3) to each CT slice.

These experiments show that our new deformable level-set prototype with
the analytically modeled standard intensity pattern detects more than 90% of
the true lung abnormalities. The overall processing time for the data set of
size 1005 × 804 × 186 is 6, 18, and 16 min. for the proposed approach and the
algorithms in [19, 5], respectively. But it is still difficult to accurately detect very
small lung nodules similar to bronchi and bronchioles. Our future work is focused
on features that distinguish between the small lung nodules and normal objects.
Also, we are going to analyze the accuracy of our CAD system with respect to
the ground truth on a much larger number of the real LDCT scans.
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Abstract. Recently there has been a great deal of interest in algorithms
for constructing low-dimensional feature-space embeddings of high di-
mensional data sets in order to visualize inter- and intra-class relation-
ships. In this paper we present a novel application of graph embedding
in improving the accuracy of supervised classification schemes, especially
in cases where object class labels cannot be reliably ascertained. By re-
fining the initial training set of class labels we seek to improve the prior
class distributions and thus classification accuracy. We also present a
novel way of visualizing the class embeddings which makes it easy to ap-
preciate inter-class relationships and to infer the presence of new classes
which were not part of the original classification. We demonstrate the
utility of the method in detecting prostatic adenocarcinoma from high-
resolution MRI.

1 Introduction

The aim of embedding algorithms is to construct low-dimensional feature-space
embeddings of high-dimensional data sets [1–4]. The low-dimensional represen-
tation is easier to visualize and helps provide easily interpretable representations
of intra-class relationships, so that objects that are closer to one another in the
high dimensional ambient space are mapped to nearby points in the output em-
bedding. Recently researchers have begun exploring the use of embedding for
solving different problems. Dhillon [1] employed embedding for visually under-
standing the similarity of different classes, distance between class clusters, and
to evaluate the coherence of each of the class clusters. Iwata et al. [2] described
a parametric embedding method to provide insight into classifier behavior. Eu-
clidean embedding of co-occurrence data has also been successfully applied to
classifying text databases [3] and for detecting unusual activity [4]. In this paper
we demonstrate a novel application of graph embedding in (i) improving the
accuracy of supervised classification tasks and (ii) for identifying novel classes,
i.e. classes not included in the original classification.

In [5] we presented a computer-aided detection (CAD) methodology for de-
tecting prostatic adenocarcinoma from high resolution MRI, which in several
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(a) (b) (c) (d) (e)

Fig. 1. (a) Original MR image of the prostate, (b) ground truth for tumor (in green)
determined manually from the corresponding histology [5]. Three expert segmenta-
tions (Fig. 1(c)-(e)) based on visual inspection of Fig. 1(a) without the accompanying
histologic information. Note the low levels of inter-expert agreement.

instances outperformed trained experts. It was found that the false positive er-
rors due to CAD were on account of,

• Errors in tumor ground truth labels on MRI, since the tumor labels
were established by manually registering the corresponding histologic
and MR slices (both MR and histologic slices being of different slice)
thickness) and due to the difficulty in identifying cancer (Fig. 1).

• The presence of objects with characteristics between tumor and
non-tumor (e.g. pre-cancerous lesions). Since the system is not
trained to recognize these novel classes, the classifier forces these
objects into one of the original classes, contributing to false positives.

In order to detect novel classes, we need to first eliminate true outliers due to
human errors from the training set. The implications of outlier removal from the
training set are two fold.

(1) It can significantly improve the accuracy of the original classification, and
(2) It ensures that objects that now lie in the overlap between the object classes
after outlier removal, truly represent the novel classes.

We borrow a graph embedding technique used in the computer vision do-
main [4] for improving classification accuracy and for novel class detection. How-
ever, while in [4] both the object and its representative class are co-embedded
into the low-dimensional space, in our case, the embedding algorithm takes as
input the a-posteriori likelihoods of objects belonging to the tumor class. Note
that graph embedding differs from data reduction techniques like PCA [7] in
that the relationship between adjacent objects in the higher dimensional space
is preserved in the co-embedded lower dimensional space. While we have focused
on one specific CAD application in this paper [5], we emphasize that our meth-
ods are applicable to most supervised or semi-supervised classification tasks,
especially those in which class labels cannot be reliably ascertained.

This paper is organized as follows. Section 2 provides a brief description of
our methodology, and a detailed description of the individual modules is given
in Section 3. In Section 4 we present the results of quantitative evaluation of
our methodology on a CAD system for prostate cancer. Concluding remarks are
presented in Section 5.
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2 System Overview for Prostate Cancer Detection

Fig. 2 shows the main modules and pathways comprising the system. Fig. 3
shows the results of graph embedding on a high resolution MR study of the
prostate (Fig. 3(a)). Fig. 3(c) is a map of the posterior likelihood of every voxel
belonging to the tumor class; the posterior likelihood being derived from the prior
distribution (dashed line in Fig. 3(f)), obtained with the initial set of tumor class
labels (Fig. 3(b)) and Fig. 3(e) shows the corresponding probability image using
the refined prior distribution after graph embedding (solid line in Fig. 3(f)).
The plot of graph embedding (Fig. 3(d)) shows considerable overlap (ellipse 3)
between the tumor (red circles) and non-tumor (black dots) classes. Using the
refined probability map in Fig. 3(e), the resultant embedding (Fig. 3(f)) shows
a clear separation between the two classes (ellipses 1, 2). The increased class
separation is also reflected in the increased image contrast of Fig. 3(e) over
Fig. 3(c). Fig. 3(g) shows a novel way of visualizing the graph embeddings in
Fig. 3(f), with objects that are adjacent in the embedding space being assigned
similar colors. Objects that lie in the overlap of the class clusters after outlier
removal (ellipse 3 in Fig. 3(f)) correspond to the apparent false positive area
(marked as FP) in Fig. 3(g). This region is actually inflammation induced by
atrophy (confirmed via the histology slice in Fig. 3(h)).
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Fig. 2. Training distributions for individual
features are generated using existing class
labels, and each voxel assigned a posterior
likelihood of being tumor. Graph embed-
ding on the posterior likelihoods is used
to remove training outliers and (i) improve
the prior distributions and (ii) identify new
classes.

3 Methodology

3.1 Notation

We represent a 3D image or scene by a pair C = (C, g), where C is a fi-
nite 3-dimensional rectangular array of voxels, and g is a function that as-
signs an integer intensity value g(c) for each voxel c ∈ C. The feature scenes
F i = (C, f i) are obtained by application of K different feature operators, for
1≤i≤K. The tumor class is denoted by ωt and Sωt denotes the true ground
truth set, such that for any voxel d ∈ Sωt , d ↪→ ωt where ↪→ denotes the “be-
longs to” relationship. Ŝωt is the surrogate of ground truth Sωt obtained by
experts by visually registering the MR and the histologic slices [5]. ŜT

ωt
⊂ Ŝωt

is the training set used for generating the prior distributions p̂(f i|c↪→ωt) for
each feature f i. Given p̂(f i|c↪→ωt), the a-posteriori probability that voxel c ↪→
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Fig. 3. (a) Original MR scene C, (b) surrogate of ground truth (in green) for cancer
(Ŝωt) superposed on (a), (c) combined likelihood scene showing tumor class probability
before outlier refinement via embedding, (d) graph embedding of tumor/non-tumor
class likelihoods in (c), (e) combined likelihood scene showing tumor class probabilities
after outlier removal, (f) graph embedding of tumor/non-tumor class likelihoods in
(e), (g) RGB representation of graph embeddings in (f), and (h) the histology slice
corresponding to the MR slice in (a). Note the greater contrast between intensities in
(e) compared to (c), reflecting the increased separation between the tumor and non-
tumor clusters after outlier removal. This is also reflected in the overlap of the tumor
(red circles) and non-tumor (black dots) clusters in the embedding plot before outlier
removal (ellipse 3 in (d)) and the more distinct separation of the two clusters after
outlier removal (3(f)). Note that the objects that now occupy the overlap between
class clusters (ellipse 3 in (f)), constitute the intermediate class (between tumor and
non-tumor). Also note the tighter envelope of the prior distribution of feature f i (3(i))
after embedding (solid line) compared to before (dashed line). The embedding scene
in 3(g) also reveals that an apparent false positive area (FP on 3(g) actually corresponds
to a new object class not included in the original classification (inflammation induced
by atrophy, confirmed via the histology slice (h)).
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ωt for f i is given as P̂ (c↪→ωt|f i). P̂ (c↪→ωt|f), for f = [f i|i∈{1, ...,K}], is the
combined posterior likelihood obtained by combining P̂ (c↪→ωt|f i), for 1≤i≤K.
p̃(f i|c↪→ωt), P̃ (c↪→ωt|f i), and P̃ (c↪→ωt|f) denote the corresponding prior, pos-
terior, and combined posterior likelihoods obtained after refinement by embed-
ding. L̂ = (C, l̂) denotes the combined likelihood scene (Fig. 3(d)), such that
for c∈C, l̂(c)=P̂ (c↪→ωt|f). L̃ = (C, l̃), where for c∈C, l̃(c)=P̃ (c↪→ωt|f), similarly
denotes the corresponding likelihood scene (Fig. 3(e)) after refinement by graph
embedding.

3.2 Feature Extraction and Classification

A total of 35 3D texture feature scenes F i = (C, f i), for 1≤i≤35, are obtained
from the MR scene C. The extracted features include 7 first order statistical
features at two scales, 8 Haralick features at two scales, 2 gradient features, and
18 Gabor features corresponding to 6 different scales and 3 different orienta-
tions. A more detailed description of the feature extraction methods has been
previously presented in [5]. The a-posteriori likelihoods P̂ (c↪→ωj|f i) for each
feature f i can be computed using Bayes Theorem [6] as, P̂ (c ↪→ ωj |f i)=P̂ (c ↪→
ωj)

p̂(fi|c↪→ωj)
p̂(fi) , where P̂ (c↪→ωj) is the a-priori probability of observing the class

ωj , p̂(f i)=
∑B

j=1p̂(f
i|c ↪→ωj)P̂ (c↪→ωj), where B refers to the number of classes.

The combined posterior likelihood P̂ (c↪→ωj |f), for f=[f i|i∈{1, ...,K}], can be ob-
tained from P̂ (c↪→ωj |f i), by using any of the various feature ensemble methods,
e.g. ensemble averaging, GEM [5], majority voting.

3.3 Graph Embedding for Analyzing Class Relationships

Our aim is to find a placement (embedding) vector X̂(c) for each voxel c ∈ C and
the tumor class ωt such that the distance between c and class ωt is monotonically
related to the a-posteriori probability P̂ (c↪→ω|f) in a low-dimensional space [2].
Hence if voxels c, d ∈ C both belong to class ωt, then [X̂(c)-X̂(d)]2 should be
small. To compute the optimal embedding, we first define a confusion matrix W
representing the similarity between any two objects c, d ∈ C in a high dimensional
feature space.

W (c, d) = e−||P̂(c↪→ωt|f)−P̂ (d↪→ωt|f)|| ∈ R|C|×|C| (1)

Computing the embedding is equivalent to optimization of the following function,

EW (X̂) =

∑
(c,d)∈C W (c, d)(X̂(c)− X̂(d))2

σ2
X̂

. (2)

Expanding the numerator of (2) we get 2X̂T(D−W )X̂, where D(c, d) ∈ R|C|×|C|

is a diagonal matrix with D(c, c)=
∑

dW (c, d). Using the fact that

σX̂
2 =
∑
c∈C

X̂2(c)P̂ (c ↪→ ωt|f)− (
∑
c∈C

X̂(c)P̂ (c ↪→ ωt|f ))2, (3)



734 A. Madabhushi et al.

it can be shown that P̂ (c ↪→ ωt|f)≈ 1
γD(c, c), where γ=|C|−1, and |C| represents

the cardinality of set C. Centering the embedding around zero (i.e. X̂Tγ=0), we
get σ2

X̂
= 1

γ X̂
TDX̂ . Putting all these together we can rewrite (2) as,

EW (X̂) = 2γ
X̂T(D −W )X̂

X̂TDX̂
. (4)

The global energy minimum of this function is achieved by the eigenvector cor-
responding to the second smallest eigenvalue of,

(D −W )X̂ = λDX̂. (5)

For voxel c ∈ C, the embedding X̂(c) contains the coordinates of c in the em-
bedding space and is given as, X̂(c)=[êa(c)|a∈{1, 2, · · · , β}], where êa(c), are the
eigen values associated with c.

3.4 Improving Training Distributions by Refining Ground Truth

In several classification tasks (especially in medical imaging), Sωt , the set of true
ground truth class labels is not available. For the CAD problem tackled in this
work, only an approximation of the ground truth (Ŝωt) is available, so that there
exist objects d ∈ Ŝωt which do not belong to class ωt. Consequently the prior dis-
tributions p̂(f i|c↪→ωt), for 1≤i≤K, and the posterior probabilities P̂ (c↪→ωt|f i)
reflect the errors in Ŝωt , since p̂(f i|c↪→ωt) is generated from a training set ŜT

ωt
⊂

Ŝωt . Clearly a more accurate estimate (S̃ωt) of Sωt would result in more accurate
prior distributions p̃(f i|c↪→ωt), for 1≤i≤K, and consequently a more accurate
posterior likelihoods P̃ (c↪→ωt|f i). To obtain S̃ωt we proceed as follows,

(1) The embedding of all voxels c ∈ C, X̂(C) is determined.
(2) The K-means algorithm is applied on the embedding coordinates X̂(C) to
cluster objects c∈C into Z disjoint partitions {P1, P2, · · ·, PZ}.
(3) We obtain the union of those disjoint partitions Pz, for 1≤z≤Z, sizes of
which are above a pre-determined threshold θ. The rationale behind this is that
outliers will be partitioned into small sets. S̃ωt is then obtained as,

S̃ωt = Ŝωt

⋂
[
⋃
z

Pz],where |Pz|≥θ, for z∈{1, 2, · · ·, Z}. (6)

The intuition behind Equation 6 is that we only consider objects in Ŝωt for inclu-
sion into S̃ωt . This avoids inclusion of potentially new outliers. Note that, since
this procedure is only for the training step, we are not concerned with including
every object in class ωt into S̃ωt . Instead, our aim is to ensure as far as possible
that for every object c ∈ S̃ωt , c↪→ωt.
(4) New a-priori distributions p̃(f i|c↪→ωt), for 1≤i≤K, are then generated from
training set S̃T

ωt
⊂ S̃ωt and the new posterior likelihoods P̃ (c↪→ωt|f i) and com-

bined likelihood P̃ (c↪→ωt|f), for f = [f i|i∈{1, ..,K}], are computed.
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Fig. 3(c), (e) correspond to the likelihood scenes (L̂, L̃) obtained from distri-
butions p̂(f i|c↪→ωt) and p̃(f i|c↪→ωt) respectively. The intensity at every voxel
c ∈ C in Fig. 3(c), (e) is given by the a-posteriori likelihoods P̂ (c↪→ωt|f) and
P̃ (c↪→ωt|f), for f = [f i|i∈{1, ..,K}], respectively. While Fig. 3(e) is almost a bi-
level image, suggesting distinct separation between the tumor and non-tumor
classes, Fig. 3(c) is more fuzzy, indicating considerable overlap between the
two classes. This is reflected in the plot of class embeddings X̂(C) obtained
from P̂ (c↪→ωt|f) in which considerable overlap (ellipse 3) exists between the two
classes (Fig. 3(d)), while in the plot of X̃(C), the graph embedding obtained
from P̃ (c↪→ωt|f) (Fig. 3(f)), there is a more distinct separation of class clusters.

3.5 Discovering Novel Classes

Even after removing outliers from the ground truth, there exist objects that oc-
cupy the transition between tumor and non-tumor clusters (observe ellipse 3 in
Fig. 3(f)), suggesting that the characteristics of these objects are between that
of the tumor and benign classes. In Fig. 3(g) is shown a novel way of visualizing
and identifying objects from these intermediate classes. Since X̃(c) contains the
embedding coordinates of voxel c, we can represent X̃(C), the embedding over
scene C, as a RGB image in which the value at voxel c is given by the three
principal eigen values associated with c. Objects that are adjacent to each other
in the embedding space have a similar color (Fig. 3(g)). The apparent false posi-
tive area (labeled as FP on Fig. 3(g)), on inspecting the corresponding histology
slice (Fig. 3(h)) was found to be inflammation induced by atrophy on account of
a prior needle insertion. This new class had not been considered in our original
two class classification paradigm.

3.6 Algorithm

• For each scene we compute the corresponding feature scenes for each fea-
ture f i.
• Prior distributions p̂(f i|c↪→ωt) for each feature f i for class ωt are obtained
using training set ŜT

ωt
⊂ Ŝωt .

• Bayes Theorem [6] is used to compute posterior likelihoods P̂ (c↪→ωt|f i),
for 1≤i≤K. Combined likelihood P̂ (c↪→ωt|f), for f = [f i|i∈{1, ..,K}] is then
computed from P̂ (c↪→ωt|f i) using any standard ensemble method.
• Confusion matrix W is computed for c, d ∈ C as W (c, d) =
e−||P̂(c↪→ωt|f)−P̂ (d↪→ωt|f)|| ∈ R|C|×|C|. Solve for the smallest eigen vectors of
(D −W )X̂=λDX̂ where the rows of the eigen vectors are the coordinates
for the object c in the embedding space X̂(C).
• Partition X̂(C) into disjoint regions Pz, for 1≤z≤Z, and compute new set
of tumor class objects S̃ωt = Ŝωt

⋂
[
⋃

zPz],where |Pz|≥θ.
• Generate new prior distributions p̃(f i|c↪→ωt), for 1≤i≤K, from new train-
ing set S̃T

ωt
⊂ S̃ωt and compute new posterior likelihoods P̃ (c↪→ωt|f i) and

combined posterior likelihood P̃ (c↪→ωt|f), for f = [f i|i∈{1, ..,K}].
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4 Evaluating CAD Accuracy for Prostate Cancer on MRI

The likelihood scene L̂ is thresholded to obtain binary scene L̂B = (C, ˆlB) so
that for c ∈ C, l̂B(c)=1 iff l̂(c)≥δ, where δ is a pre-determined threshold. L̃B is
similarly obtained. L̂B and L̃B are then compared with Ŝωt and S̃ωt respectively
to determine Sensitivity and Specificity values for different values of δ. Receiver
operating characteristic (ROC) curves (plot of Sensitivity versus 100-Specificity)
provide a means of comparing the performance of detection tasks. A larger area
under the ROC curve implies higher accuracy. A total of 33 MR images of the
prostate were used for quantitatively comparing L̃ and L̂ for different values
of δ. Fig. 4(a) and (b) show the ROC curves for L̂ (dashed line) and L̃ (solid
line) for two different feature combination methods (ensemble averaging and
majority voting) using 5 and 10 training samples respectively. The accuracy of
L̃ was found to be significantly higher compared to L̂ for both classification
methods and different sets of training samples, as borne out by the larger area
under the ROC curves in Fig. 4(a) and (b). All differences were found to be
statistically significant.

(a) (b)

Fig. 4. ROC analysis of L̂ (dashed line) and L̃ (solid line) using (a) ensemble averaging
and 5 training samples, and (b) majority voting and 10 training samples

5 Concluding Remarks

In this paper we have presented a novel application of graph embedding in (i)
improving the accuracy of supervised classification schemes, especially in cases
where object class labels cannot be reliably ascertained, and (ii) for identifying
novel classes of objects not present in the original classification. We have suc-
cessfully employed this method to improve the accuracy of a CAD system for
detecting prostate cancer from high resolution MR images. We were also able to
identify a new class (inflammation due to atrophy). The method could be simi-
larly used to detect pre-cancerous lesions, the presence of which has significant
clinical implications.
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Abstract. Emphysema is characterized by the destruction and over distension
of lung tissue, which manifest on high resolution computer tomography (CT)
images as regions of low attenuation. Typically, it is diagnosed by clinical symp-
toms, physical examination, pulmonary function tests, and X-ray and CT imag-
ing. In this paper we discuss a quantitative imaging approach to analyze emphy-
sema which employs low-level segmentations of CT images that partition the data
into perceptually relevant regions. We constructed multi-dimensional histograms
of feature values computed over the image segmentation. For each region in the
segmentation, we derive a rich set of feature measurements. While we can use
any combination of physical and geometric features, we found that limiting the
scope to two features – the mean attenuation across a region and the region area
– is effective. The subject histogram is compared to a set of canonical histograms
representative of various stages of emphysema using the Earth Mover’s Distance
metric. Disease severity is assigned based on which canonical histogram is most
similar to the subject histogram. Experimental results with 81 cases of emphy-
sema at different stages of disease progression show good agreement against the
reading of an expert radiologist.

1 Introduction

Emphysema is a widespread chronic respiratory disorder, characterized by the loss of
lung recoil resulting from the deterioration of lung tissue, which leads to physical lim-
itations. The destruction and over-distension of lung tissue in emphysema are manifest
on high resolution computer tomography (CT) images as regions of low attenuation, as
seen in Fig. 1. While physicans are trained to identify such regions, it is often difficult to
accurately quantify the extent of the disease severity, and both intra- and inter-operator
variability is common [1]. Thus a variety of computer aided methods have been devel-
oped to automatically detect and quantify the extent of disease severity.

An early technique for measuring the amount of tissue degradation in the lung
parenchyma is the Müller density index [2]. This technique calculates the percentage of
the pixels in the lung field that have low attenuation. A global threshold defines what
is considered low attenuation. This threshold must be set in a manner that takes into
account variations in attenuation due to differences in scanners, scanning protocols,
patient size, and the patients’ ability to inflate their lungs.

While the Müller density index provides insight into the percentage of the lung that
may be degraded by the disease, the interpretation is based strictly on the percentage of

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 738–744, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. The image on the left shows a CT scan of a healthy subject, which can be compared to
the image of a severely emphysematous subject, shown on the right. The two diagnosis were
established by and expert pulmonologyst.

low attenuation pixels and uses no information on the spatial distribution or grouping of
the low attenuation pixels. Another method of analyzing the degree of lung degradation
uses the fractal dimension of the low attenuation areas. The cumulative size distribution
of the low attenuation areas has been shown to follow a power law relationship - with
healthy subjects and emphysematous subjects having markedly different cumulative
size distributions [3].

Coxson provides another extension to the Müller density index [4]. Here, the CT
pixel values are converted to local measures of specific volume. This facilitates an in-
terpretation of the volume of gas per mass of tissue in the lung parenchyma. Since
emphysema manifests as a degradation of tissue (loss of mass) and a loss of elastic
recoil (gain of volume), subjects with emphysema have higher volume of gas per unit
mass ratios than healthy subjects.

Finally, emphysema has been analyzed using standard statistical pattern analysis
approaches. The adaptive multiple feature method (AMFM) of Uppaluri [5] divides an
image into a regular grid of regions and generates a series of derived measurements
or features for each grid square. The features generated include local histograms, co-
occurrence matrices, run length frequencies, and fractal attributes. Disease severity is
determined using a Bayesian classifier on this large feature space. A main disadvantage
of this approach is that the classifier must be manually trained with an expert assigning
a classification to each grid square in each image in the training set. While the previous
techniques looked at the percentage and distribution of low attenuation regions, the
AMFM approach utilizes a richer feature set, in essence using more of the information
present in the CT data.

The quantification approach presented here incorporates some of the previous tech-
nologies, extends others, and introduces new approaches for analyzing emphysema. In
the following sections we will describe our classification technique in more detail and
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provide quantitative results. Section 2 describes the segmentation and feature selection
approach. Section 3 describes the metrics used for histogram comparison, and section
4 provides results computed on a dataset of CT volumes. Finally, in section 5 we will
draw conclusions.

2 Feature Selection

In the problem of quantifying emphysema severity, a good deal is known about the data
being analyzed, both in terms of anatomic characteristics of the lung and the physics
of the scanner. This knowledge is incorporated in our feature extraction model, which
includes both signal and shape models, to achieve the highest detection rates. These
feature extraction methods are similar to those presented in [6].

In CT imagery, the signal models represent the blurring (point spread function) and
noise characteristics inherent to the imaging system. These models permit the accurate
detection of primitive events in the image such as intensity peaks and discontinuities.
These primitives form the basis for our method’s shape representation.

The first stage of shape representation consists of step-edge detection using the
Canny edge detector [7]. To account for noise, each image slice is convolved with a
two-dimensional Gaussian kernel in which the scale of the kernel can be optimally
computed from the point spread function of the scanner [8].

After edge detection we seek to capture the appearance of features in the image in
terms of their intensity and shape. This representation is formed by grouping the low-
level features detected at the signal level. The edges from the preceding signal modeling
stage are grouped into closed regions by tracing along the edges and following a path
perpendicular to the edge gradient until a closed structure can be formed. The result
is a connected network of vertices and edges delimiting adjacent image regions within

Fig. 2. Left: CT slice showing segmentation of the lung field. Right: close-up of the segmentation
showing individual regions over which statistics can be computed.
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which the voxel intensities are homogeneous [9]. The boundaries of these regions cor-
respond to underlying tissue morphology, so that, for example, a large emphysematous
area is represented by a single segmented region. Figure 2 illustrates a segmented CT
slice and shows individual regions over which statistics can be computed.

In our application, we extract a variety of features for each region including inten-
sity, area, number of edges, outer perimeter, diameter, intensity variance, min and max
intensity, and many others. Of these, the first two, intensity and area, were chosen for
histogram generation because they provide a logical characterization of disease sever-
ity. That is, as the severity of emphysema progresses, the lung tissue degrades, leading
to larger and darker tissue patches.

3 Histogram Comparison

Using the low-level segmentation of the lung region, we construct two-dimensional
histograms of area and mean intensity and compare these histograms to canonical his-
tograms for various stages of the disease. These histograms are rich in information
content. From these histograms, one can extract the percentage of the lung parenchyma
occupied by low attenuation regions as in the Müller density index or analyze the size
distribution of the low attenuation regions as in the fractal dimension approach. But the
information in the histograms is richer than either of those approaches since it includes
the size distributions for each attenuation value. Thus, in one representation you have
the size distributions for the healthy parenchyma regions, the severely diseased regions,
and the moderately diseased regions. The histograms are more relevant than the fea-
tures extracted in the AMFM method because they are aligned with image events and
not with an artificial grid.

To assess disease severity, we compare a subject’s two-dimensional histogram to
a set of canonical histograms. Each canonical histogram represents a different disease
severity level, and each is derived from patient scans assessed by an expert pulmo-
nologist, by averaging a set of histograms belonging to a given disease category as
established by the expert. In order to compare the canonical histograms with the fea-
ture histogram of a new case several techniques can be employed, such as Lp metrics,
chi-squre distance or Kullback-Leibler divergence. Motivated by the results in [10], we
use the Earth’s Movers Distance (EMD) as our metric. Intuitively, the EMD between
two histograms is the minimum amount work needed to “reshape” one histogram into
the other, normalized by the total amount of mass moved to perform the reshaping.
The EMD depends both on the amount of mass that has to be moved as well as on the
distance over which the transport occurs. In the situation when the distance between
histogram bins is a metric [11] and the histograms have the same mass, the EMD is
itself a metric. This is an important property in the application tackled here, since the
triangular inequality prevents a given histogram from being simultaneously close to two
others if those are themselves far apart. This should avoid the idiosyncratic situation in
which the disease level of a subject is simultaneously deemed as close to high and low,
as long as there is enough separation between these two classes themselves. In the cur-
rent work the distance between bins was chosen to be the Euclidean distance between
the bin locations.
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4 Experimental Results

We generated two-dimensional histograms of region intensity and area for 81 CT data
sets. Each data set was acquired with a GE scanner with 120 kVp, 1 mm slice thick-
ness, 20 mm interslice distance, 200 mA tube current, 0.5 sec rotation, and x and y
pixel spacing ranging from 0.547 mm to 0.813 mm. An expert pulmonologist examined
and classified each case as one of five emphysema levels ranging from 0 (no signs of
emphysema) to 4 (severe emphysema). The data sets were subgrouped as follows: 16
level 0 cases, 25 level 1 cases, 19 level 2 cases, 9 level 3 cases, and 12 level 4 cases.

For each case we constructed 400× 400 two-dimensional histograms as described
in section 2. Intensity ranged from−1024 HU to −220 HU with a bin size of 2.01 HU.
Area ranged from 0 mm2 to 338 mm2 with a bin size of 0.8452 mm2. Figure 3 shows
area and intensity histogram marginals for a level 0 case and a level 4 case. Though the
area marginals are quite similar to one another, the difference in the intensity marginals
is clear.

We employed a bootstrapping technique to classify each of the 81 cases. That is, we
generated canonical histograms for each severity level while withholding the case to be
tested. Table 1 is a confusion matrix showing classification results. The rows indicate
the subject cases, and the columns indicate the level at which the case was classified. If
considering perfect classification, randomly choosing emphysema levels for each case
yields an accuracy of 20%. Table 1 indicates that 62% of the level 0 cases, 20% of the
level 1 cases, 21% of the level 2 cases, 33% of the level 3 cases, and 67% of the level 4
cases were perfectly classified, with a weighted kappa statistic of 0.468 (standard error
of 0.074) [12, 13].

It is interesting to observe that although the classification rates for levels 1, 2,and 3
are somewhat low, they tend to be misclassified as a similar emphysema level. There-
fore, if we instead consider a correct classification to be exact agreement or off-by-one
agreement, results improve substantially. This is not an unreasonable approach given
that cases with similar levels of severity have similar intensity and spatial characteris-

Fig. 3. Left: Area marginal histograms for a level 0 case and a level 4 case (bold). Right: Intensity
marginal histograms for a level 0 case and a level 4 case (bold).
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Table 1. Classification Confustion Matrix

Level 0 Level 1 Level 2 Level 3 Level 4

Level 0 10 2 2 0 2
Level 1 9 5 9 2 0
Level 2 3 4 4 7 1
Level 3 1 1 1 3 3
Level 4 0 0 0 4 8

tics. In this case, random classification is 52%. Table 1 indicates that 75% of the level 0
cases, 92% of the level 1 cases, 79% of the level 2 cases, 78% of the level 3 cases, and
100% of the level 4 cases were classified correctly.

5 Conclusion

Emphysema is a serious disease leading to extensive physical restrictions for many in-
dividuals. In this paper we demonstrated a completely automated method of measuring
emphysema severity. It is based on the observation that emphysema manifests in CT
as large regions of low attenuation, properties captured on a two-dimensional joint his-
togram of the area and intensity of segmented regions in the lung parenchyma. We
showed that our algorithm yields results in good agreement with manual classifications
of an expert pulmonologist.

The automation of severity quantification addresses the issue of human intra- and
inter-observer variability. Inter-observer agreement on emphysema scores for radiolo-
gists with varying degrees of expertise was reported in [1], with kappa values in the
range of 0.431 to 0.589. The weighted kappa value for our algorithm (0.468) compares
well with the range of values given in that work.

Although the results reported here are encouraging, improvements can be gained
by employing more sophisticated classification schemes. In particular, we should con-
sider a method that takes the variance of the histograms into account. Additionally,
we chose features (mean intensity and area) based on clinical significance. However,
because we compute a rich set of features for each segmented region, it would be inter-
esting to validate this choice using a statistical feature selection technique. In principle
three-dimensional segmentations would provide a more faithful representation of the
true anatomical scenario. However, the imaging protocol may preclude accurate 3D
segmentations owing to large interslice distances.
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Abstract. In this paper, we propose a new dynamic learning frame-
work that requires a small amount of labeled data in the beginning, then
incrementally discovers informative unlabeled data to be hand-labeled
and incorporates them into the training set to improve learning perfor-
mance. This approach has great potential to reduce the training expense
in many medical image analysis applications. The main contributions lie
in a new strategy to combine confidence-rated classifiers learned on dif-
ferent feature sets and a robust way to evaluate the “informativeness”
of each unlabeled example. Our framework is applied to the problem of
classifying microscopic cell images. The experimental results show that
1) our strategy is more effective than simply multiplying the predicted
probabilities, 2) the error rate of high-confidence predictions is much
lower than the average error rate, and 3) hand-labeling informative ex-
amples with low-confidence predictions improves performance efficiently
and the performance difference from hand-labeling all unlabeled data is
very small.

1 Introduction

In many learning algorithms in medical image analysis, the labeling of training
data is often done manually. This process is quite time-consuming since a large
set of training data is usually required. However, not all labeled data have the
same level of effectiveness in improving a classifier. As in Support Vector Ma-
chines [1], only those “support vectors” that are located near the boundaries of
different classes are the informative data that affect the final classifier. Hence if
we can discover this type of “support vectors” in the unlabeled data, then we
need only label these discovered informative data, include them in the training
set and re-train the classifier. In this way, the amount of data to be labeled is
greatly reduced without sacrificing the learning performance. In our approach
we consider the confidence-rated classifiers that can predict a probability distri-
bution over the labels for an example since the probability distribution enables
us to determine the “informativeness” of the example.
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A single confidence-rated classifier, however, is often insufficient because in
many medical images, multiple sets of features have very different characteristics
and can not be effectively combined in a single classifier. For instance, image fea-
tures are often grouped into different categories such as shape and texture. These
feature sets have independent bases, and simply concatenating them into a single
feature vector produces a complex, unstructured feature space that can poten-
tially degrade learning and classification performance. To tackle this problem, in
this paper we train separate confidence-rated classifiers on each category of fea-
tures and then combine the predictions using Bayes rule, assuming conditional in-
dependence between classifiers trained on different feature sets. The classical vot-
ing classification algorithms, such as Bagging [2, 3] and AdaBoost [4, 5], are suc-
cessful in improving the accuracy by combining multiple weak classifiers. Bauer
and Kohavi [6] gave an empirical comparison of voting classification algorithms.
However, these voting classification algorithms are generally applied to classifiers
that just assign a label (not a probability) to an instance. Schapire and Singer [7]
proposed new boosting algorithms using confidence-rated predictions, however,
their extension to multi-class classification problems is not so straightforward.
The new approach proposed in this paper for combining multiple confidence-
rated classifiers based on Bayes rule efficiently addresses these problems.

Since our combining rule produces probability distributions over all labels for
an unlabeled example, the predicted probabilities can be used to determine the
“informativeness” of the example. Examples with high-confidence predictions
are less informative than those with low-confidence predictions in improving
the classifier. Hence it is more efficient to hand-label only those examples with
low-confidence predictions. A classical method in the literature that improves
learning by using unlabeled data is the co-training method [8, 9]. The basic idea
is to organize the features of training examples into two different feature sets,
and learn a separate classifier on each feature set. There are two assumptions
in co-training. First, the two feature sets are redundant but not completely cor-
related. Second, each feature set would be sufficient for learning if enough data
were available. Under these assumptions, the high-confidence predictions of one
classifier on new unlabeled examples are expected to generate informative exam-
ples to enrich the training set of the other. However, these formal assumptions
may not hold in many medical image applications that tend to have high com-
plexity and dimensionality. In this paper, instead of trusting that each feature
set is sufficient for learning, we determine the high-confidence predictions for
new data by combining the opinions of all classifiers based on different feature
sets. Our approach can be applied to multi-class classification problems directly.

2 Data Description and Preprocessing

The data we use are microscopic cell images. Each image consists of lots of cells
in different developmental stages. The goal is to classify the cells into different
stages and count the number of cells in each developmental stage. This problem
has wide applications in the pharmaceutical industry for therapy evaluation.
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(a) (b)

(c) (d) (e)

Fig. 1. (a) Cell image; (b) Segmented cell image; (c,d,e) are cells in developmental
stage 0, 1 and 2 respectively

We first segment out the individual cells of interest. Since the cell nuclei are
usually the brightest and cover a certain amount of area, we locate all cell nuclei
by thresholding at a high intensity value and applying connected component anal-
ysis. Then we locate the regions occupied by all cells by thresholding the original
image at a low intensity value. We apply dilation on all cell nuclei in the cell re-
gions simultaneously until all cells are fully segmented. Finally we extract useful
features from each cell for the purpose of classification. There are two categories
of features: 1) binary image features, including roundness, eccentricity, solidity,
extent and the diameter of a circle with the same area as the region; 2) gray im-
age features, including mean and standard deviation of the gray level intensity. In
the training phase, we first label a small set of cells from different developmental
stages by hand, and include them in the initial training data set. The labels de-
note the different developmental stages. There are three developmental stages in
our experiments (Fig. 1): 0 - beginning; 1 - immature; 2 - mature.

Because the hand-labeling phase is tedious and time consuming, the initial
labeled training set we can acquire is limited. Our methodology is to tackle this
problem by strategically adding unlabeled data into the training data set based
on the evaluation of the unlabeled data using a confidence-rated classification
mechanism. The proposed mechanism is described in the next sections.

3 Learning Framework

Our learning framework is outlined by the flowchart in Fig. 2. In the frame-
work, we train multiple confidence-rated classifiers on separate groups of fea-
tures. When presented with unlabeled data, each classifier produces a confidence
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rate of its own prediction. Turney et al. [10] has argued that opinions from in-
dependent modules should be combined multiplicatively. We extend this idea to
combine predictions of classifiers trained on different feature sets.

3.1 Combining Confidence-Rated Classifiers Using Bayes Rule

Our combining approach is to apply Bayes rule to evaluate the final confidence
rate based on the confidence rates given by the multiple, independent classifiers.
Suppose we have n classifiers, m labels, and classifier i is trained on the feature
set i. pi

j (i = 1, . . . , n, j = 1, . . . ,m) denotes the probability that classifier i
assigns label j to an input unlabeled example. Lj denotes that the label of an
example is j. Let Ci = (pi

1, p
i
2, . . . , p

i
m), pj = Pr(Lj). Using Bayes rule, we have

Pr(Lj |C1, C2, . . . , Cn) =
Pr(C1, C2, . . . , Cn|Lj)Pr(Lj)

Pr(C1, C2, . . . , Cn)
(1)

Assuming conditional independency of C1, C2, . . . , Cn, we have

Pr(Lj |C1, C2, . . . , Cn) ∝ Pr(C1|Lj)Pr(C2|Lj) . . . P r(Cn|Lj)Pr(Lj) (2)

Since Pr(Ci|Lj) = Pr(Lj|Ci)Pr(Ci)
Pr(Lj)

, Eq. 2 can be rewritten as

Pr(Lj |C1, C2, . . . , Cn) ∝ Pr(Lj)
n∏

i=1

Pr(Lj |Ci)
Pr(Lj)

(3)
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Table 1. The difference between our approach with näıve Bayes classifier

Known Pr(Lj |O1, . . . , Oq) ∝
näıve Bayes classifier Pr(Oi|Lj) Pr(Lj)

∏q
i=1 Pr(Oi|Lj)

Our approach Pr(Lj |Ci) Pr(Lj)
∏n

i=1
Pr(Lj|Ci)

Pr(Lj)

Using our abbreviated notation, Eq. 3 can be simplified as

Pr(Lj |C1, C2, . . . , Cn) ∝ pj

n∏
i=1

pi
j

pj
(4)

The above formula intuitively says that if the predicted probability pi
j is greater

than (equal to, less than) the prior probability pj , then this prediction will
increase (not affect, decrease) the final probability given to label j. The following
theorem relates our approach to näıve Bayes classifier.

Theorem 1. If Classifier i, i = 1, . . . , n are themselves näıve Bayes classifiers
using disjoint feature sets, then the combined classifier is a näıve Bayes classifier
using all features.

Proof. Suppose the feature sets are φ = {φi, i = 1, . . . , n} and each classifier Ci

is a näıve Bayes classifier based on the feature set φi. Then we have:

Pr(Lj |Ci) ∝ Pr(Lj)
∏

α∈φi

Pr(α|Lj) (5)

Pr(Lj |C1, C2, . . . , Cn) ∝ Pr(Lj)
n∏

i=1

Pr(Lj |Ci)
Pr(Lj)

∝ Pr(Lj)
n∏

i=1

∏
α∈φi

Pr(α|Lj)

∝ Pr(Lj)
∏
α∈φ

Pr(α|Lj) (6)

Hence each classifier can be viewed as a mapping from a set of concrete
features to a single abstract feature (a probability distribution over all labels).
Our combining approach then predicts the final classification using Bayes rule on
these abstract features. Denote the observation on feature i, i = 1, . . . , q as Oi. In
table 1, we compare our combining approach with the näıve Bayes classifier. Our
combining approach does not assume any particular class-conditional density
model as the näıve Bayes classifier does for the continuous variables. Instead
base classifiers trained on different feature sets are applied to generate probability
distributions over the labels for an example.

3.2 Exploring the Unlabeled Data

Once we have acquired the combined probability distribution over an unlabeled
example, we can use it to determine the “informativeness” of this example.
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The intuition behind our approach is that not all unlabeled data have equal
effectiveness in improving the classifier. For example, in SVM only the support
vectors are used in determining the final classifier. If we know those support
vectors, it would suffice to label only those data and train the classifier on them.
So our strategy is to find those potential “support vectors”, and present them
only for hand-labeling. In this way, the amount of human efforts needed to
acquire a large labeled training set is greatly reduced.

We notice that the support vectors are near the boundaries between two
classes. And the classifier does not predict well their labels. So, the probabilities
given by the classifier can be used to discover those informative unlabeled data. If
the predicted probability that one unlabeled example belongs to a certain class
is high, we include this example along with the predicted label directly into
the training set. However, these data may only enlarge the training set without
helping much to improve the classifier. On the other hand, if the probability of an
unlabeled example belonging to any class is below some threshold, the current
classifier is uncertain about the label of this example. Therefore, this type of
data is most probably lying around the boundary between two classes. Hand-
labeling these data that the current classifier is uncertain about and adding them
into the training set will most efficiently improve the classifier. In this way, by
quantitatively evaluating the relationship between the unlabeled data and the
current classifier, we only need to label those “most profitable” unlabeled data
without sacrificing much in performance.

4 Experiments

We tested our algorithm by collecting our data from 40 microscopic cell images,
each containing about 50 cells of all developmental stages after segmentation. We
classify the cells into 3 developmental stages: beginning, immature and mature.
For each segmented cell, we extract two separate sets of features: one related to
shape and geometry using the thresholded binary image, and the other related
to intensity statistics based on the gray-level image. The multi-class logistic
regression [11] classifier is applied on the binary and gray feature sets separately
and we get two probability distributions for each unlabeled cell example. However
our learning framework does not assume any specific base learning method. We
choose logistic regression since it can predict a probability distribution and can
be applied to a wide variety of situations as long as the difference between the
logarithms of the class-conditional density function is linear in the variables.

In the first experiment, we compare our Bayesian combination approach
which takes into account the prior probability of each class with multiplicative
combination that does not consider the prior probabilities. The label we assign
to an example is the label with the highest predicted probability. In table 2, we
can see that combining the predictions without unlabeled data using Bayes rule
is better than just simply multiplying the probabilities without considering the
prior probability of each class. In each run, the prior probabilities are estimated
from the training set (randomly selected 35 labeled examples). We expect that
the performance gain would be greater if more feature sets were combined.
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Table 2. Prediction accuracy without unlabeled data (average over 20 runs)

Binary features Gray features Multiplicative combination Bayesian combination
81.1% 69.7% 79.3% 81.7%

Table 3. Prediction accuracy (a) with just initial 35 training data; (b) with hand-
labeled “informative” unlabeled data, along with the number of such data; (c) with all
100 unlabeled data hand-labeled

runs (a) (b) (c)
1 78.6% 91.1% (24) 92.9%
2 78.6% 83.9% (16) 83.9%
3 80.3% 82.1% (30) 83.9%
4 82.1% 83.9% (31) 85.7%
5 82.1% 87.5% (14) 87.5%

In the second experiment, we examine whether the confidently predicted un-
labeled data are really correctly labeled and compute the proportion of this type
of data among all unlabeled data. The result depends on the threshold applied on
the combined probability. In this experiment, if the predicted probability of one
example belonging to one class is higher than 90%, then we treat this example as
a confidently predicted example. Over 20 runs, the percentage of the confidently
labeled data over all unlabeled data is 60.9%. The average prediction accuracy
for those confidently labeled data is 92.3%, which is much higher than the aver-
age prediction accuracy (81.7%). However if a higher labeling accuracy for the
added unlabeled data is required, we need to increase the threshold, which will
decrease the percentage of confidently labeled data. So there is a tradeoff here
and the choice of the threshold depends on the application.

Finally, we show that hand-labeling a few informative examples with low-
confidence predictions efficiently improves performance, and that the perfor-
mance difference is small between hand-labeling the few informative examples
and hand-labeling all unlabeled data. Similarly we need to set a threshold. In
this experiment, if the maximal predicted probability of one example belonging
to any class is lower than 80%, then we treat this example as an ambiguous
example to the current classifier and we need to label it by hand. In table 3, we
can see that, over five runs, the numbers of such ambiguous (i.e. “informative”)
unlabeled examples are 24, 16, 30, 31 and 14, which are much less than the total
number of unlabeled examples (100). By labeling only this reduced number of
unlabeled data, however, we achieve a performance that is comparable to that
by labeling all unlabeled examples.

5 Discussions and Conclusions

In this paper, we have presented a Bayesian strategy for combining confidence-
rated predictions of classifiers trained on different feature sets. Our method gen-
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erates a probability distribution over the labels for an unlabeled example. We
utilize these probability distributions to filter out two groups of unlabeled data.
One group is the confidently labeled data. We add them directly into the training
set. Compared to the co-training method, our approach combines the opinions
from different classifiers to ensure that the self-labeled data are correct with
very high probability. The other group of the filtered unlabeled data includes
those potentially informative examples for whose labels the current classifier is
uncertain. By hand-labeling only these informative data, we achieve comparable
performance with hand-labeling all data. This results in greatly reduced training
expense. Therefore the training phase of our method is not static, but dynamic.
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Abstract. Fibered confocal microscopy allows in vivo and in situ imag-
ing with cellular resolution. The potentiality of this imaging modality is
extended in this work by using video mosaicing techniques. Two novelties
are introduced. A robust estimator based on statistics for Riemannian
manifolds is developed to find a globally consistent mapping of the input
frames to a common coordinate system. A mosaicing framework using an
efficient scattered data fitting method is proposed in order to take into
account the non-rigid deformations and the irregular sampling implied
by in vivo fibered confocal microscopy. Results on 50 images of a live
mouse colon demonstrate the effectiveness of the proposed method.

