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Preface

The 8th International Conference on Medical Imaging and Computer Assisted
Intervention, MICCAT 2005, was held in Palm Springs, California, USA, at the
Riviera Resort, October 26-29, 2005.

MICCALI has become a premier international conference with in-depth papers
on the multidisciplinary fields of medical image computing, computer-assisted
intervention and medical robotics. The conference brings together clinicians, bio-
logical scientists, computer scientists, engineers, physicists and other researchers
and offers them a forum to exchange ideas in these exciting and rapidly growing
fields.

The impact of MICCALI increases each year and the quality and quantity of
submitted papers this year was very impressive. We received a record 632 full
submissions (8 pages in length), an increase of 22% from 2004, from 36 different
countries and 5 continents (see fig. 2). Based on a decision of the MICCAI
board, this year’s conference employed a double-blind review procedure on a
trial basis. Our Program Committee was made up of 11 area chairs, each of
whom supervised the review of almost 60 papers. Four reviews were generated
for each paper from 262 reviewers and the area chairs. A final paper selection
meeting took place during two days in early June 2005 in Chapel Hill, North
Carolina. We are especially grateful to Elizabeth Bullitt, Polina Golland, David
Haynor, Rasmus Larsen, Greg Hager and Daniel Riickert, who attended this
meeting and helped us make the final selections. Martin Styner provided valuable
help with information management and the Web-site, and James Stewart is
acknowledged for reliable and timely support of the Web-based reviewing system.
We are grateful to everyone who participated in the review process; they donated
a large amount of time and effort to make these volumes possible and insure a
high level of quality. Because of the overall quality of the submissions and because
of the limited number of slots available for presentation, paper selection was
especially challenging. The MICCAI 2005 Program Committee finally accepted
236 full papers. The normal mode of presentation at MICCAI 2005 was as a
poster; in addition, 46 papers were chosen for oral presentation. All of the full
papers accepted are included in these proceedings in 8-page format. We also
accepted 34 short communications (2 pages) which were presented as posters
but not included in the proceedings.

The first figure below shows the distribution of the 236 full paper contribu-
tions by topic; the topics are defined by the primary keyword of the submission.
The second figure illustrates the distribution of full paper submissions (a total
of 632) by region.

We note that this year’s program included some new features, including a
session on Celullar and Molecular Imaging and Analysis. We hope that all who
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attended the 2005 meeting felt as we do that the program was both strong and
diverse, within the range of topics covered by MICCALI.

It was our pleasure to welcome this year’s MICCAI 2005 attendees to Palm
Springs. Sitting in lush farming land, Palm Springs does not conform to any
typical image of the desert, embodying a mix of Spanish Colonial and mid-
twentieth century modern styling. Ever since Hollywood stars first came here
in the 1930s, laying claim to ranch-style estates, holing up in elite hotels, and
enjoying the clean dry air and sunshine, Palm Springs has been a special place to
visit. We hope that the attendees, in addition to visiting the conference, took the
opportunity to enjoy the hospitality and amenities of the Riviera Resort, and
to explore the city, the desert region, and other parts of Southern California.
For those unable to attend, we trust that these volumes will provide a valuable
record of the state of the art in the MICCALI disciplines.

We also want to thank both our sponsors who are listed below and our two
keynote speakers, Profs. Scott Fraser from Caltech and Arthur Toga from UCLA
for excellent and stimulating lectures.

Finally, we note that this year a landmark event occurred in the life of
MICCALI, namely the formation of the Medical Image Computing and Computer-
Assisted Intervention Society (the MICCAI Society) which was officially an-
nounced on December 9, 2004. The main focus of the society is our annual
international conference series (www.miccai.org) which has become the premier
conference in the field of medical image computing and computer-assisted in-
terventions, including biomedical imaging and robotics. The society is governed
and administered by the MICCAI Board of Directors. The society will continue
to publish the proceedings of the annual MICCAI conference in a prestigious
scientific series. Having a paper accepted for publication in this series is highly
meritorious and on a par with publication in highly regarded peer-reviewed jour-
nals in the field. The society is negotiating with three journals in the field of
MICCALI themes, each to become “an affiliated MICCAI journal”. These jour-
nals will offer significant benefits to members, including sharply discounted rates
for paper subscriptions and access to on-line content. The society will continue
to develop, enrich, and maintain a dynamic website with exclusive content for
members (www.miccai.org).

We look forward to welcoming you to MICCAT 2006, to be held October 24,
2006 in Copenhagen, Denmark, and chaired by Mads Nielsen.

October 2005 James Duncan and Guido Gerig
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MICCAI Student Awards

Every year MICCAI awards outstanding work written and presented by students.
Both oral and poster presentations are eligible for the awards, and the awards
are presented to the winners in a public ceremony. Student awards at MICCAI
2003 and 2004 were sponsored by Northern Digital Incorporation (NDI), and
NDI will also be the sponsor for the MICCAI 2005 awards.

MICCAI 2003 Student Awards

Robotics: Hashimoto, Ryuji: A Transurethral Prostate Resection Manipulator
for Minimal Damage to Mucous Membrane

Segmentation: Pichon, Eric: A Statistically Based Surface Evolution Method for
Medical Image Segmentation: Presentation and Validation

Image Guided Therapy Surgery: DiMaio, Simon: Needle Steering and Model-
Based Trajectory Planning

Medical Image Analysis: Fillard, Pierre: Quantitative Analysis of White Matter
Fiber Properties Along Geodesic Paths

Medical Image Processing and Visualization: Arsigny, Vincent: Polyrigid and
Polyaffine Transformations: A New Class of Diffeomorphisms

MICCAI 2004 Student Awards

Image Segmentation and Processing: Dikici, Engin: Quantification of Delayed
Enhancement MR Images

Image Registration and Analysis: Perperidis, Dimitrios: Spatio-temporal Free-
Form Registration of Cardiac MR Image Sequences

Image Guided Therapy and Robotics: Stoyanov, Danail: Dense 3D Depth Re-
covery for Soft Tissue Deformation During Robotically Assisted Laparoscopic
Surgery

Image Simulation and Display: Valtorta, Davide: Dynamic Measurements of
Soft Tissue Viscoelastic Properties with a Torsional Resonator Device
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Abstract. This paper presents a method for classification of medical images,
using machine learning and deformation-based morphometry. A morphological
representation of the anatomy of interest is first obtained using high-
dimensional template warping, from which regions that display strong correla-
tions between morphological measurements and the classification (clinical)
variable are extracted using a watershed segmentation, taking into account the
regional smoothness of the correlation map which is estimated by a cross-
validation strategy in order to achieve robustness to outliers. A Support Vector
Machine-Recursive Feature Elimination (SVM-RFE) technique is then used to
rank computed features from the extracted regions, according to their effect on
the leave-one-out error bound. Finally, SVM classification is applied using the
best set of features, and it is tested using leave-one-out. The results from a
group of 61 brain images of female normal controls and schizophrenia patients
demonstrate not only high classification accuracy (91.8%) and steep ROC
curves, but also exceptional stability with respect to the number of selected fea-
tures and the SVM kernel size.

1 Introduction

Morphological analysis of medical images is performed commonly in a variety of re-
search and clinical studies. Region of Interest volumetry (ROI) has been traditionally
used to obtain regional measurement of anatomical volumes and investigate abnormal
tissue structures with disease [1]. However, in practice, a priori knowledge about ab-
normal regions is not always available. Even when good a priori hypotheses can be
made about specific ROIs, a region of abnormality might be part of an ROI, or span
multiple ROIs, thereby potentially reducing statistical power of the underlying mor-
phological analysis significantly. These limitations can be effectively overcome by
methods falling under the general umbrella of High-Dimensional Morphological
Analysis (we will refer to these methods as HDMA), such as voxel-based and defor-
mation-based morphometric analysis methods, e.g. [2-5]. However, a voxel-by-voxel
analysis is limited by noise, registration errors, and excessive inter-individual vari-
ability of measurements that are too localized, such as voxel-wise displacement fields,
Jacobians, or residuals. Most importantly, voxel-by-voxel mass-univariate analysis of
transformations or residuals does not capture multi-variate relationships in the data.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 1 -8, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Linear methods, such as PCA [6] are not effective in capturing complex relationships
in high-dimensional spaces.

In order to overcome these limitations, pattern classification methods have begun
to emerge in the recent years in the field of computational anatomy [7-11], aiming at
capturing nonlinear multivariate relationships among many anatomical regions, to
more effectively characterize group differences. A major challenge in these methods
has been the sheer dimensionality of HDMA-related measurements, which is often in
the millions, coupled with the relatively small number of training samples, which is at
best in the hundreds, and often just a few dozens. Accordingly, extracting a small
number of most informative features from the data has been a fundamental challenge.
A main emphasis of this paper is the extraction of distinctive, but also robust features
from high-dimensional morphological measurements obtained from brain MR images,
which are used in conjunction with nonlinear support vector machines (SVM) for
classification. The proposed method is tested on classifying normal controls from
schizophrenia patients in female participants.

The key elements of the proposed approach are: 1) Regional volumetric informa-
tion is first extracted from a template warping transformation; herein we focus en-
tirely on volumetric information, such as atrophy, and don't consider higher order
shape characteristics. 2) The anatomy of interest (the brain, herein) is partitioned into
a number of regions, via a watershed algorithm applied to the correlation map be-
tween clinical status and regional volumetric measurements; various techniques are
applied to estimate the correlation map, in order to achieve robustness to outliers. 3)
An SVM-RFE technique is applied to the previously rank-ordered features that are
computed from the extracted regions, in order to select the most important feature set
for classification. 4) A nonlinear SVM classifier is applied and tested via cross-
validation and ROC analysis. 5) Group differences are visually displayed via a dis-
criminative direction method [7,11]. We now detail the methodology.

2 Methods

Our classification method involves three steps: feature extraction, feature selection,
and nonlinear classification, which are detailed next.

2.1 Feature Extraction

As mentioned in the Introduction, the features used for brain classification are ex-
tracted from automatically generated regions, which are determined from the training
data. Several issues are taken into consideration here. First, morphological changes of
brain structures resulting from pathological processes usually don't occur in isolated
spots, but rather they occur in regions that can have irregular shapes and are not
known a priori. Second, noise, registration errors and inter-individual anatomical
variations necessitate the collection of morphological information from regions much
larger than the voxel size, which must additionally be distinctive of the pathology of
interest. Third, multivariate classification methods are most effective and generaliz-
able when applied to a small number of reliable and discriminative features. Accord-
ingly, features irrelevant to classification must be eliminated.
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In the following, we detail the procedure for automatically generating adaptive re-
gions from a training dataset, by first introducing the method to extract local morpho-
logical features, then defining the criteria for adaptively clustering voxels into re-
gions, and finally extracting overall features from each region.

Construction of a morphological profile of the brain. In order to obtain the mor-
phological profile from an individual brain image, warping the image into a template
space is often a first step, leading to various morphological measurements (e.g. de-
formation field, Jacobian determinant, tissue density maps, or residuals) that are in the
same space and therefore directly comparable across individuals. Herein we follow
the framework that was proposed in [5], and which is based on a mass-preserving
shape transformation framework; a similar method is used within the SPM software
and is often referred to as "Jacobian modulation". We have used this approach be-
cause it is robust to registration errors, due to the mass preservation principle, in con-
trast to the determinant of the Jacobian that is directly affected by registration errors.
The approach in [5] uses images that are first segmented into three tissues, namely
gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF)--we used the
segmentation method of [12] in our experiments. Then, by using a high-dimensional
image warping method [13] these segmented images are spatially transformed into a
template space, by preserving the total tissue mass; this is achieved by increasing the
respective density when a region is compressed, and vice versa. As a result, three tis-
sue density maps, f,(u), f,(u), f,(u), are generated in the template space, each re-
flecting local volumetric measurements corresponding to GM, WM, and CSF, respec-
tively, at location u. These three tissue density maps give a quantitative representation
of the spatial tissue distribution. Regional atrophy is reflected by reduction in the re-
spective tissue density map. Representative tissue density maps are shown in Fig.1.

Learning-based generation of adaptive regions. Brain regions are generated by spa-
tial clustering of morphological features of similar classification power. For each

morphological feature, its classification power is highly related to its discriminative
power and reliability. The discriminative power of a feature can be quantitatively
measured by its relevance to classification as well as its generalizability for classifica-
tion. The relevance of a feature to classification can be measured by the correlation
between this feature and the corresponding class label in a training dataset (e.g. nor-
mal or pathologic). In machine learning and statistics for relevance analysis, the cor-
relation measures can be broadly divided into linear correlation and non-linear corre-
lation. Most non-linear correlation measures are based on the information-theoretical
concept of entropy, such as mutual information, computed by probability estimation.
For continuous features, probability density estimation is a hard task especially when
the number of available samples is limited. On the other hand, linear correlation
measures are easier to compute even for continuous features and are robust to over-
fitting, thus they are widely used for feature selection in machine learning. Here, we
used the absolute Pearson correlation coefficient, closely related to T-test [14] in the
context of extracting group differences, to measure the relevance of each feature to
classification. Given an image location u, the Pearson correlation between a feature
fi(u) of tissue i, and class label Y, is defined as
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where j denotes the jth sample in the training dataset. Thus, f;(«) is a morphologi-
cal feature of tissue ; in the location » of jth sample (the tissue density map, here),

and f;(u) is the mean of f;(u) over all samples. Similarly, ¥, is a class label of the
jthsample, and y is the mean of y; over all samples. In addition to the relevance, the
generalizability of a feature is equally important for classification. A bagging strategy
[15] is adopted to take the generalization ability into account, when measuring the dis-
criminative power of a feature by absolute Pearson score. That is, given n training
samples, a leave-one-out procedure is used to measure the discriminative power of
each feature f;(u) by a conservative principle that selects the minimal absolute Pear-
son score from n resulted scores as this feature's discriminative power, defined as

F(u) = min|p, @), )

where Pi (%) is the k th leave-one-out Pearson correlation at location u of tissue map
i. Maximizing the measure in (2) would select features that maximize the margin
from 0, i.e., from no discrimination at all.

The spatial consistency of a feature is another important issue in classification,
since morphological features are locally extracted and thus might not be reliable due
to registration errors and inter-individual anatomical variations. A feature is spatially
consistent if it is similar to other features in its spatial neighborhood, implying that
small registration errors will not significantly change the value of this feature. For

each feature f;(u), we measure its spatial consistency, R;(#), by an intra-class corre-
lation coefficient that is computed from all features in its spatial neighborhood and all
samples in the training dataset [16]. In our applications, the value of R;(u) is con-
strained to lie between O and 1.

