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Preface

The 11th International Conference on the Principles and Practice of Constraint
Programming (CP 2005) was held in Sitges (Barcelona), Spain, October 1–5,
2005. Information about the conference can be found on the web at
http://www.iiia.csic.es/cp2005/. Information about past conferences in the
series can be found at http://www.cs.ualberta.ca/~ai/cp/.

The CP conference series is the premier international conference on con-
straint programming and is held annually. The conference is concerned with
all aspects of computing with constraints, including: algorithms, applications,
environments, languages, models and systems.

This year, we received 164 submissions. All of the submitted papers received
at least three reviews, and the papers and their reviews were then extensively dis-
cussed during an online Program Committee meeting. As a result, the Program
Committee chose 48 (29.3%) papers to be published in full in the proceedings
and a further 22 (13.4%) papers to be published as short papers. The full papers
were presented at the conference in two parallel tracks and the short papers were
presented as posters during a lively evening session. Two papers were selected
by a subcommittee of the Program Committee—consisting of Chris Beck, Gilles
Pesant, and myself—to receive best paper awards. The conference program also
included excellent invited talks by Héctor Geffner, Ian Horrocks, Francesca Rossi,
and Peter J. Stuckey. As a permanent record, the proceedings contain four-page
extended abstracts of the invited talks.

CP 2005 continued the tradition of the CP doctoral program, in which PhD
students presented their work, listened to tutorials on career and ethical issues,
and discussed their work with senior researchers via a mentoring scheme. This
year, the doctoral program received 53 submissions. The field of constraint pro-
gramming is indeed alive and growing! Each of the PhD students who did not
already have a paper in the main conference was given one page in the pro-
ceedings to describe their ongoing research. As well, CP 2005 once again held a
systems demonstration session to highlight the state of the art in industrial and
academic applications, or prototypes. As a permanent record of the session, the
proceedings contain a one-page description of each demo.

On the first day of the conference, 13 workshops were held (listed on page
IX), each with their own proceedings. Four excellent tutorials were presented
during the conference: “SAT Solving and Its Relationship to CSPs” by Fahiem
Bacchus; “Advances in Search, Inference and Hybrids for Solving Combinatorial
Optimization Tasks” by Rina Dechter; “Programming with a Chinese Horse”
by Thom Frühwirth; and “Complete Randomized Backtrack Search Methods:
Connections Between Heavy-tails, Backdoors, and Restart Strategies” by Carla
Gomes.



VI Preface

On behalf of the constraint programming community, I would like to publicly
thank and acknowledge the hard work of the many people involved in putting this
year’s conference together. Thank you to Pedro Meseguer and Javier Larrosa,
the conference chairs, for their many hours organizing, budgeting, planning,
and coordinating that resulted in a most enjoyable conference for the rest of us.
Thank you to Michela Milano and Zeynep Kiziltan, the doctoral program chairs,
for smoothly and efficiently putting together the largest doctoral program so
far. Thank you to Alan Frisch and Ian Miguel, the workshop/tutorial chairs,
for their efforts in putting together excellent workshop and tutorial programs.
Thank you to Felip Manya, publicity chair, for prompt and efficient handling
of the publicity for the conference. Thank you to Chris Beck and Gilles Pesant
for their help on the Best Paper Award Committee. Thank you to the Program
Committee and the additional referees for their service to the community in
writing reviews and extensively discussing and choosing which papers to accept
at the conference. It was truly a pleasure to work with all of you. I would also
like to add a personal thank you to the Executive Committee of the Association
for Constraint Programming for inviting me to be program chair this year. It
has been a rewarding experience.

Finally, a thank you to the institutions listed below (page IX) who helped
sponsor the conference. Their generosity enabled the conference to bring in in-
vited speakers and fund students, thus greatly contributing to the success of the
conference.

September 2005 Peter van Beek
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Abstract. While Planning has been a key area in Artificial Intelligence
since its beginnings, significant changes have occurred in the last decade
as a result of new ideas and a more established empirical methodology. In
this invited talk, I will focus on Optimal Planning where these new ideas
can be understood along two dimensions: branching and pruning. Both
heuristic search planners, and SAT and CSP planners can be understood
in this way, with the latter branching on variables and pruning by con-
straint propagation, and the former branching on actions and pruning
by lower bound estimations. The two formulations, however, have a lot
in common, and some key planners such as Graphplan can be under-
stood in either way: as computing a lower bound function and searching
backwards from the goal, or as performing a precise, bounded form of
variable elimination, followed by backtracking. The main limitation of
older, so-called Partial Ordered Causal Link (POCL) planners, is that
they provide smart branching schemes, in particular for temporal plan-
ning, but weak pruning rules. Indeed, the computation and even the
formulation of good lower bounds for POCL plans is far from trivial.
However, the pruning that cannot be obtained by the use of good mono-
lithic lower bounds, can often be achieved by simple propagation rules
over a suitable constraint-based formulation. We show this to be the case
for CPT, currently the best domain-independent temporal planner, and
then explore briefly further branching and pruning variations in parallel
and conformant planning.

1 Introduction

AI Planning studies languages, models, and algorithms for describing and solv-
ing problems that involve the selection of actions for achieving goals. Most work
so far has been devoted to classical planning where actions are deterministic,
and plans are sequences of actions mapping a fully known initial situation into a
goal. Other variants considered, however, are temporal planning, where actions
have durations and some can be executed concurrently, and contingent and con-
formant planning, where actions are not deterministic, and their effects may or
may not be observable. In each case, the form and semantics of plans can be
defined precisely [1], the key problem is computational: how to search for plans
effectively given a compact description of the task (e.g., in Strips).

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 1–4, 2005.
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2 Branching and Pruning: Heuristic Search and SAT

The search for optimal plans, like the search for optimal solutions in many in-
tractable combinatorial problems, can be understood in terms of branching and
pruning. Both Heuristic Search and SAT (and CSP) approaches in planning can
be understood in this way; the former branches on actions and prunes by ex-
tracting and using lower bounds [2], the latter, branches on variables and prunes
by constraint propagation and consistency checking [3]. The two approaches
for taming the search, however, are closely related, and indeed, current SAT
approaches [4] work on the encoding extracted from the planning graph [5]: a
structure that can be interpreted as representing both a heuristic function and
a precompiled theory.

Simplifying a bit, the planning graph can be thought as a sequence of layers
P0, A0, P1, . . . A1, . . . such that each layer Pi contains facts and each layer Ai

contains actions. If computed in a state s, the facts in the first layer P0 are the
ones that are true in s, while then, iteratively, the actions in layer Ai are the ones
whose preconditions are in Pi, and the facts in layer Pi+1 are the ones added
by actions in Ai (for this construction, no-op actions are assumed for each fact
p with pre and postcondition p; see [5]). This is actually the relaxed planning
graph also called the reachability graph, a simplification of the graph computed
by Graphplan that ignores the so-called mutex information.

It is easy to show in either case that the heuristic function h(s) = i where
i is the index of the first layer Pi that contains the goals is a lower bound
on the number of actions that are needed for achieving the goals from s. A
generalized formulation of this class of lower bounds is given in [2], where a
family of admissible heuristic functions hm(s) for a fixed integer m = 1, 2, . . .
are defined that recursively approximate the cost of achieving a set of atoms
C by the cost of the achieving the most costly subset of size m in C. Relaxed
reachability corresponds to hm with m = 1, while mutex reachability corresponds
to hm with m = 2.

From a logical perspective, if L0, L1, L2, . . . , refer to the collections of fact
variables at time 0, action variables at time 0, fact variables at time 1, and so on,
it is easy to verify that all the clauses in planning theories involve variables in
the same layer Li, or variables in adjacent layers. The stratified nature of these
theories suggests a stratified form of inference: starting with the set of clauses
Γi in the first layer Li for i = 0, iteratively compute the sets of consequences
Γi+1 = Ci+1(Γi ∪ Ti,i+1) over the next layer Li+1, for i = 0, 1, . . ., using Γi and
the clauses Ti,i+1 that involve variables in both layers. If Ci+1(X) is defined as
the set of prime implicates of size no greater than m in Li+1 that follow from
X , then the derived clauses turn out to be in correspondence with the clauses
obtained from the planning graph: m = 1 yields a correspondence with the
relaxed planning graph, while m = 2 yields a correspondence with the planning
graph with pairwise mutexes. This inference is polynomial in the context of
planning theories, where it corresponds precisely to a form of bounded form
of variable elimination [6], where variables are eliminated in blocks inducing
constraints of size no greater than m; see [7] for details.
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3 Branching and Pruning in POCL Planning

Partial Order Planners were common in AI during the 80’s and early 90’s but
could not compete with Graphplan and successors in terms of performance [5].
The reason being that POP planners, and in particular Partial Order Causal
Link (POCL) planners [8], provide a branching scheme particularly suited for
temporal planning [9], but no comparable pruning mechanisms. This limitation
has been addressed recently in [10], where an optimal temporal planner that
combines a POCL branching scheme with strong pruning mechanisms has been
formulated in terms of constraints. The key element that distinguishes this plan-
ner, called CPT, from previous constraint-based POCL planners is the ability
to reason about all actions in the domain and not only the actions in the cur-
rent plan. The latter planners do not infer anything about an action until it is
included in the plan, and something similar occurs in the standard methods for
solving Dynamic CSPs. Yet often a lot can be inferred about such actions even
before any commitments are made; the lower bounds on the starting times of
all actions as computed in the planning graph being one example. In order to
perform these and other inferences, CPT represents and reasons with a set of
variables associated with all the actions in the domain. By means of a suitable
set of constraints, propagation rules, and preprocessing, CPT has been shown to
be the top performing optimal temporal planner, approching the performance of
the best SAT planners in the special case in which all actions have unit duration
[10].

The inference capabilities of CPT are illustrated in [10] by means of a sim-
ple tower-n domain, where n blocks b1, . . . , bn that are initially on the table,
need to be stacked in order with b1 on top. This is trivial problem for peo-
ple but not for an optimal domain-independent planner that fails to recognize
the structure of the problem. Indeed, none of the optimal planners considered,
including Graphplan, SAT, and Heuristic Search planners can solve instances
larger than n = 15. CPT, on the other hand, solves these and larger instances,
in a few seconds by pure (polynomial) inference and no search. Actually, in [11],
it is shown that many of the standard benchmarks used in planning, including
all instances of Blocks, Ferry, Logistics, Gripper, Miconic, Rovers and Satellite,
are solved backtrack free by an extension of CPT that performs further but still
polynomial inference in every node.

4 Further Variations on Branching and Pruning

Graphplan computes the planning graph once from the initial situation and then
searches the planning graph backwards for a plan. In [12], an alternative branch-
ing scheme is considered based on forcing a selected action in or out of the plan
at a given time. The planning graph is then recomputed in every node in a way
compatible with the commitments made, and a node is pruned when its planning
graph pushes the goal beyond planning horizon. It is then shown that this al-
ternative branching scheme, that preserves the same lower bound mechanism as
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Graphplan (the planning graph), does much better than Graphplan when many
actions can be done in parallel. In [13], the same branching scheme is used for
conformant planning where the plan must work for a number of possible initial
states (the initial state is partially unknown). Then partial conformant plans
are pruned when they become incompatible with the plan for some initial state.
This is determined by model-count operations that are rendered efficient by a
precompilation of the planning theory into a suitable logical form [14].

Clearly, branching and pruning go a long way in optimal problem solving,
yet it is not all branching and pruning. Two other ideas that have been shown
to be important as well in problem solving are Learning in both CSP/SAT [15]
and State Models [16], and Decomposition [14,17], in particular in problems that
are harder than SAT.

Acknowledgments. Many of the ideas in CPT as well as all the code are due to
Vincent Vidal. My work is supported in part by Grant TIC2002-04470-C03-02,
MCyT, Spain.
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Description Logics (DLs) are a family of class (concept) based knowledge repre-
sentation formalisms. They are characterised by the use of various constructors
to build complex concepts from simpler ones, an emphasis on the decidability of
key reasoning tasks, and by the provision of sound, complete and (empirically)
tractable reasoning services.

Although they have a range of applications (e.g., reasoning with database
schemas and queries [1,2]), DLs are perhaps best known as the basis for ontol-
ogy languages such as OIL, DAML+OIL and OWL [3]. The decision to base
these languages on DLs was motivated by a requirement not only that key infer-
ence problems (such as class satisfiability and subsumption) be decidable, but
that “practical” decision procedures and “efficient” implemented systems also
be available.

That DLs were able to meet the above requirements was the result of exten-
sive research within the DL community over the course of the preceding 20 years
or more. This research mapped out a complex landscape of languages, exploring
a range of different language constructors, studying the effects of various com-
binations of these constructors on decidability and worst case complexity, and
devising

At the same time, work on implementation and optimisation techniques
demonstrated that, in spite of the high worst case complexity of key inference
problems (usually at least ExpTime), highly optimised DL systems were capa-
ble of providing practical reasoning support in the typical cases encountered in
realistic applications [4]. With the added impetus provided by the OWL stan-
dardisation effort, DL systems are now being used to provide computational
services for a rapidly expanding range of ontology tools and applications [5–9].

Ontology Languages and Description Logics

The OWL recommendation actually consists of three languages of increasing
expressive power: OWL Lite, OWL DL and OWL Full. Like OWL’s predecessor
DAML+OIL, OWL Lite and OWL DL are basically very expressive description
logics with an RDF syntax. OWL Full provides a more complete integration

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 5–8, 2005.
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with RDF, but its formal properties are less well understood, and key inference
problems would certainly be much harder to compute.1 For these reasons, OWL
Full will not be considered here.

More precisely, OWL DL is based on the SHOIQ DL [11]; it restricts the
form of number restrictions to be unqualified (see [4]), and adds a simple form of
Datatypes (often called concrete domains in DLs [12]). Following the usual DL
naming conventions, the resulting logic is called SHOIN (D), with the different
letters in the name standing for (sets of) constructors available in the language: S
stands for the basic ALC DL extended with transitive roles [10], H stands for role
hierarchies (equivalently, inclusion axioms between roles), O stands for nominals
(classes whose extension is a single individual) [13], N stands for unqualified
number restrictions and (D) stands for datatypes) [14]. OWL Lite is equivalent
to the slightly simpler SHIF(D) DL (i.e., SHOIQ without nominals, and with
only functional number restrictions).

These equivalences allow OWL to exploit the considerable existing body of
description logic research, e.g.:

– to define the semantics of the language and to understand its formal prop-
erties, in particular the decidability and complexity of key inference prob-
lems [15];

– as a source of sound and complete algorithms and optimised implementation
techniques for deciding key inference problems [16,10,14];

– to use implemented DL systems in order to provide (partial) reasoning sup-
port [17,18,19].

Practical Reasoning Services. Most modern DL systems use tableaux algo-
rithms to test concept satisfiability. Tableaux algorithms have many advantages:
it is relatively easy to design provably sound, complete and terminating algo-
rithms; the basic technique can be extended to deal with a wide range of class
and role constructors; and, although many algorithms have a higher worst case
complexity than that of the underlying problem, they are usually quite efficient
at solving the relatively easy problems that are typical of realistic applications.

Even in realistic applications, however, problems can occur that are much too
hard to be solved by naive implementations of theoretical algorithms. Modern
DL systems, therefore, include a wide range of optimisation techniques, the use
of which has been shown to improve typical case performance by several orders
of magnitude; key techniques include lazy unfolding, absorption and dependency
directed backtracking [16,20,19,21].

Research Challenges

The effective use of logic based ontology languages in applications will critically
depend on the provision of efficient reasoning services to support both ontology
1 Inference in OWL Full is clearly undecidable as OWL Full does not include restric-

tions on the use of transitive properties which are required in order to maintain
decidability [10].
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design and deployment. The increasing use of DL based ontologies in areas such
as e-Science and the Semantic Web is, however, already stretching the capabil-
ities of existing DL systems, and brings with it a range of challenges for future
research.

These challenges include: improved scalability, not only with respect to the
number and complexity of classes, but also with respect to the number of in-
dividuals that can be handled; providing reasoning support for more expressive
ontology languages; and extending the range of reasoning services provided to
include, e.g., explanation [22,23], and so-called “non-standard inferences” such
as matching, approximation, and difference computations [24,25,26].

Finally, some applications will almost certainly call for ontology languages
based on larger (probably undecidable) fragments of FOL [27], or on hybrid
languages that integrate DL reasoning with other logical knowledge representa-
tion formalisms such as Datalog rules [28,29] or Answer Set Programming [30].
The development of such languages, and reasoning services to support them, ex-
tends the research challenge to the whole logic based knowledge representation
community.
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Abstract. Constraints and preferences are ubiquitous in real-life. Moreover, pref-
erences can be of many kinds: qualitative, quantitative, conditional, positive or
negative, to name a few. Our ultimate goal is to define and study formalisms that
can model problems with both constraints and many kind of preferences, possibly
defined by several agents, and to develop tools to solve such problems efficiently.

In this paper we briefly report on recent work towards this goal.

Motivation and Main Goal. Preferences are ubiquitous in real life. In fact, most prob-
lems are over-constrained and would not be solvable if we insist that all their require-
ments are strictly met. Moreover, solvable problems have solutions with different desir-
ability. Finally, many problems are more naturally described via preferences rather than
hard statements. In some cases it could be more natural to express preferences in quan-
titative terms, while in other situations it could be better to use qualitative statements.
Moreover, preferences can be unconditional or conditional. Furthermore, in many real
life problems, constraints and preferences of various kinds may coexist.

Unfortunately, there is no single formalism which allows all the different kinds of
preferences to be specified efficiently and reasoned with effectively. For example, soft
constraints [1] are most suited for reasoning about constraints and quantitative prefer-
ences, while CP-nets [2] are most suited for representing qualitative and possibly con-
ditional preferences. Our ultimate goal is to define and study formalisms that can model
problems with both constraints and many kind of preferences, and to develop tools to
solve such problems efficiently. Moreover, we also want to be able to deal with scenar-
ios where preferences are expressed by several agents, and preference aggregation is
therefore needed to find the optimal outcomes.

Preference Modelling Frameworks: Soft Constraints and CP-Nets. Soft constraints
[1] model quantitative preferences by generalizing the traditional formalism of hard
constraints. In a soft constraint, each assignment to the variables of a constraint is an-
notated with a level of its desirability, and the desirability of a complete assignment is
computed by a combination operator applied to the local preference values. By choos-
ing a specific combination operator and an ordered set of levels of desirability, we can
select a specific class of soft constraints. Given a set of soft constraints, an ordering
is induced over the assignments of the variables of the problem, which can be partial
or total. Given two solutions, checking whether one is preferable to the other one is

� This is joint work with C. Domshlak, M. S. Pini, S. Prestwich, A. Sperduti, K. B. Venable, T.
Walsh, and N. Yorke-Smith.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 9–12, 2005.
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easy: we compute the desirability values of the two solutions and compare them in the
preference order. However, finding an optimal solution for a soft constraint problem is
a combinatorially difficult problem.

CP-nets [2] (Conditional Preference networks) are a graphical model for compactly
representing conditional and qualitative preference relations. They exploit conditional
preferential independence by structuring a user’s possibly complex preference order-
ing with the ceteris paribus assumption. CP-nets are sets of conditional ceteris paribus
preference statements (cp-statements). For instance, the statement ”I prefer red wine to
white wine if meat is served.” asserts that, given two meals that differ only in the kind
of wine served and both containing meat, the meal with a red wine is preferable to the
meal with a white wine. Given a CP-net, an ordering is induced over the set of assign-
ments of its features. In general, such an ordering is a preorder (that is, reflexive and
transitive). Given an acyclic CP-net, finding an optimal assignment to its features can
be done in linear time. However, for cyclic CP-nets, it becomes NP-hard. Comparing
two outcomes is NP-hard as well, even when the CP-net is acyclic.

Summarizing, CP-nets and soft constraints have complementary advantages and
drawbacks. CP-nets allow one to represent conditional and qualitative preferences, but
dominance testing is expensive. On the other hand, soft constraints allow to represent
both hard constraints and quantitative preferences, and have a cheap dominance testing.

Comparing the Expressive Power of Different Formalisms. It would be very useful
to have a single formalism for representing preferences that have the good features of
both soft constraints and CP-nets. To achieve this goal, we may start by comparing their
expressive power.

We could say that a formalism B is at least as expressive than a formalism A if
from a problem expressed using A it is possible to build in polynomial time a problem
expressed using B such that the optimal solutions are the same. If we use this definition
to compare CP-nets and soft constraints, we see that hard constraints are at least as
expressive as CP-nets. In fact, given any CP-net, we can obtain in polynomial time a
set of hard constraints whose solutions are the optimal outcomes of the CP-net. On the
contrary, there are some hard constraint problems for which it is not possible to find in
polynomial time a CP-net with the same set of optimals. If instead, not only we must
maintain the set of optimals, but also the rest of the ordering over the solutions, then
CP-nets and soft or hard constraints are incomparable.

However, it is possible to approximate a CP-net ordering via soft constraints, achiev-
ing tractability of dominance testing while sacrificing precision to some degree [4]. Dif-
ferent approximations can be characterized by how much of the original ordering they
preserve, the time complexity of generating the approximation, and the time complexity
of comparing outcomes in the approximation.

Constraints and Preferences Together. Many problems have both constraints and
qualitative and/or quantitative preferences. Unfortunately, reasoning with them both is
difficult as often the most preferred outcome is not feasible, and not all feasible out-
comes are equally preferred. For example, consider a constrained CP-net, which is a
CP-net plus a set of hard constraints. This structure allows to model both qualitative
conditional preferences and hard constraints. Its optimal outcomes (called “feasible
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Pareto optimals” in [3]) are all the outcomes which are feasible and not dominated
in the CP-net by any other feasible outcome. It is possible to obtain all such optimal
outcomes by just solving a set of hard constraints [7]. In well defined cases, this avoids
expensive dominance testing. If we want to avoid dominance testing completely, we
can do that at the price of obtaining a superset of the feasible Pareto optimals by hard
constraint solving. The same constraint-based procedure can be used also when we add
soft constraints to a CP-net.

Learning Preferences. It is usually hard for a user to describe the correct preferences
for his real-life problem. This is especially true for soft constraints, which do not have
an intuitive graphical representation. We have shown that the use of learning techniques
can greatly help in this respect, allowing users to state preferences both on entire solu-
tions and subsets of the variables [8].

Preferences and Uncertainty. Preferences are a way to describe some kind of uncer-
tainty. However, there is also uncertainty which comes from lack of data, or from events
which are under Nature’s control. Fortunately, in the presence of both preferences and
uncertainty in the context of temporal constraints, we can reason with the same com-
plexity as if we just had preferences [11]. Many approaches to deal with uncertainty
are based on possibility theory. The handling of the coexistence of preferences and
uncertainty via possibility theory allows for a natural merging of the two notions and
leads to several promising semantics for ordering the solutions according to both their
preference and their robusteness to uncertainty [6].

Preference Aggregation: Fairness and Non-manipulability. In many situations, we
need to represent and reason about the simultaneous preferences of several agents. To
aggregate the agents’ preferences, which in general express a partial order over the
possible outcomes, we can query each agent in turn and collect together the results. We
can see this as each agent “voting” whether an outcome dominates another. We can thus
obtain different semantics by collecting these votes together in different ways [9].

Having cast our preference aggregation semantics in terms of voting, it is appro-
priate to ask if classical results about voting theory apply. For example, what about
Arrow’s theorem [5], which states the impossibility of a fair voting system? Can we
fairly combine together the preferences of the individual agents?

The definition of fairness considered by Arrow consists of the following desirable
properties:

– Unanimity: if all agents agree that A is preferable to B, then the resulting order
must agree as well.

– Independence to irrelevant alternatives: the ordering between A and B in the result
depends only on the relation between A and B given by the agents.

– Monotonicity: whenever an agent moves up the position of one outcome in her
ordering, then (all else being equal) such an outcome cannot move down in the
result.

– Absence of a dictator: a dictator is an agent such that, no matter what the others
say, will always dictate the resulting ordering among the outcomes.
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Under certain conditions, it is impossible for a preference aggregation system over
partially ordered preferences to be fair [10]. This is both disappointing and a little sur-
prising. By moving from total orders to partial orders, we expect to enrich greatly our
ability to combine preferences fairly. In fact, we can use incomparability to resolve con-
flict and thereby not contradict agents. Nevertheless, under the conditions identified, we
still do not escape the reach of Arrow’s theorem. Even if we are only interested in the
most preferred outcomes of the aggregated preferences, it is still impossible to be fair.

Of course fairness is just one of the desirable properties for preference aggrega-
tions. Other interesting properties are related to the non-manipulability of a preference
aggregation system: if an agent can vote tactically and reach its goal, then the system is
manipulable. Results for totally ordered preferences show that non-manipulability im-
plies the existence of a dictator. Unfortunately, this continues to hold also for partially
ordered preferences.

Future Work. Much work has yet to be done to achieve the desired goal of a single
formalism to model problems with both constraints and preferences of many kinds, and
to solve them efficiently. For example, we are currently considering extensions of the
soft constraint formalism to model both positive and negative preferences. Also, we are
studying the relationship between optimal solutions in preference formalisms and Nash
equilibria in game theory. Finally, we plan to study the notion of privacy in the context
of multi-agent preference aggregation.
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Abstract. The G12 project recently started by National ICT Australia
(NICTA) is an ambitious project to develop a software platform for solv-
ing large scale industrial combinatorial optimisation problems. The core
design involves three languages: Zinc, Cadmium and Mercury (Group 12
of the periodic table). Zinc is a declarative modelling language for ex-
pressing problems, independent of any solving methodology. Cadmium
is a mapping language for mapping Zinc models to underlying solvers
and/or search strategies, including hybrid approaches. Finally, existing
Mercury will be extended as a language for building extensible and hy-
bridizable solvers. The same Zinc model, used with different Cadmium
mappings, will allow us to experiment with different complete, local, or
hybrid search approaches for the same problem. This talk will explain
the G12 global design, the final G12 objectives, and our progress so far.

1 Introduction

The G12 project aims to build a powerful and easy-to-use open source constraint
programming platform for solving large scale industrial combinatorial optimiza-
tion (LSCO) problems. The research project is split into four related threads:
building richer modelling languages, building richer solving capabilities, a richer
control language mapping the problem model to the underlying solving capabil-
ities, and a richer problem-solving environment.

The underlying implementation platform will be the Mercury system. On top
of Mercury the project will build a generic modelling language, called Zinc, and
a mapping language, called Cadmium, which takes a Zinc model and generates a
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Mercury program. We also plan that Zinc and Cadmium will combine to output
programs for different constraint solving systems such as ILOG Solver [6], Xpress
MP [7] and Comet [2]. A diagram showing the four threads and how they interact
with existing solvers and the current language Mercury is shown above.

2 Richer Modelling

The process of solving LSCO problems can be separated into creating the concep-
tual model, and an algorithm development process for mapping the conceptual
model to a design model. This depends upon a language for writing conceptual
models, and usually another language for writing design models.

In order to maintain clarity, flexibility, simplicity and correctness, we separate
the conceptual modelling language Zinc from the mapping language Cadmium,
which is both the design modelling language and the search language.

The best starting point for a universal conceptual modelling language is
a purely declarative modelling language. Such a language allows the modeller
to give a high-level specification of the constraint problem in terms natural
to the problem itself. In order to do so it must include data structures that
naturally arise in modelling such as arrays and sets, as well as be extensible in
order to incorporate new problem specific structures such as jobs and tasks. We
need natural constructs for specifying large constraints and large conjunctions
of constraints. In order to encapsulate common problem structure we need to be
able to specify predicates and functions in the modelling language for reuse.

The modeller needs to be able to specify requirements for robust, as well as
optimal, solutions. Robust solutions are less sensitive to change in parameters,
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and reflect the reality that real solutions often need to be repaired when they
are put into practice. It must be possible for the modelling language to specify
the required type of robustness.

There are many challenges in the design of the Zinc language. For example,
how can we make the language suitable for both an operations researcher expe-
rienced in using restricted mathematical modelling languages such as AMPL [1],
as well as computer scientists used to the flexibility and power of programming
languages. OPL [5] is the closest current language to how we envisage Zinc.

3 Richer Mapping

In order to make use of a conceptual model we must have some way of compiling
it, that is mapping it to a design model. One advantage of separating of the
conceptual modelling language from the design model is the ability to then
rapidly experiment with different design models for the same conceptual model.

We wish to provide transparent and flexible ways of specifying how a con-
ceptual model is mapped to a design model. Experience in developing solutions
to industrial constraint problems has shown that we will often need to use two
or more solving technologies to tackle a hard constraint problem. Various con-
straints will be treated by one solver, while other constraints will be treated by
another. Some constraints may be treated by two or more solvers. When we are
using multiple solvers we not only need to specify which constraints are sent to
each solver, and how they are mapped to that solver, but how the solvers will
interact. This must be supported by Cadmium.

G12 will not only need to provide a modelling interface to distinct solving
methods from mixed integer programming (MIP), constraint programming (CP)
and local search, but will also need to provide a modelling and mapping interface
to methods for integrating these techniques. The design models for such an
integrated scheme may involve combinations of algorithms from all three areas.
The Cadmium language in which the design models are expressed must therefore
subsume the expressive power of all the above languages. Much more is required
however, since the interaction between local search and branch-and-infer search
open a huge space of possible hybridisations.

4 Richer Solving

Constraint programming systems typically employ tree search to complement
constraint propagation. Moreover the search is depth first and alternative search
choices are only explored after backtracking to the relevant choice point. By
contrast MIP search typically explores the search tree in a best-first fashion,
which requires a multitude of open nodes to be recorded, ready for expansion at
a later time. Recently systems like Mozart [4] have incorporated the open nodes
approach in CP. With G12 we shall pursue the convergence of CP and MIP
search by reducing the cost of jumping between open nodes, and maintaining
flexibility between the many different tree search strategies.

However local search techniques are playing an increasingly important role in
CP. The Comet CP system [2] supports a wide range of local search techniques,
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with constraint handlers adapted to the local search paradigm. The final addition
to the arsenal of search methods offered by G12 will be population-based search
methods, such as genetic algorithms. These methods explore a whole population
of solutions concurrently, and then combine the results from the population to
focus the search on promising areas of the search space.

To date no system has enabled the user to specify the problem in terms of
an algorithm-independent conceptual model, and have the computer map this
into, say, an ant colony optimisation algorithm. The challenge for Cadmium is
to make this mapping straightforward and concise, yet precise and flexible.

Another important research direction for richer solving will be developing
algorithms for returning more robust solutions, more diverse solutions, or finding
similar solutions to previous solutions.

5 Richer Environment

The key to solving complex industrial application problems is rapid applications
development, with close end-user involvement. To support rapid application de-
velopment, a rich solution development environment is essential.

The first stage in developing an application is constructing a correct Zinc and
Cadmium model. This is much easier for the application programmer if solutions
are graphically realized in a way that they can readily understand. The second
and more time consuming phase is performance debugging in which we study the
behaviour of the algorithms at runtime and understand exactly what is going on.
Interaction with a running algorithm is necessary to detect its weaknesses, and
to understand and build on its strengths. To support close end-user involvement,
the problem solving behaviour must be made meaningful and transparent to the
end-user. This requires that the algorithm behaviour be mapped back onto the
problem model, so that the user can understand the behaviour in terms of the
original application.

6 Conclusion

The G12 project aims, using the separation of the conceptual model from the
design model, to provide a software framework where many, perhaps all, op-
timizations approaches can be experimented with efficiently. By allowing this
exploration we hope to get closer to the ultimate goal of simply specifying the
problem and letting the G12 system determine the best way to solve it.
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Abstract. We review the many different definitions of symmetry for
constraint satisfaction problems (CSPs) that have appeared in the liter-
ature, and show that a symmetry can be defined in two fundamentally
different ways: as an operation preserving the solutions of a CSP instance,
or else as an operation preserving the constraints. We refer to these as
solution symmetries and constraint symmetries. We define a constraint
symmetry more precisely as an automorphism of a hypergraph associ-
ated with a CSP instance, the microstructure complement. We show
that the solution symmetries of a CSP instance can also be obtained as
the automorphisms of a related hypergraph, the k-ary nogood hypergraph
and give examples to show that some instances have many more solution
symmetries than constraint symmetries. Finally, we discuss the practical
implications of these different notions of symmetry.

1 Introduction

The issue of symmetry is now widely recognised as of fundamental importance
in constraint satisfaction problems (CSPs). It seems self-evident that in order to
deal with symmetry we should first agree what we mean by symmetry. Surpris-
ingly, this appears not to be true: researchers in this area have defined symmetry
in fundamentally different ways, whilst often still identifying the same collection
of symmetries in a given problem and dealing with them in the same way.

In this paper, we first survey the various symmetry definitions that have ap-
peared in the literature. We show that the existing definitions reflect two distinct
views of symmetry: that symmetry is a property of the solutions, i.e. that any
mapping that preserves the solutions is a symmetry; or that symmetry preserves
the constraints, and therefore as a consequence also preserves the solutions. We
propose two new definitions of solution symmetry and constraint symmetry to
capture these two distinct views, and show that they are indeed different: al-
though any constraint symmetry is also a solution symmetry, there can be many
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solution symmetries that are not constraint symmetries. We discuss the relation-
ship between the symmetry groups identified by these definitions and show that
each is the automorphism group of a hypergraph, derived from either the solu-
tions or the constraints of the CSP. We illustrate these ideas by discussing how
they apply to a well-studied example problem, the n-queens problem. Finally,
we discuss how these definitions of symmetry may be used in practice.

2 A Brief Survey of Symmetry Definitions

There have been many papers in recent years on symmetry in constraint satis-
faction and related problems, not all of which give a clear definition of symmetry.
In this section, we review the variety of definitions that have been used.

We first fix our terminology by defining a CSP instance as follows.

Definition 1. A CSP instance is a triple 〈V, D, C〉 where:

– V is a set of variables;
– D is a universal domain, specifying the possible values for those variables;
– C is a set of constraints. Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where σ

is a list of variables from V , called the constraint scope, and ρ is a |σ|-ary
relation over D, called the constraint relation.

An assignment of values to variables is a set {〈v1, a1〉, 〈v2, a2〉, ..., 〈vk, ak〉}
where {v1, v2, ..., vk} ⊆ V and ai ∈ D, for all i such that 1 ≤ i ≤ k. Note that
the constraint relation of a constraint c is intended to specify the assignments
that are allowed by that constraint.

A solution to the CSP instance 〈V, D, C〉 is a mapping from V into D whose
restriction to each constraint scope is a member of the corresponding constraint
relation, i.e., is allowed by the constraint.

We will call a CSP k-ary if the maximum arity of any of its constraints is k.
There are two basic types of definition for symmetry in a CSP instance: those

that define symmetry as a property of the set of solutions, and those that define
symmetry as a property that can be identified in the statement of the problem,
without solving it. We shall refer to these informally in this section as solution
symmetry and problem symmetry or constraint symmetry. In Section 3 we will
define them formally and use these definitions to show how the two types of
symmetry are related.

An example of an early definition of solution symmetry is given by Brown,
Finkelstein & Purdom [5], who define a symmetry as a permutation of the prob-
lem variables that leaves invariant the set of solutions. Backofen and Will [2]
similarly define a symmetry as a bijective function on the set of solutions of
a CSP: they allow a symmetry to be specified by its effect on the individual
assignments of values to variables.

A number of papers have defined problem symmetry in propositional calcu-
lus. Aguirre [1] and Crawford, Ginsberg, Luks & Roy [6] each define symmetry
similarly: if S is a set of clauses in CNF, then a permutation π of the variables



Symmetry Definitions for Constraint Satisfaction Problems 19

in those clauses is a symmetry of S if π(S) = S. The expression π(S) denotes
the result of applying the permutation π to the clauses in S. If this permutation
simply re-orders the literals in individual clauses, and reorders the clauses, then
it leaves S effectively unchanged, and so in this case π(S) = S and π is a sym-
metry. Benhamou and Sais [4] use a slightly more general definition, in which a
symmetry is a permutation defined on the set of literals that preserves the set
of clauses. For example, given two variables x and y, x may be mapped to ¬y.

In CSPs, some authors have similarly defined a symmetry as a mapping that
leaves the constraints unchanged, but have often restricted the allowed mappings
to those that affect only the variables or only the values. Note that a constraint
may be specified extensionally by listing its allowed tuples, or intensionally by
giving an expression such as x < y from which the allowed tuples could be
determined. Permuting the variables in a constraint will in general change it:
for example, the constraint x + y = z is not the same as the constraint x +
z = y. Puget [15] defines the notion of a symmetrical constraint, that is, a
constraint which is unaffected by the order of the variables. For example, the
binary inequality constraint, �=, is symmetrical. He defines a symmetry of a CSP
as a permutation of the variables which maps the set of constraints into an
equivalent set: any constraint is either unchanged by the permutation or is an
instance of a symmetrical constraint and is mapped onto a constraint on the
same set of variables.

A similar idea was introduced by Roy and Pachet [17]. They define the notion
of intensional permutability: two variables are intensionally permutable if: they
have the same domain; any constraint affecting either of them affects both; for
any constraint affecting these two variables, interchanging them in the expression
defining the constraint does not change it. (The constraint is assumed to be
defined intensionally, hence the name.) For example, in a linear constraint, any
two variables with the same coefficient are intensionally permutable (with respect
to that constraint, and assuming that they have the same domain).

Both Puget [15] and Roy and Pachet [17] restrict their definitions of sym-
metries to mappings that permute the variables of the problem only. Meseguer
and Torras [14] define symmetries that act on both the variables and the values
of a CSP. They define a symmetry on a CSP with n variables as a collection of
n+1 bijective mappings Θ = {θ, θ1, ..., θn}. The mapping θ is a bijection on the
set of variables {x1, x2, . . . , xn}; each θi is a bijection from D(xi) to D(θ(xi))
(where D(xi) is the domain D restricted to the acceptable values for xi by unary
constraints). These mappings will also transform each constraint. The set Θ is
called a symmetry if it does not change the set of constraints C, as a whole.

Meseguer and Torras’s definition allows both variable symmetries (that per-
mute only the variables) and value symmetries (that permute only the values)
as special cases, and hence is more general than many earlier definitions. How-
ever, it does not allow mappings in which variable-value pairs involving the same
variable (say 〈xi, a1〉 and 〈xi, a2〉) can be mapped to variable-value pairs involv-
ing different variables (say 〈xj , aj〉 and 〈xk, ak〉, where xj �= xk). For example,
Meseguer and Torras consider the n-queens problem, in the commonly-used CSP
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formulation in which the variables correspond to the rows of the chessboard and
the values to the columns. They show that the reflections in the horizontal and
vertical axes and the rotation of the chessboard through 180◦ are symmetries of
the corresponding CSP according to their definition, but the other four chess-
board symmetries (reflection in the diagonals, rotation through 90◦ and 270◦)
are not. This example will be considered in more detail in Section 4 below.

Finally, we consider the notion of interchangeability, as defined by Freuder
[9]. This is a form of solution symmetry: two values a, b for a variable v are fully
interchangeable if every solution to the CSP containing the assignment 〈v, a〉
remains a solution when b is substituted for a, and vice versa. As Freuder notes,
in general identifying fully interchangeable values requires finding all solutions
to the CSP. He therefore defines local forms of interchangeability that can be
identified by inspecting the problem. Neighbourhood interchangeability, for ex-
ample, is a form of constraint symmetry: two values a, b for a variable v are
said to be neighbourhood interchangeable if for every constraint c whose scope
includes v, the set of assignments that satisfy c which contain the pair 〈v, a〉 still
satisfy c when this is replaced by 〈v, b〉, and vice versa.

Benhamou [3] extends the ideas of interchangeability slightly and distin-
guishes between semantic and syntactic symmetry in CSPs, corresponding to
our notions of solution symmetry and constraint symmetry, respectively. He de-
fines two kinds of semantic symmetry: two values ai and bi for a CSP variable
vi are symmetric for satisfiability if the following property holds: there is a so-
lution which assigns the value ai to vi if and only if there is a solution which
assigns the value bi to vi. The values are symmetric for all solutions if: each
solution containing the value ai can be mapped to a solution containing the
value bi. (The latter property implies the former.) Identifying semantic symme-
tries requires solving the CSP to find all solutions, and examining them. The
notion of syntactic symmetry in [3] is defined as follows. Let P = 〈V, D, C〉
be a binary CSP instance, whose constraint relations are all members of some
set R. A permutation π of D is a syntactic symmetry if ∀rij ∈ R, we have
(di, dj) ∈ rij =⇒ (π(di), π(dj)) ∈ rij . In other words, the permutation π does
not change any constraint relation of P , considered as a set of tuples.

From this brief survey of existing symmetry definitions, it can be seen that
they differ both in what aspect of the CSP they act on (only the values, only
the variables, or variable-value pairs) and in what they preserve (the constraints
or the set of solutions). It should be noted that it has become standard in the
symmetry breaking methods that act during search (e.g. [2,7,8,11]), as opposed
to adding constraints to the CSP, to describe symmetries by their action on
variable-value pairs. Hence, almost all the definitions described in this section
are more restrictive than these systems allow.

Under all the definitions, symmetries map solutions to solutions and non-
solutions to non-solutions; the definitions disagree over whether this is a defining
property, so that any bijective mapping of the right kind that preserves the
solutions must be a symmetry, or whether it is simply a consequence of leaving
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the constraints unchanged. In the next section we will show that this distinction
is critical: the choice we make can seriously affect the symmetries that we find.

3 Constraint Symmetries and Solution Symmetries

In this section we will introduce two definitions of symmetries for constraint
satisfaction problems that are sufficiently general to encompass all the types of
symmetry allowed by the definitions given in the last section.

Note that the essential feature that allows any bijective mapping on a set of
objects to be called a symmetry is that it leaves some property of those objects
unchanged. It follows from this that the identity mapping will always be a sym-
metry, and the inverse of any symmetry will also be a symmetry. Furthermore,
given two symmetries we can combine them (by composing the mappings) to
obtain another symmetry, and this combination operation is associative. Hence,
the set of symmetries forms a group.

The particular group of symmetries that we obtain depends on exactly what
property it is that we choose to be preserved. Our first definition uses the prop-
erty of being a solution, and is equivalent to the definition used in [2].

Definition 2. For any CSP instance P = 〈V, D, C〉, a solution symmetry of P
is a permutation of the set V × D that preserves the set of solutions to P .

In other words, a solution symmetry is a bijective mapping defined on the set
of possible variable-value pairs of a CSP, that maps solutions to solutions. Note
that this general definition allows variable and value symmetries as special cases.

To state our definition of constraint symmetries we first describe a mathe-
matical structure associated with any CSP instance. For a binary CSP instance,
the details of the constraints can be captured in a graph, the microstructure
[9,12] of the instance.

Definition 3. For any binary CSP instance P = 〈V, D, C〉, the microstructure
of P is a graph with set of vertices V × D where each edge corresponds either
to an assignment allowed by a specific constraint, or to an assignment allowed
because there is no constraint between the associated variables.

For our purposes, it is more convenient to deal with the complement of this
graph. The microstructure complement has the same set of vertices as the mi-
crostructure, but with edges joining all pairs of vertices which are disallowed by
some constraint, or else are incompatible assignments for the same variable. In
other words, two vertices 〈v1, a1〉 and 〈v2, a2〉 in the microstructure complement
are connected by an edge if and only if:

– the vertices v1 and v2 are in the scope of some constraint, but the assignment
of a1 to v1 and a2 to v2 is disallowed by that constraint; or

– v1 = v2 and a1 �= a2.

Recall that any set of vertices of a graph which does not contain an edge is
called an independent set. An immediate consequence of the definition of the
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microstructure complement is that a solution to a CSP instance P is precisely
an independent set of size |V | in its microstructure complement.

The definition extends naturally to the non-binary case. Here the microstruc-
ture complement is a hypergraph whose set of vertices is again the set of all
variable-value pairs. In this case, a set of vertices E is a hyperedge of the mi-
crostructure complement if it represents an assignment disallowed by a
constraint, or else consists of a pair of incompatible assignments for the same
variable. In other words, a set of vertices {〈v1, a1〉, 〈v2, a2〉, . . . , 〈vk, ak〉} is a
hyperedge if and only if:

– {v1, v2, . . . , vk} is the set of variables in the scope of some constraint, but
the constraint disallows the assignment {〈v1, a1〉, 〈v2, a2〉, . . . , 〈vk, ak〉}; or

– k = 2, v1 = v2 and a1 �= a2.

Example 1. The system of linear equations x + y + z = 0; w + y = 1; w + z = 0
over the integers modulo 2 (that is, where 1 + 1 = 0) can be modelled as a CSP
instance P = 〈V, D, C〉, with V = {w, x, y, z}, D = {0, 1} and C = {c1, c2, c3},
where c1, c2, c3 correspond to the three equations.

The microstructure complement of P is shown in Figure 1. It has eight ver-
tices: 〈w, 0〉, 〈w, 1〉, 〈x, 0〉, 〈x, 1〉, 〈y, 0〉, 〈y, 1〉, 〈z, 0〉, 〈z, 1〉, and twelve hyperedges.
The equation x + y + z = 0 disallows the assignment {〈x, 0〉, 〈y, 0〉, 〈z, 1〉} and
three other assignments. Hence, the microstructure complement has four ternary
hyperedges arising from this constraint, including {〈x, 0〉, 〈y, 0〉, 〈z, 1〉}. Each bi-
nary constraint also gives two binary hyperedges. Finally, there are four binary
hyperedges (one per variable) corresponding to pairs of different values for the
same variable; for example, the hyperedge {〈y, 0〉, 〈y, 1〉}.

y,1

y,0 x,0 z,0

x,1 z,1

w,1

w,0

Fig. 1. The microstructure complement of the CSP instance P defined in Example 1

We are now in a position to define a constraint symmetry. Recall that an auto-
morphism of a graph or hypergraph is a bijective mapping of the vertices that
preserves the edges (and hence also preserves the non-edges).
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Definition 4. For any CSP instance P = 〈V, D, C〉, a constraint symmetry is
an automorphism of the microstructure complement of P (or, equivalently, of
the microstructure).

The microstructure complement is related to the direct encoding of a CSP
as a SAT instance [18]. The direct encoding has a variable for each variable-
value pair in the original CSP; a clause for each pair of values for each variable,
forbidding both values being assigned at the same time; and a clause for each
tuple of variable-value pairs not allowed by a constraint (as well as other clauses
ensuring that a value is chosen for every variable). A constraint symmetry as
defined here is therefore equivalent to a permutation of the variables in the
SAT encoding that does not change the set of clauses, and so is related to the
definition of symmetry in SAT given by Crawford et al. [6].

Example 2. We consider the constraint symmetries of the CSP defined in Ex-
ample 1, whose microstructure complement is shown in Figure 1. The automor-
phisms of this graph are the identity permutation together with the following
permutations:

– (〈w, 0〉〈w, 1〉) (〈y, 0〉〈y, 1〉) (〈z, 0〉〈z, 1〉);
– (〈w, 0〉〈w, 1〉) (〈y, 0〉〈z, 0〉) (〈y, 1〉〈z, 1〉);
– (〈y, 0〉〈z, 1〉) (〈y, 1〉〈z, 0〉);

(These permutations of the vertices are written in cycle form: for example, the
first swaps the vertices 〈w, 0〉 and 〈w, 1〉 while simultaneously swapping 〈y, 0〉
and 〈y, 1〉 and swapping 〈z, 0〉 and 〈z, 1〉, but leaves 〈x, 0〉 and 〈x, 1〉 unchanged.)
Hence, these four mappings are the constraint symmetry group of this CSP.

This example also shows that there can be more solution symmetries than
constraint symmetries. The CSP has only two solutions: {〈w, 0〉, 〈x, 1〉, 〈y, 1〉,
〈z, 0〉} and {〈w, 1〉, 〈x, 1〉, 〈y, 0〉, 〈z, 1〉}. The permutation (〈w, 0〉〈z, 0〉〈y, 1〉),
which maps 〈w, 0〉 to 〈z, 0〉, 〈z, 0〉 to 〈y, 1〉, 〈y, 1〉 to 〈w, 0〉 and leaves all other
variable-value pairs unchanged, is a solution symmetry. This mapping preserves
both solutions, but clearly is not a constraint symmetry.

Although Definition 2 and Definition 4 appear to be very different, we now
show that there are some simple relationships between solution symmetries and
constraint symmetries.

Theorem 1. The group of constraint symmetries of a CSP instance P is a
subgroup of the group of solution symmetries of P .

Proof. Let P be a CSP instance and let π be any automorphism of the mi-
crostructure complement of P . We will show that π maps solutions to solutions,
and hence is a solution symmetry of P .

Let s be any solution of P , and let W be the corresponding set of vertices
in the microstructure complement of P . By the construction of the microstruc-
ture complement, W is an independent set of size |V |. Since π is an automor-
phism, we know that π(W ) is also an independent set of size |V |, and so is a
solution. ��
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Next we show that the group of all solution symmetries of an instance P is
also the automorphism group of a certain hypergraph. We first define a nogood.

Definition 5. For any CSP instance P , a k-ary nogood is an assignment to k
variables of P that cannot be extended to a solution of P .

The k-nogood hypergraph of P is a hypergraph whose set of vertices is V ×D
and whose set of edges is the set of all m-ary nogoods for all m ≤ k.

The k-nogood hypergraph of a CSP instance has the same vertices as the
microstructure complement. For a k-ary CSP (one whose constraints have max-
imum arity k), the k-ary nogood hypergraph contains every hyperedge of the
microstructure complement, and possibly some others. The additional hyper-
edges represent partial assignments of up to k variables that are allowed by the
constraints, but do not appear in any solution because they cannot be extended
to a full assignment satisfying all the constraints.

Example 3. Consider again the CSP instance P defined in Example 1, with
solutions, {〈w, 0〉, 〈x, 1〉, 〈y, 1〉, 〈z, 0〉} and {〈w, 1〉, 〈x, 1〉, 〈y, 0〉, 〈z, 1〉}.

This instance has a large number of 3-ary nogoods, and the 3-nogood hy-
pergraph of P has a large number of hyperedges, in addition to those in the
microstructure complement. These include the hyperedge {〈x, 0〉, 〈y, 0〉, 〈z, 0〉},
for example. This assignment is allowed by the 3-ary constraint on the variables
x, y, z, but cannot be extended to a complete solution of P . Many of the addi-
tional hyperedges do not correspond to the scope of any constraint: for example,
the hyperedge {〈w, 0〉, 〈x, 1〉, 〈y, 0〉}.

Theorem 2. For any k-ary CSP instance P , the group of all solution symme-
tries of P is equal to the automorphism group of the k-nogood hypergraph of P .

Proof. Let F be the k-nogood hypergraph of P and let π be any automorphism
of F . We will show that π preserves solutions, and hence is a solution symmetry.

Let s be any solution of P , and let W be the corresponding set of vertices in
F . By the construction of this hypergraph, W is an independent set of size |V |.
Since π is an automorphism of F , we know that π(W ) is also an independent
set of size |V |. Hence π(W ) is not disallowed by any of the constraints of P , and
is a solution.

Conversely, let π be a solution symmetry of P . We will show that π maps
every set of k or fewer vertices of F which is not a hyperedge to another non-
hyperedge, and hence π is an automorphism of this hypergraph.

Let E be any set of k or fewer vertices in F which is not a hyperedge. Since
every nogood of P of size k or less is a hyperedge of the k-nogood hypergraph,
it follows that E can be extended to at least one solution of P .

Hence we may suppose that E is part of some solution s. Now, s is mapped
to the solution π(s) by the solution symmetry π. Every k-ary projection of this
solution, including the image π(E) of E, is a non-hyperedge in F , and so we are
done. ��

Theorem 2 shows that to obtain the solution symmetries of a CSP instance it is
sufficient to consider the automorphisms of the hypergraph obtained by adding
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all the nogoods of arity k or less to the microstructure complement. We will show
in the next section that in some cases there are hypergraphs obtained by adding
a smaller number of edges to the microstructure complement which already have
all solution symmetries as automorphisms. However, the next result shows that
there are cases where it is in fact necessary to add all nogoods of arity k or
less to the microstructure complement in order to obtain a hypergraph with all
solution symmetries as automorphisms.

Proposition 1. For some k-ary CSP instances P , the k-nogood hypergraph is
the only hypergraph containing the microstructure complement of P whose auto-
morphisms are exactly the solution symmetries.

Proof. Consider a CSP instance P , with constraints of every arity less than or
equal to k, which has no solutions. Let H be the microstructure complement
of P .

Since P has no solutions, every permutation of the vertices of H is a solu-
tion symmetry. For each positive integer m ≤ k, there is at least one m-tuple
disallowed by a constraint, so H has at least one m-ary hyperedge. Since every
permutation of the vertices of H is a solution symmetry, applying the solution
symmetry group to H will give all m-sets of vertices as hyperedges. Hence the
only hypergraph containing H whose automorphisms include all solution sym-
metries is the hypergraph with all m-sets of vertices as edges, for all m ≤ k,
which is equal to the k-nogood hypergraph. ��

Hence to obtain all solution symmetries of a k-ary CSP instance it is sometimes
necessary to consider all m-ary nogoods, for all m ≤ k. On the other hand,
Theorem 2 shows that we do not need to consider nogoods of any size larger
than k. (In fact the same proof shows that adding all nogoods of size l, for any
l larger than k, to the k-nogood hypergraph does not change its automorphism
group.) In particular, this means that to obtain all the solution symmetries of a
binary CSP instance we need only consider the binary and unary nogoods.

Theorem 1 and Theorem 2 help to clarify the relationship between solution
symmetries and constraint symmetries. One reason that it is important to dis-
tinguish these two kinds of symmetries carefully is that, in general, there can
be many more solution symmetries than constraint symmetries for a given CSP
instance, as we will show in the next section.

4 Case Study: Symmetry in n-Queens

In this section we will illustrate the relationship between solution symmetries
and constraint symmetries by examining the n-queens problem. This problem is
useful for discussing symmetry because the common CSP formulation has several
different types of symmetry, some of which are beyond the scope of some earlier
definitions in the literature.

The standard formulation of the n-queens problem as a CSP has n variables
corresponding to the rows of the chessboard, say r1, r2, ..., rn. The domain of
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values corresponds to the columns of the chessboard, say D = {1, 2, ..., n}. The
constraints can be expressed as follows:

– the values of r1, r2, ..., rn are all different;
– for all i, j, 1 ≤ i < j ≤ n, |ri − rj | �= |i − j|.

A chessboard has eight geometric symmetries: reflections in the horizontal
and vertical axes and the two diagonals, rotations through 90◦, 180◦ and 270◦,
and the identity.

Recall, however, that Meseguer & Torras [14] did not allow the full set of
geometric symmetries of the chessboard as symmetries of the usual CSP for-
mulation of n-queens. This is because the formulation introduces an asymme-
try between rows and columns, so that some of the geometric symmetries do
not leave the constraints syntactically unchanged. In particular, the rotational
symmetries through 90◦ and 270◦ map assignments forbidden by some of the
constraints to assignments that are mutually incompatible because they assign
two values to the same variable. For example, the forbidden pair consisting of
〈r1, 1〉 and 〈r2, 1〉 is mapped by the rotation through 90◦ to the incompatible
pair consisting of 〈r1, n〉 and 〈r1, n − 1〉.

The microstructure complement restores the symmetry between rows and
columns, by treating in the same way both of these reasons for a pair of assign-
ments to be disallowed. Hence each geometric symmetry of the chessboard gives
rise to a constraint symmetry of the n-queens problem for any n, according to
our definition of constraint symmetry (Definition 4).

Clearly, the set of solutions to an instance of the n-queens problem is invariant
under each of the eight geometric symmetries of the chessboard. Hence each of
these geometric symmetries is a solution symmetry of the n-queens problem for
any n, according to our definition of solution symmetry (Definition 2). However,
there can be many other solution symmetries for instances of this problem, as
we will now show.

The 3-queens problem has no solutions; like any other CSP with no solution,
any permutation of the possible variable-value pairs is a solution symmetry. This
is confirmed by Theorem 2: the binary nogood hypergraph is the complete graph
with nine vertices, and any permutation of the vertices is an automorphism.

The 4-queens problem has two solutions, shown in Figure 2. (These two
solutions are each mapped to the other by a reflection of the chessboard.) In
this case, it is easier to consider the complement of the binary nogood hyper-
graph, in which each edge represents a pair of variable-value assignments that
is allowed by the solutions. Figure 2 also shows this graph, drawn so that each
vertex, representing a variable-value pair, and hence a square of the chessboard,
corresponds to the position on a chessboard of that square. Each solution is
represented as a 4-clique in this graph, rather than as an independent set of size
4 in the binary nogood hypergraph. The automorphisms of this graph are that:
the vertices within either clique can be permuted; the vertices in one clique can
be swapped with those in the other; and the eight isolated vertices (representing
unary nogoods) can be permuted; and we can also compose these permutations.
This gives a total of 4! × 4! × 2 × 8! automorphisms, or 46, 448, 640. Since the
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Fig. 2. The solutions of the 4-queens problem (left) and the complement of the binary
nogood graph (right)
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Fig. 3. The ten solutions of the 5-queens problem

automorphisms of a graph are the same as the automorphisms of its comple-
ment, these 46, 448, 640 automorphisms are the solution symmetries of 4-queens,
by Theorem 2.

The 5-queens problem has ten solutions, shown in Figure 3. These solutions
are divided into two equivalence classes by the geometric symmetries of the
chessboard; they transform any solution into another solution from the same
equivalence class. (The first eight solutions shown form one class, the last two
the second class.)

Every square of the chessboard has a queen on it in at least one of these
ten solutions, so that there are no unary nogoods. However, there are some
pairs of squares, where two queens can be placed consistently with the original
constraints, but which are not allowed in any solution. The 40 additional binary
nogoods can in fact be derived by using path consistency: for example, a pair of
queens in row 1, column 1 and row 3, column 4 together attack every square in
row 2, and so this pair of assignments cannot be part of any solution.
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If these additional binary nogoods are added to the microstructure comple-
ment, then we obtain the 2-ary nogood graph for the 5-queens problem. By
using the software tool NAUTY [13], we can find the automorphism group of
this graph: it has 28,800 elements, so the 5-queens problem has a total of 28,800
solution symmetries, by Theorem 2. (We have also used NAUTY to confirm that
the microstructure complement has just the eight geometric symmetries.)

In this case, unlike the 4-queens problem, it is difficult to develop an intuitive
understanding of the additional solution symmetries. Some are easy to see: for
instance, the rows of the board can be cyclically permuted, as can the columns.
The subgroup consisting of these permutations together with the geometric sym-
metries and all combinations makes all 10 solutions symmetrically equivalent,
i.e. there is just one equivalence class, rather than two. However, this subgroup
is still much smaller than the full solution symmetry group.1

In the 6-queens problem, additional binary nogoods can again be derived by
path consistency. For example, queens in row 1, column 2 and row 3, column 5
together attack all the squares in row 2. There are also unary nogoods, since the
problem has only four solutions. Adding all these nogoods to the microstructure
complement yields a very large symmetry group, as shown in Table 1.

For n ≥ 7, path consistency does not give any new nogoods, since two queens
can together attack at most six squares on any row. Even so, there are binary no-
goods in addition to those in the original constraints for n = 7, 8, 9; beyond that,
we have tested up to n = 16 and found no further additional binary nogoods.

Table 1 shows that for n ≥ 7, the solution symmetries appear to be just the
geometric symmetries: in spite of the additional binary nogoods for n = 7, 8, 9,
the binary nogood graph for these instances has the same automorphism group
as the microstructure complement. This demonstrates that in spite of Proposi-
tion 1, the minimal hypergraph containing the microstructure complement whose
automorphisms are the solution symmetries can sometimes be smaller than the
k-ary nogood hypergraph. Note that the number of solutions to the n-queens
problem increases rapidly with n: intuitively, it becomes more difficult for a so-
lution symmetry to preserve them all, so that eventually the solution symmetries
are just the constraint symmetries.

A principal reason for identifying symmetry in CSPs is to reduce search effort
by not exploring assignments that are symmetrically equivalent to assignments
considered elsewhere in the search. Clearly, if the solution symmetry group is
larger than the constraint symmetry group, there will potentially be a greater
search reduction from using the solution symmetries, if they can somehow be
identified in advance. In some cases, as in the 5-queens problem, establishing
some level of consistency in the problem to find new nogoods (of arity ≤ k),

1 In an attempt to understand the solution symmetries of 5-queens in terms of simple
transformations of the chessboard, we used NAUTY to find a small number of gen-
erators of the group, including one or more of the geometric symmetries. We found
that the entire group can be generated by just two permutations of the variable-value
pairs, together with the rotation through 90◦. However, these two permutations have
no obvious geometric interpretation in terms of the chessboard.
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Table 1. The number of additional binary nogoods derived from the sets of solutions
to the n-queens problem, and the number of solution symmetries

Additional Solution
n binary nogoods symmetries
3 8 9! = 362,880
4 32 4! × 4! × 2 × 8! = 46,448,640
5 40 28,800
6 280 3,089,428,805,320,704,000,000
7 72 8
8 236 8
9 40 8

10 0 8

and adding these to the microstructure complement, will give an automorphism
group that is nearer to the solution symmetry group, if not equal to it.

When finding all solutions, the aim in symmetry breaking is to find just one
solution from each symmetry equivalence class; in the 5-queens problem, the
solutions fall into two equivalence classes when using the constraint symmetries
and only one when using the solution symmetries. Hence, if the aim is to find
a set of nonisomorphic solutions, the appropriate symmetry group should be
chosen in advance, since the choice can affect the number of solutions found.

This raises the question of how to identify the symmetries of a CSP, either
the constraint symmetries or the solution symmetries; we discuss this next.

5 Identifying Symmetry in Practice

Symmetry in CSPs is usually identified, in practice, by applying human insight:
the programmer sees that some transformation would transform a hypothetical
solution into another hypothetical solution. The definition of constraint sym-
metry given earlier can be used to confirm that candidate transformations are
genuine symmetries. It is not necessary to generate the entire microstructure
complement for this purpose, but only to demonstrate that each candidate map-
ping will map edges to edges and non-edges to non-edges in this hypergraph.

Identifying symmetry in a CSP by inspection is prone to missing some of the
symmetry. Using Definition 4 we can, in principle, be sure to identify all the con-
straint symmetries in a problem by generating the microstructure complement
and finding its automorphism group. However, it will often be impracticable
to generate the microstructure, especially for large CSPs with non-binary con-
straints. It may in that case be possible to represent the constraints more com-
pactly while preserving the important details; for instance, Ramani and Markov
[16] propose to represent constraints by parse trees and find the automorphisms
of the resulting graph.

Many authors have defined symmetry in CSPs in a similar way to our defini-
tion of solution symmetry, but have effectively only identified constraint symme-
tries; we have shown that the solution symmetry group can be much larger than
the constraint symmetry group. This suggests a novel, incremental approach to
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using symmetry during search, in which we maintain a set of currently known
symmetries throughout the solution process. This set is initialised to the group
of constraint symmetries. Each time a nogood of arity k or less is found dur-
ing preprocessing, or during the search for solutions, it is added to our current
view of the k-nogood hypergraph, together with all of its images under currently
known symmetries. Adding these edges might increase the number of automor-
phisms of this graph, and hence increase the set of currently known symmetries.
The bigger this group of symmetries gets, the more information we get from each
additional nogood.

Methods such as those proposed here may find a potentially very large group
of symmetries, but with possibly only a small number of generators. For instance,
as shown earlier, the solution symmetry group of 5-queens has 28,800 elements
but just three generators. Symmetry-breaking methods that combine dynamic
symmetry breaking during search with computational group theory, e.g. [10],
can exploit such symmetry groups effectively.

6 Conclusion

We have reviewed definitions of symmetry in CSPs and have proposed defini-
tions of constraint symmetry and solution symmetry to encompass two types of
definition that have been used. We have shown that there can be many more so-
lution symmetries, i.e. permutations of the variable-value pairs that preserve the
solutions, than constraint symmetries, i.e. permutations that preserve the con-
straints. In practice, researchers have identified constraint symmetries in CSPs
rather than solution symmetries, regardless of their definition of symmetry, be-
cause of the difficulty of identifying solution symmetries that are not also con-
straint symmetries without examining the set of solutions. However, we have
shown that for a k-ary CSP, the solution symmetries are the automorphisms of
the k-ary nogood hypergraph; hence, finding new nogoods of arity up to k and
adding them to the CSP can allow the constraint symmetry group to expand
towards the solution symmetry group. Symmetry-breaking methods avoid ex-
ploring assignments that are symmetrically equivalent to assignments explored
elswhere; hence, working with a larger symmetry group allows more assignments
to be pruned and can further reduce the search effort to solve the problem.
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Abstract. An algorithm that performs asynchronous backtracking on distributed
CSPs, with dynamic ordering of agents is proposed, ABT DO. Agents pro-
pose reorderings of lower priority agents and send these proposals whenever they
send assignment messages. Changes of ordering triggers a different computation
of Nogoods. The dynamic ordered asynchronous backtracking algorithm uses
polynomial space, similarly to standard ABT .

The ABT DO algorithm with three different ordering heuristics is com-
pared to standard ABT on randomly generated DisCSPs. A Nogood-triggered
heuristic, inspired by dynamic backtracking, is found to outperform static order
ABT by a large factor in run-time and improve the network load.

1 Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents, each
holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf.
[16,14]). To achieve this goal, agents check the value assignments to their variables
for local consistency and exchange messages with other agents, to check consistency
of their proposed assignments against constraints with variables owned by different
agents [1].

Distributed CSPs are an elegant model for many every day combinatorial problems
that are distributed by nature. Take for example a large hospital that is composed of
many wards. Each ward constructs a weekly timetable assigning its nurses to shifts. The
construction of a weekly timetable involves solving a constraint satisfaction problem for
each ward. Some of the nurses in every ward are qualified to work in the Emergency
Room. Hospital regulations require a certain number of qualified nurses (e.g. for Emer-
gency Room) in each shift. This imposes constraints among the timetables of different
wards and generates a complex Distributed CSP [14].

A search procedure for a consistent assignment of all agents in a distributed CSP
(DisCSP ), is a distributed algorithm. All agents cooperate in search for a globally
consistent solution. The solution involves assignments of all agents to all their variables
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and exchange of information among all agents, to check the consistency of assignments
with constraints among agents.

Asynchronous Backtracking (ABT ) is one of the most efficient and robust algo-
rithms for solving distributed constraints satisfaction problems. Asynchronous
Backtracking was first presented by Yokoo [17,16] and was developed further and stud-
ied in [6,2,11,1]. Agents in the ABT algorithms perform assignments asynchronously
against their current view of the system’s state. The method performed by each agent is
in general simple. Later versions of ABT use polynomial space memory and perform
dynamic backtracking [2,1]. The versions of asynchronous backtracking presented in
all of the above studies use a static priority order among all agents.

In centralized CSPs, dynamic variable ordering is known to be an effective heuris-
tic for gaining efficiency [4]. Recent studies have shown that the same is true for al-
gorithms which perform sequential (synchronous) assignments in Distributed CSPs
[10,3]. These studies suggest heuristics of agent/variable ordering and empirically show
large gains in efficiency over the same algorithms performing with static order. These
results are the basic motivation for exploring the possibilities for dynamic reordering of
asynchronous backtracking.

In [6] the authors present a distributed ordering algorithm, according to the prop-
erties of the constraints graph. Once the order is determined, the asynchronous back-
tracking algorithm uses this fixed order.

An asynchronous algorithm with dynamic ordering was proposed by [15], Asyn-
chronous Weak Commitment (AWC). According to [16], AWC outperforms ABT .
However, in order to be complete, AWC uses exponential space which makes it im-
practical for solving hard instances of even small DisCSPs.

An attempt to combine ABT with AWC was reported by [12]. In order to per-
form asynchronous finite reordering operations [12] suggest that the reordering oper-
ation will be performed by abstract agents. The results presented in [12] show minor
improvements to static order ABT .

The present paper proposes a simple algorithm for dynamic ordering in asynchronous
backtracking, ABT DO that uses polynomial space, as standard ABT . In the proposed
algorithm the agents of the DisCSP choose orders dynamically and asynchronously.
Agents in ABT DO perform according to the current, most updated order they hold.
Each order is time-stamped according to agents assignment. The method of time-stamp
for defining the most updated order is the same that is used in [10] for choosing the
most updated partial assignment. A simple array of counters represents the priority of a
proposed order, according to the global search tree. Each agent can change the order of
all agents with lower priority. An agent can propose an order change each time it replaces
its assignment.

Having established a correct algorithm for dynamic variable ordering in ABT , one
needs to investigate ordering heuristics. Surprisingly, some of the heuristics which are
very effective for sequential assignments distributed algorithms, do not improve the
run-time of ABT . It turns out that an ordering heuristic, based on Dynamic Backtrack-
ing [5], is very successful (see Section 6).

Distributed CSPs are presented in Section 2. A description of the standard ABT
algorithm is presented in Section 3. Asynchronous backtracking with dynamic ordering
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(ABT DO) is presented in Section 4. Section 5 introduces a correctness and com-
pleteness proof for ABT DO. An extensive experimental evaluation, which compares
ABT to ABT DO with several ordering heuristics is in Section 6. The experiments
were conducted on randomly generated DisCSPs.

2 Distributed Constraint Satisfaction

A distributed constraints network (or a distributed constraints satisfaction problem -
DisCSP) is composed of a set of k agents A1, A2, ..., Ak. Each agent Ai contains
a set of constrained variables Xi1 , Xi2 , ..., Xini

. Constraints or relations R are sub-
sets of the Cartesian product of the domains of the constrained variables. For a set
of constrained variables Xik

, Xjl
, ..., Xmn , with domains of values for each variable

Dik
, Djl

, ..., Dmn , the constraint is defined as R ⊆ Dik
× Djl

× ... × Dmn . A binary
constraint Rij between any two variables Xj and Xi is a subset of the Cartesian prod-
uct of their domains; Rij ⊆ Dj × Di. In a distributed constraint satisfaction problem
DisCSP , the agents are connected by constraints between variables that belong to dif-
ferent agents [17,14]. In addition, each agent has a set of constrained variables, i.e. a
local constraint network.

An assignment (or a label) is a pair < var, val >, where var is a variable of some
agent and val is a value from var’s domain that is assigned to it. A compound label
is a set of assignments of values to a set of variables. A solution P to a DisCSP is a
compound label that includes all variables of all agents, that satisfies all the constraints.
Agents check assignments of values against non-local constraints by communicating
with other agents through sending and receiving messages.

The following assumptions are routinely made in studies of DisCSP s and are as-
sumed to hold in the present study [16,1].

1. All agents hold exactly one variable.
2. The amount of time that passes between the sending and the receiving of a message

is finite.
3. Messages sent by agent Ai to agent Aj are received by Aj in the order they were

sent.

3 Asynchronous Backtracking (ABT )

The Asynchronous Backtracking algorithm, was presented in several versions over the
last decade and is described here in the form of the more recent papers [16,1]. In the
ABT algorithm, agents hold an assignment for their variables at all times, which is
consistent with their view of the state of the system (i.e. their Agent view). When the
agent cannot find an assignment which is consistent with its Agent view, it changes
its view by eliminating a conflicting assignment from its Agent view data structure. It
then sends back a Nogood which is based on its former inconsistent Agent view and
makes another attempt to assign its variable [16,1].

The code of the Asynchronous Backtracking algorithm (ABT ) is presented in fig-
ure 1. ABT has a total order of priorities among agents. Agents hold a data structure
called Agent view which contains the most recent assignments received from agents



Dynamic Ordering for Asynchronous Backtracking on DisCSPs 35

when received (ok?, (xj , dj)) do
1. add (xj , dj) to agent view;
2. check agent view;end do;

when received (nogood, xj , nogood) do
1. add nogood to nogood list;
2. when nogood contains an agent xk that is not a neighbor do
3. request xk to add xi as a neighbor,
4. and add (xk, dk) to agent view; end do;
5. old value ← current value; check agent view;
6. when old value = current value do
7. send (ok?, (xi, current value)) to xj ; end do; end do;

procedure check agent view
1. when agent view and current value are not consistent do
2. if no value in Di is consistent with agent view then backtrack;
3. else select d ∈ Di where agent view and d are consistent;
4. current value ← d;
5. send (ok?,(xi, d)) to low priority neighbors; end if;end do;

procedure backtrack
1. nogood ← resolve Nogoods;
2. if nogood is an empty set do
3. broadcast to other agents that there is no solution;
4. terminate this algorithm; end do;
5. select (xj , dj) where xj has the lowest priority in nogood;
6. send (nogood, xi, nogood) to xj ;
7. remove (xj , dj) from agent view; end do;
8. check agent view

Fig. 1. Standard ABT algorithm

with higher priority. The algorithm starts by each agent assigning its variable, and send-
ing the assignment to neighboring agents with lower priority. When an agent receives
a message containing an assignment (an ok? message [16]), it updates its Agent view
with the received assignment and if needed replaces its own assignment, to achieve con-
sistency (first procedure in Figure 1). Agents that reassign their variable, inform their
lower priority neighbors by sending them ok? messages (Procedure check agent view,
lines 3-5). Agents that cannot find a consistent assignment, send the inconsistent tu-
ple in their Agent view in a backtrack message (a Nogood message [16]) and remove
from their Agent view the assignment of the lowest priority agent in the inconsis-
tent tuple. In the simplest form of the ABT algorithm, the complete Agent view is
sent as a Nogood [16]. The Nogood is sent to the lowest priority agent whose as-
signment is included in the Nogood. After the culprit assignment is removed from the
AgentView the agent makes another attempt to assign its variable by calling procedure
check agent view (procedure backtrack in Figure 1).

Agents that receive a Nogood, check its relevance against the content of their
Agent view. If the Nogood is relevant the agent stores it, and tries to find a consis-
tent assignment. If the agent receiving the Nogood keeps its assignment, it informs the
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Nogood sender by resending it an ok? message with its assignment. An agent Ai which
receives a Nogood containing an assignment of agent Aj which is not included in its
Agent view, adds the assignment of Aj to its Agent view and sends a message to Aj

asking it to add a link between them, i.e. inform Ai about all assignment changes it
performs in the future (second procedure in Figure 1).

The performance of ABT can be improved immensely by requiring agents to read
all messages they receive before performing computation [16,1]. This technique was
found to improve the performance of Asynchronous Backtracking on the harder in-
stances of randomly generated Distributed CSPs by a large factor
[18,3].

Another improvement to the performance of ABT can be achieved by using the
method for resolving inconsistent subsets of the Agent view, based on methods of dy-
namic backtrack. A version of ABT that uses this method was presented in
[1]. In all the experiments in this paper, a version of ABT which includes both of the
above improvements is used. Agents read all incoming messages that were received
before performing computation and Nogoods are resolved, using the dynamic back-
tracking method.

4 ABT with Dynamic Ordering

For simplicity of presentation we assume that agents send order messages to all lower
priority agents. In the more realistic form of the algorithm, agents send order messages
only to their lower priority neighbors. Both versions are proven correct in section 5.

Each agent in ABT DO holds a Current order which is an ordered list of pairs.
Every pair includes the ID of one of the agents and a counter. Each agent can propose
a new order for agents that have lower priority, each time it replaces its assignment. An
agent Ai can propose an order according to the following rules:

1. Agents with higher priority than Ai and Ai itself, do not change priorities in the
new order.

2. Agents with lower priority than Ai, in the current order, can change their priorities
in the new order but not to a higher priority than Ai itself.

The counters attached to each agent ID in the order list form a time-stamp. Initially,
all time-stamp counters are zero and all agents start with the same Current Order.
Each agent that proposes a new order changes the order of the pairs in its ordered list
and updates the counters as follows:

1. The counters of agents with higher priority thanAi, according to the Current order,
are not changed.

2. The counter of Ai is incremented by one.
3. The counters of agents with lower priority than Ai in the Current order are set to

zero.

Consider an example in which agent A2 holds the following Current order:
(1, 4)(2, 3)(3, 1)(4, 0)(5, 1). There are 5 agents A1...A5 and they are ordered accord-
ing to their IDs from left to right. After replacing its assignment it changes the order to:
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when received (ok?, (xj , dj) do:
1. add (xj , dj) to agent view;
2. remove inconsistent nogoods;
3. check agent view;

when received (order, received order) do:
1. if (received order is more updated than Current order)
2. Current order ← received order;
3. remove inconsistent nogoods;
4. check agent view;

when received (nogood, xj , nogood) do
1. if (nogood contains an agent xk with lower priority than xi)
2. send (nogood, (xi, nogood)) to xk;
3. send (ok?, (xi, current value) to xj ;
4. else
5. if (nogood consistent with {Agent view ∪ current assignment} )
6. store nogood;
7. if (nogood contains an agent xk that is not its neighbor)
8. request xk to add xi as a neighbor;
9. add (xk, dk) to agent view;
10. check agent view;
11. else
12. send (ok?, (xi, current value)) to xj ;

Fig. 2. The ABT DO algorithm (first part)

(1, 4)(2, 4)(4, 0)(5, 0)(3, 0). In the new order, agent A1 which had higher priority than
A2 in the previous order keeps its place and the value of its counter does not change. A2
also keeps its place and the value of its counter is incremented by one. The rest of the
agents, which have lower priority than A2 in the previous order, change places as long
as they are still located lower than A2. The new order for these agents is A4, A5, A3
and their counters are set to zero.

In ABT , agents send ok? messages to their neighbors whenever they perform an
assignment. In ABT DO, an agent can choose to change its Current order after
changing its assignment. If that is the case, beside sending ok? messages an agent sends
order messages to all lower priority agents. The order message includes the agent’s
new Current order. An agent which receives an order message must determine if the
received order is more updated than its own Current order. It decides by comparing
the time-stamps lexicographically. Since orders are changed according to the above
rules, every two orders must have a common prefix of the agents IDs since the agent
that performs the change does not change its own position and the positions of higher
priority agents. In the above example the common prefix includes agents A1 and A2.
Since the agent proposing the new order increases its own counter, when two different
orders are compared, at lease one of the time-stamp counters in the common prefix is
different between the two orders. The more up-to-date order is the one for which the
first different counter in the common prefix is larger. In the example above, any agent
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procedure check agent view
1. if(current assignment is not consistent with all

higher priority assignments in agent view)
2. if(no value in Di is consistent with all higher priority

assignments in agent view)
3. backtrack;
4. else
5. select d ∈ Di where agent view and d are consistent;
6. current value ← d;
7. Current order ← choose new order
8. send (ok?,(xi, d)) to neighbors;
9. send (order,Current order) to lower priority agents;

procedure backtrack
1. nogood ← resolve inconsistent subset;
2. if (nogood is empty)
3. broadcast to other agents that there is no solution;
4. stop;
5. select (xj , dj) where xj has the lowest priority in nogood;
6. send (nogood, xi, nogood) to xj ;
7. remove (xj , dj) from agent view;
8. remove all Nogoods containing (xj , dj);
9. check agent view;

Fig. 3. The ABT DO algorithm(second part)

which will receive the new order will know it is more updated than the previous order
since the first pair is identical, but the counter of the second pair is larger.

When an agent Ai receives an order which is more up to date than its Current order,
it replaces its Current order by the received order. The new order might change the lo-
cation of the receiving agent with respect to other agents (in the new Current order).
In other words, one of the agents that had higher priority than Ai according to the old
order, now has a lower priority than Ai or vise versa. Therefore, Ai rechecks the consis-
tency of its current assignment and the validity of its stored Nogoods according to the
new order. If the current assignment is inconsistent according to the new order, the agent
makes a new attempt to assign its variable. In ABT DO agents send ok? messages to all
constraining agents (i.e. their neighbors in the constraints graph). Although agents might
hold in their Agent views assignments of agents with lower priorities, according to their
Current order, they eliminate values from their domain only if they violate constraints
with higher priority agents.

A Nogood message is always checked according to the Current order of the re-
ceiving agent. If the receiving agent is not the lowest priority agent in the Nogood
according to its Current order, it sends the Nogood to the lowest priority agent and
sends an ok? message to the sender of the Nogood. This is a similar operation to that
performed in standard ABT for any unaccepted Nogood.

Figures 2 and 3 present the code of asynchronous backtracking with dynamic or-
dering (ABT DO).
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When an ok? message is received (first procedure in Figure 2), the agent updates
the Agent view and removes inconsistent Nogoods. Then it calls check agent view
to make sure its assignment is still consistent.

A new order received in an order message is accepted only if it is more up to date
than the Current order (second procedure of Figure 2). If so, the received order is
stored and check agent view is called to make sure the current assignment is consistent
with the higher priority assignments in the Agent view.

When a Nogood is received (third procedure in Figure 2) the agent first checks if it
is the lowest priority agent in the received Nogood, according to the Current order. If
not, it sends the Nogood to the lowest priority agent and an ok? message to the Nogood
sender (lines 1-3). If the receiving agent is the lowest priority agent it performs the same
operations as in the standard ABT algorithm (lines 4-12).

Procedure backtrack (Figure 3) is the same as in standard ABT . The Nogood is
resolved and the result is sent to the lower priority agent in the Nogood, according to
the Current order.

Procedure check agent view (Figure 3) is very similar to standard ABT but the
difference is important (lines 5-9). If the current assignment is not consistent and must
be replaced and a new consistent assignment is found, the agent chooses a new order
as its Current order (line 7) and updates the corresponding time-stamp. Next, ok?
messages are sent to all neighboring agents. The new order and its time-stamp counters
are sent to all lower priority agents.

5 Correctness of ABT DO

In order to prove the correctness of the ABT DO algorithm we first establish two facts
by proving the following lemmas:

Lemma 1. The highest priority agent in the initial order remains the highest priority
agent in all proposed orders.

The proof for Lemma 1 is immediate from the two rules of reordering. Since no
agent can propose a new order which changes the priority of higher priority agents and
its own priority, no agent including the first can move the highest priority agent to a
lower position. �

Lemma 2. When the highest priority agent proposes a new order, it is more up to date
than all previous orders.

This proof is again immediate. In all previous orders the time-stamp counter of the
first agent is smaller than the counter of the time-stamp counter of the first agent in the
new proposed order. �

To prove correctness of a search algorithm for DisCSPs one needs to prove that it
is sound, complete and that it terminates. ABT DO, like ABT , reports a solution when
all agents are idle and no messages are sent. Its soundness follows from the soundness
of ABT [1]. One point needs mentioning. Since no messages are traveling in the system
in the idle state, all overriding messages have arrived at their destinations. This means
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that for every pair of constraining agents an agreement about their pairwise order has
been achieved. One of each pair of constraining agents checks their constraint and no
messages mean no violations, as in the proof for ABT [1].

To prove the completeness and termination of ABT DO we use induction on the
number of agents (i.e. number of variables) in the DisCSP . For a single agent DisCSP
the order is static therefore the completeness and termination of ABT implies the same
for ABT DO. Assume ABT DO is complete and terminates for every DisCSP with
k agents where k < n. Consider a DisCSP with n agents. According to Lemma 1 the
agent with the highest priority in the initial order will not change its place. The highest
priority agent assigns its variable for the first time and sends it along with its order pro-
posal to other agents. The remaining DisCSP has n − 1 agents and its initial order is
that proposed by the first agent (all other orders are discarded according to Lemma 2).
By the induction assumption the remaining DisCSP is complete and terminates. If
a solution to the induced DisCSP is found, this means that the lower priority n − 1
agents are idle. So is the first (highest priority) agent since none of the others sends it
any message. If a solution is not found, by the n − 1 lower priority agents, a single
assignment Nogood will be sent to the highest priority agent which will cause it to re-
place its assignment. The new assignment of the first agent and the new order proposed
will induce a new DisCSP of size n−1. The search on this new DisCSP of size n−1
is also complete and terminates according to the induction assumption. The number of
induced DisCSPs, created by the assignments of the highest priority agent is bound
by the size of its domain. Therefore, the algorithm will terminate in a finite time.

The algorithm is complete since a solution to the DisCSP must include one of
the highest priority agent value assignments, which means that one of the induced
DisCSPs includes a solution iff the original DisCSP includes a solution. This com-
pletes the correctness proof of ABT DO �

If the network model, or privacy restraints, enable agents to communicate only with
their neighbors in the constraints network, some small changes are needed in order to
keep the algorithm correct. First, agents must be allowed to change only the order of
lower priority neighbors. This means that the method choose new order, called in
line 7 of procedure check agent view, changes the order by switching between the po-
sition of lower priority neighbors and leaving other lower priority agent at their current
position. Second, whenever an updated order message is received, an agent informs its
neighbors of its new Current order.

In order to prove that the above two changes do not affect the correctness of the
algorithm we first establish the correctness of Lemmas 1 and 2 under these changes.
Lemma 1 is not affected by the change since the rules for changing agents positions
have become more strict, and still do not allow to change the position of higher priority
agents. Lemma 2 holds because the time-stamp mechanism which promises its correct-
ness has not changed. These Lemmas are the basis for the correctness of the induction
which proves the algorithm is complete and terminates. However, we still need to prove
the algorithm is sound. One of the assumptions that our soundness proof dependent on
was that an idle state of the system would mean that every constrained couple of agents
agrees on the order between them. This claim might not hold since the most up to date
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order is not sent to all agents. The following Lemma proves this claim is still true after
the changes in the algorithm:

Lemma 3. When the system reaches an idle state, every pair of constrained agents hold
the same order.

According to the changes described above, whenever one of the constrained agents
receives an updated order message, it informs its neighbors. Therefore, all agents which
have constraints with it will be notified and hold the updated order. If two agents are
not informed with the most updated order, this would mean both of them are not lower
priority neighbors of the reordering agent and as a result their current position in the
order stays the same.

Lemma 3 implies that the algorithm is still sound according to our previous proof.�

6 Experimental Evaluation

The common approach in evaluating the performance of distributed algorithms is to
compare two independent measures of performance - time, in the form of steps of com-
putation [8,16], and communication load, in the form of the total number of messages
sent [8].

Non concurrent steps of computation, are counted by a method similar to that
of [7,9]. Every agent holds a counter of computation steps. Every message carries the
value of the sending agent’s counter. When an agent receives a message it updates its
counter to the largest value between its own counter and the counter value carried by
the message. By reporting the cost of the search as the largest counter held by some
agent at the end of the search, a measure of non-concurrent search effort that is close to
Lamports logical time is achieved [7]. If instead of steps of computation, the number of
non concurrent constraints check is counted (NCCCs), then the local computational
effort of agents in each step is measured [9].

Experiments were conducted on random networks of constraints of n variables, k
values in each domain, a constraints density of p1 and tightness p2 (which are com-
monly used in experimental evaluations of CSP algorithms [13]). All three sets of ex-
periments were conducted on networks with 20 agents (n = 20) each holding exactly
one variable, 10 values for each variable (k = 10) and two values of constraints density
p1 = 0.4 and p1 = 0.7. The tightness value p2, is varied between 0.1 and 0.9, to cover
all ranges of problem difficulty. For each pair of fixed density and tightness (p1, p2) 50
different random problems were solved by each algorithm and the results presented are
an average of these 50 runs.

ABT DO is compared to the run of standard ABT . For ordering variables in
ABT DO three different heuristics were used.

1. Random: each time an agent changes its assignment it randomly orders all agents
with lower priorities in its Current order.

2. Domain-Size: This heuristic is inspired by the heuristics used for sequential assign-
ing algorithms in [3]. Domain sizes are calculated based on the fact that each agent
that performs an assignment sends its current domain size to all other agents. Ev-
ery agent that replaces an assignment, orders the lower priority agents according to
their domain size from the smallest to the largest.
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Fig. 4. Non concurrent constraints checks performed by ABT and ABT DO using different
order heuristics on low density DisCSPs (p1 = 0.4)

Fig. 5. Total number of messages sent by ABT and ABT DO on low density DisCSPs (p1 =
0.4)

3. Nogood-Triggered: Agents change the order of the lower priority agents only when
they receive a Nogood which eliminates their current assignment. In this case the
agent moves the sender of the Nogood to be in front of all other lower prior-
ity agents. This heuristic was first used for dynamic backtracking in centralized
CSPs [5].
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Figure 4 presents the computational effort in number of non concurrent constraints
checks to find a solution, performed by ABT and ABT DO using the above three
heuristics. The algorithms solve low density DisCSPs with p1 = 0.4. ABT DO with

Fig. 6. Non concurrent constraints checks performed by ABT and ABT DO using different
order heuristics on high density DisCSPs (p1 = 0.7)

Fig. 7. Total number of messages sent by ABT and ABT DO on high density DisCSPs (p1 =
0.7)
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random ordering does not improve the results of standard ABT . ABT DO which uses
domain sizes to order the lower priority agents performs slightly better than ABT .
The largest improvement is gained by using the Nogood-trigerred heuristic. For the
hardest DisCSP instances, ABT DO with the Nogood-trigerred heuristic improves
the performance of standard ABT by a factor of 5.

Figure 5 presents the total number of messages sent by the algorithms for the same
problems. While ABT DO with random ordering heuristic shows similar run time
results to standard ABT it sends almost twice as many messages. This can be ex-
pected since in ABT DO agents send additional order messages and ok? messages
to all their neighbors while in standard ABT , ok? messages are sent only to lower
priority agents. ABT DO with domain size ordering sends more messages than stan-
dard ABT but less than the random ordering version. The really interesting result is
that ABT DO with the Nogood-triggered heuristic sends less messages than ABT .
Counting the additional ok? messages (sent to higher priority agents) and the order
messages, it still sends fewer messages than standard ABT on the hardest DisCSP
instances.

Figures 6 and 7 present similar results in runtime, for high density DisCSPs with
p1 = 0.7. Clearly, the influence of good ordering heuristics on the performance of the
algorithm is independent of network density. The results in total communication are
closer than in the low density case.

7 Discussion

Dynamic ordering is a powerful heuristic used to improve the run-time of central-
ized CSP algorithms [4] and of distributed CSP algorithms with sequential assign-
ments [3,10]. The results in the previous section, show that dynamic ordering must be
combined with the right heuristic in order to improve the run-time and justify the over-
head in message load of asynchronous backtracking. A random order heuristic does not
improve the run-time of standard ABT and sends many more messages. Surprisingly,
ordering the agents according to their domain size does not gain a large improvement
as reported for sequential (synchronous) assignments algorithms by [3]. This can be ex-
plained by the fact that asynchronous backtracking prunes the DisCSP search tree by
storing Nogoods which prevent it from trying to extend inconsistent tuples. Nogoods
are discarded in standard ABT whenever they become irrelevant [1]. In ABT DO,
this can happen when an agent holding a Nogood changes places with one of the other
agents whose assignment appears in the Nogood. This generates the need for additional
(redundent) messages reporting the same Nogoods.

On the other hand, the Nogood triggered heuristic, inspired by Dynamic Backtrack-
ing [5] was found to be very effective. In this heuristic, the above example of losing
useful information cannot occur. Nogoods are resolved and created according to dy-
namic backtracking. They include all the conflicting assignments held by the Nogood
sender. An agent that is moved to a higher priority position in the order, is moved lower
than all the agents with conflicting assignments, therefore no Nogoods are discarded.
The results show that this heuristic is very effective in both measures, run-time and
network load. The improvement in network load is particularly striking in view of the
additional ordering messages of ABT DO.
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8 Conclusions

Most of the studies of Asynchronous Backtracking used a static order of agents and vari-
ables [6,16,1,11]. An exponential space algorithm using dynamic ordering has shown
improvement in run-time over ABT [16]. The only study that suggested dynamic or-
dering in ABT with polynomial space used a complex method including additional ab-
stract agents [12]. The results presented in [12] show a minor improvement compared
to standard, static order, ABT .

The present study proposes a simple way of performing dynamic ordering in ABT
with polynomial space. The ordering is performed as in sequential assignment algo-
rithms by each agent changing only the order of agents following it in the former order.
A simple method of time-stamping [10] is used to determine the most updated proposed
order.

When a heuristic order inspired by dynamic backtracking [5] is used to dynamically
reorder agents, there is a significant improvement in run-time and network load over
standard ABT .

References

1. C. Bessiere, A. Maestre, I. Brito, and P. Meseguer. Asynchronous backtracking without
adding links: a new member in the abt family. Artificial Intelligence, 161:1-2:7–24, January
2005.

2. C. Bessiere, A. Maestre, and P. Messeguer. Distributed dynamic backtracking. In Proc.
Workshop on Distributed Constraint of IJCAI01, 2001.

3. I. Brito and P. Meseguer. Synchronous,asnchronous and hybrid algorithms for discsp. In
Workshop on Distributed Constraints Reasoning(DCR-04) CP-2004, Toronto, September
2004.

4. Rina Dechter. Constraints Processing. Morgan Kaufman, 2003.
5. M. L. Ginsberg. Dynamic backtracking. J. of Artificial Intelligence Research, 1:25–46, 1993.
6. Y. Hamadi. Distributed interleaved parallel and cooperative search in constraint satisfaction

networks. In Proc. IAT-01, Singappore, 2001.
7. L. Lamport. Time, clocks, and the ordering of events in distributed system. Communication

of the ACM, 2:95–114, April 1978.
8. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.
9. A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of distributed

constraints processing algorithms. In Proc. AAMAS-2002 Workshop on Distributed Con-
straint Reasoning DCR, pages 86–93, Bologna, July 2002.

10. T. Nguyen, D. Sam-Hroud, and B. Faltings. Dynamic distributed backjumping. In Proc. 5th
workshop on distributed constraints reasoning DCR-04, Toronto, September 2004.

11. M. C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in distributed
constraint satisfaction. Artificial Intelligence, 161:1-2:25–54, January 2005.

12. M. C. Silaghi, D. Sam-Haroud, and B. Faltings. Hybridizing abt and awc into a polynomial
space, complete protocol with reordering. Technical Report 01/#364, EPFL, May 2001.

13. B. M. Smith. Locating the phase transition in binary constraint satisfaction problems. Artifi-
cial Intelligence, 81:155 – 181, 1996.

14. G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed constraint
satisfaction problems (dcsps). In Constraint Processing-96, pages 561–2, New Hamphshire,
October 1996.



46 R. Zivan and A. Meisels

15. M. Yokoo. Asynchronous weak-commitment search for solving distributed constraint satis-
faction problems. In Proc. 1st Intrnat. Conf. on Const. Progr., pages 88 – 102, Cassis, France,
1995.

16. M. Yokoo. Algorithms for distributed constraint satisfaction problems: A review. Au-
tonomous Agents & Multi-Agent Sys., 3:198–212, 2000.

17. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction
problem: Formalization and algorithms. IEEE Trans. on Data and Kn. Eng., 10:673–685,
1998.

18. R. Zivan and A. Meisels. Synchronous vs asynchronous search on discsps. In Proc. 1st
European Workshop on Multi Agent System, EUMAS, Oxford, December 2003.



Incremental Algorithms for Local Search
from Existential Second-Order Logic
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Abstract. Local search is a powerful and well-established method for
solving hard combinatorial problems. Yet, until recently, it has provided
very little user support, leading to time-consuming and error-prone im-
plementation tasks. We introduce a scheme that, from a high-level de-
scription of a constraint in existential second-order logic with counting,
automatically synthesises incremental penalty calculation algorithms.
The performance of the scheme is demonstrated by solving real-life in-
stances of a financial portfolio design problem that seem unsolvable in
reasonable time by complete search.

1 Introduction

Local search is a powerful and well-established method for solving hard combi-
natorial problems [1]. Yet, until recently, it has provided very little user support,
leading to time-consuming and error-prone implementation tasks. The recent
emergence of languages and systems for local search, sometimes based on novel
abstractions, has alleviated the user of much of this burden [10,16,12,11].

However, if a problem cannot readily be modelled using the primitive con-
straints of such a local search system, then the user has to perform some of those
time-consuming and error-prone tasks. These include the design of algorithms
for the calculation of penalties of user-defined constraints. These algorithms are
called very often in the innermost loop of local search and thus need to be im-
plemented particularly efficiently: incrementality is crucial. Would it thus not be
nice if also this task could be performed fully automatically and satisfactorily
by a local search system? In this paper, we design a scheme for doing just that,
based on an extension of the idea of combinators [15] to quantifiers. Our key
contributions are as follows:

– We propose the usage of existential second-order logic with counting as a
high-level modelling language for (user-defined) constraints. It accommodates
set variables and captures at least the complexity class NP.

– We design a scheme for the automated synthesis of incremental penalty cal-
culation algorithms from a description of a (user-defined) constraint in that
language. We have developed an implementation of this scheme.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 47–61, 2005.
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– We propose a new benchmark problem for local search, with applications in
finance. Using our local search framework, we exactly solve real-life instances
that seem unsolvable in reasonable time by complete search; the performance
is competitive with a fast approximation method based on complete search.

The rest of this paper is organised as follows. In Section 2, we define the back-
ground for this work, namely constraint satisfaction problems over scalar and set
variables as well as local search concepts. The core of this paper are Sections 3
to 6, where we introduce the used modelling language and show how incremen-
tal algorithms for calculating penalties can be automatically synthesised from a
model therein. In Section 7, we demonstrate the performance of this approach
by solving real-life instances of a financial portfolio design problem. Finally, we
summarise our results, discuss related work, and outline future work in Section 8.

2 Preliminaries

As usual, a constraint satisfaction problem (CSP) is a triple 〈V, D, C〉, where V
is a finite set of variables, D is a finite set of domains, each Dv ∈ D containing
the set of possible values for the corresponding variable v ∈ V , and C is a finite
set of constraints, each c ∈ C being defined on a subset of the variables in V
and specifying their valid combinations of values.

Definition 1 (Set Variable and its Universe). Let P = 〈V, D, C〉 be a CSP.
A variable S ∈ V is a set variable if its corresponding domain DS = 2US , where
US is a finite set of values of some type, called the universe of S.

Without loss of generality, we assume that all the set variables have a common
universe, denoted U . We also assume that all the variables are set variables, and
denote such a set-CSP by 〈V, U , C〉. This is of course a limitation, since many
models contain both set variables and scalar variables. Fortunately, interesting
applications, such as the ones in this paper and in [2], can be modelled using
only set variables.

A constraint program assigns values to the variables one by one, but local
search maintains an (initially arbitrary) assignment of values to all the variables:

Definition 2 (Configuration). Let P = 〈V, U , C〉 be a set-CSP. A configura-
tion for P (or V ) is a total function k : V → 2U .

As usual, the notation k |= φ expresses that the open formula φ is satisfied
under the configuration k.

Example 1. Consider a set-CSP P = 〈{S1, S2, S3}, {d1, d2, d3}, {c1, c2}〉. A con-
figuration for P is given by k(S1) = {d3}, k(S2) = {d1, d2}, k(S3) = ∅, or equiv-
alently as the set of mappings {S1 �→ {d3}, S2 �→ {d1, d2}, S3 �→ ∅}. Another
configuration for P is given by k′ = {S1 �→ ∅, S2 �→ {d1, d2, d3}, S3 �→ ∅}.

Local search iteratively makes a small change to the current configuration,
upon examining the merits of many such changes. The configurations thus ex-
amined constitute the neighbourhood of the current configuration:
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Definition 3 (Neighbourhood). Let K be the set of all configurations for a
(set-)CSP P and let k ∈ K. A neighbourhood function for P is a function
N : K → 2K . The neighbourhood of P with respect to k and N is the set N (k).

Example 2. Reconsider P and k from Example 1. A neighbourhood of P with
respect to k and some neighbourhood function for P is the set {k1 = {S1 �→
∅, S2 �→ {d1, d2, d3}, S3 �→ ∅}, k2 = {S1 �→ ∅, S2 �→ {d1, d2}, S3 �→ {d3}}. This
neighbourhood function moves the value d3 in S1 to S2 or S3.

The penalty of a CSP is an estimate on how much its constraints are violated:

Definition 4 (Penalty). Let P = 〈V, D, C〉 be a (set-)CSP and let K be the
set of all configurations for P . A penalty function of a constraint c ∈ C is a
function penalty(c) : K → N such that penalty(c)(k) = 0 if and only if c is
satisfied under configuration k. The penalty of a constraint c ∈ C with respect
to a configuration k ∈ K is penalty(c)(k). The penalty of P with respect to a
configuration k ∈ K is the sum

∑
c∈C penalty(c)(k).

Example 3. Consider once again P from Example 1 and let c1 and c2 be the
constraints S1 ⊆ S2 and d3 ∈ S3 respectively. Let the penalty functions of c1
and c2 be defined by penalty(c1)(k) = |k(S1) \ k(S2)| and penalty(c2)(k) = 0 if
d3 ∈ k(S3) and 1 otherwise. Now, the penalties of P with respect to the config-
urations k1 and k2 from Example 2 are penalty(c1)(k1) + penalty(c2)(k1) = 1
and penalty(c1)(k2) + penalty(c2)(k2) = 0, respectively.

3 Second-Order Logic

We use existential second-order logic (∃SOL) [8], extended with counting, for
modelling the constraints of a set-CSP. ∃SOL is very expressive: it captures the
complexity class NP [5]. Figure 1 shows the BNF grammar for the used language,
which we will refer to as ∃SOL+. Some of the production rules are highlighted
and the reason for this is explained below. The language uses common mathe-
matical and logical notations. Note that its set of relational operators is closed
under negation. A formula in ∃SOL+ is of the form ∃S1 · · · ∃Snφ, i.e., a sequence
of existentially quantified set variables, ranging over the power set of an implicit
common universe U , and constrained by a logical formula φ. The usual prece-
dence rules apply when parentheses are omitted, i.e., ¬ has highest precedence,
∧ has higher precedence than ∨, etc.

Example 4. The constraint S ⊂ T on the set variables S and T may be expressed
in ∃SOL+ by the formula:

∃S∃T ((∀x(x /∈ S ∨ x ∈ T )) ∧ (∃x(x ∈ T ∧ x /∈ S))) (1)

The constraint |S∩T | ≤ m on the set variables S and T and the natural-number
constant m may be expressed in ∃SOL+ by the formula:

∃S∃T∃I((∀x(x ∈ I ↔ x ∈ S ∧ x ∈ T )) ∧ |I| ≤ m) (2)

Note that we used an additional set variable I to represent the intersection S∩T .
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Fig. 1. The BNF grammar for the language ∃SOL+ where terminal symbols are un-
derlined. The non-terminal symbol 〈S〉 denotes an identifier for a bound set variable S

such that S ⊆ U , while 〈x〉 and 〈y〉 denote identifiers for bound variables x and y such
that x, y ∈ U , and 〈a〉 denotes a natural number constant. The core subset of ∃SOL+

corresponds to the language given by the non-highlighted production rules.

In Section 4 we will define the penalty of formulas in ∃SOL+. Before we do
this, we define a core subset of this language that will be used in that definition.
This is only due to the way we define the penalty and does not pose any lim-
itations on the expressiveness of the language: Any formula in ∃SOL+ may be
transformed into a formula in that core subset, in a way shown next.

The transformations are standard and are only described briefly. First, given
a formula ∃S1 · · · ∃Snφ in ∃SOL+, we remove its negations by pushing them
downward, all the way to the literals of φ, which are replaced by their negated
counterparts. Assuming that φ is the formula ∀x(¬(x ∈ S ∧ x /∈ S′)), it is
transformed into ∀x(x /∈ S ∨ x ∈ S′). This is possible because the set of rela-
tional operators in ∃SOL+ is closed under negation. Second, equivalences are
transformed into conjunctions of implications, which are in turn transformed
into disjunctions. Assuming that φ is the formula ∀x(x ∈ S1 ↔ x ∈ S2), it is
transformed into ∀x((x /∈ S1 ∨ x ∈ S2) ∧ (x ∈ S1 ∨ x /∈ S2)).

By performing these transformations for φ (and recursively for the sub-
formulas of φ) in any formula ∃S1 · · · ∃Snφ, we end up with the non-highlighted
subset of the language in Figure 1, for which we will define the penalty.

Example 5. (1) is in the core subset of ∃SOL+. The core equivalent of (2) is:

∃S∃T∃I((∀x((x /∈ I ∨x ∈ S ∧x ∈ T )∧ (x ∈ I ∨x /∈ S ∨x /∈ T )))∧ |I| ≤ m) (3)

From now on we assume that any formula said in ∃SOL+ is already in the core
subset of ∃SOL+. The full language just offers convenient shorthand notations.

4 The Penalty of an ∃SOL+ Formula

In order to use (closed) formulas in ∃SOL+ as constraints in our local search
framework, we must define the penalty function of such a formula according

〈Constraint〉 ::= (∃ 〈S〉)+ 〈Formula〉

〈Formula〉 ::= (〈Formula〉)
| (∀ | ∃)〈x〉 〈Formula〉
| 〈Formula〉 (∧ | ∨ |→ | ↔ |←) 〈Formula〉
| ¬〈Formula〉
| 〈Literal〉

〈Literal〉 ::= 〈x〉 (∈ | /∈) 〈S〉
| 〈x〉 (< | ≤ | = | = | ≥ | >) 〈y〉

| |〈S〉| (< | ≤ | = | = | ≥ | >) 〈a〉
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to Definition 4, which is done inductively below. It is important to stress that
this calculation is totally generic and automatable, as it is based only on the
syntax of the formula and the semantics of the quantifiers, connectives, and
relational operators of the ∃SOL+ language, but not on the intended semantics
of the formula. A human might well give a different penalty function to that
formula, and a way of calculating it that better exploits globality, but the scheme
below requires no such user participation.

We need to express the penalty with respect to the values of any bound first-
order variables. We will therefore pass around an (initially empty) environment
Γ in the definition below, where Γ is a total function from the currently bound
first-order variables into the common universe of values.

Definition 5 (Penalty of an ∃SOL+ Formula). Let F be a formula in ∃SOL+

of the form ∃S1 · · · ∃Snφ, let k be a configuration for {S1, . . . , Sn}, and let Γ be
an environment. The penalty of F with respect to k and Γ is given by a function
penalty ′ defined by:

(a) penalty ′(Γ )(∃S1 · · · ∃Snφ)(k) = penalty ′(Γ )(φ)(k)
(b) penalty ′ (Γ )(∀xφ)(k) =

∑
u∈U

penalty ′(Γ ∪ {x �→ u})(φ)(k)

(c) penalty ′ (Γ )(∃xφ)(k) = min{penalty ′(Γ ∪ {x �→ u})(φ)(k) | u ∈ U}
(d) penalty ′(Γ )(φ ∧ ψ)(k) = penalty ′(Γ )(φ)(k) + penalty ′(Γ )(ψ)(k)
(e) penalty ′ (Γ )(φ ∨ ψ)(k) = min{penalty ′(Γ )(φ)(k), penalty ′(Γ )(ψ)(k)}

(f) penalty ′(Γ )(x ≤ y)(k) =

{
0, if Γ (x) ≤ Γ (y)
1, otherwise

(g) penalty ′(Γ )(|S| ≤ c)(k) =

{
0, if |k(S)| ≤ c

|k(S)| − c, otherwise

(h) penalty ′(Γ )(x ∈ S)(k) =

{
0, if Γ (x) ∈ k(S)
1, otherwise

(i) penalty ′ (Γ )(x /∈ S)(k) =

{
0, if Γ (x) /∈ k(S)
1, otherwise

Now, the penalty function of F is the function penalty(F) = penalty ′(∅)(F).

In the definition above, for (sub)formulas of the form x ♦ y and |S| ♦ c,
where ♦ ∈ {<, ≤, =, �=, ≥, >}, we only show the cases where ♦ ∈ {≤}; the other
cases are defined similarly. (The same applies to the algorithms in Section 5.)
The following proposition is a direct consequence of the definition above:

Proposition 1. The penalty of a formula F with respect to a configuration k is
0 if and only if F is satisfied under k: penalty(∃S1 · · · ∃Snφ)(k) = 0 ⇔ k |= φ.

In our experience, the calculated penalties of violated constraints are often
meaningful, as shown in the following example.

