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Abstract. We present a range of techniques for tackling the problem of finding
sets of Mutually Orthogonal Latin Rectangles (MOLR). In particular, we use a
construction that allows us to search for solutions of a particular form with much
reduced effort, and a seeding heuristic for the MOLR problem that allows a local
search approach to find much better solutions than would be possible otherwise.
Finally, we use the MOLR solutions found to construct solutions to the social
golfer problem that improve the best known number of rounds for 43 instances,
by as many as 10 rounds.

1 Introduction

In [4], Dotú and Van Hentenryck used a constructive seeding heuristic to significantly
improve the quality of the results they found using local search for the social golfer
problem. As they noted, for certain instances their heuristic corresponds to constructing
a complete set of Mutually Orthogonal Latin Squares (MOLS), and results in an optimal
solution to the social golfers problem for those instances without any search required.
There is a well-known construction [2–II.2.20] for complete sets of MOLS that works
for more instances than Dotú and Van Hentenryck’s heuristic, again yielding optimal
solutions for the corresponding instances of the social golfers problem.

There are other methods that can be used to construct solutions to the social golfer
problem using sets of MOLS, due to Sharma and Das [18] and mathtalk-ga [13].
These approaches also work when given a set of Mutually Orthogonal Latin Rectangles
(MOLR), allowing solutions to the social golfer problem to be constructed for many
cases where a set of MOLS of sufficient size is not known to exist.

Sets of MOLR are also useful for constructing solutions to other problems, for ex-
ample perfect hash families [20] and low-density parity check codes [3]. However, it
seems that little work has been done on this problem. Franklin [6] gives a set of 3
MOLR of order 9× 10, while Wanless [22] improves this to a set of 4. Mullen and
Shiue [15] give a simple construction that generates some useful sets of MOLR, mostly
when the number of rows is small.

In this paper we present constructions and solutions that significantly extend and
improve on the currently known results for the MOLR problem, and then use these to
construct improved solutions for 43 instances of the social golfer problem.

In Section 2 we present background material on the MOLS, MOLR and social golfer
problems and their constructions. In Section 3 we present a new direct construction
for certain MOLR instances, and another construction that allows us to find MOLR
solutions by solving a much simpler problem. The local search algorithms we applied to
the MOLR and reduced problems are described in Section 4, while the results obtained
from all the methods used are presented in Section 5.
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2 Background

2.1 Latin Squares and Latin Rectangles

A Latin Square of order n is an n×n array where each entry in the array is taken from
the set {0 . . .n− 1} and for each row and column the elements of that row/column are
all different. A Latin Rectangle of order m×n (m≤ n) is the obvious generalisation of a
latin square to a non-square array: an m×n array where each entry in the array is taken
from the set {0 . . .n−1} and for each row and column the elements of that row/column
are all different. Clearly, a latin rectangle of order n×n is just a latin square of order n.

For a latin square or rectangle L, we denote the element in row i and column j by
L(i, j) (i ∈ {0 . . .m− 1}, j ∈ {0 . . .n− 1}). A square or rectangle L is then latin if it
satisfies the constraints:

L(i, j) ∈ {0 . . .n−1} ∀i ∈ {0 . . .m−1},∀ j ∈ {0 . . .n−1} (1)

alldifferent(L(i, j)| j ∈ {0 . . .n−1}) ∀i ∈ {0 . . .m−1} (2)

alldifferent(L(i, j)|i ∈ {0 . . .m−1}) ∀ j ∈ {0 . . .n−1} (3)

A set of Mutually Orthogonal Latin Squares (MOLS) is a set of latin squares such
that for any pair of squares Lα and Lβ from the set, the ordered pairs (Lα(i, j),Lβ(i, j))
must be distinct for all i and j:

alldifferent((Lα(i, j),Lβ(i, j))|i ∈ {0 . . .m−1}, j ∈ {0 . . .n−1})
∀α,β ∈ {1 . . .r},α �= β (4)

A set of Mutually Orthogonal Latin Rectangles (MOLR) is the straightforward gen-
eralisation of MOLS from latin squares to latin rectangles: (Lα(i, j),Lβ(i, j)) must be
distinct for all i and j for any pair of distinct rectangles Lα and Lβ from the set. Clearly,
a set of MOLR of order n×n is just a set of MOLS of order n.

