
Boosting Distributed Constraint Satisfaction

Georg Ringwelski1,� and Youssef Hamadi2

1 4C, University College Cork, Ireland
g.ringwelski@4c.ucc.ie

2 Microsoft Research, 7 J J Thomson Avenue,
Cambridge CB3 0FB, United Kingdom

youssefh@microsoft.com

Abstract. Competition and cooperation can boost the performance of
search. Both can be implemented with a portfolio of algorithms which
run in parallel, give hints to each other and compete for being the first
to finish and deliver the solution. In this paper we present a new generic
framework for the application of algorithms for distributed constraint
satisfaction which makes use of both cooperation and competition. This
framework improves the performance of two different standard algo-
rithms by one order of magnitude and can reduce the risk of poor perfor-
mance by up to three orders of magnitude. Moreover it greatly reduces
the classical idleness flaw usually observed in distributed hierarchy-based
searches. We expect our new methods to be similarly beneficial for any
tree-based distributed search and describe ways on how to incorporate
them.

1 Introduction

In many application domains constraint-based tree-search methods are the tech-
nology of choice to solve NP-complete problems today. However, when actually
applying the algorithms without further customization, we have often expe-
rienced unacceptable performance. This results from various well-investigated
factors including bad modelling and the choice of a wrong labelling strategy.
The solution for bad modelling often resides in a good understanding of the
constraint processing which results in the application of well known modelling
patterns (channeling constraints, redundant modelling, etc). Finding a good la-
belling strategy is not obvious and usually requires long and expensive prelim-
inary experiments on a set of realistic problem instances. Performing those ex-
periments or defining realistic input samples is far from being simple for today’s
large scale real life applications. Ideally we would not have to make a choice for a
labelling strategy at all and rather be able to use an algorithm “out-of-the-box”
which finds the best strategy itself [Pug04].

The previous observations are emphasized in the processing of distributed
constraint satisfaction problems (DisCSPs). Indeed, the distributed nature of
� This work has received support from the Embark Initiative of the Irish Research

Council of Science Engineering and Technology under Grant PD2002/21. We’d like
to thank Rick Wallace and Mark Hennesy of 4C for providing the problems.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 549–562, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

550 G. Ringwelski and Y. Hamadi

those problems makes any preliminary experimental step difficult since con-
strained problems usually emerge from the interaction of independent and dis-
connected agents transiently agreeing to look after a set of globally consistent
local solutions [FM02].

This work targets on those cases where bad performance in DisCSP can be
prevented by choosing a good labelling strategy and executing it in a benefiting
order within the agents. In this paper we define a notion for the risk we have to
face when choosing an agent-ordering and present the new “M-” framework1 for
the execution of distributed search. An M- portfolio executes several distributed
search strategies in parallel and let them compete and cooperate for being the
first to finish. We apply the framework in two case studies where we define
the algorithms “M-ABT” and “M-IDIBT” which improve their counterparts
ABT [YDIK92] and IDIBT [Ham02] significantly. With these case studies we can
show the benefit of competition and cooperation for the underlying distributed
search algorithms. We expect the “M-” framework to be similarily beneficial
for other tree-based DisCSP algorithms. Cooperation of distributed searches is
implemented with the aggregation of knowledge within agents and thus yields
no extra communication. The knowledge gained from all the parallel searches
is used by the agents for their local decision making in each single search. We
present two principles of aggregation and employ them in methods which are
applicable to the limited scope of the agents in DisCSP.

In the next section we define the risks we have to face in search. This can be
used as another metric (besides performance) to evaluate algorithms. In Section
3 we present the new “M-” framework. Section 4 describes our case studies and
Section 5 their empirical evaluation. Then we discuss related work, summarize
the results and outline some ideas for future work.

2 Risks in Search

Here we present two definitions of risk is search. The first notion called random-
ization risk is related to the changes in performances when the same algorithm
is applied multiple times to a single problem instance. The second notion called
selection risk represents the risk of selecting the wrong algorithm, i.e., the one
which performs poorly on the considered instance.

2.1 Randomization Risk

In [GS01] “risk” is defined as the standard deviation of the performance of one
algorithm applied to one problem multiple times. This risk increases when more
randomness is used in the algorithms.

Definition 1. The R-Risk is the standard deviation of the performance of one
algorithm applied multiply to one problem.

