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In constraint optimization, global constraints play a decisive role. To develop an effi-
cient optimization tool, we need to be able to assess whether we are still able to improve
the objective function further. This observation has lead to the development of a special
kind of global constraints, so-called optimization constraints [2,5]. Roughly speaking,
an optimization constraint expresses our wish to search for improving solutions only
while enforcing feasibility for at least one of the constraints of the problem.

Since optimization constraints essentially evolve as a conjunction of a constraint on
the objective value and some constraint of the constraint program, for many optimiza-
tion constraints achieving generalized arc-consistency turns out to be NP-hard. Conse-
quently, weaker notions of consistency have been developed with the aim to get our-
selves back into the realm of tractable inference techniques. In [6,7], we introduced the
concept of approximated consistency which is a refined and stronger notion of relaxed
consistency [1] for optimization constraints. Approximated consistency asks that all as-
signments are removed from consideration whose commitment would cause a bound
with guaranteed accuracy to drop below the given threshold.

We study the automatic recording problem (ARP) that consists in the solution of a
knapsack problem where items are associated with time intervals and only items can be
selected whose corresponding intervals do not overlap. The combination of a knapsack
constraint with non-overlapping time-interval constraints can be identified as a sub-
problem in many more scheduling problems. For example, satellite scheduling can be
viewed as a refinement of the automatic recording problem. Therefore, it is of general
interest to study a global constraint that augments the knapsack constraint with time-
interval consistency of selected items. This idea gives raise to the Automatic Recording
Constraint (ARC), which we want to study in this paper. Obviously, as an augmenta-
tion of the knapsack constraint, achieving generalized arc-consistency for the ARC is
NP-hard. Consequently, we will develop a filtering algorithm for the constraint that does
not guarantee backtrack-free search for the ARP, but that achieves at least approximated
consistency with respect to bounds of arbitrary accuracy.

1 ARP Approximation

In the interest of space, we need to omit formal definitions of optimization constraints
and approximated consistency. We refer the reader to [1,7,8]. Let us define the Auto-
matic Recording Problem and its corresponding constraint.

Given n ∈ IN, denote with V = {1, . . . , n} the set of items, and with start(i) <
end(i) ∀ i ∈ V the corresponding starting and ending times. With w = (wi)1≤i≤n ∈
P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 822–826, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Approximated Consistency for the Automatic Recording Problem 823

INn
+ we denote the storage requirements, K ∈ IN+ denotes the storage capacity, and

p = (pi)1≤i≤n ∈ INn the profit vector. Finally, let us define n binary variablesX1, . . . ,-
Xn ∈ {0, 1}. We say that the interval Ii := [start(i), end(i)] corresponds to item
i ∈ V , and call two items i, j ∈ V overlapping whose corresponding intervals overlap,
i.e. Ii ∩ Ij �= ∅. We call pX :=

∑
i | Xi=1 pi the user satisfaction (with respect to X).

The Automatic Recording Problem (ARP) consists in finding an assignment X =
(X1, . . . , Xn) ∈ {0, 1}n such that (a) The selection X can be stored within the given
disc size, i.e.

∑
iwiXi ≤ K . (b) At most one item must be selected at a time, i.e.

Ii ∩ Ij = ∅ ∀ i < j s.t. Xi = 1 = Xj . (c) X maximizes the user satisfaction, i.e.
pX ≥ pY ∀ Y respecting (a) and (b). Then, given a lower bound on the objective func-
tionB ∈ IN and domains of the binary variablesX1, . . . , Xn, the Automatic Recording
Constraint (ARC) consists in enforcing that a solution to the ARP with pX > B.

In less formal terms, the ARC requires us to find a selection of items such that the
total weight limit is not exceeded, no two items overlap in time, and the total objective
value is greater than that of the best know feasible solution. Note that enforcing gen-
eralized arc-consistency (GAC) on the ARC is NP-hard, which is easy to see by the
fact that finding an improving solution would otherwise be possible in a backtrack-free
search [3] or by simple reduction to the knapsack constraint [7].

Approximated consistency requires that a lower threshold that is diminished by
some fraction of the overall best possible performance is guaranteed to be exceeded.
In our pursuit to develop a filtering algorithm for the ARC, let us first study the ARP
and see whether we can develop a fast approximation algorithm for the problem. Let
pmax := max{pi | 1 ≤ i ≤ n}. We develop a pseudo-polynomial algorithm running
in Θ(n2pmax) that will be used later to derive a fully polynomial time approximation
scheme (FPTAS) for the ARP.

1.1 A Dynamic Programming Algorithm

The algorithm we develop in the following is similar to the teaching book dynamic
programming algorithm for knapsack problems. Setting IN := IN ∪ {∞} and ψ :=
npmax + 1, we compute a matrix M = (mkl) ∈ IN

n+1×ψ
, 0 ≤ k ≤ ψ, 0 ≤ l ≤ n. In

mkl, we store the minimal knapsack capacity that is needed to achieve a profit greater
or equal k using items lower or equal l only (mkl = ∞ iff

∑
1≤i≤l pi < k).