Let N(n) be the maximum number of squares possible in a set of MOLS of order
n; let N(m,n) be the maximum number of rectangles possible in a set of MOLR of
order m×n. Clearly, N(n)≤ N(m,n) for any m≤ n since a set of MOLS of order n can
be turned into a set of MOLR of order m× n by removing a suitable number of rows
from the bottom of each square. We also have that N(m,n)≤ n−1 for any m such that
1 < m≤ n. A set of MOLS or MOLR containing n−1 elements is said to be complete.

For n = pe for some prime p, there is a well-known construction [2–II.2.20] that
yields a complete set of MOLS. Let GF(n) be the finite field of order n. For each α ∈
GF(n)\{0}, let Lα(i, j) = αi + j, where i, j ∈ GF(n) and the algebra is performed in
GF(n). The set {Lα|α ∈GF(n)\{0}} is then a set of n−1 MOLS of order n.

Note that the existence of a complete set of MOLS for these values of n means that
the m×n MOLR existence problem is solved as well: we have N(n) = N(m,n) = n−1.
For other (non prime power) values of n — other than 6 1 — the MOLS (and hence
MOLR) problem is still open; the best known lower bound on N(n) is generally much
smaller than n (see [2–Table II.2.72]). For these n it is usually the case that N(m,n) >
N(n) if m < n, but prior to the current work, little was known about the value of N(m,n)
for these cases, even for small values of n.

1 N(6) = 1; constructing two MOLS of order 6 is Euler’s 36 Officers Problem, a famous problem
with no solution.
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Fig. 1. Sharma and Das’s construction: the first round

2.2 The Social Golfer Problem

The Social Golfer Problem [9–Problem 10] involves trying to schedule w rounds of
golf, where in each round the g× s players are arranged into g groups of size s such
that no pair of players appear in a group together more than once. This problem has
received significant attention from the constraint programming community recently, for
example [1,4,5,12,16,17,19]. It is well-known that certain instances of the social golfer
problem (when w(s−1) = gs−1) correspond to instances of the Resolvable Balanced
Incomplete Block Design problem. Similarly, it is known that when g = s, the w-round
social golfer problem corresponds to the problem of finding w− 2 MOLS of order g.
This correspondence was exploited in [4], where the authors used a heuristic construc-
tion to seed their local search; when g = s was prime, their construction corresponded
to the standard construction for a complete set of MOLS, and thus yielded an optimal
solution to the golf problem without any search required. Clearly by exploiting the full
power of the MOLS construction, one can also obtain optimal search-free solutions for
the cases where g = s is a prime power.

Sharma and Das’s Construction. There are two other constructions of which we are
aware that allow solutions to the social golfer problem to be constructed from a set of
MOLS (in practice, MOLR). The first is that of Sharma and Das [18]. This construction
uses a set of r MOLR of order m×n to construct a solution to the social golfer problem
with g = n and s = m: if s does not divide g a solution with w = r+1 rounds is obtained;
if s does divide g an extra round may be obtained.

Write the golfers out in an s× g array G, as shown in Figure 1. One round of the
golf schedule is obtained from taking each column as a group.

{G(i, j)|i ∈ {0 . . .s−1}} ∀ j ∈ {0 . . .g−1}
The next r rounds are obtained using r MOLR of order s× g. Each latin rectangle Lα
yields a round, with each value appearing in Lα corresponding to a group in the round:
a group contains those players in G that have the same corresponding value in Lα.

{G(i, j)|Lα(i, j) = k, i ∈ {0 . . .s−1}, j ∈ {0 . . .g−1}} ∀k ∈ {0 . . .g−1}
This is illustrated in Figure 2, where Lα has been superimposed on G; for example,
group 0 corresponds to players 0, 7 and 16. Finally, if s divides g then a further round
can be obtained by dividing each row up into groups, as illustrated in Figure 3. �

In the case where s divides g and g ≥ s2, Sharma and Das’s construction can be
extended. In this case, rather than just one extra round involving groups lying entirely



Solving the MOLR and Social Golfers Problems 289

0 1 2 3 4 5

452301

2 3 4 5 0 1

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

Fig. 2. Sharma and Das’s construction: another round

within a row of G, one can actually schedule a w′-round mini-tournament amongst the
players in the row, where w′ is the best known number of rounds for the golf problem
with g/s groups of size s. Doing this simultaneously for all the rows means that a
schedule for r + 1 + w′ rounds can be achieved.

mathtalk-ga’s Construction. The other construction is due to mathtalk-ga [13].
This uses a set of r MOLS of order n to construct a solution with g = w = n and s = r+1;
again, if s divides g an extra round is possible.

