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Abstract. Many combinatorial problems require of their solutions that
they achieve a certain balance of given features. In the constraint pro-
gramming literature, little has been written to specifically address this
issue, particularly at the modeling level. We propose a new constraint
dedicated to balancing, based on well-known and well-understood con-
cepts in statistics. We show how it can be used to model different sit-
uations in which balance is important. We also design efficient filtering
algorithms to guide the search towards balanced solutions.

1 Introduction

We have seen many advances in CP modeling in recent years. Useful problem
substructures have been identified, leading to new constraints with efficient filter-
ing algorithms. Soft constraints have been introduced to handle over-constrained
problems. Lexicographic constraints have been designed to break problem sym-
metries. Efforts to automate the modeling process have also been made.

One aspect that has lacked a truly satisfying approach to date is the ability
to balance certain features of a solution. Take for example the balanced aca-
demic curriculum problem [1], in which courses are assigned to periods so as to
balance the academic load between periods. Because of additional constraints
(prerequisite courses, minimum and maximum number of courses per period)
and a varying number of credits per course, reaching perfect balance is gener-
ally impossible. Given that, some common ways of encouraging balance at the
modeling level are:

a) to set reasonable bounds on each load, tolerating a certain deviation
from the ideal value;

b) to minimize the greatest load, thus avoiding outliers (or at least those
above the ideal value);

c) to take the least square error.
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The first two options both have the disadvantage of putting on an equal
footing solutions with quite different balance:

a) If we require that loads belong to [8, 12], aiming for an ideal load of
10, then sets of loads {10, 10, 10, 10, 9, 11} and {8, 8, 8, 12, 12, 12} both satisfy
the restriction but the former is much more balanced. The situation could be
corrected somewhat by only allowing deviations for a few of the loads, but which
ones should it be? We run the risk of being unfair (ironically) or, even worse, of
excluding legitimate solutions.

b) Loads {10, 10, 10, 10, 9, 11} and {9, 9, 9, 11, 11, 11} both have a greatest
load of 11 but again the former is more balanced.

The last option corrects this by considering a combination of individual de-
viations. However it requires that we solve a discrete optimization problem, with
a nonlinear objective as is the case for the second option. This may not be easy
and, if other real objectives are present, we have to come up with suitable weights
for the different terms of the objective function. Balance can also be dealt with
in the search strategy: by keeping track of previous course assignments, we can
favor certain future assignments that will improve the balance. This is helpful
but using it on its own means that an important aspect of the problem is not
present at all in the model itself.

Balance is often important in assignment problems or in problems with an
assignment component. We give a few examples. In assembly line balancing the
workload of the line operators must be balanced. In rostering we may talk of
fairness instead of balance, because of the human factor. Here we want a fair
distribution of weekends off or of night shifts among workers, for example. In ve-
hicle routing one dimension of the problem is to partition the customers into the
different routes — balancing the number of customers served on each route, the
quantity of goods delivered, or the time required to complete the route may be
of interest. In one of the few works specifically addressing balance in the context
of constraint satisfaction, an earth observation satellite scheduling and sharing
problem is used to investigate three ways of handling fairness among agents
with competing observation requirements [3]. The first one applies a decompo-
sition into individual problems, each with a fair share of observation windows,
but overall efficiency suffers. The second one favors efficiency and sets a lower
bound on individual shares for fairness (option a) above). The third one com-
putes a set of Pareto-optimal solutions in the two-dimensional space of overall
efficiency and fairness. To evaluate fairness, they use the Gini index, popular in
microeconomics.
We could describe the balance we seek in the following way:

• the average value should be close to a given target, corresponding to the
ideal value;

• there should be no outliers, as they would correspond to an unbalanced
situation;

• values should be grouped around the average value.
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We claim that statistics provide appropriate mathematical concepts to express
this. We will propose a constraint expressing balance in a way similar to the
method of least squares mentioned before but by setting limits on the deviation
instead of minimizing an objective which must be weighted relative to other
potential objectives.

The rest of this paper is organized as follows. Section 2 reviews some basic
concepts and definitions in statistics. Section 3 defines the new constraint based
on statistics that we propose and presents typical uses. Section 4 derives some
inequalities bounding the number of variables taking extreme values and uses
them to filter the domains of the variables. Section 5 builds up to another filtering
algorithm, this one achieving bounds consistency.

2 Statistics Background

Given a collection of numbers, even simple summary statistics about them can be
revealing. Measures of location tell us about the central tendency of the values.
The most common such measures are the mode, the median, and the mean. The
mode is the value(s) occurring most often in a given collection of numbers. The
median, denoted x̃, is the smallest value such that at least half of the numbers
are no larger than it, and at least half of the numbers are at least as large as it.
We will prefer to use the mean because it is instrumental in telling us how many
values may exceed a given threshold, which will prove useful to filter domains.

Definition 1 (Mean). The (arithmetic) mean of a collection of values
〈x1, x2, . . . , xn〉, denoted µ, is computed as

µ =
1
n

n∑

i=1

xi. (1)

Measures of spread tell us whether the values tend to be bunched together or
spread out. The most common measures are the range, the semi-quartile range,
and the standard deviation. The range is the size of the smallest interval con-
taining all the values. Unfortunately that measure is highly sensitive to outliers.
The semi-quartile range, half the size of the smallest interval containing fifty
percent of the most central values, partially overcomes that drawback. We favor
the more familiar standard deviation, partly for the same reason as the mean:
we will be able to limit the number of values straying away from the center.