For each feature, its discriminative power score P, (1) and its spatial consistency
score R, (u) are both non-negative, with high score indicating better feature for classi-
fication. We combine these two measurements into one by the following equation,

s;u)y=Pw)’"Rw)" , p,r>0, 3)

thus obtaining a single score s, () for each feature f;(«), which reflects the classifi-
cation power of this feature for the particular classification problem. Three score
maps are produced for GM, WM and CSF, respectively.

As we mentioned above, the disease-affected brain regions generally occur in the
clusters of spatially contiguous voxels. Therefore, a watershed segmentation method
[17] is employed to partition a brain into different regions according to the scores
s;(u), and finally to obtain separate partitions for each tissue. A typical brain region
partition result, with all regions generated from three tissue density maps, is shown in
Fig. 1, on the right.
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Fig. 1. Typical tissue density maps (GM, WM, CSF, from left to right) and automatically gen-
erated brain regions in which high grey-levels indicate discriminative power

Feature extraction from generated brain regions. For each region generated as de-
scribed above, its corresponding volumetric measure is computed by summing up all
tissue density values in this region, which effectively calculates the volumes of the
corresponding regions in individual anatomies. Volumetric measures from all WM,
GM, and CSF regions constitute an attribute vector to represent morphological infor-
mation of the brain. Although currently we focus on local tissue volumetric informa-
tion, other types of information could also be considered.

2.2 Feature Selection via SVM-RFE

Although the number of regions determined in Sec. 2.1 is dramatically smaller than
the original number of brain voxels, measures obtained from many regions are less ef-
fective, irrelevant and redundant for classification. This requires a feature selection
method to select a small set of the most informative features for classification. We
have experimented with several feature selection methods, and determined that the
SVM-REFE algorithm has the best performance. SVM-RFE is a feature subset selec-
tion method based on SVM, initially proposed for a cancer classification problem
[18]. It was later extended by introducing SVM-based leave-one-out error bound cri-
teria in [19]. The goal of SVM-REFE is to find a subset of size r among 4 variables
(r < d), which optimizes the performance of the classifier. This algorithm is based on
a backward sequential selection that removes one feature at a time. At each time, the
removed feature makes the variation of SVM-based leave-one-out error bound small-
est, compared to removing other features. In order to apply this subset selection to our
problem in a reasonable time cost and to avoid local optima, we first remove the most
irrelevant features by the feature ranking method [14] in which the rank score is com-
puted by a Pearson correlation based bagging strategy as we described above, and
then apply the SVM-RFE algorithm on the set of remaining features.

2.3 SVM-Based Classification

The nonlinear support vector machine is a supervised binary classification algorithm
[20]. SVM constructs a maximal margin linear classifier in a high (often infinite) di-
mensional feature space, by mapping the original features via a kernel function. The
Gaussian radial basis function kernel is used in our method.
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SVM is not only empirically demonstrated to be one of the most powerful pattern
classification algorithms, but also has provided many theoretic bounds on the leave-
one-out error to estimate its capacity, for example, the radius/margin bound, which
could be utilized in feature selection. Another reason for us to select SVM as a classi-
fier is its inherent sample selection mechanism, i.e., only support vectors affect the
decision function, which may help us find subtle differences between groups.

correct rate
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Fig. 2. Performance of ranking based feature selection (left plot) and SVM-RFE feature selec-
tion (right plot). Plotted are the average classification rates for different SVM kernel sizes and
different feature numbers. Notably, the SVM-RFE algorithm starts selecting subsets of features
from 69 features, which are top-ranked features, selected by ranking-based feature selection
method. The SVM-RFE algorithm performs a robust selection of features and leads to stable
performance.

3 Results

We tested our approach on MR T1 brain images, in order to compare the brain differ-
ences between female schizophrenia patients (N = 23) and normal controls (N = 38).
A full leave-one-out cross-validation is performed in our experiments. In each
leave-one-out validation experiment, one subject was first selected as testing subject,
and the remaining subjects are used for the entire adaptive regional feature extraction,
feature selection and training procedure described in Section 2. Then, the classifica-
tion result on the testing subject using the trained SVM classifier was compared with
the ground-truth class label, to evaluate the classification performance. Absolutely all
feature selection and training steps were cross-validated, i.e. the testing image had no
influence on the construction of the classifier. By repeatedly leaving each subject out
as testing subject, we obtained the average classification rate from 61 leave-one-out
experiments. Finally, these experiments were repeated for different numbers of fea-
tures, in order to test the stability of the results. The best average correct classification
rate was 91.8% by using 37 features, selected by SVM-RFE algorithm, as shown in
Fig. 2. Although a reasonably good performance was achieved just via the feature
ranking method according to the scores computed by a bagging strategy [15], as
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shown in Fig. 2-left, more stable performance was achieved by incorporating the
SVM-RFE method (Fig. 2-right), since simple feature ranking does not consider
correlations between features. Furthermore, these plots also indicate that the described
algorithm is quite robust with respect to the SVM Gaussian kernel. The ROC curve of
the classifier that yields the best classification result is also shown in Fig. 3, which in-
dicates that our classifier has large area under ROC curve.

Besides using a classifier to determine the abnormality of brains, we can also use it
for detecting group difference. In [7,11], the discriminative direction method was
used to estimate the group difference from the classification function. Here, we util-
ized a similar method to estimate the group difference. The group differences are
overlaid on the template brain, highlighting the most significant and frequently de-
tected group differences in our leave-one-out experiments (Fig. 4).

ROC curve

true positive rate

03 oa o5 08 07
false positive rate

Fig. 3. ROC curve Fig. 4. Regions of most representative of the
group differences, found via decision function
gradient.(high light indicates more significant)

4 Discussions and Conclusions

We have presented a statistical classification method for identification of brain ab-
normality based on regional morphological information. The classifier is built on
adaptive regional feature extraction and feature selection. In particular, brain regions
are generated automatically by grouping local morphological features with similar
classification power. This adaptive regional feature extraction method aims at over-
coming the limitations of the traditional ROI methods that need prior knowledge of
what specific regions might be affected by disease, and the limitations of the voxel
based morphometry (VBM) methods that use an identical isotropic filter to collect
regional morphological information in all brain locations. The robust feature selec-
tion method used in this paper further removes features that are irrelevant and redun-
dant to classification, thus improving the classification performance. The experimen-
tal results indicate that this method can achieve high classification rate in a
schizophrenic study.
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Abstract. We present a novel multi-scale bone enhancement measure that can be
used to drive a geometric flow to segment bone structures. This measure has the
essential properties to be incorporated in the computation of anatomical models
for the simulation of pituitary surgery, enabling it to better account for the pres-
ence of sinus bones. We present synthetic examples that validate our approach
and show a comparison between existing segmentation techniques of paranasal
sinus CT data.

1 Introduction

Pituitary gland tumors represent the third most common primary intracranial tumors en-
countered in neurosurgical practice. In the majority, a surgical intervention is required.
A neurosurgeon typically enters through the nose, has to break thin paranasal sinus
bones and remove soft tissues while avoiding nerves and blood vessels to reach the
pituitary gland (Fig.1). This requires extensive practice and precise knowledge of the
anatomy, the absence of which can have serious implications on the patient [1]. Cur-
rently, the only way to train a neurosurgery resident for such an operation is by multiple
observation and by elementary maneuver attempts supervised by an expert neurosur-
geon. This is why for the past several years, there has been a growing interest in build-
ing a surgical simulator to provide a tool for such training. Existing surgical simulators
generally involve a generic anatomical model elaborated on the basis of extensive hu-
man supervision, interacting with a fast but constitutively limited biomechanics engine.

Fig. 1. Endoscopic pituitary surgery

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 9-16, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Fig.2. Sagittal slice of CT data set in region of interest for pituitary gland surgery (see Fig. 1)

The goal of our research is to formulate a minimally supervised method for producing a
set of patient-specific anatomical models, from MR and CT data sets, in a manner that
can interact with a hierarchical finite-element based biomechanics engine. To do so, we
need a precise 3-dimensional (3D) partition of tissue classes into bone, air, vessel, nerve
and soft-tissue.

In this paper, we focus on paranasal sinus bone enhancement and segmentation from
CT data. The usual methods for segmentation of bone in CT are based on thresholding
followed by some image connectivity measures or manual editing which is quite tedious
and prone to human error. At a coarse scale, segmentation by thresholding is quite good
due to the 3-class nature of CT images and the known Hounsfield value range for bone.
Air has close to no signal and bone has much higher signal than surrounding tissues
(see Fig. 2). However, from Fig. 2(b), we can clearly see that thin bones can have
holes and diffusive boundaries. True bones do not have these features, they are due to
partial volume effects and noise present in CT data sets. For such thin bones, a simple
thresholding procedure gives unsatisfying results.

In this paper, we introduce a novel algorithm for bone enhancement filtering and
segmentation based on the multi-scale second order local structure of the image. We
exploit the eigenvalue decomposition of the Hessian matrix which is known to give
valuable local information on the blob-like, tube-like and sheet-like behavior of iso-
intensity level sets in the image [5,6,3,4,2]. We propose a sheetness measure that can
be used to drive an active surface to segment bone. This is motivated in part by Frangi’s
tubular structure enhancement filtering measure [3] and Descoteaux et al [2] multi-
scale geometric flow. We illustrate the power of the approach with segmentation results
in regions with holes and low Hounsfield values in CT data and compare them to results
from [9] based on local structure extraction with the structure tensor. We also validate
the approach quantitatively on synthetic data. To our knowledge, our method is the first
flow-based approach for paranasal sinus bone segmentation.

2 Using Local 3D Structure for Filtering and Segmentation

In this section, we investigate medical image filtering algorithms using the tensor ma-
trix, 7 and the Hessian matrix, H as shape descriptors. For a 3D image Z, they are
defined as

7 =vVI'vi=|171,1,7,T,1I. H=| Zuy Lyy T,-
1,1. 1,1, 1.7, To21yz 1.,



Bone Enhancement Filtering: Application to Sinus Bone Segmentation 11

In both cases, an eigenvalue analysis is performed to extract the local behavior of iso-
intensity level sets in the image. Many methods have been developed for blood vessel
segmentation using these models [5,6,3,4,2]. We review only a selection of the repre-
sentative techniques for our bone segmentation problem.

2.1 Modeling Sheet-Like Structures with the Tensor Descriptor

As mentioned before, the usual method for bone segmentation for CT data is simple
thresholding which fails on thin bone structures. Recently, Westin et al. [9] have in-
troduced an adaptive thresholding approach using the structure tensor to segment thin
bones around the eye socket and in the paranasal sinus area. The idea is to evaluate
the structure tensor at every voxel of the data and determine the degree to which its
shape resembles a line, a plane or a sphere. Letting A1, A2, A3 (0 < A; < Ay < A3)
be the eigenvalues of the structure tensor, the interest is when the structure tensor
can be approximated by a plane (see [9] for details). The authors describe a planar
measure Cplgne = ’\3;\?)‘2 such that in theory, it has a value of 1 for plane struc-
tures and O for others. This measure is used to adaptively threshold the input data set,
t(x) = to — acpiane(x), where g is a global threshold modified locally and « is a
weight factor for the planar measure.

In Section 5, we demonstrate several properties of this approach. In particular, since
the tensor is based on first order variation, the cpqne measure is strong at boundaries
(where the gradient is strong) and weak inside the bone structure. For our application,
we seek a measure that is high at the center of the structure with a fall off at boundaries
where a priori, our confidence in a voxel being strictly bone or strictly soft tissue is
weak. Such a confidence index can guide the subsequent surface and volume meshing
of bone tissue relevant to the simulation of pituitary surgery. We explore the properties
of the Hessian shape operator to define such a measure.

2.2 Modeling Sheet-Like Structures Using the Hessian Operator

The Hessian matrix encodes important shape information. An eigenvalue decomposi-
tion measures the maximum changes in the normal vector (gradient vector) of the under-
lying intensity iso-surface in a small neighborhood. Hence, it can differentiate between
tube-like, sheet-like and blob-like structures. The classification of Table 1 was first ex-
plored by Sato et al. [6], and Lorenz et al. [5] separately. In [3], Frangi defines three
ratios using tube-like properties of the eigenvalues of Table 1 to separate blood vessels
from other structures. Derivatives of the Hessian matrix are computed with multi-scale

Table 1. Local structure classification assuming |A1]| < [A2]| < [As]

eigenvalue conditions local structure examples
MR Ax0,A3>>0 sheet-like bone, skin
M0, dxA3>>0 tube-like vessels, nerves
MR AR A3>>0 blob-like nodule

AR A= A3~0 noise-like background, noise
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Table 2. Theoretical properties of the ratios defined to construct the sheetness measure

Ratios sheet tube blob  noise
Rsneet = |A2|/|A3] 0 1 1 undefined
Ruior = [(2|A3] — [A2] — [AL])| / [A3] 2 1 0 undefined
Ruoise = /A2 + 23+ X2 As V2X3V3xs 0

~v-parametrized Gaussian kernels and the three quantities are integrated in a vesselness
measure designed to be maximum when computed at the scale corresponding to the
radius of the tubular objects. The vessel index is thus maximum nearby the vessel cen-
ter and is zero outside. In [2] a vesselness measure is used to find putative centerlines
of tubular structures along with their estimated radii and is then distributed to create a
vector field which is orthogonal to vessel boundaries so that the flux maximizing flow
algorithm of [8] can be applied to recover them. This method can recover low contrast
and thin vessels from standard anatomical proton density weighted data sets.

Inspired by these approaches, we propose a multi-scale sheetness measure that en-
hances bone structures and then use it to drive a deformable surface that stops at bone
boundaries. At every voxel, we determine wether the underlying iso-intensity surface
behaves like a sheet. In this case, we know that the eigenvectors corresponding to the
null eigenvalues span the plane of the plate structure and the other eigenvector is per-
pendicular to it. We define three ratios, Rspeet, Rbiobs Rnoise, to differentiate sheet-like
structures from others. Their behavior is described in Table 2. Then, just as in [3], we
can define the sheetness measure, S, as the maximum response over all scales o at
which the derivatives of the Hessian are computed,

0 if A3 >0

=) = o (o)1 - e (L)1 - (). O

where X is a finite set of scales chosen by the user in the range of smallest to thickest
possible bone structure (0.5 < ¢ < 3.0) in the data and parameters «, (3, ¢ are set to
0.5, 0.5 and half the maximum Frobenius norm (R,,,;s.) respectively as suggested in
[3,2].