As with Sharma and Das’s construction, write the golfers out in an s× g array G.
Each latin square is associated with a row of G after the first. The rows of the latin
squares correspond to the rounds of the golf schedule and the columns to the groups
of the rounds. Each entry in a latin square thus indicates which element of the latin
square’s corresponding row of G appears in a given group of a given round. The jth

player in the first row of G always appears in group j in each round. The groups for
round i are thus:

{G(0, j)}∪{G(α,Lα(i, j))|α ∈ {1 . . .r}} ∀ j ∈ {0 . . .g−1}

Since each group contains one player from each row of G, if s divides g an extra round
is possible by dividing the rows into groups, as with Sharma and Das’s construction. �

This construction can be adapted to work with MOLR instead of MOLS. If the best
known set of MOLS is of insufficient size for the desired golf group size, a larger set of
MOLR may be used instead, at the expense of a reduced number of rounds. In general,
a set of r MOLR of order m× n allows the construction of a golf solution with g = n,
s≤ r + 1 and w = m (if s does not divide g) or w = m+ 1 (if it does).

As before, more rounds can be achieved if s divides g and g ≥ s2, by scheduling
parallel mini-tournaments of g/s groups of s amongst the players in the rows of G.
Using known MOLS results, this immediately yields solutions for previously unsolved
instances (g-s-w) 12-3-16, 18-3-26 (closing this instance) and 20-4-25.
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Fig. 3. Sharma and Das’s construction: an extra round
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3 MOLR Constructions

3.1 Constructing MOLR Solutions Directly

In this section we present a generalisation of the classic construction for a complete set
of MOLS of order n = pe that allows us to generate (incomplete) sets of MOLR for
other values of n. Specifically, our construction allows us to generate pe−1 MOLR of
order pe×n′ for n′ = ∏e

i=1 qi where qi = p or qi ≥ 2p−1 for i ∈ {1 . . .e}.
As noted above, for the MOLS construction we have Lα(i, j) = αi+ j, where α, i, j ∈

GF(pe) and α �= 0 and the algebra is performed in GF(pe). Essentially, the elements in
column 0 of each square are generated by the product αi, with the rest of the columns
being generated by adding the column index. We leverage this for other values of n by
taking the columns generated for n = pe and extending them to rectangles of size pe×n′
by performing the addition of the column index in a different group, carefully selected
to preserve the orthogonality of the resulting rectangles. The key property is:

alldifferent(−Lα(i2,0)+ Lα(i1,0)|α ∈ {1 . . .r}) ∀i1, i2 ∈ {0 . . .m−1}, i1 �= i2 (5)

where r = pe−1 is the number of rectangles and m = pe is the number of rows in each
rectangle. This property holds when the evaluation is done in GF(pe) (or the MOLS
construction would not work), and must hold in our chosen group of order n′.

One of the standard interpretations of GF(pe) is as polynomials of degree at most
e−1 with coefficients being elements of the integers modulo p. Multiplication, addition,
etc. are then done as for polynomials, with polynomials of degree e or more being
reduced modulo an irreducible polynomial of degree e. Now consider the polynomials
of degree at most e−1 where the coefficients of xi−1 are elements of the integers modulo
qi. These polynomials form a group G of order n′ = ∏e

i=1 qi where the group operation
is addition. For our construction, we take the ‘0’ columns constructed by the MOLS
construction, interpret them using the polynomial interpretation above, and map the
coefficients so that a (mod p) is mapped to a (mod qi) for a ∈ {0 . . . p− 1}. Each of
the n′ columns required to form the rectangles of the desired size are then constructed
by adding different elements of G using the group operation of G.

These rectangles are mutually orthogonal if either qi = p or qi ≥ 2p−1 for all qi. It
suffices to show that

−b + a �=−d + c (mod p)⇒−b + a �=−d + c (mod qi)
∀a,b,c,d ∈ {0 . . . p−1} (6)

as this means that the constraint (5) is maintained when we switch to generating the
columns in the group G rather than in GF(pe). If qi = p then (6) is clearly satisfied.
Suppose qi ≥ 2p−1, and consider−b+a and −d + c using normal integer arithmetic.
These differences must fall in the range {−p+1 . . . p−1}. Each of these differences is
mapped to a different equivalence class modulo qi if qi ≥ 2p−1, and hence (6) holds.