Definition 2 (Standard Deviation). The standard (or root-mean-square)
deviation of a collection of values 〈x1, x2, . . . , xn〉, denoted σ, is computed as

σ = (
1
n

n∑

i=1

(xi − µ)2)
1
2 . (2)

An alternate way of computing the standard deviation, which is more numeri-
cally stable, is obtained through the Koenig-Huyghens relation:

σ2 =
1
n

n∑

i=1

x2
i − µ2. (3)
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Measures of skewness tell us about the general shape of the distribution of val-
ues. Two collections of values with identical mean and standard deviation may
nevertheless be significantly different. A perfectly symmetric continuous distri-
bution will have its median and mean coincide. A distribution with a positive
(resp. negative) bias will have x̃ < µ (resp. x̃ > µ). The Pearson coefficient,
computed as 3(µ − x̃)/σ, is one way to measure skewness. The simpler form
µ − x̃ at least preserves the sign of the bias.

Two well-known inequalities for random variables can be recast for our pur-
pose. They can be useful to derive filtering algorithms.

Theorem 1 (Markov’s Inequality). Consider a collection of non-negative
values 〈x1, x2, . . . , xn〉 with mean µ, and some threshold τ . Then the fraction of
these values that are greater or equal to τ is at most µ

τ .

For example, if the threshold selected is three times the mean then at most one
third of the values are no smaller than that threshold.

Theorem 2 (Bienaymé-Chebychev’s Inequality). Consider a collection of
values 〈x1, x2, . . . , xn〉 with mean µ and standard deviation σ, and some positive
number k. Then the fraction of these values that are kσ or further from µ is at
most 1

k2 .

This important result bounds the number of values that can be far from the
mean. For example, at most 25% of the values may be two standard deviations
away from the mean and at most 4% may be five standard deviations away.

3 The Spread Constraint

This section defines and discusses the constraint we propose. We first give some
basic definitions and notation in constraint programming.

Definition 3 (Finite-Domain (Discrete) Variable). A finite-domain (dis-
crete) variable x takes a value in D(x), a finite set called its domain. Whenever
there is a total order defined on that set (e.g. when it is a subset of N), we denote the
smallest (resp. largest) value x may take as xmin (resp. xmax).

Definition 4(Bounded-Domain(Continuous)Variable).Abounded-domain
(continuous) variable y takes a value in ID(y) = [ymin, ymax], an interval onR called
its domain as well.

Definition 5 (Relaxed Domain). Given finite-domain variable x, we denote
by ID(x) its domain relaxed to the continuous interval [xmin, xmax]. By extension
for a union of domains D =

⋃n
i=1 D(xi), let ID represent the continuous interval

[minn
i=1 xmin

i , maxn
i=1 xmax

i ] .
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We are now ready to state the constraint:

Definition 6 (Spread Constraint). Given a set of finite-domain variables X =
{x1, x2, . . . , xn} and bounded-domain continuous variables µ, σ, and x̃, constraint
spread(X, µ, σ, x̃) states that the collection of values taken by the variables of X
exhibits an arithmetic mean µ, a standard deviation σ, and a median x̃.

There are clear advantages to this formulation. First, it is not affected by a
permutation of the values given to the xi’s. No particular variable or subset of
variables is a priori identified as taking a lower value than others, for example,
which might be necessary with other approaches to fairness, ironically introduc-
ing a bias. Second, it is not affected by the sign of the deviation. The impact
on the standard deviation of a value away from the mean is the same whether
the value is above or below the mean. Finally, it is based on well-established
concepts in statistics.

3.1 Typical Uses

We outline some typical uses of the constraint by focusing on how µ is constrained
and illustrate them with examples taken from rostering. First note that if we set
σ to 0, we are asking for perfect fairness: every xi should be identical. If in essence
we have a fixed number of balls to distribute as evenly as possible into a fixed
number of boxes, µ is fixed since it corresponds to the ratio of the number of balls
to the number of boxes. We constrain the variables by limiting σ. This situation
occurs, for example, when night shifts should be evenly distributed among 10 staff
members and we know that there are exactly 200 night shifts to cover:

spread(X, 20, [0, 1], x̃)

If on the contrary the number of balls is unknown,µ is not fixed. We may have some
approximate idea of what the mean should be and in this case µ is constrained
around that approximation. For example, weekends off should be evenly spread
over the whole planning horizon in an individual schedule. Taking our variables
to be the size of the gaps between such weekends and even given the number of
them, the mean may not be known because of the uncertainty as to where the last
weekend off falls. Nevertheless, we may wish for a typical gap of 3:

spread(X, [2.8, 3.2], [0, 0.5], x̃)

Other times we have no idea what the mean could be and µ is left free. For
example, a weekend on which one day is worked and the other not is called a
“broken” weekend, a generally undesirable feature. We often do not know in
advance how many such weekends will occur in a schedule but we nevertheless
wish the number of broken weekends to be evenly distributed among all staff
members. Considering a roster over w weeks, we could state:

spread(X, [0, w], [0,
w

3
], x̃)
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If two of the staff members have more seniority, their number of broken weekends
should be about half that of the others:

y1 = 2x1, y2 = 2x2, yi = xi (3 ≤ i ≤ n), spread(Y, [0, w], [0,
w

3
], x̃)