1 M stands for Multi-Directional. “M-” searches in multiple directions, namely agent
topologies, at the same time.

Boosting Distributed Constraint Satisfaction 551

Reducing the R-Risk leads in many cases to trade-offs in performance [GSK98],
such that the reduction of this risk is in general not desirable. For instance, we
would in most cases rather wait between 1–10 seconds for a solution than waiting
7–8 seconds. In the latter case the risk is lower but we do not have the chance
to get the best performance.

In asynchronous and distributed systems we are not able to eliminate ran-
domness at all. Besides intended randomness (e.g. in value selection functions)
it emerges from external factors including the CPU scheduling to agents or un-
predictable times for message passing [ZM03].

To get a standpoint of the R-Risk in DisCSP we made a preliminary ex-
periment, where randomness emerged from distribution only. We solved binary
DisCSPs with the IDIBT and ABT algorithms with random message delays
and unpredictable agent-activation. It turned out that the R-Risk is in general
very high (compared to monolithic systems). Even with completely deterministic
value-selection functions the performance of different runs of the algorithm on
the same problem differed significantly. For instance, the ABT algorithm with
lexicographic labelling applied 100 times to the 10-queens problem could find
one solution in 297–5374 ms while IDIBT applied 100 times took 1640–1984 ms.
The R-Risk resulting exclusively from distribution was 807 for ABT and 96 for
IDIBT.

2.2 Selection Risk

The risk we take when we select a certain algorithm or a heuristic to be applied
within an algorithm to solve a problem will always be that this is the wrong
choice. For most problems we do not know in advance, which the best algorithm
or heuristic will be and may select one which performs much worse than others.
We’ll refer to this risk as to the Selection-Risk (S-Risk).

Definition 2. The S-Risk of a set of algorithms A is the standard deviation of
the performance of each a ∈ A applied the same number of times to one problem.

We investigated the S-Risk emerging from the chosen agent ordering in IDIBT in
a preliminary experiment on small, fairly hard random problems (15 variables, 5
values, density 0.3, tightness 0.4). We used one variable per agent and could thus
implement variable-orderings in the ordering of agents. We used lexicographic
value selection and four different static variable-ordering heuristics: a well-known
“intelligent” heuristic, its inverse (which should be bad) and two different blind
heuristics. As expected, we could observe that the intelligent heuristic dominates
in average but that it is not always the best. It was the fastest in 59% of the tests,
but it was also the slowest in 5% of the experiments. The second best heuris-
tic (best in 18%) was also the second worst (also 18%). The “anti-intelligent”
heuristic turned out to be the best of the four in 7% after all. The differences
between the performances were quite significant with a factor of up to 5. Applied
to the same problems, ABT gave very similar results with a larger performance
range of up to factor 40.

552 G. Ringwelski and Y. Hamadi

3 Multi-directional Distributed Search

By a direction in search we refer to a variable ordering. In this paper we con-
sider only static orderings but the “M-” framework can be used with dynamic
orderings as well. In DisCSP the variable ordering implies the agent topology.
Assume that each agent hosts one variable, for each constraint a directed connec-
tion between two agents/variables is imposed. The direction defines the priority
of the agents and thus in which direction backtracking is performed. In Fig-
ure 1 we show two different static agent-topologies emerging from two different
variable-ordering heuristics in DisCSP.

The idea of Multi-Directional search is that several variable orderings and
thus several agent topologies are used by concurrent searches. We refer to this
idea as to the “M-” framework for DisCSP. Applied to an algorithm X it defines
a DisCSP algorithm M-X which applies X multiply in parallel. Each search
operates in its usual way on one of the previously selected topologies. In each
agent the multiple searches use separate contexts to store the various pieces
of information they require. These include for example adjacent agents, their
current value or their beliefs about the current values of other agents. Given
the topologies in Figure 1, agent X3 for example, would contain two contexts.
In the one which is related to maxDegree it would store X7 as lower prioritized
adjacent agent and in the other it would store X1. In ABT or IDIBT it would
thus address messages that notify others of new values (ok? in ABT, infoVal in
IDIBT) to agent X7 in one search effort and to X1 in the other.

In a set of such agents different search-efforts can be made in parallel. Each
message will refer to a context and will be processed in the scope of this context.
The first search to terminate will deliver the solution or report failure. Termi-
nation detection has thus to be implemented for each of the contexts separately.
This does not yield any extra communication as shown for the multiple contexts
of IDIBT in [Ham02].