Example 6. Let U = {a, b} and let k be the configuration for {S, T } such that
k(S) = k(T ) = {a}. Let us calculate penalty(∃S∃Tφ)(k), where ∃S∃Tφ is
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the formula (1) The initial call matches case (a) which gives the recursive call
penalty ′(∅)(φ)(k). Since φ is of the form ψ ∧ ψ′ this call matches case (d), which
is defined as the sum of the recursive calls on ψ and ψ′. For the first recursive
call, ψ is the formula ∀x(x /∈ S ∨ x ∈ T ). Hence it will match case (b), which is
defined as the sum of the recursive calls penalty ′({x �→ a})(x /∈ S∨x ∈ T )(k) and
penalty ′({x �→ b})(x /∈ S ∨ x ∈ T )(k) (one for each of the values a and b in U).
Both of these match case (e) which, for the first one, gives the minimum of the
recursive calls penalty ′({x �→ a})(x /∈ S)(k) and penalty ′({x �→ a})(x ∈ T )(k).
This value is min{1, 0} = 0 since a ∈ T . A similar reasoning for the second one
gives the value min{0, 1} = 0 as well since b /∈ S. Hence the recursive call on
ψ gives 0 + 0 = 0. This means that ψ is satisfied and should indeed contribute
nothing to the overall penalty. A similar reasoning for the recursive call on ψ′,
which is ∃x(x ∈ T ∧ x /∈ S), gives min{1, 1} = 1. This means that ψ′ is violated:
the calculated contribution of 1 to the overall penalty means that no value of U
belongs to T but not to S. Hence the returned overall penalty is 0 + 1 = 1.

5 Incremental Penalty Maintenance Using Penalty Trees

In our local search framework, given a formula F in ∃SOL+, we could use Defini-
tion 5 to calculate the penalty of F with respect to a configuration k, and then
similarly for each configuration k′ in a neighbourhood N (k) to be evaluated.
However, a complete recalculation of the penalty with respect to Definition 5 is
impractical, since N (k) is usually a very large set.

In local search it is crucial to use incremental algorithms when evaluating the
penalty of a constraint with respect to a neighbour k′ to a current configuration
k. We will now present a scheme for incremental maintenance of the penalty of a
formula in ∃SOL+ with respect to Definition 5. This scheme is based on viewing
a formula F in ∃SOL+ as a syntax tree and observing that, given the penalty
with respect to k, only the paths from the leaves that contain variables that are
changed in k′ compared to k to the root node need to be updated to obtain the
penalty with respect to k′.

5.1 The Penalty Tree of a Formula

First, a syntax tree T of a formula F in ∃SOL+ of the form ∃S1 · · · ∃Snφ is
constructed in the usual way. Literals in F of the form x ∈ S, x /∈ S, x ♦ y,
and |S| ♦ k (where ♦ ∈ {<, ≤, =, �=, ≥, >}) are leaves in T. Subformulas in F
of the form ψ � ψ′ (where � ∈ {∧, ∨}) are subtrees in T with � as parent
node and the trees of ψ and ψ′ as children. When possible, formulas of the form
ψ1 � · · ·� ψm give rise to one parent node with m children. Subformulas in F
of the form ∀xψ (resp. ∃xψ) are subtrees in T with ∀x (resp. ∃x) as parent node
and the tree of ψ as only child. Finally, ∃S1 · · · ∃Sn is the root node of T with
the tree of φ as child. As an example of this, Figure 2 shows the syntax tree
of formula (3). Note that it contains additional information, to be explained in
Section 5.2.
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{() �→ 1(0)} ∃S∃T∃I

{() �→ 1(0)}∧{() �→ 1(0)}

∀x

∧

{(a) �→ 0,
(b) �→ 1(0),
(c) �→ 0}

∨

{(a) �→ 0,
(b) �→ 0(0),
(c) �→ 0}

x /∈ I

{(a) �→ 1,
(b) �→ 0,
(c) �→ 0}

∧
{(a) �→ 0,
(b) �→ 0(1),
(c) �→ 1} x ∈ S

{(a) �→ 0, (b) �→ 0, (c) �→ 1}

x ∈ T

{(a) �→ 0, (b) �→ 0(1), (c) �→ 0}

{(a) �→ 0,
(b) �→ 1(0),
(c) �→ 0}

∨

x ∈ I

{(a) �→ 0, (b) �→ 1, (c) �→ 1}

x /∈ S

{(a) �→ 1, (b) �→ 1, (c) �→ 0}

x /∈ T

{(a) �→ 1,
(b) �→ 1(0),
(c) �→ 1}

{() �→ 0}|I | ≤ m

Fig. 2. Penalty tree of formula (3)

Assume that T is the syntax tree of a formula F = ∃S1 · · · ∃Snφ. We will now
extend T into a penalty tree in order to obtain incremental penalty maintenance
of F . Given an initial configuration k for {S1, . . . , Sn}, the penalty with respect
to k of the subformula that the tree rooted at node n represents is stored in each
node n of T. This implies that the penalty stored in the root node of T is equal
to penalty(F)(k). When a configuration k′ in the neighbourhood of k is to be
evaluated, the only paths in T that may have changed are those leading from
leaves containing any of the set variables Si that are affected by the change of
k to k′. By starting at each of these leaves l(Si) and updating the penalty with
respect to the change of Si of each node on the path from l to the root node of
T, we can incrementally calculate penalty(F)(k′) given k.

5.2 Initialising the Nodes with Penalties

For the descendants of nodes representing subformulas that introduce bound
variables, we must store the penalty with respect to every possible mapping of
those variables. For example, the child node n of a node for a subformula of the
form ∀xφ will have a penalty stored for each u ∈ U . Generally, the penalty stored
at a node n is a mapping, denoted p(n), from the possible tuples of values of the
bound variables at n to N. Assume, for example, that at n there are two bound
variables x and y (introduced in that order) and that U = {a, b}. Then the
penalty stored at n after initialisation will be the mapping {(a, a) �→ p1, (a, b) �→
p2, (b, a) �→ p3, (b, b) �→ p4} where {p1, p2, p3, p4} ⊂ N. The first element of each
tuple corresponds to x and the second one to y. If there are no bound variables
at a particular node, then the penalty is a mapping {() �→ q}, i.e., the empty
tuple mapped to some q ∈ N.
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Algorithm 1. Initialises the penalty mappings of a penalty tree
function initialise(T, Γ,U , k)

match T with
∃S1 · · · ∃Snφ −→ p(T) ← {tuple(Γ ) 	→ initialise(φ, Γ,U , k)}

| ∀xφ −→ p(T) ← p(T) ∪ {tuple(Γ ) 	→ ∑
u∈U

initialise(φ, Γ ∪ {x 	→ u},U , k)}
| ∃xφ −→

p(T) ← p(T) ∪ {tuple(Γ ) 	→ min{initialise(φ, Γ ∪ {x 	→ u},U , k) | u ∈ U}}
| φ1 ∧ · · · ∧ φm −→ p(T) ← p(T) ∪ {tuple(Γ ) 	→ ∑

1≤i≤m initialise(φi, Γ,U , k)}
| φ1 ∨ · · · ∨ φm −→

p(T) ← p(T) ∪ {tuple(Γ ) 	→ min{initialise(φ, Γ,U , k) | φ ∈ {φ1, . . . , φm}}}

| x ≤ y −→ p(T) ← p(T) ∪
{

tuple(Γ ) 	→
{

0, if Γ (x) ≤ Γ (y)
1, otherwise

}

| |S| ≤ m −→ p(T) ← p(T) ∪
{

tuple(Γ ) 	→
{

0, if |k(S)| ≤ m

|k(S)| − m, otherwise

}

| x ∈ S −→ p(T) ← p(T) ∪
{

tuple(Γ ) 	→
{

0, if Γ (x) ∈ k(S)
1, otherwise

}

| x /∈ S −→ p(T) ← p(T) ∪
{

tuple(Γ ) 	→
{

0, if Γ (x) /∈ k(S)
1, otherwise

}
end match
return p(T)(tuple(Γ ))

function tuple(Γ )
return (Γ (x1), . . . , Γ (xn)) � {x1, . . . , xn} = domain(Γ ), introduced into Γ in that order.

Algorithm 1 shows the function initialise(T, Γ, U , k) that initialises a penalty
tree T of a formula with penalty mappings with respect to an (initially empty)
environment Γ , a universe U , and a configuration k. By abuse of notation, we let
formulas in ∃SOL+ denote their corresponding penalty trees, e.g., ∀xφ denotes
the penalty tree with ∀x as root node and the tree representing φ as only child,
φ1 ∧ · · · ∧ φm denotes the penalty tree with ∧ as root node and the subtrees of
all the φi as children, etc. Note that we use an auxiliary function tuple that,
given an environment Γ , returns the tuple of values with respect to Γ . We also
assume that before initialise is called for a penalty tree T, the penalty mapping
of each node in T is the empty set.

Example 7. Let k = {S �→ {a, b}, T �→ {a, b, c}, I �→ {a}}, let U = {a, b, c}, and
let m = 1. Figure 2 shows the penalty tree T with penalty mappings (dotted
arrows connect nodes to their mappings) after initialise(T, ∅, U , k) has been
called for formula (3). As can be seen at the root node, the initial penalty is 1.
Indeed, there is one value, namely b, that is in S and T but not in I.

5.3 Maintaining the Penalties

We will now present a way of incrementally updating the penalty mappings of a
penalty tree. This is based on the observation that, given an initialised penalty
tree T, a current configuration k, and a configuration to evaluate k′, only the
paths leading from any leaf in T affected by changing k to k′ to the root node
of T need to be updated.

Algorithm 2 shows the function submit(n,n′, A, k, k′) that updates the penalty
mappings of a penalty tree incrementally. It is a recursive function where informa-
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Algorithm 2. Updates the penalty mappings of a penalty tree
function submit(n, n′,A, k, k′)

update(n, n′,A) � First update n with respect to n′.
if All children affected by the change of k to k′ are done then

if n is not the root node then
submit(parent(n),n,A ∪ changed(n), k, k′)
changed(n) ← ∅

else () � We are at the root. Done!
else changed(n) ← changed(n) ∪ A � Not all children done. Save tuples and wait.

function update(n, n′,A)
p′(n) ← p(n) � Save the old penalty mapping.
for all t ∈ A|bounds(n) do

match n with
∃S1 · · · ∃Snφ −→ p(n) ← p(n) ⊕ {() 	→ p(n′)(())}

| ∀xφ −→
for all t′ ∈ A|bounds(n′) s.t. t′|bounds(n) = t do

p(n) ← p(n) ⊕ {t 	→ p(n)(t) + p(n′)(t′) − p′(n′)(t′)}
| ∃xφ −→

for all t′ ∈ A|bounds(n′) s.t. t′|bounds(n) = t do

Replace the value for t′ in min heap(n, t) with p(n′)(t′)
p(n) ← p(n) ⊕ {t 	→ min(min heap(n, t))}

| φ1 ∧ · · · ∧ φm −→ p(n) ← p(n) ⊕ {t 	→ p(n)(t) + p(n′)(t) − p′(n′)(t)}
| φ1 ∨ · · · ∨ φm −→ Replace the value for n′ in min heap(n, t) with p(n′)(t)

p(n) ← p(n) ⊕ {t 	→ min(min heap(n, t))}
| x ≤ y −→ error � Only leaves representing formulas on set variables apply!

| |S| ≤ m −→ p(n) ← p(n) ⊕
{

t 	→
{

0, if |k′(S)| ≤ m

|k′(S)| − m, otherwise

}

| x ∈ S −→ p(n) ← p(n) ⊕
{

t 	→
{

0, if t(x) ∈ k′(S)
1, otherwise

}

| x /∈ S −→ p(n) ← p(n) ⊕
{

t 	→
{

0, if t(x) /∈ k′(S)
1, otherwise

}
end match

tion from the node n′ (void when n is a leaf) is propagated to the node n. The
additional arguments are A (a set of tuples of values that are affected by changing
k to k′ atn), k (the current configuration), andk′ (the configuration to evaluate). It
uses the auxiliary function update(n,n′, A) that performs the actual update of the
penalty mappings of n with respect to (the change of the penalty mappings of) n′.

The set A depends on the maximum number of bound variables in the penalty
tree, the universe U , and the configurations k and k′. Recall U and k of Example 7
and assume that k′ = {S �→ {a, b}, T �→ {a, c}, I �→ {a}} (b was removed from
k(T )). In this case A would be the singleton set {(b)} since this is the only
tuple affected by the change of k to k′. However, if the maximum number of
bound variables was two (instead of one as in Example 7), A would be the set
{(b, a), (b, b), (b, c), (a, b), (c, b)} since all of these tuples might be affected.

Some of the notation used in Algorithm 2 needs explanation: Given a set A of
tuples, each of arity n, we use A|m to denote the set of tuples in A projected on
their first m ≤ n positions. For example, if A = {(a, a), (a, b), (a, c), (b, a), (c, a)},
then A|1 = {(a), (b), (c)}. We use a similar notation for projecting a particular
tuple: if t = (a, b, c) then t|2 denotes the tuple (a, b). We also use t(x) to denote
the value of the position of x in t. For example, if x was the second introduced
bound variable, then t(x) = b for t = (a, b, c). We let changed(n) denote the
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set of tuples that has affected n. We let bounds(n) denote the number of bound
variables at node n (which is equal to the number of nodes of the form ∀x or
∃x on the path from n to the root node). We use the operator ⊕ for replacing
the current bindings of a mapping with new ones. For example, the result of
{x �→ a, y �→ a, z �→ b} ⊕ {x �→ b, y �→ b} is {x �→ b, y �→ b, z �→ b}. Finally,
we assume that nodes of the form ∃x and ∨ have a data structure min heap for
maintaining the minimum value of each of its penalty mappings.

Now, given a change to a current configuration k, resulting in k′, assume that
{Si} is the set of affected set variables in a formula F with an initialised penalty
tree T. The call submit(n, void , A, k, k′) must now be made for each leaf n of T
that represents a subformula stated on Si, where A is the set of affected tuples.

Example 8. Recall k = {S �→ {a, b}, T �→ {a, b, c}, I �→ {a}} and m = 1 of
Example 7, and keep the initialised tree T in Figure 2 in mind. Let k′ = {S �→
{a, b}, T �→ {a, c}, I �→ {a}}, i.e., b was removed from k(T ). The function submit
will now be called twice, once for each leaf in T containing T .

Starting with the leaf n11 representing the formula x ∈ T , submit is called
with submit(n11, void , {(b)}, k, k′). This gives the call update(n11, void , {(b)})
which replaces the binding of (b) in p(n11) with (b) �→ 1 (since b is no longer in
T ). Since a leaf node has no children and n11 is not the root node, submit(n12,
n11, {(b)}, k, k′) is called where n12 = parent(n11). Since n12 is an ∧-node,
update(n12,n11, {b}) implies that the binding of (b) in p(n12) is updated with
the difference p(n11) − p′(n11) (which is 1 in this case). Hence, the new value of
p(n12)(b) is 1. Since there are no other affected children of n12 and n12 is not the
root node, submit(n13,n12, {(b)}, k, k′) is called where n13 = parent(n12). Since
n13 is an ∨-node, update(n13,n12, {b}) gives that the binding of (b) in p(n13) is
updated with the minimum of p(n12)(b) and the values of p(n)(b) for any other
child n of n13. Since the only other child of n13 gives a 0 for this value, p(n13)(b)
remains 0. Now, call submit(n3,n13, {(b)}, k, k′) where n3 = parent(n13). The
call update(n3,n13, {b}) gives that p(n3)(b) is unchanged (since p(n13)(b) was
unchanged). Now, not all possibly affected children of n3 are done since the leaf
n21 representing the formula x /∈ T has not yet been propagated. By following
a similar reasoning for the nodes n21 and n22 = parent(n21) we will see that
the value of p(n22)(b) changes from 1 to 0 (since b is now in T ). When this is
propagated to n3 by submit(n3,n22, {(b)}, k, k′), the value of p(n3)(b) will also
change from 1 to 0. A similar reasoning for parent(n3), parent(parent(n3)) and
the root node gives the same changes to their penalty mappings consisting of
only () �→ 1. This will lead to an overall penalty decrease of 1 and hence, the
penalty of formula (3) with respect to k′ is 0, meaning that (3) is satisfied under
k′. The values of the changed penalty mappings with respect to k′ of T are
shown in parentheses in Figure 2.

6 Neighbourhood Selection

When solving a problem with local search, it is often crucial to restrict the
initial configuration and the neighbourhood function used so that not all the
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constraints need to be stated explicitly. It is sometimes hard by local search
alone to satisfy a constraint that can easily be guaranteed by using a restricted
initial configuration and neighbourhood function. For example, if a set must have
a fixed cardinality, then, by defining an initial configuration that respects this
and by using a neighbourhood function that keeps the cardinality constant (for
example by swapping values in the set with values in its complement), an explicit
cardinality constraint need not be stated. Neighbourhoods are often designed in
such an ad-hoc fashion. With the framework of ∃SOL+, it becomes possible to
reason about neighbourhoods and invariants:

Definition 6. Let formula φ model a CSP P , let K be the set of all config-
urations for P , and let formula ψ be such that k |= φ implies k |= ψ for all
configurations k ∈ K. A neighbourhood function N : K → 2K is invariant for ψ
if k |= ψ implies k′ |= ψ for all k′ ∈ N (k).

Intuitively, the formula ψ is implied by φ and all possible moves take a
configuration satisfying ψ to another configuration satisfying ψ. The challenge
then is to find a suitable neighbourhood function for a formula φ.

Sometimes (as we will see in Section 7), given formulas φ and ψ satisfying
Definition 6, it is possible to find a formula δ such that φ is logically equivalent
to δ ∧ ψ. If the formula δ is smaller than φ, then the speed of the local search
algorithm can be greatly increased since the incremental penalty maintenance is
faster on smaller penalty trees.

7 Application: A Financial Portfolio Problem

After formulating a financial portfolio optimisation problem, we show how to
exactly solve real-life instances thereof in our local search framework. This is
impossible with the best-known complete search algorithm and competitive with
a fast approximation method based on complete search.

7.1 Formulation

The synthetic-CDO-Squared portfolio optimisation problem in financial mathe-
matics has practical applications in the credit derivatives market [7]. Abstracting
the finance away and assuming (not unrealistically) interchangeability of all the
involved credits, it can be formulated as follows.1 Let V = {1, . . . , v} and let
B = {1, . . . , b} be a set of credits. An optimal portfolio is a set of v subsets
Bi ⊆ B, called baskets, each of size r (with 0 ≤ r ≤ b), such that the maximum
intersection size of any two distinct baskets is minimised.

There is a universe of about 250 ≤ b ≤ 500 credits. A typical portfolio
contains about 4 ≤ v ≤ 25 baskets, each of size r ≈ 100. Such real-life instances
of the portfolio optimisation problem are hard, so we transform it into a CSP by
also providing a targeted value, denoted λ (with λ < r), for the maximum of the

1 We use the notation of the related balanced incomplete block design problem.
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pairwise basket intersection sizes in a portfolio. Hence the following formulation
of the problem:

∀ i ∈ V : |Bi| = r (4)

∀ i1 �= i2 ∈ V : |Bi1 ∩ Bi2 | ≤ λ (5)

We parameterise the portfolio CSP by a 4-tuple 〈v, b, r, λ〉 of independent pa-
rameters. The following formula gives an optimal lower bound on λ [13]:2

λ ≥
� rv

b �2(rv mod b) + � rv
b �2(b − rv mod b) − rv

v(v − 1)
(6)

7.2 Using Complete Search

One way of modelling a portfolio is in terms of its incidence matrix, which is a
v × b matrix, such that the entry at the intersection of row i and column j is
1 if j ∈ Bi and 0 otherwise. The constraints (4) and (5) are then modelled by
requiring, respectively, that there are exactly r ones (that is a sum of r) for each
row and a scalar product of at most λ for any pair of distinct rows. An optimal
solution, under this model, to 〈10, 8, 3, λ〉 is given in Table 1, with λ = 2.

Table 1. An optimal solution to 〈10, 8, 3, λ〉, with λ = 2

c r e d i t s
basket 1 1 1 1 0 0 0 0 0
basket 2 1 1 0 1 0 0 0 0
basket 3 1 1 0 0 1 0 0 0
basket 4 1 1 0 0 0 1 0 0
basket 5 0 0 1 1 1 0 0 0
basket 6 0 0 1 1 0 1 0 0
basket 7 0 0 1 1 0 0 1 0
basket 8 0 0 0 0 1 1 0 1
basket 9 0 0 0 0 1 0 1 1
basket 10 0 0 0 0 0 1 1 1

The baskets are indistinguishable, and, as stated above, we assume that all
the credits are indistinguishable. Hence any two rows or columns of the incidence
matrix can be freely permuted. Breaking all the resulting v! · b! symmetries can
in theory be performed, for instance by v! · b! − 1 (anti-)lexicographical order-
ing constraints [4]. In practice, strictly anti-lexicographically ordering the rows
(since baskets cannot be repeated in portfolios) as well as anti-lexicographically
ordering the columns (since credits can appear in the same baskets) works quite
fine for values of b up to about 36, due to the constraint (5), especially when

2 It often improves the bound reported in [7] and negatively settles the open question
therein whether the 〈10, 350, 100, 21〉 portfolio exists or not.
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labelling in a row-wise fashion and trying the value 1 before the value 0. How-
ever, this is one order of magnitude below the typical value for b in a portfolio.
In [7], we presented an approximate and often extremely fast method of solv-
ing real-life instances of this problem by complete search, even for values of λ
quite close, if not identical, to the lower bound in (6). It is based on embedding
(multiple copies of) independent sub-instances into the original instance. Their
determination is itself a CSP, based on (6).

7.3 Using Local Search

It is easy to model the portfolio problem in ∃SOL+ using additional set variables.
The problem can be modelled by the following formula:

∃B1, . . . , ∃Bv∃i<jI(i,j) φ1 ∧ φ2 ∧ φ3 (7)

where ∃i<jI(i,j) is a shorthand for the sequence of quantifications ∃I(1,2), . . . ,
I(i,j), . . . for all i < j.3 The formula φ1 = |B1| = r∧· · ·∧|Bv| = r states that each
set Bi is of size r. Using similar conventions, the formula φ2 = ∀i < j ∀x(x ∈
I(i,j) ↔ (x ∈ Bi ∧ x ∈ Bj)) states that each set I(i,j) is the intersection of Bi

and Bj . Finally, the formula φ3 = ∀i < j|I(i,j)| ≤ λ states that the intersection
size of any Bi and Bj should be less than or equal to λ.

The local search algorithm can be made more efficient by using the ideas
in Section 6. First, we define a neighbourhood function that is invariant for the
formula φ1. Assuming that the initial configuration for (7) respects φ1, the neigh-
bourhood function that swaps any value in any Bi to any value in its complement
is invariant for φ1. We denote this neighbourhood function by exchange. We may
even extend exchange such that it is invariant also for φ2. In order to do this,
we assume that the initial configuration for (7) respects φ1 ∧φ2. Now, we extend
exchange in the following way. Given a configuration k and a configuration k′ in
exchange(k) where Bi is the only variable affected by the change of k to k′, the
variables I(i,j) such that there exists a subformula x ∈ I(i,j) ↔ (x ∈ Bi ∧x ∈ Bj)
or x ∈ I(j,i) ↔ (x ∈ Bj ∧x ∈ Bi) are all updated (by adding or removing a value
to I(i,j)) so that those formulas still hold.

We use a similar algorithm to the one in [2] for solving the portfolio problem
with local search, i.e., a Tabu-search algorithm with a restarting criterion if no
overall improvement was reported after a certain number of iterations.

7.4 Results

The experiments were run on an Intel 2.4 GHz Linux machine with 512 MB
memory. The local search framework was implemented in OCaml and the com-
plete search algorithm was coded in SICStus Prolog.

The local search algorithm performs well on this problem. For example, the
easy instance 〈10, 35, 11, 3〉 is solved in 0.2 seconds, the slightly harder instance
3 This shorthand is a purely conservative extension of ∃SOL+ and does not increase

the expressiveness.
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〈10, 70, 22, 6〉 in 0.6 seconds, and the real-life instance 〈15, 350, 100, 24〉 in 133.9
seconds. Bear in mind that these results were achieved (by our current prototype
implementation) under the assumption that no built-in constraints existed, and
thus that the incremental penalty maintenance algorithms were automatically
generated as described in this paper.

For comparison, the complete search approach without embeddings needs 0.6
seconds for finding a first solution of 〈10, 35, 11, 3〉, 929.8 seconds for 〈10, 70, 22, 6〉,
and does not terminate within several hours of CPU time for 〈15, 350, 100, 24〉.

Using the extended implementation [13] of the embedding method of [7]
for the real-life instance 〈15, 350, 100, 24〉, two embeddings were constructed but
both timed out after 100 seconds. Hence, local search approaches can outperform
even this approximation method.

8 Conclusion

Summary. In the context of local search, we have introduced a scheme that,
from a high-level problem model in existential second-order logic with counting
(∃SOL+), automatically synthesises incremental penalty calculation algorithms.
This bears significant benefits when ad hoc constraints are necessary for a par-
ticular problem, as no adaptation by the user of the modelling part of the local
search system is then required. The performance of the scheme has been demon-
strated by solving real-life instances of a financial portfolio design problem that
seem unsolvable in reasonable time by complete search.

Related Work. The usage of existential second-order logic (∃SOL) as a mod-
elling language has also been advocated in [9]. The motivation there was rather
that any automated reasoning about constraint models must necessarily first
be studied on this simple core language before moving on to extensions thereof.
Modern, declarative constraint modelling languages, such as NP-SPEC [3], OPL
[14], and ESRA [6], are extensions of ∃SOL. In contrast, our motivation for ∃SOL
is that it is a sufficient language for our purpose, especially if extended (only)
with counting.

The adaptation of the traditional combinators of constraint programming for
local search was pioneered in [15]. The combinators there include logical con-
nectives (such as ∧ and ∨), cardinality operators (such as exactly and atmost),
reification, and expressions over variables. We extend these ideas here to the
logical quantifiers (∀ and ∃). This is not just a matter of simply generalising
the arities and penalty calculations of the ∧ and ∨ connectives, respectively, but
made necessary by our handling of set variables over which one would like to
iterate, unlike the scalar variables of [11,15].

Future Work. We have made several simplifying assumptions in order to re-
strict this paper to its fundamental ideas. For instance, the handling of both
scalar variables and set variables requires special care in the calculation of penal-
ties, and has been left as future work. Also, many more shorthand notations than
the ones used in this paper could be added for the user’s convenience, such as
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quantification bounded over a set rather than the entire universe. Furthermore,
it would be useful if appropriate neighbourhood functions that are invariant for
some of the constraints could automatically be generated from an ∃SOL+ model.

Conclusion. Our first computational results are encouraging and warrant fur-
ther research into the automatic synthesis of local search algorithms.
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Abstract. We study a global constraint, the “inter-distance constraint”
that ensures that the distance between any pair of variables is at least
equal to a given value. When this value is 1, the inter-distance con-
straint reduces to the all-different constraint. We introduce an algorithm
to propagate this constraint and we show that, when domains of the
variables are intervals, our algorithm achieves arc-B-consistency. It pro-
vides tighter bounds than generic scheduling constraint propagation al-
gorithms (like edge-finding) that could be used to capture this constraint.
The worst case complexity of the algorithm is cubic but it behaves well
in practice and it drastically reduces the search space. Experiments on
special Job-Shop problems and on an industrial problem are reported.

Keywords: Global Constraint, Scheduling, Constraint Propagation.

1 Introduction

We introduce a global constraint, the “inter-distance constraint” that ensures
that the distance between any pair (Si, Sj) of variables in some set {S1, ..., Sn}
is not smaller than a given value p, i.e., ∀i, j, |Si − Sj | ≥ p. To our knowledge,
this constraint has been introduced for the first time by Régin [20]. When p is
1, the inter-distance constraint reduces to the well-known all-different constraint
[19], [18], [13].

This study was motivated by an industrial application for Air Traffic Man-
agement in the Terminal RAdar Control Area of airports [2]. When aircraft reach
the final descent in the “Terminal Radar Approach CONtrol” area (tracon),
a set of disjoint time windows in which the landing is possible, can be auto-
matically assigned to each aircraft. The objective is then to determine landing
times within these time windows which maximize the minimum time elapsed
between consecutive landings. The decision variant of this problem, (i.e., when
the minimum time elapsed between consecutive landings is fixed and when the
question is to determine if there are feasible landing times or not), can be mod-
eled with an inter-distance constraint. The inter-distance constraint is also useful
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to model scheduling situation in which all jobs that have to be processed on the
same machine have the same processing time. This is often the case in man-
ufacturing scheduling problems (see for instance the testbed proposed by Ilog
www2.ilog.com/masclib described in [16]).

The objective of this paper is to present a global constraint propagation
algorithm for the inter-distance constraint. As explained in Section 2, stan-
dard scheduling constraint propagation algorithms, like edge-finding or “Not-
First/Not-Last”, can be used to model this constraint. We also show that these
more generic algorithms do not perform all possible deductions. An algorithm
that determines whether the constraint is globally consistent or not is described
in Section 3. We then introduce propagation rules (Section 4) and a polynomial
time algorithm to propagate the inter-distance constraint (Section 5). We show
that, when variables domains are intervals, our algorithm achieves the arc-B-
consistency (i.e., arc consistency restricted to the bounds of the domains of the
variables [12]) of the global constraint and hence performs the best possible fil-
tering. The worst case complexity of the algorithm is cubic but it behaves well
in practice and it drastically reduces the search space. Experiments (Section 6)
on special Job-Shop problems and on our industrial application are reported.

2 Inter-distance Constraint vs. Scheduling Constraints

Régin [20] relies on the sequencing constraint [21] to propagate the “inter-
distance constraint”. However, we believe it is somewhat easier to consider this
constraint as a pure scheduling constraint. To each variable Si, we associate a job
i starting at time Si and whose processing time is p. The disjunctive constraint
directly ensures that activities are not processed simultaneously and hence, the
distance between any pair of starting times is at least p. So both models are
identical.

Over the last decade, several resource constraint propagation algorithms have
been designed to address a variety of scheduling situations (see [3] for a review).
We first describe two constraint propagation schemes known as “Edge-Finding”
and “Not-First/Not-Last” that are widely used in the literature for disjunctive
scheduling. Then we show that they can be improved when all processing times
are equal.

2.1 Edge-Finding

The edge-finding algorithm [7], [8], [14] is one of the most well known OR al-
gorithm integrated in CP. This global constraint propagation algorithm for dis-
junctive scheduling is a key ingredient for solving complex scheduling problems
such as the Job-Shop Scheduling problem

The term “Edge-Finding” denotes both a “branching” and a “bounding”
technique [1]. The branching technique consists of ordering jobs that require the
same resource. At each node, a set of jobs Ω is selected and, for each job i ∈ Ω,
a new branch is created where i is constrained to execute first (or last) among
the jobs in Ω. The bounding technique consists of deducing that some jobs from
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a given set Ω must, can, or cannot, execute first (or last) in Ω. Such deductions
lead to new ordering relations (“edges” in the graph representing the possible
orderings of jobs) and new time bounds, i.e., strengthened earliest start times
and latest end times of jobs.

In the following, rΩ and dΩ respectively denote the smallest of release dates
and the largest deadline of the jobs in Ω. Moreover, pΩ is the sum of the processing
times of the jobs in Ω. Finally, let i � Ω mean that i executes after all the jobs
in Ω and let Si be the variable representing the starting time of the job i. The
following rules capture the “essence” of the Edge-Finding bounding technique:

∀Ω, ∀i /∈ Ω, [dΩ − rΩ∪{i} < pΩ + pi] ⇒ [i � Ω]
∀Ω, ∀i /∈ Ω, [i � Ω] ⇒ [Si ≥ max

∅�=Ω′⊆Ω
(rΩ′ + pΩ′)]

An algorithm that performs all the time-bound adjustments in O(n2) is presented
in [7]. Another variant of the Edge-Finding technique is presented in [8]. Its time
somplexity is O(n log n) but it requires much more complex data structures.

2.2 Not-First/Not-Last

The algorithms presented earlier focus on determining whether a job i must
execute first (or last) in a set of jobs Ω ∪ {i} requiring the same resource. A
natural complement consists of determining whether i can execute first (or last)
in Ω ∪ {i}. If not, i is “Not-First” and cannot start before at least one job in Ω
is completed. This leads to the following rules [17]:

∀Ω, ∀i /∈ Ω, [dΩ − ri < pΩ + pi] ⇒ ¬(i � Ω)
∀Ω, ∀i /∈ Ω, ¬(i � Ω) ⇒ Si ≥ min

j∈Ω
Sj + pj

A quadratic algorithm is described in [4]. Alternative approaches can be found
in [23], [9], [24].

2.3 Missed Deductions

It is well known that Edge-Finding and Not-First/Not-Last propagation rules
do not ensure the consistency of the global disjunctive constraint (determining
whether this constraint is consistent is NP-Complete in the strong sense). What
happens when processing times are equal ? The following examples show that
Edge-Finding and Not-First/Not-Last do not perform all possible deductions.

In the example described in Figure 1, 6 jobs with processing time 2 are to
be scheduled on a single machine. The time window (release dates / deadlines)
of a job is drawn as white rectangle. The job itself (black rectangle) has to
be scheduled inside this window. There is no feasible schedule (the machine
is occupied from 3 to 9 because of the last three jobs, hence 3 jobs have to
be scheduled in two disjoint time windows of size 3; contradiction) but neither
edge-finding nor Not-First/Not-Last rule detect this. In the example of Figure 2,
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0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1. Edge-Finding and Not-First/Not-Last do not detect all inconsistencies

3 jobs with processing time 5 have to be scheduled on a single machine. There is
a feasible schedule but neither edge-finding nor Not-First/Not-Last deduce that
the third job cannot start earlier than 10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 2. Edge-Finding and Not-First/Not-Last do not achieve Arc-B-Consistency

3 Feasibility Test

From now on, we focus on the scheduling problem with identical processing
times. Garey, Johnson, Simons and Tarjan [10] have introduced an O(n log n)
algorithm to solve this problem. We describe a cubic version of this algorithm
based on similar techniques as in [10]. We have however modified the presentation
of the algorithm (and also the proofs) to be able to introduce the adjustments
of release dates and deadlines described in Sections 4 and 5.

3.1 Why EDD Fails

EDD (Earliest DeaDline) is a dispatching rule that builds a schedule chrono-
logically as follows: Whenever the machine is idle, select among the jobs that
are released before or at the current time point the job with minimal deadline.
Schedule the job and iterate. When preemption is allowed, the preemptive EDD
rule computes a feasible schedule if one such exists [7] (this also holds in the
general case with arbitrary processing times). It is well known that this is not
the case in the non-preemptive case. We show in Figure 3 a 3 job instance with
identical processing times for which EDD fails while there is a feasible schedule.
When processing times are all equal, Garey, Johnson, Simons and Tarjan pro-
pose to modify the EDD rule to ensure that it builds a feasible schedule, if one
exists. The modification consists in introducing a set of forbidden regions F in
which no job can start on any feasible schedule.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 3. EDD fails while there is a feasible schedule

Given a set of forbidden regions F , the modified EDD rule keeps the schedule
idle when the current time point t belongs to F (see Algorithm 1). Throughout
this algorithm, U denotes the set of yet unscheduled jobs. At each iteration one
job of U is scheduled.

Algorithm 1. Modified EDD schedule
1: U := {1, ..., n}
2: t := mini∈U ri

3: while U 
= ∅ do
4: t := min(t,mini∈U ri)
5: if t ∈ F then
6: t := min{t′ ≥ t : t′ /∈ F}
7: Let k be the job with smallest deadline s.t. rk ≤ t
8: Start job k at time t, U := U − {k}, t := t + p

3.2 Computing Forbidden Regions

The crucial point is how to compute the set F of “forbidden regions” . We
first provide an intuitive description of this mechanism. F is built step by step,
starting from F = ∅. Given a set of jobs X , compute an upper bound lst of
the largest time point such that there is a feasible schedule of the jobs in X
that is idle before lst and in which no job starts in F (lst stands for latest
start time). If lst is smaller than mini∈X ri then there is no feasible schedule.
If lst − p < mini∈X ri then no job can start after lst − p and before mini∈X ri

(if this were the case, the job would finish after lst . Thus, we would not have a
feasible schedule). So no job starts in the interval [lst − p + 1, mini∈X ri − 1] and
this interval is added to the set of forbidden regions F .

To give a formal description of this mechanism, we introduce the following
notations:

Definition 1. Given a time point t, an integer q and a set of forbidden regions
F , ect(F, t, q) and lst(F, t, q) respectively denote the earliest completion time
(resp. latest start time) of a schedule of q jobs, with no release date and no
deadline, starting after or at (resp. completed before or at) t.

Algorithms 2 and 3 compute respectively ect(F, t, q) and lst(F, t, q). The proof
of correctness is easy to make by induction on q and is skipped.



Inter-distance Constraint 67

Algorithm 2. Earliest Completion Time of q jobs starting after or at t

1: for i = 1 to q do
2: if t ∈ F then
3: t := min{t′ ≥ t : t′ /∈ F}
4: t := t + p
5: ect(F, t, q) = t

Algorithm 3. Latest Start Time of q jobs to be completed before or at t

1: for i = 1 to q do
2: t := t − p
3: if t ∈ F then
4: t := max{t′ ≤ t : t′ /∈ F}
5: lst(F, t, q) = t

We are now ready to explain Algorithm 4 that computes all forbidden regions.
In the following, Δ (r,d) stands for the set of jobs {i : r ≤ ri,di ≤ d} and
|Δ (r, d)| is the cardinality of this set.

Algorithm 4. Forbidden Regions
1: F := ∅
2: for all release date r taken in non-increasing order do
3: lst := ∞
4: for all deadline d taken in non-increasing order do
5: lst := min(lst, lst(F, d, |Δ (r, d)|))
6: if lst < r then
7: There is no feasible schedule
8: else if r ≤ lst < r + p then
9: F := F ∪ [lst − p + 1, r − 1]

Lemma 1. If Algorithm 4 fails then there is no feasible schedule. Moreover, in
any feasible schedule, jobs do not start in F .

Proof. Assume that the lemma holds for all the regions that have been added
by Algorithm 4 up to the current iteration (r, d). If lst < r then in any feasible
schedule, one job of Δ (r, d) starts before the minimal release date in this set;
contradiction. Now assume that r ≤ lst < r + p (otherwise no forbidden region
is added to F and our claim holds up to the next iteration). If there is a feasible
schedule in which a job u starts at t ∈ [lst − p + 1, r − 1] then no job of Δ (r, d)
is scheduled before t + p ≥ lst + 1 which contradicts the definition of lst . ��

Lemma 2. Given two time points t1 ≤ t2, an integer q and a set of forbidden
regions F , ect(F, t1, q) > t2 if and only if lst(F, t2, q) < t1.

Proof. If ect(F, t1, q) ≤ t2 then there is a schedule of q jobs that can be executed
between t1 and t2. Hence a schedule of q jobs completed at t2 with no starting
times in F can start after or at t2. Hence lst(F, t2, q) ≥ t1. ��
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Lemma 3. If Algorithm 4 does not fail, there is a feasible schedule.

Proof. We claim that, given the set of forbidden regions F computed by Algo-
rithm 4, a feasible schedule is built by Algorithm 1 when applied to the set of
forbidden regions F . Let us assume this is not true and let k′ denote the first
job that is completed after its deadline by Algorithm 1. We iteratively build a
set of jobs S′. Initially, S′ = {k′}; we then add in S′ all the jobs preceding k′

until we either reach a time point t /∈ F at which all jobs released before t are
scheduled or until we reach a job u with du > dk′ .

– If we have reached a time point t /∈ F at which all jobs released before t are
scheduled. Let j′ be the job in S′ with minimal release date. So, at some step
of the algorithm the interval rj′ , dk′ was considered. All jobs of S′ belong
to this interval. When building the EDD schedule of this set, note that the
forbidden regions that are encountered are those in the set F as built at
iteration r. Indeed, forbidden regions added at a later iteration end before r
so they do not interact with jobs considered at this step.
Also note that time points at which the machine is idle are forbidden (these
time points do not correspond to release dates because of the construction
of S′). Hence the shape of the EDD schedule after rj′ up to dk′ is exactly
the same as the one computed by the forward scheduling algorithm when
applied to the same set of jobs with the forbidden list built while processing
the release date r. Hence ect(F, rj′ , |Δ (rj′ , dk′)|) > dk′ . So, according to
Lemma 2, lst(F, dk′ , |Δ (rj′ , dk′)|) < rj′ . Hence Algorithm 4 would declare
the failure.

– If we have reached a job u with du > dk′ . Then All jobs i in S′ are such
that di ≤ dk′ and ri > ru (otherwise EDD would have scheduled another
job than u at time ru). As before, let j′ denote the job in S′ with minimal
release date. So S′ is a subset of Δ (rj′ , dk′).
Algorithm 1 fails, hence, ect(F, ru + p, |S′|) > dk′ . So, according to Lemma
2, lst(F, dk′ , |S′|) < ru + p. Since no failure has been triggered, we have also
ru < rj′ ≤ lst(F, dk′ , |S′|). Hence, ru must belong to a forbidden region
declared by Algorithm 4, but it is not the case. ��

3.3 Runtime Analysis

It is easy to see that there are no more than n forbidden regions hence algorithms
2 and 3 can be implemented in quadratic time. This would lead to an overall
O(n4) algorithm. We can improve this to cubic time as follows:

When a new forbidden region is created (Algorithm 4), its endpoint is smaller
than or equal to the endpoints of the previously build forbidden regions. So, we
can easily maintain – in constant time – the set of forbidden regions as a list of
ordered disjoint intervals whenever a new interval is added. Finally, note that
forbidden regions end right before a release date. Hence, it is easy to maintain the
set F in such a way that we have no more than n forbidden regions throughout
the algorithm.

Moreover, we can incrementally compute min{t′ ≥ t : t′ /∈ F} since t increases
at each iteration. Moreover, inside the loop, all operations can be done in linear
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time except min{t′ ≥ t : t′ /∈ F}. Hence the overall complexity of Algorithm
1 is O(n2 + |F |) since overall time needed for the computations of mini∈U ri is
linear if all jobs are sorted in increasing order of release dates. Following the
same remarks, both Algorithms 2 and 3 run in O(q + |F |).

This directly ensures that Algorithm 4 runs in O(n3).

4 Propagation Rules

From now on, we assume that there is a feasible schedule. We denote by F
the set of forbidden regions computed by Algorithm 4. The following lemmas
characterize a set of time points at which jobs cannot start. Lemma 7 shows
that all other time points are possible starting times.

Lemma 4 (Internal Adjustment). Given two time points r, d, and an integer
0 ≤ q ≤ |Δ (r, d)| − 1, job i cannot start in

Ir,d,q = [lst(F, d, |Δ (r, d)| − q) + 1, ect(F, r, q + 1) − 1].

Proof. Assume there is a feasible schedule in which a job i starts at time t <
ect(F, r, q + 1), for some q ∈ {0, ..., |Δ (r, d)| − 1} (if t ≥ ect(F, r, q + 1) then
the job does not start in Ir,d,q). Given the definition of ect , at most q jobs are
completed strictly before ect(F, r, q + 1). Hence |Δ (r, d)| − q jobs are completed
after t. So t ≤ lst(F, d, |Δ (r, d)| − q), i.e., job i does not start in the interval
[lst(F, d, |Δ (r, d)| − q) + 1, ect(F, r, q + 1) − 1]. ��

Note that in the above lemma, we could restrict to jobs i ∈ Δ (r, d) but it also
works for jobs i /∈ Δ (r, d).

Lemma 5 (External Adjustment). Given two time points r, d and an integer
0 ≤ q ≤ |Δ (r, d)|, a job i /∈ Δ (r, d) cannot start in

Er,d,q = [lst(F, d, |Δ (r, d)| − q + 1) + 1, ect(F, r, q + 1) − 1].

Proof. Assume there is a feasible schedule in which a job i /∈ Δ (r, d) starts at
time t < ect(F, r, q+1), for some q ∈ {0, ..., |Δ (r, d)|−1}. Given the definition of
ect , at most q jobs are completed strictly before ect(F, r, q+1). Hence |Δ (r, d)|−q
jobs of Δ (r, d) as well as job i are completed after t. So t ≤ lst(F, d, |Δ (r, d)| −
q + 1), i.e., job i does not start in the interval [lst(F, d, |Δ (r, d)| − q + 1) +
1, ect(F, r, q + 1) − 1]. ��

In the following, we say that a time point t ≥ ri is a candidate starting time
for job i if it has not been discarded by internal and/or external adjustment
(Lemmas 4, 5). Given a candidate starting time t for job i, we note I ′ the the
instance obtained from I in which we have replaced ri by t and di by t + p.
So in I ′ the job i is fixed, and our objective is to prove that there is a feasible
schedule for this instance. This claim is proven in Lemma 8 but we first need
some technical lemmas.
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Definition 2. The associated deadline of a release date r is the largest dead-
line d such that lst(F, d, |Δ (r, d)|) is minimal.

Lemma 6. If Algorithm 4 declares a forbidden region [lst ′ − p+1, r − 1] for the
instance I ′ that strictly extends the forbidden region [lst − p + 1, r − 1] computed
for the instance I then the associated deadline of r for the instance I ′ is greater
than or equal to t + p.

Proof. Let r be the largest release date of instance I ′ such that

– its associated deadline d is strictly lower than t + p
– lst(F ′, d, |Δ (r, d)|) < lst(F, d, |Δ (r, d)|).

Note that if r does not exist then our lemma holds. When scheduling backward
from d with the forbidden set F , at least one starting time must belong to F ′

but not to F otherwise lst(F, d, |Δ (r, d)|) = lst(F ′, d, |Δ (r, d)|). Let then t be
the largest starting time in this backward schedule that belongs to F ′ but not to
F and let r′ > r be the release date that makes t forbidden in the new instance.
As r′ > r, we know that the associated deadline d′ of r′ is greater than or equal
to t + p. When back-scheduling |Δ (r′, d)| jobs from d using F ′, no starting time
belongs to F ′ (recall that t is maximal). Hence, the corresponding latest start
time is larger than t + p (on the back-schedule) otherwise t ∈ F . So we have

lst(F ′, d′, |Δ (r′, d′)|) < lst(F ′, d, |Δ (r′, d)|).

Now note that lst(F ′, d′, |Δ (r, d′)|) = lst(F ′, lst(F ′, d′, |Δ (r′, d′)|), q) where q is
exactly |{i : r ≤ ri < r′, di ≤ d}|, or similarly,

lst(F ′, d, |Δ (r, d)|) = lst(F ′, lst(F ′, d, |Δ (r′, d)|), q).
As the function h → lst(F ′, h, q) is non decreasing, we have

lst(F ′, d′, |Δ (r, d′)|) ≤ lst(F ′, d, |Δ (r, d)|).

This contradicts the fact that d is the associated deadline of r. ��
In the the proofs of the subsequent lemmas, we use the following notation:

given a release date r and deadline d,

Θi(r, d) =

{
0, if r ≤ ri ≤ di ≤ d

1, otherwise

Lemma 7. If t has not been discarded by the propagation, for any v, lst(F, t, v) /∈
F ′.

Proof. Let v be the first integer value such that lst(F, t, v) ∈ F ′. Let then r >
lst(F, t, v) be the release date that made the time point lst(F, t, v) forbidden.
According to Lemma 6, d, the associated deadline of r, is greater than or equal
to t + p. So we have

lst(F, t, v) < r ≤ lst(F ′, d, |Δ (r, d)| + Θi(r, d)) < lst(F, t, v) + p

Now let q denote the largest integer such that lst(F ′, d, q) ≥ t. Given this defi-
nition, we have
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lst(F ′, d, |Δ (r, d)| + Θi(r, d)) ≥ lst(F ′, t, |Δ (r, d)| + Θi(r, d) − q)

Because t has not been discarded by propagation, we immediately have

lst(F ′, t, |Δ (r, d)| + Θi(r, d) − q) ≥ r

and thus we must have
|Δ (r, d)| + Θi(r, d) − q < v

and because of our hypothesis on v,

lst(F ′, t, |Δ (r, d)|+Θi(r, d)−q) = lst(F, t, |Δ (r, d)|+Θi(r, d)−q) < lst(F, t, v)+p

This contradicts the fact that the distance between two starting times in any
back-schedule is at least p. ��

The following lemma shows that we achieve Arc-B-Consistency on the global
constraint.

Lemma 8 (Feasible Starting Times). If t has not been discarded by the
propagation, there is a feasible schedule in which i starts at t.

Proof. If the instance I ′ is not feasible the Algorithm 4 fails at some iteration.
Let then r and d be the corresponding release date and deadline. First assume
that d < t + p then, when applying the back-scheduling algorithm from d, we
must have at least one starting time in F ′ and not in F (otherwise, we would
have the same lst value). By the same reasoning as in Lemma 6 we could prove
that there is also a deadline d′ ≥ t + p such that the backward schedule fails.

So now assume that d ≥ t + p. We have

lst(F ′, d, |Δ (r, d)| + Θi(r, d)) < r.

As we know that i starts exactly at t, we can decompose the backward scheduling
(before t and after t+ p). And we get a better bound on the latest possible start
time, i.e.,

max
q

{lst(F ′, t, q) : lst(F ′, d, |Δ (r, d)| + Θi(r, d) − q) ≥ t} < r.

The back-scheduling algorithm computes exactly the same schedules before t
when applied either to F or to F ′. Moreover, for any v, lst(F, t, v) /∈ F ′. So, the
above equation leads to

max
q

{lst(F, t, q) : lst(F, d, |Δ (r, d)| + Θi(r, d) − q) ≥ t} < r.

So propagation would have detected that t is not a possible starting time. ��

5 A Constraint Propagation Algorithm

For any deadline d, all intervals Ir,d,q and Er,d,q are completed at the same time
ect(F, r, q + 1) − 1. So we define Ir,q as the maximum, over all d, of Ir,d,q. It is
then easy to compute all intervals Ir,q in cubic time. The situation is a bit more
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complex for intervals Er,d,q as we cannot merge all these intervals since external
adjustments are only valid for jobs that are not in Δ (r, d). To solve this issue, we
consider jobs in non-decreasing order of deadlines and we add, at each iteration,
all intervals corresponding to external adjustments associated to this deadline.
This is valid since these intervals are used (Algorithm 5) to adjust release dates
of jobs with a greater deadline.

The algorithm runs in cubic time. Indeed, there are O(n2) values to precom-
pute and each time, this can be done in linear time. Moreover, the union of two
intervals can be done in constant time and finally, the adjustment rk = min{t ≥
rk, t /∈ ∪r,qIr,q ∪ Er,q} can be computed in quadratic time since there are O(n2)
intervals to consider. To simplify the presentation of the algorithm, we do not
explicitly define the data structure in which we store the intervals Ir,q and Er,q.
In practice, we rely on a quadratic array indexed by jobs.

Algorithm 5. An O(n3) Constraint Propagation Algorithm
1: Precompute all lst(F, d, i) and ect(F, r, i) values
2: Initialize Ir,q and Er,q to ∅
3: for all deadline d do
4: for all release date r do
5: for all q ≤ |Δ (r, d)| − 1 do
6: Ir,q = Ir,q ∪ [lst(F, d, |Δ (r, d)| − q) + 1, ect(F, r, q + 1) − 1]
7: for all job k taken in non-decreasing order of deadlines do
8: rk = min{t ≥ rk, t /∈ ∪r,q(Ir,q ∪ Er,q)}
9: for all release date r do

10: for all q ≤ |Δ (r, dk)| do
11: Er,q = Er,q ∪ [lst(F, dk, |Δ (r, dk)| − q + 1) + 1, ect(F, r, q + 1) − 1]

A similar algorithm can be used to adjust deadlines.

6 Experiments

Our constraint propagation algorithm has been tested on two disjunctive schedul-
ing problems. The first one is a special case of the Job-Shop scheduling problem in
which all operations on the same machine have the same processing time. The sec-
ond one is a combinatorial problem from Air-Traffic Management (ATM). In both
case, we briefly describe the problem and the CP model but we do not describe the
branching scheme nor the heuristics used. The objective of this section is only to
evaluate the efficiency of the Inter-Distance Constraint Propagation Scheme.

6.1 Job-Shop Scheduling

The Job-Shop Scheduling Problem consists of n jobs that are to be executed us-
ing m machines. Each job consists of m operations to be processed in a specified
order. Each operation requires a specified machine and each machine is required
by a unique activity of each job. The Job-Shop is an optimization problem. The
goal is to determine a solution with minimal makespan and prove the optimality
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of the solution. In this paper we study a variant of the problem in which pro-
cessing times of operations that require the same machine are identical. Even
with this restriction, the problem is strongly NP-hard ([11]).

We use a standard model for the Job-Shop (see [3]) where starting times of
operations are integer constrained variables and the makespan is represented as an
integer variable constrained to be greater than or equal to the end of any job. Arc-
B-Consistency is applied on precedence constraints between operations. Machine
constraints are enforced either with Edge-Finding (EF) or with the Inter-Distance
Constraint (IDC). The branching scheme and the heuristics are those provided by
default in Ilog Scheduler, the constraint based scheduling tool of Ilog.

As for the standard Job-Shop problem, randomly generated instances are
very easy to solve with EF. Among 150 random instances with up to 15 jobs and
15 machines, 34 instances requiring a significant amount of time to be solved
(more than 10 seconds on Dell Latitude D600 running XP) were selected. For
each instance, the two variants (EF and IDC) have been run for up to 3600
seconds. EF is able to solve 23 instances while IDC can solve 29 instances. On
the average, less than 27 seconds were required by IDC to solve the 6 instances
that could not be solved within one hour by EF. Among the 23 instances solved
by both variants, EF requires 588999 backtracks and 249 seconds while IDC
requires 249655 backtracks and 232 seconds. In term of CPU, the relatively
low improvement comes, we believe, from the fact that we compare the highly
optimized Edge-Finding implementation of Ilog Scheduler with a straightforward
implementation of IDC.

6.2 Runway Sequencing with Holding Patterns

We study a scheduling problem that occurs when aircraft reach the final descent
in the “Terminal Radar Approach CONtrol” area (tracon) of an airport with
a single runway. When entering the tracon, a set of disjoint time windows in
which the landing is possible, can be automatically assigned to each aircraft.
Roughly speaking, the distance between two consecutive windows corresponds
to a waiting procedure known as a “Holding Pattern”. The objective is then
to determine landing times, within these time windows, which maximize the
minimum time elapsed between consecutive landings. More formally, the decision
variant of this problem can be described as follows.

The Runway Scheduling Problem

Input integers n, p, (s1, . . . , sn), (r1
1, d

1
1, . . . , r

s1
1 , ds1

1 ), . . ., (r1
n, d1

n, . . . , rsn

n , dsn

n ).
Meaning each job i has processing time p and has to be fully scheduled (i.e.,

started and completed) in one of the intervals [riu, diu]. We wish to find
a schedule such that every job is scheduled non-preemptively, and no two
jobs overlap.

Output a set of starting times S1, . . . , Sn ∈ N such that (1) ∀i ∈ {1, . . . n},
∃j ∈ {1, . . . , si} such that Si ∈ [rij , dij − p] and (2) ∀i, k ∈ {1, . . . n} with
k �= i, |Si − Sk| ≥ p.
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This problem is NP-Complete in the strong sense [2]. We refer to [5], [6] and
[2] for a complete description of the problem together with MIPs and Branch
and Cut procedures to solve it.

We build a constraint based model as follows. For each aircraft i, we have
a decision variable Pi that determines whether i is scheduled in its j-th time
window [rij , dij ], (Pi = j) or not (Pi �= j). We also associate a start time variable
Si for each job i : Pi ≥ j ⇐⇒ rj ≤ Si and Pi ≤ j ⇐⇒ dj ≥ Si + p.

The fact that jobs do not overlap in time is modeled as an Inter-Distance con-
straint. To solve the problem, we look for an assignment of the Pi variables and
at each node of the search tree we test whether the IDC constraint is consistent
or not (Section 3). This directly ensures that, when all Pi variables are bound,
we have a solution to the scheduling problem. Two variants have been tested.
In the first one, the machine constraint is propagated with Edge Finding (EF)
while in the second one we use the Inter-Distance Constraint (IDC) propagation
algorithm.

Two sets of instances have been generated (instances can be downloaded at
http://www.lix.polytechnique.fr/˜baptiste/flight scheduling data.zip). The first
set of instances corresponds to “mono-pattern” problems in which all aircraft
have the same number of time windows, each of them having the same size and
being equally spaced. The second set of instances corresponds to the general
problem. Instances with up to 90 jobs have been randomly generated (see [2] for
details). For this problem, all tests were made on top of Eclair c©[15]. Within 1
minute of CPU time, 189 and 32 instances of the first and second set of instances
could be solved with EF while with IDC, we can solve respectively 192 and 46
instances. Among instances solved by EF and IDC the number of backtracks is
reduced of 60 % (first set) and 91% (second set) when using IDC. The CPU time
is also decreased of 4 % and 73 %.

7 Conclusion

We have introduced a new global constraint, the “inter-distance constraint” that
ensures that the distance between any pair of variables in some set is at least
equal to a given value. We have introduced a constraint propagation algorithm
that achieves arc-B-consistency on this constraint and we have shown that it
allows to drastically reduce the search space on some combinatorial problems.

Our constraint propagation algorithm is more costly than the edge-finding
algorithm (although it is much more powerful and achieves the best possible
bounds). Its complexity can be reduced to O(n2 log n) but the algorithm requires
specific data structures that are not in the scope of this paper. An open question
is whether the worst case complexity of the constraint propagation algorithm can
be reduced to O(n2).

We also believe that a generalization of this constraint to the situation where
m identical parallel machines are available could be interesting. Such a con-
straint would be immediately useful for car-sequencing problems where “a/b”
constraints (no more than a cars with some special feature among b consecutive
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ones) can be expressed in scheduling terms: Schedule identical jobs with process-
ing time b on a parallel identical machines (each time point in the scheduling
model corresponds to a slot in the sequence of cars). The global consistency of
the corresponding constraint can be achieved in polynomial time thanks to a
beautiful algorithm of Simons [22]. However, no specific constraint propagation
algorithm is known.
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Abstract. Classical methods for solving numerical CSPs are based on a branch
and prune algorithm, a dichotomic enumeration process interleaved with a con-
sistency filtering algorithm. In many interval solvers, the pruning step is based
on local consistencies or partial consistencies. The associated pruning algorithms
compute numerous data required to identify gaps within some domains, i.e. in-
consistent intervals strictly included in the domain. However, these gaps are only
used to compute the smallest approximation of the box enclosing all the solu-
tions. This paper introduces a search strategy, named , that takes
advantage of the gaps identified during the filtering process. Gaps are collected
with a negligible overhead, and are used to select the splitting direction as well
as to define relevant cutting points within the domain. Splitting the domain by
removing such gaps definitely reduces the search space. It also helps to discard
some redundant solutions and helps the search algorithm to isolate different solu-
tions. First experimental results show that significantly improves
performances of the search process.

1 Introduction

Many application problems ranging from robotics to chemistry and geometry can be
seen as numerical constraint satisfaction problems (NCSPs). A NCSP is defined by a
set of variables and a set of nonlinear constraints on the variables. The domain of the
variables are closed intervals of real values. Numerical CSPs can be used to express a
large class of problems, particularly problems with imprecise data or partially defined
parameters. The goal is to find sharp boxes that approximate the solutions. Correct ap-
proximations of the solutions can be obtained by interval-based solvers; most of them
implement a search algorithm that combines enumeration techniques and local consis-
tencies techniques.

Consistencies techniques over numerical CSPs are derived from finite domains
CSPs techniques. The associated filtering algorithms remove from the interval domains
some values for which at least one constraint does not hold (inconsistency). In practice,
the pruning is limited to a contraction of the bounds of the intervals.

Classical techniques for solving numerical CSPs are based on a branch and prune al-
gorithm. This algorithm interleaves domain pruning and domain splitting, until a given
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precision of the domains is reached. The splitting step selects a direction and splits the
corresponding interval in several pieces. The standard splitting technique is bisection,
which splits the selected domain in its middle.

Among the strategies for selecting the domain to split, the method considered as the
most efficient on average is the Round Robin method ( ) : the domains of the vari-
ables are processed alternately. However, other domain selection strategies have been
proposed. The Largest First ( ) strategy, also called geometric splitting [1], selects first
the domain of maximal width. The Maximal Smear ( ) strategy has been introduced
by [2] for interval Gauss-Seidel method : the selected domain maximizes the smear
function1 [3], informally speaking, the domain of the variable the projection of which
has the strongest slope.

In most interval solvers, the pruning step is based on local consistencies (Hull-
Consistency [4,5], Box-consistency [6,7,8]) or stronger consistencies (kB-consistencies
[4,9], Bound-consistency [10]). The associated pruning algorithms often identify gaps
within some domains, i.e., inconsistent intervals strictly included in the domain. These
gaps are only used to compute the smallest approximation of the box enclosing all the
solutions.

This paper introduces a search strategy, named , that takes advantage
of the gaps identified by local consistencies filtering algorithms. These gaps are col-
lected with a negligible overhead, and are used to select the splitting direction as well
as to define relevant cutting points within the domain. Splitting a domain by removing
such a gap definitely reduces the search space. It also helps to discard some redundant
solutions and helps the search algorithm to isolate different solutions. If no gap has
been found, the branching step is achieved by a standard splitting process combined
with classical selection strategies.

In general, chronological backtracking is used to handle the subproblems generated
by the splitting step. However, more sophisticated strategies may also be used, as for
instance a dynamic backtracking strategy [11]. Note that is fully com-
patible with any backtracking technique.

A similar approach has been suggested by Hansen [12,2] for interval Newton method.
The search algorithm exploits the gaps identified by Gauss-Seidel steps. This approach
has been used by Ratz [1] for handling global optimization problems. Three different
box-splitting strategies have been suggested :

– Use only the largest gap to split the box, and generate 2 subproblems [12].
– Use k gaps found in the same domain to split the box and generate k + 1 subprob-

lems [1].
– Use at most three gaps in three different domains, and combine the subdomains to

generate up to 8 subproblems [2].

We generalize Hansen’s approach for all classical consistency filtering algorithms :
Hull-consistency, Box-consistency and kB-consistencies. We demonstrate that this ap-
proach works well for solving satisfaction problems, that is to say for finding all isolated
solutions or solutions spaces.

1 The smear function of xk is : sk = max1≤j≤m{max {|J i,j |, |J i,j |}w(xi)}, where Ji,j =
[J i,j , J i,j ] is the (i, j)-th entry of the interval extension of the Jacobian matrix of the system.
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Hyvönen [13] used the gaps to enforce strong consistency. He proposed an algo-
rithm to enforce union-consistency by combining sets of intervals, but this method is
strongly limited by its exponential character. uses the gaps to guide the
solution space exploration, and can thus limit the number of generated gaps. To limit the
cost of the management of unions of intervals, we avoid gap identification on trigono-
metric functions. More precisely, we restrict gap identification to power terms and divi-
sions, which produce at most one gap.

The paper is organized as follows: section 2 briefly describes the notations used in
the rest of the paper. Section 3 gives an overview of . Section 4 describes
the extensions of Hull-consistency, Box-consistency filtering algorithms that collect the
gaps. Section 5 reports some experimental results on classical benchmarks. Finally,
section 6 proposes different extensions of the method to handle stronger consistencies.

2 Notations

Let R be the set of real numbers R extended to infinites values {−∞, +∞} and let
F ⊂ R be the subset of reals corresponding to binary floating-point numbers in a given
format. A closed interval x = [x, x] with x, x ∈ F denotes the set of real values x such
that x ≤ x ≤ x. Open intervals will be denoted by (x, x) = {x ∈ R s.t. x < x < x}.
I stands for the set of such intervals and ∩I denotes the intersection operator over I.

A union of intervals is denoted by u =
⋃

u(j), where the subintervals u(j) are dis-
joint and sorted by increasing lower bound, i.e. u(j) < u(j+1). The number of subinter-
vals of u is denoted by |u|. The lower bound (resp. upper bound) of u is denoted by u
(resp. u). U stands for the set of such unions of intervals and∩U denotes the intersection
operator over U, such that u ∩U v = {x ∈ R : x ∈ u ∧ x ∈ v}.

Real variables are denoted by x, y and X, Y denote variable vectors whereas X,Y
denote interval vectors and U,V denote vectors of union of intervals. We note X = ∅
whenever one of the interval components of X is empty. The width of an interval w(x)
is the positive quantity x − x, while the midpoint m(x) of the interval x is (x + x)/2.
w(X) denotes the size of the largest interval component of X.

This paper focus on numerical CSPs defined by X = (x1, . . . , xn), a vector of
variables, X = (x1, . . . ,xn), a vector of associated domains, and C = {c1, . . . , cm},
a set of nonlinear constraints. The set of variables of the constraint c is denoted by Vc.

3 : General Framework

Classical techniques for solving numerical CSPs are based on a branch and prune algo-
rithm (see figure 1(a)). This algorithm interleaves domain pruning and domain splitting
until a given precision ωsol of the domains is reached. (line 4) is one of the
standard filtering algorithm based on numerical constraint programming consistency
techniques: Hull-consistency, Box-consistency or kB-consistencies. In the rest of the
paper, Hull-consistency algorithm will be denoted by and Box-consistency
algorithm by . (line 9) is a function that selects a splitting direction and
splits the corresponding interval. The generated subproblems are added to the set Q. In
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(in :X0, C, ωsol out : S)
%% X0 = (x1, . . . ,xn)

1: Q ← {X0} ; S ← ∅
2: while Q 
= ∅ do
3: Extract X from Q
4: X ← Prune(C,X)
5: if X 
= ∅ then
6: if w(X) ≤ ωsol then
7: S ← S ∪ X
8: else

% Standard splitting process
9: Q ← Q∪ (X)

10: endif
11: endif
12: endwhile
13: return S

(a) Standard algorithm

(in:X0, C, ωsol out: S)
%% X0 = (x1, . . . ,xn)

1: Q ← {X0} ; S ← ∅
2: while Q 
= ∅ do
3: Extract X from Q
4: X ← Prune�(C,X,U)
5: if X 
= ∅ then
6: if w(X) ≤ ωsol then
7: S ← S ∪ X
8: else if ∃k s.t. |uk| > 1 then

% Gap Splitting
9: Q ← Q∪ (U)

10: else
% Standard splitting process

11: Q ← Q∪ (X)
12: endif
13: endif
14: endwhile
15: return S

(b) :Overview

Fig. 1. Overall scheme of

general, bisection is used and the intervals are split in their middle. Different domain
selection strategies may be used such as , or (as mentioned in section 1).

In contrast, (see figure 1(b)) takes advantage of the gaps produced by
consistency filtering algorithms. Function � (line 4) collects the gaps generated
during the filtering process. The identified gaps are stored in U, which is a vector of
union of intervals (u1, . . . ,un), such that : ui =

⋃
ui(j), where ui(j) = [ui(j), ui(j)]

denotes the j-th sub-domain of xi. As long as w(X) is larger than some ωsol,
splits at first among a domain that contains at least one gap (line 9). Several

heuristics for selecting the domain to split and for choosing the gaps to remove have
been explored (see section 5). The splitting is actually done by the function
which removes one or more gaps from the selected domains, and stores the subprob-
lems in the stack Q. splits first the domains that contain gaps. If no gap
has been found, the standard is used (line 11).

4 Local Consistencies and Gaps

Most constraint solvers (e.g. IlogSolver [14], Numerica [7], Realpaver [15]) are based
on local consistencies (Hull-consistency [4,5], Box-consistency [7,6]). The correspond-
ing filtering algorithms perform a pruning of the domains of the variables by remov-
ing values for which some constraints do not hold (inconsistency). This reduction is
achieved by narrowing operators which are correct, monotone and contracting func-
tions. The reductions are propagated using the standard interval narrowing algorithm,
derived from AC3 [16] (see figure 2).
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(in:C, X0)
% X0 = (x1, . . . ,xn)
% C = {c1, . . . , cm}

1: Q ← C ; X ← X0

2: while Q �= ∅ and X �= ∅ do
3: extract ci from Q
4: X′ ← (ci,X)
5: if X �= X′ then
6: Q ← Q ∪ {cj |∃xk ∈ Vc

j
∧

xk �= x′
k}

7: X ← X′

8: endif
9: endwhile

10: return X

Fig. 2. Standard interval narrowing al-
gorithm
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Fig. 3. Approximation of a projection function
by a union of intervals

Hull-consistency and Box-consistency are based on this standard interval narrowing
algorithm, but they use a specific function. In this section, we describe extended

functions that collects the gaps identified by the respective consistency. These
extended versions, called �(ci,X,U), store the gaps identified in a vector of
unions of interval U = (u1, . . . ,un). Then we define extended Hull-consistency and
Box-consistency filtering algorithms that collect the identified gaps.

4.1 Interval Extensions and Projection Functions

An interval evaluation of a real-valued function f for a given range X = (x1, . . . ,xn)
is an interval y such that : y ≤ f(x1, . . . , xn) ≤ y, ∀xi ∈ xi, 1 ≤ i ≤ n. In other
words, y is an interval that contains the values of f , when the values of the unknowns
are restricted to the box X. The simplest way to compute y is to evaluate the natural
interval extension of f , obtained by substituting all classical mathematical operators
(resp. constants, variables) in f by their basic interval extension [17].

Example 1. Let f(x, y) = 2x + xy − 1 with x ∈ [−1, 1], y ∈ [1, 2]. The interval
evaluation of f for the given ranges is [2, 2]⊗[−1, 1]⊕[−1, 1]⊗[1, 2]�[1, 1] = [−5, 3].

The same principle can be applied to compute a union of intervals that contains the
values of f using the extended interval extension of the basic mathematical operators
[17,2,18,19].

Interval narrowing algorithms use projection functions [8] to prune the domains of
the variables. Informally speaking, πxk

c (X) denotes the projection over the variable xk

of the solutions of c when the values of the variables are restricted to the range X.
Note that πxk

c (X) may be conservatively approximated either by the smallest enclosing
interval denoted by �I(πxk

c (X)), or by the smallest enclosing union of intervals denoted
by �U(πxk

c (X)) (see example 2).



82 H. Batnini, C. Michel, and M. Rueher

Example 2. Consider the constraint c : y = x2 where x ∈ [−2, 4] and y ∈ [1, 16] and
let X = [−2, 4]× [1, 16]. Figure 3 shows that the interval approximation of πx

c (X) is
�I(πx

c (X)) = [−2, 4], whereas the union approximation of πx
c (y) is �U(πx

c (X)) =
[−2,−1] ∪ [1, 4].

To limit the cost of the management of unions of intervals, we avoid gap identifica-
tion on trigonometric functions. More precisely, gap identification is restricted to power
terms and divisions whose projections produce at most one gap2. The influence of the
syntactic form of the constraint over gap identification will be explored in section 5.

4.2 Hull-Consistency and Gaps

Hull-consistency states a local property on the bounds of the domains. A constraint c is
Hull-consistent if for any variable xi of c, there exist values in the domains of all the
other variables which satisfy c when xi is fixed to xi or xi. A more formal definition of
Hull-consistency can be found in [4].

The basic implementation of Hull-consistency, named 2B-consistency [4,20], de-
composes the system of constraints into primitive constraints for which projection func-
tions are easy to compute. The most powerful implementation of Hull-consistency is
HC4 [5], based on the narrowing operator HC4revise. This implementation does not
require any explicit decomposition of the constraints. All the projection functions are
evaluated by traversing a tree-structured representation of the constraints from bottom
to top and conversely. Forward propagation evaluates the expression associated to each
nodes, using the domains or the values associated to its subtrees. Backward propagation
traverses the tree in the opposite direction to reduce the domains of the variables using
the projection functions associated to each operator.

We detail now , the narrowing operator used for computing Hull-consis-
tency in HC4. That is to say, corresponds to function in the generic
algorithm of figure 2. Basically, (figure 4(a)) prunes the domain vector X
by applying a constraint narrowing operator on each variable xk of Vc. This narrowing
operator reduces the bounds of the domain of xk by computing the natural extension of
the projection function πxk

c . The evaluation of πxk

c by union of intervals is intersected
with xk (line 2), but the possible gaps are lost during the intersection operation. In fact,
they are used only to compute a stronger pruning of xk . However, the gaps could be
collected by replacing the interval intersection operation, ∩I, in (line 2) by
the pending operation on union of intervals, ∩U. Actually, it is not necessary to com-
pute the intersection of the union of intervals at each projection, which may be costly.
The narrowing operators being contracting functions (Φ(Ω) ⊆ Ω), the last projection
provides the smallest union of intervals (w.r.t. set inclusion) that approximate πxk

c . For
this reason, � (see picture 4(b)) maintains a set S of constraint/variable pairs
for which gaps have been identified. The effective computation of the gaps is delayed to
the end of the propagation step. More precisely, � checks whether the evalu-
ation of the projection function πxk

c produces a gap within the domain xk (line 5-9). In
this case, the (c, x) is added to set of pairs of constraint/variable S. Otherwise (c, x) is

2 Note that several gaps may be produced by intersecting the projections of different constraints
on the same domain.
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(in:c, X) : Interval vector
% X = (x1, . . . ,xn)

1: foreach xk ∈ Vc do
2: xk ← �I(xk ∩U �U(πx

k

c (X)))
% Possible gaps are lost

3: if xk = ∅ then
4: return ∅
5: endif
6: endfor
7: return X

(a)

�(in:c, X, in-out: S) : Interval vector
% X = (x1, . . . ,xn)

1: foreach xk ∈ Vc do
2: u ← xk ∩U �U(πx

k

c (X))
3: if u = ∅ then return ∅
4: else % Mind the gap
5: if |u| > 1 then
6: S ← S ∪ (c, xk)
7: else
8: S ← S \ (c, xk)
9: endif

10: xk ← �I(u)
11: endif
12: endfor
13: return X

(b) �

Fig. 4. Hull-consistency narrowing function and its variant which collects the gaps

deleted from S to handle the case where a gap has been previously identified but pushed
out of the domain during the propagation step.

Let +(C,X,S) be the algorithm (see figure 2), in which the call
to the narrowing function have been replaced by �(ci,X,S). + en-
forces hull-consistency over the box X and fills the set S with pairs of constraint/
variables for which gaps have been identified.

Then, for each pair (c, xk) of S, � retrieves the gaps by intersecting uk

with the evaluation by union of intervals of the projection πxk

c (see figure 5).

4.3 Box-Consistency and Gaps

Box-consistency [6,7] is a coarser approximation of arc-consistency than Hull-consis-
tency, but it achieves a stronger pruning in practice [8]. Moreover, Box-consistency
tackles some dependency problems when variables have multiple occurrences in the
same constraint. A constraint c is Box-consistent if for any variable xi of Vc, the bounds
of xi satisfy the unary constraint obtained by replacing each occurrence of a variable xj

other that xi by the constant interval xj . A more formal definition of Box-consistency
can be found in [6,7].

Box-consistency generates a set of univariate functions which can be tackled by
numerical method such as Interval Newton [2]. The pruning consists in finding the
leftmost and the rightmost quasi-zero3 of these univariate functions. Let be
the narrowing function used to compute Box-consistency. c X prunes the
domain of each variables of c until c is Box-consistent. For each variable xk of c, an
interval univariate function fxk

is generated from c by replacing all the variables but xk

by their interval domain. Then, the pruning consists in finding the leftmost quasi-zero
and the rightmost quasi-zero of fxk

. This narrowing is achieved on the lower bound

3 A quasi-zero of the interval function f is an interval vector X such that 0 ∈ f(X).
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�(in:C, in-out: X, U)
% X = (x1, . . . ,xn)
% U = (u1, . . . ,un)

1: S ← ∅
2:

+(C,X,S)
3: if X �= ∅ then

% Collect the gaps
4: foreach (c, xk) ∈ S do
5: uk ← uk ∩U �U(πx

k

c (X))
6: endfor
7: endif

Fig. 5. � enforces Hull-consistency
and collects the gaps

(in:c, X) : Interval vector
% X = (x1, . . . ,xn)

1: foreach xk ∈ Vc do
2: xk ← (fx

k
, f ′x

k

,xk)
3: xk ← (fx

k
, f ′x

k

,xk)
4: if xk = ∅ then
5: return ∅
6: endif
7: endfor
8: return X

Fig. 6. Box-consistency narrowing function

by (see figure 7(a)) and on the upper bound (see [6] for a
detailed description of these algorithms). These functions are based on ,
which prunes the domain of a variable x w.r.t. a constraint c using the classical univari-
ate interval Newton algorithm. Whenever x is reduced less than a given ε, a splitting
process is applied to ensure that x is a quasi-zero of fx . � (see figure 7(b))
collects the gaps identified by the Box-consistency narrowing operator.

The point is that the call of (line 3 of ) produces gaps in
two different ways:

1. If the right bound of the current interval domain x is reduced by , the
removed interval ([x′, x]) does not satisfy c.

2. By the interval newton method, , itself.

To explain how may produce gaps, let us recall the definition of the in-
terval Newton method :

x(0) = x
x(n+1) = N(f , f ′,x(n)),

where N(fx , f ′x ,x(n)) = x(n) ∩ (m(x(n))− fx (m(x(n)))
f ′x (x(n)) )

The function computes the fix-point of N(fx , f ′x ,x) and returns the re-
sulting interval. The evaluation of the division f(m(x(n)))/f ′(x(n)) with extended in-
terval arithmetic [2,17] may produce a gap as illustrated on example 3 below.

Example 3. Let f(x, y) = x2 − y with x ∈ [−4, 4] and y ∈ [1, 16]. The interval
functions fx and its derivative f ′x are defined by fx(x) = x2 − [1, 16] and f ′x(x) = 2x.
Then,
x(0) = [−4, 4]
x(1) = [−4, 4] ∩ (0� ((02 � [1, 16])� (2 ⊗ [−4, 4])))

= [−4, 4] ∩ ([1, 16]� [−8, 8])
= [−4,−1/8]∪ [1/8, 4]

Thus N(fx , f ′x ,x) is not in general a single interval but may be a union of intervals.
Let us denote by �, the function that returns this union of intervals. We
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(in:f ,f ′ ,x): Interval
1: r ← x
2: if 0 /∈ f(x) then return ∅
3: x ← (f , f ′,x)

% 1. MonoNewton may produce a gap
% 2. A gap appears
% when right bound is reduced

4: if 0 ∈ f([x, x+]) then
5: return [x, r]
6: else
7: l ← (f , f ′, [x, m(x)])
8: if l = ∅ then
9: l ← (f , f ′, [m(x), x])

10: endif
11: return [l, r]
12: endif
13: return x

(a)

�(in:f ,f ′,x, in-out: S,u): Interval
1: r ← x
2: if 0 /∈ f(x) then return ∅
3: u′ ← �(f , f ′, x)

% Mind the gap
4: u ← u ∩U (u′ ∪ [r, +∞))
5: x ← �I(u)
6: if 0 ∈ f([x, x+]) then
7: return [x, r]
8: else
9: l ← �(f , f ′, [x, m(x)], S)

10: if l = ∅ then
11: l ← �(f , f ′, [m(x), x], S)
14: endif
15: return [l, r]
16: endif
17: return x

(b) �

Fig. 7. Box narrowing operators and its variant which collect the gaps

define the � (see figure 7(b)), which extends the classical box narrowing
operator to collect the gaps. � collects the gaps produced by the extended
interval newton method (line 3). The gap produced by the right bound contraction is
collected in line 4.

5 Experimental Results

This section reports experimental results of on a variety of classical
benchmarks : two classical benches of interval arithmetics (i1, i4), an application of
robot kinematics (kin1), some applications of economic modeling (eco7 up to eco10),
some problem made of Euclidean distance equations (ponts, ext-penta and some par-
ticular instances) and a polynomial system from the Posso test suite (caprasse). More
details on i1, i4, kin1 and ecoN can be found in [7], ponts in [21], ext-penta in [22] and
caprasse in [23].

5.1 Customizing

This section introduces three categories of strategies for customizing .
These heuristics have been investigated to answer the three following questions :

1. Gap validation : Which gaps are not relevant and should not be considered ?
2. Domain selection : Among the domains for which gaps have been found, which

ones are the more relevant to split ?
3. Gap splitting : Given one or more selected domains, how to perform the splitting ?
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To answer these questions, the following strategies have been explored :

– Gap validation strategies : Suppose that a gap has been identified by the filtering
algorithms in the domain x = [a, d], such that u = [a, b] ∪ [c, d]. Two different
strategies have been explored to validate the gap (b, c), depending on its position
within the domain or its relative size :
• [2] Keep (b, c) if min {d− b, c− a} ≥ 0.25w(x). This strategy elim-

inates gaps strictly included in one of the extremal quarters of the domain.
• : Keep (b, c) if c − b ≥ 0.1w(x). This strategy eliminates small

gaps with respect to the width of the domain.
Note that these two strategies can be combined. By default, all the gaps identified
by the filtering algorithms are kept ( ).

– Domain selection strategies : Different heuristics have been explored :
• (Largest Width) / (Smallest Width) : the selected domain holds the

largest (resp. smallest) gap found [2].
• (Largest Relative Width) / (Smallest Relative Width) : the selected

domain maximizes (resp. minimizes) the ratio between gap width and domain
width.
• (Largest Total Width) / (Smallest Total Width) : The selected do-

main maximizes (resp. minimizes) gap width sum.
– Gap splitting strategies :As mentioned above, three different strategies for splitting

have been explored :
• (Bisect One Gap) : use only one gap to split the selected domain, and

generate 2 subproblems [12].
• (Bisect k Gaps) : use k gaps in the selected domain to split the box and

generate k + 1 subproblems [1].
• (Multisect 3 Gaps) : use at most three gaps in three different domains,

and combine the subdomains to generate up to 8 subproblems [2]. The three
domains and the gaps are determined by the domain selection strategy.

5.2 Analysis of Experimental Results

The above mentioned different strategies have been experimented on various bench-
marks. However, due to lack of space, the tables presented in this section are limited
to the results obtained with , and . The other strategies did provide very
similar results for most benches, except for the one explicitly discussed in the rest of
the section.

All the tests use Realpaver [15] version 0.3. The tests have been run on a Pentium IV
at 2.6Ghz running Linux. has been implemented on the top of Realpaver.
The different strategies, as well as the gap gathering process, have been added to the
default Realpaver algorithm4. Note however that the Box filtering algorithm has been
modified in order to fit to the default algorithm which made use of a univariate Newton
algorithm5.

4 Note that the multivariate Newton algorithm has also been extended to collect gaps [2].
5 The Box implementation of Realpaver does not use a univariate Newton algorithm. It only

relies on interval computation to exclude some subparts of the domain.
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Table 1. Experimental results for on the left and on the right. The results
were obtained using , and .

Filtering: Filtering:
( ) Ratio ( ) Ratio

t(s) B t(s) B H t B t(s) B t(s) B H t B
eco7 57.07 754885 14.74 231595 1 -74% -69% 61.99 468799 12.74 107817 11 -79% -77%
eco8 133.51 1614495 112.77 1360061 1 -15% -16% 56.77 353155 40.54 246927 49 -29% -30%
ponts 34.19 174915 33.12 171251 1043 -3% -2 25.61 32643 16.80 21025 946 -35% -36%
ponts0 0.30 1395 0.29 1395 0 - - 0.06 71 0.07 71 0 - -
ponts1 5.19 26523 4.54 22475 274 -13% -16% 5.78 7465 3.61 4563 254 -38% -39%
ponts2 23.63 123585 22.93 120993 779 -3% -2% 18.77 24009 12.33 15567 670 -35% -35%

pentagon 0.60 6131 0.59 5891 52 -2% -4% 0.26 1655 0.23 1415 52 -12% -15%
ext-penta - - - - - - - 474.92 1006031 437.37 890943 11723 -8% -12%

ext-penta0 0.34 873 0.11 423 51 -68% -52% 0.45 873 0.17 423 51 -62% -52%
ext-penta1 0.32 263 0.05 255 17 -85% -3% 0.39 263 0.10 255 17 -74% -3%
ext-penta2 0.77 2825 0.25 2047 9 -68% -28% 1.23 2825 0.60 2047 9 -51% -28%

i1 29.60 515909 28.75 501677 82 -3% -3% 49.46 340057 53.73 370449 38 8% 9%
i4 0.83 2047 0.77 2047 1023 -8% - 1.19 2047 1.07 2047 1023 -10% -

kin1 25.69 264685 19.99 203987 1 -22% -23% 0.41 1447 0.30 1263 1 -27% -13%
caprasse 0.79 6527 0.80 6527 0 1 % - 0.65 2567 0.65 2567 0 - - %

In tables 1−−4, t is the execution time in seconds (“-” signifies more than 1 hour),
B is the total number of boxes generated by the splitting process and H is the number of
splits in a gap. The column ratio introduces the reduction percent in terms of CPU time
(t) and total number of branchings (B).

Table 1 displays the results for a search combined with a HC4 filtering and a search
combined with a HC4 interleaved with a multivariate newton algorithm. In both cases,

improves significantly the execution time and reduces the number of
splitting. For example, on eco7, the execution time is reduced by a factor of 3.8 or
more, depending on the kind of consistency we use, and the number of splits is reduced
by a factor of 3 up to 4. Even on problems where the number of splits is left unchanged,
like on i4, the strategy has still room to improve the execution time. This
example underline the key role of the cutting direction in the search process.

Other strategies than choosing the variable with the biggest gap and splitting on this
gap do not change significantly the results. However, when applied to a Box filtering
or a Box filtering interleaved with a multivariate Newton (see table 3), the strategies
which rely on selecting the gaps lying at the center of the domain (Hansen’s strategy)
or which reject the smallest gaps improve the search on some problems (see table 2). For
example, it solves eco8 in less than half an hour while other strategies require more than
an hour. This success is largely due to the way Box filtering produces gaps. Box filtering
attempts to reject some part of the variable domains lying at the bounds. As a result,
it tends to produce more gaps and smaller gaps near the bounds of the domains. This
behavior is exemplified on ext-penta2, where the number of gaps used by the search
goes from 7037 gaps down to 9 gaps (see table 2). The same remarks can be done when
the Box filtering is combined with a multivariate Newton though this last smooth the
effect of these strategies. However, whatever the strategies, still succeeds
in improving the execution time over a classical round robin.

offers others advantages than improving search performances. For
example, on the well known combustion benchmark, provides the four
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Table 2. Experimental results for on the left and on the right, with Hansen’s criterion
for eliminating small gaps. The results were obtained using , and .

Filtering:
( ) Ratio ( )+ Ratio

t(s) B t(s) B H t B t(s) B H t B
eco7 995.12 595505 - - - - - 276.91 192699 104 -72% -68%
eco8 - - - - - - 1372.13 847373 177 - -
ponts 659.70 173331 644.60 170721 968 -2% -2% 676.36 172515 1015 3% -1%
ponts0 5.60 1481 4.90 1203 6 -12% -10% 5.61 1481 0 - - %
ponts1 105.47 25943 103.67 23335 122 -2% -10% 99.83 22911 255 -5% -12%
ponts2 461.20 122865 440.99 118123 656 -5% -4% 459.61 121017 538 -1% -2%

pentagon 11.27 6283 11.02 6275 173 -3% - % 10.99 6033 51 -3% -4%
ext-penta - - - - - - - - - - - -

ext-penta0 5.80 873 2.20 1771 666 -62% 102.86% 1.84 423 51 -68% -52%
ext-penta1 6.65 263 1.09 873 306 -84% 232% 0.81 255 17 -88% -3%
ext-penta2 11.36 2825 12.05 17865 7037 6% 533% 2.12 2047 9 -82% -28%

i1 353.70 484511 369.60 502035 7614 5% 4% 353.67 482565 39 - -
i4 5.51 2047 6.07 2047 1023 10% - 6.05 2047 1023 10% -

kin1 235.74 132547 - - - - - % 217.18 120309 56 -8% -10%
caprasse 10.55 2023 10.50 1991 48 - % -2% 10.52 1991 48 - % -2%

Table 3. Experimental results for on the left and on the right, with
Hansen’s criterion for eliminating small gaps. The results were obtained using , and .

Filtering:
Ratio ( )+ Ratio

t(s) B t(s) B H t B t(s) B H t B
eco7 797.72 429263 207.32 109267 685 -74% -75% 196.39 102487 145 -76% -76
eco8 - - - - - - - 516.92 224513 371 - -
ponts 163.31 31735 180.84 35475 1098 11% 12% 133.51 25829 1014 -19% -19%

ponts0 0.47 71 0.47 71 0 - - 0.47 71 0 - - %
ponts1 33.78 7363 27.56 4981 261 -18% -32% 27.39 4981 261 -19% -32%
ponts2 117.27 23417 110.37 21881 646 -6% -7% 96.50 18675 563 -18% -21%

pentagon 3.76 1639 0.27 1399 62 -93% -15% 3.45 1399 62 -9% -15%
ext-penta - - - - - - - - - - - -
ext-penta0 6.43 873 1.58 707 133 -75% -19% 2.02 423 51 -69% -52%
ext-penta1 7.18 263 1.12 747 209 -84.40% 184% 0.92 303 41 -88% 15%
ext-penta2 12.55 2825 7.28 8721 3167 -42% 208.70 % 2.57 2047 9 -80% -28 %

i1 247.22 309681 244.86 302397 576 -1% -3% 247.38 305797 52 - -1%
i4 6.26 2047 6.84 2047 1023 9% - 6.82 2047 1023 9% -

kin1 2.78 791 1.87 641 72 -33% -19% 1.86 629 66 -33% -20%
caprasse 10.54 1495 10.52 1463 48 - -2% 10.54 1463 48 - -2%

solutions when a basic round robin found only two enclosures of the four solutions6.
Here, takes benefit of two gaps found by HC4 or a Box to isolate the
four solutions.

5.3 Gaps and Constraint Evaluation

Factorization rules have been designed for univariate or multivariate polynomials [24].
These symbolic tools aim at reducing the negative effects of interval computations. In
general, the evaluation of polynomial constraints in factorized form is tighter. Similarly,

6 These results were obtained with the default precision of Realpaver (1.0e-8). When the preci-
sion is increased, then Realpaver find all the solutions with a basic search strategy.
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Table 4. Experimental results for ecoN and its corresponding Horner form ecoNH

Filtering:
( ) Ratio

t(s) B t(s) B H t B
eco6 1.04 12087 0.56 6383 3 -46.15% -47.19%

eco6H 0.69 9301 0.29 3729 1 -57.97% -59.90%
eco7 61.99 468799 12.74 107817 11 -79.44% -77.00%

eco7H 49.78 412957 8.42 82143 4 -83% -80%
eco8 56.77 353155 40.43 246927 49 -28.78% -30.07%

eco8H 30.93 216955 24.17 164733 4 -21.85% -24.07%
eco9 636.75 2931479 641.75 2934801 1720 .78% .11%

eco9H 301.20 1541855 233.67 1303655 103 -22.42% -15.44%
eco10 7569.05 25751025 7381.65 24939453 17949 -2.47% -3.15%

eco10H 554.72 2620443 475.00 2156345 808 -14.37% -17.71%

it should provide tighter gaps within the domains. Moreover, it may provide gaps that
might have not been identified using the developed form :

Example 4. Let c : x2 + x ∗ y = 1/2 and its factorized form c′ : x(x + y) = 1/2, with
x = y = [−1, 1]. �U(πx

c (X)) = [−1, 1] while �U(πx
c′(X)) = [−1, 0.25]∪ [0.25, 1].

We have performed some experimentations on ecoN to compare the developed form
and the corresponding Horner form (see table 4). These experimentations clearly show
that Horner form provides a significant improvement (factor 2 to 15) with respect to
the classical form for standard bisection. The number of Gap splitting (H) performed
by is strongly reduced (for instance by a factor 16 for eco9). However,
the impact of both on computation time and number of branching is
stronger.

6 Extension to Partial Consistencies

kB-consistencies are not strictly local consistencies. Informally speaking, these higher
consistencies try to shrink the domain by proving that no solution exists in some part
of the domain. To do so, they use a lower order consistency ((k − 1)B-consistency).
The point is that they only reduce the bounds of the domains. kB-consistency has a
recursive definition based on 2B-consistency which is equivalent to Hull-consistency.
Bound-consistency [10] is similar to 3B-consistency but it is based on Box-consistency,
rather than 2B-consistency. Thus, partial consistencies also allow to identify gaps within
the domains. Whenever kB-consistency tries to refute some interval α ⊂ xi, it applies
a (k − 1)B-consistency over Pxi←α. Suppose that α is not eliminated but reduced to
α′. Then, gaps can be retrieved in three different ways :

1. α \ α′ is a gap for xi

2. The gaps found by (k − 1)B-consistency within α′ holds also for xi.
3. The gaps found during the filtering of Pxi←α within the domains of the other

variables are only valid if they have been found also during the filtering of Pxi←xi\α

For example, let C = {x2 + y2 = 1, y = −x2 + 1}, with x = y = [−10, 10]. A 2B-
consistency filtering reduces x to [−0.99, 0.99] and y to [0.1, 1]. Then, consider that y
is split in two parts y1 = [0.55, 1] and y2 = [0.1, 0.55] :
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- X1 = (x,y1) is reduced by 2B-consistency to ([−0.54, 0.54], [0.8, 1]). Thus, there is
no solution for y ∈ (0.55, 0.8) (pruned by 2B-consistency (case 1)). Moreover, a gap
has been identified for variable x : x2 = [−0.54,−0.316]∪ [0.316, 0.54].
- X2 = (x,y2) is not reduced by 2B-consistency, but a gap is identified for variable
x :x1 = [−1,−0.84]∪ [0.84, 1].
Consequently, if y ∈ y1 or y ∈ y2, then the set of allowed values for variable x is
x1∪x2, that is to say [−1,−0.84]∪ [−0.54,−0.316]∪ [0.316, 0.54]∪ [0.84, 1] (case 3).

Note that, the bound reductions (case 1) have been used in [25] to improve kB-
consistency complexity. The gaps produced in case 2 and 3 could be used in a similar
way to improve kB-consistency efficiency. A very first implementation of

combined with 3B-consistency shows significant improvements.

7 Conclusion

We have introduced in this paper a new splitting strategy for search algorithm in nonlin-
ear CSPs. This splitting strategy takes advantage of the gaps generated by consistency
filtering algorithms. These gaps provide indications for selecting which domain to split
and for selecting cutting points inside the domains. Splitting the domain by removing
such gaps definitely reduces the search space. It also helps to discard some redundant
solutions and helps the search algorithm to isolate different solutions. Experimental
results show that in numerous problems, the performances of the search process are
significantly improved in comparison with classical search algorithm.
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Abstract. This article presents a database of about 200 graph invariants for de-
riving systematically necessary conditions from the graph properties based rep-
resentation of global constraints. This scheme is based on invariants on the graph
characteristics used in the description of a global constraint. A SICStus Prolog
implementation based on arithmetic and logical constraints as well as on indexi-
cals is available.

1 Introduction

Adding necessary conditions to a constraint program has been recognized in the early
time of constraint programming [1] as a key point in order to enhance efficiency. How-
ever this was usually done manually after a careful analysis of the problem under con-
sideration or by identifying typical constraint patterns [2]. Beldiceanu presented in [3] a
systematic description of global constraints in terms of graph properties: among the 227
constraints of the catalog of global constraints [3], about 200 constraints are described
as a conjunction of graph properties where each graph property has the form P op V ,
where P is a graph characteristic, op is a comparison operator in {≤,≥, =, �=}, and V a
variable that ranges over a finite set of integers (a domain variable). Within this context,
this article presents a database of graph invariants: given a specification of a constraint
C in terms of graph properties, we can automatically extract, from that database, graph
invariants that mention the graph characteristics used in the specification of C, and post
these invariants as necessary conditions for the feasibility of C.

Example 1. Consider the nvalue(N,{x1, ..., xm}) constraint [4], where N, x1, ..., xm are
domain variables. The nvalue constraint holds iff the number of distinct values assigned to the
variables in X = {x1, ..., xm} is equal to N . It can been seen as enforcing the following graph
property: the number of strongly connected components of the intersection graph G(X ,E),
where E = {xi ∈ X , xj ∈ X : xi = xj}, is equal to N . From Bessière et al. [5] we have

the necessary condition NSCC ≥
⌈

NVERTEX2

NARC

⌉
(see Turán [6]) relating the number of arcs

NARC, the number of vertices NVERTEX and the number of strongly connected compo-
nents NSCC of the intersection graph.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 92–106, 2005.
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Using graph invariants is especially useful when a global constraint mentions more
than one graph property in its description. In this context, these graph properties involve
several graph characteristics that cannot vary independently.

Example 2. Consider again the nvalue constraint introduced in Example 1, and assume we
want to put a restriction on the minimum and the maximum number of occurrences (respec-
tively denoted by occ and by occ) of each value that is effectively used. In terms of the inter-
section graph, this can be interpreted as putting a restriction on the number of vertices of its
strongly connected components. Let MIN NSCC and MAX NSCC respectively denote the
number of vertices of the smallest and the largest strongly connected components of the inter-
section graph. Our initial constraint on the minimum and maximum number of occurrences is
now expressed by MIN NSCC ≥ occ and MAX NSCC ≤ occ. We have recast our orig-
inal balanced assignment problem to the search of a digraph on which we restrict its number of
vertices NVERTEX1, its number of strongly connected components NSCC, and the sizes
MIN NSCC and MAX NSCC of its smallest and largest strongly connected components.
By querying our database of invariants in order to extract those graph invariants that only men-
tion the four graph characteristics NVERTEX, NSCC, MIN NSCC and MAX NSCC
we get the following invariants NVERTEX ≤ max(0,NSCC − 1) · MAX NSCC +
MIN NSCC and NVERTEX ≥ max(0,NSCC− 1) ·MIN NSCC+MAX NSCC,
which are necessary conditions for the balanced assignment constraint.

Section 2 recalls the graph-based representation of global constraints. Section 3
introduces graph invariants, while Section 4 presents the database of graph invariants.
The database and its 200 graph invariants and their corresponding proofs is available
in Chapter 3 of [3]. Finally, Section 4 provides an evaluation of the approach on two
constraints, which mention various graph characteristics.

2 Graph-Based Representation of Global Constraint

This section summarizes the representation of global constraints as graph prop-
erties in [3] and illustrates this framework on the group [7] and the
change continuity [3] constraints, which will be used throughout this paper. They
both correspond to timetabling constraints which allow for expressing conditions on
sliding sequences of consecutive working days of a given person.

The Graph-Based Representation. A global constraint C is represented as an initial
digraph Gi = (Xi, Ei): to each vertex in Xi corresponds a variable involved in C,
while to each arc e in Ei corresponds a binary constraint involving the variables at both
extremities of e. To generate Gi from the parameters of C, the set of arc generators
described in [3] is used. Figure 1 illustrates the most commonly used arc generators
by depicting the initial digraph generated from a sequence of four vertices. When all
variables of C are fixed, we remove from Gi all binary constraints that do not hold
as well as isolated vertices, i.e., vertices that are not extremities of an arc. This final
digraph is denoted by Gf . C is equivalent to a conjunction of graph properties which
should be satisfied by Gf . Within the global constraint catalog [3], commonly used
graph characteristics on the final digraph Gf are:

1 In fact, NVERTEX is fixed to the number of variables of the nvalue constraint.
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– NARC and NVERTEX denote the number of arcs and vertices,
– NCC and NSCC denote the number of connected and strongly connected com-

ponents,
– MIN NCC and MAX NCC (resp. MIN NSCC and MAX NSCC) re-

spectively denote the number of vertices of the smallest and the largest connected
components (resp. the strongly connected components).

1 2 3 41 2 3 4 1 2 3 4

1 2 3 4

1 2

4 3

1 2 3 4

1 2

4 3

1 2

4 3

1 2

4 3

CIRCUIT CYCLE CHAIN PATH

LOOP

CLIQUE(<>)CLIQUE(<)CLIQUE(<=)CLIQUE

Fig. 1. Examples of arc generators (when considering NARC, double-arcs are counted twice)

Illustrative Examples of the Graph-Based Representation. We now define the group
and the change continuity constraints and present their links with the graph-
based description. Since they respectively use 6 and 8 graph characteristics these con-
straints can potentially benefit from the use of graph invariants.

Example 3. The first six parameters of the group(NGROUP,MIN SIZE,MAX SIZE,
MIN DIST,MAX DIST,NVAL,VARIABLES,VALUES) constraint are domain variables,
while VARIABLES is a sequence of domain variables and VALUES a finite set of integers. Let
n denote the number of variables of the sequence VARIABLES. Let Xi, Xi+1, . . . , Xj (1 ≤ i ≤
j ≤ n) be consecutive variables of the sequence VARIABLES such that all the following con-
ditions simultaneously apply: (1) All variables Xi, . . . , Xj take their value in the set of values
VALUES, (2) i = 1 or Xi−1 does not take a value in VALUES, (3) j = n or Xj+1 does not take a
value in VALUES. We call such a set of variables a group. The constraint group is fulfilled if all
the following conditions hold:

– There are exactly NGROUP groups of variables,
– MIN SIZE and MAX SIZE are the number of variables of the smallest and largest group,
– MIN DIST and MAX DIST are the minimum and maximum number of variables between two

consecutive groups or between one border and one group,
– NVAL is the number of variables that take their value in the set of values VALUES.

group(2, 2, 4, 1, 2, 6, 〈0, 0, 1, 3, 0, 2, 2, 2, 3〉, {1, 2, 3}) holds since the sequence
〈0, 0, 1, 3, 0, 2, 2, 2, 3〉 contains 2 groups 〈1, 3〉 and 〈2, 2, 2, 3〉 of non-zero values of size
2 and 4, 2 groups 〈0, 0〉 and 〈0〉 of zeros, and 6 non-zero values. The graph-based description
of the group constraint uses two graph constraints which respectively mention the graph
properties NCC = NGROUP, MIN NCC = MIN SIZE, MAX NCC = MAX SIZE,
NVERTEX = NVAL and MIN NCC = MIN DIST, MAX NCC = MAX DIST. The
leftmost part of Figure 2 depicts the initial graph of well as the two final graphs associated to the
two graph constraints of the example given for the group constraint.
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Fig. 2. Initial (A) and final graphs (B,C) of group(2, 2, 4, 1, 2, 6, 〈0, 0, 1, 3, 0, 2, 2, 2, 3〉,
{1, 2, 3}). Initial (D) and final graphs (E,F) of change continuity(2, 2, 2, 5, 2, 3, 5, 3,

〈0, 0, 1, 3, 0, 2, 2, 2, 3〉, �=).

Example 4. The first eight parameters of the change continuity(NB PERIOD CHANGE,
NB PERIOD CONTINUITY,MIN SIZE CHANGE,MAX SIZE CHANGE,MIN SIZE CON-
TINUITY,MAX SIZE CONTINUITY,NB CHANGE,NB CONTINUITY,VARIABLES,CTR)
constraint are domain variables, while VARIABLES is a sequence of domain variables and CTR
a binary constraint in {=, �=,≤, >,≥,<}. A change (resp. continuity) is defined by the fact
that constraint CTR holds (resp. does not hold) between two consecutive variables of the
sequence VARIABLES. Let n denote the number of variables of the sequence VARIABLES,
and let Xi, Xi+1, . . . , Xj(1 ≤ i < j ≤ n) be consecutive variables of the sequence
VARIABLES. Xi, Xi+1, . . . , Xj corresponds to a period of change if Xk CTR Xk+1 holds
for all k ∈ [i, j − 1], and if i = 1 or Xi−1 CTR Xi does not hold, and if j = n − 1 or
Xj CTR Xj+1 does not hold. A period of continuity is defined in a similar way by considering
the negation of CTR . The constraint change continuity holds if and only if:

– NB PERIOD CHANGE and NB PERIOD CONTINUITY are respectively equal to the number of
periods of change and of continuity,

– MIN SIZE CHANGE and MAX SIZE CHANGE are respectively equal to the number of variables
of the smallest and largest period of change,

– MIN SIZE CONTINUITY and MAX SIZE CONTINUITY are respectively equal to the number
of variables of the smallest and largest period of continuity,

– NB CHANGE and NB CONTINUITY are respectively equal to the total number of changes and
continuities.

change continuity(2, 2, 2, 5, 2, 3, 5, 3, 〈0, 0, 1, 3, 0, 2, 2, 2, 3〉, �=) holds since the se-
quence 〈0, 0, 1, 3, 0, 2, 2, 2, 3〉 contains 2 periods of changes 〈0, 1, 3, 0, 2〉 and 〈2, 3〉
of minimum and maximum size 2 and 5, 2 periods of continuities 〈0, 0〉 and 〈2, 2, 2〉
of minimum and maximum size 2 and 3. Finally, the total number of changes and
continuities are respectively equal to 5 and 3. The graph-based description of the
change continuity(NB PERIOD CHANGE,NB PERIOD CONTINUITY,MIN SIZE -
CHANGE,MAX SIZE CHANGE,MIN SIZE CONTINUITY,MAX SIZE CONTINUITY,NB -
CHANGE,NB CONTINUITY,VARIABLES,CTR) constraint uses two graph constraints which
respectively mention the graph properties NCC = NB PERIOD CHANGE, MIN NCC =
MIN SIZE CHANGE, MAX NCC = MAX SIZE CHANGE, NARC = NB CHANGE
and NCC = NB PERIOD CONTINUITY, MIN NCC = MIN SIZE CONTINUITY,
MAX NCC = MAX SIZE CONTINUITY, NARC = NB CONTINUITY. The rightmost
part of Figure 2 depicts the initial graph of well as the two final graphs associated to the two
graph constraints of the example given for the change continuity constraint.

3 Graph Invariants

Within the scope of the graph-based description this section introduces implied con-
straints which are systematically linked to the description of a global constraint:
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– We then describe the different contexts where graph invariants can be used.
– Finally, we show how to get sharper graph invariants by taking advantage of the

structure of the global constraint under consideration.

Since no final digraph contains isolated vertices, the database of graph invariants con-
siders digraphs for which each vertex has at least one arc.

Context for Using Graph Invariants. They can be used in the following contexts:

– Quite often, it happens that one wants the final digraph to satisfy more than one
graph property. This was illustrated by the balanced assignment constraint (see Ex-
ample 2) as well as by the group and change continuity constraints. In this
context, these graph properties involve several graph characteristics which cannot
vary independently.

– Even if the description of a global constraint involves one single graph characteris-
tic C, we can introduce the number of vertices, NVERTEX, and the number of
arcs, NARC, of the final digraph. In this context, we can take advantage of graph
invariants linking C, NARC and NVERTEX. This is in fact what was done for
the nvalue constraint in Example 1.

– It also happens that we enforce two graph constraints GC1 and GC2, which have the
same initial digraph G. In this context we consider the following situations:
• Each arc of G belongs to one of the final digraphs associated to GC1 or

to GC2 (but not to both). An example of such global constraints is the
change continuity constraint depicted by Example 4.
• Each vertex of G belongs to one of the final digraphs associated to GC1 or

to GC2 (but not to both). An example of such global constraint is the group
constraint depicted by Example 3.

In these situations the graph properties associated to the two graph constraints are
not independent. This will be illustrated by Example 12.

Graph Classes. By definition, a graph invariant has to hold for any final digraph. For
instance, we have the graph invariant NARC ≤ NVERTEX2, which relates the
number of arcs and the number of vertices of any digraph. This invariant is sharp since
the equality is reached for a clique. However, by considering the structure of a final
digraph, we can get sharper invariants. For instance, if our final digraph is a subset of
an elementary path (e.g. we use the PATH arc generator depicted by Figure 1) we have
that NARC ≤ NVERTEX−1, which is a tighter bound of the maximum number of
arcs since NVERTEX− 1 < NVERTEX2. For this reason, we consider recurring
graph classes that show up for different global constraints. For a given global constraint,
a graph class specifies a general property which holds on all its final digraphs. In addi-
tion, we also consider graph constraints such that their final digraph is a subset of the
digraph generated by the arc generators depicted by Figure 1.

Example 5. We provide typical examples of graph classes and, for each of them, we point to
some global constraints that fit in that class:

– acyclic: graph constraint for which the final digraph doesn’t have any circuit (e.g.
change [7], change continuity [3], common [3]).
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– apartition: constraint defined by two graph constraints having the same initial digraph,
where each arc of the initial digraph belongs to one of the final digraphs (but not to both)
(e.g. change continuity [3]).