Since broken weekends are undesirable, we could prefer instead that the distribu-
tion of values does not show a negative bias, i.e. there should not be a majority
of staff members with an above-average number of such weekends:

0 ≤ x̃ ≤ µ ≤ w, spread(X, µ, [0,
w

3
], x̃)

4 Fast Filtering

It would be difficult to efficiently achieve domain consistency on the spread con-
straint because even in the special case where µ is fixed, we are left with a linear
Diophantine equation originating from Definition 1. In the case of Definition 2,
it is not even linear. Bounds consistency is a common compromise in such a case.
At a minimum, we can apply bounds consistency on (1) and (3).

Example 1. Consider a set of ten variables required to take integer values from
{7, 8, . . . , 13} such that µ ∈ [9.5, 10.5]. Suppose that at some point five of the
variables are fixed to value 13. Bounds consistency on (1) alone will remove 13
from the domain of every other variable as there is no support for a sixth variable
taking that value: [9.5, 10.5]∩(6×13+4× [7, 13])/10 = [9.5, 10.5]∩ [10.6, 13] = ∅.

Theorem 1 bounds the number of occurrences of values far from the mean.
We could extend this result to filter the domains of the variables in X but it
would not give us more than bounds consistency on (1). However Theorem 2
also bounds the number of occurrences of values far from the mean and we will
show that it can lead to more filtering than bounds consistency on (1) and (3).

4.1 Exploiting Bienaymé-Chebychev’s Inequality

We wish to derive a family of inequalities for consecutive integer thresholds
away from the mean. The key observation is that the value k in the theorem
need not be integer: we therefore use appropriate values of k that will provide
the integer thresholds we need. By seeking these exact values we obtain the
strongest possible bounds from the theorem.

Let D =
⋃n

i=1 D(xi) and ID = [a, b]. Define variables c�, � ∈ {a, a + 1, . . . , b}
as the number of times a variable from X takes value �. First consider the case
µ− a ≥ b − µ. Since this means there is at least as much slack below µ as there
is above, we focus on threshold values below, that is a + j for 0 ≤ j < µ − a.
For each threshold a + j we seek k such that µ− kσ = a + j, in order to get the
smallest bound 1

k2 . Solving for k we obtain k = µ−a−j
σ , yielding:

a+j∑

�=a

c� +
b∑

�=µmax+µmin−(a+j)

c� ≤ � σ2

(µ − a − j)2
· n	 0 ≤ j < µ − a (4)
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The lower limit in the second sum ensures that it only considers values that are
at least µ − (a + j) away from the mean, as in the first sum.

Similarly when µ − a < b − µ, for each threshold b − j we seek k such that
µ + kσ = b − j, yielding:

µmin−((b−j)−µmax)∑

�=a

c� +
b∑

�=b−j

c� ≤ � σ2

(b − µ − j)2
· n	 0 ≤ j < b − µ (5)

These inequalities can lead to better filtering than bounds consistency on (1)
and (3) because they simultaneously take into account µ and σ, as illustrated in
the following example.

Example 2. Consider again the situation depicted in Example 1 with the ad-
ditional restriction that σ ∈ [0, 0.4]. The left-hand side of (3) consequently
lies in [0, 0.16], which has plenty of overlap with the right-hand side (10 ×
[72, 132] − [9.52, 10.52])/10 ⊂ [−61.25, 78.75]. It is easy to verify that (3) is
bounds consistent: for example, checking value 7 only shrinks the right-hand
side to [−61.25, 66.75]. Equation (1) is bounds consistent as well. However in-
equality (4) for j = 1 gives c7 + c8 + c12 + c13 ≤ �0.71̄	 = 0. In other words, the
domain of each xi can be narrowed to {9, 10, 11}.

The c� variables are the same we would use in a global cardinality constraint
except that here we do not bound them individually but in telescoping sums.
We can maintain bounds consistency on each inequality in O(b−a) time and use
an upper bound constraint (half of a gcc) between the c�’s and the xi’s on which
we maintain bounds consistency in O(n + t) time where t is the time required
to sort the xi’s by their bounds [4]. (Note however that we do not necessarily
achieve bounds consistency on the spread constraint as Example 3 will show.)
The overall time complexity is O(n+t+(b−a)2). Since n, the number of variables,
is typically much larger than b− a, the span of the values, the algorithm runs in
linear time under the reasonable assumption that b − a is a small constant.

4.2 Median

Simple inequalities follow from the definition of the median:

x̃min−1∑

i=a

c� < �n

2
	,

x̃max∑

i=a

c� ≥ �n

2
� (6)

b∑

i=x̃max+1

c� < �n

2
	,

b∑

i=x̃min

c� ≥ �n

2
� (7)

We can maintain bounds consistency on them as well but here we should combine
them with a (full) bounds consistent gcc constraint [4][2]. To filter on x̃, we can
use the fact that x̃ = min{k | ∑k

i=a c� ≥ �n
2 �} = max{k | ∑b

i=k c� ≥ �n
2 �}.
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5 A Bounds Consistency Algorithm

The algorithm of the previous section did not consider the individual domains
of the xi’s but worked instead from the smallest interval containing all of them.
Even a very simple example like Example 3 is enough to show that some fil-
tering may be missed when the domains are significantly different. This section
describes an algorithm that takes into account the span of each individual do-
main of the xi’s and that achieves bounds consistency for the spread constraint.