X1

X3={a,b,

X7={a,b}
X4={a,b,

DisCSP
ordering ordering

min−domain

c,d}
X1={a,b, X5={a,b}

X6={a,b,
c}

X2={a,b}

c}

c}

max−degree

X1

X2

X3 X4 X5

X7 X6

X6

X5 X2 X7

X4X3

Fig. 1. DisCSP and agent topologies implied by variable orderings

Boosting Distributed Constraint Satisfaction 553

One motivation for this is to reduce the S-Risk by adding more diversity
to the used portfolio. Assuming we do not know anything about the quality
of orderings, the chance of including a good ordering in a set of M different
orderings is |M |-times higher than selecting it for execution in one search. When
we know intelligent heuristics we should include them but the use of many of
them will reduce the risk of bad performance for every single problem instance
(cf. experiment in Section on S-Risk). Furthermore the expected performance
is improved with the “M-” framework since always the best heuristic in the
portfolio will deliver the solution or report failure. If we have a portfolio of
orderings M where the expected runtime of each m ∈ M is t(m) then ideally
(if no overhead emerges) the system terminates after min({t(m)|m ∈ M}). The
resulting trade-offs and overheads for this are investigated in this paper.

The trade-off in space is linear in the number of applied orderings. Thus, it
clearly depends on the size of the data structures that need to be duplicated for
the contexts. This will include only internal data structures which are related to
the state of search. “M-” does not duplicate the whole agent. The data structures
for communication for instance are jointly used by all the concurrent search
efforts.

The trade-off in computational costs will be described in detail in the Section
on the Empirical Evaluation.

3.1 Aggregation

Besides the idea of letting randomized algorithms compete to become “as good
as the best” the “M-” framework can also use cooperation. With this we may be
able to be even “better than the best”, by accelerating the best search effort even
more by providing it with useful knowledge others have found. Cooperation is
implemented in the aggregation of knowledge within the agents. The agents use
the information gained from one search to make better decisions (value selection)
in another search. This enlarges the amount of knowledge on the basis of which
local decisions are made.

In distributed search, the only information that agents can use for aggrega-
tion is their view to the global system. With multiple contexts, the agents have
multiple views and thus more information available for their local reasoning.
In this setting, the aggregation yields no extra communication costs. It can be
performed locally and does not require any messages or blackboard-access.

In order to implement Aggregation we have to make two design decisions:
first, which knowledge is used and second, how it is used. As mentioned before
we use knowledge that is available for free from the internally stored data of the
agents. In particular this may include:

Usage. Each agent knows the values it currently has selected in each search.
Support. Each agent can store currently known values of other agents (agent-

view) and the constraints that need to be satisfied with these values.
Nogoods. Agents may store partial assignments that are found to be incon-

sistent.

554 G. Ringwelski and Y. Hamadi

Effort. Each agent knows for each search how much effort in terms of the
number of backtracks it has already invested.

The interpretation of this knowledge can follow two orthogonal principles: di-
versity and emulation. Diversity implements the idea of traversing the search
space in different parts simultaneously in order not to miss the part in which a
solution can be found. The concept of emulation implements the idea of cooper-
ative problem solving, where agents try to combine (partial) solutions in order
to make use of work which others have already done.

With these concepts of providing and interpreting knowledge we can define
the portfolio of aggregation methods shown in Table 1. In each box we provide
a name (to be used in the following) and a short description of which value is
preferably selected by an agent for a search.

Table 1. Methods of aggregation

diversity emulation

usage minUsed: the value which is
used the least in other searches

maxUsed: the value which is
used most in other searches

support – maxSupport: the value that is
most supported by constraints
wrt. current agent-views

nogood differ: the value which is least
included in nogoods

share: always use nogoods of
all searches

effort minBt: a value which is not the
current value of searches with
many backtracks

maxBt: the current value of
the search with most back-
tracks

4 Algorithms

As a case study to investigate the benefit of competition and cooperation in
distributed search we implemented M-IDIBT and M-ABT.

M-IDIBT. This algorithm incorporates IDIBT [Ham02] in the “M-” framework.
IDIBT already uses multiple contexts to perform parallel search (i.e., splitting of
search tree). We use the contexts for different variable-orderings but apply each of
them to the complete search tree. In order to prevent the required pre-processing
of the agent topology with DisAO [Ham02] we changed the algorithm to add the
required extra links between agents dynamically during search (similar to the
processing of “addLink”-messages in ABT). Finally we extended the algorithm
to support dynamic value selection which is essential for Aggregation.