1 Introduction

Fibered confocal microscopy (FCM) is a potential tool for in vivo and in situ
optical biopsy [1]. FCM is based on the principle of confocal microscopy which
is the ability to reject light from out-of-focus planes and provide a clear in-focus
image of a thin section within the sample. This optical sectioning property is
what makes the confocal microscope ideal for imaging thick biological samples.
The adaptation of a confocal microscope for in vivo and in situ imaging can be
viewed as replacing a microscope objective by a probe of adequate length and
diameter in order to be able to perform in situ imaging. For such purpose, a
fiber bundle is used as the link between the scanning device and the microscope
objective. After image processing of the FCM raw output, the available informa-
tion is composed of a video sequence irregularly sampled in the space domain,
each sampling point corresponding to a fiber center [1].

This imaging modality unveils the cellular structure of the observed tissue.
The goal of this work is to enhance the possibilities offered by FCM by using
image sequence mosaicing techniques in order to widen the field of view (FOV).
Several possible applications are targeted. First of all, the rendering of wide-field
micro-architectural information on a single image will help experts to interpret
the acquired data. This representation will also make quantitative and statistical
analysis possible on a wide field of view. Moreover, mosaicing for microscopic im-
ages is a mean of filling the gap between scales and allows multiscale information
fusion for probe positioning and multi-modality fusion.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 753–760, 2005.
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Each frame of the input sequence is modeled as a deformed partial view of
a ground truth 2D scene. The displacement of the fiber bundle probe across
the tissue is described by a rigid motion. Due to the interaction of the contact
probe with the soft tissue, a small non-rigid deformation appears on each input
frame. Because of those non-linear deformations, and the irregular sampling of
the input frames, classical video mosaicing techniques need to be adapted.

In Section 2, our mosaicing framework is described. The first main contribu-
tion presented in Section 3 is the use of Riemannian statistics to get a robust
estimate of a set of mean rigid transformations from pairwise registrations re-
sults. The second main contribution is proposed in Section 4 where we develop a
mosaicing framework using an efficient scattered data fitting method well-suited
for non-linear deformations and irregularly sampled inputs. Finally real experi-
ments described in Section 5 demonstrate the effectiveness of our approach and
show the significant image improvements obtained by using non-linear deforma-
tions.

2 Problem Formulation and Mosaicing Method

The goal of many existing mosaicing algorithms is to estimate the reference-
to-frame mappings and use these estimates to construct the mosaic [2]. Small
residual misregistrations are then of little importance because the mosaic is
reconstructed by segmenting the field into disjoint regions that use a single
source image for the reconstruction [3,4]. Since our input frames are rather noisy,
we would like to use all the available information to recover an approximation
of the true underlying scene. We will therefore estimate the frame-to-reference
transformations (instead of the usual reference-to-frame) and consider all the
input sampling points as shifted sampling points of the mosaic. This has several
advantages for our problem. First of all, this is really adapted to irregularly
sampled input frames because we will always use the original sampling points
and never interpolate the input data. This approach is also more consistent with
a model of noise appearing on the observed frames rather than on the underlying
truth. Finally in this framework, it will be possible to get a mosaic at a higher
resolution than the input frames. The drawback is that we need an accurate
estimate of the unknown transformations.

Let I be the unknown underlying truth and In be the observed frames. Our
algorithm makes use of the following observation model,

In(p) = I(fn(p)) + εn(p), ∀p ∈ Ωn, (1)

where εn(p) is a noise term, Ωn is the coordinate system associated with the
nth input frame and fn : Ωn → Ω is the unknown frame-to-reference mapping
composed of a large rigid mapping rn and a small non-rigid deformation bn,

fn(p) = bn ◦ rn(p). (2)

By making the reasonable assumption that consecutive frames are overlap-
ping, an initial estimate of the global rigid transformations can be obtained by
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Fig. 1. Block diagram of the mosaicing algorithm

using an image registration technique to estimate the motion between the consec-
utive frames. Global alignment is then obtained by composing the local motions.
This initial estimate suffers from a well-known accumulation of error problem.
Our algorithm depicted in Fig. 1 iteratively refines the global positioning by
adding new pairwise rigid registration results to estimate the global parameters.
Once a consistent set of rigid transformations is found, the algorithm constructs
an initial mosaic by mapping all observed sampling points into the common ref-
erence coordinate system and using an efficient scattered data fitting technique
on this point cloud. The residual non-rigid deformations are finally taken into
account by iteratively registering an input frame to the mosaic and updating the
mosaic based on the new estimate of the frame-to-mosaic mapping.

3 Global Frame Positioning from Pairwise Registrations

The first task of our algorithm is to register pairs of overlapping input images
under a rigid transformation assumption. For that purpose, we use a classical
registration framework based on a similarity criterion optimization but any other
technique (e.g. block matching framework [5], Mellin transform [3], feature-based
registration [6] etc.) can be used. Let r

(obs)
j,i : Ωi → Ωj be the pairwise rigid

registration result between input frames i and j. This result is considered as
a noisy observation of r−1

j ◦ ri. Based on the set of all available observations,
our algorithm looks for a globally consistent estimate of the global parameters
[r1, . . . , rN ]. This problem is addressed in [3] where a least-square solution is
given when linear transformations are considered. This technique cannot readily
be adapted to rigid transformation. In [7], the authors propose a more general
approach. Some chosen corner points are transformed through ri and rj ◦ r(obs)

j,i .
The squared distance between the transformed points added to a regularization
term is then minimized. These techniques are sensitive to outliers, and are either
tailored to a specific type of transformation or need a somewhat ad hoc choice
of points. In this paper statistics for Riemannian manifolds are used to provide
a globally consistent and robust estimate of the global rigid transformation.

The computational cost of registering all input frames pairs is prohibitive and
not all pairs of input frames are overlapping. It is therefore necessary to choose
which pairs could provide informative registration results. For that purpose, we
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chose the topology refinement approach proposed in [7]. An initial guess of the
global parameters [r1, . . . , rN ] is obtained by registering the consecutive frames,
the algorithm then iteratively chooses a next pair of input frames to register
(thus providing a new observation r

(obs)
j,i ) and updates the global parameters

estimation. As we only consider the pairwise registration results as noisy obser-
vations, we need many of them. In order to minimize the computational cost
of those numerous registrations, we use a multiresolution registration technique
using a Gaussian image pyramid that stops at a coarse level of the optimization.

Given the set of all available pairwise registration results Θ, we need to
estimate the true transformations. A sound choice is to consider a least-square
approach. However the space of rigid transformations is not a vector space but
rather a Lie group that can be considered as a Riemannian manifold. Classical
notions using distances are therefore not trivial to generalize. In what follows, we
provide an extension of the Mahalanobis distance for Riemannian manifolds [8]
and propose an optimization algorithm to find the least-square estimate. Let
r be an element of the 2D rigid transformations Riemannian manifold. From
the theory of Riemannian manifolds, the vector V(r) representing r by its angle
α(r) ∈ [−π, π] and translation components tx(r), ty(r) can be considered as a
mapping of the transformation r onto the vector space defined by the tangent
space at the identity point Id of the manifold. This tangent space will be denoted
as Id-tangent space. By using the canonical left-invariant Riemannian metric for
rigid transformations, the distance of r to the identity is defined as the norm
of the representation V(r) in the Id-tangent space, dist(r, Id) = ||V(r)||. The
distance between two transformations is given by

dist(ra, rb) = dist(r−1
b ◦ ra, Id) = ||V(r−1

b ◦ ra)||. (3)

Using this distance, it is possible to define a generalized mean for a random
transformation r, the Fréchet mean Ef [r] = arg minrf

E[dist(rf , r)2]. If e is a
random error whose Fréchet mean is the identity, its covariance matrix is simply
defined as Σee = E[V(e)V(e)T ]. The squared Mahalanobis distance between e
and the identity is given by μ2(e, Id) = V(e)TΣ−1

ee V(e). We now have the tools
to derive the global parameters estimator. The observation model is given by
r
(obs)
j,i = r−1

j ◦ ri ◦ e(obs)
j,i , where e

(obs)
j,i is a random error whose Fréchet mean is

assumed to be the identity and whose covariance matrix is Σee. An estimate
of [r1, . . . , rN ] is given by the set of transformations that minimizes the total
Mahalanobis distance:

[r̂1, . . . , r̂N ] = arg min
[r1,...,rN ]

∑
(i,j)∈Θ

μ2(e(obs)
j,i , Id) (4)

This equation does not admit a closed form solution but an efficient optimiza-
tion method can be designed by a simple modification of a usual non-linear least
square optimizer such as the Gauss-Newton descent. The Riemannian struc-
ture of the transformation space is taken into account by adapting the intrinsic
geodesic gradient descent in [8]. The idea is to walk towards an optimum by a
series of steps taken along a geodesic of the manifold rather than walking in the
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tangent vector space. Let r(t) be an estimate of a rigid transformation r at step
t, the intrinsic geodesic walking is achieved by finding a direction δr(t) and a
step length λ for the following update equation in the Id-tangent space:

V(r(t+1)) = V(r(t) ◦ λδr(t)). (5)

By contrast, if a usual optimization routine on the Id-tangent space is used, we
get a walking direction ΔV(t) such that the update would be

V(r(t+1)) = V(r(t)) + λΔV(t). (6)

Using (6) directly can be problematic because we are not assured to remain on
the manifold. It is however possible to combine the power of intrinsic geodesic
walking and the ease of use of classical optimization routine by mapping a walk-
ing direction found in the Id-tangent space onto the manifold. For that purpose,
a first order Taylor expansion of (5) around the identity is used:

V(r(t) ◦ λδr(t)) = V(r(t)) + λJL(r(t)) · V(δr(t)) + O(λ2), (7)

where JL(r) = ∂V(r ◦ s)/∂V(s)|s=Id. By identifying (6) and (7), we see that
ΔV(t) = JL(r(t)) · V(δr(t)). The walking direction in the manifold is thus

V(δr(t)) = JL(r(t))−1 ·ΔV(t). (8)

Within this general framework, several improvements can easily be added.
The terms of the cost function can be weighted by some confidence measure, ro-
bust estimation techniques such as M-estimators can be used to discard outliers,
the noise variance can be re-estimated based on the measurements etc. We are
now able to get robust and globally consistent estimates of the rigid transforma-
tions which we use as initial estimates of the complete global transformations
[f1, . . . , fN ]. The resulting mosaics in Fig. 2(a) show an accurate global position-
ing of the input frames that is robust to erroneous pairwise registrations.

4 Frame to Mosaic Fine Registration

Once a globally consistent mosaic has been constructed, it is possible to make
a fine multi-image registration by iteratively registering each input frame to
the mosaic and updating the mosaic. The mosaicing problem can be written
as an optimization problem over the unknown underlying image I and the
unknown transformations [f1, . . . , fN ] of the following multi-image criterion,
S(f1, . . . , fN , I) =

∑N
n=1 S(In, I◦fn), where S(Ia, Ib) is a usual pairwise similar-

ity criterion between the two images Ia and Ib. With this framework our mosaic
refinement procedure can be seen as an alternate optimization scheme.

We divide the fine frame-to-mosaic registrations into two loops of increasing
model complexity. First we refine the global rigid mappings. Then, in order to
account for the small non-rigid deformations, the residual deformation fields
[b1, . . . , bN ] are modeled by using B-splines tensor products on a predefined grid.
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This framework can easily be extended to use any other non-rigid registration
methods using landmarks-based schemes or more accurate deformation models.

This iterative mosaic refinement scheme requires a new mosaic construction
at each iteration. It is therefore necessary to use a very efficient reconstruction
algorithm. Furthermore, since we want to register input frames with the mo-
saic, the reconstruction needs to be smooth enough for the registration not to
be trapped in a local minimum but detailed enough for the registration to be
accurate. Once an estimate f̂n of fn is available, we get a point cloud composed
of all transformed sampling points from all the input frames

{(pk, ik)} = {(f̂n(p), In(p))|p ∈ Ωs
n, n ∈ [0, . . . , N ]}, (9)

where Ωs
n is the set of sampling points in the input frame n. The usual algorithms

for scattered data approximation do not simultaneously meet the requirements of
efficiency, and control over the smoothness of the approximation. In the sequel
we develop our second main contribution which is an efficient scattered data
fitting algorithm that allow a control over the smoothness of the reconstruction.
The main idea is to get an approximation of the underlying function by using a
method close to Shepard interpolations. The value associated with a point in Ω
is a weighted average of the nearby sampled values,

Î(p) =
∑

k

wk(p)ik =
∑

k

hk(p)∑
l hl(p)

ik. (10)

The usual choice is to take weights that are the inverse of the distance, hk(p) =
dist(p, pk)−1. In such a case we get a true interpolation [9]. An approximation
is obtained if a bounded weighting function hk(p) is chosen. We choose a Gaus-
sian weight hk(p) = G(p − pk) ∝ exp(−||p− pk||2/2σ2

a) and thus (10) can be
rewritten as

Î(p) =
∑

k ikG(p− pk)∑
k G(p− pk)

=
[G "
∑

k ikδpk
](p)

[G "
∑

k δpk
](p)

, (11)

where δpk
is a Dirac distribution centered at pk. This scattered data approxima-

tion technique requires only two Gaussian filtering and one division and is thus
very efficient. The smoothness is controlled by the variance σ2

a of the Gaussian
kernel. Thanks to this approximation method, we obtain a mosaic that is sharper
and smoother than the original input frames as demonstrated in Section 5.

5 Results

In the field of colon cancer research, the development of methods to enable
reliable and early detection of tumors is a major goal. In the colon, changes in
crypt morphology are known to be early indicators of cancer development. The
crypts that undergo these morphological changes are referred to as Aberrant
Crypt Foci (ACF) and they can develop into cancerous lesions. Compared to
the standard methods of ACF screening, fluorescence FCM enables the operator
to see the lesions in real-time and to make an almost immediate evaluation.



Mosaicing of Confocal Microscopic In Vivo Soft Tissue Video Sequences 759

However, in many cases the limited field of view restricts the confidence that
the operator has in the ACF counting. By offering an extended field of view,
mosaicing techniques can be an answer to this restriction.

(a) Mosaic using global frame position-
ing. FOV: 863μm × 1462μm.

(b) B-spline registered mosaic. FOV:
862μm × 1469μm.

(c) 23rd original in-
put frame.

(d) Sequential reg.
(no global align.)

(e) Global position-
ing.

(f) Fine non rigid
frame to mos. reg.

Fig. 2. Mosaic of 50 live mouse colon images (Fluorescence FCM). The zone corre-
sponding to the 23rd input frame is detailed for different steps of the algorithm. FOV
one input: 303μm × 425μm. Images are courtesy of Danijela Vignjevic, Sylvie Robine,
Daniel Louvard, Institut Curie, Paris, France.
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The effectiveness of the proposed algorithm is shown on a sequence that
has been acquired in-vivo on a mouse colon stained by acriflavine at 0,001%.
The mouse was treated with azoxymethane (AOM) to induce a colon cancer.
As shown in fig.2(b), our algorithm allows for a simultaneous visualization of
normal crypts and ACFs.

The global frame positioning mosaicing took approximately 1 min on a 2GHz
P4 and 12 min if the non-rigid deformations are compensated. The imaged tissue
is really soft and non-linear deformations occur. Figure 2(b) illustrates the gain
we obtain by taking into account those non-rigid deformations. Some details are
lost if we only use rigid deformations and appear again on our final mosaic. The
results shown here prove the feasibility of mosaicing for in-vivo soft-tissue mi-
croscopy. Current work is dedicated to the validation of the proposed approach.

6 Conclusion

The problem of video mosaicing for in-vivo soft tissue confocal microscopy has
been explored in this paper. A fully automatic robust approach based on Rie-
mannian statistics and efficient scattered data fitting techniques was proposed.
The results shown for two different imaging modalities are promising and en-
courage the application of the proposed method for qualitative and quantitative
studies on the mosaics.
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Abstract. The interaction of the microtubules with the cell cortex plays
numerous critical roles in a cell. For instance, it directs vesicle delivery,
and modulates membrane adhesions pivotal for cell movement as well as
mitosis. Abnormal function of the microtubules is involved in cancer. An
effective method to observe microtubule function adjacent to the cortex
is TIRFM. To date most analysis of TIRFM images has been done by
visual inspection and manual tracing. In this work we have developed
a method to automatically process TIRFM images of microtubules so
as to enable high throughput quantitative studies. The microtubules are
extracted in terms of consecutive segments. The segments are described
via Hamilton-Jacobi equations. Subsequently, the algorithm performs a
limited reconstruction of the microtubules in 3D. Last, we evaluate our
method with phantom as well as real TIRFM images of living cells.

1 Introduction

Microtubules are biopolymers of the cytoplasm. They are composed of tubulin
and have a diameter of ≈ 25 nm [1]. One of their ends interacts with the cell
cortex and cell adhesions. Those interactions are pivotal for mitosis, cell migra-
tion, and active vesicle delivery [1]. In mammalian cells the other end is anchored
at an organelle positioned next to the nucleus. The assembly formed provides
structural stability.

Microtubules also play critical roles for cells in pathological states such as
cancer. Thus, microtubules have been identified as an important target for anti-
cancer drugs. Chemical entities such as the taxanes inhibit the polymerization of
microtubules. Therefore, they stabilize the microtubule assembly and retard can-
cer growth. Several novel taxane derivatives are in active clinical development.
It is essential to elucidate their specific effects on the microtubule assembly. Cur-
rent in vivo studies are done by observation or manually [1,2,3]. Automation can
enable higher throughput screening of new microtubule drugs. The latter with
the goal of improving the therapeutic index with reduced toxicity.

The main objectives of analyzing microtubule data from TIRFM are to quan-
tify their position and dynamics relative to the cortex. To this end the micro-
tubules must be segmented, reconstructed in 3D, and their motion must be

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 761–769, 2005.
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tracked. Also, the state of the assembly must be expressed concisely. In this
work we present an algorithm that addresses the problems of 2D microtubule
segmentation, 3D reconstruction, and state measurement.

Some common image enhancement techniques for tubular biomedical struc-
tures have been linear filtering and morphological operations [4]. The image
segmentation of such structures has been implemented sequentially using local
information [5,4]. Tubular structures have also been segmented as minimal global
paths over intensity for colon in virtual endoscopy [6]. Similarly, global minimal
paths have been used to extract white matter fibers in diffusion tensor imaging
[7]. Typically, global approaches to segmentation of a tubular structure require
the specification of both end points of that structure [6,7]. Some segmentation
algorithms have been designed for specific microscopy techniques [8,9]. However,
an approach for automatic processing of TIRFM images of microtubules has not
been evident in the literature.

2 Methods

2.1 TIRFM Image Formation and Requirements for Processing

The substrate was living cells. They were transfected with tubulin fused with
green fluorescent protein. TIRFM exploits the properties of an induced evanes-
cent wave from a totally internally reflected laser light. It selectively illuminates
and excites fluorophores in a very thin slice, ≈ 100 nm, immediately adjacent to
a glass-cell interface [10,2,11]. Specifically, a beam of light travelling in a medium
of high refractive index, such as glass with ng ≈ 1.51, enters a medium of lower
refractive index, such as the cytosol of a cell with nc ≈ 1.37, beyond a certain
critical angle ac. The light is totally internally reflected and an evanescent field
is induced in the cell. The exponential falloff of the evanescent field intensity
does not allow fluorophores farther away from the interface to be excited. The
in-vivo imaging of microtubules with TIRFM is drawn in figure 1.

A TIRFM image can be represented by the map I : D → �, where D ∈ �2

is the domain of dimensions (x, y). The image intensity of a microtubule point
at depth z(x, y) above the interface is [10,2]:

Iz(x, y) = Imax exp−(z(x,y)−zmin)/dp , (1)

Fig. 1. TIRFM excites
fluorescent microtubules
that lie exclusively in
a thin slice ≈ 100 nm

immediately adjacent to
the glass.

Microtubule anchor

Cell

.

Cytosol (n  )c

Glass (n  )g

a c
Critical angle

field 100nm
Evanescent

Nucleus
Microtubules

Illumination

Membrane
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where dp is the penetration depth, Imax is the maximum image intensity, and
zmin is the corresponding depth that is an experimental constant with zmin ≈
10 nm. The spatial resolution is ≈ 135 nm/pixel. This technique yields high-
contrast images of surface events and allows the imaging of the interaction of
the microtubules with the cell cortex. That interaction mediates key cellular
processes such as endocytosis, exocytosis, and protein signaling [10,2,11].

The algorithm extracts a microtubule from its tip alone. The other end is
not clearly distinguishable in TIRFM. The algorithm is able to extract the mi-
crotubule centerline, is robust to noise, and is robust to microtubule proxim-
ity. It can also resolve microtubule intersections. The fluorescence of isolated
microtubules is used to obtain information about their 3D position above the
interface.

2.2 Cumulative Cost Map for Microtubule Segment

A microtubule segment in domain D of length L can be represented by the
curve M(s) : [0, L] → D, where s is the arc-length parameter. A microtubule
segment has two boundary points M(0) = p0 and M(L) = p1. The set of
all curves with these boundary points is Ap0,p1 . Every pixel at p = (x, y) is
associated with cost Q and the set of curves is associated with the cost functional
E(A) =

∫ L

0 Q(M(s),M′(s))ds. We find the curve of minimum E over the set
Ap0,p1 . To this end we compute the minimum cost E over the sets of intermediate
curves Ap0,p. The result is a map of minimum cost values U0(p) : D → �+ that
starts at p0. That is, U0(p) = minM(L)=p

{∫
MQds

}
. Differentiating this relation

gives the Hamilton-Jacobi equation:

‖∇U0‖ = Q (2)

that can be solved to obtain U0.
The pixel cost Q is the product of two factors. The first is proportional to the

reverse intensity Q1 = 1−I(p)/Imax. It is isotropic and favors microtubule fluo-
rescence. The second factor, Q2, is anisotropic and favors microtubule centerline.
It uses directional parameters associated with every pixel, namely vectors n1 and
n2, as well as scalars r1 and r2. The pixel cost is non-negative and given by:

Q(p,∇U0) =
(

1− I(p)
Imax

)
×
(

1
‖∇U0‖

i=2∑
i=1

∣∣∣∣ni.∇U0

ri + ε

∣∣∣∣
)
, (3)

where ε is a very small regularizing constant. The directional pixel parameters of
Q are derived from the eigenvector decomposition of the Hessian. The vectors n1
and n2 are set to the eigenvectors of the smaller eigenvalue and larger eigenvalue
magnitudes, respectively. The scalars r1 and r2 are set to the larger and smaller
eigenvalue magnitudes, respectively.

2.3 Solution for a Cumulative Map and Curve Extraction

The solution U0(p) of equation (2) can be expressed in terms of consecutive level
sets [6]. A level set U0(p) = t is the closed curve C(υ, t) : �1 → �2, where υ is
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the arc-length parameter. The family C(υ, t) over t is computed with the time
evolution equation ∂C(υ,t)

∂t = 1
Qd(υ, t), where d(υ, t) is the normal to C(υ, t) [6].

It is initialized with a curve C(., 0) around p0. The numerical solution visits each
pixel once [12]. The retrieval of the pixels is done efficiently with a priority heap
[12] and their costs Q in equation (3) are minimized. This minimization is simple
since Q is a convex function of its parameters with a rhombus boundary [13,12].
The minimum is found over directions d originating from the eight-connected
neighborhood. Subsequently, we extract M by starting from p1 and proceeding
along ∂M

∂s = −∇U0. The negative discrete gradient direction of U0 is followed to
arrive at p0 ∈ C(., 0).

2.4 Microtubule Segmentation in 2D

A microtubule is extracted in terms of consecutive segments. Each segment is
computed based on its neighborhood and the remaining image domain is not
considered. The neighborhood is formed using a local coordinate system (xl, yl)
with origin Ol. The origin for the extraction of the first segment is the mi-
crotubule tip, ptip. The valid and non-null neighborhood is within the circle
‖(xl, yl)‖ ≤ 4w and a surrounding annulus is nulled. The origin Ol for the ex-
traction of all subsequent segments is the most recently segmented microtubule
point ptop. The valid neighborhood is within the circle ‖(xl, yl)‖ ≤ 4w. The
xl-axis is the microtubule tangent. The null level set is in front of ptop, where
xl > 2w and w is the microtubule width. The coordinate system is shown in
figure 2. Backtracking from ptip or ptop to the null level set gives curves μi.

To determine whether a curve μi is indeed a microtubule segment we com-
pute a contrast measure across its axis. We form three zones of width w, an
inner zone along the curve axis, and two surrounding outer zones. We compute
the average intensities gi

in of the inner zone and gi
out of the two outer zones. The

ratio ci = gi
in/g

i
out gives a contrast measure. If ci > 1, the curve μi is appended

to the microtubule Mtot, otherwise the extraction of the microtubule ends. The
algorithm is repeated independently for each microtubule tip specified. A micro-

Fig. 2. A
coordinate sys-
tem centered
at the most
recently seg-
mented point,
ptop, of the
microtubule.

neighborhoodregion
Do not care
region

2w x ’

y’

Microtubule

ptop

Valid non−null
neighborhood

NullDo not care
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tubule consists of Ltot

2w segments, where Ltot is the total microtubule length. The
cost of extracting one segment from a neighborhood of size N is O(N logN),
where N ≤ π(4w)2. Thus, the total segmentation cost is O(rLtotw logw), where
r is the number of microtubule tips.

2.5 Partial Microtubule Reconstruction in 3D

The microtubule segments close to their tips are distinct, adjacent to the glass,
and have a higher signal to noise ratio. That part of the microtubules is used
to perform a partial 3D reconstruction. The TIRFM formula in equation (1)
is inverted to give the depth coordinate z(x, y) = zmin + dp log (Imax/Iz(x, y))
relative to zmin [2,10]. Subsequently, the 3D data points are mean normalized
and subjected to eigenvector analysis. The eigenvector of the largest eigenvalue
is the microtubule tip tangent. Finally, statistics of these measures over all the
microtubules are computed.

3 Experiments on Microtubule Extraction

We tested the sensitivity of the algorithm using parameterized sets of phantom
images of microtubules with natural shapes. The phantom data was generated
based on equation (1) with dp = 15 nm and zmin = 0. To model the degradation
caused by TIRFM the microtubules were first smoothed with a Gaussian filter
of standard deviation equal to two pixels and then corrupted with Gaussian
noise. The ratio of the maximum intensity of the phantom microtubules to the
standard deviation of the Gaussian noise gives the signal to noise ratio (SNR).
The noise for the phantom images is SNR = 100 unless otherwise stated. The
cross section of a microtubule is assumed to be Gaussian. The width within one
standard deviation of the peak is the effective microtubule width. The phantom
microtubules have w ≈ 5. The size of the phantom images is 150× 150.

To evaluate the algorithm we measured the total sum of the intensities cor-
responding to the segmented microtubules as well as the average error in the
elevation estimates. Both were plotted as a function of the phantom set parame-
ter in figure 4. We first tested the sensitivity of microtubule segmentation using
a phantom set of images with noise in the range SNR = 5 − 50. An example
is in figures 3 (a-c). In figure 4 (a) the 2D segmentation is robust to noise. The
elevation estimate in figure 4 (b), however, is more sensitive.

The sensitivity of the algorithm with respect to the proximity between neigh-
boring microtubules was also tested. We used images containing five phantom
microtubules each. The distance between consecutive microtubules is δ = 5− 14
pixels. In figure 3 (d) that distance is 6 pixels. The biggest part of the micro-
tubules was segmented successfully as shown in figure 3 (e). The 2D segmentation
errors in figure 4 (c) are large only for δ ≤ w. The elevation errors in figure 4 (d)
are not affected by proximity because the initial microtubule segments have a
high SNR.

Subsequently, we used sinusoidal microtubules to test the sensitivity of the
algorithm to curvature. The amplitudes of the microtubules are in the range A =
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(a)
SNR =
= 50

(b) (c)

(d)
δ = 6
pixels

(e) (f)

(g)
λ = 50
pixels

(h) (i)

(j)
ω = 28◦ (k) (l)

Fig. 3. In the left column are the phantom images. In the middle column are the 2D
segmentations in color. The right column shows the 3D tip tangents in red.
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(b) Elevation error.
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(c) Total segmentation.
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(d) Elevation error.
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(e) Total segmentation.
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Fig. 4. Evaluation plots as a function of the corresponding phantom set parameter

3−10 pixels in each image. The wavelength takes values λ = 20−65 pixels across
the set. An example is in figures 3 (g-i). The plots in figures 4 (e-f) show that
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Table 1. Statistics of microtubules for the real data

Image Size
dp

(nm)
Elevation
(Degrees)

Depth
(nm)

Evaluation
error (pixels)

Mean St. dev. Mean St. dev.

figure 5(a) 179 × 150 45 0.24◦ 0.23◦ 42.7 16.0 1.6
figure 5(d) 205 × 140 165 1.11◦ 0.70◦ 70.0 37.0 1.5
figure 5(g) 125 × 56 45 0.20◦ 0.05◦ 8.5 6.6 1.3

the algorithm fails only for very high curvature. The last set of phantom images
tested the sensitivity of the algorithm with respect to microtubule intersections.
The resolution of microtubules succeeds for intersection angles ω ≥ 28◦. This is
shown in figures 3 (j) and (k).

The algorithm was used to analyze several images of living epithelial cells
acquired with TIRFM. Some examples are shown in the left column of figure 5.
The images in figure 5 are in reverse intensity to improve visualization. The
extracted microtubules are shown next to them in the same row drawn with
different colors. The images in the right column show a viewpoint of the 3D
tangents of the microtubules at their tips in red. The data and reconstruction
statistics are in table 1.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. The data are in the left column. The next column shows the segmented micro-
tubules in color, and the right column shows the 3D tip tangents in red.
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The 2D segmentation was evaluated with ten manually traced microtubule
points starting from their tips. The error for each specified point was its lowest
distance from the segmented centerline of that microtubule. The total segmen-
tation error was the average error over the specified points. The errors for the
segmentations shown in figure 5 (b), figure 5 (e), and figure 5 (h) are in table 1.
The low error demonstrates the accuracy of the extraction of the microtubule
centerline. The experiments were performed with a Xeon CPU. The average to-
tal computation time of the algorithm for each phantom image was ≈ 29 sec,
and for the real data it was ≈ 3 min 13 sec. The low run time demonstrates the
efficiency of the algorithm.

4 Discussion

The interaction of the microtubules with the cell cortex is pivotal for cell physi-
ology. The microtubules are also involved in cell pathological states such as can-
cer. TIRFM is a convenient method to examine the critical region close to the
cell cortex. We have developed a semi-automatic algorithm for high throughput
quantitative study of TIRFM images of microtubules. It first extracts micro-
tubules in 2D in terms of consecutive segments. The extraction of the segments
is robust to noise and along their centerlines. The sequential extraction of the mi-
crotubules allows microtubule intersections, the extraction from a single starting
point, as well as robustness to microtubule proximity. Subsequently, the algo-
rithm implements a 3D tip tangent and depth reconstruction. The algorithm has
been applied to phantom as well as real data. It was shown to be efficient and
accurate.
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Abstract. A passive forward kinematics knee model was used to predict knee
motion of a total joint replacement. Given a joint angle, maps of articular surfaces,
and patient-specific ligament properties, this model predicted femorotibial con-
tact locations based on the principle of ligament-strain minimization. The model
was validated by physical experiments on a commonly implanted knee prosthesis,
showing excellent correspondence between the model and actual physical motion.
Results suggest that the knee prosthesis studied required an intact posterior cru-
ciate ligament to induce the desirable roll-back motion, and that a single-bundle
model of major knee ligaments generated kinematics similar to that of a multi-
bundle ligament model. Implications are that a passive model may predict knee
kinematics of a given patient, so it may be possible to optimize the implantation
of a prosthesis intraoperatively.

1 Introduction

Total knee replacements (TKRs) are currently designed with noncongruent articular
surfaces to accommodate human biomechanics and wear properties of the tibial com-
ponent [1]. It is known that, when no external forces are present, tensile forces stored
in knee ligaments move the knee joint to an equilibrium point where ligament strain is
minimized [2].

We have developed and tested a validation protocol for a Forward Knee Kinematics
(FKK) model of how human knees move after joint-replacement surgery. A contact-
determination algorithm was developed to depict in situ femorotibial contact. This al-
gorithm was independently validated using pressure-sensitive film that established the
actual femorotibial contact under realistic loading conditions produced by a custom
knee jig. The FKK model simulated the physics of the knee jig, which produced a set
of in vivo femorotibial contact (through the contact determination algorithm) that was
compared to in vitro contacts predicted by the FKK model. The FKK model was val-
idated; various ligament configurations were considered; and their derived knee kine-
matics are examined.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 770–777, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Materials and Methods

Articular surfaces of a size-3 Sigma Knee (Johnson & Johnson) were laser-scanned
at a resolution of 0.4mm, resulting in two point clouds of approximately 31, 000 and
19, 000 for each of the femoral and tibial component, respectively. Joint coordinate
frames [3] were assigned to these TKR components. The absolute, space-fixed coordi-
nate frame was associated with the tibial component, whereas the relative, body-fixed
coordinate frame was associated with the femoral component. Without lost of general-
ity, the Z-axes were aligned with the anatomical axes of the lower limbs. The X-axes
were perpendicular to the Z-axes lying on the sagittal plane with the anterior direction
being positive. The Y -axes were derived as the cross product of the two: Y = Z ×X .

These two coordinate frames were related by a homogeneous transformation. If p̄ is
a 3× 1 column vector that measures the coordinate of a point in the tibial system, then
its corresponding femoral location q̄ can be expressed as:[

q̄
1

]
=
[
R d̄
0 1

] [
p̄
1

]
(1)

where R is a 3 × 3 orthogonal rotational matrix and d̄ is a 3 × 1 displacement vector.
Because the tibia was assumed to be fixed, R and d̄ represented the relative joint angle
and position of the femoral component. The rigid-body transformation of a point is a
rotation (R) to the mobile coordinate frame followed by a linear displacement (d̄).

2.1 Forward Knee Kinematics

The passive forward kinematics knee model proposed by Chen et. al. [2] was imple-
mented with a minor modification. The strain energy for each ligament was calcu-
lated as

E =
{
.5×K × (L− L̃)2 + B × (L − L̃), if L ≥ L̃

0, if L < L̃
(2)

where L̃ was the neutral length of the ligament, L was the Euclidean distance between
ligament attachment points, and K and B were the spring constants.

2.2 Contact Determination Algorithm

Mathematically, two points are in contact if they coincide in space and have point nor-
mals opposite in direction. Let p̄ and q̄ be contacting points on the femoral and tibial
components, respectively, with associated normals p̄n and q̄n being

‖ p− q ‖ ≤ δ (3)

−(pn · qn) ≥ 1− ε (4)

where ‖ • ‖ denotes the Euclidean vector norm, and δ and ε are distance and angular
tolerances, respectively. These tolerance are necessary because the articular surfaces
were sampled at a finite resolution. Equation (3) and (4) were the contact conditions
used to determine points on the contacting surfaces.
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To validate the contact determination algorithm, a static contact analysis experiment
was performed using a commercial 4-DOF knee implant wear test machine (Force 5,
Advanced Mechanical Technologies Inc., USA). The femoral and tibial components
were mounted on custom jigs using a polymethylmethacrylate cement that is typically
used to affix knee prostheses to human bone. Dynamic Reference Bodies (DRBs) were
rigidly fixed to the femoral and tibial components. An accurate optical system (Optotrak
3020, Northern Digital, Canada) was used to record the 6D poses. Registration between
the DRBs and the component models were obtained using the Iterative Closest Point [4]
algorithm.

For the static trials, the neutral (0◦ flexion) pose of the components was found us-
ing the guidelines given in ISO Standard 14243-3. This standard was used for TKR
wear testing and supplies four control waveforms (vertical force, flexion angle, ante-
rior/posterior position and internal/external rotation) for a typical walking cycle. Six
poses corresponding to 0, 13, 45, 56, 72,and 88 percent of the standard walking cycle
were chosen for testing. These corresponded to start, 1st max vertical force, 2nd max
vertical force, max AP position, max FE angle and max IE angle.

For each test pose, a Fuji Prescale pressure sensitive film (Ultra Super Low Pressure
Grade), cut to fit the tibial contact surfaces, was fixed to the tibial component using two-
sided tape on the anterior region of the component (where femorotibial contact was not
possible). A small vertical load was applied to the tibia to bring the components into
initial contact with minimal sliding. The 6D pose for each component was collected and
was used in the contact-determination algorithm.

After the components were unloaded, a tracked optical probe was used to trace the
outline of the Fuji film stains while the film was still in place on the tibial surface. The
3D locations of traced points were superimposed on the contact regions determined by
the contact determination algorithm, depicted in Fig. 1.

2.3 Spring Ligament Apparatus

To validate the FKK model, a physical apparatus was constructed to simulate passive
knee flexion after TKR. The femoral component was mounted on a rigid frame and
rotated so that the femoral long axis was perpendicular to gravitation. Plexiglas plates
were rigidly attached to the apparatus frame approximately 3cm from the medial and
lateral sides of the femoral component. The tibial component was mounted on the prox-
imal end of a simulated shank (i.e., the distal lower limb segment). The shank consisted
of four long threaded rods, arranged to form a 6cm×6cm×30cm parallelepiped shape
and held in place by Plexiglas end plates. A 2.2kg mass was fixed at the distal end of
the shank, approximating the inertia of the median North American foot.

A DRB was rigidly fixed to the femoral mounting jig and a second DRB was rigidly
attached to the shank. The component models were registered to the kinematic system
with the same procedure used in the static contact experiments.

Steel tension springs were used to simulate some of the ligament constraints of the
knee joint. The ends of each ligament spring were fixed to spherical rod-end bearings.
The spherical bearings for each ligament spring were then fixed on one end to Plexi-
glas plates beside the femur and on the other end to custom ABS jigs attached to the
shank segment. The apparatus was designed to allow for one, two, or three springs to
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be attached on each of the medial and lateral sides of the joint and at various positions
along the proximal/distal axis of the shank. This simulated the ligament constraints of
the MCL and LCL.

Two sets of experiments were conducted with this apparatus. The first one involved
a total of 6 springs, 3 simulating the MCL and 3 simulating the LCL. The second ex-
periment involved only 2 springs, 1 simulating the MCL with the other simulating the
LCL. The mechanical properties of the springs are listed in Table 1. In both experi-
ments, the springs were positioned symmetrically with respect to the medial and lateral
sides. The exact physical insertion locations for the springs, relative to the component
models, were obtained using the calibrated optical tracking probe.

Table 1. The mechanical properties of steel tension springs used in Eqn. 2

MCL 1 MCL 2 MCL 3 LCL 1 LCL 2 LCL 3 MCL LCL
unloaded length (mm) 65.0 65.0 65.0 65.0 65.0 65.0 124.0 125.0

K (N/mm) .66 .66 .65 .66 .66 .66 1.36 1.37
B (N) 5.90 5.80 6.00 6.80 4.00 6.50 2.57 5.53

The goal of the experimental setup was to simulate passive joint flexion. The sim-
ulated joint was extended manually in discrete increments from approximately 100◦

of flexion to 0◦ of flexion and then flexed back to 100◦ of flexion. A total of 171 and
36 poses were obtained with 6 and 2 springs respectively. At each pose, the joint was
allowed to rest to a stable configuration with minimal force applied to the shank.

2.4 Patient-Specific Kinematics

It was technically difficult to include a PCL mechanism in our apparatus. Instead, we
generated a physiologically plausible knee kinematics by adapting the patient-specific
ligament data of Chen et. al. [2]. A total of 11 ligament bundles were taken into con-
sideration: 3, 4, and 4 for each of the PCL/MCL/LCL, respectively. The MCL was
symmetrical to the LCL.

Four simulations were performed. The first simulation utilized all 11 ligament bun-
dles. The second simulation considered the knee kinematics without the PCL. The 3rd

and the 4th simulations were the same as the first two, but with single-bundle ligaments
in place of the detailed bundles. The single-bundle ligament was artificially generated
by taking the geometrical mean of the ligament insertions in the multi-bundle ligament
configuration, using summed spring constants.

3 Results

3.1 Contact Determination Algorithm

Figure 1 depicts a typical experimental result between the Fuji film produced with the
Force 5 knee tester and the contact determination algorithm (with δ = 0.4mm and
ε = 0.004). The peripheries of the Fuji contacts were digitized and superimposed to the
region produced by the algorithm. They show high degree of agreement.
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Fig. 1. Contacts determined using Fuji film and the contact determination algorithm

3.2 Apparatus Kinematics

For each recorded joint pose, two types of contact locations were generated. First, the in
situ contact locations were determined using the contact determination algorithm. The
same joint angle was used in the FKK model and, in conjunction with spring informa-
tion, the in vitro contact locations were calculated. Figure 2 depicts a typical result: for
the given joint angle, an energy map was produced depicting all feasible contact loca-
tions (Fig. 2(a)). The subset of the feasible contacts resulting in the minimal ligament
strain energy formed the in vitro contact patch (Fig. 2(b)). The instantaneous contact
points were calculated as the point on articular surfaces closest to the centroid of the
contact patch, and they constrained the amount of the femoral component displacement
(d̄ in (1)).

(a) (b) (c)

Fig. 2. Contact predicted by the FKK model and the contact determination algorithm

For experiments involving 6 springs, the difference in the displacement vector d̄
calculated by the two methods were on average 0.43mm, with a standard deviation of
0.35mm. For experiments involving 2 springs, the mean difference was 0.69mm with
a standard deviation of 0.15mm.
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3.3 Sigma Knee Kinematics

To analyze the kinematics generated by the mechanical springs, contact locations from
0◦ to 120◦ flexion were calculated at 1◦ increments using the FKK model. Figure 3
depicts the contact locations generated using the 6-spring and 2-spring configurations.
The placement of contact locations suggest that the kinematics for both spring configu-
ration were basically the same, and that the femoral component spun in place through-
out flexion with no obvious anterior-posterior translation. To further demonstrate the
difference in kinematics generated, Fig. 4(a) depicts the femoral translation through
flexion angle and Fig. 4(b) depicts the Euclidian distance in the displacement vectors d̄
for each spring configuration. mean difference was 0.62mm with a standard deviation
of 0.36mm, which is negligible.

Four simulations were generated with the physiologically plausible ligament con-
figurations. Contact locations were calculated from 0◦ to 120◦ flexion at 1◦ increments
(Fig. 5). The amount of ligament strain stored in knee ligament are depicted in Fig. 5.

In simulations accounting for a PCL mechanism, contact locations at full extension
were located at the anterior portion of the tibia; for these, the MCL and LCL were both
taut and the PCL was relaxed. As the knee flexed, the contact locations gradually moved
posteriorly as the PCL tightened. At full flexion, the MCL and LCL were relaxed but
the PCL was taut, pulling the femur posteriorly. In all cases, at the beginning and the
end of flexion there were some spinning motion.

Fig. 3. Contact locations for the 6-springs (a) and 2-springs (b) knee jig from full extension to
120◦ flexion. In both configurations, the femoral component spun in place through the flexion.

Fig. 4. Plot of the femoral displacement determined with 6-spring and 2-spring knee jig
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Fig. 5. Contact paths and ligament profile of different ligament configurations: (a) multi-bundle
ligament, (b) multi-bundle without PCL, (c) single-bundle ligament, (d) single-bundle without
PCL

4 Discussion

The contact determination algorithm was based on (3) and (4). The querying mecha-
nism was implemented with a KD-tree [5] for a speedy retrieval. On a 2GHz PC, the
plots depicted in Fig. 1 were generated in less than 1 second, which is acceptable for
intraoperative use. This algorithm was validated by a Fuji film study, which is widely
accepted as the gold standard for knee kinematics [6].

A custom apparatus was constructed and used to further validate the passive forward
kinematics knee model. Two physical experiments involving different ligament configu-
rations were conducted. In each case, the contact locations predicted by the FKK model
agreed with the gold-standard in vitro contact locations determined with the apparatus
with sub-millimeter accuracy.

After the FKK model was validated, various physiologically plausible ligament con-
figurations were used to analyze the kinematics of a specific prosthesis (the Sigma
Knee). In simulations without a PCL, the contact locations for all flexion angles were
located in the anterior portion of the tibia. This implied that the femur was basically
spinning in place, exactly as was observed in the apparatus with mechanical springs.
With a PCL present, the contact location gradually moved posteriorly as the knee flexed.
In all simulations, there was no obvious difference in the kinematics generated with a
multi-bundle ligament model versus a single-bundle ligament model.

5 Conclusion

To determine the in situ femorotibial contact location, a fast contact-determination algo-
rithm was developed and validated with the gold-standard pressure-sensitive Fuji film.
Physical experiments demonstrated that the Forward Kinematics Knee (FKK) model [2]
predicted knee motion with sub-millimeter accuracy.
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After the FKK model was validated, various ligament configurations were used
to determine their influence on the predicted knee kinematics. Simulation results sug-
gested that:

– The Sigma Knee requires a PCL mechanism to produce a roll-back motion;
– In the absence of a PCL mechanism, the Sigma Knee spins in place; and
– In both simulated and experimental results, multi-fiber and single-fiber ligament

configuration produced similar kinematics.

This study is limited by the number of ligaments examined, the configurations of the
ligaments, and that only one prosthesis was simulated. Further enquiry into this subject
is indicated.

These results have implications for both knee modelers and for surgeons. For knee
modelers, the results suggest that a good simple model of knee ligaments suffice to
model the Sigma Knee, so it is better to get a good rough guess of knee-ligament geom-
etry rather than to toil for a detailed model. For surgeons, these results suggest that the
high surface conformity of the Sigma Knee bearing surfaces are relatively insensitive
to implantation geometry, that is, that the minor variations of surgical implantation are
not likely to produce major changes in kinematics. Our results suggest that the Sigma
Knee, in the hands of an experienced surgeon, may produce motion consistent with a
normal healthy knee.
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Abstract. Quantification of left ventricular (LV) deformation from 3D image 
sequences (4D data) is important for the assessment of myocardial viability, 
which can have important clinical implications. To date, feature information 
from either Magnetic Resonance, computed tomographic or echocardiographic 
image data has been assembled with the help of different interpolative models 
to estimate LV deformation. These models typically are designed to be 
computationally efficient (e.g. regularizing strategies using B-splines) or more 
physically realistic (e.g. finite element approximations to biomechanical 
models), but rarely incorporate both notions. In this paper, we combine an 
approach to the extraction and matching of image-derived point features based 
on local shape properties with a boundary element model. This overall scheme 
is intended to be both computationally efficient and physically realistic. In order 
to illustrate this, we compute strains using our method on canine 4D MR image 
sequences and compare the results to those found from a B-spline-based method 
(termed extended free-form deformation (EFFD)) and a method based on finite 
elements (FEM). All results are compared to displacements found using 
implanted markers, taken to be a gold standard. 