Each term of the equation has a function and depends on the characteristics of Ta-

ble 2. To avoid division by a null A3 in the case of noise, the undefined can be set to
obtain the desired behavior. Breaking down the terms of Eq. 1, we have

_R2 . .
1. exp ( 1;;’7;“‘ ) is a sheet enhancement term, where the maximum occurs for sheet-
like structures and the minimum for others. We set undefined to 1.
-_— 2 . . . . . . . .
2. (1 —exp ( 5’ BbéOb) is a blob and noise elimination term since it is zero for both.

Moreover, the term is high for a sheet and lower for a tube. We set undefined to
Zero. )
3. (1 —exp (_RQ"(;;M) is a background or noise reduction term. R, ,;se 1S known as

the Frobenius norm and is high only in the presence of structure.

Note that we do not define a tube elimination term as the curved ends of bone struc-
tures have a behavior that is both tube-like and sheet-like. Thus, the sheetness measure
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is designed to be maximum for sheet-like voxels, less important for tube-like regions
and zero for other structures. The power of this approach resides in the fact that after
this sheetness computation, we have a confidence sheet-like score at each voxel and in
addition, for high score locations, we have the scale estimate of the radius of the sheet
as well as the normal vector to the plane.

3 A Geometric Flow for Segmenting Bone Structures

There have been a few deformable model methods proposed for bone segmentation
which are quite different from our approach because they are suited to 2D images from
different modalities and different bones. In [7], the segmentation of carpal bones of the
hand in CT images is faced with similar challenges as in our sinus bone CT data sets. A
skeletally coupled curve evolution framework is proposed that combines probabilistic
growth with local and global competition. Promising results are shown on 2D images
with gaps and diffused edges. However, the method is based on skeletal points which
would be difficult to determine in one or two voxel wide bone structures such as those
in the paranasal sinuses.

In our application, we propose to use the bone enhancement measure of Eq. 1 to
drive a 3D surface evolution. We construct a vector field that is both large in magnitude
and orthogonal to bone structures. The key idea is to distribute the sheetness measure,
which is concentrated on the center sheet, to the bone boundaries implied by the local
scale and direction estimates coming from the multi-scale sheetness measure. At each
voxel where the sheetness index is high, we consider a disc or flat ellipsoid with its two
semi-minor axes aligned with the estimated plane orientation and its semi-major axis
equal to the approximated radius. The sheetness measure is then distributed over every
voxel on the boundary of the disc. We define the addition of the extensions carried out

Input Sheetness measure  Speed: div(Y_/)) Segmentation

Fig. 3. Experiment on synthetic objects. We show slices of the input volumes, the sheetness mea-
sure, the speed term and a surface rendering of the segmentation
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independently at all voxels to be the ¢ distribution. The extended vector field is now
defined as the product of the normalized gradient of the original image with the above

—
¢ distribution, V = ¢ @%. This vector field is an ideal candidate for the static vector

field in the flux maximizing geometric flow S; = dw(?)ﬁ . The flow evolves the
surface S to converge to the zero-crossing of the speed term to a dz’v(v) (see Fig. 3).
The flow is topologically adaptive due to its implementation with levelset methods, is
computationally efficient and requires minimal user interaction. We refer the reader to
[2] for further details.

4 Quantitative Validation on Synthetic Objects

In order to validate the extension of the sheetness measure to boundaries and to evaluate
the effectiveness of the speed term driving the geometric flow, we constructed several
binary synthetic objects of varying widths and centerline curvatures. Each volume was
then smoothed using 2 iterations of mean curvature smoothing to simulate partial vol-
ume effects at their boundaries. Ground truth surface points were obtained as the 0.5
crossings of each object, obtained by linear interpolation on the voxel grid. We then
added white Gaussian noise to each voxel to simulate typical noise levels in a CT ac-
quisition process (we used a 10% signal-to-noise ratio) and followed the steps detailed
above to construct the sheetness measure, obtain the ¢ distribution and then build the
vector field 7 using the same parameters throughout. Empirical surface points were

defined as the zero-crossings of the speed term div(?) in the geometric flow.

Table 3. Agreement level between reconstruction and binary ground truth

object average distance error (voxels) ~maximum error (voxels) ratio (%)
plate 0.22 1.00 95

rib 0.25 1.12 95
spiral 0.26 1.22 91

A visualization of the important terms is shown in Fig. 3. We evaluated the accuracy
of the zero-crossings of the speed term by computing the average and maximum Eu-
clidean distance errors between each empirical surface voxel and its closest ground truth
surface voxel. We also computed the ratio between classified voxels in the segmentation
and bone voxels in the binary volume. The results, shown in Table 3, indicate that the
average error is typically less than 0.3 voxels and that the agreement between the re-
constructed and original volume is above 90%. We have determined empirically that the
maximum errors occur at the two ends of each synthetic object, which is to be expected
since mean curvature smoothing causes the most shrinkage there.

5 Bone Enhancement and Segmentation on CT Data

In order to compare our algorithm with Westin et al.’s adaptive thresholding method and
simple thresholding, we cropped a 53 mm x 89 mm x 98mm region of a CT data sets
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hessian norm sheetness measure

conservative thresh  aggressive thresh  [9] segmentation  Our segmentation

Fig. 4. Comparison between different segmentation methods. Our method connects most of the
thin bone structure and reconstructs more bone than the approach in [9] and than thresholding.

around the paranasal sinuses and ran the segmentation methods. The original volume
was first resampled to a 0.468mm? isotropic grid.

We make several qualitative observations from Fig. 4. First, we see that both the
algorithm of [9] and our method work better than simple thresholding. Second, our
method appears to better exploit tissue contiguity and connect more bone structure than
Westin’s segmentation. This is to be expected since our geometric flow method is de-
signed to evolve and connect as much sheetness information as possible whereas [9]
remains a thresholding method, albeit one that accounts for local structure. We have
chosen adaptive thresholding (cpiane) parameters which we thought gave the best re-
sults and it is clear that, as the authors suggest, if incorporated in an deformable model
framework a better segmentation could be obtained. In our experiments with the ap-
proach, we have found that the structure tensor picks out the direction of maximum
change in intensity but spatially, it does not behave well for our application. The cpane
measure is strong mostly at boundaries and tends to thicken the edges as seen in the
tensor norm response in Fig. 4. Our method has the advantage of extracting locations
at the center of bone structures where the underlying iso-intensity level set behaves like
a plane. The sheetness measure combined with a flow designed to evolve and stop at
boundaries performs better as it is able propagate along low sheetness regions. Most
importantly, on its own, the sheetness measure has suitable characteristics to be incor-
porated in a surgical simulator for pituitary intervention. The measure is high on the
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center plane of bones and decreases towards the boundaries where there is an uncer-
tainty about the tissue classification of a voxel. Hence, it can allow a surface mesh
model to account for uncertainty in determining triangulated bone boundaries, to better
model sinus bones in the simulation. For our application, it is thus more useful to have a
confidence measure for all voxels than a binary segmentation of bones which certainly
still has missing segments and no notion of distance to the boundaries.

6 Conclusions

We have presented a general multi-scale bone enhancement measure that can be used
to drive a geometric flow to segment sheet-like structures. The key contribution is the
introduction of a the sheetness measure based on the properties of the multi-scale Hes-
sian shape operator which has well-founded differential geometric theory and is stable
under the presence of noise. The measure gives a confidence index on the presence of
bones and for voxels with high values, the scale and direction of the local bone struc-
ture is directly obtained. We are able to detect and connect very thin and diffusive bone
structure boundaries. In current work, we are trying to use both the bone segmentation
as well as the sheetness, vesselness and other tissue classification cues from the CT and
corresponding MR data to use a global class competition levelset framework.
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Abstract. In this paper, we present a novel variational formulation of
the registration assisted image segmentation problem which leads to solv-
ing a coupled set of nonlinear PDEs that are solved using efficient numer-
ical schemes. Our work is a departure from earlier methods in that we
have a unified variational principle wherein non-rigid registration and
segmentation are simultaneously achieved; unlike previous methods of
solution for this problem, our algorithm can accommodate for image
pairs having very distinct intensity distributions. We present examples
of performance of our algorithm on synthetic and real data sets along
with quantitative accuracy estimates of the registration.

1 Introduction

In Medical Imaging applications, segmentation can be a daunting task due
to possibly large inhomogeneities in image intensities across an image e.g., in
MR images. These inhomogeneities combined with volume averaging during
the imaging and possible lack of precisely defined shape boundaries for certain
anatomical structures complicates the segmentation problem immensely. One
possible solution for such situations is atlas-based segmentation. The atlas once
constructed can be used as a template and can be registered non-rigidly to the
image being segmented (henceforth called a target image) thereby achieving the
desired segmentation. Many of the methods that achieve atlas-based segmen-
tation are based on a two stage process involving, (i) estimating the non-rigid
deformation field between the atlas image and the target image and then, (ii) ap-
plying the estimated deformation field to the desired shape/atlas to achieve the
segmentation of the corresponding structure/s in the target image. In this pa-
per, we develop a novel technique that will simultaneously achieve the non-rigid
registration and segmentation. There is a vast body of literature for the tasks
of registration and segmentation independently however, methods that combine
them into one algorithm are far and few in between. In the following, we will
briefly review the few existing methods that attempt to achieve simultaneous
registration and segmentation.

* This research was in part funded by the NIH grants, RO1 NS046812 & NS42075.
Authors thank Dr. C.M. Leonard of the UF Neuroscience Dept. for the hippocampal
data sets.
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In one of the earliest attempts at joint registration & segmentation, Bansal
et al., [1] developed a minmax entropy framework to rigidly register & segment
portal and CT data sets. In [2], Yezzi et al., present a variational principle for
achieving simultaneous registration and segmentation, however, the registration
part is limited to rigid motions. A similar limitation applies to the technique
presented by Noble et al., in [3]. A variational principle in a level-set based
formulation was presented in Pargios et. al., [4], for segmentation and registration
of cardiac MRI data. Their formulation was again limited to rigid motion and
the experiments were limited to 2D images. In Fischl et al., [5], a Bayesian
method is presented that simultaneously estimates a linear registration and the
segmentation of a novel image. Note that linear registration does not involve
non-rigid deformations. The case of joint registration and segmentation with
non-rigid registration has not been addressed adequately in literature with the
exception of the recent work reported in Soatto et al., [6] and Vemuri et al.,
[7]. However, these methods can only work with image pairs that are necessarily
from the same modality or the intensity profiles are not too disparate.

In this paper, we present a unified variational principle that will simul-
taneously register the atlas shape (contour/surface) to the novel brain image
and segment the desired shape (contour/surface) in the novel image. In this
work, the atlas serves in the segmentation process as a prior and the registration
of this prior to the novel brain scan will assist in segmenting it. Another key
feature/strength of our proposed registration+segmentation scheme is that it
accommodates for image pairs having very distinct intensity distributions as in
multimodality data sets. More details on this are presented in section 2.

2 Registration+Segmentation Model

We now present our formulation of joint registration & segmentation model
wherein it is assumed that the image to be segmented can be modeled by piece-
wise constant regions, as was done in [8]. This assumption simplifies our pre-
sentation but our model itself can be easily extended to the piecewise smooth
regions case. Additionally, since we are only interested in segmenting a desired
anatomical shape (e.g., the hippocampus, the corpus callosum, etc.), we will only
be concerned with a binary segmentation i.e., two classes namely, voxels inside
the desired shape and those that are outside it. These assumptions can be easily
relaxed if necessary but at the cost of making the energy functional more com-
plicated and hence computationally more challenging. Let I; be the atlas image
containing the atlas shape C, Iy the novel image that needs to be segmented
and v be the vector field, from I to I i.e., the transformation is centered in
I5, defining the non-rigid deformation between the two images. The variational
principle describing our formulation of the registration assisted segmentation
problem is given by:

minE(v,C) = Seg(Iy,C) + dist(v(C),C) + Reg(I1, Iz, V). (1)

Where, the first term denotes the segmentation functional. C' is the boundary
contour (surface in 3D) of the desired anatomical shape in I5. The second term
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measures the distance between the transformed atlas v(C') and the current seg-
mentation C' in the novel brain image i.e., the target image and the third term
denotes the non-rigid registration functional between the two images. Each of
these functionals are given the following form:

C

Seg(I,,C) :/

]

(Iy — u)’dx + a]{ ds (2)

Where, §2 is the image domain and « is a regularization parameter. u = u; if
z € Cip and u = u, if © € Cous. Ci, and Cuyy denote the regions inside and
outside of the curve, C' representing the desired shape boundaries in I,.

For the non-rigid registration term in the energy function, we use the recently
introduced information theoretic-based criteria [9] called the cross cumulative
residual entropy (CCRE). In [9], CCRE was shown to outperform MI-based
registration in the context of noise immunity and convergence range, motivating
us to pick this criteria over the MI-based cost function. The new registration
functional is defined by

Reg(fl,fz,w—(cul(v(x)),Iz(x))w / <|Vv<x>|2)) 3)

where, cross-CRE C(I1(), I2()) = E(Ih) — E[E(I1/]2)] and E(I1) = — fR (T4
> A)log P(|I1] > A)dA with R4 = (z € R;z > 0). v(x) is as before and p is the
regularization parameter and ||-|| denotes Frobenius norm. Using a B-spline rep-
resentation of the non-rigid deformation, one need only compute this field at the
control points of the B-splines and interpolate elsewhere, thus accruing compu-
tational advantages. Using this representation, we derived analytic expressions
for the gradient of the energy with respect to the registration parameters. This
in turn makes our optimization more robust and efficient.

In order for the registration and the segmentation terms to “talk” to each
other, we need a connection term and that is given by

dZSt C / (?ZSV(C') (4)

Where, R is the region enclosed by C, ¢V(C)(X) is the embedding signed distance

function of the contour v(C'), which can be used to measure the distance between
v(C) and C. The level-set function ¢ : R? — R is chosen so that its zero level-set
corresponds to the transformed template curve v(C). Let Eg;s¢ := dist(v(C), 0),
one can show that agdﬁ‘ = ¢v(c)(C)N where N is the normal to C. The corre-

le}
sponding curve evolution equation given by gradient descent is then

aC .

Not only does the signed distance function representation make it easier for us to
convert the curve evolution problem to the level-set framework (refer to section
3), it also facilitates the matching of the evolving curve C and the transformed
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template curve v(C'), and yet does not rely on a parametric specification of either

C or the transformed template curve. Note that since dist(v(C'), C) is a function

of the unknown registration v and the unknown segmentation C, it plays the

crucial role of connecting the registration and the segmentation terms.
Combining these three functionals together, we get the following variational

principle for the simultaneous registration+segmentation problem:

minE(C’, YV, Ug, Uj) = /

(I — u)?dz + oy j{ ds + ay dist(v(C),C)
o ¢

(6)
—asc(h(V(X))Jz(X))+a4/9||VV(X)||2dX-

«; are weights controlling the contribution of each term to the overall energy
function and can be treated as unknown constants and either set empirically or
estimated during the optimization process. This energy function is quite distinct
from those used in methods existing in literature because it is achieving the
Mumford-Shah type of segmentation in an active contour framework jointly with
non-rigid registration and shape distance terms. We are now ready to discuss
the level-set formulation of the energy function in the following section.