– bipartite: graph constraint for which the final digraph is bipartite (e.g.
alldifferent on intersection [3], common [3]).

– consecutive loops are connected: denotes the fact that the graph constraints of a
global constraint use only the PATH and the LOOP arc generators and that their final
digraphs do not contain consecutive vertices which have a loop and which are not connected
together by an arc (e.g. group [3]).

– equivalence: graph constraint for which the final digraph is reflexive, symmetric and tran-
sitive (e.g. balance [3], nvalue [5]).

– no loop: graph constraint for which the final digraph doesn’t have any loop (e.g.
change continuity [3], common [3]).

– one succ: graph constraint for which all the vertices of the initial digraph belong to the
final digraph and for which all vertices of the final digraph have exactly one successor (e.g.
alldifferent [8], cycle [9], tree [10]).

– symmetric: graph constraint for which the final digraph is symmetric (e.g.
connect points [3]).

– vpartition: constraint defined by two graph constraints having the same initial digraph,
where each vertex of the initial digraph belongs to one of the final digraphs (but not to both)
(e.g. group [3]).

4 The Database of Graph Invariants

This section introduces the database of graph invariants we have built so far. It first
provides a taxonomy of graph invariants and discusses their implementation. It then
presents the organization of the database. Finally, it explains how to use the database in
order to automatically extract the relevant invariants for a given global constraint.

Taxonomy of Graph Invariants. Within the database of graph invariants we currently
have seven categories of graph invariants. These categories stem from the structure of
the formulae associated to the invariants.

I1. Invariants involving one single graph characteristics C, restricting the initial set of
possible values of C.

Example 6. When the final digraph does not contain any loops, we have that 2 · NCC ≤
NVERTEXINITIAL , where NVERTEXINITIAL is the number of vertices of the initial digraph
and where NCC is the number of connected components of the final digraph. This invariant
restricts the initial domain of NCC to

[
0,
⌊
NVERTEXINITIAL

2

⌋]
.

I2. Invariants characterizing the lower bound (resp. upper bound) of a given graph
characteristics C in terms of other graph characteristics C1, . . . , Cn(n > 1, Ci �=
C). They are defined as an inequality of the form C ≥ f(C1, . . . , Cn) (resp. C ≤
f(C1, . . . , Cn)), where f(C1, . . . , Cn) is a formula involving the graph characteristics
C1, . . . , Cn.

Example 7. As illustrated by Figure 3, the invariant NARC ≥ NVERTEX− ⌊NSCC−1
2

⌋
can be interpreted as the minimum number of arcs NARC of a digraph according to a fixed num-
ber of vertices NVERTEX and a fixed number of strongly connected components NSCC.
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NSCC

2
2 strongly connected components vertices

NSCC

2
NVERTEX − 2

Fig. 3. A digraph which achieves the minimum number of arcs according to a fixed num-
ber of strongly connected components as well as to a fixed number of vertices (NSCC =
7,NVERTEX = 10, NARC = 10− ⌊ 7

2

⌋
= 7)

I3. Invariants defining, for a given graph characteristics C, a forbidden interval of
values of the form [f1(C1, . . . , Cn), f2(Cn+1, . . . , Cm)], where f1(C1, . . . , Cn) and
f2(Cn+1, . . . , Cm) are formulae involving graph characteristics distinct from C. These
invariants usually come from a disjunction of the form C ≤ f1(C1, . . . , Cn)− 1∨C ≥
f2(Cn+1, . . . , Cm) + 1.

Example 8. Consider the invariant MIN NCC /∈ [⌊NVERTEX
2

⌋
+ 1, NVERTEX− 1

]
,

which specifies that the number of vertices MIN NCC of the smallest connected compo-
nent of a digraph does not belong to an interval defined according to the number of vertices
NVERTEX. This invariant stems from the following disjunction:

– On the one hand, if the digraph contains no more than one connected component, we have
that MIN NCC ≥ NVERTEX,

– On the other hand, if the digraph contains at least two connected components, we have that
MIN NCC + MIN NCC ≤ NVERTEX.

I4. Invariants of the form C ≤ max(f1(C1, . . . , Cn), f2(Cn+1, . . . , Cm)), where C
is a graph characteristics and f1(C1, . . . , Cn) and f2(Cn+1, . . . , Cm) are formulae in-
volving graph characteristics distinct from C. These invariants usually come from a
disjunction of two invariants C ≤ f1(C1, . . . , Cn) ∨ C ≤ f2(Cn+1, . . . , Cm).
Example 9. Consider the invariant MAX NCC ≤ max(NVERTEX − MIN NCC,
MIN NCC), which restricts the maximum number of vertices MAX NCC of the largest
connected component according to the number of vertices in the smallest connected component
and to the number of vertices NVERTEX. This invariant stems from the following disjunction:

– On the one hand, if the digraph contains no more than one connected component, we have
that MAX NCC ≤MIN NCC,

– On the other hand, if the digraph contains at least two connected components, we have that
NVERTEX ≥ MIN NCC + MAX NCC (i.e. MAX NCC ≤ NVERTEX −
MIN NCC).

I5. Invariants described by an implication between two conditions. These invariants
have the form Cond1 ⇒ Cond2 where Cond1 is a condition involving one or two
graph characteristics, and where Cond2 is either a condition involving one or two graph
characteristics, either an invariant of type I2 or I3.

Example 10. As an example, consider the invariant MIN NCC �= MAX NCC ⇒ NCC
≥ 2, which depicts the fact that, if the number of vertices of the smallest connected component
is not equal to the size of the largest connected component, the number of connected components
is at least 2.
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I6. Invariants depicted by an equivalence between two given conditions where each
condition involves one single graph characteristics.

Example 11. MAX NCC = 0⇔MIN NCC = 0 is an instance of such invariant.

I7. Invariants involving graph characteristics coming from more than one graph con-
straint.

Each graph invariant has a precondition which defines its applicability. The pre-
condition consists of an, possibly empty, conjunction of elementary conditions which
characterize the graph class for which it can be applied. An elementary condition is
either one of the keywords2 acyclic, bipartite, no loop, one succ, symmetric,
equivalence, apartition, vpartition, consecutive loops are connected
characterizing a specific graph class which was previously introduced, either an ex-
pression of the form arc gen = arc generator , where arc generator is an arc gen-
erator used for generating the arcs of the initial digraph.

Example 12. apartition ∧ arc gen = PATH : |NCC1 −NCC2| ≤ 1 3 is an invariant
which can be applied when:

– As specified by apartition, a global constraint is defined by two graph constraints having
the same initial digraph, where each arc of the initial digraph belongs to one of the final
digraphs (but not to both),

– All the graph constraints of a global constraint use only the arc generator PATH .

This is in fact the situation of the change continuity constraint introduced in Example 4: in
this context, this invariant enforces the number of groups of changes NB CHANGE and the number
of groups of continuities NB CONTINUITY to differ by at most 1.

Example 13. Consider the graph invariants NARC ≤ NVERTEX2 and arc gen =
PATH : NARC ≤ NVERTEX − 1 of type I3 which both relate the number of arcs and
the number of vertices of a digraph. The first one has no precondition and therefore holds on any
digraph, while the second one applies only on those digraphs that are a subset of an elementary
path.

Implementing Graph Invariants. Most graph invariants are usually directly imple-
mented as constraints which directly reduce the domains of the graph characteristics
they involve. For this purpose we use:

– The arithmetic constraints of SICStus, which include constraints over non linear
expressions [11–page 501],

– Propositional formulae over arithmetic constraints [11–page 461].

2 Within the global constraint catalog, these keywords are explicitly given for each global
constraint. However, note that these keywords could be automatically extracted from the
graph-based description of a global constraint.

3 NCC1 and NCC2 respectively denote the number of connected components of the final
digraph of a first graph constraint and the number of connected components of the final digraph
of a second graph constraint.
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Finally, we also use indexicals [12,13] for implementing some graph invariants. An
indexical is a reactive function rule of the form X in R, where X is a domain variable
and R is a set valued range expression.

Indexicals are used for encoding invariants that define a forbidden interval of val-
ues for a given graph characteristics (e.g. category I3) and for explicitly implement-
ing the propagation of some non-linear arithmetic constraints for which the existing
constraint propagation is too weak. Invariants of category I3 have the form C /∈
[f1(C1, . . . , Cn), f2(Cn+1, . . . , Cm)], where f1(C1, . . . , Cn) and f2(Cn+1, . . . , Cm)
are formulae involving the graph characteristics C1, . . . , Cm distinct from C. The idea
is to evaluate the maximum value, U , of f1(C1, . . . , Cn) as well as the minimum value,
L, of f2(Cn+1, . . . , Cm) and to remove from C all values in [U, L] when U ≤ L. For
this purpose we write range expressions for defining L and U .

Example 14. As an illustrative example of how to encode invariants defining a forbidden inter-
val of values, consider the constraint X ≤ L∨X ≥ R, which comes in handy for invariants such
as MIN NCC /∈ [⌊NVERTEX

2

⌋
+ 1,NVERTEX− 1

]
. This constraint can be encoded by

three indexicals maintaining bounds consistency as follows:

not_strictly_between(X, L, U) +:
X in (inf..max(L)) \/ (min(U)..sup),
L in ((min(U)..max(X)) ? (inf ..sup )) \/ (min(X)..sup ),
U in ((min(X)..max(L)) ? (inf ..sup )) \/ (inf ..max(X)).

Database Organization. As we previously saw, we have graph invariants that hold for
any digraph as well as tighter graph invariants for specific graph classes. As a conse-
quence, we partition the database into groups of graph invariants. A group of graph
invariants corresponds to several invariants such that all invariants relate to the same
subset of graph characteristics and are variations of the first invariant of the group taking
into accounts the graph class. Thus, the first invariant of a group has no precondition,
while all other invariants have a non-empty precondition that characterizes the graph
class for which they hold.

Example 15. As a first example, consider the following group of invariants, which relate the
number of arcs NARC to the number of vertices of the smallest and largest connected compo-
nent (i.e. MIN NCC and MAX NCC) of a digraph:

– MIN NCC �= MAX NCC ⇒ NARC ≥ MIN NCC + MAX NCC − 2 +
(MIN NCC = 1)4,

– equivalence : MIN NCC �= MAX NCC ⇒ NARC ≥ MIN NCC2 +
MAX NCC2.

On the one hand, since the first invariant has no precondition, it can be applied to any digraph.
On the other hand, the second invariant specifies a tighter condition (since MIN NCC2 +
MAX NCC2 ≥MIN NCC+MAX NCC− 2+ (MIN NCC = 1)) which only holds
for a digraph that is reflexive, symmetric and transitive.

Example 16. As a second example, consider the following group of invariants, which relate the
number of arcs NARC to the number of vertices NVERTEX according to the arc generator

4 The expression (MIN NCC = 1) is equal to 1 if MIN NCC = 1 and 0 otherwise.
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(see Figure 1) used for generating the initial digraph. Each invariant has the form NARC ≤ . . .
since NARC stands for the number of arcs of a final graph which is a subgraph of a graph
corresponding to a specific arc generator.

– NARC ≤ NVERTEX2,
– arc gen = CIRCUIT : NARC ≤ NVERTEX,
– arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2,
– arc gen = CLIQUE(≤) : NARC ≤ NVERTEX·(NVERTEX+1)

2
,

– arc gen = CLIQUE(<) : NARC ≤ NVERTEX·(NVERTEX−1)
2

,
– arc gen = CLIQUE( �=) : NARC ≤ NVERTEX2 −NVERTEX,
– arc gen = CYCLE : NARC ≤ 2 ·NVERTEX,
– arc gen = PATH : NARC ≤ NVERTEX− 1.

The database currently contains 13, 50, 34, 12, 2 groups of invariants respectively
mentioning 1, 2, 3, 4 and 5 graph characteristics. It also contains groups of invariants
relating the graph characteristics of two digraphs. It contains 8, 6, 4, 10, 2 groups re-
spectively mentioning 2, 3, 4, 5, 6 graph characteristics.

Extracting the Relevant Invariants. Once we have the graph invariants we can use them
systematically by applying the following steps:

– For a given graph constraint we extract all the graph characteristics occurring in its
description. This can be done automatically by scanning the corresponding graph
properties. Let GC denote this subset of graph characteristics. For each graph char-
acteristic gc of GC we check if we have a graph property of the form gc = var
where var is a domain variable. If this is the case we record the pair (gc, var); if
not, we create a new domain variable var and also record the pair (gc, var ).

– We then search for all groups of graph invariants involving a subset of the pre-
vious graph characteristics GC. For each selected group we filter out those graph
invariants for which the preconditions are not compatible with the graph class of
the graph constraint under consideration. In each group we finally keep those in-
variants that have the maximum number of preconditions (i.e. the most specialized
graph invariants).

– Finally we state all the previously collected graph invariants as implied constraints.
This is achieved by using the variables associated to each graph characteristic.

Observe that, for a given global constraint, the number of invariants is always fixed (i.e.
it does not change as the number of variables of the global constraint increases).

5 Experimental Results

This section illustrates the approach on the group as well as on the
change continuity global constraints, which were previously introduced. We
have compared the following approaches:

– In a first approach each graph characteristic was handled independently. This was
concretely done by constructing an automaton for each graph characteristic and by
reformulating that automaton as a conjunction of constraints as described in [14]5.

5 An alternative would have been to use the bounds on the graph characteristics introduced
in [15] which can be seen as graph invariants involving one single graph property.
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– The second approach reuses the first one but, in addition, also exploits the database
of graph invariants in order to generate invariants which link the graph characteris-
tics used in the description of group and of change continuity.

We first detail the automata used for the group constraint. Since it is very
similar to the group constraint, we then shortly discuss the implementation of
the change continuity constraint. Finally, we present the computational re-
sults obtained for the first and second approaches on the group as well as on the
change continuity constraints.

Implementing the group Constraint. Parts (A), (B), (C) and (D) of Figure 4 respec-
tively depict the automata associated to the graph characteristics NCC, MIN NCC,
MAX NCC and NVERTEX of the first graph constraint. Each automaton is ap-
plied to the sequence of variables corresponding to the VARIABLES parameter. A tran-
sition with a standard line depicts the fact that a variable takes its value within the set
VALUES, while a thick line denotes the fact that a variable does not take its value within
VALUES. Finally, a transition with a dashed line indicates the end of the sequence of
variables. Since all the four automata use counters, we indicate how these counters are
initialized in the initial state s, how a counter is unified to an argument of the group
constraint in the final state t, and how they are possibly updated on a given transition.
When there are several transitions between a given pair of states, we indicate with a
dotted line or a standard line its type (see for instance the two transitions between s and
s of the automaton depicted by part (C)).

s: C=0, D=0

t: MAX_SIZE=C

s,s: D=D+1

s,t: C=max(C,D)

s,s:C=max(C,D),D=0s,j: C=n

j,j: D=D+1

j,k: C=min(C,D)

j,t: C=min(C,D)

k,j: D=1

t: MIN_SIZE=C

s: C=0, D=1

(B)

s

kj

t

s

t

i

s: C=0

t: NGROUP=C

s,i: C=C+1

s

t

s: C=0

t: NVAL=C  

s,s:C=C+1  

s

t

(D)(C)(A)

Fig. 4. Automata associated to the graph characteristics of the group constraint

The automata associated to MIN NCC = MIN DIST and to MAX NCC =
MAX DIST are similar to the automata depicted by part (B) and (C), except that we
change a thick line to a standard line and vice versa. The first approach for implementing
the group constraint uses these six automata we just depicted. In the second approach
we reuse the six automata and, in addition, extract a set of 51 graph invariants from the
database of invariants.

Implementing the change continuity Constraint. As for the group constraint,
we came up with one automaton for each graph property. Parts (A), (B), (C) and (D) of
Figure 5 respectively depict the automata associated to the graph characteristics NCC,
MIN NCC, MAX NCC and NARC of the first graph constraint. Each automaton
is applied to the sequence of pairs of consecutive variables of the VARIABLES parameter.
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s

t

i

s: C=0

s,s:C=C+1  

t: NB_CHANGE=C  

s: C=0

s,i: C=C+1

t: NB_PERIOD_CHANGE=C

i,i: D=D+1

i,i: C=max(C,D),D=1

t: MAX_SIZE_CHANGE=C

s: C=0, D=1

i,t: C=max(C,D)

s,i: D=D+1

i,j: C=D

i,i: D=D+1

s,i: D=2

t: MIN_SIZE_CHANGE=C

s: C=0, D=1

j,k: D=2

i,t: C=D

k,j: C=min(C,D)

k,k: D=D+1

k,t: C=min(C,D)

s

t

i j k

s

t

i

(A) (B) (C)

s

t

(D)

Fig. 5. Automata associated to the graph characteristics of the change continuity constraint

A transition with a standard (resp. thick) line depicts the fact that VARi CTR VARi+1

holds (resp. does not hold). Finally, a transition with a dashed line indicates the end
of the sequence of pairs of variables. Since all four automata use counters, we indicate
how these counters are initialized in the initial state s, how a counter is unified to
an argument of the change continuity constraint in the final state t, and how
they are possibly updated on a given transition. Since the second graph constraint of
change continuity is similar to the first graph constraint we don’t give the four
corresponding automata.

The first approach for implementing the change continuity constraint uses
these eight automata. In the second approach we reuse the eight automata and, in addi-
tion, extract a set of 32 graph invariants from the database of invariants.

Performance. In order to evaluate the efficiency gained by adding graph invariants,
we performed three experiments, generating random instances of the group and
change continuity constraints. VARIABLES was chosen as a sequence of N do-
main variables ranging over [0, 1], VALUES as the singleton set {1}, and CTR as =. A
constraint instance was generated by setting the initial domain of each domain variable
to a randomly chosen interval.

In the first experiment, we computed the total domain size of the domain variables
after posting, without invariants vs. with invariants, discarding infeasible instances, for
N = 8. In the second experiment, we computed the time for posting the constraint
instance and searching for all solutions, without invariants vs. with invariants, for N =
8. In the third experiment, we computed the time for posting the constraint instance
and looking for the first solutions6, without invariants vs. with invariants, for N = 100.
Furthermore, with 10% probability, the variables in VARIABLES were fixed.

The results are presented in six scatter plots in Figure 6, one row per experiment.
Each point represents a random instance, its X coordinate corresponding to excluding
the invariants, and its Y coordinate corresponding to including them. The X = Y line
is shown in each graph. In the second and third rows, feasible and infeasible instances
are denoted differently. Runtimes are in milliseconds.

6 Each constraint instance was run with a 10 seconds time limit.
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Fig. 6. Scatter plots of random instances. Top: comparing domain sizes. Middle: comparing run-
time for finding all solutions. Bottom comparing runtime for finding first solution. Left: group.
Right: change continuity.

From these experiments, we observe that the invariants significantly improve the
domain reduction including detecting infeasible instances, but that they do not pay off
for the purpose of just finding all solutions of feasible instances. However, in a more
realistic setting, the improved domain reduction may well lead to savings in search
effort that outweigh the overhead of the invariants.

6 Conclusion

The database of graph invariants introduced in this article can be seen as a way to
automatically generate necessary conditions for global constraints that can be described



Graph Invariants as Necessary Conditions for Global Constraints 105

in terms of graph properties. In fact, it complements the computation of lower and
upper bounds for the graph characteristics presented in [15]. The key advantages of the
approach are:

– Instead of developing a specific code for a given global constraint, we come up with
graph invariants that can be applied to all global constraints sharing a given graph
property.

– The database of graph invariants can be enriched incrementally and systematic ex-
periments can point out missing graph invariants.

Finally, as demonstrated by our experiments on the group and the
change continuity constraints, it also clearly shows that the graph-based repre-
sentation and the automaton-based representation of global constraints are not compet-
ing approaches for representing the meaning of a global constraint. In fact, when for a
given global constraint, both representations are available7 we can, without developing
any specific code, get a filtering algorithm that takes advantage of both representations.
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Abstract. This paper describes an efficient, complete approach for solving a
complex allocation and scheduling problem for Multi-Processor System-on-Chip
(MPSoC). Given a throughput constraint for a target application characterized as
a task graph annotated with computation, communication and storage require-
ments, we compute an allocation and schedule which minimizes communication
cost first, and then the makespan given the minimal communication cost. Our ap-
proach is based on problem decomposition where the allocation is solved through
an Integer Programming solver, while the scheduling through a Constraint Pro-
gramming solver. The two solvers are interleaved and their interaction regulated
by no-good generation. Experimental results show speedups of orders of magni-
tude w.r.t. pure IP and CP solution strategies.

1 Introduction

This paper proposes a decomposition approach to the allocation and scheduling of a
multi-task application on a multi-processor system-on-chip (MPSoCs) [1]. This is cur-
rently one of the most critical problems in electronic design automation for Very-Large
Scale Integrated (VLSI) circuits. With the limits of chip integration reaching beyond
one billion of elementary devices, current advanced integrated hardware platforms for
high-end consumer application (e.g. multimedia-enabled phones) contain multiple pro-
cessors and memories, as well as complex on-chip interconnects. The hardware re-
sources in these MPSoCs need to be optimally allocated and scheduled under tight
throughput constraints when executing a target software workload (e.g. a video de-
coder).

In a typical embedded system design scenario, the platform always runs the same
application. Thus, extensive analysis and optimization can be performed at design time;
in particular, allocation and scheduling can be pre-computed statically. The target appli-
cation is pre-characterized and abstracted as a task graph. The task graph is annotated
with computation (e.g., execution time), communication (e.g., number of bits to be com-
municated between tasks), storage (e.g., size of data and instruction memory required
to execute the task) requirements. After solving the allocation and scheduling problem,

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 107–121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the application can be loaded onto the target hardware platform, together with system
software which orchestrates its execution according to the pre-computed solution.

The problem of allocating and scheduling tasks and memories to MPSoCs is NP-
complete. We propose here an hybrid Constraint Programming (CP) and Integer Pro-
gramming (IP) approach. The solution scheme is based on problem decomposition
which interleaves (i) allocation of tasks to processors and required memory slot to
storage devices and (ii) scheduling tasks in time. Since the two sub-problems are not
independent, their interaction is regulated by no-good generation. Eventually the pro-
cess converges, producing the optimal solution. The method is inherited by Operations
Research and it is known with the name of Benders Decomposition [2]. This method
partitions the problem variables in two sets x and y, assigns trial values to x by solving
the master problem (containing only variables in x) to optimality, so as to define a sub-
problem containing only the variables belonging to y. If the solution of the subproblem
reveals that the trial values are not acceptable, a no-good is generated and new trial
values are assigned according to the no-good. It is proved that this method converges,
hopefully after few steps, by providing the optimal solution [2].

Benders Decomposition has been successfully applied in conjunction with Con-
straint Programming as we will extensively describe in section 6. For example, [3] and
[4] face a similar problem using Benders Decomposition and found very promising
results. Our main purpose in this paper is to show how a hybrid Constraint and Inte-
ger Programming approach can be used to solve a very complex optimization prob-
lem which has been traditionally approached with heuristic techniques or (for small
instances) with complete Integer Programming approaches. We show that our method
outperforms on one hand Integer Programming approaches which can be considered the
state of the art complete approaches for this problem, and on the other hand Constraint
Programming approaches that have been exploited much less frequently in this context.

2 Problem Description

Advances in very large scale integration (VLSI) of digital electronic circuits have made
it possible to develop multi-processor systems-on-chip (MPSoCs), which are finding
widespread application in embedded systems (such as cellular phones, automotive con-
trol engines, etc.). Once deployed in field, these devices always run the same applica-
tion, in a well-characterized context. It is therefore possible to spend a large amount
of time for finding an optimal allocation and scheduling off-line and then deploy it
on the field. For this reason, many researchers in digital design automation have ex-
plored complete approaches for allocating and scheduling pre-characterized workloads
on MPSoCs [1], instead of using on-line, dynamic (sub-optimal) schedulers [5,6].

The multi-processor system we consider consists of a pre-defined number of dis-
tributed computation nodes, as depicted in Figure 1. All nodes are assumed to be ho-
mogeneous and made by a processing core and by a tightly coupled local memory. This
latter is a low-access-cost scratchpad memory, which is commonly used both as hard-
ware extension to support message passing and as a storage means for computation data
and processor instructions which are frequently accessed. Data storage onto the scratch-
pad memory is directly managed by the application, and not automatically in hardware
as it is the case for processor caches.
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Fig. 1. Single chip multi-processor architecture

Unfortunately, the scratchpad memory is of limited size, therefore data in excess
must be stored externally in a remote on-chip memory, accessible via the bus. The bus
for state-of-the-art MPSoCs is a shared communication resource, and serialization of
bus access requests of the processors (the bus masters) is carried out by a centralized
arbitration mechanism. The bus is re-arbitrated on a transaction basis (e.g., after single
read/write transfers, or bursts of accesses of pre-defined length), based on several poli-
cies (fixed priority, round-robin, latency-driven, etc.). Modelling bus allocation at such
a fine granularity would make the problem overly complex, therefore a more abstract
bus model was devised, thus also bridging the gap with our high-level task models,
which express communication requirements of the tasks in terms of their required bus
bandwidth for the duration of their execution. We will discuss this point in detail in
section 4.

Whenever predictable performance is needed for applications, it is important to
avoid high levels of congestion on the bus, since this makes completion time of bus
transactions much less predictable. Moreover, under a low congestion regime, perfor-
mance of state-of-the-art shared busses scales almost in the same way as that of ad-
vanced busses with topology and communication protocol enhancements. Finally, bus
modelling is simpler under these working conditions (e.g., additive models). Commu-
nication cost is therefore critical for determining overall system performance, and will
be minimized in our task allocation framework.

The target application to be executed on top of the hardware platform is input to
our methodology, and for this purpose it must be represented as a task graph. This latter
consists of a graph pointing out the parallel structure of the program. The application
workload is therefore partitioned into computation sub-units denoted as tasks, which
are the nodes of the graph. Graph edges connecting any two nodes indicate task depen-
dencies. Computation, storage and communication requirements are annotated onto the
graph. In detail, the worst case execution time (WCET) is specified for each node/task
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and plays a critical role whenever application real time constraints (expressed here in
terms of minimum required throughput) are to be met. The sum of the WCETs of the
tasks for one iteration of the time wheel must not exceed time period RT (i.e., the min-
imum task scheduling period ensuring that throughput constraints are met), which is
the same for each processor since the minimum throughput is an application (not single
processor) requirement.

Each node/task also has 3 kinds of associated memory requirements:

– Program Data: storage locations are required for computation data and for pro-
cessor instructions. They can be allocated either on the local scratchpad memory or
on the remote on-chip memory.

– Internal State: when needed, an internal state of the task can be stored either lo-
cally or remotely.

– Communication Queues: the task needs queues to transmit and receive messages
to/from other tasks, eventually mapped on different processors. In the class of MP-
SoCs we are considering, such queues should be allocated only on local memories,
in order to implement an efficient inter-processor communication mechanism.

Finally, communication requirements of each task are automatically determined
once computation data and internal state are physically allocated to scratchpad or re-
mote memory, and obviously depend on the size of such data.

The methodology proposed in this paper has been applied to a task graph extracted
from a real video graphics application processing pixels of a digital image. Many real-
life signal processing applications are subject to tight throughput constraints, therefore
leverage a pipelined workload allocation policy. As a consequence, the input graph to
our methodology consists of a pipeline of processing tasks, and can be easily extended
to all pipelined applications.

3 Motivation for the Approach

The problem described in the previous section has a very interesting structure. As a
whole, the problem is a scheduling problem with alternative resources. In fact, each
task should be allocated to one of the processors (Node i in Figure 1). In addition, each
memory slot required for processing the task should be allocated to a memory device.
Clearly, tasks should be scheduled in time subject to real time constraints, precedence
constraints, and capacity constraints on all unary and cumulative resources. However,
from a different perspective, the problem decomposes into two problems:

– the allocation of tasks to processors and the memory slots required by each task to
the proper memory device;

– a scheduling problem with static resource allocation.

The objective function of the overall problem is the minimization of communication
cost. This function involves only variables of the first problem. In particular, we have a
communication cost each time two communicating tasks are allocated on different pro-
cessors, and each time a memory slot is allocated on a remote memory device. Once we
have optimally allocated tasks to resources, we can minimize the schedule makespan.
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The allocation problem is difficult to solve with Constraint Programming (CP). CP
has a naive method for solving optimization problems: each time a solution is found,
an additional constraint is added stating that each successive solution should be better
than the best one found so far. If the objective function is strongly linked to decision
variables, CP can be effective, otherwise it is hopeless to use CP to find the optimal
solution. In case the objective function is related to a single variable, like for makespan
in scheduling problems, CP works well. However, if the objective function is a sum of
cost variables, CP is able to prune only few values, deep in the search tree since the
connection between the objective function and the problem decision variables is weak.
If the objective function relates to pairs of assignments the situation is even worse. This
is the case of our application where the objective function relates alternative resources
to couples of tasks. In fact, data transfer on the bus (and thus the objective function
increase) occurs when two communicating tasks are allocated to different processors.
Integer Programming (IP), instead, is extremely good to cope with these problems.

On the contrary, IP is weaker than CP in coping with time. Scheduling problems
require to assign tasks to time slots, each slot being represented by an integer variable.
The number of variables increases enormously if the granularity of the timeline is fine.

Therefore, the first problem could be solved with IP effectively, while for the second
CP is the technique of choice. The question is now: how do these problems interact?

We solve them separately, the allocation problem first (called master problem), and
the scheduling problem (called subproblem) later. The master is solved to optimality
and its solution passed to the subproblem solver. If the solution is feasible, then the
overall problem is solved to optimality. If, instead, the master solution cannot be com-
pleted by the subproblem solver, a no-good is generated and added to the model of
the master problem, roughly stating that the solution passed should not be recomputed
again (it becomes infeasible), and a new optimal solution is found for the master prob-
lem respecting the (set of) no-good(s) generated so far. Being the allocation problem
solver an IP solver, the no-good has the form of a linear constraint.

Now let us note the following: the assignment problem allocates tasks to processors,
and memory requirements to storage devices minimizing communication costs. How-
ever, since real time constraints are not taken into account by the allocation module,
the solution obtained tends to pack all tasks into the minimal number of processors. In
other words, the only constraint that prevents to allocate all tasks to a single processors
is the limited capacity of the tightly coupled memory devices. However, these trivial
assignments do not consider throughput constraints which make them most probably
infeasible for the overall problem. To avoid the generation of these (trivial) assign-
ments, we should add to the master problem model a relaxation of the subproblem. In
particular, we should state in the master problem that the sum of the durations of tasks
allocated to a single processor does not exceed the realtime requirement. In this case,
the allocation is far more similar to the optimal one for the problem at hand. The use of
a relaxation in the master problem is well known and widely used in practice and helps
in producing better solutions.

A similar method is known in Operations Research as Benders Decomposition [2],
where the overall problem can be decomposed in two parts connected by some vari-
ables. Indeed, in this method, the subproblem should be easy.
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In [3], for example, Logic-Based Benders Decomposition is used to solve an allo-
cation and scheduling problem where precedence constraints among tasks assigned to
different resources are not considered; in this case we have a set of independent sub-
problems, for each facility. In our case, we can have precedence constraints between
tasks allocated to different facilities and the subproblem is therefore an NP-complete
problem, but CP is a very effective method to solve it.

4 Model Definition

As described in section 3, the problem we are facing can be split into the resource
allocation master problem and the scheduling sub-problem.

4.1 Allocation Problem Model

We start from the task graph presented in section 2. Each task should be allocated to
a processor. In addition it needs a given amount of memory to store data. Data can be
allocated either in the local memory of the processor running the task or in the remote
one except for communication queues that are always mapped locally. The allocation
problem is the problem of allocating n tasks to m processors, such that the total amount
of memory allocated to the tasks, for each processor, does not exceed the maximum
available.

We assume the remote on-chip memory to be of unlimited size since it is able to
meet the memory requirement of the application we are facing (small granularity pro-
gram data). The problem objective function is the minimization of the amount of data
transferred on the bus. We model the problem as an integer program and we consider
four decision variables in the model:

– Tij , taking value 1 if task i executes on processor j, 0 otherwise,
– Yij , taking value 1 if task i allocates the program data on the scratchpad memory

of processor j, 0 otherwise,
– Zij , taking value 1 if task i allocates the internal state on the scratchpad memory

of processor j, 0 otherwise,
– Xij , taking value 1 if task i executes on processor j and task i + 1 does not, 0

otherwise.

The constraints we introduced in the model are:
m∑

j=1

Tij = 1, ∀i ∈ 1 . . . n (1)

Xij = |(Tij − Ti+1j)|, ∀i ∈ 1 . . . n, ∀j ∈ 1 . . .m (2)

Constraints (1) state that each process can execute only on a processor, while constraints
(2) state that Xij can be equal to 1 iff Tij �= Ti+1j , that is, iff task i and task i + 1
execute on different processors. Constraints (2) are not linear (Xij is the exor of Tij

and Ti+1j), thus we cannot use them in a IP model. If we consider that the sum Xij +
Tij + Ti+1j must always equal either to 0 or 2, constraints (2) can be rewritten as:

Tij + Ti+1j + Xij − 2Kij = 0 , ∀i ,∀j (3)
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where Kij are integer binary variables that enforce the sum Tij + Ti+1j + Xij to be
equal either to 0 or 2.

We add to the problem the constraints stating that Tij = 0 ⇒ Yij = 0, Zij = 0
meaning that if a processor j is not assigned to a task i neither its program data nor the
internal state can be stored in the local memory of processor j.

As explained in section 3, in order to prevent the master problem solver to produce
trivially infeasible solutions, we need to add to the master problem model a relaxation
of the subproblem. For this purpose, for each set of consecutive tasks whose execution
times sum exceeds the real time requirement (RT), we impose constraints preventing
the solver to allocate all the tasks in the group to the same processor.

To generate this constraints, we find out all groups of consecutive tasks sum of
whose execution times (Duri) exceeds RT. Constraints are the following:∑

i∈S

Duri > RT ⇒
∑
i∈S

Tij ≤ |S| − 1 ∀j (4)

The objective function is the minimization of the total amount of data transferred
on the bus for each pipeline. This amount consists of three contributions: when a task
allocates its program data in the remote memory, it reads these data throughout the ex-
ecution time; when a task allocates the internal state in the remote memory, it reads
these data at the beginning of its execution and updates them at the end; if two con-
secutive tasks execute on different processors, their communication messages must be
transferred through the bus from the communication queue of one processor to the other.
Using the decision variables described above, we have a contribution respectively when:
Tij = 1, Yij = 0; Tij = 1, Zij = 0; Xij = 1. Therefore, the objective function is to
minimize:

n∑
i=1

m∑
j=1

(memi(Tij − Yij) + 2× statei(Tij − Zij) + (dataiXij)/2) (5)

where memi, statei and datai are coefficients representing the amount of data used by
task i to store respectively the program data, the internal state and the communication
queue.

4.2 Scheduling Problem Model

Once tasks have been allocated to the processors, we need to schedule process exe-
cution. Since we are considering a pipeline of tasks, we need to analyze the system
behavior at working rate, that is when all processes are running or ready to run. To do
that, we need to consider several instantiations of the same process; to achieve a work-
ing rate configuration, the number of repetitions of each task must be at least equal to
the number of tasks n; in fact, after n iterations, the pipeline is at working rate. So, to
solve the scheduling problem, we must consider at least n2 tasks (n iterations for each
process), see Figure 2.

In the scheduling problem model, for each task Taskij we considered an activity
Aij , (i = [0 . . . n − 1], j = [0 . . . n − 1]), representing the computation of the task.
Aij is the j-th iteration of the i-th process. Once the allocation problem is solved, we
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statically know if a task needs to use the bus to communicate with another task, or to
read/write computation data and internal state in the remote memory. In particular, each
activity Aij must read the communication queue from the activity Ai−1j , or from the
pipeline input if i = 0. To schedule these phases, we consider the activities Inij . If a
process requires an internal state, the state must be read before the execution and writ-
ten after the execution: we therefore consider the activities RSij and WSij for each
task i requiring an internal state. The duration of these activities depends on whether
the data are stored in the local or the remote memory (data transfer through the bus
needs more time than the transfer of the same amount of data using the local mem-
ory) but, after the allocation, these durations can be statically calculated. These activity
are introduced in the model using variables Start Aij , Start Inij , Start RSij and
Start WSij , representing the starting time of the corresponding activity. We also use
the values Dur Aij , Dur Inij , Dur RSij and Dur WSij to represent the execution
times of the corresponding activities.

Fig. 2. Precedence constraints among the activities

Figure 2 depicts the precedence constraints among the tasks. Each task Taskij rep-
resents the activity Aij possibly preceded by the internal state reading activity RSij ,
and input data reading activity Inij , and possibly followed by the internal state writing
activity WSij .

The precedence constraints among the activities introduced in the model are:

Ai,j−1 ≺ Inij , ∀ i, j (6)

Inij ≺ Aij , ∀ i, j (7)

Ai−1,j ≺ Inij , ∀ i, j (8)

RSij � Aij , ∀ i, j (9)

Aij �WSij , ∀ i, j (10)

Ini+1,j−1 ≺ Aij , ∀ i, j (11)

Ai,j−1 ≺ Aij , ∀ i, j (12)

where the symbol≺means that the activity on the left should precede the activity on the
right, and the symbol�means that the activity on the right must start as soon as the exe-
cution of the activity on the left ends: i.e., Inij ≺ Aij means Start Inij +Dur Inij ≤
Start Aij , and RSij � Aij means Start RSij + Dur RSij = Start Aij .

Constraints (6) state that each task iteration can start reading the communication
queue only after the end of its previous iteration. Constraints (7) state that each task can
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start only when it has read the communication queue, while constraints (8) state that
each ask can read the data in the communication queue only when the previous task has
generated them. Constraints (9) and (10) state that each task must read the internal state
just before the execution and write it just after. Constraints (11) state that each task can
execute only if the previous iteration of the following task has read the input data; in
other words, it can start only when the memory allocated to the process for storing the
communication queue has been freed. Constraints (12) state that the iterations of each
task must execute in order.

Furthermore, we introduced the real time requirement constraints (13), whose re-
laxation is used in the allocation problem model. Each task must execute at most each
time period RT .

Start(Aij)− Start(Ai,j−1) ≤ RT , ∀ i, j (13)

Each processor is modelled as a unary resource, that is a resource with capacity
one. As far as the bus is concerned, as explained in section 2, we make a simplification:
a real bus is a unary resource but, if we model a bus as a unary resource, we should
describe the problem at a finer grain with respect to the one we use, i.e., we have to
model task execution using the clock cycle as unit of time. The resulting scheduling
model would contain a huge number of variables. We therefore consider the bus as an
additive resource, in the sense that more activities can share the bus resource using only
a fraction of the total bandwidth available.

Figure 3 depicts this assumption. The leftmost figure represents the bus allocation in
a real processor, where the bus is assigned to different tasks at different times. Each task,
when owning the bus, uses its total bandwidth. The rightmost figure, instead, represents
how we model the bus. The bus arbitration mechanism will then transform the bus
allocation into the interleaving of fine granularity bus transactions on the real platform.

Fig. 3. Bus allocation in a real processor (left) and in our model (right)

In particular, to define the communication requirements of each task (the amount of
computation data stored in the remote memory) we consider the amount of data they
have to communicate and we spread it over its WCET. In this way we consume only
a fraction of the overall bus bandwidth for the duration of the task. In the 2 graphs in
figure 3 light grey and dark grey areas are equal.
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When an allocation is provided, the minimal makespan schedule is computed if it
exists. On the contrary, if no feasible schedule exists, we have to generate a no-good
and pass it to the allocation module. The no-good should prevent the allocation to be the
same of the previous iteration. Since the allocation module is an Integer Programming
solver, the no-good should have the form of a linear constraint. In particular, we select
all the resources that provoke a failure, e.g., either resources whose capacity is violated,
or resources that lead to a violation of real time constraints. We call them conflicting
resources, CR. Then, we impose that for each resource in R ∈ CR the set of tasks STR

allocated to R should not be reassigned to the same resource in the next iteration. For
example if a conflicting resource R is a processor and STR the set of tasks previously
allocated to it, the resulting no-good is:∑

i∈STR

TiR ≤ |STR| − 1

In the same way, we have constraints for preventing failures in storage device.
These are the simplest kind of no-goods that can be added to the master problem

since they state that the current solution must not be computed again. Even if they can be
improved, as shown in [7], we will show in the next section that they are very effective.

5 Experimental Results

To validate the strength of our approach, we now compare the results obtained using
this model (Hybrid in the following) with results obtained using only a CP or IP model
to solve the overall problem. Actually, since the first experiments showed that both CP
and IP approaches are not able to find a solution, except for the easiest instances, within
15 minutes, we simplified these models removing some variables and constraints. In
CP, we fixed the activities execution time not considering the execution time variability
due to remote memory accesses, therefore we do not consider the Inij , RSij and WSij

activities, including them statically in the activities Aij . In IP, we do not consider all
the variables and constraints involving the bus: we do not model the bus resource and
we therefore suppose that each activity can access data whenever it is necessary.

We generated a large variety of problems, varying both the number of tasks and
processors. All the results presented are the mean over a set of 10 problems for each
task or processor number. All problems considered have a solution. Experiments were
performed on a 2GHz Pentium 4 with 512 Mb RAM. We used ILOG CPLEX 8.1 and
ILOG Solver 5.3 as solving tools.

In figures 4 and 5 we compare the algorithms search time for problems with a dif-
ferent number of tasks and processors respectively. Times are expressed in seconds and
the y-axis has a logarithmic scale.

Although CP and IP deal with a simpler problem model, we can see that these algo-
rithms are not comparable with Hybrid, except when the number of tasks and processors
is low; this is due to the fact that the problem instance is very easy to be solved, and Hy-
brid loses time creating and solving two models, the allocation and the scheduling. As
soon as the number of tasks and/or processors grows, IP and CP performances worsen
and their search times become orders of magnitude higher w.r.t. Hybrid. Furthermore,
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we considered in the figures only instances where the algorithms are able to find the
optimal solution within 15 minutes, and, for problems with 6 tasks or 3 processors and
more, IP and CP can find the solution only in the 50% or less of the cases. On the con-
trary, we can see that Hybrid search time scales up linearly (in the logarithmic scale)
for all the case.

We also measured the number of times the solver iterates between the master and
the sub-problem. We found that, due to the limited size of the local memories and to
the relaxation of the sub-problem added to the master, the solver iterates 1 or 2 times.
Removing the relaxation, it iterates up to 15 times. This result gives evidence that, in
a Benders decomposition based approach, it is very important to introduce a relaxation
of the sub-problem in the master, and that the relaxation we use is very effective.

6 Related Work

The synthesis of distributed system architectures has been extensively studied in the
past. The mapping and scheduling problems on multi-processor systems have been tra-
ditionally modelled as integer linear programming problems. An early example is rep-
resented by the SOS system, which used mixed integer linear programming (MILP)
model [8]. SOS considers processor nodes with local memory, connected through di-
rect point-to-point channels. The algorithm does not consider real-time constraints. Par-
titioning under timing constraints has been addressed in [9]. A MILP model that allows
to determine a mapping optimizing a trade-off function between execution time, pro-
cessor and communication cost is reported in [10].

Extensions of the IP formulation have also been used to account for memory allo-
cation requirements, besides communication and computation ones. A hardware/soft-
ware co-synthesis algorithm of distributed real-time systems that optimizes the memory
hierarchy (caches) along with the rest of the architecture is reported in [11]. An integer
linear programming model is used in [12] to obtain an optimal distributed shared mem-
ory architecture minimizing the global cost to access shared data in the application, and
the memory cost.

The above techniques lead to static allocations and schedules that are well suited
for applications whose behaviour can be accurately predicted at design time, with min-
imum run-time fluctuations. This is the case of signal processing and multimedia appli-
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cations. Pipelining is one common workload allocation policy for increasing throughput
of such applications, and this explains why research efforts have been devoted to ex-
tending mapping and scheduling techniques to pipelined task graphs. An overview of
these techniques is presented in [13]. IP formulations as well as heuristic algorithms
have been traditionally employed. In [14] a retiming heuristic is used to implement
pipelined scheduling, that optimizes the initiation interval, the number of pipeline stages
and memory requirements of a particular design alternative. Pipelined execution of a
set of periodic activities is also addressed in [15], for the case where tasks have dead-
lines larger than their periods. Palazzari et al. [16], focus on scheduling to sustain the
throughput of a given periodic task set and to serve aperiodic requests associated with
hard real-time constraints. Mapping of tasks to processors, pipelining of system spec-
ification and scheduling of each pipeline stage have been addressed in [17], aiming at
satisfying throughput constraints at minimal hardware cost.

In general, even though IP is used as a convenient modelling formalism, there is
consensus on the fact that pure IP formulations are suitable only for small problem
instances (task graphs with a reduced number of nodes) because of their high computa-
tional cost. For this reason, heuristic approaches are widely used. A comparative study
of well-known heuristic search techniques (genetic algorithms, simulated annealing and
tabu search) is reported in [18]. Eles et al. [19] compare the use of simulated annealing
and tabu search for partitioning a graph into hardware and software parts while trying
to reduce communication and synchronization between parts. More scalable versions
of these algorithms for large real-time systems are introduced in [20]. Many heuristic
scheduling algorithms are variants and extensions of list scheduling [21].

Heuristic approaches provide no guarantees about the quality of the final solution.
On the other hand, complete approaches which compute the optimum solution (possi-
bly, with a high computational cost), can be attractive for statically scheduled systems,
where the solution is computed once and applied throughout the entire lifetime of the
system.

Constraint Programming (CP) is an alternative approach to Integer Programming
(IP) for solving combinatorial optimization problems. The work in [22] is based on
Constraint Logic Programming to represent system synthesis problem, and leverages a
set of finite domain variables and constraints imposed on these variables. Optimal so-
lutions can be obtained for small problems, while large problems require use of heuris-
tics. The proposed framework is able to create pipelined implementations in order to
increase the design throughput. In [23] the embedded system is represented by a set
of finite domain constraints defining different requirements on process timing, system
resources and interprocess communication. The assignment of processes to processors
and interprocess communications to buses as well as their scheduling are then defined
as an optimization problem tackled by means of constraint solving techniques.

Both CP and IP techniques can claim individual successes but practical experience
indicates that neither approach dominates the other in terms of computational perfor-
mance. The development of a hybrid CP-IP solver that captures the best features of
both would appear to offer scope for improved overall performance [24]. However, the
issue of communication between different modelling paradigms arises. One method is
inherited from the Operations Research and is known as Benders Decomposition [2]:
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it is proved to converge producing the optimal solution. Benders Decomposition (BD)
technique has been extensively used to solve a large variety of problems.

In [25] BD is applied to a numeric algorithm in order to solve the problem of verify-
ing logic circuits: results show that, for some kind of circuits, the technique is an order
of magnitude faster w.r.t. other state of the art algorithms. In [26], BD is embedded in
the CP environment ECLiPSe and is shown that it can be useful in practice. There are
a number of papers using Benders Decomposition in a CP setting. In [27] BD is ap-
plied to an allocation and scheduling problem; the master problem (allocation) is based
on CP and the sub-problem (scheduling) is solved using a real-time scheduler with
fixed task priority. In [28] the branch and check framework is proposed using Benders
Decomposition. This technique is applied to the problem of scheduling orders on dis-
similar parallel machines, where a set of tasks, linked by precedence constraints, must
be performed on a set of parallel machines minimizing the total cost of the process. The
machines are dissimilar, so the same task can be executed on a different machine with a
different cost and processing time. In [4], BD is applied to minimum cost planning and
scheduling problems in a scenario similar to the one described in this paper, considering
also release and due date constraints. Here costs depend only on the assignment of tasks
to machines, differently from our problem, where contributes to the objective function
depend on pairs of assignments. In [3] and [7], Logic-Based BD (a variant of BD intro-
duced in [29], where the sub-problem should not necessarily be an IP problem) is used
for Planning and Scheduling problems. Here different objective functions are consid-
ered: total cost minimization, makespan, tardiness, and number of late jobs. Precedence
constraints among tasks assigned to different resources are not considered1: after the
allocation phase, the scheduling can be done solving a separate scheduling problem for
each facility. Our work addresses therefore an harder problem, being the schedules on
different facilities all interconnected.

Although a lot of work has been done applying BD to allocation and scheduling
problems, we believe that our approach is not directly comparable with them, mainly
because we take in consideration a real application where data must be exchanged be-
tween tasks and each task must read/write data (and thus must use the bus resource)
during its execution.

7 Conclusion and Future Works

In this paper, we have faced a challenging problem arising in the field of multi-processor
systems-on-chip (MPSoCs). The structure of the problem suggests a decomposition ap-
proach based on the interaction of two problem solvers: one allocating tasks to alterna-
tive resources and memory requirement to storage devices; the second scheduling tasks
subject to temporal and resource constraints. The first problem solver exploits math-
ematical programming techniques, while the second is based on CP. The interaction
between these problem solvers is regulated by no-good generation.

We provide experimental evidence that our approach outperforms the one consid-
ering the problem as a whole and using a single technique (CP or IP) separately. The
work in progress is aimed at generalizing the problem for introducing message queues

1 In [7] the author considers precedence constraints among tasks allocated to the same facility.
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on the shared memories so as to decouple the computation and communication through
non blocking synchronization.

Currently, we are investigating the executability of the solutions found using a MP-
SoCs platform simulator. We are also extending our tool to an allocation and scheduling
problem in a platform where processors can scale their voltage. An optimal solution
must therefore not only allocate tasks to processors and memory slot to storage devices,
but also associate a voltage and a clock frequency to each task execution, minimizing
the total power consumption.
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Abstract. The sub-optimality approximation problem considers an op-
timization problem O, its optimal solution σ∗, and a variable x with do-
main {d1, . . . , dm} and returns approximations to O[x ← d1], . . . ,O[x ←
dm], where O[x ← d1] denotes the problem O with x assigned to di. The
sub-optimality approximation problem is at the core of online stochastic
optimization algorithms and it can also be used for solution repair and
approximate filtering of optimization constraints. This paper formalizes
the problem and presents sub-optimality approximation algorithms for
metric TSPs, packet scheduling, and metric k-medians that run faster
than the optimal or approximation algorithms. It also presents results
on the hardness/easiness of sub-optimality approximations.

1 Introduction

In an increasing dynamic, interconnected, and real-time world, optimization
technology faces new challenges and opportunities. Indeed, on many applica-
tions, it is no longer sufficient to produce optimal, or near-optimal, solutions
offline. Optimization software should adapt dynamically to uncertainties, up-
date existing solutions to accommodate new requests and events, and produce
high-quality decisions under severe time constraints.

This paper introduces the sub-optimality approximation problem, which is
at the core of many online and dynamic applications. Given an optimization
problem O and an optimal solution σ∗ to O, the sub-optimality approximation
problem consists of approximating the problems O[x ← d1], . . . ,O[x ← dm],
where x is a decision variable, {d1, . . . , dm} are its possible values, and O[x← d]
denotes the problem O where x is assigned to d. The key property of the sub-
optimality approximation problem is the availability of the optimal solution σ∗.
Since each problem O[x← di] is closely related to O, the optimal solution is, in
general, of tremendous help for the sub-optimality approximations. However, to
be useful, a sub-optimality approximation algorithm should be faster than tradi-
tional approximation algorithms. This performance requirement is formalized by
the concept of amortized sub-optimality algorithm that finds approximations to
O[x← d1], . . . ,O[x← dm] in the time it takes to solve O optimally or approxi-
mately. The sub-optimality approximation problem is a critical component of the
regret algorithm for online stochastic optimization [3,6]. It can also be used for
solution repair, for evaluating the robustness of solutions, and for approximate
filtering of optimization constraints to name a few of its applications.
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This paper makes three contributions. First, it identifies and formalizes the
sub-optimality approximation problem and demonstrates its relevance for a num-
ber of applications. Second, it presents amortized sub-optimality approximation
algorithms for three problems: the metric TSP, packet scheduling in networks,
and the k-median problem. The proof techniques are interesting in the sense they
reason about the optimal solutions to both O and O[x← d]. Third, it presents
results on the hardness and easiness of sub-optimality approximations, showing
that some “hard” problems become “easy”, while others remain “hard”.

This paper is organized as follows. Sections 2 and 3 formalize the problem
and discuss its applications. Section 4, 5, and 6 present sub-optimality approx-
imations for the metric TSP, the packet scheduling, and the metric k-median
problem. Section 7 presents the hardness results.

2 Amortized Sub-optimality Approximation Algorithms

This section formalizes sub-optimality approximation problems and algorithms.
The formalization uses the definition of CSPs from [15], where the set of con-
straints is abstracted by a Boolean function which holds if all the constraints are
satisfied (since we are not interested in the constraint structure). Solutions are
also represented as functions (assignments) from variables to their sets of values.

Definition 1. A CSP is a triplet 〈V, D, C〉, where V denotes the set of variables,
D denotes the set of possible values for these variables, and C : (V → D)→ Bool
is a constraint which specifies which assignments of values to the variables are
solutions. A solution to a CSP P = 〈V, D, C〉 is a function σ : V → D such that
C(σ) = true. The set of solutions to a CSP P is denoted by Sol(P).

Constraint Optimization Problems (COPs) are CSPs with an objective function.

Definition 2. A COP is a pair 〈P , f〉, where P = 〈V, D, C〉 is a CSP and
f : V → N is an objective function. A solution to a COP O = 〈P , f〉 is a
solution to P. An optimal solution to O is a solution of O that minimizes f .
The sets of solutions and optimal solutions to a COP O are denoted by Sol(O)
and OptSol(O) respectively.

Given a CSP P = 〈V, D, C〉, var (P) denotes the variables V and dom(P) the
domain D. Similar notations are used for COPs, the variables and values of a
COP being those of its underlying CSP. Sub-optimality approximation problems
consider sets of related CSPs where one variable is assigned different values.
Given a CSP P = 〈V, D, C〉, P [x ← d] (x ∈ V & d ∈ D) denotes the CSP P
where variable x is assigned the value d, i.e., the CSP 〈V, D, C∧x = d〉. Similarly,
given a COP O = 〈P , f〉, O[x← d] (x ∈ V & d ∈ D) denotes the COP O where
variable x is assigned the value d, i.e., the COP 〈O[x← d], f〉.

We are ready to specify the sub-optimality approximation problem. Infor-
mally, given an optimal solution σ∗ to a COP O, the sub-optimality approxi-
mation problem consists of finding constant factor approximations to the COPs
O[x← di] for all values d1, . . . , dm of variable x.
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Definition 3 (The Sub-optimality Approximation Problem). A sub-
optimality approximation problem receives as input a COP O = 〈P , f〉 with
dom(P) = {d1, . . . , dm}, an optimal solution σ∗ ∈ OptSol(O), and a variable x
in var(P). Its output is a set of solutions

σ̃i ∈ Sol(P [x← di]) (1 ≤ i ≤ m)

satisfying f(σ̃i) ≤ βf(σ∗
i ) for some constant β, where σ∗

i ∈ OptSol(O[x← di]).

The fundamental property in the sub-optimality approximation problem is the
fact that the input contains an optimal solution to O. This solution should
of course be used by the sub-optimality approximation algorithm in order to
solve the COPs O[x ← di] efficiently. Observe that the definition can easily be
generalized to accommodate stronger or weaker approximation requirements.

To capture performance requirements of great benefit in practical applica-
tions, we introduce the concept of amortized sub-optimality approximation al-
gorithms. The intuition here is that a sub-optimality algorithm is amortized if
it approximates the solutions of O[x ← d1], . . . ,O[x ← dm] in the time it takes
to solve O optimally. It is strongly amortized if it approximates such solutions
for all variables in the same time.

Definition 4 (Amortized Sub-optimality Approximation). Consider a
class C of COPs, let A be an algorithm for solving C in time O(g), and let Ã
be a sub-optimality approximation algorithm for class C that runs in time O(g̃).
Let |dom(O)| = m and let |var (O)| = n. Algorithm Ã is amortized wrt A on
class C if, for each COP O ∈ C with |dom(O)| = m, we have that m g̃ is O(g)..
It is strongly amortized wrt A on class C if nm g̃ is O(g).

These definitions can be generalized to the important case where the COP is
solved through an approximation algorithm with performance guarantees. This
is especially significant in online optimization under strict time constraints where
optimal solutions can rarely be obtained within the time limits.

Definition 5 (The Sub-optimality (α,β)-Approximation Problem). A
sub-optimality (α, β)-approximation problem receives as input a COP O = 〈P , f〉
with dom(P) = {d1, . . . , dm}, an approximation σ̃ satisfying f(σ̃) ≤ αf(σ∗) for
σ∗ ∈ OptSol(O), and x in var (P). Its output is the solutions σ̃i ∈ Sol(P [x ←
di]) (1 ≤ i ≤ m) satisfying f(σ̃i) ≤ βf(σ∗

i ) and σ∗
i ∈ OptSol(O[x← di]).

The concept of amortized sub-optimality (α, β)-approximation is similar to Defi-
nition 4, although its requirements are typically much stricter. However, as shown
later, the same sub-optimality approximation may apply to both problems.

3 Applications

This section reviews a number of applications that benefit from sub-optimality
approximation algorithms to demonstrate its relevance and applicability. The
section does not aim to be comprehensive but to give some indication of where
sub-optimality approaximations may be beneficial.
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Online Stochastic Optimization. Our primary motivation for sub-optimality op-
timization came from online stochastic optimization. Online optimization prob-
lems (e.g., [11]) is a class of applications where the data is revealed online dur-
ing the execution of the decision-making process. In many of these applications
[8,3,4], a distribution of the data, or an approximation thereof, is available to
the algorithm for sampling. Alternatively, the data distribution can be learned
during the algorithm execution [6]. A natural framework for online stochastic
optimization was defined in [5,3,2] and only its most basic version is considered
here for simplicity. The key idea behind the framework is to consider a time
interval H and to allow a single request to be served at each time t ∈ H . The
selected request (if any) is selected from the set of available requests R at time
t. Each request r has a weight w(r) that specifies how valuable it is. Which re-
quests may be served is problem-specific and left unspecified in the framework.
The framework simply assumes that the underlying algorithms have access to
two black-boxes: an optimization algorithm that can find an optimal solution
for a set of requests and a distribution that can be sampled to obtain scenarios
reflecting the future (to some degree). The goal of the online algorithms is to a
choose requests online to maximize the weighted sum of the serviced requests.
More formally, the algorithms are all instantiations of the online schema:

onlineOptimization(H)
1 R ← ∅;
2 w ← 0;
3 for t ∈ H
4 do R ← availableRequests(R, t) ∪ newRequests(t);
5 r ← chooseRequest(R, t);
6 serveRequest(r, t);
7 w ← w + w(r);
8 R ← R \ {r};

but they differ in how they implement function chooseRequest. The online
optimization schema considers the set of available requests (i.e. those requests
that may be served at time t without violating any constraints) and new requests
at each time step. It chooses a request r which is then served and removed from
the set of available requests. Function availableRequest(R, t) returns the set
of requests available for service at time t and function serveRequest(r, t) sim-
ply serves r at time t (i.e., σ(t)← r). To implement function chooseRequest,
the algorithms have at their disposal two black-boxes:

1. A function optimalSolution(R, t, Δ) that, given a set R of requests, a
time t, and a number Δ, returns an optimal solution for R over [t, t + Δ];

2. A function getSample([ts, te]) that returns a set of requests over the inter-
val [ts, te] by sampling the arrival distribution.

Typically, the goal is to choose a request at time t that maximizes expectation.
The exact computation of the expected value of servicing a request is often too
computationally demanding and one of the traditional approaches approximates
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expectation by evaluating each decision with respect to samples from the distri-
bution (Algorithm E) [8]. A simple implementation is as follows:

chooseRequest-E(R, t)
1 for r ∈ R
2 do f(r)← 0;
3 for i← 1 . . .O/|R|
4 do S ← R ∪ getSample([t + 1, t + Δ]);
5 for r ∈ R
6 do f(r) ← f(r) + (w(r) + W (optimalSolution(S \ {r}, t + 1)));
7 return argmax(r ∈ R) f(r);

Lines 1-2 initialize the evaluation function f(r) for each request r. The algorithm
then generates a number of samples for future requests (line 3). For each such
sample, it computes the set R of all available and sampled requests at time t
(line 4). The algorithm then considers each available request r successively (line
5), it implicitly schedules r at time t, and applies the optimal offline algorithm
using S \{r} and the time horizon. The evaluation of request r is updated in line
6 by incrementing it with its weight and the score of the corresponding optimal
offline solution. All samples are evaluated for all available requests and the algo-
rithm then returns the request r ∈ R with the highest evaluation. Observe Line
3 of Algorithm E which distributes the available offline optimizations across all
available requests. The expectation algorithm is typically too computationally
demanding for an online setting as each evaluation of a request on a sample re-
quires an optimization. A recent advance is the regret algorithm (R), where each
sample is solved optimally once and sub-optimality approximations are used to
evaluate the remaining requests [3]:

chooseRequest-R(R, t)
1 for r ∈ R
2 do f(r)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ getSample([t + 1, t + Δ]);
5 σ∗ ← optimalSolution(S, t);
6 f(σ∗(t))← f(σ∗(t)) + W (σ);
7 for r ∈ R \ {σ∗(t)}
8 do f(r) ← f(r) + W (suboptimalityApproximation(σ∗, r, S, t));
9 return argmax(r ∈ R) f(r);

Algorithm R (lines 7-8) computes an approximation of the best solution of s
serving r at time t, i.e., W (suboptimalityApproximation(σ∗, r, S, t)). Hence,
the value of scheduling each available request is approximated on every sample
at time t for the cost of a single offline optimization (asymptotically). Observe
that the regret algorithm solves the sub-optimality problem where variable σ(t)
is assigned the values R \ {σ(r)} and that the optimal solution σ∗, or an ap-
proximation thereof, is naturally available since the sample is solved in line 5.



Sub-optimality Approximations 127

By solving the sub-optimality problem, algorithm R enjoys essentially the same
theoretical performance guarantees as algorithm E at a fraction of the cost [7].

Solution Repair. Solution repair is another important application for sub-
optimality approximations. For example, a catastrophic hub failure in a network
may require a nearby hub to be opened quickly. Such applications are often mod-
eled as dynamic facility location problems where one must quickly approximate
the optimal solution to the problem in which a facility is forced to be closed or
to be opened. Once again, the optimal solution, or an approximation thereof, is
naturally available, and one is interested in solving the sub-optimality approxi-
mation problem for specific hubs. Solution repair is closely related to the issue of
robustness. Sub-optimality approximations provide a computational method to
evaluate the robustness of different optimal, or locally optimal, solutions. Solu-
tions with small sub-optimality gaps may be preferred, since they entail smaller
quality loss when some variables cannot be assigned some values. Again, optimal
or approximated solutions are naturally available in these applications.

Partial or Approximate Filtering. Sub-Optimality approximations are also useful
for partial or approximate filterings of optimization constraints (e.g., [12]). An
optimization constraint captures a combinatorial substructure arising in many
applications and can be specified as an optimization problem O = 〈P , f〉. During
the search, an optimization constraint uses bounds on f to detect infeasibility
and prunes the domains of the variables. Consider a minimization constraintO =
〈P , f〉 and assume that U is an upper bound on f . Typically, the minimization
constraint searches for an optimal solution o∗ to O to detect feasibility, i.e.,
f(o∗) ≤ U . Once feasibility is established, the constraint filters the domains of
the variables to remove all values that cannot appear in any solution not greater
than U . Here sub-optimality approximation can be used to detect quickly values
that can, or cannot, be filtered. Assume that the sub-optimality algorithm is a
ρ-approximation and consider a variable x with domain D. The sub-optimality
approximation problem provides a solution õd to O[x ← d] satisfying f(õd) ≤
ρf(od), where od is an optimal solution to O[x← d]. Hence, the value d cannot
be filtered whenever f(õd) ≤ U and must be filtered whenever f(õd) > ρU . Once
again, observe that the optimal solution o∗ is naturally available.

4 The Travelling Salesman Problem

The traveling salesman problem (TSP) is probably the most studied combinato-
rial optimization problem. It is also an important component in a wide variety
of online applications, such as courier services.

The Sub-optimality Approximation Problem. The sub-optimality approximation
problem consists of approximating the cost of assigning different successors to
a vertex i. In other words, the variable under consideration is the successor of
vertex i and the domains are all other vertices.
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The Sub-optimality Approximation Algorithm. A simple relocation provides a
sub-optimality approximation algorithm to bound the effect of traveling to cus-
tomer j after i: remove j from the optimal solution and reinsert it after i. This
amortized algorithm is a constant factor approximation for the Euclidean TSP.

Theorem 1. [Amortized Sub-optimality for the Metric TSP] The metric
TSP has a strongly amortized sub-optimality (α,β)-approximation algorithm.

Proof. Let σ∗ be the optimal solution to a TSP and let σij be the optimal
solution when j must follow i. The optimal solution σ∗ consists of a tour with
length C(σ) = ci,i++Ci+,j−+cj−,j +cj,j++Cj+,i, where Ci,j (resp. ci,j) denotes
the cost of the path (resp. arc) between i and j in σ∗. The approximation solution
consists of a tour with length C(σ̃xij ) = ci,j + cj,i+ + Ci+,j− + cj−,j+ + Cj+,i.
By the triangle inequality,

C(σ̃ij) = ci,j + cj,i+ + Ci+,j− + cj−,j+ + Cj+,i

≤ ci,j + cj,i+ + Ci+,j− + cj−,j + cj,j+ + Cj+,i

≤ ci,i+ + Ci+,j− + cj−,j + ci+,j + Ci+,j− + cj−,j + cj,j+ + Cj+,i

≤ ci,i+ + Ci+,j− + cj−,j + Ci+,j− + cj−,j + Ci+,j− + cj−,j + cj,j+ + Cj+,i

≤ ci,i+ + 3Ci+,j− + 3cj−,j + cj,j+ + Cj+,i

≤ 3 C(σ) ≤ 3 C(σij) by optimality of σ.

Now assume that σ̃ is an α-approximation of σ∗. We have that C(σ̃ij) ≤ 3 C(σ̃)
by the above proof and hence C(σ̃ij) ≤ 3 α C(σ̃) ≤ 3 α C(σ̃ij). Each such
approximation takes O(1) time. The algorithm is strongly amortized wrt all
approximation algorithms (which are Ω(|E|), where E is the set of arcs). ��

5 Packet Scheduling

The Optimization Problem. This section considers a simple scheduling problem
used to model a variety of applications, including the packet scheduling problem
from [8]. The problem is given as inputs a set R of tasks/requests for service
and a time horizon H = [H, H ] during which requests must be scheduled. Each
request r is characterized by a weight w(r) and an arrival time a(r), requires
a single time unit to be processed, and must be scheduled in its time window
[a(r), a(r)+d]. In other words, the request is lost if it is not served within its time
window. In addition, no two requests can be scheduled at the same time. The
goal is to find a schedule of maximal weight, i.e., a schedule which maximizes
the sum of the weights of all scheduled requests. This is equivalent to minimizing
weighted loss. More formally, assume for simplicity and without loss of generality,
that there is a request scheduled at each time step. Under this assumption, a
schedule is a function σ : H → R which assigns a request to each time in the
schedule horizon. A schedule σ is feasible if it satisfies the constraints

∀ t1, t2 ∈ H : t1 �= t2 → σ(t1) �= σ(t2)
∀ t ∈ H : a(σ(t)) ≤ t ≤ a(σ(t)) + d.

The weight of a schedule σ, denoted by W (σ), is given by W (σ) =
∑

t∈H w(σ(t)).
and the goal is to find a feasible schedule σ maximizing W (σ). This offline
problem can be solved in quadratic time O(|R||H |) [8].
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The Sub-optimality Approximation Problem. The sub-optimality approximation
problem for packet scheduling is motivated by online stochastic optimization,
where future packets are known in advance and are revealed online as the algo-
rithm makes decision. As discussed in Section 3, it is highly beneficial in online
optimization to use stochastic information and to evaluate many scenarios at
a time t in order to select a good packet to schedule. However, due to severe
time constraints, only a few optimizations can be executed and the regret al-
gorithm uses the sub-optimality approximation algorithm to estimate the value
of scheduling all packets on all scenarios for the cost of one optimization. As a
consequence, the sub-optimality approximation problem is given a set of request
R and an optimal solution σ∗ for scheduling these requests in the time horizon
[t, H ]. For each request r ∈ R available at time t, it must approximate the op-
timal schedule σr that schedules request r at time t, i.e., σr(t) = r. The results
also generalize to arbitrary times in H .

The packet scheduling problem is an interesting case study because its offline
algorithm takes quadratic time and hence an amortized sub-optimality approx-
imation must approximate |R| schedules within the same time bounds.

The Amortized Sub-optimality Approximation. The sub-optimality approxima-
tion consists of swapping a constant number of requests in the optimal schedule
σ∗ at a time t and performs a case analysis on the properties of the request r.

If a request r is not scheduled (i.e., r /∈ σ∗), the key idea is to try rescheduling
the request σ∗(t) instead of the request of smallest weight in the schedule σ∗.
The value of the sub-optimality approximation becomes

W (σ∗)−min(s ∈ [t, a(σ∗(t)) + d]) w(σ∗(s))− w(r),

since the replaced request is removed from σ∗ and r is added to the schedule. In
the worst case, the replaced request is σ∗(t) and the approximation is W (σ∗)−
(w(σ∗(t))− w(r)).

If request r is scheduled at time tr, the sub-optimality approximation first
tries to swap r and σ∗(t) in which case the approximation is W (σ∗). If this is
not possible, the approximation tries rescheduling σ∗(t) instead of the request of
smallest weight in σ∗. If σ∗(t) cannot be rescheduled, the approximation simply
selects the best possible unscheduled request which may be scheduled at tr and
the approximation is

W (σ∗)− (w(σ∗(t))−max(u ∈ Ur) w(u))

where Ur = {r | a(r) ≤ tr ≤ a(r)+ d ∧ r /∈ σ∗}, If σ∗(t) is rescheduled at time
s, then the approximation concludes by selecting the best possible unscheduled
request which may be scheduled at tr and the approximation is

W (σ∗)− (w(σ∗(s))−max(u ∈ Ur,s) w(u))

where Ur,s = {r | a(r) ≤ tr ≤ a(r) + d ∧ (r /∈ σ∗ ∨ r = σ∗(s))}. Each sub-
optimality approximation takes O(d) time and is performed at most |R| times
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(typically much less than |R| since only one request of the same class must be
evaluated). Thus all the approximations take O(d|R|) time, which is O(|R||H |)
and is negligible in practice for this application. Theorem 2 shows that this
amortized algorithm produces a 2-approximation.

Theorem 2. Packet scheduling has an amortized suboptimality approximation.

Proof. Let r ∈ R be a request that can be scheduled at time t and σ∗ be an
optimal solution. let σr be an optimal solution when r is scheduled at time
t (i.e., σr(t) = r) and let σ̃r be the solution obtained by the sub-optimality
approximation. This theorem shows that w(σr)

w(σ̃r) ≤ 2. Most of the proof consists
of showing that, for each lost request x, where x is typically σ∗(t), there is
another request in σ∗ whose weight is at least w(x) yielding a 2-approximation
since w(σr) ≤ w(σ∗).

First observe that the result holds when w(x) ≤ w(r) since, in the worst case,
the sub-optimality approximation only loses request x. So attention is restricted
to w(x) ≥ w(r). If x ∈ σ̃r, i.e., if the sub-optimality approximation swaps x with
another request y (case 1), the result also holds since w(y) ≤ w(x). If x /∈ σ̃r

and x can be scheduled at a time other than t, it means that there exists a
request y at each of these times satisfying w(y) ≥ w(x) and the result holds. It
thus remains to consider the case where x can only be scheduled at time t and
is thus lost in σr. If r /∈ σ∗, the sub-optimality approximation is optimal, since
otherwise r would be in the optimal schedule at a time other than t. Otherwise,
it is necessary to reason about a collection of requests. Indeed,

w(σ∗) = w(x) + w(r) + w(S),

where S = {p ∈ σ∗ | p �= x & p �= y}. It is also known that w(σ̃r) ≥
w(r) +w(S) since, in the worst case, the approximation loses request x. Finally,
w(σr) = w(r) + w(Z) where Z are the requests scheduled after time t. Since σ∗

is optimal, we have w(Z) ≤ w(r) + w(S) and the result follows. ��

Experimental Results. Figure 1 (taken from [3]) shows the significance of the
sub-optimality approximation problem for online stochastic optimization. The
plot depicts the performance of various algorithms as a function of the number of
optimizations available for each decision. It considers two oblivious algorithms:
greedy (G) which always schedules the available packet of highest weight, local
optimization (LO) which uses the result of the optimization on the known re-
quests to select the packet to schedule at time t. It also considers two stochastic
algorithms: expectation (E) which runs the optimization algorithm when each
available request is scheduled at time t in each scenario, and the regret algorithm
(R) which solves each scenario once and uses the sub-optimality approximation
to evaluate each available request. The figure also displays the optimal, a pos-
teriori, solution, i.e., the solution that would be obtained if all requests had
been known in advance. As can be seen from this plot, the regret algorithm pro-
vides great benefits over all the other algorithms. In particular, it significantly
outperforms E when few optimizations are available for decision making.
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Fig. 1. Regret on Packet Scheduling

6 The k-Median Problem

The Optimization Problem. This section studies k-median problems and presents
an amortized sub-optimality approximation performing a single local move. A
k-median problem receives, as inputs, a set F of facilities, a set of customers S,
a function ca,b specifying the connection costs between a and b (a, b ∈ F ∪ S),
and an integer k. The goal is to find a subset A (A ⊆ F ) of cardinality k to
minimize the objective function

WA(S) =
∑
s∈S

min
a∈A

cs,a.

The Sub-optimality Approximation Problem. The computational complexity in
the k-median problem consists of choosing which k facilities to open. Once the
facilities are open, it suffices to assign the customers to the cheapest facility. As
a consequence, the decision are whether to open or close a warehouse and the
sub-optimality approximation problem consists of approximating the optimal
solution whenever a facility is forced to be open or forced to be closed. This
section considers metric k-median problems, i.e., k-median problems where the
costs are taken from a metric space. The k-median problem has applications
in networking where servers or specialized routers may be modeled as facilities.
When a server fails (closing a facility), it is important to choose a replacing router
quickly. Similarly, in order to contain failure propagation, it may be important
to start a server (opening a facility) at some node. The amortized sub-optimality
algorithm presented here handles these two cases very quickly. The Internet is
typically not a metric space. However, recent research [10] has shown that it can
conveniently be embedded in a metric space.

The Sub-optimality Approximation Algorithm. The sub-optimality approxima-
tion algorithm consists of performing the best swap of the considered facility.
In other words, when a facility x must be closed (resp. open), the algorithm
opens (resp. closes) the warehouse y that increases the cost the least. We now
show that this local move is a constant approximation by showing a constant
approximation for some swaps.
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Proposition 1. [Closing] Let A be an optimal solution to a metric k-median
problem and B be an optimal solution when facility x is closed. There exists a
facility y �= x such that B̃ = A \ {x} ∪ {y} is a 5-approximation of B.

Proof. Denote by Sx the set of customers assigned to x in A. Define a circle C
centered at x of radius r and define Inner as the set of customers in Sx lying
inside C, Outer as the set of customers in Sx lying outside C and Other the
remaining customers S \ Sx. Moreover, choose r such |Inner| = |Outer|. We
analyze the cost of the solution B̃ that opens the facility y nearest to x and
assigns all customers in Sx to y.

First consider the case where y lies in C (see Figure 2). For each customer
s ∈ Outer , we have by the triangular inequality

cs,y ≤ cs,x + cx,y ≤ cs,x + r ≤ 2cs,x

and it follows that WB̃(Outer) ≤ 2WA(Outer). For each customer s ∈ Inner , we
have by the triangular inequality

cs,y ≤ cs,x + cx,y ≤ cs,x + r.

Since r×|Outer| ≤WA(Outer) and |Inner | = |Outer | it follows that WB̃(Inner)
≤WA(Inner) + WA(Outer). Hence

WB̃(S) = WB̃(Other) + WB̃(Inner) + WB̃(Outer)
≤WA(Other) + WA(Inner) + 3WA(Outer) ≤ 3WA(S) ≤ 3WB(S).

Consider now the case in which y is outside C and assume that y at a distance
r+d of x (Figure 3). Consider a customer s ∈ Inner . By the triangular inequality,
cs,y ≤ cs,x + (r + d) and thus

WB̃(Inner) ≤WA(Inner) + (r + d)× |Inner |

Since r × |Outer | ≤ WA(Outer) and |Inner | = |Outer |, it follows that r ×
|Inner | ≤ WA(Outer). By definition of y, each Inner customer must pay at
least d to get to a facility in the optimal solution in which x is closed. Hence d×
|Inner | ≤WB(Inner) and WB̃(Inner) ≤WA(Inner)+WA(Outer)+WB(Inner).
Consider now a customer s ∈ Outer . By the triangular inequality, cs,y ≤ cs,x +
(r + d) giving

WB̃(Outer) ≤WA(Outer) + (r + d)× |Outer |.
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Fig. 3. Closing a Facility: Facility y is Outside the Circle

Once again, r × |Outer | ≤ WA(Outer) and d × |Outer | ≤ WB(Inner), since
|Inner | = |Outer |. It follows that

WB̃(Outer) ≤WA(Outer) + WA(Outer) + WB(Inner).

Hence WB̃(S) ≤WA(Other) + 3WA(Outer) + 2WB(Inner) + WA(Inner) and

WB̃(S) ≤ 3WA(S) + 2WB(S) (1)

and, by optimality of A, it follows that WB̃(S) ≤ 5WB(S). ��

We now consider the case where a facility x is forced to be open. The following
proposition indicates that swapping x in the optimal solution provides a constant
approximation. The proof adapts some of the proof techniques from online k-
median algorithms (Fact 1 in [9]).

Proposition 2. [Opening] Let A be an optimal solution to a metric k-median
problem and let B be the optimal solution where facility x must be open. There
exists a facility y �= x such that B̃ = A \ {y} ∪ {x} satisfies WB̃(S) ≤ 3WB(S).

Proof. Let B = B′∪{x}. Define A′ as the set of facilities obtained by considering
each facility w in B′ and selecting its nearest facility in A and define B̃ as A′∪{x}.
The proof shows that WB̃(S) ≤ 3WB(S). Since |B′| = k − 1, |A′| ≤ k − 1 and
B̃ can be viewed as swapping x with one of the non-selected facility y of A and
the results follows.

To bound the cost of B̃, partition S into Sx and So, where Sx are all the
customers allocated to facility x in B. The bound on B̃ is obtained by assigning
all the customers in Sx are assigned to x. Consider now a customer s ∈ So and
let a be its closest facility in A, b is closest facility in B, and let b′ be the facility
in A′ nearest to b. The bound on B̃ is obtained by assigning s to b′, giving the
inequality (see Figure 4)

cs,b′ ≤ cs,b + cb,b′ by the triangular inequality
≤ cs,b + cb,a since cb,b′ ≤ cb,a

≤ cs,b + cb,s + cs,a by the triangular inequality
≤ 2cs,b + cs,a
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Fig. 4. Opening a Facility: Customer s is Assigned to b′

Summing on all vertices in So, we obtain WB̃(So) ≤ 2WB(So)+WA(So). By the
allocation of Sx, we obtain

WB̃(S) ≤ 2WB(S) + WA(S) (2)

and, by optimality of A, it follows that WB̃(S) ≤ 3WB(S). ��

Theorem 3. Amortized Sub-optimality for the Metric k-Medians. The
metric k-median problem has an amortized sub-optimality approximation algo-
rithm that runs in time O(|S| log |F |).

Proof. Propositions 1 and 2 show that a single swap to open or close the consid-
ered facility x produces a 5-approximation of the optimal solution in the worst
case. The best swap to open or close x is thus a constant approximation and it
can be computed in O(|S| log |F |) using the data structures of [14]. ��

The result continues to hold even when only an α-approximation of the k-median
is available to the sub-optimality approximation algorithm. Indeed, the propo-
sitions only rely on the optimality of A in the last steps of their proofs (after
Equations 1 and 2) and the same proof technique as in Theorem 1 can be used.
Such α-approximations can be obtained by local search for instance [1]. The al-
gorithm is amortized since it consists of a single swap and it is strongly amortized
if one assumes that a local search performs at least |F | swaps.

Theorem 4. Amortized Sub-optimality for the Metric k-Medians. The
metric k-median problem has an amortized sub-optimality (α, β)-approximation
algorithm that runs in time O(|S| log |F |).

The k-median is closely related to (uncapacitated and capacitated) facility loca-
tion problems. The results described here apply directly to uncapacitated facility
location with uniform fixed costs. It would be interesting to study whether they
also apply when the costs are not uniform.

7 Hardness/Easiness of Sub-optimality Approximations

In general, the availability of an optimal solution σ∗ is a significant advantage
for sub-optimality approximation algorithms. In fact, some difficult problems
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become trivial when σ∗ is available. Consider, for instance, the graph-coloring
problem which consists of finding the chromatic number of a graph. No constant
factor approximation for graph coloring likely exists (unless P = NP ) [13], yet
the suboptimality problem can be solved exactly in polynomial time.

Lemma 1. The sub-optimality problem can be solved exactly in polynomial time
for graph coloring.

Proof. Let O be a graph-coloring problem with optimal solution σ∗ and let cx

be the color of x in σ∗. The suboptimality problem O[x ← c] can be solved
optimally by swapping the colors cx and c in σ∗. ��

Some polynomial algorithms also enjoy simple sub-optimality approximation
algorithms. Consider the problem of finding the shortest path from a source to
a sink and the sub-optimality problem that consists of studying the choice of
various successors to the source. This problem arises in online stochastic planning
and can be solved (optimally) by two shortest paths: one from the source to the
sink and one from the sink to the source (reverting all arcs).

One may thus think that suboptimality approximations are inherently sim-
pler than the original problems. This is not case unfortunately: there are prob-
lems for which suboptimality approximation is as hard as the problem itself.
One such problem is maximum satisfiability (MAX-SAT): given a CNF formula
φ, find a truth assignment that satisfies the maximum number of clauses.

Lemma 2. Suboptimality of MAX-SAT is as hard as MAX-SAT.

Proof. Assume that there exists a polynomial-time (exact or approximate) sub-
optimality algorithm A for MAX-SAT. We can construct an algorithm A′ that
solves MAX-SAT (exactly or approximately) as follows. Given a CNF folmula
φ = (C1 ∧ . . . ∧ Ck) where each Ci is a clause, A′ constructs a formula φ =
(C′

1 ∧ . . . ∧C′
k), where C′

i = (Ci ∨ x) (1 ≤ i ≤ k) and x is a brand new variable.
Obviously, any truth assugnment in which x is true is an optimal solution. A′

now calls A on the formula φ′, variable x, and any such optimal assignment.
Since A′ returns the optimal solution for the case in which x is assigned false,
A′ returns an optimal solution for the original formula φ. ��

The above proof uses the following scheme: It transforms the input by a small
change into an instance for which computing an optimal solution is trivial. Then,
the modified input with its optimum is given to a suboptimality algorithm, which
faces the original problem. The method can also be applied to minimization
problems. For example, an instance of minimum hitting set can be transformed
by selecting an item e which does not appear in any set, and adding it to each of
the sets. Now, the set {e} is an optimal solution. A suboptimality algorithm can
then be asked to compute (or approximate) the optimum when e is forbidden
from belonging to the hitting set. Clearly, the solution solves (or approximates)
the original minimum hitting set instance.
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8 Conclusion

This paper introduced the sub-optimality approximation problem and the con-
cept of amortized sub-optimality approximation algorithms, and discussed its
applications to online stochastic optimization, solution repair, and approximate
filtering of optimization constraints. The paper also presented amortized sub-
optimality (α, β)-approximations for metric TSP, packet scheduling, and metric
k-median problems, as well as some hardness (and easiness) results on the sub-
optimality approximation problems. There are many avenues of further research.
Paramount among them is the need to understand the nature of problems that
admit (amortized) sub-optimality approximations.

Acknowledgments. Special thanks to Claire Kenyon and Neal Young for suggest-
ing the proof of Proposition 2.
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A Linear-Logic Semantics for Constraint
Handling Rules

Hariolf Betz and Thom Frühwirth

Faculty of Computer Science, University of Ulm, Germany

Abstract. One of the attractive features of the Constraint Handling
Rules (CHR) programming language is its declarative semantics where
rules are read as formulae in first-order predicate logic. However, the
more CHR is used as a general-purpose programming language, the
more the limitations of that kind of declarative semantics in modelling
change become apparent. We propose an alternative declarative seman-
tics based on (intuitionistic) linear logic, establishing strong theorems on
both soundness and completeness of the new declarative semantics w.r.t.
operational semantics.

1 Introduction

Constraint Handling Rules (CHR) is a concurrent committed-choice constraint
logic programming language, which was developed in the 1990s as an enhance-
ment to the constraint programming paradigm. Its aim was to add flexibil-
ity and customizability to constraint programming by allowing for user-defined
constraint-handlers. This is achieved by implementation of the eponymic con-
straint handling rules, which define the rewriting and transformation of conjunc-
tions of atomic formulae.

However, over time CHR has proven useful for many tasks outside its original
field of application in constraint reasoning and computational logic, be it agent
programming, multi-set rewriting or production rules.

Owing to the tradition of logic and constraint logic programming, CHR fea-
tures – besides a well-defined operational semantics, of course – a declarative
semantics, i.e. a direct translation of a CHR program into a first-order logical
formula. In the case of constraint handlers, this is a useful tool, since it strongly
facilitates proofs of a program’s faithful handling of constraints.

The classical-logic declarative semantics, however, poses a problem, when
applied to non-traditional uses of CHR, i.e. CHR programs that use CHR as
a general-purpose concurrent programming language. Many implemented algo-
rithms do not have a first-order classical logical reading, especially when these
algorithms are deliberately non-confluent1. This may lead to logical readings
which are inconsistent with the intended meaning. This problem has recently
been demonstrated in [9] and constitutes the motivation for our development of
an alternative declarative semantics.
1 Meaning that different rule applications may lead to different final results.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 137–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Example 1. For an example of an inconsistent classical reading, consider the
following coin-throw simulator.

throw(Coin) ⇔ Coin = head (r1)
throw(Coin) ⇔ Coin = tail (r2)

The program handles the constraint throw(Coin) by committing to one of the
rules, thereby equating either head or tail with the variable Coin. (This requires
a fair selection strategy.)

Its classical declarative semantics is:

(throw(Coin)↔ Coin = head) ∧ (throw(Coin)↔ Coin = tail)

From this we would conclude (Coin = head)↔ (Coin = tail) and therefore
head = tail. In natural language: Both sides of our coin are equal.

Obviously, this statement is not consistent with the intuitive idea of a coin
throw. What our program describes is an algorithm, respectively a course of
action. The logical reading misinterprets it as a description of stable facts. This
shows the basic incompatibility between the classical declarative semantics and
non-traditional CHR programs. (Non-traditional in the sense that it is not only a
constraint handler.) First-order logic can in general not handle updates, change,
dynamics without resorting to auxiliary constructions like adding time-stamps
to predicates.

With the linear-logic declarative semantics as we will propose in Sect. 4 we
get the following logical reading:

! (throw(Coin) � (Coin = head)&(Coin = tail))

Informally speaking, the above expression of linear logic says that we can
replace throw(Coin) with either (Coin = head) or (Coin = tail) but not both,
i.e. a committed choice takes place.

Ever since its introduction in 1987, linear logic has inspired uses as a means to
logically formalize computational structures and dynamics. Several programming
languages have been designed from scratch for the purpose of making linear logic
executable. E.g. the programming language Linear Objects (LO) [3] extends
Horn logic by an “additive” conjunction (as occurs in linear logic) to model
structured processes. A more formal approach is taken with Lygon [11]. Lygon
is based on a systematic proof-theoretic analysis of linear logic, which results in
a large segment of linear logic to be covered.

As we will see, there are remarkable similarities between linear logic and the
operational semantics of Constraint Handling Rules, which make a linear-logic
declarative semantics of CHR a promising approach. Furthermore, intuitionistic
logic can be embedded into (intuitionistic) linear logic, which will be an indis-
pensable feature in our semantics. Our approach is somewhat similar to the ones
taken in [7] and [5] in that we will define a linear-logic semantics for an existing
programming paradigm.
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This paper is structured as follows: Section 2 will give a short introduction
to the segment of intuitionistic linear logic. In Sect. 3, constraint handling rules
will be presented with a particular focus on declarative semantics. It will become
clear what the limitations to the classical declarative semantics are, which we
hope to overcome by using linear logic. Section 4 will introduce our linear-logic
semantics for CHR, explain its benefits and present strong theorems concerning
soundness and completeness of the linear-logic declarative semantics w.r.t. op-
erational semantics. In Sect. 5 we will give an example for the application of our
proposed semantics. A conclusion will be given in Sect. 6.

2 Intuitionistic Linear Logic

Intuitionistic linear logic (ILL) is a subset of linear logic [6,10,12,14] which is
constituted by the symbols ⊗, &, ⊕, � and ! as well as the constants 1, ! and
0. In the following a short explanation of its symbols will be given.

2.1 Connectives

Let us take a look at an easy example first:

A � B

The above formula is an example for linear implication. It is pronounced “con-
suming A yields B”. Since the idea of “consuming” logical truth (in the classical
sense) somewhat stresses the imagination, linear logic is generally considered as
dealing with resources rather than with propositions.

The meaning represented by the symbol ⊗ (“times”) is reasonably close to
the intuitive grasp we usually have of the classical conjunction ∧. Which is, that
both formulas connected hold at the same time. Consequently, the expression
A⊗B is pronounced “both A and B”.

Note that an implication of the form A � B allows us to consume-produce
exactly once, in the process of which the implication itself is used up. E.g. in
classical first-order logic the following holds:

A ∧ (A→ B) " B ∧ (A→ B)

On the contrary, the following is not true:

A⊗ (A � B) " B ⊗ (A � B)

The following conclusion is correct:

A⊗ (A � B) " B

The connective & (“with”) represents an option of (internal) choice. The
formula A&B is pronounced “choose from either A or B and allows us to infer
either A or B (but not both, which would be A⊗B).
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Similar to the with conjunction, the connective ⊕ “plus” also denotes an
alternative. However, the choice is external, i.e. if the formula A⊕B holds, then
either A or B will hold (but not both!), although it is not stated which one. The
formula A⊕B is consequently pronounced “either A or B”.

We mentioned before that linear logic is considered as discussing resources
rather than stable facts. Nevertheless, it is extremely useful if not indispensable
to have an option for stable truth (in the classical sense) to interact with variable
truth (i.e. resources). This is provided for by the ! (“bang”) symbol.

In linear logic, the bang marks either a stable truth or an abounding resource
that – within the boundaries of the model – cannot get used up (which essen-
tially boils down to the same thing). A typical application for the bang is in
implications that can be applied an unlimited number of times. It is thus correct
to conclude the following:

A⊗!(A � B) " B⊗!(A � B)

There are three ways to actualize a banged resource’s potential, namely weak-
ening, contraction and dereliction [10].

Dereliction designates the possibility to use a banged resource just like an
un-banged instance.

"!A � A (dereliction)

Contraction denotes the fact, that we may duplicate any banged resource,
time and again, to potential infinity.

"!A �!A⊗!A (contraction)

Weakening is the property of a banged resource that – just like a classical
proposition – it needs not be used at all and may just be omitted.

"!A � 1 (weakening)

Furthermore, the following equivalence holds:

!(A&B) #" (!A⊗!B)

2.2 Constants and Quantification

We will furthermore consider two constants: 0 (zero) and ! (top). The constant
! represents the goal in favor of which every resource can be consumed. As for
an intuition, we may think of it as a trash can.

As for the 0: In classical logic, there is the principle “ex falso, quod libet, i.e.
from a proposition that equals false, we can deduce any other proposition. This
aspect of falsity is represented by 0, which by definition yields every resource.
In this sense, 0 represents impossibility.

Just like classical logic, linear predicate logic offers the quantifiers ∀ and ∃.
Since we cannot directly convey the classical concept of truth to linear logic, we
will use the term provability instead. The proposition ∃xQ(x) is provable if there
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is a term t for which [t/x]Q(x) is provable. The proposition ∀xQ(x) is provable,
if [a/x]Q(x) is provable for a new parameter a about which we can make no
assumption. For convenience, we can define x to range over a domain D.

The following equations hold:

∀xQ(x) ≡&
x∈D

Q(x)

∃xQ(x) ≡
⊕
x∈D

Q(x)

2.3 Girard Translation

Among the key features of intuitionistic linear logic is the possibility to faith-
fully translate (classical) intuitionistic logic into intuitionistic linear logic while
preserving the full power of the former. Fig. 1 presents one of several possible
translations, called Girard Translation [10], in the notation of [12].

(A ∧B)+ ::= A+&B+

(A → B)+ ::= (!A+) � B+

(A ∨B)+ ::= (!A+)⊕ (!B+)
(�)+ ::= �
(⊥)+ ::= 0

(¬A)+ ::= !A+ � 0
(∀x.A)+ ::= ∀x.(A+)
(∃x.A)+ ::= ∃x.!(A+)

Fig. 1. Translation + from intuitionistic logic into linear logic

3 CHR

CHR is a concurrent committed-choice constraint programming language, devel-
oped in the 1990s for the implementation of constraint solvers. It is traditionally
used as an extension to other programming languages – especially constraint
logic programming languages – but has been used increasingly as a general-
purpose programming language in the recent past. In this section we will give an
overview of its syntax and operational semantics as well as its classical declara-
tive semantics [1,8,2].

3.1 CHR Syntax

Constraints are predicates of first-order logic. In CHR, there are two notably
different types of constraints, which we will refer to as built-in constraints and
CHR constraints. CHR constraints, will be handled by a CHR program whereas
built-in constraint are predefined in the CHR implementation.
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Definition 1. An atomic built-in constraint is an expression of the form c(t1,
...,tn), where c is an n-ary constraint symbol and t1,...,tn are terms. A built-
in constraint is either an atomic built-in constraint or a conjunction of built-in
constraints.

A CHR constraint is a non-empty multiset, the elements of which have the
form e(t1,...,tn), where e is an n-ary constraint symbol and t1,...,tn are terms.
A CHR constraint is called atomic if it has exactly one element.

Note that the syntactic equality constraint = as well as the propositions true
and false are built-in by definition.

Definition 2. A goal is either {!} (top), {⊥} (bottom), an expression of the
form {C} – where C is an atomic built-in constraint –, a CHR constraint or a
multi-set union of goals.

Apart from definitions, we leave away the curly brackets from both CHR
constraints and goals.

A CHR program consists of a set of rules, determining the transformation
of constraints. These rules are the constraint handling rules, i.e. the CHR, of
which we distinguish two types: Simplify and Propagate . A Simplify rule
determines the replacement of a CHR constraint, usually a subset of a larger
goal, with a multiset of simpler constraints whereas a Propagate rule augments
an existing goal by one or several elements (which hopefully leads to further
simplification later on).

Definition 3. A simplification rule is of the form H ⇔ G|B. A propagation
rule is of the form H ⇒ G|B, where the head H is a CHR constraint, the guard
G is a built-in constraint and the body B is a goal.

A CHR program is a finite set of rules.

3.2 CHR Operational Semantics

Note that the operational semantics defined here is not necessarily identical to
the behavior of an actual implementation.

Definition 4. A state is a pair 〈G; C〉, where G is a goal and C is a built-in
constraint.

Of the two components, only the goal store G is directly accessible by CHR,
i.e. only elements stored here will be transformed by constraint handling rules.
The built-in constraint store C is not directly accessible, i.e. CHR can add (built-
in) constraints to the store, but cannot manipulate or remove its elements.

Definition 5. The constraint theory CT is a non-empty, consistent first-order
theory over the built-in constraints, including syntactic equality =, as well as the
propostions true and false.

The constraint theory CT is implicitly realized by the predefined constraint
handlers.
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At runtime, a CHR program is provided with an initial state and will be
executed until either no more rules are applicable or a contradiction occurs in
the constraint store (which will result in the constraint store equaling false).

Definition 6. An initial state is of the form 〈G; true〉. A failed final state is of
the form 〈G; false〉. A state is called a successful final state if it is of the form
〈E; C〉 with no transition applicable.

Initial states are distinguished from states that appear in a derivation, since
declarative semantics will assign a different logical reading to either type of state.

Definition 7. A derived state is a state Sa which appears in a derivation from
an initial state S0. The variables x̄a that appear in Sa but not in S0 are called
local variables of Sa.

The transition rules in Fig. 2 describe the transition relation. Note that we
omit the Solve transition here since it is irrelevant to our cause.

Simplify
If (F ⇔ D|H) is a fresh variant of a rule in P with variables x̄
and CT |= ∀(C → ∃x̄(F = E ∧D))
then 〈E ∪G; C〉 �→ 〈H ∪G; (F = E) ∧D ∧ C〉
Propagate
If (F ⇒ D|H) is a fresh variant of a rule in P with variables x̄
and CT |= ∀(C → ∃x̄(F = E ∧D))
then 〈E ∪G; C〉 �→ 〈E ∪H ∪G; (F = E) ∧D ∧ C〉

Fig. 2. CHR transition rules

The sequence x̄ represents the variables in (F ⇔ D|H). We require always
a fresh variant of a rule (F ⇔ D|H), i.e. that all variables are given unique
new names. The CHR rule’s head F must be matched (pairwise) with CHR
constraints E from the goal store. The constraints in C and D as well as = are
built-in constraints and thus are handled according to the constraint theory CT.
On application of the rule, the constraint store is augmented by the matching
(F = E) as well as the guard D.

3.3 The (Classical) Declarative Semantics of CHR

Figure 3 defines the first-order-logic declarative semantics of CHR. In the trans-
formations of CHR rules, ȳ represents the variables that only appear in the
body G of the rule. While these variables are existentially quantified, all other
variables become universally quantified.

3.4 Soundness and Completeness

The first-order-logic semantics given in Fig. 3 maps every CHR program P to a
set of logical formulae P ′ which form a mathematical theory. The following the-
orems will show that the operational and this declarative semantics are strongly
related.
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Built-in constraints: C′ ::= C
CHR constraints: {e(t1, ..., tn)}′ ::= e(t1, ..., tn)

(E ∪ F )′ ::= E′ ∧ F ′

Goals: {�}′ ::= �
{⊥}′ ::= ⊥
{c(t1, ..., tn)}′ ::= c(t1, ..., tn)
(G ∪H)′ ::= G′ ∧H ′

Initial states: 〈G; true〉′ ::= G′

Derived states: 〈G; C〉′ ::= ∃x̄a(G′ ∧ C′)
Simplify rules: (E ⇔ C | G)′ ::= ∀(C → (E ↔ ∃ȳG))
Propagate rules: (E ⇒ C | G)′ ::= ∀(C → (E → ∃ȳG))
Programs: (R1...Rm)′ ::= R′

1 ∧ ... ∧R′
m

Fig. 3. Classical-logic declarative semantics P ′ of a program P

Definition 8. A computable constraint of a state S0 is the logical reading S′
a of

a derived state of S0. An answer (constraint) of a state S0 is the logical reading
S′

n of a final state of a derivation from S0.

The following theorems are proved in [2]:

Theorem 1. (Soundness). Let P be a CHR program and S0 be an initial state.
If S0 has a derivation with answer constraint S′

n, then P ′ ∪ CT |= ∀(S′
0 ↔ S′

n).

Theorem 2. (Completeness). Let P be a CHR program and S0 be an initial
state with at least one finite derivation. If P ′ ∪ CT |= ∀(S′

0 ↔ S′
n), then S0 has

a derivation with answer constraint S′
ν such that P ′ ∪ CT |= ∀(S′

ν ↔ S′
n).

4 A Linear-Logic Semantics for CHR

CHR is a powerful and flexible tool for writing not only constraint handlers
but also general-purpose concurrent programs. As far as constraint handlers are
concerned, there is a useful and consistent declarative semantics. However, when
used as a general-purpose programming language and program rules go beyond
a mere representation of a mathematical theory, programs tend to produce in-
consistent logical readings as has been examined e.g. in [2].

In this section we will discuss the limitations of the classical declarative
semantics. Then we will propose a declarative semantics for CHR which is based
on intuitionistic linear logic and we will show it can provide a consistent logical
reading for non-traditional CHR programs. We will also state two theorems
proving the soundness and completeness of our approach.

4.1 Limitations of the Classical Declarative Semantics

In Sect. 1 we already gave an example for a CHR program with an inconsistent
logical reading with respect to the classical declarative semantics. Below another
such program is given to further illustrate the matter.
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Example 2. The program given below applies the Sieve of Eratosthenes to an
interval of cardinal numbers in order to “sieve out the prime numbers from that
interval.

candidate(N) ⇔ N>1 | M is N-1, prime(N), candidate(M) (r1)
candidate(1) ⇔ true (r2)
prime(M), prime(N) ⇔ M mod N =:= 0 | prime(N) (r3)

The program implements two constraints: candidate and prime. The
candidate constraint is to create the set of numbers on which to work, rep-
resented as individual constraints. The actual sieving is perfomed by the prime
constraint. The program is executed with the goal candidate(N) in the initial
state, where N is the upper limit of the interval on which to work.

Consider the declarative semantics of the constraint prime:

∀(M mod N = 0→ (prime(M) ∧ prime(N)↔ prime(N))

What this logical expression actually says is that “a number is prime, if
it is a multiple of another prime number (sic!). The problem is that the prime
constraint does not consist of only static information. Its input is an initial range
of cardinal numbers representing candidates for primes. Only upon completion
of the calculation they do represent the actual primes. Predicate logic has no
straightforward means to express this dynamics.

4.2 An Intuitionistic Linear-Logic Semantics

The obvious similarity between linear implication and CHR constraint substi-
tution as well as the possible representation of multiplicities and embedding of
intuitionistic logic make linear logic a likely candidate for providing a suitable
declarative semantics.

In this section we introduce an intuitionistic linear logic (cf. Sect. 2.3) seman-
tics of CHR. Figure 4 shows the proposed semantics. It adheres to some extent
to the classical declarative semantics. The main differences are the interpreta-
tion of CHR constraints as linear resources (and that of built-in constraints as
embedded intuitionistic propositions), as well as the distinctly different logical
reading of CHR rules as expressing linear implementation rather than logical
equivalence.

We assume that built-in constraints are propositions of intuitionistic logic,
translated according to Girard Translation as introduced in Sect. 2.3. States are
handled much the same as in classical declarative semantics: The logical reading
of an initial state is again the logical reading of the goal. The logical reading of a
derived state Sa is again a conjunction, now a ⊗ conjunction, of its components’
readings with its local variables existentially quantified.

A Simplify rule (E ⇔ C | G) maps to !∀
(
(!CL) �

(
EL � EL ⊗ ∃ȳGL

))
,

where ȳ represents the variables that only appear in the body G of the rule. As
before, the fulfillment of the guard is a premise. Instead of equivalence between
head and body, however, it implies now that consuming the head produces the
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Built-in constraints: c(t1, ..., tn)L ::= !c(t1, ..., tn)
(C ∧D)L ::= C ⊗D

CHR constraints: {e(t1, ..., tn)}L ::= e(t1, ..., tn)
(E ∪ F )L ::= EL ⊗ F L

Goals: {�}L ::= �
{⊥}L ::= 0
{c(t1, ..., tn)}L ::= c(t1, ..., tn)
(G ∪H)L ::= GL ⊗HL

Initial states: SL
0 = 〈G; true〉L ::= GL

Derived states: SL
a = 〈G; C〉L ::= ∃x̄a(GL ⊗ CL)

Simplify rules: (E ⇔ C | G)L ::= !∀ ((!CL) �
(
EL � ∃ȳGL

))
Propagate rules: (E ⇒ C | G)L ::= !∀ ((!CL) �

(
EL � EL ⊗ ∃ȳGL

))
Programs: (R1...Rm)L ::= RL

1 ⊗ ...⊗RL
m

Fig. 4. Linear-logic declarative semantics P L of a program P

body. Note that the formula is banged, since it is to be used not only once, of
course. A Propagate rule follows the same pattern. The only difference is that
here, consuming the head produces the head and the body.

Example 3. We will take another look at Example 2 and see how its declarative
semantics benefits from the linear-logic approach. This is what the ILL reading
looks like (for the constraint “prime).

!∀ ((M mod N =:= 0) � (prime(M)⊗ prime(N) � prime(N)))

As we can see, this reading is no longer inconsistent with the mathematical
understanding of prime numbers. It is indeed rather a suitable ILL representa-
tion of the program’s workings.

Example 4. The improvement regarding the coin-throw example mentioned in
Sect. 1 is quite alike. The ILL reading for that program is:

throw(Coin) � Coin = head
throw(Coin) � Coin = tail

This is logically equivalent to the following:

! (throw(Coin) � (Coin = head)&(Coin = tail))

The above reads as: Of course, consuming Throw(Coin) produces: Choose
from (Coin = head) and (Coin = tail). Thus, our logical reading implies internal,
committed choice.

4.3 Soundness and Completeness

Concerning soundness, our approach is analogous to that one used in the classical
framework, (cf. Sect. 3.4) relying basically on Lemma 1 which proves that all
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computable constraints of a state S0 are linearly implied by the initial state’s
logical reading.

The constraint theory CT, which we require to be of intuitionistic logic, is
translated according to the Girard Translation (cf. Sect. 2.3).

Lemma 1. Let P be a program, PL its linear-logic reading, S0 be a state. If Sn

is a computable constraint of S0 then:

PL, !CT+ |= ∀(SL
0 � SL

n )

From this lemma, Theorem 3 follows directly.

Theorem 3. (Soundness). Let P be a CHR program and S0 be an initial
state. If S0 has a derivation with answer SL

n , then PL, !CT+ |= ∀(SL
0 � SL

n ).

We also have a surprisingly strong completeness theorem.

Theorem 4. (Completeness). If S0 and Sn are states, such that PL, !CT+ "
SL

0 � SL
n then S0 has a derivable constraint Sν such that !CT+ " SL

ν � SL
n .

The complete proofs for both theorems can be found in [4]. Whereas the
proofs for Lemma 1 and Theorem 3 parallel the respective proofs in the classical-
logic case, the proof for Theorem 4 follows a unique approach, which is sketched
below.

Proof Sketch. The proof of Theorem 4 consists of three parts [4].

The first part establishes a series of lemmas in order to transform the ex-
pression PL, !CT+ " SL

0 � SL
n into an equivalent form that is easier to work

with. This transformation involves bringing the formula SL
0 to the precondition

side, stripping the expression of bang symbols and finally removing quantifiers.
The most difficult task is the removal of the bang symbols. We consider a cut-
free proof of the original expression. We can show by structural induction that
for at least one bang-free version of that expression a (cut-free) proof must exist.

At the end of the first part, we have transformed our expression PL, !CT+ "
SL

0 � SL
n into the equivalent form PL, !CT+, SL

0 " SL
n , where the horizontal bar

marks the removal of all bangs and quantifiers 2 . Since there are no more bangs,
all rules in PL and !CT+ appear in certain multiplicities, according to how often
each rule is applied.

In the second part we force the transformed expression to act similar to
a CHR program, i.e. we prove by structural induction that there must be at
least one implication in either PL or !CT+ of the form (A � B) where A is a
conjunction of atoms that is contained in SL

0 , so the implication can be applied
to SL

0 . Assuming that (A � B) is in PL, this models the application of a CHR
rule on the constraint store. Otherwise it corresponds to a rule of the constraint
theory CT. By repeated application of the above reasoning we can force the
application of all implications in PL.

2 As !(A&B) �� (!A⊗!B), the expression !CT+ is not equivalent to CT+.



148 H. Betz and T. Frühwirth

Having shown this, we are already quite close to our goal. We can now safely
say that the logical transition from PL, !CT+, SL

0 to SL
n can be cut into smaller

steps, similar to the steps of a CHR program. Actually, the only difference is in
the built-in constraints: a CHR computation neither allows the consumption of
a built-in constraint nor the inference of a built-in constraint that is unnecessary
in that it does not lead to another CHR rule to become applicable.