1   Introduction 

Quantitative analysis of left ventricular (LV) deformation is known to be a sensitive 
index of myocardial ischemia and injury. However, while there have been many 
methods proposed for the estimation of LV deformation [1, 2, 6, 7], most employ 
some form of modeling to interpolate dense displacement fields from sparse image 
derived features. These features include shape-based measures [1], MR tags [3], MR 
phase velocity [4] and echocardiographic features [5]. These models suffer from an 
inherent tradeoff between the computation time and the complexity of the model. A 
biomechanical model constructed using FEM, which incorporates the microstructure 
of the LV, is considered as the model closest to the physical reality of the LV but 
solving for the parameters embedded in these models is usually time-consuming [2,6]. 
Recently, simple deformation models such as B-spline-based EFFD [8] have been 
developed to estimate the LV deformation [7]. This method is computationally 
efficient but typically doesn’t reflect the true physical properties of LV. Hence these 
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models are typically less accurate. This line of reasoning leads us to the following 
questions: Is it reasonable to trade off the approximation of physical reality with the 
computation time? Is there a method that is computationally more efficient than FEM 
yet still is used to directly incorporate physical parameters?  

Over the several past decades, the Boundary Element Method (BEM) has emerged 
as a versatile and powerful alternative to FEM for the solution of engineering 
problems [9]. The most important advantage of BEM over the FEM is that it only 
requires discretization of the surface rather than the volume. Hence it can speed up the 
solution and it is easier to generate a mesh. The partitioning of only the boundary also 
makes BEM very suited to applications in the LV motion estimation problem where 
most feature points are on the boundary. Thus it is our view in this paper that BEM 
comes close to the physical reality of FEM modeling but is closer to EFFD in 
computation time. 

Our approach, as described in this paper, combines an approach to shape-based 
feature tracking termed generalized robust point matching (G-RPM) [10] with a 
biomechanical model constructed using BEM to derive the dense strains from LV 
image sequences. The attractiveness of G-RPM is its ability to estimate non-rigid 
correspondences with only one-time rough segmentation in the first frame (see [10]).   

To our knowledge no prior work has been reported that compares a B-spline-based 
deformation model with the biomechanical model in this domain.  In this paper, we 
present the comparisons among the B-spline-based EFFD, and biomechanical model-
based BEM and FEM.  

The organization of the paper is as follows. In Section 2, we first briefly review the 
G-RPM algorithm and BEM. The computational cost of FEM and BEM are then 
compared in this section. In Section 3, Canine MRI cardiac datasets are analyzed 
using our algorithm. We estimate each algorithm’s accuracy by comparing the results 
to the displacements found using implanted markers. Meanwhile, the comparisons of 
strain results among the FEM, BEM and EFFD are presented in this section. Finally, 
Section 4 discusses the results and proposed future research. 

2   Methods 

2.1   The G-RPM Algorithm 

G-RPM is an extension of robust point matching (RPM) [7]. We have previously 
reported results using this approach with B-spline in [7]. In this work, we embedded 
shape-based information into RPM and achieved more accurate results than when 
using point distances alone. Assume we have a data point-set X = {xi, i = 1, 2, …, N} 
and a template point-set Y = {ya, a = 1, 2, …, K}. We denote the outlier cluster as 
xN+1 and yK+1, and their unique temperature as T0. To match set Y onto X, it proposed 
to minimize the following objective energy function: 
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Where f is a non-rigid transformation function with parameters . T is the annealing 
temperature, gradually decreasing to zero as the matching iteration begins. 

Correspondence matrix M or ]1,0[∈aim  is subject to the constraints:
+

=
=

1

1

1
N

i
aim , for 

},...,2,1{ Ka ∈  and
+

=
=

1

1

1
K

a
aim , for },...,2,1{ Ni ∈ . ( )⋅g  is a strictly increasing function 

and Aλ  balances the significance between the distance and new information. )( iX xA  

and )( aY yA  are the curvatures of two point-sets, respectively.  

Minimization of equation 1 is solved by an alternating update process where two 
steps are repeated until the algorithm converges. One step is to update the 
correspondence matrix aim . The closed form solution can be obtained by 

differentiating the objective function (1) w.r.t aim  and setting the result to zero:  
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A second step to update transformation parameter  involves a least-squared approach 
given the aim :                                  
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2/1 σ . In this algorithm, we used curvature 

derived from area-based operators [10]. For example, the Gaussian curvature κ  from 
3D volume data is given by: 
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Where ),,( zyxL  denotes image function. xL , yL  and zL  are the first derivatives of 

L in x, y and z, and xxL , yyL  and zzL  are the second partials in x, y and z.  

2.2   The Boundary Element Method 

The boundary element method is a technique for solving partial differential equations 
by reformulating the original PDE into an integral equation over the boundary of a 
solid object [9]. Because the integral equations are over the boundary of the object, 
only the boundary of the object needs to be partitioned. The elastic problem can be 
expressed by Navier’s equation: 
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Where μ and  are the shear modulus and Poisson’s ratio of the elastic material. u
r

 is 
the displacement vector. The formulation of the boundary integral equations for 
elastic problems requires the knowledge of the solution of the elastic problems with 
the same material properties as the body under consideration but corresponding to an 
infinite domain loaded with a concentrated unit point load. This is called the 
fundamental solution. The integral equation that relates interior displacements to 
boundary displacements and tractions (surface force) is known as Somigliana’s 
identity [9]: 

ΓΓ

Γ=Γ+ dpudupu klkklk
i
l

**  (6) 

Where *
lku  and *

lkp represent the fundamental solutions of displacement and traction at 

any point in the k direction when a unit load is applied at ‘i’ in the l direction. p
r

 is 

traction vector.  is the boundary. When ‘i’ is taken to the boundary, equation 6 
transforms into: 
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In order to solve the integral equation numerically, the boundary will be discretized 
into a series of elements. We can start by defining the u

r
 and p

r
 which apply over 

each element ‘j’, i.e. juu
rr

Φ=  and jpp
rr

Φ= .  is the interpolation function matrix of 

shape functions. To study curved elements first we need to define the way in which 
we can pass from the global Cartesian system {x, y, z} to the local system { 1 , 2, } 
defined over the element, where 1 , 2 are oblique coordinates and  is in the direction 
of the normal. The Jacobian of transformation is 21 ξξ ddJd =Γ .  Equation 7 can now 

be written as:            
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It can also be expressed in matrix form as follows:           
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Where ijij HH ˆ= , if i ≠ j and iijij cHH += ˆ , if i=j.    
Somigliana’s identity gives the displacement at any internal point in terms of the 

boundary displacements ju
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 and tractions jp
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 of each element:  
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2.3   Comparison of the Operation Counts 

In our algorithm, the H and G matrix only need to be calculated once in analyzing 
image sequences. Then displacements of any internal point at any frame can be 
computed by the equation 9 and 10 which don’t need much computation time. For a 
L-sequence problem with N boundary nodes and M internal nodes, the operation 
counts of BEM and FEM are O(N3)+O(M3)+O(L(NM)) and O(L(N+M)3), 
respectively. Therefore, the BEM is computationally more efficient than the FEM, 
especially when we analyze image sequences.  

2.4   Implementation 

Feature Point Extraction:  Not all points in images are suitable candidates for 
tracking. We choose our feature points as follows: 1) to stabilize curvature values, 
discard the points whose edge strength L∇  is less than a threshold; 2) thin the wide 

ridges resulting from the previous step by nonmaximum suppression [12] and 3) 
choose the resulting local maxima as the final candidate points to track.  

Fundamental Solutions for Elastic Problem: In isotropic elastic materials, the 
fundamental solutions are known in exact closed form as shown in equation 11 and 12 
[9]. In anisotropic analysis, the closed form of a fundamental solution is hard to get 
and calculation becomes very time-consuming. However, by using the Wilson & 
Cruse interpolation scheme, computation time is almost the same. (See [13]). For the 

3D isotropic elastic problem, the fundamental solutions of displacement *
lku and 

traction *
lkp are: 
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Where r  is the distance between the loading point to any point under consideration. 
Notice that lr,  is the derivative of the r in the l direction. ln  and kn  are the direction 

cosines of the normal with respect to l and k direction. In this paper, we used μ = 
17857.1 and  = 0.4 for the LV myocardium.  

Strain tensor definition: Given a strain tensor E (a 33× matrix) which is computed in 
the Cartesian coordinate system of {x, y, z}. We can transform it to a local coordinate 
system { 1, 2, }. First construct the 33× rotation matrix R which results in {x, y, z} 

 { 1, 2, }. Using this matrix R we can write the E in the local coordinate system 
as: 'RERElocal = . In this paper, the local coordinate system is defined by the 

circumferential, radial, and longitudinal axis at the epicardium. 
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Fig. 1. (a) Original 3D MRI Data in the Orthogonal-slice view, (b) Boundary displacement 
results for one of its 2D slices obtained using G-RPM, (c) 3D BEM mesh using bilinear 
element, (d) Dense displacement results for one 2D slices through the 3D results. 

3   Experimental Results 

4D MR canine cardiac datasets were analyzed using our new algorithm. An example 
of the results from one of our datasets was shown in figure 1. For each dataset, strains 

were calculated between 
end-diastole (ED) and end-
systole (ES). The resulting 
3D-derived radial strains 
(Err) and Circumferential 
strains (Ecc) of one dataset at 
frame 1, 3, 4 and 6 were 
illustrated in figure 2. Frame 
1 was at ED and Frame 6 
was at ES. Note the normal 
behavior in the LV, showing 
positive radial strain 
(thickening) and negative 
circumferential strain 
(shortening) as we move 
from ED to ES. 

3.1   Comparisons with Implanted Markers 

To further quantitatively validate resulted motion trajectories, we used four canine 
MRI datasets with implanted markers for point-by-point displacement comparison 
(see [6] for more details on the marker implantation and localization.). The mean 
displacement errors of FEM, BEM and EFFD methods were illustrated in the figure 3.  
It can be seen that FEM-based models show the smallest error while the EFFD 
approach shows the largest. 

3.2   Comparisons Between FEM and BEM, FEM and EFFD 

In order to see the difference between the B-Spline based deformation model and the 
biomechanical model, we compared strain results obtained using FEM, BEM and 

 

Fig. 2. Err (Top) and Ecc (Bottom) between ED (frame 1) to 
ES (frame 6) of dataset 1 

(a) (b) (c) (d) 
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EFFD. The strains were calculated between ED to ES using BEM, FEM and EFFD, 
respectively. The comparisons of strain results between FEM and BEM, FEM and 
EFFD for 4 canine image sequences are illustrated in the figure 3. The mean 
differences of Ecc, Err and Ell between FEM and BEM were less than 1.3%, 4.05% and 
4.24%, while the mean differences of Ecc, Err and Ell between FEM and EFFD were 
about 3 times higher. These results show that the BEM came closer to the FEM model 
which we presume to be more physically realistic than the EFFD. EFFD is a powerful 
tool for modeling deformable objects with arbitrary geometries but it may not be able 
to fully approximate the physical properties of LV. 

 

Fig. 3. Absolute displacement error vs. 
implanted markers. The motion is 
estimated between ED to ES and 
compared by the FEM, BEM and 
EFFD. Blue: Error of FEM; Green: 
Error of BEM; Red: Error of EFFD 

 

Fig. 4. Comparisons of 
strains between FEM 
and BEM, FEM and 
EFFD: Blue: Mean 
difference between the 
strain results obtained 
by FEM and BEM. Red: 
Mean difference 
between the strain 
results obtained by FEM 
and EFFD. 

4   Conclusions and Future Work 

We conclude that the BEM-based algorithm presented in this paper is both 
computationally efficient and physically realistic for the following reasons: 1) Only 
rough boundary segmentation is required in the first frame; 2) Only the discretization 
of surface is required; 3) The fundamental solution matrix only needs to be calculated 
once in analyzing image sequences; and 4) The deformation is estimated by a 
biomechanical model of the myocardium. In this paper, by comparing displacement 
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results using implanted markers, we identified that the FEM has the least errors, while 
the BEM is the second and EFFD has the larget error. We also found that the 
difference of strain results using EFFD has larger differences from a FEM approach 
than the newer BEM-based approach. Further extensions to this work could be using a 
more complicated biomechanical model, which incorporates the fiber directions of LV.  
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Abstract. A finite-volume model of the cerebrospinal fluid (CSF) system en-
compassing the third ventricle and the aqueduct of Sylvius was used to recon-
struct CSF velocity and pressure fields based on MRI data. The flow domain ge-
ometry was obtained through segmentation of MRI brain anatomy scans. The 
movement of the domain walls was interpolated from brain motion MRI scans. 
A constant pressure boundary condition (BC) was specified at the foramina of 
Monro. A transient velocity BC reconstructed from velocimetric MRI scans was 
employed at the inferior end of the aqueduct of Sylvius. It could be shown that a 
combination of MRI scans and computational fluid dynamics (CFD) simulation 
can be used to reconstruct the flow field in the third ventricle. Pre-interventional 
knowledge of patient-specific CSF flow has the potential to improve neurosurgi-
cal interventions such as shunt placement in case of hydrocephalus. 

1   Introduction 

The cerebrospinal fluid (CSF) is contained within and surrounds the brain and spinal 
cord [1]. It suspends the brain through its buoyancy force and protects it from impact 
on the cranial vault walls in cases of sudden head motion. The CSF further serves as 
an intermediary between blood and nervous tissue, providing the latter with nutrients 
and removing waste products. 

CSF is produced in the choroid plexuses of the brain and is drained mainly through 
the superior sagittal sinus. A periodic pulsatile motion governed by the cardiac cycle 
is superimposed upon the steady flow caused by the CSF production. Within the skull, 
the cerebrospinal fluid is contained in the ventricles and the subarachnoid space. The 
ventricles are four cavities interconnected by pathways (see Fig. 1). 

In contrast to the cardiovascular system, computational representations of the  
cerebrospinal fluid space are still in their infancy, despite the first attempts at such 
models being made as early as 1969 [2]. Since 1999, a series of models based on CFD 
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and numerical structural mechanics have been published, all of which rely on either or 
both extensively simplified domain geometry and boundary conditions [3-6]. The  
finite-volume model presented here takes into account the wall motion of the third 
ventricle and aqueduct of Sylvius in feet-head direction based on MRI measurements. 
The domain geometry is obtained using anatomic MRI scans. The boundary condition 
at the inferior end of the aqueduct of Sylvius is implemented by reconstruction of a 
Womersley velocity profile based on MRI velocimetry. All of these features are 
novel. 

 

Fig. 1. Left: Composite of two registered slices of MRI anatomy scans of the ventricular sys-
tem. Right: Rendering of the segmented ventricular system after conversion to NURBS  
surfaces. The color coding indicates the deviation between the original voxel-based segmenta-
tion and the NURBS representation. The bars indicate the boundaries of the system treated in 
this paper, encompassing the third ventricle (III) and aqueduct of Sylvius (Aq). 

2   Methods 

2.1   Acquisition and Processing of Anatomy Data 

Structural MR imaging to define the ventricle and aqueduct boundaries consisted of a 
strongly T2-weighted, 3D, turbo spin-echo sequence [7] performed on a 27 year old 
healthy male volunteer, on a high-field clinical imaging system (Achieva 3T, Philips 
Medical Systems, Best, The Netherlands). The imaging parameters were: repetition 
time (TR) = 2325 ms, echo time (TE) = 160 ms, number of signal averages = 1 and  
an echo train length of 36 echoes. The reconstructed spatial resolution was 0.22 x 0.22 
x 0.4 mm. 

To accommodate for the slight anisotropy in the spatial resolution of imaging data, 
the sequence was performed three times, each acquisition in a different cardinal orien-
tation. These three data sets were aligned by minimizing the Euclidean distance  
between similar gray values. The registration was further enhanced using a quasi-
Newton optimizer [8] and the datasets were merged using Lanczos interpolation [9]. 
The third ventricle and the aqueduct of Sylvius were manually segmented and the  
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obtained voxel-based 3D representation was converted to NURBS surfaces (non-
uniform rational B-spline). This approach ensured adequate smoothing of the domain 
surface which is necessary for the generation of a high-quality computational grid. 

2.2   Acquisition and Processing of Brain Motion Data 

For measurement of the brain tissue displacement, the aforementioned volunteer was 
scanned with a complementary spatial magnetization modulation (CSPAMM) [10] 
prepared sequence in a mid-sagittal slice using a tag distance of 2 mm. The scans 
were performed on a whole-body MRI system (Intera 1.5T, Philips Medical Systems, 
Best, The Netherlands). Separate tag line preparation was performed in two orthogo-
nal in-plane directions (cranio-caudal and anterior-posterior). The number of cardiac 
phases was chosen such that at least 120% of the R-R interval could be covered to  
allow indirect validation of the tracking error. Reproducibility of the measurements 
was assessed by two subsequent measurements on the same volunteer. After tag 
preparation, the data were acquired with a turbo field echo [7] sequence with a turbo 
factor of 3 and TR/TE: 8.13/3.8 ms. The spatial resolution was approximately 1 mm 
and the temporal resolution 60 ms. Cranio-caudal displacement was finally quantified 
using harmonic phase (HARP) [11] post-processing with a shutter width of 24 pixels 
which yielded a HARP tracking resolution of about 5.3 mm [12]. Subject to the limits 
of resolution of the data acquired, displacements in the anterior-posterior direction 
were too small to be resolved. Using least-squares error minimization, a fourth order 
Fourier series was fit to the time-dependent displacement data of each measured brain  
location. The displacement of the third ventricle and aqueduct boundaries were  
approximated from the measured locations using thin-plate splines. 

2.3   Acquisition and Processing of CSF Flow Velocity Data 

A standard phase contrast velocity mapping sequence [7] was also used on the same 
volunteer. The measured slices were planned perpendicular to the aqueduct of Sylvius 
and carried out in its caudal aspect where the diameter is larger than in the cranial  
section. The data were acquired with a turbo field echo (turbo factor = 3) read-out and 
the spatial scan resolution was set to 288 x 216 (reconstruction to 512 x 512, covering 
a field of view of 250 x 211 x 5 mm). As maximum velocity values in the range of 5 
cm/s [13] were expected, the encoding velocity was set to 7 cm/s in order to avoid 
phase wraps. A total of 40 cardiac phases were generated with a temporal resolution 
of 26 ms. Three signal averages were used to improve the signal-to-noise ratio. As 
both the spatial and temporal resolution of the velocimetric MR data are lower than 
what is needed for accurate CFD calculations, the algebraic solution of the flow field 
at the inferior end of the aqueduct was reconstructed from the measured data using the 
theory of pulsatile flow in a pipe [14].  

For this purpose, the aqueduct was regarded as a circular cylinder and the flow at 
its outlet section was assumed to be fully developed. The former is a plausible simpli-
fication, as the shape of the aqueduct is indeed approximately cylindrical, albeit with 
variable radius. The plausibility of the latter assumption can be verified as follows: 
The maximum Reynolds number (Re) and minimum Womersley parameter ( ) for the 
flow in the aqueduct can be calculated from the velocimetric MR data, 
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where umax is the highest axial velocity – both locally and temporally – at the inferior 
end of the aqueduct of Sylvius, D is the diameter of the aforementioned cylinder,  is 
kinematic viscosity and fmin is the cardiac cycle base frequency. In the case at hand, 
Remax is 70.9 and min is 2.9, which results in a hydrodynamic entrance length  
acceptably shorter than the length of the aqueduct [15, 16]. Consequently, the flow 
field at the inferior end of the aqueduct can be regarded as being fully developed.  
Assuming a harmonic driving pressure gradient, the velocity field can be calculated as  
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[17], where u is the axial velocity, r is the radial location in the cylinder cross-section, 

t is time, i is 1− , k is the amplitude of the driving pressure gradient, R is the pipe  
radius, μ is dynamic viscosity,  is the Womersley parameter, J0 is the Bessel function 
of first kind and order zero and  is the angular frequency of the pressure gradient. By  
integrating Eq. (2), the mass flow rate is obtained, 
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where J1 is the Bessel function of first kind and order. As the pressure gradient  
driving the flow in the aqueduct of Sylvius is periodic, it can be described using a 
Fourier series, so that from Eqs. (1, 3) and Poisseuille’s law [18] the mass flow rate 
can be expressed as 
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where Re and Im designate real and imaginary parts, respectively. This mass flow rate 
has to be equal to the one obtained by integrating the velocity field measured  
with velocimetric MR. Using weighted least-squares error minimization, the coeffi-
cients k were calculated and, hence, the velocity profile at the inferior end of the  
aqueduct was determined.  

2.4   Reconstruction of the Flow Field 

For the flow field reconstruction, the CSF was regarded as an incompressible  
Newtonian fluid with the same material properties as water at 37° Celsius [6, 19]. 
Three sets of non-uniform, unstructured computational grids, respectively consisting 
of about 257,000, 558,000 and 811,000 tetrahedral elements were used to carry out 
the finite-volume calculations with the CFD code Fluent (Fluent Inc., Lebanon, NH) 
using an implicit Algebraic Multigrid Scheme with PISO pressure correction [20]. 

Grid independence tests showed that the intermediate grid was fine enough to  
resolve all of the flow features accurately. Time step independence tests carried out 
with time step sizes of T/100, T/1,000 and T/10,000, where T is the length of one  
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period, showed that a time step size of T/1,000 was necessary to adequately model the 
flow. A period independence study demonstrated that three periods were necessary 
for the transients originating from the zero velocity and zero pressure initial condition 
to abate. 

3   Results 

Figure 3 shows contour lines of velocities perpendicular to the corresponding section 
planes, whose positions are shown in Figure 2, right side. The states at 0%, 25%, 50% 
and at 75% of the duration of the cycle are depicted. Initially, the cerebrospinal fluid 
flows in cranial direction (see Fig. 2, left). A jet directed towards the foramina of 
Monro exits the aqueduct of Sylvius with a peak velocity of slightly less than 12 cm/s. 
Before flow reversal occurs at around 19% of the cycle, an area of recirculation  
develops above the jet, with its center at about the height of the recessus pinealis.  
After flow reversal, the recirculation splits the path of CSF flowing in caudal direc-
tion from the foramina of Monro into two: one part of the CSF is deflected in cranial 
direction, flows past the recirculation along the top wall of the ventricle and then in 
caudal direction towards the aqueduct, without entering the recessus suprapinealis. 
The second CSF stream is only slightly disturbed and flows caudal of the area of  
recirculation almost straight into the aqueduct. Before the second flow reversal occurs 
at about 75%, this first recirculation has already dissipated and a second one is formed 
approximately half way between and caudal to the foramina of Monro and the adhesio 
interthalamica. By the time the cycle is 95% through, this second, bigger, recircula-
tion has also dissipated. 

The flow velocities in the treated domain are in general below 1 cm/s. Exceptions 
are the flow in the aqueduct with peak values of approximately 15 cm/s at the  
narrowest cross-sections, the jet emerging from the aqueduct and the foramina of 
Monro, where peak velocity values of slightly above 2 cm/s are reached. Maximum 
absolute velocities below 0.1 cm/s are observed in all of the recessi. 

 

Fig. 2. Left: Mass flow rate through the inferior end of the aqueduct of Sylvius. Positive values 
indicate cranial direction. Right: Flow domain on which the finite-volume calculations were 
performed. P1 and P2 are section planes referred to in Fig. 3. Fo: foramina of Monro, Rp:  
recessus pinealis, Rsp: recessus suprapinealis, Ai: adhesio interthalamica. 
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Fig. 3. Top row: Iso-contours of normal velocities in cm/s in the section plane P1 (see Fig. 2, 
right) at 0%, 25%, 50% and 75% of the period T (Fig. 2, left). Positive values indicate cranial 
direction. Bottom row: Normal velocities in the plane P2. 

4   Discussion 

The basis of the simulation of cerebrospinal fluid flow in the third ventricle and the aq-
ueduct of Sylvius as presented above are MRI scans of an individual. Therefore, the 
accuracy of the simulation is first and foremost governed by the accuracy of the MRI 
data acquisition. Due to the relatively high flow velocities occurring in the aqueduct (in 
the order of several cm/s) and the aqueduct’s nearly cylindrical shape, the correspond-
ing boundary condition can be reconstructed fairly accurately with a relative error well 
below 10%. Anatomic MRI scans cannot resolve the detailed surface structures of the 
choroid plexus, which are in the order of micrometers. We believe that neglecting these 
structures in the third ventricle will have limited influence on the flow field, as they are 
located predominantly at the ventricle’s top wall where the flow velocities are low. 
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The motion of the brain tissue is responsible for the pulsatile flow of the cerebro-
spinal fluid. Hence, it is important to take it into account when reconstructing the 
CSF flow. MRI tagging can be used to capture the brain motion in feet-head direc-
tion (maximum amplitude 0.25 mm). However, it will not capture the motion in the 
remaining directions which generally portray amplitudes less than 0.15 mm. The ve-
locity field specified at the inferior end of the aqueduct of Sylvius makes up for the 
lack of that data to a large extent. For clinical use, however, more advanced tech-
niques will have to be used in order to take into account brain motion in every direc-
tion [21]. 

5   Conclusions 

The resolution of current MRI scanners is not high enough to capture the fine details 
of the cerebrospinal fluid flow in the brain ventricular system. The use of idealized 
CFD simulations, on the other hand, will not capture patient-specific flow features 
that may be crucial to the outcome of the intervention. By relying on MRI measure-
ments to capture the patient’s anatomic structures and to provide boundary conditions 
for the computer simulations, these shortcomings can be eliminated. Precise  
knowledge of cerebrospinal fluid flow would allow for better planning of surgical  
interventions in those cases where the CSF space is involved. The prime example is 
shunt placement for the treatment of hydrocephalus and other conditions where CSF 
drainage or control is important. 

We have shown that it is possible to combine anatomic, velocimetric and tagged 
MRI scans with CFD simulations to reconstruct the CSF flow field in the third brain 
ventricle and the aqueduct of Sylvius. The methods described herein can be applied 
without significant modifications to the entire ventricular system.  
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Abstract. Tissue engineering is a discipline at the leading edge of the field of 
computer assisted intervention. This multidisciplinary engineering science is 
based on the notion of design and fabrication of scaffolds- porous, three-
dimensional "trellis-like" biomimetic structures that, on implantation, provide a 
viable environment to recuperate and regenerate damaged cells. Existing CAD-
based approaches produce porous labyrinths with contra-naturam straight 
edges. The biomorphic geometry that mimics the secundam-naturam substrate 
would be one that is continuous through all space, partitioned into two not-
necessarily-equal sub-spaces by a non-intersecting, two-sided surface. Minimal 
surfaces are ideal to describe such a space. We present results on the premier 
attempt in computer controlled fabrication and mechanical characterization of 
Triply Periodic Minimal Surfaces [TPMS]. This initiative is a significant step to 
link Schwann’s 1838 cell theory with Schwarz’s discovery of TPMS in 1865 to 
fabricate the previously elusive optimal biomorphic tissue analogs. 

1   Introduction 

Millions of surgical procedures requiring organ (tissue) substitutes to repair or replace 
malfunctioning organs (tissues) are performed worldwide every year. The ever-
widening gap between the demand and supply of transplant organs (tissues) has 
resulted in natural and biomimetic solutions. Autografting, allografting, and tissue 
engineering are the classical techniques currently pursued to carry out organ 
transplantation [1]. Tissue engineering involves regenerating damaged or 
malfunctioning organs from the recipient's own cells. The cells are harvested and 
embedded on a natural or synthetic carrier material, scaffold, that is ultimately 
implanted at the desired site. The seeded cells cling, crawl and proliferate within the 
scaffold. On implantation and integration, blood vessels attach to the new tissue, the 
scaffold dissolves, and the newly grown tissue eventually blends in with its 
surroundings. The scaffolds suitable for tissue engineering, apart from being 
biocompatible and biodegradable, should have highly interconnected pores; have 
sufficient mechanical properties; and, provide a suitable substrate for cell attachment, 
migration and proliferation [2].   

Tissue engineering scaffolds can be manufactured reproducibly using rapid 
prototyping approaches like Solid Freeform Fabrication (SFF)- computerized 
fabrication techniques for rapidly producing complex three-dimensional objects using 
data generated by CAD systems, medical imaging modalities and digitizers. This 
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technique offers unique ways to precisely control substrate architecture for biomimetic 
structures varying in design and material composition, thereby enhancing control over 
mechanical properties, biological effects and degradation kinetics of the scaffold. 
However, the majority of existing approaches under-utilize SFF by producing CAD-
based scaffolds with straight edges and sharp turns or those derived from Boolean 
intersections of geometric primitives such as spheres and cylinders. Neither of these 
partitions provides a biomorphic environment suitable for cell attachment, migration 
and proliferation [3]. The aggregates of cells, foam/extracellular matrix, typically have 
cells separated by curved partitions. The biomorphic geometry that best mimics this 
structural configuration would be surfaces that are continuous through space and 
divided into two (pore and non-pore) not-necessarily-equal sub-spaces by a non-
intersecting two-sided surface. Minimal surfaces are ideal to describe such a space [4]. 
This paper presents a first practical application of Triply Periodic Minimal Surfaces 
(TPMS) for the construction of tissue engineering scaffolds. The optimal stress 
distributions determined from finite element simulations, and mechanical testing, and 
initial cell viability studies conducted on these scaffolds provide compelling evidence 
to use them as orthopedic tissue analogs. 

2   Triply Periodic Minimal Surfaces 

A surface  f(x,y,z) = 0 is a minimal surface if and only if the mean curvature (H) at 
every point of the surface is zero. ie.  
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Any small patch cut from such a surface will have the least area of all the surface 
patches with the same boundary [5]. TPMS are minimal surfaces periodic in three 
independent directions, extending infinitely and, in the absence of self-intersections, 
partitioning the space into two labyrinths. Figure 1 shows the tessellated versions of 
the TPMS Primitive (P) surface and the Diamond (D) surface discovered by Schwarz 
[6] and the Gyroid (G) surface discovered by Schoen [7]. The natural manifestation of 
two, continuous, inter-penetrating, non-intersecting networks in these surfaces has 
been adapted in natural and man-made environments to concisely describe many 
seemingly unrelated structures [8]. Though this architecture is a natural fit for the 
preferred porous and solid subspace topology for tissue engineering scaffolds, to the 
best of our knowledge, it has not been previously investigated and exploited. 

 

Fig. 1. 3-dimensional 
tessellations of 
Schwarz's Primitive 
(left), and Diamond 
(centre) and Schoen's 
Gyroid (right) Triply 
Periodic Minimal 
Surfaces 
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3   Geometric Modeling of TPMS 

There are a number of approaches to generate discrete minimal surfaces. Coppin's 
approach [9] is based on the construction of a quasimolecular model that 
approximates the molecular structure of a soap film which is a prominent natural 
manifestation of minimal surfaces. Mackay's construction [10] uses the concept of 
nodal and Fermi surfaces within a Finite Element formulation. Brakke developed 
Surface Evolver [11]– a general purpose application that minimizes the energy of a 
polygonal mesh subject to constraints. Using this approach it is possible to evolve the 
straight edged, sharply turning cubic labyrinthine network conventionally used in 
scaffold fabrication into a smooth, curved, non-intersecting, bicontinuous partition. 
The energy (based on surface tension, gravity and other forms) minimization is 
performed by evolving the ordered polygonal mesh surface down the energy gradient 
subject to geometrical constraints on vertex positions and other constraints on 
integrated quantities such as body volumes. The fully evolved minimal surface can be 
converted into geometric models that can be realized physically with existing rapid 
prototyping devices. 

 

Fig. 2. Evolution of triangulated plane into a P-surface patch 

To generate the fundamental patch of the Schwarz P-surface, quadri-rectangular 
tetrahedron is used as the fundamental region that confines the initial plane and its 
subsequent evolved surface. Figure 2 shows the evolution of the plane into a P-
surface patch. The plane embedded orthogonally with respect to the faces of the 
fundamental region (panel a) is refined by subdividing each facet to create a finer 
triangulation (panel b). The triangulated patch is iteratively evolved to form the P-
surface patch (panel c). Panels d and e show the projection of the patch onto the xy 
and xz planes, respectively. The cube shown in Panels b and c is the bounding cell 
with edge length a. 

To form the unit P-cell, the evolved surface patch is reflected around the 
fundamental region using the line and plane symmetry periodic properties. If part of 
the boundary of a minimal surface is a straight line, the reflection of the surface 
across the line, when added to the original surface, forms another minimal surface. If 
a minimal surface meets a plane at right angles, the mirror image of the surface about 
the plane, when added to the original surface, also forms a minimal surface. Figure 3 
shows the formation of the unit P-cell. Tessellation of the embedded plane (panel a) 
using the above mentioned properties results in a hollow unit cubic cell (panel b). 
Tessellation of this cell produces the cubic labyrinthine network (panel c) reminiscent 
of the existing CAD-based scaffolds. Evolution of (a) leads to the fundamental P-
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width of 200 microns is the minimum feature size that a majority of rapid prototyping 
devices support. At this level, while the cubic unit cell has a porosity of 68%, the 
scaled-truncated P-cell has a porosity of 73%. However, the scaling-truncation 
approach reduces the contact angle between the unit cells. Figure 6 shows the effect 
of the scaling factor on the contact angle. Though the contact angle decreases, it is 
still better than the sharp ninety degree turns within the cubic unit cells across all 
scale factors. 

 

 

5   Fabrication of P-Scaffolds 

The unit cells obtained by evolving and tessellating the plane triangulated at 2x 
refinement can be directly converted into the .STL stereolithographic format suitable for 
fabrication with rapid prototyping devices. Multiple copies of the 5mm3 scaffolds with 
strut width and pore diameter of 500 microns were fabricated using the Patternmaster 
rapid prototyping machine (Solidscape, Merrimack, NH) which uses thermoplastic and 

Fig. 6. Effect of scaling on 
the  contact angle between 
the unit P-cells 

Fig. 4. Scaling and truncation of P- (A) and 
cubic (B) unit cells to form unit cells (C, D) 
and their tessellations (E, F) with increased 
porosity. Unit cells in C and D are obtained at 
a scale factor of 1.25 

Fig. 5. Effect of scaling and truncation on 
the porosity of cubic and P- unit cells 

TPMS 

Cubic
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wax to print the solid and pore spaces, respectively. The thermoplastic phase was 
dissolved in acetone and a biodegradable poly (propylene fumarate) (PPF) polymerizing 
macromer was injected into the wax mold under a vacuum of 100 mmHg. Finally, the 
wax was melted to form the biodegradable PPF scaffold.  

6   Mechanical Characterization of P-Unit Cells and Scaffolds 

Mechanical Characterization of the unit cells was performed with bulk compressive 
simulation using ABAQUS (an FEM package). Force of 0.3031N was applied to each 
of the 32 face nodes in the six faces. The material properties (material: PMMA; 
Young's modulus: 2.4 GPa; Poisson ratio: 0.375) were set identically for both the 
cubic and P- unit cells. Figure 7 shows the resultant Von Mises stress and Principal 
strain distribution for the unit cells. Figure 8 shows the same for the unit cells 
obtained by scaling the original cells by 1.25 and truncating the resultant with a unit 
cube. Note that at this scale factor, the porosities of P-cell and cubic unit cells are 
73% and 68% respectively. It is clearly seen that the stress and strain concentration 
along sharp edges of the cubic unit cell have been significantly reduced in the unit P-
cell. The simulation also reveals the optimal stress distribution and significant strain 
reduction on the TPMS unit cells. 

 

To further validate the simulations and to characterize the whole scaffold, uniaxial 
compression of the scaffolds and unit cells was performed on a Dynamic Mechanical 
Analyzer (DMA: TA Inst., New Castle, DE). Fourteen specimens of both the 
scaffolds were used for the mechanical testing. The specimens were uniaxially 

Fig. 7. Von Mises stress (top) and Principal 
Strain (bottom) maps under bulk 
compression for Cubic (left) and TPMS 
(right) unit cells (scale factor 1.0) with 
identical loading conditions and material 
properties 

Fig. 8. Von Mises stress (top) and Principal 
Strain (bottom) maps under bulk compression 
for Cubic (left) and TPMS (right) unit cells 
(scale factor 1.25) with identical loading 
conditions and material properties 
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compressed with parallel plates by applying a ramp force of 4N/min for 4.5 minutes. 
Figure 9 compares the linear modulus of the cubic and P-cell based unit cells and 
scaffolds. Figure 10 shows the effect of scaling on the linear modulus of the scaffolds. 
Both the results correlate with the findings from the finite element simulations.  

 

7   Cell Seeding on TPMS Scaffolds 

It is well known that organelles in plant and mammalian cells assume TPMS forms 
during normal differentiation [13]. To test the suitability of TPMS morphology in 
tissue engineering, ATDC cells (mouse chondrogenic cell line) were cultured on the 
scaffolds and examined for viability after 1 day using Viability/ Cytotoxicity kit. 
Living cells were stained green and dead cells were red when visualized with confocal 
scanning microscope. A high viability (>95%) was observed for the adherent cells to 
the surface of scaffolds. Figure 11 shows the distribution of cells on the surface of the 
scaffold. The cells are active and well distributed through the edges of the pores.  The 
extended cell processes along the scaffold surface reveals the suitability of the 
substrate. 

 

Fig. 11. Suitability of TPMS scaffolds as 
viable substrate for cell growth demonstrated 
with confocal scanning microscopy. The live 
cells are stained in green and the dead cells 
(representative shown by arrow) in red. As is 
evident, cell viability is high. 

Fig. 9. Linear modulus of TPMS and cubic 
scaffolds and unit cells based on uniaxial 
compression on DMA under identical loading 
conditions (4 N/min. ramp force for 4.5 
minutes) 

Fig. 10. Effect of unit cell scaling on 
Linear Modulus based on DMA 
testing of TPMS and cubic ST 
scaffolds 

TPMS 

Cubic 
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8   Conclusions 

Though the natural manifestations of triply periodic minimal surface forms have been 
observed in living and non-living forms, and the computational framework to create 
such forms have been in place for decades, to the best of our knowledge, no attempt 
has been made so far to fabricate them using rapid prototyping devices let alone 
investigate their potential use as tissue surrogates. This paper describes a first attempt 
to physically realize and mechanically characterize the Schwarz primitive triply 
periodic minimal surfaces. The preliminary outcomes of our investigation provide the 
previously elusive justification for the TPMS-philicity of plant and mammalian 
organelles. This viable morphology, when replicated at macro (tissue) level may also 
have profound influence on cell migration and tissue growth and may provide an 
optimal biomorphic tissue analog.  
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Abstract. Robotic surgical systems such as Intuitive Surgical’s da Vinci
system provide a rich source of motion and video data from surgical
procedures. In principle, this data can be used to evaluate surgical skill,
provide surgical training feedback, or document essential aspects of a
procedure. If processed online, the data can be used to provide context-
specific information or motion enhancements to the surgeon. However,
in every case, the key step is to relate recorded motion data to a model
of the procedure being performed. This paper examines our progress at
developing techniques for “parsing” raw motion data from a surgical task
into a labelled sequence of surgical gestures. Our current techniques have
achieved >90% fully automated recognition rates on 15 datasets.

1 Introduction
Surgical training and evaluation has traditionally been an interactive and slow
process in which interns and junior residents perform operations under the su-
pervision of a faculty surgeon. This method of training lacks any objective means
of quantifying and assessing surgical skills [1–4]. Economic pressures to reduce
the cost of training surgeons and national limitations on resident work hours
have created a need for efficient methods to supplement traditional training
paradigms. While surgical simulators aim to provide such training, they have
limited impact as a training tool since they are generally operation specific and
cannot be broadly applied [5–8].

Robot-assisted minimally invasive surgical systems, such as Intuitive Surgi-
cal’s da Vinci, introduce new challenges to this paradigm due to its steep learning
curve. However, their ability to record quantitative motion and video data opens
up the possibility of creating descriptive, mathematical models to recognize and
analyze surgical training and performance. These models can then be used to
help evaluate and train surgeons, produce quantitative measures of surgical profi-
ciency, automatically annotate surgical recordings, and provide data for a variety
of other applications in medical informatics.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 802–810, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Recently, several approaches to surgical skill evaluation have had success. In
the area of high-level surgical modeling, Rosen et al. [9–11] have shown that sta-
tistical models derived from recorded force and motion data can be used to clas-
sify surgical skill level (novice or expert) with classification accuracy approaching
90%. However, these results rely on a manual interpretation of recorded video
data by an expert physician. In the area of low-level surgical data analysis, the
MIST-VR laparoscopic trainer has become a widely used system [12]. These
systems perform low-level analysis of the positions, forces, and times recorded
during training on simulator systems to assess surgical skill [13–15]. Similar
techniques are in a system developed by Darzi et al., the Imperial College Sur-
gical Assessment Device (ICSAD) [16]. ICSAD tracks electromagnetic markers
on a trainee’s hands and uses the motion data to provide information about
the number and speed of hand movements, the distance traveled by the hands,
and the overall task time. ICSAD has been validated and used extensively in
numerous studies, e.g. [17, 18]. Verner et al. [19] collected da Vinci motion data
during performance of a training task by several surgeons. Their analysis also
examined tool tip path length, velocities, and time required to complete the
task.

It is important to note that ICSAD, MIST-VR, and most other systems
mentioned above simply count the number of hand motions, using hand velocity
as the segmentation criteria, and do not attempt to identify surgical gestures.
In this paper we have developed automatic techniques for not only detecting
surgical gestures but also segmenting them. This would allow for the development
of automatic methods to evaluate overall proficiency and specific skills.

2 Modeling Robot-Assisted Surgical Motion

Fig. 1. A video frame of
the suture task used for this
study

Evaluating surgical skill is a complex task, even for
a trained faculty surgeon. As a first step, we inves-
tigate the problem of recognizing simple elementary
motions that occur in a simplified task. Robot mo-
tion analysis of users with varying da Vinci expe-
rience were studied. Automatic recognition of ele-
mentary motion requires complex machine learning
algorithms, and, potentially, a large number of pa-
rameters. To guide the choice of techniques and to
gain useful insight into the problem, we divided the
task into functional modules, illustrated in Fig. 2,
and akin to other pattern recognition tasks such as automatic speech recogni-
tion. In this section, we will describe the data used for this study, the paradigm
for training and testing, and a solution for the motion recognition problem.

2.1 Corpus for the Experiments

The da Vinci API data consists of 78 motion variables acquired at 10 Hz during
operation. Of these, 25 track each of the master console manipulators, and 14
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Fig. 2. Functional block diagram of the system used to recognize elementary surgical
motions in this study

track each of the patient-side manipulators. We selected the suturing task (Fig. 1)
as the model in which our motion vocabulary, m(s), would be defined.

The eight elementary suturing gestures are:

1. reach for needle (gripper open)
2. position needle (holding needle)
3. insert needle/push needle through tissue
4. move to middle with needle (left hand)
5. move to middle with needle (right hand)
6. pull suture with left hand
7. pull suture with right hand
8. orient needle with two hands

2.2 Recognizing Surgical Motion

The task of recognizing elementary surgical motions can be viewed as a mapping
of temporal signals to a sequence of category labels. The category labels belong
to a finite set C, while the temporal signals are real valued stochastic variables,
X(k), tapped from the master and patient-side units. Thus, the task is to map:

F : X(1 : k) �→ C(1 : n)

Our work adopts a statistical framework, where the function F is learned
from the data. The task of learning F can be simplified by projecting X(k)
into a feature space where the categories are well separated. The sequence of
operations is illustrated by the functional block diagram in Fig. 2.

2.3 Feature Processing

The goal of feature processing is to remove redundancy in the input features
while retaining the information essential for recognizing the motions with high
accuracy. As noted earlier, the input feature vectors consist of 78 position and ve-
locity measurements from the da Vinci manipulators. Feature processing reduces
the dimension from 78 to less than 6 features without any loss of performance.
In this work, we have found the following feature processing steps to be effective.
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1. Local Temporal Features: Surgical motion seldom changes from one ges-
ture to another abruptly. Thus information from adjacent input samples can
be useful in improving the accuracy and robustness of recognizing a surgical
motion. As in automatic speech recognition, this information can be incorpo-
rated directly by concatenating the feature vector X(kt) at time t with those
from neighboring samples, t −m to t + m, to make it vector of dimension
(2m + 1)|X(kt)|.

L(kt) = [X(kt−m)|X(kt−m+1)| . . . |X(kt)| . . . |X(kt+m−1)|X(kt+m)]

In addition, derived features such as speed and acceleration were included
as a part of each local temporal feature.

2. Feature Normalization: Since the units of measurements for position and
velocity are different, the range of values that they take are significantly
different. This difference in dynamic range often hurts the performance of a
classifier or a recognition system. So, the mean and variance of each dimen-
sion is normalized by applying a simple transformation,

Ni(k) =
1
σ2

i

(Li(k)− μi),

where μi = 1
N Li(k) and σ2

i = 1
N (Li(k)− μi)2.

3. Linear Discriminant Analysis: When the features corresponding to dif-
ferent surgical motions are well separated, the accuracy of the recognizer can
be considerably improved. One such transformation is the linear discriminant
analysis [20].

Y(k) = WN(k)

The linear transformation matrix W is estimated by maximizing the Fisher
discriminant, which is the ratio of distance between the classes and the aver-
age variance of a class. The transformation that maximizes the ratio projects
the features into a space where the classes are compact but away from each
other.

2.4 Bayes Classifier

The discriminant function, F , could be of several forms. When all errors are
given equal weight, it can be shown that the optimal discriminant function is
given by Bayes decision rule.