Using the above construction yields, for example:

3 MOLR of order 4×6 (p = 2, n′ = 2 ·3)
4 MOLR of order 5×10 (p = 5, n′ = 10)
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7 MOLR of order 8×12 (p = 2, n′ = 2 ·2 ·3)
6 MOLR of order 7×14 (p = 7, n′ = 14)
8 MOLR of order 9×15 (p = 3, n′ = 3 ·5)
8 MOLR of order 9×18 (p = 3, n′ = 3 ·6)
7 MOLR of order 8×20 (p = 2, n′ = 2 ·2 ·5)

Moreover, if one relaxes the condition to also allow qi ∈ {p + 1 . . .2p− 2}, then
one can obtain near-solutions to the MOLR problem. These solutions can be used to
seed the local search (á là [4]), often giving a starting point with fewer violations than
had been achieved using local search alone, and allowing previously unsolved instances
to be solved. Note also that sometimes a near-solution constructed in this way can be
turned into a solution of a slightly smaller instance simply by dropping one or more
rectangles and/or rows; a proper investigation of this is beyond the scope of this paper.

3.2 Constructing MOLR Solutions by Solving a Reduced Problem

Many MOLR constructions follow the same basic pattern:

Lα(i, j) = αi+ j

For the MOLS construction the computation is done in GF(n); for Mullen and Shiue’s
construction [15] it is done in Zn (the integers modulo n); for our construction the
product is computed in GF(pe) and the addition in a group of order n. The basic premise
is the same: the entry in column j of a row is computed by adding j to the entry in
column 0, and the entries in column 0 of each rectangle are constructed or selected in
such a way that the resulting rectangles are latin and mutually orthogonal.

This leads to a more general way to construct MOLR: if one wishes to find r MOLR
of order m× n, search for a set of r “0” columns of height m such that each of these
columns can be extended to a full latin rectangle by adding j to form column j of the
rectangle, and such that the resulting rectangles are mutually orthogonal. We refer to
this reduced problem as the column problem.

Note that the addition in the construction can be performed in any group of order n.
This choice must be reflected in the constraints of the column problem — in the rest of
this section all arithmetic and algebra is assumed to be performed in the selected (pos-
sibly non-commutative) group. Note that the choice of group affects which instances
can be solved in this way; for example, a solution for 4 MOLR of order 5× 6 can be
constructed if one uses the integers modulo 6, but not if one uses the other group of
order 6.

There are two constraints for the column problem. The first is (5), the second is:

alldifferent(Lα(i,0)|i ∈ {0 . . .m−1}) ∀α ∈ {1 . . .r} (7)

The rectangles are then constructed as follows:

Lα(i, j) = Lα(i,0)+ j ∀α ∈ {1 . . .r},∀i ∈ {0 . . .m−1},∀ j ∈ {0 . . .n−1} (8)

Note that (8) implies that the entries in a row are distinct:

alldifferent(Lα(i, j)| j ∈ {0 . . .n−1}),∀α∈ {1 . . .r},∀i ∈ {0 . . .m−1}
and (7) with (8) implies that the entries in a column are distinct:
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alldifferent(Lα(i, j)|i ∈ {0 . . .m−1}),∀α∈ {1 . . .r},∀ j ∈ {0 . . .n−1}

That is, the rectangles are latin.
It remains to show that the rectangles are orthogonal. Consider two cells in Lα at

positions (i1, j1) and (i2, j2) that have the same value:

Lα(i1, j1) = Lα(i2, j2)
i.e. Lα(i1,0)+ j1 = Lα(i2,0)+ j2

i.e. −Lα(i2,0)+ Lα(i1,0) = j2− j1 (9)

Then for any other rectangle Lβ, orthogonality requires that the values in the same
positions must be different; that is, we need to show that:

Lβ(i1, j1) �= Lβ(i2, j2)

From (5) we know that:

−Lβ(i2,0)+ Lβ(i1,0) �= −Lα(i2,0)+ Lα(i1,0)
i.e. −Lβ(i2,0)+ Lβ(i1,0) �= j2− j1 (by (9))

i.e. Lβ(i1,0)+ j1 �= Lβ(i2,0)+ j2
i.e. Lβ(i1, j1) �= Lβ(i2, j2)

as required.
Thus solving the column problem allows us to construct a solution to the corre-

sponding MOLR problem. Of course, it only allows us to find MOLR solutions of this
particular form; there may be solvable MOLR instances for which there are no solu-
tions of this form. For example, it is known that there are 2 MOLS of order 10, yet a
complete search of the corresponding column problem found no solutions (when using
either of the two distinct groups of order 10 for the arithmetic).