This final problem is dealt with in the third part where we prove that our
logically derived expression SL

n is so close to an actually derivable constraint
SL

ν that the former can be inferred from the latter by applying the constraint
theory CT only, i.e. !CT+ " SL

ν � SL
n . This is done by a methodically simple,

yet formally tedious induction over the transition steps identified in the second
part of the proof.

5 Example: Union-Find in CHR

As CHR is increasingly being used as a general-purpose concurrent constraint
programming language, focus has shifted to the question whether it can be used
to implement classic algorithms in an efficient and elegant way. This has success-
fully been done for Tarjan’s union-find algorithm in [9]. However, in that paper it
has also been shown that this algorithm has a destructive update which cannot
adequately be modeled in classical logic. We will show here how the linear-logic
declarative semantics can provide a solution.

5.1 The Union-Find Algorithm in CHR

The original union-find algorithm was introduced by Tarjan in [13]. It serves to
maintain collections of disjoint sets where each set is represented by an unam-
biguous representative element. The structure has to support the three opera-
tions:

– make(X): create a new set with the single element X.
– find(X): return the representative of the set in which X is contained
– union(X,Y): join the two sets that contain X and Y, respectively (possibly

destroying the old sets and changing the representative).

In the basic algorithm discussed here the sets are represented by rooted trees,
where the roots are the respective representative elements. Trees are represented
by the constraints A ~> B and root(A). The three operations are implemented
as follows.

– make(X): generate a new tree with the only node X.
– find(X): follow the path from node X to the root by repeatedly going to the

parent. Return the root as representative.
– union(X,Y): find the representatives of X and Y and link them by making

one root point to the other root.



A Linear-Logic Semantics for Constraint Handling Rules 149

The following CHR program implements the Union-Find Algorithm [9].

make(A) ⇔ root(A) (make)
union(A,B) ⇔ find(A,X), find(B,Y), link(X,Y) (union)

A ~> B, find(A,X) ⇔ A ~> B, find(B,X) (findNode)
root(A), find(A,X) ⇔ root(A), X=A (findRoot)

link(A,A) ⇔ true (linkEq)
link(A,B), root(A), root(B) ⇔ B ~> A, root(A) (link)

5.2 Declarative Semantics

Concerning logical correctness we will limit ourselves to the link rule because it
is here where the problem arises. The classical declarative reading for this rule
reads as follows:

link(A, B) ∧ root(A) ∧ root(B)⇔ B � A ∧ root(A)

The reading as given above establishes a supposed logical equivalence where
the node B is a root and a non-root at the same time (root(B) and B � A
hold), but actually a destructive update from a root to a non-root takes place.
The problem is in principle the same as was presented in Sect. 4: Classical logic
is able to deal with static truth only and has no capabilities to represent dynamic
processes without resorting to explicit representation of time. In contrast, the
linear-logic reading of the respective constraint reads as follows:

! (link(A, B)⊗ root(A) ⊗ root(B) � (B � A)⊗ root(A))

The above can be read as: Of course, consuming all of link(A,B), root(A)
and root(B) yields both B � A and root(A). Or less formally: On the condition
that both root(A) and root(B) hold, link(A,B) triggers the change of root(A) to
B � A. This reading directly expresses the dynamic update process which is
taking place.

This example shows how our linear-logic semantics can provide logical read-
ings for non-traditional CHR programs in cases where there is no consistent
reading with respect to the classical semantics. Thus, the process of proving
logical correctness for CHR programs is considerably simplified.

6 Conclusion

We have developed a linear-logic semantics for CHR as an alternative to the
classical declarative semantics. The new declarative semantics is based on the
segment of intuitive linear logic.

We have shown that this declarative semantics indeed overcomes the limita-
tions of the classical declarative semantics, which originally motivated this work.
The new semantics features surprisingly strong theorems on both soundness and
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completeness, thus simplifying the process of proving logical correctness of CHR
programs. Details can be found in [4]. How well this can be done in practice,
and what insights it offers, remains a topic for future work.

Since this is the first paper relating CHR to linear logic, there are numer-
ous options for further work in this field. An obvious follow-up project would
be a thorough comparison of CHR to related works such as the LCC class of
linear concurrent constraint programming languages [7], for which a linear-logic
semantics exists as well.

In the program presented in Sect. 5, a large part of the program actually does
have a consistent classical reading. In a case like this it might be more convenient
to apply our linear-logic semantics only on those parts of the program where
the classical semantics produces inconsistent results, in order to get to a more
intuitive logical reading. To this end, it is necessary to more closely inspect the
relationship between classical and linear-logic readings. Classical program parts
could be identified by a modified confluence analysis, since confluence implies
consistency of the classical-logic reading of a program [2].

Our linear-logic semantics for CHR may also shed light on executable subsets
of linear logic and the related recent separation logic. An interesting approach
would be to develop a CHR constraint handler for a larger segment of linear
logic than that which is actually used in the declarative semantics. This would
be an approach closer to the ones taken in [11] and [3].
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Abstract. We consider the Stable Marriage Problem and the Stable
Roommates Problem, two well-known types of the general class of Sta-
ble Matching Problems. They are combinatorial problems which can be
solved by centralized algorithms in polynomial time. This requires to
make public lists of preferences which agents would like to keep private.
With this aim, we define the distributed version of these problems, and
we provide a constraint-based approach that solves them keeping privacy.
We give empirical results on the proposed approach.

1 Introduction

We consider the Stable Marriage Problem and one generalization of it, the Sta-
ble Roommates Problem, two well-known types of the general class of Stable
Matching Problems. They are classical combinatorial problems, also of interest
for Economics and Operations Research. The Stable Marriage Problem consists
of finding a stable matching between n men and n women, each having his/her
own preferences on every member of the other sex. A matching is not stable if
there exist a man m and a woman w not matched with each other, such that each
of them strictly prefers the other to his/her partner in the matching. Any in-
stance of this problem has a solution, and it can be computed by the centralized
Gale-Shapley algorithm in polynomial time. The Stable Roommates Problem
consists of finding a stable matching between n persons (n even), each having
his/her own preferences on every other person. Not every instance of this prob-
lem is solvable. The solution (or the absence of it) can be found by a centralized
algorithm in polynomial time.

These problems, by their own nature, appear to be naturally distributed.
Each person may desire to act independently. For obvious reasons, each person
would like to keep private his/her own preferences. However, in the classical
case each person has to follow a rigid role, making public his/her preferences
to achieve a global solution. These problems are very suitable to be treated by
distributed techniques, trying to provide more autonomy to each person, and to
keep preferences private. This paper is a contribution to this aim.
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The structure of the paper is as follows. We summarize basic concepts of
Stable Marriage and Gale-Shapley algorithm, together with a constraint for-
mulation for this problem from [4] (Section 2). Then, we define the Distributed
Stable Marriage problem and provide means to solve it trying to enforce privacy.
Thus, we present a distributed version of the Gale-Shapley algorithm, and a dis-
tributed constraint formulation under the TCK and PKC models (Section 3).
We show how the problem can be solved using the Distributed Forward Check-
ing algorithm with the PKC model, keeping private values and constraints. We
define the Distributed Stable Roommates Problem, which differently from the
Distributed Stable Marriage Problem, it cannot be solved by the distributed ver-
sion of Gale-Shapley algorithm maintaining private preference lists (Section 4).
However, a similar constraint formulation allows us to solve it keeping privacy.
Experimental results show that, when applicable, the distributed Gale-Shapley
algorithm is more efficient than the distributed constraint formulation (Section
5), something also observed in the centralized case. However, the distributed
constraint formulation is generic and can solve both problems.

2 The Stable Marriage Problem

The Stable Marriage Problem (SM) was first studied by Gale and Shapley [2].
A SM instance consists of two finite equal-sized sets of players, called men and
women. Each man mi (1 ≤ i ≤ n, n is the number of men) ranks women in strict
order forming his preference list. Similarly, each woman wj (1 ≤ j ≤ n) ranks
men in strict order forming her preference list. An example of SM appears in
Figure 1. A matching M is just a complete one-to-one mapping between the two
sexes. The goal is to find a stable matching M . A matching M is stable if there
is no pair (m, w) of man m and a woman w satisfying the following conditions:

C1. m and w are not married in M ,
C2. m prefers w to his current partner in M ,
C3. w prefers m to her current partner in M .

If this pair (m, w) exists, M is unstable and the pair (m,w) is called a blocking
pair. For the example of Figure 1, the matching M = {(m1,w1),(m2, w2), (m3,
w3)} is not stable because the pair (m1, w2) blocks M . For that problem, there is
only one stable matching: M1 = {(m1,w2), (m2,w1), (m3,w3)}. Gale and Shapley
showed that each SM instance admits at least one stable matching [2].

m1 : w2 w3 w1 w1 : m1 m2 m3

m2 : w1 w2 w3 w2 : m1 m3 m2

m3 : w2 w1 w3 w3 : m2 m1 m3

Fig. 1. A SM instance with three men and three women. Preference lists are in de-
creasing order, the most-preferred partner is on the left.
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A relaxed version of SM occurs when some persons may declare one or more
members of the opposite sex to be unacceptable, so they do not appear in the
corresponding preference lists. This relaxed version is called the Stable Marriage
Problem with Incomplete Lists (SMI). In SMI instances, the goal is also to
find a stable matching. Like in the case of SM , SMI admits at least one stable
matching. However, some specific features of stable matchings for SMI have to
be remarked. First, condition C1 of the definition of blocking pair given above
have to be changed as follows:

C1’. m and w are not married in M , and m belongs to w’s preference
list, and w belongs to the m’s preference list.

Second, it can not be assured that all the persons can find a partner. So a
stable matching of a SMI instance needs not to be complete. However, all the
stable matchings involve the same men and women [3].

2.1 The Gale-Shapley Algorithm

Gale and Shapley showed that at least one stable matching exists for every
SM (or SMI) instance. They obtained a O(n2) solving algorithm, called the
Gale-Shapley algorithm [2]. An extended version is the Extended Gale-Shapley
algorithm (EGS). It avoids some extra steps by deleting from the preference
lists certain pairs that cannot belong to a stable matching [6]. A man-oriented
version of EGS 1 appears in Figure 2.

EGS involves a sequence of proposals from men to women. It starts by setting
all persons free (line 1). EGS iterates until all the men are engaged or, for SMI
instances, there are some free men because they have an empty preference list
(line 2). Each man always proposes marriage to his most-preferred woman (line
3). When a woman w receives a proposal from a man m, she accepts it if m is on
her preference list. Otherwise, m deletes w from his preference list (line 5) and
then a new proposal is started (line 6). When m is on w’s preference list and w
is already engaged to p she discards the previous proposal with p and p is set
free (line 8-9). Afterwards, m and w are engaged to each other (line 11). Woman
w deletes from her preference list each man p that is less preferred than m (line
13). Conversely, man p deletes w from his preference list (line 14). Finally, if
there is a free man with non-empty preference list a new proposal is started.
Otherwise, men are engaged or have empty preference lists and the algorithm
terminates.

During EGS execution, some people are deleted from preference lists. The
reduced preference lists that result of applying man-oriented Gale-Shapley algo-
rithm are called man-oriented Gale-Shapley lists or MGS-lists. On termination,
each man is engaged to the first woman in his (reduced) list, and each woman

1 For privacy requirements, that will be discussed deeper in this work, we prefer not
assuming for SMI instances, like in [6], that if man m is not acceptable for a woman
w, woman w is not acceptable for man m. For avoiding that, we have added Lines
4-7 to the original EGS.
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1. assign each person to be free;
2. while some man m is free and m has a nonempty list loop
3. w := first woman on m’s list; {m proposes to w}
4. if m is not on w’s preference list then
5. delete w from m’s preference list;
6. goto line 3
7. end if
8. if some man p is engaged to w then
9. assign p to be free;
10. end if
11. assign m and w to be engaged to each other;
12. for each successor p of m on w’s list loop
13. delete p from w’s list;
14. delete w from p’s list;
15. end loop;
16. end loop;

Fig. 2. The man-oriented Gale-Shapley algorithm for SM and SMI

to the last man in hers. These engaged pairs constitute a stable matching, and
it is called man-optimal (or woman-pessimal) stable matching since there is no
other stable matching where a man can achieve a better partner (according to
his ranking). Similarly, exchanging the role of men and women in EGS (which
means that women propose), we obtain the woman-oriented Gale-Shapley lists
or WGS-lists. On termination, each woman is engaged to the first man in her
(reduced) list, and each man to the last woman in his. These engaged pairs
constitute a stable matching, and it is called woman-optimal (or man-pessimal)
stable matching.

The intersection of MGS-lists and WGS-lists is known as the Gale-Shapley
lists (GS-lists). These lists have important properties (see Theorem 1.2.5 in [6]):

– all the stable matchings are contained in the GS-lists,
– in the man-optimal (woman-optimal), each man is partnered by the first

(last) woman on his GS-list, and each woman by the last (first) man on hers.

Figure 3 shows the GS-lists for the example given in Figure 1. For this in-
stance, the reduced lists of all persons have only one possible partner which
means that only one solution exits. In that case, the man-optimal matching and
woman-optimal matching are the same.

m1 : w2 w1 : m2

m2 : w1 w2 : m1

m3 : w3 w3 : m3

Fig. 3. GS-Lists for the SM instance of Figure 1
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2.2 Constraint Formulation

A constraint satisfaction problem (CSP ) is defined by a triple (X ,D, C), where
X = {x1, . . . , xn} is a set of n variables, D = {D(x1), . . . , D(xn)} is the set
of their respective finite domains, and C is a set of constraints specifying the
acceptable value combinations for variables. A solution to a CSP is a complete
assignment that satisfies all constraints in C. When constraints involve two vari-
ables they are called binary constraints.

The SM problem can be modeled as a binary CSP . In [4] authors propose a
constraint encoding for SM problems, that we summarize next. Each person is
representing by a variable: variables x1, x2, ..., xn represent the men (m1, m2,
..., mn) and variables y1, y2, ..., yn represent the women (w1, w2 ..., wn). PL(q)
is the set of people that belong to q’s preference list. Domains are as follows:

D(xi) = {j : wj ∈ PL(mi)} ∀i, 1 ≤ i ≤ n
D(yj) = {i : mi ∈ PL(wj)} ∀j, 1 ≤ j ≤ n

In the CSP , when variable xi takes value j, it means that man mi marries woman
wj . Let be dm

i = |D(xi)| and dw
j = |D(yj)|. Constraints are defined between men

and women. Given any pair i and j (1 ≤ i, j ≤ n), the stable marriage constraint
xi/yj involving xi and yj is representing by a dm

i × dw
j conflict matrix Cij . For

any pair k, l (k ∈ D(xi) and l ∈ D(yj)), the element Cij [k, l] has one of the
following four values:

– Cij [k, l] = Allows, when k = j and l = i. It allows xi = j (yj = i). At most
one element in Cij is A.

– Cij [k, l] = Illegal. This constraint assures the monogamy of the matching,
only one man can be married with a woman and vice versa. Entry Cij [k, l]
is set to I when either k = j and l �= i or k �= j and l = i.

– Cij [k, l] = Blocking pair, when mi prefers wj to wk and wj prefers mi to
ml. Since xi = j blocks pairs xi = k and yj = l.

– Cij [k, l] = Support, for all the other entries that are not A, I or B.

Figure 4 shows the constraint matrix for man m3 and woman w1 of the
example given in Figure 1. In the constraint matrix, the domains of x3 and
y1 are listed in decreasing ordering of the preferences. From that example, we
can see that assignment x3 = w1 does not block any other pairs which involve
variable x3 or variable y1.

To encode SMI instances, it is needed to add a dummy man mn+1 and a
dummy woman wn+1 to the problem. Man and woman variables remain the

m1 m2 m3

w2 S S I
w1 I I A
w3 S S I

m1 m2 m3

w2 1 1 0
w1 0 0 1
w3 1 1 0

Fig. 4. C31 for example of Figure 1. Left: in terms of A,I,B,S. Right: in terms of 0/1.
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same but their domains are enlarged with the value n + 1, that is always the
least preferred one. Whether a person p is not an accepted partner for a person
q, of opposite sex, all entries in column or row assigning p to q on Cpq are I. The
rest of the constraint table is filled with S.

Constraint tables in terms of A, I, B, S are transformed in terms of 1/0
(permitted/forbidden) pairs, using the natural conversion A, S → 1, I, B → 0.

In [4], it is shown that encoding a SMI instance I as a CSP instance J
produces all stable matchings of I as solutions of J . It is easy to show that J
has no more solutions. Special emphasis is put on the fact that achieving arc
consistency on J produces a reduced domains which are exactly the GS lists
obtained by the EGS algorithm.

3 The Distributed Stable Marriage Problem

The Distributed Stable Marriage problem (DisSM) is defined as in the classical
(centralized) case by n men {m1, . . . , mn} and n women {w1, . . . , wn}, each
having a preference list where all members of the opposite sex are ranked, plus a
set of r agents {a1, . . . , ar}. The n men and n women are distributed among the
agents, such that each agent owns some persons and every person is owned by a
single agent. An agent can access and modify all the information of the owned
persons, but it cannot access the information of persons owned by other agents.
To simplify description, we will assume that each agent owns exactly one person
(so there are 2n agents). As in the classical case, a solution is a stable matching
(a matching between the men and women such that no blocking pair exists). A
complete stable matching always exists.

Analogously to the classical case, we define the Distributed Stable Marriage
with Incomplete lists problem (DisSMI) as a generalization of DisSM that oc-
curs when preference lists do not contain all persons of the opposite sex (some op-
tions are considered unacceptable). A solution is a stable matching, and it always
exists, although it is not guaranteed to be a complete one (some men/women
may remain unmatched).

This problem, by its own nature, appears to be naturally distributed. First,
each person may desire to act as an independent agent. Second, for obvious rea-
sons each person would like to keep private his/her preference list ranking the
opposite sex options. However, in the classical case each person has to follow a
rigid role, making public his/her preferences to achieve a global solution. There-
fore, this problem is very suitable to be treated by distributed techniques, trying
to provide more autonomy to each person, and to keep private the information
contained in the preference lists.

3.1 The Distributed Gale-Shapley Algorithm

The EGS algorithm that solves the classical SMI can be easily adapted to deal
with the distributed case. We call this new version the Distributed Extended
Gale-Shapley (DisEGS) algorithm. As in the classical case, the DisEGS al-
gorithm has two phases, the man-oriented and the woman-oriented, which are
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procedure Man()
m ← free;
end ← false;
while ¬end do

if m = free and list(m) �= ∅ then
w ← first(list(m));
sendMsg(propose,m,w);
m ← w;

msg ← getMsg();
switch msg.type

accept : do nothing;
delete : list(m)← list(m)−msg.sender;

if msg.sender = w then m ← free;
stop : end ← true;

procedure Woman()
w ← free;
end ← false;
while ¬end do

msg ← getMsg();
switch msg.type

propose: m ← msg.sender;
if m /∈ list(w) then
sendMsg(delete,w,m);

else
sendMsg(accept,w,m);
w ← m;
for each p after m in list(w) do
sendMsg(delete,w,p);
list(w)← list(w)− p;

stop : end ← true;

Fig. 5. The man-oriented version of the DisEGS algorithm

executed one after the other. Each phase produces reduced preference lists for
each person. The intersection of these lists produces a GS list per person. As in
the classical case, the matching obtained after executing the man-oriented phase
is a stable matching (man-optimal).

The man-oriented version of the DisEGS algorithm appears in Figure 5 (the
woman-oriented is analogous, switching the roles man/woman). It is composed
of two procedures, Man and Woman, which are executed on each man and woman,
respectively. Execution is asynchronous. The following messages are exchanged
(where m is the man that executes Man and w the woman that executes Woman),

– propose: m sends this message to w to propose engagement;
– accept: w sends this message to m after receiving a propose message to notify

acceptance;
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– delete: w sends this message to m to notify that w is not available for m;
this occurs either (i) proposing m an engagement to w but w has a better
partner or (ii) w accepted an engagement with other man more preferred
than m;

– stop: this is an special message to notify that execution must end; it is sent
by an special agent after detecting quiescence.

Procedure Man, after initialization, performs the following loop. If m is free
and his list is not empty, he proposes to be engaged to w, the first woman in his
list. Then, m waits for a message. If the message is accept and it comes from
w, then m confirms the engagement (nothing is done in the algorithm). If the
message is delete, then m deletes the sender from his list, and if the sender is w
then m becomes free. The loop ends when receiving a stop message.

Procedure Woman is executed on woman w. After initialization, there is a
message receiving loop. In the received message comes from a man m proposing
engagement, w rejects the proposition if m is not in her list. Otherwise, w accepts.
Then, any man p that appears after m in w list is asked to delete w from his
list, while w removes p from hers. This includes a previous engagement m′, that
will be the last in her list. The loop ends when receiving a stop message.

Algorithm DisEGS is a distributed version of EGS, where each person can
access his/her own information only. For this reason there are two different pro-
cedures, one for men and one for women. In addition, actions performed by EGS
on persons different from the current one are replaced by message sending. Thus,
when m assigns woman w is replaced by sendMsg(propose,m,w); when w deletes
herself from the list of p is replaced by sendMsg(delete,w,p). Since procedures
exchange messages, operations of message reception are included accordingly.

DisEGS algorithm guarantees privacy in preferences and in the final assign-
ment: each person knows the assigned person, and no person knows more than
that. In this sense, it is a kind of ideal algorithm because it assures privacy in
values and constraints.

3.2 Distributed Constraint Formulation

In [1] we presented an approach to privacy that differentiates between values
and constraints. Briefly, privacy on values implies that agents are not aware of
other agent values during the solving process and in the final solution. This
was achieved using the Distributed Forward Checking algorithm (DisFC), an
ABT -based algorithm (see more details about ABT algorithm in [9]) that, after
the assignment of an agent variable, instead of sending to lower priority agents
the value just assigned, it sends the domain subset that is compatible with the
assigned value. In addition, it replaces actual values by sequence numbers in
backtracking messages. In this way, the assignment of an agent is kept private
at any time.

Regarding privacy on constraints, two models were considered. The Totally
Known Constraints (TKC) model assumes that when two agents i, j share a
constraint Cij , both know the constraint scope and one of them knows completely
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i
1 . . . 1 0 1 . . . 1

. . .
1 . . . 1 0 1 . . . 1

j 0 . . . 0 1 0 . . . 0
1 . . . 1 0 0 . . . 0

. . .
1 . . . 1 0 0 . . . 0

i
1/0 . . . 1/0 0 1/0 . . . 1/0

. . .
1/0 . . . 1/0 0 1/0 . . . 1/0

j 0 . . . 0 1 0 . . . 0
1/0 . . . 1/0 0 1/0 . . . 1/0

. . .
1/0 . . . 1/0 0 1/0 . . . 1/0

Fig. 6. Constraint Cij . Left: rows and columns ordered by decreasing preferences of xi

and yj , respectively. Right: rows and columns ordered lexicographically.

the relational part of the constraint (the agent in charge of constraint evaluation).
The Partially Known Constraints (PKC) model assumes that when two agents
i, j share a constraint Cij , none of them knows completely the constraint. On
the contrary, each agent knows the part of the constraint that it is able to build,
based on its own information. We say that agent i knows Ci(j), and j knows
C(i)j . This implies that the identification of the other agent is neutral. In the
following, we apply these two models to the DisSM problem using the constraint
formulation of Section 2.2 from [4].

Totally Known Constraints. Solving a DisSMI problem is direct under the
TKC model. For each pair xi, yj , representing a man and a woman, there is a
constraint Cij that appears in Figure 6. We assume, without loss of generality,
that agents owning men have higher priority than agents owning women. Using
DisFC, constraint Cij has to be known by the agent of variable xi. Conversely,
using ABT , constraint Cij has to be known by the agent owning yj. If an agent
knows Cij , it can deduce the preferences of the other agent.

Using ABT , there is no privacy of values. Using DisFC, there is privacy of
values, since values are never made public to other agents. This model does not
allow privacy of constraints.

Partially Known Constraints. A DisSMI instance can be formulated in the
PKC model as follows. The partially known constraint Ci(j) is built from xi,
knowing its preference list but ignoring the preference list of yj . Analogously,
C(i)j is built knowing the preference list of yj but ignoring the preference list of
xi. Assuming lexicographical ordering in rows and columns, they look like shown
in Figure 7. Where 1/? means that the value can be either 1 (permitted) or ?
(undecided). Undecided values appear in Ci(j) (conversely C(i)j) because xi (yj)
does not know the preference list of yj (xi). As example, the partially known
constraints corresponding to the constraint of Figure 4 appear in Figure 8.

One interesting property of these constraints is that in Ci(j) (conversely C(i)j)
all columns (rows) are equal, except the column (row) corresponding to xi (yj).

Proposition 1. In Ci(j) (conversely C(i)j) all columns (rows) are equal, except
the column (row) corresponding to xi (yj).
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Ci(j) =

i
1/? . . . 1/? 0 1/? . . . 1/?

. . .
1/? . . . 1/? 0 1/? . . . 1/?

j 0 . . . 0 1 0 . . . 0
1/? . . . 1/? 0 1/? . . . 1/?

. . .
1/? . . . 1/? 0 1/? . . . 1/?

C(i)j =

i
1/? . . . 1/? 0 1/? . . . 1/?

. . .
1/? . . . 1/? 0 1/? . . . 1/?

j 0 . . . 0 1 0 . . . 0
1/? . . . 1/? 0 1/? . . . 1/?

. . .
1/? . . . 1/? 0 1/? . . . 1/?

Fig. 7. Form of the partially known constraint tables

C3(1) =

m1 m2 m3

w1 0 0 1
w2 1 1 0
w3 ? ? 0

C(3)1 =

m1 m2 m3

w1 0 0 1
w2 1 1 0
w3 1 1 0

Fig. 8. Partially known constraints of constraint of Figure 4

Proof. We have to prove that Ci(j)[k, l] = Ci(j)[k, l′], l �= i, l′ �= i, l �= l′. Effec-
tively, if xi prefers woman k to woman j, both values Ci(j)[k, l] and Ci(j)[k, l′]
are 1, corresponding to S (supported, see Section 2.2). If xi prefers woman j to
woman k, both values Ci(j)[k, l] and Ci(j)[k, l′] are ? (undecided). Their exact
value could be 1 or 0, depending on the preferences of yj, information which is
not available when constructing Ci(j). Therefore, both are undecided in Ci(j).
An analogous argument holds for C(i)j rows. �

It is interesting to observe the relation between Ci(j), C(i)j and Cij . It is easy
to check that Cij = Ci(j) 'C(i)j , where ' operates component to component with
the following rules,

1 ' 1 = 1 1 ' 0 = error 0 ' 0 = 0
? ' 1 = 1 ? ' 0 = 0 ?'? = 0

Rules including ? are quite intuitive (if a position in the constraint is decided
(permitted/forbidden) in one constraint and undecided in the other, the result
is the decided value). The last rule ?'? = 0 is proved next.

Proposition 2. If entry [k, l] is undecided in both partially known constraints
for variable xi and variable yj (Ci(j)[k, l] =? and C(i)j [k, l] =?), then entry [k, l]
is 0 in the complete constraint table (Cij [k, l] = 0).

Proof. From the construction of partially known constraints, all undecided
entries in Ci(j) are related to values which are less preferred than j. If Ci(j)[k, l] =
?, we can infer that xi prefers j to k. Conversely, if C(i)j [k, l] =?, we infer that
yj prefer i to l. Therefore, since xi prefers j to k and yj prefers i to l, the pair
(i, j) is blocking pair to the pair (k, l) so Cij [k, l] = 0. �

With these properties, we can specialize the DisFC algorithm to solve
DisSMI instances, using phase I only. This specialized algorithm works as fol-
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lows. Each agent instantiates its variable and sends to lower priority agents the
domains compatible with its assignment. For DisSMI, after assignment each
man agent sends to each woman agent the domain that she can take. A woman
agent receives messages from every man agent, and assigns a value permitted
by these n received domains. If no value is available, the woman agent performs
backtracking. The process iterates until finding a solution. Since DisFC is a
complete algorithm, and the constraint encoding of SMI is correct (a SMI
solution corresponds one-to-one with solutions of the constraint encoding), a
solution will be found.

In the previous argument, something must be scrutinized in more detail. After
assignment, what kind of compatible domain can a man agent send? If agent i
assigns value k to xi, it sends to j the row of Ci(j) corresponding to value k.
This row may contain 1’s (permitted values for yj), 0’s (forbidden values for
yj), and ? (undecided values for yj). If the compatible domain has 1 or 0 values
only, there is no problem and the yj domain can be easily computed. But what
happens when the domain contains ? (undecided) values? In this case, agent j
can disambiguate the domain as follows. When agent j receives a compatible
domain with ? (undecided) values, it performs the ' operation with a row of
C(i)j different from i. Since all rows in C(i)j are equal, except row corresponding
to value i (see Proposition 1), all will give the same result. Performing the '
operation j will compute the corresponding row in the complete constraint Cij ,
although j does not know to which value this row corresponds (in other words,
j does not know the value assigned to xi). After the ' operation the resulting
received domain will contain no ? (undecided) values, and the receiving agent
can operate normally with it.

4 The Stable Roommates Problem

The stable roommates problem (SR) is a generalization of the SM in which each
person in a set of even cardinality ranks all the other in order of preference. Like
in SM , a matching is unstable if it contains a blocking pair. A pair (pi, pj) is a
blocking pair in M if pi prefers pj to his/her current partner in M and pj prefers
pi to his/her current partner in M (conditions C1 - C3 in section 2). If this pair
exists, it is said that pi and pj block M and M is unstable. The major difference
with SM is that there exist SR instances that admit no stable matching. It is
easy to prove it building a counterexample (see section 4.1 in [6]). Therefore, for
SR the goal is to determine whether a given SR instance is solvable, and if so,
find an stable matching.

In [6] (section 4.2), Gustfield and Irving presented an O(n2) algorithm to
solve SR instances. This algorithm consists of two phases. The first phase is an
extended version of the Gale-Shapley algorithm where every person sends and
receives matching proposals from the rest of people. During this phase, certain
matching pairs that are not part of any stable matching are deleted. At the
end of this phase, we can assure that the problem is unsolvable if there is an
empty preference list. If not, it may happen that all preference lists are already
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reduced to a single entry. In that case, this is the only stable matching for this
instance. Otherwise, at the end of this phase some lists have more than one entry.
In that case, the algorithm enters into the second phase because, unlike of the
corresponding situation in SM after applying EGS, if we match every person
to his/her more preferred person in his/her reduced preference lists it does not
constitute a matching, stable or otherwise.

The second phase of the algorithm iterates reducing further the preference
lists until all lists contain just one entry, in which case it constitutes a stable
matching or until any preference list becomes empty, in which case no stable
matching exists. This phase consists of two parts. Firstly, the algorithm builds
a special sequence of matching pairs from the reduced preference lists. This
sequence is called rotation and has the following form:

{(x0, y0), (x1, y1), ..., (xr−1, yr−1)},

such that yi is the most preferred partner for xi and yi+1 is the second most
preferred partner for xi for all i, 0 ≤ i ≤ r − 1, where i + 1 is taken as module
r. Secondly, the algorithm deletes from reduced preference lists the rotation
obtained in the first part of this phase (see section 4.2 of [6] for more details).

Like for SMI, we can consider instances of the SR where some persons can
have unacceptable partners (called stable roommates problem with incomplete
list or SRI). In this context, the goal is to find (if exists any) the longer stable
matching which not necessarily involves all people. A matching M is stable if
there is not a pair of persons pi and pj not matched in M , and each one prefers
the other to his/her current partner in M . It is assumed that every person prefers
more to be matched than to be free. It is straightforward to modify the above
described algorithm to solve SRI instances.

4.1 Distributed Constraint Formulation

Similar to DisSM , a Distributed Stable Roommates Problem (DisSR) is defined
by a number n of persons {p1, p2, ..., pn} plus a set of r agents. Each person ranks
all the other in his/her preference list. Likewise, a distributed stable roommates
problem with incomplete list (DisSRI) is defined by n persons and r agents. In
that setting, people can have incomplete preference lists. For both problems, no
person knows the others’ preferences. Like in the centralized versions, the goal
is to find (if exists any) a complete stable matching for DisSR and the longer
stable matching for DisSRI.

The main motivation of this work is to solve stable matching problems with-
out making public preference lists. The simplest way to solve a DisSRI we can
think of (DisSRI is a generalization of DisSR) is using a distributed version
of the algorithm that appears in the previous section. However, from the de-
scription of that algorithm, we can observe that, when the algorithm builds a
rotation in the first part of the second phase, some information of preference
lists is revealed. In this sense, a distributed version of the centralized solving
algorithm such that privacy is maintained, does not seem feasible in this case.
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Considering constraints, the formulation introduced in Section 2.2 is fully
applicable to encode SRI instances. The distributed version, presented in Sec-
tion 3.2, is also applicable to DisSRI instances, with the following remarks.
In each setting, there are n ∗ (n − 1) binary constraints. Constraint tables will
have the form given in Figure 6 for SRI and the form given in Section 3.2
for DisSRI. However, we have to take into account that no person can match
with himself/herself. To avoid that, we add unary constraints: xi �= pi, for all i,
1 ≤ i ≤ n. In that case, constraint tables are like the ones of DisSMI, Proposi-
tion 1 remains true, and we can use the specialized DisFC algorithm with PKC
model, as described in section 3.2, to solve DisSRI.

5 Experimental Results

We give empirical results on the DisFC algorithm with PKC model on DisSMI
and DisSRI random instances. For DisSMI, we also provide results on the
DisEGS. In our experiments, we use four different classes of instances. Each
class is defined by a pair 〈n, p1〉, which means the problem has n men and
n women on DisSMI (or just n persons on DisSRI) and the probability of
incompleteness of the preference list is p1. Class < n, 0.0 > groups instances
where all the n persons have complete preference lists. If p1 = 1.0, preferences
lists are empty. We study 4 different classes with n = 10 for DisSMI and n = 20
for DisSRI, with p1 = 0.0, 0.2, 0.5 and 0.8. For each problem and for each class,
100 instances were generated following the random instance generation presented
in [5] considering p2, the probability of ties, equal to 0.0.

For DisSMI, algorithms are modeled using 2n agents, each one representing
a man or a woman. For DisSRI, DisFC is modeled using just n agents, each
representing a person. In DisEGS, each agent only knows its preference list.
In DisFC, each agent only knows its partial constraint tables. In both, agents
exchange different kind of messages to find a stable matching. When DisEGS
finishes the stable matching found is the men-optimal one. DisFC, like others
asynchronous backtracking algorithms, requires a total ordering among agents.
For DisSMI, men agents have higher priority than women agents. For DisSRI,
person agents are lexicographically ordered.

Algorithmic performance is evaluated by communication and computation
effort. Communication effort is measured by the total number of exchanged
messages (msg). Since both algorithms are asynchronous, computation cost is
measured by the number of concurrent constraint checks (ccc) (for DisEGS, an
agent performs a constraint check when it checks if one person is more preferred
than other), as defined in [7], following Lamport’s logic clocks [8].

Table 1 details the experimental results of DisEGS on DisSMI. Besides
msg and ccc, we provide the total number of messages for each kind of message
and the total number of checks. Regarding the communication effort, except
for instances with p1 = 0.8, the larger number of exchanged messages are for
deleting persons from preference lists. When p1 = 0.2, women agents receive more
proposals than women agents for p1 = 0.0. In general, the number of proposals,
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Table 1. Results of DisEGS for solving DisSMI instances with 10 men, 10 women

p1 propose accept delete msg checks ccc
0.0 27.8 22.8 65.6 98.4 133.6 52.7
0.2 28.1 22.8 53.0 86.4 107.9 43.0
0.5 26.3 21.9 32.7 63.4 67.3 27.7
0.8 20.9 18.5 12.1 35.4 28.0 10.6

Table 2. Results of DisFC for solving DisSMI instances with 10 men, 10 women

p1 info back link msg checks ccc
0.0 39,686 5,987 72 45,745 4,833,478 3,153,363
0.2 31,636 5,272 62 36,970 3,941,676 2,580,822
0.5 4,324 840 48 5,212 355,436 223,469
0.8 222 47 27 296 10,022 5,651

Table 3. Results of DisFC for solving DisSRI instances with 20 persons

p1 info back link msg checks ccc
0.0 123,051 22,557 0 145,608 25,233,407 15,125,633
0.2 57,769 10,881 89 68,739 7,698,775 4,467,714
0.5 3,237 684 57 3,978 226,422 117,921
0.8 54 12 13 79 3,744 1,060

proposal acceptances and the total number of messages tend to decrease when
p1 increases. Considering the computation effort of DisEGS, the larger values
of p1 (shorter lists), the easier instances. In general, the communication and
computation costs of DisEGS are the largest with complete lists.

Table 2 resumes the experimental results of DisFC on DisSMI. We observe
the same trend as in DisEGS results: instances with complete lists are the most
difficult to solve (both in terms of msg and ccc) and they become easier to
solve as lists become shorter. According to the reported results, DisFC is much
worse than DisEGS. This could be expected, since DisEGS is a specialized
algorithm for this particular problem, takes advantage of the problem features.
DisFC is a generic algorithm that is applicable to any CSP. When applied to this
problem, a tractable CSP, it gets worse results than the specialized approach.
Nevertheless, the distributed constraint formulation is generic and applicable to
further generalizations of this problem, like DisSRI.

In Table 3 we resume the experimental results of DisFC on DisSRI. For
that problem, not all the instances are solvable. Only 89, 75, 85 and 97 (out of
100) instances are solvable for p1 = 0.0, 0.2, 0.5 and 0.8, respectively. As was
expected, regarding msg and ccc, we observe the same trend as in the previous
two tables. Instances are harder to solve when the number of preferred persons
is higher. Contrasting results from Table 2 and Table 3 we see that DisSRI
instances, where persons have few unaccepted partners (p1 = 0.0, 0.2), are harder
than the corresponding DisSMI instances. When preference lists are shorter (p1
= 0.5 and 0.8), DisSRI instances are easier than the corresponding DisSMI
instances.
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6 Conclusions

We presented a distributed formulation for the Stable Marriage problem and the
Stable Roommates problem. These problems appear to be naturally distributed
and there is a clear motivation to keep their preference lists private during the
solving process. For Stable Marriage, a distributed version of the centralized al-
gorithm can efficiently solve the problem, keeping the required privacy. However,
this is not possible for Stable Roommates. Using the constraint formulation of
[4], we have provided a simple way to solve this problem using the Distributed
Forward Checking algorithm with the Partially Known Constraint model, keep-
ing the required privacy. We provide experimental results of this approach. The
generic constraint formulation opens new directions for distributed encodings of
harder versions of these problems.
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Abstract. The general intractability of the constraint satisfaction prob-
lem has motivated the study of restrictions on this problem that permit
polynomial-time solvability. One major line of work has focused on struc-
tural restrictions, which arise from restricting the interaction among con-
straint scopes. In this paper, we engage in a mathematical investigation of
generalized hypertree width, a structural measure that has up to recently
eluded study. We obtain a number of computational results, including a
simple proof of the tractability of CSP instances having bounded gener-
alized hypertree width.

1 Introduction

The constraint satisfaction problem (CSP) is widely acknowledged as a conve-
nient framework for modelling search problems. Instances of the CSP arise in
a variety of domains, including artificial intelligence, database theory, algebra,
propositional logic, and graph theory. An instance of the CSP consists of a set
of constraints on a set of variables; the question is to determine if there is an
assignment to the variables satisfying all of the constraints. Alternatively, the
CSP can be cast as the fundamental algebraic problem of deciding, given two
relational structures A and B, whether or not there is a homomorphism from
A to B. In this formalization, each relation of A contains the tuples of variables
that are constrained together, which are often called the constraint scopes, and
the corresponding relation of B contains the allowable tuples of values that the
variable tuples may take.

It is well-known that the CSP, in its general formulation, is NP-complete; this
general intractability has motivated a large and rich body of research aimed at
identifying and understanding restricted cases of the CSP that are polynomial-
time tractable. The restrictions that have been studied can, by and large, be
placed into one of two categories, which–due to the homomorphism formulation
of the CSP–have become known as left-hand side restrictions and right-hand
side restrictions. From a high level view, left-hand side restrictions, also known
as structural restrictions, arise from prespecifying a class of relational structures
A from which the left-hand side structure A must come, while right-hand side
restrictions arise from prespecifying a class of relational structures B from which
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the right-hand side structure B must come. As this paper is concerned princi-
pally with structural restrictions, we will not say more about right-hand side
restrictions than that their systematic study has origins in a classic theorem of
Schaefer [21], and that recent years have seen some exciting results on them (for
instance [4,5]).

The structural restrictions studied in the literature can all be phrased as
restrictions on the hypergraph H(A) naturally arising from the left-hand side
relational structure A, namely, the hypergraph H(A) with an edge {a1, . . . , ak}
for each tuple (a1, . . . , ak) of A. Let us briefly review some of the relevant results
that have been obtained on structural tractability. The tractability of left-hand
side relational structures having bounded treewidth was shown in the constraint
satisfaction literature by Dechter and Pearl [9] and Freuder [10].1 Later, Dalmau
et al. [8] building on ideas of Kolaitis and Vardi [19,20] gave a consistency-style
algorithm for deciding the bounded treewidth CSP. For our present purposes, it
is worth highlighting that although the notion of bounded treewidth is defined in
terms of tree decompositions, which can be computed efficiently (under bounded
treewidth), the algorithm given by Dalmau et al. [8] does not compute any
form of tree decomposition. Dalmau et al. also identified a natural expansion
of structures having bounded treewidth that is tractable–namely, the structures
homomorphically equivalent to those having bounded treewidth. The optimality
of this latter result, in the case of bounded arity, was demonstrated by Grohe
[15], who proved–roughly speaking–that if the tuples of A are of bounded arity
and A gives rise to a tractable case of the CSP, then it must fall into the natural
expansion identified by Dalmau et al. [8].

A number of papers, including [17,16,13,14,11,7], have studied restrictions that
can be applied to relational structures of unbounded arity. (Note that any class
of relational structures of unbounded arity cannot have bounded treewidth.) In a
survey [13], Gottlob et al. show that the restriction of bounded hypertree width
[11] is the most powerful structural restriction for the CSP in that every other
structural restriction studied in the literature is subsumed by it. Since this work
[11,13], whether or not there is a more general structural restriction than bounded
hypertree width that ensures tractability, has been a tantalizing open question.

In this paper, we study generalized hypertree width, a structural measure for
hypergraphs defined in [12] that is a natural variation of hypertree width; we
call this measure coverwidth. Coverwidth is trivially upper-bounded by hyper-
tree width, and so any class of hypergraphs having bounded hypertree width has
bounded coverwidth. We define a combinatorial pebble game that can be played
on any CSP instance, and demonstrate that this game is intimately linked to
coverwidth (Theorem 13). Overall, the investigation we perform takes significant
inspiration from methods, concepts, and ideas developed by Kolaitis, Vardi, and
coauthors [19,20,8,2] that link together CSP consistency algorithms, the existen-
tial k-pebble games of Kolaitis and Vardi [18], and bounded treewidth.

1 One way to define what we mean by treewidth here is the treewidth of the graph
obtained from H(A) by drawing an edge between any two vertices that are in the
same hyperedge.
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Using the pebble game perspective, we are able to derive a number of com-
putational results. One is that the structural restriction of bounded coverwidth
implies polynomial-time tractability; this result generalizes the tractability of
bounded hypertree width. It has been independently shown by Adler et al. that
the hypertree width of a hypergraph is linearly related to the coverwidth [1].
This result can be used in conjunction with the tractability of bounded hyper-
tree width to derive the tractability of bounded coverwidth. However, we believe
our proof of bounded coverwidth tractability to be simpler than the known proof
of bounded hypertree width tractability [11], even though our proof is of a more
general result.

To describe our results in greater detail, it will be useful to identify two
computational problems that every form of structural restriction gives rise to:
a promise problem, and a no-promise problem. In both problems, the goal is
to identify all CSP instances obeying the structural restriction as either sat-
isfiable or unsatisfiable. In the promise problem, the input is a CSP instance
that is guaranteed to obey the structural restriction, whereas in the no-promise
problem, the input is an arbitrary CSP instance, and an algorithm may, on an
instance not obeying the structural restriction, decline to identify the instance
as satisfiable or unsatisfiable. Of course, CSPs arising in practice do not come
with guarantees that they obey structural restrictions, and hence an algorithm
solving the no-promise problem is clearly the more desirable. Notice that, for
any structural restriction having a polynomial-time solvable promise problem, if
it is possible to solve the identification problem of deciding whether or not an in-
stance obeys the restriction, in polynomial time, then the no-promise problem is
also polynomial-time solvable. For bounded hypertree width, both the identifica-
tion problem and the no-promise problem are polynomial-time solvable. In fact,
the survey by Gottlob et al. [13] only considers structural restrictions for which
the identification problem is polynomial-time solvable, and thus only consid-
ers structural restrictions for which the no-promise problem is polynomial-time
solvable.

One of our main theorems (Theorem 20) is that the promise problem for
bounded coverwidth is polynomial-time tractable, via a general consistency-like
algorithm. In particular, we show that, on an instance having bounded cov-
erwidth, our algorithm detects an inconsistency if and only if the instance is
unsatisfiable. Our algorithm, like the consistency algorithm of Dalmau et al.
[8] for bounded treewidth, can be applied to any CSP instance to obtain a
more constrained instance; our algorithm does not need nor compute any form
of decomposition, even though the notion of coverwidth is defined in terms of
decompositions!

We then give a simple algorithm for the no-promise problem for bounded
coverwidth (Theorem 21) that employs the consistency-like algorithm for the
promise problem. The algorithm’s behavior is reminiscent of self-reducibility ar-
guments in computational complexity theory, and on an instance of bounded
coverwidth, the algorithm is guaranteed to either report a satisfying assign-
ment or that the instance is unsatisfiable. We believe that this result suggests
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an expansion of the view of structural tractability advanced in the Gottlob
et al. survey [13], since we are able to give a polynomial-time algorithm for
the bounded coverwidth no-promise problem without explicitly showing that
there is a polynomial-time algorithm for the bounded coverwidth identification
problem.

Returning to the promise problem, we then show that the tractability of
structures with bounded coverwidth can be generalized to yield the tractability
of structures homomorphically equivalent to those having bounded coverwidth
(Theorem 22). This expansion of bounded coverwidth tractability is analogous
to the expansion of bounded treewidth tractability carried out in [8].

We emphasize that none of the algorithms in this paper need or compute any
type of decomposition, even though all of the structural restrictions that they
address are defined in terms of decompositions.

In the full version of this paper, we use the developed theory as well as ideas
in [6] to define a tractable class of quantified constraint satisfaction problems
based on coverwidth.

Definitions. In this paper, we formalize the CSP as a relational homomorphism
problem. We review the relevant definitions that will be used. A relational sig-
nature is a finite set of relation symbols, each of which has an associated arity. A
relational structure A (over signature σ) consists of a universe A and a relation
RA over A for each relation symbol R (of σ), such that the arity of RA matches
the arity associated to R. We refer to the elements of the universe of a relational
structure A as A-elements. When A is a relational structure over σ and R is
any relation symbol of σ, the elements of RA are called A-tuples. Throughout
this paper, we assume that all relational structures under discussion have a finite
universe. We use boldface letters A,B, . . . to denote relational structures.

A homomorphism from a relational structure A to another relational struc-
ture B is a mapping h from the universe of A to the universe of B such that
for every relation symbol R and every tuple (a1, . . . , ak) ∈ RA, it holds that
(h(a1), . . . , h(ak)) ∈ RB. (Here, k denotes the arity of R.) The constraint sat-
isfaction problem (CSP) is to decide, given an ordered pair A,B of relational
structures, whether or not there is a homomorphism from the first structure, A,
to the second, B. A homomorphism from A to B in an instance A,B of the CSP
is also called a satisfying assignment, and when a satisfying assignment exists,
we will say that the instance is satisfiable.

2 Coverwidth

This section defines the structural measure of hypergraph complexity that we call
coverwidth. As we have mentioned, coverwidth is equal to generalized hypertree
width, which was defined in [12]. We begin by defining the notion of hypergraph.

Definition 1. A hypergraph is an ordered pair (V, E) consisting of a vertex
set V and a hyperedge set E. The elements of E are called hyperedges; each
hyperedge is a subset of V .
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Basic to the measure of coverwidth is the notion of a tree decomposition.

Definition 2. A tree decomposition of a hypergraph (V, E) is a pair
(T = (I, F ), {Xi}i∈I) where

– T = (I, F ) is a tree, and
– each Xi (with i ∈ I) is called a bag and is a subset of V ,

such that the following conditions hold:

1. V = ∪i∈IXi.
2. For all hyperedges e ∈ E, there exists i ∈ I with e ⊆ Xi.
3. For all v ∈ V , the vertices Tv = {i ∈ I : v ∈ Xi} form a connected subtree

of T .

Tree decompositions are generally applied to graphs, and in the context of
graphs, the measure of treewidth has been heavily studied. The treewidth of a
graph G is the minimum of the quantity maxi∈I |Xi| − 1 over all tree decom-
positions of G. In other words, a tree decomposition is measured based on its
largest bag, and the treewidth is then defined based on the “lowest cost” tree
decomposition.

The measure of coverwidth is also based on the notion of tree decomposition.
In coverwidth, a tree decomposition is also measured based on its “largest” bag;
however, the measure applied to a bag is the number of hyperedges needed to
cover it, called here the weight.

Definition 3. A k-union over a hypergraph H (with k ≥ 0) is a union e1∪ . . .∪
ek of k edges e1, . . . , ek of H.

The empty set is considered to be the unique 0-union over a hypergraph.

Definition 4. Let H = (V, E) be a hypergraph. The weight of a subset X ⊆ V
is the smallest integer k ≥ 0 such that X ∩ (∪e∈Ee) is contained in a k-union
over H.

We measure a tree decomposition according to its heaviest bag, and define the
coverwidth of a hypergraph according to the lightest-weight tree decomposition.

Definition 5. The weight of a tree decomposition of H is the maximum weight
over all of its bags.

Definition 6. The coverwidth of a hypergraph H is the minimum weight over
all tree decompositions of H.

It is straightforward to verify that the coverwidth of a hypergraph is equal
to the generalized hypertree width of a hypergraph [12]. Since the generalized
hypertree width of a hypergraph is always less than or equal to its hypertree
width, coverwidth is at least as strong as hypertree width in that results on
bounded coverwidth imply results on bounded hypertree width.

There is another formulation of tree decompositions that is often wieldy, see
for instance [3].
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Definition 7. A scheme of a hypergraph H = (V, E) is a graph (V, F ) such that

– (V, F ) has a perfect elimination ordering, that is, an ordering v1, . . . , vn of
its vertices such that for all i < j < k, if (vi, vk) and (vj , vk) are edges in F ,
then (vi, vj) is also an edge in F , and

– the vertices of every hyperedge of E induce a clique in (V, F ).

It is well known that the property of having a perfect elimination ordering
is equivalent to being chordal. The following proposition is also well-known.

Proposition 8. Let H be a hypergraph. For every tree decomposition of H,
there exists a scheme such that each clique of the scheme is contained in a bag
of the tree decomposition. Likewise, for every scheme of H, there exists a tree
decomposition such that each bag of the tree decomposition is contained in a
clique of the scheme.

Let us define the weight of a scheme (of a hypergraph H) to be the maximum
weight (with respect to H) over all of its cliques. The following proposition is
immediate from Proposition 8 and the definition of coverwidth, and can be taken
as an alternative definition of coverwidth.

Proposition 9. The coverwidth of a hypergraph H is equal to the minimum
weight over all schemes of H.

We now define the hypergraph associated to a relational structure. Roughly
speaking, this hypergraph is obtained by “forgetting” the ordering of the A-
tuples.

Definition 10. Let A be a relational structure. The hypergraph associated to A
is denoted by H(A); the vertex set of H(A) is the universe of A, and for each
A-tuple (a1, . . . , ak), there is an edge {a1, . . . , ak} in H(A).

We will often implicitly pass from a relational structure to its associated
hypergraph, that is, we simply write A in place of H(A). In particular, we will
speak of k-unions over a relational structure A.

3 Existential k-Cover Games

We now define a class of pebble games for studying the measure of coverwidth.
These games are parameterized by an integer k ≥ 1, and are called existential
k-cover games. They are based on the existential k-pebble games defined by
Kolaitis and Vardi and used to study constraint satisfaction [18,20]. The pebble
game that we use is defined as follows. The game is played between two players,
the Spoiler and the Duplicator, on a pair of relational structures A,B that are
defined over the same signature. Game play proceeds in rounds, and in each
round one of the following occurs:
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1. The Spoiler places a pebble on an A-element a. In this case, the Duplicator
must respond by placing a corresponding pebble, denoted by h(a), on a
B-element.

2. The Spoiler removes a pebble from an A-element a. In this case, the corre-
sponding pebble h(a) on B is removed.

When game play begins, there are no pebbles on any A-elements, nor on any
B-elements, and so the first round is of the first type. Both of the players have
an unlimited supply of pebbles. However, when placing a new pebble, the Spoiler
must obey the restriction that the weight of the elements on which the Spoiler
has pebbles must be bounded by k. (Here, by “weight” we are using Definition 4.)
We assume that the Spoiler never places two pebbles on the same A-element, so
that h is a partial function (as opposed to a relation). The Duplicator wins the
game if he can always ensure that h is a projective homomorphism from A to
B; otherwise, the Spoiler wins. A projective homomorphism (from A to B) is a
partial function h from the universe of A to the universe of B such that for any
relation symbol R and any tuple (a1, . . . , ak) ∈ RA of A, there exists a tuple
(b1, . . . , b

k) ∈ RB where h(ai) = bi for all ai on which h is defined.
We now formalize the notion of a winning strategy for the Duplicator in the

existential k-cover game. Note that when h is a partial function, we use dom(h)
to denote the domain of h.

Definition 11. A winning strategy for the Duplicator in the existential k-cover
game on relational structures A,B is a non-empty set H of projective homo-
morphisms (from A to B) having the following two properties.

1. (the “forth” property) For every h ∈ H and A-element a /∈ dom(h), if
dom(h) ∪ {a} has weight ≤ k, then there exists a projective homomorphism
h′ ∈ H extending h with dom(h′) = dom(h) ∪ {a}.

2. The set H is closed under subfunctions, that is, if h ∈ H and h extends h′,
then h′ ∈ H.

As we mentioned, the definition of this game is based on the existential k-
pebble game introduced by Kolaitis and Vardi [18,20]. In the existential k-pebble
game, the number of pebbles that the Spoiler may use is bounded by k, and the
Duplicator need only must ensure that h is a partial homomorphism. A close
relationship between this game and bounded treewidth has been identified [2].

Theorem 12. [2] Let A and B be relational structures. For all k ≥ 2, the
following are equivalent.

– There is a winning strategy for the Duplicator in the existential k-pebble
game on A,B.

– For all relational structures T of treewidth < k, if there is a homomorphism
from T to A, then there is a homomorphism from T to B.

We have the following analog of Theorem 12.
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Theorem 13. Let A and B be relational structures. For all k ≥ 1, the following
are equivalent.

– There is a winning strategy for the Duplicator in the k-cover game on A,B.
– For all relational structures T of coverwidth ≤ k, if there is a homomorphism

from T to A, then there is a homomorphism from T to B.

Proof. (⇒) Let H be a winning strategy for the Duplicator in the k-cover
game on A and B, let T be any structure of coverwidth ≤ k, let f be any
homomorphism from T to A, let G = (T, F ) be a scheme for T of weight ≤ k,
and let v1, . . . , vn be a perfect elimination ordering of G.

We shall construct a sequence of partial mappings g0, . . . , gn from T to B
such that for each i:

1. dom(gi) = {v1, . . . , vi}, and
2. for every clique L ⊆ {v1, . . . , vi} in G, there exists a projective homomor-

phism h ∈ H with domain f(L) in the winning strategy of the Duplicator,
such that for every v ∈ L, h(f(v)) = gi(v).

We define g0 to be the partial function with empty domain. For every i ≥ 0,
the partial mapping gi+1 is obtained by extending gi in the following way. As
v1, . . . , vn is a perfect elimination ordering, the set

L = {vi+1} ∪ {vj : j < i + 1, (vj , vi+1) ∈ F}

is a clique of G. Define L′ as L\{vi+1}. By the induction hypothesis, there exists
h ∈ H such that for every v ∈ L′, h(f(v)) = gi(v). Let us consider two cases.

If f(vi+1) = f(vj) for some vj ∈ L′ then we set gi+1(vi+1) to be gi(vj). Note
that in this case property (2) is satisfied, as every clique in G containing vi+1 is
contained in L and h serves as a certificate. (For any clique not containing vi+1,
we use the induction hypothesis.)

Otherwise, that is, if f(vi+1) �= f(vj) for all vj ∈ L′, we do the following.
First, since the weight of L is bounded above by k and f defines an homomor-
phism from T to A then the weight of f(L) is also bounded by k. Observe that
f(L) = dom(h) ∪ {f(vi+1)}. By the forth property of winning strategy there
exists an extension h′ ∈ H of h that is defined over vi+1. We set gi+1(vi+1) to
be h′(f(vi+1)). Note that h′ certifies that property (2) is satisfied for very clique
containing vi+1; again, any clique not containing vi+1 is covered by the induction
hypothesis.

Finally, let us prove that gn indeed defines an homomorphism from T to B.
Let R be any relation symbol and let (t1, . . . , tl) be any relation in RT. We want
to show that (gn(t1), . . . , gn(tl)) belongs to RB. Since G is an scheme for T,
{t1, . . . , tl} constitutes a clique of G. By property (2) there exists h ∈ H such
that h(f(ti)) = g(ti) for all i. Observing that as f is an homomorphism from
T to A, we can have that (f(t1), . . . , f(tl)) belongs to RA. Finally, as h is a
projective homomorphism from A to B, the tuple (h(f(t1)), . . . , h(f(tl))) must
be in B.
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(⇐) We shall construct a winning strategy H for the Duplicator. We need
a few definitons. Fix a sequence a1, . . . , am of elements of A. A valid tuple for
a1, . . . , am is any tuple (T, G, v1, . . . , vm, f) where T is a relational structure,
G is an scheme of weight k for T, {v1, . . . , vm} is a clique of G, and f is an
homomorphism from T, v1, . . . , vm to A, a1, . . . , am. (By a homomorphism from
T, v1, . . . , vm to A, a1, . . . , am, we mean a homomorphism from T to A that
maps vi to ai for all i.) By S(T, G, v1, . . . , vm, f) we denote the set of all map-
pings h with domain {a1, . . . , am} such that there is an homomorphism from
T, v1, . . . , vm to B, h(a1), . . . , h(am). We are now in a situation to define H . H
contains for every subset a1, . . . , am of weight at most k, every partial mapping
h that is contained in all S(T, G, v1, . . . , vm, f) where (T, G, v1, . . . , vm, f) is a
valid tuple for a1, . . . , am.

Let us show that H is indeed a winning strategy. First, observe that H
is nonempty, as it contains the partial function with empty domain. Second,
let us show that H contains only projective homomorphisms. Indeed, let h
be any mapping in H with domain a1, . . . , am, let R be any relation symbol
and let (c1, . . . , cl) be any tuple in RA. Let us define T to be the substruc-
ture (not necessarily induced) of A with universe {a1, . . . , ak, c1, . . . , cl} con-
taining only the tuple (c1, . . . , cl) in RT. It is easy to verify that the graph
G = ({a1, . . . , ak, c1, . . . , cl}, F ) where F = {(ai, aj) : i �= j} ∪ {(ci, cj) : i �= j}
is an scheme of T of weight ≤ k. Consequently, (T, G, a1, . . . , am, id) is a valid
tuple for a1, . . . , am and therefore there exists an homomorphism g from T to
B, and hence satisfying (g(c1), . . . , g(cl)) ∈ RB, such that g(ai) = h(ai) for all
i = 1, . . . k.

To show that H is closed under subfunctions is rather easy. Indeed, let h′ be
any mapping in H with domain a1 . . . , am. We shall see that the restriction h of
h′ to {a1, . . . , am−1} is also in H . Let (T, G, v1, . . . , vm−1, f) be any valid tuple
for a1, . . . , ak−1. We construct a valid tuple (T′, G′, v1, . . . , vm, f ′) for a1, . . . , am

in the following way: vm is a new (not in the universe of T) element, T′ is the
structure obtained from T by adding vm to the universe of T and keeping the
same relations, f ′ is the extension of f in which vm is map to am, and G′ is the
scheme of T obtained by adding to G an edge (vj , vm) for every j = 1, . . . , m−1.
Since (T′, G′, v1, . . . , vm, f ′) is a valid tuple for a1, . . . , am and h′ ∈ H , there
exists an homomorphism g′ from T′, v1, . . . , vm to B, h′(a1), . . . , h′(am). Observe
then that the restriction g of g′ to {a1, . . . , am−1} defines then an homomorphism
from T, v1, . . . , vm−1 to B, h(a1), . . . , h(m1).

Finally, we shall show that H has the forth property. The proof relies in
the following easy properties of the valid tuples. Let a1, . . . , am be elements of
A and let (T1, G1, v1, . . . , vm, f1) and let (T2, G2, v1, . . . , vm, f2) be valid tuples
for a1, . . . , am such that T1 ∩ T2 = {v1, . . . , vm}, let T be T1 ∪T2 (that is, the
structure T whose universe is the union of the universes of T1 and T2, and in
which RT = RT1 ∪ RT2 for all relation symbols R), G = G1 ∪ G2 and let f
be the mapping from the universe T of T to B that sets a to f1(a) if a ∈ T1
and to f2(a) if a ∈ T2 (observe that f1 and f2 coincide over {v1, . . . , vm}). Then
(T, G, v1, . . . , vm, f) is a valid tuple for a1, . . . , am. We call (T, G, v1, . . . , vm, f),
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the union of (T1, G1, v1, . . . , vm, f1) and (T2, G2, v1, . . . , vm, f2). Furthermore,
S(T, G, v1, . . . , vm, f) ⊆ S(T1, G1, v1, . . . , vm, f1) ∩ S(T2, G2, v1, . . . , vm, f2) (in
fact, this is an equality, although we do not need the equality in our proof).

Let h be any mapping in H , let {a1, . . . , am−1} be its domain, and let am be
any element in the universe of A such that {a1, . . . , am} has weight ≤ k. Let us
assume, towards a contradiction, that there is not extension h′ of h in H. Then
there exists a finite collection {(Ti, Gi, v1, . . . , vm, fi) : i ∈ I} of valid tuples
for a1, . . . , am such that the intersection

⋂
i∈I S(Ti, Gi, v1, . . . , vm, fi) does not

contain any extension of h. We can rename the elements of the universes so that
for every different i, j ∈ I we have that Ti ∩ Tj = {v1, . . . , vm}.

Let (T, G, v1, . . . , vm, f) be the union of (Ti, Gi, v1, . . . , vm, fi), i ∈ I, which
is a valid tuple for a1, . . . , am. Since

S(T, G, v1, . . . , vm, f) ⊆
⋂
i∈I

S(Ti, Gi, v1, . . . , vm, fi)

we can conclude that S(T, G, v1, . . . , vm, f) does not contain any extension of h.
To finish the proof, it is only necessary to observe that (T, G, v1, . . . , vm−1, f) is
a valid tuple for a1, . . . , am−1 and since S(T, G, v1, . . . , vm, f) does not contain
any extension of h, S(T, G, v1, . . . , vm−1, f) cannot contain h, in contradiction
with h ∈ H . ��

Theorem 13 can be easily applied to show that in an instance A,B of the
CSP, if the left-hand side structure has coverwidth bounded by k, then deciding
if there is a homomorphism from A to B is equivalent to deciding the existence
of a Duplicator winning strategy in the existential k-cover game.

Theorem 14. Let A be a relational structure having coverwidth ≤ k, and let B
be an arbitrary relational structure. There is a winning strategy for the Duplicator
in the k-cover game on A,B if and only if there is a homomorphism from A to
B.

We will use this theorem in the next section to develop tractability results.
Although we use Theorem 13 to derive this theorem, we would like to emphasize
that the full power of Theorem 13 is not needed to derive it, as pointed out in
the proof.

Proof. If there is a homomorphism from A to B, the Duplicator can win by
always setting pebbles according the homomorphism. The other direction is im-
mediate from Theorem 13 (note that we only need the forward implication and
T = A). ��

4 The Algorithmic Viewpoint

The previous section introduced the existential k-cover game. We showed that
deciding a CSP instance of bounded coverwidth is equivalent to deciding if the
Duplicator has a winning strategy in the existential k-cover game. In this section,
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we show that the latter property–the existence of a Duplicator winning strategy–
can be decided algorithmically in polynomial time. To this end, it will be helpful
to introduce the notion of a compact winning strategy.

Definition 15. A compact winning strategy for the Duplicator in the existential
k-cover game on relational structures A,B is a non-empty set H of projective
homomorphisms (from A to B) having the following properties.

1. For all h ∈ H, dom(h) is a k-union (over A).
2. For every h ∈ H and for every k-union U (over A), there exists h′ ∈ H with

dom(h′) = U such that for every v ∈ dom(h) ∩ dom(h′), h(v) = h′(v).

Proposition 16. In the existential k-cover game on a pair of relational struc-
tures A,B, the Duplicator has a winning strategy if and only if the Duplicator
has a compact winning strategy.

Proof. Suppose that the Duplicator has a winning strategy H . Let C be the set
containing all functions h ∈ H such that dom(h) is a k-union. We claim that C
is a compact winning strategy. Clearly C satisfies the first property of a compact
winning strategy, so we show that it satisfies the second property. Suppose h ∈ C
and let U be a k-union. By the subfunction property of a winning strategy, the
restriction r of h to dom(h) ∩ U is in H . By repeated application of the forth
property, there is an extension e of r that is in H and has domain U , which
serves as the desired h′.

Now suppose that the Duplicator has a compact winning strategy C. Let H
be the closure of C under subfunctions. We claim that H is a winning strategy.
It suffices to show that H has the forth property. Let h ∈ H and suppose that
a is an A-element where dom(h) ∪ {a} has weight ≤ k. Let U be a k-union
such that dom(h) ∪ {a} ⊆ U . By definition of H , there is a function e ∈ C
extending h. Apply the second property of a compact winning strategy to e and
U to obtain an e′ ∈ C with domain U such that for every v ∈ dom(e)∩ dom(e′),
e(v) = e′(v). Notice that dom(h) ⊆ dom(e) ∩ dom(e′). Thus, the restriction of e′

to dom(h) ∪ {a} is in H and extends h. ��

We have just shown that deciding if there is a winning strategy, in an instance
of the existential k-cover game, is equivalent to deciding if there is a compact
winning strategy. We now use this equivalence to give a polynomial-time algo-
rithm for deciding if there is a winning strategy.

Theorem 17. For all k ≥ 1, there exists a polynomial-time algorithm that,
given a pair of relational structures A,B, decides whether or not there is a
winning strategy for the Duplicator in the existential k-cover game on A,B.

Proof. By Proposition 16, it suffices to give a polynomial-time algorithm that
decides if there is a compact winning strategy. It is straightforward to develop
such an algorithm based on the definition of compact winning strategy. Let H be
the set of all functions h such that dom(h) is a k-union (over A) and such that
h is a projective homomorphism from A to B. Iteratively perform the following
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until no changes can be made to H : for every function h ∈ H and every k-
union U , check to see if there is h′ ∈ H such that the second property (of
compact winning strategy) is satisfied; if not, remove h from H . Throughout the
algorithm, we have maintained the invariant that any compact winning strategy
must be a subset of H . Hence, if when the algorithm terminates H is empty,
then there is no compact winning strategy. And if H is non-empty when the
algorithm terminates, H is clearly a compact winning strategy.

The number of k-unions (over A) is polynomial in the number of tuples in
A. Also, for each k-union U , the number of projective homomorphisms h with
dom(h) = U from A to B is polynomial in the number of tuples in B. Hence,
the size of the original set H is polynomial in the original instance. Since in each
iteration an element is removed from H , the algorithm terminates in polynomial
time. ��

The algorithm we have just described in the proof of Theorem 17 may appear
to be quite specialized. However, we now show that essentially that algorithm
can be viewed as a general inference procedure for CSP instances in the vein of
existing consistency algorithms. In particular, we give a general algorithm called
projective k-consistency for CSP instances that, given a CSP instance, performs
inference and outputs a more constrained CSP instance having exactly the same
satisfying assignments as the original. On a CSP instance A,B, the algorithm
might detect an inconsistency, by which we mean that it detects that there is
no homomorphism from A to B. If it does not, then it is guaranteed that there
is a winning strategy for the Duplicator.

Definition 18. The projective k-consistency algorithm takes as input a CSP
instance A,B, and consists of the following steps.

– Create a new CSP instance A′,B′ as follows. Let the universe of A′ be the
universe of A, and the universe of B′ be the universe of B. Let the signature
of A′ and B′ contain a relation symbol RU for each k-union U over A. For
each k-union U , the relation RA′

U is defined as (u1, . . . , um), where u1, . . . , um

are exactly the elements of U in some order; and RB′
U is defined as the set of

all tuples (b1, . . . , bm) such that the mapping taking ui → bi is a projective
homomorphism from A to B.

– Iteratively perform the following until no changes can be made: remove any
B′-tuple (b1, . . . , bm) that is not a projective homomorphism.
We say that a B′-tuple (b1, . . . , bm) ∈ RB′

U is a projective homomorphism if,
letting (u1, . . . , um) denote the unique element of RA′

U , the function taking
ui → bi is a projective homomorphism from A′ to B′.

– Report an inconsistency if there are no B′-tuples remaining.

Theorem 19. For each k ≥ 1, the projective k-consistency algorithm, given as
input a CSP instance A,B:

– runs in polynomial time,
– outputs a CSP instance A′,B′ that has the same satisfying assignments as

A,B, and
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– reports an inconsistency if and only if the Duplicator does not have a winning
strategy in the existential k-cover game on A,B.

Proof. The first property is straightforward to verify. For the second property,
observe that, each time a tuple is removed from B′, the set of satisfying assign-
ments is preserved. For the third property, observe that, associating B′-tuples
to functions as in Definition 18, the behavior of the projective k-consistency al-
gorithm is identical to the behavior of the algorithm in the proof of Proposition
16. ��

By using the results presented in this section thus far, it is easy to show that
CSP instances of bounded coverwidth are tractable. Define the coverwidth of a
CSP instance A,B to be the coverwidth of A. Let CSP[coverwidth ≤ k] be the
restriction of the CSP to all instances of coverwidth less than or equal to k.

Theorem 20. For all k ≥ 1, the problem CSP[coverwidth ≤ k] is decidable in
polynomial time by the projective k-consistency algorithm. In particular, on an
instance of CSP[coverwidth ≤ k], the projective k-consistency algorithm reports
an inconsistency if and only if the instance is not satisfiable.

Proof. Immediate from Theorem 14 and the third property of Theorem 19. ��

Note that we can derive the tractability of CSP instances having bounded
hypertree width immediately from Theorem 20.

Now, given a CSP instance that is promised to have bounded coverwidth,
we can use projective k-consistency to decide the instance (Theorem 20). This
tractability result can in fact be pushed further: we can show that there is a
generic polynomial-time that, given an arbitrary CSP instance, is guaranteed
to decide instances of bounded coverwidth. Moreover, whenever an instance is
decided to be a “yes” instance by the algorithm, a satisfying assignment is con-
structed.

Theorem 21. For all k ≥ 1, there exists a polynomial-time algorithm that,
given any CSP instance A,B,

1. outputs a satisfying assignment for A,B,
2. correctly reports that A,B is unsatisfiable, or
3. reports “I don’t know”.

The algorithm always performs (1) or (2) on an instance of CSP[coverwidth ≤ k].

Proof. The algorithm is a simple extension of the projective k-consistency algo-
rithm. First, the algorithm applies the projective k-consistency algorithm; if an
inconsistency is detected, then the algorithm terminates and reports that A,B
is unsatisfiable. Otherwise, it initializes V to be the universe A of A, and does
the following:

– If V is empty, terminate and identify the mapping taking each a ∈ A to the
B-element in RB

a , as a satisfying assignment.
– Pick any variable v ∈ V .
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– Expand the signature of A,B to include another symbol Rv with RA
v =

{(v)}.
– Try to find a B-element b such that when RB

v is set to {(b)}, no inconsis-
tency is detected by the projective k-consistency algorithm on the expanded
instance.
• If there is no such B-element, terminate and report “I don’t know”.
• Otherwise, set RB

v to such a B-element, remove v from V , and repeat
from the first step using the expanded instance.

If the procedure terminates from V being empty in the first step, the mapping
that is output is straightforwardly verified to be a satisfying assignment.

Suppose that the algorithm is given an instance of CSP[coverwidth ≤ k]. If
it is unsatisfiable, then the algorithm reports that the instance is unsatisfiable
by Theorem 20. So suppose that the instance is satisfiable. We claim that each
iteration preserves the satisfiability of the instance. Let A,B denote the CSP
instance at the beginning of an arbitrary iteration of the algorithm. If no in-
consistency is detected after adding a new relation symbol Rv with RA

v = {(v)}
and RB

v = {(b)}, there must be a satisfying assignment mapping v to b by The-
orem 20. Note that adding unary relation symbols to a CSP instance does not
change the coverwidth of the instance. ��

We now expand the tractability result of Theorem 20, and show the tractabil-
ity of CSP instances that are homomorphically equivalent to instances of bounded
coverwidth. Formally, let us say that A and A′ are homomorphically equivalent
if there is a homomorphism from A to A′ as well as a homomorphism from
A′ to A. Let CSP[H(coverwidth ≤ k)] denote the restriction of the CSP to in-
stances A,B where A is homomorphically equivalent to a relational structure
of coverwidth less than or equal to k.

Theorem 22. For all k ≥ 1, the problem CSP[H(coverwidth ≤ k)] is decidable
in polynomial time by the projective k-consistency algorithm. In particular, on
an instance of CSP[H(coverwidth ≤ k)], the projective k-consistency algorithm
reports an inconsistency if and only if the instance is not satisfiable.
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Abstract. Still-life is a challenging problem for CP techniques. We show
how to use the global case constraint to construct ad-hoc constraints
which can provide stronger propagation than existing CP models. We
also demonstrate how to use BDDs to construct good representations
for the case constraint which is critical for efficiency. Our results seem
comparable to hybrid CP/IP models even though we are only using prop-
agation albeit on ad-hoc global constraints. This is rather promising since
it shows the potential of ad-hoc global constraints to do better than IP
global constraints.

1 Introduction

The game of Life was invented by John Horton Conway in the late 60s and
subsequently popularized by Martin Gardner [1]. A particularly difficult problem
in the game of Life is the still-life problem which is to find a maximum density
stable pattern. It has been used by many authors to explore issues in problem
formulation, symmetry and hybrid approaches using techniques from Constraint
Programming (CP) as well as Integer Programming (IP).

In this paper, our objective is two fold. Firstly, still-life is difficult because the
constraints in it are loose and we want to investigate how to get better constraint
propagation and search techniques for still-life. Secondly, and more importantly,
we use still-life as a difficult representative problem in which to apply global
constraints. The reason why we want to study global constraints for still-life is
that it is a good vehicle for investigating ad-hoc global constraints since there
are not special purpose global constraints with specialized algorithms such as
all different or cumulative which are designed for this problem.

We show how to create ad-hoc global constraints which can be used to get
better propagation for the still-life problem. One challenge with using ad-hoc
global constraints is the effectiveness of the algorithms and representations when
the arity is high and this also leads to the difficulty of dealing with a large
extensional constraint definition. The ad-hoc global constraints which we use in
still life are all of high arity ranging from 3 × 3 to 3 × n where n is the board
size and the size of the extensional constraint definition is already 7.6E7 for
n = 10. We demonstrate effective methods of using BDDs to construct ad-hoc
case constraints.

One might expect that the constraint solver would be bogged down with solv-
ing the high arity ad-hoc constraints. We demonstrate using our methodology

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 182–195, 2005.
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that one can construct effective global case constraints. While these constraints
are more expensive to solve, they are sufficiently efficient and can give stronger
propagation than the non-ad-hoc constraints such as arithmetic. While our ob-
jective is not to get the best results for still-life, the best results are with using
bucket elimination [2], we are able to significantly improve on pure CP propa-
gation based techniques and competitive with CP/IP hybrids.

2 Still Life Problem

The game of Life is played on an infinite (checker) board in which each square
is called a cell. Each cell has eight neighbors. A cell is alive if there is a checker
on it. Otherwise it is dead. The state of a board at time t determines its state
at time t + 1 based on the following three rules:

– If a cell has exactly 2 living neighbors at time t, its state remains unchanged
at time t + 1.

– If a cell has exactly 3 living neighbors at time t, then it is alive at time t+1.
This is the “birth” condition.

– If a cell has less than 2 or more than 3 living neighbors at time t, it is dead at
time t+1. These are the “death by isolation” and “death by over-crowding”
conditions respectively.

It is natural from the problem definition to think of a cell and its eight
neighbors as forming a “unit”. Smith [3] calls such 3× 3 square of cells a super-
cell. We expand this view and introduce three more super-units: a super-row is
a 3 × n rectangle; a super-column is a n × 3 rectangle; and a super-block is a
4× 4 square of the board. Super-cells and other super-units will be the basis for
constructing various models.

super−row

super−cell

super−block

Fig. 1. A 8 × 8 board made to 9× 9 by padding dead cells (shaded). A super-cell is
any 3 × 3 square of cells. A super-row is a 3 × n (here n = 9) rectangle of cells. A
super-block is a 4× 4 square of cells.
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Fig. 2. A 3x3 still-life pattern

Figure 1 gives the graphical representation of an 8 × 8 board, and various
super-units. Since a super-column is a transposed super-row, we focus our dis-
cussion on super-row only. In the remainder of the paper, we can assume without
loss of generality that n is a multiple of 3 since it is always possible to enlarge
the board by padding dead cells to size n′ × n′ where n′ is a multiple of 3.

A still-life pattern of a board is one that remains unchanged over time. The
density of a region is the number of living cells within that region. The Still Life
problem in an n × n square of a board (all the rest of the board is dead) is to
determine a still-life pattern with the maximum density. Figure 2 shows a 3× 3
still-life pattern.

2.1 The Basic Model

Still-life in a n×n region can be modeled in a straightforward fashion as a CSP.
Each cell at the i-th row and the j-th column is associated with a 0–1 variable xi,j

which is 1 if the cell is alive and is 0 otherwise. Throughout this paper, we will
abuse notation slightly when referring to a variable to mean either the variable
or the object it represents. Let Ni,j = {xi+d,j+e | d, e ∈ {−1, 0, 1}∧ d2 + e2 �= 0}
be the neighbors of xi,j . The birth and death conditions can be formulated as

SCi,j ≡ (xi,j = 1→ 2 ≤
∑

u∈Ni,j

u ≤ 3) ∧ (xi,j = 0→
∑

u∈Ni,j

u �= 3).

We call SCi,j a super-cell (SC) constraint. The arity of SCi,j is 9. Extra con-
straints are added on every three adjacent cells along the border to forbid all of
them from being alive, otherwise a cell outside the border would become alive.
The objective is to maximize the density

f =
∑

1≤i,j≤n

xi,j .

We call this model which employs only super-cell constraints (in arithmetic form)
M0.

3 New Improved Still Life Models

As reported by Bosch et. al. [4], the super-cell constraints are too weak for
constraint propagation to be effective, which results in late detection of local
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inconsistency and a huge search tree. They propose a hybrid CP approach com-
bining CP with IP. They show that the use of IP to provide global constraints
can significantly reduce the search space with a large improvement in overall
search times. Smith [3] shows a dual encoding on the super-cells implemented
using the table constraint in ILOG Solver. This paper is inspired by these two
approaches and we use both super-cells and ad-hoc constraints.

One possible way to improve the efficiency of constraint propagation is to
combine several constraints into a single larger constraint. The idea here is to
see if the combination can be used to get more propagation. In the remainder
of the paper, we show how to model still-life using increasingly complex ad-hoc
constraints as follows:

– In modelMr, a chain of super-cell constraints along a super-row are replaced
by a single super-row constraint.

– In the model Mr+d, a super-row density constraint is used in which the
density of a super-row is “pushed” into the constraint itself.

– In the modelMr+d+b, we join also the border constraints with the super-row
density constraint.

Finally, there is a more general improvement that replaces four super-cell con-
straints with a single super-block constraint.

3.1 Model Mr: Super-Rows and Super-Columns

The idea here is to investigate whether a super-cell constraint can be extended
further. A natural extension is to consider a row or column of super-cells. A
super-row (respectively super-column) is a horizontal 3×n rectangle (respectively
n× 3 rectangle for a super-column).

Model, Mr, consists of the following constraints:

– A disjoint set of super-row SRi constraints which partition the board into
3 × n rectangles. Super-column constraints similarly partition the board in
the vertical direction.

– A set of border constraints. These are as in modelM0.
– A set of overlapping super-cell constraints that link up two adjacent super-

rows. Similarly, these super-cell constraints also link up adjacent super-
columns.

The constraints are illustrated in Figure 3. The super-cell constraints are needed
since a super-row or super-cell doesn’t consider cells outside its boundary.

Modeling and Representing the Super-Row Constraint. The question
then with model Mr is how to represent the super-row constraint which is
an ad-hoc constraint. There are three different frameworks to represent an ad-
hoc constraint. The most straightforward one is to store the tuples (solutions)
defining the ad-hoc in an extensional form [5,6], e.g. an array or table. The
table constraint in ILOG Solver provides this way of defining ad-hoc constraints.
The main drawback is that the size of the table is determined by the number



186 K.C.K. Cheng and R.H.C. Yap

super−column constraint

constraint

super−row constraint

border
super−cell
constraints

Fig. 3. Graphical representation of Mr

1..1 2..2 3..3 5..5X

Y

true

3..4 3..3 1..2 4..5Y Y

Fig. 4. A DAG representation of Cadhoc

0 1

x[1,1]

x[3,1]x[3,1]

x[2,1]x[2,1]x[2,1]

x[1,2]x[1,2]x[1,2]

x[3,2]x[3,2]x[3,2]

x[2,2]x[2,2]x[2,2]

x[1,3] x[1,3]x[1,3] x[1,3]

x[3,3] x[3,3] x[3,3]

x[2,3] x[2,3]

x[3,3]

x[1,3]x[1,3]

x[3,3]

x[2,2]

x[1,3]x[1,3]

x[3,2]

x[2,2]

x[1,2]

x[3,2]

x[2,2]

Fig. 5. The BDD representation of the super-cell constraint SC2,2
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of solutions, which can grow exponentially with constraint arity. This restricts
their use to tight constraint with moderate arity. Unfortunately in the case of
super-row constraints, the arity is high and the number of solution is large, e.g.
a 3× 7 super-row has 145365 tuples.

The second framework is to identify or extract some arithmetic or symbolic
relations from the solution set (e.g. [7,8]). While the representation is usually
more compact, these approaches often require expensive pre-processing and the
propagation on such high-level could be weak. Since a super-row constraint aims
for strong propagation, we cannot use this approach.

The last framework is to represent the solution set in some compact data
structure and build a tailor-made propagation algorithm on top of it (e.g. [9]).
The ad-hoc non-binary case/4 constraint provided by SICStus Prolog [10] be-
longs to this category. We are going to show why it is ideal for a super-row
constraint.

User can specify the level of consistency the case constraint enforces, such as
generalized arc consistency (GAC). To use the case constraint, the solutions of
the ad-hoc constraint should be represented as a directed acyclic graph (DAG)
which is recursively defined as follows. A case DAG whose root is of the form
node(G,x,[r1 −G1, . . . , rm −Gm]) defines the constraint

〈G〉 ≡
m∨

k=1

(x ∈ rk ∧ 〈Gk〉)

where each Gk is a case DAG. For instance, Figure 4 depicts the DAG repre-
sentation of Cadhoc with solutions {(x, 1), (y, 3)}, {(x, 2), (y, 3)}, {(x, 2), (y, 4)},
{(x, 3), (y, 1)}, {(x, 3), (y, 2)}, {(x, 3), (y, 4)}, {(x, 3), (y, 5)}, and {(x, 5), (y, 3)}.

Obviously the efficiency of case is related to the compactness of the DAG
used.1 For instance, if there are two caseDAGs representing the same constraint,
we should use the smaller DAG in the case. The problem of finding a compact
case DAG is non-trivial, and SICStus Prolog assumes that the user comes up
with a DAG for the case. Our approach is to make use of the fact that each xi,j

in still-life is Boolean which allows us to construct a binary decision diagram
(BDD) of the ad-hoc constraint. This can then be converted to a case DAG. In
our experiments, we use the BDD package BuDDy 2.4 to manipulate BDDs.2

Binary decision diagram (BDD) [11] is a state of the art representation for
propositional logic formulas which is heavily used in CAD. We can view a BDD
as a special form of a case DAG: a BDD node rooted at node(G,x,[(0..0)−
G0, (1..1)−G1]) defines the constraint

〈G〉 ≡ (x = 0 ∧ 〈G0〉) ∨ (x = 1 ∧ 〈G1〉)

where G0 and G1 are BDDs. In BDD terms G0 is the 0-successor and G1 is
the 1-successor of x. A BDD has two terminals, namely the 0-terminal which
1 We do not have any knowledge about the implementation; it is not described in the

SICStus documentation.
2 http://sourceforge.net/projects/buddy
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means false and the 1-terminal which means true. Figure 5 shows the BDD
constructed for the super-cell constraint SC2,2. Each node x[i,j] represents a
cell variable xi,j . The solid and the dotted out-going arrows of a node point to
its 1 and 0-successors respectively. The two terminals of a BDD are drawn as
two gray boxes.

While a BDD may give a compact representation for many Boolean functions,
it can of course be exponentially large in the worst case. In practice, the BDD
size is often sensitive to the underlying variable ordering. As an example, suppose
we want to construct a single BDD for SC2,2 ∧SC2,3. Under the lexicographical
ordering, the BDD (Figure 6(c)) has 180 nodes. Under a different spiral-like
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Fig. 6. (a) The BDD variable ordering for super-row constraint. (b) The BDD that
represents a 3 × 4 super-row under the variable ordering in (a) has 95 nodes. (c) The
same BDD under lexicographical variable ordering has 180 nodes.
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ordering (depicted in Figure 6(a)), namely, x1,1, x3,1, x2,1, x1,2, x3,2, . . . , x2,4, the
BDD has only 95 nodes. Figure 7 show the sizes of the BDD for the super-row
(SR) constraint

SRi ≡
n−1∧
i=2

SCi

which is a conjunction of n− 2 super-cell constraints. We observe that under a
“good” (spiral-like) ordering, the size of the BDD grows linearly with n. Under
a “bad” (lexicographical) ordering, however, the BDD blows up exponentially.
For instance, at n = 10 there are ≈ 7.6E7 solutions and the good BDD ordering
has 559 nodes while the bad has 1221965 nodes. At n = 40, the good BDD
only needs 2944 nodes to encode ≈ 1.9E28 solutions. In all instances in Figure 7
under the good ordering, the BDD construction time takes within two seconds,
thus the ad-hoc constraint construction time is not significant.

3.2 Results for Models M0 and Mr

Similar to [3,12], search is done on a set of disjoint super-cells which partition
the board. The super-cell is treated as a single auxiliary variable yi,j which
represents its associated sub-cells using the following constraint:

yi,j =xi−1,j−1+2xi−1,j + 4xi−1,j+1 + 8xi,j−1 + 16xi,j + 32xi,j+1 + 64xi+1,j−1+
128xi+1,j + 256xi+1,j+1.

However, unlike in [3], the initial domains of the auxiliary variables are calculated
from the constraint given and hence consist of the whole range of integers from
0 to 511.

We use a search strategy with variables being instantiated lexicographically
and using domain splitting (i.e. yi,j ≤ d ∨ yi,j > d where d is the mid-point of
the domain). The upper region of the domain is explored first. We found this
search strategy to be better than smallest domain.

Table 1 summarizes the experimental results for 3 models. The columns n
and opt give the maximum density of the still-life pattern in a n×n region. Our
experimental platform is SICStus Prolog 3.12.1. Experiments were run on a PC
running Windows XP, with a P4 3.2GHz CPU and 2 GB physical memory. We
give the number of backtracks (bt), execution time (time in seconds) and memory
used (mem in MB in SICStus) for still-life on each model. A time limit of 3600
seconds is used. Model Mr(lex) is the Mr model with the case constraint on
the “bad” variable ordering.

As we have observed that the super-row constraints are not tight, modelMr

only gives slightly more propagation than M0 as expected. Here, the overhead
of the global constraint outweighs the search pruning andMr exceeds the time
limit for n = 10. The results onMr(lex) show the importance of having a good
representation for the ad-hoc constraint: whileMr used only 3.6 MB for n = 9,
Mr(lex) needed 182.1 MB. Note that Mr and Mr(lex) are equivalent models,
hence give the same propagation, and they differ only in the representation of
the SRi constraints. For n = 10 withMr(lex), SICStus Prolog aborted with an
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out of memory error. Table 2 summarizes the experimental results from other
papers: CP/IP [4] which uses a hybrid of CP super-cell constraints and IP; the
dual encoding [3]; and super-cell variables [12]. We caution that comparison of
time is not meaningful because of different systems are used, both the software
and hardware differ. The column cho gives the number of choice-points and bt the
number of backtracks. The super-cell variables is similar to M0 but it appears
that our search heuristic is better for larger n.

We have not presented any results using symmetries. We found that the sim-
ple use of constraints to remove reflection symmetries did not give much prun-
ing ([4] also found the same for their CP model). More sophisticated symmetry
breaking techniques [12] could be used but we did not have a SBDS implemen-
tation in SICStus Prolog available to use. In any case, symmetry breaking is
orthogonal to our goals in this paper.

Table 1. Experimental results on M0, Mr and Mr(lex)

M0 Mr Mr(lex)
n opt

bt time mem bt time mem bt time mem

6 18 2568 0.3 2.2 2539 0.4 3.5 2539 0.4 6.6
7 28 3512 0.5 2.7 3438 0.6 3.5 3438 0.9 15.3
8 36 54623 7.8 2.7 53126 9.4 3.6 53126 23.1 40.4
9 43 2450406 314.4 3.5 2420472 408.7 3.6 2420472 1700.6 182.1

10 54 25236397 3587.5 3.5 > 3600.0 mem out

Table 2. Experimental results on CP/IP and dual encoding

CP/IP [4] Dual encoding [3] Super-cell variables [12]
n opt

cho time bt time bt time

6 18 - - 181 2.2 1689 6.4
7 28 - - 3510 16.2 10939 48.3
8 36 2310 3 53262 264.0 238513 1418.8
9 43 46345 85 2091386 10300.0 - -

10 54 98082 291 - - - -
11 64 268520 655 - - - -
12 76 11772869 49166 - - - -
13 90 10996298 50871 - - - -

3.3 Model Mr+d: Super-Rows with Density

The use of super-row constraints fails to improve the propagation efficiency be-
cause the underlying super-cells are themselves sufficiently loose that joining
them doesn’t prune the search space by much.

Since the super-row constraint is still loose, it suffers from the problem that
unless a large part of a row is instantiated, one would not get much interaction
between a super-row constraint and the maximum density. Summing the cells
in a super-row will get little propagation since most of the cells can be 0 or 1.
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Hence, our next step is to modify the super-row constraint to include the density
of the super-row itself:

SRDi ≡ (fi =
∑

d∈{−1,0,1}

n∑
j=1

xi+d,j) ∧ SRi

We call this a super-row density (SRD) constraint. (Note we do not include the
border constraints.) Its scope includes the variable fi which gives the density of
this super-row, and the variables in SRi. In other words, it has 3n+1 variables.

Generating the Super-Row Density Constraint. Since each super-cell has
at most 6 living cells and for solving still-life, it is reasonable to assume to a
super-row has at least 1 living cell, we know 1 ≤ fi ≤ 2n (a super-row has
at most n/3 super-cells). The case DAG for a ad-hoc SRDi constraint can be
constructed as follows. We first create 2n BDDs, each represents the constraint

Ck ≡ (k =
∑

d∈{−1,0,1}

n∑
j=1

xi+d,j) ∧ SRi

and link them with an extra node(SRDi,fi,[(1..1)−C1, . . . , (2n..2n)−C2n]).
Note that the BDDs for any two constraints may overlap, i.e. they may share
the same sub-BDDs. This is an important by product of using BDDs.

To fully utilize the densities of the super-rows, we add an extra constraint
f =

∑
fi which links the densities to the overall density of the board. Similarly,

we use SRDj for super-columns and add another constraint f =
∑

ej where ej

is the density of the j-th super-column. We call this model Mr+d.

3.4 Model Mr+d+b: Specializing for the Border

In Mr or Mr+d, the super-row (density) constraints involve only super-cell
constraints. In the next model Mr+d+b, we obtain an even stronger super-row
constraint by joining also the border constraints:

SRDBi ≡ SRDi ∧
∧

j∈{1,n}
(SCi,j ∧ xi−1,j + xi,j + xi+1,j ≤ 3)

for 3 ≤ i ≤ n− 2 and

SRDB2 ≡ SRD2 ∧
∧

j∈{1,n}
SC2,j ∧

n∧
j=1

(SC1,j ∧ x1,j−1 + x1,j + x1,j+1 ≤ 3)

SRDBn−1 ≡ SRDn−1∧
∧

j∈{1,n}
SCn−1,j∧

n∧
j=1

(SCn,j∧xn,j−1 +x1,j +xn,j+1 ≤ 3)

They are called super-row density border (SRDB) constraints.
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3.5 Model Mr+d+b + SB: Adding Super-Blocks

Finally, we can replace the four super-cells in a super-block by a single super-
block constraint

SBi,j ≡
∧

d∈{0,1}

∧
e∈{0,1}

SCi+d,j+e.

The BDD for a super-block constraint has 647 nodes. A model M which uses
super-block constraints are denoted asM+SB. Recall in Figure 3 that super-cell
constraints are needed to connect the super-row and super-column constraints
among all models. Hence, we can replace these super-cell constraints with super-
block constraints for any models as illustrated in Figure 8.

super−block
constraints

Fig. 8. Arrangement of four super-block constraints in a 9 × 9 board (super-row and
super-column constraints not shown; border constraints are needed for Mr and Mr+d)

4 Experimental Results

In this section, we present the experimental results on Mr+d, Mr+d+b and
Mr+d+b + SB. We first show in Figure 9 the sizes and the time to generate
the case DAGs for the SR, SRD and SRDB constraints for n from 6 to 20. We
include two types of SRDB constraints, namely SRDB2 which is the super-row
on the board edge and SRDBi which is the super-row inside. While the size
of the SR constraint is small, both SRD and SRDB have a slow exponential
growth. This is because the join of the border and the density function perturbs
the “perfect” structure of the underlying SR constraint. However, this problem
is not serious because n is still small and in SICStus Prolog, we can share the
same DAG between different ad-hoc constraints, Thus, for any fixed n, we only
need to generate one case DAG for all SR (SRD or SRDB) constraints to share.

Table 3 lists the experimental results. First, all three models perform much
better than M0 and Mr. For example, while n = 10 is difficult for M0 and
Mr, it becomes quite easy for the new models. This justifies the integration of
the density function and the super-row constraint. However, the density function
alone is not enough as we seeMr+d could not solve n = 11 within the time limit.
BothMr+d+b andMr+d+b +SB could solve n = 11. We only attempted n = 12
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Fig. 9. (a) Number of nodes in the case constraints and (b) generation time of the
BDDs for SR, SRD, SRDi and SRD2

Table 3. Experimental results on Mr+d, Mr+d+b and Mr+d+b + SB

Mr+d Mr+d+b Mr+d+b + SB
n opt

bt time mem bt time mem bt time mem

6 18 881 0.2 5.8 51 0.0 5.6 50 0.0 5.6
7 28 737 0.3 6.1 40 0.0 5.9 36 0.0 5.9
8 36 1881 1.0 6.5 175 0.1 6.1 172 0.1 6.2
9 43 370340 133.0 6.8 4507 2.1 7.0 4224 2.0 6.9

10 54 3304788 1551.5 7.6 75558 45.9 7.2 60010 38.9 10.7
11 64 > 3600.0 1195619 1034.3 7.4 1134526 1013.5 10.9
12 76 - 34235923 28635.8 14.1 33164165 28388.0 12.3

with Mr+d+b and Mr+d+b + SB. Both found the maximum density within 8
hours. We also found the improvement by super-block constraints is not very
significant.

When the search space is too large, one might try a limited discrepancy search
(LDS) [13] to find a (nearly) optimal solution. Informally, w.r.t. our labeling
strategy, restricting the discrepancy to k means, on the path leading to the
maximum density, there are at most k choice-points in which a low branch (i.e.
yi,j ≤ d) was taken. The assumption behind LDS is that a good variable ordering
heuristic made only a few mistakes to find a solution. Intuitively this implies LDS
would give a more accurate (or close to optimal) solution if the constraints inside
a CSP model are tight. Note that a fairly tight lower bound on the maximum
density can be obtained by using the symmetrical version of the still-life problem.
Here, we simply want to investigate the differences between the models and effect
of propagation on the maximum density.

Table 4 presents the nearest maximal density LDS can find using a discrep-
ancy of 2 for our models. The column opt (from [2]) gives the maximal density
for different n. Where LDS(2) gives the optimum, it been emphasized in bold.
We see that the M0,Mr,Mr+d and Mr+d + SB give the same results and
where a dash indicates that LDS failed and was unable to find a solution within
a discrepancy of 2. While we do not expect that LDS(2) can give good bounds
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Table 4. Experimental results on LDS = 2

n opt [2] M0, Mr, Mr+d+b Mr+d+b + SB
Mr+d, Mr+d + SB

6 18 18 18 18
7 28 27 28 28
8 36 36 36 36
9 43 40 42 42

10 54 47 54 54
11 64 64 64 64
12 76 48 75 75
13 90 77 85 85
14 104 100 100 100
15 119 - 109 109
16 136 - 129 129
17 152 144 144 144
18 171 - 153 153
19 190 - 177 180
20 210 196 196 196

for still-life, it is interesting to note that the models with stronger constraints
can find the lower bound more often than those with weaker constraints.

5 Discussion

We show that by using ad-hoc constraints, it is possible to get much more prop-
agation for still-life. The number of backtracks is significantly better than the
CP models in [3,4,12]. When comparing with the hybrid CP/IP model3, the
Mr+d+b +SB seems to be comparable (sometimes more pruning and sometimes
less). While it is difficult to compare our ad-hoc global constraints with IP, we
conjecture that from the results it seems to capture some of the same pruning
power. In their CP/IP model, they had to remove some of the IP constraints in
order to get results. This must have been because solving the additional IP con-
straints must have drastically increased the solver time. With the ad-hoc global
constraints, as n increases, possibly similar solver effects should creep in that the
cost of maintaining global constraints grows faster than the benefit. However, in
the results, while the case constraint solving costs do increase, it seems to be
reasonable.

The best results for still-life are with bucket elimination [2]. This is because
of the structure of the life constraints which are quite localized, as such, one
can expect that pure CP propagation and search cannot be as good. Bucket
elimination however trades time for space and has a growing exponential space
requirement. In still-life, it turns out that bucket elimination can still solve larger

3 [4] uses the number of choice-points. Their backtracks should be at least as much as
the number of choice-points.
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problems than with a pure CP model though this paper narrows the gap. We be-
lieve that ideas from this paper are compatible with bucket elimination and this
is scope for further work. We have also not investigated the use of more powerful
symmetry removal such as SBDS, this is partly because of lack of support for
SBDS in SICStus Prolog. Similarly, it might be interesting to investigate a hy-
brid ad-hoc constraints and IP model. Again because SICStus Prolog is the only
CP system available with the case constraint and does not have an integration
with an IP solver, we cannot test this. We emphasize that exploiting symmetries
and IP models are not a restriction of this paper but one imposed by availability
of the case constraint.

Finally, this paper is an instructive demonstration of how to use the case
constraint effectively. The case constraint is difficult to use precisely because
it is unclear how to build the DAGs. We show an approach using BDDs which
work well for problems with 0–1 domains.
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1 Departament de Tecnologia, Universitat Pompeu Fabra
victor.dalmau@upf.edu

2 Department of Software (LSI), Universitat Politècnica de Catalunya
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Abstract. We contribute to the algebraic study of the complexity of
constraint satisfaction problems. We give a new sufficient condition on a
set of relations Γ over a domain S for the tractability of CSP(Γ ): if S
is a block-group (a particular class of semigroups) of exponent ω and
Γ is a set of relations over S preserved by the operation defined by the
polynomial f(x, y, z) = xyω−1z over S, then CSP(Γ ) is tractable. This
theorem strictly improves on results of Feder and Vardi and Bulatov et
al. and we demonstrate it by reproving an upper bound of Kĺıma et al.

We also investigate systematically the tractability of CSP(Γ ) when Γ
is a set of relations closed under operations that are all expressible as
polynomials over a finite semigroup S. In particular, if S is a nilpotent
group, we show that CSP(Γ ) is tractable iff one of these polynomials
defines a Malt’sev operation, and conjecture that this holds for all groups.

1 Introduction

Constraint satisfaction problems (CSPs) provide a natural way to study in a
unified framework a number of combinatorial problems arising in various areas
of computer science. An instance of CSP consists of a list of variables, a domain,
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and a set of constraints relating the variables and we ask whether the variables
can be assigned domain values such that all constraints are satisfied.

In general, the CSP problem is NP-complete and one thus tries to identify
tractable (i.e., polynomial-time solvable) restrictions of it. In particular, much
attention has been paid to the case where the relations available to construct
constraints lie in a fixed finite set Γ of relations over a finite domain. The CSP
dichotomy conjecture states that for any such Γ the problem CSP(Γ ) is always
either tractable or NP-complete [10]. An algebraic approach has been particu-
larly successful in making progress on this question [12,11]: it was shown that the
tractability of CSP(Γ ) depends on the algebraic properties of the set of opera-
tions under which all relations of Γ are closed. This has lead to the identification
of broad classes of sets of relations (called ”islands of tractability”) for which
CSP(Γ ) is known to have polynomial-time algorithms [2,7,8,10,5] and has vali-
dated the dichotomy conjecture for domains of size two [16] and three [1].

A number of islands of tractability identified thus far have a common struc-
ture: they can be recast as constraint languages Γ invariant under a certain
polynomial over a semigroup. To illustrate this, consider the tractable cases in
the boolean domain, which were completely identified by Schaefer [16]. Of the six
tractable families (0-valid, 1-valid, horn, dual horn, bijunctive and affine [16]),
only the class of bijunctive problems cannot be accounted for in this framework.
For example, the class of horn problems corresponds to the sets of boolean rela-
tions invariant under the polynomial x · y, where · is the logical AND.

Additionally, some of the broadest conditions for tractability can also be ex-
pressed in terms of invariance under a polynomial over a semigroup. Indeed,
Feder and Vardi [10] have shown that if a set Γ of relations over a finite group
G is coset-generating (i.e. every R in Γ is a coset of a power of the group), then
CSP(Γ ) is tractable. Equivalently, Γ is coset-generating iff it is closed under the
ternary operation t(x, y, z) = xy−1z where multiplication is taken in the group1.
Another island of tractability uncovered by Bulatov, Jeavons, and Volkov [5]
states that CSP(Γ ) is tractable if Γ is closed under the multiplication of a par-
ticular type of semigroup called a block-group. This result generalizes a previous
result of Jeavons, Cohen, and Gyssens [12] where multiplication is taken in a
semilattice. In light of these results, we consider more systematically classes Γ
of relations whose closure properties can, as above, be expressed using polyno-
mials over a semigroup. Our long term objective is to classify all corresponding
problems CSP(Γ ) as either tractable or NP-complete.

By focusing on polynomials over semigroups (instead of considering general
arbitrary operations) we can still cover a number of natural cases and, addition-
ally, are able to potentially use the large corpus of known results in semigroup
theory. This connection can help us tackle one of the most difficult questions in
the study of tractable CSP’s: that of combining different sources of tractabil-
ity. Indeed, despite the large spectrum of results in the field, the algorithmic
principles behind all known tractable cases are quite limited: every tractable

1 In fact, [10] introduce the notion of coset-generating operations but it is more conve-
nient for our discussion to use the relational counterpart of their definition.
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case of CSP is solvable by either (1) enforcing some sort of local consistency,
(2) efficiently encoding (potentially) large relations, or (3) combining the first
two methods. Most of the recently identified tractable families fall into this third
category, and one can expect that much of the future progress in the study of the
complexity of CSPs is likely to come from a better understanding of the inter-
action between the different sources of tractability. Semigroup theory has devel-
oped many tools that allow one to view complex semigroups as “combinations”
of simpler ones, which in the constraint satisfaction world might correspond to
combining different sources of tractability.

In Section 3, we give a new sufficient condition for the tractability of CSP(Γ ).
We show that if S is a block-group of exponent ω and Γ is a set of relations over
S that are preserved by the ternary operation f(x, y, z) = xyω−1z then CSP(Γ )
is tractable. Our algorithm combines in a novel way the methods used in the
results of [10,5] just cited and can be applied to reprove an upper bound of [13]
which could not be inferred from the previously known islands of tractability.

In Section 4, we consider necessary conditions for the tractability of CSP(Γ )
when Γ ’s closure operations are expressed as polynomials over a semigroup S.
Results are given in terms of clones, or sets of such operations – definitions are
given in Section 2. For technical reasons, we restrict ourselves to idempotent
clones, which are known to still determine the complexity of CSP(Γ ). We show:

– If S is a commutative semigroup the sufficient condition given by the previous
theorem is also necessary: if C is a nontrivial idempotent clone of polynomials
over S, then C is tractable iff it contains the operation xyω−1z.

– If S is a nilpotent group and C is a nontrivial clone of polynomials over S
then C is tractable iff it contains a Malt’sev operation. This is a type of
operations of which xyω−1z is a prime example and that is known to imply
tractability [2,3]. We conjecture that this in fact holds for any finite group.

2 Preliminaries and Background

2.1 Finite Semigroups

A semigroup is a set S with a binary associative operation that we denote mul-
tiplicatively as ·S or · when no ambiguity exists. An element s ∈ S is said to be
idempotent if it is its own square, i.e. s2 = s. In this paper we are solely con-
cerned with finite semigroups, and in that case there exists a minimal integer ω
such that for all s ∈ S the element sω is idempotent. We call ω the exponent of
the semigroup. If S is a group then sω is the identity element of the group since
it is the only idempotent element.

A class of finite semigroups V is a pseudo-variety if it is closed under finite
direct products and formation of subsemigroups and homomorphic images. Some
of the pseudo-varieties that we will use are:

– SL, the pseudo-variety of finite semilattices, i.e. of commutative semigroups
in which every element is idempotent;
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– Ab, the pseudo-variety of finite Abelian groups;
– BG, the pseudo-variety of block-groups, or semigroups that satisfy the iden-

tity (xωyω)ω = (yωxω)ω.

Our main theorem concerns block-groups, an important class in the theory of
finite semigroups that admits a number of interesting characterizations [15]. We
state some of their relevant properties. Most useful to us will be the following: the
finite semigroup S is not a block-group iff it contains two distinct idempotents
e, f such that ef = e and fe = f or such that ef = f and fe = e. It can easily be
deduced that semilattices and groups are special cases of block-groups, but not
all block-groups are in the pseudo-variety generated by semilattices and groups.

Let ES : {sω : s ∈ S} be the set of idempotents of S. If S ∈ BG, the
subsemigroup of S generated by ES satisfies (xy)ω = (yx)ω. This can be used to
show that if two sequences e1, . . . , en and f1, . . . , fm of idempotents of S satisfy
{e1, . . . , en} = {f1, . . . , fm} (as sets), then (e1 . . . en)ω = (f1 . . . fm)ω.

For any semigroup S and any idempotent e ∈ S, the set of elements s such
that es = se = s forms a subgroup Ge with identity element e. For all s ∈ Ge

we have sω = e and thus sω+1 = s. We will say that s ∈ S is a subgroup element
if it lies in some Ge. We will say that a semigroup is a union of groups if all its
elements are subgroup elements.