Example 3. Consider two variables with respective domains {7, 8} and {12, 13}
such that µ ∈ [9.5, 10.5] and σ ∈ [0, 2]. Equations (1) and (3) are bounds consis-
tent and inequality (4) for j = 0 gives c7 + c13 ≤ �1.28	 = 1 but there is clearly
no solution with 7 or 13.

5.1 Establishing the Optimal Value

Definition 7. Let X = {x1, x2, . . . , xn} as before and define the following prob-
lem Π(X, q) for some fixed number q:

min
n∑

i=1

(xi − q

n
)2 such that

n∑

i=1

xi = q, xi ∈ ID(xi) 1 ≤ i ≤ n.

We also define the more general problem Π(X, [�q, uq]):

min
n∑

i=1

(xi − q

n
)2 such that

n∑

i=1

xi = q, xi ∈ ID(xi) 1 ≤ i ≤ n, q ∈ [�q, uq].

We will denote by opt(Π) the optimal value of the problem Π.

Definition 8. An assignment A : x → ID(x) over X is said to be a ν-centered
assignment when

A(x) =

⎧
⎨

⎩

xmax, if xmax ≤ ν
xmin, if xmin ≥ ν
ν, otherwise

Lemma 1. Any optimal solution to Π(X, q) must be a ν-centered assignment.

Proof. The objective function of Π(X, q) can be rewritten as follows:
∑

(xi −
q
n )2 = (

∑
x2

i ) − q2

n because
∑

xi = q. Thus, for a given q the minimum value
of

∑
(xi − q

n )2 can be deduced from the minimum value of
∑

x2
i . Consider

an assignment A on X which is a solution to Π(X, q) but not a ν-centered
assignment. We prove that

∑
(A(xi))2 is not optimal by constructing another

assignment B such that
∑

(B(xi))2 <
∑

(A(xi))2. There are three ways in which
A may fail to be a ν-centered assignment:

• ∃ i, j s.t. xmin
i < A(xi) < xmax

i , xmin
j < A(xj) < xmax

j , and A(xi) > A(xj).
Define B as B(xi) = A(xi) − d, B(xj) = A(xj) + d, B(xk) = A(xk) for k �= i, j,
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Table 1. Relevant values computed from Example 4

I ES(I) |M(I)| V (I) GC(I) q-opt(Π(X, I)) opt(Π(X, I))

[0, 1] 13 2 [13, 15] 18 15 19.5
[1, 2] 12 3 [15, 18] 24 18 12.0
[2, 3] 14 2 [18, 20] 21 20 8.3̄
[3, 4] 8 4 [20, 24] 24 24 8.0
[4, 5] 16 2 [24, 26] 24 24 8.0
[5, 6] 26 0 [26, 26] 26 26 9.3̄
[6, 9] 20 1 [26, 29] 24 26 9.3̄

where d = 1
2 min((xmax

j − A(xj)), (A(xi) − A(xj)), (A(xi) − xmin
i )). Then B is

also a solution to Π(X, q) from the definition of B and the choice of d. Now
(B(xi))2 + (B(xj))2 = (A(xi) − d)2 + (A(xj) + d)2 = (A(xi))2 + (A(xj))2 +
2d(A(xj) − A(xi) + d). Since A(xj) < A(xi), d > 0 and d ≤ (A(xi) − A(xj))/2
we have that 2d(A(xj)−A(xi)+ d) < 0. Thus (B(xi))2 +(B(xj))2 < (A(xi))2 +
(A(xj))2 and B is a better assignment.

• ∃ i s.t. A(xi) = xmax
i > ν (and the symmetric case A(xi) = xmin

i < ν).
Take j s.t. A(xj) = ν < xmax

j (if we cannot find such a j then we are in the third
case below). Build B as in the first case.

• ∃ i, j s.t. A(xi) = xmax
i , A(xj) = xmin

j , and A(xi) > A(xj) (i.e. the two
groups overlap). Build B as in the first case. �

To simplify the analysis, we first partition ID into intervals in which the
status of the relaxed domains of the xi’s does not vary: each either completely
lies to the left or right, or completely contains the interval. We then exhibit
a particular ν-centered assignment and show that it is an optimal solution to
Π(X, q). Finally we generalize for an unspecified value q ∈ [�q, uq].

Definition 9. Let B(X) be the sorted sequence of bounds of the relaxed domains
of the variables of X, in non-decreasing order and with duplicates removed. De-
fine I(X) as the set of intervals defined by a pair of two consecutive elements of
B(X). The kth interval of I(X) is denoted by Ik.

Example 4. Let D(x1) = [0, 2], D(x2) = [1, 4], D(x3) = [0, 5], D(x4) = [3, 5],
D(x5) = [3, 4], D(x6) = [6, 9]. Then I1 = [0, 1], I2 = [1, 2], I3 = [2, 3], I4 = [3, 4],
I5 = [4, 5], I6 = [5, 6], I7 = [6, 9].