Ĉ(1 : n) = argmax
C(1:n)

P (C(1 : n)|Y(1 : k))

= argmax
C(1:n)

P (Y(1 : k)|C(1 : n))P (C(1 : n))

In other words, the optimal decision is to pick the sequence whose posterior
probability, P (C(1 : n)|Y(1 : k)), is maximum. Using Bayes chain rule, this can
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Fig. 3. A plot of the Cartesian positions of the da Vinci left master manipulator,
identified by surgical gesture, during performance of a 4-throw suturing task. The left
plot is that of an expert surgeon while the right is of a less experienced surgeon.

be rewritten as the product of prior probability of the class sequence, P (C(1 :
n)), and the generative probability for the class sequence, P (Y(1 : k)|C(1 : n)).

As a first step, we make the simplifying assumption that each time frame in
the input sequence is independently generated. That is, P (C(1 : k)|Y(1 : k)) =∏k

i=1 P (C(i)|Y(i)). Thus, the decision is made at each frame independent of its
context.

2.5 Cross-Validation Paradigm

The data used for this study contains 15 expert trials and 12 intermediate trials
of performing a suturing task, consisting of 6 to 8 different elementary surgical
motions. To improve the statistical significance of the results, we performed a 15-
fold cross validation on the expert data. That is, the machine learning algorithm
was evaluated by performing 15 different tests. In each test, two trials were held
out for testing and the statistical models were trained on the rest of the data.
The average across 15 such tests were used to measure the performance of various
settings of the parameters.

3 Results
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Fig. 4. Results of varying
the temporal length t and
sampling granularity s

To guide the choice of parameters, our initial exper-
iments were performed on the data collected from
15 trials by an expert da Vinci surgeon, performing
a suturing task involving 4 throws (Fig. 1) in each
trial. Subsequently, we applied the recognition and
segmentation techniques on 12 trials of a surgeon
with limited da Vinci experience (intermediate) and
compared the results.

After preliminary observation of the data, a few
preprocessing steps were carried out before model-
ing the surgical motions. Of the eight motions de-
fined in Sec. 2.1, the expert surgeon did not utilize
motion 5 and 7, so they were not modeled. Each
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Fig. 5. The result of LDA reduction with m=6 and d=3. The expert surgeon’s motions
(left) separate more distinctly than the less experienced surgeon’s (right).

dimension of the feature vector from the expert surgeon contained about 600
samples. For example, Fig. 3 illustrates Cartesian positions of the left master
during one of the trials.

3.1 Local Temporal Features

The length and sampling rate of the temporal feature “stacking” was varied
to determine the optimal length and granularity of motion to consider. Our
results showed, as one would expect, that too little temporal length results in a
disappearance of any advantage, whereas too large of a temporal length increased
the chance of blurring the transition between neighboring motions. Fig. 4 shows
the results of varying the temporal length (t) and sampling granularity (s). Due
to its high recognition rates, we use t=10 and s=2 for the rest of our experiments.

3.2 Linear Discriminant Analysis

Fig. 5 shows the reliability of LDA in separating motion data into 6 distinct
regions in a 3-dimensional projection space. An intermediate surgeon’s motions
tend to not separate as well, indicating less consistent motions.

These initial experiments validated the hypothesis that LDA could be used
to simplify the original data into a simpler, low-dimensional data set. A sec-
ond set of experiments examined the effect of varying the number of motion
classes, C(1:{4,5,6}), and the dimensionality of the projection, d = {3,4,5}. The
cross-validation paradigm described in Sec. 2.5 was applied in all experiments
to compute a recognition rate. Table. 1 shows the recognition rates of the Bayes
classifier after the LDA reduction with varying C and d values.

Having fine tuned the classifier for surgical motion, we then applied the al-
gorithm to produce segmentations. Fig. 6 shows the comparison of segmentation
generated by the algorithm and by a human for a randomly chosen trial of the
expert surgeon. In spite of the fact that the model only incorporates weak tem-
poral constraints through the local temporal features described in Sec. 2.3, the



808 H.C. Lin et al.

Table 1. The results of grouping the motion categories and varying the dimension of
the projected space. In the second column, the number of unique integers indicates the
number of motion categories, and the position of the integer indicates which motions
belong to that category.

n class membership LDA dimensions % correct
1 12345566 3 91.26
2 12345566 4 91.46
3 12345566 5 91.14
4 12345555 3 91.06
5 12345555 4 91.34
6 11234455 3 92.09
7 11234455 4 91.92
8 12234444 3 91.88
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Fig. 6. Comparison of automatic segmentation of robot-assisted surgical motion with
manual segmentations. Note, most errors occur at the transitions.

segmentation produces surprisingly good results. In most trials, the errors are
largely at the transition, as shown in Fig. 6. While using the robotic system,
transitions from one motion to the next are often performed without any pause,
and as a result it is difficult even for a human to mark a sharp transition bound-
ary. Consequently, we removed a 0.5 second window at each boundary, so as to
avoid confidence issues in the manual segmentation. The 0.5 second window is
statistically insignificant because an average surgical motion lasts over 3 seconds.

4 Discussion

We have shown that linear discriminant analysis is a robust tool for reducing
and separating surgical motions into a space more conducive to gesture recogni-
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tion. In our highest rated test, we reduced 78 feature vectors into 3 dimensions
with 6 classes and still achieved nearly 90% in recognition. With refinement
and the combination of other statistical methods, such as Hidden Markov Mod-
els (HMMs), we believe mid-90s recognition rates are possible. We have also
suggested how this framework can support objective evaluation of surgical skill
levels by varying different parameters in our mathematical model. Our experi-
ments have shown that the motions of an expert surgeon are very efficient and
thus can be used as a skill evaluator or training model. In ongoing work, we have
begun combining the training of expert and intermediate surgeon data to create
one model that can distinguish varying skill levels.
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Abstract. We present daVinci Canvas: a telerobotic surgical system with 
integrated robot-assisted laparoscopic ultrasound capability.  DaVinci Canvas 
consists of the integration of a rigid laparoscopic ultrasound probe with the 
daVinci robot, video tracking of ultrasound probe motions, endoscope and 
ultrasound calibration and registration, autonomous robot motions, and the 
display of registered 2D and 3D ultrasound images. Although we used 
laparoscopic liver cancer surgery as a focusing application, our broader aim was 
the development of a versatile system that would be useful for many procedures. 

1   Introduction 

Open surgery serves as the gold standard treatment for many disorders, despite the 
increased morbidity associated with laparotomy. Minimally invasive techniques have 
developed to reduce this morbidity and improve the quality of life following surgery. In 
exchange for this lower morbidity, clinicians and patients have, at times, accepted lower 
efficacy, and surgeons have tolerated more difficult working conditions. The daVinci® 
surgical system gives surgeons dexterous laparoscopic tools, intuitive motion, and a 
high-fidelity 3D vision system, allowing them to achieve outcomes comparable or better 
to that of open surgery, with the low morbidity of minimally invasive surgery (e.g., [1]). 
However, the “classical telesurgery” approach of the daVinci essentially is limited to 
replicating 20th century open surgery in an MIS environment. 

Primary liver cancer is one of the most common malignancies, accounting for more 
than 1 million cases per year [2]. Hepatic metastases, or secondary liver cancer, is 
also a common disease facing the clinician.  IOUS-directed procedures such as liver 
biopsy, tumor ablation, and hepatic resection today often require trade-offs between 
efficacy and morbidity. While liver resection is most often performed using open 
laparotomy, percutaneous approaches are often used to perform needle biopsy or 
ablation. This technique has the advantage of potentially lower morbidity, at least 
compared to open surgery, and it can employ various imaging modalities, including 
US, CT, and MRI. However, there are several significant advantages to the 
performance of ablation during laparotomy or laparoscopy. First, surgical procedures 
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provide enhanced staging, as laparotomy and laparoscopy afford the opportunity to 
identify both hepatic and extra-hepatic metastases not visualized on preoperative 
imaging. Intraoperative ultrasonography (IOUS) capitalizes on the ability to place the 
ultrasound probe directly on the liver surface. Second, laparotomy or laparoscopy 
affords improved access to tumors in difficult locations. Third, in cases of multiple 
tumors, biopsy and ablation can be combined with resection when using an operative 
approach. Finally, clinical studies demonstrate that open surgical ablation likely has 
improved outcomes compared to percutaneous approaches [3]. 

IOUS of the liver [4] is widely used for staging, ablation, and planning for 
resection. It is the most accurate method for detecting liver metastases, with accuracy 
rates above 90 percent [27]. Despite theoretical advantages, intraoperative 
laparoscopic ultrasound (LUS) is not widely practiced. In situations in which LUS has 
been utilized, the results are not comparable to that of open operative 
ultrasonography. Limitations to this technique among general and hepatobiliary 
surgeons relate to the its technical difficulty, to the imprecise methods of manual free-
hand probe manipulation, limited degree of positioning, and 2D imaging [5] . 

This paper reports our initial steps in integrating robot-assisted laparoscopic 
ultrasound (RLUS) into the daVinci surgical robot system. Our general goal is to 
enable surgeons to perform minimally invasive liver interventions with the efficacy of 
open surgery. Although we have used liver surgery as a focusing application, our 
broader aim is to develop a generally useful LUS capability for many surgical fields, 
including general, cardiac, gynecologic, and urologic surgery. 

2   Background 

Several groups have active programs in robotically-assisted ultrasonography. Fenster, 
et al. have a long record of using tracked and robotically-manipulated 2D US probes 
to produce 3D US images, as well as recent work on robotically-assisted TRUS-
guided prostate brachytherapy [6]. Several groups have reported systems using 
ultrasound-based targeting to assist in other robotically-assisted percutaneous 
procedures [7,8] and other groups (e.g., [9-12]) have developed robotically-
manipulated extracorporeal ultrasound systems. None of these systems involve LUS 
or integrate US into an interventional procedure. There has been one experimental 
system for remote LUS probe manipulation [13] as part of a 1998 EU telemedicine 
initiative. We have not been able to find any subsequent publication of this work. 

Many groups have explored the use of navigational tracking devices with 
transcutaneous 2D and 3D ultrasound, including work targeted at the liver (e.g.,  
[14, 15]) There have been recent efforts to apply navigation techniques to LUS (e.g., 
[16-18]) and work on “augmented reality” for US using head mounted displays [19]. 
There has also been a body of work on human-machine cooperative systems 
implementing “virtual fixtures” or the equivalent for telesurgery (e.g., [20-22]). 

3   System Overview 

A block diagram of our system appears in Fig 1-A. It consists of a standard daVinci 
surgical  robot  equipped  with  a special LUS tool (Fig 1-B,C), consisting of a 10 mm  
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Fig. 1. (A) Block diagram; (B) LUS tool with Optotrak tracking body; (C) LUS tool held by 
daVinci in pig cadaver; (D) view through surgeon console of LUS probe with video tracking 
target and video overlay of LUS image 

diameter Aloka LUS probe held by a specially constructed daVinci interface unit that is 
capable of rotating the LUS probe about its axis. We have added a distinctive pattern to 
the shaft of the probe near the LUS sensor (Fig 2-A) that can easily be located by 
computer vision techniques. The back end of the LUS probe is equipped with a 
specially constructed Optotrak® tracking body for use in system calibration and 
validation experiments. To this, we added a PC-based “surgical assistant” workstation 
which communicated with the daVinci master console through serial links and research 
application programming 
interface (API) provided 
under special agreement by 
Intuitive Surgical, Inc. 
Both video channels from 
the daVinci’s 
stereoendoscope were fed 
through video frame 
grabber cards attached to 
the workstation, permitting 
us to perform real time 
image processing. LUS 
images were captured from 
the Aloka video console 
through a third frame 
grabber. State information 
from the daVinci was 

 

Fig. 2. (A) Example of the ultrasound probe with tracking 
marker and detected shaft axis (blue line -- graphic overlay). 
(B) Overlay Accuracy Phantom being used with the LUS 
probe. (Inset) Probe sitting in the phantom.  (Main image) 
The extrapolated location of the intersection point in camera 
view (red), and the ultrasound crosswire segmentation 
(green).
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transmitted to the workstation through Ethernet and a limited repertoire of motion 
commands were sent to the daVinci through a serial interface. 

Video tool tracking: To demonstrate the feasibility of visual tool tracking, the 
ultrasound probe was marked with a yellow sticker with green and red stripes as 
shown in Fig 2-A, and a segmentation algorithm located the center of the sticker in 
2D image space. The yellow sticker helped locate the shaft centerline, the green spiral 
line helped compute the twist angle of the shaft while the red stripes helped the 
extraction of the end points of this centerline.  

Once the centerlines are detected in both stereo cameras, we compute the 3D axis 
of the shaft from the intersection of two planes formed by the shaft centerline and the 
optical origin in the left and right cameras respectively. 

Calibration and registration: DaVinci Canvas requires several calibration and 
registration steps, all implemented by leveraging prior work in our laboratory. 

Laparoscopic Ultrasound Calibration - Ultrasound image coordinates were 
calibrated to the Optotrak rigid body using an AX=XB formulation [23]. The 
ultrasound probe was placed in three known orientations in a specially constructed 
calibration phantom {Viswanathan, 2004 #1599}. The three poses allow three relative 
transformations based on Optotrak readings (A) and three relative transformations 
based on the ultrasound images (B) for the AX=XB registration. 

Stereo Endoscope Calibration and Registration - In order to determine the intrinsic 
and extrinsic parameters of the stereo endoscope, we used our checkerboard phantom 
with the multi-plane formulation provided by the Caltech Image Calibration Toolkit. 
We added Optotrak markers to a typical checkerboard video calibration phantom and 
digitized each corner of the checkerboard using a calibrated Optotrak pointer. These 
corner coordinates were then used with the camera calibration to perform a point-
cloud to point-cloud registration between the endoscope rigid body and camera frame. 

DaVinci Robot API Registration - The daVinci robot API uses the robot kinematics to 
report a coordinate frame for the endoscope and ultrasound tool tip. However, due to 
inaccuracies in the setup joint encoders, both of these coordinate frames were offset 
from their correct values. Thus, it was necessary to register the offsets between the real 
camera frame and the camera frame calculated from the kinematics as well as between 
the real and kinematic ultrasound probe frames. Then, the kinematics could be used in 
place of the Optotrak readings to determine ultrasound image overlay placement. 

We assumed a 
constant transformation 
between the kinematic 
tool tip and the LUS 
probe Optotrak rigid 
body. This is reasonable 
so long as the position of 
the camera does not 
overly change. Using an 
AX=XB formulation, the 
probe was moved to 
several positions, and the 

  

Fig. 3: (left) 3D LUS image obtained by “rocking”; (right) 2D 
LUS of lesion during targeting task (graphics  added manually) 
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static offset between tool tip and rigid body was registered. Knowing this offset, the 
camera offset could be calculated directly. 

Ultrasound Image Display: DaVinci Canvas includes the ability for the user to view 
the ultrasound image as a picture-in-picture (PIP) insert, or as an overlay that appears 
to fan out from the ultrasound transducer itself, providing a visualization similar to 
the “ultrasound flashlight” concept of Stetten et al. [25](Fig 1-D). Our system 
includes a simple 3D ultrasound overlay volume rendering implementation based on 
[26] (Fig. 3 - Left), and was evaluated by performing a needle insertion task. 

Autonomous Motions: Robotic ultrasound has the potential to reduce variability in 
the images produced, compared to freehand scanning, and can reduce operator 
workload and difficulty. Behaviors as simple as rocking the probe back and forth can 
maintain an updated 3D image without operator intervention. In daVinci Canvas, 
surgeons can rock the probe to one extreme, squeeze the daVinci grip, rock to the 
other extreme, and release the grip to easily specify automated rocking. Surgeons 
could also use this same click and drag paradigm to initiate repeating trajectories in 
Cartesian space. 

4   System Accuracy 

We evaluated the accuracy of the system under various calibration conditions and 
determined an error of 2.83 ± 0.83 mm using Optotrak exclusively, and 2.16 ± 1.43 
mm using registered daVinci kinematics. We defined accuracy error in this case as the 
3D displacement between where a feature appears in the ultrasound image overlay, 
and where that same feature appears in the endoscope video. 

Accuracy assessment was performed using our overlay accuracy phantom (Fig 2-
B). The phantom is essentially a crosswire calibration phantom with a significant 
fraction of the two wires visible above the water line. The crosswire point was 
localized using the ultrasound overlay and compared to the intersection point of the 
two wires visible above the water. The extracted points were used to determine two 
3D positions in the camera frame – one due to the video, and one due to the overlay. 
We considered the distance between these two points to be the accuracy error.  

5   Surgeon Evaluation 

The clinical evaluation team included two attending general surgeons with significant 
robotic surgery and ultrasound experience, three surgery residents, and a physician 
with extensive robotic surgery and customer interface experience. The clinical 
evaluation team assessed ease of use, reliability, clinical strengths, and limitations of 
the robot assisted laparoscopic ultrasound probe. 

Staging Task (Lesion Finding): Our objective in the staging task was to compare the 
efficacy of freehand laparoscopic ultrasound with robotic laparoscopic ultrasound in 
locating simulated liver lesions. Lesions were created using 2% agarose in water, and 
placed in ex-vivo porcine liver. Four livers were used for the staging experiment. The 
number, size, and location of lesions within each liver were randomized. Six surgeons 
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found the lesions with freehand LUS, daVinci LUS without automated motions, and 
daVinci LUS with automated motions. 

Results: As expected during freehand ultrasound, advanced surgeons performed better 
than intermediate and novice surgeons in nearly all categories studied. Likewise, 
intermediates performed better than novices in the number of lesions correctly 
identified and identifying correctly the location and size of lesions. Best performance 
was observed from advanced surgeons using freehand ultrasound. Advanced, 
intermediate, and novice surgeons performed similarly when using robotic assistance. 
The longest time to identify each lesion was observed when using robotic assistance 
with automation.  

Discussion: While the robotic techniques did not perform at the level of advanced 
surgeons using the freehand technique, the robot served as the “equalizer,” allowing 
novices to perform at the level of more experienced surgical ultrasonographers or 
better. The rigidity of the ultrasound probe significantly limited motion within the 
simulated abdomen. Almost all surgeons felt it would be important to have a flexible 
ultrasound probe that would return degrees of freedom characteristic of the daVinci 
end effectors. Another important feature universally desired by surgeons was a 
marking tool to determine if it was a new lesion or one previously encountered. 
Clinically, this was felt to be important in reducing the number of missed lesions. 

Of all the robotic ultrasound features available to the surgeon, overlay and PIP 
were found to be the most useful. These allowed rapid identification and subsequent 
characterization of lesions. Automation features were less useful, although these 
features may be useful with daVinci models having 3 instrument manipulation arms 
in addition to the endoscope arm.  In this case, the surgeon could use two arms to 
perform the procedure while the third instrument holds the LUS probe and initiates 
“rocking” to obtain 3D images or 2D sweeps over a lesion or critical structure. 

This pilot experiment served as a learning exercise, with a rough prototype and 
small sample size not intended to show quantitative superiority of robotic ultrasound 
over freehand ultrasound. The key result was qualitative: Surgeons felt that with an 
articulated probe and the ability to annotate lesions, the system would have a 
competitive advantage over freehand ultrasound, particularly when used as an aid to 
needle targeting or resection tasks. They also felt that it would lower the barriers to 
the use of laparoscopic ultrasound by making it easier to learn. 

Lesion Targeting Task: We performed some preliminary investigation into the use 
of registered ultrasound overlays in guiding needles to target lesions. Livers were 
prepared as in the staging task. A laparoscopic surgeon skilled in ultrasound 
techniques performed the targeting task using either freehand ultrasound and needle 
or using daVinci assistance with a long rigid needle in the left grasper and the 
ultrasound probe in the right arm. The long needle was passed through the simulated 
torso and its pivot point was fixed at the “skin.” Three targeting tasks were 
performed, one laparoscopic freehand (long needle only) and twice robotically. 

Results and Discussion: Freehand placement accuracy was 5.4 mm and robot-assisted 
accuracy was comparable (4.5 mm & 7.5 mm). For this anecdotal (N=1) experiment, 
the surgeon comments were more informative. The surgeon suggested it would be 
helpful to have a flexible daVinci ultrasound probe, and an extrapolation of the needle 
trajectory displayed in the daVinci console. 
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6   Conclusions and Future Work 

This work was phase one of a larger effort directed toward a complete integrated 
robotic system for LUS-assisted hepatic surgery and (more generally) toward 
development of a new generation of information rich surgical assistant systems.  Our 
initial results are very encouraging. The ability of the ultrasound dynamic image to be 
displayed in ‘real time’ at the point of scanning is a powerful tool, enhancing ease of 
use and surgeon situational awareness.  

Clinically acceptable accuracies can be achieved using an Optotrak or directly 
using daVinci kinematics. The rigid ultrasound probe (versus flexible) was a 
limitation in scanning selected sectors of the operative field. We had hoped that a 
volume display would improve the speed and accuracy of such a procedure. However, 
in its current state, it was found to be less helpful and even distracting when compared 
to the 2D ultrasound overlay. The registered 2D overlay exceeded our expectations by 
proving capable of assisting needle targeting procedures. 

Future plans include development of more robust, capable tools & image 
processing algorithms, further evaluation in vivo, and eventual clinical development 
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Abstract. This paper investigates fundamental design, modeling and
control issues related to untethered biomedical microrobots guided inside
the human body through external magnetic fields. Immediate applica-
tion areas for these microrobots include cardiovascular, intraocular and
inner-ear diagnosis and surgery. A prototype microrobot and steering
system are introduced. Experimental results on fluid drag and magneti-
zation properties of the robots are presented along with an analysis of
required magnetic fields for application inside blood vessels and vitreous
humor.

1 Introduction

The state-of-the-art in MEMS technology is progressing from individual, chip-
level microsensor and microactuator devices to complete integrated microrobot
systems. These types of systems will impact future minimally invasive surgical
techniques by providing sub-mm untethered biomedical microrobots capable of
performing a number of new procedures. The benefit will be even less injury to
the patient resulting in correspondingly faster recovery times. Proven MEMS
technologies such as micro-needles, micro-pumps and force and chemical sensors
will be carried on-board for a variety of surgical and diagnostic tasks. Possible
areas of application for these microrobots include cardiovascular, intraocular and
inner-ear diagnosis and surgery.

Although electronic and mechanical systems have been miniaturized by VLSI
and MEMS technologies, no counterpart to these exists for electro-chemical en-
ergy storage. Currently, the only viable option for the actuation and steering
of such a microrobot is external energy transfer. The use of magnetic fields
generated ex-vivo for energy transfer and actuation can provide a solution to
this problem. In this paper a prototype microrobot system that was designed
to investigate this idea is introduced. The nature of magnetic and viscous drag
forces are discussed and experimental results on the magnetic and drag proper-
ties of the microrobots are presented. With these results, the necessary magnetic
field strengths for application inside different body-fluids are analyzed. Finally,
a strategy for magnetic steering is proposed and a prototype steering system is
presented.
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2 Microrobot with Hybrid MEMS Design

The microrobot prototype is a three dimensional structure built by microassem-
bly of individual parts shown in Figure 1(a). Currently four different types of
robots are being assembled from a combination of these parts and bonded with
UV activated glue (Figure 1(c)). The ”winged-ellipsoid” shape has an axis of
symmetry along the long axis of the ellipsoid. An external magnetic field acts
to align and pull the robot along this axis (i.e. magnetic torque and force) due
to the shape anisotropy effect, much like a needle always becoming magnetized
along its long axis. On the other hand, the winged shape acts to reduce the
side-ways drift of the microrobot by increasing the fluid drag along the axes
perpendicular to the long axis.

(a) (b) (c)

Fig. 1. a) Nickel microrobot components and an assembled microrobot. The inset shows
another microrobot on a finger tip. b) Manufacturing steps for the microrobots. c)
Different configurations of microrobots.

The significant advantage of the hybrid design is that the individual parts of
the assembly can be produced with standard MEMS manufacturing processes
which create planar geometries. This way, different sub-systems of the robot can
be manufactured using the most suitable process for the purpose. Figure 1(b)
shows the steps of the micromanufacturing process for the nickel parts. Initially
the wafers are cleaned and metalized with a titanium adhesion layer and sacrifi-
cial copper seed for subsequent electroplating. The thickness of the seed layer is
300nm. After metallization the wafer is covered with a 80μm thick layer of nega-
tive photoresist that is patterned to form the microrobot parts. The nickel parts
are then deposited inside a bench top plating system at the rate of 1μm/min to
a thickness of 50μm. Following the plating step, the photoresist is stripped and
the copper seed layer is etched in a solution of ammonium persulfate which does
not attack nickel at low concentrations.
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3 Wireless Actuation Through Ex-Vivo Magnetic Fields

3.1 Nature of Magnetic Forces

The primary vectors that define the magnetostatic field in magnetized matter
are (external) magnetic field strength, H (A/m), magnetization of the matter
M (A/m) and magnetic flux density B (Tesla). The relationship between these
vectors is

B = μ0(H + M) (1)

where μ0 is the magnetic permeability of free space defined as 4π×10−7 Tm/A.
For the idealized case of linear, isotropic and homogeneous media the following
relationships simplify (1) as

M = χH (2)

B = μ0(1 + χ)H = μ0μrH (3)

where χ and μr are the susceptibility and relative permeability of the media,
respectively. In general, these values are not constant but change with magneti-
zation, approaching zero as the magnetization reaches a material dependent limit
called the saturation magnetization Ms. Within the saturation limits, the per-
meability can be thought as an amplification factor that creates a net magnetic
field inside the matter through an external field.

The magnetic force and torque that are exerted on an object with uniform
magnetization M in a magnetic field with flux density B are defined as

Fm = Vm(M · ∇)B (4)

τm = VmM ×B (5)

where Vm is the volume of the magnetized object. Notice that the magnetic
torque is dependent on B whereas the magnetic force is dependent on the gra-
dient of B. Equations (4) and (5) indicate that magnetic forces are volumetric.
Therefore, the required fields and field gradients to exert a certain torque and
force on a magnetized object increase rapidly as the object gets smaller.

3.2 Magnetic Properties of the Microrobot

The relationship between the external magnetic field and the resulting magneti-
zation of the robot is dependent on geometry and material properties. However,
the magnetic properties of the material are also significantly affected by the
manufacturing process, which is difficult to model. Therefore, it was necessary
to perform experimental evaluation of the magnetization curve for the micro-
robots in order to obtain more reliable values. The microrobots were tested
using a coercivity spectrometer device. The results of these tests covered the full
range of magnetization as shown in Figure 2. The robots reached a saturation
magnetization of 5 to 8 ×105 A/m with a 0.2 T external field.
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Fig. 2. Magnetization curves for the different types of microrobots (Figure 1(c)). Types
3 and 4 were tested with two different robots.

3.3 Fluid Drag Forces on the Microrobot

Other than the magnetic forces analyzed above, gravitation/bouyancy and vis-
cous fluid drag forces are also acting on the microrobot. The drag force on a
spherical object in laminar flow regime (i.e. Re < 1.0) can be expressed as

Fd = 3πDμfν (6)

whereD is the diameter of the sphere, μf is the dynamic viscosity of the fluid and ν
is the relative velocity of the robot with respect to the fluid media. Equation (6),
also known as Stoke’s Drag, is frequently used for calculating the drag force on
magnetic beads and other small particles, approximating their shape as a sphere
[1]. In addition to the drag force, a net buoyancy force will be acting on the robot

Fb = Vr(ρr − ρf )g (7)

where Vr and ρr are the density and volume of the robot respectively and g is the
gravitational acceleration. The most important outcome of (4), (5), (6) and (7) is
that, whereas magnetic and buoyancy forces are volumetric, the fluid drag forces
are linearly dependent on the size. For this reason, as the size of the robot gets
smaller the required field gradient to move at a particular speed rapidly increases.

3.4 Viscous Drag Force Experiments

We performed experiments in order to quantify the drag forces on the winged-
ellipsoid shape of the microrobots. The experiments were conducted by releasing
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Fig. 3. Drag numbers calculated for each robot type for oils of three different viscosities

the microrobots inside a chamber filled with a fluid of known viscosity and
observing them with a microscope-camera in order to determine their terminal
velocity under the net effect of fluid drag, gravity and buoyancy forces. The
experiments were performed using three different silicon oils AK100, AK350 and
AK1000, each having room temperature dynamic viscosities of 100, 350 and
1000 cP (centiPoise), respectively. The actual viscosity values were corrected for
the measured temperature of the chamber. The experimental setup was verified
using steel ball-bearing spheres of known size and weight. The measurements for
the steel spheres were within 5% of the calculated values.

The results of experiments indicated a linear dependency of the drag force
on velocity, similar to the case of a sphere. A drag number, DN was calculated
as DN = Fd/μfν for each of the four types of the robot. The resulting data
are shown in Figure 3. The boxplots present the distribution of the repeated
measurements. The height of the box indicates the interquartile range between
25% and 75% percentiles of the data, while the line inside the box shows the me-
dian. The drag number measurements show a variation of about 15%, clustered
around a value of 4.5× 10−3 m. If this value is converted to an effective sphere
diameter through the relation DN = 3πD, we find a diameter of 477μm which
is close to the cross-section diameter (400μm) of the ellipsoid shape.

3.5 Required Magnetic Fields in Body Fluids

With the analysis of magnetic and viscous drag properties of the microrobots, the
necessary magnetic field strengths for medical applications can be estimated. For
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Fig. 4. a) Drag forces on the microrobot in human blood and the required field gradient
to resist the fluid drag. b) Drag forces on a spherical magnet moving at 0.5 mm/s in
the human vitreous and the required field gradient for various sphere diameters. Mag-
netization is M = 5 × 105 A/m and viscosity is 4900 cP. The values for the prototype
microrobot are shown with *.

this analysis the microrobots will be assumed to be magnetized to saturation at
5×105 A/m. The volume of a Type 3 robotwill be considered (3.22×10−11m3). For
fluid drag, the average drag number of 4.5× 10−3 m is used as an approximation.

For cardiovascular applications, the fluid media that the microrobot moves
in is blood. The flow velocity of blood in the human body ranges between 0.05
m/s in the capillaries to 0.7 m/s at the exit of the aorta with a viscosity of about
2.8 cP [2]. Figure 4(a) shows the drag forces on the microrobot and the required
field gradient to balance the robot against the flow.

The human eye is another challenging workspace for a biomedical microrobot.
The vitreous humor fills the posterior cavity of the eye between the lens and the
retina and has the properties of a viscoelastic liquid with high viscosity [3]. A
complex model of the vitreous with spring and dashpot elements representing
the elastic and viscous characteristics of the material was developed [4][5]. The
viscosity of the Maxwell-dashpot element of this model which represents the
irreversible flow of the material under constant stress is the main source of the
viscous drag forces on the robot. The mean values of viscosity were 1398 cP at the
anterior, 2179 cP at the central and 4862 cP at the posterior regions. Figure 4(b)
shows the drag forces on a spherical shaped robot with a diameter between 50 to
1000 μm and magnetization 5× 105 A/m moving inside the vitreous at a speed
of 0.5mm/sec. The viscosity at the posterior region is used. In addition, the
necessary field gradient to balance the drag forces is also shown. The location of
the prototype microrobot with the winged-ellipsoid shape is also indicated.

4 Magnetic Steering System

Equations (4) and (5) suggest that controlled external magnetic fields can be
used to induce torques and forces on a magnetized object and control its orien-
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(a) (b)

(c) (d)

Fig. 5. a) Normalized magnetic field along the central axes of Helmholtz and Maxwell
coils. b)Steering system with co-axial Maxwell and Helmholtz coils. A maze structure is
fixed at the center of the workspace between the rotating coils. c) Microrobot steering
maze. The channels are 1000 μm wide and 300 μm deep. The microrobot is also visible
at the upper part. d) Magnetic steering system.

tation and position. An important issue related to control is the highly nonlinear
nature of the field and gradients that are created by electromagnet coils. One
way of reducing the effect of such nonlinearities is to create uniform magnetic
fields and field gradients using various coil configurations [6]. For example, the
Helmholtz coil configuration consists of two identical coils that are placed on
the same axis and separated by a distance equal to the radius of the coils. This
arrangement generates a uniform field close to the center of the coil pair when
current passes in the same direction in both coils. A variation of this configu-
ration with opposing direction of currents is the Maxwell coil which generates
a uniform gradient. Figure 5(a) shows the plot of the fields of Helmholtz and
Maxwell coils. Both of these coils are commonly used in MRI systems. Although,
the uniform fields of commercial MRI machines are quite high (0.5-2.0 T), the
gradient fields they can generate continuously are in the 0.01 to 0.05 T/m range.

The magnetic steering principle was investigated using a coil system as illus-
trated in Figure 5(b). The magnetic torque and force on the microrobot were
controlled independently through the Maxwell and Helmholtz fields, respectively.
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This way the orientation and direction of motion of the microrobot could be com-
manded on a two dimensional plane. Steering tests were performed in a water
filled, maze-like structure etched into a plastic substrate (Figure 5(c)). The maze
was fixed at the center of the rotating coils, and a microscope camera system was
used to obtain a top view (Fig. 5(c)). The orientation of the coils were controlled
through a PC interface. Numerous trials with the system confirmed that the in-
dependent orientation/thrust control principle was successful. The microrobot
was observed to follow the orientation of the coils without translating unless the
Maxwell coils are energized.

5 Conclusions

This paper investigated the concept of steering sub-mm sized untethered micro-
robots inside body fluids with external magnetic fields. A prototype microrobot
was introduced. Estimations on the necessary field gradient to resist fluid drag
forces in different body fluids showed that a minimum gradient of about 0.7T/m
would be necessary. A magnetic steering principle based on independent control
of orientation and thrust with constant field and field-gradient generating coils
was successfully tested. These results confirm that magnetic actuation is a suit-
able mode of energy transfer for untethered biomedical microrobots.
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Abstract. This paper presents a needle-tissue interaction model that
is a 3D extension of a prior work based on the finite element method.
The model is also adapted to accommodate arbitrary meshes so that
the anatomy can effectively be meshed using third-party algorithms. Us-
ing this model a prostate brachytherapy simulator is designed to help
medical residents acquire needle steering skills. This simulation uses a
prostate mesh generated from clinical data segmented as contours on
parallel slices. Node repositioning and addition, which are methods for
achieving needle-tissue coupling, are discussed. In order to achieve real-
time haptic rates, computational approaches to these methods are com-
pared. Specifically, the benefit of using the Woodbury formula (matrix
inversion lemma) is studied. Our simulation of needle insertion into a
prostate is shown to run faster than 1 kHz.

1 Introduction

Prostate cancer is the most common cancer in the US with 232,090 new cases
and 30,350 deaths estimated in 2005. Brachytherapy is the single most commonly
used curative treatment for prostate cancer in North America. It is a conformal
radiation therapy method that involves the percutaneous insertion of radioactive
sources directly in or adjacent to malignant tissues. A conceptual overview of
the procedure can be seen in Fig. 1.

Despite the low risk of brachytherapy, seed placement errors are still com-
mon. In [1], an experienced physician implanting seeds in 20 patients achieved an
average placement error of 0.63 cm, which is a substantial error of 21% of aver-
age prostate diameter (3 cm). Errors decrease the effectiveness of the treatment
and may also lead to subsequent complications such as urinary incontinence and
impotence. Some procedural challenges of brachytherapy are needle steering and
visualizing the 3D volume from 2D medical images. The required skill set is ac-
quired by medical residents using mannequins, animals, or cadavers, which are
either not very realistic or may involve ethical issues. Residents also practice
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Fig. 1. Representation of 3D prostate volume deformation with a needle inserted (left)
and conceptual overview of the procedure (right)

on patients which may lead to possibly irreversible consequences. The identi-
fication of this need for better training schemes led us to propose a prostate
brachytherapy simulator.

The simulation of needle insertion differs from the simulation of other medical
tool-tissue interactions in several ways: the needle does not manipulate only
the organ surface; friction is a significant force during its interaction; and it
is flexible unlike many rigid surgical tools. These issues were addressed in the
2D case with a finite element model (FEM) using the condensation approach, a
stick-slip friction model, and local frame rotations with low-rank matrix updates,
respectively [2]. Fluid pockets were then introduced onto this system [3].

Online mesh modification is a common challenge of real-time implementa-
tions (e.g., incision in [4]). To retain tissue mesh nodes on the needle, element
subdivision and node relocation techniques were implemented in [2, 4, 5]. Specif-
ically, the 2D haptic implementation in [2] simply constrains the closest tissue
node onto the needle without any processing of the nominal mesh which lo-
cally deforms the tissue unrealistically. This work was also the first to model a
decoupled tip cutting force and a velocity-dependent shaft friction force.

There are models [6] and graphical interfaces [7] designed for prostate brachy-
therapy. However, the only available physically-based brachytherapy model [5]
is designed for offline planning simulation and it runs in 2D neglecting spatial
deformations such as transversal rotation. In contrast, our proposed model runs
at haptic rates while simulating needle insertion in 3D. Extension of algorithms
from 2D to 3D is not a trivial task. It also increases the computational complexity
significantly. Control of such a 3D simulation at haptic rates require additional
computational treatment on the algorithms, some of which are presented in this
paper. An application on a clinical case such as brachytherapy needs to also
address issues related to optimal discretization of the tissue for the model.

2 Methods

In the simulation, while the needle is inserted, it interacts with the tissue through
tissue mesh nodes that are confined onto the needle shaft. These nodes are called
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contact nodes. When the needle base is manipulated by the user, the needle shaft
poses a displacement boundary condition for the tissue mesh via contact nodes.
The reaction forces of the tissue are then applied back on the needle model to
solve for needle bending and to find feedback forces onto the user’s hand. The
following steps were taken to implement this system in 3D.

2.1 Mesh Generation

Considering FEM is an approximation technique for elastic deformation, its ap-
proximation error largely depends on the element discretization geometry. This
can be achieved simply by using more elements. However, the speed of many
mesh-processing algorithms is significantly affected by the number of nodes.
These pose the two basic constraints: a high quality mesh with few nodes. A
case with multiple sub-regions with different physical properties, in addition,
necessitates a conforming mesh having element surfaces as boundaries between
separate anatomical structures. Considering that the segmentation by the physi-
cian is simply in the form of parallel contours, generating a prostate region mesh
obeying the above criteria requires additional steps, since the conforming mesh-
ing algorithms work on a boundary surface definition. Thus, the following steps
are taken on the segmentation of the parallel images from a prostate volume
study: first the extraneous nodes are removed, then Nuages [8] is used to obtain
the surface definition, and finally the interior (with finer elements) and the ex-
terior (with coarser elements) of the prostate are meshed (see Fig. 2) using the
academic version of GiD [9] which utilizes the advancing fronts technique.

The needle bending is modeled using FEM with quadratic strain. Its deflec-
tion is solved using the iterative approach of [2]. The deflection response of this
model to an applied force was observed to be substantially mesh topology depen-
dent in 3D. Therefore, the symmetric needle segment in Fig. 2 was designed. A
needle model constructed from segments similar to the one shown demonstrates
axial symmetry for a change of lateral force direction. On the tissue interaction
side, this mesh model is assumed to be a set of line segments passing through
its center. The needle-tissue coupling is damped in order to ensure stability.
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Fig. 2. Prostate segmentation data where the lines denote contours, stars are culled
nodes and the circles are the removed ones (left); prostate surface definition (center);
and our symmetric design of a needle segment (right)
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2.2 Implementation

As opposed to the surrounding relatively soft tissue, a stiffer region connects
the prostate to the pubic arch from its anterior inferior end. This creates a
torquing movement of the prostate as the needles are inserted. To simulate this
effect, the prostate is spatially fixed around this region by setting fundamental
displacement constraints. Then the tissue stiffness matrix K is inverted offline
before the simulation starts. A linear quasi-static tissue model is used as an
approximation to the deformation characteristics of soft tissue. An overview of
the system is given in Fig. 3.
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Fig. 3. Flowchart of an iteration during the needle insertion into the tissue

Considering that the needle boundary conditions are applied only on the
contact nodes and the feedback forces for the needle are only required on those
nodes, a 3w × 3w condensed system can be employed with the equation:

x = KW y (1)

where KW is the condensed stiffness matrix and w is the number of contact
nodes. This condensation approach and the stick-slip friction model applied on
it are extended to 3D from the work of [2]. A switch in the stick-slip state of a
node is achieved by changing its axial boundary constraint. A force-displacement
boundary constraint switch (BCS) on row/column i is in the form of the following
low-rank update:

K
′

W = KW − 1
k(i, i)

ci ri (2)

where ci and ri are the corresponding ith column and ith row of KW, and k(i, i)
is the pivot i. Note that this requires O(w2) operations. With the changing
orientations of the needle segments caused by either user manipulation or needle
shaft bending, KW needs to be updated to accommodate the new local frame
orientations. This local frame rotation of a contact node differs depending on its
stick-slip state. A treatment in 3D is developed based on the 2D case in [2].

The tissue reaction forces of the contact nodes are linearly distributed onto
the closest needle mesh nodes to be applied onto the needle model and also to
determine force/torque feedback to the user’s hand.
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2.3 Tissue Remeshing

Although it is possible to maintain a non-conforming needle-tissue coupling us-
ing force/displacement interpolations, in our insertion simulation, preserving this
conformity was preferred due to speed considerations. It is achieved by placing
a tissue node on the needle tip whenever it encounters a new tissue element.
Generation of this node without distorting the tissue requires remeshing (the
shaded step in Fig. 3). Two remeshing techniques, node repositioning and node
addition, are shown in Fig. 4. Repositioning is equivalent to removing the sur-
rounding elements of P and introducing the elements surrounding the new node
P ′. In contrast, addition in 2D is removing only two elements and introducing
four smaller ones (see Fig. 4(d)).

The 3D simulation uses the inverse of 3n×3n tissue stiffness matrix K where
n is the number of tissue mesh nodes. Considering the dimensions of K−1, a real-
time full-rank inversion is impractical. Thus, two methods of fast K−1 manipu-
lation are implemented and compared. The first one employs boundary condition
switches whereas the second one is a one-step algebraic solution. Nonetheless,
both approaches require the differential 3m× 3m stiffness matrix ΔK which is
the desired change in K to obtain the remeshed stiffness matrix K′ where m
is the total number of nodes involved. ΔK can easily be found by subtracting
the stiffness matrices of the elements to be removed from the ones to be added.
Note that for the 2D cases in figures 4(c) and (d), m is 7 and 5, respectively.

The first method performs boundary condition switches on K−1 for all three
axes of each node involved using (2). It then adds ΔK and switches the bound-
ary conditions back. This results in ≈ 2(3m)(3n)2 operations. Throughout this
paper, operations refer to floating-point multiplications and divisions only. On
the other hand, the second method employs the Woodbury formula as follows:(

K + V ΔKV T
)−1

= K−1 −
[
K−1V ΔK

(
I + V T K−1V ΔK

)−1
V T K−1

]
(3)

where V is a 3n×3m zero matrix with 3m corresponding rows taken from identity
matrix I3m×3m. A fast implementation of (3) with the low-rank inverse computed
using Gaussian elimination costs ≈ 3m(3n)2 + (3m)23n + 2(3m)3 operations.
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Fig. 4. The simulation steps (a) before and (b) after a new element penetration; and
(c)node repositioning and (d) node addition methods for preserving mesh conformity
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Although n is the dominant factor, the speed of both approaches (BCS and
Woodbury) is also dependent on the dimension of ΔK. For node repositioning,
this dimension is determined by node valence which causes a relatively long and
unpredictable computation time. Furthermore, repositioning an organ boundary
node may pose the issue of distorting the anatomy. In contrast, 3D node ad-
dition runs at constant time with a guaranteed ΔK size of 18 × 18. The extra
rows/columns needed in K−1 by the Woodbury formula for the addition of P ′

are initially set to zero except for their diagonal elements having very large val-
ues to represent infinity. The condition number of the low-rank matrix inverted
in (3) is also considered while determining these large numbers. Everytime the
needle is completely out of the tissue, K−1 is reset to its initial dimensions and
values in order not to crowd the model with nodes after consecutive insertions.

3 Results and Discussion

The two computational approaches, BCS and Woodbury, were implemented on a
2D tissue (see Fig. 5) in Matlab r© using a P4 3.2GHz system with 1MB L2 cache.
Although both techniques theoretically have the same order of complexity (for
n � m), it is observed that the Woodbury formula update runs significantly
faster for large K−1 (see Fig. 5). This is due to the efficient cache use of the
Woodbury algorithm as described below. Each BCS needs to process the entire
3n×3n matrix before the next BCS can start. This causes a cache miss for each
of the 9n2 numbers at every BCS operation that happens 6m times in total.
Each miss entails a RAM access which is much slower than a cache access. On
the other hand, the full-rank multiplication in the Woodbury formula allows for
an implementation letting its 6m operations be processed in an inner loop. So,
as long as the matrix V fits in cache memory, much fewer cache misses occur
resulting in significant speed gain as shown in Fig. 5. Here, Matlab’s inv function
running time for rank-3n matrix inversion which has O(n3) operations is also
presented for comparison.

The tissue mesh that is used in the simulation consists of 570 nodes and 2801
tetrahedra. The shortest edge is 3.06mm and the longest one is 24.04mm. The
minimum and the maximum dihedral angles are 9.94◦ and 159.49◦, respectively.
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Fig. 5. 2D tissue with a K of dimension 200 (left) and the comparison of mesh modi-
fication techniques while increasing the dimension of K (right)
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Fig. 6. Interface to the prostate brachytherapy needle insertion simulation (top), cumu-
lative running time since simulation start for two separate instances of needle insertion
(lower left), and force on the needle base for Woodbury algorithm (lower right)

Furthermore, only a couple elements have these border-line values showing that
the geometry of elements are acceptable for a reasonable FEM approximation.

The 3D needle insertion simulation was implemented in C for the ease of
future use with VxWorks r© which is a real-time operating system used in con-
trolling haptic devices. A Matlab interface, where the needle can be manipulated
and the tissue deformation can be observed, was built for testing and debugging
purposes (see Fig. 6). The three axis components of the needle base force profile
during two insertions having different trajectories can be seen in Fig. 6.