2.2 CSPs and Universal Algebra

Let D be a finite domain and Γ be a finite set of relations over D. In the sequel,
D and Γ will always denote respectively a finite domain and a finite set of
relations over that domain. The constraint satisfaction problem over Γ , denoted
CSP(Γ ) is the following decision problem. The input consists of a list of variables
x1, . . . , xn and constraints that are pairs (Si, Ri) where Ri is a ki-ary relation
in Γ and Si, the scope of the constraint, is an ordered list of ki variables. We ask
whether the variables can be assigned values in D such that every constraint is
satisfied. It is conjectured that for any Γ the problem CSP(Γ ) is either tractable
or NP-complete [10]. Over the last ten years, a lot of ground was covered towards
establishing this conjecture using an algebraic approach pioneered by [12] that
considers the closure properties of Γ , as we next explain formally.

An operation f on D is simply a function f : Dt → D. We naturally extend f
so that it takes as inputs t k-tuples a1, . . . , at of values in D by defining

f(a1, . . . , at) = (f(a11, . . . , at1), . . . , f(a1k, . . . , atk)).

We say that a k-ary relation R over D is closed under f if for any t k-tuples
of R, say a1, . . . , at we also have f(a1, . . . , at) ∈ R.

By extension we say that Γ is closed under f if every relation of Γ is closed
under f , and denote as Pol(Γ ) the set of all such finitary operations f (the
notation is due to the fact that every such f is called a polymorphism of Γ ). The
fundamental link to the complexity of CSPs is the following theorem.

Theorem 1 ([11]). If Γ1, Γ2 are sets of relations over D such that Pol(Γ1) ⊆
Pol(Γ2) then CSP(Γ2) is polynomial-time reducible to CSP(Γ1).
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The following is a crucial property of all the sets of the form Pol(Γ ).

Lemma 2 ([12]). For any set of relations Γ over D: (1) Pol(Γ ) contains all
the projection functions πi,n(x1, . . . , xn) = xi. (2) If g is a k-ary operation in
Pol(Γ ) and f1, . . . , fk are t-ary operations in Pol(Γ ), then their composition

g(f1, . . . , fk)(x1, . . . , xt) = g(f1(x1, . . . , xt), . . . , fk(x1, . . . , xt))

is also in Pol(Γ ).

Note that from (1) and (2) it follows that Pol(Γ ) is also closed under identifi-
cation of variables, since this can be obtained by composition with projections.
In universal algebra lingo, a set of operations containing all the projections and
closed under composition is called a clone. For a set of operations F , we denote
by 〈F 〉 the clone generated by F , i.e. the smallest clone containing F .

Using the connection between CSP(Γ ) and Pol(Γ ) given by Theorem 1, we
say that a clone C is tractable if CSP(Γ ) is tractable for every Γ such that
C ⊆ Pol(Γ ). On the other hand, we say that C is NP-complete if there exists a
set of relations Γ such that C ⊆ Pol(Γ ) and CSP(Γ ) is NP-complete.

We can thus view the task of resolving the CSP dichotomy conjecture as
that of proving that any clone is either tractable or NP-complete. An important
simplification is known [6]: in order to obtain such a classification it suffices in
fact to consider clones in which every operation f is idempotent, i.e. satisfies
f(x, . . . , x) = x. We call these the idempotent clones.

The first half of this task is to identify tractable clones and many such islands
of tractability have already been identified in this way. For example, a ternary
operation M(x, y, z) is said to be Malt’sev if it satisfies M(x, x, y) = y and
M(x, y, y) = x: Bulatov showed that any clone containing a Malt’sev operation
is tractable [2,3]. This very general result covers an important special case first
identified as tractable by [10]: Suppose that the domain D is a finite group and
that any k-ary relation of Γ is a coset of a subgroup of Dk. We then say that Γ
is coset generating, and it can be verified from the definition of a coset that Γ
is closed under the operation M(x, y, z) = x · y−1 · z (where multiplication and
inverse are those of the group D). This operation is Malt’sev since M(x, x, y) =
xx−1y = y and M(x, y, y) = xy−1y = x as required.

Bulatov et al. [5] considered the tractability of clones generated by a semi-
group, i.e. generated by the binary operation x ·S y for some semigroup S. They
showed that the clone 〈·S〉 is tractable if S is a block-group and NP-complete
otherwise. This result extends another well-known result stating that any Γ
closed under the multiplication in a semilattice is tractable [12]. In both cases,
it is shown that such CSPs are solved by an arc-consistency algorithm [5,8,12].

For the remainder of this paper, we focus on clones whose operations can all
be described by expressions over a finite semigroup S. Formally, a polynomial P
over the semigroup S is simply a finite sequence P = xi1 · · · · ·xim of (possibly re-
peating) variables. A polynomial containing k distinct variables naturally defines
a k-ary function, but in order to express the projections with such polynomials
we allow for unused variables and e.g. represent the projection πi,n(x1, . . . , xn)
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by the polynomial xi. We say that a clone is a clone of polynomials if every
operation in the clone can be represented in this way. Note that the composition
of polynomials is again a polynomial so that the clone generated by a set of
polynomials is indeed a clone of polynomials.

3 A Polynomial that Guarantees Tractability

Our main goal in this section is to prove the following sufficient condition for
the tractability of a clone.

Theorem 3. If S is a block-group and C is a clone containing the polynomial
xyω−1z then C is tractable.

Note that when S is a group, this condition is equivalent to saying that
every Γ such that C ⊆ Pol(Γ ) is coset-generating. Also if C is generated by ·S for
some block-group S then in particular it must contain the polynomial xyω−1z,
which can be obtained from xy by composition. Hence this result generalizes the
results of [10,5] mentioned before.

Proof (Theorem 3). Let P be an instance of CSP(Γ ), with C ⊆ Pol(Γ ). If P has
any solution then it has one in which every variable xi has a value ai that is a
subgroup element. Indeed, by the closure properties of Γ , if a is a solution, then
aaω−1a = aω+1 also is and every component of the latter is a subgroup element.

We will give a polynomial-time algorithm to solve P , which works in two
stages. In the first stage, we assign to every variable xi some subgroup Gei such
that if P is satisfiable then it is satisfiable by an assignment that sets each xi

to a value in Gei . We will do this by using an arc-consistency procedure (see
e.g. [5,8,12]). In the second stage we reduce the CSP(Γ ) problem to an instance
of CSP(Λ), where Λ is a coset-generating set of relations over the direct product
of the subgroups Ge, and then solve this CSP with the algorithm of [10].

We begin by enforcing arc-consistency for P : to every variable xi, we associate
a set of possible values Vi ⊆ S. We find the largest Vi such that for any constraint
of P , say ({xi1 , . . . , xir}, R) and for any value aij ∈ Vij there exist aik

∈ Vik

s.t. (ai1 , . . . , air ) ∈ R. It is well known that this can be done in polynomial
time by initializing each Vi to S and gradually removing values that violate the
requirement above. Also, if any Vi becomes empty then P has no solution.

If V1, . . . , Vn are the sets produced by the arc-consistency algorithm, we define
ei to be the idempotent (

∏
a∈Vi

aω)ω. Recall that since S is a block group, the
value of a product of the form (sω

1 . . . sω
t )ω depends solely on the set {s1, . . . , st}

and our definition of ei is thus sound.

Lemma 4. If P has a solution then it has one in which each variable xi is
assigned a value ai that lies in the subgroup Gei where the ei = (

∏
a∈Vi

aω)ω are
the idempotents obtained through the arc-consistency algorithm.

Proof. Let b ∈ Sn be any solution to P and e = (e1, . . . , en). We claim that
a = e b e is then a solution of P satisfying ai ∈ Gei for all i.
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Since Γ is closed under the operation xyω−1z, it is also closed under xωz (by
identifying x and y) and under xωyωz (by substituting yωz for z in the previous
polynomial). By iterating this procedure, we get that for any m, Γ is closed under
the polynomial H(x1, . . . , xm+1) = (xω

1 . . . xω
m)ωxm+1 and, similarly, under the

polynomial F (x1, . . . , xm) = (xω
1 . . . xω

m)ωxm+1(xω
1 . . . xω

m)ω .
Consider any constraint of P , e.g. ({xi1 , . . . , xik

}, R). By assumption, we have
c = (bi1 , . . . , bik

) ∈ R. For a k-tuple t, let us denote for the moment as t[j] the
jth component of t. Since we have enforced arc-consistency, we know that for
each 1 ≤ j ≤ k and any value s ∈ Vij there exists some k-tuple t ∈ R with
t[j] = s. If {t1, . . . , tm} are the k-tuples of R obtained by finding such witnesses
for each j and each s ∈ Vij we get Vij = {tr[j] : r = 1 . . .m}. We can thus
deduce that eij = (

∏
r=1...m tr[j])ω for each j. By the closure properties of Γ we

also know that F (t1, . . . , tm, c) is in R. Since we have

F (t1, . . . , tm, c)[j] = (t1[j]ω . . . tn[j]ω)ω c[j] (t1[j]ω . . . tn[j]ω)ω = eij bij eij ,

we get that e b e is indeed a solution to P . Moreover, since each ei is idempotent,
we have eiai = eieibiei = eibiei = ai and similarly aiei = ai. Thus, ai ∈ Gei , as
claimed. ��

Thus, in polynomial time, we can associate to each variable xi a subgroup Gei

such that if CSP(Γ ) has any solution then it has one where xi is assigned a
value in Gei . Let G be the direct product

∏
Ge where the product is taken

over the idempotents e of S. For each idempotent e ∈ S, the group G has an
obvious subgroup isomorphic to Ge and we will identify any element lying in
one of these subgroups Ge of G with the corresponding element in the subgroup
Ge of S. For any k-ary relation R ∈ Γ and any k-idempotents ei1 , . . . , eik

(not
necessarily distinct) we define the relation Rei1 ,...,eik

⊆ Gk as consisting of tuples
(a1, . . . , ak) such that2

1. aj lies in the subgroup Gej of G;
2. (a1, . . . , ak) ∈ R when we view the aj ’s as elements of S.

The crucial observation is that each Rei1 ,...,eik
is coset-generating, i.e. closed

under the operation xyω−1z over the group G. Indeed, if a, b, c are k-tuples of
Rei1 ,...,eik

then certainly the jth component of ab
ω−1

c also lies in the subgroup

Gej . Furthermore, ab
ω−1

c ∈ Rei1 ,...,eik
since R is closed under xyω−1z.

Let Λ = {Rei1 ,...,eik
: R ∈ Γ ; eij ∈ S idempotent} be the set of all such

relations over G. Given an instance of CSP(Γ ) where every variable has been re-
stricted to lie in some particular subgroup we can naturally construct an instance
of CSP(Λ) that will be satisfiable iff the instance of CSP(Γ ) can be satisfied.
Since Λ is coset-generating, we can solve CSP(Λ) in polynomial time. ��

As we mentioned earlier, the island of tractability uncovered by this theorem
subsumes the tractability results for coset-generating relations of [10] and for

2 Alternatively, we could view this relation as multi-sorted in the sense of [4].



Tractable Clones of Polynomials over Semigroups 203

clones generated by a block-group [5]. We give an application of this theorem to
a problem studied in [13]: for a finite semigroup S, let EQN∗

S denote the problem
of determining whether a system of equations over S has a solution. Note that by
introducing dummy variables we can assume that a system of equations over S
consists only of equations of the form xy = z or x = y where x, y, z are variables
or constants. We can thus think of the problem EQN∗

S as CSP(ΓS) where ΓS is
the set of relations definable by such an equation over S.

Theorem 5 ([13]). Let EQN∗
S be the problem of testing whether a system of

equations over the semigroup S has a solution. If S is in SL ∨Ab (the pseudo-
variety generated by SL and Ab) then EQN∗

S lies in P.

Proof. Any semigroup in SL ∨Ab is commutative and satisfies xω+1 = x since
both semilattices and Abelian groups have these properties. Consider an equation
over S of the form x1x2 = x3. If (a1, a2, a3), (b1, b2, b3), and (c1, c2, c3) are
solutions of this equation then we have by commutativity

a1b
ω−1
1 c1a2b

ω−1
2 c2 = a1a2(b1b2)ω−1c1c2 = a3b

ω−1
3 c3.

Similarly, if we consider an equation in which a constant appears, e.g. sx1 = x2
then since s = sω+1 we get sa1b

ω−1
1 c1 = sa1(sb1)ω−1sc1 = a2b

ω−1
2 c2.

Thus ΓS is closed under the polynomial xyω−1z over the block-group S and
EQN∗

S is tractable by Theorem 3. ��

One cannot directly infer the tractability of EQN∗
S for S ∈ SL ∨ Ab by

simply using the tractability of Malt’sev operations or the tractability of clones
generated by a block group so the result of Theorem 3 seems required in this
case. It is worth noting that if S is a finite monoid then EQN∗

S is NP-complete
when S is not in SL∨Ab [13]. An alternative proof of this latter fact was given
in [14] using an elegant universal algebra argument.

4 Tractable Clones of Polynomials

We have just shown that for a clone of polynomials over a block-group S to
be tractable, a sufficient condition is that it contains the operation xyω−1z.
In this section, we consider necessary conditions for tractability. Our goal is
to eventually be able to classify all clones of polynomials over any S as either
tractable or NP-complete. The following theorem shows that the question is only
of real interest if S is a block-group.

Theorem 6. If S is not a block-group, any clone of polynomials over S is NP-
complete.

We omit the proof, which can be obtained by suitably adapting the argument
of Corollary 3.2 in [5].

We also provide a condition on clones of polynomials that guarantees NP-
completeness over any semigroup. We need an extra semigroup-theoretic notion:
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the subgroup exponent η of the semigroup S is the least common multiple of the
exponents of the subgroups in S. When S is a union of groups, we have η = ω
but in general we can only say that η is a divisor of ω. We say that an operation
(polynomial) xn1

i1
· · ·xnr

ir
is a d-factor if d > 1, d is a divisor of η (possibly η

itself), and |{1 ≤ i ≤ r : d|ni}| = r − 1, that is, if every ni but one is divisible
by d. We say that the clone C is a d-factor if every operation in C is a d-factor.

Theorem 7. If C is a d-factor for some d then C is NP-complete.

Proof. We have that η = da for some 1 ≤ a < ω. Since η is the least com-
mon multiple of the exponents of all subgroup elements of S, there exists some
subgroup element s ∈ S with exponent η′ (i.e. sη′

is idempotent) such that
lcm(η′, a) = ka for some k > 1. Notice that k must divide d. Notice also that
for every 1 ≤ l < k, η′ does not divide la. Consequently sa has exponent k.

Consider the subgroup A of S generated by sa, that is A = {sa, s2a, . . . , ska}.
Clearly |A| ≥ 2. Let f(x1, . . . , xq) = xn1

i1
· · ·xnr

ir
be any operation in C. First,

note that A forms a subuniverse for f : if a1, . . . , aq ∈ A, f(a1, . . . , aq) is in A
too. Furthermore, the polynomial xn1

i1
· · ·xnr

ir
is a d-factor so there exists some

1 ≤ j ≤ r such that d divides ni for every 1 ≤ i ≤ r with i �= j. If again
a1, . . . , aq ∈ A, each ai is ai = slia for some li. So we have ani

ti
= slti

ani = smiη,
for some mi, and then f(a1, . . . , aq) = smη+ltj

anj for some m ≥ 0, a value that
depends only on xj . Therefore, if g is is the restriction g of f to A, we have
g(x1, . . . , xq) = smηx

nj

tj
. It is easy to see that smηxnj is one-to-one over A. Let

sk1a and sk2a be two different elements in A and let smη+k1anj , smη+k2anj be their
corresponding images. In order to be identical, ka has to divide (k1− k2)anj , or
equivalently k has to divide (k1−k2)nj . First notice that since sk1a and sk2a are
different, k cannot divide k1−k2. Furthermore, we shall show that gcd(k, nj) = 1.
Let p be any common divisor to k and nj . Since p divides k, it also divides d
and then it also divides ni for every i such that 1 ≤ i �= j ≤ r. If p also divides
nj then it must divide η + 1, in contradiction with the fact that p divides η.

Summarizing we have shown that there exists a set, namely A, of cardinality
at least 2, that is a subuniverse of every operation in C. Furthermore, for every
operation f(x1, . . . , xr) in C, the restriction f|A(x1, . . . , xr) of f to A is equivalent
to g(xj) for some one-to-one function g : A → A. It is well known that this
implies that C is NP-complete. ��

In the next two subsections we will see that in the cases of commutative
semigroups and nilpotent groups, an idempotent clone of polynomials is tractable
iff it is not a d-factor.

4.1 The Commutative Case

As we mentioned in Section 2, in order to understand the tractability of clones,
it suffices to consider idempotent ones. We concentrate on idempotent clones
from now on; this allows us to consider only unions of groups.
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Lemma 8. Let S be a semigroup and C a nontrivial, idempotent clone over S.
Then S is a union of groups and for every polynomial xα1

i1
. . . xαm

im
in C,

∑
αj is

congruent with 1 modulo ω.

Proof. Take any operation in C other than a projection, and suppose it is de-
fined by the polynomial xα1

i1
. . . xαm

im
. This operation is idempotent if C is, so the

semigroup S must satisfy s
∑

αj = s for all s. Consequently, S must be a union
of groups. Furthermore

∑
αj is congruent with 1 modulo ω for otherwise we

contradict the minimality of the exponent ω. ��

So in the proofs of the rest of the section we will implicitly assume that S is
a union of groups and that the polynomials in C satisfy the condition above.

Theorem 9. Let S be a commutative semigroup and let C be a nontrivial idem-
potent clone of polynomials over S. If C is not a d-factor for any d, then it
contains xyω−1z.

Proof. By Lemma 8 S is a union of groups, and is commutative, so we can
assume that for every polynomial xn1

1 . . . , xnr
r all xi’s are different. Furthermore,

since xω+1 = x, every two polynomials xn1
1 · · ·xnr

r and x
n′

1
1 · · ·x

n′
r

r such that for
every 1 ≤ i ≤ r, ni ≡ n′

i mod ω, denote the same operation. We sometimes
allow negative indices ni in an expression, meaning by that any positive integer
of the form ni + nω. Note also that since we are dealing with unions of groups,
the subgroup exponent of S is simply its exponent ω.

We need the following auxiliary lemma.

Lemma 10. Let xn1
1 · · ·xnr

r be any operation in C, let 1 ≤ i �= j ≤ r, let a =
gcd(ninj , ω), and let r ≥ 1. Then xrayω−2ra+1zra belongs to C.

Proof. First notice that we can identify and rename variables in the expression
xn1

1 · · ·xnr
r to obtain in C the expression

yn1 · · · yni−1xniyni+1 · · · ynj−1znjynj+1 · · · ynr ,

which is equivalent to xniyω−ni−nj+1znj . By a further replacement, the expres-
sion (yniyω−ni−nj+1xnj )niyω−ni−nj+1(zniyω−ni−nj+1ynj )nj also belongs to C.
Setting c = ninj , this can be rewritten as as xcyω−2c+1zc. Now we will show
that for every m ≥ 1 the expression

xcm

1 · · ·xcm

2m−1yω−2mcm+1zcm

1 · · · zcm

2m−1

belongs to C. We will show it by induction on m. The case m = 1 has already been
proven. Let us assume that the statement holds for m. Then by identification
and composition we construct the expression

(xcm

1 · · ·xcm

2m−1 yω−2mcm+1xcm

2m−1+1 · · ·xcm

2m)cyω−2c+1

·(zcm

1 · · · zcm

2m−1yω−2mcm+1zcm

2m−1+1 · · · zcm

2m)c

= xcm+1

1 · · ·xcm+1

2m yω−2m+1cm+1+1zcm+1

1 · · · zcm+1

2m .
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We are now almost done. There exists some l ≥ 1 such that c2l ≡ cl mod ω.
Since gcd(cl, ω) = gcd(c, ω) = a we have that for every r ≥ 1, there exists some
integers α, β such that αcl + βω = ra. We can also assume that α ≥ 0. Fix
some n such that 2nl−1 ≥ α. By setting m = nl we can infer that the expression

xcnl

1 · · ·xcnl

2nl−1y
ω−2nlcnl+1zcnl

1 · · · zcnl

2nl−1

belongs to C, and consequently that the expression
α︷ ︸︸ ︷

xcnl

· · ·xcnl

ycnl

· · · ycnl

yω−2nlcnl+1ycnl

· · · ycnl

α︷ ︸︸ ︷
zcnl

· · · zcnl

,

obtained by identification and renaming of variables also belongs to C. This
becomes xbyω−2b+1zb if we set b = αcnl. Finally notice that

αcnl ≡ αcl ≡ ra mod ω. ��

We now continue the proof of Theorem 9. Assume that C is not a d-factor for
every divisor d > 1 of ω. We will show that xyω−1z is in C. Let p1, . . . , pk be the
set of prime divisors of ω strictly larger than 1. We shall show by induction that
for every 1 ≤ l ≤ k, there exists some a such that gcd(a, p1 × · · · × pl) = 1 and
such that xayω−2a+1za belongs to C (*). Notice that the statement follows from
l = k and Lemma 10 since in this case gcd(a, ω) = gcd(a × a, ω) = 1. The case
l = 1 is easy. Since C is nontrivial it contains an operation xn1

1 . . . xnr
r and some

i �= j such that p1 does not divide ni and does not divide nj . Consequently p1
does not divide a = gcd(ω, ni × nj). By Lemma 10, xayω−2a+1za belongs to C.
Assume now that statement (*) holds for l < k. We shall show that it also holds
for l+1. By induction hypothesis there exists some a with gcd(a, p1×· · ·×pl) = 1
such that xayω−2a+1za belongs to C. Also, by a reasoning analogous to the case
l = 1 we can infer that since C is not a pl+1-factor we have that there exists
some b not divisible by pl+1 such that xbyω−2b+1zb. We can also assume that
p1 × · · · × pl divides b.

Let us consider two cases: if pl+1 does not divide a then we are done since we
have that gcd(a, p1 × · · · × pl+1) = 1. Otherwise, we proceed as follows. Notice
that the operation xa(xbyω−2b+1zb)ω−2a+1za belongs to C since it is obtained
by composition and identification of variables. Notice also that if we set c =
a+b(ω−2a+1) the previous expression is equivalent to xcyω−2c+1zc. It is easy to
see that none of p1, . . . , pl+1 divides c and consequently gcd(c, p1×· · ·×pl+1) = 1.
To see this, note that for every 1 ≤ l′ ≤ l, we have that pl′ divides b (and
consequently b(ω − 2a + 1)) but not a. Consequently pl′ cannot divide its sum.
Similarly since pl+1 divides a, it cannot divide ω − 2a + 1 (since otherwise it
would divide ω + 1 in contradiction with the fact that it divides ω). Thus, pl+1
does not divide b(ω − 2a + 1), so it cannot divide c. ��

We obtain the following corollary from Theorems 7 and 9, plus the fact that
the operation xyω−1z implies tractability.

Corollary 11. Let S be a commutative semigroup and C a nontrivial, idempo-
tent clone of polynomials over S. Then the following are equivalent:
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– C is tractable.
– C is not a d-factor, for any d.
– C contains xyω−1z.

If S is a semilattice, one can obtain a stronger result whose proof we omit.

Theorem 12. Every non-trivial clone of polynomials over a semilattice S is
tractable.

4.2 The Group Case

We now turn our attention to tractable clones of polynomials over groups. First,
we do not think that Corollary 11 can be extended to groups. We believe in
particular that the “near subgroup” operation of Feder [9] can in some cases be
represented as a polynomial over a group. In any case, the closure function that
defines near-subgroup problems is a Malt’sev operation and we conjecture:

Conjecture 13. Let C be an idempotent clone of polynomials over a group. Then
C is tractable iff it contains a Malt’sev operation.

By Theorem 11, the conjecture is true for Abelian groups because, as noted
in Section 2 the operation xyω−1z over a finite group is Malt’sev. Next we will
show that our conjecture holds for nilpotent groups which, in many ways, form
one of the simplest class of non-Abelian groups. A group is said to be nilpotent if
it is a direct product of p-groups. An alternative description will be more useful
for our purposes: Let G be a group. For every g, h ∈ G, the commutator [g, h] of
g and h is the element g−1h−1gh. Note that gh = hg[g, h], so if g and h commute
[g, h] is the identity. An element of G is central if it commutes with every element
in G; the set of central elements of G is an Abelian subgroup.

For two subgroups G1 and G2 of G, [G1, G2] is the subgroup generated by
all commutators [g, h] with g ∈ G1 and h ∈ G2. Define the lower central series
of G by G0 = G, and Gi+1 = [Gi, G]. Elements in Gi are called commutators of
weight i + 1 of G. We say that G is nilpotent class k if Gk is trivial; note that
if Gk is trivial all elements in Gk−1 are central in G. A group is nilpotent if it is
nilpotent class k for some k.

We define commutator polynomials analogously. For two polynomials p1, p2,
[p1, p2] is the polynomial pω−1

1 pω−1
2 p1p2. The only commutator polynomial of

weight 1 is the empty polynomial. A commutator polynomial of weight 2 is [x, y]
for two variables x, y. A commutator polynomial of weight k is [p, x], where x
is a variable and p a commutator polynomial of weight k − 1. Commutator
polynomials of weight k+1 or more are the identity in a nilpotent class k group.

Theorem 14. If C is an idempotent clone of polynomials over a nilpotent group
and not a d-factor for any d, then C contains a Malt’sev operation.

Proof. Any polynomial p defining an operation over G also defines an operation
over any subgroup H of G since the value of p lies in H when all variables are
themselves set to values in H . We will say that a polynomial (or a clone) is
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interpreted over a subgroup H to mean that the variables of the polynomial
take values in H . Note that if C is not a d-factor interpreted over G it is not a
d-factor interpreted over H . Suppose H is an Abelian subgroup and suppose we
can show that C interpreted over H contains the polynomial x2y. One cannot
conclude that C interpreted over G contains the polynomial x2y itself for it may
be that it contains, say, xyx that, interpreted over the Abelian subgroup H is
indeed the same as x2y.

Fix a nilpotent group G of class r. It is more convenient for the proof to
redefine the indices of the central series of G as follows: Gr = G and Gk−1 =
[Gk, G], so that G1 contains only central elements of G and Gk is nilpotent
of class k. By repeatedly using the relation xy = yx[x, y] and the fact that
commutators of weight k or more vanish in a nilpotent group of class k, it can
be shown that any polynomial p in n variables over such a group can be rewritten
in the following normal form:

p =
n∏

i=1

xαi

i

∏
i,j≤n

[xi, xj ]αij . . .
∏

i1,...,ik≤n

[. . . [[xi1 , xi2 ], xi3 ], . . . , xik
]αi1...ik .

In other words, p can be rewritten as a product of distinct commutator polyno-
mials raised to some power, where the “lightest” commutators appear first. Note
that if we interpret p over a nilpotent subgroup H of class k < r, it is equivalent
to the polynomial obtained by deleting all occurrences of commutator polyno-
mials of weight larger than k, since they are the identity over H .

We prove the following for all k, by induction: There is a sequence Q of
commutator polynomials of weight at most k over the variables x, y, z such that
the operation xy−1zQ is Malt’sev over G and belongs to C when interpreted
over Gk. The theorem follows from this statement for k = r.

For k = 1, Q is the empty sequence. Since C interpreted over G1 is not a d-
factor, and G1 is Abelian, C interpreted over G1 contains xy−1z by Corollary 11.

Inductively, let Q be a sequence of commutator polynomials of weight at most
k− 1 such that xy−1zQ is Malt’sev over G and contained in C when interpreted
over Gk−1. Then, C interpreted over Gk contains a polynomial of the form

P (x, y, z) = xy−1z Q · )iC
αi

i

for some set of exponents αi, where )i denotes concatenation over all commu-
tator polynomials Ci of weight k on the variables x, y, z.

Let R be obtained by identifying x and y in P . If {Dj} is the set of com-
mutator polynomials of weight k in x and z, this identification maps each Ci

to some Dj. Every commutator Dj is central in Gk, so we can group all its
occurrences, and since xy−1zQ is Malt’sev,

R(x, z) = P (x, x, z) = z · )iD
βi

i

for appropriate exponents βi. Similarly, let S be obtained by identifying z and y
in P , so we have, for appropriate exponents γi,

S(x, z) = P (x, z, z) = x · )iD
γi

i .
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Now we move to the domain Gk and remain there until further notice. Let R(2)

be obtained by replacing z with R(x, z) in R, that is,

R(2)(x, z) = R(x, R(x, z)) = R(x, z) · )i(Di(x, R(x, z)))βi

= z · )i(Di(x, z))βi · )i(Di(x, R(x, z)))βi

Now observe that if c is central, then we have [u, vc] = u−1(vc)−1u(vc) =
u−1v−1uv = [u, v] for any u, v. Every Dj has weight k, so it is central in Gk.
Thus Di(x, R(x, z)) = Di(x, z) over Gk and

R(2)(x, z) = z · )i(Di(x, z))2βi .

Iterating this process ω − 1 times, we deduce that the polynomial

R(ω−1)(x, z) = z · )i(Di(x, z))(ω−1)βi

is in C when interpreted over Gk. Similarly, let S(2) be obtained by replacing x
with S in S. By the same argument as before, we see that the polynomial

S(ω−1)(x, z) = x · )i(Di(x, z))(ω−1)γi

is in C when interpreted over Gk.
Now, build T by replacing x with R(ω−1)(z, y) and z with S(ω−1)(y, x) in P .

Observe that the two previous replacements have no effect on Q and Di other
than permuting x and z, since any commutator of weight k placed in an argument
of a commutator polynomial of weight larger than 1 can simply be deleted. Using
again that the Di are central in Gk we have

T (x, y, z) = zy−1xQ(z, y, x) · )iD
(ω−1)βi

i (z, y) · )iD
(ω−1)γi

i (y, x) · )iC
αi

i (z, y, x).

While still in Gk, reorder the Di and Ci in the following way: Let φ(i) be such
that Ci(x, x, z) is Dφ(i)(x, z), and similarly let ϕ(i) be such that Ci(x, z, z) is
Dϕ(i)(x, z). By the definition of βi, γi, φ, and ϕ, there are just the right number
of each of the Di in T so that T can be equivalently written in Gk as

T (x, y, z) = zy−1xQ(z, y, x) · )i(Ci(z, y, x)(Dφ(i)(y, x))ω−1(Dϕ(i)(z, y))ω−1)αi

So this polynomial T (x, y, z) belongs to C when interpreted over Gk, although it
need not be in C when interpreted in G. Still, it is easy to see that T is Malt’sev
in all G: When x = y, all the commutators on x and y vanish so we have

T (x, x, z) = zx−1xQ(z, x, x) · )i(Ci(z, x, x) · (Dϕ(i)(z, x))ω−1)αi

= z · )i(Dϕ(i)(z, x) · (Dϕ(i)(z, x))ω−1)αi = z,

and when y = z, all the commutators on z and y vanish and

T (x, z, z) = zz−1xQ(z, z, x) · )i(Ci(z, z, x) · (Dφ(i)(z, x))ω−1)αi

= x · )i(Dφ(i)(z, x) · (Dφ(i)(z, x))ω−1)αi = x.

This concludes the induction step and the proof of the theorem. ��



210 V. Dalmau et al.

From Theorems 7 and 14 and the tractability of Malt’sev operations, we get:
Corollary 15. Let G be a nilpotent group and C a nontrivial, idempotent clone
of polynomials over G. Then the following are equivalent:
– C is tractable.
– C is not a d-factor, for any d.
– C contains a Malt’sev operation.

It is tempting to conjecture in light of Corollaries 11 and 15 that if S is a
block-group then an idempotent clone of polynomials over S is tractable iff it is
not a d-factor. It would also be interesting to identify the largest class of finite
groups for which the presence of xy−1z is necessary and sufficient for tractability.
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Abstract. In an increasing number of domains such as bioinformatics, combi-
natorial graph problems arise. We propose a novel way to solve these problems,
mainly those that can be translated to constrained subgraph finding. Our approach
extends constraint programming by introducing CP(Graph), a new computation
domain focused on graphs including a new type of variable: graph domain vari-
ables as well as constraints over these variables and their propagators. These
constraints are subdivided into kernel constraints and additional constraints for-
mulated as networks of kernel constraints. For some of these constraints a dedi-
cated global constraint and its associated propagator are sketched. CP(Graph) is
integrated with finite domain and finite sets computation domains, allowing the
combining of constraints of these domains with graph constraints.

A prototype of CP(Graph) built over finite domains and finite sets in Oz is
presented. And we show that a problem of biochemical network analysis can be
very simply described and solved within CP(Graph).

1 Introduction

Combinatorial graph problems are present in many domains such as communication
networks, route planning, circuitry, and recently bioinformatics. The motivation for this
work lies in graph problems of biochemical network analysis. Biochemical networks
model the components of the cells (molecules, genes, reactions, etc...) and their in-
teractions. They can be modeled as directed labeled graphs. Their analysis consists in
assessing the properties of these graphs. Various problems have been solved to better
understand the structure of the biochemical networks [1]. Some of these problems can
be modeled as constrained path finding or constrained subgraph extraction problems.

The analyses performed on biochemical networks are varied and evolve at a rapid
pace. A declarative framework based on constrained programming could enable a quick
expression and resolution of these problems. It would allow the bioinformaticians to
spend less time on implementing dedicated algorithms, keeping the focus on designing
new queries and analyzing the results.

This paper introduces a graph computation domain, called CP(Graph), in constraint
programming. A new type of domain variables, graph domain variables, and constraints
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on these variables are proposed. CP(Graph) can then be used to express and solve com-
binatorial graph problems modeled as constrained subgraph extraction problems.

Related Work. CP(Graph) is built over the finite set computation domain [2]. It also
shares its lattice structure. The usage of sets in a language able to express and solve
hard combinatorial problems dates back to 1978 with ALICE in the seminal work of
Laurière [3]. The usage of graphs as structures of symbolic constraint objects was pro-
posed in 1993 by Gervet [4]. In that work, a graph domain is modeled as an endomor-
phic relation domain. In 2002, Lepape et al. defined path variables [5] which were used
to solve constrained path finding problems in a network design context.

Graphs play an important role in constraint programming for the specification, design
and implementation of global constraints [6], but graphs are there mainly used for repre-
senting and exploiting a network of elementary constraints. A global path constraint has
been proposed in [7,8] and a global tree constraint in [9]. A path constraint is included in
CP(Graph) and its implementation is based on these related works. Finally, the theoreti-
cal framework is related to the work on edge set quantification in monadic second order
logic of graphs [10] as our kernel constraint language on graphs also allows quantification
on nodes and arcs. This work is also an extension of our preliminary work [11].

The first section presents the variables and constants used in CP(Graph) then the
constraints linking graph domain variables to the other variables. The constraints of
CP(Graph) can be separated into two classes: the kernel constraints (Section2.3) and the
others. The kernel constraints form the minimal set of constraints necessary to express
the other constraints as networks of kernel constraints. We show how to incrementally
build graph constraints by combining kernel constraints for a specific class of problems:
constrained subgraph extraction (Section 2.4).

The combination of kernel constraints is a rapid way of implementing other graph
constraints. However, it is possible to achieve a better filtering by designing a so-called
global constraint (Section 4). In order to characterize and compare the filtering of the
propagators of the constraints in CP(Graph), we introduce mixed consistency in Sec-
tion 3. It consists of bound consistency on sets and graph domain variables coupled
with arc consistency on finite domain variables.

Finally, in Section 6, the practicality of CP(Graph) is assessed by expressing a
CP(Graph) problem for a biochemical network analysis problem and by analyzing the
evolution of computation time and memory usage with problems of increasing size.

Contributions. the main contributions of this work are the following:

– graph domain variables, and constraints on these variables are the major contribu-
tion of this work. We show how to use them to express other constraints on graphs
and to solve constrained subgraph extraction problems. We generalize the mode of
usage of the reachability and path constraints by allowing end-nodes to be domain
variables.

– Definition of a graph computation domain in CP.
– Specification of a minimal set of constraints on graphs.
– Suitability assessment for expressing and solving the class of constrained subgraph

extraction problems.
– Practical assessment of the suitability of CP(Graph) for constrained subgraph ex-

traction problems.
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2 The CP(Graph) Framework

This section presents the basics of the CP(Graph) computation domain. Graph domain
variables and domains are described along with their integration with finite sets and
finite domains. Then, primitive constraints called kernel constraints are presented. Fi-
nally, more complex constraints are built using the kernel constraints. The construction
of the their propagator and the analysis of their consistency is presented in section 3.

2.1 Constants and Variables

A graph g = (sn, sa) is a set of nodes sn, and a set of arcs sa ⊆ sn× sn. We are first
considering directed graphs. An extension to undirected graphs is handled in a later
section.

CP(Graph) introduces graph domain variables (gd-variables for short) in constraint
programming. However, CP(Graph) deals with many types of constants and variables
related to graphs. They are presented in Table 1. This table presents the notations used in
this paper for constants and domain variables of each type. It also shows one particular
aspect of graphs: the inherent constraint stating a arc can only be present if both end
nodes are present too. Nodes and Arcs in CP(Graph) can be labeled with integer weights
through the use of weight functions. Such functions are seen as constants in CP(Graph),
there is no domain variable for weight functions. CP(Graph) can handle graphs with
multiple weights per node or arc by using multiple weight functions.

Table 1. The different variables and constants of CP(Graph) along with their notations. Note only
the graph has an inherent constraint. N andA are the universal sets of nodes and arcs.

Type Representation Constraint Constants Variables
Integer 0, 1, 2, ... i0, i1, ... I0, I1, ...
Node 0, 1, 2, ... n0, n1, ... N0, N1, ...
Arc (0, 1), (2, 4), ... a0, a1, ... A0, A1, ...
Finite set {0, 1, 2}, {3, 5} ... s0, s1, ... S0, S1, ...
Finite set of nodes {0, 1, 2}, {3, 5} ... sn0, sn1, ... SN0, SN1, ...
Finite set of arcs {(0, 3), (1, 2)}, ... sa0, sa1, ... SA0, SA1, ...

Graph
(SN, SA)
SN a set of nodes
SA a set of arcs

SA ⊆ SN × SN g0, g1, ... G0, G1, ...

Weight functions N ∪A → IN w0, w1, ... –

Similarly to sets, there exists a partial ordering among graphs, defined by graph in-
clusion: given g1 = (sn1, sa1) and g2 = (sn2, sa2), g1 ⊆ g2 iff sn1 ⊆ sn2 and sa1 ⊆
sa2. We define graph domains as the lattice of graphs included between two bounds:
the greatest lower bound and the least upper bound of the lattice.

The domain of each gd-variable is defined according to a least upper bound graph
and a greatest lower bound graph. The least upper bound graph defines the set of possi-
ble nodes and arcs in the graph variable, while the greatest lower bound defines the set
of nodes and arcs which are known to be part of the graph variable (see Figure 1). If G is
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Fig. 1. Illustration of a small graph domain with its least upper bound (lub) and greatest lower
bound (glb). Greyed nodes and arcs are displayed for convenience but are not part of the respec-
tive graphs.

a gd-variable, we will denote dom(G) = [gL, gU ] with gL = glb(G) and gU = lub(G).
If S is a finite set variable, we denote dom(S) = [sL, sU ], with sL = glb(S) and
sU = lub(S).

The presence of arc variables and set of arc variables along with the nodes and set of
nodes is motivated first by the works on expressiveness of monadic second order logic
on graphs [10]. That work shows that a logic where it is possible to existentially quantify
sets of nodes can be strictly less expressive than one where it is possible to existentially
quantify sets of nodes and sets of arcs. Another incentive, in the constraint community,
was the comparison of the models used in [7,8] and [12] for a path constraint. Successor
finite domain variables were used in [12] while [7,8] use arc boolean variables. Yet the
path propagator in [8] reasons about mandatory nodes. It is clear that providing only
arc variables is impractical as a graph cannot be constrained to contain isolated nodes
and constraints about nodes must be stated as disjunctions of arcs. Hence, offering node
and arc variables enables to express more CSPs and properties about graph variables.

2.2 Classical Finite Set Constraints

CP(Graph) is integrated with the finite domain and finite set computation domains.
Classical constraints from these domains can be combined with graph constraints to
express a CSP in CP(Graph). We present the minimal standard set of constraints on
finite domain and finite sets assumed to be present in the system.

The set constraints used in this paper are set inclusion (S1 ⊆ S2), set intersection
(S1 ∩ S2 = S3), set difference (S1 \ S2 = S3), set cardinality (#S = I), set mem-
bership (I ∈ S and I /∈ S), set inequality (S1 �= S2) and the set weight constraint
(Weight(S, w, I)) which holds if I is the sum of the weights of the elements of S ac-
cording to the weight description w. We also suppose it is possible to post a constraint
for each value in a set variable S: ∀i ∈ S : C(i). This can be done in two ways. Either
by posting #sU constraints of the form i ∈ S ⇒ C(i) or by waiting until i is known to
be in S to post the constraint C(i) : σ |= i ∈ S → C(i) While the former filters more,
the latter uses less memory.

In addition to the boolean constraints like implication, negation, conjunction and
disjunction, we use the constraint of sum (linear combination of finite domain variables
using constant factors) in CP(Graph).

2.3 Kernel Graph Constraints

The kernel graph constraints constitute the minimal set of constraints needed to express
the other graph constraints of CP(Graph). These constraints relating graph variables
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with arc and node variables provide the suitable expressiveness of monadic second order
logic [10].

The kernel graph constraints are ArcNode, Nodes and Arcs.

Arcs(G, SA) SA is the set of arcs of G.

Nodes(G, SN) SN is the set of nodes of G.

ArcNode(A, N1, N2) The arc variable A is an arc from node N1 to node N2. This
relation does not take a graph variable into account as every arc and node has a unique
identifier in the system. If A is determined, this constraint is a simple accessor to the
tail and head of the arc A and respectively if both nodes are determined.

All CMS-definable sets of graphs [13] can be defined as constraints in CP(Graph)
by using these kernel constraints (CMS stands for countable monadic second order
logic). This can be shown by translating the building blocks of CMS logic of graphs
into CP(Graph). Monadic means that only 1-ary relation (i.e. sets) can be quantified.
CP(Graph) allows quantification over sets of nodes and arcs. Countable stands for a
predicate telling the size of a set. It is handled by the set cardinality constraint. The
edg binary relation on nodes and the incidence (inc) ternary relation on an arc and two
nodes are expressed by incg(a, n1, n2) ≡ ArcNode(a, n1, n2) ∧ n1 ∈ Nodes(g) ∧
n2 ∈ Nodes(g) ∧ a ∈ Arcs(g) and edgg(n1, n2) ≡ ∃a : ArcNode(a, n1, n2) ∧
incg(a, n1, n2) where a is determined by n1 and n2. We do not know a common graph
property which cannot be expressed using CP(Graph).

2.4 Building Graph Constraints over Kernel Constraints

While the kernel constraints enable to express the target problems of CP(Graph), defin-
ing higher level constraints eases the formulation of these problems. Such constraints
can be built as combinations of kernel constraints. Such networks of constraints may
not propagate as much as a dedicated global propagator for the constraint but are useful
as a reference implementation or as a quickly implemented prototype. We focus here
on constraints suitable for constrained subgraph extraction problems.

To alleviate the notation, we use a functional style for some constraints by removing
the last argument of a constraint and considering that the resulting expression denotes
the value of that omitted argument (e.g. Nodes(G) denotes SN in Nodes(G, SN)).
We also write (n1, n2) ∈ Arcs(G) instead of a ∈ Arcs(G) ∧ArcNode(a, n1, n2).

The SubGraph(G1, G2) constraint can be translated to

SubGraph(G1, G2) ≡ Nodes(G1) ⊆ Nodes(G2), Arcs(G1) ⊆ Arcs(G2)

To cope with linear optimization problems we introduce the Weight constraint for
graphs:

Weight(G, w, I) holds if I is the total weight associated to the graph variable G
according to the weight function w.

Weight(G, w, I) ≡ I = Weight(Nodes(G), wn) + Weight(Arcs(G), wa)
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Where wa is the restriction of the weight function to the arcs domain, and respectively,
wn for nodes. CP(Graph) allows to express and solve constrained subgraph optimization
problems and some examples are given in the next section. A constrained shortest path
problem is also presented in the experiments section.

InNeighbors(G, N, SN) holds if SN is the set of all nodes of G from which an
inward arc incident to N is present in G. If N is not in G then SN is empty. It can be
expressed as the following network of constraints.

InNeighbors(G, N, SN)≡SN⊆Nodes(G) ∧ (#SN >0⇔ N ∈ Nodes(G))∧
∀n ∈ Nodes(gU ) : n ∈ SN ⇔ (n, N) ∈ Arcs(G)

The last constraint must be posted for all possible member of SN and for all possible
in-neighbor of N . In this expression it is posted on a superset of these sets: Nodes(gU ).

Similar expressions exist for inward arcs and the ”out” versions of these constraints.
OutDegree and InDegree are the cardinality of these sets.

Reachable(G, N, SN) states SN is the set of nodes reachable from N in G. Again,
G, N and SN are domain variables. This constraint is presented in [14] in the case of N
determined. First we need to define the QuasiPath(G, SN, N, n2) constraints stating
the graph induced by SN in G is a path from N to n2 with possibly additional mutually
disjoint cycles also disjoint from the path [10]. This is expressed by forcing every node
in SN to have an inward and outward degree of 1 in the induced subgraph (except for
the source N and sink n2).

QuasiPath(G, SN, N1, N2) ≡ N1 ∈ SN ∧N2 ∈ SN∧
∀n ∈ SN : O = OutNeighbors(G, n) ∩ SN ∧#O ≤ 1 ∧ (n �= N2)⇒ #O = 1∧
∀n ∈ SN : I = InNeighbors(G, n) ∩ SN ∧#I ≤ 1 ∧ (n �= N1)⇒ #I = 1

Then Reachables(G, N, SN) is expressed by:

∀n ∈ SN : ∃SN ′ ⊆ Nodes(G) : QuasiPath(G, SN ′, N, n)

The directed acyclic graph constraint DAG(G) states a graph cannot contain cycles.
DAG(G) can be translated using this property: the set of in-neighbors of each node
must be disjoint from the set of nodes it can reach.

DAG(G) ≡ ∀n ∈ Nodes(G) : InNeighbors(G, n) ∩Reachable(G, n) = ∅

The path constraint can be expressed in a similar way:

Path(G, N1, N2) holds if G is a path from node N1 to node N2, all of which are
domain variables.

Path(G) ≡ QuasiPath(G, Nodes(G), N1, N2)∧#Nodes(G) = #Arcs(G)+1

The InducedSubGraph(G1, G2) constraint is used in next section to express a k-cut
problem.
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InducedSubGraph(G1, G2) holds if G1 is an induced subgraph of the graph G2 i.e.
the greatest subgraph of G2 containing the nodes of G1.

InducedSubGraph(G1, G2) ≡ SN = Nodes(G2) \Nodes(G1)∧
∀(n1, n2) ∈ Arcs(G2) : (n1 ∈ SN ∨ n2 ∈ SN) XOR (n1, n2) ∈ Arcs(G1)

2.5 Combining Graph Constraints to Solve Problems

Numerous NP(Hard) graph problems can be stated in CP(Graph). The graph constraints
presented in other works [6,7,8] can be implemented in the CP(Graph) framework and
used to solve these problems. CP(Graph) is particularly suited for problems of subgraph
extraction. We list a few example problems to show the expressiveness and conciseness
of CP(Graph). In these expressions, SubGraph(G, g) is used to declare a new graph
domain variable G with initial upper bound g. The Cycle(G) constraint holds if G is a
closed directed path.

– Finding the TSP in graph g with weights w: minimize Weight(G, w) s.t.

SubGraph(G, g) ∧ Cycle(G) ∧Nodes(G) = Nodes(g)

– Finding the shortest weight constrained (maximum weight k) path of g with weights
w, length function wl, start node n1, end node n2: minimize Weight(G, wl) s.t.

SubGraph(G, g) ∧ Path(G, n1, n2) ∧Weight(G, w) ≤ k

– Finding the minimum vertex k-cut of g with source nodes {n1, . . . , ns}, target node
nt and the weight function w :minimize Weight(Nodes(g) \Nodes(G), w) s.t.

InducedSubGraph(g, G) ∧ ∀i ∈ [1, n] : nt /∈ Reachable(G, ni)

– Prize Collecting Steiner Tree Problem: g is the initial graph, the arc weights and
node prices are wa and wn: minimize Weight(G, wa) + Weight(SN, wn) s.t.

SubGraph(G, g) ∧ Tree(G) ∧ SN = Nodes(g) \Nodes(G)

– Graph partitioning problem: equicut of a graph g of even order:
minimize # (Arcs(g) \ (Arcs(G1) ∪Arcs(G2))) subject to:

SubGraph(G1, g) ∧ SubGraph(G2, g) ∧Nodes(G1) ∪Nodes(G2) =

Nodes(g) ∧#Nodes(G1) = #Nodes(G2) =
1
2
#Nodes(g)

Section 6 will present the expression of a constrained shortest path finding problem:
finding the shortest simple path in a graph given a set of nodes which must be present
in the path and a set of pairs of mutually exclusive nodes.

3 Consistency in CP(Graph)

This section covers the propagation rules of the constraints in the kernel CP(Graph)
language. We first define mixed consistency for constraints combining graph, finite set
and finite domain variables. The constraints of the kernel are mixed consistent and
mixed consistency will be applied to other constraints in a later section.
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3.1 Mixed Consistency

Given a constraint C(X) over the variables X = X1, . . . , Xn with domains D =
D1× . . .×Dn, we first define the set of solutions of the constraint C on the domainD
of its variables.

Sol(C,D) = {x ∈ D | C(x)}

We denote Sol(C,D)[Xi], the projection of this set on the ith component of its tuples.
We also note FD for finite domain variables, FS for finite set variables and GD for graph
domain variables.

Definition 1. For a graph domain variable or a finite set variable Xi with domain
Di = [xiL, xiU ], we say C is bound consistent on Xi with respect to D iff

xiL = glb (Sol(C,D)[Xi]) , xiU = lub (Sol(C,D)[Xi])

Definition 2. For a finite domain variable Xi with domain Di = {a0, a1, . . . , an}, we
say C is arc consistent on Xi with respect to D iff

Di = Sol(C,D)[Xi]

Definition 3. C is mixed consistent with respect to D iff for all 1 ≤ i ≤ n
if Xi is a GD or FS variable, C is bound consistent on Xi with respect to D,
if Xi is a FD variable, C is arc consistent on Xi with respect to D.

3.2 Propagation Rules of the Kernel Constraints

This section covers the consistency and propagation rules of the kernel constraints of
CP(Graph). All of the rules have the domains of the variables implicitly defined by
dom(G) = [gL, gU ], with gL = (gsnL, gsaL) and gU = (gsnU , gsaU ), dom(SA) =
[saL, saU ] and dom(SN) = [snL, snU ].

We consider an O(1) complexity for the inclusion or exclusion of a value in/out of a
finite domain or finite set bound and similarly for an arc of a graph domain variable. As
we consider the internal constraint of graphs (gsaX ⊆ gsnX × gsnX where X stands
for both U and L), the removal of a node of G can trigger up to d arc removals where d
is the maximal degree of gU . We also consider a propagator knows for which variable
and value it is run in case of an update event.

The Arcs Constraint. The Arcs(G, SA) constraint propagation rule is unique. Its
application leads to bound consistent domains. The new bounds of the variables G and
SA are denoted with a prime. Obviously, only the set of arcs of the bounds of G are
updated.

sa′
L = gsa′

L = saL ∪ gsaL

sa′
U = gsa′

U = saU ∩ gsaU

The complexity of this rule is O(1) per update as it just suffices to forward update events
from one variable to the other.
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The Nodes Constraint. The propagation rule of the Nodes(G, SN) constraint is sim-
ilar to the Arcs propagation rule:

sn′
L = gsn′

L = snL ∪ gsnL

sn′
U = gsn′

U = snU ∩ gsnU

This rule also achieves bound consistency and its complexity is O(d) per update where
d is the maximal degree of gU . That is O(|saU | + |snU |) over a branch of the search
tree as each node and arc can only be removed once.

The ArcNode Constraint. The ArcNode(A, N1, N2) constraint links an arc variable
to two node variables. The update of the domains is straightforward:

dom′(A) = dom(A) ∩ (dom(N1)× dom(N2))

dom′(N1) = {n1 ∈ dom(N1)|∃n2 ∈ dom(N2), (n1, n2) ∈ dom(A)}
dom′(N2) = {n2 ∈ dom(N2)|∃n1 ∈ dom(N1), (n1, n2) ∈ dom(A)}

Once a fixed-point is reached, the domains are arc-consistent. The complexity is similar
as the previous one. The removal of a node from a node domain leads to at most d
removals of arcs. Here the graph under consideration is the union of the initial least
upper bounds of the graph variables in the CSP.

4 Global Constraints

In Section 2.4, we showed how graph constraints can be built by combining kernel
constraints. It however appears that dedicated propagators can be more efficient than
a combination of propagators of kernel constraints. This amounts to write a so called
global constraint, where global refers to operational globality when more pruning is
achieved or algorithmic globality when the same level of pruning is achieved [15].

We here focus on the Path and Reachable constraints and sketch global propaga-
tors for these constraints. However, other existing global constraints enforcing graph
properties or relations between graphs can be integrated with CP(Graph).

4.1 The Reachable Constraint

Reachable(G, N, SN) holds if SN is the set of nodes reachable from N in G. This
constraint encodes the transitive closure of the adjacency relation of the graph. It is
expressible using kernel constraints but it requires to post a lot of constraints (see sec-
tion 2.4). If more pruning is to be done (detection of cutnodes, bridges, etc...), then
even more propagators have to be posted. On the other hand, an imperative algorithm
can handle these problems easily. Computation of connected components, strongly
connected components, bridges, etc... can be done with variants of depth first search
in linear time. Incremental algorithms have also been designed to handle dynamic
graphs [16]. Hence a global propagator is much more efficient for such constraints.

In CP(Graph), N is a node variable. Constraint propagators have been defined for a
determined source node N = n [14,11]. It is however simple to adapt these propagators
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to an unknown source. A simple schema is to execute these propagators for each of the
values of the domain of the source node and perform their filtering for the values on
which they all agree. For instance, if for each value in the domain of N , the node n of
G is found to be mandatory, then it is indeed mandatory for any value of N . If one of
these propagators would do a pruning which is inconsistent with the current domains,
then it means the according value of N can be removed from its domain. By applying
this generic reasoning to the existing propagators it is possible adapt them.

4.2 The Path Constraint

We introduce the constraint Path(G, N1, N2, w, I), the global version of
(Path(G, N1, N2) ∧Weight(G, w, I)). It holds if G is a path from N1 to N2 whose
total weight is I according to the weight function w. With such a constraint, it is possi-
ble to do cost based filtering. Note that all parameters of this constraint can be variables
except the weight function w which must be a constant. In this section, we show how
to adapt the work of [7] on cost-based filtering to this constraint in CP(Graph).

The most general mode of usage of the Path constraint is the case with four un-
bound variables. However it can be directly reduced to a problem with two unbound
variables G′ and I : Path(G′, ns, ne, w

′, I) by introducing a virtual source ns and sink
ne. These virtual nodes are assigned a null weight in w′. We do not introduce an ad-
ditional graph domain variable G′ to do this filtering. We just pretend to temporarily
update the data structure of the least upper bound of G, gU (the updated gU is noted
g′U ) to add these nodes, arcs and weights. The problem of filtering in this structure is
equivalent to the filtering in the following problem:

Path(G′, ns, ne, w
′, I)

Nodes(G′) = Nodes(G) ∪ {ns, ne}
Arcs(G′) = Arcs(G) ∪ {(ns, n)|n ∈ dom(N1)} ∪ {(n, ne)|n ∈ dom(N2)}

w′(x) =

{
w(x) if x ∈ G,

0 if x ∈ G′/G.

The domains of N1 and N2 are easily filtered: all filtering made on the arcs incident to
ns and ne is reflected on the domains of N1 and N2.

dom(N1) := OutNeighbors(g′U , ns), dom(N2) := InNeighbors(g′U , ne)

By introducing these virtual nodes, we can also move all the weights to the arcs
(average of the end-nodes weights) while preserving the total weights of all the paths
from ns to ne. It allows to apply an algorithm for the cost-based filtering of the domain
of G using the lub of the domain of I . This consists in a shorter path constraint presented
for arc-weighted graphs in [7]. A lower bound of I is also obtained as a side product of
this algorithm. The complexity of this filtering is O(|gsa|.|gsn|log|gsn|) over a branch
of the search tree.

Using the lub of I to filter the domain of G is possible by applying the longest
path propagator for directed acyclic graphs of [17] on the component graph (the graph
where the strongly-connected components of the original graph are condensed to a sin-
gle node).
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5 Undirected Graphs

CP(Graph) also supports undirected graphs through an undirected view of a directed
graph variable. Undirected graphs are handled like directed graphs by the framework,
only the constraints differ. Some constraints have an undirected semantic while others
have a directed graph semantic. Some graph properties like being a single connected
component are indeed defined for undirected graphs. As a undirected graph is a special
case of directed graph, properties defined for directed graphs can be applied as con-
straints on undirected graphs. On the other hand, a constraint with an undirected graph
semantic can be applied to a directed graph as it just operates on the undirected view of
the graph (regardless of the orientation of the arc). This view is handled by an additional
constraint handling the unordered couples of nodes for the undirected arcs:

UndirArcNode(A, N1, N2) A is an undirected arc between node N1 and N2. This
relation holds iff ArcNode(A, N1, N2) or ArcNode(A, N2, N1) holds.

6 Experiments

This section describes the prototype of CP(Graph) and the constrained path finding
experiments we did to show its practicality. Then, it discusses the results of the experi-
ments.

6.1 Prototype of CP(Graph) Implemented in Oz/Mozart

We implemented a prototype of CP(Graph) over the Oz/Mozart[18] constraint program-
ming framework. In this prototype, graph domain variables are implemented using set
variables. One set is used for the nodes of the graph and one for the arcs of the graph.
This prototypes allows to state constraint satisfaction problems as well as optimization
problems. The constraint propagators are implemented as combinations of kernel con-
straints or as dedicated global propagators. We implemented the kernel constraints, a
reachability propagator and the path propagator of [8] using the Oz language. The other
constraints are implemented by combining these constraints with finite set constraints.
As Mozart does not support finite sets of couples of integers, we use an integer encod-
ing of arcs. ArcNode provides an accessor for the end nodes of an arc and for the arc
number of a couple of nodes through the use of hash tables.

6.2 Biochemical Network Analyses

We used CP(Graph) to model and solve a problem for biochemical network analysis.
Biochemical network analysis consists in assessing the properties of the biochemical
networks. These networks are composed of all the genes, molecules, reactions and con-
trols (e.g. catalysis of a reaction) and their interactions, which may occur in one or
several organisms. They can be modeled by a labeled simple digraph [1,11].

We focus here on metabolic networks, that is biochemical networks describing reac-
tions and their substrates and products. A pathway is a specific subgraph of a metabolic
network which has a known function in the metabolism. Such pathways were identified
experimentally and described in the molecular biology literature.
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One type of analysis of biochemical networks consists in trying to computationally
find pathways in the metabolic network. An application of this type of analysis lies
in the explanation of DNA chip experiments: in a given context, the cell will activate
a subset of its possible reactions. A DNA chip enables to list the activated reactions.
Given such a set of reactions actually used by the cell, biologists would like to know
which pathways were at work in the cell. Our approach is to first develop a CSP able to
recover known pathways and then use it to discover new pathways as a result of a DNA
chip experiment.

Constrained Shortest Path Finding. As about half of the known pathways are simple
paths [19], one type of experiment consists in trying to find these pathways by using
constrained path finding in a directed graph (knowing a few nodes of the path). In [20],
several computational path finding experiments were described. The best experiment
consisted in doing point-to-point shortest path finding in a network where each node
has a weight proportional to its degree.

Our experiment consists in redoing the former experiment with an additional con-
straint of inclusion of some intermediate reactions and mutual exclusion for certain pairs
of reactions. These pairs are reverse reactions (the reaction from substrates to products
and the one from products to substrates). Most of the time, these reactions are observed
in a single direction in each species. Hence we wish to exclude paths containing both
in our experiment. These two addtional constraints could not be easily integrated in the
previous dedicated algorithm [20]. In CP(Graph) it just consists in posting a few addi-
tional constraints. If n1, ..., nm are the included reactions and (ri1, ri2), 0 < i ≤ t the
mutually exclusive nodes, the program looks like: miminize Weight(G, w) s.t.

SubGraph(G, g) ∧ Path(G, n1, nm) ∧ ∀0 < i ≤ m : ni ∈ Nodes(G)∧
∀i ∈ [0, t] : (ri1 /∈ Nodes(G) ∨ ri2 /∈ Nodes(G))

In our experimental setting we first extract a subgraph of the original metabolic bipartite
digraph by incrementally growing a fringe starting by the included nodes. Then, given
a subset of the reactions of a reference pathway, we try to find the shortest constrained
path in that subgraph. The first process of extraction of a subgraph of interest is done for
efficiency reasons as the original graph is too big to be handled by the CSP (it contains
around 16.000 nodes). The results are presented in Table 2, it shows the increase of
running time, memory usage and size of the search tree with respect to the size of the
graph for the extraction of three illustrative linear pathways shown in [20]. All reactions
are mandatory in the first experiment. The results of another experiment where one
reaction out of two successive reactions in the given pathway is included in the set
of mandatory nodes, is presented in Table 3. The running time increases greatly with
the size of the graphs. The program can however be stated in a few lines and first
results obtained the same day the experiment is designed. The limitation on the input
graph size does not guarantee to get the optimal shortest path in the original graph. This
should however not be a major problem as biologists are most of the time interested in
a particular portion of the metabolic graph. The rapidity of expression and resolution of
such a NP(Hard) [7] problem reduces this size limitation.

Future work focuses on the limitation of running time explosion with graph size
which can be obsverved in the results tables. Current results are better than those ob-
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Table 2. Comparison of the running time [s], number of nodes in the search tree and memory
usage [kb], for the 3 pathways and for increasing original graph sizes. m is the number of node
inclusion constraints and t the number of mutual exclusion constraints.

Glycolysis (m=8) Heme (m=8) Lysine (m=9)
Size t Time Nodes Mem Size t Time Nodes Mem Size t Time Nodes Mem
50 12 0.2 20 2097 50 22 0.2 32 2097 50 18 0.2 38 2097
100 28 2.5 224 2097 100 36 0.3 22 2097 100 40 4.7 652 2097
150 48 41.7 1848 4194 150 62 1.0 28 2097 150 56 264.3 12524 15204
200 80 55.0 1172 5242 200 88 398.8 7988 18874 200 70 - - -
250 84 127.6 4496 8912 250 118 173.3 2126 9961 250 96 - - -
300 118 2174.4 16982 60817 300 146 1520.2 21756 72876 300 96 - - -

Table 3. Same experiment as in Table2, but with one reaction node included every two (m = 5
instead of 8 or 9).

Glycolysis (m=5) Heme (m=5) Lysine (m=5)
Size t Time Nodes Mem Size t Time Nodes Mem Size t Time Nodes Mem
50 12 0.2 22 2097 50 22 0.3 44 2097 50 18 0.1 16 2097
100 28 2.5 230 2097 100 36 0.9 78 2097 100 40 13.3 1292 3145
150 48 79.3 5538 6815 150 62 7.3 144 3145 150 56 260.4 8642 14155
200 80 39.9 1198 5767 200 88 57.3 950 5242 200 70 4330.5 74550 192937
250 84 323.6 5428 14680 250 118 36.0 350 8388 250 96 - - -
300 118 10470.8 94988 296747 300 146 - - - 300 96 - - -

tained with our other implementations of graph variables [21,11]. We wish to design
more efficient heuristics for labelling (a first-fail strategy from [12] has been used).
Cost-based filtering will be implemented and used in order to limit the size of the graph
according to an upper bound of the cost of the path. A second aspect of our future work
consists in finding which constraints are needed to recover known pathways as it was
shown in [20] that non-constrained shortest paths are not able to recover all of them.

7 Conclusion

This paper introduces the CP(Graph) computation domain with graph domain variables
in order to state and solve subgraph extraction problems. CP(Graph) provides finites
domains and finite sets of nodes and arcs along with the graph domain variables as this
is more expressive than nodes or arcs alone.

The kernel constraints, a minimal set of constraints in order to build other graph con-
straints and problems, are introduced with their achieved consistency and complexity.
Graph constraints are built using the kernel constraints and we sketch a global propa-
gator for some of them. CP(Graph) provides a framework for the integration of existing
and new global constraint on graphs. We describe a path constraint based on [7,8], with
domain variables for the source and sink. Finally we showed that CP(Graph) can be
used to simply express and solve a problem in biochemical network analysis requiring
up to now a dedicated and sophisticated algorithm.
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In the proposed CP(Graph) prototype, graph domain variables are represented by a
finite set of nodes and a finite set of arcs. A dedicated data-structure for graph domain
variables will be designed and compared to the current set implementation. It will most
probably consist in a graph data-structure for both bounds of the graph domain vari-
able. The integration of CP(Graph) in an existing constraint solver will then be pursued
by integrating graph variables as native variables of the system. We are working on a
Gecode [22] implementation.

The application of CP(Graph) to bioinformatics problems will be pursued. This
should result in the need for more memory effective graph domain variables and bet-
ter branching strategies as big graphs (e.g. 16000 nodes, 45000 arcs) are under con-
sideration in this field. CP(Graph) will also be compared to other implementations of
combinatorial graph problems using constraint programming.

CP(Graph) allows to state problems about multiple graphs. An important problem
among those is the graph isomorphism problem. We are adapting the global constraints
of (mono/iso)-morphism and subgraph (mono/iso)-isomorphism of two graph domain
variables from the techniques developed in [23].
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Abstract. This paper reconsiders the most basic scheduling problem,
that of minimizing the makespan of a partially ordered set of activities, in
the context of incomplete knowledge. While this problem is very easy in
the deterministic case, its counterpart when durations are interval-valued
is much trickier, as standard results and algorithms no longer apply.
After positioning this paper in the scope of temporal networks under
uncertainty, we provide a complete solution to the problem of finding the
latest starting times and floats of activities, and of locating surely critical
ones, as they are often isolated. The minimal float problem is NP-hard
while the maximal float problem is polynomial. New complexity results
and efficient algorithms are provided for the interval-valued makespan
minimization problem.

1 Introduction and Motivation

Temporal Constraint Networks (TCN) represent relations between dates of
events and also allow to express constraints on the possible durations of activi-
ties from intervals of values [1]. To ensure a solution to the assignment problem,
it is sufficient to check the well-known consistency properties of the network.

TCN have been extended to take into account uncertainty of durations of
some tasks in realistic applications. A distinction is made between so-called
contingent constraints (for example, when the duration of a task cannot be
known before the execution of the task) and controllable ones (for example a
time interval to be chosen between starting times of two tasks). The resulting
network (called Simple Temporal Network with Uncertainty or STPU) becomes
a decision-making problem under uncertainty, and notions of consistency must
be refined so as to ensure controllability, that is, ensured consistency despite
uncertainty [2–5]. As far as we know, the TCN community has extensively worked
on the controllability of a network, but the question of optimizing the total
duration of set of tasks described by a STPU has not been studied. Nevertheless,
not all solutions to an STPU are equally valuable, and solutions minimizing the
makespan are of obvious practical interest.

Given a set of tasks and a set of precedence constraints between them, the
most elementary scheduling problem is to find the time window for the starting
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time of each task in order to ensure a minimal overall duration or makespan.
When all task durations are precise, the well-known PERT/CPM (Critical Path
Method) algorithm provides such time-windows for all tasks in polynomial time
(see [6]). In particular, a subset of tasks is found to be critical (their starting
time-windows reduce to a singleton), and they form a set of critical paths. When
the durations of tasks are ill-known and modeled by intervals, this problem can
be viewed as a special kind of STPU where all tasks are modeled by contingent
constraints, and controllable constraints only describe precedence between tasks.
Of course, the resulting network is always controllable if the graph of precedence
constraints is acyclic. However, the problem of minimizing the makespan in the
interval-valued setting is much more difficult. It seems to have received atten-
tion only recently [7]. This concern actually derives from the literature on fuzzy
PERT, a topic existing since the early eighties (see [8] for a survey). Especially
Buckley [9] was the first to propose a rigorous formulation for this problem.
Recent results show that in the presence of uncertainty, the usual backward re-
cursion algorithm for finding latest starting times of tasks is no longer applicable
and the usual critical path analysis totally fails [10]. Yet, in the scope of selecting
solutions to STPU which minimize the makespan, it is a basic problem to be
solved in a first step.

Instead of being critical or not, tasks now form three groups: those that are
for sure critical despite uncertainty (necessarily critical tasks), those that are for
sure not critical, and tasks whose criticality is unknown, called possibly critical
tasks (see [11]). Necessarily critical paths may fail to exist while necessarily crit-
ical tasks may be isolated. Finding the 3-partition of tasks in an interval-valued
network turns out to be a NP-hard problem. Preliminary complexity results have
recently appeared in [7], but some problems like the complexity of proving the
necessary criticality of a task remained open. This paper provides a full picture of
the complexity of the makespan minimization problem under the representation
of interval-based uncertainty, and a set of efficient algorithms for determining
the criticality of tasks, the optimal intervals containing their least ending times
and their floats. It is shown that the only NP-hard problem is the one of finding
the greatest lower bound of the float, which is closely related to asserting the
possible criticality of a task. All other problems turn out to be polynomial. The
fact that the two problems of asserting if an arc is necessarily critical or possibly
critical do not have the same complexity is rather unexpected.

2 Preliminaries

An activity network is classically defined as a set of activities (or tasks) with
given duration times, related to each other by means of precedence constraints.
When there are no resource constraints, it can be represented by a directed,
connected and acyclic graph. Of major concern, is to minimize the ending time
of the last task, also called the makespan of the network. For each task, three
quantities have practical importance for the management of the activity network:
The earliest starting time estij of an activity (i, j) is the date before which the
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activity cannot be started without violation of a precedence constraint. The
latest starting time lstij of an activity (i, j) is the date after which the activity
cannot be started without delaying the end of the project. The float fij of
an activity (i, j) is the difference between the latest starting time lstij and the
earliest starting time estij . An activity is critical if and only if its float is equal to
zero. Under the assumption of minimal makespan, critical tasks must be started
and completed at prescribed time-points.

3 The Interval-Valued Scheduling Problem

A directed, connected and acyclic graph G =< V, A >, represents an activity
network. We use the activity-on-arc convention. V is the set of nodes (events),
|V | = n, and A is the set of arcs (activities), |A| = m.

The set V = {1, 2, . . . , n} is labeled in such a way that i < j for each activity
(i, j) ∈ A. Activity durations dij (weights of the arcs) (i, j) ∈ A are only known
to belong to time intervals Dij = [d−ij , d

+
ij ], d−ij ≥ 0. Two nodes 1 and n are

distinguished as the initial and final node, respectively.
We introduce some additional notations.

– A configuration is a precise instantiation of the duration of all tasks (i, j) ∈
A. Ω denotes a configuration, while dij(Ω) ∈ Dij denotes the duration of
activity (i, j) in configuration Ω.
Let B ⊆ A be a subset of activities. The configuration Ω+

B such that

dij(Ω+
B) =

{
d+

ij if (i, j) ∈ B

d−ij otherwise
is called an extreme configuration induced by B.

– C is the set of possible configurations of activity durations, C = ×(i,j)∈ADij .
– P (u, v) is the set of all paths p(u, v) in G from node u to node v, we denote

by P the set of all paths p in G from node 1 to node n.
– lp(Ω) denotes the length of a path p ∈ P (u, v) in Ω, lp(Ω) =

∑
(i,j)∈p dij(Ω).

– Succ(i) (resp. Pred(i)) refers to the set of nodes that immediately follow
(resp. precede) node i ∈ V .

– SUCC(i, j) (resp. PRED(i, j)) denotes the set of all arcs that come after
(resp. before) (i, j) ∈ A, and SUCC(j) (resp. PRED(j)) stands for the set
of all nodes that come after (resp. before) j ∈ V .

– G(i, j) is the subgraph of G composed of nodes succeeding i and preceding j.
– G(dij = d) is the graph where duration of task (i, j) is replaced by d.

Computing earliest starting dates is not a difficult issue [12]. Here we solve
four problems, originally stated in [11,13].

The first one is that of determining the widest intervals LSTkl (bounds) of
possible values of the latest starting times lstkl of a given activity (k, l) ∈ A,
i.e. the interval LSTkl = [lst−kl, lst

+
kl] defined by lst−kl = minΩ∈C lstkl(Ω) and

lst+kl = maxΩ∈C lstkl(Ω). lstkl(Ω) is the float of activity (k, l) in configuration
Ω. The problem of computing the greatest lower (resp. least upper) bound of the
latest starting times is denoted GLBLST (resp. LUBLST). The second problem
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is that of determining the widest intervals Fkl of possible values of floats (total
floats) fkl of a given activity (k, l) ∈ A, i.e. the interval Fkl = [f−

kl , f
+
kl] bounded

by f−
kl = minΩ∈C fkl(Ω) and f+

kl = maxΩ∈C fkl(Ω). fkl(Ω) is the float of activity
(k, l) in configuration Ω. The problem of computing the greatest lower (resp. least
upper) bound of the floats is denoted GLBF (resp. LUBF). In both problems
minimization and maximization are taken over all possible configurations C.

The next two problems are closely related to the ones defined previously.
That is the problem of deciding the possible criticality of an activity and the
problem of deciding the necessary criticality of an activity. An activity (k, l) ∈ A
is possibly critical in G if and only if there exists a configuration Ω ∈ C such
that (k, l) is critical in G in Ω. An activity (k, l) ∈ A is necessarily critical in G
if and only if for every configuration Ω ∈ C, (k, l) is critical in G.

There are obvious connections between the notions of criticality and the
bounds on the float of an activity.

Proposition 1. An activity (k, l) ∈ A is possibly (resp. necessarily) critical in
G if and only if f−

kl = 0 (resp. f+
kl = 0).

The solutions to problems GLBLST, LUBLST, LUBF and GLBF come down
to finding an extreme configuration [11] where such bounds are attained. As there
are 2n extreme configurations, it explains the potentially exponential nature of
the problem. GLBLST, LUBLST and GLBF have recently been solved in [7,14],
and only GLBF is NP-hard. In this paper, we recall the solutions of these three
problems, and present the solution to the last one LUBF, thus providing a full
picture of the makespan minimization problem under incomplete information.

4 Computational Methods for Evaluating Criticality

This section presents a new method which can decide if a given task (k, l) is
necessarily critical. First, under the assumption that the durations of the prede-
cessors of task (k, l) are precisely known, we recall algorithms that respectively
assert if (k, l) is possibly and necessarily critical. They constitute the basis for
computing the LUB and GLB of the latest starting dates in polynomial time in
[14]. We extend these results and give a general algorithm which asserts if (k, l) is
necessarily critical in a network G in polynomial time without any consideration
of the durations of tasks preceding (k, l). This result will lead in the next section
to a polynomial algorithm which computes the LUB of the float of an activity.

Let us recall characteristic conditions of the non-necessary criticality of tasks.

Lemma 1 ([8]). An activity (k, l) ∈ A is not necessarily critical in G if and
only if there exists a path p ∈ P such that (k, l) �∈ p, p is critical in configuration
Ω+

p and no critical path in Ω+
p includes (k, l).

Observation 1. An activity (k, l) ∈ A is not necessarily critical in G if and only
if (k, l) is not critical in an extreme configuration in which the duration of (k, l) is
at its lower bound and all activities from set A\SUCC(k, l)\PRED(k, l)\{(k, l)}
have durations at their upper bounds.



230 J. Fortin et al.

Now under the assumption that activities preceding (k, l) have precise dura-
tions, we can set the durations of tasks succeeding (k, l) at precise values while
maintaining the status of (k, l) in terms of necessary criticality. It yields a con-
figuration where (k, l) is critical if and only if it is necessarily critical in the
interval-valued network. These durations are given by Propositions 2 and 3.

Proposition 2. Let (k, l) ∈ A be a distinguished activity, and (i, j) be an
activity such that (i, j) ∈ SUCC(k, l). Assume that every activity (u, v) ∈
PRED(i, j) has precise duration. If (k, l) is critical in G(1, i), then the following
conditions are equivalent:

(i) (k, l) is necessarily critical in G,
(ii) (k, l) is necessarily critical in G(dij = d−ij).

Proof. (i) =⇒ (ii) Obvious.
(i)⇐= (ii) We use a proof by contraposition. We need to prove that if (k, l) is critical
in G(1, i) and (k, l) is not necessarily critical in G, then (k, l) is not necessarily critical
in G(dij = d−

ij). By assumption, (k, l) is not necessarily critical in G. From Lemma 1, it
follows that there exists a path p ∈ P such that (k, l) �∈ p, p is critical in configuration
Ω+

p and no critical path in Ω+
p includes (k, l). Since (k, l) is critical in G(1, i), (i, j) �∈ p

in Ω+
p . Observe that dij(Ω+

p ) = d−
ij . From this and the fact that (k, l) is not critical in

Ω+
p , we conclude that (k, l) is not necessarily critical in G(dij = d−

ij). ��

Proposition 3. Let (k, l) ∈ A be a distinguished activity, and (i, j) be an
activity such that (i, j) ∈ SUCC(k, l). Assume that every activity (u, v) ∈
PRED(i, j) has precise duration. If (k, l) is not critical in G(1, i), then the
following conditions are equivalent:

(i) (k, l) is necessarily critical in G,
(ii) (k, l) is necessarily critical in G(dij = d+

ij).

Proof. (i) =⇒ (ii) Straightforward.
(i) ⇐= (ii) To prove that (k, l) is necessarily critical in G, we only need to show
that (k, l) is necessarily critical in G(dij = d−

ij). By assumption, (k, l) is necessarily
critical in G(dij = d+

ij). From this, it follows that for every configuration in which the
duration of (i, j) is at its upper bound, there exists a critical path traversing (k, l).
Moreover, this path does not use (i, j), since (k, l) is not critical in G(1, i). Thus (k, l)
remains non critical, irrelevent of the duration of (i, j). Hence, (k, l) is critical for each
configuration in which the duration of (i, j) is at its lower bound and consequently (k, l)
is necessarily critical in G(dij = d−

ij). The necessary criticality of (k, l) in G(dij = d−
ij)

and in G(dij = d+
ij) implies the necessary criticality of (k, l) in G. ��

Propositions 2 and 3, together with Observation 1, lead us to Algorithm 1
for asserting the necessary criticality of a given activity (k, l) in a network in
which all activities that precede (k, l) have precise durations. Testing if (k, l) is
critical in G(1, i) can be done in constant time because we already know if (k, l)
is critical in G(1, j) for all j ∈ Pred(i), and so Algorithm 1 runs in O(m).

We now present an algorithm for evaluating the necessary criticality of a fixed
activity (k, l) ∈ A in network G with interval durations, without any restriction.
The key to the algorithm lies in Propositions 4 and 5 that enable a network with
interval durations to be replaced by another network with precise durations for
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Algorithm 1.
Input: A network G, activity (k, l), interval durations Duv, (u, v) ∈ A and for

every task in PRED(k, l) the duration is precisely given.
Output: true if (k, l) is necessarily critical in G; and false otherwise.
foreach (u, v) /∈ SUCC(k, l) do duv ← d+

uv; dkl ← d−
kl

for i← l to n− 1 such that i ∈ SUCC(l) ∪ {l} do
if (k, l) is critical in G(1, i) then foreach j ∈ Succ(i) do dij ← d−

ij

else foreach j ∈ Succ(i) do dij ← d+
ij

if (k, l) is critical in G(1, n) then return true
else return false

activities preceding a fixed (k, l), in such a way that (k, l) is necessarily critical
in the former if and only if it is necessarily critical in the latter.

Proposition 4. Let (k, l) ∈ A be a distinguished activity, and (i, j) be an activ-
ity such that (i, j) ∈ PRED(k, l). If (k, l) is necessarily critical in G(j, n), then
the following conditions are equivalent:

(i) (k, l) is necessarily critical in G,
(ii) (k, l) is necessarily critical in G(dij = d−ij).

Proof. The proof goes in the similar manner to the one of Proposition 2. ��

Proposition 5. Let (k, l) ∈ A be a distinguished activity, and (i, j) be an activ-
ity such that (i, j) ∈ PRED(k, l). If (k, l) is not necessarily critical in G(j, n),
then the following conditions are equivalent:

(i) (k, l) is necessarily critical in G,
(ii) (k, l) is necessarily critical in G(dij = d+

ij).

Proof. (i) =⇒ (ii) The proof is immediate.
(i)⇐= (ii) We need to show that if (k, l) is not necessarily critical in G(j, n) and (k, l)
is necessarily critical in G(dij = d+

ij), then (k, l) is necessarily critical in G. To prove
this, assume on the contrary that (k, l) is not necessarily critical in G. From Lemma 1,
it follows that there exists a path p ∈ P such that (k, l) �∈ p, p is critical in configuration
Ω+

p and no critical path in Ω+
p includes (k, l) or equivalently (k, l) is not critical in Ω+

p .
We will show that for each such configuration, where (k, l) is not critical, the other
assumptions lead to construct a critical path that traverses (k, l), which results in a
contradiction. By assumption, (k, l) is not necessarily critical in G(j, n). Then there
exists a path p̂ ∈ P (j, n) such that (k, l) �∈ p̂, p̂ is critical in configuration Ω+

p̂ and no
critical path of G(j, n) traverses (k, l) in Ω+

p̂ (see Lemma 1).
Consider the extreme configuration induced by p∪ p̂∪{(i, j)} and denote it by Ω∗.

Note that (k, l) is critical in Ω∗, since (k, l) is necessarily critical in G(dij = d+
ij). Thus

there exists a critical path p∗ ∈ P using (k, l) in Ω∗. We define r to be the common
node of p∗(1, k) and p such that r = max{v | v ∈ V, v ∈ p∗(1, k), v ∈ p} and define r̂ to
be the common node of p∗(1, k) and p̂ such that r̂ = max{v | v ∈ V, v ∈ p∗(1, k), v ∈ p̂}.

We claim that if node r̂ exists, then r̂ = r or node r̂ lies on p∗ before node r.
Suppose, contrary to our claim, that r̂ lies on p∗ after r (see Figure 1a). Then subpath
p∗(r̂, n), p∗(r̂, n) = p∗(r̂, k) ∪ p∗(k, n), is at least as long as subpath p̂(r̂, n) in configu-
ration Ω∗. Notice that p∗(r̂, k) is one of longest paths from r̂ to k in Ω∗. We may now
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(a) (b)
pp

p̂p̂

rr

11 nn
ii jj

p∗
kk ll

r̂r̂

p
′

p∗(r̂, k)

Fig. 1. (a) Configuration Ω∗ – r̂ on p∗ after r (b) Configuration Ω
′
(activities with the

maximal durations are in bold)

decrease some activity durations to their lower bounds in configuration Ω∗ in the fol-

lowing way (see Figure 1b) ∀(u, v) ∈ A, duv(Ω
′
) =

⎧⎪⎨⎪⎩
d+

uv if (u, v) ∈ p̂

d+
uv if (u, v) = (i, j)

d−
uv otherwise

. Duration

dij(Ω
′
) = d+

ij , and, by assumption, (k, l) is necessarily critical in G(dij = d+
ij). Conse-

quently (k, l) is critical in this new configuration Ω
′
. Hence, there exists a critical path

p
′ ∈ P traversing (k, l). Since node r̂ lies on p∗ after node r, lp∗(r̂,k)(Ω∗) = lp∗(r̂,k)(Ω

′
).

Therefore path p∗(r̂, k)∪ p
′
(k, n) is at least as long as subpath p̂(r̂, n) in configuration

Ω
′
. Decreasing dij(Ω

′
) to its lower bound gives configuration Ω+

p̂ . Observe that the

lengths of paths p∗(r̂, k) ∪ p
′
(k, n) and p̂(r̂, n) remain unchanged. Hence, there exists

the path in G(j, n) composed of two subpaths p̂(j, r̂) and p∗(r̂, k) ∪ p
′
(k, n) that is

at least as long as p̂, which is impossible because we have assumed that no critical
path goes through (k, l) in G(j, n) in configuration Ω+

p̂ . We can now return to the

(a) (b)

pp

p̂p̂

rr

r̂r̂

11 nn
ii jj

p∗
kk ll

p
′′

p∗(r, k)

Fig. 2. (a) Configuration Ω∗ – r̂ on p∗ before r (b) Configuration Ω
′′

main proof. Consider configuration Ω∗. The previous claim shows that if node r̂ ex-
ists, then r̂ = r or node r̂ lies on p∗ before node r (see Figure 2a). In the case when
r̂ does not exist, the proof proceeds in the same manner. From the above and the
criticality of p∗ in Ω∗, it follows that subpath p∗(r, n), p∗(r, n) = p∗(r, k) ∪ p∗(k, n),
is at least as long as subpath p(r, n) in this configuration. Notice that p∗(r, k) is
one of longest paths from r to k in Ω∗. Decreasing some of durations in Ω∗ to
their lower bounds, we obtain configuration Ω

′′
in the following form (see Figure 2b)

∀(u, v) ∈ A, duv(Ω
′′
) =

⎧⎪⎨⎪⎩
d+

uv if (u, v) ∈ p

d+
uv if (u, v) = (i, j)

d−
uv otherwise

. Duration dij(Ω
′′
) = d+

ij , by assump-

tion, (k, l) is necessarily critical in G(dij = d+
ij), which implies the criticality of (k, l)
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in this new configuration Ω
′′
. Hence, there exists a critical path p

′′ ∈ P using (k, l).
By the claim, lp∗(r,k)(Ω∗) = lp∗(r,k)(Ω

′′
). It follows that path p∗(r, k) ∪ p

′′
(k, n) is at

least as long as subpath p(r, n) in configuration Ω
′′
. If (i, j) �∈ p, we may decrease

duration dij(Ω
′′
) to its lower bound. Again by the claim, the lengths of subpaths

p∗(r, k) ∪ p
′′
(k, n) and p(r, n) remain unchanged in this new configuration and so

p∗(r, k) ∪ p
′′
(k, n) is still at least as long as p(r, n). It is easily seen that this new

configuration is equal to Ω+
p . If (i, j) ∈ p, configurations Ω

′′
p and Ω+

p are equal.
Consequently, path p(1, r) ∪ p∗(r, k) ∪ p

′′
(k, n) is at least as long as p and moreover

p(1, r)∪ p∗(r, k)∪ p
′′
(k, n) uses (k, l). This contradicts our assumption that no critical

path in Ω+
p includes (k, l). ��

We are now in a position to give an algorithm (Algorithm 2) for asserting
necessary criticality of a fixed activity in a general network. At each step of the
algorithm, tasks between j and k have precise durations (so Algorithm 1 can
be invoked), and Algorithm 2 assigns precise durations to tasks preceding j,
while preserving the criticality of task (k, l). Since Algorithm 1 runs in O(m),
Algorithm 2 requires O(mn) time.

Algorithm 2.
Input: A network G =< V, A >, activity (k, l), interval durations Duv,

(u, v) ∈ A.
Output: true if (k, l) is necessarily critical in G; and false otherwise.
for j ← k downto 2 such that j ∈ PRED(k) ∪ {k} do

NC ← Algorithm 1 with G(j, n) and durations Duv

if NC =true then foreach i ∈ Pred(j) do dij ← d−
ij

else foreach i ∈ Pred(j) do dij ← d+
ij

NC ← Algorithm 1 with G(1, n),(k, l) and updated durations
if NC =true then return true
else return false

Remark: Lemma 1, Propositions 2 and 3 have counterparts for asserting possi-
ble criticality. So the reasoning which leads to the first algorithm can be applied
for possible criticality [14]. This leads to an algorithm similar to Algorithm 1
swapping durations d−uv and d+

uv, for asserting the possible criticality of tasks
whose predecessors have deterministic durations. Unfortunately, Propositions 4
and 5 can not be adapted to the study of possible criticality, and asserting if
a task is possibly critical in the general case is provably NP-Complete [7]. So,
while the results of this section are instrumental for solving problem LUBF, the
same approach cannot be applied to compute the GLB of the floats.

5 Computational Methods for the Latest Starting Times
5.1 Computing the Greatest Lower Bound on the Latest Starting

Times

There already exists an algorithm that computes the GLB of latest starting
times [14] in polynomial time whose basis is recalled below. This section presents
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a new polynomial method (more efficient than the already known one as shown
in Section 7) derived from a path enumeration algorithm [8].

The Incremental Approach. Let us recall the following simple but important
result that allows to reduce the set of configurations C for the GLBLST problem.

Proposition 6 ([11]). The greatest lower bound on the latest starting times
lst−kl of activity (k, l) in G is attained on an extreme configuration in which the
duration of (k, l) is at its upper bound and all activities that do not belong to set
SUCC(k, l) have durations at their lower bounds.

The idea of the algorithm for computing lst−kl is based on Lemma 2. It consists
in finding the minimal nonnegative real number f∗

kl that added to the upper
bound of the duration interval of a specified (k, l) makes it possibly critical.

Lemma 2 ([14]). Let f∗
kl be the minimal nonnegative real such that (k, l) is

possibly critical with a duration d+
kl + f∗

kl. Then lst−kl = est−kl + f∗
kl.

The sketch of the algorithm is simple: we begin to set the durations of tasks
preceding (k, l) to their minimal value then we run the algorithm asserting the
possible criticality of (k, l). If (k, l) is possibly critical then its minimal latest
starting date equals the minimal earliest starting date. Otherwise for each task
(i, j) ∈ PRED(k, l) for which (k, l) is possibly critical in G(j, n) and not in
G(i, n) we compute the minimal duration to add to (k, l) to make this task
possibly critical in G(i, n) (this value is easy to compute). Then we add the
smallest computed value to the duration of (k, l) and reiterate the test of possible
criticality of (k, l) in G. Contrary to the next one, this algorithm computes the
latest starting date of only one task.

The Path Enumeration Approach. First let us state a result which describes
the form of configurations where the GLB of the latest starting date of a task
(k, l) in a network G is attained, given in [8]. Let Pkl(u, v) be the set of all paths
from node u to node v going through task (k, l).

Proposition 7. Let (k, l) ∈ A be a task of G. There exists a path pkl ∈ Pkl(k, n)
such that the extreme configuration Ω+

pkl
minimizes lstkl(.).

Note that path pkl is one of the longest paths from k to n including l in
configuration Ω+

pkl
. We can recursively construct the path pkl ∈ Pkl(k, n) of

Proposition 7 corresponding to the optimal configuration. Suppose that for each
node u ∈ Succ(l), we know a path plu ∈ Plu(l, n) for which the configuration Ω+

plu

minimizes the latest starting date of (l, u). Then we can construct an optimal
path pkl from paths plu for u ∈ Succ(l).

Proposition 8. Let (k, l) be a task of G, and ∀u ∈ Succ(l), let plu ∈ Plu(l, n) be
a path such that lst−lu = lstlu(Ω+

plu
). Then lst−kl = minu∈succ(l) lstkl(Ω+

{(k,l)}∪plu
).

From Proposition 8, we can deduce a polynomial algorithm to compute the GLB
of the latest starting dates of all tasks: we recursively find a path pkl for which
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the configuration Ω+
pkl

minimizes lstkl(.) from the paths plu for u ∈ Succ(l),
starting from the nodes in Pred(n). Algorithm 3 runs in O(m(n + m)) for the
computation of all the GLBs of the latest starting dates. Note that it is similar
to the backwards recursion technique used in the classical CPM method.

Algorithm 3.
Input: A network G, interval durations Duv, (u, v) ∈ A.
Output: The GLB of latest starting dates of all the tasks in network.
foreach (k, l) ∈ A do lst−kl ← +∞
V ← V ∪ {n + 1}; A ← A ∪ {(n, n + 1)}
Dnn+1 ← 0; pnn+1 ← (n, n + 1)
foreach (k, l) such that k ← n− 1 downto 0 do

foreach u ∈ Succ(l) do
p′ ← (k, l) ∪ plu

Compute lstkl(Ω+
p′) by the classical CPM

if lstkl(Ω+
p′) < lst−kl then lst−kl ← lstkl(Ω+

p′); pkl ← p′

5.2 Computing the Least Upper Bound on the Latest Starting
Times

Only a counterpart to the incremental method is known for computing the GLB
on the latest starting times of an activity. There exists an exponential path
enumeration algorithm [8], but it has not (yet) been adapted to compute the
LUB of the latest starting dates in polynomial time (contrary to the GLB).
Again a result of Dubois et al. [11], allows to reduce the set of configurations C.

Proposition 9 ([11]). The least upper bound on the latest starting times lst−kl

of activity (k, l) in G is attained on an extreme configuration in which the du-
ration of (k, l) is at its lower bound and all activities that do not belong to set
SUCC(k, l) have durations at their upper bounds.

The main idea of the algorithm for determining lst+kl of a given activity (k, l) ∈ A
is based on Lemma 3. It consists in determining the minimal nonnegative real
number f∗

kl that added to the lower bound of the duration interval of a specified
activity (k, l) makes it necessarily critical.

Lemma 3 ([14]). Let f∗
kl be the minimal nonnegative real number such that

(k, l) is necessarily critical with a duration d−kl + f∗
kl. Then lst+kl = est+kl + f∗

kl.

6 Computational Methods for Floats

6.1 Computing the Least Upper Bound on Floats

To compute the LUB of the floats of an activity (k, l), we first set the durations
of the tasks neither preceding nor succeeding (k, l) according to the following
Lemma 4. The maximal float of (k, l) after this partial instantiation is the same
as in the original network G.
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Lemma 4 ([11]). The least upper bound on float f+
kl of activity (k, l) in G is

attained on an extreme configuration in which the duration of (k, l) is at its
lower bound and all activities from set A \ SUCC(k, l) \ PRED(k, l) \ {(k, l)}
have durations at their upper bounds.

Algorithm 2 is a polynomial algorithm which can already assert if the task
(k, l) is necessarily critical. To compute the LUB of the floats, we are going to
increase step by step the duration of (k, l) from dkl = d−kl until (k, l) becomes
necessarily critical. Lemmas 5 and 7 give the hint to find the increment of dkl

at each step of the algorithm. According to Proposition 10, this incremental
technique eventually yields f+

kl.

Lemma 5. Let activities (i, j) ∈ PRED(k, l) have precise durations in G. Then
(k, l) is necessarily critical in G if and only if there exists a path p ∈ P (1, k)
such that for every node j ∈ p, (k, l) is necessarily critical in G(j, n).

Proof. (=⇒) Let us denote by p a longest path from 1 to k. Note that activities
(i, j) ∈ PRED(k, l) have precise durations. From the necessary criticality of (k, l)
in G, it follows that path p is part of a longest path from 1 to n and this path uses
(k, l) for each configuration. Thus for every node j ∈ p, the subpath p(j, n) is critical
path in G(j, n). Since this is true for each configuration, (k, l) is necessarily critical
in G(j, n).
(⇐=) Just take j = 1. G(1, n) = G and so (k, l) is necessarily critical in G. ��

If we assume that activities (i, j) ∈ PRED(k, l) have precise durations, then
there is a connection between the least upper bound on latest starting times
lst+kl and the least upper bound on floats f+

kl of activity (k, l).

Lemma 6 ([14]). Let activities (i, j) ∈ PRED(k, l) have precise durations in
G. Then f+

kl = lst+kl − est+kl.

Accordingly, under the assumption that activities (i, j) ∈ PRED(k, l) have
precise durations, the least upper bound on floats f+

kl can be computed by means
of algorithms for determining lst+kl presented in Section 5. At each iteration of
the while loop of Algorithm 4, (k, l) becomes necessarily critical in at least one
new subnetwork G(j, n). Thus the loop is executed at most n times, and so
Algorithm 4 takes O(n3m) time.

Lemma 7. Let Δ = minj{f+
kl(j, n) | (k, l) is not necessarily critical in G(j, n)}

where f+
kl(j, n) is the least upper bound on float of (k, l) in G(j, n), j ∈ PRED(k).

Then for all ε < Δ, activity (k, l) is not necessarily critical in G(j, n), j ∈
PRED(k), with duration dkl = d−kl + ε. Moreover there exists j∗ ∈ PRED(k)
such that (k, l) is not necessarily critical in G(j∗, n) with duration dkl = d−kl, and
(k, l) becomes necessarily critical in G(j∗, n) with duration dkl = d−kl + Δ.

Proof. Consider a node j such that (k, l) is not necessarily critical in G(j, n). By Ob-
servation 1, one can assume that activity (k, l) has the duration of the form dkl = d−

kl.
Let Ω be an extreme configuration where the float of (k, l) attains its maximal

value f+
kl(j, n) > 0 in G(j, n), and ε < Δ ≤ f+

kl(j, n) (dkl(Ω) = d−
kl). p′ denotes the
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longest path in G(j, n) in Ω, while p′′ stands for the longest path in G(j, n) in Ω using
(k, l). Therefore, f+

kl(j, n) = lp′(Ω)− lp′′(Ω) > ε.

Now let us define the configuration Ω′ such that duv(Ω′) =

{
d−

kl + ε if (u, v) = (k, l)
duv(Ω) otherwise,

.

p′ remains a longest path in Ω′ with same length, and p′′ is still a longest path traversing
(k, l) with length lp′′(Ω′) = lp′′(Ω)+ε. Since the float of (k, l) in Ω′ is lp′(Ω′)−lp′′(Ω′) >
0, (k, l) is not necessarily critical in G(j, n), j ∈ PRED(k), with duration dkl = d−

kl +ε.
Consider a node j∗ such that (k, l) is not necessarily critical in G(j∗, n), and set

Δ = f+
kl(j

∗, n). Then for all configurations, the difference between the longest path in
G(j∗, n) and the longest path using (k, l) is less or equal than Δ. If we increase the
duration of (k, l) to d−

kl+Δ, a longest path, in this new configuration, will traverse (k, l)
and thus (k, l) will be necessarily critical in G(j∗, n) with duration dkl = d−

kl + Δ. ��
At the end of the incremental process, the least upper bound of the float of (k, l)
is attained:

Proposition 10. Let f∗
kl be the minimal nonnegative real number such that (k, l)

is necessarily critical in G(dkl = d−kl + f∗
kl). Then f+

kl = f∗
kl.

Proof. Consider any configuration Ω. Let p
′
be a longest path in Ω and p′′ be a longest

path including (k, l) in Ω. Note that fkl(Ω) = lp′ (Ω) − lp′′ (Ω). Let us now modify
configuration Ω and denote it by Ωx. Configuration Ωx is defined as follows:

∀(u, v) ∈ A, duv(Ωx) =

{
duv(Ω) + x if (u, v) = (k, l)
duv(Ω) otherwise,

where x is a nonnegative real

number. It is clear that lp′′ (Ωx) = lp′′ (Ω)+x and p
′′

remains a longest path including
(k, l) in new configuration Ωx. Consider the following two cases.

Case: x < fkl(Ω). Then lp′′ (Ωx) ≤ lp′ (Ω), and so p
′

is still a critical path in Ωx and
has the same length as in Ω. This gives fkl(Ωx) = fkl(Ω)− x.
Case: x ≥ fkl(Ω). Then p

′′
becomes a critical path and so fkl(Ωx) = 0. Thus, for all

Ω and x equation fkl(Ωx) = max(fkl(Ω) − x, 0) holds. In particular, for x = f∗
kl and

configuration Ω = Ω∗ such that Ω∗ maximizes the float of task (k, l) in G. From the
definition of f∗

kl we get fkl(Ωf∗
kl) = 0, hence fkl(Ω∗)− f∗

kl ≤ 0, and finally f+
kl ≤ f∗

kl.

Suppose that f+
kl < f∗

kl. Set y = (f∗
kl + f+

kl)/2. Then, for every Ω, fkl(Ωy) =
max(fkl(Ω) − y, 0) = 0. Note that y is a nonnegative real number, smaller than f∗

kl,

Algorithm 4.
Input: A network G, activity (k, l), interval durations Duv, (u, v) ∈ A.
Output: The least upper bound on floats f+

kl.
NC ← Algorithm 2 /*Set task durations preceding (k, l) according Prop. 4,5 */
f+

kl ← 0; dkl ← d−
kl

while NC =false do
Δ ← min{f+

kl(j, n) | j ∈ PRED(k), f+
kl(j, n) �= 0}

/*f+
kl(j, n) = lst+kl − est+kl(Lemma 6) */

f+
kl ← f+

kl + Δ; dkl ← dkl + Δ
NC ← Algorithm 2 /*Update precise durations of tasks preceding (k, l) */

return f+
kl
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such that (k, l) is necessarily critical in G(dkl = d−
kl+y), which contradicts the definition

of f∗
kl. Hence, we conclude that f+

kl = f∗
kl. ��

6.2 Computing the Greatest Lower Bound on Floats

Computing GLB on floats is NP-Hard in the general case. The reader should
refer to [8,14] for some special tractable cases. However, an efficient algorithm has
been proposed in [8]. The idea is to compute a PERT/CPM on each configuration
Ω+

p such that p is a path of G from 1 to n. The number of tested configurations
is of course potentially exponential, but in practice the algorithm runs very fast
on realistic problems.

7 Complexity and Experimental Results

First, we summarize in Table 1 order of the complexity of the different problems
of the PERT/CPM on intervals. Moreover, in Table 1, we give the order of

Table 1. The complexity of the interval problems and the running times of the best
known algorithms

Earliest starting date (all tasks) GLB P O(n + m) [12]
LUB P O(n + m) [12]

Latest starting date (one task) GLB P O(mn) [14]
LUB P O(mn) [14]

Latest starting date (all tasks) LUB P O(m(m + n)) Algorithm 3
Float (all tasks) GLB NP-Hard O((n + m)|P |) [8]

Float (one task) LUB P O(n3m) Algorithm 4

magnitude of the the running times of the best known algorithms, which compute
the quantities of interest. In particular, the path algorithm which computes the
GLB and LUB of floats and latest starting dates requires O((n + m)|P |) time,
where |P | is the number of paths of network G. This time depends of the topology
of the network. Note that, some algorithms need only one execution to compute
a given quantity (for example, the latest starting date) for all tasks of a network.
Other ones need to be executed for each task.

We now present some computational results in order to evaluate the perfor-
mance of all these algorithms on a scheduling problems library of 600 networks
of 120 tasks. Those instances of problems were generated by the ProGen, pro-
gram for activity network generation [15], which can be downloaded from the
PSPLIB web site (http://129.187.106.231/psplib/). We added a range of 20% to
task durations to obtain intervals. Table 2 presents the minimal, maximal and
average execution times (in second) of five algorithms on those 600 problems. All
the algorithms were written in C language and ran on a PC computer equipped
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Table 2. The minimal, maximal and average execution times (in second) of five algo-
rithms on 600 problems

Min Max Average

Path algorithm LUBLST, GLBLST, LUBF, GLBF 0.02 0.45 0.12 [8]
Polynomial path algorithm LUBLST 0.01 0.03 0.017 Algorithm 3
GLBLST 0.01 0.05 0.023 [14]
LUBLST 0.02 0.12 0.056 [14]
LUBF 0.57 8.2 3.12 Algorithm 4

with 1GHz CPU. As seen from the experimental results, the path algorithm (po-
tentially exponential) is very efficient in practice for simultaneous computing the
latest starting dates and the floats. This comes from the fact that the number
of paths in networks is not so huge (between 408 and 6559 different paths). Of
course, one can construct more complex networks, but such networks would be
not relevant to realistic scheduling problems. On the other hand, the polyno-
mial algorithm that computes the LUB of the floats is not efficient in practice
for realistic scheduling problems. However, its performance should be better for
larger instances.

8 Conclusion

This paper has proposed a complete solution to the criticality analysis of a net-
work of activities when durations of tasks are ill-known. It is shown that moving
from precise to imprecise durations radically changes the nature and complexity
of the problem, ruining the traditional critical path method. Part of the prob-
lem, pertaining to the GLB of the float, becomes NP-hard, the other questions
remaining polynomial, although not straightforwardly so. These complexity re-
sults shed light on reasons why the more familiar stochastic counterparts to
this basic scheduling problem are so difficult to handle, part of the difficulty
being already present in the interval analysis. The proposed algorithms can be
of obvious relevance to practical predictive project scheduling problems where
durations of tasks are not known in advance. Clearly, due to the basic nature
of the addressed problem, several lines of research can be envisaged for future
research. For instance one may assume that part of the tasks durations are con-
trollable and additional constraints relating durations and starting or ending
times may be available. Then one obtains a makespan minimization problem in
the more general setting of STPU’s. Another interesting question is to relate
the above results to robust scheduling when several scenarios are available. In
the latter case scenarios embody dependencies between task durations while our
approach makes no dependence assumptions. Robust scheduling becomes more
and more difficult as the number of scenarios increases. In this case our approach
may provide a good approximation if duration intervals are derived from a large
number of scenarios. Alternatively robust and interval scheduling can be hy-
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bridized considering a small set of imprecise (interval-valued) scenarios derived
from the large scenario set by means of a clustering method.
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Abstract. A conditional constraint satisfaction problem (CCSP) is a
variant of the standard constraint satisfaction problem (CSP). CCSPs
model problems where some of the variables and constraints may be
conditionally inactive such that they do not participate in a solution.
Recently, algorithms were introduced that use MAC at their core to
solve CCSP. We extend MAC with a simple assumption-based reason-
ing. The resulting algorithm, Activity MAC (AMAC), is able to achieve
significantly better pruning than existing methods. AMAC is shown to
be more than two orders of magnitude more efficient than CondMAC on
certain problem classes. Our algorithm is most naturally expressed using
a variant of the CCSP representation that we refer to as Activity CSP
(ACSP). ACSP introduces activity variables which explicitly control the
presence of other variables in the solution. Common aspects of CCSP,
such as activity clustering and disjunction, are easily captured by ACSP
and contribute to improved pruning by AMAC.

1 Introduction

Standard constraint satisfaction problems (CSP) are being used to represent and
solve complex combinatorial problems in many areas. Over the years, several
specialized CSP variants were introduced to accommodate specific classes of
problems.

1.1 Conditional CSP and Historical Overview

Conditional CSP (CCSP [1], CondCSP [2] or originally DCSP [3]) is a special-
ization in which it is possible to conditionally disable parts of the problem. This
structural conditionality of CCSP is useful in several problem areas, such as
configuration [3] and hardware test generation [4].

CCSP adds to CSP the notion of variable activity and inactivity. Only active
variables are assigned values, while inactive variables are ignored.

Over the years, several CCSP solving techniques have been proposed. The
original work of Mittal and Falkenhainer [3] offers three solution methods. The
most comprehensive algorithm is a kind of backtrack-search algorithm. It uses
an Assumption Based Truth Maintenance System (ATMS) [5] to perform sim-
ple deductions, cache constraint checks, and generate nogoods (i.e. learn con-
flicts). As any classic backtrack-search algorithm, it assigns values to variables,
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and backtracks once they lead to failure. The second algorithm uses backtrack-
search with a limited forward-checking for activity constraints (resembling the
backtrack-search used in [6]). The third algorithm reformulates CCSP to CSP,
where inactive variables are assigned a special value referred to as null. None of
the three algorithms use constraint propagation to prune the search space.

In contrast, Gelle and Faltings [2] preprocess the CCSP and then use mixed-
CSP techniques combined with MAC [7]. Sabin, Freuder and Wallace [1] intro-
duced CondMAC, a variant of MAC that takes variable activity into account.
CondMAC considers only those variables that are active; variables with an activ-
ity status which is not determined yet are ignored. CondMAC consults activity
constraints to find which variables should be active. Both works [2,1] suggest
that algorithms based on MAC are about two orders of magnitude faster than
either pure backtrack-search or null reformulated CCSP.