Definition 10. S(X) =
∑

x∈X xmin and S(X) =
∑

x∈X xmax.
Let I be an interval of I(X). Then

• R(I) = {x | xmin ≥ max(I)}, the variables lying to the right of I
• L(I) = {x | xmax ≤ min(I)}, the variables lying to the left of I
• M(I) = {x | I ⊆ ID(x)}, the variables overlapping I
• ES(I) =

∑
x∈L(I) xmax +

∑
x∈R(I) xmin

• V (I) = [ES(I) + min(I) × |M(I)|, ES(I) + max(I) × |M(I)|]
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Lemma 2. ES(Ik+1) = ES(Ik) + (pk+1 − qk+1) × max(Ik),
where pk+1 = |L(Ik+1)| − |L(Ik)| and qk+1 = |R(Ik)| − |R(Ik+1)|.
Proof. ∀x ∈ (R(Ik) − R(Ik+1)) xmin = min(Ik+1) and ∀x ∈ (L(Ik+1) − L(Ik))
xmax = max(Ik). From Def. 9 max(Ik) = min(Ik+1). �

Proposition 1. ∀a ∈ [S(X), S(X)] there exists I ∈ I(X) such that a ∈ V (I).

Proof. We already have min(V (I1)) = S(X) and max(V (I|I(X)|)) = S(X). It is
therefore sufficient to show that for any two consecutive intervals Ik, Ik+1 from
I(X), we have min(V (Ik+1)) = max(V (Ik)), thus leaving no gaps. Let mk =
|M(Ik)| and mk+1 = |M(Ik+1)|. From Lemma 2, min(V (Ik+1)) = ES(Ik+1) +
mk+1 min(Ik+1) = ES(Ik) + (pk+1 − qk+1)max(Ik) + mk+1 min(Ik+1).
In addition, mk+1 = mk − pk+1 + qk+1 and min(Ik+1) = max(Ik).
Therefore min(V (Ik+1)) = ES(Ik) + max(Ik) × |M(Ik)| = max(V (Ik)). �

Definition 11. Given a value q such that q ∈ [S(X), S(X)] and I such that
q ∈ V (I), define the following assignment Aq,I on X:

Aq,I(x) =

⎧
⎨

⎩

xmax, x ∈ L(I)
xmin, x ∈ R(I)
(q − ES(I))/|M(I)|, x ∈ M(I)

Lemma 3. Assignment Aq,I is a feasible solution to Π(X, q) and is ν-centered.

Proof. We first have to show that every variable is assigned a value within its
relaxed domain. It is immediate in the first two cases but not so for x ∈ M(I).
Since q ∈ V (I), we have q − ES(I) ∈ [min(I) × |M(I)|, max(I) × |M(I)|] and
so (q − ES(I))/|M(I)| ∈ [min(I), max(I)] = I ⊆ ID(x), by definition of M(I).
This also shows that Aq,I is ν-centered with ν = (q−ES(I))/|M(I)|. As for the
sum,

∑n
i=1 Aq,I(x) = ES(I) + |M(I)|(q − ES(I))/|M(I)| = q. �

Theorem 3. Aq,I is an optimal solution to Π(X, q).

Proof. Given lemmas 1 and 3, it is sufficient to show that Aq,I is the unique fea-
sible ν-centered assignment for Π(X, q). Suppose A′ is another such assignment.
There is at least one variable xj such that A′(xj) > Aq,I(xj) because Aq,I and
A′ are not equal but have the same sum. So, A′(xj) > xmin

j and from Def. 8 for
A′ we have ∀i s.t. A′(xi) < A′(xj) : A′(xi) = xmax

i ≥ Aq,I(xi). Then, consider
any variable xi with A′(xi) ≥ A′(xj) and assume that Aq,I(xi) > A′(xi). In this
case, Aq,I(xi) > Aq,I(xj) and since xmax

j ≥ A′(xj) > Aq,I(xj) Def. 8 for Aq,I

implies that Aq,I(xi) = xmin
i which is not possible because Aq,I(xi) > A′(xi).

Therefore ∀i s.t. A′(xi) ≥ A′(xj): A′(xi) ≥ Aq,I(xi). Thus, ∀i = 1..n, i �= j :
A′(xi) ≥ Aq,I(xi) and A′(xj) > Aq,I(xj) so the sum of the elements of Aq,I

cannot be equal to the sum of the elements of A′. �

Next we propose to do the same thing for the more general problem Π(X, [�q, uq]).
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Theorem 4. Given I ∈ I(X) and GC(I) = n × ES(I)/(n − |M(I)|). We will
denote by q-opt(Π(X, V (I))) the value of q ∈ V (I) for which the objective value
of Π(X, V (I)) is optimal. Then

(i) If GC(I) ∈ V (I) then q-opt(Π(X, V (I))) = GC(I).
(ii) If GC(I) > max(V (I)) then q-opt(Π(X, V (I))) = max(V (I)).
(iii) If GC(I) < min(V (I)) then q-opt(Π(X, V (I))) = min(V (I)).