Our first implementation of this simulation used BCS for node repositioning
where some iterations took as long as 2.75 s . For an haptic implementation
any iteration has to complete in less than 2ms . That is why the simulation
is reimplemented using the Woodbury formula which led us to less than 1 ms
iterations. For the two consecutive insertions that the force profile is given above,
the cumulative time elapsed using each method is plotted in Fig. 6. The big steps
of BCS occur when node repositioning is performed. Since no repositioning is
needed during retraction, the cumulative time increases only slightly due to other
simulation computations between iterations 650 and 1300.

4 Conclusions and Future Work

A prostate brachytherapy simulator design has been presented using a prostate
mesh with conforming anatomical boundaries on surfaces generated from con-
tours on parallel slices. The proposed system successfully couples a conform-
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ing quasi-static linear FEM of the tissue with a flexible needle. It is the first
physically-based 3D interaction model of a flexible needle insertion into a soft
deformable body. The first physically-based 3D simulator of a brachytherapy
procedure is programmed with a Matlab interface. The real-time portion of the
code is ready to be implemented on a haptic setup. The proposed simulator can
also be used for the prediction of prostate motion in brachytherapy planning.

Next, other anatomical structures will be segmented and implemented in
the simulator. Particularly, the pubic arch is needed as a fundamental displace-
ment boundary condition. The bladder is also a significant adjacent anatomy to
be modeled. Given more anatomical information incorporated into the model,
validation of the system will become the next step. TRUS data of the entire pro-
cedures were already recorded for this purpose. The prostate shift caused by the
needle insertion can easily be seen on those. This observed deformation will be
compared with our model for validation when we incorporate at least the pubic
arch into our model. Ultimately, the simulation is going to be implemented on
a suitable haptic interface. Considering brachytherapy planning, real-time ac-
quisition of the tissue elasticity parameters using elastography which is another
future research subject would make accurate intra-op plan adjustments possible
when combined with the simulator presented in this paper.
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Abstract. This work presents the development and application of a 
visualization and navigation system for planning deep-brain neurosurgeries. 
This system, which incorporates a digitized and segmented brain atlas, an 
electrophysiological database, and collections of final surgical targets of 
previous patients, provides assistance for non-rigid registration, navigation, and 
reconstruction of clinical image data. The fusion of standardized anatomical and 
functional data, once registered to individual patient images, facilitates the 
delineation of surgical targets. Our preliminary studies compared the target 
locations identified by a non-expert using this system with those located by an 
experienced neurosurgeon using regular technique on 8 patients who had 
undergone subthalamic nucleus (STN) deep-brain stimulations (DBS). The 
average displacement between the surgical target locations in both groups was 
0.58mm±0.49mm, 0.70mm±0.37mm, and 0.69mm±0.34mm in x, y, and z 
directions respectively, indicating the capability of accurate surgical target 
initiation of our system, which has also shown promise in planning and 
guidance for other stereotactic deep-brain neurosurgical procedures. 

1   Introduction 

Surgical treatments for movement disorders, such as Parkinson’s disease and essential 
tremor, are performed by either creating a small lesion, or placing electrical 
stimulators at precise locations deep within the brain, using minimally-invasive 
stereotactic techniques. However localizing the surgical target is challenging due to 
the incompleteness of the information provided by the regular pre-operative medical 
images, where neither the motor nuclei of the thalamus, the internal segment of the 
globus pallidus (GPi), nor the subthalamic nucleus (STN) (the targets for the surgical 
treatments of Parkinson’s disease) can be visualized directly. In clinical practice, 
additional information from anatomic atlases [1,2] is needed to enhance the accuracy 
and precision of targeting. Moreover, computerized atlases [3-5] have been 
implemented to overcome the inherent disadvantages of the printed versions. 
Digitized atlases can be aligned and fused with individual pre-operative brain images 
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to facilitate the identification of the surgical targets. Nevertheless existing anatomical 
atlases should be employed conservatively for planning stereotactic procedures 
because of their limitations, such as lack of morphometric information, poor 
generalization, and insufficient statistical representation of the population.  

In addition to the anatomical information derived from pre-operative images and 
brain atlases, functional information obtained from intra-operative electro-
physiological measurements is also required to refine the optimal surgical targets, 
characterize tissue function, and map somatotopy. Accurate pre-operative surgical 
target planning can reduce the need for invasive exploration and decrease procedure-
related complications. In this case, additional standardized electrophysiological 
information available prior to surgery may assist the surgical target determination. 
Previously, researchers have developed electrophysiological atlases [6,8,9] and 
databases [7] containing data from a series of patients, standardized and normalized to 
a standard brain template to establish the relationship between functional brain 
organization and anatomic structures, and to estimate the surgical targets [6-9].  

This paper expands that of Finnis et al. [7] by adding data of 43 new patients (for a 
total of 131) and incorporates the database into a comprehensive neurosurgical 
system. Our work focuses on the integration of a 3D visualization and navigation 
system for stereotactic functional deep-brain neurosurgery planning and guidance in 
order to improve target localization accuracy and to minimize electrophysiological 
exploration and patient trauma. We describe preliminary studies evaluating the 
effectiveness of this system in surgical targeting for STN deep-brain stimulation 
(DBS) procedures. This system integrates the electrophysiological database, digitized 
3D brain atlases [1], segmented deep-brain nuclei, and surgical targets from previous 
procedures, along with representations of surgical instruments, into the visualization 
and navigation system. All the standardized functional and anatomical data in this 
system, once non-rigidly mapped to a patient brain space, can be an important adjunct 
for pre-operative surgical target planning and intra-operative surgical guidance. 

2   Materials and Methods 

2.1   Image Registration 

Two registration steps are necessary to implement this procedure. The first rigid-body 
registration step establishes the transformation between a patient image-space and the 
stereotactic frame, whereas the second performs the non-rigid mapping of the 
functional data from each patient brain space to the standard database, and vice versa.  

Frame-to-Image: An automatic fiducial localization algorithm registers the image 
volume to the frame in 1.5s by extracting the ‘Z-bar’ fiducial points from the images 
with a fiducial localization error of approximate 0.5mm for both MR and CT.  

Data-to-Database & Database-to-Patient: The rapid 3D non-rigid registration 
algorithm [10] has been adopted to accommodate the intersubject variability between 
each patient anatomical brain image and the standard brain template. This algorithm 
employs a completely unsupervised multi-resolution approach that executes 8 to 12 
minutes on a dual PIII 933 MHz machine with an average registration error of 
1.04±0.65mm [10]. 



 Development and Application of Functional Databases 837 

2.2   Functional Database Construction 

Subjects: 131 patients who had undergone a total of 161 surgeries for symptomatic 
treatment of Parkinson’s disease, chronic pain, and essential tremor at London Health 
Sciences Centre (LHSC), London, Ontario, Canada, have been recruited, for the 
functional database construction.  

MRI data: The pre-operative MRI images of the patients were acquired with a 1.5T 
GE Signa scanner using a 3D SPGR sequence (TR/TE 8.9/1.9ms, flip angle 20°, NEX 
2, voxel size 1.17mm×1.17mm×1mm, in-slice resolution 256×256). 

Standard brain template: The CJH-27 dataset [11] was adopted as the standard brain 
template (the common coordinate system) of the functional database. CJH-27 consists 
of 27 registered T1-weighted MRI scans (20 × 1mm3: TR/TE 18/10ms, flip angle 30°, 
NEX 1; 7 × 0.78mm3: TR/TE 20/12ms, flip angle 40°, NEX 1) of the same healthy 
individual averaged into a single volume.  

Functional data collection: First of all, the pre-operative brain image of each patient 
was non-rigidly registered to the CJH-27 template, to establish the 3D transformation 
and the deformation grid. Then the micro-recording, electrical-stimulation data were 
coded using a comprehensive coding scheme and intra-operatively entered into single 
patient brain image space. Finally, the functional data in each patient image space 
were non-rigidly mapped to the standard brain coordinate according to each 3D non-
rigid transformation. The functional data in the population-based database can be 
applied to the individual brain image using the inverse of the original non-rigid 
patient-to-database transform.  

2.3   Visualization and Navigation System Integration 

Electrophysiological Database: Our current electrophysiological database is an 
expanding version of that reported previously [7]. The functional data in this study 
were obtained during the procedures performed on the patients, and those relating to a 
particular firing pattern, a specific body reaction, and certain anatomical regions, can 
be retrieved and displayed as clusters of spheres in 3D space or density maps on three 
intersecting orthogonal 2D image planes.  

Digitized Brain Atlas and Segmented Deep-brain Nuclei: We non-rigidly mapped a 
digitized version of Schaltenbrand-Wahren atlas [1] to the standard brain. Deep-brain 
nuclei were segmented based on the anatomical representation in this atlas, and 
represented as either 3D objects or triangulated meshes. The centroid of each 
segmented deep-brain nucleus is shown as a sphere.  

Collections of final surgical targets of previous patients: The location of the final 
target of each surgical procedure was non-rigidly registered to the standard brain 
coordinate and saved to each categorized database depending on the characteristic of 
the surgery. Currently we have eight databases containing data from 50 thalamotomy 
(34 left and 16 right), 59 pallidotomy (30 left and 29 right), 22 thalamus DBS (12 left 
and 10 right), and 30 STN DBS (18 left and 12 right) procedures. The collection of 
final targets can be non-rigidly mapped to the pre-operative MR images of individual 
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patients. The center of mass (COM) and the statistical map of a cluster of target 
locations are used to estimate the initial surgical target of each individual patient. 

Representation of surgical instruments: Up to five multiple virtual probes can be 
manipulated simultaneously or independently to simulate the real surgical procedures. 
When implemented with the Frame Finder algorithm, this system also provides the 
simultaneous display of the tip positions of these trajectories in both image space and 
stereotactic frame space. 

Visualization and Navigation Platform: Within this system, coded functional data, 
plotted directly onto the patient’s pre-operative image along a virtual trajectory 
corresponding to the position and orientation of the physical probe, can be non-rigidly 
transformed to the standard brain template automatically.  

 

 

Fig. 1. The primary graphical user interface of the system displays the 3D image volume and 
2D slices of a patient (upper) and those of the standard brain template (lower). The digitized 
atlas is registered and fused with each image. A T2-weighted image is also shown fused with 
the patient image. The control panel shows the tip locations of the five probes. 

3   Clinical Application 

Usually, the initial pre-operative surgical target is selected by the neurosurgeon using a 
geometric technique based on measurements relative to the AC-PC positions. For each 
of the eight STN DBS cases (5 left and 3 right procedures), an experienced stereotactic 
neurosurgeon performed the pre-surgical planning and targeting using this standard 
approach, carried out the surgical procedure according to his plan, and refined the 
surgical target through electrophysiological recording and stimulation. At the same 
time, one of the authors (TG), a non neurosurgeon familiar with deep brain anatomy, 
estimated the surgical target location and trajectory orientation for the placement of a 
DBS electrode independently of the surgeon using the neurosurgical visualization and 
navigation system integrated with the customized functional and anatomical data. For 
each case, the pre-operative MR image of each patient was loaded into our system and 
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non-rigidly registered to the standard brain template. Then the 3D transformation and 
non-rigid displacement grid file generated by registration were applied to map the data 
in the electrophysiological database, the collection of previous surgical targets, the 
digitized Schaltenbrand atlas, as well as segmented deep-brain nuclei to the patient 
brain image. In this preliminary study, the effectiveness of our system for surgical 
targeting was evaluated by comparing the target locations estimated by the non-expert 
with those identified by the neurosurgeon.  

 

Fig. 2. The magnified version of Fig. 1; Purple lines (central): Central electrodes; Cyan lines 
(parallel to the central line): surgical trajectories; Yellow spheres (small): micro-recording data; 
Cyan spheres (medium): micro-stimulation data; White spheres (large): macro-stimulation data; 
Mesh object: sub-thalamic nucleus (STN); the segmented STN and electro-physiological data 
are non-rigidly registered from the standard brain space to the patient brain image 

4   Results 

4.1   Clinical Validation of the Non-rigid Registration Algorithm 

Accurate registration plays a critical role in localizing surgical targets with the 
references of standardized anatomical and functional information. Registering the 
collection of previous final surgical targets from the standard database to an 
individual patient image yields a probabilistic estimation of the target location for the 
patient. To assess our registration algorithm clinically, a cluster of 18 left STN DBS 
surgical targets contained in the categorized database was non-rigidly transformed to 
the images of 5 patients who had received similar surgical procedures. That of the 12 
right STN DBS targets in another database was mapped to the images of 3 patients 
undergoing right STN DBS. Table 1 shows the comparison between the center of 
mass or the most significant position on the probability map of database-initialized 
locations and the actual surgical targets of the 8 patients. The results demonstrate that 
the registration algorithm performs well within the homogeneous regions in the deep-
brain. Although the average distance between the registered centroid of the collection 
of previous surgical targets and the target locations of the new patients is 
2.19±0.72mm, this technique nevertheless provides a suitable initial estimate of the 
pre-operative surgical target, which may be further refined with additional functional 
and anatomical information available on the neurosurgical system. 

Micro-stimulation data

Micro-recording data

Macro-
stimulation 
data 
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Table 1. Absolute differences between the database-initialized and the real surgical targets 

Difference x y z d(x,y,z) 
Avg. (mm) 1.22 1.28 1.08 2.19 
Max (mm) 2.09 2.67 2.3 3.6 
Min (mm) 0.73 0.83 0.33 1.55 
Sd (mm) 0.48 0.59 0.73 0.72 

4.2   Application of the Segmented Deep-Brain Nuclei 

If the registration is accurate, the atlas-based segmented deep-brain nuclei 
transformed to a patient brain space should have a high percentage of overlap with the 
patient’s own nuclei. The accuracy of our registration algorithm suggests that the 
anatomical information provided by a specific segmented nucleus registered to a 
patient (Fig. 3) should indicate the spatial location of the optimal surgical target 
within the nucleus. At our institution, the dorsolateral portion of STN is regarded as 
the most effective stimulation site in STN DBS. Acknowledging the centroid position 
of the segmented STN and its spatial relationship with respect to the theoretical 
surgical destination, the neurosurgeon may more confidently localize the surgical 
target. We compared the centroid of the segmented STN and the real target location 
for each of the eight patients. Table 2 reports the absolute differences between them. 
75 percent of the actual surgical targets are located dorsolateral to the corresponding 
centroids in our study. 

 

Fig. 3. Mesh object: STN; Yellow sphere: the centroid of STN; White spheres: surgical targets 
of previous patients; Colour-coded map: the probability map of a collection of left STN DBS 
targets; Red sphere: the actual surgical target 

Table 2. Absolute differences between the centroids of the segmented STN and the real targets 

Difference x y z d(x,y,z) 
Avg. (mm) 1.41 1.99 0.89 2.84 
Max (mm) 2.24 3.23 1.41 3.52 
Min (mm) 0.32 0.01 0.23 1.24 
Sd (mm) 0.73 1.15 0.58 0.85 

Centroid of STN

Actual surgical target

Targets of previous patients

Probability map
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4.3   Effectiveness in Surgical Targeting 

We evaluated the effectiveness of our neurosurgical visualization and navigation 
system in surgical targeting on eight STN DBS patients. The average distance 
between the non-expert-planned surgical targets and the expert-localized ones was 
0.58±0.49mm, 0.70±0.37mm, and 0.69±0.34mm in x, y, and z directions respectively. 
In addition, the surgical sites determined with the combined information from both 
electrophysiological database and the anatomical resources were closer to the final 
surgical targets chosen by the neurosurgeon than those defined either by regular 
image-based techniques, or by the mapping of a cluster of surgical targets on the pre-
operative images. Practically, these residuals indicate that an initial estimation of 
target location, made on the basis of this software, is typically within 1.7mm of the 
real surgical target. Therefore, the final surgical target can be reached by slightly 
refining the initiation of the target position estimated using this system with greatly 
reduced electrophysiological exploration. 

Table 3. Absolute differences between the system estimated and the real surgical targets 

Difference x y z d(x,y,z) 
Avg. (mm) 0.58 0.70 0.69 1.67 
Max (mm) 1.28 1.35 1.27 2.75 
Min (mm) 0.06 0.30 0.2 0.65 
Sd (mm) 0.49 0.37 0.34 0.70 

5   Discussion 

This visualization and navigation system has been used both pre- and intra- 
operatively for planning the surgical trajectories, plotting and analyzing functional 
data in patient pre-operative image space during eight separate surgeries. Even 
without considering the possibility of brain movement/shift, this system has been 
proved helpful in facilitating the identification of surgical loci for STN DBS. The 
visualization capabilities, designed for presentation of all the relevant functional and 
anatomical data along with multiple virtual surgical instruments, have made 
simulating real surgical procedures feasible. In conjunction with the function of 
automatic calculation of frame-to-MRI transforms, the intra-operatively acquired data 
can be saved in a text file whose header contains the code describing the physical 
information of the patient and specifications of the probes used during the procedure. 
Meanwhile, the homologous data in the standard brain space can be stored in the 
functional database. This initial pilot study, involving only one non-expert and one 
neurosurgeon, yielded promising results that need to be further validated on more 
subjects and a study of inter and intra “non-expert” variability for the application of 
our system to deep-brain neurosurgical procedures. While only a single neurosurgeon 
was involved in this work to date, we hope to address this problem through a multi-
centre study in the future. Despite the difficulty and complexity of the accurate STN 
segmentation on the patient image files, comparing overlapping ratio between the 
registered segmented STN of each patient and that of the standard brain atlas could 
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also provide valuable measurements for the validation of the registration algorithm. 
Although the system has reached a stage of development where prediction of surgical 
targets is possible, further clinical evaluation is required for thorough validation and 
application of this system in stereotactic deep-brain neurosurgical procedures. 
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Abstract. The introduction of surgical robots in Minimally Invasive Surgery 
(MIS) has allowed enhanced manual dexterity through the use of 
microprocessor controlled mechanical wrists. Although fully autonomous 
robots are attractive, both ethical and legal barriers can prohibit their practical 
use in surgery. The purpose of this paper is to demonstrate that it is possible to 
use real-time binocular eye tracking for empowering robots with human vision 
by using knowledge acquired in situ. By utilizing the close relationship between 
the horizontal disparity and the depth perception varying with the viewing 
distance, it is possible to use ocular vergence for recovering 3D motion and 
deformation of the soft tissue during MIS procedures. Both phantom and in 
vivo experiments were carried out to assess the potential frequency limit of the 
system and its intrinsic depth recovery accuracy. The potential applications of 
the technique include motion stabilization and intra-operative planning in the 
presence of large tissue deformation. 

1   Introduction 

The field of Minimally Invasive Robotic Surgery (MIRS) is increasingly attracting 
considerable attention from the computer-assisted surgical research community. In 
robotic surgery, dexterity is enhanced by microprocessor controlled mechanical 
wrists, which allow motion scaling for reducing gross hand movements and the 
performance of micro-scale tasks that are otherwise not possible. The continuing 
evolution of the technology, including force feedback and virtual immobilization 
through real-time motion adaptation, will permit more complex procedures such as 
beating heart surgery to be carried out under a static frame-of-reference. The use of 
robotically assisted minimally invasive surgery provides an ideal environment for 
integrating patient specific pre-operative data for performing image guided surgery 
and active constraint control, which can all be conducted without the need of the 
surgeon to remove his/her eyes from the operating field of view. Under the dichotomy 
of autonomous and manipulator technologies in robotics, intelligence of the robot is 
typically pre-acquired through high-level abstraction and environment modelling. For 
systems that require robotic vision, this is known to create major difficulties. 
Additionally, the ethical and legal barriers imposed on interventional surgical robots 



844 G.P. Mylonas et al. 

give rise to the need of a tightly integrated perceptual docking between the operator 
and the robot.  

The purpose of this paper is to demonstrate that eye gaze derived from binocular 
eye-tracking can be effectively used to recover 3D motion and deformation of the soft 
tissue during MIRS. Compared to the use of other input channels, eye gaze is the only 
input modality that implicitly carries information about the focus of the user’s 
attention at a specific point in time. This allows seamless in vivo registration of the 
motion and deformation fields within the area that is directly under foveation. This 
research extends our existing work in eyetracking and saccadic eye movement 
analysis, for gaze-contingent compensation of complex motion of the soft tissue. 

2   Methods 

2.1   Ocular Vergence Measurement for Gaze-Contingent 3D Deformation 
Recovery 

One of the strongest depth cues available to human is the horizontal disparity that 
exists between the two retinal images. There is a close relationship between the 
horizontal disparity and the depth perception, varying with the viewing distance. 
More specifically, as the fixation point moves away from the observer, the horizontal 
disparity between the two retinal images is diminished and vice-versa. In order to 
extract quantitative information regarding the depth of the fixation point, ocular 
vergence needs to be measured, thus providing a veridical interpretation of 
stereoscopic depth [1]. One technique of achieving that is video-oculography. This is 
a non-intrusive, video based, approach used to measure the corneal reflection from a 
fixed IR light source in relation to the centre of the pupil [2]. The two centres define a 
vector, which can be mapped to a unique eye gaze direction. The combined tracking 
of both eyes provides the binocular vergence measure, which in turn determines the 
fixation point. In order to establish the relationship between pupil-glint vectors and 
points in 3D space, calibration is required prior to any eye tracking session. Different 
methods of binocular eye-tracking calibration exist. In [3] and [4], two of these 
calibration methods are described. Our eye-tracking calibration method however, 
takes also into consideration the intrinsic and extrinsic robot camera characteristics, 
including their relative pose. 

2.2   Experimental Design and System Setup 

In order to assess the basic characteristics of using ocular vergence for 3D depth 
recovery, a replication of the DaVinci (Intuitive Inc, CA) robotic surgical 
environment was created. The system consists of a stereoscopic console and an 
industrial robot equipped with a stereo-camera rig. The stereo console allows the user 
to look at 3D video captured by the two cameras held by the robot. Inside the 
stereoscope, a video based binocular eye tracking system was installed [4]. With 
binocular eyetracking, it is possible to determine the 3D position of the fixation point 
of the user while observing the stereo images. The robot used in this experiment is a 
Stäubli RX60 robotic arm with six degrees of freedom (DOF) and a repeatability 
accuracy of ±0.02mm at high speed and acceleration. For accurate positioning of the 
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camera tips, a Polaris (Northern Digital Inc, Ontario) 6-DOF tracker was used. The 
Polaris tracker is able to simultaneously track a number of passive, active, wired and 
wireless IR tools in real time. Data interfacing is achieved through RS-232/RS-422 
and the provided tracking accuracy is 0.35 mm RMS at a sampling rate of 60Hz. 

 

Fig. 1. Top: The phantom heart at different deformation levels. The oil filled pistons (only 3 
shown here) allow for reproducible deformation control through numbered injection levels. 
Bottom: The reconstructed phantom heart from a series of CT slices. On the right, CT slices at 
exactly the same position of the phantom and at three deformation levels. 

  

Fig. 2. On the left, the robot with the mounted optical-tracker retroreflectors and the stereo-
camera rig. On the right, the polaris optical tracker is visible on the background. 

For assessing the accuracy of the proposed 3D depth recovery framework through 
ocular vergence, a phantom heart model was created by using thixotropic silicone 
mould rubber and pre-vulcanised natural rubber latex with rubber mask grease paint 
to achieve a specular appearance and high visual fidelity. The phantom is deformable 
by means of a system of 4 oil filled pistons with controllable injection levels. In this 
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way, the amount of deformation can be accurately controlled and reproduced at any 
time as this can be seen in Fig. 1. The same figure also depicts the reconstructed 
phantom heart from a series of CT slices at different deformation levels. In Fig. 2, the 
entire setup can be seen. For determining the exact position of the epicardial surface, 
an Aurora (Northern Digital Inc, Ontario) 5-DOF electromagnetic catheter-tip tracker 
was used. This device has an accuracy of 0.9-1.3mm RMS, depending on the distance 
of the tool from the magnetic field generator. The maximum sampling rate is 45Hz for 
up to 5 tracked tools, which drops down to 22Hz when more than 6 tools are tracked. 

2.3   Autoregressive Moving Average Modelling (ARMA) for Visual System 
Identification subjected to Oscillatory Stimulus 

In order to study the oculomotor response, it is necessary to obtain a model that can 
closely describe the system. To this end, the first part of our experiment is to record a 
set of data for deriving the input response of the eye-tracking system. By collecting 
the stimulus and the response data sets, the Steiglitz-McBride method was used [5] to 
derive the rational transfer function of the proposed ocular vergence 3D depth 
recovery system. This method is commonly referred to as ARMA modelling, which 
attempts to find the coefficients of the rational transfer function that approximates a 
given time-domain linear system. This method is based on identifying the unknown 
system from given input and output sequences that describe the system's behaviour. 
The method solves for the numerator and denominator coefficients simultaneously in 
an attempt to minimize the signal error between the output and the given output 
signal. To include the effect of exogenous inputs to the system in a time series model, 
the basic ARMA model can be further extended to a number of more elaborate 
variants, like ARMAX (Autoregressive Moving Average with Exogenous Input). A 
general input-output linear model for a single output system with input u and output y 
can be written [7] 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )
=

+−=
nu

i
iiii teqDqCnktuqFqBtyqA

1

 (1) 

In the above equation, ui is the input i and A, Bi, C, D and Fi are polynomials in the 
shift operator (z or q). The general model is defined by setting the time delays nk and 
the orders of the above polynomials. According to the variance in use, the above 
equation can be reduced down to a special case, e.g., for ARMAX Eq. (1) can be 
confined to 

( ) ( ) ( ) ( ) ( ) ( )teqCnktuqBtyqA +−=  (2) 

2.4   Gaze-Contingent Decoupling of Cardiac and Respiratory Motion   

One of the basic problems in intraoperative registration between 3D tomographic data 
and cardiac tissues is the large deformations that can occur during the MIS 
procedures. If deformation is significant, convergence of any iterative registration 
algorithm is not guaranteed. One of the largest components of cardiac deformation is 
the respiratory motion, which is typically coupled with the higher frequency cardiac 
motion. We show in this paper that gaze-contingent motion recovery of the composite 
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cardiac motion is practical and in vivo decoupling of the superimposed components is 
possible. Given that the dominant variation of the gaze recovered signal is due to 
cardiac motion and it has a constant direction during a given time window, then 
Wavelet and Principal Component Analysis can be employed to decouple the motion 
components [6]. The principal vector is expected to lie on the same plane over time, 
thus projecting the signal on this plane can isolate any variations due to respiration. 

3   Results 

3.1   Binocular System Frequency Response 

To assess the binocular system frequency response, experiments were carried out 
involving six subjects. The first set of experiments investigates the oscillatory response 
of the binocular visual system over a frequency range. The subjects involved, were 
asked to keep fixating on a feature of their preference on the surface of the heart 
model. While eyetracking is performed, the robot is set to oscillation of gradually 
increasing frequency in the z-axis (depth). While the 3D fixation point of a subject is 
tracked, the position of the robot cameras is also recorded by the Polaris optical 
tracker. After data collection, ARMAX modelling is used to derive the coefficients of 
the parametric system that describes the transfer function of the system. Table 1 
summarises the response of the visual system in oscillation on the z-axis, which 
indicates that the response of the system is good up to frequencies of about 1.8Hz. 
Beyond this limit, there is considerable attenuation and noticeable phase shift.   

Table 1. Error analysis comparing the oculomotor responce of the 6 subjects over a range of 
frequencies 

Amplitude Phase (rad) Frequency 
(rad/s) Mean std Mean std 

0.1 
1.0 
3.0 
6.0 
10.0 
12.0 

0.950 
0.918 
0.822 
0.650 
0.577 
0.520 

0.118 
0.132 
0.204 
0.156 
0.125 
0.126 

-0.031 
-0.307 
-0.871 
-1.494 
-2.394 
-2.955 

0.016 
0.120 
0.098 
0.150 
0.278 
0.316 

3.2   Gaze-Contingent Depth Extraction and Tissue Deformation Tracking 

The second part of our experiment was to extract gaze-contingent depth information 
from the phantom. For this experiment, an Aurora catheter tip was positioned on the 
epicardial surface of the phantom heart. Though slightly less accurate than the Polaris 
system, the Aurora tools were used because of their small size. These tools can be 
easily embedded over or under the epicardial surface and not influence the fixation 
point position as this would be the case with the much larger Polaris tools. The 
subjects were asked to keep fixating on a surface feature close to the position sensor. 
While the phantom was subjected to different levels of deformation, both the fixation 
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point and the position of the electromagnetic sensor were tracked. In Fig. 3, the gaze-
contingent recovered deformation is compared with the actual deformation levels. 
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Fig. 3. The recovered deformation from ocular vergence. On the right, actual deformation of 
the phantom heart surface vs. the gaze-contingent reconstructed deformation. On the left, the 
setup for the experiment. 

3.3   Gaze-Contingent In-Vivo Cardiac and Respiratory Motion Decoupling 

To assess the in vivo accuracy of the proposed ocular-vergence 3D depth recovery 
system, data from a real robotic assisted operation where used. The operation was a 
totally endoscopic coronary artery bypass graft (TECAB) performed with the DaVinci 
robot.  The stereo footage was played back in the stereoscopic viewer while a subject 
was eyetracked. The purpose of the experiment was to demonstrate how cardiac and 
respiratory motion can be recovered and decoupled using eyetracking. Fig. 4 shows a 
snapshot of the two views from a 40sec long footage. A large portion of the view was 
filled with the robotic endowrist, grasping the cardiac stabilizer just before positioned 
in place.  During the entire footage, the laparoscope was stationary. The deformed 
tissue under foveation is at the bottom left portion of the image. What appears on the 
video sequence is a deforming epicardial surface with the respiratory motion 
principally manifested along the horizontal axis. 
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Fig. 4. The recovered epicardial surface deformation for a TECAB procedure. On the left, a 
snapshot of the binocular views used on the experiment is shown. On the right, the eyetracking 
acquired tissue deformations on the x, y and z-axes are plotted. 
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The cardiac motion is superimposed on top of this motion throughout the respiratory 
periods. The subject was asked to keep fixating a landmark on the tissue. Fig. 4 on the 
right, shows the collected eyetracking data on the x, y and z-axis (depth). Wavelet and 
PCA analysis is used to successfully decouple respiratory from cardiac motion as it 
can be seen on Fig. 5. 
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Fig. 5. The extracted cardiac motion by using Wavelet and PCA analysis of the gaze data 

4   Discussion and Conclusions 

In this paper, we have demonstrated the potential of gaze-contingent soft tissue 
motion and deformation recovery in MIRS. In this study, it is shown that the cut-off 
of 3D depth recovery with the proposed method reached at frequencies of about 1.5-
1.8Hz when oscillations occur on the z-axis (depth). This corresponds to a heartbeat 
rate in the range of 100bps. It is expected that the response of the visual system in 
oscillations on the x and y axes will be better. In this case, and when depth recovery is 
not required, it would be possible to decouple the two eyes during eyetracking and use 
just the saccadic information of one of them preferably by using the dominant eye. In 
this way, it is possible to eliminate a large amount of noise caused by the intrinsic 
behaviour of the visual system during binocular coordination. It is also possible to get 
a better overall response by re-positioning the robotic endoscope in such a way that 
the principal oscillation component is shifted from z to the other two axes (x or y). 

It is worth noting that there are also other important factors that can adversely affect 
the dynamic response of the visual system. These factors are accumulated through the 
video relay chain from the endoscope cameras up to the monitors of the stereoscope. It 
is worth noting that the human visual system is highly dynamic, none of the fitted 
models could accurately describe the response of the visual system to the oscillatory 
stimulus. We have demonstrated in this paper that it is practically possible to determine 
the 3D deformation of the surface at an oscillation frequency of about 100bps. 
Potential applications of the proposed approach for MIRS include motion stabilization, 
active constraints and intra-operative image registration under large tissue deformation.  
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Abstract. We investigated a method, motion compensated integration
(MCI), for enhancing stent Contrast-to-Noise Ratio (CNR) such that
stent deployment may be more easily assessed. MCI registers fluoroscopic
frames on the basis of stent motion and performs pixel-wise integration
to reduce noise. Registration is based on marker balls, high contrast in-
terventional devices which guide the clinician in stent placement. It is
assumed that stent motion is identical to that of the marker balls. De-
tecting marker balls and identifying their centroids with a high degree of
accuracy is a non-trivial task. To address the required registration accu-
racy, in this work we examine MCI’s visualization benefit as a function
of registration error. We employ adaptive forced choice experiments to
quantify human discrimination fidelity. Perception results are contrasted
with CNR measurements. For each level of registration inaccuracy inves-
tigated, MCI conferred a benefit (p < 0.05) on stent deployment assess-
ment suggesting the technique is tolerant of modest registration error. We
also consider the blurring effect of cardiac motion during the x-ray pulse
and select frames for integration as a function of cardiac phase imaged.

1 Introduction

Coronary artery disease (CAD) afflicts approximately thirteen million Ameri-
cans [1]. It is caused by the buildup of plaques and fatty deposits on the interior
walls of coronary arteries. These narrowed (stenotic) vessels restrict blood flow
to the heart and can ultimately lead to myocardial infarction. One of the stan-
dard techniques used to restore function to an impaired coronary vessel is stent
deployment. Using x-ray fluoroscopy, the operating cardiologist guides a stent,
compressed on a guidewire, through a catheter in the patient’s vasculature to
the site of the stenosis. The position of the stent on the guidewire is delineated
by two radio-opaque marker balls. The marker balls serve as high contrast visual
cues in the x-ray imagery for the clinician to position the stent prior to deploy-
ment. Once the stent is positioned to span the site of the stenosis, the balloon is
inflated to expand the stenotic vessel and simultaneously deploy the stent. Fig-
ure 1 depicts an example fluoroscopic image containing a catheter, guidewire,
marker balls, stent, and balloon. The deployed stent is often barely percepti-
ble, even with the visual cues provided by the marker balls, making it difficult
to ascertain whether the stent has been fully deployed. Partial deployment oc-
curs when some portions of the stent fail to fully expand. This is problematic

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 851–858, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



852 J.C. Ross et al.

Fig. 1. Sample fluososcopic image. The marker balls on the guidewire assist in visual-
izing the stent location.

since stent malapposition is believed to increase the chance of restenosis. In an
effort to determine whether a stent is completely deployed, a cardiologist will
typically administer a bolus of contrast agent to visualize the flow through the
stented vessel via fluoroscopy. A uniform flow profile along the length of the
stent indicates proper dialation of the stenosis and can be used to infer full stent
deployment. In some cases the ends of an otherwise fully deployed stent are
“pinched” (i.e. improperly deployed) while the flow profile of the bolus suggests
successful deployment. The flow profile of a contrast bolus is an indirect and
incomplete measurement of stent deployment. There exists a clinical need for
direct assessment of stent deployment.

We overview a method, motion compensated integration (MCI), for enhanc-
ing the stent CNR so that stent deployment may be assessed directly. Here,
CNR is defined as the difference between the stent mean intensity and the back-
ground mean intensity divided by the background noise standard deviation. The
background noise standard deviation is computed over a flat image region. The
method parallels the approach taken by Koolen [2]. In this work we aim to mea-
sure the benefit of applying MCI to fluoroscopic x-ray sequences as a function
of registration accuracy. We measure MCI performance in terms of human per-
ception studies and contrast these results with computed CNR. These results
may be used to specify registration performance. In section 2 we survey de-
vice properties, common imaging geometries and techniques leading to expected
device CNR. In section 3 we briefly overview our method for improving stent
CNR. In sections 5 through 7 we present our experimental approach, results,
and discussion. Finally, in section 8 conclusions will be drawn.

2 Devices, Acquisition Geometries, and Expected CNRs

In order to ascertain the proper deployment of a stent, the shape of the stent
must be resolved. In a projection x-ray image of a stent, multiple struts often
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Table 1. CNR Values for Patient Thicknesses and System Parameters

Patient Thickness (cm) kVp mAs Cu Filtration (um) Marker Ball CNR Stent CNR
20 75 1.1 200 9.21 2.57
25 85 0.767 200 5.20 1.31
30 120 0.303 200 2.75 0.56
35 120 0.303 200 1.54 0.31
40 120 0.303 200 0.87 0.19

occupy the same ray path from source to detector. Here, as a baseline, we will
determine the CNR of an individual stent strut for a range of common patient
thicknesses subject to typical x-ray system performance for fluoroscopy. Stent
struts are commonly made of thin (∼0.16mm) wires of a cobalt-chromium or
stainless steel alloy. In the table below are shown the calculated CNRs for a
0.16mm thick cobalt-chromium stent strut and a 1.0mm Tungsten markerball
for a variety of patient thicknesses. The simulated X-ray system was operating
in fluroscopic mode (<10Rad/min) filtered by a 200 micron layer of copper
at a frame rate of 30 frames per second (20cm FOV, 70cm SOD, 90cm SID).
The background noise term was calculated based on the quantum noise and an
electronic noise term to simulate a digital flat-panel detector. As can been seen
from the table, there is an order of magnitude variation in stent and markerball
CNR as a function of projected patient thickness.

3 Motion Compenstated Integration (MCI)

The objective of MCI is to reduce the quantum noise in the x-ray image while re-
taining stent contrast. The strategy is to take a series of x-ray images, co-register
the frames on the basis of stent location, and average the frames. We assume
the stent motion is rigid to that of the markerballs and that the markerballs
are present in each of the x-ray images. Due to their relatively high CNR, the
markerballs are more easily detected and are used as a surrogate motion estimate
for the stent. Each frame in the fluoroscopic sequence is registered to the first
frame on the basis of the markerball centroids using a similarity transform [3].

X-ray frames with significant out of plane motion, identified by a foreshort-
ening of the distance between the markerballs may be ignored. Similarly, frames
exhibiting significant blurring, identified by ECG or extended markerball foot-
print, may also be discarded.

The quantum x-ray noise is modelled as a Poisson process. For regions with
constant mean, the noise may be equivalently modelled as an independent, iden-
tically distributed (i.i.d.) Gaussian process. It is assumed that for a given pixel
location, the mean is constant among the registered frames. Therefore, the noise
may be temporally averaged resulting in a noise reduction by

√
N , where N is

the number of frames averaged.
Once the sequence frames have been registered to the reference frame, they

are temporally averaged according to the following expression
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MCI =
1

n + 1

[
I0 +

n∑
i=1

Ti(Ii)

]
(1)

where n+1 is the number of frames in the sequence, I0 is the reference frame, Ii
is the ith frame in the sequence, and Ti is the transformation that registers frame
Ii to the reference frame. The result is referred to as the motion compensated
integration image, MCI.

4 Marker Ball Detection and Tracking

A critical issue for MCI to be routinely used in a catheterization laboratory is
automated unsupervised detection and tracking of the marker balls. This topic
is beyond the scope of this paper, and here we briefly outline our dynamic
programming based approach for marker ball detection and tracking.

The first step is to design a matched filter for a single marker ball on the basis
prior knowledge of the device and acquisition geometry. Detecting the marker
balls individually avoids the need to address the orientation of marker ball pairs.

The marker ball matched filter is applied to each frame. The processed frame
is then thresholded for a specified constant false alarm rate, N . The N detections
are paired in accordance with a distance criterion determined by the device
geometry and imaging magnification factor. Detects which are not successfully
paired are discarded. Paired detects are tracked through multiple frames on the
basis of ECG with an allowance for respiratory motion. Paired detects which
fail to track are discarded. We further discard detects whose motion deviates
from an ECG periodicity assumption. After a small number of cardiac cycles,
the marker balls are identified and tracked through the frames.

5 Experimental Methods

The objective of our work was to quantify the benefit of MCI, as a function
of registration accuracy, relative to the standard fluoroscopic sequence for stent
deployment assessment. We employed a four alternative forced-choice (4-AFC)
discrimination paradigm to measure the necessary stent CNR for the observer to
correctly assess stent deployment 90 percent of the time [4] for both our baseline
fluoroscopic sequence and for MCI subject to a specified registration accuracy.

At a high level, AFC experiments involve visually discriminating between
two objects, a reference object and a test object, fully and partially deployed
stents respectively. For a given trial, an observer is presented with four images –
one contains the partially deployed stent. The contrast with which the stents are
displayed is adjusted over the course of many trials such that, at the experiment’s
conclusion, the contrast level for which the observer achieves 90 percent detection
accuracy of the test object is reliably identified.

The AFC experiments required a database of fluoroscopic sequences and
stent templates. We created a database of clinically acquired sequences that had
a relatively uniform level of noise and background clutter.
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Next, we digitally added a guidewire with marker balls to each database
sequence with periodic elliptic interframe motion. A 0.75mm (3 pixel) guidewire
with 1.5mm (6 pixel) marker balls was synthetically generated and low pass
filtered to mimic detector MTF. Our fully deployed stent template was based
on an x-ray image of a Cordis drug-eluting stent with 160μ strut diameter. This
stent template was manipulated by downsampling both ends to simulate partial
deployment. The intensity of the downsampled ends was adjusted to maintain
the level of total x-ray attenuation by the stent.

Registration error was modelled in polar coordinates with uniform distri-
bution in θ and Gaussian, N(0,σ2), in r. We measured MCI performance for
σ = [0.25, 0.75, 1.25, 2.0, 4.0].

We followed the reference/test technique described in [4] to conduct our
experiments. The stent contrast was adapted so as to maintain observer perfor-
mance at 90% probability of making the correct choice corresponding to a de-
tectability index, d′, of 2.4517 [5]. Results were obtained after 100 reference trials
interlaced with 100 test trials. Contrast levels were determined from maximum-
likelihood estimates, and standard errors were estimated by a method that ac-
counted for adaptation. We used the Michelson contrast for our experiments:

C =
|μb − μs|
μb + μs

(2)

where μb and μs were the mean gray-scale value of the background and stent,
respectively. The normalized stent templates were added to the sequences ac-
cording to the following expression:

A′ = A− 2μbC
1 + C

(1− S) (3)

where A is the anatomical sequence, S is the stent template sequence, and A′

is the resultant sequence.

Fig. 2. Left: Example reference experiment trial. Right: Example test experiment trial.
The stents were added to the fluoroscopy sequences with a high level of contrast for
display purposes.
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For the reference experiment, four sequences were randomly selected from
the database, and stent templates (three fully deployed, one partially deployed)
were added to them according to (3). They were then simultaneously displayed
on a medical quality gray-scale monitor with the location of the test sequence
randomly varied. The observer selected the sequence most likely to contain the
partially deployed stent.

Each reference trial was followed by a test trial. Interlacing the reference
(fluoroscopic sequence) and test (MCI) trials minimized observer effects such as
fatigue, lapses in attention, or possible physiological changes that could occur
during the experiments [4]. Figure 2 shows example reference and test trials.

6 Results

Contrast sensitivity is defined as the inverse of the final Michelson contrast val-
ues following adaptation. A higher sensitivity indicates an improved ability to
detect the partially deployed stent. The ratio of test sensitivity to reference sen-
sitivity for a given experiment is used in order to compensate for inter-observer
variation. A ratio greater than one indicates an improved discrimination ability
using MCI.

Fig. 3. Left: contrast sensitivity results for observers A, B, and C. Right: pre-MCI
CNR results for observers A, B, and C.

Figure 3 gives contrast sensitivity ratios for each observer. A one-sample t-
test shows that MCI provides the observer a significant (p < 0.05) advantage
for performing the discrimination task for each sigma value investigated. There
is not a statistically significant trend over sigma values of 0.25, 0.75, and 1.25,
but there is a fall-off in contrast ratio levels exceeding 1.25. The decrease in ra-
tios over this range indicates the blurring due to registration error is impacting
perception. Figure 3 also shows pre-MCI CNR values for each observer (corre-
sponding to test experiment final contrast values). It is reassuring to see that
these values are representative of what we can expect to observe as presented in
table 1.
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7 Discussion

MCI enhances the visibility of stents through two mechanisms: the integration
of multiple image frames to reduce noise; and removing motion enabling the
observer to inspect a spatially static stent. It has been shown that the spatio-
temporal bandwith of the human visual system degrades the detection of low
contrast targets that are moving [6]. Whiting et al have shown that the detection
of vessel defects is enhanced when the vessels are stabilized [7].

MCI performance degrades with registration error, but more slowly than
perhaps expected. Although a stent strut width is on the order of one pixel,
the projected stent scaffolding width often spans several pixels. This multi-pixel
projection footprint coupled with the knowledge that the observer is concerned
with the overall shape of the stent, not individual struts, leads to the expectation
that a sub-pixel registration accuracy is not required. Indeed, our perception
studies shows MCI to be beneficial for a registration error sigma up to a value of
2 (the benefit of MCI at a sigma value of 4 is marginal). Given that a marker ball
may be reliably detected, and it’s radius is typically 3 pixels, a registration error
sigma of 2 should be achievable. This alone motivates investigation of real-time
unsupervised markerball detection and tracking approaches.

Fig. 4. MCI enhancement applied to a clinical sequence. Left: frame taken from original
sequence. Middle: all fluoroscopy frames used for enhancement. Right: frames with
motion blurring omitted from integration.

MCI has two opportunities to improve upon the perception performance
reported. First, more frames may be used in the integration. However, noise
decreases at a rate of

√
N , so the law of diminishing marginal returns applies.

Second, we made no attempt to manipulate the displayed contrast of the MCI
image relative to the standard fluoroscopic sequence. However, the opportunity
to increase the displayed contrast of the MCI image exists as a result of the
significantly reduced noise. Finally, we need to be cautious in that cardiac mo-
tion during the x-ray pulse can significantly degrade the stent and markerball
signatures. In the application of MCI, x-ray frames associated with significant
motion should be discarded. In Figure 4 we present a clinical example of the
improved performance achieved with MCI by discarding such frames.
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8 Conclusion

Motion Compensated Integration (MCI) improves discrimination between par-
tially deployed and fully deployed stents aiding deployment assessment. Proper
deployment is believed important to maximize patient outcome. The required
registration accuracy (∼ 2 pixels or less) relative to the markerball radius (∼ 3
pixels) appears achievable given that markerballs may be reliably detected.