M-ABT. This algorithm incorporates ABT [YDIK92] in the “M-” framwork.
For this we implemented contexts by duplicating the local storage of current
value, agent-view and nogood-store. Storing the nogood-store multiply may have
large trade-offs in space, but sharing it means applying Aggregation and is thus

Boosting Distributed Constraint Satisfaction 555

considered separately. In M-ABT every message carries additionally the id of its
related search. No other changes were made to the original algorithm.

5 Empirical Evaluation

For the empirical evaluation of the “M-” framework we processed more than
180000 DisCSPs with M-IDIBT and M-ABT. We solved random binary prob-
lems (15 variables, 5 values), n-queens-problems with n up to 20 and quasi-
group completion problems with up to 81 agents. To compare the performance
of the algorithms we counted overall constraint checks (cc), concurrent constraint
checks(ccc), the overall number of messages(mc), the longest path of sequential
messages(smc) and the run time (t) given in seconds. The runtime represents
the “parallel time”, i.e., the CPU+System time of the slowest agent.

All tests were run in a Java multi-threaded simulator where each agent
implements a thread using random message delays and unpredictable thread-
scheduling. All the threads were executed in one process and thus on one pro-
cessor (2 Ghz Windows PC).

5.1 Basic Performance

In Figure 2 we show the median numbers of messages sent and the runtime to
find one solution by different sized portfolios on fairly hard instances (density
0.3, tightness 0.4) of random problems (sample size 300). No aggregation was
used in these experiments. The best known2 variable-ordering (maxDegree) was
used in each portfolio including those of size 1 which are equivalent to the basic
algorithms. In the larger portfolios blind orderings (lex and random) and more
instances of maxDegree were added. It can be seen that with increasing portfolio-
size there is more communication (sent messages) between agents. In the same
Figure we show the run time, which correlated strongly to smc and ccc. It can be
seen that the performance improves up to a certain point when larger portfolios
are used. In our experimental setting this point is reached with size 10. With
larger portfolios no further speedup can be achieved which would make up the
communication cost and computational overhead.

5.2 Risks

To evaluate the risks we used the same experimental setting as before but with
random variable orderings and lexicographic value selection. This static value se-
lection would reduce the R-Risk as widely as possible. Using random orderings
would eliminate the effects we get from knowledge about heuristics and allow
for a non-biased evaluation. Each portfolio was applied 100 times to one hard
random problem instance. The standard-deviation of the runtime is shown in
Figure 3 on a logarithmic scale. It can be seen that the risk is reduced signifi-
cantly with the use of portfolios. With portfolio size 20, for instance, the risks
2 We made preliminary experiments to determine this.

556 G. Ringwelski and Y. Hamadi

Fig. 2. Communication and runtime in portfolios

of M-IDIBT and M-ABT are 344 and 727 times smaller than the ones of IDIBT
and ABT, respectively.

5.3 Performance with Aggregation

The benefit of Aggregation which is implemented with the different value se-
lection heuristics is presented in Table 2. Each column in the table shows the
median values of at least 100 samples solved with M-IDIBT with a portfolio of
size 10 applied to 30 different hard random and quasigroup completion prob-
lems. The latter class of problems (cf. [GS01]) were encoded in a straightforward
model: N2 variables, one variable per agent, no symmetry breaking, binary con-
straints only. We solved problems with a 42% ratio of pre-assigned values which
is the peak value in the phase transition for all orders, i.e., we used the hardest
problem instances for our test.

In the table we refer to the aggregation methods introduced in Table 1, the
bottom line shows the performance with random value selection (and thus no
aggregation). When we consider the running time, it seems that the choice of
the best method depends on the problem. For the quasigroup, aggregation based
on the emulation principle seems to be better, on random problems not.