1.2 Disjunction and Clustering of Activity

Two widespread phenomena in configuration problems are disjunction and clus-
tering of activity. Mittal and Falkenhainer [3] mentioned the necessity of “dis-
junction over required [activity of] variables” for expression some types of do-
main knowledge. However, they did not implement it due to performance issues
with such constraints. Soininen, Gelle and Niemelä [6] also observed that CCSP
(DCSP) models are too weak to represent some configuration tasks. One of their
observations is that “ It is, e.g., difficult to encode, as an activity constraint that
... either a condenser or a cooler should be included” (where cooler and condenser
are variables). In this case, a valid configuration must have either a cooler or
condenser; so it is not valid to have them both deactivated. They conclude that
disjunctive activity constraints [3] would help. It is interesting to note that most
Conditional CSP papers use configuration examples for which disjunctive activity
constraints would be natural, most notably the car configuration problem [3].

Another important phenomenon is clustering of activity. Clustering occurs
when several variables have identical activity status in all solutions. We refer to
the set of variables with identical activity conditions as an activity cluster. We
believe that clustering is quite common in CCSPs due to the inherent modularity
of the problems, where variables within the same component have the same
activity rules.

1.3 The Activity MAC Algorithm

This paper introduces a novel Activity MAC (AMAC) algorithm to solve CCSPs.
Unlike CondMAC [1] AMAC tries to propagate constraints regardless of variable
activity. This early constraint propagation allows significantly better domain
pruning than CondMAC.

To enable early constraint propagation, AMAC concurrently checks several
assumptions about activity of CCSP elements. The algorithm allows deduction-
like information flow between different activity assumptions. This assumption-
based reasoning allows AMAC to propagate constraints over the conditionality
barrier, which eliminates a substantial number of backtracks at a reasonable
cost.
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In order to simplify the AMAC algorithm, we present a slightly modified
variant of the CCSP representation. To avoid confusion with standard CCSPs,
we refer to it as Activity CSP (ACSP). This representation has a new class
of variables named activity variables. As the name suggests, activity variables
control the activity of other variables. The domain of an activity variable is
{true, false} such that when it is assigned with true the controlled variables
are all active. CCSP’s activity constraints are no longer needed because regular
constraints can operate directly on activity variables.

We show that ACSP and CCSP representations are computationally equiv-
alent. Yet, ACSPs can represent important aspects of Conditional CSPs more
naturally, such as activity clustering and activity disjunction. AMAC can easily
use these aspects to achieve better pruning and improve performance. This pa-
per does not deal with the nontrivial task of extracting activity clustering and
activity disjunction from CCSPs. It is possible that one would prefer to model
problems directly as ACSPs rather than CCSPs, because ACSPs eliminate the
cost of extraction.

1.4 Minimality in CCSP and ACSP

The original work by Mittal and Falkenhainer [3] imposes a subset minimality
rule over the activity of variables. According to this rule, a complete assignment
is a valid solution only if removal of any of the assigned variables will violate at
least one constraint. Subset minimality was discovered to be either too strong
and impractical or irrelevant in some domains. According to Soininen, Gelle
and Niemelä [6] some cases of configuration problems are not interested in plain
subset minimality, and they propose a different minimality rule. This led us
to believe that it would be useful to separate optimization goals (e.g., subset
minimality) from core representation and algorithms. It should be simple and
efficient to add goals such as minimality onto the basic algorithms.

In our work, we add minimality on top of the basic ACSP solver through
variable and value ordering. ACSPs with added minimality have the minimality
semantics of CCSPs. The separation of the ACSP structure and minimality goals
makes it possible to define different goals. Possible goals range from optimiza-
tion of an arbitrary cost function through minimal activity subset, to minimal
assignment subset (as in the original [3]).

1.5 Benchmarks

Another interesting observation we made was that popular benchmarks of ran-
dom CCSPs [2] take neither activity clustering nor activity disjunction into ac-
count. As a result, these benchmarks will generate problems with these properties
with a negligible probability. We introduce a modified benchmark that generates
problems with clustering and disjunction. On this benchmark, AMAC shows a
significant performance improvement over CondMAC.

The rest of our paper is organized as follows, In Section 2 we discuss the
benefits of early constraint propagation, in Section 3 we introduce Activity CSP,
in Section 4 we describe the workings of Activity MAC, in Section 5 we present
our experimental results, and we summarize with the conclusions in Section 6.
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2 Early Constraint Propagation

None of the published solution techniques for Conditional CSP exploit constraint
propagation to the full extent. Namely, constraint checking is invoked only after
the constraint variables become active. In a sense, this limits the information
flow during the solution process only from already active variables to variables
whose activity is still undecided. However, as the example in Figure 1 shows,
there are benefits in activating conditional constraints ahead of time. The early
constraint propagation allows:

– Information flow in ’reverse’ direction, from potentially active variables to
definitely active ones:
In the example the domain of x is initially {0, . . . , 100}. If active, y can affect
x through constraint x = y and produce domain {0,. . . ,4} for x. Similarly,
z being active implies domain {5,. . . ,9} for x. Since either y or z has to
eventually be active because of the activity disjunction, we can conclude that
x’s domain is at most {0,. . . ,9}. Note, this deduction is due to constraint
propagation without any assignments or backtrack steps.

– Early activity conflict detection:
We detect contradiction between the assignments va

y = true and va
z = true

using the following argument: if we assume va
y = true, we obtain D(x) =

{0, . . . , 4}. Similarly, va
z = true implies D(x) = {5, . . . , 9}. Since the two

domains are disjoint, we learn that va
1 ∧ va

2 = false. The detection of in-
consistency between potential activity assignments lets us avoid backtrack
steps.

We provide this sort of enhanced pruning in our solution method.

3 Activity CSP

The increased pruning is most easily gained when clustering and disjunction
activity aspects of CCSP are stated explicitly. Hence, we introduce Activity

= =

∨

y z

x
VI

va
y va

z

Fig. 1. A conditional CSP problem: V = {x, y, z, va
y, va

z},VI = {x, va
y, va

z}, D(x)=
{0, . . . , 100}, D(y) = {0, . . . , 4}, D(z) = {5, . . . , 9}, D(va

y) = D(va
z) = {true, false}, CC =

{x = y, x = z, va
y ∨ va

z}, CA = {va
y = true

incl−→ y, va
y = false

excl−→ y, va
z = true

incl−→ z, va
z =

false
excl−→ z}
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CSP, a variant of CCSP, that allows us to capture the notion of clustering and
express our solution algorithm in the natural way.

Before presenting the Activity CSP model, we recall the definition of the
CCSP model [3].

3.1 CCSP

In the standard CCSP model, a problem is defined as tuple 〈V ,VI ,D, CC , CA〉,
where V are the variables, D are the domains, VI ⊆ V is subset of initially
active variables (that have to participate in all solutions). There are two types
of constraints:

– CC - compatibility constraints, which specify valid combinations of the vari-
ables values.

– CA - activity constraints, which specify the conditions under which variables
(in V \ VI) become active. Activity constraints are further subdivided into
inclusion and exclusion constraints. An inclusion constraint C

incl−→ v states
that if C holds, the variable is active (required in a solution). Alternatively,
C

excl−→ v states that if C holds, the variable is not active (excluded from a
solution). C is a regular compatibility constraint.

Solution Sol is assignment of values to VSol ⊆ V , s.t. VI ⊆ VSol, which satisfies
relevant constraints. A compatibility constraint is relevant if all its variables are
active. An activity constraint C

incl−→ v (C excl−→ v) is relevant, if C is relevant. An
activity constraint C

incl−→ v (C excl−→ v) is satisfied if either C doesn’t hold or v
is active (inactive). A solution Sol is minimal if no assignment that is a proper
subset of Sol is a solution.

3.2 ACSP

In ACSP, a problem is defined by 〈V ,VI ,VA,D, C,A〉, where V ,VI and D are
the same as in CCSP, while there are two differences:

– VA are explicit activity variables with a Boolean domain. The activity vari-
ables participate in every solution: VA ⊆ VI . A is a mapping from V \VI to
VA. For each variable v, A(v) specifies its activation condition: v is active iff
A(v) is true.

– We do not distinguish between compatibility and activity constraints: any
constraint may refer to an activity variable.

The clustering effect is achieved when several variables share the same activation
condition.

Solution Sol is an assignment of values to VSol ⊆ V , s.t.

1. Every active variable is assigned a value:

VI ⊆ VSol and ∀v ∈ V \ VI : v ∈ VSol iff Sol(A(v)) = true

2. All relevant constraints are satisfied.
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Solution Sol is (locally) minimal, if no solution can be obtained from Sol by
changing the value of some activity variables from true to false (and shrinking
VSol correspondingly). More formally, for any assignment S ⊂ Sol with VS being
the set of the assigned variables, that

1. agrees with Sol on the values of variables in (V \ VA) ∩ VS :
∀v ∈ (V \ VA) ∩ VS S(v) = Sol(v) and

2. assigns less true values to activity variables:
{v : v ∈ VA, S(v) = true} ⊂ {v : v ∈ VA,Sol(v) = true},

such S can’t be a solution.
To express the example problem as ACSP, we declare va

y, v
a
z as explicit activ-

ity variables: VA = {va
y, v

a
z} and replace the activity constraints with activation

conditions: A(y) = va
y,A(z) = va

z.

3.3 Model Equivalence

We don’t lose in expressive power or representation efficiency when we switch
from CCSP to ACSP. Moreover, the two models are equivalent:

– From CCSP to ACSP: With each variable v ∈ V \ VI , we associate an
activity variable va, set A(v) = va, and replace each activity constraint
C

incl−→ v (C excl−→ v) with compatibility constraint C′ : C → va = true
(C′ : C → va = false)

– From ACSP to CCSP: We replace activation condition A(v) = va with pair
of activity constraints: va = true incl−→ v and va = false excl−→ v.

Throughout the rest of the paper we use only the ACSP representation.

4 Implementing Early Constraint Propagation

The underlying idea in the early constraint propagation is that we invoke con-
straints based on assumptions that some activity variables are true. In Section 4.1
we develop a framework that enables assumption-based reasoning about variable
activity. Then we combine the assumption-based reasoning mechanism with a
standard constraint propagation in section 4.2

4.1 Assumption-Based Reasoning

Activity Set. An activity set of a constraint C is the set of activity conditions
of its variables, and is denoted AS(C). We call any constraint C with AS(C) �= ∅
a conditional constraint. We say that an activity set is violated if at least one
of its variables is assigned false. Activity set is said to be true if all its variables
are assigned true.
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Shadows. The notion of the variable shadow is central to our solution approach.
For a variable v ∈ V \ VI and an activity set AS, shadow v[AS] is a copy
of variable v. The domain of the shadow consists of values that the variable
may get if the activity set were true. For each conditional constraint C, and its
variable v, we let the constraint operate on the shadow v[AS(C)] instead of the
original variable v. Initially, D(v[AS]) = D(v). Over the course of the algorithm
execution, the shadow’s domain becomes more restricted than the variable’s
domain, as long as the activity set is not violated: D(v[AS])← D(v[AS])∩D(v).
The shadow ’sees’ the changes in the variable’s domain, and in addition, it
is subject to the conditional constraint. If the activity set becomes true, the
shadow’s domain is kept identical to the variable’s domain. If the activity set
becomes falsified, the shadow variable is ignored for the rest of the solution
process.

We demonstrate constraint parameter substitution on our example problem:
Constraint C1(x, y) x = y has the activity set AS(C1) = {va

y}. We switch con-
straint C1 to shadows x[{va

y}], y[{va
y}]. Note that y[{va

y}] coincides with the
variable y, because the shadow’s activity set is exactly the variable’s activation
condition. Constraint C2(x, z) x = z has the activity set AS(C2) = {va

z}. We
substitute constraint parameters with x[{va

z}], z.

P0 P1 : va
y = true

va
y va

z

va
y

x y z

va
z

P2 : va
y = true, va

z = true

x y z

P

va
z [{va

y}]

y[{va
y, va

z}] z[{va
y, va

z}]x[{va
y}] y

Fig. 2. Assumption-based decomposition of an ACSP: The original problem P con-
tains five variables x, y, z, va

y, va
z. VI = {x, va

y, va
z},A(y) = va

y,A(z) = va
z. Edges de-

note binary constraints. The constraints’ activity sets dictate partition into three sub-
problems: P0 (which is unconditional), P1 and P2.

Assumption-Based Decomposition. For each constraint, we make the as-
sumption that its activity set is true. Creating and using shadow variables, for
the activity set, effectively puts the constraint in a ‘sandbox’ in which it is run.
Several conditional constraints may share the activity set and, possibly, shadows.
This fact allows us to obtain assumption-based decomposition of ACSP problem:
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we partition the problem constraints into groups according to their activity sets.
Together with corresponding shadows, each group of constraints represents a
conventional CSP problem that includes all the variables and constraints whose
activity follows from the assumptions. An example of assumption-based decom-
position is given in Figure 2. There is at most one shadow variable for each
parameter of a conditional constraint.

The sub-problems corresponding to various activity sets can be handled in-
dependently. Upon reaching a failure in a sub-problem, we infer that the activity
set is violated.

In our example, activations of C1 and C2, having different activity sets, are
unrelated, even though initially (prior to parameter substitution) the constraints
shared a variable. Reaching consistency over C1, we get D(x[{va}]) = {0, . . . , 4}
and the activation of C2 results in D(x[{va

z}]) = {5, . . . , 9}. Because the original
problem’s constraints are distributed over several sub-problems, we have to co-
ordinate solving of the sub-problems and enable information exchange between
them during the solution process. Propagating domain updates between shadows
of the same variable provides the necessary communication link.

The assumption-based decomposition is performed on the conceptual level.
It is intended to demonstrate that the conditional CSP may be transformed into
a set of conventional CSPs. The resulting problems can be solved then using
standard methods coupled with the shadow synchronization mechanism. The
actual implementation does not create an explicit decomposition.

Shadow Synchronization Rules. Let’s assume we have two shadows of the
same variable v: v[AS1], v[AS2]. At some point in the solution process domain of
v[AS1] is modified, and we want to synchronize shadow v[AS2] with v[AS1]. We
can assume that none of the variables in AS1 ∪AS2 is false (otherwise, at least
one of the shadows is not active in the current partial assignment.) We consider
the following cases:

1. If the assumption AS1 is weaker than AS2, the changes of v[AS1] should be
reflected in v[AS2] More precisely, if, given the current partial assignment,
all the variables in AS1 \AS2 are true , then

D(v[AS2])← D(v[AS2]) ∩D(v[AS1])

If an empty domain results, we conclude that
∧

va∈AS2
va = false.

2. Even if the assumptions are incomparable (none is included in another), we
still can benefit from comparing shadow domains. Specifically, the fact

D(v[AS1]) ∩D(v[AS2]) = ∅
implies, that the domains contradict each other and both shadows cannot ex-
ist in a solution at the same time. Therefore, we infer that

∧
va∈AS1∪AS2

va =
false.
In our example, computing D(x[{va

y}]) ∩D(x[{va
z}]) = ∅, leads the algorithm

to conclusion that at least one of the variables va
y, v

a
z has to be false.

Essentially, the synchronization rules capture the semantics of the constraint
(
∧

va∈AS1∪AS2
va)→ (v[AS1] = v[AS2]).
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Propagating Constraints over Activity Variables. We consider constraints
that refer only to activity variables apart from other constraints. Taking into ac-
count the constraints’ semantics allows further improvement of pruning. Specif-
ically, we focus on two types of constraints:

1. Activity Disjunction (
∨

): va
1 ∨ va

2 ∨ . . . ∨ va
k

2. Activity Implication (→): va
1 → va

2,

where va
i are activity variables.

Activity Disjunction. Until now we observed how the information flows from more
’certain’ shadows to less ’certain’ shadows. The propagation of information in
the reverse direction is also possible. Suppose we have a disjunction constraint
over activity variables: va

1∨va
2∨ . . .∨va

k. The constraint imposes the following re-
lationship between variable v and its shadows v[{va

1}], v[{va
2}], . . . , v[{va

k}]: D(v)
can be no larger than

⋃i=k
i=1 D(v[{va

i}]). In our example the algorithm infers that
D(x) can be no larger than D(x[{va

y}]) ∪D(x[{va
z}]) = {0, . . . , 9} and is reduced

w.r.t. the initial D(x).

Activity Implication. An implication between activity variables induces equiva-
lence between activity sets. We can take advantage of this equivalence to merge
shadows under equivalent activity sets into single shadow, and thus reduce the
overall number of variables.

4.2 Activity MAC

We integrate the above ideas into a standard propagation-based algorithm (AC-
3, see [7].) We call our modified propagation method Activity MAC. This section
discusses AMAC implementation details. We consider in turn the preprocessing
stage, the search and constraint propagation component, and the treatment of
activity disjunctions and implications. For brevity we omit most of the code and
concentrate on three important functions: ReachArcConsistency, Synchronize-
Shadows, ComputeUnionConstraints - see Algorithm 1. Finally, we describe an
optimization for the case when there are no activity disjunctions.

Preprocessing Stage. The preprocessing stage computes the constraints’ ac-
tivity sets, builds shadows and replaces the constraint parameters with shadows.
New constraints and new variables besides shadows are also created. The new
constraints are referred to as internal constraints, as opposed to the user con-
straints that are part of the input problem. One kind of internal constraints are
inference constraints which serve for manipulation of conclusions of the form∧

va∈AS va = false. We associate an internal Boolean variable vAS with an ac-
tivity set AS for which |AS| ≥ 2 and introduce a constraint

∧
va∈AS va = vAS .

For any two activity sets AS1, AS2, s.t. AS1 ⊆ AS2, we add a redundant con-
straint vAS2 → vAS1 . Another type of internal constraints, Union Constraints,
is discussed later.

Search and Constraint Propagation. After the preprocessing stage, AMAC
calls the recursive Solve procedure. The recursive Solve procedure implements
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a standard enumeration algorithm combined with arc consistency, with the fol-
lowing exceptions:

– Only original problem variables, whose existence is not ruled out, are con-
sidered for instantiation.

– We can produce a minimal solution, if during the variable selection step we
always prefer variables whose activity is decided, and when choosing a value
for an activity variable, we try false before true

Our version of ReachArcConsistency incorporates several changes as compared
to the standard ReachArcConsistency:

– The constraint queue Q is a priority queue: internal constraints have prece-
dence over user constraints. User constraints are sorted according to activity
set size (unconditional constraints first.) Q is initialized to contain all the
constraints (including the internal ones) prior to the first call to ReachAr-
cConsistency. On each subsequent invocation, Q holds all the constraints
incident to an instantiated variable.

– Handling constraint projection failure (lines 1.10 – 1.12): whenever projec-
tion of constraint C with AS(C) �= ∅ fails (discovers an empty set), instead
of immediately returning FAILURE, we set vAS(C) to false and propagate
this update further.

– Shadow synchronization (lines 1.19 – 1.22): once a constraint parameter’s
domain is modified, the update is propagated to the shadows of the same
variable.

Propagating Activity Disjunctions and Implications
Activity Disjunction. Let’s assume we have a constraint va

1 ∨ va
2 ∨ . . . ∨ va

k.
We define UnionConstraint(x0, x1, . . . xk) as x0 = x1 ∨ . . . ∨ x0 = xk. The
UnionConstraint(x0, x1, . . . xk) propagation is performed by the following op-
eration: D(x0)← D(x0) ∩

⋃i=k
i=1 D(xi). Assume that for some variable v there

are k shadows : v[AS1], v[AS2], . . . , v[ASk], such that:

∀i, 1 ≤ i ≤ k : va
i ∈ ASi and ∀j, j �= i, va

i �∈ ASj (1)

We define AS′
0 to be the intersection of ASi, 1 ≤ i ≤ k. We define k activity sets

AS′
i: ∀i, 1 ≤ i ≤ k : AS′

i = AS′
0 ∪ {va

i}. For any 0 ≤ i ≤ k, we create shadow
v[AS′

i] if it doesn’t already exist.
The constraint va

1∨va
2∨. . .∨va

k implies the constraint UnionConstraint(v[AS′
0],

v[AS′
1], . . . , v[AS′

k]). Union constraints are created in the function ComputeU-
nionConstraints which is executed during the preprocessing stage. Note, for a
given variable v, the shadow set Shadows(v) changes during the iteration over
disjunction constraints. This means we may need to consider the same disjunc-
tion constraint several times. In general, we repeatedly iterate over disjunction
constraints until a fixed point.

Activity Implication. An implication constraint induces the equivalence relation
between activity sets. Suppose, we are given an implication constraint va

1 → va
2
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and we have activity sets AS1 and AS2, such that, va
1 ∈ AS1, v

a
2 �∈ AS1, AS2 =

AS1 ∪ {va
2}, then they are equivalent from the point of view of our algorithm:

(
∧

va∈AS1
va) ↔ (

∧
va∈AS1∪{va2} va). Thus, we can identify shadow v[AS1] with

v[AS1 ∪ {va
2}].

Under given implication constraints, for an activity set AS we define minimal
equivalent set ASmin as a set, such that:

1. ASmin is equivalent to AS.
2. For any proper subset of ASmin, AS′, AS′ ⊂ ASmin, AS′ is not equivalent

to AS.

The minimal equivalent set of an activity set AS is unique. The canonic rep-
resentation allows for fast equivalence tests. Whenever the algorithm computes
an activity set, the set is replaced by its canonic equivalent.

Timely Activation of the Conditional Constraints. If the problem does
not contain activity disjunction constraints, the only benefit we gain from the
conditional constraint propagation is the early detection of conflicts. A conflict
implies that for some activity set AS

∧
va∈AS va = false. In order to ’blame’ the

failure on specific variable, we defer constraint activation until its activation set
has at most one free (unassigned) variable.

4.3 Discussion

Preprocessing. Gelle et al. [2] use preprocessing to reduce a CCSP problem
to set of conventional CSPs, which are then sequentially solved. Interestingly
enough, Sabin et al. [1] propose an idea of interleaving solving several CSPs that
result from CCSP reformulation. This quite accurately describes one important
aspect of our approach: namely, parallel solving of sub-problems resulting from
the assumption-based decomposition.

Comparison with ATMS. The idea of conditioning data on assumptions has
been introduced by de Kleer in his seminal paper on Assumption-based Truth
Maintenance System [5]. ATMS is a general technique for solving search prob-
lems. Roughly speaking, ATMS consists of two components: the solver and the
Boolean inference engine. The solution space is explored in parallel, and the
solver maintains several contexts corresponding to different assumptions while
the inference engine checks for assumption consistency. This resembles our no-
tion of shadows and activity sets and their manipulation through the inference
constraints.

ATMS has been applied subsequently to solving CSPs ([8], [9]), where the
CSP is encoded using assumptions asserting that a certain, not necessarily
Boolean, variable is assigned some value. (Note that in [3] ATMS is mainly
used for nogoods recording.) However, for problems with large variable domains,
the ATMS technique may be prohibitively expensive. In contrast, in AMAC, the
assumptions are of very limited form; they refer only to activity variables and
are known in advance. Overall, manipulation of assumptions in AMAC incurs a
reasonable polynomial cost.
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Algorithm 1. Activity MAC

1: function ReachArcConsistency( )
2: // Q - is priority constraint queue.
3: While Q �= ∅ do
4: Select constraint C ∈ Q, s.t. AS(C) is not violated.
5: Propagate constraint C
6: If constraint failed then
7: // some of the variables in Vars(C) have empty domains
8: If AS(C) = ∅ then
9: return FAILURE
10: else
11: vAS(C) ← false

12: ModifiedVars ← {vAS(C)}
13: else
14: // Propagate changes in C’s variables to their shadows
15: ModifiedVars ← {v|v ∈ Vars(C), D(v) modified by C propagation}.
16: For all v ∈ ModifiedVars do
17: // v is a shadow of some variable w
18: // s.t. v = w[AS] for some activity set AS
19: For all u ∈ Shadows(w), s.t. u = w[AS′], AS �= AS′ do
20: // Propagate update from v to u
21: SynchronizeShadows(w,AS, AS′)
22: Update ModifiedVars (if either u, vAS′ or vAS∪AS′ has been modified)
23: // Update Q
24: For all v ∈ ModifiedVars do
25: Q ← Q ∪ IncidentConstraints(v)
26: Q ← Q \ {C}
27: return SUCCESS
28: procedure SynchronizeShadows(v,AS, AS′)
29: // Propagate changes in v[AS] to v[AS′]
30: If AS \ AS′ = ∅ or all variables in AS \ AS′ are true then
31: D(v[AS′]) ← D(v[AS′]) ∩ D(v[AS])
32: If D(v[AS′]) = ∅ then
33: vAS′ ← false
34: else
35: If D(v[AS′]) ∩ D(v[AS]) = ∅ then
36: vAS∪AS‘ ← false
37: function ComputeUnionConstraints( )
38: UnionConstraints ← ∅
39: NewConstraints ← ∅
40: For all v ∈ Vars(P ) do
41: repeat
42: UnionConstraints ← UnionConstraints ∪ NewConstraints
43: NewConstraints ← ∅
44: For all C ∈ ActivityDisjunctionConstraints(P ) do
45: // C = va

1 ∨ va
2 ∨ . . . ∨ va

k

46: If
exist distinct shadows v1, v2, . . . , vk ∈ Shadows(v), s.t.
∀i, 1 ≤ i ≤ k : vi = v[ASi] for some ASi and

va
i ∈ ASi, but ∀j, j �= i, va

i �∈ ASj

then
47: AS′

0 ← ⋂i=k
i=1 ASi

48: ∀i, 1 ≤ i ≤ k : AS′
i ← AS′

0 ∪ {va
i}

49: For all 0 ≤ i ≤ k do
50: Create v[AS′

i] (if it doesn’t exist)
51: // Create UnionConstraint
52: C′ ← UnionConstraint(v[ES′

0], v[ES′
1], . . . , v[ES′

k])
53: If C′ �∈ UnionConstraints then
54: NewConstraints ← NewConstraints ∪ {C′}
55: until NewConstraints = ∅
56: return UnionConstraints
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5 Experimental Results

Our experiments show that AMAC is considerably faster than CondMAC on
hard problems. It seems that most of the benefit comes from AMAC’s better
handling of clustering.

5.1 The Solvers

We used the Generation Core [4] CSP solver to perform our experiments. The
solver implements AC-3 [7] with random selection of both variables and values.
The solver tries to minimize the effects of the heavy tailed phenomena [10], when
few bad initial selections cause massive backtracks. As a countermeasure the
solver performs restarts after consecutive 1, 2, 4, . . . , 256 seconds and then gives
up after another 512 seconds (1023 total). We implemented both CondMAC [1]
and AMAC solving methods. We believe that the merits of more sophisticated
algorithms, like MAC-DBT (Dynamic Backtracking [11]), are orthogonal to the
gains AMAC has over CondMAC.

5.2 Benchmarking Technique and Definitions

Unlike in other CSP domains, there are no publicly known CCSP benchmark
problems. The only published benchmarks are random CCSP generators. We use
a random CCSP generator similar to the one used in [1,2] with several modifi-
cations. Because we want to give meaningful results for the CCSP community,
we define our tests in terms of CCSP.

For simplicity, we test only binary constraints. We define the density of com-
patibility dc = #constraints·2/(|V|2−V). If dc = 1, there is a constraint between
every pair of regular variables. We define satisfiability of compatibility sc as the
ratio of number of valid tuples to the product of domain sizes. If sc = 1, ev-
ery constraint permits all possible value pairs, such that the CSP is trivially
satisfiable. For activity constraints of the type vi ∈ Ai

incl−→ vj , satisfiability of
activation sa = |Ai|/|Di|. In these benchmarks there is exactly one activity con-
straint for each vi ∈ V \VI . And density of activity is defined da = |V \ VI | / |V|.

We define Nc as the number of variables per conditional cluster. Nc = 1
means that all conditional variables (variables in V \ VI) have independent ac-
tivity constraints. On the other extreme, Nc = |V \VI | means that all conditional
variables have exactly the same activity constraints. We define N∨ as the total
number of binary disjunctions between conditional clusters. A binary disjunction
between v1 and v2 is a constraint that insures that at least one of v1 or v2 are
active. This is similar to true

incl−→ 1{v1, v2}2 in the language of [6].

5.3 Comparison with Other CCSP Benchmarks

Let’s consider the benchmarks presented in [1]. The benchmark has N = 10
variables, |Di| = 10 values in each domain, 1 – 3 conditional variables, da ∈
{0.1, 0.2, 0.3}, fixed dc = sc = 0.2 and sa ∈ [0.1, 0.9]. The times for both Cond-
MAC and AMAC were below 2 milliseconds. This is almost four orders of mag-
nitude faster than previously reported results. We can only speculate why our
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Fig. 3. Clustering: Density of compatibility is dc = 0.15. Satisfiability of activity sa =
0.75. Different values of sc ∈ [0.025, 0.975] are displayed.

implementation of CondMAC is so much faster. The only major algorithmic dif-
ference is that we use AC-3 while [1] uses AC-4. Differences in random problem
generators may also contribute to the big difference. Other contributing factors
could be newer hardware and software engineering differences. Both manual and
automatic inspection of the results assured the correctness of our results.

5.4 AMAC vs. CondMAC

In all our tests, we averaged 5000 runs per sample. All our results are for the
classic subset minimality [3] optimization goal.

For our clustering benchmarks we chose the following characteristics: N =
|V| = 48, VI = 12, sa = 0.75. Note that our 36 conditional variables decompose
into a reasonable amount of 9 possible Nc values. In Figure 3 we tested sc ∈
[0.025, 0.975] using 0.025 intervals. Figure 3(d) shows us that AMAC is more
than two orders of magnitude faster than CondMAC for nontrivial clustering.

As expected, AMAC is slower than CondMAC for trivial problems (up to 3
times, Figure 3(d)). In these cases, CondMAC finds a solution/failure without
backtracking, while AMAC needlessly explores assumptions.

For disjunction, the difference between AMAC and CondMAC is more than
five orders of magnitude. This gap makes it impossible to get comprehensible
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results. For example with sa = 0.3, sc = 0.2, dc = 0.15, |VI | = 12, |V| = 48,
|Di| = 12 and two clusters of Nc = 18. All CondMAC instances finished within
a time limit of 2046 seconds, while the average of AMAC was 2/100 of a second.

6 Conclusions

We have shown that combining assumption-based reasoning with constraint
propagation can significantly enhance pruning for Conditional CSP. The in-
creased pruning is supported by problem characteristics like activity clustering
and presence of activity disjunction constraints. These problem’s aspects are
naturally captured by Activity CSP, a variant of CCSP.

A possible extension to the ACSP model can be to attach activation condi-
tions to activity variables, such that an activity variable may depend on another
activity variable. This enhancement may enable modeling of problems with hi-
erarchical/nested structure.

Another possible extension may support negative activation conditions, this
may permit simpler modeling of mutually exclusive alternatives.
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Abstract. We introduce the study of Conditional symmetry breaking in
constraint programming. This arises in a sub-problem of a constraint sat-
isfaction problem, where the sub-problem satisfies some condition under
which additional symetries hold. Conditional symmetry can cause redun-
dancy in a systematic search for solutions. Breaking this symmetry is an
important part of solving a constraint satisfaction problem effectively. We
demonstrate experimentally that three methods, well-known for break-
ing unconditional symmetries, can be applied to conditional symmetries.
These are: adding conditional symmetry-breaking constraints, reformu-
lating the problem to remove the symmetry, and augmenting the search
process to break the conditional symmetry dynamically through the use
of a variant of Symmetry Breaking by Dominance Detection (SBDD).

1 Introduction

Constraint programming has been used successfully to tackle a wide variety
of combinatorial problems. To apply constraint programming to a particular
domain, the problem must be modelled as a constraint program. Typically, many
alternative models exist for a given problem, some of which are more effective
than others. Constructing an effective constraint model is a difficult task.

An important aspect of modelling is dealing with symmetry. Symmetry in a
model can result in a great deal of wasted effort when the model is solved via
systematic search. To avoid this, the symmetry must be broken effectively. Most
research on symmetry in constraint models considers only the symmetry present
in a model before search begins. As we will discuss, symmetries can often form
during search. We call this conditional symmetry, since its formation depends
on the choices made during search. To avoid redundant search, it is important
to break this symmetry also.

This paper discusses three ways to deal with conditional symmetry. First, we
can add constraints to a model to detect and break the symmetry as it arises.
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Second, we can reformulate our model so that the new model does not have
the conditional symmetry. Finally, we discuss how conditional symmetry can be
broken during search.

2 Background

The finite domain constraint satisfaction problem (CSP) consists of a triple
〈X, D, C〉, where X is a set of variables, D is a set of domains, and C is a
set of constraints. Each xi ∈ X is associated with a finite domain Di ∈ D of
potential values. A variable is assigned a value from its domain. A constraint
c ∈ C, constraining variables xi, . . . , xj , specifies a subset of the Cartesian prod-
uct Di × . . .×Dj indicating mutually compatible variable assignments. A con-
strained optimisation problem is a CSP with some objective function, which is
to be optimised.

A partial assignment is an assignment to one or more elements of X . A
solution is a partial assignment that includes all elements of X . This paper
focuses on the use of systematic search through the space of partial assignments
to find such solutions. A sub-CSP, P ′, of a CSP P is obtained from P by adding
one or more constraints to P . Note that assigning a value v to a variable x is
equivalent to adding the constraint x = v.

A symmetry in a CSP is a bijection mapping solutions to solutions and non-
solutions to non-solutions. A conditional symmetry of a CSP P holds only in
a sub-problem P ′ of P . The conditions of the symmetry are the constraints
necessary to generate P ′ from P . Conditional symmetry is a generalisation of
unconditional symmetry, since unconditional symmetry can be seen as a condi-
tional symmetry with an empty set of conditions. We focus herein on conditions
in the form of partial assignments.

3 Conditional Symmetry-Breaking Constraints

A straightforward method of breaking conditional symmetries is to add con-
straints to the model of the form: condition → symmetry-breaking constraint
where condition is a conjunction of constraints, for instance a partial assignment
such as x = 1 ∧ y = 2, that must be satisfied for the symmetry to form. As in
unconditional symmetry breaking [2], the symmetry-breaking constraint itself
usually takes the form of an ordering constraint on the conditionally symmetric
objects. We report case studies of breaking conditional symmetry in this way.

3.1 Graceful Graphs

The first case study is of conditional symmetry in finding all graceful labellings
[6] in a class of graphs. A labelling f of the vertices of a graph with e edges
is graceful if f assigns each vertex a unique label from {0, 1, ..., e} and when
each edge xy is labelled with |f(x) − f(y)|, the edge labels are all different.
(Hence, the edge labels are a permutation of 1, 2, ..., e.) Finding a graceful
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labelling of a given graph, or proving that one does not exist, can easily be
expressed as a constraint satisfaction problem. The CSP has a variable for each
vertex, x1, x2, ..., xn each with domain {0, 1, ..., e} and a variable for each edge,
d1, d2, ..., de, each with domain {1, 2, ..., e}. The constraints of the problem are
that: if edge k joins vertices i and j then dk = |xi − xj |; x1, x2, ..., xn are all
different; and d1, d2, ..., de are all different (and form a permutation).

The graph shown in Figure 1 is an instance of a class of graphs listed in
Gallian’s survey [6] as C

(t)
n : they consist of t copies of a cycle with n nodes, with

a common vertex. For n = 3, these graphs are graceful when t ≡ 0 or 1 (mod
4).The nodes are numbered to show the numbering of the variables in the CSP
model, i.e. node 0 is the centre node, represented by the variable x0.

Fig. 1. The windmill graph C
(4)
3

The symmetries of the CSP are (i) swapping the labels of the nodes other
than the centre node in any triangle, e.g. swapping the labels of nodes 1 and 2;
(ii) permuting the triangles, e.g. swapping the labels of nodes 1 and 2 with those
of nodes 3 and 4; (iii) changing every node label xi for its complement e− xi.

It is easy to show that the centre node cannot have a label > 1 and < e− 1,
where e is the number of edges. Since there must be an edge connnecting two
nodes labelled 0 and e, if the centre node’s label is not 0 or e, then two other
nodes in a triangle, e.g. nodes 1 and 2, must be labelled 0 and e. But then, unless
the centre node is labelled 1 or e−1 there is no way to get an edge labelled e−1,
given that the largest node label is e. The labels 0, 1, e − 1 and e are possible
for the centre node, however, if there is a graceful labelling.

Suppose we have a graceful labelling of a graph in this class, with the centre
node labelled 0. In any triangle, where the other two nodes are labelled a and
b, with a < b, we can replace a with b − a to get another solution. The edge
labels in the triangle are permuted as shown in Figure 2. Any graceful labelling
of C

(t)
3 with centre node labelled 0 has 2t equivalent labellings by changing or

not changing the labels within each of the t triangles in this way. The effect of an
instance of this conditional symmetry, on nodes 0, 1, 2, say, depends on whether
node 0 is labelled 0 and which of nodes 1 and 2 has the smaller label; hence,
we need to know the assignments to these three variables. A graceful labelling
with the centre node labelled 1 can be transformed into an equivalent labelling
similarly: a triangle labelled 1, a, b, with a < b can be relabelled 1, b − a + 1,
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Fig. 2. Relabelling a triangle in a graceful labelling with centre node labelled 0

b. Again, this is conditional on the three assignments. There are equivalents for
the other possible labels for the centre node, e− 1 and e.

In a labelling with the centre node labelled 1, there must be a triangle labelled
1, 0, e, since there has to be an edge whose endpoints are labelled 0 and e. The
remaining nodes have labels in the range 3, .., e− 1. (Since we already have an
edge labelled 1, we cannot have a node labelled 2, since it has to be connected
to the centre node.)

Fig. 3. Transforming a labelling with centre node labelled 1

Figure 3 (left) shows the 1, 0, e triangle and another representative triangle.
We can transform the labels of all the nodes as shown in the right-hand figure.
If the original labelling is graceful, so is the transformed labelling. Hence, any
labelling with centre node labelled 1 is equivalent to one with centre node labelled
0. Note that the reverse is not true: if the centre node is 0, there need not be a
triangle labelled 0, 1, e.

Hence, there are two conditional symmetries. One has precondition x0 =
1 and its effect is to transform the node labels 0, 1, 2, 3, ..., e − 1, e into
1, 0, 2, 2, ...., e−2, e respectively. (The effect on a node label of 2 is irrelevant, be-
cause it cannot occur.) The other has preconditions x0 = 0 and x1 = 1, x2 = e or
x3 = 1, x4 = e or ... The effect of the symmetry is again easily expressed as a per-
mutation of the values: 0, 1, 2, 3, ...e−2, e−1, e become 1, 0, 3, 4, ....e−1, e−1, e.
Similarly, if the centre node is labelled e − 1, we can transform any resulting
graceful labelling into one with the centre node labelled e.

Ignoring the conditional symmetries for now, the symmetries of the CSP can
easily be eliminated by adding constraints to the model.

– In each triangle, we can switch the labels of the nodes that are not the central
node. Constraints to eliminate this are: x2i−1 < x2i, i = 1, 2, ..., t
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– We can permute the triangles. Given the previous constraints, we can add
the following to eliminate this: x2i−1 < x2i+1, i = 1, 2, ..., t− 1

– To eliminate the complement symmetry, we can post: x0 < e/2.

The conditional symmetries can also be eliminated easily. First, the condi-
tional symmetry in the labellings where the central node is 0 requires knowing
which of the two other nodes in each triangle has the smaller label. Because of
the constraints just added, it is the first one. In terms of Figure 3, we choose
the labelling 0, a, b for the triangle and want this to be lexicographically smaller
than 0, b−a, b. We can add a conditional constraint: if x0 = 0, then 2x2i−1 < x2i,
for i = 1, 2, ..., t. We have shown that the labellings with the central node la-
belled 1 are equivalent to some of the labellings with node 0 labelled 0. Further,
0 and 1 are the only possible labels for the central node, given the constraint
to eliminate the complement symmetry. Hence, we can simply add x0 = 0 to
eliminate this conditional symmetry. This simplifies the conditional constraints
given earlier: since we know that x0 = 0, we can drop the condition and just
have 2x2i−1 < x2i, for i = 1, 2, ..., t. Hence, in this example, all the symmetries,
including the conditional symmetries, can be eliminated by simple constraints.

Using the symmetry-breaking constraints to eliminate just the graph and
complement symmetries, the graph in Figure 1 has 144 graceful labellings. Elim-
inating the conditional symmetries reduces these to 8. The resulting reduction
in search would be greater still for larger graphs in the same class, C

(t)
3 . This

case study demonstrates that eliminating conditional symmetry can sometimes
be done with little overhead and reduce the search effort enormously.

3.2 The Patience/Solitaire Game ‘Black Hole’

We now show the value of conditional symmetries in a case study of the game
‘Black Hole’. Different approaches to solving this game are described in [7]. It
was invented by David Parlett with these rules:

“Layout Put the Ace of spades in the middle of the board as the base or
‘black hole’. Deal all the other cards face up in seventeen fans [i.e. piles] of three,
orbiting the black hole.

“Object To build the whole pack into a single suite based on the black hole.
“Play The exposed card of each fan is available for building. Build in as-

cending or descending sequence regardless of suit, going up or down ad lib and
changing direction as often as necessary. Ranking is continuous between Ace and
King.” [11]

The table below shows an instance of the game: the 18 columns represent
the A♠ in the black hole and the 17 piles of 3 cards each.

4♦ 7♥ 7♠ 3♦ 5♠ T♣ 6♠ J♣
9♠ 9♥ J♥ 4♠ K♦ Q♦ T♠ T♦

A♠ 8♠ 5♦ 2♥ 5♣ T♥ 3♣ 8♣ A♥

J♠ 9♦ 7♦ 2♣ 3♥ 7♣ 3♠ 6♦ 9♣
A♣ Q♠ K♠ Q♥ 5♥ K♣ 8♥ J♦ 2♦
2♠ K♥ Q♣ 4♥ 6♣ 6♥ A♦ 4♣ 8♦

and a solution to this game is:
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A♠-2♣-3♠-4♦-5♠-6♠-7♠-8♥-9♠-8♠-9♣-T♠-J♠-Q♥-J♥-T♣-J♣-Q♦-
-K♦-A♣-2♠-3♥-2♦-3♣-4♥-5♥-6♣-7♥-8♣-7♣-6♦-7♦-8♦-9♥-T♥

-9♦-T♦-J♦-Q♠-K♠-A♥-K♥-Q♣-K♣-A♦-2♥-3♦-4♠-5♣-6♥-5♦-4♣

We can see conditional symmetry in Black Hole from the example. The first
two piles both have 9s in the middle. If, at some point in the game, both 4♦
and 7♥ have been played, the two 9s are interchangeable provided that we don’t
need to play 9♠ before 9♥ to allow access to 8♠, or 9♥ before 9♠ to access 5♦.
That is, the 9s are interchangeable if they are both played after both of their
predecessors and before either of their successors. In these circumstances, we can
choose the order of the two 9s and not backtrack on this choice.

We can represent a solution to the game as a sequence of the 52 cards in the
pack, starting with A♠, the sequence representing the order in which the cards
will be played into the Black Hole. The game can be modelled as a permutation
problem: if the cards are numbered 0 (the A♠) to 51, the sequence of cards can
be represented as a permutation of these numbers. There are two sets of dual
variables: xi represents the ith position in the sequence, and its value represents
a card; yj represents a card and its value is the position in the sequence where
that card occurs. We have the usual channelling constraints: xi = j iff yj = i,
0 ≤ i, j ≤ 51. We set x0 = 0.

The constraints that a card cannot be played before a card above it has been
played are represented by < constraints on the yj variables. The constraints that
each card must be followed by a card whose value is one higher or one lower are
represented by constraints between xi and xi+1 for 0 ≤ i < 51.

The variables x0, x1, ..., x51 are the search variables: the variables
y0, y1, ..., y51 get assigned by the channelling constraints. The xi variables are
assigned in lexicographic order, i.e. the sequence of cards is built up consecu-
tively from start to finish. The value ordering chooses cards. The top or middle
layers are chosen before cards of the same rank lower down in the initial piles,
and ties are broken by choosing cards in increasing rank order and an arbitrary
suit order (♠, ♥, ♦, ♣). This fits with the problem, in that it makes sense to
clear off the top layer of cards as quickly as possible. This simple model using
only binary constraints models the problem successfully, but in practice search
is prohibitive. We need other techniques to make search practical.

We now deal with conditional symmetry. Recall that in the example 9♠ and
9♥ are interchangeable if both have been played after the cards above them,
4♦ and 7♥, and before the cards immediately below them, 8♠ and 5♦. To
break this conditional symmetry, we can add the constraint: if 4♦ < 9♥ and
9♠ < 5♦ then 9♠ < 9♥. This constraint forces 9♠ to be played before 9♥
when they are interchangeable. Based on the initial layout, all constraints of
this form can be added, pairwise, before search. The constraints are simplified
if the preferred card of the pair is at the top of its pile or the other card is at
the bottom of its pile, or both. The conditional symmetry-breaking constraints
are designed to respect the value ordering; the same order of cards of each rank
is preferred by both. Hence, the solution found is the same as the solution that
would be found without the constraints. The constraints simply prevent the
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search from exploring subtrees that contain no solution. Hence, the number of
backtracks with the constraints is guaranteed to be no more than without them.
Furthermore, they appear to add little overhead in terms of runtime; they cannot
become active until their condition becomes false on backtracking, and they then
become simple precedence constraints that are cheap to propagate.

Our CP model was implemented in ILOG Solver 6. We used a benchmark set
of 2,500 games, of which 2,189 are winnable [7]. With the conditional symmetry-
breaking constraints, the CP model was highly effective at solving these in-
stances. The longest run-time was 1,454sec. (on a 1.7GHz Pentium M PC, run-
ning Windows 2000). The distribution was very skewed; 97.5% of instances were
solved in 20.8 sec. or less. All the instances were solved in a total of less than
11,000 sec. We also solved the first 150 instances of the 2,500 without conditional
symmetry breaking, using a cut-off of 1,500 sec. (i.e. more than long enough to
solve any of the instances with symmetry breaking). 20 instances timed out, and
the total time to solve the 150 instances was over 37,000 sec. Some instances
could still be solved with very little search; even so, the median backtracks in-
creased from 81.5 to 3,618. Overall, it is not practicable to use the CP model to
solve random instances of Black Hole without conditional symmetry breaking.

3.3 Steel Mill Slab Design

Our next case study is the steel mill slab design problem [5] (problem 38 at
www.csplib.org). Steel is produced by casting molten iron into slabs. A finite
number, σ, of slab sizes is available. An order has two properties, a colour corre-
sponding to the route required through the steel mill and a weight. The problem
is to pack the d input orders onto slabs so that the total slab capacity is min-
imised. There are two types of constraint: Capacity constraints specify that the
total weight of orders assigned to a slab cannot exceed the slab capacity. Colour
constraints specify that each slab can contain at most p of k total colours (p is
usually 2). These constraints arise because it is expensive to cut the slabs up to
send them to different parts of the mill.

We use a matrix model to represent this problem. Assuming the largest
order is smaller than the largest slab, at most d slabs are required. Hence, a one-
dimensional matrix of size d, slabM , can be used to represent the size of each slab,
a size of zero indicating that this particular slab is unused. A d× d 0-1 matrix,
orderM , is used to represent the assignment of orders to slabs; orderM [i, j] = 1
if the ith order is assigned to the jth slab. Constraints on the rows ensure that
the slab capacity is not exceeded:

∀j ∈ {1..d} :
∑

i∈{1..d}
weight(i)× orderM [i, j] ≤ slabM [j]

where weight(i) is a function mapping the ith order to its weight. Constraints
on the columns ensure that each order is assigned to one and only one slab:

∀i ∈ 1..d :
∑

j∈{1..d}
orderM [i, j] = 1
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A second 0-1 matrix, colourM with dimensions k×d, relates slabs and colours.
A ‘1’ entry in the ith column and jth row indicates that the ith colour is present
on the jth slab. Constraints link orderM and colourM :

∀i ∈ {1..d}∀j ∈ {1..d} : orderM [i, j] = 1→ colourM [colour(i), j] = 1

where colour(i) is a function mapping the ith order to its colour. Constraints on
the rows of colourM ensure that each slab is given no more than p colours.

∀j ∈ {1..d} :
∑

i∈{1..k}
colourM [i, j] ≤ p

In this initial formulation, there is a symmetry involving slabM and the rows
of orderM : a solution can be transformed into a solution by permuting the values
assigned to each element of slabM and permuting the corresponding rows of
orderM . This symmetry can be broken by forming d slabAndOrderRow vectors,
where the first element of slabAndOrderRow[i] is slabM [i] and the remaining
elements are the ith row of orderM , and lexicographically ordering as follows:

slabAndOrderRow[1] ≥lex slabAndOrderRow[2] ≥lex . . . slabAndOrderRow[d]

Furthermore, orderM has partial column symmetry. If two orders have equal
weight and colour, the associated columns can be exchanged. This symmetry
can be broken by combining symmetric orders into a single column, whose sum
is constrained to be equal to the number of orders it represents.

There is a further symmetry conditional on the way that orders are assigned
to slabs. Consider 3 ‘red’ orders, order a of weight 6 and two instances of order b,
with weight 3 (the last two are represented by a single column), and the following
partial assignments to orderM :

⎛⎝
a b . . .

slab1 1 0 . . .
slab2 0 2 . . .
. . . . . . . . . . . .

⎞⎠ ⎛⎝
a b . . .

slab1 0 2 . . .
slab2 1 0 . . .
. . . . . . . . . . . .

⎞⎠
These assignments are symmetrical. Note that the symmetry is conditional

on both instances of b being assigned to the same slab, effectively creating a
single ‘super’ order symmetrical to a. This is the simplest case of compound
order symmetry, where individual orders combine to become symmetrical to
single larger orders or other compounds.

To break compound order symmetry, we must know when and where the sym-
metry forms. For simplicity, we discuss only compound orders composed from
multiple instances of the same order; the encoding can be extended straightfor-
wardly to compounds formed from orders of different sizes. Consider an instance
with 6 red orders of size 1. The assignment of these orders to slabs is represented
by a single column of orderM , whose sum is constrained to be six. Up to two red
compound orders of size three can form from the six red orders. Figure 4 (Top)
presents example cases for which we must cater. In each example all the orders
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a)

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠ b)

⎛⎜⎜⎜⎜⎜⎝
3
3
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ c)

⎛⎜⎜⎜⎜⎜⎝
0
0
6
0
0
0

⎞⎟⎟⎟⎟⎟⎠ d)

⎛⎜⎜⎜⎜⎜⎝
1
1
1
3
0
0

⎞⎟⎟⎟⎟⎟⎠ e)

⎛⎜⎜⎜⎜⎜⎝
1
3
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠ f)

⎛⎜⎜⎜⎜⎜⎝
3
1
2
0
0
0

⎞⎟⎟⎟⎟⎟⎠

a)

⎛⎜⎜⎜⎜⎜⎝
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Fig. 4. Top: Conditional formation of two compound orders. Bottom: Assignments to
subsumM variables corresponding to order variable assignments in the Top part.

have been assigned to a slab, but in some cases one (Fig.4d, Fig.4e, Fig.4f) or
both (Fig.4a) compounds have not formed.

It is useful to consider a first compound (formed from the first three orders,
counting down the column) and a second compound (formed from the second
three). A key observation is that, counting from the top of each column, a com-
pound can form only when enough orders have been assigned (three orders for
the first compound, six for the second). To exploit this observation, for each col-
umn on which compound orders may appear, we introduce a column of variables,
subsumM , which record the cumulative sum of assigned orders read down the
column. Figure 4 (Bottom) presents the subsumM variables for our examples.

Given the subsumM variables, we introduce a position variable for each com-
pound, whose domain is the set of possible slab indices, constrained as follows:

subsumM [position − 1] < compoundSize × instanceNo
subsumM [position] ≥ compoundSize × instanceNo

where compoundSize gives the number of orders necessary to form the compound,
and instanceNo denotes which of the compounds of compoundSize on this column
that position is associated with. This pair of constraints ensure that position
indicates a unique slab when the corresponding column of orderM is assigned.

The remaining question, given some partial assignment, is whether the com-
pound order associated with position has formed on the slab indicated by posi-
tion. This is recorded in a 0/1 variable, switch, paired with each position variable
and constrained as follows:

switch = (orderM [column][position] ≥ compoundSize)

where column is the column of orderM on which the compound may form.
Consider n symmetrical compound orders. We order these compounds as-

cending by the column on which they appear, breaking ties by ordering the
‘first’, ‘second’, . . ., ‘nth’ compounds in a column, as defined in the previous
section, ascending. We denote the switch and position variables of the ith com-
pound under this ordering as switchi and positioni. The conditional symmetry
can be broken straightforwardly as follows:
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∀i < j ∈ {1, . . . , n} : (switchi = 1 ∧ switchj = 1)→ positioni ≤ positionj

These ordering constraints are compatible with the slabAndOrderRow
symmetry-breaking constraints given above. If the compound orders were or-
dered in the reverse direction, solutions might be pruned incorrectly. Given a set
of symmetrical objects, it is normally only necessary to order adjacent elements
in the set [4]. Here, since we cannot be certain that any particular conditional
symmetry will form, we post the transitive closure of the ordering constraints.

The formation of compound order symmetry depends on the order instance
data. Hence, we constructed 12 instances where compound order symmetries
were highly likely to form. We used only one colour for all orders, and chose the
size and number of the smaller orders so that several small orders are equivalent
in size to one of the larger orders.

Table 1. Steel Mill Slab Design: Experimental Results. Times to 3 significant figures.
A dash indicates optimal solution not found within 1 hour. Hardware: PIII 750MHz,
128Mb. Software: Ilog Solver 5.3 (Windows version).

slabM slab&OrderRow slabM+ Comp. Order slab&OrderRow+Comp. Order
Symm. Breaking Symm. Breaking Symm. Breaking Symm. Breaking

Prob Choices Time(s) Choices Time(s) Choices Time(s) Choices Time(s)
1 18,014,515 1120 79,720 5.64 - - 68,717 36.4
2 6,985,007 439 15739 1.45 - - 13,464 6.79
3 7,721 0.741 1,798 0.26 6,461 3.48 1,472 0.971
4 155,438 8.86 60,481 4.10 49,234 31.0 30,534 16.2
5 146,076 7.48 56,590 3.45 46,599 23.4 27,921 12.4
6 117,240 6.01 49,098 2.82 39,411 17.7 24,112 9.70
7 147,148 7.1 60,035 3.34 70,881 36.3 37,672 18.0
8 171,781 8.02 77,187 4.13 80,557 37.1 45,293 19.3
9 206,138 9.52 92,526 4.87 97,072 44.9 53,666 23.0
10 348,716 16.6 140,741 7.55 178,753 94.8 84,046 41.5
11 313,840 15.7 130,524 7.21 164,615 98.5 79,621 44.4
12 266,584 13.9 110,007 6.19 138,300 82.5 68,087 37.8

We ran four experiments on our test suite, summarised in the four columns of
Table 1. Performance with no symmetry breaking at all was very poor, so column
1 gives results with a non-increasing ordering on slabM only (a simplification of
slabAndOrderRow symmetry breaking). Column 2 presents the results of using
full slabAndOrderRow symmetry breaking. Columns 3 and 4 respectively give
the results of combining slabM and slabAndOrderRow symmetry breaking with
compound order conditional symmetry breaking. The results show that the over-
head of compound order symmetry breaking is significant. Although it clearly
reduces search — in the instances tested a reduction of as much as 50% is gained
— the time taken is increased overall

Given our results, the challenge is to make the encoding of detection of condi-
tional symmetry of this type sufficiently lightweight that it can be used without
increasing the overall search effort.

4 Breaking Conditional Symmetry by Reformulation

Modelling has a substantial effect on how efficiently a problem can be solved. An
appropriate reformulation of a model can turn an insoluble problem into a sol-
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uble one in practical terms. Modelling and reformulation are equally important
for symmetry breaking. Different models of the same problem can have different
symmetries; one formulation can have symmetries which are easier to deal with
than another. Thus, reformulation of a problem can be critical in dealing with
symmetries. Unfortunately, there is no general technique for suggesting refor-
mulations for breaking symmetry. If anything, conditional symmetry intensifies
the difficulties, but here we present a successful example. The all-interval series
problem (problem 7 in CSPLib) is to find a permutation of the n integers from 0
to n−1 so that the differences between adjacent numbers are also a permutation
of the numbers from 1 to n− 1.

We can model this using n integer variables x0, x1, ..., xn−1 where xi repre-
sents the number in position i in the permutation. There is an allDifferent con-
straint on the x variables. Following Choi and Lee [1], we use auxiliary variables
di = |xi − xi+1| for 0 ≤ i ≤ n− 2 to represent the differences between adjacent
numbers; these variables are required to be all different. We use lexicographic
variable ordering.

There are 4 obvious symmetries in the problem: the identity, reversing the
series, negating each element by subtracting it from n−1, and doing both. There
is also a conditional symmetry: we can cycle a solution to the problem about a
pivot to generate another solution. The location of this pivot is dependent on the
assignments made and so these symmetries are conditional. As an example, here
are two solutions for n = 11. Differences are written underneath the numbers:

0 10 1 9 2 8 3 7 4 6 5 3 7 4 6 5 0 10 1 9 2 8
10 9 8 7 6 5 4 3 2 1 4 3 2 1 5 10 9 8 7 6

The difference between the first number (0) on the left and last number (5) is 5.
This means we can split the sequence between the 8 and 3, losing the difference
5. We can join the rest of the sequence on to the start, because the 5 − 0 will
now replace 8 − 3. This yields exactly the solution shown on the right. In this
case the pivot is between the values 8 and 3. The difference between first and
last terms must always duplicate a difference in the sequence, so this operation
can be applied to any solution.

We now give a reformulation which eliminates all symmetry including condi-
tional symmetry, with a 50-fold runtime improvement on the best previous work.
Consider a cycle formed by n nodes, with the n differences between consecutive
nodes satisfying the constraint that every difference from 1 to n− 1 appears at
least once, and one difference appears exactly twice. From any solution to this
we can form two all-interval series, by breaking the cycle at either one of the
repeated differences. The reformulation introduces new symmetry because we
can rotate the cycle, but it is broken by setting the first element to 0. Next, we
note that 0 and n− 1 must be adjacent, and since we can reverse any sequence,
we insist that the second element is n− 1. Finally, the difference n− 2 can only
appear by putting n − 2 before 0 in the cycle, or by putting 1 after n− 1. But
after negation, reversal, and cycling, the two cases are the same. So we can insist
that the sequence starts 0, n− 1, 1. This gives the reformulated problem:
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Definition 1 (Reformulation of All-interval series problem). Given n ≥
3, find a vector (s0, ..., sn−1), such that:

1. s is a permutation of {0, 1, ..., n− 1}; and
2. the interval vector (|s1 − s0|, |s2 − s1|, ...|sn−1 − sn−2|, |sn−1 − s0|) contains

every integer in {1, 2, ..., n− 1} with exactly one integer repeated; and
3. s0 = 0, s1 = n− 1, s2 = 1.

Elsewhere [10] we show that: (i) for n > 4, there are exactly 8 times as many
solutions to the original all-interval series problem as to the reformulated one,
and (ii) the repeated difference is even iff n is congruent to 0 or 1 mod4. To code
this formulation, we simply replaced the allDifferent constraint by a constraint
to ensure that every difference occurs at least once: since there are n differences,
one must automatically appear twice. Finally we added the constraint on the
parity of the repeated difference, which reduced run-time by about a third.

Table 2. Run times for reformulated version of the all-interval series problem. Where
meaningful, the column for speedup indicates the factor by which these run times
improve those of SBDS using the unconditional symmetries in [10] on the same machine.
Our code is actually Solver 4.4 code compiled and run under Solver 5.2.

n Solutions Fails Choice Points Cpu (sec) Speedup Fails/Solution
3 1 0 0 0.01 - 0
4 1 0 0 < 0.01 - 0
5 1 0 0 < 0.01 - 0
6 3 1 3 < 0.01 - 0.33
7 4 1 4 < 0.01 - 0.25
8 5 9 13 < 0.01 - 1.80
9 15 14 28 0.01 9 0.93
10 37 69 105 0.02 13 1.97
11 81 278 358 0.02 61 3.43
12 166 858 1,023 0.06 116 5.17
13 400 3,758 4,157 0.28 121 9.40
14 1,239 19,531 20,769 1.78 103 15.76
15 3,199 91,695 94,893 8.85 - 28.66
16 6,990 389,142 396,131 36.94 - 55.67
17 17,899 2,093,203 2,111,101 215.61 - 116.95
18 63,837 13,447,654 13,511,490 1,508.26 - 212.15
19 181,412 79,270,906 79,452,317 9,778.94 - 436.97
20 437,168 435,374,856 435,812,023 53,431.50 - 995.90

Table 2 shows results using the reformulated encoding. Where we have mean-
ingful comparisons, from about n = 11 to 14, this formulation is around 100
times faster than SBDS on unconditional symmetries. This is roughly a 50-fold
speedup on Puget and Régin’s results [12]. It is clear that this formulation is
the best way known to count solutions to the all-interval series problem. Table 2
shows that the number of fails per solution roughly doubles for each increment
in n. Thus, while sometimes regarded as the easiest problem in CSPLib, the
all-interval series still seems to involve considerable combinatorial search.

There is little we can say in general about reformulating to break conditional
symmetry except that it can lead to dramatic performance improvements, but
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seems to require considerable insight on a case-by-case basis. General techniques
for reformulation would be highly desirable, but remain in the future.

5 A Generic Method of Breaking Conditional Symmetries

It is preferable for breaking conditional symmetries – as it is for unconditional
symmetries – to have a generic method where the symmetries and conditions can
be described easily and broken efficiently. To achieve this, we look to previous
methods of breaking symmetries and examine how they could be modified to
cope with conditional symmetries.

Gent, McDonald and Smith [10] give two implementations of SBDS modi-
fied to work for conditional symmetries. These implementations provide proof of
concept only as both have serious problems. Both methods reduce the efficiency
of constraint solving. The first requires a different symmetry function for each
possible conditional symmetry, and naturally there will always be many more
than the unconditional symmetries. The second removes this problem, but the
implementation is grounded heavily in the specific CSP. Thus no general purpose
method proposed to date for conditional symmetries can be regarded as satis-
factory. In this section we describe the main disadvantage of using SBDS-like
approaches when dealing with conditional symmetry. We also explain how we
have modified SBDD [3] to effectively deal with generic conditional symmetries.

5.1 The Problem with Using SBDS to Break Conditional Symmetry

SBDS adds constraints to the local subtree. These constraints are discarded
upon backtracking from the root node of the subtree. This means that we must
have an SBDS constraint for each possibly applicable symmetry. This is a par-
ticularly high overhead where, as in the example of all-interval series, there are
many more conditional symmetries than unconditional ones. An alternative is
to check at a node whether or not a condition holds, and only to add the SBDS
constraints in that local subtree where the condition is known to hold. Unfor-
tunately, this approach fails. We might backtrack from this point and therefore
discard the SBDS constraint, going back up the tree to a node where the condi-
tion is no longer true. Since the condition is not true, no conditional symmetry
will be posted. Unfortunately, the condition could become true again on further
reassignment of variables. Thus, this approach is untenable because it will miss
duplicate solutions.

In contrast to SBDS, it seems that SBDD should adapt naturally to the
conditional case. This is because the check is performed at a node about to
be explored. At this point, we can calculate which conditional symmetries are
known to hold. We can then calculate the resulting group, and check this against
previously visited nodes. Unlike SBDS, when we backtrack from a node, we do
not need to know what conditional symmetry holds in some future node. We can
maintain the database of nodes visited in the same way as conventional SBDD:
that is, we need merely to record the nodes at the roots of fully explored search
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trees. At a search node of depth d there are at most d such roots to store, which
helps to make SBDD so efficient in general.

Unfortunately, the above analysis assumes that the correct algebraic struc-
ture (unconditional symmetries combined with conditional symmetries) is a
group. This is not the case in general. Suppose that the unconditional sym-
metries form a group G, and that a conditional symmetry has group H , with
both groups acting on the set of possible variable to value assignments of the
CSP. If we näıvely compose all symmetries from both groups, then we may lose
solutions: if the unconditional symmetry modifies the condition so that it does
not hold, it is no longer sound to apply the conditional symmetry.

We now describe a sound method for breaking both conditional and uncondi-
tional symmetries dynamically using GAP–SBDD [9]. At each node in the search
tree we discover each conditional symmetry that holds, and generate a symme-
try group Hi for each one. We first check for dominance in G. If dominated we
backtrack. If not we pick H1 and check for dominance. Again, if dominated we
backtrack, if not we pick H2 and repeat until the Hi are exhausted.

This method is sound, since we never compose conditional and unconditional
symmetries, although it introduces the computational overhead of generating
groups and ensuring that the state of search maintained for each group generated.
The method is incomplete in general for the same reason; it may be the case
that composing symmetries results in the detection of dominance which correctly
prunes the search tree. Our conditional–SBDD is the first satisfactory dynamic
technique devised, and is fully generic: it can be applied to any CSP with known
conditional and unconditional symmetries.

Table 3. Conditional–SBDD: Experimental Results. Times to 3 significant figures.
Software: GAP v4.4 & ECLIPSE v5.7. BT denotes backtracks; MD denotes maximum
depth attained during search.

Conditional–SBDD SBDD
t GAP cpu ECL cpu Σ-cpu BT MD sols GAP cpu ECL cpu Σ-cpu BT MD sols
4 10.44 1.50 11.94 199 16 8 3.47 2.66 6.13 782 23 128
5 340.54 24.58 365.12 1823 23 21 53.21 42.44 95.65 11,255 36 672
6 8,336.74 374.73 8,711.47 18,630 31 0 907.31 954.45 1861.76 186,015 50 0

As an example we report on a prototype implementation of conditional–
SBDD applied to the graceful graphs C

(t)
3 described in Section 3.1. As there,

we set the central node to be 0, but no longer add constraints to break the
conditional symmetries on triangles. E.g. if one node in a triangle is 12, then
the numbers i and 12 − i are equivalent on the other node of the triangle. The
results are given in Table 3. We see that conditional–SBDD results in many
fewer backtracks and much less search depth, at the cost of increased GAP
cpu-time taken to identify and search through the Hi. Breaking no conditional
symmetries results in several isomorphic solutions being returned. Conditional–
SBDD is both sound and complete for these examples – exactly one member of
each class of solutions is returned.
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6 Conclusions and Future Work

We have introduced the study of conditional symmetry breaking in constraint
programming. We demonstrate with concrete implementations and case stud-
ies that three methods – each well-known for breaking unconditional symme-
tries – can be applied to conditional symmetries. These are adding conditional
symmetry-breaking constraints, reformulating the problem to remove the sym-
metry, and augmenting the search process to break the conditional symmetry
dynamically through the use of a new variant of SBDD. We can conclude that the
study of conditional symmetry is as rich and fertile for new developments as un-
conditional symmetry breaking, It is arguably even more important in practice,
since many problems contain symmetries that arise during search.
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Abstract. We introduce a novel and exciting research area: symmetrising levels
of consistency to produce stronger forms of consistency and more efficient mech-
anisms for establishing them. We propose new levels of consistency for Con-
straint Satisfaction Problems (CSPs) incorporating the symmetry group of a CSP.
We first define Sym(i, j)-consistency, show that even Sym(1,0)-consistency can
prune usefully, and study some consequences of maintaining Sym(i, 0)-
consistency. We then present pseudocode for SymPath consistency, and a sym-
metrised version of singleton consistency, before presenting experimental
evidence of these algorithms’ practical effectiveness. With this contribution we
establish the study of symmetry-based levels of consistency of CSPs.

1 Introduction

Symmetries arise in many Constraint Satisfaction Problems (CSPs). A rapidly growing
literature looks at avoiding redundant search (and duplicate solutions) through a variety
of techniques, such as enforcing a lexicographic ordering by enforcing lexicographic
constraints [1], adding constraints dynamically during search [2], backtracking from
the current node when it can be shown to be equivalent to a previous nogood [3] or
constructing trees in which the symmetry has been eliminated [4].

Constraint solving is a balance between search and inference. There are various
levels of consistency that can be maintained while searching for a solution, and many
algorithms for enforcing levels of consistency. One can pick a level of consistency such
as arc consistency (AC), a particular approach such as AC-3, and still find a variety of
algorithms using interesting variants of that technique [5–7].

This work is foundational in establishing how symmetry and inference can be in-
corporated to the benefit of search in CSPs. At the heart of the thinking behind this
research is the simple fact that any time we learn something about a CSP, the same is
true of its symmetric equivalents. We suggest ways in which this insight can be used,
specifically a number of new levels of consistency. These levels of consistency do one
of two things: they either exploit the group structure to establish a higher level of con-
sistency than corresponding notions without symmetry; or they establish the same level
of consistency but the algorithm to establish consistency can exploit the group structure
to potentially run faster. This paper considers both possibilities. The only precursor we
are aware of is an exploitation of symmetry in a variant of AC2001 [8].

In Section 2 we introduce the fundamental definitions of CSPs, symmetries and con-
sistency. In Section 3 we define a new, symmetric, kind of consistency called Sym(i, j)-

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 271–285, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



272 I.P. Gent et al.

consistency, and go on to study various specialisations of it such as Sym(i, 0)-
consistency. In Section 4 we present pseudocode for enforcing a symmetrised version of
path consistency, then in Section 5 we present pseudocode for enforcing symmetrised
singleton consistency. Both of these algorithms generalise the optimal known algo-
rithms for their unsymmetrised versions. In Section 6 we present experimental evidence
of the practical effectiveness of our new algorithms, before concluding with a discus-
sion some of the possible directions for this exciting new research area.

2 Background and Definitions

Definition 1. A CSP P is a triple (Δ,D, C), where Δ is a finite indexed set of variables
x1, x2, . . . , xn, each of which has finite domain of possible values Di := Dom(xi) ⊆
Λ. The set D = {Di : 1 ≤ i ≤ n}, and the set C is a finite set of constraints on the
variables in Δ. A solution to a CSP is an instantiation of all of the variables in Δ such
that all of the constraints in C are satisfied.

Statements of the form (var = val) are literals: we denote the set of all literals of
the CSP by χ(Δ,D), or simply χ when the meaning is clear. We will write the literal
(xi = a) as (xi, a), or occasionally (i, a).

Definition 2. A set of literals is a partial assignment if each variable occurs at most
once in it, and a full assignment if each variable occurs exactly once.

Let C be constraint and I a partial assignment, then by Var(C) we denote the scope
of C, namely the variables over which the constraint C is defined, and by Var(I) we
denote the variables in I. We say that I satisfies C if I contains assignments to all
variables in Var(C), and the restriction of I to Var(C) is a permitted tuple of C. The
partial assignment I violates C if it contains assignments to all variables in the scope
of C, but the restriction of I to Var(C) is a forbidden tuple of C. A partial assignment
I is consistent if it satisfies all of the constraints that have no uninstantiated variables.

A permutation f of a set X is a bijection f : X → X . We will denote the image
of a point x ∈ X under the map f by xf . This notation (which comes from group
theory) means that if we apply a permutation f to x ∈ X and then a permutation g to
the result we can simply write xfg, rather than the more cumbersome g(f(x)). Given
any permutation f on a set X we will abuse notation and allow f to act on (ordered or
unordered) subsets of X , via {x1, . . . , xn}f := {x1f, . . . , xnf}. Since f is an injection
the size of the image set is the same as the size of the original set.

Definition 3. Given a CSP P = (Δ,D, C), a symmetry of P is a permutation of
χ(Δ,D) such that a full assignmentA is a solution if and only if Af is a solution.

It is well known that the collection of all symmetries of a CSP forms a group, that
is, the composition of any two symmetries is itself a symmetry, and the inverse of a
symmetry is a symmetry. To see this we note that if f and g are symmetries of a CSP
P , then for any solution S ⊆ χ(Δ,D) the set Sfg = (Sf)g is a solution. To see
that the inverse of a symmetry is a symmetry, note that if S is a solution, and Sf−1

is not a solution, then f is not a symmetry, since (Sf−1)f = S. Any group G has a
distinguished element called the identity, denoted 1G or simply 1, with the property that
acting with 1G fixes everything.
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Let G be a group of permutations of a set Ω, and let a ∈ Ω. The orbit, aG, of a
under G is the set of all elements of Ω to which a may be mapped by permutations in G.
Formally, aG := {ag : g ∈ G}. The stabiliser of a in G is Ga := {g ∈ G : ag = a},
the set of all permutations in G that map a to itself. Let A := {a1, . . . , am} ⊆ Ω.
Then the pointwise stabiliser of A is G(A) := {g ∈ G : aig = ai for 1 ≤ i ≤ m},
namely the set of all permutations in G that map each point in A to itself. The setwise
stabiliser of A is G{A} := {g ∈ G : for all i there exists j with aig = aj}. That is,
the setwise stabiliser is the set of all permutations in G that map the set A to itself. It
is an elementary fact that for any a ∈ Ω the point stabiliser Ga is a subgroup of G (a
subset of G that is itself a group under the same operation as in G), and also that any
setwise or pointwise stabiliser is a subgroup of G.

Our definition of symmetry is very general. In particular, if A is a consistent partial
assignment, then, provided that A is not a subset of a solution, it is possible that there
exists a symmetry g such that Ag violates a constraint. For example, let P be a CSP
with variables x, y, z, each with domain [1, 2], and constraint set {x = y, y = z}.
Then the symmetries of P allow us to freely interchange (x, i), (y, i) and (z, i), for
any fixed i ∈ [1, 2], as this will preserve both of the solutions. Thus in particular there
is a symmetry f which maps (y, 2) .→ (z, 2), (z, 2) .→ (y, 2), and fixes all other
literals. However, the partial assignment {(x, 1), (z, 2)} is mapped by f to the partial
assignment {(x, 1), (y, 2)}, and this latter partial assignment violates a constraint.

Symmetries need not even map partial assignments to partial assignments, and this
is perfectly acceptable. In the 8-queens puzzle, there is a symmetry which rotates the
square by 90 degrees. Suppose we use the standard model, with one variable for the
placement of the queen in each row. The partial assignment {(Q1, 3), (Q2, 3)} maps
to {(Q3, 8), (Q3, 7)}, which involves two values for Q3 and therefore is not a partial
assignment. However, the initial assignment violates the constraint that there is only
one queen in each column. This observation generalises: if a symmetry f maps a partial
assignment A to a set of literals Af that is not a partial assignment, then A is not a
subset of any solution. To see this, suppose that A ⊂ S for some solution S, and note
that by definition of f we have Af ⊂ Sf . Conversely, the inverse of f will map a
collection of literals that a not a partial assigment to one that is, in that f−1 mapsAf to
A. This is one reason why we define symmetries as acting on literals and then induce up
to sets of literals, rather than defining them originally as acting on partial assignments.

Definition 4. Given a CSP P = (Δ,D, C), a symmetry f of P is strict if for all sets
A ⊆ χ(Δ,D) of literals, A is a consistent partial assignment if and only if Af is a
consistent partial assignment.

A symmetry is not strict if it can map a partial assignment violating some constraint
to a partial assignment not violating any constraints, or vice versa.

Definition 5. Let L = (Δ,D, C) be a CSP with symmetry group G. A value symmetry
of L is a symmetry g ∈ G such that if (xi, a)g = (xj , b) then xi = xj . Denote the
elements of Di ∈ D by aij . A variable symmetry of L is a symmetry g ∈ G such that
if (xi, aij)g = (xk, bkl) then j = l. In the case where the variables have common
domains then we denote the elements of Λ as ak, and the condition for a symmetry to
be a variable symmetry can be simplified to: if (xi, ak)g = (xj , al) then ak = al. That
is, the symmetry fixes the values in each literal.
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We distinguish value and variable symmetries, as these have particularly nice algo-
rithmic properties. If all elements of G are pure value symmetries (value symmetries
such that if (xi, a)g = (xi, b) then for all j we have (xj , a)g = (xj , b)) then we can
consider G to consist of permutations of Λ. Similarly, if G contains only pure variable
symmetries then we can consider it to consist of permutations of Δ. See [4,9] for more
details. Note that we cannot in general write (xi, a)g as (xig, ag) as the variable in
(xi, a)g may depend on the choice of value a. The 8-queens example before Defini-
tion 4 gives a symmetry which demonstrates this.

We finish this section with some definitions of consistency. A CSP P is k-consistent
if given a consistent partial assignment on any k−1 variables, along with a k-th variable,
one can find a value for the k-th variable such that the resulting partial assignment of
size k is consistent. A CSP that is k-consistent need not be (k− 1)-consistent: see [10].

We now recall the more general form of consistency called (i, j)-consistency [11].

Definition 6. Suppose that in a CSP P , given any consistent partial assignment on i
variables, and given any other j variables, it is possible to find values for the additional
j variables such that resulting partial assignment of size i + j is consistent. Then P is
(i, j)-consistent.

Thus in this notation k-consistency is (k− 1, 1)-consistency, and arc consistency is
(1, 1)-consistency. We enforce (i, j)-consistency by posting constraints of arity i that
expressly forbid each i-tuple that cannot be extended.

We denote a binary constraint between xi and xj by cij . A CSP P = (Δ,D, C) is
path consistent if and only if for any cij ∈ C, any tuple (a, b) ∈ cij and any variable
xk ∈ Δ \ {xi, xj}, there exists a value v ∈ Dk such that {(xi, a), (xj , b), (xk, v)} is
a consistent partial assignment. For CSPs with no ternary constraints, path consistency
is the same as (2, 1)-consistency; however in the presence of ternary constraints path
consistency and 3-consistency differ.

3 Consistency and Symmetry

In this section we extend (i, j)-consistency to use additional information from the sym-
metry group of a CSP. We will then examine when this coincides with existing levels of
consistency. The following proposition is one of the main motivations for our work.

Proposition 1. If the partial assignment {(xi, ai) : i ∈ I} can be extended to a solu-
tion of a CSP, then for all symmetries g the assignment {(xi, ai)g : i ∈ I} violates no
constraints.

Proof. Suppose not, that is, suppose that {(xi, ai) : i ∈ I ∪ J} is a solution, but that
for some symmetry g the assignment {(xi, ai)g : i ∈ I} violates a constraint C. Then
{(xi, ai)g : i ∈ I ∪ J} is a full assignment which is not a solution, contradicting the
definition of a symmetry.

Thus if one discovers that {(xi, ai) : i ∈ I} violates a constraint then none of
its images under G can be part of a solution, hence they can all be forbidden without
compromising soundness.

Lemma 1. For any X ⊂ Δ, the assignment A := {(xi, ai) : xi ∈ X} can be
consistently extended by B := {(xj , aj) : xj ∈ Y ⊂ Δ} if and only if for all strict
symmetries g the assignmentAg can be consistently extended by Bg.
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Recall the definition of orbit at the end of Section 2. One consequence of the above
lemma is to say that a support J exists for a literal (xi, a) if and only if there exist
images of the support which are support for each literal in the orbit of (xi, a) under the
group of strict symmetries. That is, when symmetries are strict we may reuse symmetric
support. Conversely, if a may be pruned from Di, similar domain deletions occur for
each element of (xi, a)G, even when G contains nonstrict symmetries.

Definition 7. A CSP P with symmetry group G is Sym(i, j)-consistent if for each con-
sistent partial assignment I of size i, for each symmetry g ∈ G and each set of j
variables that do not lie in the Var(Ig), it is possible to find values for those j vari-
ables such that the i + j values taken together (the image of the initial i and the new j)
satisfy all constraints on those i + j variables.

Note that since all symmetry groups contain the identity permutation this definition
encompasses that of standard (i, j)-consistency given in Definition 6. Thus, Sym(i, j)
consistency is at least as strong as (i, j)-consistency.

As an initial example, we illustrate the fact that even Sym(1,0)-consistency is an
interesting concept. Consider a simple graph 3-colouring problem on 4 nodes A, B, C,
and D, containing all possible edges except between A and D. As a graph colouring
problem, we add a not-equals constraint between all pairs of variables except A and
D. Initially, each node has domain [1, 2, 3], so the group G of symmetries of the CSP
contains a symmetry f which simultaneously interchanges (B, i) with (C, i) for i ∈
[1, 2, 3]. There are also three symmetries g1, g2, g3 ∈ G, such that gi swaps (A, i)
with (D, i) and leaves all other literals fixed. Of course, the overall symmetry group
of this CSP contains all combinations of these four symmetries. Suppose now that our
first choice during search is to set (A, 1). We make the problem arc consistent, giving
domains A = [1], B = [2, 3], C = [2, 3], and D = [1, 2, 3]. However, because of
the symmetries that interchange A and D, the problem is not Sym(1,0) consistent. The
new symmetry group is the stabiliser in G of the positive decision (A, 1). Thus it still
contains f, g2 and g3. We can establish Sym(1,0)-consistency by removing 2 and 3
from the domain of D (as g2 maps (D, 2) to (A, 2), which has been deleted and g3
maps (D, 3) to (A, 3)). We can see that this is a correct deduction: since A=1, then B
and C have to share the values 2, 3, and since D is connected to both, only the value
1 is available for D. Thus we see Sym(1,0) making useful deductions in this simple
example. We will explore more deeply the concept of Sym(i, 0)-consistency below.

We establish when Sym(i, j)-consistency is stronger than that of (i, j)-consistency.

Lemma 2. If the symmetry group of a CSP contains only strict symmetries, Sym(i, j)-
consistency is the same as (i, j)-consistency for all i, j.

Proof. Let P be a CSP whose symmetry group G contains only strict symmetries, and
suppose that P is (i, j)-consistent. We show that P is Sym(i, j)-consistent. Let I be
a consistent partial assignment of size i, and let g ∈ G. Then since g is a strict sym-
metry, Ig is a consistent partial assignment of size i. Thus for any j further variables
there exists an extension of Ig to a consistent partial assignment of size i + j, by
(i, j)-consistency. Thus P is Sym(i, j)-consistent. The converse is clear, considering
the identity element of the symmetry group of the CSP.
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Even though the levels of consistency are not different when symmetries are strict,
one may use symmetries to speed up the inference process. Suppose we have three vari-
ables x1, x2, x3, with Dom(x1) = Dom(x2) = [2, 3, 4] and Dom(x3) = [3]. Suppose
our constraints are x1 = x2 and x2 ≤ x3, so that our symmetry group interchanges
x1 and x2, and fixes x3. Then in enforcing (1,1)-consistency we first prune 4 from the
domain of x2 and then on a second iteration prune it from the domain of x1, whereas
when enforcing Sym(1, 1)-consistency we perform both domain deletions at once, as
we know that there is a symmetry swapping x1 and x2.

Suppose that P is a CSP whose symmetry group G is not strict. In particular, sup-
pose that g ∈ G maps a consistent partial assignment I of size i to a collection of lit-
erals Ig which violates at least one constraint, or has two values for the same variable.
It is still possible that P is (i, j)-consistent for some j. However, P is not Sym(i, j)-
consistent for any j, as for any choice of j additional variables there is no way of ex-
tending Ig to a consistent partial assignment of size i + j. Thus Sym(i, j)-consistency
is stronger than (i, j)-consistency.

We now consider a yet stronger type of symmetric consistency, called total
Sym(i, j)-consistency. It differs from Sym(i, j)-consistency in its requirements on sup-
port: for Sym(i, j)-consistency we require that for each image of a partial assignment
and each choice of j additional variables there exists a support. Now we reverse some
quantifiers and require that there is a support J for our initial partial assignment I such
that for all symmetries in G, the image of the support is a support of the image of I.

Definition 8. A CSP P is total Sym(i, j)-consistent if given any consistent partial as-
signment I of size i, and a further j-tuple of variables, there exists a j-tuple J of
assignments to those variables such that for all g ∈ G the assignment Ig ∪ J g is
consistent.

Note that if I∪J is contained in a solution then by definition Ig∪J g will be consis-
tent for all g. Thus enforcing total Sym(i, j)-consistency will not jeopardise complete-
ness. Total Sym(i, j)-consistency is potentially expensive to maintain: to find support
for a consistent i-tuple of assignments may involve testing many possible j-tuples and
symmetries g. However, as we will see in Section 4, if the symmetry group G con-
sists only of pure variable symmetries then total Sym(i, j) consistency can be no more
expensive than its non-total variant, whilst enforcing a stronger level of consistency.

We finish this section with a discussion of the special case of Sym(i, j)-consistency
where j = 0. A CSP is Sym(i, 0)-consistent if whenever I is a consistent partial as-
signment of size i, the image Ig of I under any symmetry g ∈ G is also a consistent
partial assignment. Since the symmetry group G partitions the set of all i-sets of literals
into orbits, each orbit is either entirely consistent or all i-tuples in the orbit are expressly
prohibited. The reason for our interest is the following key theorem.

Theorem 1. A CSP is both Sym(i, 0)-consistent and (i, j)-consistent if and only if it is
Sym(i, j)-consistent.

Proof. Let P be a CSP that is both Sym(i, 0)-consistent and (i, j)-consistent. Let I
be any consistent partial assignment of size i. Then since P is Sym(i, 0)-consistent,
the image Ig is consistent, for any g in the symmetry group of P . Since P is (i, j)-
consistent, given the assignment Ig and any set J of j further variables, we can find
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a set of values for the variables in J such that the assignment of all i + j variables is
consistent. Thus P is Sym(i, j)-consistent.

Conversely, let P be a CSP that is Sym(i, j)-consistent. Then it is clearly both
(i, j)-consistent (consider the identity permutation) and Sym(i, 0)-consistent, for given
a consistent partial assignment I of size i, and any g in the symmetry group G of L, the
partial assignment Ig can be extended to a consistent partial assignment of size i + j,
for any choice of j further variables, so must itself be consistent.

Standard (nonsymmetric) (i, 0)-consistency is vacuous, as there is nothing to test.
Sym(i, 0)-consistency is the same as total Sym(i, 0)-consistency, as there are no addi-
tional assignments to make.

One of the most useful levels of Sym(i, 0)-consistency is Sym(1, 0), which is an
intriguing strengthening of forward checking: if a domain value (xi, a) is deleted at any
point, the orbit (xi, a)G is computed and all of its images are deleted too, even though
they may currently appear to be consistent, as we know that they cannot occur in any
solution. Let G be generated by s permutations (a finite group is generated by a set of
permutations if the group consists of all possible products of the permutations in the set
with one another). The cost of computing an orbit O of G is O(s|O|) [12]. Since for
most practical applications the symmetry group of a CSP can be generated by a very
small number of generators (typically 2), the cost of enforcing Sym(1, 0)-consistency
will generally be a small constant multiple of the number of domain deletions that it
finds. Thus this is an extremely cheap and effective technique.

Before presenting an algorithm to enforce Sym(2, 1)-consistency on binary CSPs,
we briefly discuss which groups of symmetries should be used at which point in search,
and the cost of computing these symmetry groups. At the root, it is clear that the group
of symmetries is the full symmetry group G of the CSP (or as much of G as the con-
straint programmer has been able to identify). At later stages in search, an appropriate
choice of symmetries to break is the setwise stabiliser in G of the positive decisions
made so far. Computing this setwise stabiliser can be moderately expensive, but the
use of setwise stabilisers has been shown in [13] to be an effective technique to reduce
search space, so if we wish to use these groups for inference purposes they are available
“for free”. If the symmetry group of the CSP consists only of value symmetries then at
a node N it suffices to take the pointwise stabiliser of the values seen so far, as in the
current partial assignment the setwise stabiliser is equal to the pointwise stabiliser. Let
d := |Λ|. Then, as is shown in [4], after an initial cost of O(d5) for setup, the running
time is O (̃d2) at each node, where O ˜ is the “soft-O” notation which means that we
ignore logarithmic factors. Once again, if one were using a GE-tree based approach dur-
ing search, these groups would already be computed by the search process, and hence
could be used during inference at no extra cost.

4 An Algorithm to Enforce SymPC

Here we present a version of PC2001/3.1 [14] which has been adapted to use symmetry.
Recall the definition of path consistency from Section 2. Our algorithm reduces pre-
cisely to PC2001/3.1 when no symmetries are specified, and hence has the best known
time complexity in the worst case.



278 I.P. Gent et al.

For this section, variables xi ∈ Δ are denoted i, and literals (xi, a) are denoted
(i, a). To enforce path consistency it is necessary to assume that there is a constraint
between any pair of variables in Δ. If there exist an unconstrained pair of variables, we
add the universal relation between them, which permits them to take any pair of values.
The relation between variables i and j is denoted cij .

SYMPC2001/3.1(P)
1 SYMINITIALISE(P);
2 while Q �= ∅ do
3 Select and delete any ((i, a), j) from Q;
4 SYMREVISEPATH((i,a), j, Q);

SYMINITIALISE(P)
1 for all (i, a), (j, b) ∈ χ and all k ∈ Δ do
2 Last((i, a), (j, b), k):= false;
3 for all i, j, k ∈ Δ with i �= j �= k �= i do
4 for all a ∈ Di, b ∈ Dj do
5 if (a, b) ∈ cij and Last((i, a), (j, b), k) = false then
6 if there is no v ∈ Dk s.t. (a, v) ∈ cij ∧ (v, b) ∈ ckj then
7 for all g ∈ G do
8 (i′, a′) := (i, a)g; (j′, b′) := (j, b)g;
9 remove (a′, b′) from ci′j′ and (b′, a′) from cj′i′ ;
10 Q := Q ∪ {((i′, a′), j′), ((j′, b′), i′)};
11 else
12 Let v ∈ Dk be the first value satisfying (a, v) ∈ cik ∧ (v, b) ∈ ckj

13 Last((i, a), (j, b), k) := (v,true);
14 for all g ∈ G, g �= 1 do
15 if (i, a)g, (j, b)g, (k, v)g is consistent and

Last((i, a)g, (j, b)g, Var((k, v)g)) is false then
16 (k′, v′) := (k, v)g;
17 if G contains only pure variable symmetries then
18 Last((i, a)g, (j, b)g, k′) := (v′,true);
19 else
20 Last((i, a)g, (j, b)g, k′) := (v′,false);

The path consistency algorithm, which we have named SYMPC2001/3.1, is in
two parts: initialisation and propagation. The initialisation function is SYMINITIAL-
IZE,which seeks a first support for each ordered pair of literals ((i, a), (j, b)) and each
third variable k. In line 6, if we cannot find support for a pair ((i, a), (j, b)), then (a, b)
is removed from cij , and we also remove all of its images from the corresponding con-
straints. For the sake of clarity, we have written line 7 (and later line 14) to loop through
all group elements, in fact we will loop only over the distinct images of (i, a) and (j, b).
For each removal we enqueue in line 10 an image of ((i, a), j) and ((j, b), i) onto Q.
If support can be found, then in line 13 we store this support in Last((i, a), (j, b), k),
along with a boolean value true to indicate that the support was found directly. If we
find support for ((i, a), (j, b), k) then in lines 14 to 19 we reuse all of its images, but
if G contains any symmetries other than pure variable symmetries we set a boolean to
false to indicate that the value v′ that we are storing as support may not be the min-
imal possible support in Dk′ . If G consists only of pure variable symmetries then v′ is
in fact minimal since (k, v)g = (k′, v), so the boolean value is set to true.
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The second function is SYMREVISEPATH, which takes as input an element
((i, a), j) from Q, and checks every variable k ∈ Δ \ {i, j} to see if any tuple in
cik is affected by the modification of cij . There are two possibilities for the search for
support. If this is the first time that cij has been examined with respect to k, and the
previous support was the image under G of some other support and hence might not be
minimal in Dk, then in line 6 SYMREVISEPATH tries to find a support from scratch.
Otherwise, the boolean in Last((i, a), (j, b), k) is true and SYMREVISEPATH starts
its search in line 7 from the previous bookmarked value. If support cannot be found
then in lines 10 to 14 we not only remove (a, b) from cij but also all of its images from
the corresponding constraints. If support can be found then we store it.

SYMREVISEPATH((i,a), j, Q)
1 for all k with i �= k �= j do
2 for all b ∈ Dk s.t. (a, b) ∈ Cik do
3 (v, x) := Last((i, a), (k, b), j);
4 while v �= NIL ∧ ((a, v) �∈ cij ∨ (v, b) �∈ cjk) do
5 if x = false then
6 v := min{Dj}; x :=true;
7 else
8 v := succ(v, Dj);
9 if v = NIL then
10 for all g ∈ G do
11 (i′, a′) := (i, a)g; (k′, b′) := (k, b)g;
12 Remove (a′, b′) from ci′k′ and (b′, a′) from ck′i′ ;
13 Q := Q ∪ {(i′, a′), k′), ((k′, b′), i′)};
14 elif G consists only of pure variable symmetries then
15 for all g ∈ G do
16 (v′, x):= Last((i, a)g, (k, b)g,Var((j, v)g));
17 if v′ < v then
18 Last((i, a)g, (k, b)g,Var((j, v)g)) := (v, true);
19 else
20 Last((i, a), (k, b), j) := (v′, true);
21 else
22 Last((i, a), (k, b), j) := (v,true);

If G consists only of pure variable symmetries, then the algorithm has been mod-
ified to enforce total symmetric path consistency. This is because of the following ob-
servation: suppose that we are considering the pair of assignments ((i, a), (j, b)) and
the variable k, and suppose that we have found v to be the smallest element of Dk

such that (i, a), (j, b), (k, v) is consistent. Then since no element of G affects the val-
ues in any literal, for any g ∈ G no element of DVar((k,c)g) that comes before v can
be used as support when enforcing total SymPC. To see this note that if c < v then
((i, a)g, (j, b)g, (k, c)g)g−1 is inconsistent. Therefore in line 18 of the initialisation
function we reuse the image of a support without needing to mark it as reused, and in
lines 15 to 20 of SYMREVISEPATH we ensure that the supports agree for a whole orbit
of ordered pairs of literals.
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5 Symmetrised Singleton Consistencies

A type of consistency which has been attracting much attention recently is that of sin-
gleton consistency. Like the notion of symmetrised consistency, it is different from other
consistency techniques because of its meta character: it is not a standalone technique
such as AC or PC, but improves the pruning techniques of all of them.

Let P = (Δ,D, C) be a CSP, and let xi ∈ Δ and a ∈ Di. By P |(xi,a) we denote
the CSP obtained from P by setting (xi = a) and deleting all other values from the
domain of xi: we call this the CSP induced from P with respect to (xi, a). Singleton
consistency extends any consistency level X by requiring that for all xi ∈ Δ and all
a ∈ Di, the problem P |(xi,a) is X-consistent. For instance, a CSP P = (Δ,D, C) is
singleton arc consistent (SAC) if for all xi ∈ Δ and all a ∈ Di, the CSP P |(xi,a) is arc
consistent.

One advantage of singleton consistency is that enforcing it does not change the
constraints of a problem – no matter what level of consistency X we choose, singleton
X consistency will result in domain deletions.

Singleton consistency is a good candidate for symmetrisation: the basic notion to be
applied is that whenever we discover a domain deletion, we can delete an entire orbit
of literals without needing to recheck the X-consistency of each of the corresponding
induced CSPs. Thus, as in Section 3, at a cost O(s|(xi, a)G|), where G is generated by
s permutations and (xi, a) is a literal to be deleted, we can avoid O(|(xi, a)G|) calls to
enforce X-consistency on an entire induced CSP. If some symmetries are nonstrict then
we may be able to delete literals that would not be deleted by singleton X-consistency
alone, thus symmetrised singleton X-consistency is more pruningful than its unsym-
metrised variant.

A second potential gain, which we can make at the cost of compromising complete-
ness, is to only test the X-consistency of P |(xi,a) when (xi, a) is the orbit representa-
tive for (xi, a)G. If all symmetries of the problem are strict then this approach is clearly
complete as well as sound. In the pseudocode below we do not take this approach, as
in our experiments in Section 6 we wished to preserve completeness, however it would
only require a minor adjustment to the algorithm.

Definition 9. Let P := (Δ,D, C) be a CSP with symmetry group G and let X be a level
of consistency. Then P is symmetrised singleton X-consistent (written SymSingletonX-
consistent) if for all xi ∈ Δ, for all a ∈ Di and for all g ∈ G, P |(xi,a)g is X-
consistent. We say that P is X+SymSingletonX-consistent if P is both X consistent
and SymSingletonX consistent.

It is clear that, provided enforcing X-consistency is sound, so is enforcing sym-
metrised singleton X-consistency.

There are many different algorithms for enforcing singleton consistency. Most of
these are for enforcing SAC, where Dubruyne and Bessière initially proposed an algo-
rithm that is similar in style to AC1 [15]. This was upgraded in the style of AC4 by
Barták and Erben [16], and then further improved to give ‘SAC-Opt’ by Bessiére and
Dubruyne, which has optimal time complexity [17]. It is this latter, optimal algorithm
which we symmetrise: we present an algorithm X+SYMSINGLETONX, which enforces
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X-consistency and symmetrised singleton X-consistency for any level X of consis-
tency. We have chosen to present code which enforces X-consistency on P because in
our experiments the level X of consistency which we will test is the default level of
consistency in ECLiPSe[18], which is enforced automatically. If the level X of con-
sistency is arc consistency, and the group of symmetries is trivial, then our algorithm
reduces to SAC-Opt, and hence is time optimal in the worst case.

In X+SYMSINGLETONX we denote Di := Dom(xi), as normal, and χ denotes the
set of all literals (xi, a) of P ; by χia we denote the set of all literals of the induced
problem Pia.

X+SYMSINGLETONX(P )
1 PROPAGX(P , ∅);
2 for all (i, a) ∈ χ do /* initiation phase*/
3 Pia := P ;
4 if not PROPAGX(Pia, {(i, b) : b ∈ Di \ {a}}) then /* set i = a in subproblem */
5 if PROPAGX(P, (i, a)G) then
6 for all (j, b) ∈ (i, a)G do
7 for all Pkc such that (j, b) ∈ χkc do
8 Qkc := Qkc ∪ {(j, b)};
9 PendingList:= PendingList ∪{(k, c)};
10 else return false;
11 while PendingList �= ∅ do /* propagation phase */
12 pop (i, a) from PendingList;
13 if PROPAGX(Pia, Qia) then Qia := ∅;
14 else
15 if not PROPAGX(P , (i, a)G) then
16 return false;
17 for all (j, b) ∈ (i, a)G do
18 for all Pkc such that (j, b) ∈ χkc do
19 Qkc := Qkc ∪ {(j, b)};
20 PendingList:= PendingList ∪{(k, c)};
21 return true;

The function takes as input a CSP P , and runs in two phases - initialisation and
propagation. In line 3 we initialise Pia, where (i, a) ∈ χ, to be a copy of P . If X is
a level of consistency that only results in domain deletions (rather than the posting of
non-unary constraints) then in Pia we record only the domains and data structures of
P , rather than all of the constraints, as we re-use the constraints in P . In line 4 we call
the algorithm PROPAGX, which takes as input a CSP and a set of domain deletions (in
this case i can no longer take any value in Di \ {a}), and propagates the effect of these
deletions under consistency level X . Any algorithm to enforce X can be used at this
point. We assume that PROPAGX returns false if and only if propagating deletions
in Pia results in an empty domain, and returns true otherwise. We also assume that
PROPAGX will modify Pia to make it X-consistent, either by pruning values, or by
posting additional constraints, or both. If a wipeout occurs in line 4 then we know that
every image of (i, a) under G is not part of any solution to P , so in line 5 we compute
all images of (i, a), delete them from our set χ of literals (and hence also from the
corresponding domains), and then check that P can still be made X-consistent after
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these domain deletions. If it can be, then for each deleted literal (j, b), and each already
created restricted problem Pkc with (j, b) in its set χkc of literals, in line 8 we add (j, b)
to the list of future domain deletions to be made in Pkc, and in line 9 we add (k, c) to
the list PendingList of subproblems to be processed. If P cannot be made X-consistent
after deleting (i, a)G then P is unsatisfiable and in line 10 we return false.

Once the initialisation phase has finished, we know that PendingList contains all val-
ues (i, a) for which some symmetrised singleton X inconsistent value removals (con-
tained in Qia) have not yet been propagated in Pia. The loop in line 11 propagates each
of these removals, along with any others which are forced by this propagation. In line 13,
if we can successfully delete all of these values then we clear the Qia entry and move on.
When propagation fails, this means that (i, a) is symmetrised singleton X inconsistent,
and that the same will hold for all of its images under G. Therefore in line 15 we delete
all images of (i, a) from P , and check whether the resulting CSP can still be made X-
consistent. If it cannot, then P has no solutions. If it can, then in lines 17-20 we update
our list of subproblems which require further propagation of domain deletions.

6 Experiments

To test our SYMPC2001/3.1 algorithm we used a collection of graph colouring prob-
lems. We define an infinite family of graphs based around triangles, as follows. Level 0
consists of a single triangle, as in the figure below. To make level 1 from level 0 we add
a triangle to each vertex of the original triangle, giving a graph with 9 vertices, shown
below. To make level 2 from level one we add a triangle to each vertex of valency 2 in
the level 1 graph. This process can clearly be carried on indefinitely, adding a triangle
to each vertex of valency 2 on level i to produce level i + 1.
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These graphs have a large symmetry group. We can freely permute the three vertices
of the central triangle, giving an automorphism group of size six. For graphs of level
at least 1, after determining the images of the central three vertices, we can still swap
vertices A1 and A1, or vertices B1 and B2, or vertices C1 and C2, or any combination
of these swaps. Thus there are a total of 23 × 6 = 48 symmetries of the level 1 graph.
When going from level i to level i + 1 we have an additional 3 × 2i−1 triangles, each
of which can be independently flipped over, giving an extra 23×2i−1

symmetries. Thus
the symmetry group of the graph at level i contains 6 ×

∏i
j=1 23×2j−1

symmetries.
Specifically, the level 1 graph has 48 symmetries, the level 2 graph 3072, level 3 about
12.3 million and level 4 about 2 × 1014. These act as pure variable symmetries on the
colouring problem.
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Table 1. Results for SYMPC2001/3.1 with the first family of problem

level Full Syms Graph Syms No Syms
checks time checks time checks time

1 212 19 245 5 7627 49
2 186201 1160 177544 994 165303 1128
3 2604343 19802 2427594 16794 3427582 23963
4 26803564 424553 24559120 386408 37290536 714441

Table 2. Results for SYMPC2001/3.1 with the second family of problem

level Full Syms Graph Syms No Syms
checks time checks time checks time

1 12791 114 12930 105 19345 157
2 253719 5480 250597 1672 369540 2135
3 2972582 33732 2851446 30186 4248742 40004
4 28355217 495557 26803731 479862 40130411 712005

Table 3. Results SYMPC2001/3.1 with the third family of problem

level Full Syms Graph Syms No Syms
checks time checks time checks time

1 4668 80 5093 65 14064 90
2 72559 2146 74970 1893 218736 2576
3 768740 53292 776944 53952 2315472 30090
4 7013763 638446 7035185 574108 21096720 763494

Given this basic setup, we can now assign domains to each node to produce prob-
lems which will respond differently to path consistency. We have three main families of
problems. In the first, the vertices of valency 2 have domains [1, 2] and all other vertices
have domains [1, 2, 3, 4]. This problem is unsatisfiable, a fact which will be discovered
by path consistency and SymPC. We use the full group of automorphisms of the graph,
as well as the pure value symmetry which interchanges 1 and 2 and the pure value sym-
metry which interchanges 3 and 4. In fact, since the problem is unsatisfiable, we could
have used any symmetries whatsoever, as there are no solutions to preserve. However, it
is reasonable to assume that the constraint programmer would not know in advance that
the problem was unsatisfiable, and hence would only use the obvious graph and colour
symmetries. Our results are summarised in Table 1.

For our second family of experiments, with results given in Table 2, we give vertex
A domain [1, 2, 3, 4, 5], vertices of valency 2 domain [1, 2], and all other vertices domain
[1, 2, 3, 4]. Here we lose a factor of three in the number of graph automorphisms, as we
can no longer rotate the central triangle. The value symmetries remain unchanged from
problem 1. Path consistency and SymPC will deduce that only the value 5 for A is
consistent, but the problem overall is satisfiable.

For our third family of experiments, with results described in Table 3, we give all
vertices domain [1, 2, 3], so that neither PC nor SymPC make any deductions at all.

The vertex numbering follows in turn the pre-order traversal of the binary trees
rooted at each of the vertices of the central triangle. All times are in milliseconds, on a
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Pentium M 2.1GHz. The implementation differed from the pseudocode in the following
ways. In the loops at lines 7 and 14 of SymInitialize we use the orbit algorithm men-
tioned above to find all distinct images of (i′, a′), (j′, b′) (resp. (i′, a′), (j′, b′), (k′, v′))
without actually looping over all of G. We do the same at lines 10 and 15 of SymRe-
visePath. This is essential for handling larger groups. If the last allowed pair is removed
from a constraint, then we terminate the calculation, reporting the problem unsatisfi-
able. We take advantage of the fact that the given symmetries of this problem are, in
fact, strict symmetries to avoid the consistency check in line 15 of SymInitialize.

We have also succesfully implemented our X+SYMSINGLETONX algorithm. The
generality of the algorithm meant that by implementing in the ECLIPSE constraint
logic programming system [18], the base level of consistency X was that established by
ECLIPSE. We do not know the internal details of the system, so we do not know what X is,
but nevertheless, our algorithm is general enough to implement X+SYMSINGLETONX.
For group-theoretic calculations, we used the GAP-ECLIPSE interface [19,20]. We use
GAP to obtain orbits of singleton assignments. To evaluate our implementation, we com-
pared X+SYMSINGLETONX against X+SINGLETONX. For the latter, the algorithm we
presented above specialised to the trivial group formed the comparison.

As a test, we used constraint problems based on the same triangle graph schema
used above, with different constraints on triangles. For example, suppose each variable
has domain 1 . . . 4, and we constrain the sum of each triangle. If the outermost triangles
have to sum to either 3 or 12 (and not any value inbetween), ECLIPSE performs no
propagation – presumably because it is using bounds consistency. Setting a variable in
a triangle and propagating in ECLIPSE results in failure if it is set to 2 or 3. Singleton
consistency therefore removes those values, leaving domains as {1, 4}. We performed
a test in which the outermost triangles were restricted to sum to {3, 12}, while all inner
triangles had to sum to a value in {3, 4, 12}. The result is that the domains of variables
in outer triangles become {1, 4} and other variables become {1, 2, 4} since the value
3 is impossible. We obtain the same deductions with both symmetric and asymmetric
versions of singleton consistency, and the computation times were comparable. An in-
teresting feature is that the high power of singleton consistency means that, in practice,
the initialisation phase does all the work, and we did not see propagation happening
after that. Under any sensible X, trying every possible singleton is so powerful that it is
hard to construct examples where any domain deletions remain after initialisation.

7 Conclusions and Future Work

We have introduced a new research area: symmetrising levels of consistency to produce
stronger forms of consistency and more efficient mechanisms for establishing them.

Many forms of consistency can be adapted to take advantage of symmetries of a
CSP. We have focussed on two particular levels of consistency, and given algorithms
and implementations of symmetrised versions of them. In the case of path consistency,
experiments showed that we could improve runtime performance, despite having to
maintain data structures representing groups of size, for example 1014. We have shown
that if the CSP has nonstrict symmetries then these new levels of consistency do not
coincide with any previously defined levels of consistency. We have discussed how, even
in the case of strict symmetries, it is possible to take advantage of symmetry to improve
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the performance of consistency algorithms. For high levels of consistency the cost of
the added group theoretic machinery is negligible compared to the cost of maintaining
consistency, although there is a need for optimisations to avoid repeating work.
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Solving the MOLR and Social Golfers Problems

Warwick Harvey and Thorsten Winterer

IC-Parc, Imperial College London

Abstract. We present a range of techniques for tackling the problem of finding
sets of Mutually Orthogonal Latin Rectangles (MOLR). In particular, we use a
construction that allows us to search for solutions of a particular form with much
reduced effort, and a seeding heuristic for the MOLR problem that allows a local
search approach to find much better solutions than would be possible otherwise.
Finally, we use the MOLR solutions found to construct solutions to the social
golfer problem that improve the best known number of rounds for 43 instances,
by as many as 10 rounds.