MCI provides measurable, but modest improvement on observer assessment
of stent deployment. For MCI to gain wide clinical use requires that it be appro-
priately integrated into the interventional cardiologist’s workflow. This implies
near real-time robust unsupervised markerball detection and tracking. Also, con-
trast enhancement of the displayed MCI image remains to be explored.
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Abstract. The paper describes a method for automatic detection of
colonic polyps, robust enough to be directly applied to low-dose CT
colonographic datasets. Polyps are modeled using gray level intensity
profiles and extended Gaussian images. Spherical harmonic decomposi-
tions ensure an easy comparison between a polyp candidate and a set of
polypoid models, found in a previously built database. The detection sen-
sitivity and specificity values are evaluated at different dose levels. Start-
ing from the original raw-data (acquired at 55mAs), 5 patient datasets
(prone and supine scans) are reconstructed at different dose levels (down
to 5mAs), using different kernel filters and slice increments. Although the
image quality decreases when lowering the acquisition mAs, all polyps
above 6mm are successfully detected even at 15mAs. Accordingly the ef-
fective dose can be reduced from 4.93mSv to 1.61mSv, without affecting
detection capabilities, particularly important when thinking of popula-
tion screening.

1 Introduction

Screening for colorectal polyps (precursors of colonic cancer in 90% of cases [1])
is currently advocated, based on the proven hypothesis that early detection and
removal of colonic polyps results in a reduced mortality rate [2]. Amongst other
methods Computed Tomographic Colonography (CTC) has been proposed as
a screening candidate. It’s main advantage compared to standard fiber optic
colonoscopy is its minimal invasiveness and better patient tolerance [3]. Recent
studies proved that CT colonography is an accurate method for detecting polyps
above 5 mm in diameter.

The presence of ionizing radiation, inherent to CT acquisitions, hampers
the usability of CT Colonography as a screening tool. The repeated patient
scans (as part of the screening protocol) lead to dose accumulation, which can
have harmful effects. Fortunately, the contrast between the colonic wall and
the insufflated air or CO2 (Figure 1), employed to distend the colon is high
enough and can be exploited to reduce the amount of dose per patient. Several
studies [4] [5] have shown that despite significant image quality decreases, the
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polyp detection results remain unimpaired as compared to current protocols.
One study [4] reported a dose reduction from 8.8 mSv (median effective dose
across several centers) to 3.6 mSv.

Fig. 1. CTC slice containing an 8 mm polyp. The difference between geodesic (a) and
spatial neighbors (b) on a haustral fold is illustrated; the neighbors are depicted in
white. The right column shows the fitting process and the resulting value of radius r
for a colonic polyp (c) and for normal wall (d).

During the last decade, Computer Aided Detection(CAD) methods have been
proposed [6] [7] [8] [9] in order to increase reading sensitivity and to decrease
interpretation errors and reading time associated with CTC. The input data
for these algorithms is acquired using scan protocols predefined by the software
of the scanner. To our knowledge, no study has established a relationship be-
tween the acquisition dose and the performance of the CAD technique. In this
paper, the applicability of CAD to low-dose colonographic data is assessed. Ad-
ditionally an alternative CAD method, directly applicable to low-dose datasets,
is described.

Some of the previous methods look at the curvature along the colonic wall
to detect initial polyp candidates [6] [7] [9], taking advantage of the ellipsoidal
shape of polyps. Alternatively statistical pattern recognition and geometrical
modeling [8] have been employed to detect polyps in CTC data. As described in
[9] curvature based methods tend to be susceptible to noise, a balance between
regularization (required to compute the curvature accurately) and the preserva-
tion of local image structures (improving overall sensitivity of the CAD method)
has to be found. Finding an optimal setup is challenging, even for normal colono-
scopic cases. The image noise also affects the computation process of features,
thus negatively influencing statistically based approaches.
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2 Methods

The noise present in the low-dose data is handled by using robust fitting for
generating initial polyp candidates and spherical harmonics for further analysis.
Spherical harmonics [10] were chosen for detecting spatial trends and due to
their ability to compensate for local perturbations given by noise.

The following subsections present the main steps of the proposed method;
including a brief description of the segmentation step to obtain the colonic wall
(section 2.1), the candidates generation (section 2.2), modeling of candidates
using spherical harmonics and their classification into positive and negative cases
(section 2.3).

2.1 Segmentation

The purpose of segmentation is to identify the colonic wall (found as the interface
between colonic tissue and the air/CO2 inside the colon). The method detailed
in [8], consisting of classic region growing [11], with multiple seed points (to
overcome collapsed regions), is used. The cumulative Laplacian histogram [12]
has the ability to reveal optimal threshold values between air and colonic mucosa,
especially important when using low-dose datasets (optimal threshold changes
as the dose is lowered).

The neighboring voxels of a given structure have to be determined at each
position along the colonic wall. A possible solution is given in [9] where a similar-
ity weight between neighboring voxels is computed based on the vectorial inner
product of normals. Our segmentation result is represented as an N-ary tree,
based on neighboring relations between voxels. A local breadth-first transversal
of the tree is sufficient to retrieve all neighbors with a geodesic distance (distance
along the colonic wall) smaller than a threshold Tdist.

2.2 Robust Sphere Fitting

The first step of the classification algorithm is the identification of normal colonic
wall, approximately 90% of the wall’s surface. Assuming that colonic polyps have
spherical shapes, we propose a sphere fitting method to discriminate normal
colonic wall from colonic polyps.

The sphere fitting can be reduced to a linear process by introducing the
following constraint: the center of the fitted sphere at any given location has to
be along the gradient of the current point. Figure 1 presents the fitting process
for a colonic polyp (c) and normal colonic wall (d). Analytical formulation yields:

xc = x0 − r ∗ gx

yc = y0 − r ∗ gy

zc = z0 − r ∗ gz

(1)

considering P0(x0, y0, z0) - the point on the colon wall (currently investigated),
C(xc, yc, zc) - center point of the fitted sphere, r - sphere radius (to be com-
puted), P (x, y, z) - neighboring voxels and G(gx, gy, gz) normalized gradient in
P0(x0, y0, z0).
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The sphere equation and the normalization assumption are written as:

(x− xc)2 + (y − yc)2 + (z − zc)2 = r2

g2
x + g2

y + g2
z = 1 (2)

From equations 1 and 2 r is computed as:

r =
(x− x0)2 + (y − y0)2 + (z − z0)2

2 ∗ ((x − x0) ∗ gx + (y − y0) ∗ gy + (z − z0) ∗ gz)
(3)

Equation 3 can be seen as fitting a straight line through a set of data points,
Ni = r∗Di+e, where Ni and Di are the numerator and denominator of equation
3, r - radius to be computed and e - fitting error. Instead of solving equation 3 by
a least square approach (which consistently overestimated the value of r), robust
fitting was preferred. The following merit function is minimized iteratively, as
described in [13]:

Υ (e, r) =
n∑

i=1

|Ni − e− rDi| (4)

Using robust estimation, outliers (generated by noise) are disregarded [13];
additionally the size of the current structure is estimated implicitly. Geometric
modeling will take the computed radius into account by adapting its parameters
accordingly.

Each location on the colonic wall is labeled as normal if the value of the fitted
radius is negative (concave wall patch) or greater than Tradius (convex patch,
however size is not interesting). The next step is to construct a Hough map, based
on the remaining candidates, by back projecting with a radius given by r. The
local maxima of the Hough map (identifying spherical shaped neighborhoods)
are considered as input for the geometric modeling step.

2.3 Geometric Modeling Using Spherical Harmonics

To decide if a candidate location is a true polyp the most convenient approach
is to match it to a set of known colonic polyps. However direct matching is not
possible in practice, that is why polyps are modeled using shape descriptors and
the corresponding descriptors are compared instead; the challenge becomes to
find an accurate and fast measure of similarity with regards to all possible trans-
formations. If translation and scaling can be easily addressed by normalization
(to center of mass and to an average radius value for example), rotation is more
time consuming. One possibility is to use PCA, however as mentioned in [10]
PCA-alignment is negatively influenced by signal noise, since it mainly relies
on the second order derivatives (the eigen values of the covariance matrix are
computed using only second order information).

Due to their ’almost’ spherical nature, polyps can be conveniently described
by spherical functions. We have chosen a gray level appearance model (inten-
sity profiles sampled along a sphere) and extended Gaussian images (mapping
gradient information onto the unit sphere) to describe the shape of the polyp.
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Both descriptors are spherical functions defined on the S2 sphere, unfortunately
rotationally dependant ones. Using the framework proposed in [10], a spherical
function f(θ, φ), defined on the S2 can always be decomposed into a sum of its
harmonics:

f(θ, φ) =
∑∞

l=0
∑l

m=−l almY m
l (θ, φ) (5)

The L2 norm of the spherical harmonics is rotationally invariant, forming a
complete orthonormal basis. The vector:

SH(f) = {||f0(θ, φ)||, ||f1(θ, φ)||, ..., ||fl(θ, φ)||, ...}
with fl(θ, φ) =

∑l
m=−l almY m

l (θ, φ)
(6)

is invariant to all transformations, allowing to take the L2 difference between
two harmonic representations (up to a given bandwidth bw) of two different
functions f and g as their similarity measure:

SH(f)− SH(g) =
∑bw

l=0(||fl(θ, φ)|| − ||gl(θ, φ)||)2 (7)

Fig. 2. Spherical harmonic decompositions for polyps (top row) and false positive cases
(bottom row); for each case the spherical function and the harmonic decomposition are
presented. The four spherical functions correspond, from top to bottom, to the extended
Gaussian image and to the three intensity profiles at r − 2, r, r + 2.
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Based on our previously acquired cases (see Patient data) a database of model
vectors as given by equation 6 was built. For each polyp three intensity profile de-
compositions were computed, one sampled on a sphere with radius r (computed
as described in section 2.2), and the other two at radii r − 2 and r + 2 respec-
tively. The bandwidth bw was taken as 16, the first 16 frequency components
were included into our harmonic vector. This value was considered sufficient to
capture the overall shape of colonic polyps. Additionally the extended Gaussian
image around the polyp was computed and its spherical harmonic decomposition
determined. Figure 2 presents typical feature vectors (gray level and extended
Gaussian images) and their feature vectors given by equation 6.

The database of models was clustered using hierarchical cluster trees (Matlab,
Statistics toolbox). Clustering was required since polyps can have stalk, can be
attached to the colonic wall or can lie on haustral folds, each having different
signatures (as visible in figure 2).

3 Patient Data and Results

Fifty data-sets (cases D1) belonging to 26 patients, 25 normal and 25 with 28
polyps of various sizes (6 below 6 mm, 7 between 6-9 mm, 11 above 9 mm and
4 tumors) were considered as input for our CAD scheme. Additionally a set of 5
patients (cases D2) for which raw data was available and containing 12 polyps
(4 between 6-9 mm and 8 above 9mm) formed the low-dose testing cases. All
patients underwent CT colonography prior to conventional colonoscopy; stan-
dard colonoscopic preparation was given. Informed consent was obtained from
all patients.

Cases D1 were acquired using a multi-detector CT (Multi Slice Helical CT;
Volume Zoom, Siemens, Erlangen, Germany) using 4x1 mm detector configura-
tion, 7 mm table feed per 0.5 s tube rotation, 0.8 mm reconstruction increment
as well as 60 effective mAs and 120 kV. Somatom Sensation 16 (Siemens, Er-
langen, Germany) scanned all the cases in D2, using a spiral mode with the

Fig. 3. Part of a CTC slice containing a 7 mm polyp, reconstructed at different mAs
values: 55, 45, 35, 25, 15, 5 mAs (from left to right) and using two different kernels
B40f-smoother (top row) and B30f-sharper (bottom row)
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Table 1. On the left simulated acquisition and reconstruction parameters. CTDIw

(weighted CTDI value) and the effective dose are averaged over the 5 patients and
taking into account both prone and supine acquisitions. On the right, results of the
presented CAD algorithm on low-dose data, taking into account the best possible ac-
quisition (0.8/1.0 Bf40) and all the reconstructed datasets (Overall).

Voltage Dose level CTDIw Eff. dose Dataset Acquisition Sensitivity Specificity False
(kV) (mAs) (mGy) (mSv) positives
120 55 8.60 4.93 0.8/1.0 B40f 55mAs 100% 98.65% 0.7
120 45 7.06 4.05 0.8/1.0 B40f 45mAs 100% 98.39% 0.8
120 35 5.54 3.18 0.8/1.0 B40f 35mAs 100% 96.10% 2.0
120 25 3.92 2.25 0.8/1.0 B40f 25mAs 100% 94.67% 2.8
120 15 2.80 1.61 0.8/1.0 B40f 15mAs 100% 93.42% 3.4
120 05 2.80 1.61 0.8/1.0 B40f 05mAs 100% 76.34% 12.3

Overall 55mAs 100% 95.94% 2.7
Overlap Slice increment Kernel Overall 45mAs 100% 94.88% 2.8
1.0mm 0.8mm B40f Overall 35mAs 100% 94.84% 2.8
2.0mm 1.5mm B40f Overall 25mAs 100% 85.80% 7.6
2.0mm 1.5mm B50f Overall 15mAs 100% 80.07% 10.2

Overall 05mAs 100% 73.96% 13.9

following parameters: 16x0.75mm slice collimation, 11mm table feed, 0.5s rota-
tion time, 55 effective mAs and 120kV. All patients were scanned in both supine
and prone positions, in average breath-holds of 19 seconds (16 slice) to 30 seconds
(4 slice). The CAD process was carried out as follows: after the CT data was
transferred to an offline workstation (Intel Pentium 2.4 GHz system), seed points
were selected manually to ensure complete colonic segmentation. The segmen-
tation threshold was determined automatically (section 2.1). The CAD pipeline
presented in Section 2 was employed on the D1 cases to estimate optimal values
for Tdist, Tradius and also for computing a set of model spherical harmonics.
The SpharmonicKit package (http://www.cs.dartmouth.edu/ geelong/sphere/)
is used to compute the spherical harmonic decomposition. Taking conventional
colonoscopy as standard of reference, ROC curves were computed. Parameter
optimization consisted in maximizing the area under the ROC curve for values
of Tdist and Tradius. A leave one patient out technique was preferred to compute
the ROC curves for each possible parameter combination. The maximal value for
the area under the ROC curve was: 0.995, for Tdist = 3mm and Tradius = 9mm.
These optimal values of Tdist and Tradius were applied to the cases in D2.

For the database D2 the influence of effective mAs, reconstruction kernel,
slice overlap and increment, on the performance of CAD, was studied. Using the
Somatom Noise+(V2.0) program (provided by Siemens, Forcheim, Germany),
artificial noise (simulating a low-dose acquisition) was added to the original
raw-data. The resulting raw datasets were imported into the scanner and 30
reconstructions per patient generated (Table 1). Figure 3 presents the same CT
slice reconstructed at different dose levels. Due to limited space only results
for the optimal setup (0.8 slice increment, 1.0 overlap, kernel B40f) and overall
results (taking into account all 150 reconstructions) and are shown in table 1.

The average computation time for the method is 78.18 seconds and can be fur-
ther decomposed into: segmentation 7.97s, N-ary tree building 2.13s, candidates
generation 27.38s, spherical harmonic computation and polyp extraction 40.70s
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4 Discussion and Conclusions

The novelty of the paper is two-fold; first it proposes robust 3D models to de-
scribe colonic polyps, using the same framework, namely spherical harmonic
decomposition, to capture both gray level and geometrical information. Second,
the method was tested on low-dose data and proved the assumption that colonic
polyps can be retrieved, without impaired sensitivity and specificity, even on
data sets acquired at 15 mAs. Accordingly the dose reduction is significant, the
effective dose can be reduced by a factor of 3, very important when thinking of
population screening and the associated risk of inducing cancer [4].

Several improvements to the proposed scheme can be introduced. First, our
single scale statistical modeling (single bandwidth bw = 16) can be transformed
into multi-scale pyramidal modeling, to further reduce computation times. A
modeling scheme based on spherical wavelets can be considered. Although bet-
ter for describing smaller polyps, it is expected to be more sensitive to image
noise [10].

Regarding low-dose data generation, the effects of reducing the kV of the
original acquisition have to be tested. This will further reduce the effective dose.
Phantom and real patient data can be used to evaluate this acquisition param-
eter. Finally, the use of denoising filters as proposed by Rust et al. [14] can be
considered prior to CAD. While increasing the computation time, it could allow
for even greater dose reductions.

To conclude, our results indicate that low-dose CTC CAD is viable. Sensitiv-
ity and specificity values remain high for the detection of clinically interesting
cases (polyps larger than 5mm). Low-dose CTC CAD is a possible approach for
colonic polyp screening, significantly reducing the chances of inducing tumors
due to dose accumulation.
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Abstract. Computer-based simulation is an important tool for surgical skills 
training and assessment. In general, the degree of realism experienced by the 
trainees is determined by the visual and biomechanical fidelity of the simulator. 
In minimally invasive surgery, specular reflections provide an important visual 
cue for tissue deformation, depth and orientation. This paper describes a novel 
image-based lighting technique that is particularly suitable for modeling 
mucous-covered tissue surfaces. We describe how noise functions can be used 
to control the shape of the specular highlights, and how texture noise is 
generated and encoded in image-based structure at a pre-processing stage. The 
proposed technique can be implemented at run-time by using the graphics 
processor to efficiently attain pixel-level control and photo-realism. The 
practical value of the technique is assessed with detailed visual scoring and 
cross comparison experiments by two groups of observers.    

1   Introduction 

With the maturity of Virtual Reality (VR) and Augmented Reality (AR), there is now 
a wide spread use of the techniques in Minimally Invasive Surgery (MIS). Intra-
operatively, AR enables navigation in image-guided surgery where the surgeon’s 
view of the operating field is augmented by the addition of computer-generated data. 
VR, on the other hand, is increasingly being used in a mixed reality environment for 
surgical simulation. Pre-operatively, VR simulators are used to train practitioners in 
basic surgical tasks as well as complete interventions. They have been found to be 
particularly useful for MIS procedures because of the complexity of instrument 
controls, restricted vision and mobility, difficult hand-eye co-ordination, and the lack 
of tactile perception require a high degree of operator dexterity [1]. MIS simulations 
provide an economical and time saving solution for acquiring, as well as assessing, 
basic surgical skills [2]. They offer the opportunity for safe, repeated practice and 
objective measurement of surgical performance. 

One of the key issues to be addressed in surgical simulation is visual realism and 
mechanical fidelity. The creation of realistic lighting can greatly affect visual realism 
and hence the overall quality of the simulation. Traditional methods have found 
limited use in advanced surgical training, particularly for those involving patient 
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specific models. To this end, a number of physically-based approaches for computing 
diffuse and specular light components have been proposed. Diffuse reflection 
modelling considers diffuse reflection as the result of light entering the surface, 
scattering, interacting with its material and then exiting in random directions [3]. 
Relative contributions of surface reflection and sub-surface scattering and 
transmission are computed, therefore allowing for simulating layered materials and 
biological tissues. For specular reflection, a number of micro-facet models are used 
for simulating specular surfaces [4], [5]. These models consider rough surface 
topology with perfect micro-reflectors accounting for the spectral composition of 
specular highlights. They are further extended to handle wide-ranging surface types 
[6] and anisotropic distributions with multiple scattering. Despite the visual realism 
achieved, physically-based reflection modelling is not particularly suitable for 
interactive surgical simulation because of its inherent high computational costs.  

Existing research has shown that specular highlights constitute a major visual cue 
for gauging tissue deformation, depth and orientation during MIS procedures [7]. 
Reproducing the same effect in a simulated environment is difficult due to the nature 
of tissue, which is comprised of multiple layers covered with translucent mucous. The 
purpose of this paper is to present a novel photorealistic lighting method for simulating 
the appearance of specular highlights reflected from the internal lumen. The method is 
based on using noise functions to modulate the shape of specular highlights and imitate 
the effects of composite multi-layer tissue types on reflected lighting. We will describe 
how texture noise is generated and encoded in image-based structures at a pre-
processing stage and show how this information is used during run-time by the 
graphics processor to efficiently attain pixel-level control and achieve photorealistic 
tissue appearance. The visual realism achieved by the technique is assessed by two 
groups of observers with detailed visual scoring and cross comparison.    

2   Method 

2.1   Surface Reflectance Modeling 

The use of computer-generated noise is a well-established method for representing 
natural scenes such as terrain topography, clouds, vegetation distributions, fur/hair, as 
well as natural effects such as fire, fluid flow and erosion patterns [8-11]. In this 
study, the modeling of specular highlights is achieved by using 2D Perlin noise [12], 
which first creates a noise image followed by converting it to a reflectance map. For 
each point in the noise image, the associated tangent vectors to the surface are 
defined, and each pixel in a reflectance map encodes the direction that the 
corresponding point is facing by using three channels of information that are 
conveniently mapped to a standard Red-Green-Blue (RGB) image. 

Since a reflectance map is essentially an RGB image, per-triangle noise 
information is extracted during run-time by means of texture mapping for calculating 
the specular highlights. The extracted noise vectors are defined in image coordinate 
space, so they have to be transformed into a coordinate that is local to the triangle 
being processed. The basis vectors of the triangle local coordinate system, known as 
the surface-local coordinate space, can be defined by using the surface tangent (T), bi-
tangent (B), and the normal (N), where the first two vectors can be computed from the 
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partial derivatives of the object-space coordinates of the triangle in terms of its texture 
coordinates [13], i.e., 
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In the above equations, (x0, y0, z0), (x1, y1, z1), (x2, y2, z2) and (u0, v0), (u1, v1), (u2, v2) 
represent the object- and texture-space coordinates respectively for the prospective 
triangle. Subsequently, (N) can be calculated from the cross product of (T) and (B) or 
alternatively the normal supplied by the original model can be used. By computing 
the basis vectors of the surface-local coordinate space, the GPU can then be used to 
efficiently transform the extracted image-space noise vectors to the surface-local 
space and carry out specular highlight computations. 

In order to evaluate the effects of adding specular highlights on visual realism, 
subject-specific textures of 3D models were derived. Video bronchoscope images 
(Olympus BF Type; with field of view 120°) were registered with CT scans (Siemens 
Somaton Volume Zoom four-channel multi-detector) for five patients. This enabled 
the exact camera pose of the bronchoscope examinations to be identified. The surface 
details including texture and shading parameters are also extracted. The texture map is 
derived directly from the video bronchoscope images. The shading parameters are 
recovered by modeling the bidirectional reflectance distribution function (BRDF) ρ of 
the visible surfaces by using a cubic curve parameterized on γ, the cosine of the angle 
between the viewing vector (V) and surface normal (N)  [14]: 
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2.2   Assessment of Visual Realism 

A user study was conducted to evaluate the effects of the proposed surface reflectance 
modeling for added visual realism. Participants from two subject groups were 
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considered, where the first group consisted of 16 computing science students, and the 
second group consisted of 7 experienced bronchoscopists who had each performed 
between 150 and 2000 endoscopy procedures. All subjects had normal or corrected 
vision and were assumed to have good comprehension and analytical skills. 

Static images on a computer monitor were presented to each subject for evaluation, 
one image at a time. The images show views of the bronchial tree from 8 poses from 
5 different patients (estimated from camera parameters and used for generating 
synthetic views). Five images were created for each pose comprising five different 
categories ranging from least realistic to real. Category 1 uses the conventional 
shading algorithm that represents the lowest quality in the evaluation scale, whereas 
Category 5 is a real captured video bronchoscope image. Category 3 represents 
images rendered with subject-specific texture extracted with the BRDF method 
described above after 2D/3D registration. Category 4 is as category 3 but with 
specular highlights added by using the proposed technique to improve visual realism. 
For Category 2, low-resolution surface texture was used. The participants were first 
shown two examples of category 1 (most unrealistic) and category 5 (real) images 
displayed side-by-side for visual calibration. Then the subjects were presented with 
series of 15 images and asked to rank each image in terms of visual realism by 
following the Likert scale (1 to 5). A two alternative forced choice (2AFC) 
experiment was also conducted. In this experiment, the subjects viewed 23 side-by-
side image pairs from categories 3, 4 and 5, always from different poses, and were 
asked to choose which of the two (left or right) was the most realistic. It is worth 
noting that during the experiments, no time limits were imposed and the images were 
displayed in a random order. The subjects were not told which the real images were, 
nor were they informed how the images were obtained. 

3   Results 

Figure 1 depicts the results obtained by implementing the described method in Cg 
[15] on NVIDIA FX graphics hardware compared with the conventional OpenGL 
multi-texturing approach. It can be seen that the method effectively avoids the 
problem of plastic-like surface appearance and provides realistic specular highlights. 
Furthermore, by varying the colour of the mucous layer and using different noise 
types, tissue appearance can be modified. The bottom row of Figure 1 further 
demonstrates the effect of different noise functions on the visual appearance of the 
rendered surface, where the frequency of the noise function is increased (left to right). 

In Figure 2, the general appearance of the five category images used in the user 
study for assessing visual realism is illustrated. This demonstrates the increased visual 
realism that is achieved by using the proposed algorithm. As mentioned earlier, the 
last image category represents the real bronchoscope image.  

Figure 3 summarizes the mean score for all the images of each category, averaged 
over all the participants for each group. It is seen that the overall score of all the subjects 
shows a steady increase in the scored realism using the proposed method for enhancing 
visual realism. It is also evident that the expert group is not significantly different to the 
naïve group in judging realism. This shows that results using naïve subjects to test for 
realism of tissue samples may transfer to training simulators for physicians. 
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Fig. 1. (Top) Two views of the same surface rendered by using the proposed method (left) 
versus OpenGL multi-texturing (right). Notice the plastic-like surface and the hexagonal 
shape of the specular highlights rendered with the multi-texturing method (Bottom) By 
varying the frequency of the noise function, different specular appearance of the tissue can be 
simulated.  

A more detailed statistical summary is provided in Table 1, which uses the 
combined realism scores from all the participants for images of Categories 3, 4 and 5. 
By applying a paired two-tailed t-test to the data, synthetic images of Category 3 
without specular highlights had a significantly lower score than the images with 
specular highlights added (p=0.057) and also a significantly lower score than the real 
images (p=0.026). It is also shown that there is no significant difference between 
synthetic images with highlights and real images (p=0.780) which indicates that the 
Category 4 specular highlights can be perceived as close to photorealism. 

For the 2AFC test mentioned above, it was found that when comparing a Category 
3 image side-by-side with a Category 4 image, the Category 4 image was selected as 
the most realistic 68% of the time. Therefore missing specular highlights reduced the 
users’ perception of reality. This result was confirmed when comparing Category 3 
images with real (Category 5) images, where the real images were selected as being 
more realistic 73% of the time. However, when comparing Category 4 images with 
real images, the real images were selected as being more realistic only 48% of the 
time. This shows how the addition of noise-based specular highlights positively 
affected users’ judgment of realism.  
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Fig. 2. The five different categories used as the stimuli for one pose are defined as follows (1) 
Unreal  (2) BRDF-low resolution (3) BRDF (4) BRDF-Specular (5) Real bronchoscope image 

 

Fig. 3. Average score for all the images of each category, averaged over all the participants for 
each group. Error bars show one standard deviation 
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Table 1. Details of the t-test with the scores of images from Categories 3, 4 and 5 

 Cat 3 Vs. Cat 4 Cat 3 Vs. Cat 5 Cat 4 Vs. Cat 5 

 
Cat3 

Cat4 Cat3 Cat5 Cat4 Cat5 

Mean 3.08 3.48 3.08 3.54 3.48 3.54 

Variance 1.44 1.70 1.44 1.66 1.70 1.66 

Hypothesized Mean 
Diff 0.00 0.00 0.00 

t Stat -1.94 -2.30 -0.28 

p (T<=t) two-tail 0.057 0.026 0.78 

t Critical two-tail 2.01 2.01 2.01 

4   Conclusion 

In this paper, a novel photorealistic rendering method suitable for MIS simulation is 
described. The rendering method is based on using reflectance maps to model the 
effect of surface details and mucous layer on overall tissue appearance. For 
efficiency, reflectance map generation is achieved in pre-processing. During run-time, 
the graphics processor is used to allow for per-pixel control and rendering efficiency. 
The visual assessment results from the user study have shown that when combined 
with subject specific texture extraction through a BRDF model, the difference 
between images derived from the proposed method and real video bronchoscope is 
minimal. The results have also shown that the visual score derived had little 
difference between the naïve and expert groups, thus highlighting the potential value 
of the technique for both basic and advanced surgical skills training and assessment.  
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Abstract. Current techniques for microscopic imaging do not provide
necessary spatial and temporal resolutions for real time visualization of
the nucleus. Images can only be acquired in time lapse mode, leading to
significant loss of information between image frames. Such data, if avail-
able, can be extremely helpful in the study of nuclear organization and
function. In this paper, we present a gamut of geometric-technique-based
approaches for solving the problem. Our techniques, working together,
can effectively recover complicated motion and deformation as well as the
change of intensity surfaces from pairs of images in a microscopic image
sequence, and has low time complexity, particularly desirable by many
biological applications where large amount of DNA need to be processed.
These techniques are also readily applicable to other types of images for
reconstructing motion and intensity surfaces of deformable objects.

1 Introduction

A clear understanding of the mammalian cell nucleus and its exquisite architec-
ture which governs gene expression and regulation, remains the final frontier in
modern nuclear biology. To this end, recent developments in microscopy, imag-
ing and labelling have led to a significantly improved view of the cell nucleus.
This technology has enabled the observation of DNA replication and transcrip-
tion sites and their organization into higher order units or “zones”. Researchers
believe that this dynamic interplay and “re-zoning” may form the structural
basis for elaborate global coordination of replicational and transcriptional pro-
grams within the mammalian nucleus[1]. However, despite significant progress
in microscopic imaging technologies, the task of analyzing the nuclear images to
derive semantic (and biologically relevant) information is rather difficult. One
key impediment is the presence of enormous amount of chromatin in the nu-
cleus and their complicated movement (non-uniform translation, rotation and
deformation). This makes it extremely difficult for biologists to do real time vi-
sualization of such nuclear activities. This problem is further compounded by
the limited spatial and temporal resolution of current microscopic techniques
which introduce under-sampling or “gaps” between acquired images. Biological
analysis of such data is generally the result of long sessions involving manual
calculations and hypothesis (based on experience), making it human error prone
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and very tedious. These problems motivate the design of a fully-automated set
of techniques to provide biologists real time visualization of nuclear activities
within the scope of existing imaging modalities.

The problem of recovering motion and deformation of moving objects, given
only a few snapshots of the objects during their motion, has been a challenging
problem in various fields such as computer vision and pattern recognition, and
robotics[2, 3]. Most of these approaches provide interesting insights into possible
interpolation strategies and work well for the specific objects, images or assump-
tions they were designed for. Unfortunately, these techniques do not extend well
to microscopic images for a number of reasons. They were primarily designed for
large sized objects where sufficient information about the mechanics and physics
behind the motion is available or can be assumed. For genomic structures, how-
ever, where no such data is available, it becomes necessary to exploit the limited
information hidden in the images in an effort to recreate an accurate motion of
the objects under consideration.

In this paper, we present a suite of geometric techniques that address the
problem of “gaps” between microscopic images. We suggest techniques to deter-
mine the shape and motion of genomic structures for any number of intermediate
(or unavailable) time points in a 2D image sequence. We further extend our idea
by not only regenerating the contours but also the continuous changes of in-
tensity surfaces from one image to another. This allows us to generate as many
“missing” in-between image frames as desired given as few as two time separated
image frames. When a number of nuclear images acquired in time-lapse mode
are available, our techniques allow an online recreation of a “movie” sequence,
enabling a real-time visualization of nuclear processes with negligible or no man-
ual interaction. These provide a far less tedious biological interpretation of the
imaging data.

2 Method

In this section, we overview our method for motion tracking and intensity surface
recovery of a set of objects with prior knowledge of only their initial and final
positions, shapes and intensities. We illustrate out results on microscopic images
of the cell nucleus.

2.1 Simplification and Segmentation

We begin with a sequence of 2D microscopic images of the same set of genomic
structures (representing chromatin domains or chromatin foci) taken at differ-
ent time points. One major problem with microscopic images is that they are
blurred in portions by clouds of quasi-foci (formed by overlapping of neighbor-
ing foci) which complicates the process of segmentation and intensity recovery .
Therefore our first goal is to simplify the images to make segmentation easier.
In a recent work [4], we reported our observations of an interesting phenomena
that showed that image profiles of chromatin foci, even in the presence of noise,
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(a) (b) (c)

Fig. 1. (a) Original cell nuclear image. (b) The corresponding intensity profile. (c)
Approximated cell nuclear image.

resembled certain exponential distributions. We extend that idea to make the
task of segmentation easier by preceding it with a simplification process.

The main idea of the simplification is to determine a set of approximation
functions for approximating the intensity surface of the image within a certain
error tolerance ε of its original intensity. More specifically, we solve the following
problem: Given a set P = {p1, p2, · · · , pn} of pixels with each pi associated with
an intensity value Ii > 0, find a small set F = {f1(·), f2(·), · · · , fk(·)} of functions
with each fi(·) defined by a generalized normal distribution surface such that
the intensity Ii of each pixel pi is closely approximated by the maximum value of
the k functions at pi, i.e., |Ii −maxk

j=1 fj(pi)| ≤ ε (or |Ii−maxk
j=1 fj(pi)| ≤ εIi)

for some small constant ε > 0. Each of these functions fi(·) follows a general-
ized 2-D normal distribution fi(X) = σe−(X−μ)T Q(X−μ), where Q is a positive
definite matrix (i.e., the intersection of fi(·) with a plane z = c is an arbitrarily
oriented ellipse). The details of the algorithm are omitted due to lack of space.
Experimental results have shown that the approximated image generated not
only closely resembles the original image (see Fig 1) but makes segmentation
and further processing much more tractable since it is just represented by a set
of mathematical functions.

The approximated image, free of diffused signals, is then segmented using
relative thresholds (w.r.t. the peak value of the normal distribution functions)
to shrink the domain of each approximation function and then a merge segmen-
tation method [5] is used to generate the boundary of each foci. This approach
shows significantly better results over commonly used segmentation techniques
(such as threshold based, edge-detection based, watershed, etc.), especially for
images which contain many small-sized objects or whose intensity varies sig-
nificantly over the scope of the images. However, even after the images are
approximated and segmented, the contours may still contain many undesired
furrows (undulations or small recesses) caused by other types of unavoidable
noise on the periphery. These furrows not only hide the actual boundary of the
genomic structures but also increase the processing time dramatically. Taking
this into account, we apply our contour simplification algorithm, proposed in [6]
to simplify and smooth the boundary within a predecided error tolerance. This
process yields the set of contours of both the initial and final images modeled as
polygons.
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2.2 Motion Tracking

Once the genomic structures have been represented as polygonal contours, the
next step is to determine the correspondence between the initial and final polyg-
onal sets. Previous methods to solve this problem have relied on manual esti-
mation or heuristic techniques based on additional feature information [7]. Such
approaches do not work directly for our problem, as we need to globally optimize
the results for large sets of polygons, as well as consider the shape of individ-
ual objects while determining the correspondences. To overcome this difficulty,
we propose a technique which takes both the shapes and relative positions of
polygons into account and is also tailor-made for the problem at hand.

In determining correspondences between the two polygonal sets, our tech-
nique first tries to find a global transformation which moves every polygon in
the initial set, P , within a small neighborhood of some polygon in the final set,
Q. This step is useful because once such a transformation is determined, local
neighborhoods can be examined for proximity. For example, if a transformed
polygon pi of P , overlaps with qj of Q (or the neighborhood of qj), it is an
indication that qj may be a possible correspondence for pi. The notion of neigh-
borhood can be thought of as a square of radius R (or any bounded region)
centered roughly in the middle of each qj ∈ Q. Clearly, when the neighborhood
R is large, a global transformation satisfying the criteria above can be easily
found, hence a large R is always feasible. To obtain better accuracy, we employ
a binary search procedure on R, to determine the smallest feasible R, Rmin.

The above procedure yields a reasonably small value of Rmin. It also gives
for each pi ∈ P (or qi ∈ Q) , one or more probable candidates for correspondence
in Q (or P ) based on Rmin and the overlap criteria. We follow up this procedure
with another refinement process by modelling the problem as the well-known
Maximum Bipartite Graph Matching problem. In our case, the vertex sets are
corresponding polygons of P and Q and the edge weights are the distances
between individual polygons in these two subsets.

Correpondences established using the above techniques are generally accurate
and comparable with the results obtained from other well-established techinques
like Nearest Neighbour. Correspondences obtained are mostly one-to one, but
in some cases, they may be one-to-many or many-to-one. We attribute this to
the chromatin domains disappearing or one domain splitting into a few smaller
chromatin domains. These exceptional cases can be reduced to a general case of
a one-to-one correspondence of polygons by employing additional routines such
as Voronoi diagrams.

Once the global transformations have been determined, we have essentially
taken care of capturing the movement of the cell nucleus as a whole. How-
ever, each individual chromatin foci have their independent position(rigid) and
shape(non-rigid) change which our technique still needs to address.

To account for the rigid transformations, we first scale the two polygons so
that they have comparable sizes. We then use a curve matching algorithm to
compute the best translation and rotation so that after these transformations,
the contours of the two corresponding chromatin domains have the least differ-
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ence in shape, measured by the Hausdorff distance metric[8]. Given two polygons
P and Q, we find the Minkowski sum (union) of a square of size r with Q, which
denotes an inner and outer boundary around Q enclosing a region S. The image
T (P ) of P , under an appropriate transformation T , should always lie in S. In
essence, we set a limit on the value of Hausdorff distance, denoted by r and then
determine a transformation T such that the Hausdorff distance between T (P )
and Q falls within that limit. After rotating Q by an appropriate angle, finding
the adequate translation is realized by determining for each edge e of P a set of
translations, under which e will always lie within S and then finding the intersec-
tion of all such sets in translation space. When no such transformation exists i.e.,
if there is no intersection, we modify the initial value of r and repeat the above
procedure till a transformation is obtained for the minimum possible value of r .

Having found the best match under rigid body transformations, we then
proceed to determine the non-rigid shape changes by a routine called shape-
deformation. Shape-deformation procedure first computes one or a few central
points in the common intersection of Q and T (P ) so that all points in Q∪T (P )
can be guarded (i.e., visible to) by at least one of the central points(such points
always exits, otherwise we can transform one of the polygons to overlap the other,
obtaining a match with a smaller Hausdorff distance, which is not possible).
For each central point o, we draw line segments from o to all visible vertices
and intersections of the polygons. Any pair of such line segments, say the ith

pair, encloses a portion of the boundary, Pi and T (Q)i, of the polygons Q and
T (P ), respectively. The technique then proceeds to determine the image of T (P )i

under the transformation St(T (P )i, s, θ), where t is an intermediate time point
between the initial and final time point and s and θ are the scaling factor and
angle of rotation for the local scaling and rotation which resulted in T (P )i in
being transformed to Qi. Ultimately, all such local transformations St(T (P )i)
are combined to yield the deformed shape of T (P ) at time point t.

Combining the rigid body transformations with the shape deformation, our
approach obtains a continuous motion and deformation of the whole set of poly-
gons (or contours) in two consecutive images (see Figure 2).

(a) (b) (c) (d)

Fig. 2. (a) Initial and Final positions of a polygon in case of one-to-one correspondence
(b) Rigid Transfromations (c) Shape deformation around a central point (d) Shapes
and positions of the deforming object at a sequence of intermediate time points
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2.3 Intensity Surface Recovery

Once the contours for all desired intermediate images have been generated, we
need to recover the intensity surfaces corresponding for each pair of chromatin
domains in P and Q. Recall that the intensities of these chromatin domains can
be approximated by a set of normal distribution functions. (see Section 2.1).
Our objective is to reconstruct for each intermediate contour, the set of normal
distribution functions that should represent its intensity surface. In doing so,
we derive inspiration from the fact that most 2D functions retain their spatial
properties under rigid transformations like translation, rotation or scaling. Also,
the shape deformation routine for a particular region can be reduced to a set
of unique rigid transformations localized to smaller sub-regions, this holds true
for the mathematical functions defining every sub-region. The context of this
statement will become clear when we describe the algorithm.

Before discussing the details of the algorithm, we will formally define the
notations. Let FP and FQ be the set of normal distribution functions for a
corresponding pair of chromatin domain P and Q respectively. Consider TP−>Q

to be the transformation which when applied to P , yields Q. This transformation
is symmetrical i.e., T−1

P−>Q when applied to Q will give P. By the same token,
the transformations for generating the kth intermediate image Pk from P can
be represented as TkP −>Q .

Our algorithm works on the principle that the domains of normal distri-
butions are equally affected by transformations such as rotation, translation,
scaling and shape-deformations, as are the contours containing them. Hence we
use the transformations generated previously, to obtain the domains of normal
distributions at the intermediate time points. Also, their intensities are likely to
be influenced by the intensities of both the initial and final images. Therefore, we
generate the intermediate domains of the normal distributions from either side.

The distribution functions of FP (and FQ) are first projected on to the xy
plane to yield a set of regions, represented as DP (and DQ), as shown in Fig.
3. Though this procedure is “lossy”, the outer periphery of the union of the
members of DP and DQ makes up P and Q. TkP−>Q is then applied to each
member of DP which results in a set of 2D domains. Similarly, TkQ−>P is applied
to DQ to obtain another set of domains. These two set of domains can be thought

(a) (b)

Fig. 3. (a) Two corresponding contours (b) Their normal distribution domains pro-
jected on a x-y plane(z axis represent the intensity values)



882 L. Mukherjee et al.

of as “clones” of DP and DQ under transformations in the forward and reverse
directions and cover the same region bounded by the contour of TkP−>Q(P ).
At this stage, for each pixel inside the contour TkP−>Q(P ), we run a simple
check for membership in both TkP−>Q(DP ) and TkQ−>P (DQ). Note, that owing
to the construction, a pixel has to belong to at least one domain in both of these
domain sets. Once the membership is established, we refer to their corresponding
“clones” in DP and DQ and the pixel intensity is then expressed as an affine
combination of the intensity values originally associated with the untransformed
clones i.e. for a pixel pkl

,if ID(P )i
and ID(Q)j

be the intensity values associated
with the clones D(P )i and D(Q)j of its parent domain, then Ipkl

= α ∗ ID(P )i
+

(1 − α) ∗ ID(Q)j
where α is the ratio of time intervals from the initial to the

intermediate time point and the intermediate to the final time point.
Preliminary results indicate that intensity surfaces can be efficiently recov-

ered using this technique and matches the actual intensity surface very well.

3 Results

We implemented our algorithms in C++ using CGAL-2.4 and LEDA Version
4.4 on a 1.6 GHz machine running RedHat Linux Enterprise Version 2.0. We
tested our technique using images of chromatin domains taken at an interval of
3 secs. Analysis of the results reveal that for 90% of the chromatin domains,
the average movement is in the range of 2-4 pixels(Fig 4a) and deformation of
the domains measured by the Hausdorff distance is very small( in the range of
.01 pixel unit) for about 98% of the chromatin domains (Fig 4b). These results
obtained are consistent with results of independent experiments performed on
same types of images and hence pass a quantitative evaluation of the correctness
of our technique. Here we can show only small portion of the results due to
lack of space. Figures 5 (a) and (g) show the segmented images of chromatin
domains in the nucleus of a living cell at time 0 sec and time 3 sec, which are the
initial and final time points respectively. The images generated at intermediate

(a) (b)

Fig. 4. Histograms showing (a) Average movement and (b) Hausdorff Distance calcu-
lated, vs number of Chromatin Domains for images at an interval of 3 secs
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. (a-b) Segmented image at 0 sec with intensity plot (c-d) Image generated at 1 sec
with intensity plot (e-f) Image generated at 2 sec with intensity plot (g-h) Segmented
image at 3 sec with intensity plot

time points 1 sec and 2 sec are shown in Figures 5(c) and (e). The algorithm
can be used to generate continuous motion by generating as many intermediate
images as desired. This serves the objective of providing biologists with movies
depicting the processes involving genomic structures taking place inside the cell
nucleus in an online real time fashion.

4 Discussion

We have presented a novel geometric-technique-based approach for recovering
continuous motion, deformation and intensity surface for genomic structures in
microscopic nuclear images of living cells. A key feature of our approach is to
use normal distribution functions to capture the main structure of each nuclear
image, to segment genomic structures from diffused signals, and to recover the
intensity surfaces of the segmented genomic structures. Our technique considers
both rigid and non-rigid motion and does not require detailed knowledge about
the physics and mechanics of the chromatin domains considered. Also, our tech-
niques have low time complexity which is particularly desirable for biological
images involving a large amount of data.
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Abstract. The Rho family of small GTPases is essential for morphological 
changes during normal cell development and migration, as well as during dis-
ease states such as cancer. Our goal is to identify novel effectors of Rho pro-
teins using a cell-based assay for Rho activity to perform genome-wide func-
tional screens using double stranded RNA (dsRNAs) interference.  We aim to 
discover genes could cause the cell phenotype changed dramatically.   Biolo-
gists currently attempt to perform the genome-wide RNAi screening to identify 
various image phenotypes. RNAi genome-wide screening, however, could eas-
ily generate more than a million of images per study, manual analysis is thus 
prohibitive. Image analysis becomes a bottleneck in realizing high content im-
aging screens. We propose a two-step segmentation approach to solve this prob-
lem. First, we determine the center of a cell using the information in the DNA-
channel by segmenting the DNA nuclei and the dissimilarity function is em-
ployed to attenuate the over-segmentation problem, then we estimate a rough 
boundary for each cell using a polygon. Second, we apply fuzzy c-means based 
multi-threshold segmentation and sharpening technology; for isolation of touch-
ing spots, marker-controlled watershed is employed to remove touching cells. 
Furthermore, Voronoi diagrams are employed to correct the segmentation errors 
caused by overlapping cells. Image features are extracted for each cell. K-
nearest neighbor classifier (KNN) is employed to perform cell phenotype classi-
fication. Experimental results indicate that the proposed approach can be used 
to identify cell phenotypes of RNAi genome-wide screens. 