Interestingly, message passing operations present a different picture. It can
be seen that maxSupport uses by far the least messages. These operations are
reduced by a factor of 7 (resp. 38) for random (resp. quasigroups) problems.
However, it cannot outperform the others significantly since the computation of
this aggregation method is relatively costly. To this respect there is, however,

Boosting Distributed Constraint Satisfaction 557

 100

 1000

 10000

 100000

 1e+06

 2 4 6 8 10 12 14 16 18 20

se
le

ct
io

n
ris

k
(lo

g
sc

al
e)

portfolio size

M-ABT
M-IDIBT

Fig. 3. S-Risk including the R-Risk emerging from distribution

Table 2. Performance of aggregation methods

random quasigroups
smc ccc t smc

1000
ccc
1000

t

minUsed 367 2196 1.563 102 1625 448
maxUsed 379 2118 1.437 40 635 182
minBt 392 2281 1.640 104 1330 367
maxBt 433 2541 1.820 43 694 171

maxSupp 57 5718 1.922 1.9 3727 143
random 409 2406 1.664 73 1068 298

potential since we do not use an incremental algorithm for this. Moreover, mes-
sage passing are the most critical operations in real systems and this for either
long latencies or high energy consumption (e.g., ad-hoc networks [FM02]). The
previous remark makes the maxSupport aggregation method really promising.

5.4 Overall Performance

In order to evaluate the relevance of the “M-” framework we investigated how it
scales in larger and more structured problems. For this we applied good config-
urations found in the previous experiments to the well-known quasigroup com-
pletion problem.

Table 3 shows the experimental results of distributed search algorithms on
problems of different orders (each column represents an order). ABT and IDIBT
used the domain/degree variable ordering, which was tested best in preliminary
experiments. In the larger portfolios we used domain/degree and additional other

558 G. Ringwelski and Y. Hamadi

heuristics including maxDegree, minDomain, lex and random. In all portfolios
Aggregation with the method maxUsed was applied. For each order (column) we
show the median runtime (in seconds) to solve 20 different problems (once each)
and the number of solved problems. When less than 10 instances could be solved
within a timeout of two hours we naturally cannot provide meaningful median
results. In the experiments with M-ABT we have also observed runs which were
aborted because of memory problems in our simulator. For order 8 these were
about one third of the unsolved problems, for order 9 this problem occurred in
all unsuccessful tests. This memory problem arising from the nogood-storage of
ABT was addressed in [BBMM05] and is not subject to this research.

Table 3. Median performance and instances solved (out of 20) of quasigroup comple-

tion problems with 42% pre-assigned values

5 6 7 8 9

ABT 0.3, 20 -, 8 -, 1 -, 0 -, 0
size 5 0.5, 20 5.9, 19 35.8, 14 -, 2 -, 0
size 10 0.6, 20 6.1, 20 40.6, 17 -, 8 -, 1

IDIBT 1.8, 20 12.4, 20 234, 20 4356, 16 -, 5
size 5 0.2, 20 0.9, 20 9.3, 20 709, 20 -, 6
size 10 0.3, 20 1.7, 20 8.2, 20 339, 20 -, 8

From the successful tests it can be seen that portfolios improve the median
performance of IDIBT significantly. In the problems of order 7 a portfolio of
10 was 28 times faster than the regular IDIBT. Furthermore, portfolios seem
to become more and more beneficial in larger problems as the portfolio of size
10 seems to scale better than smaller one. ABT does not benefit in the median
runtime but the reduced risk makes a big difference. With the portfolio we could
solve 14 resp. 17 instances of order 7 problems whereas the plain algorithm could
only solve one.

5.5 Idle Time

To complete the presentation of our experimental results let us consider time
utilization in distributed search. It appears that both considered classical al-
gorithms underuse available resources. This is figured in the first two columns
of Table 4 for various problem classes. The numbers represent the average idle
times (10-100 samples) of the agents.

We can observe that ABT and IDIBT are most of the time idle. This idle-
ness comes from the inherent disbalance of work in DisCSPs. Indeed, it is well
known that the hierarchical ordering of the agents makes low priority agents
(at the bottom) more active than high priority ones. Ideally the work should be
balanced. Ideally one agent on the top of the hierarchy in context 1 should be in
the bottom in context 2, etc (e.g., see agent in charge of variable X1 in figure 1).
Obviously, since we use well known variable ordering heuristics we cannot en-
force such a property. However, the previous is an argument for multi-directional

Boosting Distributed Constraint Satisfaction 559

Table 4. Idle times of agents in DisCSP

problem class idle time of agents
ABT IDIBT M-ABT M-IDIBT

easy random 87% 92% 56% 47%
hard random 92% 96% 39% 59%
n-queens 91% 94% 48% 52%
hard quasigroups 87% 93% 28% 59%

search which can use the previous idle time “for free” in order to perform fur-
ther computations in concurrent search efforts. This is figured in the last two
columns of the table where the M- framework with a portfolio of size 10 applied
to the same problems makes a better use of computational resources and this
can be understood as an important decrease in idle times for either M-ABT or
M-IDIBT.