4 Local Search for MOLR

In this section we present the local search approach we used to tackle the MOLR prob-
lem.

4.1 MOLR Model

The evaluation function used by local search algorithms for satisfaction problems is
usually based on the number of violated constraints. In order to minimise the number
of constraints that have to be checked for violation, we chose a model for the MOLR
problem that observes as many constraints as possible implicitly.

For r MOLR of order m× n, our model contains r + 1 rectangles. The rectangles
L1 through Lr are initialised such that each row contains a permutation of {0 . . .n−1},
fulfilling constraint (2). If we restrict the move operator to exchange values only within
a row, constraint (2) will always be observed during the search.
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Rectangle L0 is a control rectangle, which is initialised as

L0(i, j) = j ∀i ∈ {0 . . .m−1},∀ j ∈ {0 . . .n−1}
The control rectangle ensures that any assignment σ observing constraint (4) for all
pairs of rectangles (L0,Lα), 1≤ α≤ r will also observe constraint (3), since

(L0(i, j),Lα(i, j))σ = ( j,Lα(i, j))σ

and in any solution that observes constraint (4)

i1 �= i2⇔ ( j,Lα(i1, j))σ �= ( j,Lα(i2, j))σ⇔ Lα(i1, j)σ �= Lα(i2, j)σ

Using this model and restricting the search moves to exchange values only within
a row, any value assignment σ that does not violate constraint (4) will also observe the
two other constraints. Therefore, we can use the evaluation function

f (σ) =
r−1

∑
α=0

r

∑
β=α+1

n−1

∑
x=0

n−1

∑
y=0

max(0,#(σ,α,β,x,y))

with #(σ,α,β,x,y) = |{(i, j)|(Lα(i, j),Lβ(i, j))σ = (x,y)}|−1

the sum of violations of constraint (4) for all pairs of rectangles. An assignment σ is a
solution for an MOLR instance iff f (σ) = 0.

4.2 Neighbourhood

Since we only allow the exchange of values within a row, we generally use only one
type of move operator, swapping the values of two cells within a row:

µ(α, i, j1, j2) = [Lα(i, j1)↔ Lα(i, j2)]

For each search step, the algorithm chooses the move that reduces the number of
violations most. Should there be more than one move with the same benefit, a move will
be randomly chosen from that list. Since a swap between two cells can only improve
the violation count if at least one of the cells is currently in violation, we can restrict the
neighbourhood to such moves. The neighbourhood can then be defined as:

S = {µ(α, i, j1, j2)|∃β ∈ {0 . . .r} : β �= α∧
(#(σ,α,β,Lα(i, j1),Lβ(i, j1)) > 1∨#(σ,α,β,Lα(i, j2),Lβ(i, j2)) > 1)}

However, if there is no move that will improve the evaluation of the assignment,
the algorithm will choose with probability p1 a move that least increases the violation
count; with probability p2, it will swap two randomly chosen values within a randomly
chosen row; and with probability p3, it will right-shift a randomly chosen row by a
random amount.

The right-shift move (shifting row i of Lα by w positions) can be defined as:

µ̄(α, i,w) = [Lα(i,( j + w) mod n)← Lα(i, j),∀ j ∈ {0 . . .n−1}]
Right-shifting a complete row makes a larger step away from the local minimum,

and often allows the algorithm to escape from the area of that minimum. In our experi-
ments, we set p1 = 0.4, p2 = 0.35, and p3 = 0.25. These values were chosen since they
gave good results in our initial tests.
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4.3 Tabu Search Algorithm

Our local search algorithm is based on a tabu search with restart. For each possible
move µ(α, i, j1, j2) or µ̄(α, i,w), the tabu table T contains the step number t(α, i, j1, j2)
or t(α, i,w), respectively, until which this move is tabu. Moves that are currently tabu
are filtered from the neighbourhood. The tabu is based on the location of the swapped
cells, or the row and the shift, not on the particular values that are swapped: when the
values of two cells are swapped, a swap between these two cells becomes tabu for a
certain number of steps, even if the values in these cells change in the meantime.

When a move µ(α, i, j1, j2) is performed at step h, the tabu table entry t(α, i, j2, j1)
is set to h + d, where d is the current tabu tenure. For a right-shift move µ̄(α, i,w), the
entry t(α, i,(n−w) mod n) is set accordingly.