1   Introduction 

High content screening by automated fluorescence microscopy is becoming an impor-
tant and widely used research tools to assist scientists in understanding the complex 
cellular processes such as mitosis and apoptosis, as well as in disease diagnosis and 
prognosis, drug target validation, and compound lead selection [1]. Using images 
                                                           
*  Corresponding author. 
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acquired by automated microscopy, biologists visualize phenotypic changes resulting 
from reverse-functional analysis by the treatment of Drosophila cells in culture with 
gene-specific double-stranded RNAs (dsRNAs) [2]. In a small scale study by manual 
analysis [3], biologists were able to observe a wide range of phenotypes with affected 
cytoskeletal organization and cell shape. Nonetheless, without the aid of computer-
ized image analysis tools, it becomes an intractable problem to characterize morpho-
logical phenotypes quantitatively and to identify genes as well as their dynamic rela-
tionships required for distinct cell morphologies on a genome-wide scale.  

In this paper, we will study image-based morphological analysis in automatic high-
content genome-wide RNAi screening for novel effectors of Rho family GTPases in 
Drosophila cells. About 21,000 dsRNAs specific to predicted Drosophila genes are 
robotically arrayed in 384-well plates. Drosophila cells are plated and take up dsRNA 
from culture media. After incubation with the dsRNA, expression of Rac1V12, 
RhoAV14 or Cdc42V12 is induced.  Cells are fixed, stained, and imaged by auto-
mated microscopy. Each screen will generate ~400,000 images, or millions if includ-
ing replicates. Clearly, there is a growing need for automated image analysis as high 
throughput technologies are extended to visual screens. Biologists have developed a 
cell-based assay for Rho GTPase activity using the Drosophila Kc167 embryonic cell 
line. Three-channel images are obtained by labeling F-actin, GFP-Rac and DNA.  
Fig. 1 gives an example of RNAi cell images of one well acquired with three channels 
for phenotypes of (a) DNA, (b) Actin, and (c) Rac. It is tough to segment the cells 
from (b) or (c). The three phenotypes are shown in Fig. 2. They are: S-spikey, R-
ruffling, and A-actin acceleration at edge. The question is how to identify the three 
phenotypes automatically for each image. To reach this aim, we propose the follow-
ing three steps: first, we segment each cell, then we calculate the morphological and 
textural features for each cell and built training data sets, finally we perform feature 
reduction and classify cellular phenotypes.  

The key issue is how to automatically segment cells of cell-based assays in a cost-
effective manner, as such fast screening generate rather poor image quality and tens 
and hundreds of millions of cells in each study.  There exist a number of publications 
on nuclei segmentation and cell segmentation. For example, Wahlby, et. al., [4] pro-
posed a cytoplasm segmentation based on watershed segmentation and rule-based 
merging and splitting of over-segmented and under-segmented objects. Marker-
controlled watershed segmentation is a popular method in cell segmentation [5-7]. In 
the literature, watershed methods with or without seeds are extensively studied. Al-
though the oversegmentation caused by watershed can be reduced by rule-based 
merging of fragmented objects, it is difficult to devise reliable rules to merge the 
example which consists of one cell with three nuclei inside the cytoplasm. Lindblad, 
et. al., recently studied a similar problem about automatic segmentation of cytoplasms 
and classification of Rac1 activation [7].  There are several different points between 
our work and Lindblad’s work.  First, their data source is Chinese hamster ovary hIR 
(human insulin receptor) cells transfected with GFP-Rac1 reporter protein, and ours is 
Drosophila Kc167 embryonic cell line transfected with an inducible GFP-RacV12 
protein.  Second their data is two-channel (nucleus and GFP-Rac1 channels) 3D im-
ages, while our data is three-channel (DNA, F-actin and GFP-RacV12 channels) 2D 
images from larger scale genome-wide screening. Third, the quality of their images is 
better as they employed automated confocal laser scanning microscopy (see Fig.2 in 
[7]) while we used more commonly available, standard automated epi-fluorescence 
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microscopy. So it is much more challenging to segment RNAi genome-wide images. 
To address this hard problem, we propose a two-step segmentation approach. We then 
quantitate the tens of millions of cells and classify the cell phenotypes.  

(a)−DNA channel

 

(b)−Actin channel

 

(c)−Rac12 channel

 

Fig. 1. RNAi cell images with three channels 

         
               (a)                         (b)                         (c)                                 (d) 

Fig. 2. Four different RNAi cell phenotypes: (a)-A-A, (b) N, (c) R and (d) 

2   A Two-Step Segmentation Approach 

Extracting rough boundary for each cell is the first step of our approach. It consists of 
two sub-steps: determine the center of each cell and determine the polygon for each 
cell.  We then propose a fuzzy c-means based segmentation and sharpening; marker-
controlled watershed is employed to extract each cell, and the Voronoi diagrams are 
further employed to correct errors due to some overlapping cells. 

2.1   Extracting Rough Boundary for Each Cell   

Large scale intensity variations as well as shading and shadowing effects in our im-
ages are often caused by uneven illumination over the field of view. A data-driven 
approach is employed to deal with this problem [4]. The algorithm works by itera-
tively making better distinction of the background of the image. A cubic B-spline 
surface is employed to model the background shading. After removing the shading, 
we adopt morphological transformation to enhance the image’s contrast. Morphologi-
cal filtering for enhancing images has been proposed by [8]. The first step of this 
method is to find peaks and valleys from original images. Peaks represent brighter 
spots of original image, and valleys represent the darker spots. Peaks are obtained by 
subtracting the morphologically opened image from the original image and valleys by 
subtracting the original image from morphologically closed image. The former is the 
Top-Hat transformation, and the later is the Bottom-Hat transformation. The contrast-
enhanced image is obtained by the summation of the original, the peak and the nega-
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tive valley image. Once the above two steps are completed, we then apply the 
ISODATA algorithm [9] to segment the nuclei in the DNA channel.  After the above 
image processing, the touching spots are reduced, compared with the threshold meth-
ods traditionally used after preprocessing.  

However, some nuclei may remain touching each other, we propose a method to 
segment touching cells.  The aspect ratio of a particle image p  is defined 

as )()()( maxmin pwpwpr = , where )(min pw  and )(max pw  are the minimum and 

maximum diameters of the particle area. Denote the average size of the particles in 
the whole image to be ℵ , and size of cell p to be )( ps . The following condition is 

employed to isolate the touching cells: 5.0)( <pr , ℵ>)( ps , and )(max pw  is bigger 

than or equal to the pre-defined value 90 by experience. If the above condition is 
satisfied, then split the touching spots into two spots at the location of )(min pw . The 

merging criterion is different from the traditional approach. As an example, take a 
case where three nuclei can be seen within a single original cell. However, when 
watershed over-segments the original object, it is extremely difficult to find a proper 
rule to merge the fragments back into a single object. From the watershed point of 
view, the large object should be separated into three smaller objects. On the other 
hand, biologically, the three small nuclei belong to one single cell such that the large 
object should not be separated at the first place.  Here we adopt the Hue transforma-
tion. Hue is a useful attribute in color segmentation since it is influenced by non-
uniform illumination such as shade and shadow.  The objective function used here is 
the square error of the piecewise constant approximation of the observed hue image 
H which is the hue transformation of the original three channels. Denote two cells 
regions as iΩ and jΩ .  Define the mean Hue value as )( iΩμ  and )( jΩμ  and the 

following  dissimilarity function:  
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|||||||

||||||||
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where ),( jiI  is 1 if ji ΩΩ ,  are neighbors; infinity otherwise. Finally if the 

),( jif ΩΩ is less than a threshed 1.5, then merge the two cells.  Fig. 2 shows an 

example the segmentation result of the DNA channel based on the original image. 
Our aim in this step is to find a rough boundary or polygon that encloses the entire 

cell whose center is the nuclei. The assumption is that one cell shape area cannot 
reach other nuclei’s area. Assume that we are studying the polygon of one cell whose 
center of the nuclei is denoted by ),( 000 yxP , we pick up those cells whose distances 

between the centers of their nuclei and the ),( 00 yx  is less than a pre-defined thresh-

old 1000 =T . Denote those centers as ),(),...,,( 111 NNN yxPyxP . Now the question is 
how to find certain points to be composed as vertices of a polygon.  We define eight 
regions along the center  ),( 000 yxP  as follows: 
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We then calculate the slope and the angle between ),( iii yxP  and ),( 000 yxP  as:  
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Then it is easy to determine in which region each point of NPPP ,...,, 21 is located. 

Without loss of generality, assume MPPP ,...,, 21  points are located in region 7. Pick 

up the center whose distance is the closest to ),( 000 yxP , say ),( 111 yxP . Denote the 

Euclidean distance between the two centers as 
10 , ppd , and the fitted radius of nuclei 

of ),( 111 yxP  as 1r . Denote a new radius d  as 2/1, 10
rdd pp −= . The point whose 

distance being d  to the center point ),( 000 yxP  in direction 23π  is the right vertex 
in region 7. The obtained 8 vertex points are the vertex points of the expected poly-
gon. The method proposed in this section gives us a rough boundary of each cell. 
Next we focus on how to segment each cell in this boundary. 

2.2   RNAi Cell Segmentation   

After using the above method to determine the boundary of each cell, then we can 
focus on this region and try to extract this cell. For our goal, we will first binarize 
the gray-level image. To effectively binarize the RNAi cells, we proposed the fuzzy 
c-means segmentation with sharpening method. Obviously, the segmentation can be 
treated as an unsupervised classification problem. In all clustering algorithms, the 
fuzzy c-means [10] is an attractive algorithm because its convergence property and 
low complexity, and thus is efficient to implement to screen large number of im-
ages. We first use the fuzzy c-mean clustering to partition the image pixels into 

3=K  classes. Assume the class k  is the right class we are interested in, and then 
we sharpen the pixels in this class by using fuzzy c-means clustering again. Here we 
present the sharpening technique. Because of the low contrast, it is necessary to 
adjust the membership values of kiu ,  (the ith pixel in the kth class) of the output 

from fuzzy system. Let )(yu p be the fuzzy membership value that indicates how a 

possible pixel y belongs to the set containing the notion of the measure of fuzzi-

ness to sharpen the fuzzy region of interest defined as 1 when 0)( uyu p ≥ , and 0 

otherwise, where 0u  is a fuzzy membership threshold. Pham, et. al., [11] proposed 

to select )( *
0 * yuu

c
= , where *y is the pixel with maximum intensity value, and *c  

is the right class which we are interested in. This choice of 0u  does not work in our 

images. Principally, the misclassified pixels mainly come from the closed member-
ship values between the biggest and the second biggest values. If they are too close, 
the classification results are not reliable.  Denote the difference between the biggest 

and the second biggest membership values in the class *c   to be v , i.e., 
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ζ,...,1      ),(max)(max ,, 0 =−= ≠ iuuv kikkkiki , where )(maxarg ,
0

ki
k

uk =  and ζ  is the 

total number of pixels in class *c . Here we propose to estimate the threshold 0u  

using fuzzy c-means again. We first partition the values of ζ,...,1, =ivi  into two 

classes. Denote the minimal of the bigger class as 1u , and the maximal of the smaller 

class as 2u . Then the 0u  is defined as the average of these two parameters. 

Isolating the touched cells is extremely challenging in automatic RNAi screening. 
If we adopt the watershed method, it can easily generate many false positives due to 
oversegmentation. It is difficult to remove the oversegmentation simply by applying 
certain heuristic rules or criteria [4, 6].  Since we already know the rough region and 
center of each cell, we propose to modify the marker function so that pseudo minima 
can be removed while the center of each cell can be kept. The catchment’s basins 
associated to the pseudo minima are filled by morphological reconstruction and then 
transformed into plateaus.  Then those minima will not generate different regions 
when watersheds are obtained. This method is called marker-controlled watershed 
algorithm.  The markers are the centers of cells which are obtained in the first step. As 
the boundary of many cells is weak, it is hard to extract their boundary by using inten-
sity gradient of pixels.  Thus, after we extract the binarized cells, we then calculate 
the Euclidian Distance map of the binary image developed with the proposed fuzzy c-
means segmentation and sharpening. We impose the markers to this Euclidian dis-
tance map, and then we applied watershed algorithm to segment the cells. Note that 
the above procedure is for segmenting a single cell. After we process all cells, it still 
could cause overlapping between a small number of cells. We finally apply the Vo-
ronoi diagrams [12] to correct the overlapped cells. Fig. 3 is the segmentation result 
by using the proposed approach. 

  

Fig. 3. left-DNA channel segmentation result; right- segmentation result 

3   RNAi Cell Phenotype Recognition 

In RNAi genome-wide screen, our goal is to identify all the possible cell phenotypes 
derived in the screening. In the meantime, we also need to consider some location 
features such as roundness and eccentricity.  The first set of features was based on 



 Towards Automated Cellular Image Segmentation for RNAi Genome-Wide Screening 891 

Zerike moments. We extracted 49 features. The second set are co-occurrence contex-
ture features. We extracted 28 textural features. The third set was based on cell hull 
location features [13].  Here we choose the three features which are the fraction of the 
convex hull area occupied by protein fluorescence, the roundness of the convex hull, 
and the eccentricity of the convex hull. We totally extracted 15 common image fea-
tures. Since the feature values have completely different ranges, an objective scaling 
of features was achieved by calculating z-scores. Principle component analysis 
(PCA), commonly used in microarray research as a cluster analysis tool, is employed 
to reduce features. KNN classifier is a non-parametric classifier, which is easy to 
implement. Hence we use KNN to finish up the cell phenotype classification. Four 
classes are defined which are shown in Fig. 2. The four classes are Spikey, Ruffling, 
Actin acceleration at edge, and Normal cells.  A training set is obtained for each class. 
We use KNN to classify test data. 

4   Results and Discussions 

In our study, four images of cells that had been visually classified are used to estab-
lish the training data sets. The limited amount of training data was due mainly to the 
tedious visual classification. We first used the proposed automated segmentation 
algorithm to segment each image, and then we asked the biologists to mark the cell 
with different phenotypes. Note that we actually have four classes in the training data 
sets as the other one is the class of normal cell which does not have significant change 
in their morphological shape. Cross-validation is employed to test the performance of 
the proposed automatic screening approach. We randomly split the data sets into 
training data set and test data sets, where 70% of cells are treated as training data and 
30% of cells are treated as testing data. The feature reduction and normalization are 
first done with the training data sets, and then applied the transformation matrix of 
feature reduction to the test data set and similar procedure applied to normalization. 
Then we run 100 times and calculate the mean of the recognition accuracy based on 
the test data. The recognition accuracy is listed in Table 1. It is seen that the recogni-
tion accuracy is between 62% and 75%. Our biological collaborators reckoned that 
70% accuracy should be adequate for the purpose of automatic screening.  To further 
improve the accuracy and specificity, we continue to improve the segmentation algo-
rithm, the phenotype definition, and the specific image features for extraction.  

In this study, we proposed a two-step segmentation approach to segment high con-
tent cell images automatically. Certain regular image features, Heraik contextual 
feature and Zerick moment features are extracted for each cell. KNN is employed to 
perform cell phenotype classification. Experiments show that the proposed approach 
can automatically and effectively identify cell phenotype. Although we have built an 
initial workable system for automated RNAi genome-wide screening, there are certain 
problems remains.  For example, we conjecture that the snake model in segmentation 
might be more effective than the marker-controlled watershed algorithm and Voronoi 
diagrams as the cells in GFP-Rac12 and F-actin have many different kinds of closed 
curves.  We are in the processing of testing this conjecture.  For feature extraction, 
additional image features specific to the different cell phenotypes, such as spiky re-
gion, ruffling region and actin acceleration region, would need to be identified.  Fur-
thermore, we would study how to automatically extract phenotypes hidden in cell 
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shapes by using cluster analysis. The ultimate goal is to score each image by estab-
lishing robust mathematic models to map the number of different phenotypes in each 
image to a scoring system which would let biologists easily find the novel candidate 
genes in their screens.   

Table 1. Recognition accuracy for RNAi cell phenotypes 

Phenotype Actin-A Ruffling-R Spiky-S Normal-N 
Actin 72.87% 8.6% 1.69% 16.8% 
Ruffling 8.68% 75.14% 6.13% 10.06% 
Spikey 6.97% 20.36% 62.83% 9.84% 
Normal 14.5% 6.54% 4.79% 74.17% 
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Jérôme Boulanger1,2, Charles Kervrann1,2, and Patrick Bouthemy1

1 IRISA - INRIA, Campus Universitaire de Beaulieu, 35042 Rennes, France
2 INRA - MIA Domaine de Vilvert 78352 Jouy en Josas, France

Abstract. We present a spatio-temporal filtering method for signifi-
cantly increasing the signal-to-noise ratio (SNR) in noisy fluorescence
microscopic image sequences where small particles have to be tracked
from frame to frame. Image sequence restoration is achieved using a
statistical approach involving an appropriate on-line window geometry
specification. We have applied this method to noisy synthetic and real
microscopic image sequences where a large number of small fluorescently
labeled vesicles are moving in regions close to the Golgi apparatus. The
SNR is shown to be drastically improved and the enhanced vesicles can
be segmented. This novel approach can be further exploited for biolog-
ical studies where the dynamics of small objects of interest have to be
analyzed in molecular and sub-cellular bio-imaging.

1 Introduction

Time-lapse confocal microscopy is now a popular technology in biomedicine and
biophysics for analysis of dynamics at sub-cellular or molecular levels. Several
applications in biology are concerned with the acquisition of sequences of 2D im-
ages or 3D volumes representing small fluorescently-tagged particles with highly
variable velocities. In order to analyze these moving objects, the acquisition time
is reduced and consequently the signal-to-noise ratio becomes low. As a con-
sequence, motion estimation and trajectography of such small objects remain
difficult tasks.

Several algorithms have been developed for 3D image sequences restoration.
Traditionally, these 4D data sets are processed, volume by volume, using 3D
spatial filters, in order to save computation time, even if spatio-temporal filter-
ing would appear more appropriate. In contrast, spatio-temporal filtering has
been largely investigated in video processing, and usually relies on a motion-
compensated approach [1]. Most of these spatio-temporal filters can neverthe-
less be considered as an extension of well-known principles developed for 2D
image restoration or smoothing. To our knowledge, non-linear anisotropic diffu-
sion [2, 3], recent PDE-based methods [4], Wiener filters [5], and wavelet shrink-
age [6], have been used for processing 2D image sequences. Finally, 3D image
sequence smoothing algorithms have been specifically developed for ultrasound
imaging [7, 8].

In this paper we address the problem of 3D image sequence restoration by
significatively extending the framework described for smoothing 2D still images
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in [9, 10, 11]. Unlike robust anisotropic diffusion [12] and non-linear Gaussian fil-
tering [13], this local adaptive estimation approach provides a scale selection for
each pixel by locally estimating the appropriate spatial filtering window [9]. Ad-
ditionally, a confidence level (i.e. variance) attached to the each pixel is provided.
Furthermore, the Total Variation (TV) minimization method [14], commonly-
used for 2D image restoration, cannot be easily extended to a space-time domain.

The novel method introduced in this paper is able to jointly estimate the
spatial and temporal discontinuities in 3D image sequences. Also, the proposed
algorithm is non-iterative and relatively fast since its complexity can be bounded
by the user, which is necessary for processing large 4D data sets. Finally, the
theoretical properties of such an estimator are well known in non-parametric
statistics for adaptive smoothing [15, 11, 10].

While being general, the described method has been designed for analyzing1

the role of fluorescence-tagged proteins moving around the Golgi apparatus and
participating to the intra-cellular traffic. These proteins are embedded into vesi-
cles whose movement is supposed to be dependent on a microtubules network.
These vesicles propelled by motor proteins follow these polarized “cables”. This
mechanism explains the observed high velocities which could not be accounted
for a simple diffusion. Let us point out that the method is data-driven and re-
quires no motion estimation, which is known to be problematic when images are
heavily corrupted by noise.

2 Proposed Approach

We consider the following statistical image model: Yi = u(xi)+ ξi, where xi ∈ Ω
represents the pixel location in the image domain Ω ⊂ IRd (d = 3 for 2D
and d = 4 for 3D image sequences). The image function ui = u(xi) has to be
recovered from observations Yi. The errors ξi are assumed to be independent
zero-mean Gaussian variables with unknown variances τ2

i .
We need minimal prior assumptions on the structure of the image for recov-

ering u. In what follows, we assume that u(xi) is a locally piecewise constant
function in the neighborhood of the pixel xi. However, the size and shape of these
neighborhoods is not constant over the image sequence and must be estimated
too. Once such a neighborhood has been determined, the regression function u
can be estimated by optimizing a local maximum likelihood (ML) criterion. The
proposed method addresses these two issues as described below.

One important feature of our approach is to define a sequence of increasing
nested spatio-temporal neighborhoods (Wi,n)n∈[0:N ] at each point xi, i.e. Wi,n ⊂
Wi,n+1 with N indicating the largest window. At the initialization, we choose
the 26 nearest neighbors in the 3D space domain as the pilot (starting) window
Wi,0 at point xi, ∀xi ∈ Ω. Then, we can compute an initial estimate ûi,0 of u(xi)
and its associated variance σ̂2

i,0 as:

1 The authors would like to thank the ACI-IMPBio for its support and the Curie
Institute for the image sequence data-base.
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ûi,0 =
1

|Wi,0|
∑

xj∈Wi,0

Yj and σ̂2
i,0 =

1
|Wi,0|2

∑
xj∈Wi,0

τ̂2
j (1)

where |Wi,0| denotes the number of pixels in Wi,0 and τ̂2
j is an empirical estimate

of the local noise variance τ2
j as described in Section 3. This initialization step

provides the first estimates of the two sequences (ûi,n)n∈[0:N ] and (σ̂2
i,n)n∈[0:N ].

The next step consists in considering a larger window Wi,1 such that Wi,0 ⊂Wi,1
and calculating new estimates ûi,1 and σ̂2

i,1 over Wi,1. At iteration n we define
the estimator as:

ûi,n =
∑

xj∈Wi,n

ωijYj and σ̂2
i,n =

∑
xj∈Wi,n

ω2
ij τ̂

2
j , (2)

where the weights ωij are defined as a function of the contrast between the
estimate ûi,n−1 at point xi and the estimates ûj,n−1 at points xj belonging
to the neighborhood Wi,n. The weights ωij and the geometry and size of the
windows Wi,n will be formally defined in the next Sections.

2.1 Adaptive Weights

At iteration n ≥ 1, the weights are calculated as follows:

ωij =
f(δij)∑

xj∈Wi,n

f(δij)
and δij =

ûi,n−1 − ûj,n−1

λσ̂i,n−1
(3)

where f is a function of the normalized contrast δij . Considering its robustness
and smoothing properties, we have chosen the influence function of the Huber
M-estimator defined as:

f(x) =
{

1 if |x| ≤ 1
1
|x| otherwise (4)

but other influence functions are possible [12]. Therefore, the weights decide
which points xj in the spatio-temporal neighborhood Wi,n should contribute
to the estimation of u(xi). This decision is made under the hypothesis that the
contrast is Gaussian distributed. Hence, the parameter λ controls the probability
of false alarm (satisfy the test when it should not) to include a point xj in
Wi,n. In our experiments, we set λ = 3 which corresponds to a commonly-used
probability of error of type I of 0.036.

2.2 On-Line Window Geometry Specification

One of the main contributions of this work is the on-line adaptation of the neigh-
borhood sequence (Wi,n)n∈[0:N ]. It is worth noting that points xj ∈ Wi,n that
contribute to the estimation of u(xi) are thus selected by weights in a quite flex-
ible and efficient way unlike usual methods which exploit geometry-based design
of the neighborhood. This allows us to use a simple hyper-cubic spatio-temporal
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(a) (b)

Fig. 1. (a) Spatio-temporal neighborhood: colors correspond to iterations plotted in
(b); (b) confidence intervals: circles represent estimates ûi,n obtained at each iteration
n. The grey rectangles represent the intersection between the current confidence interval
and the previous one. As long as the estimate belongs to this intersection, the estimation
process is updated.

volume for the window shape. Nevertheless, we separate the space dimension
from the time dimension and parametrize the spatio-temporal volume by intro-
ducing two extents. Figure 1 shows the considered neighborhood sequence and
how neighborhoods are enlarged along with the iterations. It is worth stress-
ing that this figure only represents a particular case and that the sequence of
neighborhoods is not defined a priori but locally estimated simultaneously to the
image filtering procedure. Thus, each point is assigned an adapted smoothing
support. This support is estimated according to the stopping rules described in
the next section.

2.3 Window Estimation

Two pointwise rules are used to drive the window estimation process. The first
one is designed to estimate the optimal window at xi and is based on the measure
of the closeness of the estimator û to the unknown function u given by the local
L2 risk. This measure of performance can be decomposed in two terms, that
is the squared bias and the variance as E [ûi,n − ui]

2 = [bias (ûi,n)]2 + σ̂2
i,n,

where E(.) denotes the mathematical expectation. In what follows, we reason-
ably assume the squared bias is an increasing function of the window size and
the variance is a decreasing function of the window size [9, 15, 11, 10]. Then, the
selected window will be the window which achieves an optimal compromise be-
tween these two terms, i.e. the squared bias and variance terms must be of the
same order: bias(ûi,n) # σ̂i,n. A closed-form optimal solution is not available for
our non-linear estimator and we arbitrarily define, as usually done, the optimal
window as the window for which the squared bias and the variance are nearly
the same. Now let us consider the sequence of increasing windows (Wi,n)n∈[0:N ]
and the sequence of estimates (ûi,n)n∈[0:N ] of variance (σ̂2

i,n)n∈[0:N ]. A practical
rule bases on pairewise comparaison of successives estimates can be derived to
detect the optimal window. We define the largest window satisfying the following
pointwise statistical rule [9, 15, 11]:
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|ûi,n − ûi,n′ | < η σ̂i,n′ , ∀n′ < n, (5)
as the optimal window since Wi,n′ ⊂ Wi,n at xi. Strictly speaking, while the
estimates (ûi,n′)n′≤n are sufficiently close to each other, then we decide to con-
tinue the estimation process. The factor η can be easily chosen in the range
[2, 4] in order to adapt the decision rule as justified in [9, 11, 10]. As shown
in Figure 1, this rule amounts to continue the pointwise estimation process,
while new estimates belong to the intersection of estimated confidence intervals
[ûi,n − ησ̂i,n, ûi,n + ησ̂i,n]. This representation brings to the fore that we don’t
have to store all the previous estimates (ûi,n′)n′≤n but only the intersection of
confidence intervals, the previous estimate and its variance for each point. We
also introduce a second rule which consists in locally stopping the pointwise esti-
mation if the confidence intervals is small enough: when the output ûi,N is stored
in an integer format, it is useless to continue to improve the estimation when
the confidence associated to the estimate is below the unit. This second rule
enables to autonomously stop the estimation process and makes the algorithm
more data-driven.

3 Algorithm Implementation

As noticed in Section 2, an estimation of the noise variance is required. Here,
we assume that the noise variance is constant over the whole 3D image se-
quence. It can be robustly estimated by calculating pseudo-residuals εi as de-
scribed in [16]. If we choose a 4D 8-neighborhood, pseudo-residuals are com-
pactly represented by εi = (8Yi −ΔYi) /

√
72 where ΔYi is the discrete Lapla-

cian at xi and the constant
√

72 is introduced to insure that E[ε2i ] = τ2.
Given the residuals εi, we can then robustly estimate the noise variance τ2

by: τ = 1.4826 medi (| εi −medj |εj | |). A local estimation of the noise variance
is proposed in [9] and can also be used when the noise model proposed in Section
2 is not appropriate to descibe the spatio-temporal inhomogeneity of the image
sequence. Moreover, for Poisson distributed noises, the Anscombe transform can
be applied [17]. We have also seen in Sections 2.1 and 2.2 that λ and η can
be well calibrated using statistical arguments. In our experiments, λ is set to 3
and η to 2

√
2. During the estimation, we alternate the increasing of the spatial

and temporal extents of the 4D spatio-temporal neighborhoods. Furthermore,
the algorithm can be easily parallelized. Actually, estimation steps use only lo-
cal information and have been distributed over several CPUs. Finally, another
possibility to speed up the algorithm is to use a dyadic scheme when increasing
the extent of the neighborhood.

4 Experiments

The proposed method has been applied to both synthetic and experimental se-
quences of 2D and 3D images obtained by fast 3D deconvolution microscopy
[18]. Since the dynamics of vesicles are unknown, we first simulate a noisy se-
quence of 2D images by adding a realistic white Gaussian noise to a real denoised
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(a) original sequence (b) noisy sequence (c) 2D local adaptive
(22 dB) estimation (32 dB)

(d) PDE smoothing (e) 3D local adaptive (f) 2D + t local adaptive
(33 dB) estimation (33 dB) estimation (35 dB)

Fig. 2. Comparaison with other method on a synthetic sequence. Six 2D image se-
quences are represented as 100 × 100 × 100 volumes. First three quadrants correspond
slice XY , TY and XT . The last one is left empty. (a) original sequence used as the
ground truth ; (b) artificially noisy sequence ; (c) spatial adaptive estimation [9], i.e.
each image of the sequence is processed independently ; (d) 3D anisotropic diffusion [4]
when the sequence is considered as a homogeneous 3D volume ; (e) adaptive estimation
algorithm applied the sequence considered as a 3D volume ; (f) our 2D + t adaptive
estimation (see text).

image sequence (Figs 2(a) – 2(b)). We will also compare our method to other
methods on this simulated sequence.

In Fig. 2(c), some blinking effects or strides are visible on spatio-temporal
slices when each 2D frame of the sequence are processed independently with the
adaptive estimation described in [9]. Anisotropic diffusion [4] has been applied on
the 2D sequence considered as a 3D volume. In Fig.2(d), the sequence is strongly
smoothed and some details are lost. In Fig.2(e), the 3D adaptive estimation
algorithm described in [9] has been applied to the 3D volume. As expected,
considering the temporal dimension as a spatial dimension is not appropriate
to cope with temporal discontinuities. Finally, the results of our method are
shown in Fig.2(f). The peack-signal-to-noise-ratio defined in decibels (dB) as
PSNR = 20log10(255/mse) where mse denotes the mean squared error between
the original sequence and the result of filtering process, is drastically improved
and the dynamics of particles are well preserved. Figure 3(a) shows a detail of
a real 2D image sequence. It is first processed by equally considering the three
space-time dimensions. Undesirable blurring over three successive images of a
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(a) original sequence (b) 3D local adaptive (c) 2D + t local adaptive
estimation estimation

Fig. 3. Detail of a sequence denoised with two versions of the filter: 3D estimator and
the proposed 2D + t estimator. First three quadrants correspond slice XY , TY and
XT . The last one is left empty.

single spot along its track are visible (Fig. 3(b)). In the case of spatio-temporal
filtering (Section 2), these artifacts are removed as shown in Fig. 3(c).

We have also applied our adaptive spatio-temporal filtering method on a
database of video-microscopy sequences in order to facilitate the automatic anal-
ysis of the dynamics of two proteins Rab6a and Rab6a’ involved in particular
steps of membrane trafficking. These proteins are fluorescently-tagged and move
around the Golgi apparatus. The function of this organelle is to package materi-
als for export from the cell. Figures 4(a) and (b) show respectively a real noisy
image extracted from a video-microscopy sequence (360× 445× 10 pixels) and
the corresponding restored image for the fifth 2D slice in depth. The algorithm
provides visually satisfying results after ten iterations as demonstrated in Figs. 5
(a) and (b). that illustrate a cropped region of a 3D image. Note that, the point-
wise window extents shown in Figs. 4 (c) and (d) roughly correspond to the size

(a) real noisy image (b) restoration (c) spatial extents (d) temporal extents

Fig. 4. One frame depicting the spot positions at time t = 2s. The dynamics of fluo-
rescent tags has been recorded by fast 3D deconvolution microscopy. The large white
region corresponds to the Golgi apparatus while small spots are vesicles moving with
a high average speed (∼ 10 pixels/frame). (a) real noisy image (2D slice of 3D frame);
(b) denoised image using the spatio-temporal adaptive estimation ; (c) spatial extents
of windows ; (d) time extents of windows (small extents are coded in black and are
located in the vicinity of static or moving spots).
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(a) noisy volume (b) denoised volume

Fig. 5. Volume rendering of a cropped region of a 3D image extracted from the sequence
in Fig 4. (a) original real noisy 3D frame; (b) results using our adaptive spatio-temporal
method.

of space-time structures in image sequences. These spatio-temporal features will
be further exploited for analysis of these biological data. The processing time of
a sequence of 50 2D frames (360× 445) is typically 10 min

5 Conclusion

We have described an original, adaptive and efficient method for 2D and 3D im-
age sequence restoration. Experiments on synthetic and real video-microscopy
image sequences have demonstrated its ability to smooth images while preserv-
ing both spatial and temporal discontinuities. Moreover, the presented method
does not require a fine tunning of the parameters which are well calibrated using
statistical arguments. This approach does not require motion compensation and
can be further used for biological studies where dynamics have to be analyzed in
noisy sequences. In particular, we could exploit spatio-temporal features (win-
dow size) provided by the algorithm, which can be regarded as a preliminary
step for analysis of the lifetime kinetics of specific Rab proteins. Furthermore,
this method is not restricted to biological applications and could be applied for
smoothing three dimensional ultrasound images using an estimator adapted to
the Rayleigh noise model.
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Abstract. This paper presents a novel method for defining an osteotomy that
can be used to represent all types of osteotomy procedures. In essence, we model
an osteotomy as a lower-pair mechanical joint to derive the kinematic geometry
of the osteotomy. This method was implemented using a commercially avail-
able animation software suite in order to simulate a variety of osteotomy proce-
dures. Two osteotomy procedures are presented for a femoral malunion in order
to demonstrate the advantages of our kinematic model in developing optimal os-
teotomy plans. The benefits of this kinematic model include the ability to evaluate
the effects of various kinds of osteotomy and the elimination of potentially error-
prone radiographic assessment of deformities.

1 Introduction

An osteotomy, the surgical cutting of bone, is used in many orthopedic procedures for the
purpose of correcting mechanical and aesthetical deformities of bones and joints. Bone
deformities may arise from many causes including congenital defects, poor nutrition,
disease, and post-traumatic healing. These deformities can be described by two elemen-
tal deformities, in rotation and in translation. It is common to further subdivide these
into rotation and translation about/along the long axis of a bone, and rotation and trans-
lation about/along some other (transverse) axis. Simple deformities consist of only one
elemental deformity, whereas complex deformities are a combination of simple defor-
mities. These deformities are illustrated through the use of an elongated cuboid in Fig. 1.

Numerous osteotomy procedures have been described in the orthopedics literature,
differing according to the anatomical site of the osteotomy, orientation and geometry
of the cut, and the type of movement of the osteotomized segments [1]. Common os-
teotomy techniques include rotational, transverse displacement, longitudinal displace-
ment, wedge, and oblique osteotomies. A variety of osteotomy plane geometries, such
as Z-cut, step-cut and chevron, have been developed in order to improve the surface
contact of the bone segments in some of these procedures.

Typically, radiographic and CT images are used to identify orthopedic deformities
and select an appropriate osteotomy procedure. Computer-assisted osteotomy planning
has, to date, targeted a specific type of osteotomy procedure [2, 3, 4, 5, 6, 7, 8]. Unfor-
tunately, these methods do not allow surgeons to readily compare the results of using
different procedures to correct a deformity and further require that surgeons be familiar
with a number of software programs.

This paper presents a novel method for defining an osteotomy procedure that can be
used to represent all types of osteotomy. This method can be readily incorporated into
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Fig. 1. Common orthopedic deformities: (a) rotational deformation about the long axis; (b) an-
gular deformation about a transverse axis; (c) translational deformation along the long axis; (d)
translational deformation along a transverse axis; and (e) complex, both rotational and transla-
tional

computer graphics in order to simulate a variety of osteotomy procedures. In essence,
we model an osteotomy as a lower-pair mechanical joint to derive the kinematic geom-
etry of the procedure.

We were inspired to consider kinematic geometry because of a common require-
ment of mechanical joints and the healing of an osteotomy: surface congruence. Bear-
ing surfaces must be congruent; otherwise, excessive wear or catastrophic failure may
result. For bone to heal, the surfaces of the osteotomized bone should be [roughly] con-
gruent, both for weight-bearing resistance and because mechanical strain is a necessary
element in bone remodeling.

2 Kinematic Representation of an Osteotomy

An osteotomy permits relative 3D motion of the osteotomized bone segments. If one
segment is selected as the base segment, the other segment has up to six degrees of free-
dom of relative motion: three translations and three rotations. Simple representations of
relative motion, such as homogeneous coordinate transformations, are commonly used
in computer graphics and robotics [9]. It is straightforward to represent any given type
of osteotomy by such a transformation; this was reported for the oblique osteotomy as
early as 1952 [10] and as recently as 2005 [11]. However, these general representations
do not elegantly capture the relative motion induced by a particular osteotomy.

The literature on robotics and mechanism theory is rich with descriptions of relative
motion of rigid members [12]. Because any particular osteotomy procedure restricts the
transformation allowed between the bone segments, it may be useful to consider the
osteotomy as a virtual joint.

2.1 A Virtual-Joint Model

In robotics, joints connect successive links and constrain the motion that can occur be-
tween the links. The number of degrees of freedom of a joint is known as the joint
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Fig. 2. Virtual-joint model of an osteotomy. (a) A virtual joint (VJ) connects the osteotomized
segments, S1 and S2. Motion of S2 can be defined with respect to a coordinate frame attached to
S1 at the position of the osteotomy site, having the same orientation as the joint axes; (b) The joint
is not a physical presence as it is in robotic systems and, therefore, does not actually compromise
the proximity of the osteotomized surfaces as the graphical representation in (a) may suggest.

mobility m. In real mechanisms the mobility can take on values of 0 < m ≤ 6. The
simplest joint has a joint mobility of m = 1, allowing movement in a single direction
only; in robotics the common mobility-one joints are either prismatic (translation only
in a fixed direction) or revolute (rotation only about a fixed axis). Complex joints con-
sisting of higher degrees of freedom can be made by combining revolute and prismatic
joints, and allow motion in multiple directions.

A distinction made early in the twentieth century divided joint kinematics into
lower-pair and higher-pair motions [13]. A kinematic higher pair has non-congruent
joint surfaces; in the real world, such a bearing surface is not durable. An example of a
higher pair is a point loading of a plane, for which transverse motion would either wear
the point to a locally planar surface or break the point.

In general there are six classes of kinematic lower pairs, each with a specify type
of movement: prismatic, revolute, helical 1, cylindrical, planar, and spherical. If the
osteotomized bone surfaces are congruent or nearly so then it must be the case that,
for any given type of osteotomy, the relative motion between the bone segments is
constrained to be a kinematic lower pair.

We have found a direct mapping from kinematic lower pairs to common osteotomy
procedures, which we call virtual joints (VJs). A VJ is a kinematic constraint on the
relative segment motion, shown in Fig. 2. A VJ has two important uses in planning an
osteotomy. First, a planning system can use a VJ to restrict the allowable motion of
bone models so that a surgeon can determine beforehand the effects of various kinds of
osteotomy. Second, once a specific osteotomy is selected, the congruent surfaces of the
corresponding kinematic lower pair can be calculated and provided to the surgeon for
intraoperative guidance of the osteotomy procedure.

We have searched the orthopedic literature extensively and categorized osteotomy
procedures as various kinds of VJs. As shown in Table 1, the kinds of osteotomy used
to correct simple deformities are either prismatic or revolute VJs, each with mobility

1 Although helical joints are useful for screws, nuts, bolts, etc., they seem to have little utility in
describing osteotomy.
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Table 1. Osteotomy procedures modeled as virtual m = 1 lower-pair joints

Osteotomy Common Examples Diagram Equivalent 
Motion 

 
Transverse 
Rotational 

 

Rotational/derotational osteotomy; 
Transtrochanteric rotational osteotomy of 
the femoral head;  Rotational acetabular 
osteotomy 

 

 

 
Closing 
Wedge 

 
Coventry high tibial osteotomy; 
varus/valgus correction 
 

  

 
Opening 
Wedge 

High tibial opening wedge osteotomy;  
varus/valgus correction; Distal radius 
osteotomy 
 

  

 
Oblique 

 
Tibial/femoral malunions 

 
 
 
 

 

 
Longitudinal 
Displacement 

 

 
Lengthening/shortening of long bones 

  

 
Transverse 

Displacement 
 

 
Pelvic osteotomy; Hallux valgus 
correction 

  

 

revolute 

revolute 

revolute

revolute 

prismatic 

prismatic 

Table 2. Use of m ≥ 2 lower-pair joints in describing osteotomy

Osteotomy VJ Model 
Combined wedge and transverse displacement 
osteotomy; Combined longitudinal displacement and 
rotational osteotomy 

 

Combined rotational and transverse displacement 
osteotomy 
 

 

Combined wedge and rotational osteotomy; oblique 
osteotomy 
 

 

 

cylindrical 

planar 

spherical 

m = 1. VJs of higher mobility, m ≥ 2, can be used to model osteotomy procedures
that correct complex deformities, and are shown in Table 2.

3 Implementation and Assessment

The VJ model can be applied to the computer-assisted planning of an osteotomy by
creating constraints that define how computer images can be moved relative to one an-
other. Commercial computer-graphics animation software (Maya 6 Complete, Alias/
Wavefront, Toronto, Canada) was used to implement VJs. This software package was
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selected because of its powerful graphics and development capabilities. Algorithms
were developed to constrain motion for all five lower-pair joints of the VJ model, and
both forward and inverse planning techniques were implemented.

Virtual osteotomy simulations were conducted using 3D surface meshes of a de-
formed bone and a normal counterpart. These surface meshes were obtained by laser-
scanning foam models of bones (Pacific Research laboratories, Bellinham, USA). Os-
teotomy simulations were performed on bone models having both simple and complex
deformities. For brevity, only two VJ osteotomies will be presented here.

3.1 Forward Planning: An Opening-Wedge Osteotomy

The forward virtual-osteotomy process simulates a surgical procedure. Consider, for
example, an opening-wedge osteotomy of a malunited femur with a 30-degree angula-
tion deformity modeled using a revolute virtual joint. This osteotomy was simulated in
four steps:

1. The normal and deformed surface meshes were manually aligned in order to visu-
alize the deformity in 3 dimensions, shown in Fig 3(a);

2. A graphical plane was used to define the position and orientation of the osteotomy,
shown in Fig 3(b). The coordinate axes of the plane were used to indicate the ori-
entation of the VJ axis;

3. The surface mesh of the deformed bone was separated to create two independent
meshes along the osteotomy plane; and

4. A revolute joint constraint was applied to the osteotomized bone which restricted
the movement of the mesh images to rotation about the joint axis. A graphical user
interface facilitated movement of the bone image according to the constraint model,
shown in Fig 3(c). A separate user interface element was created for each degree of
freedom depending on the type of joint constraint.

    
a b              c d 

 
Fig. 3. Virtual opening-wedge osteotomy: (a) Alignment of normal and deformed surface meshes;
(b) A graphical plane was used to specify the location of the osteotomy; (c) A slider interface was
used to adjust the rotation about the joint axis; (d) Result of the opening-wedge osteotomy
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3.2 Inverse Planning: An Oblique Osteotomy

An oblique, single-cut, osteotomy can be used to correct simple angulation deformities
as well as complex deformities involving rotational and angular elements. The surgeon
makes a single cut such that rotation in the plane of the cut corrects the deformity.
The oblique osteotomy, when indicated, is preferred over a wedge osteotomy because it
eliminates changes in bone length due to the removal or addition of a wedge, and results
in a stable interface for fixation.

Although the theory of the oblique plane is well established [10], determining the
orientation of the plane can be quite difficult. Efforts have been made to determine the
orientation of the oblique plane from mathematical formulas based on angles of the
deformity measured from radiographs [14]. As as extension of these formulas, look-
up tables were developed to facilitate the mathematical calculations [15]. Quite re-
cently, a mechanical device was constructed to determine the orientation of the oblique
plane [11]; interestingly, these authors noted that the use of a computer would be ideally
suited to solving this problem.

An inverse planning algorithm was implemented to determine the orientation of the
oblique osteotomy plane. The process was the same as that described for the forward
virtual-joint osteotomy; The osteotomy was modeled as a spherical joint constraint,
and the user manipulated the spherical degrees of freedom to correct the deformity.
The result of the rotational transformation was used to determine the orientation of
the oblique osteotomy plane using an equivalent angle-axis representation. Test models
were created to validate the algorithm, comparing the orientation of the oblique plane
to the results obtained by Sangeorzan et al. [14, 15].

The inverse planning algorithm was used to determine the orientation of the oblique
plane for a malunited femur with 30-degree angulation, presented earlier as an opening-
wedge osteotomy (Fig. 4).

 

Fig. 4. Virtual osteotomy of a femur using the inverse model to determine the orientation of
the osteotomy plane. The display window indicates the orientation of the oblique plane and the
rotation angle about the equivalent rotation axis. In this case, the oblique plane that corrects
the deformity is not clinically feasible since it would result in an extremely oblique and long
osteotomy plane.
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4 Discussion

The VJ model provides the mathematical foundation for a novel computer-based pre-
operative osteotomy planner with the ability to represent all types of osteotomy pro-
cedures. By using the VJ method, multiple osteotomy techniques can be evaluated in
order to select an optimal plan. For the examples presented, it is possible to compare
the use of an oblique plane (that would not completely correct the deformity) to an
opening-wedge osteotomy (that may involve leg-lengthening).

A clear advantage of the VJ model is the elimination to initially characterize ortho-
pedic deformities in terms of radiographic measurements. In the VJ model, representa-
tion of the osteotomy is directly related to the relative motion that occurs between the
osteotomized segments instead of the nature of the deformity itself. This novel approach
is especially advantageous in determining the orientation of an oblique osteotomy plane
since existing methods involving mathematical formulas [14], look-up tables [15] and a
mechanical device [11] rely on initial radiographic assessment, and limit the ability to
create optimal preoperative plans. A direct transformation-based solution can increase
the accuracy of preoperative osteotomy plans by eliminating errors associated with ra-
diographic measurements that may not be perfectly aligned to the anatomical planes
from which the deformities are referenced. A transformation-based approach also al-
lows surgeons to experiment with the outcome of the oblique procedure to produce
an optimal plan with both feasible geometry and sufficient deformity correction. It is
difficult to do this with the existing approaches, as the relationship between the param-
eters used to represent the deformity and the orientation of the osteotomy plane is not
straightforward.