3 Level Set Formulation

We now present a level-set form of our formulation described earlier. For our
model where the equation for the unknown curve C'is coupled with the equations
for v(x), u,, u;, it is convenient for us to use the level set approach as proposed in
[8]. Taking the variation of E(.) with respect to C' and writing down the gradient
descent leads to the following curve evolution equation:

aC

op = | =) + (2 = o) + a1k + a2y (O)| N @)

Note that equation (5) is used in the derivation. Equation (7) in the level-set
framework is given by:

¢ 2 2 Vo ~
0 {_(12 w4 (= )+ Ve T aao o ©)] 99 ()
where u; and u, are the mean values inside and outside of the curve C in the
image I5.

As mentioned before, we use a B-spline basis to represent the displacement
vector field v(x, u), where p is the transformation parameters of the B-spline
basis.

OF _ | 0Jn dvie)(®) dx _ aC(L(v(0). o)) , | 0o V()|

= Q2 — Q3 8M 8u

o o 9)
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The first term of equation(9) can be rewritten as follows:

2 @ v(C) x) dx :/ 8¢V(C)(X) dx
o R op

_ / 9%y(c)
R 8’1}
by(c)

)
where 5’ is the directional derivative in the direction of v(x, 1z). The second
term of equation(9) is more involved and tedious. We simply state the result
here without the derivations for the sake of brevity,

10
ovix, ) 1o

dx
v=v (%, 1) o

OC (I3, I o v(x; >)\k: OP(i > A\ k;
(o0 52 5 g PSP AR
Nel, kel p[z Z> ,/L) 12
where P(i > A k;p) and P(i > A;u) are the joint and marginal cumulative
residual distributions respectively. pr, (k) is the density function of image Io.
The last term of equation(9)leads to,

3 [, | Vv(x)|?dx / ov
=2 [ Vv dx 12
o Q o (12)

where both the matrices Vv and g; are vectorized before the dot product is
computed.

Substituting equations (10), (11) and (12) respectively back into the equation
(9), we get the analytical gradient of our energy function with respect to the B-
spline transformation parameters p. We then solve for the stationary point of
this nonlinear equation numerically using a quasi-Newton method.

Algorithm Summary

Given atlas image I; and the unknown subject’s brain scan Iz, we want the
segmentation result C in I2. Initialize C' in I3 to be C, set initial transformation
parameters pg to be zero.

1. Optimize p; using equation (9) with Quasi-Newton method for one step.
Update the deformation field v(z; ;).

2. Evolve ¢ in I> using equation (8) for one step, update C; as the zero level-set
of ¢.

3. Stop the registration process if the difference in consecutive iterates is less
than e = 0.01, a pre-chosen tolerance, else go to Step 1.

4 Implementation Results

In this section, we present several examples results from an application of our
algorithm. The results are presented for synthetic as well as real data. The first
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Source MR T1 Image Registered Source Image Target MR T2 Image

Groundtruth ion field 1 field

Fig. 1. Results of application of our algorithm to synthetic data (see text for details)

three experiments were performed in 2D, while the fourth one was performed in
3D. Note that the image pairs used in all these experiments have significantly
different intensity profiles, which is unlike any of the previous methods, reported
in literature, used for joint registration and segmentation. The synthetic data
example contains a pair of MR T1 and T2 weighted images which are from
the MNT brainweb site [10]. They were originally aligned with each other. We
use the MR T1 image as the source image and the target image was generated
from the MR T2 image by applying a known non-rigid transformation that was
procedurally generated. In this case, we present the error in the estimated non-
rigid deformation field, using our algorithm, as an indicator of the accuracy of
estimated deformations.

Figure 1 depicts the results obtained for this image pair. With the MR T1
image as the source image, the target was obtained by applying a synthetically
generated non-rigid deformation field to the MR T2 image. Notice the significant
difference between the intensity profiles of the source and target images. Figurel
is organized as follows, from left to right: the first row depicts the source image
with the atlas-segmentation superposed in white, the registered source image
which is obtained using our algorithm followed by the target image with the un-
registered atlas-segmentation superposed to depict the amount of mis-alignment;
second row depicts ground truth deformation field which we used to generate
the target image from the MR T2 image, followed by the estimated non-rigid
deformation field and finally the segmented target. As evident, the registra-
tion+segmentation are quite accurate from a visual inspection point of view.
As a measure of accuracy of our method, we estimated the average, p, and the
standard deviation, o, of the error in the estimated non-rigid deformation field.
The error was estimated as the angle between the ground truth and estimated
displacement vectors. The average and standard deviation are 1.5139 and 4.3211
(in degrees) respectively, which is quite accurate.

Table 1 depicts statistics of the error in estimated non-rigid deformation
when compared to the ground truth. For the mean ground truth deformation
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(magnitude of the displacement vector) in Column-1 of each row, 5 distinct
deformation fields with this mean are generated and applied to the target image
of the given source-target pair to synthesize 5 pairs of distinct data sets. These
pairs (one at a time) are input to our algorithm and the mean (u) of the mean
deformation error (MDE) is computed over

the five pairs and reported in Column-2

of the table. MDE is defined as d,, = Table 1. Statistics of the error in
car;(R) ZriGR |[vo(a:) — v(z;)||, where vo(;) estimated non-rigid deformation.

v(z;) is the ground truth and estimated dis-

placements respectively at voxel x;. ||.|| de- frg p of MDE o of MDE
notes the Euclidean norm, and R is the vol- 2.4 0.5822 0.0464
ume of the region of interest. Column-3 de- 3.3 0.6344 0.0923
picts the standard deviation of the MDE for 4.5 0.7629 0.0253
the five pairs of data in each row. As evident, 5.5 0.7812 0.0714

the mean and the standard deviation of the

error are reasonably small indicating the ac-

curacy of our joint registration + segmentation algorithm. Note that this testing
was done on a total of 20 image pairs (=40) as there are 5 pairs of images
per row.

For the first real data experiment, we selected two image slices from two
different modalities of brain scans. The two slices depict considerable changes
in shape of the ventricles, the region of interest in the data sets. One of the
two slices was arbitrarily selected as the source and segmentation of the ven-
tricle in the source was achieved using an active contour model. The goal was
then to automatically find the ventricle in the target image using our algorithm
given the input data along with the segmented ventricles in the source image.
Figure 2 is organized as follows, from left to right: the first row depicts the
source image with the atlas-segmentation superposed in black followed by the
target image with the unregistered atlas-segmentation superposed to depict the
amount of mis-alignment; second row depicts the estimated non-rigid vector field
and finally the segmented target. As evident from figures 2, the accuracy of the
achieved registration+segmentation visually very good. Note that the non-rigid
deformation between the two images in these two examples is quite large and
our method was able to simultaneously register and segment the target data sets
quite accurately.

The second real data example is obtained from two brain MRIs of different
subjects and modalities, the segmentation of the cerebellum in the source image
is given. We selected two “corresponding” slices from these volume data sets
to conduct the experiment. Note that even though the number of slices for the
two data sets are the same, the slices may not correspond to each other from
an anatomical point of view. However, for the purposes of illustration of our
algorithm, this is not very critical. We use the corresponding slice of the 3D seg-
mentation of the source as our atlas-segmentation. The results of an application
of our algorithm are organized as before in figure 3. Once again, as evident, the
visual quality of the segmentation and registration are very high.
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Fig. 2. Results of application of our algo- Fig. 3. Corpus Callosum segmentation on
rithm to a pair of slices from human brain a pair of corresponding slices from distinct
MRIs (see text for details) subjects

Fig. 4. Hippocampal segmentation using our algorithm on a pair of brain scans from
distinct subjects. (see text for details)

Finally we present a 3D real data experiment. In this experiment, the in-
put is a pair of 3D brain scans with the segmentation of the hippocampus
in one of the two images (labeled the atlas image) being obtained using the
well known PCA on the several training data sets. Each data set contains 19
slices of size 256x256. The goal was then to automatically find the hippocam-
pus in the target image given the input. Figure 4 depicts the results obtained
for this image pair. From left to right, the first image shows the given (atlas)
hippocampus surface followed by one cross-section of this surface overlaid on
the source image slice; the third image shows the segmented hippocampus sur-
face from the target image using our algorithm and finally the cross-section of
the segmented surface overlaid on the target image slice. To validate the ac-
curacy of the segmentation result, we randomly sampled 120 points from the
segmented surface and computed the average distance from these points to the
ground truth hand segmented hippocampal surface in the target image. The
hand segmentation was performed by an expert neuroanatomist. The average
and standard deviation of the error in the aforementioned distance in estimated
hippocampal shape are 0.8190 and 0.5121(in voxels) respectively, which is very
accurate.
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5 Conclusions

In this paper, we presented a novel variational formulation of the joint (non-rigid)
registration and segmentation problem which requires the solution to a coupled
set of nonlinear PDEs that are solved using efficient numerical schemes. Our work
is a departure from earlier methods in that we have a unified variational principle
wherein non-rigid registration and segmentation are simultaneously achieved,
our algorithm can also accommodate for image pair having distinct intensity
distributions. We presented several examples (twenty) on synthetic and (three)
real data sets along with quantitative accuracy estimates of the registration in the
synthetic data case. More extensive experimentation under different amounts of
noise and varying degrees of non-rigidity needs to be performed prior to drawing
conclusions on the accuracy of the proposed model. This will be the focus of our
future efforts.
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Abstract. Validation and method of comparison for segmentation of
magnetic resonance images (MRI) presenting pathology is a challeng-
ing task due to the lack of reliable ground truth. We propose a new
method for generating synthetic multi-modal 3D brain MRI with tumor
and edema, along with the ground truth. Tumor mass effect is modeled
using a biomechanical model, while tumor and edema infiltration is mod-
eled as a reaction-diffusion process that is guided by a modified diffusion
tensor MRI. We propose the use of warping and geodesic interpolation
on the diffusion tensors to simulate the displacement and the destruction
of the white matter fibers. We also model the process where the contrast
agent tends to accumulate in cortical csf regions and active tumor regions
to obtain contrast enhanced T1w MR image that appear realistic. The re-
sult is simulated multi-modal MRI with ground truth available as sets of
probability maps. The system will be able to generate large sets of simula-
tion images with tumors of varying size, shape and location, and will ad-
ditionally generate infiltrated and deformed healthy tissue probabilities.

1 Introduction

The segmentation of brain tumor from magnetic resonance (MR) images is a
vital process for treatment planning and for studying the differences of healthy
subjects and subjects with tumor. The process of automatically extracting tu-
mor from MR images is a challenging process, and a variety of methods have
been proposed [1,2,3]. The typical standard for validation of the different seg-
mentation methods is comparison against the results of manual raters. However,
manual segmentation suffers from the lack of reliability and reproducibility, and
different sites may have different methods for manually outlining tumors in MRI.
The true ground truth may need to be estimated from a collection of manual
segmentations [4]. Validation of the segmentation of structures other than brain
tumor is typically not done since manual segmentation of edema or of the whole
brain are very challenging tasks and might not represent truth very well.

Brain MRI with tumor is difficult to segment due to a combination of the
following factors:

* This work was supported by NTH-NIBIB R01 EB000219.
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1. The deformation of non-tumor structures due to tumor mass effect.

2. Infiltration of brain tissue by tumor and edema (swelling). Edema appears
around the tumor mainly in white matter regions.

3. There is gradual transition from tumor to edema, often it is difficult to
discern the boundary between the two structures.

4. The standard MR modality used to identify tumor, T1lw with contrast en-
hancement (typically using gadolinium), is not always ideal. Blood vessels
and cortical cerebrospinal fluid (csf) tend to be highlighted along with tu-
mor, while parts of tumor that are necrotic tissue do not appear enhanced
at all. It is generally impossible to segment tumor by simply thresholding
the contrast enhanced T1w image.

Rexilius et al.[5] proposed a framework for generating digital brain phantoms
with tumor. They used a biomechanical finite element model to simulate the tu-
mor mass effect. The phantom for a healthy subject is deformed and a tumor
structure from a real subject is inserted to the MRI. Their model for edema is
computed from the distances to the tumor boundary and the white matter mask.
This is insufficient to simulate some real infiltration properties because infiltra-
tion is not only influenced by distance to tumor. Typically, edema infiltration
occurs following the white matter fibers. Their framework only considers contrast
enhancement inside tumors, without enhancement of vessels and csf regions.

We propose a method for generating simulated brain tumor MRI which in-
cludes most of the difficulties encountered in real MR images. The MR images
produced by the method presents the four challenges as listed above. Tumor
mass effect is simulated using a biomechanical model. Infiltration of brain tis-
sues by tumor and edema is simulated as a reaction-diffusion process that is
guided by a modified diffusion tensor MR image (DT-MRI). We also simulate
the process where the contrast agent accumulates in some fluid regions and outer
tumor regions to generate contrast enhanced T1w MRI that reflect challenges
encountered in real tumor MR images.

2 Method

The input for our method is a ground truth of a healthy subject, which is a
set of spatial probabilities for white matter, gray matter, and csf as shown in

Fig. 1. The input for our phantom generation framework: ground truth for a healthy
subject. From left to right: axial view of the spatial probabilities for white matter, gray
matter, and csf.
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Figure 1. We generate new spatial probabilities for tumor and edema, and modify
the healthy probabilities to account for mass effect and infiltration. The new
set of probabilities is used to simulate MR images given training data that is
obtained from real brain MRI with tumors. The probability that a particular
location contains contrast agent is computed to determine regions that appear
highlighted in T1w MRI.

The brain tumor MRI simulation system includes the following steps:

1. Selection of a MRI of a healthy subject with probabilistic tissue segmenta-
tion. This provides the initial healthy ground truth that will be transformed
into pathological ground truth.

2. Selection of a region for the initial tumor probability that describes the initial
state of the tumor. Tumor growth is then simulated through deformation and
infiltration.

3. Computation of a deformation field using a biomechanical model. The prob-
abilistic maps and the DT-MRI are warped using the deformation.