The tabu tenure ranges dynamically between maxTabu and minTabu steps. On every
non-improving step, the tenure is increased by one, up to maxTabu. On every improving
step, the value is decreased by one, down to minTabu. In our experiments, maxTabu was
set to 10, and minTabu to 2. These values were taken from [14].

In order to escape the area of a local minimum without a complete restart, we added
a perturbation component that alters parts of the current assignment. When the algo-
rithm fails to improve on the current best assignment for maxStable steps, the current
assignment is perturbed by right-shifting a random row from each rectangle (except the
control rectangle) by a random amount. In our experiments, maxStable was set to 150,
since initial tests showed that the search rarely progressed further for higher values.

The perturbation makes a major step away from the current assignment, often allow-
ing the algorithm to reach a different part of the search space, so that it can escape the
area of local minimum where it got stuck. For each iteration of the search, the algorithm
can make maxPert such perturbations, with maxPert set to 2 in our experiments.

If after maxPert perturbations the stableIter counter again reaches the value
maxStable, the algorithm restarts the search with a new initial assignment. In total
maxIter iterations of the search run are performed, with maxIter set to 10 in our ex-
periments. (A relatively small value of maxIter was chosen in order to keep the amount
of CPU time required for our experiments manageable.)

4.4 Seeding the Search

Initially, we used random permutations of {0 . . .n−1} to initialise the rows of the rect-
angles. However, this gave unsatisfactory results, with the search often starting with a
very high violation count. The search usually became repeatedly stuck in local minima,
failing to reach a solution despite the perturbation moves that allowed the search to
escape the area of a local minimum.

Therefore, we also used constructive heuristics to improve the seeding, similar to
Dotú and Van Hentenryck [4]. Our first seeding heuristic uses the MOLR construction
described Section 3.1. We select parameters for the heuristic with the same value of n
and where possible at least as many rectangles and rows as the final MOLR instance we
desire, filling in any missing rows with random permutations of {0 . . .n−1}.

Our second seeding heuristic uses the column problem construction described in
Section 3.2. In this case we take a near-solution to the corresponding column problem
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(also found with local search) and use it to construct a near-solution to the MOLR
problem, which is then used as the seed.

The performance of the different seeding heuristics is discussed in Section 5.

4.5 Local Search for the Column Problem

We model the column problem corresponding to r MOLR of order m×n using an array
C of dimension m× r, with elements taking values from {0 . . .n−1}. Note that C(i,α)
actually corresponds to Lα(i,0) from the MOLR problem. We also associate with each
column α the set of numbers Uα ⊂ {0 . . .n−1} that are unused in that column.

We initialise each column such that each cell in that column contains a different
value, thus fulfilling the alldifferent constraint (7). If we allow only exchanges of values
between cells within a column, or between a cell and the set of unused values for that
column, constraint (7) will always be observed. Therefore, the evaluation function uses
only the number of violations of constraint (5):

fc(σ) =
m−2

∑
i1=0

m−1

∑
i2=i1+1

n−1

∑
x=0

max(0,#(σ, i1, i2,x))

with #(σ, i1, i2,x) = |{α ∈ {1 . . .r}|(−C(i2,α)+C(i1,α))σ = x)}|−1

where the arithmetic is done in the chosen group of order n.
The search uses two types of moves: swapping the values of two cells in a column,

and swapping the value of a cell with a value from the set of unused values in its column:

µc(α, i1, i2) = [C(i1,α)↔C(i2,α)]
and µ′c(α, i,e) = [C(i,α)↔ e ∈Uα]

Again, the neighbourhood is restricted to moves involving cells in violation. For-
mally, it is defined as:

S = Ss∪Se

where

Ss = {µc(α, i1, i2)|∃i ∈ {0 . . .m−1} : (i �= i1∧#(σ, i1, i,−C(i,α)+C(i1,α)) > 1)
∨ (i �= i2∧#(σ, i2, i,−C(i,α)+C(i2,α)) > 1)}

and Se = {µ′c(α, i1,e)|∃i2 ∈ {0 . . .m−1} : i2 �= i1∧
#(σ, i1, i2,−C(i2,α)+C(i1,α)) > 1∧ e ∈Uα}

Should there be no move that will improve the evaluation, the algorithm will, as for
the MOLR problem, choose with probability p1 a move that least increases the violation
count; with probability p2, it will swap two randomly chosen values within a randomly
chosen column; and with probability p3, it will down-shift a randomly chosen column
by a random amount.