The accuracy of the current implementation is dependent on the alignment of the
deformed bone with its normal counterpart. In this implementation, alignment was
performed manually; however, the authors recognize that automated registration tech-
niques could be used for alignment.

For simplicity, the VJ model was used here to implement only those osteotomy pro-
cedures that could be represented by planar cuts and motion defined by a single kine-
matic lower pair. It should be noted, however, that the fundamentals of the VJ model can
be easily extended to represent osteotomy procedures with more complex geometries
and motions. For instance, the Z-cut, chevron, and crescentic osteotomy could be imple-
mented by creating a library of osteotomy geometries to supplement the lower-pair-joint
constraints. The effects of external fixators, such as Taylor and Ilivarov frames, could be
including by considering systems of kinematic lower pairs. Procedures with complex
motion patterns can be incorporated into the model by extending the library of virtual
constraints.

5 Conclusion

A novel method for representing an osteotomy as a constrained transformation was pre-
sented. This method was used to simulate a number of osteotomy procedures whose
kinematic geometry can be described by a lower pair joint. The proposed virtual-joint
model has the capability to represent any type of osteotomy procedure. Potential ad-
vantages of this method include the ability to evaluate the effects of various kinds of
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osteotomy and the elimination of potentially error-prone radiographic assessment of
deformities. The VJ model provides an improved means to define optimal preoperative
plans that can be used intraoperatively to guide the osteotomy procedure.
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[3] Moctezuma, J.L., Gossé, F., Schulz, H.J.: A computer and robot aided surgery system
for accomplishing osteotomies. In: International Symposium on Medical Robotics and
Computer Assist ed Surgery. (1994) 31–35

[4] Chao, E.Y.S., Sim, F.H.: Computer-aided preoperative planning in knee osteotomy. Iowa
Orthopaedic Journal 15 (1995) 4–18

[5] Ellis, R.E., Tso, C.Y., Rudan, J.F., Harrison, M.M.: A surgical planning and guidance sys-
tem for high tibial osteotomy. Computer Aided Surgery 4 (1999) 264–274

[6] Croitoru, H., Ellis, R.E., Small, C.F., Prihar, R., Pichora, D.R.: Fixation-based surgery: A
new technique for distal radius osteotomy. Computer Aided Surgery 6 (2001) 160–169

[7] Mayman, D., Rudan, J.F., Yach, J., Ellis, R.E.: The Kingston periacetabular osteotomy: A
new computer-enhanced technique. Computer Aided Surgery 7 (2002) 179–186

[8] Athwal, G.S., Ellis, R.E., Small, C.F., Pichora, D.R.: Outcomes of computer-assisted distal
radius osteotomy. Journal of Hand Surgery 28 (2003) 951–958

[9] Craig, J.J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley, Read-
ing MA (1989)

[10] d’Aubigne, R.M., Descamps, L.: L’osteotomie plane oblique dans la correction des defor-
mations des membres. Memoires: Academie de Chirurgie 78 (1952) 271–276

[11] Meyer, D., Siebenrock, K., Schiele, B., Gerber, C.: A new methodology for the planning of
single-cut corrective osteotomies of mal-aligned bones. Clinical Biomechanics 20 (2005)
223–227

[12] McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press, Cambridge MA
(1990)

[13] Hunt, K.H.: Kinematic Geometry of Mechanisms. Oxforn University Press, New York
(1990)

[14] Sangeorzan, B.P., Judd, R., Sangeorzan, B.J.: Mathematical analysis of single-cut os-
teotomy for complex long bone deformity. Journal of Biomechanics 22 (1989) 1271–1278

[15] Sangeorzan, B.P., Sangeorzan, B.J., Hansen, S., Judd, R.: Mathematically directed single-
cut osteotomy for correction of tibial malunion. Journal of Orthopaedic Trauma 3 (1989)
267–275



J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 910 – 916, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Predictive Camera Tracking for Bronchoscope 
Simulation with CONDensation  

Fani Deligianni, Adrian Chung, and Guang-Zhong Yang 

Department of Computing, Imperial College London 
{fani.deligianni, adrian.chung}@ic.ac.uk, 

g.z.yang@imperial.ac.uk 
http://vip.doc.ic.ac.uk 

http://www.doc.ic.ac.uk/~ajchung/VISaVE 

Abstract. This paper exploits the use of temporal information to minimize the 
ambiguity of camera motion tracking in bronchoscope simulation. The 
condensation algorithm (Sequential Monte Carlo) has been used to propagate the 
probability distribution of the state space. For motion prediction, a second-order 
auto-regressive model has been used to characterize camera motion in a bounded 
lumen as encountered in bronchoscope examination. The method caters for multi-
modal probability distributions, and experimental results from both phantom and 
patient data demonstrate a significant improvement in tracking accuracy 
especially in cases where there is airway deformation and image artefacts. 

1   Introduction 

In surgery, the value of minimally invasive procedures in terms of reduced patient 
trauma and recovery time has been established for many years. The limitation of the 
technique due to the complexity of instrument control and a loss of 3D vision and 
tactile feedback means effective training of visual spatial perception and hand-eye 
coordination is crucial to its safe practice. Flexible fiber-optic bronchoscopy, for 
example, is normally performed on patients who are fully awake or with light 
conscious sedation. The procedure can therefore entail considerable discomfort if it is 
not handled properly. Training according to the classical apprenticeship scheme is 
useful but can result in prolonged surgical procedures with increased patient 
discomfort and a potential risk for further complications.  The use of computer 
simulation, particularly the reliance on patient specific data for building anatomical 
models both in terms of biomechanical fidelity and photorealism has attracted 
extensive interests in recent years [1],[2, 3]. Existing work has shown that by fusing 
real-bronchoscopy video with 3D tomographic data with the same patient, it is possible 
to generate photorealistic models that allow high fidelity, patient specific bronchoscope 
simulation [3]. The prerequisite of the technique, however, is accurate 2D/3D 
registration for recovering the pose of the camera in video bronchoscope sequences [2, 
4]. Since bronchoscope images only provide localized views of the inner lumen, 
image-based technique cannot guarantee the convergence of the registration algorithm. 
To circumvent this problem, temporal constraints can be used to provide a predictive 
model by exploiting the temporal coherence of the camera movement.  
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For video bronchoscope navigation, Naga et al used Kalman filtering to increase 
the speed and accuracy of the registration algorithm [5]. Kalman filter, however, is 
generally restricted to situations where the probability distribution of the state 
variables is unimodal [6]. In bronchoscopy, tissue deformation, inter-reflection and 
view dependent specularity due to mucosa can limit the accuracy of image-based 
algorithms. The resultant probability density function of the state vector is typically 
multi-modal. Therefore, the observation probabilistic model cannot be approximated 
as a Gaussian distribution. The purpose of this paper is to develop a predictive 
tracking algorithm based on the Condensation algorithm [7]. The method is designed 
to cater for the general situation when several competing observations forming a non-
Gaussian state-density. It uses a stochastic approach that has no restriction on the 
system/measurement models used and the distribution of error sources. An 
autoregressive algorithm is used as a predictive model [8], which is based on the fact 
that during bronchoscope navigation, the motion is restricted within a bounded area 
and a rapidly moving camera is more likely to slow down or change direction, rather 
than accelerate further. The proposed method provides a systematic learning 
procedure with modular training from the ground truth data such that information 
from different subjects are integrated for creating a dynamical model that 
accommodates the learnt behavior [9], [10]. 

2   Method 

2.1   Temporal Tracking with the Condensation Algorithm  

The main idea of the statistical framework is to maintain a time-evolving probability 
distribution ( )tt Zxp |  of the tracker state tx  over time t . The a posteriori 

density ( )tt Zxp |  represents knowledge about tx  deducible from the observation 

history { }tt zzZ ,,1 K= . The Condensation algorithm, also known as Sequential 

Monte Carlo Tracking and particle filter, does not explicitly represent the density 
function. It uses instead Statistical Factor Sampling, which provides a way of 
approximating ( )1| −tt Zxp  by using a random number generator for sampling ( )txp . 

The sampling technique is based on the Bayesian theory which gives [11]: 

( ) ( ) ( )xpxzpzxp || ∝  (1) 

During statistical factored sampling, a sample set ( ) ( ){ }Nss ,,K1  is generated from the 

prior density ( )txp , where N  is the number of sample sets. A weight is subsequently 

assigned to each particle according to the observation density of 

( )
( )( )

( )( )= =
==

N
j

n

n
n

sxZp

sxZp

1 |

|π  (2) 

The weighted point set is then used as a representation of the a posteriori density, which 
is becoming more accurate as N  increases. By evaluating given moments of the state 
density, it is possible to estimate the most probable state. During prediction, the method 
involves the evolution of the state vector with time. Sampling methods based on spatial 
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Markov processes are generally used for the Condensation Method to represent the 
dynamics of a moving object/camera. As an observation/measurement model, a pq-
space based 2D/3D registration technique developed by Deligianni et al has been used 
[2]. The state of the system has been defined as the 6DoF pose of the camera. 

2.2   Prediction Model 

In order to construct a motion model for the endoscope camera that moves freely in 
the 3D tracheo-bronchial tree, an auto-regressive model is used [8]. This is in contrast 
to the ‘constant acceleration’ model used in [5], which effectively implies that the 
camera acceleration is expected to be constant during bronchoscope tracking. In this 
study, the auto-regressive model takes into account that during bronchoscope 
navigation, motion occurs within a bounded area, and a rapidly moving camera is 
expected to slow down or change in direction rather than accelerate further [12]. This 
ensures smooth navigation of the camera, and with modular training [9] multiple 
training sets can be used to obtain a more general model of the motion behavior. For a 
Kth-order auto-regressive model, the following equation can be used:  

=
− ++=

K

k
ktkt BwtdxAx

1

 (3) 

where kA  represents the collection of damped harmonic oscillators associated with  

vibrational modes, d is a drift per unit time, and w the white noise with covariance 
coefficient B .  

2.3   Training 

In practice, it is possible to build a tracking model by approximating its general 
behavior to intuitive expectations of the observed motion. However, a hand-built model 
is a difficult in this study due to the high-dimensionality and complex motion involved. 
Mathematically, learning motion characteristics from a training sequence is to estimate 
the coefficients kA , the mean value X , and the random component B of an 
autoregressive process that best model the motion in a training sequence involving 
camera poses of Mxx ,,1 K . The estimated pose tx can be treated as the exact 
observation of the physical process, and by following the multi-variate algorithm of [8], 
the auto-correlation coefficients jiR ,  and jiR ,′  can be computed for i, j = 0, 1, 2  as  
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Subsequently, 1A , 2A  and D  are given by: 
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The mean of the AR process, on the other hand, is calculated as 

( ) DAAX 1
12

−−−= I  (6) 

Finally, the covariance coefficient B  is estimated as a matrix square root of C  

( )TDRRARAR
M

C 0101202002

1 −−−
−

=  (7) 

For the purpose of bronchoscope simulation, it is more meaningful to collect 
several training sets from the same as well as different operators in order to construct 
a more representative dynamic model. To this end, the auto-correlation coefficients of 
each training set have been calculated individually and then combined in a linear 
fashion. Since each of these dynamic systems may have a different mean value, the 
use of pre-estimated mean value of the system can result in a prediction strongly 
biased. In this study, X  is estimated on-line as part of the state vector.  

2.4   Validation 

In order to assess the accuracy of the proposed algorithm, an airway phantom made of 
silicone rubber and painted with acrylics was constructed. The phantom has a cross 
sectional diameter of 12cm at the opening and narrows down to 5cm at the far end. 
The inside face was created such to give the surface a specular finish that looks 
similar to the surface of the lumen. A real-time, six degrees-of-freedom Electro-
Magnetic (EM) motion tracker (FASTRAK, Polhemus) was used to validate the 3D 
camera position and orientation, as illustrated in Fig. 2(c). The EM-tracker has an 
accuracy of 0.762mm RMS.  The tomographic model of the phantom was scanned 
with a Siemens Somaton Volume Zoom four-channel multi-detector CT scanner with 
a slice thickness of 3mm and in-plane resolution of 1mm. A CMOS camera and 
NTSC standard with frame rate of 30fps was used.  

For in vivo validation, bronchoscopy examination was performed in five patients 
according to a standard clinical protocol. During the bronchoscope procedure two 
similar type videoscopes (Olympus BF Type; with field of view 120°) were used. 
Video images from the bronchoscope examination were transferred to digital 
videotapes in PAL format at 25fps. Since the original endoscopic video frames 
contain both the endoscopic image and redundant black background, only the 
endoscopic view was digitized and cropped to images of 454×487 pixels. All images 
were converted to grayscale before the pq-space analysis. Similar to the phantom 
study, the CT images were acquired from the Siemens Somaton Volume Zoom four-
channel multi-detector CT scanner with a slice width of 3mm and collimation of 
1mm, and the acquisition volume covered from the aortic arch to the dome of hemi-
diaphragm. Pre-processing of the video images was necessary in order to alleviate the 
effects of interlacing, lens distortion and unnecessary texture information. To remove 
noise and image artifacts, anisotropic filtering was applied to each image.  

3   Results 

Figure 1 illustrates the effectiveness of the training process involved in this study. The 
ground truth data of the camera pose from four different patients have been used to 
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train the auto-regressive model. Subsequently, the performance of the trained model 
was evaluated on the fifth patient data. The Euclidean distance between the first and 
subsequent camera positions predicted from the condensation algorithm was used for 
error analysis. Similar analysis for the error in orientation was also performed. In 
Figure 1(a), the system mean has been predefined according to the training sequences, 
whereas for (b), it was included in the state vector of the predictive model such that it 
was updated in real-time. It is evident that without continuous updating of X , the 
derived tracking value is heavily biased.  

 (a) (b) 

Fig. 1. Assessment of the accuracy of the training model and the effect of excluding (a), and 
including (b), mean value estimation of X  as part of the state vector 

Table 1. Quantitative assessment of the pq-space based registration with and without the 
condensation algorithm (pq - CD), respectively 

Absolute Error 
Position (mm) Angle (rad) 

Pq CD Pq CD Case Frames

Mean ±Std Mean ±Std Mean ±Std Mean ±Std 

Phatom 300 36.5 22.7 5.89 5.5 0.14 0.1 0.12 0.07 
Pat1 100 7.0 2.0 3.3 2.2 0.8 0.2 0.03 0.02 
Pat2 120 13.3 5.8 2.6 1.7 0.35 0.14 0.11 0.06 
Pat3 243 26.98 13.0 1.9 1.52 1.02 0.6 0.11 0.06 
Pat4 144 5.87 5.5 3.15 2.1 0.06 0.1 0.05 0.04 
Pat5 100 14.4 10.12 2.26 1.65 0.7 0.4 0.19 0.15 

The detailed assessment results for the phantom and patient studies are summarized 
in Table 1. It is evident that in both cases the 2D/3D registration accuracy has been 
increased significantly by the use of the proposed predictive tracking algorithm. More 
notably, the method permits more stable tracking results in patients where image 
artifact (e.g. partial occlusion of the images due to mucosa or bleeding) and sudden 
airway deformation due to coughing can introduce large propagational errors to the 
original  pq-space  registration technique. In Figure 2, we demonstrate the extent of this  
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Fig. 2. The effect of airway deformation and partial occlusion of the image due to mucosa and 
blood on  the accuracy of the 2D/3D registration technique without (mid-column) and with 
(right-column) predictive camera tracking 

effect on the actual bronchoscope views. The left column shows the original frames 
from the bronchoscope video, whereas the middle and right columns are the virtual 
views of the 3D model by using pq-space registration without and with predictive 
camera pose tracking. It is worth noting that pre-processing, including radial distortion 
correction, de-interlacing and anisotropic filtering, has been applied to the real 
bronchoscope images before the registration step.  
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4   Discussion and Conclusions 

In this paper, we have described the use of predictive camera tracking for increasing the general 
accuracy and robustness of 2D/3D registration involved in virtual bronchoscope modeling. A 
stochastic filter is used to resolve the inherent global ambiguity in tracking by exploiting the 
temporal coherence of the camera tip. The use of the condensation algorithm permits the use of 
multi-modal probability distributions, and our results from both phantom and patient data 
demonstrate a significant improvement in tracking accuracy especially in cases where there is 
airway deformation and image artifacts. The method effectively avoids the registration 
algorithm being trapped in local minima. The use of auto-regressive model based on the 
principles of the maximum likelihood learning and extension to modular learning has facilitated 
the incorporation of multiple sequences from different patients. The proposed method can be 
further extended to multi-class motion description such that the dynamic behavior of camera 
navigation in different parts of the tracheo-bronchial tree can be incorporated.  
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Abstract. A 3D forward-dynamics model of a total knee replacement was de-
veloped using an explicit finite-element package. The model incorporated both
a tibiofemoral and a patellofemoral joint and allowed full 6-DOF kinematics for
both joints. Simulated quadriceps contraction was used to drive the model. For
validation, a unique experimental apparatus was constructed to simulate an open-
chain extension motion under quadriceps control. The ligamentous constraints of
the MCL and LCL were simulated using tension springs. The kinematics of the
tibia and patella were recorded along with the net forces and moments applied to
the femur. Several ligament and inertial configurations were simulated. The RMS
differences between the experimental data and model predictions across all simu-
lations were excellent for both the kinematics (angles: 0.3 - 1.6◦, displacements:
0.1 - 0.8 mm) and kinetics (forces: 5 - 11 N, moments: 0.2 - 0.6 Nm). The vali-
dated model will be extended with physiologically realistic ligaments and utilized
in surgical planning simulations.

1 Introduction

Even though total knee replacement (TKR) is a relatively routine orthopedic procedure,
it has been demonstrated that the introduction of image guided and computer assisted
surgery (CAS) techniques to this task can decrease the variability of standard operations
and increase the potential for good outcomes in complicated situations [1, 2].

Preoperative planning with current CAS systems utilize component manufacturer’s
guidelines, standard orthopedic practices and the surgeon’s experience to select optimal
component positioning. These criteria can be difficult to apply in complex procedures
and may not fully take into account dynamic or loading effects that could accelerate
component wear.

Intraoperative placement with CAS systems precisely reproduces the preoperative
plan. However, the final in vivo performance of the components is still difficult to assess.
Ligaments and soft tissue balancing can change the expected kinematics, leading to
increased wear and decreased component life.

The focus of this research is to develop a realistic, functionally based dynamic TKR
model that can assist in both the planning and execution of the surgery. Ultimately, the
goal is to provide the surgeon with the ability to predict the postoperative behavior of
TKR components based on preoperative and intraoperative data.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 917–924, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Dynamic finite element (FE) analysis is becoming a popular modeling technique for
examining various aspects of TKR mechanics [3, 4, 5, 6, 7]. Most current models focus
on simulations for the purpose assessing wear behavior, usually by modeling a wear
testing standard. All of the dynamic FE models presented in the literature to date utilize
some prescribed kinematics as a control method. Few FE models incorporate both the
tibiofemoral and patellofemoral joints [7].

This paper presents an explicit dynamic FE model of a TKR. The model incorpo-
rates the femoral, tibial and patellar components and is driven by simulated quadriceps
action. A unique experimental validation procedure is described which simulates liga-
ment constraints and assesses both the kinematic and kinetic performance of the model.

2 Materials and Methods

This study modeled posterior-cruciate-retaining TKR components (Sigma PFC, Depuy
Orthopaedics, Indiana, U.S.A.). A standard right side, size 3 femoral component was
used with a corresponding 10 mm thick tibial UHMWPE insert. A standard 10 mm
thick UHMWPE patellar resurfacing button was also used.

2.1 Experimental Apparatus

An experimental apparatus was designed to simulate an open-chain knee extension mo-
tion (Fig. 1). The device incorporated a fully mobile patella and shank, with an actuator-
controlled quadriceps and a simulated patellar tendon. The medial and lateral ligament
constraints were also simulated.

The base of the apparatus consisted of a 6-DOF force transducer (MC3A-250,
AMTI, Massachusetts, U.S.A.) mounted on a rigid aluminum frame. The femoral com-
ponent was fixed to a mounting block which was secured to the free end of the force
transducer such that the femoral long axis was parallel to the horizontal and the trochlear
groove was facing up.

To remove the confounding effects of back-side motion, the tibial component was
fixed directly to a mounting block which was bolted to the proximal end of a simulated
shank segment. The shank segment consisted of 4 threaded rods, each 300 mm long,
held in place by Plexiglas end plates. A 2.2 kg mass was fixed on the center line of the
shank at the distal end.

Steel tension springs were used to simulate ligament constraints of the knee joint.
Spherical rod-end bearings were bolted to Plexiglas plates that were rigidly attached to
the frame on the medial and lateral sides of the femoral component. Bearings were also
bolted to custom-fabricated ABS plastic mounting blocks fixed to the shank. Each ten-
sion spring was attached to a femur bearing on one end and a shank bearing on the other.
In this way, ligament constraints similar to the MCL and LCL could be represented.

The springs were nearly identical and calibration showed a linear stiffness through-
out the operating range (average 1.36 N/mm, SD 0.01 N/mm). Each spring produced
tensile forces in the range of 40 N to 60 N during the various experimental trials.

The quadriceps and patellar tendon were simulated using 1.6 mm diameter steel
cables. One end of the quadriceps cable was attached, via low friction pulleys, to the



Experimental Validation of a 3D Dynamic Finite-Element Model of a TKR 919

Fig. 1. Experimental apparatus in a 4 spring symmetrical configuration

cross head of a computer-controlled material testing machine (Model 5500R, Instron,
Massachusetts, U.S.A.). Two 90 mm lengths of cable were used to simulate the patellar
tendon.

A custom mounting block for the patellar button was fabricated from ABS plastic,
which included attachment points for the quadriceps cable and the patella tendon cables.
The cable attachments were lubricated ABS spherical bearings. Attachment points for
the patellar tendon cables were also mounted on the shank segment. Once assembled,
the motion of the joint complex was restricted so that the patella button remained in
contact with the trochlear groove on the femoral component.

In order to validate the FE model, both kinematic and kinetic variables were exper-
imentally measured. Optical tracking arrays were rigidly fixed to the shank, the patella
mounting block and to the apparatus frame. An Optotrak 3020 system (NDI, Water-
loo, Canada) was used to record the 3D kinematic data. The components were located
relative to their respective tracking arrays through fiducial and shape matching regis-
tration based on points obtained with a calibrated optical tracking probe. The location
and orientation of the force transducer, along with the line of action of the quadriceps
cable, were also obtained with the probe. Insertion locations of the springs and cables
were known in the coordinate frames of the respective rigid bodies to which they were
attached.

For the dynamic experimental trials, the kinematic data and the conditioned volt-
age signals from the force transducer were collected simultaneously with the Optotrak
system at a sampling rate of 100 Hz.

For comparison with the FE model, all kinematic data were transformed into the
transducer coordinate frame with the positive X-axis corresponding to the femoral
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medial direction, the positive Y-axis to the femoral anterior direction and the positive
Z-axis to the femoral distal direction.

2.2 Finite Element Model

Three dimensional digital point cloud representations of the TKR component geome-
tries were obtained by laser scanning (nominal scan resolution 0.05 mm). Commercial
software (Imageware, EDS Corp., Texas, U.S.A.) was used to fit surfaces (fit tolerance
of 0.1 mm) to the 6 contact regions (3 for the femur, 2 for the tibia and 1 for the patella)
of each of the 3 components. The contact surfaces were saved in IGES format and
transferred to meshing software (CUBIT, Sandia National Laboratories, New Mexico,
U.S.A.).

Quadrilateral meshes were constructed for each contact surface. Pilot studies exam-
ining model convergence showed that a stable solution could be found for this model
using a nominal element edge size of 1.0 mm. This resulted in approximately 925
quadrilaterals representing each of the tibial contact regions, 1550 quadrilaterals rep-
resenting each of the femoral contact regions and 950 quadrilaterals representing the
patella. Hexahedral meshes for all components were generated from the quadrilateral
meshes using custom routines written in Matlab (Mathworks, Massachusetts, U.S.A.).

The dynamic explicit FE package LS-DYNA (Livermore Software Technology
Corp., California, U.S.A.) was utilized as the solver. A non-linear elastic-plastic de-
formable material model was used for all of the UHMWPE components [5, 6]. Because
the elastic modulus of the CoCrMo femoral component was more than two orders of
magnitude greater than the UHMWPE, the femoral component was modeled as a rigid
material. The full thickness of the UHMWPE components were modeled, whereas the
femoral components were made 1.5 mm thick (for visualization purposes only). A rigid
layer of elements was fixed to the bottom layer of the UHMWPE elements in both
the tibial and patella meshes to simulate the boundary conditions in the experimental
apparatus.

The springs and cables were modeled with linear tension-only beam elements. The
actuation of the quadriceps cable was modeled using a linear motor joint.

2.3 Model Validation

Four configurations were tested experimentally. The first had one medial and one lateral
spring with symmetrical insertions. The second was a two-spring asymmetrical config-
uration with the shank insertions placed anterior to the femur insertion on the medial
side and posterior to the femur insertion on the lateral side. The third configuration had
the same spring insertions as the first but with an additional 0.5 kg mass fixed at the
distal end of the shank, offset 150 mm to the medial side. The final configuration was a
symmetrical four-spring design.

Average results were obtained from four trials for each configuration. For each trial,
the knee joint started in the most flexed position with the patella button still in contact
with the femur. The material testing machine was programmed to pull the quadriceps
cable at a constant rate of 16 mm/s for 2.5 seconds. This produced an extension of the
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knee joint from 60◦ to 25◦ of flexion over that time period. For all trials, the contact
surfaces were lubricated with 20◦C distilled water.

The FE model simulated the complete inertial properties of the shank and patella,
including the tracking arrays. The solution was run in explicit mode with a time step of
10 μs. The initial poses of the component models were obtained from the experimental
data. A 500 ms period was given at the start of each solution run to stabilize contact
prior to initiating the cable actuator. A penalty-based contact algorithm was selected
in LS-DYNA that calculated reaction forces based on nodal penetration and material
characteristics. A dynamic coefficient of friction of 0.10 was applied to each of the three
CoCrMo/UHMWPE contact regions in the model; this value was obtained through pilot
studies and is consistent with most values from the literature [3, 4, 5].

3 Results

The FE model was first evaluated by comparing the predicted 3D kinematics of the
tibia (Fig. 2) and patella (Fig. 3) to the experimental values. The kinematic data were
all calculated with respect to the force transducer coordinates. The rotations were ex-
pressed using three Cardan angles while the displacements were expressed relative to
the transducer origin.

The nodal contact forces applied to the femur model were used to predict the net
forces and moments recorded by the force transducer (Fig. 4).

The RMS differences between the experimental data and the FE predictions for all
4 configurations were calculated (Table 1). The maximum relative RMS differences
occurred when predicting the rotational kinematics of the patella and these were mainly
due to offsets that occurred during the initialization phase.

Fig. 2. Tibial kinematics comparing experimental (solid lines) and FE results (circles) from the
two spring symmetrical configuration
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Fig. 3. Patellar kinematics comparing experimental (solid lines) and FE results (circles) from the
two spring symmetrical configuration

Fig. 4. Comparison between experimentally measured net forces and moments applied to the
femur (solid lines) and the FE results (circles) from the two spring symmetrical configuration

4 Discussion

We wished to validate the FE model by simulating an open-chain knee extension mo-
tion under simulated quadriceps control. The difficulty in obtaining accurate geometric
data and material properties during in vitro studies suggested that a more controlled
mechanical simulation would be a better alternative. The experimental apparatus used



Experimental Validation of a 3D Dynamic Finite-Element Model of a TKR 923

Table 1. The RMS differences between the experimental data and FE models. The angle data
are the means of the 3 axes. All other data are vector sums. Model 1: 2 symmetrical springs,
Model 2: 2 asymmetrical springs, Model 3: 2 symmetrical springs with offset mass, Model 4: 4
symmetrical springs.

Tibia Patella Femoral Transducer
Model Angle (deg) Position (mm) Angle (deg) Position (mm) Force (N) Moment (Nm)

1 0.31 0.16 1.58 0.50 10.04 0.29
2 0.46 0.20 1.23 0.48 11.14 0.26
3 0.47 0.27 1.05 0.41 5.04 0.34
4 0.43 0.13 1.05 0.74 6.27 0.56

in this study enabled the simulation of ligament-like constraints with the advantage of
having precise material characteristics.

The FE model performed well under all 4 test conditions. The tibial kinematics
were predicted with a high degree of fidelity. The RMS differences for the tibial dis-
placements and angles is at the limit of the accuracy of the Optotrak system. The patel-
lar angle predictions showed the highest RMS differences but were still under 2◦ and
closely followed the shape of the experimental data. It is not unreasonable to expect
less accuracy predicting the patellar kinematics due to its low relative mass. Under the
higher loading conditions of the 4 spring configuration, the patellar predictions im-
proved.

Direct validation of dynamic contact models is difficult. Pressure measurement sys-
tems are available but can alter the contact characteristics [8]. One of the motivations in
collecting the net forces and moments applied to the femur was to provide an indirect
assessment of the contact data in the model. Because both the kinematics and kinetics
were reproduced faithfully, we can assume that the contact information in the model is
valid. This is a key component in this work because, in the future, the model will be
used to calculate forward dynamics based on functional control inputs (such as muscle
forces) as opposed to prescribed kinematic parameters (such as flexion angle).

LS-DYNA has the capability, similar to other FE packages [7], of switching to an
all-rigid analysis without having to change the model. In this mode, kinematics and
contact pressures are still calculated, but in less than 10% of the computational time.
This provides a useful method of obtaining an efficient simulation if internal stress
information is not required.

5 Conclusions and Future Work

A dynamic FE model of a TKR was presented that incorporates the femoral, tibial and
patellar components. The model simulated a dynamic extension motion under quadri-
ceps control. A validation experiment was conducted and the model was able to accu-
rately predict the kinematics of both the tibiofemoral and patellofemoral joints along
with predicting the net forces and moments applied to the femur. To the best of our
knowledge, this is the first experimental validation of a dynamic FE model of a TKR to
employ simultaneous kinematic and force data.
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Such models are valuable because they can be used to predict physiological motion
prior to surgery. This is of particular importance for patients with significant deformi-
ties or poor overall health, both of which are predictors for poor surgical outcomes. A
dynamic knee model is also of great use in the design of new prostheses, as it makes it
possible to reduce or eliminate expensive, time-consuming physical tests.

Future work will include the addition of physiologically realistic ligament struc-
tures and bone/ligament interaction. Further experimental validation will be conducted
in vitro, including simulation of TKR surgeries and predicting outcomes of simulated
muscle-controlled loading from MRI-derived ligament data.
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Abstract. An in vitro patient-tailored reproduction model of cerebral artery, a 
hardware platform for simulating endovascular intervention for making diagno-
ses and surgical trainings is presented. 3-D configuration of vessel lumen is re-
produced as vessel model with 13 μm modeling resolution, using CT and MRI 
information. Physical characteristics of cerebral artery, such as elastic modulus 
and friction coefficient, are also reproduced. We also propose a novel method to 
visualize stress condition on vessel wall using photoelastic effect. Conse-
quently, it should be helpful for clinical applications, academic researches and 
other various purposes. 

1   Introduction 

Recently established endovascular intervention is a potent treatment modality for 
various vascular diseases, which reduces the invasiveness for patients [1][2]. Many 
devices for endovascular intervention have been developed since late 1980 to treat 
with various diseases. However, the tortuosity and diversity of cerebral vasculature 
disturbs maneuvering of those sophisticated devices, so it requires an advanced surgi-
cal skill and experience. However current training environment for this surgery is 
inadequate, and this situation makes surgical skills more difficult to acquire [5]. 

Traditionally, interventionalists have solely depended on images projected on dis-
plays or papers as an only means to provide medical information obtained by an-
giography or other imaging modalities. Although, it is now possible to reconstruct the 
3-D configuration of vascular system from 2-D fluoroscopic images, even so, accurate 
recognition of 3-D vascular configuration is still not easy and it may lead to misinter-
pret information.  

As a solution for these difficulties, we propose an in vitro vessel model of cerebral 
artery that reproduces the 3-D configuration of patient's vascular lumens as membra-
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nous silicone structure, utilizing CT and MRI information. With this model, it be-
comes possible for young trainees to practice surgical skills of endocvascular inter-
vention. And it becomes also possible with this model to preliminary simulate 
neurovascular procedures before surgery.  

So far, dissection based modeling method for vasculature, (a method that utilize 
vessel as casting mold) was developed by P. Guilloud et al. And, this method is now 
largely utilized for various purposes [3][4]. However, the dissection model is not 
applicable for preliminary simulation and requires rather high time cost and labor cost 
for respective modeling. 

2   Required Condition for Surgical Simulator  

2.1   Patient-Tailored High Precision Modeling 

Cerebral artery and cerebrovascualr disease take very different configuration for re-
spective patients (Fig.1), and the diversity of configuration contributes to make 
neurovascular procedures more difficult. Therefore conventional surgical simulator 
which imitates the general vascular configuration is inadequate for comprehensive 
surgical training. Here, it becomes very helpful to construct a patient-tailored vessel 
model using CT and MRI information which are usually available for all patient. 
Furthermore, as a simulator for neurovascular procedures, vessel lumen with less than 
1mm in diameter need be reproduced 

 

Fig. 1. Some typical configuration of cerebral aneurysm 

2.2   Reproduction of Physical Characteristics 

Operational feel plays an important role in treating cerebrovascular diseases safely 
without applying excessive piercing stress on vessel structure. Therefore, reproduc-
tion of physical characteristics of vesculature becomes important, to reproduce the 
difficulties of manipulating medial instruments and the behaviors of these medical 
instruments (e.g. slip / stick motion and unwinding motion of catheter) Meanwhile, 
vessel model should be compatible with medial imaging modalities (especially DAS), 
to allow simulating neurovascular procedures under practical IVR (interventional 
radiology) condition. 

(a) MCA Aneurysm (b) BT Aneurysm (c) BA Aneurysm 
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2.3   Reproduction of Visco-Elastic Vascular Deformation 

Membranous vessel configuration and surrounding soft brain tissue allow cerebral 
artery to deform against surgical treatments, and some neurovasclar treatments af-
firmatively utilize this characteristics. Expansion of stenosis with balloons and stents 
is an instance of this treatment. Meanwhile, this characteristics simultaneously results 
in technical difficulties. Therefore, to reproduce these important features, reproduc-
tion of visco-elastic deformation becomes essential 

2.4   Summary of Required Conditions 

As the required conditions for an in vitro vascularture model for simulating neurovas-
cular procedures, we summarize the above contents as follows; 

1)  Patient-tailored with sub-millimeter resolution 
2)  Reproduced with thin membranous vacular configuration 
3)  Reproduced with material properties of vascular tissue 
4)  Reproduced with visco-elastic vascular deformation 
5)  Compatible with medical imaging modalities 

3   An In Vitro Cerebral Arterial Model Reproduced with Human-
Like Physical Characteristics 

3.1   Rapid Prototyping for Patient-Tailored Modeling 

Lately developed laminating modeling modality (rapid prototyping (RP) modality) 
has made it possible to construct organ models based on individual information, such 
as CT and MRI information. This RP-based organic model had proved its effective-
ness for anatomical studies and for some clinical applications.  

However, since the material used in RP modeling is limited, it is currently impos-
sible to express the physical characteristics of organic tissues (current RP model is too 
rigid, fragile and anisotropic). Furthermore the RP modeling is usually accompanied 
tiered up rough surface (disturbs manipulating medical instruments, and detariorates 
visibility). Consequently, the direct PR modeling modality is still not adequate for 
organic reproduction. 

3.2   Production Methodology for Patient-Tailored Modeling 

Here in after, we introduce a production method for an in vitro patient-tailored vascu-
lature model that satisfies all the requirements described. Proposed production modal-
ity consists of the following 4 technical procedures; (1) reconstruction of 3-D vascular 
configuration, (2) fabrication of solid lumen model with RP modality, (3) fabrication 
of thin silicone membrane and (4) hollow construction of vascular lumen.  

Firstly, we reconstructed the 3-D configuration of cerebral artery, using fluoroscopic 
image obtained with CT angiography (resolution: 0.3 mm, imaging pitch: 0.5 mm). We 
reconstructed the 3-D field of imaged area by heaping up these 2-D images, then ex-
tracted 3-D surface of cerebral artery by extracting area with identical CT value. Then 
we eliminated unimportant branches and discontinuous segment from this structure to 
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simplify to leave only basilar artery and aneurysm. By this means, we finally obtained 
a 3-D structure of basilar tip artery from the CT information (Fig. 2 (a)). 

Then we fabricated solid structure of the reconstructed vascular lumen by RP mo-
dality (Fig. 2 (b)). Laminating thickness was 13 μm. We adopted fused deposition RP 
modality, since it allows the use of sulfonamide resin as construction material. Its 
material characteristics (melts at low temperature into high fluidity, easily dissolves in 
acetone) are considerably favorable in following modeling process.  

 

Fig. 2. Materialization of individual vasculature structure based on CT / MRI angiography 
(small uninterested branches are ablated) 

 

We fabricated thin uniform membrane of silicone elastomer (provides artery-like 
physical characteristics and good transparency) with 600 μm thick around this RP lu-
men structure, through velocity controlled dipping coating process and following addi-

Fig. 3. Elastic membranous model of 
basilar artery fabricated based on indi-
vidual information (inner RP model is 
eliminated) 

Fig. 4. Cerebral arterial model with vascular-
like membranous configuration and brain-
like soft circumferential configuration 

(a) Reconstructed 3D figure of basilar artery 
reconstructed with CT angiography 

(b) Solid lumen structure fabricated by 
RP modality (layering pitch: 13 μm) 
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tion polymerization process (Fig. 3; in this figure, solid lumen model is eliminated). 
After that, we embedded the structure within silicone gel (provides brain like elastic 
modulus) inside a cubic casting mold to reproduce circumferential soft brain structure. 

Then we eliminated inward RP lumen structure through two independent proc-
esses. Firstly, we evacuated most part of the lumen model by selectively melting the 
RP structure at 120˚C (higher than the melting point of RP model and lower than the 
heatproof temperature of silicone). Then we completely dissolved the remained quan-
tity (especially in tight corners and dead ends) by injecting acetone inside lumens. 
With this procedure, the evacuation was managed in short period. 

Consequently, we fabricated a transparent silicone model of basilar artery repro-
duced with thin membranous configuration and surrounding soft brain configuration 
that hollowly reproduces the vascular lumen of living patient with 13 μm modeling 
resolution (Fig. 4). As the reflection indexes of silicone elastomer and silicone gel are 
almost identical value (silicone elastomer (nD

25): 1.410, silicone gel (nD
25): 1.404), no 

optical distortion take place and it realized good visibility.    

4   APPLICATION: Photoelastic Stress Visualization and Analysis  

Transparent isotropic material, including silicone elastomer and polyurethane elas-
tomer, shows temporal birefringent effect (double refraction) when external load is 
applied. And making use of this effect, we visualized stress distribution on proposed 
vessel model as fringe pattern (called photoelastic stress analysis). In this experiment, 
we applied transparent polyurethane elastomer (photoelastic coefficient: 3.5×10-9 Pa-1; 
Young's modulus: 1.8 MPa) as construction material to increase its sensitivity to bire-
fringent effect. And with a general configuration of circular polariscope, stress condi-
tion on vascular membrane was clearly visualized as rainbow-colored interference 
fringes pattern as shown in Fig. 5.  

 

Fig. 5. Stress distribution against cathe-
ter operation visualized by means of 
photoelastic effect with circular po-
lariscope 

Fig. 6. Stress distribution against cathe-
ter operation visualized by means of 
photoelastic effect with reflective circu-
lar polariscope  
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However, it is impossible, with this method, to distinguish the optical effect took 
place on fore vascular wall and rear wall. As a solution, we developed a new method 
for quantitative real-time stress analysis. In this method, projected polarized light, 
passing through fore wall with birefringent effect, is reflected at the surface of inner 
lumen filled with liquid added with aluminum powder (serves as mirror), then passes 
back the same point on fore wall with doubled birefringent effect (sensitivity becomes 
doubled than usual). Fig. 6 shows the visualized stress pattern with this method. As to 
this method, observed color can be related with phase shift R, and stress condition  
(max. principal stress σ1, min. principal stress σ2 and direction of principal stress θ ) 
on vasculature membrane is calculated from the following equation:    

 

Here, α is photoelastic coefficient, and D is thickness of vascular membrane (Nu-
merical analysis is future work). 

Presented method should be helpful for evaluating surgical procedures and the per-
formance of medical systems, and also for various academic studies such as hemody-
namic study and pathological studies. 

5   Results and Discussion  

Physical characteristics of presented model are very similar to arterial tissue. Although 
arterial tissue shows anisotropic nonlinear characteristics, elastic modulus of human 
artery normally ranges from 1 to 3 MPa, and applied silicone elastomer takes fairly 
close 1.9 MPa (Table 1). An this value is adjustable, by mixing silicone oil before 
polymerization, and it is possible to imitate sclerotic and other conditions. Friction 
coefficient between the surface of proposed model and LDPE (low-density polyethyl-
ene) catheter was 0.041. It is also fairly close to the vascular value 0.039 measured 
between artery surface and same LDPE catheter by R.A. Caldwell et al. (Table 1).  

Proposed modeling method allowed constructing thin vascular lumens, and mini-
mally attainable diameter was 300 mm (geometrical error: less than 40 mm). Fur-
thermore, we realized artery-like smooth lumen surface by slightly dissolving the 
surface of RP lumen model with water (68 C) (Fig. 7). Here, this process less deterio-
rates its accuracy, as the dissolved material re-stick on the model surface. Further-
more, as shown in Fig. 8 and Fig. 9, thickness of vascular membrane is adjustable 
from less than 50 mm to more than 250 mm thick by adjusting withdrawing velocity 
in dip-coating process. Here, by layering several membranes with different thickness 
and different material property, it is possible, for example, to reproduce triple-layered 
general configuration of artery.  

Consequently, proposed patient-tailored vasculature model reproduces artery-like 
visco-elastic deformation. Interventionalists verified the reproducibility of the visco-
elastic motion, the operational feel coming from the deformation, and its usefulness 
for neurovascular simulations. 

Since the applied elastomer and gel are transparent to visible light (transmissiv-
ity:> 88% over 10 mm thickness), it allowed clear recognition of inward condition, 
and this visibility is further improved by injecting glycerol solution (mixture of water 
(44%) and glycerin (56%), provides the same reflection index) into vascular lumens. 
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Meanwhile, proposed vessel model confirmed compatible with major imaging mo-
dalities, such as CT, MR and supersonic imaging. 

 

 

We evaluated its effectiveness for the preliminary simulation. Representative case 
was female, age of 72, IC aneurysm (15 mm). It initially seemed wide-necked and 
difficult to treat by endovascular approach. In this case, we constructed a patient-
tailored vessel model of IC aneurysm, and tested intervention procedures within this 
model (Fig. 10). In practical surgery, we could lead mircocathter into IC aneurysm 
from its orifice locating C2/C3 segment with the same manner as the preliminary 

Fig. 9.  Correlation between thickeness of 
membrane and withdrawing velocity in dipcoat-
ing fabrication process 

Table 2. Comparison of material properties 
between vessel model and human brain 

Table 1. Comparison of material properties 
between vessel model and human arterial 

Fig. 7. SEM cross-section of fabricated vascu-
lar lumen with 300 μm in diameter (modeling 
error was less than 40 μm) 

Fig. 8. Cross-section of layered sili-
cone membrane with different wall 
thickness (from less than 50 μm to 
more than 250 μm) 
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simulation (Fig. 11). We do not confirm any coil compaction in the follow-up after 6 
months in this represent case. 

Cerebral aneurysms are now widely treated with endovascular approach and scru-
pulous diagnosis became more and more important for securing safety. However, 
interventional radiology is currently the only information available. In this sense, 
proposed patient-tailored vascular model might be very helpful for making diagnosis 
and preliminary surgical simulations, since it allows swift and safe treatment for re-
spective cases. 
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Cattin, Philippe II-336, II-976
Chakravarty, M. Mallar II-394
Chan, Carolyn S.K. I-605, II-1000
Chandrashekara, R. I-425
Chang, S. I-442
Chan, Tony F. II-657, II-675
Chapman, Brian E. I-564
Charnoz, Arnaud II-155
Chefd’hotel, Christophe I-662
Chen, Elvis C.S. I-770
Chen, Nan-Kuei I-148
Chen, Yunmei I-278, I-286, II-741
Cheung, Sue I-91
Chiang, Ming-Chang II-666
Chinzei, Kiyoyuki I-9
Chiu, Wah I-254
Choti, Mike I-811, II-526
Christiansen, Claus I-327
Chung, Adrian I-868, I-910
Chung, Albert C.S. I-229
Ciccarelli, O. I-164
Claridge, E. II-509
Clatz, Olivier II-295
Cleary, Kevin II-312, II-992
Clouchoux, C. II-344
Cloutier, Guy I-319
Cocquerez, Jean-Pierre I-262
Cointepas, Y. I-196
Colchester, A.C.F. II-749
Collins, D. Louis I-392, II-163, II-394
Colliot, O. I-375
Commowick, Olivier II-927

Cook, P.A. I-164
Cooperberg, Peter II-862
Cootes, T.F. II-733
Cornu, Philippe II-385
Corouge, Isabelle I-131
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Likar, Boštjan II-231
Lin, Henry C. I-802
Lin, Mingen I-876

Lin, Ning I-778
Linguraru, Marius George II-492
Litt, Harold II-902
Littmann, Arne I-498
Liu, Huafeng I-278, II-741
Liu, K.-Y. I-885
Liu, Tianming I-148
Liu, Yi-Hwa II-684
Liu, Yuncai II-122
Lo, Benny P.L. II-25
Loeckx, Dirk II-361
Lohmann G. II-749
Lomax, A. II-336
Lorenzen, Peter II-411
Luboz, Vincent I-43
Lucidarme, Olivier II-830
Lui, Lok Ming II-675

Ma, Burton I-75, I-459
Mackey, Michael A. I-302
Madabhushi, Anant I-729
Maddah, Mahnaz I-188
Maeder, Philippe I-417
Maeno, Takashi II-633
Maes, Frederik II-361
Makedon, Fillia I-67, 704
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