We assume that V is ordered with respect to increasing ending times, i.e., 1 ≤ i <
j ≤ n implies ei ≤ ej . Further, denote with lastj ∈ V ∪ {0} the last non-overlapping
node lower than j, i.e., elastj < sj and ei ≥ sj ∀ lastj < i ≤ j.

We set lastj := 0 iff no such node exists, i.e., iff e0 ≥ sj . To simplify the notation,
let us assume that mk,0 = ∞ for all 0 < k < ψ, and mk,0 = 0 for all k ≤ 0. Then,

mkl = min{mk,l−1,mk−pl,lastl + wl}. (1)

The above recursion equation yields a dynamic programming algorithm: First, we
sort the items with respect to their ending times and determine lasti for all 0 ≤ i < n.
Both can be done in time Θ(n log n). Then, we build up the matrix column by column,
and within each column from top to bottom. Finally, we compute max{k | mk,n ≤
K}. The total running time of this procedure and the memory needed are obviously in
Θ(|M |) = Θ(n2pmax).
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1.2 A Fully Polynomial Time Approximation Scheme

We exploit a core idea from [4] to limit the total number of non-infinity entries per
column: According to Equation 1, each column depends solely on the column imme-
diately to the left and the column that belongs to the last predecessor of the currently
newly added item. We construct new sparse columns as lists of only non-infinity en-
tries that are ordered with increasing profit. This can be done easily by running through
the corresponding lists of columns that determine the entries in the new column. After
a new column is created, we “trim” it by eliminating entries whose profit (the corre-
sponding row of the matrix entry) is only slightly better than that of another entry in the
column. Formally, we remove an entry if there exists a prior entry mkl in the list if and
only if there exists a prior and not previously removed entrymjl such that j ≥ (1− δ)k
for some 1 > δ = δ(ε) > 0. And whenever an entry mkl is removed, its representant
entry is set to mjl := min{mjl,mkl

}. All this can be done in one linear top to bot-
tom pass through the column. Then, after the trimming, successive elements in the list
differ by a factor of at least 1/(1 − δ). Thus, each sparse column can contain at most
log1/(1−δ)(npmax) = ln(npmax)

− ln(1−δ) ≤ ln(npmax)
δ elements. Note that every new column,

before it is trimmed itself, cannot contain more than two times this value. Consequently,
the algorithm will only take time O(n ln(npmax)

δ ).
Now, what error have we introduced by trimming the columns? By induction on the

column indices l, it can shown easily that in the lth column, if there existed an entrymkl

in the original dynamic program, then there exists an entry mjl in the trimmed version
such that (1 − δ)lk ≤ l ≤ k and mjl ≤ mkl. Consequently, the entry mkn ≤ K that
achieves the optimal profit k has a representant mln ≤ mkl ≤ K with l ≥ (1 − δ)nk.
When setting δ = ε/n, then it follows l ≥ (1 − ε

n )nk ≥ (1 − ε)k. Consequently, we

achieve an FPTAS that runs in time O(n
2 ln(npmax)

ε ).

2 Approximated Consistency for the ARC

In order to achieve a filtering algorithm for the ARC based on the routine that we de-
veloped before, we closely follow the idea of defining a directed acyclic graph over
the trimmed dynamic programming matrix. The idea was first introduced in [9] and
consequently lead to the filtering algorithms in [7].

We define the weighted, directed, and acyclic graph for the untrimmed matrix as
follows: Every non-infinity entry in the matrix defines a node in the graph. In accor-
dance to Equation 1, each node has at most two incoming arcs: one emanating from
the column immediately to the left, and another emanating from the column that cor-
responds to the last predecessor of the item that is newly added in the current column
(whereby the column of the last predecessor may be identical to the column immedi-
ately to the left). That is, one incoming arc represents the decision not to use the newly
added item (we refer to those arcs as zero-arcs), and the other incoming arc represents
the decision to add the new item corresponding to the new column (we refer to those
arcs as one-arcs). A zero-arc has associated weight 0, a one-arc has the same weight
as the item corresponding to the column the target node belongs to. To express that we
are only looking for solutions with profit greater B, we add a sink node t and connect
it to the graph by directing arcs to t from exactly those nodes in the last column that
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have profit greater B. With this construction, we ensure a one-to-one correspondence
between solutions to the ARP and paths in the graph: A feasible, improving solution
corresponds exactly to a path from m00 to t that has weight lower or equal K . We call
such paths admissible. The original numbers in the dynamic programming matrix now
correspond to shortest-path distances from m0,0 to the individual nodes.