The tabu search algorithm is the same as for the MOLR problem. In our experi-
ments, we also set the parameters to the same values, with two exceptions. The first dif-
ference is that maxPert is set to zero; i.e. every time the stable iteration counter reaches
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the value maxStable, the search restarts with a random initialisation. Secondly, maxIter
is set to 20, since the column problem model is much smaller than the corresponding
MOLR model and the search progresses faster.

5 Results

We explored several approaches to solving the MOLR problem, eventually trying in-
stances up to n = 20:

1. Constructive backtracking search with symmetry breaking on the full MOLR
problem. This was implemented in ECLiPSe [21] using the SBDD symmetry li-
brary described in [8]. While this was able to completely solve (and enumerate)
instances with n = 6, non-trivial instances with n ≥ 10 seem beyond the reach of
this kind of approach at this time.

2. Local search on the full MOLR problem, as discussed in Section 4. This was also
implemented in ECLiPSe, and was able to solve some previously open instances,
but it was not particularly effective and was later surpassed by other approaches.

3. Construction, as discussed in Section 3.1. This was implemented in GAP [7], with
an ECLiPSe wrapper to allow integration with the other approaches. This approach
generally provided a reasonably good solution of the form m− 1 MOLR of order
m×n for each value of n. These solutions were later surpassed by other techniques,
but of course it is a fast way to obtain some MOLR for problem instances that are
too large to tackle with search.

4. Local search on the full MOLR problem, seeded with a constructed near-
solution, as discussed in Section 4.4. This was much more effective than starting
with a random seed; typically the seed for an instance had fewer violations than the
best assignment found without the seed, and enabled a number of new instances
to be solved. A number of these (notably for n = 12 and n = 15) have not been
matched by any other technique.
In section Section 3.1, we presented a construction that allowed us to generate
pe− 1 MOLR of order pe× n. In our experiments, we found that a good seeding
heuristic for finding r MOLR of order m×n is to set p to the prime number nearest
to max(r,m) and leave n un-factorised, so that e = 1. Only for some instances where
a factorisation of n exists such that r, m and pe are close together did such a seed
yield a better result (indicated by 4′ in Table 1) — usually factorising n was worse.

5. Constructive backtracking search on the column problem. The most effective
variant we tried was to simply assign variables random values from their domain,
giving up if no solution was found after 60 seconds of CPU time. We tried two
static variable ordering heuristics: rectangle-by-rectangle (good for instances with
few rectangles) and row-by-row (good for instances with few rows). We also tried
using groups other than the integers modulo n for the arithmetic, which sometimes
yielded superior results (indicated by a 5′ in Table 1). Solutions, when found, were
generally found in just a few seconds. This was one of the most effective of the
methods we tried for finding MOLR solutions; there were very few instances solved
by other methods that were not solved by this one.
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6. Local search on the column problem, as discussed in Section 4.5. This was the
other very effective method, able to find a number of solutions not found by the con-
structive backtracking approach, but also failing to find some solutions that were
found by that approach. As with the constructive approach above, we tried using
different groups for the arithmetic, and sometimes this yielded better results (indi-
cated by a 6′ in Table 1). Solutions, when found, were generally found in just a few
seconds; with our parameter settings even the largest instances ran for no more than
a few minutes if no solution was found. One of the reasons for trying this approach
is that even when it could not find a solution, any near-solutions it found could be
used as seeds for local search on the full problem.

7. Local search on the full MOLR problem, seeded with a near-solution from the
column problem. This approach turned out to be something of a disappointment,
failing to find solutions (only near-solutions) for any instances we tried that were
not solved by local search on the column problem. It is possible that a near-solution
to the column problem is a poor heuristic choice for seeding the full problem.

A summary of the best results for n ≤ 20 is given in Table 1. LB is the best known
lower bound; Method indicates which of the above methods was able to solve that in-
stance. We have included previously known results, from the extensively-studied MOLS
problem [2–II.2] and from [22]. We have omitted those values of n for which a com-
plete set of MOLS is known, since all such instances are solved by that set of MOLS.
We have also omitted results for m = 2 since there is a trivial construction for a com-
plete set of MOLR in this case. Finally we have omitted listing the methods for those
entries that are dominated by another entry (i.e. the latter has more rectangles and/or
more rows), except where it is useful to show how close our techniques are to matching
the MOLS results of [2–II.2].