4. Modification of the DT-MRI to account for destruction of white matter
fibers.

5. Simulation of tumor and edema infiltration using the modified DT-MRI.

6. Simulation of the process of accumulation of contrast agent in fluid and
tumor regions.

7. Generation of multi-modal MRI given the final healthy tissue, tumor, and
edema probability maps.

2.1 Tumor Mass Effect

Given an initial tumor region that is obtained through user interaction, the
growth of the tumor is modeled as a deformation process. The initial tumor
region can also be automatically drawn at random given some prior knowledge of
the spatial distribution. Meningiomas, for example, often appear near the brain
periphery. The initial tumor region can have arbitrary shape and influences the
resulting deformation. In the initial tumor region, the tumor probabilities are set
to be one, prumor(x) = 1 and tissue or fluid probabilities are set to be zero. The
set of spatial probabilities, with the addition of the new spatial tumor probability
are deformed according to a biomechanical model.

We have chosen to use the linear elastic finite element model used in [6,5].
The external force for the system is a radial force that originates from the initial
tumor region, and this force weakens by distance.

2.2 Tumor and Edema Infiltration

We use the registered and reoriented DT-MRI to simulate the tissue infiltration
process, similar to the approach done by Clatz et al.[7,8]. However, registration
and reorientation are generally insufficient to account for the mass effect. White
matter fibers around tumor tend to be displaced, and as observed by Lu et al.[9],
in regions near the tumor the mean diffusivity (MD) tends to be increased while



Synthetic Ground Truth for Validation of Brain Tumor MRI Segmentation 29

Before Modification After Modification

Fig. 2. Visualization of the diffusion tensor MRI through the axial views of the 3D
Mean Diffusivity (MD) and Fractional Anisotropy (FA) images. The modified DT-
MRI has higher MD and lower FA in the regions surrounding tumor, which models
the destruction of the fibers. The MD image shows that the ventricle near the tumor
is slightly deformed. The FA image shows that the white matter fibers near the tumor
region are pushed away.

the fractional anisotropy (FA) tends to be decreased. This effect can be seen as
a reflection of the destruction of white matter fibers due to tumor growth.

The influence of tumor mass effect on DT-MRI is modeled using a combi-
nation of image warping and non-linear interpolation. The DT-MRI is warped
following the strategy described in [10], where a rigid rotation is applied to each
individual tensors. The rigid rotation for each tensor is computed based on the
local warping property. The destruction of white matter fibers is simulated by
interpolating each individual tensor with an isotropic tensor that has higher
mean diffusivity. Figure 2 shows the registered DT-MRI before and after the
modification that models the influence of tumors.

The interpolation between a warped tensor D and its isotropic version E
is calculated using the geodesic interpolation strategy proposed by Fletcher et
al.[11]. The isotropic tensor E is formulated to have two times the determinant
value of D, E = (2|D|)3 Isxs. The weight o for the interpolation between D
and FE is inversely proportional to the amount of deformation. We use a(z) =
exp(— Igg(f)) where K (z) = max(1,|J(z)|) — 1 with J being the Jacobian matrix
of the sp};tial coordinate mapping function and ok is the rough estimate of
the amount of deformation that destroys fibers. The modified tensor we use for
computing infiltration is D’(x) = interpolate(D(z) : a, E(z) : (1 — «)). With
our formulation of «, volume expansion destroys fibers while volume compression
does not change the original tensors. This is done because we observed that in
real tumor DT-MRI some fibers can appear condensed without being destroyed.

The spatial probability that a particular location is infiltrated by pathological
cells, Din fittrated = @, is evolved using the modified DT-MRI as follows:

8¢_
ot

The first term is the DT-MRI guided diffusion, with an additional parameter
a that depends on the tissue type. White matter is more likely to diffuse than

div(a D' V) +b¢(1 — ¢)
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white matter, while csf is not likely to be infiltrated at all. The second term is the
growth term, with b being a constant. The diffusion tensors D’ are normalized so
that the trace of the tensors is within the range of [0, 1]. The initial values for ¢
is chosen to be higher for regions with high tumor and white matter probability,
d(x,t = 0) = pwhite(T) Prumor (). The evolution is stopped when the volume of
infiltrated brain voxels is higher than a fraction of the brain tissue volume.
Tumor may not only deform tissue, but also infiltrate nearby tissue. We
model this by attributing the early stages of infiltration to tumor and the
later stages to edema. The probability of infiltrated tumor or edema is the
probability that a location is both infiltrated and part of brain tissue. More
precisely, ptumar(l') = Pwarped tumor + ¢(xatearly) Ptissue (ZL’) and pedema(l') =
(P(z,trinat) — ¢(T, tearty)) Prissue(x). The probability of observing brain tissue
iS Prissue () = Pwhite(T) + Dgray (). The value ¢ finq is the time where evolution
stops, and teqry is a time value earlier in the process, teqriy < tfinai- The choice
for the value of tcqr1y depends on the type of tumor being modeled. For example,
meningiomas tend to have less tumor infiltration compared to glioblastomas.

2.3 Generation of MR Image Intensities

One of the particular challenges in segmenting brain tumor from MRI is the in-
consistencies in the contrast enhanced T1w image. Due to the biological process,
the contrast agent is almost always accumulated in regions other than tumor,
mainly in the cortical csf and the blood vessels. Additionally, the necrotic parts
of the tumor do not accumulate the contrast agent at all. Tumor necrosis are
typically found in the core tumor regions.

Our method models the accumulation of the contrast agent in the active
tumor tissue and the cortical csf in order to generate more challenging images.
The spatial probability for the accumulation of contrast agent, pgscc = 7 is evolved
using the following reaction diffusion equation:

87}_
ot

where v and w are constants and I is the indicator function. The value of u
depends on the tissue type at location x, contrast agent is modeled to be more

KL

Fig. 3. Axial view of the generated probabilities related to contrast enhancement. From
left to right: probability for highlighted csf or tumor, probability for non-highlighted
tumor, and probability for non-highlighted csf.

div(u Vn) + I{z € Xsource} v — I{x € Xgink} wn
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likely to spread in csf than in tumor tissue. Xgource and Xg;pni are the sets of
points that act as sources or sinks respectively, the points are chosen at random.
Locations with high csf probability and low distance to brain boundary are more
likely to be source points. Within tumor, the outer regions are more likely to
be source points while the core regions are more likely to be sink points. We
initialize 1 so that the voxels in the source regions are equally likely to have
accumulated contrast agent or to have no contrast agent at all, n(z,t = 0) =
I{x € Xsource} 0.5.

The probability that a voxel would appear highlighted in contrast enhanced
T1w MRI is the probability that the voxel is csf or tumor and has accumulated
contrast agent, Penhanced(T) = Pace (Pesf(T) + Prumor(x)). Figure 3 shows the
generated enhancement probabilities. Our model accounts for the fact that cor-
tical csf and active tumor regions are highlighted and that necrosis regions are
not enhanced. However, it does not account for the fact that blood vessels can
also appear enhanced.

Given the modified spatial probabilities of the healthy ground truth, the MR
images are generated as linear combinations of a set of mean intensities for each
class:

N
I"(x) = chi (x) ps

where m is the modality, N,, is the number of classes, C; is one of the classes
used for that modality, and p; is the mean intensity for class C;. The mean class
intensities are obtained from real brain tumor MRI. For T1lw and T2w images,
the set of classes C' is composed of white matter, gray matter, csf, tumor, and
edema. For the contrast enhanced T1w image, the set of classes C is composed
of white matter, gray matter, non-enhancing csf, non-enhancing tumor, edema,
and the class for all contrast enhanced voxels.

3 Results

The synthetic brain tumor MRI is shown together with an example of a real
brain tumor MRI in Figure 4. In both cases, tumor deforms other structures
and edema infiltrates brain tissue. The contrast enhanced T1w MR images also
show complex highlight patterns. Figure 5 shows the ground truth for the syn-
thetic MRI. Ground truth is presented as a set of probability maps for tissue
and pathology, similar to the one provided by BrainWeb [12] for healthy sub-
jects. This has significant advantage over binarization since validation can use
probabilistic statistical analysis rather than simple volume comparison.

4 Discussion and Conclusion

We have presented a method for generating synthetic multi-modal MR images
with brain tumors that present similar difficulties as real brain tumor MR im-
ages. Using sets of such images with variations of tumor size, location, extent of
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Fig. 4. The synthetic MR images compared to real MR images of a subject with menin-
gioma and surrounding edema. Top: axial view of the synthetic MR images generated
using our method. Bottom: axial view of real MR images. From left to right: contrast
enhanced T1w, T1w, and T2w images.

Fig. 5. Axial view of the ground truth for the synthetic MR images. From left to right:
the class probabilities for white matter, gray matter, csf, tumor, and edema.

surrounding edema, and enhancing regions, segmentation methods can be tested
on images that include most of the challenges for segmentation. The synthetic
MRI and the ground truth allows for the validation of the segmentation of the
whole brain, which includes white matter, gray matter, csf, tumor, and edema.
This capability is novel as most validations done so far were focused on tumor
only but not on infiltrated tissue and on deformed healthy tissue.

A possible extension to the method we proposed is the inclusion of vessel in-
formation to determine additional regions where contrast agent tend to accumu-
late. Blood vessel information can also be combined together with deformation
and infiltration to generate more precise simulation of the tumor growth and the
development of necrosis. This could lead to development of a texture model for
the tumor and edema regions.

It is important to note that our goal is to generate sufficiently realistic MR,
images that are difficult to segment. The accurate modeling of tumor and edema
growth is beyond the scope of our current work. Such an effort would require
the modeling of the complex interactions between the deformation process, the
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infiltration process, and the development of blood vessels [13]. Here, we focus
on the generation of test images that empirically simulate pathology as seen in
real images, with the main purpose to use simulated images and ground truth
for validation and cross-comparison.

The method presented here may also be applied for multi-focal lesions, for
example in cases of vascular strokes or multiples sclerosis. Such cases generally
present multiple regions with small scale local deformation and tissue infiltration,
which can be generated using our framework.
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Abstract. Accurate automatic extraction of a 3D cerebrovascular sys-
tem from images obtained by time-of-flight (TOF) or phase contrast
(PC) magnetic resonance angiography (MRA) is a challenging segmen-
tation problem due to small size objects of interest (blood vessels) in
each 2D MRA slice and complex surrounding anatomical structures,
e.g. fat, bones, or grey and white brain matter. We show that due to
a multi-modal nature of MRA data blood vessels can be accurately
separated from background in each slice by a voxel-wise classification
based on precisely identified probability models of voxel intensities. To
identify the models, an empirical marginal probability distribution of
intensities is closely approximated with a linear combination of discrete
Gaussians (LCDG) with alternate signs, and we modify the conventional
Expectation-Maximization (EM) algorithm to deal with the LCDG. To
validate the accuracy of our algorithm, a special 3D geometrical phan-
tom motivated by statistical analysis of the MRA-TOF data is designed.
Experiments with both the phantom and 50 real data sets confirm high
accuracy of the proposed approach.

1 Introduction

Accurate cerebrovascular segmentation is of prime importance for early diag-
nostics and timely endovascular treatment. Unless detected at early stage, seri-
ous vascular diseases like carotid stenosis, aneurysm, and vascular malformation
may cause not only severe headaches but also a brain stroke or a life-threatening
coma [1]. Non-invasive MRA is a valuable tool in preoperative evaluation of
suspected intracranial vascular diseases. Three commonly used MRA techniques
are TOF-MRA, phase contrast angiography (PCA), and contrast enhanced MRA
(CE-MRA). Both TOF-MRA and PCA use flowing blood as an inherent con-
trast medium, while for CE-MRA a contrasting substance is injected into the
circulatory system.

A variety of today’s most popular techniques for segmenting blood vessels from
TOF-MRA data can be roughly classified into deformable and statistical models.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 34-42, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Automatic Cerebrovascular Segmentation 35

The former methods iteratively deform an initial boundary surface of blood vessels
in order to optimize an energy function which depends on image gradient infor-
mation and surface smoothness [2]. Topologically adaptable surfaces make classi-
cal deformable models more efficient for segmenting intracranial vasculature [3].
Geodesic active contours implemented with level set techniques offer flexible topo-
logical adaptability to segment MRA images [4] including more efficient adapta-
tion to local geometric structures represented e.g. by tensor eigenvalues [5]. Fast
segmentation of blood vessel surfaces is obtained by inflating a 3D balloon with
fast marching methods [6]. Two-step segmentation of a 3D vascular tree from CTA
data sets in [7] is first carried out locally in a small volume of interest. Then a
global topology is estimated to initialize a new volume of interest. A multi-scale
geometrical flow is proposed in [8] to segment vascular tree from MRI images.
The statistical approach extracts the vascular tree automatically, but its ac-
curacy depends on underlying probability data models. The TOF-MRA image
is multi-modal in that signals in each region-of-interest (e.g. blood vessels, brain
tissues, etc) are associated with a particular mode of the total marginal prob-
ability distribution of signals. To the best of our knowledge, up-to-now there
exists only one adaptive statistical approach for extracting blood vessels from
the TOF-MRA data proposed by Wilson and Noble [9]. They model the marginal
data distribution with a mixture of two Gaussian and one uniform components
for the stationary CSF, brain tissues, and arteries, respectively. To identify the
mixture (i.e. estimate all its parameters), they use a conventional EM algorithm.
Furthermore, a region-based deformable contour for segmenting tubular struc-
tures was derived in [10] by combining signal statistics and shape information.

2 LCDG-Model of a Multi-modal TOF-MRA Image

Let ¢; g € Q={0,1,...,Q — 1}, denote the Q-ary gray level. The discrete Gaus-
sian (DG) is defined as the probability distribution @y = (¢(¢|f) : ¢ € Q) on Q
such that ¢ (g|0) = Py(q+0.5) —DPy(q—0.5) forg=1,...,Q —2,¢(0]0) = $y(0.5),
PY(Q —1|0) =1 —Pp(Q — 1.5) where Dy (q) is the cumulative Gaussian probability
function with a shorthand notation § = (i, 0%) for its mean, y, and variance, o2.

We assume the number K of dominant modes, i.e. regions, objects, or classes
of interest in a given TOF-MRA image, is already known. In contrast to a
conventional mixture of Gaussians and/or other simple distributions, one per
region, we closely approximate the empirical gray level distribution for a TOF-
MRA image with an LCDG having C,, positive and C, negative components
such that Cp, > K:

C Cu
Pwe(@) =Y wp () = > waitb(ql0h) (1)
r=1 =1

under the obvious restrictions on the weights w = [w,, , w,, ]: all the weights are
non-negative and

Cp Ch
> s = 3w = 1 @
r=1 =1
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To identify the LCDG-model including the numbers of its positive and nega-
tive components, we modify the conventional Expectation-Maximization (EM)
algorithm to deal with the LCDG.