1 Introduction

In [4], Dotú and Van Hentenryck used a constructive seeding heuristic to significantly
improve the quality of the results they found using local search for the social golfer
problem. As they noted, for certain instances their heuristic corresponds to constructing
a complete set of Mutually Orthogonal Latin Squares (MOLS), and results in an optimal
solution to the social golfers problem for those instances without any search required.
There is a well-known construction [2–II.2.20] for complete sets of MOLS that works
for more instances than Dotú and Van Hentenryck’s heuristic, again yielding optimal
solutions for the corresponding instances of the social golfers problem.

There are other methods that can be used to construct solutions to the social golfer
problem using sets of MOLS, due to Sharma and Das [18] and mathtalk-ga [13].
These approaches also work when given a set of Mutually Orthogonal Latin Rectangles
(MOLR), allowing solutions to the social golfer problem to be constructed for many
cases where a set of MOLS of sufficient size is not known to exist.

Sets of MOLR are also useful for constructing solutions to other problems, for ex-
ample perfect hash families [20] and low-density parity check codes [3]. However, it
seems that little work has been done on this problem. Franklin [6] gives a set of 3
MOLR of order 9× 10, while Wanless [22] improves this to a set of 4. Mullen and
Shiue [15] give a simple construction that generates some useful sets of MOLR, mostly
when the number of rows is small.

In this paper we present constructions and solutions that significantly extend and
improve on the currently known results for the MOLR problem, and then use these to
construct improved solutions for 43 instances of the social golfer problem.

In Section 2 we present background material on the MOLS, MOLR and social golfer
problems and their constructions. In Section 3 we present a new direct construction
for certain MOLR instances, and another construction that allows us to find MOLR
solutions by solving a much simpler problem. The local search algorithms we applied to
the MOLR and reduced problems are described in Section 4, while the results obtained
from all the methods used are presented in Section 5.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 286–300, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Background

2.1 Latin Squares and Latin Rectangles

A Latin Square of order n is an n×n array where each entry in the array is taken from
the set {0 . . .n− 1} and for each row and column the elements of that row/column are
all different. A Latin Rectangle of order m×n (m≤ n) is the obvious generalisation of a
latin square to a non-square array: an m×n array where each entry in the array is taken
from the set {0 . . .n−1} and for each row and column the elements of that row/column
are all different. Clearly, a latin rectangle of order n×n is just a latin square of order n.

For a latin square or rectangle L, we denote the element in row i and column j by
L(i, j) (i ∈ {0 . . .m− 1}, j ∈ {0 . . .n− 1}). A square or rectangle L is then latin if it
satisfies the constraints:

L(i, j) ∈ {0 . . .n−1} ∀i ∈ {0 . . .m−1},∀ j ∈ {0 . . .n−1} (1)

alldifferent(L(i, j)| j ∈ {0 . . .n−1}) ∀i ∈ {0 . . .m−1} (2)

alldifferent(L(i, j)|i ∈ {0 . . .m−1}) ∀ j ∈ {0 . . .n−1} (3)

A set of Mutually Orthogonal Latin Squares (MOLS) is a set of latin squares such
that for any pair of squares Lα and Lβ from the set, the ordered pairs (Lα(i, j),Lβ(i, j))
must be distinct for all i and j:

alldifferent((Lα(i, j),Lβ(i, j))|i ∈ {0 . . .m−1}, j ∈ {0 . . .n−1})
∀α,β ∈ {1 . . .r},α �= β (4)

A set of Mutually Orthogonal Latin Rectangles (MOLR) is the straightforward gen-
eralisation of MOLS from latin squares to latin rectangles: (Lα(i, j),Lβ(i, j)) must be
distinct for all i and j for any pair of distinct rectangles Lα and Lβ from the set. Clearly,
a set of MOLR of order n×n is just a set of MOLS of order n.

Let N(n) be the maximum number of squares possible in a set of MOLS of order
n; let N(m,n) be the maximum number of rectangles possible in a set of MOLR of
order m×n. Clearly, N(n)≤ N(m,n) for any m≤ n since a set of MOLS of order n can
be turned into a set of MOLR of order m× n by removing a suitable number of rows
from the bottom of each square. We also have that N(m,n)≤ n−1 for any m such that
1 < m≤ n. A set of MOLS or MOLR containing n−1 elements is said to be complete.

For n = pe for some prime p, there is a well-known construction [2–II.2.20] that
yields a complete set of MOLS. Let GF(n) be the finite field of order n. For each α ∈
GF(n)\{0}, let Lα(i, j) = αi + j, where i, j ∈ GF(n) and the algebra is performed in
GF(n). The set {Lα|α ∈GF(n)\{0}} is then a set of n−1 MOLS of order n.

Note that the existence of a complete set of MOLS for these values of n means that
the m×n MOLR existence problem is solved as well: we have N(n) = N(m,n) = n−1.
For other (non prime power) values of n — other than 6 1 — the MOLS (and hence
MOLR) problem is still open; the best known lower bound on N(n) is generally much
smaller than n (see [2–Table II.2.72]). For these n it is usually the case that N(m,n) >
N(n) if m < n, but prior to the current work, little was known about the value of N(m,n)
for these cases, even for small values of n.

1 N(6) = 1; constructing two MOLS of order 6 is Euler’s 36 Officers Problem, a famous problem
with no solution.
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Fig. 1. Sharma and Das’s construction: the first round

2.2 The Social Golfer Problem

The Social Golfer Problem [9–Problem 10] involves trying to schedule w rounds of
golf, where in each round the g× s players are arranged into g groups of size s such
that no pair of players appear in a group together more than once. This problem has
received significant attention from the constraint programming community recently, for
example [1,4,5,12,16,17,19]. It is well-known that certain instances of the social golfer
problem (when w(s−1) = gs−1) correspond to instances of the Resolvable Balanced
Incomplete Block Design problem. Similarly, it is known that when g = s, the w-round
social golfer problem corresponds to the problem of finding w− 2 MOLS of order g.
This correspondence was exploited in [4], where the authors used a heuristic construc-
tion to seed their local search; when g = s was prime, their construction corresponded
to the standard construction for a complete set of MOLS, and thus yielded an optimal
solution to the golf problem without any search required. Clearly by exploiting the full
power of the MOLS construction, one can also obtain optimal search-free solutions for
the cases where g = s is a prime power.

Sharma and Das’s Construction. There are two other constructions of which we are
aware that allow solutions to the social golfer problem to be constructed from a set of
MOLS (in practice, MOLR). The first is that of Sharma and Das [18]. This construction
uses a set of r MOLR of order m×n to construct a solution to the social golfer problem
with g = n and s = m: if s does not divide g a solution with w = r+1 rounds is obtained;
if s does divide g an extra round may be obtained.

Write the golfers out in an s× g array G, as shown in Figure 1. One round of the
golf schedule is obtained from taking each column as a group.

{G(i, j)|i ∈ {0 . . .s−1}} ∀ j ∈ {0 . . .g−1}

The next r rounds are obtained using r MOLR of order s× g. Each latin rectangle Lα
yields a round, with each value appearing in Lα corresponding to a group in the round:
a group contains those players in G that have the same corresponding value in Lα.

{G(i, j)|Lα(i, j) = k, i ∈ {0 . . .s−1}, j ∈ {0 . . .g−1}} ∀k ∈ {0 . . .g−1}

This is illustrated in Figure 2, where Lα has been superimposed on G; for example,
group 0 corresponds to players 0, 7 and 16. Finally, if s divides g then a further round
can be obtained by dividing each row up into groups, as illustrated in Figure 3. �

In the case where s divides g and g ≥ s2, Sharma and Das’s construction can be
extended. In this case, rather than just one extra round involving groups lying entirely
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Fig. 2. Sharma and Das’s construction: another round

within a row of G, one can actually schedule a w′-round mini-tournament amongst the
players in the row, where w′ is the best known number of rounds for the golf problem
with g/s groups of size s. Doing this simultaneously for all the rows means that a
schedule for r + 1 + w′ rounds can be achieved.

mathtalk-ga’s Construction. The other construction is due to mathtalk-ga [13].
This uses a set of r MOLS of order n to construct a solution with g = w = n and s = r+1;
again, if s divides g an extra round is possible.

As with Sharma and Das’s construction, write the golfers out in an s× g array G.
Each latin square is associated with a row of G after the first. The rows of the latin
squares correspond to the rounds of the golf schedule and the columns to the groups
of the rounds. Each entry in a latin square thus indicates which element of the latin
square’s corresponding row of G appears in a given group of a given round. The jth

player in the first row of G always appears in group j in each round. The groups for
round i are thus:

{G(0, j)}∪{G(α,Lα(i, j))|α ∈ {1 . . .r}} ∀ j ∈ {0 . . .g−1}

Since each group contains one player from each row of G, if s divides g an extra round
is possible by dividing the rows into groups, as with Sharma and Das’s construction. �

This construction can be adapted to work with MOLR instead of MOLS. If the best
known set of MOLS is of insufficient size for the desired golf group size, a larger set of
MOLR may be used instead, at the expense of a reduced number of rounds. In general,
a set of r MOLR of order m× n allows the construction of a golf solution with g = n,
s≤ r + 1 and w = m (if s does not divide g) or w = m+ 1 (if it does).

As before, more rounds can be achieved if s divides g and g ≥ s2, by scheduling
parallel mini-tournaments of g/s groups of s amongst the players in the rows of G.
Using known MOLS results, this immediately yields solutions for previously unsolved
instances (g-s-w) 12-3-16, 18-3-26 (closing this instance) and 20-4-25.

0 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

1

Fig. 3. Sharma and Das’s construction: an extra round
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3 MOLR Constructions

3.1 Constructing MOLR Solutions Directly

In this section we present a generalisation of the classic construction for a complete set
of MOLS of order n = pe that allows us to generate (incomplete) sets of MOLR for
other values of n. Specifically, our construction allows us to generate pe−1 MOLR of
order pe×n′ for n′ = ∏e

i=1 qi where qi = p or qi ≥ 2p−1 for i ∈ {1 . . .e}.
As noted above, for the MOLS construction we have Lα(i, j) = αi+ j, where α, i, j ∈

GF(pe) and α �= 0 and the algebra is performed in GF(pe). Essentially, the elements in
column 0 of each square are generated by the product αi, with the rest of the columns
being generated by adding the column index. We leverage this for other values of n by
taking the columns generated for n = pe and extending them to rectangles of size pe×n′

by performing the addition of the column index in a different group, carefully selected
to preserve the orthogonality of the resulting rectangles. The key property is:

alldifferent(−Lα(i2,0)+ Lα(i1,0)|α ∈ {1 . . .r}) ∀i1, i2 ∈ {0 . . .m−1}, i1 �= i2 (5)

where r = pe−1 is the number of rectangles and m = pe is the number of rows in each
rectangle. This property holds when the evaluation is done in GF(pe) (or the MOLS
construction would not work), and must hold in our chosen group of order n′.

One of the standard interpretations of GF(pe) is as polynomials of degree at most
e−1 with coefficients being elements of the integers modulo p. Multiplication, addition,
etc. are then done as for polynomials, with polynomials of degree e or more being
reduced modulo an irreducible polynomial of degree e. Now consider the polynomials
of degree at most e−1 where the coefficients of xi−1 are elements of the integers modulo
qi. These polynomials form a group G of order n′ = ∏e

i=1 qi where the group operation
is addition. For our construction, we take the ‘0’ columns constructed by the MOLS
construction, interpret them using the polynomial interpretation above, and map the
coefficients so that a (mod p) is mapped to a (mod qi) for a ∈ {0 . . . p− 1}. Each of
the n′ columns required to form the rectangles of the desired size are then constructed
by adding different elements of G using the group operation of G.

These rectangles are mutually orthogonal if either qi = p or qi ≥ 2p−1 for all qi. It
suffices to show that

−b + a �=−d + c (mod p)⇒−b + a �=−d + c (mod qi)
∀a,b,c,d ∈ {0 . . . p−1} (6)

as this means that the constraint (5) is maintained when we switch to generating the
columns in the group G rather than in GF(pe). If qi = p then (6) is clearly satisfied.
Suppose qi ≥ 2p−1, and consider−b+a and −d + c using normal integer arithmetic.
These differences must fall in the range {−p+1 . . . p−1}. Each of these differences is
mapped to a different equivalence class modulo qi if qi ≥ 2p−1, and hence (6) holds.

Using the above construction yields, for example:

3 MOLR of order 4×6 (p = 2, n′ = 2 ·3)
4 MOLR of order 5×10 (p = 5, n′ = 10)
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7 MOLR of order 8×12 (p = 2, n′ = 2 ·2 ·3)
6 MOLR of order 7×14 (p = 7, n′ = 14)
8 MOLR of order 9×15 (p = 3, n′ = 3 ·5)
8 MOLR of order 9×18 (p = 3, n′ = 3 ·6)
7 MOLR of order 8×20 (p = 2, n′ = 2 ·2 ·5)

Moreover, if one relaxes the condition to also allow qi ∈ {p + 1 . . .2p− 2}, then
one can obtain near-solutions to the MOLR problem. These solutions can be used to
seed the local search (á là [4]), often giving a starting point with fewer violations than
had been achieved using local search alone, and allowing previously unsolved instances
to be solved. Note also that sometimes a near-solution constructed in this way can be
turned into a solution of a slightly smaller instance simply by dropping one or more
rectangles and/or rows; a proper investigation of this is beyond the scope of this paper.

3.2 Constructing MOLR Solutions by Solving a Reduced Problem

Many MOLR constructions follow the same basic pattern:

Lα(i, j) = αi+ j

For the MOLS construction the computation is done in GF(n); for Mullen and Shiue’s
construction [15] it is done in Zn (the integers modulo n); for our construction the
product is computed in GF(pe) and the addition in a group of order n. The basic premise
is the same: the entry in column j of a row is computed by adding j to the entry in
column 0, and the entries in column 0 of each rectangle are constructed or selected in
such a way that the resulting rectangles are latin and mutually orthogonal.

This leads to a more general way to construct MOLR: if one wishes to find r MOLR
of order m× n, search for a set of r “0” columns of height m such that each of these
columns can be extended to a full latin rectangle by adding j to form column j of the
rectangle, and such that the resulting rectangles are mutually orthogonal. We refer to
this reduced problem as the column problem.

Note that the addition in the construction can be performed in any group of order n.
This choice must be reflected in the constraints of the column problem — in the rest of
this section all arithmetic and algebra is assumed to be performed in the selected (pos-
sibly non-commutative) group. Note that the choice of group affects which instances
can be solved in this way; for example, a solution for 4 MOLR of order 5× 6 can be
constructed if one uses the integers modulo 6, but not if one uses the other group of
order 6.

There are two constraints for the column problem. The first is (5), the second is:

alldifferent(Lα(i,0)|i ∈ {0 . . .m−1}) ∀α ∈ {1 . . .r} (7)

The rectangles are then constructed as follows:

Lα(i, j) = Lα(i,0)+ j ∀α ∈ {1 . . .r},∀i ∈ {0 . . .m−1},∀ j ∈ {0 . . .n−1} (8)

Note that (8) implies that the entries in a row are distinct:

alldifferent(Lα(i, j)| j ∈ {0 . . .n−1}),∀α∈ {1 . . .r},∀i ∈ {0 . . .m−1}

and (7) with (8) implies that the entries in a column are distinct:
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alldifferent(Lα(i, j)|i ∈ {0 . . .m−1}),∀α∈ {1 . . .r},∀ j ∈ {0 . . .n−1}

That is, the rectangles are latin.
It remains to show that the rectangles are orthogonal. Consider two cells in Lα at

positions (i1, j1) and (i2, j2) that have the same value:

Lα(i1, j1) = Lα(i2, j2)
i.e. Lα(i1,0)+ j1 = Lα(i2,0)+ j2

i.e. −Lα(i2,0)+ Lα(i1,0) = j2− j1 (9)

Then for any other rectangle Lβ, orthogonality requires that the values in the same
positions must be different; that is, we need to show that:

Lβ(i1, j1) �= Lβ(i2, j2)

From (5) we know that:

−Lβ(i2,0)+ Lβ(i1,0) �= −Lα(i2,0)+ Lα(i1,0)
i.e. −Lβ(i2,0)+ Lβ(i1,0) �= j2− j1 (by (9))

i.e. Lβ(i1,0)+ j1 �= Lβ(i2,0)+ j2
i.e. Lβ(i1, j1) �= Lβ(i2, j2)

as required.
Thus solving the column problem allows us to construct a solution to the corre-

sponding MOLR problem. Of course, it only allows us to find MOLR solutions of this
particular form; there may be solvable MOLR instances for which there are no solu-
tions of this form. For example, it is known that there are 2 MOLS of order 10, yet a
complete search of the corresponding column problem found no solutions (when using
either of the two distinct groups of order 10 for the arithmetic).

4 Local Search for MOLR

In this section we present the local search approach we used to tackle the MOLR prob-
lem.

4.1 MOLR Model

The evaluation function used by local search algorithms for satisfaction problems is
usually based on the number of violated constraints. In order to minimise the number
of constraints that have to be checked for violation, we chose a model for the MOLR
problem that observes as many constraints as possible implicitly.

For r MOLR of order m× n, our model contains r + 1 rectangles. The rectangles
L1 through Lr are initialised such that each row contains a permutation of {0 . . .n−1},
fulfilling constraint (2). If we restrict the move operator to exchange values only within
a row, constraint (2) will always be observed during the search.
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Rectangle L0 is a control rectangle, which is initialised as

L0(i, j) = j ∀i ∈ {0 . . .m−1},∀ j ∈ {0 . . .n−1}
The control rectangle ensures that any assignment σ observing constraint (4) for all
pairs of rectangles (L0,Lα), 1≤ α≤ r will also observe constraint (3), since

(L0(i, j),Lα(i, j))σ = ( j,Lα(i, j))σ

and in any solution that observes constraint (4)

i1 �= i2⇔ ( j,Lα(i1, j))σ �= ( j,Lα(i2, j))σ⇔ Lα(i1, j)σ �= Lα(i2, j)σ

Using this model and restricting the search moves to exchange values only within
a row, any value assignment σ that does not violate constraint (4) will also observe the
two other constraints. Therefore, we can use the evaluation function

f (σ) =
r−1

∑
α=0

r

∑
β=α+1

n−1

∑
x=0

n−1

∑
y=0

max(0,#(σ,α,β,x,y))

with #(σ,α,β,x,y) = |{(i, j)|(Lα(i, j),Lβ(i, j))σ = (x,y)}|−1

the sum of violations of constraint (4) for all pairs of rectangles. An assignment σ is a
solution for an MOLR instance iff f (σ) = 0.

4.2 Neighbourhood

Since we only allow the exchange of values within a row, we generally use only one
type of move operator, swapping the values of two cells within a row:

μ(α, i, j1, j2) = [Lα(i, j1)↔ Lα(i, j2)]

For each search step, the algorithm chooses the move that reduces the number of
violations most. Should there be more than one move with the same benefit, a move will
be randomly chosen from that list. Since a swap between two cells can only improve
the violation count if at least one of the cells is currently in violation, we can restrict the
neighbourhood to such moves. The neighbourhood can then be defined as:

S = {μ(α, i, j1, j2)|∃β ∈ {0 . . .r} : β �= α∧
(#(σ,α,β,Lα(i, j1),Lβ(i, j1)) > 1∨#(σ,α,β,Lα(i, j2),Lβ(i, j2)) > 1)}

However, if there is no move that will improve the evaluation of the assignment,
the algorithm will choose with probability p1 a move that least increases the violation
count; with probability p2, it will swap two randomly chosen values within a randomly
chosen row; and with probability p3, it will right-shift a randomly chosen row by a
random amount.

The right-shift move (shifting row i of Lα by w positions) can be defined as:

μ̄(α, i,w) = [Lα(i,( j + w) mod n)← Lα(i, j),∀ j ∈ {0 . . .n−1}]
Right-shifting a complete row makes a larger step away from the local minimum,

and often allows the algorithm to escape from the area of that minimum. In our experi-
ments, we set p1 = 0.4, p2 = 0.35, and p3 = 0.25. These values were chosen since they
gave good results in our initial tests.
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4.3 Tabu Search Algorithm

Our local search algorithm is based on a tabu search with restart. For each possible
move μ(α, i, j1, j2) or μ̄(α, i,w), the tabu table T contains the step number t(α, i, j1, j2)
or t(α, i,w), respectively, until which this move is tabu. Moves that are currently tabu
are filtered from the neighbourhood. The tabu is based on the location of the swapped
cells, or the row and the shift, not on the particular values that are swapped: when the
values of two cells are swapped, a swap between these two cells becomes tabu for a
certain number of steps, even if the values in these cells change in the meantime.

When a move μ(α, i, j1, j2) is performed at step h, the tabu table entry t(α, i, j2, j1)
is set to h + d, where d is the current tabu tenure. For a right-shift move μ̄(α, i,w), the
entry t(α, i,(n−w) mod n) is set accordingly.

The tabu tenure ranges dynamically between maxTabu and minTabu steps. On every
non-improving step, the tenure is increased by one, up to maxTabu. On every improving
step, the value is decreased by one, down to minTabu. In our experiments, maxTabu was
set to 10, and minTabu to 2. These values were taken from [14].

In order to escape the area of a local minimum without a complete restart, we added
a perturbation component that alters parts of the current assignment. When the algo-
rithm fails to improve on the current best assignment for maxStable steps, the current
assignment is perturbed by right-shifting a random row from each rectangle (except the
control rectangle) by a random amount. In our experiments, maxStable was set to 150,
since initial tests showed that the search rarely progressed further for higher values.

The perturbation makes a major step away from the current assignment, often allow-
ing the algorithm to reach a different part of the search space, so that it can escape the
area of local minimum where it got stuck. For each iteration of the search, the algorithm
can make maxPert such perturbations, with maxPert set to 2 in our experiments.

If after maxPert perturbations the stableIter counter again reaches the value
maxStable, the algorithm restarts the search with a new initial assignment. In total
maxIter iterations of the search run are performed, with maxIter set to 10 in our ex-
periments. (A relatively small value of maxIter was chosen in order to keep the amount
of CPU time required for our experiments manageable.)

4.4 Seeding the Search

Initially, we used random permutations of {0 . . .n−1} to initialise the rows of the rect-
angles. However, this gave unsatisfactory results, with the search often starting with a
very high violation count. The search usually became repeatedly stuck in local minima,
failing to reach a solution despite the perturbation moves that allowed the search to
escape the area of a local minimum.

Therefore, we also used constructive heuristics to improve the seeding, similar to
Dotú and Van Hentenryck [4]. Our first seeding heuristic uses the MOLR construction
described Section 3.1. We select parameters for the heuristic with the same value of n
and where possible at least as many rectangles and rows as the final MOLR instance we
desire, filling in any missing rows with random permutations of {0 . . .n−1}.

Our second seeding heuristic uses the column problem construction described in
Section 3.2. In this case we take a near-solution to the corresponding column problem
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(also found with local search) and use it to construct a near-solution to the MOLR
problem, which is then used as the seed.

The performance of the different seeding heuristics is discussed in Section 5.

4.5 Local Search for the Column Problem

We model the column problem corresponding to r MOLR of order m×n using an array
C of dimension m× r, with elements taking values from {0 . . .n−1}. Note that C(i,α)
actually corresponds to Lα(i,0) from the MOLR problem. We also associate with each
column α the set of numbers Uα ⊂ {0 . . .n−1} that are unused in that column.

We initialise each column such that each cell in that column contains a different
value, thus fulfilling the alldifferent constraint (7). If we allow only exchanges of values
between cells within a column, or between a cell and the set of unused values for that
column, constraint (7) will always be observed. Therefore, the evaluation function uses
only the number of violations of constraint (5):

fc(σ) =
m−2

∑
i1=0

m−1

∑
i2=i1+1

n−1

∑
x=0

max(0,#(σ, i1, i2,x))

with #(σ, i1, i2,x) = |{α ∈ {1 . . .r}|(−C(i2,α)+C(i1,α))σ = x)}|−1

where the arithmetic is done in the chosen group of order n.
The search uses two types of moves: swapping the values of two cells in a column,

and swapping the value of a cell with a value from the set of unused values in its column:

μc(α, i1, i2) = [C(i1,α)↔C(i2,α)]
and μ′c(α, i,e) = [C(i,α)↔ e ∈Uα]

Again, the neighbourhood is restricted to moves involving cells in violation. For-
mally, it is defined as:

S = Ss∪Se

where

Ss = {μc(α, i1, i2)|∃i ∈ {0 . . .m−1} : (i �= i1∧#(σ, i1, i,−C(i,α)+C(i1,α)) > 1)
∨ (i �= i2∧#(σ, i2, i,−C(i,α)+C(i2,α)) > 1)}

and Se = {μ′c(α, i1,e)|∃i2 ∈ {0 . . .m−1} : i2 �= i1∧
#(σ, i1, i2,−C(i2,α)+C(i1,α)) > 1∧ e ∈Uα}

Should there be no move that will improve the evaluation, the algorithm will, as for
the MOLR problem, choose with probability p1 a move that least increases the violation
count; with probability p2, it will swap two randomly chosen values within a randomly
chosen column; and with probability p3, it will down-shift a randomly chosen column
by a random amount.

The tabu search algorithm is the same as for the MOLR problem. In our experi-
ments, we also set the parameters to the same values, with two exceptions. The first dif-
ference is that maxPert is set to zero; i.e. every time the stable iteration counter reaches
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the value maxStable, the search restarts with a random initialisation. Secondly, maxIter
is set to 20, since the column problem model is much smaller than the corresponding
MOLR model and the search progresses faster.

5 Results

We explored several approaches to solving the MOLR problem, eventually trying in-
stances up to n = 20:

1. Constructive backtracking search with symmetry breaking on the full MOLR
problem. This was implemented in ECLiPSe [21] using the SBDD symmetry li-
brary described in [8]. While this was able to completely solve (and enumerate)
instances with n = 6, non-trivial instances with n ≥ 10 seem beyond the reach of
this kind of approach at this time.

2. Local search on the full MOLR problem, as discussed in Section 4. This was also
implemented in ECLiPSe, and was able to solve some previously open instances,
but it was not particularly effective and was later surpassed by other approaches.

3. Construction, as discussed in Section 3.1. This was implemented in GAP [7], with
an ECLiPSe wrapper to allow integration with the other approaches. This approach
generally provided a reasonably good solution of the form m− 1 MOLR of order
m×n for each value of n. These solutions were later surpassed by other techniques,
but of course it is a fast way to obtain some MOLR for problem instances that are
too large to tackle with search.

4. Local search on the full MOLR problem, seeded with a constructed near-
solution, as discussed in Section 4.4. This was much more effective than starting
with a random seed; typically the seed for an instance had fewer violations than the
best assignment found without the seed, and enabled a number of new instances
to be solved. A number of these (notably for n = 12 and n = 15) have not been
matched by any other technique.
In section Section 3.1, we presented a construction that allowed us to generate
pe− 1 MOLR of order pe× n. In our experiments, we found that a good seeding
heuristic for finding r MOLR of order m×n is to set p to the prime number nearest
to max(r,m) and leave n un-factorised, so that e = 1. Only for some instances where
a factorisation of n exists such that r, m and pe are close together did such a seed
yield a better result (indicated by 4′ in Table 1) — usually factorising n was worse.

5. Constructive backtracking search on the column problem. The most effective
variant we tried was to simply assign variables random values from their domain,
giving up if no solution was found after 60 seconds of CPU time. We tried two
static variable ordering heuristics: rectangle-by-rectangle (good for instances with
few rectangles) and row-by-row (good for instances with few rows). We also tried
using groups other than the integers modulo n for the arithmetic, which sometimes
yielded superior results (indicated by a 5′ in Table 1). Solutions, when found, were
generally found in just a few seconds. This was one of the most effective of the
methods we tried for finding MOLR solutions; there were very few instances solved
by other methods that were not solved by this one.
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6. Local search on the column problem, as discussed in Section 4.5. This was the
other very effective method, able to find a number of solutions not found by the con-
structive backtracking approach, but also failing to find some solutions that were
found by that approach. As with the constructive approach above, we tried using
different groups for the arithmetic, and sometimes this yielded better results (indi-
cated by a 6′ in Table 1). Solutions, when found, were generally found in just a few
seconds; with our parameter settings even the largest instances ran for no more than
a few minutes if no solution was found. One of the reasons for trying this approach
is that even when it could not find a solution, any near-solutions it found could be
used as seeds for local search on the full problem.

7. Local search on the full MOLR problem, seeded with a near-solution from the
column problem. This approach turned out to be something of a disappointment,
failing to find solutions (only near-solutions) for any instances we tried that were
not solved by local search on the column problem. It is possible that a near-solution
to the column problem is a poor heuristic choice for seeding the full problem.

A summary of the best results for n ≤ 20 is given in Table 1. LB is the best known
lower bound; Method indicates which of the above methods was able to solve that in-
stance. We have included previously known results, from the extensively-studied MOLS
problem [2–II.2] and from [22]. We have omitted those values of n for which a com-
plete set of MOLS is known, since all such instances are solved by that set of MOLS.
We have also omitted results for m = 2 since there is a trivial construction for a com-
plete set of MOLR in this case. Finally we have omitted listing the methods for those
entries that are dominated by another entry (i.e. the latter has more rectangles and/or
more rows), except where it is useful to show how close our techniques are to matching
the MOLS results of [2–II.2].

An expanded set of results including solutions can be found on the web [10].
We suspect that our failure to match most of the MOLS results is at least in part due

to the fact that our most successful techniques can only find solutions of a certain form,
and for some instances there are no solutions of this form. For example, a complete
search of the column problem found no solution for 2 MOLS of order 10, even though
a solution to the full problem exists. While we are very pleased with the results that
we have obtained, for the most part we do not know how far from optimal they are.
Complete search is currently out of the question for all but the smallest instances, and
even for the well-studied MOLS problem very few good upper bounds are known. We
do, however, expect that our results can be significantly improved upon, particularly for
larger instances.

As shown in Section 2.2, MOLR solutions can be used to construct solutions to the
social golfer problem. Using the new results in Table 1 we were able to construct solu-
tions to the 43 instances listed in Table 2. The gain indicates the number of extra rounds
achieved over the previously best known result from any source (RBIBD, MOLS, con-
structions, constraint programming, etc.). Solutions to much larger instances of the so-
cial golfer problem remain within easy reach using the techniques we have presented
here; we merely had to stop somewhere. A full table of results for the social golfer
problem from all sources can be found on the web [11].
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Table 1. Summary of MOLR results: lower bounds for N(m,n)

n
6 10 12 14 15 18 20

LB Method LB Method LB Method LB Method LB Method LB Method LB Method
3 4 8 11 12 14 16 19
4 4 8 11 12 5′,6 14 5 16 4,5 19 5′

5 4 1,2,4,5,6 8 5 11 11 5′,6′ 11 5,6 14 5,6 16 5,6′

6 1 (trivial) 6 11 5′ 10 5′ 10 13 5′ 15 6′

7 6 5,6 8 8 4,5,6 10 12 5′ 13 6
8 4 8 4′ 7 5,6 10 10 4,5,6 11 5,6
9 4 [22],5 7 4′ 6 4,5,6 10 9 6′ 10 4,5

10 2 [2] 5 5 10 8 6′ 9 5,6
m 11 5 5 4 10 4 7 5′ 8 4,5′,6

12 5 [2],5′ 4 5 4 5,6 6 5 7 5
13 3 5 4 5 5,6 6
14 3 [2] 4 4 6 5′

15 4 [2] 4 5 5,6
16 4 5′ 4
17 3 5,6 4 5,6′

18 3 [2] 4
19 4
20 4 [2]

Table 2. New solutions for the social golfer problem (g-s-w)

Instance Gain Instance Gain Instance Gain Instance Gain Instance Gain
10-6-7 +1 14-5-12 +5 15-6-11 +6 18-5-16 +7 20-6-16 +10
10-7-7 +2 14-6-11 +4 15-7-11 +6 18-6-15 +6 20-7-14 +9
10-8-5 +1 14-7-10 +2 15-9-11 +6 18-7-13 +4 20-8-12 +7
10-9-5 +1 14-8-8 +4 15-10-11 +6 18-8-11 +2 20-9-11 +6

14-9-7 +3 15-11-11 +6 18-9-11 +1 20-10-11 +5
12-7-9 +3 14-10-6 +2 18-10-9 +5 20-11-9 +4
12-8-9 +3 14-11-6 +2 18-11-8 +4 20-12-8 +3
12-9-8 +2 14-12-5 +1 18-12-7 +3 20-13-7 +2

18-13-7 +3 20-14-7 +2
18-14-6 +2 20-15-6 +1
18-15-5 +1 20-16-6 +1
18-16-5 +1

6 Conclusions and Future Work

We have shown that by solving a reduced problem, one can construct good solutions to
the MOLR problem, which can be used to construct solutions to various other problems
of interest. In particular, we have shown how generalisations of MOLS-based construc-
tions can use these solutions to yield improved solutions to 43 instances of the social
golfer problem.
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We have also confirmed Dotú and Van Hentenryck’s result [4] that seeding a local
search algorithm with heuristically-constructed solutions with low violation counts can
dramatically improve results on this kind of combinatorial problem, where the local
search landscape contains many local minima and it is in general hard to progress to-
wards a global optimum. However, we have found that this is not always a benefit: the
wrong kind of construction can yield a seed which has a good initial violation count,
but starts the search in a local minimum from which it is almost impossible to escape.

The MOLR and social golfer problems are still both far from solved. It would be
interesting to see how far our MOLR results can be improved, and what other tech-
niques can be used to construct new solutions to the social golfer problem. One thing
we plan to investigate further is seeding a local search for the social golfer problem with
a constructed assignment based on a near-solution of the MOLR problem. Early exper-
iments with this approach have yielded a solution to the previously unsolved 14-8-9
instance. We also plan to continue to investigate construction techniques for the MOLR
and social golfer problems.
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Abstract. An inherent and often very underestimated difficulty in solving con-
figuration problems is the existence of many structural isomorphisms. This issue
of considerable importance attracted little research interest despite its applicabil-
ity to almost all configuration problems. We define two search procedures allow-
ing the removal of large portions of the search space that provably solely contain
non canonical solutions. The tests performed on each node are time polynomial.
Experimental results are reported on a simple generic configuration example.

1 Introduction

Configuring consists in simulating the constrained realization of a complex product
from a catalog of component parts, using known relations between types, and instan-
tiating object attributes. The industrial need for configuration applications is ancient
[1], and has triggered the development of many configuration programs and formalisms
[2–8].

The main objective of this research is to reduce the undue combinatorial effort in-
curred by isomorphisms during configuration search. We focus on the dynamic nature
of configuration, which consists in generating the structure of possible solutions.

This difficulty is one among the most important to tackle in configuration, if one ex-
pects to solve problems having highly variable solutions. Solvers cannot currently han-
dle the search space of these problems because of the exponential number of isomorphs
that they generate for each canonical solution structure1. We propose a general search
procedure eliminating a great number of such isomorphisms in configuration problems.
More precisely, we first present a complete, non redundant procedure restricted to the
generation of typed tree structures which also efficiently eliminates any non-canonical
structure. Starting from this procedure, we generalize it to another able to generate all
type of structures (DAGs), in a complete and non redundant way, while still avoiding the
generation of an important number of isomorphic structures. This work is based upon
the results obtained in [9] and [10], which demonstrated necessary existence conditions
for such procedures but did not explicit any of them, leaving the crucial point of how
defining them unmentioned.

1 Industrial problems currently solved with configurators only involve models of limited size.
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Plan of the Article

Section 2 describes the formalism used throughout the paper, the notion of structural
sub-problems and the problem of generating them. We also briefly recall why represent-
ing the structure of a configuration problem as a graph is more efficient than defining it
as a CSP. Section 3 presents a complete procedure for generating canonical structural
problems when they have a tree structure. Section 4 presents a way to extend the proce-
dure so that it applies to any configuration problem. Section 5 describes how to exploit
the symmetries of covering tree structures so as to reject more isomorphisms. Section
6 provides experimental results on the benefits of using such an approach. Section 7
concludes.

2 Configuration Problems, Structural Sub-problems and
Isomorphism

A configuration problem describes a generic product, in the form of declarative state-
ments (rules or axioms) about product well-formedness. Valid configuration model in-
stances (called configurations) involve objects and their relationships, notably types
(unary relations involved in taxonomies) and binary relations. Some binary relations
are composition relations having stronger functional semantics (an object is a compo-
nent of at most one composite).

Here is a very simple example of a configuration problem which will allow us to
illustrate notions throughout this paper. The problem is to configure a network of com-
puters (C) and printers (P) (as illustrated in Figure 1). The network involves up to three
computers, each of which being connected to at most two printers2. Conversely, each
printer must be connected to at least one and at most three computers. Besides this, we
have two global constraints: there is only one network, and there are only two print-
ers available. In a real problem, computers and printers could have specific attributes
that would be instantiated while obeying other constraints. This can be left aside as we
solely focus on structural constraints.

Solutions to configuration problems involve interconnected objects, as illustrated in
Figure 1, which makes explicit the existence of structural isomorphisms.

We isolate configuration sub-problems called structural problems, that are built
from the binary relations, the related types and the structural constraints alone, and
study their isomorphisms. For simplicity, we abstract from any configuration formal-
ism, and consider a totally ordered set O of objects (we normally use O = {1, 2, . . .}),
a totally ordered set TC of type symbols (unary relations) and a totally ordered set RC

of binary relation symbols.
For any binary injective relation R, we will use either (x, y) ∈ R or y = R(x).

Definition 1 (syntax). A structural problem, is a tuple (t, TC , RC , C), where t ∈ TC

is the root configuration type, and C is a set of structural constraints applied to the
elements of TC and RC .

2 This is the Figure data, our experiments involve more computers and printers.
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Fig. 1. A network connection problem. On the left, the model for the components types (network,
computers and printers) and their relations. On the right, 3 examples of possible structures. The
two structures at the bottom are isomorphic and therefore represent equivalent solutions.

In the network problem of Figure 1, we have t=N, TC ={N, C, P}, RC = {(N,C),
(C,P)} and C is the set of structural constraints which enforce the minimum and
maximum number of objects that can be connected for each binary relation.

Definition 2 (semantics). An instance of a structural problem (t, TC , RC , C) is an in-
terpretation I of t and of the elements of TC and RC , over the set O of objects. If an
interpretation satisfies the constraints in C, it is a solution of the structural problem.

We use the term structure or configuration to denote a structural problem solution.
A configuration can be represented using a vertex-colored DAG (directed acyclic

graph) G=(t,X,E,L) with X ⊂ O, E ⊂ O × O and L ⊂ O × TC . The symbol t is the
root type, X the vertex set, E the edge set and L is the function which associates each
vertex to a type.

As an example, the upper solution of Figure 1 can be represented by the quadruple
(N, {1,2,3,4}, {(1,2), (2,3), (1,4)}, {(1,N), (2, C), (3,P), (4, C)}).

For those who are not familiar with configuration problems, we recall now why it
is more efficient to solve the structural problem by defining it as the construction of a
graph rather than using the CSP formalism. Indeed, with CSPs, we would have to con-
sider the maximal number C of PC’s and P of printers to define the CSP variables. One
possible model is to assign a variable to each PC and each printer (C+P variables). The
domain of a variable assigned to a PC (resp. a printer) would contain all parts of the
set {1, ... P} (resp. {1, ... C}) and therefore would be of size 2P (resp. 2C). The search
space would then be of size (2P )C × (2C)P = 4C.P . This is the option chosen in [8]
with the ports concept implemented using set variables. Another possibility is to define
a variable ei,j that represents the choice of connecting the machine i with the printer
j. Those P × C variables are boolean. The search space is of size 2P.C . There is how-
ever a drawback in using standard CSPs: generally, a solution contains fewer objects
than the maximum number you had to define at start. Unused objects yield unwanted
combinatorics and filtering. This is why extensions to the CSP formalism have been
proposed [3,5] that allow to add variables during the resolution. The construction of a
vertex-colored DAG that we consider in this paper captures this in an abstract way.
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Definition 3 (Isomorphic configurations). Two configurations G=(t, X, E, L) and
G’=(t’, X’, E’, L’) are isomorphic iff t=t’, L=L’ and there exists a one-to-one map-
ping σ between X and X’ such that ∀ x,y ∈ X, (x,y) ∈ E⇔ (σ(x), σ(y)) ∈ E’ and ∀ (x,l)
∈ L, (σ(x),l) ∈ L’.

For instance the two solutions at the bottom of Figure 1 are isomorphic since σ =((1,1),
(2,4), (3,5), (4,2), (5,3), (6,6)) is a one-to-one mapping satisfying the definition criterias.

Testing whether two graphs are isomorphic is an NP problem until today unclassi-
fied as either NP-complete or polynomial. The corresponding graph isomorphism com-
plete class holds all the problems having similar complexity3. For several categories
of graphs, like trees of course but also graphs having a bounded vertex degree, this
isomorphism test is polynomial [11]. The graph iso problem is known as weakly expo-
nential, and there exists practically efficient algorithms for solving it, the most efficient
one being Nauty[12]. This being said, we must emphasize the fact that Nauty cannot be
used in our situation. The reason is that we must maintain the property that all canoni-
cal structures can be obtained from at least one smaller solution itself being canonical.
Using Nauty from within an arbitrary graph enumeration procedure yields a generate
and test algorithm: the portions of the search space that can be explored by adding to
a non canonical structure must still be generated, in case they would contain canonical
representatives which cannot be obtained differently. This situation will be explained in
more detail in a forthcoming section.

An isomorphism class represents a set of isomorphic graphs. All the graphs from a
given isomorphism class are equivalent, therefore a graph generation procedure should
ideally generate only one canonical representative per class. This is of crucial impor-
tance since the size of an isomorphism class containing graphs with n vertices can be
up to n! (the number of permutations on the vertex set that actually create a different
graph). Isomorphism classes are huge in size in most cases because, counter-intuitively,
the less symmetrical a graph is, the more isomorphic graphs it has. This means that
when current configurators (which do not avoid isomorphisms or in a very restricted
way) generate a solution, partial or complete, they also generate an often exponential
number of isomorphic solutions.

Most graph generating procedures rely upon the central operation of adding an edge
to an existing graph (unit extension). Starting from a graph, the unit extensions that are
valid wrt. the model constraints yield a new set of graphs. We consider two distinct sit-
uations for inserting an edge in a graph: an internal edge connects two existing vertices,
whereas an extraneous edge connects an existing vertex to a newly created one. Hav-
ing an efficient canonicity test is of little help for generating canonical graphs. Testing
graphs for canonicity can be used to reject redundant solutions, but in so doing one has
to explore the entire search space. Ideally we should be able to directly reject graphs
for which we know that all extended supergraphs are not canonical. To achieve this,
the canonicity criterion must be defined in such a way that any canonical graph has at
least a canonical subgraph resulting from the removal of one of its edges. We call this
the canonical retractability property. This condition is necessary (but not sufficient, see
below) to allow for backtracking as soon as a non-canonical graph is detected during

3 For instance, the vertex-colored DAG isomorphism problem.
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the search. Indeed if there exists a canonical graph not obtainable via extension of a
canonical subgraph, the extension of a non-canonical graph will be needed to reach it.
Such a canonicity criterion is not trivial to find, and most known canonicity tests, Nauty
inclusive, do not respect it. There exist isomorphism-free graph generation procedures
that impose conditions on the canonicity test, as for instance the orderly algorithms
from [13] which however do not propose an efficient canonicity test. To the best of our
knowledge, such an efficient test has not yet been found in the general case (if ever one
exists). Specialized and efficient procedures for generating canonical graphs exist for
trees, for cubic graphs [14] and more generally, for graphs having hereditary proper-
ties4 [15]. Configuration problems unfortunately do not comply with these restrictions,
which led us to develop specific procedures. In order to achieve this, we have based our
research upon existing work around configuration problems.

2.1 Related Work in CSP and Configuration

There exists a large body of work on symetry elimination methods for CSPs (eg, [16,17]
[18,19,20]). Unfortunately, transposing those techniques to graph generation is far from
obvious. The common principle for symmetry breaking in CSP is to avoid generating
two isomorphic partial solutions: either by adding additional constraints to the problem,
or by checking during resolution whether an isomorphic partial solution has already
been generated. Our approach would be close to the first method as our canonicity
criteria is defined beforehand according to the particular context of graph generation.
However, if we were to transpose the graph generation problem to the CSP formal-
ism we would have to deal with a dynamic CSP containing particular constraints (the
structual constraints), and this would make the comparison with symmetry breaking
methods in CSP very difficult. This work is connected to graph isomorphism detection
techniques rather than CSP symmetry breaking methods.

Several approaches were experimented to tackle configuration isomorphisms, mostly
by reasoning at a single level. One possibility is to prevent redundant connections of in-
terchangeable objects during search. Also experimented is the substitution of connect-
ing actual objects by counting them according to their target types [8]. A pseudo-linear
time canonicity test that complies with the canonical retractability property is given in
[9] when the configuration problem only involves composition relations (in which case
all structural solutions are trees). This result was generalized to generic configuration
problems in [10], by describing a weak canonicity criterion compatible with canonical
retractability, in the case of DAGS. However, not all configuration generation proce-
dures are compatible with this canonicity criterion. This important aspect was left un-
mentioned in our previous papers in order to simplify our point by restricting ourselves
to explaining the main ideas. Now, we go into the details of this practical aspect.

2.2 State Graph of a Configuration Problem

Let us consider the state graph GP = (XP , EP ) of a configuration problem. The state
set XP contains all structures (vertex-colored DAGs) corresponding to the structural

4 A graph property is hereditary if all its subgraphs respect it.
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model, and EP are all the pairs (g, h) such that g, h ∈ XP and h is the result of a unit
extension from g. (GP is itself a DAG for which the root is the state (t, {1}, ∅, {(1,t)})).
A structure generation procedure must be complete and non-redundant, i.e able to gen-
erate all structures of XP only once while exploring GP . The search can be represented
with a covering tree TP of GP . Let us consider now the state graph G′

P , which is the
subgraph of GP containing only canonical structures. The canonical retractability prop-
erty ensures that G′

P is connected and therefore the existence of at least one complete
search procedure able to backtrack on non-canonical graphs. However, this does not
imply that all search procedures will meet the requirements if the intersection T ′

P be-
tween TP and G′

P is not a connected graph, backtracking on non-canonical structures
will yield an incomplete procedure. As a consequence, T ′

P must be a covering tree of
GP . We will now present procedures respecting these criteria.

3 Isomorph-Free Tree Structure Generation

We present a generation procedure for canonical configurations that can be used when
the structural model only contains composition relations. A composition relation be-
tween type T1 (called composite) and another type T2 is a binary relation specifying
that any T2 instance can connect to at most one T1. As an example, the relation be-
tween N and C in Figure 1 is of the composition kind, although this is not the case for
the relation between C and P. In the composition case, solutions to the configuration
problem can only be trees.

procedure generate(T, F )
if canonical(T) then output T; return; endif
// generate the set E = {(x1,y1), ..., (x|E|,y|E|)} of acceptable unit extensions
E = extensions(T, F)
for i := 1 to |E| do

generate(T ∪ {(xi,yi)}, F ∪ {(x1,L(y1)),... , (xi−1,L(yi−1))})

Fig. 2. The procedure generate. To generate all trees, the initial call is generate((t, {1},
∅, {(1,t)}),{}).

The procedure listed in Figure 2 is complete, non-redundant and generates exclu-
sively canonical structures. The function extensions(T, F) returns the sequence
E of unit extensions for T that are compatible with the structural model and not forbid-
den by F. Then, set E contains extraneous edges ei linking two vertices of the object set
O: one vertex was already in the tree T whereas the other extremity has been created.
All unit extensions that must be discarded are stored in parameter F. This avoids gen-
erating the same tree multiple times. Such a redundancy would happen if starting from
T , we first produced T1 by adding e1 and T2 by adding e2, then later adding e2 to T1
and e1 to T2, resulting in producing the same tree twice. In order to avoid this, we split
the search into extensions of T ∪ {e1}, and extensions of T ∪ {e2} with e1 removed
from possible extensions. In more precise terms, not only e1=(x, y): for all z, we forbid
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to add edge (x, z) if L(y)=L(z). Even if those two trees are different, they are isomor-
phic since swapping y and z yields the other. All such pairs (x, L(y)) are members of
F, which forbids adding an edge connecting an object x to a new object of type L(y).
In the general case, starting from a given tree there exist |E| possible extensions. We
hence split the search into |E| parts by calling

generate(T ∪ {(xi, yi)}, F ∪ {(x1, L(y1)), . . . (xi−1, L(yi−1))})

The edge sequence in E could be arbitrary if we didn’t need to remove non canonical
trees. However, as seen at the end of section 2, it has to be chosen according to the
canonicity criterion to ensure completeness. We hence sort trees according to the total
order � from [9], and define as canonical a tree being the �-minimal in its isomorphism
class. [9] proves that this canonicity criterion has the canonical retractability property.
To ensure completeness, the edges of E must be sorted as follows: edge ei is before ej

in E iff T ∪ {ei} � T ∪ {ej}.

Proposition 1. The procedure generate is complete.

Proof. (sketch) We first inductively show that the edges are added by connecting new
vertices to the rightmost branch of a tree, starting from the deepest vertex, and going
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Fig. 3. A portion of the state graph for the network configuration problem. Nodes are labeled
with their type alone. Trees framed in dotted lines are not canonical. Dotted lines joining nodes
inside frames denote possible complementing internal edges. All edges of the state graph denote
unit extensions. Edges between non canonical trees are dotted. Bold edges are explored by pro-
cedure without canonicity check. Only continuous and bold edges are transitions explored by the
procedure generate.
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up to the root vertex. This is true of the tree made of a single vertex (the start of a
configuration). If the property holds for any tree T having n vertices, it means that the
vertex y connected to an x in the right branch of the previous tree to form T now is the
extremity of this branch. By inserting x, we lost the capacity to perform unit extensions
to vertices located below x (by completing the set F ). The sole remaining possibilities
are parent nodes to x, as well as x and y, hence all the vertices in the right branch of T .

Now, from Proposition 6 in [21], we know that removing a node from the right
branch preserves canonicity. As a consequence, since from any tree T , the procedure
generate produces all T extensions such that the removal of their rightmost branch
would yield T , it produces all the canonical trees that can be obtained by unit extension
from T . The procedure is hence complete.

In our network example, if we restricted printers to be connected to at most one
computer, it would become a composition relation. Then, the structural solutions of
our problem would necessarily be trees. Figure 3 helps view the search tree that would
result from this. The procedure would backtrack on non canonical trees 6, 13 and 17.
As a consequence, the non canonical trees 10, 12, 16, 18 and 19 would not be generated
either.

4 Isomorph Aware DAG Generation

We now present an instance of a procedure generating only what we will call weakly
canonical DAGs, defined as DAGs for which the minimal covering tree for the order
� is canonical. As the permutation that would make its covering tree canonical is the
same that would make the DAG weakly canonical, this avoids generating all non weakly
canonical DAGs5.

The leading idea is to first generate a canonical tree, called the structure tree, then
perform unit extensions that solely create internal edges. As presented before, we can
generate all canonical trees very efficiently. From such canonical trees, we generate all
the DAGs sharing it as a structure tree, by adding internal edges.

Figure 4 illustrates this idea. We start from a structural model containing general bi-
nary relations, from which we extract a sub-model having only composition relations6.
The trees solution of this sub-model can be completed to produce solution DAGs of the
original problem.

This procedure must however be implemented carefully to prevent from generating
the same DAG multiple times. First, the possible extensions of a tree are ordered ac-
cording with some order <. Edges are always added according with < and an edge e
cannot be added anymore if there exists an edge e’ already added and e < e’. As for
trees, it is obvious that this discards a certain amount of redundancies. Let a be the
set of possible internal edges on a tree T, the number of DAGs that can be generated
from T will be 2|a| instead of |a||a|. This however does not suffice to remove all DAG
redundancies. To achieve this, and for each newly generated DAG, we search for the

5 The tractable generation of only one DAG per isomorphism class is an open problem.
6 This sub-model is a covering tree of the original model!
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Fig. 4. Generating DAGs from trees. To the upper left, a structural model. To the upper right, a
composition covering tree of the model. To the bottom right, a possible solution of the relaxed
model. To the bottom left, a corresponding real solution after tree completion.

existence of a covering tree being (�) less than the current structure tree, but not nec-
essarily canonical. If such a covering tree exists, it means that the current DAG can
be discarded whether the found covering tree is canonical or not7. Our procedure for
finding such covering trees has the complexity of depth-first search in the worst case:
O(n).

Alternative Structure Tree Search Algorithm

At each newly created DAG (generated from tree T), we build the canonical covering
tree T’ by doing a depth-first search on the DAG. If at one point, the selected edge
differs from T, the DAG is rejected as it means the current working tree T is not the
canonical one anymore. For instance, in the tree number 15 in Figure 3, the internal
edge connecting the first C to the second P must not be inserted, since the smallest (�)
covering tree becomes the tree number 14.

Proposition 2. Our procedure generate with a call to completion (see fig. 5) at
each canonical tree generates only once each weakly canonical DAG.

7 There exists a canonical tree that is isomorphic to it, and thus the current DAG (or an isomor-
phic one) is already obtained by completion when this canonical tree is generated (and our tree
generation procedure ensures that it has been or will be generated during the search).
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procedure completion(G, F)
output G
// generate the set E=(e1, ...e|E|) of acceptable unit extensions not in F
E = internal-extensions(G, F)
for i := 1 to |E| do

completion(G ∪ {ei}, F ∪ {e1, ...ei−1})

Fig. 5. The procedure completion

Proof. (sketch) The procedure completion never generates the same DAG twice
from a given canonical tree and never a DAG that would result from the completion of
another tree.

5 Exploiting Symmetries

The procedure completion(G) can be further improved to eliminate some isomor-
phic DAGS resulting from unit extensions. The intuition is as follows: if the internal
edges e1 and e2 that can complete G lead to two isomorphic graphs G1 and G2, then
we forbid the unit extension e2.

For example, adding the edge (4,3) to the DAG on the bottom right of Figure 1
produces a DAG isomorphic to the one obtained by adding edge (6,3). We might want
to avoid one of the two extensions.

One expensive approach is to consider each pair of graphs completed with an edge
from the set E of valid extensions, and test whether they are isomorphic or not (using
Nauty for instance). In case they are, we delete from E one of these edges. The major
drawback of this method is that there are potentially O(n2) unit extensions for a graph
with n nodes, that is O(n2) that can be canonicaly labelled (thanks to Nauty for in-
stance), thus leading to O(n4) pairs of canonical graphs to be compared (or O(n2 log n)
comparisons if we sort the graphs). In addition, even if Nauty has a polynomial be-
havior on most graphs, it still has an exponential complexity in the worst case which
disqualifies its use for large configuration problems.

We henceforth use an incomplete method for removing such isomorphisms, by us-
ing the automorphism group (ie, the set of symmetries) of the current DAG: the covering
trees of the DAGS are canonical, hence all their subtrees are � sorted. Henceforth, at
any level in the tree, there may exist nodes equal wrt. �. They are interchangeable, and
are immediate neighbors, and all their sub-trees are pairwise interchangeable.

Although node interchangeability is costly to detect in the general case of unre-
stricted graphs, it is fast and obvious in the case of canonical trees. Testing whether two
sub-trees having the same parent are interchangeable simply consists in testing if they
are identical, an operation of time linear complexity. As a consequence, marking which
node pairs are interchangeable in a tree is an operation in O(n3) that can be done at
once before the completion of a structure tree.

To account for the fact that interchangeability is lost by nodes newly connected by
an internal unit extension, we introduce a Boolean marker. The connected nodes must
be marked, as well as the whole list of their parents up to the root of the tree. The
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marking is illustrated in Figure 6 by small circles around the nodes. A search procedure
can reject all DAGs in which a newly inserted internal edge results in marking a node
not being the leftmost in its equivalence class of interchangeability.

4

2

1

3

5 6 7 8

Fig. 6. Adding an internal edge and marking

In the canonical tree represented by Figure 6, the trees rooted in nodes 6, 7 and 8 are
identical, and so are the trees rooted in nodes 3 and 4. If the choice of interconnecting
nodes from this two groups must be made, the search procedure can select only nodes
within the trees 3 and 6. No node appearing within the sub-trees rooted in 4, 7 and 8
can be connected by a newly inserted internal edge. Once a connection between 3 and
6 is established for instance, node 3 loses its interchangeability with 4, and 6 loses its
interchangeability with 7 and 8.

6 Experimental Results

Our experiments were conducted for the computer-printer planning problem illustrated
in Figure 1, on a 1.7 Ghz PC with 512M RAM, under Linux. We have chosen this simple
problem because it is generic: it involves a cardinality constrained relation between two
types, which occurs very frequently in configuration problems. It must not be seen as
a real application example, but rather as a way to reveal the interest and efficiency of
such a procedure for eliminating isomorphisms. Indeed, the results on real problems
involving many relations would benefit from the gain on each relation. For each choice
of numbers of printers and computers, we have generated all DAGs using two algorithm
variants: Covering Tree or ct (generation of canonical trees, each being completed to
DAGs using an ordered set of possible extensions and backtrack on DAGs that have
a covering T-tree less than the current) and full (ct + backtrack on equivalent internal
edges for interchangeability). We compare the number of graphs generated by both
algorithms with the number of graphs that are a solution of the problem. There are as
many of them as the number of bipartite graphs (canonical or not) joining a set of c
vertices to p vertices: 2c.p.

From Table 1 we see that the number of DAGs is significantly decreased when using
the ct algorithm, due to the large number of avoided isomorphic DAGs. The full algo-
rithm provides a good cut in the number of isomorphic DAGs, and overall computation
time is also noticeably decreased.
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Table 1. Results for the (C) PC - (P) printers problem. ( times in seconds, ”/” = time > 60
seconds).

C P ct full
all graphs structure trees graphs time graphs time

1 3 8 4 4 0 4 0
2 3 64 16 32 0 30 0
3 3 512 46 273 0 262 0
4 3 4096 109 2234 0.01 2078 0.02
5 3 32768 219 17099 0.12 13095 0.1
6 3 262144 393 130404 1.01 69757 0.64
7 3 2.1 106 649 993197 8.34 329495 3.43
8 3 1.6 107 1006 / / 1.45 106 17.23

Existing configurators are restricted to problems of limited size. Using these strate-
gies lets us address larger problems, while avoiding the generation of useless solutions.
Our computer/printer test problem should not be seen as artificial: any binary rela-
tion in an object model implies that a certain number of structures contain bipartite
sub-graphs. The canonicity test for such graphs is graph iso complete, and current con-
figurators would generate the graphs corresponding to the all graphs column of Table
1. These early results show that we can generate significantly fewer DAGs when the
model involves only one binary relation. Should there be more than this (this is the
common situation), the overall gain factor would benefit from individual gains, and in
the particular case of a tree structural model it would be the product of the gains on
each relation.

Insertion in a General Configuration Search

A configuration problem statement normally involves classes, relations, and constrained
attributes. Generating the configuration structure is hence a fragment of the whole prob-
lem. Our approach is interesting in several respects in this general case. On the one
hand, once a structure has been generated, the problem amounts to a standard CSP,
hence amenable to usual techniques (including incomplete search methods). Also, as
shown before, the automorphism group of the structure built is easily exploited. Further
search may benefit from this in the process of instantiating attributes as well.

7 Conclusion

This work greatly extends the possibilities of dealing with configuration isomorphisms,
until today limited either to the detection of the interchangeability of all yet unused in-
dividuals of each type or to the use of non configurable object counters. The generation
procedures for tree-shape and vertex colored DAG structures that we have presented
addresses the structural isomorphism problem of configurations and allows for impor-
tant gains for any configuration problem, even of small size. Not all the non canonical
structures are discarded in the general case of DAG structures. Polytime methods for
eliminating more isomorphisms probably exist.



Advances in Polytime Isomorph Elimination for Configuration 313

References

1. McDermott, J.P.: R1: A rule-based configurer of computer systems. Artificial Intelligence
19 (1982) 39–88

2. Barker, V., O’Connor, D., Bachant, J., Soloway, E.: Expert systems for configuration at
digital: Xcon and beyond. Communications of the ACM 32 (1989) 298–318

3. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: Proc. of AAAI-
90, Boston, MA (1990) 25–32

4. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic
csps–application to configuration. Artificial Intelligence 135 (2002) 199–234

5. Sabin, D., Freuder, E.C.: Composite constraint satisfaction. In: Artificial Intelligence and
Manufacturing Research Planning Workshop. (1996) 153–161

6. Soininen, T., Niemela, I., Tiihonen, J., Sulonen, R.: Representing configuration knowledge
with weight constraint rules. In: Proc. of the AAAI Spring Symp. on Answer Set Program-
ming: Towards Efficient and Scalable Knowledge. (2001) 195–201

7. Stumptner, M.: An overview of knowledge-based configuration. AI Communications 10(2)
(1997) 111–125

8. Mailharro, D.: A classification and constraint-based framework for configuration. AI in
Engineering, Design and Manufacturing, (12) (1998) 383–397

9. Grandcolas, S., Henocque, L., Prcovic, N.: A canonicity test for configuration. In: Proceed-
ings of CP’2003. (2003)

10. Henocque, L., Prcovic, N.: Practically handling configuration automorphisms. In: proceed-
ings of the 16th IEEE International Conference on Tools for Artificial Intelligence, Boca
Raton, Florida (2004)

11. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J.
Comput. System Sci. 25 (1982) 42–49

12. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30 (1981) 45–87
13. Read, R.C.: Every one a winner or how to avoid isomorphism search when cataloguing

combinatorial configurations. Annals of Discrete Mathematics 2 (1978) 107–120
14. Brinkmann, G.: Fast generation of cubic graphs. J. Graph Theory 23 (1996) 139–149
15. McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26 (1998) 306–324
16. Pascal Van Hentenrick, P. Flener, J.P., Agren, M.: Tractable symmetry breaking for csps with

interchangeable values. In: proceedings of IJCAI 03. (2003) 277–282
17. Meseguer, P., Torras, C.: Exploiting symmetries within constraint satisfaction search. Artifi-

cial Intelligence 29(1-2) (2001) 133–163
18. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. In: Principles and

Practice of Constraint Programming. (1999) 73–87
19. Gent, I., Smith, B.: Symmetry breaking during search in constraint programming. In: pro-

ceedings of ECAI. (2000)
20. Puget, J.F.: Symmetry breaking revisited. In: proceedings of CP’02. (2000)
21. Grandcolas, S., Henocque, L., Prcovic, N.: Pruning isomorphic structural sub-problems

in configuration. Technical report, LSIS (2003) Available from the CoRR archive at
http://arXiv.org/abs/cs/0306135.



Planning and Scheduling to Minimize Tardiness

J.N. Hooker

Carnegie Mellon University
john@hooker.tepper.cmu.edu

Abstract. We combine mixed integer linear programming (MILP) and
constraint programming (CP) to minimize tardiness in planning and
scheduling. Tasks are allocated to facilities using MILP and scheduled
using CP, and the two are linked via logic-based Benders decomposi-
tion. We consider two objectives: minimizing the number of late tasks,
and minimizing total tardiness. Our main theoretical contribution is a
relaxation of the cumulative scheduling subproblem, which is critical to
performance. We obtain substantial computational speedups relative to
the state of the art in both MILP and CP. We also obtain much better
solutions for problems that cannot be solved to optimality.

We address a planning and scheduling problem that occurs frequently in man-
ufacturing and supply chain contexts. Tasks must be assigned to facilities and
scheduled on each facility subject to release dates and due dates. Tasks assigned
to a given facility may run in parallel if desired, subject to a resource constraint
(cumulative scheduling). We consider two objectives: minimizing the number of
late tasks, and minimizing total tardiness.

The problem can be formulated entirely as a constraint programming (CP)
problem or a mixed integer/linear programming (MILP) problem. However,
these models are hard to solve. By linking CP and MILP in a hybrid method,
we obtain significant speedups relative to the state of the art in both MILP and
CP. The linkage is achieved by logic-based Benders decomposition. The facility
assignment problem becomes the master problem and is solved by MILP, while
the scheduling problem becomes the subproblem (slave problem) and is solved
by CP.

The primary theoretical contribution of this paper is a linear relaxation of
the cumulative scheduling subproblem. We find that including such a relaxation
in the master problem is essential to the success of the Benders method.

We solve problem instances in which tasks have the same release date and
different due dates, although the the method is valid for different release dates
as well. We obtain substantial speedups on nearly all instances relative to MILP
(as represented by CPLEX), which in turn is generally faster than CP (as rep-
resented by the ILOG Scheduler). On larger instances, the hybrid method gen-
erally achieves speedups of two or three orders of magnitude when minimizing
the number of late tasks, and it solves significantly more problems to optimality.
There is a lesser but still significant speedup when minimizing total tardiness,
and even when the hybrid method cannot obtain provably optimal solutions, it
obtains much better solutions than provided by MILP in the same time period.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 314–327, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1 Previous Work

Logic-based Benders decomposition, which generalizes the classical Benders de-
composition method [1, 3], was introduced in [8] for purposes of logic circuit
verification. The idea was later formally developed in [4] and applied to 0-1
programming in [7].

The application of logic-based Benders to planning and scheduling was pro-
posed in [4]. Jain and Grossmann [10] successfully applied such a method to
minimum-cost planning and scheduling problems in which the subproblems are
disjunctive scheduling problems, where tasks must run one at a time, rather
than cumulative scheduling problems. The Benders cuts are particularly sim-
ple in this case because the subproblem is a feasibility problem rather than
an optimization problem. Thorsteinsson [11] improved on these results using a
“branch-and-check” method suggested in [4].

It is less obvious how to define Benders cuts when the subproblem is an
optimization problem. We showed in [5, 6] how to derive effective Benders cuts
for at least one such case, minimum makespan problems. The cuts are valid for
cumulative as well as disjunctive scheduling, provided all tasks have the same
release date. Computational tests showed the hybrid method to be 100 to 1000
times faster than MILP or CP when all tasks have the same deadline.

In this paper we address minimum tardiness problems, in which the sub-
problem is again an optimization problem. We obtain effective cuts by repeat-
edly solving the subproblem with slightly different task assignments. The idea
is related to finding “minimal conflict sets” of tasks, or small sets of tasks that
create infeasibility when assigned to a particular facility. Cambazard et al. [2]
applied such an approach to real-time scheduling of computing resources. Here
we develop cuts for an optimization rather than a feasibility subproblem.

As observed in [5, 11], the success of hybrid methods in planning and schedul-
ing relies on including a relaxation of the scheduling subproblem in the master
problem. We find that deriving a useful relaxation requires deeper analysis when
minimizing total tardiness than when minimizing cost or makespan. A relaxation
of the cumulative scheduling problem is presented in [9], but it is expressed in
terms of the start time variables, rather than the assignment variables as required
for the Benders master problem. We derive here a very different relaxation in terms
of 0-1 assignment variables, which is suitable for the MILP master problem.

2 The Problem

The planning and scheduling problem may be defined as follows. Each task
j ∈ {1, . . . , n} is to be assigned to a facility i ∈ {1, . . .m}, where it consumes
processing time pij and resources at the rate cij . Each task j has release time rj

and due date dj . The tasks assigned to facility i must be given start times sj in
such a way that the total rate of resource consumption on facility i is never more
than Ci at any given time. If xj is the facility assigned to task j, the problem
may be written



316 J.N. Hooker

minimize g(x, s)
subject to rj ≤ sj , all j (a)∑

j∈Jit(x)

cij ≤ Ci, all i, t (b)
(1)

where xj , sj are the variables and Jit(x) = {j | xj = i, sj ≤ t ≤ sj + pij} is the
set of tasks underway at time t in facility i.

Precedence constraints may be imposed on tasks that are assigned to the
same machine. Thus one may require that tasks j and k be scheduled on the
same facility, and that task j precede k, by writing the constraints xj = xk and
sj + pxjj ≤ sk.

We investigate two objective functions:

– number of late tasks, given by g(x, s) =
∑

j δ(sj + pxjj − dj), where δ(α) is
1 if α > 0 and 0 otherwise.

– total tardiness, given by g(x, s) =
∑

j(sj + pxjj − dj)+, where α+ is α if
α > 0 and 0 otherwise.

3 Constraint Programming Formulation

A CP formulation of the problem can be written

minimize g(x, s)
subject to rj ≤ sj , all j

cumulative((sj |xj = i), (pij |xj = i), (cij |xj = i), Ci), all i

(2)

where (sj |xj = i) denotes the tuple of start times for tasks assigned to facility i.
When minimizing the number of late tasks, g(x, s) =

∑
j Lj where Lj is binary,

and the constraint (sj + pxjj > dj) ⇒ (Lj = 1) is added for each j. When mini-
mizing total tardiness, g(x, s) =

∑
j Tj , and the constraints Tj ≥ sj + pxjj − dj

and Tj ≥ 0 are added for each j.
For purposes of computational testing we formulated (2) using the modeling

language of OPL Studio. We used the assignAlternatives and setTimes search
options specify a branching method that results in substantially better perfor-
mance than the default method.

4 Mixed Integer Programming Formulation

The most straightforward MILP formulation discretizes time and enforces the
resource capacity constraint at each discrete time. Let the 0-1 variable xijt = 1
if task j starts at discrete time t on facility i. The formulation for minimizing
the number of late tasks is
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min
∑

j

Lj

subject to NLj ≥
∑

i

(t + pij)xijt − dj , all j, t (a)∑
it

xijt = 1, all j (b)∑
j

∑
t′∈Tijt

cijxijt′ ≤ Ci, all i, t (c)

xijt = 0, all j, t with t < rj or t > N − pij (d)

(3)

where each xijt and each Lj is a 0-1 variable. Also N is the number of discrete
times (starting with t = 0), and Tijt = {t′ | t− pij < t′ ≤ t} is the set of discrete
times at which a task j in progress on facility i at time t might start processing.
Constraint (b) ensures that each task starts once on one facility, (c) enforces
the resource limit, and (d) the time windows. The minimum tardiness problem
replaces the objective function with

∑
j Tj and constraint (a) with

Tj ≥
∑

i

(t + pij)xijt − dj , Tj ≥ 0, all j, t

We also investigated a smaller discrete event model suggested by [12], which uses
continuous time. However, it proved much harder to solve than (3).

5 Hybrid Method for Minimizing Late Tasks

The Benders approach formulates a master problem that assigns tasks to facilities
and a subproblem that schedules the tasks assigned to each facility. We write the
master problem using an MILP model that minimizes the number of late tasks.
In iteration h of the Benders algorithm, the master problem is

minimize L

subject to
∑

i

xij = 1, all j (a)

Benders cuts generated in iterations 1, . . . , h− 1 (b)
relaxation of subproblem (c)

(4)

Here the binary variable xij is 1 when task j is assigned to facility i. The Benders
cuts and relaxation will be described shortly.

Once an assignment x̄ij of tasks to facilities is determined by solving the
master problem, a cumulative scheduling subproblem is solved by CP. The sub-
problem decouples into a separate scheduling problem on each facility i:
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minimize
∑

j∈Jhi

Lj

subject to (sj + pij > dj) ⇒ (Lj = 1), all j ∈ Jhi

rj ≤ sj , all j ∈ Jhi

cumulative((sj |j ∈ Jhi), (pij |j ∈ Jhi), (cij |j ∈ Jhi))

(5)

where Jhi is the set of tasks for which x̄ij = 1 (i.e., the tasks assigned to facility
i in the master problem solution). If L∗

hi is the optimal value of (5), then
∑

i L∗
hi

is the minimum number of late tasks across all facilities.
At this point we know that whenever the tasks in Jhi (perhaps among others)

are assigned to facility i, the number of late tasks on facility i is at least L∗
hi.

This allows us to write a valid lower bound Lhi on the number of late tasks in
facility i for any assignment of tasks to machines. Since xij = 0 when task j is
not assigned to facility i, we have

Lhi ≥ L∗
hi − L∗

hi

∑
j∈Jhi

(1− xij), all i

Lhi ≥ 0, all i

(6)

By summing over all facilities, we have a lower bound on the total number L of
late tasks:

L ≥
∑

i

Lhi (7)

The inequality (7), together with (6), provides a Benders cut for iteration h. The
cut says that the number of late tasks will be at least the number obtained in
the subproblem unless a different assignment of tasks to facilities is used.

In iteration h, the Benders cuts (b) in the master problem (4) consist of
inequalities (6)–(7) obtained in iterations 1, . . . , h−1. The algorithm terminates
when the optimal value of the master problem equals the optimal value of the
subproblem in the previous iteration. At any point in the algorithm, a feasible
solution of the subproblem is a feasible solution of the original problem, and the
optimal value of the master problem is a lower bound on the optimal value of
the original problem.

Unfortunately the Benders cuts (6)–(7) are weak and do not perform well in
practice. The cuts can be strengthened by identifying, for each facility i, a smaller
set Jhi of tasks that result in the same number of late tasks. One way to do this is
to track which tasks actually play a role in the determining the minimum number
of late tasks, as suggested in [6]. However, since this information is not available
from commercial CP solvers, the information must be obtained indirectly by
repeatedly solving subproblems with different assignments of tasks to facilities.

The following approach was found to yield effective cuts with a modest
amount of computation. Let Li(J) be the minimum number of late tasks on
facility i when the tasks in J are assigned to facility i. First identify a set
J0

hi ⊆ Jhi of tasks that, when assigned to facility i, result in a minimum of L∗
hi

late tasks; that is, a set J0
hi such that Li(J0

hi) = L∗
hi. This is done via the simple
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Let J0
hi = Jhi.

For all j ∈ Jhi: if Li(J0
hi \ {j}) = L∗

hi then let J0
hi = J0

hi \ {j}.
Let J1

hi = J0
hi.

For all j ∈ J0
hi: if Li(J1

hi \ {j}) = L∗
hi − 1 then let J1

hi = J1
hi \ {j}.

Fig. 1. Algorithm for generating Benders cuts when minimizing the number of late
tasks

greedy algorithm in Fig. 1. Then identify a set J1
hi ⊆ J0

hi of tasks such that
Li(J1

hi) = L∗
hi − 1, again using the algorithm of Fig. 1. The inequalities (6) can

now be replaced by the generally stronger inequalities

Lhi ≥ L∗
hi − L∗

hi

∑
j∈J0

hi

(1− xij), all i

Lhi ≥ L∗
hi − 1− L∗

hi

∑
j∈J1

hi

(1− xij), all i

Lhi ≥ 0, all i

(8)

These cuts remain valid for any set of additional constraints that may be added
to the subproblems.

It is straightforward to relax the subproblem when minimizing the number
of late tasks. (It will be harder when minimizing total tardiness.) Let J(t1, t2)
be the set of tasks whose time windows are contained in [t1, t2]. Thus J(t1, t2) =
{j | [rj , dj ] ⊆ [t1, t2]}. When executed on facility i, these tasks span a time
interval of at least

M =
1
Ci

∑
j∈J(t1,t2)

cijpij (9)

If M > t2− t1 then at least one task is late, and in fact the number of late tasks
on facility i is at least

M − (t2 − t1)
max

j∈J(t1,t2)
{pij}

(10)

rounded up to the nearest integer.
Define r̄1, . . . , r̄nr to be the distinct values among the release times r1, . . . , rn

in increasing order, and similarly for d̄1, . . . , d̄nd
. Then from (9) and (10) we have

the following relaxation:

L ≥
∑

i

Li

Li ≥

1
Ci

∑
�∈J(r̄j ,d̄k)

ci�pi�xi� −
(
d̄k − r̄j

)
max

�∈J(r̄j ,d̄j)
{pi�}

, j = 1, . . . , nr, k = 1, . . . , nd, all i

which becomes (c) in the master problem (4).
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6 Hybrid Method for Minimizing Total Tardiness

In iteration h of the Benders method, the master problem for minimizing total
tardiness is

minimize T

subject to
∑

i

xij = 1, all j (a)

Benders cuts for iterations 1, . . . , h− 1 (b)
relaxation of subproblem (c)

(11)

The subproblem again decouples into a cumulative scheduling problem for each
facility i:

minimize
∑
j∈Ji

Tj

subject to Tj ≥ sj + pij − dj , all j ∈ Ji

rj ≤ sj , all j ∈ Ji

cumulative((sj |j ∈ Ji), (pij |j ∈ Ji), (cij |j ∈ Ji))

(12)

We found the following scheme to generate effective Benders cuts. As before
let Jhi be a set of tasks assigned to facility i in iteration h, and let T ∗

hi be the
resulting minimum tardiness on facility i. Let Ti(J) be the minimum tardiness
on facility i that results when the tasks in J are assigned to facility i, so that
Ti(Jhi) = T ∗

hi. Let Zhi be the set of tasks in Jhi that can be removed, one at a
time, without reducing the minimum tardiness. That is,

Zhi = {j ∈ Jhi | Thi(Jhi \ {j}) = T ∗
hi}

Finally, let T 0
hi be the minimum tardiness that results from removing the tasks

in Zhi all at once, so that T 0
hi = Ti(Jhi \ Zhi). Thus any or all tasks in Zhi can

be removed from facility i without reducing the minimum tardiness below T 0
hi.

This yields the following Benders cuts in iteration h:

T ≥ T 0
hi − T 0

hi

∑
j∈Jhi\Zhi

(1− xij), all i

T ≥ T ∗
hi − T ∗

hi

∑
j∈Jhi

(1− xij), all i
(13)

The second cut is redundant and can be eliminated for a given h, i when T 0
hi = T ∗

hi.
This in fact substantially reduces the size of master problem, since computational
testing suggests that T 0

hi = T ∗
hi very often.

These cuts are again valid for any set of additional constraints that may be
added to the subproblem.
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7 Relaxation for Minimizing Total Tardiness

Our relaxation of the minimum tardiness scheduling subproblem has two parts.
The first and simpler part is similar to the relaxation obtained for minimizing
the number of late tasks. It is based on the following lemma. Recall that J(t1, t2)
is the set of jobs with time windows between t1 and t2.

Lemma 1. Consider a minimum total tardiness problem in which tasks j =
1, . . . , n with time windows [rj , dj ] are scheduled on a single facility i, where minj

{rj} = 0. The total tardiness incurred by any feasible solution is bounded below by⎛⎝ 1
Ci

∑
j∈J(0,dk)

pijcij − dk

⎞⎠+

for each k = 1, . . . , n.

Proof. For any k, the last scheduled task in the set J(0, dk) can finish no earlier
than time t = 1

Ci

∑
j∈J(0,dk) pijcij . Since the last task has due date no later than

dk, its tardiness is no less than (t − dk)+. Thus total tardiness is no less than
(t− dk)+.

This gives rise to a relaxation consisting of

T ≥ 1
Ci

∑
j∈J(0,dk)

pijcijxij − dk, all i, k (14)

and T ≥ 0.
The second part of the relaxation can be developed on basis of the follow-

ing lemma. For each facility i let πi be a permutation of {1, . . . , n} such that
piπi(1)ciπi(1) ≤ · · · ≤ pπi(n)cπi(n).

Lemma 2. Consider a minimum tardiness problem in which tasks 1, . . . , n with
time windows [rj , dj ] are scheduled on a single facility i. Assume minj{rj} = 0
and index the tasks so that d1 ≤ · · · ≤ dn. Then the total tardiness T of any
feasible solution is bounded below by T =

∑n
k=1 T k, where

T k =

⎛⎝ 1
Ci

k∑
j=1

piπi(j)ciπi(j) − dk

⎞⎠+

, k = 1, . . . , n

Proof. Consider any feasible solution of the one-facility minimum tardiness prob-
lem, in which tasks 1, . . . , n are respectively scheduled at times t1, . . . , tn. Thus

T =
n∑

k=1

(tk + pik − dk)+ (15)

Let σ0(1), . . . , σ0(n) be the order in which tasks are scheduled in this solution,
so that tσ0(1) ≤ · · · ≤ tσ0(n). For an arbitrary permutation σ of {1, . . . , n} let
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T k(σ) =

⎛⎝ 1
Ci

k∑
j=1

piπi(j)ciπi(j) − dσ(k)

⎞⎠+

(16)

and T (σ) =
∑n

k=1 T k(σ).
We show first that T ≥ T (σ0). Since σ0 is a permutation we can write (15)

as

T =
n∑

k=1

(
tσ0(k) + piσ0(k) − dσ0(k)

)+
We observe that

tσ0(k) + piσ0(k) ≥
1
Ci

k∑
j=1

piσ0(j)ciσ0(j) ≥
1
Ci

k∑
j=1

piπi(j)ciπi(j)

where the first inequality is based on the areas required by tasks, and the second
inequality is due to the definition of πi. From this and (16) it follows that T ≥
T (σ0).

Now suppose a bubble sort is performed on the integers σ0(1), . . . , σ0(n) so
as to put them in increasing order, and let σ0, . . . , σP be the resulting series of
permutations. Thus (σP (1), . . . , σP (n)) = (1, . . . , n), and σp+1 is obtained from
σp by swapping two adjacent terms σp(k) and σp(k+1), where σp(k) > σp(k+1).
This means σp and σp+1 are the same except that σp+1(k) = σp(k + 1) and
σp+1(k + 1) = σp(k). Since T ∗ ≥ T (σ0) and T (σP ) = T , to prove the theorem it
suffices to show T (σ0) ≥ · · · ≥ T (σP ).

Thus we consider any two adjacent permutations σp, σp+1 and show that
T (σp) ≥ T (σp+1). We observe that

T (σp) =
k−1∑
j=1

T j(σp) + T k(σp) + T k+1(σp) +
n∑

j=k+2

T j(σp)

T (σp+1) =
k−1∑
j=1

T j(σp) + T k(σp+1) + T k+1(σp+1) +
n∑

j=k+2

T j(σp)

(17)

Using (16), we note that T k(σp) = (a−B)+, T k+1(σp) = (A− b)+, T k(σp+1) =
(a− b)+, and T k+1(σp+1) = (A−B)+ if we set

a =
1
Ci

k∑
j=1

piπi(j)ciπi(j), A =
1
Ci

k+1∑
j=1

piπi(j)ciπi(j)

b = dσp(k+1), B = dσp(k)

Note that a ≤ A. Also, b ≤ B since σp(k) > σp(k + 1) and d1 ≤ · · · ≤ dn. From
(17) we have

T (σp)− T (σp+1) = (a−B)+ + (A− b)+ − (a− b)+ − (A−B)+
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It is straightforward to check that this quantity is always nonnegative when
a ≤ A and b ≤ B. The theorem follows.

The bound of Lemma 2 can be written in terms of the variables xik:

n∑
k=1

T ′
ikxik

where

T ′
ik ≥

1
Ci

k∑
j=1

piπi(j)ciπi(j)xiπi(j) − dk, k = 1, . . . , n

and T ′
ik ≥ 0. We linearize the bound by writing it as

n∑
k=1

T ik (18)

where

T ik ≥
1
Ci

k∑
j=1

piπi(j)ciπi(j)xiπi(j) − dk − (1− xik)Uik, k = 1, . . . , n (19)

and T ik ≥ 0. The big-M term Uik is given by

Uik =
1
Ci

k∑
j=1

piπi(j)ciπi(j) − dk

Note that although Uik can be negative, the right-hand side of (19) is never
positive when xik = 0. Finally, to obtain a relaxation of the subproblem, we sum
(18) over all facilities and write

T ≥
m∑

i=1

n∑
k=1

T ik (20)

The relaxation (c) of the master problem now consists of (14), (20), and (19)
for i = 1, . . . , m. The relaxation is valid only when tasks are indexed so that
d1 ≤ · · · ≤ dn.

8 Problem Generation

Random instances were generated as follows. We set the number of facilities at
3, and the number of tasks at n = 10, 12, . . . , 24. The capacity limit was set
to Ci = 10 for each facility i. For each task j, cij was assigned the same ran-
dom value for all facilities i and drawn from a uniform distribution on [1, 10]. The
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processing time pij was drawn from a uniform distribution on [2, 20], [2, 25] and
[2, 30] for facilities i = 1, 2, 3, respectively. For 22 or more tasks we used the
intervals [5, 20], [5, 25] and [5, 30] since otherwise the minimum tardiness tends
to be zero in the larger problems. The release dates were set to zero and the due
date drawn from a uniform distribution on [βn/4, βn]. We used β = 20/9, partly
since this was consistent with parameter settings used in earlier research, and
partly because it leads to reasonable results (a few late tasks in most instances,
and no late tasks in a few instances). No precedence constraints were used, which
tends to make the scheduling portion of the problem more difficult.

Table 1. Computational results for minimizing the number of late tasks on three
facilities. Computation is terminated after two hours (7200 seconds).

Tasks Time (sec) Hybrid/ Best solution
CP MILP Hybrid MILP value found1 Instance

speedup MILP Hybrid
10 0.09 0.48 0.05 9.6 1 1 1

2.5 0.51 0.17 3.0 1 1 2
0.28 0.46 0.27 1.7 2 2 5
0.15 0.41 0.93 0.4 3 3 4
1.7 3.9 3.0 1.3 3 3 3

12 0.01 0.73 0.07 10 0 0 1
0.01 0.70 0.22 3.2 0 0 5
0.02 0.64 0.06 11 1 1 3
3.2 1.4 0.18 7.8 1 1 4
1.6 1.7 0.34 5.0 1 1 2

14 1092 5.8 0.52 11 1 1 3
382 8.0 0.69 12 1 1 2
265 3.2 0.69 4.6 2 2 1
85 2.6 1.3 2.0 2 2 5

5228 1315 665 2.0 3 3 4
16 304 2.7 0.51 5.3 0 0 2

?2 31 0.24 129 1 1 4
310 22 0.41 54 1 1 5

4925 29 2.7 11 2 2 3
19 5.7 24 0.2 4 4 1

18 >7200 2.0 0.11 18 0 0 5
?2 8.0 0.21 38 1 1 4

>7200 867 8.5 102 1 1 2
>7200 6.3 1.4 4.5 2 2 3
>7200 577 3.4 170 2 2 1

20 97 0.37 262 0 0 1
>7200 2.3 >3130 1 1 5

219 5.0 44 1 1 2
>7200 11 >655 2 2 3

843 166 5.1 3 3 4
22 16 1.3 12 0 0 4

>7200 3.7 >1946 1 1 1
>7200 49 >147 3 2 5
>7200 3453 >2.1 5 2 3
>7200 >7200 6 6 2

24 25 0.8 31 0 0 3
>7200 18 >400 1 0 5
>7200 62 >116 2 0 4
>7200 124 >58 3 1 1
>7200 234 >31 2 1 2

1Values in boldface are proved optimal.
2Computation terminates with a segmentation fault.
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9 Computational Results

We solved randomly generated problems with MILP (using CPLEX), CP (using
the ILOG Scheduler), and the logic-based Benders method. All three methods
were implemented with OPL Studio, using the OPL script language.

Table 1 shows computational results for minimizing the number of late tasks
on three facilities using CP, MILP and the hybrid method. Since problem dif-
ficulty tends to increase with the minimum number of late tasks, the instances
are ordered accordingly for each problem size. The problem instance identifier k

Table 2. Computational results for minimum tardiness problems on three facilities.
Computation is terminated after two hours (7200 seconds).

Tasks Time (sec) Hybrid/ Best solution Benders
CP MILP Hybrid MILP value found1 lower Instance

speedup MILP Benders bound2

10 13 4.7 2.6 1.8 10 10 2
1.1 6.4 1.6 4.0 10 10 1
1.4 6.4 1.6 4.0 16 16 4
4.6 32 4.1 7.8 17 17 5
8.1 33 22 1.5 24 24 3

12 4.7 0.7 0.2 3.5 0 0 5
14 0.6 0.1 6.0 0 0 1
25 0.7 0.2 3.5 1 1 3
19 15 2.4 6.3 9 9 4

317 25 12 2.1 15 15 2
14 838 7.0 6.1 1.2 1 1 2

7159 34 3.7 9.2 2 2 3
1783 45 19 2.4 15 15 5

> 7200 73 40 1.8 19 19 1
> 7200 > 7200 3296 >2.2 26 26 4

16 > 7200 19 1.4 14 0 0 2
> 7200 46 2.1 22 0 0 5
> 7200 52 4.2 12 4 4 4
> 7200 1105 156 7.1 20 20 3
> 7200 3424 765 4.5 31 31 1

18 187 2.8 67 0 0 5
15 5.3 2.8 3 3 4
46 49 0.9 5 5 3

256 47 5.5 11 11 1
> 7200 1203 >6.0 14 11 2

20 105 18 5.8 0 0 1
4141 23 180 1 1 5

39 29 1.3 4 4 2
1442 332 4.3 8 8 3

> 7200 > 7200 75 37 9 4
22 6.3 19 0.3 0 0 4

584 37 16 2 2 1
> 7200 > 7200 120 40 7 3
> 7200 > 7200 162 46 11 5
> 7200 > 7200 375 1413 34 2

24 10 324 0.03 0 0 3
> 7200 94 >77 20 0 5
> 7200 110 >65 57 0 4
> 7200 > 7200 20 5 3 2
> 7200 > 7200 25 7 1 1

1Values in boldface are proved optimal.
2When omitted, the lower bound is equal to the optimal value shown in the previous column.
3Best known solution is 128, obtained using a slightly weaker relaxation.
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Table 3. Effect of relaxations on performance of the hybrid method. Computation
time in seconds is shown.

Minimizing late tasks: Minimizing tardiness:
Tasks with without with without Instance

relaxation relaxation relaxation relaxation
16 0.5 2.6 1.4 4.4 2

0.4 1.5 2.1 6.5 5
0.2 1.3 4.2 30 4
2.7 4.2 156 199 3

24 18 765 763 1
18 0.1 1.1 2.8 10 5

0.2 0.7 5.3 17 4
3.4 3.3 47 120 1
1.4 15 49 354 3
8.5 11 1203 5102 2

20 0.4 88 18 151 1
2.3 9.7 23 1898 5
5.0 63 29 55 2

11 19 332 764 3
166 226 >7200 >7200 4

appears in the last column. The instances are named ddnj3mk, where n is the
number of tasks and k the instance identifier. The instances are available at the
web site web.tepper.cmu.edu/jnh/planning.htm.

On all but two problem instances the hybrid method is faster than MILP,
which in turn is generally faster than CP. The advantage of the hybrid method
becomes greater as the instances grow in size. The speedup is generally two
or three orders of magnitude for instances with 16 or more tasks. The average
speedup factor relative to MILP is 295 for these instances. This is almost cer-
tainly a substantial underestimate for the instances averaged, since the MILP
solver was cut off after two hours. (The average omits instances in which the
hybrid method was also cut off.) In addition MILP failed to solve 10 instances,
while the hybrid method failed to solve only one instance.

Table 2 shows computational results for minimizing total tardiness. Again
the hybrid method is almost always faster than MILP, which is faster than CP.
The advantage of the hybrid approach is not as great as in the previous table,
but the speedup factor is still significant on instances with 16 or more tasks. The
average speedup factor on these instances is 25, which is again an underestimate
for these instances. (The average omits instances for which the hybrid method
was also cut off.)

The hybrid method failed to solve 6 of the 40 instances to optimality, only a
modest improvement over the 10 that were intractable for MILP. However, when
the hybrid method failed to find provably optimal solutions, it obtained much
better feasible solutions than obtained by MILP in the same two-hour period. In
most cases these solutions were found very early in the solution process. Table 2
also shows the lower bounds obtained from the master problem, which in these
instances are not very tight.

Table 3 illustrates the importance of relaxations in the hybrid approach,
particularly when minimizing total tardiness. Lemmas 1 and 2 are clearly critical
to the success of the hybrid method, especially when there are more than 16 tasks
or so.
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10 Conclusions

We find that integrating CP and MILP through a Benders scheme can substan-
tially improve on the state of the art in planning and scheduling to minimize
tardiness. The hybrid method is often two or three orders of magnitude faster
than CP or MILP when minimizing the number of late tasks, and it solves signif-
icantly more problems. It is significantly faster when minimizing total tardiness,
and when it fails to solve the problem to optimality, it nonetheless finds a much
better feasible solution in the same time period.

The problems become hard for all the methods examined when there are
more than a few late tasks in the optimal solution. However, in such cases it
is probably best to relax some of the time windows so as to reflect scheduling
priorities, perhaps by postponing due dates for less critical tasks. This makes
the problem easier to solve and yields a more meaningful compromise solution
in practice.
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Abstract. The heavy-tailed phenomenon that characterises the runtime distribu-
tions of backtrack search procedures has received considerable attention over the
past few years. Some have conjectured that heavy-tailed behaviour is largely due
to the characteristics of the algorithm used. Others have conjectured that prob-
lem structure is a significant contributor. In this paper we attempt to explore the
former hypothesis, namely we study how variable and value ordering heuristics
impact the heavy-tailedness of runtime distributions of backtrack search proce-
dures. We demonstrate that heavy-tailed behaviour can be eliminated from par-
ticular classes of random problems by carefully selecting the search heuristics,
even when using chronological backtrack search. We also show that combina-
tions of good search heuristics can eliminate heavy tails from Quasigroups with
Holes of order 10, and give some insights into why this is the case. These results
motivate a more detailed analysis of the effects that variable and value ordering
can have on heavy-tailedness. We show how combinations of variable and value
ordering heuristics can result in a runtime distribution being inherently heavy-
tailed. Specifically, we show that even if we were to use an Oracle to refute in-
soluble subtrees optimally, for some combinations of heuristics we would still
observe heavy-tailed behaviour. Finally, we study the distributions of refutation
sizes found using different combinations of heuristics and gain some further in-
sights into what characteristics tend to give rise to heavy-tailed behaviour.

1 Introduction

The Italian-born Swiss economist Vilfredo Pareto first introduced the theory of non-
standard probability distributions in 1897 in the context of income distribution. These
distributions have been used to model real-world phenomena, from weather forecasting
to stock market analysis. More recently, they have been used to model the cost of combi-
natorial search methods. Exceptionally hard instances have been observed amongst cer-
tain classes of constraint satisfaction problems, such as graph colouring [12], SAT [7],
random problems [2, 8, 20, 21], and quasigroup completion problems [10]. In studying
this phenomenon, researchers have used a wide range of systematic search algorithms
such as chronological backtracking, forward-checking, Davis-Putnam and MAC. It is
widely believed that the more sophisticated the search algorithm, the less likely it is
that the exceptionally hard problem instances will be observed.

Instances that are exceptionally hard occur in the under-constrained area and are
often harder than those in the critically constrained region [21]. For a proper under-
standing of search behaviour one must study the runtime distributions [8] associated

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 328–342, 2005.
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with either repeatedly solving a single instance with a randomised algorithm, or with
solving a large ensemble of instances of some class of problems. Some runtime distribu-
tions exhibit an extremely large variance which can be described by heavy-tailed distri-
butions whose tails have power-law decay. Gomes et al. [9] provided an overview of the
heavy-tailed behaviour previously observed near the phase transition in NP-complete
problems and introduced a rapid randomised restarts strategy aimed at avoiding the
long tails. More recently, Gomes et al. [8] studied the transition between heavy-tailed
and non-heavy-tailed behaviour in runtime distributions for random problems and have
characterised when the phenomenon occurs and when it does not.

The motivation behind the work we present in this paper comes from a number
of interesting observations we made while reproducing the random problem experi-
ments presented by Gomes et al., particularly while studying the heavy tail behaviour
in the context of MAC [19]. We observed that once we enhanced MAC with any of
the well-known standard variable ordering heuristics, such as min-domain [11], max-
degree, min-dom/ddeg1 [3], brelaz [5] and min-dom/wdeg [4, 17], heavy tails cannot
be observed even for problems with 100 variables, for any density and tightness set-
ting. Moreover, for the random problems used by Gomes et al. in their experiments
with chronological backtrack search, we no longer observed heavy tails when we used
min-dom/wdeg.

Some have conjectured that heavy-tailed behaviour is largely due to the characteris-
tics of the algorithm used to solve the problems, in particular that the search algorithm
makes a mistake that results in a significant amount of work being required to recover
from it. In this paper we attempt to explore this hypothesis in detail. We show how vari-
able and value ordering heuristics impact the heavy-tailed phenomenon one observes in
the runtime distributions of backtrack search procedures. Our analysis focuses on the
MAC algorithm while solving a large ensemble of satisfiable instances of the Quasi-
groups with Holes (QWH) problem, encoded as a binary CSP. We combine different
variable and value ordering heuristics with MAC to obtain a suite of algorithms that we
can study. Our approach is based on analysing the refutations of insoluble (sub)trees
encountered by MAC as it finds the first solution [13].

In this paper we present the following observations and results:

1. We observe that heavy-tailed behaviour associated with the runtime distribution of
MAC on QWH of order 10 (QWH-10) can be eliminated by carefully selecting the
search heuristics.

2. We perform a more detailed analysis of the effects that variable and value order-
ings have on heavy-tailedness. We show how combinations of variable and value
ordering heuristics can result in a problem being inherently heavy-tailed. Specifi-
cally, we show that even if we were able use an Oracle to refute insoluble subtrees
optimally, for some combinations of heuristics we would still observe heavy-tailed
behaviour.

3. Finally, we study the distribution of refutations found using different combinations
of heuristics and gain some further insights into what characteristics tend to give
rise to heavy-tailed behaviour. Such a detailed analysis is the first of its kind to be
reported in the literature.

1 In this paper we abbreviate dynamic-degree as ‘ddeg’ and weighted-degree as ‘wdeg’.
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2 Motivation and Summary

Two important questions one can attempt to address when studying heavy-tailed be-
haviour are when does the phenomenon occur, and why. Gomes et al. [8] have charac-
terised when the phenomenon occurs, in this paper we focus on studying the reasons
why.

Our work is motivated by the observation that even when using chronological back-
tracking, for certain classes of problems heavy tails can be eliminated by using care-
fully chosen search heuristics. Runtime distributions are sometimes characterised by
long tails, or heavy tails, and are generally modelled using the expression 1 − F (x) =
P{X > x} ∼ Cx−α, x > 0, where F (x) is the cumulative distribution function
(CDF) of a probability distribution function f(x) (PDF), and C and α are constants
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(a) random variable and value orderings
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(b) min-dom/wdeg variable and random value orderings. Since chronological back-
tracking does no propagation, in this case min-dom/wdeg is effectively max-wdeg.

Fig. 1. The effect of the variable ordering on the cumulative distribution function of backtracks
in random problems using chronological backtracking. Problems instances are from a Model B
generator: 17 variables, 8 values, density 0.84, various tightness settings.
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(a) random value ordering heuristic and various variable orderings
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(b) min-conflicts value ordering heuristic and various variable orderings

Fig. 2. Cumulative distribution function of the actual refutation size for MAC solving QWH-10
with different variable and value ordering heuristics. Note that when using a min-conflicts value
ordering and a min-dom/wdeg variable ordering we no longer observe heavy tails (Figure 2(b)).

with α ∈ (0, 2) and C > 0. A near-straight line in a log-log plot for 1 − F (x), with
a slope equal to −α, is a clear sign of heavy-tailed behaviour. For example, in Fig-
ure 1(a) we present results similar to those presented by Gomes et al. [8]. In this figure
we use a chronological backtrack search procedure that uses both random variable and
value orderings, solving problems with different levels of constrainedness (Model B;
instances with 17 variables, 8 values, density 0.84, and tightness between 0.015 and
0.25, the point where the phase transition occurs). This figure shows that heavy-tailed
behaviour can be observed in problems that are in the easy region, far from the phase
transition, but are not necessarily trivial. However, as we approach the phase transition
such behaviour disappears as instances become uniformly difficult.

In Figure 1(b), we present results for the same problems, but with the variable order-
ing changed to min-dom/wdeg [4, 17]. Note that this change is sufficient to eliminate
heavy tails from these problems since no straight line can be observed for any tight-
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ness. Clearly, the change in variable ordering had a dramatic impact on the runtime
distribution.

A common intuitive understanding of the extreme variability of the runtime of back-
tracking is that the search procedure sometimes must refute a very large inconsistent
subtree, causing considerable “thrashing”. In our efforts to gain an understanding of
this intuition, we consider how search ordering affects the runtime distribution of MAC,
rather than chronological backtracking, as it is one of the most commonly used algo-
rithms in constraint satisfaction. We study its runtime distributions over many instances
of QWH-10 for several configurations of the algorithm. By changing the variable and
value ordering heuristics used, we vary MAC’s “quality”, essentially creating differ-
ent algorithms that we can use for our investigation. As mentioned earlier, we used
the following well-known variable ordering heuristics: min-domain [11], max-degree,
min-dom/ddeg [3], brelaz [5] and min-dom/wdeg [4, 17]. As value ordering heuristics,
we used max-conflicts, random and min-conflicts.

In Figure 2 we present MAC’s runtime distributions when solving instances of QWH-
10 with different variable and value ordering heuristics2. When using a random value
ordering heuristic, as presented in Figure 2(a), we observe heavy-tailed behaviour for
every variable ordering heuristic studied. However, when we replace the value ordering
with min-conflicts, as presented in Figure 2(b), we no longer observe heavy tails when
using the min-dom/wdeg variable ordering. Instead, for this configuration, we can see
that the runtime distribution has become non-heavy-tailed, characterised by a curve in
the log-log plot. Clearly, ordering heuristics also make a significant difference on this
problem’s runtime distribution.

As we will show later in this paper, there are a number of factors at play that explain
the effects that ordering heuristics have on heavy-tailed behaviour.

3 Definitions and Problems

Definition 1 (Binary Constraint Satisfaction Problem). We define a binary CSP as a
3-tuple P =̂ 〈V, D, C〉 where V is a finite set of n variables V =̂ {V1, . . . , Vn}, D is
a set of finite domains D =̂ {D(V1), . . . , D(Vn)} such that D(Vi) is the finite set of
possible values for Vi, and C is a finite set of constraints such that each Cij ∈ C is a
subset of D(Vi)×D(Vj) specifying the combinations of values allowed between Vi and
Vj , where i < j. We say that P is arc-consistent (AC) if ∀vk ∈ D(Vi) and ∀j such that
Cij ∈ C, ∃vl ∈ D(Vj) with (vk, vl) ∈ Cij . An assignment Aik =̂ 〈Vi = vk〉 represents
a reduction of D(Vi) to {vk} ⊆ D(Vi). A solution to P is a set of distinct assignments
S =̂ {Al1k1 , . . . , Alnkn |(vki , vkj ) ∈ Cij}.

Definition 2 (Search Algorithm). A search algorithm Θ =̂ 〈Λ, Δ,≺V ,≺v〉 is a com-
bination of a branching method Λ, a consistency enforcement method Δ, a variable
ordering ≺V and a value ordering≺v , both of which can be either static or dynamic.

2 In Figure 2, and in the remainder of the paper, we measure search effort in terms of “refuta-
tion sizes”, as this allows us to compare against search effort measured in terms of “optimal
refutation sizes”. Refutations are introduced in Section 3.
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Definition 3 (Search Tree). A search tree T for a problem P is a set of nodes and arcs.
Each node corresponds to a set of assignments, N =̂ {Al1k1 , . . . , Alp−1kp−1 , Alpkp},
totally ordered by a dynamic variable ordering heuristic ≺V . The root of the search
tree is a special node R =̂ ∅. Two nodes N1 and N2 are connected by an arc if ∃Aij

such that N2 = N1 ∪ Aij , in which case we say that N1 is the parent of N2, and N2 is
the child of N1. For every node N, its children are totally ordered by a dynamic value
ordering heuristic ≺v.

Search trees are defined in the context of a specific search algorithm. For a particular
CSP instance P , and search algorithm Θ, a one-to-one mapping exists between the nodes
in the search tree T and the assignments made by Θ.

3.1 Mistake Points and Refutations

To study the effects that variable and value ordering heuristics have on heavy-tailedness,
we focus on the refutations of the mistakes made by each algorithm studied.

Definition 4 (Mistake Point). For a soluble problem P , a mistake point M is a node
identified by a set of assignments M =̂ {Al1k1 , ..., Alp−1kp−1 , Alpkp}, totally ordered
by ≺V , for which M \ {Alpkp} can be extended to a solution, but M cannot. Since an
insoluble problem does not admit any solutions, we define the mistake point associated
with an insoluble problem as the root of its search tree.

Informally, a mistake point corresponds to an assignment that, given past assign-
ments, cannot lead to a solution even though, in the case of a soluble problem, a so-
lution exists. Whenever the value ordering heuristic makes such a mistake, the role of
the variable ordering heuristic is to guide the search out of that insoluble search tree
as quickly as possible. However, it is important to realise that the actual set of mistake
points encountered during search is also dependent upon the variable ordering used.

For a soluble problem P , let PM =̂ {VM, DM, CM} be the insoluble (sub)problem
corresponding to M, where VM =̂ V \ {Vl1 , ..., Vlp}, CM =̂ {Cij |Vi, Vj ∈ VM, Cij ∈
C}, and DM is the set of current domains after arc-consistency has been restored to
reflect the domain reductions due to M. If P is insoluble, as a notational convenience,
we define M =̂ ∅ and PM as the arc-consistent version of P . For brevity, we will
refer to the insoluble (sub)tree rooted at a mistake point and its corresponding insoluble
(sub)problem interchangeably.

Definition 5 (Refutations). Given a search algorithm Θ, a refutation for a given insol-
uble (sub)problem PM, rooted at mistake point M, is simply the corresponding search
tree TM. We will refer to |TM|, the number of nodes in TM, as the size of the refutation.

We study the refutations found using a version of MAC that uses AC-3 [18] for
consistency enforcement and selects values randomly. Also, our version of MAC em-
ploys k-way branching [22], rather than binary branching, so that selecting a variable
Vi creates |D(Vi)| branches in the search tree. Our goal is to determine how close to
optimality are the refutations obtained when well known variable ordering heuristics,
with randomly broken ties, are substituted for ≺V . For each heuristic ≺V , we first col-
lect the mistake points it generates when using MAC (note that each variable ordering
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heuristic will generate a different set of mistake points). When we analyse MAC in con-
junction with a certain ≺V on a mistake point M, we will refer to the refutation for the
(sub)problem PM as the actual refutation. We will contrast the actual refutation with
the optimal refutation for PM, obtained by replacing ≺V with a new variable ordering
heuristic ≺V s.t. |TM| is minimised.

Sometimes, when the optimal refutation is hard to find, we compute the quasi-
optimal refutation, defined as the smallest refutation whose height does not exceed that
of the actual refutation. By selecting variables based on a depth-first traversal of the tree
of minimum size, ≺V causes MAC to generate the smallest possible search tree prov-
ing insolubility for PM. Our experiments show that it is very rare that the quasi-optimal
refutation is larger than the optimal (see Table 1). By accepting quasi-optimality, we can
use the height of the actual refutation as an upper bound on the height of the optimal
one, dramatically speeding-up the search for better refutations.

When searching for the quasi-optimal refutation it is oftentimes useful to compute
a lower bound on its size. Firstly, this can improve the performance of the search since
the search can be stopped when (and if) the smallest refutation found so far reaches
that lower bound. Secondly, the lower bound can be plotted alongside with the quasi-
optimal refutation size to visually reduce the factor of uncertainty introduced by quasi-
optimality. Optimal refutations may, in theory, be smaller than quasi-optimal refuta-
tions, but they cannot be smaller than the lower bound.

Definition 6 (Refutation Size Lower Bound). An n-level lower bound for a refutation
corresponding to a mistake point is the minimum number of nodes that an n-level look-
ahead determines any refutation for that particular (sub)tree must have.

A lower bound can be computed using the look-ahead method described in [13].
Such a lower bound is quite conservative, as there is absolutely no guarantee that an
optimal refutation of that size exists, although that is often the case with QWH-10. We
briefly review the look-ahead methodology here.

Whenever a variable Vi is selected at a certain level all the values in its domain have
to be tried, and they all have to fail for the current (sub)problem to be proved insoluble.
Consequently, we know that by selecting Vi, the size of the current partial refutation
will increase by at least a number of nodes equal to |D(Vi)|. We call this a 1-level
look-ahead.