An expanded set of results including solutions can be found on the web [10].
We suspect that our failure to match most of the MOLS results is at least in part due

to the fact that our most successful techniques can only find solutions of a certain form,
and for some instances there are no solutions of this form. For example, a complete
search of the column problem found no solution for 2 MOLS of order 10, even though
a solution to the full problem exists. While we are very pleased with the results that
we have obtained, for the most part we do not know how far from optimal they are.
Complete search is currently out of the question for all but the smallest instances, and
even for the well-studied MOLS problem very few good upper bounds are known. We
do, however, expect that our results can be significantly improved upon, particularly for
larger instances.

As shown in Section 2.2, MOLR solutions can be used to construct solutions to the
social golfer problem. Using the new results in Table 1 we were able to construct solu-
tions to the 43 instances listed in Table 2. The gain indicates the number of extra rounds
achieved over the previously best known result from any source (RBIBD, MOLS, con-
structions, constraint programming, etc.). Solutions to much larger instances of the so-
cial golfer problem remain within easy reach using the techniques we have presented
here; we merely had to stop somewhere. A full table of results for the social golfer
problem from all sources can be found on the web [11].
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Table 1. Summary of MOLR results: lower bounds for N(m,n)

n
6 10 12 14 15 18 20

LB Method LB Method LB Method LB Method LB Method LB Method LB Method
3 4 8 11 12 14 16 19
4 4 8 11 12 5′,6 14 5 16 4,5 19 5′
5 4 1,2,4,5,6 8 5 11 11 5′,6′ 11 5,6 14 5,6 16 5,6′
6 1 (trivial) 6 11 5′ 10 5′ 10 13 5′ 15 6′
7 6 5,6 8 8 4,5,6 10 12 5′ 13 6
8 4 8 4′ 7 5,6 10 10 4,5,6 11 5,6
9 4 [22],5 7 4′ 6 4,5,6 10 9 6′ 10 4,5

10 2 [2] 5 5 10 8 6′ 9 5,6
m 11 5 5 4 10 4 7 5′ 8 4,5′,6

12 5 [2],5′ 4 5 4 5,6 6 5 7 5
13 3 5 4 5 5,6 6
14 3 [2] 4 4 6 5′
15 4 [2] 4 5 5,6
16 4 5′ 4
17 3 5,6 4 5,6′
18 3 [2] 4
19 4
20 4 [2]

Table 2. New solutions for the social golfer problem (g-s-w)

Instance Gain Instance Gain Instance Gain Instance Gain Instance Gain
10-6-7 +1 14-5-12 +5 15-6-11 +6 18-5-16 +7 20-6-16 +10
10-7-7 +2 14-6-11 +4 15-7-11 +6 18-6-15 +6 20-7-14 +9
10-8-5 +1 14-7-10 +2 15-9-11 +6 18-7-13 +4 20-8-12 +7
10-9-5 +1 14-8-8 +4 15-10-11 +6 18-8-11 +2 20-9-11 +6

14-9-7 +3 15-11-11 +6 18-9-11 +1 20-10-11 +5
12-7-9 +3 14-10-6 +2 18-10-9 +5 20-11-9 +4
12-8-9 +3 14-11-6 +2 18-11-8 +4 20-12-8 +3
12-9-8 +2 14-12-5 +1 18-12-7 +3 20-13-7 +2

18-13-7 +3 20-14-7 +2
18-14-6 +2 20-15-6 +1
18-15-5 +1 20-16-6 +1
18-16-5 +1

6 Conclusions and Future Work

We have shown that by solving a reduced problem, one can construct good solutions to
the MOLR problem, which can be used to construct solutions to various other problems
of interest. In particular, we have shown how generalisations of MOLS-based construc-
tions can use these solutions to yield improved solutions to 43 instances of the social
golfer problem.
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We have also confirmed Dotú and Van Hentenryck’s result [4] that seeding a local
search algorithm with heuristically-constructed solutions with low violation counts can
dramatically improve results on this kind of combinatorial problem, where the local
search landscape contains many local minima and it is in general hard to progress to-
wards a global optimum. However, we have found that this is not always a benefit: the
wrong kind of construction can yield a seed which has a good initial violation count,
but starts the search in a local minimum from which it is almost impossible to escape.

The MOLR and social golfer problems are still both far from solved. It would be
interesting to see how far our MOLR results can be improved, and what other tech-
niques can be used to construct new solutions to the social golfer problem. One thing
we plan to investigate further is seeding a local search for the social golfer problem with
a constructed assignment based on a near-solution of the MOLR problem. Early exper-
iments with this approach have yielded a solution to the previously unsolved 14-8-9
instance. We also plan to continue to investigate construction techniques for the MOLR
and social golfer problems.
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