First the numbers C, — K, C, and parameters w, ® (weights, means, and
variances) of the positive and negative DG components are estimated with a
sequential EM-based initializing algorithm. The goal is to produce a close initial
LCDG-approximation of the empirical distribution. Then under the fixed C, and
Ch, all other model parameters are refined with an EM algorithm that modifies
the conventional one in [11] to account for the components with alternating signs.

2.1 Sequential EM-Based Initialization

Sequential EM-based initialization forms an LCDG-approximation of a given em-
pirical marginal gray level distribution using the conventional EM-algorithm [11]
adapted to the DGs. At the first stage, the empirical distribution is represented
with a mixture of K positive DGs, each dominant mode being roughly approx-
imated with a single DG. At the second stage, deviations of the empirical dis-
tribution from the dominant K-component mixture are modeled with other,
“subordinate” components of the LCDG. The resulting initial LCDG has K
dominant weights, say, wp 1, ..., wp x such that Zf;l wp,» = 1, and a number

of subordinate weights of smaller values such that Zfﬁ K1 Wpr— Zl(i‘l Wy, = 0.

The subordinate components are determined as follows. The positive and
negative deviations of the empirical distribution from the dominant mixture are
separated and scaled up to form two new “empirical distributions”. The same
conventional EM algorithm is iteratively exploited to find the subordinate mix-
tures of positive or negative DGs that approximate best the scaled-up positive
or negative deviations, respectively. The sizes C, — K and Cj, of these mixtures
are found by sequential minimization of the total absolute error between each
scaled-up deviation and its mixture model by the number of the components.
Then the obtained positive and negative subordinate models are scaled down
and then added to the dominant mixture yielding the initial LCDG model of the
size C = Cp, + Ch.

2.2 Modified EM Algorithm for LCDG

Modified EM algorithm for LCDG maximizes the log-likelihood of the empirical
data by the model parameters assuming statistically independent signals:

=Y f(g)logpw.e(q) (3)
9€Q
A local maximum of the log-likelihood in Eq. (3) is given with the EM process
extending the one in [11] onto alternating signs of the components. Let p&f ]g (q) =
Zf 1 wp, (q\é)p, )— Zl | w[m]zb(qw[?j;]) denote the current LCDG at iteration

m. Relative contributions of each signal ¢ € Q to each positive and negative DG
at iteration m are specified by the respective conditional weights
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[m] [m]
(i) = P I, g = i VD) (@
T \Tld [m] » Tn [ml]
Pw.e(4) Pwo(d)

such that the following constraints hold:

Zw (rlqg) — Zw[m] (llg)=1;¢=0,...,Q —1 (5)

The following two steps iterate until the log-likelihood changes become small:

E— step™*1: Find the weights of Eq. (4) under the fixed parameters wlml
O™ from the previous iteration m, and
M- step!”*!: Find conditional MLEs wl™*1 @["+1 by maximizing L(w, ®)
under the fixed weights of Eq. (4).
Considerations closely similar to those in [11] show this process converges to a
local log-likelihood maximum. Let the log-likelihood of Eq. (3) be rewritten in
the equivalent form with the constraints of Eq. (5) as unit factors:

L(wlml, elm) Zf Z?T (rlq) log pI™ Z?T (Ilq) log p'™ (q) | (6)

Let the terms log p[’”](q) in the first and second brackets be replaced with the
equal terms log wg'ﬁ +log (g |9[m]) log 7rp ( l¢) and log w[m] +log (g |9[m])

log 7rn (l\q) respectively, which follow from Eq. (4). At the E-step, the condi-

tional Lagrange maximization of the log-likelihood of Eq. (6) under the @) restric-

tions of Eq. (5) results just in the weights m&m“] (r|q) and i (llg) of Eq. (4)

forallr=1,...,Cp; 1 =1,...,C, and ¢ € Q. At the M-step, the DG weights
W = 5, @A (rlg) and wl's ™ = 5, o F(@nd"™ ) (lg) ollow from

n
the conditional Lagrange maximization éf the log-likelihood in Eq. (6) under the
restriction of Eq. (2) and the fixed conditional weights of Eq. (4). Under these lat-
ter, the conventional MLEs of the parameters of each DG stem from maximizing
the log-likelihood after each difference of the cumulative Gaussians is replaced
with its close approximation with the Gaussian density (below “c¢” stands for

[N} (1))

p” or “n”, respectively):

pit = e - fa)n rla)

(o512 = [m Z (= ™) @yl
Wer " qeQ 7

This modified EM-algorithm is valid until the weights w are strictly positive.

The iterations should be terminated when the log-likelihood of Eq. (3) does not

change or begins to decrease due to accumulation of rounding errors.

The final mixed LCDG-model pc(g) is partitioned into the K LCDG-
submodels Py = [p(qlk) : ¢ € Q], one per class k = 1,..., K, by associat-
ing the subordinate DGs with the dominant terms so that the misclassification
rate is minimal.
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3 Experimental Results

Experiments were conducted with the TOF-MRA images acquired with the
Picker 1.5T Edge MRI scanner having spatial resolution of 0.43 x 0.43 x 1.0
mm. The size of each 3D data set is 512 x 512 x 93. The TOF-MRA images
contain three classes (K = 3), namely, darker bones and fat, brain tissues, and
brighter blood vessels. A typical TOF-MRA slice, its empirical marginal gray
level distribution f(gq), and the initial 3-component Gaussian dominant mixture
p3(q) are shown in Fig. 1. Figure 2 illustrates basic stages of our sequential EM-

1 i
0.018| »'@

0.014]

py(a)
4
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Fig. 1. Typical TOF-MRA scan slice (a) and deviations between the empirical distri-
bution f(g) and the dominant 3-component mixture ps(q) (b)
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Fig. 2. Deviations and absolute deviations between f(q) and ps(q) (a), the mixture
model (b) of the absolute deviations in (a), the absolute error (c) as a function of the
number of Gaussians approximating the scaled-up absolute deviations in (a), and the
initial estimated LCDG-models for each class (d)
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Fig.3. Final 3-class LCDG-model overlaying the empirical density (a), the log-
likelihood dynamics (b) for the refining EM-iterations, the refined model components
(c), and the class LCDG-models (d)
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based initialization by showing the scaled-up alternating and absolute deviations
f(q)—ps3(q), the best mixture model estimated for the absolute deviations (these
six Gaussian components give the minimum approximation error), and the ini-
tial LCDG-models for each class. The scaling makes the sums of the positive
or absolute negative deviations for ¢ = 0,...,Q — 1 equal to one. Figure 3

— p(ql1)
— P(ql2)
— P(ql3)

oo16f A

oota} [ \o
o001z} [+

oorf 2 Absolute Error = 0.123

0.008} Levy Distance (p = 0.11)
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q ( a q

Fig. 4. Wilson-Noble’s model [9]: the estimated distribution (a) and the class models (b)

to = 168 ty = 185
(a) (b) (c) (d)

Fig. 5. Each row relates to one patient: our segmentation before (a) and after (b) noise
and small fat voxels are eliminated with the connectivity filter, the Wilson-Noble’s
segmentation (c) after the connectivity filter, and the differences between (b) and (c);
the green voxels are missed by the Wilson-Noble’s approach and the red ones are
detected by the both approaches
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presents the final LCDG-model after refining the initial one with the modified
EM-algorithm and shows successive changes of the log-likelihood at the refine-
ment iterations. The final LCDG-models of each class are obtained with the best
separation thresholds t; = 57 and to = 192. First nine refining iterations increase
the log-likelihood from —5.7 to —5.2.

To highlight the advantages of our approach over the existing one, Fig. 4
shows results obtained with the model of Wilson and Noble [9]. To measure the
estimation quality, we use the Levy distance between two distributions [12] and
the absolute error. The Levy distance between the empirical distribution and its
estimated model is 0.11 and 0.00013 and the absolute errors are 0.123 and 0.0002
for the Wilson-Noble’s and our approach, respectively. The larger Levy distance
and absolute error indicate the notably worse approximation which strongly
affects the accuracy of separating the blood vessels from the background. Because
of a typically higher separation threshold, e.g. to = 214 versus our t; = 192 in
this particular example, the Wilson-Noble’s approach misses some blood vessels,
as shown in Fig. 5.

Both the approaches have been compared on 50 data sets. Results of the
three tests are depicted in Fig. 5. As the first column, (a), suggests, TOF-MRA
is sensitive to tissues like subcutaneous fat with a short T1 response that may
obscure the blood vessels in the segmented volume. To eliminate them, the vol-
ume is processed with an automatic connectivity filter which selects the largest
connected tree structures using a 3D volume growing algorithm [13]. The results
after applying such a filter to our and Wilson-Noble’s segmentation in Fig. 5
show that the latter approach fails to detect sizeable fractions of the vascu-
lar trees which are validated by the expert (radiologist) that the green parts
which are detected by our approaches follow the topology of the brain vascu-
lar tree.

4 Validation

It is very difficult to get accurate manually segmented complete vasculatures
to validate our algorithm. Thus to evaluate its performance, we have created a
wooden phantom shown in Fig. 6(a) with topology similar to the blood vessels.
Furthermore, the phantom mimics bifurcations, zero and high curvature that
exist in any vasculature system, and it has a varying radius to simulate both
large and small blood vessels. The phantom was scanned by CT and then man-
ually segmented to obtain the ground truth. The blood vessel and non-vessel
signals for the phantom are generated according to the distribution p(¢|3) and
p(q|1), p(q|2), respectively, in Fig. 3(d) using the inverse mapping methods. The
resulting phantom’s histogram was similar to that in Fig. 3(a).

Let the total segmentation error be a percentage of erroneous voxels with
respect to the overall number of voxels in the manually segmented 3D phantom.
Figure 6 shows our approach is 15 times more accurate than the Wilson-Noble’s
one (the total errors 0.31% and 4.64%, respectively). The error constituents per
each 2D slice for both the approaches are also plotted in Fig. 6.



Automatic Cerebrovascular Segmentation 41

= Our approach
== _Wilson-Noble’s approach
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Fig. 6. The 3D geometrical phantom (a), our (b) and Wilson-Noble’s (c) segmentation,
and total errors per each phantom’s slice for both the approaches (d)

5 Conclusions

We presented a new statistical approach to find blood vessels in multi-modal
TOF-MRA images. The LCDG-model accurately approximates the empirical
marginal gray level distribution yielding the high quality segmentation. The
accuracy of our approach is validated using a specially designed 3D geometrical
phantom.

Our present implementation on C4++ programming language using a single
2.4 GHZ Pentium 4 CPU with 512 MB RAM takes about 49 sec for 93 TOF-
MRA slices of size 512x512 pixels each.

The LCDG-model is also is suitable for segmenting PC-MRA and CTA im-
ages which are not presented due to space limitations.
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Abstract. In the context of stroke therapy simulation, a method for the segmen-
tation and reconstruction of human vasculature is presented and evaluated.
Based on CTA scans, semi-automatic tools have been developed to reduce data-
set noise, to segment using active contours, to extract the skeleton, to estimate
the vessel radii and to reconstruct the associated surface. The robustness and
accuracy of our technique are evaluated on a vascular phantom scanned in dif-
ferent orientations. The reconstructed surface is compared to a surface gener-
ated by marching cubes followed by decimation and smoothing. Experiments
show that the proposed technique reaches a good balance in terms of smooth-
ness, number of triangles, and distance error. The reconstructed surface is suit-
able for real-time simulation, interactive navigation and visualization.

1 Introduction

Stroke is a leading cause of death. Our team is developing a real-time neuro-
interventional radiology simulation system where physicians will be able to learn and
practice without putting patients at risk. This kind of application requires a stream-
lined data processing from a patient’s computer tomography angiogram (CTA) to a
computer representation of the vasculature. Therefore, the reconstructed vascular
network has to be smooth for visualization, structured for blood flow computation,
and efficient for real time collision detection/collision response between interventional
tools and vessel wall. The method presented in this paper generates virtual vasculature
through segmentation and surface reconstruction.

Current techniques for processing vascular images can be divided in two main ap-
proaches: techniques for centerline enhancement, including multi-scale approaches,
usually based on the Hessian matrix; and techniques for contour extraction, including
statistical approaches: Expectation Maximization [1], random Markov fields, and
geometrical approaches: region growing, adaptive thresholding, active contours that
can be explicit, like snakes, or implicit, like level sets [2, 3]. These techniques usually
perform better after noise reduction. A topological representation of the vascular
network can be obtained from both approaches either by computing ridges or by ap-
plying a thinning technique like homotopic skeletonization.

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 43 -50, 2005.
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The result of the segmentation is then processed to generate an efficient and struc-
tured representation of vascular structure for our purpose. Biihler et al. [4] presents a
comprehensive and up-to-date survey on surface reconstruction techniques. Our sur-
face reconstruction algorithm improves upon [5] in that the coarse base mesh genera-
tion is followed by smoothing through surface subdivision. The base mesh and multi-
scale subdivision approach, as shown in subsequent sections, is proved to be a robust
framework for real-time physics-based flow computation, smooth tissue/tool interac-
tion, as well as high-fidelity anatomical visualization.

Section 2 will describe our semi-automatic tools which reduce dataset noise, seg-
ment using active contours, compute the skeleton, estimate the vessel radii and recon-
struct the associated surface. In section 3, we present different tests performed on the
phantom and used to evaluate the robustness and the accuracy of our method. Finally,
discussion and conclusion are presented in the last section.

2 Materials and Method

Our process consists in the following pipeline: anisotropic diffusion, level set evolu-
tion, skeletonization, pruning, connection and smoothing, radius estimation, recon-
struction. This approach preserves the topology at junctions and gives semi-
automatically a skeleton requiring little interaction before surface reconstruction.

2.1 Segmentation

The first step of the segmentation is to apply an anisotropic diffusion filter based on
[6]. This filter reduces the noise while preserving small vascular structures enabling
better segmentation which is important in the region of the brain. Next, we remove
the skull bones, the sinuses and the skin, who the similar intensity as the vessels and
might disturb the segmentation process, using morphological operations.