6 Related Work

The benefit of cooperating searches executed in parallel was first investigated for
CSP in [HH93]. They used multiple agents, each of which executed one mono-
lithic search algorithm. Agents cooperated by writing/reading hints to/from a
common blackboard. The hints were partial solutions or nogoods its sender has
found and the receiver could re-use them in its efforts. In contrast to our work,
this multi-agent system was an artefact created for the cooperation. Thus the
overhead it produced, especially when not every agent could use its own proces-
sor, added directly to the overall performance. Another big difference between
Hogg’s work and ours is that DisCSP agents do not have a global view of the
searches and can thus only communicate what’s in their agent-view which usually
captures partial solutions for comparably few variables only.

Later the expected performance and the expected (Randomization-) risk in
portfolios of algorithms was investigated in [GS97, GS01]. No cooperation be-
tween the processes was used here. In the newer paper the authors concluded
that portfolios, provided there are enough processors, reduce the risk and im-
prove the performance. When algorithms do not run in parallel (i.e., when not
each search can use its own processor) the portfolio approach becomes equivalent
to random restarts [GSK98]. Using only one processor, the expected performance
and risk of both are equivalent. In contrast to Gomes and Selman we cannot al-
locate search processes to CPUs. In DisCSP we have to allocate each agent,
which participates in every search, to one process. Thus the load-balancing is
performed by the agents and not by the designer of the portfolio. In this paper
we consider agents that do this on a first-come-first-serve basis. Furthermore we
use cooperation between the agents and the parallelism is not an overhead-prune
artefact.

Recent work on constraint optimization [CB04] has shown that letting mul-
tiple search algorithms compete and cooperate can be very beneficial without

560 G. Ringwelski and Y. Hamadi

having to know much about the algorithms themselves. They successfully use
various optimization methods on one processor which compete for finding the
next best solutions. Furthermore they cooperate by interchanging the best known
feasible solutions. However, this method of cooperation cannot be applied to our
distributed constraint satisfaction settings.

A different research trend performs “algorithm selection” [Ric76]. Here, port-
folio does not represent competing methods but complementary ones. The prob-
lem is then to select from the portfolio the best possible method in order to
tackle some incoming instance. [LBNA+03] applies the previous to combina-
torial optimization. The authors use portfolios which combine algorithms with
uncorrelated easy inputs. Their approach requires an extensive experimental
step. It starts with the identification of problem’s features which are representa-
tive of runtime performances. These features are used to generate a large set of
problem instances which allow the collection of runtime data for each individual
algorithm. Finally, statistical regression is used to learn a real-valued function
of the features which allows runtime prediction. In real situation, the previous
function predicts each algorithm’s running time and the real instance is solved
with the algorithm identified as the fastest one. The key point is to combine
uncorrelated methods in order to exploit their relative strengths. The most im-
portant drawback here is the extensive offline step. This step must be performed
for each new domain space. Moreover a careful analysis of the problem must be
performed by the end-user to identify key parameters. The previous makes this
approach highly unrealistic in a truly distributed system made by opportunisti-
cally connected components [FM02]. Finally knowledge sharing is not possible
in this approach.

7 Conclusion and Future Work

In this paper we have presented a new generic framework for the execution
of DisCSP algorithms. We have tested it with two standard methods but any
tree-based distributed search should easily fit in the M- framework. The frame-
work executes a portfolio of cooperative DisCSP algorithms with different agent-
orderings concurrently until the first of them terminates. In real (truly dis-
tributed) applications, our framework will have to start with the computation of
different orderings. The generic Distributed Agent Ordering heuristic (DisAO)
[HBQ98] could easily be generalized at no extra message passing cost to concur-
rently compute several distributed hierarchies. The main idea is to simultane-
ously exchange several heuristic evaluation of a sub-problem instead of one.

This use of heterogeneous portfolios is shown to be very beneficial. It improves
the performance and reduces the risk of distributed search. With our framework
we were able to achieve a speedup of one order of magnitude while reducing the
risk by up to three orders of magnitude compared to the traditional execution
of the used algorithm.