Proof. Consider q ∈ V (I) and q′ ∈ V (I) with q �= q′. From Theorem 3 Aq,I is
an optimal solution of Π(X, q), Aq′,I is an optimal solution of Π(X, q′). We have
∑

(xi− q
n )2 = (

∑
x2

i )− q2

n and let D(q, q′) =
∑

(Aq,I(x)− q
n )2−∑

(Aq′,I(x)− q′

n )2.
The values q and q′ belong to V (I) so ∀x ∈ (L(I) ∪ R(I)): Aq,I(x) = Aq′,I(x).
Therefore the sums of the squares for Aq,I and Aq′,I differ only for the elements
of M(I). If M(I) = ∅ then min(V (I)) = max(V (I)) so q′ �= q does not exist.
Let m = |M(I)| and e = ES(I). For Aq,I we have x ∈ M(I) ⇒ Aq,I(x) =
(q − e)/m, so

∑
x∈M(I) Aq,I(x)2 =

∑
x∈M(I)((q − e)/m)2 = 1

m(q2 + e2 − 2qe).

Thus D(q, q′) = 1
m (q2 + e2−2qe)− q2

n − 1
m((q′)2 + e2−2q′e)+ (q′)2

n or D(q, q′) =
1

nm ((n − m)(q2 − (q′)2) − 2ne(q − q′). Let q′ = q − α for some α �= 0 then

D(q, q − α) = α
nm [(n − m)(2q − α) − 2ne] = 2αq(n−m)

nm − α2(n−m)
nm − 2αne

nm . Now,
we can use this property to prove the theorem:

(i) Let q = GC(I) = ne
n−m then D(q, q−α) = −α2(n−m)

nm therefore since n >
m for all α such that (q−α) ∈ V (I), D(q, q −α) < 0 so q-opt(Π(X, V (I))) = q.

(ii) Let q = max(V (I)) then D(q, q − α) = 2αmax(V (I))(n−m)
nm − α2(n−m)

nm −
2αne
nm .WehaveGC(I) = ne

n−m > max(V (I)) andn > m and q−α < max(V (I)) ⇒
α > 0 so 2αmax(V (I))(n−m)

nm < 2α(ne/(n−m))(n−m)
nm = 2αne

nm . Therefore D(q, q−α) <
−α2(n−m)

nm < 0 because n > m. So q-opt(Π(X, V (I))) = q = max(V (I)).

(iii) Let q = min(V (I)) then D(q, q − α) = 2αmin(V (I))(n−m)
nm − α2(n−m)

nm −
2αne
nm . We have GC(I) = ne/(n − m) < min(V (I)) and (n − m) > 0 and

q − α > min(V (I)) ⇒ α < 0 so α(n − m) < 0 and 2αmin(V (I))(n−m)
nm <

2α(ne/(n−m))(n−m)
nm = 2αne

nm . Therefore D(q, q − α) < −α2(n−m)
nm < 0 because

n > m. So q-opt(Π(X, V (I))) = q = min(V (I)). �

Corollary 1. Theorem 4 holds if V (I) is replaced by V (I) ∩ [�q, uq] provided
V (I) ∩ [�q, uq] �= ∅.

5.2 Computing the Optimal Value

Given I and the xi’s sorted according to their bounds, Algorithm 1 computes
q-opt(Π(X, V (I))) and opt(Π(X, V (I))) for all I ∈ I in linear time. Following
the notation of Lemma 2 we have pk = |L(Ik)| − |L(Ik−1)| and qk = |R(Ik−1)| −
|R(Ik)|.

The two steps of the algorithm before the loop can certainly be performed in
O(n). We argue that each iteration of the loop can be computed in O(pk + qk)
time. Sets L(Ik), R(Ik), and M(Ik) are obtained in pk, qk, and pk + qk steps
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Algorithm 1. Computing q-opt(Π(X, V (I))) and opt(Π(X, V (I))) for allI ∈ I

Compute L(I1), R(I1), M(I1), and ES(I1);
Compute q-opt(Π(X,V (I1))) and opt(Π(X,V (I1))) using Th. 4 and Def. 11 and 7;
for k = 2 to |I| do

L(Ik)← L(Ik−1) ∪ {x | xmax = max(Ik−1)};
R(Ik)← R(Ik−1) \ {x | xmin = max(Ik−1)};
M(Ik)←M(Ik−1) \ {x | xmax = max(Ik−1)} ∪ {x | xmin = max(Ik−1)};
ES(Ik)← ES(Ik−1) + (pk − qk)×max(Ik−1);
V (Ik)← [ES(Ik) + min(Ik)× |M(Ik)|, ES(Ik) + max(Ik)× |M(Ik)|];
GC(Ik)← n× ES(Ik)/(n− |M(Ik)|);
Compute opt(Π(X, V (Ik))) and opt(Π(X, V (Ik))) using Th. 4, Def. 11 and 7;

respectively, which correspond to the number of elements added or deleted (each
is obtained in constant time since the xi’s are sorted). From Lemma 2, ES(Ik)
can also be computed in pk + qk steps. When all these values are known, V (Ik)
and GC(Ik) can be computed in O(1) so from Theorem 4 q-opt(Π(X, V (Ik)))
can be computed in O(1). In addition, opt(Π(X, V (Ik−1))) is known and Aq,Ik−1

has pk + qk values different from Aq′,Ik
so opt(Π(X, V (Ik))) can be computed

with O(pk + qk) operations using the formula
∑

(xi − q)2 =
∑

(xi)2 − q2

n .
Since

∑n
k=1 pk = n and

∑n
k=1 qk = n, the total amount of time to compute

q-opt(Π(X, V (I))) and opt(Π(X, V (I))) for all I ∈ I is in O(n).
Therefore, if we are provided with a maximum value πmax for Π(X, [�q, uq])

then we can reduce the interval [µmin, µmax] for µ since q = nµ. Such a value
can be easily obtained from σmax because from Def. 2 and Def. 7 we have the
relation n(σmax)2 = πmax.