We then segment the vessel contours by the means of a level set evolution. For ef-
ficiency, we initialize the active contour using a threshold on the image intensity. The
level set equation [7, 2], evolves a surface according to three different forces: an ad-
vection force that pushes the surface towards the edges of the image, a smoothing
term that keeps the surface smooth and a balloon force that allows expansion of the
contours within vascular structures. The smoothing term is proportional to the mini-
mal curvature of the surface [8]. The balloon force relies on the intensity statistics to
either expand or shrink the evolving contour. This force is expressed as exp(-(I-
m)2/<72 )- where [ is the intensity, m stands for the mean intensity of the vessels, o is
their standard deviation, and 7 is a threshold (0.2 by default) that allows shrinking the
contour when the position is unlikely to belong to a vessel. A 3D model of the vessels
is obtained as the iso-surface of intensity zero from the result of the level set evolu-
tion, using the Marching-Cubes algorithm [9]. From the result of the level set, a skele-
tonization technique is applied to obtain a simple topological representation of the
vascular network. It is based on homotopic thinning where voxels are removed in the
order of the Euclidean distance to the segmented surface. Voxels are iteratively re-
moved if they are simple [10] and if they are not end-points, such that they have more
than one neighbor in a 3x3x3 neighborhood.
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After the skeletonization, small vessels can still have connectivity discrepancies
along the centerlines near small branches. Consequently, a pruning is applied to re-
move small leaves (lines with at least an extremity which is not a junction). We then
connect the lines that are close but disconnected because of the resolution of the
medical dataset. This connection is made only if the lines are close to each other and
their directions are matching within a small difference, which could be induced by the
vessel curvature. At this step, some manual work is often needed. This work consists
in connecting lines that are too far to be connected automatically or in removing lines
that are too long to be deleted.

Once the connected skeleton is finished, the radius of the lines is extracted from
the dataset. This is done using the intensity gradient in the binary image obtained
from the level set evolution. Starting from the centerline, we grow a circle in the plan
of the cross-section and stop when there is a relevant local maximum of the intensity
gradient, thus giving estimated radii along the centerlines.

2.2 Surface Reconstruction

The goal of our surface reconstruction is to generate a smooth surface that can be
easily refined to suit the needs of efficient collision detection/response, stable vessel
deformation, real-time flow simulation, also multi-scale anatomical visualization. Our
algorithm improves over [5] in four main areas:

1. Handling directed graphs with loops and multiple roots.
One branch is allowed to have multiple parents and children. Artery vessels can form
loops, e.g. circle of Willis. One branch can connect to a single branch forming I-
furcation. This is useful to construct a unified directed graph for both artery and ve-
nous sides. Multiple trees can be reconstructed at the same time.

2. Trunk branch selection based on angle and radii variance.

Fig. 1. Left: Trunk branch selection: using both vessel average radii and branching angle to
determine the continuation trunk branch. Although 4, ¢, B f" is chosen as the trunk branch of
By, due to the similarity of their average radii. Middle: Cross section distribution gets denser at
thinner regions of a vessel. Right: the density is higher where a vessel turns or twists.

To patch the surface at vessel joints, both algorithms define at a trunk branch with
respect to the current branch and form polygons to connect the trunk surface and other
joint branches base meshes. Since n;, the cross section normal at the beginning or end
of branch B,, is computed by differentiating neighboring sampling points, the approxi-
mation can be misleading when centerlines are under sampled. Our scheme considers
both branching angle and vessel radii to reduce under-sampling artifacts which im-
proves the reconstruction robustness. First, n,-m where i>0 are reversed. Then, we com-
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pute the disparity @, =2 0,+(1 A)/r; r"s/, where 4 €[0,1] is the weight balanc-
ing the influence of branching angle and of the average radii variance. The algorithm
picks the branch with minimal £ as the trunk branch. In the left half of Fig. 1, although
4 ,< 0., B;"is chosen due to the similarity of their average radii.

3. Adaptive cross sections distribution.
Our cross section distribution scheme (2) considers radii and centerline curvature:

X =X = a[l-ﬁ-};;(m + 1+rlﬁl('i J S [0’ Nsegmem - 1] ) (2)
where x; is the curvilinear coordinate of the cross section center. r; and «;[11] are the
corresponding radius and Gaussian curvature, respectively, obtained by linear interpo-
lation between two adjacent raw skeleton samples where a>0 is the desired spacing
scalar and >0 is the weight on curvature influence. Eq. (2) states that after filtering,
the centers of two adjacent cross sections are placed closer if the vessel is thin or
turns. A straight branch does not need many cross sections to resemble its original
geometry. Assembling (2) for all i yields (N,,-/) nonlinear algebraic equations with
(Nseo-1) unknowns, since x, and xy are set to be the curvilinear coordinates of the
vessel end nodes. Broyden’s method [12] is used to solve for all x;.

4.  Robust joint tiling: end-segment-grouping and adjacent-quadrant-grouping.
We connect every branch to its trunk using both end segments regardless the branch-
ing angles so that a single recursive joint tiling is needed. End-segment-grouping,
unifies all the outgoing branches together such that the connecting patches connect
the bottom of the outgoing branch’s base mesh with both end segments of the trunk
branches, i.e. Seg(N-1) and Seg(0), demonstrated in the left half of Figure 2.

Trunk crgss section Trunk cross section

Q

\ v,
Child(i)

Q Q;  Child(i)

v, v,

Trunk Centerline Trunk Centerline Traverse view of trunk cross section at the joint

() (b) (©) (d)

Fig. 2. (a) Felkel’s method connects forward Child(j) to Seg(0) and backward Child(i) to
Seg(N-1). (b) End-segment-grouping connects Child(i) and Child(j) both Seg(N-1) and Seg(0).
The bottle-neck effect is reduced. When Child(i) lies close to the boundary of O3, (d) adjacent-
quadrant-grouping uses both Oy and Qj; eliminates twisting artifact by using only Qj;in [5] (c).

When the outgoing centerline forms a small angle with the trunk centerline, using
single end segment produces bottle-neck effect. The artifact is reduced when both end
segments are deployed for the joint tiling. When the outgoing centerline lies in or
close to the bisection plane of two trunk centerlines, using a single end segment loses
the symmetry. This symmetry is nicely preserved by connecting the mesh of Child(i)
to the same sides of Seg(N-1) and Seg(0). End-segment-grouping not only reduces the
patching artifacts in both extreme cases, but yields smoother trunk-to-branch transi-
tion under all branching configuration.

We improve the joint tiling not just in the trunk centerline direction. Adjacent-
quadrant-grouping is designed to use 2 adjacent sides of the end hexahedron seg-
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ments. When a child centerline lies close to the boundary of 2 quadrants, tiling with
only one quadrant introduces twists. This artifact is eliminated by adding the
neighboring quadrant into the tiling, e.g. Qy and Q; are grouped together as a whole
when tiling Child(i) to the trunk mesh. When Child(i) lies close to a quadrant center,
our approach uses only current quadrant for the tiling as in [5].

With these improvements, the proposed reconstruction scheme is able to handle
more general directed graph. It is less prone to artifacts due to initial data sampling. It
is also more robust to present full range of bifurcation configuration. The recon-
structed smooth vascular surface is suitable for the purpose of efficient and stable
physics modeling, and smooth visualization.

3 Tests and Evaluation

Our vascular phantom, in Fig. 3(a), is composed of a Plexiglas box filled with silicon
gel and nylon tubing forming a simplified vasculature. Vessel radii range from
0.78mm (simulating small brain vessels) to 2.34mm (simulating the middle cerebral
artery). After CTA scans of the phantom, the segmentation leads to a skeleton from
which the reconstruction module generates a smooth surface as shown in Fig. 3(b).

Fig. 3. (a) The silicon phantom with nylon tubing. (b) Reconstruction of the 3D surface

To evaluate the rotational invariance and robustness of our method, we scanned
this phantom in /2 different orientations. The phantom orientations are obtained via
a 45° or 90° rotation on one or more axes. The CTA scan resolution is 0.6 x 0.6 x
1.25 mm.

3.1 Evaluation of the Robustness of the Vessel Lengths and Radii

The segmentation method, described in section 2, was applied to those datasets with
following parameters: 71000 level set iterations; using intensity threshold of 2300
with standard deviation (SD) of 750; 5mm pruning; 2mm maximal distance for gap
connection; radius estimation with gradient computed from the derivatives of a
Gaussian kernel with SD 0.4mm. Line orientation was manually corrected before the
final surface reconstruction (Fig. 3(b)). To evaluate the results, the lengths and the
radii have been analyzed through the Brand-Altman method [13]. Fig. 4 shows that
length variation stays within 1.0mm, while 2 ¢ length=3.5mm. In only 6 out of 204
cases (17tubes x 12scans), the radius variation is out of [-2 ¢ radius, 2 o radius],
where 2 o radius=0.2mm.
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Fig. 4. Brand-Altman plots for (a) the tube lengths and (b) the average radii. The upper and the
lower limits represent 2 ¢. Very few length and radius values are away from their average.

3.2 Evaluation of the Mesh Accuracy and Smoothness

We measure surface smoothness and the distance between two surfaces. Hausdorff
distance is computed using MESH software'. Smoothness is measured as the RMS of
the minimal and the maximal surface curvatures, «, and « . respectively. They are
computed by fitting a 2™ polynomial to each vertex and its direct neighbors: using
this small region considers the surface noise in the smoothness measure. The lower
the value, the smoother the surface is. Fig. 5(a) depicts the distance between our re-
constructed model at 3 subdivision levels, L, L;, L, and the surface, S,, obtained from
the Marching Cubes algorithm applied to the result of the level set segmentation. The
RMS is always less than one voxel (<0.6mm) and lower than 0.4mm on L;.

Distance RMS Error

a7y . — . Distance error
N Einise Mesh
a8 Level 1 Subs
N eval 2 Sub 06
- 0.5 E os
Eaa
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503 8 oo
2 8
o
- g o2
az ]
a1 g o
o
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01 03 05 07 M1 M2 M3 M4 MS M7 M3 M9 Logarithm of the number of triangles
Data Sats

VTK smoothness evolution Smoothness versus number of polygons

RMS of the minimal curvature

as ars 4 425 a5 a7s s

o
(d) Smoothing iterations Logarithm of the number of triangles (C)

Fig. 5. (a) Root Mean Square (RMS) distance error for 12 data sets at 3 subdivision. (b) RMS
distance error on M7 versus the number of triangles, after different decimations of the original
iso-surface. (¢) RMS of the min curvature, versus the number of triangles. (d) Smoothness
evolution for different smoothing levels compared to the smoothness our model at level 1.

! http://mesh.berlioz.de
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We compared the smoothness and the distance error on M7 obtained from our re-
construction to the ones obtained using the VTK”. Fig. 5(b) shows the distance between
Sp and Ly, L,;, L, compared to the distance between S, and its decimations Sod, de[0,9]
using vtkDecimatePro. The RMS after decimation is always smaller, because most
errors occur at vessel extremities or junctions. However, our model allows simpler
mesh, with reasonable error (RMS<0.6mm) and good smoothness shown in Fig. 5(c).
This figure displays the RMS of «,on Ly, L;, L, and on Sod. It is almost constant (0.03)
for all levels and much better than any S, (between 0.3 and 0.7). For completeness, we
also depict the RMS of x , and « - for L, and S,’ having similar number of triangles.
Fig. 5(d) plots the evolution of these smoothness measures according to the number of
smoothing iterations, where we smooth S,° by applying the vikSmoothPolyDataFilter.
The RMS of « - always increases with the smoothing due to vessel shrinkage, and the
RMS of «; decreases to 0.25 while L; have a value of 0.03. This shows our model
smoothness superiority over VTK smoothing.

3.3 Results on a Clinical Dataset

Before evaluating on a full clinical dataset, we apply our method to a portion of a
patient vascular network in Fig. 6(a). The testing data contains the end of the vertebral
arteries, joining into the basilar artery which then split into the posterior cerebral
arteries. A local level set, ignoring the small vessels, followed by an iso-surface re-
construction allowed getting those arteries shown in Fig. 6(b). After skeletonization
and surface reconstruction shown in Fig. 6(c), both surfaces are compared. Fig. 6 (b)
shows the color code of the distance between the two surfaces. The RMS distance
error is lower than 0.4mm with 5% of iso-surface triangles. The result of our stream-
lined process, on a full CTA dataset, is depicted in Fig. 6(d).

Fig. 6. (a) Anatomy of the circle of Willis; (b) segmented iso-surface; (c) reconstructed surface.
The color code in (b) ranges from blue (0.0mm) to red (3.0mm), (d) reconstructed arterial side.

4 Discussion and Conclusion

The method presented in this article deals with the segmentation and the reconstruc-
tion of the vascular network. The final reconstructed vascular surface is aimed to be
integrated in a neuro vascular training and procedural planning simulator. The goal of
our method is to streamline the process from the CTA scan of a patient to a structured,

? Visual Tool Kit library available at http://www.vtk.org
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smooth, and efficient vascular model with minimum manual interactions. It has
shown interesting results in term of accuracy and robustness. Indeed, its evaluation on
the phantom in 12 different orientations produces homogeneous skeletons and radii.
The generated surfaces are close to the reference ones and are much smoother. The
main drawback of our method is that it is not fully automatic and it estimates circular
vessel cross sections.

In future work, the main effort will focus on reducing the amount of manual work.
On the segmentation side, one main difficulty is to separate tangent vessels, which are
merged at the current imaging resolution. Another difficulty is to fully detect small
vessels. Both tasks would benefit from an a priori knowledge based on an anatomical
atlas. As a perspective, we would like to integrate a labeling tool in the skeletoniza-
tion step. This feature could give the name of the arteries and veins and consequently
help in the training/learning process of our simulator. An automatic correction of
centerline orientation is also under investigation based on graph theory. For the esti-
mation of the cross-sections, fitting an ellipse instead of a circle would help to match
their real geometry without sacrificing the smoothness and the low complexity of the
mesh. Finally, testing the whole method on more patients would help to validate it on
large scale networks before integrating it in the neuro-vascular intervention training
system mentioned above.
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Abstract. Precise segmentation of three-dimensional (3D) magnetic
resonance angiography (MRA) image can be a very useful computer
aided diagnosis (CAD) tool in clinical routines. Our objective is to de-
velop a specific segmentation scheme for accurately extracting vascula-
ture from MRA images. Our proposed algorithm, called the capillary
active contour (CAC), models capillary action where liquid can climb
along the boundaries of thin tubes. The CAC, which is implemented
based on level sets, is able to segment thin vessels and has been ap-
plied for verification on synthetic volumetric images and real 3D MRA
images. Compared with other state-of-the-art MRA segmentation algo-
rithms, our experiments show that the introduced capillary force can
facilitate more accurate segmentation of blood vessels.

1 Introduction

Magnetic resonance angiography (MRA) is a noninvasive medical imaging
modality that produces three-dimensional (3D) images of vessels and cavities.
Accurate extraction of 3D vascular structures from MRA images has become
increasingly important for diagnosis and quantification of vascular diseases.