The question that arises is how we can incorporate the idea of trimming a column.
Trimming removes nodes from columns so as to make sure that the number of non-
infinity entries stays polynomial in every column. We would like to trim, but we must
make sure that by removing nodes we do not eliminate arcs from the graph that could
actually belong to admissible paths. Otherwise we may end up filtering values from
variable domains that could actually lead to improving, feasible solutions with respect
to the ARC, i.e. our filtering algorithm could filter incorrectly, which we must prevent.

The algorithm that we propose uses the trimming idea as follows: In the graph,
whenever a column entry would be removed by trimming, we keep the respective node
and add an arc with weight 0 to the node that represents the node. The trimmed node has
no other outgoing arcs, especially none that target outside of the column that it belongs
to. This implies that, for new columns that are generated later, the trimmed node is of
no relevance, so that we can still keep the column fill-in under control. With this slight
modification of the graph, we can ensure that it has polynomial size and that the filtering
method achieves ε-consistency for the ARC.

Let us formalize the idea by defining the graph corresponding to the trimmed
dynamic program as follows. We define the weighted, directed, and acyclic graph
G(δ) = (N,A, v) (whereby we always only consider nodes mqk which have a non-
infinity value in the dynamic program) by setting: NR := {mqk | 0 ≤ q ≤
npmax, 0 ≤ k ≤ n,mqk δ−untrimmed}. NT := {mqk | 0 ≤ q ≤ npmax, 0 ≤
k ≤ n,mqk δ−trimmed}. N := NR ∪ NT ∪ {t}. A0 := {(mq,k−1,mqk) | k ≥
1, mq,k−1 ∈ NR, mqk ∈ NR ∪ NT }. A1 := {(mq−pk,lastk ,mqk) | k ≥ 1, q ≥
pk, mq−pk,lastk ∈ NR, mqk ∈ NR ∪ NT }. AR := {(mpk,mqk) | mpk ∈
NT , mqk ∈ NR, (1 − δ)p ≤ q < p}. At := {(mqn, t) | q ≥ B, mqn ∈ NR}.
A := A0∪A1∪AR∪At. v(e) := 0 for all e ∈ A0∪AR∪At. v(mq−pk,lastk ,mqk) := wk
for all (mq−pk,lastk ,mqk) ∈ A1.

Note that, for an admissible path (m00, . . . ,mpn, t) in the graph, the sequence of
arcs in A0 and A1 (whereby we ignore arcs in AR and At) determines the correspond-
ing solution to the ARP when we set all items that belong to skipped columns to 0.
That corresponding solution then has the same weight as the path, and according to
Section 1.2 for the corresponding solutions profit q it holds: (1 − ε)q ≤ p ≤ q.

Theorem 1. Given 1 > ε > 0, we set δ := ε/n.

1. If there exists a path W = (m00, . . . ,mpn, t) in G(0) with p ≥ B and such that
v(W ) ≤ K , then there exists a path X = (m00, . . . ,mqn, t) in G(δ) such that
q ≥ (1 − ε)B, v(X) ≤ K , and the corresponding solutions to W and X are
identical.

2. If there exists a path X = (m00, . . . ,mqn, t) in G(δ) with q ≥ (1 − ε)B and such
that v(X) ≤ K , then there exists a path W = (m00, . . . ,mpn, t) in G(0) such
that p ≥ (1 − ε)B, v(W ) ≤ K , and the corresponding solutions to W and X are
identical.
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We exploit this theorem to devise the following filtering algorithm: Thanks to the
fact that our graph is directed and acyclic, we can apply linear time shorter path fil-
tering techniques that remove those and only those arcs that cannot be visited by any
admissible path. After shorter path filtering, every arc in the pruned graph can be part
of a path from m00 to t with weight lower or equal K . Since arcs really correspond to
decisions to include or exclude and item in our solution, there exists a one-arc (zero-arc)
to a node in column i iff item i is included (excluded) in some improving, feasible so-
lution. Consequently, by searching the pruned graph for columns in which no node has
incoming one-arcs, we can identify those and only those items that must be excluded in
all improving, feasible solutions. The situation is only slightly more complicated when
a column has no incoming zero-arcs. In contrast to knapsack approximation, for the
ARC there exist arcs that cross several columns. If there still exists such an arc that
can be part of an admissible path, then the items that belong to the columns that are
bridged can obviously be excluded in some admissible solution. Consequently, if a col-
umn has only incoming one-arcs and no arc crosses the column, then and only then it
must indeed be included in all feasible improving solutions. Without going into details,
we just note that the detection of items that must be included can be performed in time
O(n log n+ |M |).

According to Theorem 1 (1), this is a correct filtering algorithm for the ARC, and
according to Theorem 1 (2) we are sure to eliminate all assignments that would cause
the best optimal solution to drop below (1 − ε)B. Assuming that B is given as a lower
bound on the objective, i.e. B ≤ P ∗, we finally have:

Corollary 1. Approximated consistency for the ARC can be achieved in time O(n2

ln(npmax)/ε).
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