5.3 Bounds Reduction

We consider a variable x of X and we study the consequences of the modifications
of the bounds of x. Of course if there is an interval I for which Aq,I(x) = xmin

and opt(Π(X, V (I))) is consistent with πmax (i.e. less than or equal to πmax)
then there is no need to consider any modification of the minimum, and the
same reasoning can be applied to xmax.

For a given interval I, we know how to compute efficiently the optimal solu-
tion opt(Π(X, V (I))). Thus, we can study the consequences of the modification
of the bounds of x for this interval, that is searching what are the minimum
and the maximum values that x can take while opt(Π(X, V (I))) ≤ πmax. Then,
we can repeat this process for all the intervals. Efficiently computing the new
possible bounds of x is not obvious because when x is changing the possible sum
of the variables is also changing and this impacts the value GC(I), and the op-
timal value of Π(X, V (I)) depends on it. The following propositions show how
to compute them. For convenience let I be an interval, m = |M(I)|, e = ES(I),
δ = πmax − opt(Π(X, V (I))). and sol(a, b, c) = −b+

√
b2−ac

a .
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Proposition 2. Given x ∈ R(I), let Π(X ′, V ′(I)) be the problem obtained by
setting x′ = x + d, V ′(I) and GC′(I) be the corresponding quantities for X ′.

(i) If GC(I) < min(V (I)) then
GC′(I) < min(V ′(I)) with d < d1 = n−m

m (min(V (I)) − GC(I)) and
max(d) = sol(a1, b1, c1), with a1 = 1 − 1

n , b1 = x − min(V (I))
n , c1 = −δ

(ii) If min(V (I)) ≤ GC(I) < max(V (I)) then
min(V ′(I)) ≤ GC′(I) < max(V ′(I)) with d < d2 = n−m

m (max(V (I)) − GC(I))
and max(d) = sol(a2, b2, c2), with a2 = 1 + m−n

(n−m)2 , b2 = mES(I)
n−m + x − GC(I)

n−m ,
c2 = −δ

(iii) If GC(I) ≥ max(V (I)) then
GC′(I) ≥ max(V ′(I)) with max(d) = sol(a3, b3, c3), with a3 = a1, c3 = c1 and
b3 = x − max(V (I))

n

Proof. (i) x ∈ R(I), so ES′(I) = ES(I) + d, V ′(I) = V (I) + d, M ′(I) = M(I)
and GC′(I) = GC(I) + nd/(n − m). Then GC′(I) < min(V ′(I)) if GC(I) +
nd/(n−m) < min(V (I))+d that is d < n−m

m (min(V (I))−GC(I)). The optimal
value for q′ is min(V ′(I)) = q + d. Consider opt′ = Π(X ′, V ′(I)). Then opt′ =∑

j �=i(x
′
j)

2 + (x′
i)

2 − q′2
n . In addition, ∀x′

j ∈ R(I) ∪ L(I) with x′
j �= x: x′

j = xj

and ∀x′
j ∈ M ′(I): x′

j = (q′ − ES′(I))/m = q − ES(I)/m = xj . Then, opt′ =
∑

j �=i(xj)2 +(xi +d)2− (q+d)2

n . So, the value of d for which opt′ = πmax is a root
of the equation: (1− 1

n )d2 +2d(x− q
n )− δ = 0, which has only one positive root.

(ii) similar as (i) excepted that the variables of M(I) have no longer the
same value. If xj ∈ M(I) then x′

j = (GC′(I) − ES′(I))/m = xj + d/(n − m).
(iii) similar as (i) excepted that q = max(V (I)). �

From this proposition and for a given interval I and a given variable x ∈ R(I),
we can define Function compute-d (see Algorithm 2) which computes the greatest
possible value of d. It is called with xmin as parameter for x. Its time complexity
is in O(1) because the recursive call in line ln1 does not satisfy the (i) and the
recursive call in line ln2 does not satisfy neither (i) or (ii).

The following proposition just mirrors the previous one and an algorithm
similar to Algorithm 2 can be derived from it.

Proposition 3. Given x ∈ L(I), let Π(X ′, V ′(I)) be the problem obtained by
setting x′ = x − d, V ′(I) and GC′(I) be the corresponding quantities for X ′.

(i) If GC(I) > max(V (I)) then
GC′(I) > max(V ′(I)) with d < d1 = n−m

m (GC(I) − max(V (I))) and
max(d) = sol(a1,−b1, c1), with a1, b1 and c1 as defined in Prop.2.(i).

(ii) If max(V (I) ≥ GC(I) > min(V (I)) then
max(V ′(I)) ≥ GC′(I) > min(V ′(I)) with d < d2 = n−m

m (GC(I) − min(V (I)))
and max(d) = sol(a2,−b2, c2), with a2, b2 and c2 as defined in Prop.2.(ii).