Existing MRA segmentation techniques can be broadly divided into two
categories: skeleton-based and nonskeleton-based. Skeleton-based techniques are
those indirect methods which segment and reconstruct the vessels by first de-
tecting the centerlines of the vessels. Several methods have been developed based
on this principle and multiscale schemes to allow for the diversity of vessel
sizes [1,2,3]. In these approaches, the centerline models can be generated ex-
plicitly, implicitly or via postprocessing by vessel modeling methods. Contrary
to above methods, nonskeleton-based techniques are those that compute the
vessels in 3D directly. In this category, deformable model based methods have
received considerable attention and success.

Klein et al. [4] proposed to reconstruct 2D vessel boundaries or 3D vessel walls
using deformable surface models represented by B-spline surfaces. However, it is
not possible to employ parameterized deformable models to effectively deal with
whole vessel trees, as the models would be required to change topology during
evolution. Yim et al. [5] proposed a deformable surface model based on triangu-
lated meshes for vessel construction in 3D. Nevertheless, it may be problematic
to apply these methods [4,5] for segmentation of vessels from low contrast MRA

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 51-58, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Capillary action. (a) Capillary tube, (b) Surfaces of a three-phase system.

images. Geometric deformable models based on level set theory [6,7], which can
freely adapt into complex topologies of objects, were then proposed and applied
on MRA images segmentation. Chen and Amini [8] employed a hybrid model
using both parametric and geometric deformable models for segmentation of an
entire vascular tree. However, these methods may have difficulty in extracting
tiny vessels from 3D images. Small vessels and their branches, which exhibit
much variability, are very important in planning and performing neurosurgical
procedures. Greater details can provide more precise navigation and localiza-
tion information for computer guided procedures. Lorigo et al. [9] proposed the
“CURVES” algorithm to extract thin vessels, which uses geodesic active con-
tour [7] based on the co-dimension two level set method [10]. However, to make
the evolving curve stop at the object boundaries, the evolution speed needs to
be multiplied by a heuristic factor.

Our work aims to develop an image segmentation methodology for automat-
ically extracting the whole vasculature from 3D angiography. Inspired by the
capillary action associated with thin tubes as shown in Fig. 1(a), in which lig-
uid climbs up to some height without external pulling force, an algorithm for
vasculature extraction is proposed. In the capillary action, the thinner the tube,
the higher the liquid level in the tube. The situation is very similar to the seg-
mentation of blood vessels if we imagine thin blood vessels as capillary tubes.
Hence, it may be useful to employ this mechanism for segmenting thin vessels in
low contrast situations. By modeling this phenomenon and fitting it into image
segmentation problem, the capillary active contour (CAC) is obtained for MRA
image segmentation.

2 Capillary Geodesic Active Contour

The capillary action can be understood as an energy minimization process, which
involves surface tensions. We first introduce the energy functional associated
with the free surface and wetted surface. Following that, the volume constraint
of the fluid is considered. To minimize the overall energy functional, the Euler-
Lagrange equations are computed for each part and these derived parts are
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integrated together to get the final evolution equation of the fluid surface. Since
the capillary force is incorporated, the derived method is called capillary active
contour.

2.1 Free Surface Energy

Free surface is the part of the liquid surface that is not in contact with the solid
boundaries. Capillary action can only be observed when the adhesion tension
between molecules of fluid and molecules of solid is larger than the cohesion
tension between fluid molecules. Therefore, molecules on the free surface tend
to be attracted toward the solid boundaries. Fluid molecules will have lower
potential energy when they are nearer to solid boundaries and this energy will
be minimized when they are on the solid boundaries.

The gradient magnitude |VI| is calculated to indicate possible boundaries,
where I : [0,a] x [0,b] X [0,¢] — RT denotes an image. A uniform decreasing
function ¢ : [0, +oco[— R* is defined, where g(r) — 0 as r — +oo. Function
g(IVI(S(q))|) is used to describe the energy coefficient associated with the sur-
face S(q) : [0,1] — R3, which is the surface tension coefficient in physics. Let
S¢(t) denote the free surface of the liquid at time ¢. The capillary energy of free
surface can be expressed as

B(S(t)) = / 4(S(a))

q

Py )

by integrating over ¢, where S(¢,q) € S¢(t). By computing the Euler-Lagrange
of (1), the evolution equation of the free surface is obtained as

Si = grN — (Vg- NN, (2)

where r is the Euclidean curvature, and A is the unit normal vector of the
surface.

2.2 Wetting Surface Energy

Since the adhesion force is larger than the cohesion force, the fluid molecules will
be attracted to the solid boundaries and the unwetted surface is then converted
into wetted surface. The total energy involved in this dynamic process can be
modeled as

E(Sy(t)) = BSw + 8755, 3)

where Sy, is the area wetted by the fluid and S}, is the area in contact with the
outer medium (unwetted surface). Since S, can be extended in an arbitrarily
continuous way into S, we have

E(Su(t)) = 85, (4)

where B = (3* — 3. Thus, minimizing the wetted surface energy is equivalent to
minimizing the surface S, through evolving the contact line. However, solving
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this problem directly in 3D is problematic, because the surface to be minimized
is not enclosed by the contact line. Since we are only interested in an immediate
neighborhood of the contact line, it is always possible to find some view point
that all the surface area is under the contact line (see Fig. 2). In addition, the
3D surface can be “cut” along a line and then stretched to becoming a 2D plane
as shown in Fig. 2.

Let C(t,x) : [0,1] — R? denote the contact line between the fluid surface and
the unwetted surface. The length of the curve [ | aca(;,z) |dz is considered as a
regularization term to keep the curve smooth. Thus, the energy associated with
the wetted surface can be written as

B(Su(t)) = / Clt, 2)dx + \ / "%g;"’”) da. (5)

where A is a real positive constant parameter. Then the 2D evolving equation of
contact line C is obtained as

Ci= 1+ )N, (6)

where # and M are the Euclidean curvature and the unit normal vector of
the contact line in 2D, respectively. However, when working in 3D, the curva-
ture & of the 2D contact line becomes a co-dimension two curvature &9 [10,9].
Furthermore, as we are considering the evolution of liquid along vessel walls,
the direction of evolution should be parallel to the wall at each point, i.e., the
tangential direction 7 4 as shown in Fig. 3. Then (6) is changed into

Ci = (14 Nao)T o (7)

The tangential subvector can be calculated as

Tap=N— g cos b, (8)

v
Vgl

where cosf = N - lggl'
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Thus, the overall evolution equation describing the energy of wetting surfaces
can be written as

Sy = (1+ M) (A/ - éj cos 9) . (9)

2.3 Volume Constraint

The volume constraint is considered as E(V') = ¢V, which can be expanded as

—C/Stqdq,

where c is a Lagrange multiplier. By applying the gradient descent minimization,
we have evolution equation S; = ¢, which is a constant velocity for minimizing
the volume enclosed by the surface. Since liquid is bounded by solid, the fluid
surface will snap to the boundaries. Thus, the constant velocity is multiplied by
function g and then the evolution equation is modified into

St =g(S(q))eN. (10)

2.4 Evolution Equation

Based on the results obtained separately in the above sections, the final evolution
equation is obtained by integrating these terms

Si=g(k+ )N = (Vg - N)N + a1 + Aia) (A/ |§Z cos0> , (11)

where parameter « is a real positive constant. The constant term c¢ in (11) acts
like balloon force in [11], which facilitates the evolving surface snapping to solid
boundaries. Comparing the new speed function (11) with those of the geodesic
active contour [7], the third term is new which comes from the capillary action.
The new term makes the fluid surface move along the solid boundaries. The
capillary action term is expected to facilitate the evolving surface adapting into
thin parts of objects, e.g. thin vessels.

2.5 Level Set Evolution Equation
According to the level set theory and noting the fact that

\VA'2
N =g

evolving a surface S under the speed function (11) is equivalent to updating a
volumetric map ¥ with

U = g(k + )|V + Vg - V¥ + a1 4+ \aa)|VZ|(1 — cos? 6) (12)

where S is the zero level set embedded in ¥ and
V¥ -Vg

cosf = .
(V|| Vy|

(13)
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3 Results and Discussion

3.1 Capillary Force

Fig. 4 shows the application of the CAC in a computer generated cylinder,
which illustrates the effects of the capillary force. Starting from the initialization
visualized in Fig. 4(b), evolution is done according to the level set speed function
n (12). In our experiment, all the parameters are fixed except that « is varying.
The evolution results with different parameter settings after 50 iterations are
visualized in Fig. 4.

Fig. 4. Nlustration of the effects on varying capillary force coefficient a. (a) Generated
cylinder. (b) Initialization of the algorithm. (¢) @ = 0. (d) = 0.25. (e) a = 0.5. (f)
a = 0.75.

When « is set to zero, the CAC in fact evolves exactly like a geodesic active
contour [7]. The evolution of the free surface in the axial direction of the tubular
object is driven by the mean curvature k and constant speed ¢ in (12). Since this
term is multiplied by the uniquely decreasing function g, its contribution will be
small when the surface is near the object boundary, and becomes zero when the
surface is on the edges. Hence, we can see the free surface is convex as shown
in Fig. 4(c). When the tubular object becomes much thinner, the evolution may
stop because of the small value of g at everywhere. After incorporating the cap-
illary force, the free surface is attracted by the unwetted surface when near the
solid boundaries and meniscus [12] can be observed as shown in Fig. 4(d)(e)(f).
With larger value of «, the surface evolution along the object boundary will be
stronger and faster. Therefore, the capillary force can facilitate the evolution of
the free surface even when the vessels are very thin.

3.2 MRA Segmentation

The CAC method is also applied on 3D MRA images of cerebral vasculature.
The image size is 512x512x120 voxels with spacing 0.43mmx0.43mmx1.2mm.
The initial surface is obtained by thresholding the raw dataset. The MIP of
MRA data set used in our experiments is shown in Fig. 5. To make the results
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(a) MIP (b) Region of interest

Fig. 5. MIP of the cerebral MRA data set

Fig.6. MRA segmentation results using CURVES

clearer, a region of interest (ROI) is extracted (Fig. 5(b)) and only vessels inside
the ROI are segmented and visualized.

We have compared our proposed CAC method with the state-of-the-art
CURVES [9]. Identical parameter settings in the evolution equations are used
for both methods except for the capillary force coefficient, which is specific to
the CAC. The segmentation results of CURVES and CAC are shown in Fig. 6

Fig. 7. MRA segmentation results using CAC
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and Fig. 7 with different points of view. The CURVES algorithm successfully
extracts much of the vasculature but fails to identify some parts when compared
with the CAC.

4 Conclusions

In this paper, we propose the capillary active contour and apply it to both 3D
synthetic and cerebral MRA images segmentation. The incorporated capillary
force adapts the evolving surface into very thin branches of blood vessels and
obtains more accurate segmentation as demonstrated in our experiments. Com-
pared with other techniques, the CAC can achieve more details of vasculature.
Our approach is geometric in nature and topology free due to that implicit rep-
resentation of the evolving surface is used.
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Abstract. Graph methods that summarize vasculature by its branching
topology are not sufficient for the statistical characterization of a popu-
lation of intra-cranial vascular networks. Intra-cranial vascular networks
are typified by topological variations and long, wandering paths between
branch points.

We present a graph-based representation, called spatial graphs, that
captures both the branching patterns and the spatial locations of vascular
networks. Furthermore, we present companion methods that allow spatial
graphs to (1) statistically characterize populations of vascular networks,
(2) generate the central vascular network of a population of vascular
networks, and (3) distinguish between populations of vascular networks.
We evaluate spatial graphs by using them to distinguish the gender and
handedness of individuals based on their intra-cranial vascular networks.

1 Introduction

Intra-cranial vasculature varies across individuals to such an extent that only a
few of the largest intra-cranial vessels are sufficiently consistent to depicted and
labeled in anatomical atlases [13]. Variations in the location and connectivity of
even those named vessels are common in a healthy population [2]. Furthermore,
between branchpoints, intra-cranial vessels will often follow long and wandering
walks. These walks must be preserved to truly capture the form and function
(filling regions, etc.) of intra-cranial vasculature. Our interest in characterizing
intra-cranial vasculature arises from the mounting evidence that a genetic rela-
tionship exists between mental disorders and vascular network formation [10][15].

We have developed a novel, graph-theoretic method for representing and an-
alyzing the intra-cranial vascular networks of individuals and populations. Our
”spatial graphs” capture the anatomical locations, branching patterns, and tor-
tuous paths of intra-cranial vascular networks. Spatial graph formation begins
with a centroid voronoi tessellation (CVT) [11] of intra-cranial space. Those CVT
regions are potential nodes of a spatial graph. A vascular network, overlaid on a
voronoi tessellation of space, defines a spatial graph by recording the branching
sequence of CVT nodes visited by the network. These branching sequences can
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be equivalently recorded as weighted, asymmetric adjacency matrices. Adjacency
matrix and node-specific statistics, such as the centrality [3] and branch proba-
bility at each node, can be collected for a population of vascular networks. We
have defined a method whereby those statistics can be used to probabilistically
generate vascular networks that are central to a population. We have also devel-
oped a method with which those statistics can be used to compute membership
scores for an individual’s vascular network; an individual’s membership scores
from different population-specific graphs and be used to classify that individual.

Forming graph representations of vascular networks is not a new concept. In
1993 Dr. Gerig presented [9] an intra-cranial vessel segmentation technique and
illustrated the reduction of those segmentations to graphs that represent their
topology. Such branch-based graphs are the basis of much of the vessel-based
liver lobe and heart vessel segmentation work being conducted in a variety of
labs [8][14]. In computer-vision, graph theory has been applied to the character-
ization of the medial structure of objects [12]. To the best of our knowledge, a
method has not been previously demonstrated that applies graph theory to the
characterization, generation, and discrimination of populations of intra-cranial
vascular networks.

In the next section we present our methods. The subsequent section describes
three evaluations of our methods: (1) visually assessing the central vascular net-
work generated from the spatial graph statistics from right-handed males, (2)
using male and female-specific spatial graphs of intra-cranial vasculature to de-
termine the gender of testing individuals, and (3) using a right-handed-specific
population graph to determine the handedness of testing individuals.

2 Methods

This section is divided into three subsections: forming spatial graphs, generat-
ing vascular networks that are central to population of vascular networks, and
computing graph membership measures. While these method descriptions fo-
cus on intra-cranial vasculature, these methods are applicable to any branching,
directed, cyclic, space-occupying structure.

2.1 Forming Spatial Graphs

Spatial graph formation involves vessel extraction, inter-subject registration,
space partitioning, and recording graph statistics. These steps are detailed next.

1) Extract the vascul