The portfolios seem to make a better use of computational resources by
reducing the idle time of agents. This is the first of two special advantages of the

Boosting Distributed Constraint Satisfaction 561

application of portfolios in DisCSP: we do not have to artificially add parallelism
and the related overhead but can use idle resources instead. The M- framework
can be seen as a solution to the classical “work unbalance” flaw of tree-based
distributed search algorithms.

We analysed and defined distributed cooperation (Aggregation) with respect
to two orthogonal principles diversity and emulation. Each principle was applied
without overhead within the limited scope of each agent’s knowledge. This is the
second special advantage of using Aggregation in DisCSP: it yields no communi-
cational costs and preserves privacy because processes are not related to search
efforts but to agents instead. Our experiments identified the emulation-based
maxSupport heuristic as the most promising one. Indeed, it is able to efficiently
aggregate partial solutions which brings a large reduction in message passing
operations.

Our present results greatly improve the applicability of DisCSP algorithms
by providing greater efficiency and robustness to two classical tree search al-
gorithms. In future work we would like to investigate how portfolios are best
composed and how they could implement a more informed Aggregation (beyond
agent’s scope). The composition could be studied with different hand or sys-
tem made portfolios or by dynamic adaptation during search. The latter could
provide more resources to the most promising efforts. The former could take ad-
vantage of heterogeneous portfolios involving various tree- and local-search com-
bined with some distributed consistency-enforcement method (e.g., [Ham99]).
Finally, knowledge Aggregation could be easily improved at no cost by adding
extra information to existing message passing operations (search effort, etc).
This would give a more informed view of the distributed system which could be
used by the Aggregation methods.

References

[BBMM05] C. Bessiere, I. Brito, A. Maestre, and P. Meseguer. Asynchronous back-
tracking without adding links: A new member in the ABT family. Arti-
ficial Intelligence, 161:7–24, 2005.

[CB04] T. Carchrae and J. C. Beck. Low knowledge algorithm control. In Proc.
AAAI’04, 2004.

[FM02] S. Fitzpatrick and L. Meertens. Scalable, anytime constraint optimiza-
tion through iterated, peer-to-peer interaction in sparsely-connected net-
works. In Proc. IDPT’02, 2002.

[GS97] C.P. Gomes and B. Selman. Algorithm portfolio design: Theory vs. prac-
tice. In Proc. UAI’97, pages 190–197, 1997.

[GS01] C.P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence,
126:43–62, 2001.

[GSK98] C.P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search
through randomization. In Proc. AAAI’98, pages 431–438. AAAI Press,
1998.

[Ham99] Y. Hamadi. Optimal distributed arc-consistency. In Proc. CP’99, pages
219–233, 1999.

562 G. Ringwelski and Y. Hamadi

[Ham02] Y. Hamadi. Interleaved backtracking in distributed constraint net-
works. International Journal on Artificial Intelligence Tools, 11(2):167–
188, 2002.

[HBQ98] Y. Hamadi, C. Bessiere, and J. Quinqueton. Backtracking in distributed
constraint networks. In Proc. ECAI’98, pages 219–223, 1998.

[HH93] T. Hogg and B. A. Huberman. Better than the best: The power of
cooperation. In 1992 Lectures in Complex Systems, volume V of SFI
Studies in the Sciences of Complexity, pages 165–184. Addison-Wesley,
1993.

[LBNA+03] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and
Y. Shoham. A portfolio approach to algorithm selection. In Proc. IJ-
CAI’03, page 1542, 2003.

[Pug04] J. F. Puget. Some challenges for constraint programming: an industry
view. In Proc. CP’04, invited talk, pages 5–9. Springer LNCS 3258, 2004.

[Ric76] J. R. Rice. The algorithm selection problem. Advances in Computers,
15:65–118, 1976.

[YDIK92] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed con-
straint satisfaction for formalizing distributed problem solving. In Proc.
ICDCS’92, pages 614–621, 1992.

[ZM03] R. Zivan and A. Meisels. Synchronous vs asynchronous search on DisC-
SPs. In Proc. EUMAS’03, 2003.

	Introduction
	Risks in Search
	Randomization Risk
	Selection Risk

	Multi-directional Distributed Search
	Aggregation

	Algorithms
	Empirical Evaluation
	Basic Performance
	Risks
	Performance with Aggregation
	Overall Performance
	Idle Time

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