(iii) If GC(I) ≤ min(V (I)) then
GC′(I) ≤ min(V ′(I)) with max(d) = sol(a3,−b3, c3), with a3, b3 and c3 as de-
fined in Prop.2.(iii).
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Algorithm 2. Adjusting the upper bound of x ∈ R(I)

Function compute-d(V (I), ES(I), GC(I),m, x): number

if GC(I) < min(V (I)) then
Compute max(d) as indicated in Proposition 2(i);
d1 ← n−m

m
(min(V (I))−GC(I))

if max(d) < d1 then
Return max(d);

else
x′ ← x + d1; V ′(I)← V (I) + d1; ES′(I)← ES(I) + d1; GC′(I)← min(V ′(I))
ln1: Return d1+ compute-d(V ′(I), ES′(I),GC′(I),m, x′);

if min(V (I)) ≤ GC(I) < max(V (I)) then
Compute max(d) as indicated in Proposition 2(ii);
d2 ← n−m

m
(max(V (I))−GC(I));

if max(d) < d2 then
Return max(d);

else
x′ ← x + d2; V ′(I)← V (I) + d2; ES′(I)← ES(I) + d2; GC′(I)← max(V ′(I))
ln2: Return d2+ compute-d(V ′(I), ES′(I),GC′(I),m, x′);

Compute max(d) as indicated in Proposition 2(iii) and Return max(d);

When x ∈ M(I) the problem is more complex because if x is modified then the
number of variables in M(I) is also modified:

Proposition 4. Given x ∈ M(I), let Π(X ′, V ′(I)) be the problem obtained by
setting x′ = x + d, V ′(I) and GC′(I) be the corresponding quantities for X ′.

(i) If GC(I) < min(V (I)) then
GC′(I) < min(V ′(I)) with d < d1 = n−m+1

m−1 [(min(V (I))−GC(I))+ ne
(n−m)(m−1) ]

and max(d) = sol(a, b, c), with q = min(V (I)) and a = 1 − 1
n + m

(n−m+1)2 , b =
em

(n−m)(n−m+1)− em
(n−m)(n−m+1)2− q

n+x, c = − m2e2

(n−m)2(n−m+1)+
me2

(n−m)2(n−m+1)2 −
δ

(ii) If min(V (I)) ≤ GC(I) < max(V (I)) then
min(V ′(I)) ≤ GC′(I) < max(V ′(I)) with d < d2 = n−m+1

m−1 [(max(V (I)) −
GC(I)) + ne

(n−m)(m−1) ] and max(d) = sol(a, b, c), with a = 1 + m−n
(n−m+1)2 , b =

x+ em
(n−m)(n−m+1) − GC(I)

n−m+1 + e
(n−m+1)2 , c = − e2

(n−m)(n−m+1)2 + 2GC(I)e
(n−m)(n−m+1) −

2me2

(n−m)2(n−m+1) − δ

(iii) If GC(I) ≥ max(V (I)) then
GC′(I) ≥ max(V ′(I)) with max(d) = sol(a, b, c) of (i) with q = max(V (I)).

From this proposition we can derive a function which computes the maximum
value of d. This function is slightly different from the one of Algorithm 2, because
if x ∈ M(I) then after modifying x we have x ∈ R(I). So after a modification
the proposed function directly calls Function compute-d of Algorithm 2.

Proposition 5. Given x ∈ M(I), let Π(X ′, V ′(I)) be the problem obtained by
setting x′ = x − d, V ′(I) and GC′(I) be the corresponding quantities for X ′.
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(i) If GC(I) > max(V (I)) then
GC′(I) > max(V ′(I)) with d < d1 = n−m+1

m−1 [(GC(I)−max(V (I)))+ ne
(n−m)(m−1) ]

and max(d) = sol(a1,−b1, c1), with a1, b1 and c1 as defined in Prop.4.(i).
(ii) If GC(I) ∈ V (I) then

GC′(I) ∈ V ′(I) with d < d1 = n−m+1
m−1 [(GC(I) − min(V (I))) + ne

(n−m)(m−1) ] and
max(d) = sol(a2,−b2, c2), with a2, b2 and c2 as defined in Prop.4.(ii).

(iii) If GC(I) < min(V (I)) then
GC′(I) < min(V ′(I)) with max(d) = sol(a3,−b3, c3), with a3, b3 and c3 as de-
fined in Prop.4.(iii).

We can derive a similar algorithm from the previous propositions as we did
from Proposition 4. Then, for each x ∈ X we can compute for every interval I ∈ I
the minimum and the maximum values of x denoted by min(x) and max(x) such
that opt(Π(X, V (I))) ≤ πmax. By taking the minimum value of min(x) among
the values computed for every interval we obtain the new minimum value of
D(x), and by taking the maximum value of max(x) among the values computed
for every interval we obtain the new maximum value of D(x). Since the number
of intervals is at most n, this process takes O(n) time per variable. So we can
achieve bounds consistency on the variables of X is in O(n2).

6 Conclusion

This paper introduced a new constraint to express balance among n variables
in constraint programming models. It is based on the notions of mean, median,
and standard deviation from statistics. We gave several examples showing how
balance can be formulated with this constraint. Two efficient filtering algorithms
were given. The first one runs in O(n) time under a reasonable assumption. The
second one achieves bounds consistency in O(n2) time.
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