By temporarily assigning to Vi, in turn, every value v in its domain, and by attempt-
ing to restore arc-consistency after every such assignment, we can associate with each
v a minimum contribution to the size of the refutation. If the assignment makes the sub-
problem arc-inconsistent, v’s contribution will be 1, given by the node corresponding to
the assignment itself. However, if arc-consistency can be restored after the assignment,
at least one more variable will have to be considered before the current subproblem can
be proved insoluble. Therefore, v will carry a minimum contribution equal to the small-
est domain size amongst all the remaining unassigned variables. We call this a 2-level
look-ahead.

In general, Vi’s selection would increase the size of the current partial refutation by
at least the sum of the minimum contributions of all the values in its domain.

Clearly, the further we look ahead, the less conservative the lower bound. However,
look-ahead levels greater than 2 tend to be very time consuming and, therefore, the
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amount of look-ahead to use must be experimentally determined for each problem class
being studied. We have concluded that for the class of quasigroup problems used in
this paper, a look-ahead level of 3 was the most appropriate when computing the lower
bound, and a look-ahead level of 1 was the most appropriate for the upper bound.

3.2 Problem Domain

As mentioned before, our experiments were focused around quasigroup completion
problems. We briefly introduce them here.

Definition 7 (Quasigroup Completion Problems). A quasigroup is a set Q with a
binary operation � : Q × Q → Q, such that for all a and b in Q there exist unique
elements in Q such that a � x = b and y � a = b. The cardinality of the set, n = |Q|, is
called the order of the quasigroup.

A quasigroup can be viewed as an n×n multiplication table defining a Latin square,
which must be filled with unique integers on each row and column. The Quasigroup
Completion Problem (QCP) is the problem of completing a partially filled Latin square.
Quasigroup with Holes (QWH) are satisfiable instances obtained by starting with a com-
plete Latin square and unassigning a number of cells according to the Markov chain
Monte Carlo approach proposed by Jacobson and Matthews in [14]. QWH problem in-
stances are considerably harder when the distribution of the holes is balanced, i.e, when
the number of unassigned cells is approximately the same across the different rows and
columns [1, 14, 15].

Originally just mathematical curiosities, Latin squares have found practical applica-
tions in many scientific and engineering fields such as statistics, scheduling, drug tests
design, and cryptography. Quasigroup problems have a small-world topology [23] and
are known to be NP-complete [6]. QWH problems pre-assign a percentage of the cells
in the table, introducing perturbations into the structure of the constraint network and
bringing problems closer to real-world instances.

4 Finding Optimal Refutations

We introduced in [13] an algorithm for obtaining optimal refutations for binary CSPs.
In this paper we significantly improved that algorithm’s efficiency so that it can tackle
larger problems. All the optimisations described here are general in nature, i.e. they
can be applied to any class of problems, but proved particularly useful in dealing with
QWH-10 problems due to their relatively shallow refutations. We observed that for the
problems under consideration, while most actual refutations have heights up to 30, early
experiments showed that most optimal refutations have heights below 5. The nature
of the search for optimal refutations is such that the branching factor is significantly
larger than that of a normal search tree, and we estimate that searching for an optimal
refutation of height 6 for an instance of a QWH-10 problem could take several months
to complete on a Pentium M CPU. Consequently, limiting the height of the refutations
considered can dramatically improve efficiency.
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An important design decision in the optimal refutation search algorithm was to use
an iterative-deepening strategy [16]. The algorithm starts off by searching for refuta-
tions of height 1, then for refutations of height 2, and so on, until it reaches a height
equal to either the number of variables in the (sub)problem, or the size of the smallest
refutation found up until that point. The motivation behind using an iterative-deepening
strategy is based on the expectation that small refutations are likely to have smaller
heights than larger refutations, an expectation that has been validated by our experi-
ments. The successive expansions of the search horizon can increase the likelihood of
finding earlier refutations that are better than the actual, thus lowering the current refu-
tation size upper bound and significantly speeding up the search in the rest of the tree.

Our improved algorithm uses the refutation size lower bound to limit the height in
the iterative-deepening loop. Consider an example where we use m levels of look-ahead
and obtained a lower bound of l nodes. The number of nodes in excess of m that would
be part of any refutation of height m is e = l −m. If the best refutation found up until
this point is of size r, then we can immediately conclude that since any refutation of
height d ≥ m would contain at least e additional nodes, searching for refutations of
heights greater than r − e cannot produce a smaller refutation. Moreover, updating the
lower bound as we search deeper into the tree allows us to stop the search as soon as
it discovers a refutation whose size equals the lower bound (this seems to occur quite
frequently). Finally, once the algorithm completes the search for refutations of size r−e,
we know that the best refutation found is optimal.

The number of uninstantiated variables involved in each refutation is indirectly a
factor affecting the height limit in the iterative-deepening loop. We have modified MAC

so that, before selecting a new variable, it automatically marks as instantiated every
variable whose domain has been reduced to a single value as a result of restoring arc-
consistency. This reduces the height of the search tree, avoids unnecessary backtracking
over singletons, and makes sure that such variables do not take part in any refutation.
Mistake trees thus involve a smaller number of variables and are easier to deal with.

Despite of all these optimisations, our data-set contains a small number of instances
(23 out of over 1,000,000) for which the search for the optimal refutation timed out after
2 hours for at least one mistake point, and in some of these cases no improved refutation
was found. For some of these instances we succeeded in finding improved refutations
by using a rapid random restarts strategy [9]. For others, we employed a certain level of
optimism, i.e. we tried at each level a limited number of variables, in effect searching
only what appeared to be the most promising area of the search space. The shorter-than-
actual refutations that we found using these two methods are not known to be optimal
or quasi-optimal, yet they are significantly smaller than their corresponding actual refu-
tations, and by finding them we avoided incorrectly elongating the tails of the plots.

5 Experiments

Our experiments3 were performed on satisfiable QWH-10 problem instances (100 vari-
ables) with 90% random balanced holes4, encoded as binary CSPs. We aimed to study

3 Code freely available with source at http://hulubei.net/tudor/csp.
4 Generated using code based on Carla Gomes’ lsencode quasigroup generator.
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the relationship between actual and optimal refutations, as well as the way they evolve
as better and better search algorithms are used to solve a large set of instances.

Our empirical study included 4 variable ordering heuristics: brelaz, min-domain,
min-dom/ddeg and min-domain/wdeg, and 3 value ordering heuristics: random, min-
conflicts5 and its anti-heuristic, max-conflicts. We always broke ties randomly. QWH-10
instances are too difficult to solve using random variable orderings or variable ordering
anti-heuristics, which is why these heuristics could not be included.

Using a Beowulf cluster of 32 CPUs over a period of 6 weeks we accumulated
experimental data on all the 12 variations of MAC, totaling over 1,000,000 instances.
Our intention was to avoid running an artificially randomised algorithm multiple times
on the same instance. We computed actual refutations, lower bounds, and attempted to
compute optimal refutations, reporting the cumulative size of each for every instance.
While in the vast majority of cases we did find the optimal refutations, we encountered
some instances for which we could only find improved refutations (i.e. refutations for
which we were not able to guarantee quasi-optimality), and some for which the search
timed out without finding any improved refutation. Table 1 gives the actual percentages.

Table 1. Optimality (%optimal / %quasi-optimal / %improved / %timed out)

max-conflicts random min-conflicts
min-domain 99.37 / 0.19 / 0.40 / 0.03 99.44 / 0.25 / 0.31 / 0.00 97.96 / 0.74 / 1.28 / 0.02
min-dom/ddeg 95.41 / 4.01 / 0.58 / 0.01 98.27 / 0.42 / 1.30 / 0.01 86.67 / 3.37 / 9.84 / 0.11
brelaz 99.24 / 0.19 / 0.53 / 0.03 98.69 / 0.33 / 0.97 / 0.01 87.22 / 3.10 / 9.47 / 0.22
min-dom/wdeg 99.26 / 0.38 / 0.36 / 0.00 97.97 / 0.81 / 1.22 / 0.01 86.64 / 3.70 / 9.33 / 0.33

Figure 3 includes results for each of our 12 experiments and shows the effects of the
various heuristics on the shape of the refutation size cumulative distribution function.
The plots are organised roughly in increasing order of efficiency from left to right and
from top to bottom. It is important to point out that the shorter refutation and lower
bound plots are specific to each search algorithm, simply because different algorithms
make mistakes in different places. The lower bound is plotted to give an absolute mini-
mum on the size of the refutations even for those instances where we could not find the
optimal or quasi-optimal refutations (see Table 1).

We notice from the first column of Figure 3 that a search algorithm employing a
poor value ordering heuristic (max-conflicts) always exhibits heavy tails, irrespective
of which one of the 4 variable ordering heuristics we use. Moreover, heavy tails still
exist, albeit with a different slope, even if, once a mistake has been made, the search
algorithms were to use an Oracle that could provide the shortest refutation for that
mistake. In other words, in such cases the runtime distribution of an algorithm would
be guaranteed to exhibit heavy-tailed behaviour.

We increase the quality of the value ordering heuristic by switching from max-
conflicts to a random ordering and observe that while the actual refutations remain

5 This heuristic selects the value that is inconsistent with the smallest number of other values in
the domains of neighbouring variables.
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Fig. 3. Cumulative distribution function of the refutation size for QWH-10 problems with 90%
holes. We vary the value ordering across columns and variable ordering across rows. Shorter
refutations are either optimal, quasi-optimal, or simply the shortest improved refutations we could
find that were smaller than the corresponding actual refutations.

heavy-tailed, as we improve the quality of the variable ordering, the shorter refutations
and the lower bounds start becoming less and less heavy-tailed. For the lack of a better
term, we call such plots borderline heavy-tailed. This phenomenon becomes even more
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Fig. 4. Probability distribution function for the actual refutation sizes obtained with various search
algorithms, grouped by variable ordering

pronounced as we move over to min-conflicts. In that case, all lower bounds become
non-heavy-tailed, and with the exception of min-domain, shorter refutations become
borderline heavy-tailed. Finally, the best combination of heuristics, min-conflicts + min-
dom/wdeg, succeeds at eliminating heavy tails even from the actual refutations, while at
the same time keeping the actual refutations much closer to their corresponding optimal
than any of the other 11 variations of MAC6.

We observe in Figure 4 several factors contributing to the behaviour of our best
performing algorithm. Firstly, for QWH-10, algorithms using the min-domain, min-
dom/ddeg, and brelaz variable orderings encounter similarly large maximum refutations
regardless of the value ordering used. Secondly, any algorithm using min-dom/wdeg
encounters a maximum refutation size that is a factor of 5 smaller than the maximum

6 Table 1 shows that for this combination of heuristics we found the lowest percentage of optimal
refutations, so the true runtime distribution can only be even more obviously non-heavy-tailed.
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Fig. 5. Probability distribution function for the actual refutation sizes obtained with various search
algorithms, grouped by value ordering

encountered by algorithms using the other variable ordering heuristics. Thirdly, improv-
ing the value ordering heuristic from max-conflicts or random to min-conflicts results
in a decrease in the probability of each non-trivial7 refutation size occurring.

However, it is interesting to see in Figure 5 that any algorithm using min-dom/wdeg,
while not encountering extremely large refutations, tends to have a higher probability of
encountering all other sized non-trivial refutations, i.e. over the range of refutation sizes
it encounters, it does worse than any other variable ordering for all value orderings.

Therefore, to summarise, the combination of the factors outlined above seems to
eliminate heavy tails from the QWH-10 problems we have studied, despite the fact that
neither min-conflicts nor min-dom/wdeg alone seems to be capable of doing that. This
is a somewhat more complex scenario that one might have initially envisaged.

7 Obviously, this implies an increase in the probability of the occurence of trivial mistakes, i.e.
those that can be refuted by propagation alone.
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Finally, the inherent heavy-tailedness that we observe suggests that while recovering
from failure is important (which is typically the focus of research on variable orderings),
we should also focus considerable attention on the interrelationship between variable
selection and value selection in order to mitigate heavy-tailed runtime distributions by
failing less.

6 Conclusions

Much progress has been made on understanding problem hardness, typical-case com-
plexity and the behaviour of backtrack search. The heavy-tailed phenomenon that char-
acterises the runtime distributions of backtrack search procedures has received consid-
erable attention. We have shown that a good choice of variable and value orderings can
have a dramatic impact on the runtime distribution. A good combination can eliminate
heavy-tailed behaviour from certain classes of problems, while a poor choice not only
ensures that such behaviour is observed, but also that the nature of the insoluble subtrees
encountered guarantees that this is the case.

We believe our work provides motivation for more focused research on the inter-
play between variable and value selection during search. We also believe that there are
many directions that one can follow with respect to the utility of empirically studying
optimal refutations of insoluble subtrees in relation to runtime distributions. We intend
to explore these opportunities in more detail as part of our future work.
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Abstract. Most CSP algorithms are based on refinements and exten-
sions of backtracking, and employ one of two simple “branching schemes”:
2-way branching or d-way branching, for domain size d. The schemes are
not equivalent, but little is known about their relative power. Here we
compare them in terms of how efficiently they can refute an unsatisfi-
able instance with optimal branching choices, by studying two variants of
the resolution proof system, denoted C-RES and NG-RES , which model
the reasoning of CSP algorithms. The tree-like restrictions, tree-C-RES
and tree-NG-RES , exactly capture the power of backtracking with 2-way
branching and d-way branching, respectively. We give a family instances
which require exponential sized search trees for backtracking with d-way
branching, but have size O(d2n) search trees for backtracking with 2-
way branching. We also give a natural branching strategy with which
backtracking with 2-way branching finds refutations of these instances
in time O(d2n2). The unrestricted variants of C-RES and NG-RES can
simulate the reasoning of algorithms which incorporate learning and
k-consistency enforcement. We show exponential separations between
C-RES and NG-RES , as well as between the tree-like and unrestricted
versions of each system. All separations given are nearly optimal.

1 Introduction

Most complete algorithms for solving finite-domain constraint satisfaction prob-
lems (CSPs) are based on backtracking, usually refined with various propagation
schemes and sometimes extended with no-good learning. These algorithms are
based on one of two “branching schemes”. Most CSP papers study algorithms
using d-way branching, in which an instance I is solved as follows. Select a
variable x with domain D(x) = {1, 2, . . . , d}. For each a ∈ D(x), we restrict I
by setting x = a, and recursively try to solve the restricted instance. I has no
solution if and only if none of the d restricted versions do. In 2-way branching,
we select variable x and a value a ∈ D(x), and make two recursive calls. The
first is with the restriction x = a; the second with the value a removed from the
domain of x. I has no solution if neither recursive call finds a solution.

It is easy to check that any strategy for d-way branching can be simulated by
a 2-way branching strategy with no significant loss of efficiency. But does the con-
verse hold, or is d-way branching strictly more powerful than 2-way branching?
Many practitioners believe that 2-way branching is more powerful, and several

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 343–357, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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commercial solvers support use of this scheme, but little is known about how
much more power might be available. It was shown in [11] that 2-way branching
with learning is strictly more powerful than d-way branching with learning. In
particular, a family of instances MPHn was given, having the following property:
Any d-way branching algorithm, even with optimal variable ordering and optimal
learning strategy, cannot solve MPHn in less than nΩ(log n) time, but there is a
2-way branching algorithm, with fairly simple branching and learning strategies,
that solves MPHn in time O(n3). This leaves open the question of the rela-
tive power of the branching schemes without learning, and also the question of
whether a true exponential separation can be obtained in the case with learning.

Here, we answer the first question by giving instances which require expo-
nential size search trees for backtracking with d-way branching, but are solved
in polynomial time by backtracking with 2-way branching. We take a significant
step toward answering the second, by giving instances establish an exponen-
tial separation between two proof systems which can simulate the algorithms of
interest. However, it is an open question whether the classes of algorithms in
question are as powerful as the proof systems. The analogous question in the
context of SAT is whether or not conflict-directed clause learning is as powerful
as unrestricted resolution, and is also open [2]. We also do not give an efficient
strategy for finding the short 2-way branching proofs, although we believe there
is one. Figure 1 summarizes our results on the proof systems.

���������������������

simulates

�
exponentially more powerful

	

exponentially
more powerful

	

exponentially
more powerful

C-RES

tree-like C-RES
(2-way backtracking)

NG-RES

tree-like NG-RES
(d-way backtracking)

�
exponentially more powerful

Fig. 1. Relative Efficiency of NG-RES , C-RES and their tree-like variants

A few experimental empirical studies on 2-way and d-way branching strate-
gies have been reported. Park [12] showed that in most cases, with “standard”
variable and value ordering heuristics, 2-way branching ends up simulating d-
way branching. To see why, consider pure 2-way backtracking with branching
based on “smallest domain first”. Once a variable x is branched on, the follow-
ing branches will also be on x. This simple reasoning does not directly generalize
to more interesting cases, but does give some intuition. Smith and Sturdy [13]
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investigated the effect of changing the value ordering in 2-way branching, com-
paring performance to d-way branching. Their finding was that 2-way branching,
even with the worst value ordering, is not worse than d-way branching. These
studies, combined with our results, suggest that designers of heuristics should
consider the properties needed to take advantage of the extra power available
with 2-way branching.

Formally, we study only unsatisfiable instances, because an optimal strategy
will solve satisfiable instances trivially. However, it would be wrong to think the
results say nothing about satisfiable instances. Any polytime branching strategy
will make bad choices, after which unsatisfiability of a restricted instance must
be proven. Indeed, a reasonable backtracking algorithm can take a non-trivial
amount of time only in this way.

2 Preliminaries

Constraint Satisfaction Problems. A CSP instance I is a triple 〈X,D, Γ 〉
where X is a finite set of variables, D(x) is the domain of a variable x ∈ X ,
and Γ is a set of nogoods. A literal is an expression of the form x = a, where
x ∈ X and a ∈ D(x), and a nogood is a set of literals with distinct variables. We
write nogoods as η(x1 = a1, x2 = a2, · · · , xt = at). A (partial) assignment α for
I is a (partial) function from variables to domain values. Assignment α satisfies
a nogood N iff for some literal (x = a) ∈ N , α(x) is defined and α(x) �= a. A
(total) assignment α satisfies I if there is no nogood N ∈ Γ such that for each
(x = a) ∈ N , α(x) = a. We denote the set of variables occurring in a nogood N ,
set of nogoods Γ , or instance I, by vars(N), vars(Γ ) and vars(I), respectively.
We usually assume that all variables of an instance have the same domain, which
is the set [d] = {1, . . . d}.

Our choice to describe the constraints as a set of nogoods, rather than the
usual scope–relation pairs, is purely for convenience. The size of this set as an
encoding of a constraint is not relevant to our results, and we could as well assume
that the encoding of each constraint is of zero size, with nogoods generated
explicitly only as needed.

Propositional Resolution (RES). The resolution rule allows us to derive the
clause A ∨ B from two clauses x ∨ A and x ∨ B. We will usually write clauses
parenthesized and with ∨’s omitted, for example writing (a b c) rather than
a∨ b∨ c. A resolution derivation of clause C from CNF formula φ is a sequence
of clauses C1, C2, · · · , Cm in which each Ci is either a clause of φ or is derived by
the resolution rule from some Cj and Ck with j, k < i, and Cm = C. A resolution
derivation of the empty clause from φ is called a resolution refutation of φ. A
CNF formula φ is unsatisfiable iff it has a resolution refutation.

Nogood Resolution (NG-RES ). If the domain of variable x is {1, 2, · · · , d},
the nogood resolution rule allows one to infer a nogood from a set of nogoods by
resolving on x:
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η(x = 1, N1)
η(x = 2, N2)

...
η(x = d, Nd)

η(N1, N2, . . .Nd)
x ∈ {1, . . . , d}

A nogood resolution derivation of a nogood N from a CSP instance Γ is a
sequence of nogoods N1, N2, · · · , Nm in which each nogood Ni is either in Γ or is
derived from a set of previous nogoods in the sequence by the nogood resolution
rule, and Nm = N . A nogood resolution refutation of I is a nogood resolution
derivation of the empty nogood, �, from Γ . NG-RES is a sound and complete
refutation system, first proposed in [1].

Constraint Resolution (C-RES). Let I = 〈D, Γ 〉 be a CSP instance. We
encode I as a CNF formula, CNF(I), as follows. For each variable x ∈ vars(I)
and each value a ∈ D(x), we introduce a propositional variable x :a asserting that
x takes value a when x :a is true. We have a set of domain clauses, ensuring that
every variable in I is given a value, and a set of unique value clauses ensuring no
variable takes multiple values. For each nogood N ∈ Γ , CNF(I) has a constraint
clause which rules assignment forbidden by N . The CNF encoding of I is:

CNF(I) = domainCls ∪ uniqueValueCls ∪ constraintCls

where domainCls = {(x :a1 · · · x :ad) : x ∈ vars(I),D(x) = {a1, · · · , ad}}
uniqueValueCls = {(x :a x :c) : x ∈ vars(I), a, c ∈ D(x), a �= c}

constraintCls = {(x1 :a1 · · · xk :ak) : η(x1 = a1, · · · , xk = ak) ∈ Γ}.

There is a one-to-one correspondence between solutions of I and satisfying truth
assignments for CNF(I). A constraint resolution (C-RES ) refutation of a CSP
instance I is a RES refutation of CNF(I), and clearly I is unsatisfiable iff it
has a C-RES refutation.

Derivations, Graphs and Tree-Like Proofs. For T one of the refutation
systems defined above, and π a derivation in T (T -derivation), we define the
graph of π to be the directed acyclic graph (DAG) Gπ in which vertices are
nogoods (or clauses, as appropriate) of π and there is an edge from vertex v
to vertex u if v is a premise for deriving u in π. Derivation π is tree-like if
every vertex in Gπ has out-degree 0 or 1, or equivalently, every derived nogood
or clause is used at most once as a premise to derive another. We denote the
restriction of T to tree-like derivations by tree-T . For example, a tree-C-RES
refutation of I is a tree-like resolution refutation of CNF(I).

Proof Complexity. Let T be one of the proof systems defined above, and π
be a T -derivation. The size of π, |π|, is the number of clauses or nogoods in π,
as appropriate to T . The width of a clause or nogood C, w(C), is the number
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of literals appearing in C and the width of a derivation π, w(π), is the width of
the widest clause or nogood in π. The T -complexity of formula or CSP instance
φ, denoted T (φ), is the size of its smallest T -refutation. tree-T(φ) is the size of
the smallest tree-like refutation.

We say that a proof system A p-simulates a proof system B if there is a
function that maps any B refutation of a CSP instance I to some A refutation of
I with at most polynomial blowup in size. We say that A efficiently simulates B if
the degree of the polynomial in the p-simulation is small. There is an exponential
separation of system B from system A if there is an infinite set of instances
{I1, I2, · · ·} such that the smallest B refutation of In is of size exponential in
n, but the smallest A refutation of In is of size polynomial in n. If A efficiently
simulates B and there is an exponential separation of B from A, then A is
exponentially more powerful than B . For example, it is known that unrestricted
resolution is exponentially more powerful than tree-like resolution [4, 3].

Refutations and Algorithms. It is straightforward to show that the size of
minimal refutations in tree-RES , tree-NG-RES , and tree-C-RES are the same
as the size of minimal search trees for backtracking for SAT (DPLL), CSP back-
tracking with d-way branching, and CSP backtracking with 2-way branching,
respectively. This remains true when techniques such as unit propagation, for-
ward checking, and conflict-directed backjumping are employed [1, 10, 11].

3 Results

3.1 Separating Instances for tree-NG-RES

Our first result is an exponential separation between tree-NG-RES and NG-RES .
This involves exhibiting instances which require large tree-NG-RES refutations,
but have short NG-RES refutations. The same instances we use for this also have
short tree-C-RES refutations, and thus also provide the exponential separation
between tree-NG-RES and tree-C-RES . The instances are based on directed
acyclic graphs, generalizing the implication graph formulas used in [3] to provide
a near-optimal separation of RES and tree-RES .

Definition 1 (Implication Graph Contradictions (IMPG,S,T,d)). Call a DAG in
which every vertex has in-degree 2 or 0 a circuit. Let G = (V, E) be a circuit
with vertices {v1, . . . , vn}, d ≥ 3 be an integer, S the set of sources of G, and T
the sets targets (sinks) of G. We associate to each vertex vi ∈ V a variable xi.
The implication graph contradiction of G, IMPG,S,T,d, is the CSP instance with
variables x1, · · · , xn, having domain [d], and the following nogoods:

Source axioms: η(xi = 1) for every vi ∈ S
Target axioms: η(xi = a) for every vi ∈ T , and for all a ∈ [d]\{1}
Pebbling axioms: η(xi = a, xj = b, xk = 1) for every vk with predecessors

vi and vj, and for all a, b ∈ [d]\{1}



348 J. Hwang and D.G. Mitchell

IMPG,S,T,d expresses the following contradiction: Each vertex of G is labeled
with a number in [d]. Sources are not labeled 1, and if neither predecessor of an
internal vertex v is labeled 1 then v is not labeled 1, but targets are labeled 1.

Theorem 1. There exists an infinite family of n-vertex circuits G, with sources
S and targets T , such that for any integer d ≥ 3, tree-NG-RES(IMPG,S,T,d) =
(d− 1)Ω(n/ log n).

The proof is given in Section 4.

Theorem 2. For any n-vertex circuit G, with sources S and targets T , and any
integer d ≥ 3, NG-RES(IMPG,S,T,d) = O(d2n).

The following algorithm constructs such refutations.

Efficient 2-Way Branching for IMPGn,S,T,d. We may use the following 2-
way branching strategy: Pick a variable xi and a value a such that either setting
xi = a or xi �= a produces an instance which is found to be unsatisfiable by
enforcing arc-consistency, and branch first to the “good” side. (We can replace
arc consistency by other choices here, such as one-variable look-ahead plus for-
ward checking.) If no such a combination exists, use any other scheme desired.
We assume that singleton domains are always eliminated, including at startup.
After startup every variable associated with a source node in G will have domain
{2, · · · , d}, and every variable xt associated with a target node vt would have
been forced to take value 1, so the pebbling axioms for vt with predecessors vj

and vk in effect have become η(xj = a, xk = b), a, b ∈ {2, · · ·d}.
At any branching point, the chosen variable must be some xi associated with

a vertex vi where both the variables xj and xk associated with predecessors of
vi have domain {2, · · · , d}. Moreover, ai will be 1. Setting xi = 1 “falsifies” the
literal (x1 = 1), so the pebbling axioms for vi effectively become η(xj = a, xk =
b), a, b,∈ {2, · · · , d}. These are inconsistent, which can easily be established with
a search tree of size d2. For the branch with xi �= 1, the pebbling axioms for vi

are satisfied and 1 is removed from the domain of xi. Observe that there will
always be a variable satisfying the criteria of our branching scheme, and the
algorithm will effectively work its way from sources to a target, at each vertex
efficiently removing 1 from the domain of a variable, and obtaining a trivial
contradiction at the target. (The algorithm proceeds exactly as we would to
pebble the graph). The total time required is certainly O(d2n2). The instances
can be solved in about the same time by using repeated singleton arc consistency.

Separation of tree-NG-RES from tree-C-RES . The implication graph
contradictions IMPG,S,T,d have polynomial sized tree-C-RES refutations. Hence,
they also separate tree-NG-RES from tree-C-RES .

Proposition 1. For any circuit G with n vertices, tree-C-RES(IMPG,S,T,d) =
O(d2n).

The refutations can be extracted from the algorithm above.
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3.2 Separation of tree-C-RES from C-RES

Theorem 3. There is an infinite family of instances {In} such that C-RES(In) =
O(n), and tree-C-RES(In) = 2Ω(n/ log n).

Proof. A family of CNF formulas {φn} such that |φn| = O(n),RES (φn) = O(n)
and tree-RES(φn) = 2Ω(n/ log n) is given in [3]. Let In = 〈{0, 1}, Γn〉 be the trans-
formation of φn to CSP, as follows. The variables of I n are just the variables
in φn. For each clause C in φn, there is a nogood η(α) in Γn if and only if α is a
minimal size truth assignment that makes C false. It is not hard to show that,
if I is the transformation of φ as just described, then RES(φ) ≤ C-RES (I) ≤
3 · RES(φ), and tree-RES(φ) ≤ tree-C-RES(I) ≤ 3 · tree-RES(φ) [10, 8]. The
result follows.

3.3 Separation of NG-RES from C-RES

The family of CSP instances MGT ′
n that separates NG-RES from C-RES is

based on the unsatisfiable CNF formula GTn introduced by [9]. For each n ∈ N,
GTn encodes the negation of the fact that every loop-less transitive directed
graph with n vertices and with no 2-cycles must have a source. The contradic-
tory statement can be stated as a CNF formula containing the following clauses:

(1) xj,j j ∈ [n]
(2) xi,j ∧ xj,k → xi,k i, j, k ∈ [n], i �= j �= k
(3) xi,j → xj,i i, j ∈ [n], i �= j
(4)

∨
i∈[n]

xi,j j ∈ [n]

where xi,j takes value 1 if and only if there is an edge from i to j. The first three
sets of clauses ensure that the graph is loop-less, transitive, and free of 2-cycles,
respectively. The clauses in (4) assure that for each vertex j, there exists some
vertex i such that there is an edge from i to j, i.e., there is no source. There are
O(n3)-size RES refutations of GTn[14].

Bonet and Galesi [5] gave a modified version of GTn, called MGTn. For each
j ∈ [n], they introduce n + 1 new variables y0,j , . . . , yn,j and replace the set of
clauses (4) by:

(4∗) y0,j ∧
∧

i∈[n]

(yi−1,j ∨ xi,j ∨ yi,j) ∧ yn,j j ∈ [n]

The total number of variables is still O(n2) but MGTn has constant width
clauses. It is easy to see that we can derive the clauses in (4) from those in
(4*) by resolving on the y variables and this takes O(n2) steps. Then, by apply-
ing the O(n3)-size refutation of GTn, we obtain an O(n3)-size RES refutation
of MGTn.

Our instances, MGT ′
n, have the same set of variables as MGTn but the do-

main for each variable is D = {1, 2, 3, 4}. If α is an assignment for MGT ′
n, then
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α(xi,j) =
{

1 or 2 means there exists an edge from i to j
3 or 4 means there is no edge from i to j.

So, every total assignment for the variables in MGT ′
n corresponds to a di-

rected graph with n vertices. To encode the contradictory statement, MGT ′
n

consists of the following nogoods:

(1′) η(xj,j = 1), η(xj,j = 2) j ∈ [n]
(2′) η(xi,j = a, xj,k = b, xi,k = c) i, j, k ∈ [n], i �= j �= k,

a, b ∈ {1, 2}, c ∈ {3, 4}
(3′) η(xi,j = a, xj,i = b) i, j ∈ [n], i �= j, a, b ∈ {1, 2}
(4′) for each i ∈ [n],

η(y0,j = 1), η(y0,j = 2)
η(yi−1,j = c, xi,j = a, yi,j = b) j ∈ [n], a, b ∈ {1, 2}, c ∈ {3, 4}
η(yn,j = 3), η(yn,j = 4)

Theorem 4. Any NG-RES refutation of MGT ′
n must have size 2Ω(n).

The proof of this is given in Section 5.

Theorem 5. C-RES(MGT ′
n) = O(n3).

Proof. Derive the clauses (xi,j :a xj,k :b xi,k :1 xi,k :2), i, j, k ∈ [n], i �= j �=
k, a, b ∈ {1, 2}, using the CNF encoding of (2’) and the domain clauses of the x
variables. Define

A(i, j, k) def=
∧

a,b∈{1,2}
(xi,j :a xj,k :b xi,k :1 xi,k :2).

Now, derive the clauses

Pm(j) def=
∨

i∈[m]
i	=j

X(i, j)

where
X(i, j) def= (xi,j :1 xi,j :2)

by resolving clauses in the CNF encoding of (4′) together with the domain clauses
of the y and x variables, and unit clauses from (1’). Define B(m, j) as

B(m, j) def=
∧

a,b∈{1,2}
(xm,j :a xj,m :b)

which is just the clauses in the CNF encoding of (3′). Now, for each m < n
and j ≤ m, we can derive Pm(j) from Pm+1(j), A(i, m + 1, j), and B(m + 1, j).
Once we get P2(1) and P2(2), the empty clause can be derived in six steps. The
C-RES derivation of Pm(j) is of size O(n). Therefore, we need O(n3) steps in
total to derive the empty clause.
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3.4 Separation Upper Bounds

Having provided some exponential separations between systems, it seems natural
to ask how big the separations can be. For example, if we know that the smallest
NG-RES refutation of a CSP instance I is of size S, then what is the upper limit
for the size of the smallest tree-NG-RES refutation of I in terms of S? Here, for
each of the separations we have provided, we give an upper bound on the best
possible separation which might be obtained. These are only slightly larger than
the lower bounds we give, so those results are nearly optimal.

Theorem 6. For any n-variable CSP instance I with domain size d ≥ 2,

1. tree-NG-RES(I) = dO( d2S log log S
log S ), where S = NG-RES(I);

2. tree-C-RES(I) = 2O(S log log S/ log S), where S = C-RES(I),
3. tree-NG-RES(I) = dO(nd3S log log S/ log S), where S = tree-C-RES(I).
4. NG-RES(I) = 2O(S log log S/ log S), where S = C-RES(I),

Proof. In [3] it is shown that for any unsatisfiable CNF formula φ, if S = RES (φ),
then tree-RES(φ) = 2O(S log log S/ log S), from which 2 follows easily. 1 can be
proven by adapting the technique from [3] to NG-RES . 3 is obtained by using
1 and a direct simulation of tree-C-RES by NG-RES . 4 follows from 2 and the
fact that NG-RES efficiently simulates tree-C-RES .

4 Lower Bounds for tree-NG-RES (IMPG,S,T,d)

This section comprises the proof of Theorem 1. The tree-NG-RES complexity of
IMPG,S,T,d depends on the pebbling number of G. Roughly speaking, if G has
large pebbling number, tree-NG-RES refutations of IMPG,S,T,d must be long.

Definition 2. The pebbling number of T on a DAG G = (V, E) from S, de-
noted PG(S, T ), where S, T ⊆ V , is the minimal number of pebbles needed to
pebble some vertex in T by following the rules below.

1. A pebble can be placed on a vertex in S.
2. A pebble can be removed from any vertex.
3. If a vertex is not in S, then it can only be pebbled if all its immediate prede-

cessors have a pebble on them.

Lemma 1 ([3]). Let G = (V, E) be a DAG. For any v ∈ V and any sets
S, T ⊆ V , PG(S, T ) ≤ max{PG(S, T ∪ {v}), PG(S ∪ {v}, T ) + 1}.

Proof. To pebble T from S, we can first pebble T∪{v} from S with PG(S, T∪{v})
pebbles. If some vertex in T is pebbled, then we are done. Otherwise, only v is
pebbled. Leave the pebble on v and try to pebble T from S ∪ {v}. This requires
PG(S ∪ {v}, T ) + 1 pebbles.
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Note that for a DAG G with n vertices, PG(S, T ) = O(n) since we can always
use n pebbles and thus do not need to remove pebbles from vertices. What we are
interested is a lower bound on the number of pebbles needed. A family of DAGs
Gn with n vertices, each of in-degree 2 or 0, for which PGn(S, T ) = Ω(n/ log n)
where S and T are the sets of sources and targets in Gn, was given in [7].

The implication graph instance based on Gn is hard for tree-NG-RES . In
particular, every tree-NG-RES refutation of IMPGn,S,T,d must be of size (d −
1)Ω(n/ log n). We show this using a modified version of the game from [3], as
follows. Let I = 〈[d], Γ 〉 be an unsatisfiable CSP instance. The game involves
two players: Prover and Delayer. In each round, Prover picks a variable from
vars(Γ ). Then, Delayer can choose 1 or *. If 1 is chosen, the variable is set
to 1. Otherwise, Prover can pick a value from {2, · · · , d} and assign it to the
variable. Delayer scores one point if he chooses *. The game ends when the
current assignment falsifies at least one of the nogoods in Γ .

Here is a rough idea of the proof. We first show that any tree-NG-RES
refutation of IMPG,S,T,d is of size at least exponential in the number of points
Delayer can score. Then, we prove that there is a good strategy for Delayer to
win at least Ω(PG(S, T )) points. So, every tree-NG-RES refutation of IMPG,S,T,d

must be of size exponential to Ω(PG(S, T )). We call the above Delayer’s strategy
superstrategy.

Lemma 2. For I an unsatisfiable CSP instance with domain size d, if I has a
tree-NG-RES refutation of size S, then Prover has a strategy where Delayer can
win at most 1logd−1 S2 points.

Proof. Suppose I has a tree-NG-RES refutation π of size S. We will give a
strategy which allows Prover to bound the number of points Delayer can win
and show that as long as Prover follows the strategy, the following invariant will
be maintained after each round: If p is the current points Delayer has scored,
then there is a nogood N in π such that N is falsified by the current partial
assignment and the sub-tree rooted at N in Gπ is of size at most S/(d− 1)p.

At the beginning, Delayer has no points and the only nogood that is falsified
is the empty nogood. So, the invariant holds. Consider the i-th round. Let pi−1
be the number of points Delayer has scored after the previous round and Ni−1 be
the nogood satisfying the invariant at the previous round. If Ni−1 is a leaf in Gπ ,
then Ni−1 is a nogood in Γ that is falsified by the current partial assignment and
hence the game ends. Otherwise, Prover picks the variable x which is resolved
on to derive Ni−1 from nogoods N1, N2, · · · , Nd in π. W.L.O.G., suppose (x =
1) ∈ N1, (x = 2) ∈ N2, and so on. If Delayer assigns 1 to x, then N1 is falsified
and it becomes the new nogood for the invariant. In this case, Delayer does
not score any points and the sub-tree rooted at N1 is obviously smaller than
the one rooted at Ni−1. Thus, the invariant holds. If the Delayer chooses *, then
Prover assigns x the value j ∈ {2, · · · , d} which will falsify the nogood Nj , among
N2, · · · , Nd, with the smallest sub-tree. The sub-tree rooted at Nj is of size at
most 1/(d − 1)pi−1+1, and the number of points Delayer has scored after this
round is pi−1 + 1. Therefore, the invariant is maintained.
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When the game halts, the size of the sub-tree is 1. If Delayer scores p points at
the end of the game, then 1 ≤ S/(d−1)p. This implies p ≤ logd−1 S ≤ 1logd−1 S2.
So, if Prover follows the above strategy, Delayer wins at most 1logd−1 S2 points.

Corollary 1. For unsatisfiable CSP instance I with domain size d, if Delayer
has a strategy which always scores r, then tree-NG-RES(I) ≥ (d− 1)r−1.

Proof. Suppose the Delayer has a strategy which always scores r points on I.
Toward a contradiction, suppose tree-NG-RES(I) < (d−1)r−1. Then, by Lemma
2, the Prover has a strategy where the Delayer can win at most 1logd−1(d −
1)r−12 = r − 1 < r points. This contradicts that the Delayer can always scores
r points.

The superstrategy for Delayer is simple. Before each game, Delayer sets S′ =
S and T ′ = T . Then, in each round, if Prover asks about variable xi, i ∈ [n],
Delayer responds as follows:

1. If vi ∈ T ′, assign 1 to the variable.
2. If vi ∈ S′, respond *.
3. If vi �∈ S′ ∪ T ′ and PG(S′, T ′ ∪ {i}) = PG(S′, T ′), assign the variable 1 and

add vi to T ′.
4. If vi �∈ S′ ∪ T ′ and PG(S′, T ′ ∪ {i}) < PG(S′, T ′), respond * and add vi to

S′.

We will prove that PG(S′, T ′) can decrease by at most the number of points
Delayer scores and it is at most 3 at the end of the game. This implies the
superstrategy guarantees Delayer to earn at least PG(S, T )− 3 points.

Lemma 3. After each round, if Delayer has scored p points, then PG(S′, T ′) ≥
PG(S, T )− p.

Proof. Let S′
i and T ′

i be the sets S′ and T ′ respectively in Delayers superstrat-
egy after round i. Let pi be the number of points Delayer has scored after
round i. We show that the invariant PG(S′

i, T
′
i ) ≥ PG(S, T ) − pi will be main-

tained after each round. At the beginning, p0 = 0, S′
0 = S and T ′

0 = T . So,
PG(S′

0, T
′
0) = PG(S, T ) − 0 and the invariant holds. Now consider round i. For

case 1, 2, and 3, PG(S′
i−1, T

′
i−1) = PG(S′

i, T
′
i ) and pi ≥ pi−1. So, PG(S′

i, T
′
i ) =

PG(S′
i−1, T

′
i−1) ≥ PG(S, T )− pi−1 ≥ PG(S, T )− pi. For case 4, PG(S′

i−1, T
′
i−1 ∪

{v}) < PG(S′
i−1, T

′
i−1), pi = pi−1+1, S′

i = S′
i−1∪{v}, and T ′

i = T ′
i−1. By Lemma

1, we have PG(S′
i−1 ∪ {v}, T ′

i−1) ≥ PG(S′
i−1, T

′
i−1) − 1. Hence, PG(S′

i, T
′
i ) =

PG(S′
i−1∪{v}, T ′

i−1) ≥ PG(S′
i−1, T

′
i−1)−1 ≥ PG(S, T )−pi−1−1 = PG(S, T )−pi

Therefore, the invariant is maintained after each round.

Lemma 4. At the end of the game, PG(S′, T ′) ≤ 3.

Proof. When the game ends, some nogood N must be falsified since IMPG,S,T,d is
unsatisfiable. N cannot be a Source axiom for some source vi because vi ∈ S ⊆ S′

and thus it can only be assigned values from {2, · · · , d} through case 2. This
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assignment does not violate the Source axiom. Similarly, N cannot be a Target
axiom either. Hence, N must be a Pebbling axiom for some vertex vk with
predecessors vi and vj . To falsify N , xk must be set to 1 and both xi and xj

must be set to some values from {2, · · · , d}. So, vk ∈ T ′ (via case 1 or case 3)
and vi, vj ∈ S′ (via case 2 or case 4). Therefore, to pebble T ′ from S′, we can
first pebble vi and vj , then vk. This only requires three pebbles.

Corollary 2. Following the superstrategy described, Delayer can score at least
PG(S, T )− 3 points at the end of the game.

Proof. This is an immediate consequence of Lemmas 3 and 4.

Lemma 5. tree-NG-RES(IMPG,S,T,d) = (d− 1)Ω(PG(S,T )).

Proof. Corollary 2 shows that Delayer has a superstrategy to score at least
PG(S, T )− 3 points on IMPG,S,T,d. So, by Corollary 1, tree-NG-RES(IMPG,S,T,d)
≥ (d− 1)PG(S,T )−4. Hence, tree-NG-RES(IMPG,S,T,d) = (d− 1)Ω(PG(S,T )).

Proof. (Theorem 1) Let d ≥ 3 be an integer. Let {Gn} be an infinite fam-
ily of circuits such that |V (Gn)| = n and PGn(S, T ) = Ω(n/ log n) where S
and T are the sets of sources and targets in Gn [7]. By Lemma 5, we have
tree-NG-RES(IMPGn,S,T,d) = (d− 1)Ω(PG(S,T )) = (d− 1)Ω(n/ log n).

5 Lower Bounds for NG-RES(MGT ′
n)

This section comprises a proof of Theorem 4, which states that any NG-RES
refutation of MGT ′

n must have size 2Ω(n). The proof approach is inspired by
[6]. We show that if there is a short NG-RES refutation of MGT ′

n, then we can
construct a narrow RES refutation of MGTn, which contradicts the following
property of MGTn.

Theorem 7 ([5]). Any RES refutation of MGTn has width Ω(n).

Definition 3. A restriction for a CSP instance I = 〈D, Γ 〉 forbids some vari-
ables to take some domain values. A restriction ρ is written as a set of variables
with the forbidden values. For example, the restriction ρ = {x �= 2, x �= 3, y �= 1}
disallows x to take 2 and 3, and y to take 1.

Let ρ = {x1 �= a1, x2 �= a2, · · · , xk �= ak} be a restriction. Define N1ρ as the
result of applying ρ to a nogood N where

N1ρ def= (· · · (N1xa �=a1)1x2 �=a2) · · · 1xk �=ak
),

and for x a variable, a ∈ D(x),

N1x �=a
def=
{

1 if (x = a) ∈ N
N otherwise.

We define I1ρ def= 〈D1ρ, Γ 1ρ〉, where
Γ 1ρ = {N : N ∈ Γ and N1ρ �= 1}

vars(I1ρ) = vars(I)
D1ρ(x) = D(x) \ {a : (x �= a) ∈ ρ} for all x ∈ vars(I1ρ).
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For π = (N1, · · · , NS) an NG-RES derivation, define π1ρ to be (N11ρ, · · · , NS1ρ),
but with any Ni1ρ that is identical to 1 removed. Note that π1ρ is actually a
subsequence of π.

Lemma 6. If π is an NG-RES refutation of a CSP instance I and ρ is a re-
striction, then there is an NG-RES refutation of I1ρ of width at most w(π1ρ).

Proof. Let I = 〈D, Γ 〉 be a CSP instance and ρ = {x �= a} be a unit restriction.
Let π be an NG-RES refutation of I. Transform π1ρ inductively to an NG-RES
refutation π′ as follows. Consider a nogood Ni in π1ρ. (x=a) must not appear in
Ni since Ni1x �=a �= 1. If Ni ∈ Γ , then Ni ∈ Γ 1ρ. (Note that π1ρ is a subsequence
of π.) Otherwise, Ni must be derived, in π, by resolving some previous nogoods
Ni1 , · · · , Nid

on some variable v. If v �= x, then (x = a) does not appear in
any of Ni1 , · · · , Nid

because (x = a) /∈ Ni. So, Ni1 , · · · , Nid
must be in π1ρ and

they can be resolved to derive Ni in π1ρ. If v = x, then there is a nogood
Nia ∈ {Ni1 , · · · , Nid

} such that Nia = η(x = a, Na) and thus Nia1ρ is not in
π1ρ since Nia1ρ= 1. But, all the nogoods in {Ni1 , · · · , Nid

} \ {Nia} are in π1ρ.
So, we can resolve them on x, over the new domain of x, to get a sub-nogood
of Ni, which is sufficient to produce the desired refutation. The general case for
non-unit restriction follows easily.

Lemma 7. If there is an NG-RES refutation of MGT ′
n of size at most S, then

there is a RES refutation of MGTn of width at most w, for any w > log S.

Proof. Let π be an NG-RES refutation of MGT ′
n of size at most S. Let w >

log S. Define that a nogood is wide if its width is greater than w. Define a random
restriction ρ as follows. For each variable vi,j , v ∈ {x, y}, ρ randomly picks a
value a from {1, 2} and a value c from {3, 4}, and restricts that vi,j �= a and
vi,j �= c. So, for every variable, a domain value is prohibited by ρ with probability
1/2. We say that a restriction is bad if not all wide nogoods in π are set to 1 by
ρ. A wide nogood would be set to 1 by ρ if there is some literal, (x = a), in it
such that (x �= a) ∈ ρ. The probability that this is not the case is at most 1/2w.
Since there is at most S nogoods in π, the probability that ρ is bad is at most
S/2w which is less than 1 as we have w > log S. Therefore, there must exist at
least one good restriction which would set all wide nogoods in π to 1.

Apply a good restriction ρ to π. By Lemma 6, there is an NG-RES refutation
π′ of MGT ′

n1ρ of width at most w. After we apply ρ to MGT ′
n, some initial

nogoods disappear. For example, for each j, two of the nogoods in (1′) are set
to 1 by ρ and thus not included in MGT ′

n1ρ. Moreover, the domain size of each
variable becomes 2.

Therefore, the CNF encoding of MGT ′
n1ρ consists of the following clauses:

(1′′) (xj,j :aj,j) j ∈ [n]
(2′′) (xi,j :ai,j xj,k :aj,k xi,k :ci,k) i, j, k ∈ [n], i �= j �= k
(3′′) (xi,j :ai,j xj,i :aj,i) i, j ∈ [n], i �= j

(4′′) (y0,j :b0,j)∧
i∈[n]

( yi−1,j :ci−1,j xi,j :ai,j yi,j :bi,j ) j ∈ [n]

(yn,j :dn,j)
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Domain clauses: (xi,j :ai,j xi,j :ci,j)
(yi,j :bi,j yi,j :di,j)

where each of ai,j ’s and bi,j ’s is equal to either 1 or 2 and each of ci,j ’s and di,j ’s
is equal to either 3 or 4.

Rename the variables xi,j :ai,j , xi,j :ci,j , yi,j :bi,j , and yi,j :di,j as xi,j , xi,j ,
yi,j , and yi,j , respectively. Now the constraint clauses of CNF(MGT ′

n1ρ) are
exactly the clauses in MGTn and the NG-RES derivation steps
η(xi,j = ai,j , N1) η(yi,j = bi,j , N1)
η(xi,j = ci,j , N2)

η(N1, N2)
xi,j ∈ {ai,j , ci,j} and η(yi,j = di,j , N2)

η(N1, N2)
yi,j ∈ {bi,j , di,j}

in π′ can be transformed into the following RES derivation steps
(xi,j X1) (xi,j X2)

(X1 X2)
and

(yi,j X1) (yi,j X2)
(X1 X2) .

The resulting RES refutation has the same width as π′. Hence, there is a
RES refutation of MGTn of width at most w.

Proof. (of Theorem 4) Let π be an NG-RES refutation of MGT ′
n. Let S be the

size of π. Pick w = log S + ε, ε > 0. It follows from Lemma 7 that MGTn has a
RES refutation π′ of width at most log S + ε. We know that any RES refutation
of MGTn must have width Ω(n) (Theorem 7). Therefore, log S + ε ≥ Ω(n), and
thus S ≥ 2Ω(n). Hence, any NG-RES refutation of MGT ′

n must be of size 2Ω(n).

6 Conclusion and Future Work

We have shown that 2-way branching is much more powerful than d-way branch-
ing, for backtracking. It remains to establish an efficient strategy for 2-way
branching with learning for the instances separating NG-RES from C-RES , to
establish the analogous fact for the case with learning. The question of whether
nogood learning algorithms are as powerful as these proof systems is an impor-
tant open problem.

The algorithm suggested for efficiently solving the instances which separate
tree-NG-RES and tree-C-RES are simple enough that they certainly will be
faster, at least for large enough instances, than any d-way branching algorithm.
However, developing good heuristics which take advantage of the extra power of
2-way branching in practical algorithms is an important remaining task.
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Abstract. This paper reconsiders the problem of maintaining longest
paths in directed graphs, which is at the core of many scheduling ap-
plications. It presents bounded incremental algorithms for arc insertion
and deletion running in time O(‖δ‖+ |δ| log |δ|) on Cyclic<0 graphs (i.e.,
graphs whose cycles have strictly negative lengths), where |δ| and ‖δ‖ are
measures of the change in the input and output. For Cyclic≤0 graphs,
maintaining longest paths is unbounded under reasonable computational
models; when only arc insertions are allowed, it is shown that the problem
can be solved in O(‖δ‖ + |δ| log |δ|) time even in the presence of zero-
length cycles. The algorithms directly apply to shortest paths (by negat-
ing the lengths), leading to simpler algorithms than previously known
and reducing the worst-case complexity of an operation from Õ(n m) to
O(n + m) for Cyclic>0 graphs with n vertices and m arcs.

1 Introduction

Maintaining longest paths under arc insertion and deletion in cyclic graphs with
arbitrary arc lengths is an important aspect of many combinatorial optimiza-
tion applications. It arises in many scheduling algorithms, including heuristic
procedures [16], local search for jobshop scheduling [4,12], and iterative flatten-
ing in cumulative scheduling [2,11], constraint-based scheduling with precedence
graphs [9] (where only insertions must be considered, since deletions are typically
performed by backtracking), and temporal constraint networks [3]. In addition,
the maintenance of longest paths under arc insertion and deletion is naturally
transformed into incremental shortest paths (by negating the lengths), further
enlarging the class of applications.

Earlier work has considered the incremental maintenance of longest paths in
directed acyclic graphs (DAGs) [10], with subsequent improvements for the case
of arbitrary, i.e., both positive and negative, arc lengths [7]. Arbitrary lengths
are important in real-world scheduling applications, which often contain complex
distance constraints. The insertion and deletion algorithms run in time O(‖δ‖+
|δ| log |δ|) and O(‖δ‖) respectively, where |δ| and ‖δ‖ are measures of the changes
in the input and output (precise definitions appear in Section 2). However, some
significant scheduling applications (e.g., in the steel industry) also contain cyclic
graphs, which arise, for instance, when an activity must not start too long after
some of its predecessors. Consider a sequence of activities v1 → . . .→ vn linked
by precedence constraints and assume that activity vn must start at most d1 +

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 358–372, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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+ 20)

v2 v3 vn−1 vnv1

d1 d2
dn−1

− ( d  1 + d  2  + ... + d n−1 

Fig. 1. A Cyclic Graph from a Scheduling Problem

. . . + dn−1 + 20 minutes after the starting time of v1. This constraint generates
an arc vn → v1 with length −(d1 + . . . dn−1 + 20), producing a cycle of negative
length as shown in Figure 1. Therefore, it is particularly important to design
incremental longest paths algorithms for cyclic graphs with arbitrary lengths.
We consider only graphs whose cycles have nonpositive lengths, as otherwise
longest paths are not well-defined.

The main technical contribution of this paper is to propose bounded incre-
mental algorithms for maintaining longest paths in cyclic graphs where all cycles
have strictly negative lengths (Cyclic<0 graphs). Both the insertion and deletion
algorithms run in O(‖δ‖+|δ| log |δ|) time. When cycles of length zero are allowed,
the problem becomes unbounded under reasonable computational models. How-
ever, when only arc insertions are allowed, it can be solved by the same algorithm
in time O(‖δ‖ + |δ| log |δ|). The algorithms enjoy some very interesting proper-
ties. First, the insertion algorithm designed for DAGs also works in the presence
of cycles, although a new and slightly more complex proof of correctness is nec-
essary. Second, the deletion algorithm is novel (the original one strongly relies on
the acyclic property) and propagates the changes like in the insertion algorithm.
Third, unlike earlier bounded algorithms for shortest paths [14], which resem-
ble their offline counterparts, our algorithms for longest paths have no natural
offline counterpart and are organized around incremental concepts. Fourth, the
time complexity of the incremental algorithms remains O(‖δ‖+ |δ| log |δ|) when
moving from DAGs to cyclic graphs, although the best known upper bound for
the offline problem moves from O(|A|+ |V |) to O(|A||V |), where A is the set of
arcs and V is the set of vertices; in the presence of cycles nothing faster than the
Bellman-Ford algorithm is known. Finally, from a constraint satisfaction stand-
point, the key insight underlying the algorithms is to find an appropriate order
for applying the traditional propagation rules for precedence constraints so that
each vertex is updated at most once. The algorithms can also be generalized to
multiple insertions from the same vertex, using techniques presented in [10,8].

The results also have a significant corollary: the algorithms directly apply
to shortest paths (by negating arc lengths) for which they provide bounded
incremental algorithms for Cyclic>0 graphs with arbitrary arc lengths and for
arc insertions in Cyclic≥ 0 graphs. The resulting algorithms are significantly
simpler than those proposed in [14] and reduce the worst-case complexity of an
operation from from O(nm) to Õ(n + m) for Cyclic>0 graphs with n vertices
and m arcs, since they do not use the Bellman-Ford algorithm. As a result, they
apply directly to the incremental pruning of simple temporal networks [3].
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The rest of this paper is organized as follows. Section 2 reviews the bounded
incremental computational model and Section 3 gives the specifications of the
algorithms. Sections 4, 5, and 6 are the core of the paper: they discuss Cyclic<0
and Cyclic≤0 graphs, and the applications to shortest paths.

2 Bounded Incremental Computation

Informally, incremental algorithms can be modelled as updating the output of a
function subject to changes to its input. Let f be a function, x be an input, and
ε be a change in x. An incremental algorithm receives x, f(x), and ε as inputs
and transforms f(x) into f(x + ε), where x + ε denotes the result of applying
change ε on input x. For instance, x may be a directed graph with a source,
f may compute the length of the longest path from the source to each of the
vertices, and ε may be the insertion of an arc a → b or the removal of such
an arc. In general, it is useful in incremental algorithms to maintain auxiliary
information in order to compute f(x+ε). Provided that the auxiliary information
is polynomially related in size to the output, the problem can then be viewed as
computing an enhanced function f ′ incrementally. Hence we can safely ignore
this issue without loss of generality and work directly with f ′.

Various models for analyzing incremental algorithms have been proposed and
they include online algorithms, amortized analysis [15], and bounded incremental
computation (BIC) [14]. Many such models analyze the complexity of incremental
algorithms in terms of the input size (e.g., x+ε). The BIC model, on the contrary,
studies the behavior of incremental algorithms in terms of the changes in the
input and output. As a consequence, the BIC model has a finer granularity and
can differentiate algorithms that other models cannot.

Since this paper assumes the BIC model, let us describe its main concepts
more precisely. Let Δ(f, x, ε) denote the change between f(x) and f(x + ε) and
let δ(f, x, ε) denote ε + Δ(f, x, ε). For instance, in an incremental longest path
algorithm, Δ(f, x, ε) may represent the pairs (vertex,length) which have changed
(i.e., the affected pairs) when ε (e.g., an arc insertion) is performed. Since, in
general, the function f and the change ε are clear from the context, we use Δ
and δ for simplicity. The BIC model analyzes the performance of an algorithm in
terms of |δ| and its generalization ‖δ‖ which typically includes some (unaffected)
data that any reasonable algorithm would need to examine. For instance, in
longest path algorithms, ‖δ‖ denotes the sum of the number of affected vertices
and the number of arcs which are adjacent to affected vertices: It is reasonable
to assume that any algorithm would necessarily have to examine every vertex
which is adjacent to an affected vertex. For graphs with bounded degrees (e.g.,
jobshop scheduling), ‖δ‖ = O(|δ|) so this issue is moot.

An incremental algorithm is bounded if, for all input x and any allowed change
ε, its running time depends only on |δ| and ‖δ‖, not on the size of the input x+ε. It
is unbounded otherwise. Many incremental problems are unbounded (e.g., graph
reachability under the local persistent model [14]) and hence the existence of a
bounded algorithm is a strong guarantee for incremental performance.
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3 Specifications

Given a graph G = (V, A), with a source s ∈ V , the predecessors pred(G, v)
of a vertex v are given by {u|u → v ∈ A} and the successors succ(G, v) by
{u|v → u ∈ A}. For every arc u → v ∈ A, d(u, v) denotes the length of the arc
u → v and lp(G, v) the length of a longest path from s to v. The projection of
a graph G = (V, A) wrt its longest paths is the graph G|l = (V, A′) where

A′ = {x→ y ∈ A | lp(G, x) + d(x, y) = lp(G, y)},

i.e., the subgraph consisting of all arcs belonging to longest paths. This projec-
tion plays a fundamental role in deletion algorithms and is maintained (at no
asymptotic cost) by the algorithms. The incremental algorithms also maintain
the length l(v) of a longest path from s to v for each vertex.

Definition 1 (Specification of insertArc). Let G = (V, A) be a graph, x→
y /∈ A, and G′ = (V, A∪{x→ y}). Procedure insertArc(G, x→ y) must satisfy

Pre: ∀v ∈ V : l(v) = lp(G, v) ∧Gl = G|l.
Post: ∀v ∈ V : l(v) = lp(G′, v) ∧Gl = G′

|l.

Definition 2 (Specification of deleteArc). Let G = (V, A) be a graph, x→
y ∈ A, and G′ = (V, A\{x→ y}). Procedure deleteArc(G, x→ y) must satisfy

Pre: ∀v ∈ V : l(v) = lp(G, v) ∧Gl = G|l.
Post: ∀v ∈ V : l(v) = lp(G′, v) ∧Gl = G′

|l.

As mentioned earlier, the set of vertices that are affected by an insertion or
deletion is fundamental in bounded algorithms.

Definition 3 (Affected Vertices). Let G = (V, A), x → y /∈ A, and G′ =
(V, A ∪ {x → y}). The set of affected vertices by the insertion of x → y into G
is defined as AffI(G, x → y) = {v ∈ V | lp(G′, v) > lp(G, v)}. Let G = (V, A),
x→ y ∈ A, and G′ = (V, A\{x→ y}). The set of vertices affected by the deletion
of x→ y from G is defined as AffD(G, x→ y) = {v ∈ V | lp(G′, v) < lp(G, v)}.
The variation of a vertex measures by how much the length of its longest path
changes due to a modification of the graph.

Definition 4 (Variation of a Vertex). Let G = (V, A) be a graph and G′ =
(V, A′) be the graph obtained after inserting or deleting an arc. The variation of
a vertex v ∈ V from G to G′, is defined as Δ(v, G, G′) = lp(G′, v)− lp(G, v).

In the following, we abuse notation and use Δ(v) instead of Δ(v, G, G′) when G
and G′ are clear from the context.

Convention 1. When a vertex is not reachable from the source, the above con-
cepts are not well-defined. To simplify the exposition, we assume that the lengths
of longest paths are all in a range [0, H). This is natural in scheduling applica-
tions where the lengths represent times from the start of the project and H is the
scheduling horizon. With this assumption, we can add an arc of length −H from
the source to each vertex v ∈ V \{s}. Then, all vertices with a negative length
are unreachable. We will remove this assumption in Section 6.
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4 Cyclic<0 Graphs

Interestingly, the insertion algorithm for acyclic graphs [7] directly applies to
Cyclic<0 graphs; only the correctness proof and the deletion algorithm change.

4.1 Insertion

By definition, bounded incremental algorithms can only consider affected vertices
(and their neighbors). The insertion algorithms in [7,10] consider each affected
vertex only once and compute the new longest paths while discovering the set
of affected vertices. The critical issue is to determine an order of processing the
vertices which guarantees correctness. Offline algorithms typically use a topo-
logical ordering of the acyclic graph, but such an ordering cannot be used in
incremental algorithms since it evolves over time. When the lengths are strictly
positive, the lengths of the longest paths in the current graph conveniently pro-
vide a topological ordering [10]. When the lengths are unrestricted however, even
the lengths of longest paths are no longer a topological ordering. It is thus neces-
sary to find another ordering of the vertices which considers the affected vertices
exactly once and guarantees correctness.

The key observation behind the algorithm with unrestricted lengths [7] is the
fact that the variations of the affected vertices are monotonically non-increasing
along the longest paths. More precisely, if 〈v1, . . . , vk〉 is a longest path in G′,
the variations of the vertices satisfy Δ(v1) ≥ Δ(v2) ≥ . . . ≥ Δ(vk). Figure 2
shows the impact of adding the dashed arc to the DAG. The affected vertices
are inside the ellipse and the changes to the l(v) values are shown. Observe that
the changes decrease monotonically along longest paths in G′. Indeed, the vari-
ation of a vertex is never larger than the maximum variation of its predecessors.
As a consequence, the algorithm considers the affected vertices in non-increasing
order of their variations. Let v be the vertex whose variation is maximal among
all unprocessed vertices. Even if v is not the smallest topologically, the paths
to v through its unprocessed predecessors can be ignored, because the variation
propagated along them is not larger than the variation of v. Of course, the algo-
rithm does not “know” the variations initially but discovers them, together with
the affected vertices, as it proceeds. More precisely, the algorithm maintains a
lower approximation α(v) to the variation of vertex v and is organized around a
priority queue which contains the affected vertices to be processed. The priority
queue is ordered by the approximations of the variations and must be imple-
mented using a Fibonacci heap [6] (or another priority queue that enables to

4

2 -1
1

10
-5

1

-2

2

6

3

-2

-3

4

-1

0

4 6 5

10

15

5
7

7
9

5
7

-1
2

1
4

4

Fig. 2. The impact of inserting the dashed arc to the DAG
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procedure insertArc(G, x → y)
1. Q = {};
2. G = G ∪ {x → y};
3. α(y) = l(x) + d(x, y)− l(y);
4. M = {y};
5. if α(y) > 0 then
6. insert(Q, 〈α(y), y〉);
7. while Q �= ∅ do
8. u = extractMax (Q);
9. l(u) = l(u) + α(u);
10. M = M ∪ {u};
11. forall w ∈ succ(G, u) do
12. αw = l(u) + d(u, w)− l(w);
13. if αw > 0 ∧ (w /∈ Q ∨ αw > α(w)) then
14. α(w) := αw;
15. updatePriority(Q, 〈α(w), w〉);
16. forall u ∈M do
17. Gl = Gl \ {p → u | p→ u ∈ Gl}; Gl = Gl \ {u → s | u → s ∈ Gl};
18. Gl = Gl ∪ {p → u | p ∈ pred(G,u) ∧ l(p) + d(p, u) = l(u)};
19. Gl = Gl ∪ {u → s | s ∈ succ(G, u) ∧ l(u) + d(u, s) = l(s)};

Fig. 3. An Incremental Algorithm for Arc Insertion

update a key in constant time), since the approximation of a vertex might be
refined several times after it is inserted into the queue.

The Algorithm. Figure 3 depicts the algorithm. It receives G = (V, A), the
function l for G, an arc x → y to be inserted in A and the length d(x, y)
of this arc. It updates the function l for the graph G′ = (V, A ∪ {x → y}).
Initially, it pushes y into the queue Q with priority equal to α(y) = Δ(y) =
l(x)+d(x, y)−l(y) and inserts y into the set of affected vertices M . The core of the
algorithm is lines 8-15 which are iterated until the queue is empty. Each iteration
extracts a vertex u with maximal priority from the queue and updates its longest
path l(u). At that stage, we will prove that α(u) = Δ(u) and hence l(u) has
reached its final value. Lines 11-15 consider the successors of u and update their
priorities if necessary. A priority is updated if the variation propagated along the
arc u → w is greater than the current priority. The variations of vertices from
M cannot be updated at this point, since their lengths have reached the final
values. The algorithm terminates with a linear scan of the affected vertices to
update G|l by removing arcs incident on affected vertices and adding back the
arcs that are incident and tight.

The Correctness Proof. The correctness proofs in [7,8] fail for Cyclic< 0
graphs because they both assume the existence of a topological order in G.
When G contains cycles, this assumption collapses. The key insight, captured in
Figure 4, is that G|l is a DAG, providing an appropriate ordering for the proof.
The figure shows that G|l, which varies over time, may contain different arcs of
a cycle but not all of them.
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Fig. 4. Part of a Cyclic Graph and its Projection Before and After the Insertion of the
Arc Incident to v1: Arcs on the Longest Paths are in Bold

Proposition 1. Let G(V, A) be a Cyclic<0 graph with a source s. Then G|l, the
projection of G wrt to its longest paths, is a DAG.

Proof. Assume that G|l contains a cycle of � arcs and let u0, u2, . . . , u�−1 = u0 be
its vertices and (ui, u(i+1)mod�) be its arcs. By the definition of G|l, we have that
for all 1 ≤ i ≤ � and j = (i+1)mod�, lp(ui)+d(ui, uj) = lp(uj) or, equivalently,
d(ui, uj) = lp(uj) − lp(ui). The length of the cycle is then

∑�
i=1 d(ui, uj) =∑�

i=1 lp(uj)− lp(ui), which is equal to 0 because the right-hand side telescopes.
This contradicts our assumption that G is Cyclic<0. ��

The slack of an arc links the longest path lengths of its two endpoints.

Definition 5 (Slack of an Arc). Let G(V, A) and x → y ∈ A. The slack of
arc x→ y, denoted by sl(G, x, y), is defined as

sl(G, x, y) = lp(G, y)− (lp(G, x) + d(x, y)).

Once again, we abuse notation and omit G when it is clear from the context.

Proposition 2. Let G(V, A), x → y /∈ A, G′(V, A ∪ {x→ y}) and v ∈ AffI(G,
x→ y) (v �= y). We have Δ(v) = maxp∈pred(G,v) (Δ(p)− sl(p, v)) .

Proof. By definition of longest paths, we have

lp(G′, v) = max
p∈pred(G′,v)

(lp(G′, p) + d(p, v))

lp(G, v) + Δ(v) = max
p∈pred(G,v)

(lp(G, p) + Δ(p) + d(p, v))

Δ(v) = max
p∈pred(G,v)

(Δ(p)− (lp(G, v)− (lp(G, p)) + d(p, v)))

Δ(v) = max
p∈pred(G,v)

(Δ(p) − sl(p, v)). ��

We now show that the variations decrease monotonically along longest paths,
giving an appropriate order to process the vertices.

Proposition 3 (Monotonicity). Let G(V, A), x→ y /∈ A, G′(V, A∪{x→ y}),
and v → w be an arc on a longest path in G′. Then Δ(v) ≥ Δ(w).

Proof. Since v → w is on a longest path in G′, we have lp(G′, w) = lp(G′, v) +
d(v, w). Since lp(G, w) ≥ lp(G, v) + d(v, w), it follows that

Δ(w) = lp(G′, w)− lp(G, w) ≤ lp(G′, v)− lp(G, v) = Δ(v). ��
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We also show that, after the insertion of an arc (x, y), for each affected ver-
tex v, there is a longest path from s to v that goes through y. The predicate
path(G, v, w) holds if there exists a path from v to w in G.

Proposition 4. Let G(V, A), x → y /∈ A, G′(V, A ∪ {x → y}), and v ∈
AffI(G, x→ y). Then, path(G′

|l, y, v) holds.

Proof. By Proposition 1, G′
|l is a DAG. Let v by topologically minimal in G′

|l such
that the lemma does not hold. By definition of AffI , Δ(v) > 0. By Proposition 3,
for any predecessor u of v in G′

|l, Δ(u) ≥ Δ(v). Hence, by definition of AffI ,
u ∈ AffI . Since v was a topologically minimal vertex that violates the lemma,
we can assume that there is a path p in G′

|l from y to u. But the arc (u, v) is in
G′

|l, so the path p ∪ (u, v) is a path in G′
|l from y to v, a contradiction. ��

We are now ready to prove the correctness of Procedure insertArc.

Theorem 1. Procedure insertArc is correct for Cyclic<0 graphs.

Proof. The proof relies on the observation that the algorithm partitions the
affected vertices into three sets P , Q and R

P = {v ∈ AffI | l(v) = lp(G′, v)}; (1)
Q = {v ∈ AffI | (v = y ∨ ∃v′ ∈ P : v′ → v) & v /∈ P}; (2)
R = {v ∈ AffI | ∃v′ ∈ Q : path(G′

|l, v
′, v) & v /∈ P ∪Q} (3)

as well as the following invariants in line 8 of the algorithm:

AffI = P ∪Q ∪R (4)
∀w ∈ Q \ {y} : α(w) = max

v∈pred(G,w)∩P
Δ(v)− sl(v, w) (5)

α(y) = lp(G, x) + d(x, y)− lp(G, y) (6)

Initially, P = ∅, Q = {y} and all the other affected vertices are in R, thereby
establishing Invariant 4. Invariants 5 and 6 trivially hold, since there can be no
cycle of positive length.

Assume that the invariants hold at iteration i and let us show that they
also hold at the beginning of iteration i + 1. We first show that α(u) = Δ(u) to
satisfy the definition of P . It is obvious for the first iteration which extracts y. For
subsequent iterations, by Proposition 2, Δ(u) = maxp∈pred(G,u) Δ(p) − sl(p, u)
and, by Invariant 5, α(u) = maxp∈pred(G,u)∩P Δ(p) − sl(p, u). Since α(u) =
maxq∈Q α(q), it suffices to show that

∀v ∈ Q ∪R : Δ(v) ≤ max
q∈Q

α(q) (7)

since it implies

α(u) ≥ max
p∈pred(G,u)∩(Q∪R)

Δ(p) ≥ max
p∈pred(G,u)∩(Q∪R)

Δ(p)− sl(p, u)
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and the result follows by the definitions of P , Q, and R. To show (7) consider
the vertex q∗ ∈ Q ∪R such that

Δ(q∗) = max
q∈Q∪R

Δ(q) (8)

and such that q∗ is topologically smallest in G′
|l among the vertices satisfying 8.

Such a vertex q∗ exists because G′
|l is a DAG (Proposition 1) and there is a path

in G′
|l from y to all affected vertices (Proposition 4).

Since, by definition of R, the longest paths to a vertex r ∈ R go through
vertices in Q, it follows, by Proposition 3, that q∗ ∈ Q. If q∗ has a predecessor
w in Q∪R, it follows that Δ(w) < Δ(q∗), since q∗ is topologically minimal and
Δ(q∗) is maximal. It follows that the arc w → q∗ cannot belong to a longest
path to q∗, since this would contradict Proposition 3. As a consequence, the
predecessors of q∗ on any longest path must be in P . We have that

lp(G′, q∗) = max
p∈pred(G′,q∗)∩P

lp(G′, p) + d(p, q∗)

lp(G, q∗) + Δ(q∗) = max
p∈pred(G,q∗)∩P

lp(G, p) + Δ(p) + d(p, q∗)

Δ(q∗) = max
p∈pred(G,q∗)∩P

Δ(p)− (lp(G, q∗)− (lp(G, p) + d(p, q∗))

Δ(q∗) = max
p∈pred(G,q∗)∩P

Δ(p)− sl(p, q∗) = α(q∗) ≤ max
q∈Q

α(q).

It remains to show that Invariant 5 is preserved by lines 11-15. Consider a vertex
w such that u→ w. The value α(w) becomes

max(α(w), l(u) − l(w) + d(u, w))
max(α(w), lp(G′, u)− lp(G, w) + d(u, w))

max(α(w), Δ(u) − (lp(G, w) − (lp(G, u) + d(u, w)))
max(α(w), Δ(u) − sl(u, w)) = max

p∈pred(G,w)∩P
Δ(p)− sl(p, u).

The definitions of Q and R are also preserved by these instructions. Finally, the
algorithm terminates, since the size of Q∪R strictly decreases at each iteration.
Indeed, a vertex in P cannot be inserted in the queue more than once, since l(u)
reaches its final value in line 9 and, in line 12, αw ≤ 0 for all w ∈ P . ��

Complexity. A vertex is inserted at most once into the queue and each arc
outgoing from a vertex in AffI is examined once. Hence the algorithm performs a
total of |δ| insertions, |δ| extractions, and at most ‖δ‖ updatePriority operations.
The total running time, using a Fibonacci heap [6], is O(‖δ‖ + |δ| log |δ|).

4.2 Arc Deletion

We now turn to arc deletion. The algorithm from [10] is not efficient on cyclic
graphs because it uses, as a subroutine, an offline longest-paths algorithm. For
DAGs it is efficient, because longest paths can be computed offline in linear
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function computeAffected(Gl , x → y)
1. Q = {y}; M = ∅;
2. while Q �= ∅ do
3. u = dequeue(Q); M = M ∪ {u};
4. forall v ∈ succ(Gl, u) do
5. Gl = Gl \ {u → v};
6. if pred(Gl, v) = ∅ then insert(Q, v);
7. return M;

Fig. 5. Function computeAffected

time. As in [10], the deletion algorithm first computes the set of affected vertices
by using G|l. Then, it recomputes the longest paths to the affected vertices by
processing them in decreasing order of the variations. Once again, the key insight
is that the variations are monotonically decreasing in G′

|l.

Computing Affected Vertices. Figure 5 shows how to compute the affected
vertices. The algorithm is taken from [10] and uses the projected graph Gl which
is maintained by the algorithms. It is specified as follows.

Definition 6 (Specification of computeAffected). Let G = (V, A) be an ar-
bitrary graph, x → y ∈ A, G′ = (V, A \ {x → y}), and lp(G′, y) < lp(G, y).
Procedure computeAffected(G, x→ y) satisfies the specification:

Pre: Gl = G|l. Post: Gl = G′
|l \ {v → w | v ∈ AffD}; Returns AffD.

Theorem 2. Procedure computeAffected is correct.

Proof. Similar to the proof in [10] since Gl is a DAG by Proposition 1. ��

The Deletion Algorithm. Figure 6 depicts the arc-deletion algorithm. If y is
affected (i.e., if it has no predecessor left in G|l), the algorithm computes the
affected vertices (line 5). Then it inserts all affected vertices into the queue (line
9) using, as priorities, lower approximations to their variations computed by
ignoring their affected predecessors (line 8). The core of the algorithm are lines
10-17 which process the affected vertices by decreasing order of their variations.
The vertex u with the largest approximation α(u) is selected in line 11 and its
new longest path is computed in line 12. We will prove that α(u) = Δ(u) in line
8. Lines 13-15 update the approximation and priority α(w) of each successor
w of u if necessary. Lines 18-22 recompute G′

|l by considering the predecessors
and successors of each affected vertex. Note that the variation Δ(v) and its
approximation α(v) of an affected vertex v are negative and thus a large variation
corresponds to a small change. Also, a vertex is never reinserted into the queue,
since its approximation is final when it is extracted from the queue.

The Correctness Proof. The proof also relies on the monotonicity of the
variations along the longest paths of G′, which may be counterintuitive at first.
Its proof is identical to the proof of Proposition 3.
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procedure deleteArc(G, x → y)
1. G = G \ {x → y};
2. if x → y ∈ Gl then
3. Gl = Gl \ {x → y};
4. if pred(Gl, y) = ∅ then
5. AffD = computeAffected(G, x → y);
6. Q = {};
7. forall v ∈ AffD do
8. α(v) = max{l(u) + d(u, v) | u ∈ pred(G,v) \ AffD} − lp(G,v);
9. insert(Q, 〈α(v), v〉);
10. while Q �= ∅ do
11. u = extractMax (Q);
12. l(u) = l(u) + α(u);
13. forall w ∈ succ(G, u) ∩ Q do
14. αw = l(u) + d(u, w)− l(w);
15. if (αw > α(w)) then
16. α(w) := αw;
17. updatePriority(Q, 〈α(w), w〉);
18. forall u ∈ AffD do
19. Gl = Gl \ {p → u | p → u ∈ Gl}; Gl = Gl \ {u → s | u → s ∈ Gl};
20. Gl = Gl ∪ {p → u | p ∈ pred(G,u) ∧ l(p) + d(p, u) = l(u)};
21. Gl = Gl ∪ {u → s | s ∈ succ(G, u) ∧ l(u) + d(u, s) = l(s)};

Fig. 6. The Arc-Deletion Algorithm for Cyclic<0 Graphs

Proposition 5 (Deletion Monotonicity). Let G(V, A), x→ y ∈ A, G′(V, A\
{x→ y}), and v → w be an arc on a longest path in G′. We have Δ(v) ≥ Δ(w).

Theorem 3. Procedure deleteArc is correct.

Proof. The proof relies on the following invariants

∀v ∈ V \Q : l(v) = lp(G′, v) (9)
∀q ∈ Q : α(q) = max

p∈pred(G′,q)\Q
l(p) + d(p, q)− l(q) (10)

in line 10 of the algorithm. The invariants hold initially since, by Theorem 2, Q
contains all the affected vertices. The rest of the proof shows that the invariants
hold at iteration i + 1 whenever they hold at iteration i. We first show that

∀v ∈ Q : Δ(v) ≤ max
q∈Q

α(q). (11)

Indeed, consider the vertex q∗ ∈ Q such that

Δ(q∗) = max
q∈Q

Δ(q) (12)

and such that q∗ is topologically smallest in G′
|l among the vertices satisfying

(12). Such a vertex q∗ exists because G′
|l is a DAG (Proposition 1). If q∗ has a

predecessor w in Q, Δ(w) < Δ(q∗), since q∗ is topologically minimal and Δ(q∗)
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is maximal. It follows that the arc w → q∗ cannot belong to a longest path
to q∗ in G′, since this would contradict Proposition 5. As a consequence, the
predecessors of q∗ on any longest path in G′ are all in P . It follows that

lp(G, q∗) + Δ(q∗) = max
p∈pred(G′,q∗)\Q

lp(G′, p) + d(p, q∗)

Δ(q∗) = max
p∈pred(G′,q∗)\Q

lp(G′, p) + d(p, q∗)− lp(G, q∗)

Δ(q∗) = max
p∈pred(G′,q∗)\Q

l(p) + d(p, q∗)− l(q∗) = α(q∗) ≤ max
q∈Q

α(q).

We now show that α(u) = Δ(u) in line 11, which restores Invariant 9 after line
12. First observe that Invariant 10 implies that

∀q ∈ Q : Δ(q) ≥ α(q). (13)

Now consider vertex u. If none of its predecessors in G′
l are in Q, the result

follows since, by Invariant 9,

lp(G′, u) = max
p∈pred(G′,u)\Q

lp(G′, p) + d(p, u) = max
p∈pred(G′,u)\Q

l(p) + d(p, u)

and thus α(u) = Δ(u) by definition of α(u) and Δ(u). If q → u ∈ G′ for
some q ∈ pred(G′, u) ∩ Q, the result follows from Δ(q) ≥ Δ(u) ≥ α(u) ≥
maxq∈Q α(q) ≥ Δ(q) by Proposition 5, (13), the definition of u, and (11).

Lines 13-17 restore Invariant 10. These instructions update (if necessary) the
priorities α(q) for each vertex q in Q since u is no longer in the queue. Finally,
|Q| decreases at each iteration, ensuring termination. The result then follows
from Invariant 9 and the fact that the queue is empty upon termination. ��

Complexity. The proof shows that a vertex is inserted at most once into the
queue and each arc outgoing from a vertex in AffD is examined once. Hence
the algorithm performs a total of |δ| insertions, |δ| extractions, and at most ‖δ‖
updatePriority operations. The total running time, using a Fibonacci heap [6]
is O(‖δ‖ + |δ| log |δ|), since the complexity of computeAffected is O(‖δ‖).

5 Cyclic≤0 Graphs

We now consider Cyclic≤0 graphs, which are particularly challenging for dele-
tions due to the presence of zero-length cycles. The difficulty in deletions is
illustrated in Figure 7. The figure shows a cycle of length zero, but there are two
arcs justifying the longest path to the cycle vertices. Every time such an arc is
deleted, the algorithm must make sure that there exists another supporting arc.
However, observe that there are no affected vertices until the last supporting
arc is deleted. In fact, the problem of maintaining longest paths in Cyclic≤0
graphs is unbounded under the locally-persistent and sparse-aliasing computa-
tional models [1,13]. The proof is a direct consequence of the unboundedness of
reachability or shortest paths in Cyclic≥0 graphs. Note that the algorithms for
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Fig. 7. The Difficulty in Deletion

Cyclic<0 graphs are locally persistent (since they only store information which
is local to a vertex such as its approximation) and sparse-aliasing (since they
only require constant space at each vertex).

Theorem 4. The problem of maintaining longest paths in Cyclic≤0 graphs is
unbounded under locally-persistent and sparse-aliasing computational models.

Although there are no bounded algorithms for maintaining longest paths in cyclic
graphs under arc insertions and deletions, it is interesting to study whether there
is a bounded algorithm for insertions only, since this is directly relevant for
constraint propagation in constraint programming. The proof of Theorem 1 fails
for Cyclic≤0 graphs, since G′

l is not necessarily a DAG due to cycles of length
0. However, interestingly, the insertion algorithm is still correct for Cyclic≤0
graphs. The proof of Theorem 1 can be generalized by choosing q∗ with respect
to a subgraph of G′

l. The idea is to keep only the “shortest” longest paths in G′
l,

i.e., those paths using as few arcs as possible. More precisely, denote by sp(G, v)
the shortest path from s to v in a graph G with a source s, where each arc
has a distance of 1. The projection of a graph G = (V, A) with respect to these
shortest paths, is defined as G|s = (V, {x→ y ∈ A | sp(G, x) + 1 = sp(G, y)}).
and is a DAG. The proof is similar to that of Proposition 1.

Proposition 6. Let G(V, A) be a Cyclic>0 graph with a source s. Then G|s,
the projection of G wrt its shortest paths, is a DAG.

Consider the graph G|l|s, i.e., the projection of G|l that only keeps “shortest”
longest paths. G|l|s is a DAG satisfying ∀v ∈ G : lp(G|l|s, v) = lp(G|l, v) because
G|l|s is a subgraph of G|l and all paths from the source to v in G|l have the same
length. The vertex q∗ in the proof can be chosen to be topologically minimal in
G|l|s, proving the correctness of the insertion algorithm for Cyclic≤0 graphs.

Theorem 5. Procedure insertArc is correct for Cyclic≤0 graphs.

6 Applications to Shortest Paths

The problem of maintaining shortest paths in cyclic graphs with arbitrary lengths
was studied in the BIC model by Ramalingam and Reps (R&R) [14] who pro-
posed bounded algorithms for graphs with no zero-length cycles. Their algo-
rithms use an adaptation of Dijkstra’s algorithm for shortest paths which does
not work with negative arcs. As a result, they use the reduction of Edmonds
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and Karp [5] to transform, in each insertion and deletion, arbitrary lengths into
nonnegative lengths by using a function f satisfying f(a) + d(a, b) − f(b) ≥ 0.
Their insertion and deletion algorithms run in O(|δ| ‖δ‖) and O(‖δ‖+ |δ| log |δ|)
time respectively. The difficulty in their insertion algorithm arises when they
insert an arc u → v to an unreachable vertex v, since there is no such function
f . As a consequence, they need to use a a three-stage approach which finds the
set U of vertices that were not reachable before, uses Bellman-Ford’s algorithm
on U to compute the shortest distances to v, and finally propagates the changes
with the function f that can be defined after step 2.

Since shortest paths can be transformed into longest paths by negating the
lengths, our algorithms also apply to shortest paths. They are simpler, manipu-
late arbitrary lengths directly, do not need the reduction of Edmonds and Karp,
and reduce the running time to O(‖δ‖ + |δ| log |δ|). The ability to manipulate
negative lengths allows the algorithms to avoid the three-step approach for in-
sertions, since they keep (negative) distances to unreachable vertices at no cost
(these distances are computed automatically during the deletion algorithm on
the affected vertices and never updated until a vertex becomes reachable again).
Interestingly and unlike the above shortest-path algorithms, our algorithms are
not dynamic counterparts to existing offline algorithms: they use variations as
their central concept which makes little sense in an offline setting. There is a
technicality that must be mentioned however. Our algorithms are bounded for
the problem extended with convention 1 but, without the convention, they are
not bounded when arcs are inserted or deleted between two unreachable vertices,
since the shortest paths in the original graph do not change and we are only al-
lowed constant time. Such pathological operations are inherently batch however
and are treated as such by R&R’s algorithms. In contrast, our algorithms are
truly incremental and their treatment in those cases speeds up the insertion that
makes these vertices reachable again. In particular, this guarantees a worst case
complexity of O(n log n + m) for each operation (where n = |V | and m = |A|)
instead of the O(nm) for R&R’s algorithms. Note that all the δ sets are the same
with or without the convention except for the pathological operations. Moreover,
by postponing these operations, our algorithms become bounded in an amortized
sense for these cases although, in practice, it is of little or no benefit.

Finally, in full generality, the algorithm should manipulate pairs 〈r(v), lr(v)〉
to encode Convention 1 when there is no a priori range on the lengths. The
value r(v) is a Boolean denoting whether vertex v is reachable from the source.
When r(v) holds, lr(v) simply represents the longest path lp(G, v). Otherwise,
lr(v) can be thought as representing the value H + lp(Gr, v), where Gr is the
graph G where an arc s → v with length −H is added between the source
and every unreachable vertex v and where H is simply one plus the difference
between the largest and the smallest values lp(G, v) for all reachable vertices v.
The propagation of the l(v) values, as well as the definition of variations, can be
generalized appropriately to work with these pairs.

Acknowledgments. Special thanks to Andrei Missine and the three reviewers for
their thorough debugging of the paper.
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Abstract. In this paper we show how Constraint Programming (CP) techniques 
can improve the efficiency and applicability of grid-based algorithms for 
optimising surface contact between complex solids. We use BiGGER [1] 
(Bimolecular complex Generation with Global Evaluation and Ranking) to 
illustrate the method as applied to modelling protein interactions, an important 
effort in current bioinformatics. BiGGER prunes the search space by maintaining 
bounds consistency on interval constraints that model the requirement for the 
shapes to be in contact but not overlapping, and by using a branch and bound 
approach to search the models with the best fit. This CP approach gives BiGGER 
some efficiency advantages over popular protein docking methods that use 
Fourier transforms to match protein structures. We also present an efficient 
algorithm to actively impose a broad range of constraints or combinations of 
constraints on distances between points of the two structures to dock, which 
allows the use of experimental data to increase the effectiveness and speed of 
modelling protein interactions and which cannot be done as efficiently in Fourier 
transform methods. This shows that constraint programming provides a different 
approach to protein docking (and fitting of shapes in general) that increases the 
scope of application while improving efficiency. 

1   Introduction 

The general problem we address in this paper is to fit two solids of arbitrary shape so 
as to maximize the surface of contact. This problem is important in bioinformatics for 
modelling protein interactions, also known as protein docking. Protein interactions 
play a crucial role in all biological systems, and knowing the structure of a protein 
complex is an essential step in understanding the interaction mechanism. In this paper 
we will focus on the particular case of protein docking, currently the area of greater 
application of these algorithms, but the results are general and applicable to 
calculating configurations of maximal contact for solids of arbitrary shape.  

The most important aspects of this paper are the efficiency gained by using 
constraint propagation techniques, which puts our method on the same level of 
efficiency as other current approaches, and the propagation of distance constraints 
between sets of points in the two structures. The latter is of especial importance 
because the algorithm we present allows the pruning of the search space using 
partially ambiguous or uncertain data, and is thus applicable to a wide range of real-
world situations. 
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Modelling software provides useful tools to help researchers elucidate protein 
interaction mechanisms, and two decades since the pioneering work of Katzir and 
others [2] have seen significant developments in algorithms to generate models and 
scoring functions to select the most likely candidates. The diversity of current 
approaches is evident in the CAPRI (Critical Assessment of PRediction of 
Interactions) experiment [3]. 

A common trend is to model interactions using only knowledge derived from the 
structure and physicochemical properties of the proteins involved. Some algorithms 
have been developed [1, 4, 5] or adapted [6] to use data on the interaction 
mechanisms, but this approach is still the exception rather than the norm. BiGGER is 
one of these exceptions [1, 4], and it has been developed from inception to help the 
researcher bring into the modelling process as much data as available. Previous results 
show that BiGGER can be a powerful modelling tool when used in this manner, even 
when the experimental data are only applied after the search stage to score the models 
produced [1, 4, 7, 8, 9, 10, 11]. 

Of all protein docking approaches, the most popular is to generate a three-
dimensional matrix encoding the shape of each solid, and then match the two matrices 
by calculating a correlation matrix. This approach was first reported by Katchalski-
Katzir [2], and relied on Fast Fourier Transform method (FFT) to generate the 
correlation matrix. Some current implementations of this algorithm to protein 
interaction modelling are MolFit [2], ZDOCK [12], FTDock [6], DOT [13], and 
GRAMM [14]. 

Our implementation, BiGGER, uses a search in real (geometrical) space instead of 
Fourier transforms to fit two solids of arbitrary shape. BiGGER and Chemera, the 
graphical interface, form a tool to study protein-protein interaction that is publicly 
available and can be downloaded from http://www.cqfb.fct.unl.pt/bioin/chemera/  

In this paper we show that an algorithm that actively enforces the constraints 
inherent to the docking problem virtually eliminates the time advantage of the FFT 
approach, is in practice often significantly faster, and results in a hundred-fold 
reduction in memory requirements. Furthermore, this approach can be naturally 
adapted to additionally constrained searches using experimental data that are not 
efficiently accommodated with the FFT techniques.  

The paper is organised as follows. In section 2 we elaborate on the docking 
problem and the grid method for fitting together two arbitrary shapes. Section 3 
explains the BiGGER search algorithm and how constraints are enforced to improve 
efficiency. Section 4 shows the performance results, and the conclusions follow in 
section 5. 

2   The Docking Problem 

At the core of this approach to matching of irregular structures are the grid and the 
measure of surface contact. The grid is a very straightforward representation using a 
regular cubic lattice of cells, where each cell can be either an empty cell, a surface 
cell, or a core cell. The surface cells define the surface of the structure, and the 
overlap of surface cells measures the surface of contact. Figure 1 illustrates these 
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Fig. 1. The image on the left shows a protein structure overlaid on a cutaway of the respective 
grid, with grey spheres representing the atoms of the protein. The centre figure shows only the 
grid, cut to show the surface in grey and the core region in white. The rightmost image shows 
the contact between two grids as a black line of grid cells at the interface.  

concepts, showing on the first two panels a cutaway diagram of the grid representing 
a protein structure, and on the third panel a cutaway diagram of two grids in contact, 
showing the contact region corresponding to a set of overlapping surface cells. 

This approach is especially useful for molecular modelling because intermolecular 
contacts are not crisp like they appear to be at a macroscopic scale, but rather diffuse 
and a function of electrostatic repulsions between the atoms. The grid can model this 
feature quite naturally by adjusting the thickness of the surface region and its 
placement relative to the structure to be modelled. Closer inspection of the first panel 
on Figure 1 reveals that the surface cells lie outside the Van der Waals surfaces of the 
atoms (white spheres on the first panel). When these surface cells overlap with those 
of another grid, the placement of the grids corresponds to a small separation of the 
Van der Waals surfaces on the protein complex, which is more realistic than actual 
contact. The placement of the surface region can be modified according to the nature 
of the objects and contacts that are being modelled, from rigid macroscopic objects to 
diffuse electron clouds in atoms, so this is a general approach that can cover a wide 
range of applications.  

The core cells mark the forbidden overlaps; overlapping core cells indicate that 
parts of the two structures are occupying the same space and this configuration is 
disallowed. Overlap between core and surface cells can be ignored because in our 
model the surface region corresponds to a layer external to the structure, as explained 
above. 

2.1   Protein Docking and the Fast Fourier Transform Approach 

Given these definitions of allowed configurations and of how to measure surface 
contact, one can search all configurations by moving one grid relative to the other and 
examining the overlapping cells of the two grids. This translation search must be 
repeated for each orientation of one partner relative to the other, in order to search the 
rotation space as well. Typically, the rotational space is sampled in steps of 15º 
around each of the three orthogonal axes of rotation, for a total of approximately six 
thousand orientations. 

For each relative orientation, the naïve algorithm examines N3 different 
configurations, where N is the width of the grid, and for each configuration O(N3) 
cells, for a time complexity of O(N6). Currently the most used algorithm in protein 
docking is the grid method using Fast Fourier Transform (FFT), in which the grids are 
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three-dimensional matrices, and the surface overlap is measured by the correlation 
matrix calculated from the two matrices representing the two proteins. The FFT 
algorithm allows the correlation matrix to be calculated quickly as a matrix 
multiplication of the Fourier transforms of the two matrices to correlate. This 
computation has a time complexity of O(N3Log(N)), which clearly outperforms the 
O(N6)) time complexity of the translational search of the naïve search described 
above, thus justifying the popularity of the FFT approach. Again, as in all grid-based 
docking approaches, one grid must be generated for each orientation of one of the 
partners relative to the other, and whether in BiGGER, the FFT approach, or in the 
naïve approach, this translational search must be repeated for every orientation, 
typically thousands of times. 

Because of the efficiency of FFT, protein docking using grid algorithms with a real 
(geometrical) space search (instead of using Fourier transforms) were not competitive. 
However we discuss below how constraint programming techniques improve such 
search, overcome this basic disadvantage, and even give some advantages in 
computation time, memory requirements and, especially, in the efficient use of 
information about the interaction, as shown by the results obtained with BiGGER. 

2.2   Using Data on Contacts and Distances 

In some cases there is information about distances between points in the structures, 
information that can be used to restrict the search region. If this information is a 
conjunction of distance limits, then it is trivial to restrict the search to the volumes 
allowed by all the distances. However, real applications may be more complex. 

For modelling protein interactions, it is often the case that one can obtain data on 
important residues or atoms from such techniques as site directed mutagenesis or 
NMR titrations, or even from theoretical considerations, but it is rare to be absolutely 
certain of these data. The most common situation is to have a set of likely distance 
constraints of which not all necessarily hold. Typically, we would like to impose a 
constraint of the form: 

At least K atoms of set A must be within R of at least one atom of set B (1) 

where set A is on one protein and set B on the other, and R a distance value. This 
constraint results in combinatorial problem with a large number of disjunctions, since 
the distances need only hold for at least one of any combination of K elements of A. 
The FFT approach is especially unsuited for taking advantage of this type of 
information, since one cannot use this technique to find the correlation only of parts of 
all possible configurations of the two grids. With FFT the only way to use constraints is 
after the search, in a passive generate and test approach, validating or rejecting 
candidate configurations after the search. Validating each configuration according to 
constraint (1) is simple, and any docking algorithm can do this. BiGGER itself has been 
used in this way with considerable success. Chemera, the application that accompanies 
BiGGER in our distribution of this software package, allows the user to score the 
models produced by BiGGER according to inter-atomic distances. Some examples of 
this approach using BiGGER are in electron transfer complexes [7, 8, 9] or in modelling 
complexes using NMR and site-directed mutagenesis data [10, 11]. 

But the best way to use this information is as active constraints, pruning the search 
space to improve computation time, and in Section 3.4 we show that the combination 
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of grid representations and real (geometrical) space search is particularly suited to 
enforcing this global constraint due to the structure of the nested loops for the search 
in the X, Y, and Z directions. 

Though we discuss this geometry constraints problem as it presents itself in protein 
docking, this is a general problem. These distance values may be from uncertain 
NMR data, but they may also be from alternative positions for mooring lines, a lower 
limit for the number of bolts to secure two parts, or any other case where there are 
more alternatives to distance limits between points in the two structures than those 
limits that must be enforced. 

3   Method 

The basic method of searching through the translation space for the configurations 
with the largest surface contact is simple and straightforward. This section focuses on 
the modifications that make this method much more efficient than the O(N6) time 
complexity of the basic approach. Two constraints contribute to this efficiency, when 
adequately enforced: a) restricting the search to positions where surface regions 
overlap, and b) eliminating positions where core regions overlap. In addition, 
restricting the search to those regions where it is possible to have a greater surface 
contact than that of the worst solution to be kept can improve efficiency in some 
cases, but this last constraint is not useful in general, and is only discussed briefly.  

Finally, we show how the additional constraint (1) discussed above, can be 
efficiently implemented in this algorithm and further decrease computation time when 
the relevant information is available. 

3.1   Restricting the Search to Surface Overlapping Regions 

A significant proportion of all possible configurations for the two grids results in no 
surface overlap. Much can be gained by restricting the search to those configurations 
where surface cells of one grid overlap surface cells of the other. This is achieved by 
encoding the grids in a convenient way: instead of individual cells, grids are 
composed of lists of intervals specifying the segments of similar cells along the X 
coordinate. These lists are arranged in a two-dimensional array on the Y-Z plane.  

Figure 2 illustrates this encoding process for two lines, along the horizontal axis, 
on an X-Y plane where Z = j. The line on the top contains only surface cells, and is 
encoded as two surface segments, from X coordinates 3 through 7 and 12 through 18. 
This line in the grid is thus encoded as a list of two intervals Sij = [(3;7), (12;18)] 
where i is the Y coordinate. The other line in this example contains both surface and 
core cells, and is encoded as two lists: a list of surface cells Skj = [(2;3), (7;9), (20;21)] 
and a list of core cells Ckj = [(4;6), (10;20)]. 

This encoding not only reduces the memory requirements for storing the grids, but 
also leads naturally to searching along the X axis by comparing segments instead of 
by running through all the possible displacements along this coordinate. Given two 
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Sij = [(3;7), (12;18)] 

Skj = [(2;3), (7;9), (20;21)] 
Ckj = [(4;6), (10;20)] 
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Fig. 2. This figure illustrates the encoding of the grid as segments, with each segment 
containing only the X coordinates of the start and end points of a row of consecutive grid cells 
of the same type. Surface grids are represented in light grey and surface segments in black, core 
grids in dark grey and core segments in white. 

surface segments, one from each structure and aligned in the same Y and Z 
coordinates, we can calculate the displacements where overlap will occur simply from 
the X coordinates of the extremities of the segments.  

Representing by variable x the displacement of one structure relative to the other 
along the X direction, this approach of comparing segments efficiently enforces the 
constraint requiring surface overlaps by reducing the domain of the variable, to only 
those values where the constraint is verified, as we explain in the next section. 

3.2   Eliminating Regions of Core Overlap 

Another important constraint in this problem is that the core regions of the grids 
cannot overlap, for that indicates the structures are occupying the same space instead 
of being in contact. By identifying the configurations where such overlaps occur, it is 
possible to eliminate from consideration those surface segments on each structure that 
cannot overlap surface segments on the other structure without violating the core 
overlap constraint. Some surface segments can thus be discarded from each search 
along the X axis. Figure 3 illustrates this procedure.  

One structure, labelled A, is shown in the centre of the image. The other structure, 
labelled B, will be moved along the horizontal direction to scan all possible 
configurations but, from the overlap of core segments, a set of positions along the 
horizontal direction can be eliminated. Structure B is shown in position 1 to the right 
of A and in position 39 to the left of A, but, in this case, it cannot occupy positions in 
the centre. The domain of variable x (introduced in the previous section to represent 
the displacement of one structure relative to the other along the X direction) can be 
pruned from the values 5 to 30. This is a contiguous interval in this example, but the 
domain of x can be an arbitrary set of intervals in the general case. This domain 
reduction due to the core overlap constraint propagates to the surface overlap, since 
some surface segments of A and B will not overlap in valid configurations. Some of 
these are shown in Figure 3 by the group of arrows to the left of structure A 
(Discarded Segments, Figure 3). For the last double arrow, for example, the surface 
cells of structures A and B would only overlap for x=7, a value pruned from the 
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Fig. 3. Grid B is translated along the horizontal direction relative to grid A. The vertical arrows 
marked 1 indicate the position of B on the lower horizontal bar, which shows the allowed and 
forbidden values for the position of B. The arrows marked 2 and 3 show the allowed 
displacement of B. The group of horizontal arrows indicates segments to be discarded. 

domain of x. In contrast, in the line below such overlap occurs for x = 3, a value kept 
in the domain.  The top three arrows point to surface segments on structure A which 
can be ignored in this case. The top three surface segments on structure B cannot be 
ignored because they may overlap with the surface segments of A on the other side, 
once B is moved to the right of A, but the following four arrows indicate that both the 
segments to the left of A and those to the right of B can be ignored. Thus the core 
overlap constraint allows us to reduce the number of surface segments to consider 
when counting surface overlaps. 

Figure 4 outlines the algorithm for the translational search. Three variables, z, y, 
and x, and their respective domains, Dz, Dy, and Dx, represent the translation of B 
with respect to A. The domains are initialised to include all translations that may 
result in contacts by a bounds consistency check: if MaxA/MaxB and MinA/MinB are 
the maximum/minimum coordinate values along the Z axis for the surface grid cells 
of the two structures, Dz is initialised to [(MinA-MaxB; MaxB-MinA)] (line 1). The 
same procedure applies to Dy and Dx (lines 3 and 5), but only considering the parts of 
the structure that can overlap (Dy depends on the value of z, Dx depends on the values 
of z and y). We shall see in the next sections that these domains can be further pruned 
by other constraints on the minimum overlap score (section 3.3) and distances 
between points in the two structures (Section 3.4), so Dz, Dy, and Dx are not 
necessarily single intervals but sets of intervals. This pruning (Sections 3.3 and 3.4) 
occurs at the initialisation of the domains (lines 1, 3, and 5). 

For each z and y translation value, Dx is initialized (line 5), and the list CoreSets 
(line 6) is generated, containing the matching sets of core grid segments for the two 
structures. Grid segment sets are matching when they are aligned by the z, y 
translation of the B structure, so each entry on this list corresponds to a location in the 
Z,Y plane and contains the core segments of both structures that are aligned at that 
location by translating the B structure by the z, y values. Figure 3 shows two such 
sets, marked L1 and L5, which would be respectively the first and fifth entries of the 
list of matching core grid segments. L1 contains one core grid segment from A and 
one from B, L5 contains two core grid segments from A and one from B. 
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 1. Dz ← Z_Translations 

 2. for each z ∈ Dz do 

 3. Dy ← Y_Translations(z) 

 4.  for each y ∈ Dy do 

 5.   Dx ← X_Translations(z,y) 

 6.   CoreSets ← Matching_Core_Segs(z,y,Dy) 

 7.   Dx ← RemoveCoreOverlaps(Dy) 

 8.   SurfSets ← Matching_Surf_Segs(z,y,X) 

 9.   CountContacts(XT,SurfacePairs) 

Fig. 4. Outline of the BiGGER translation search algorithm. The translation search must be 
repeated for each relative orientation of the two partners. 

The BiGGER algorithm then (line 7) imposes bounds consistency on these sets of 
core grids segments, comparing the bounds of each segment in one structure with the 
bounds of all matching segments in the other structure for this z, y displacement. If 
MaxA, MaxB, MinA, and MinB are respectively the upper and lower bounds in the x 
coordinate for a pair of matching core segments, the algorithm removes the interval 
(MinA-MaxB; MaxA-MinB) from Dx. Maintaining such bounds consistency requires 
O(k2) operations, where k is the number of intervals defined by the core grid segments 
for each line and for each structure. 

In line 8 the list of matching surface segments is generated, in a similar manner. 
Note that both the matching core and the surface segments lists take into account Dx, 
including only those segments that could overlap given this domain (again, by 
imposing bounds consistency on the intervals). Also, the list of matching surface 
segments uses Dx already pruned by ruling out the forbidden overlaps (line 7). 
Finally, the overlap of surface cells is determined for each allowed translation value 
in Dx. This requires testing the bounds of the matching surface segments in a way 
similar to imposing bounds consistency, which is of O(k2) for each line, and then 
counting the contacts along X, which is of O(N). 

The algorithm performs O(N2) steps by looping through the Dz and Dy (lines 2 and 
4), and in each of these steps it loops through the Z,Y plane twice to find the matching 
core and surface segments (lines 6 and 8) and compare the segment bounds. So each 
step in the z, y loop is O(N2k2), where k is the number of segments per line (the 
counting step in line 9 is O(N) and can be ignored). Except for fractal structures, k is a 
small constant. For convex shapes, for example, k is always two or less, and even for 
complex shapes like proteins k is seldom larger than two. Thus the time complexity of 
the search algorithm when imposing bounds constraints on the overlap of surface and 
core grid cells is O(N4), a substantial improvement with respect to the naïve O(N6) 
algorithm, and much closer to the O(N3Log(N)) of the FFT method. Furthermore, as 
we show in the Results section, the comparisons done in the BiGGER algorithm are 
much faster and this constant factor makes BiGGER more efficient for values of N up 
to several hundred. Finally, the space complexity of BiGGER is O(N2), significantly 
better and with a lower constant factor than the FFT space complexity of O(N3). 
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3.3   Restricting the Lower Bounds on Surface Contact 

Branch and Bound is a common technique that Constraint Programming often uses in 
optimisation problems, to restrict the domains of the variables to where it is still 
possible to obtain a better value for the function to optimise. In this case, we wish to 
optimise the overlap of surface cells, and restrict the search to those regions where 
this overlap can be higher than that of the lowest ranking model to be kept.  

This constraint is applied to the Z and Y coordinate search loops, by counting the 
total surface cells for each grid as a function of the Z coordinate (that is, the sum over 
each X, Y plane) and as a function of each Y, Z pair (that is, the sum of each line in 
the X axis). When determining the domain of the Z translation (line 1, Figure 4), the 
Z_Translations function considers the list of total surface cells for each surface along 
the Z axis. For each Z translation value these two lists will align in a different way, as 
the one structure is displaced in the Z direction relative to the other. The minimum of 
each pair of aligned values gives the maximum possible surface overlap for that X,Y 
plane at this Z translation, and the sum of these minima gives the maximum possible 
surface overlap for this Z translation. Since there are O(N) possible Z translations to 
test and, for each, O(N) values to compare and add, this step requires O(N2) 
operations. 

The same applies to restricting the Y domain in function Y_Translations (line 3, 
Figure 4), but taking into account the current value of variable z. This is also an O(N2) 
operation identical to the pruning of the Z domain, but must be repeated for each 
value of the z translation variable, adding a total time complexity of O(N3) to the 
algorithm. Since the BiGGER algorithm has a time complexity of O(N4), these 
operations do not result in a significant efficiency loss. 

By setting a minimum value for the surface contact count, or by setting a fixed 
number of best models to retain, this constraint allows the algorithm to prune the 
search space so as to consider only regions where it is possible to find matches good 
enough to include in the set of models to retain. In general, this pruning results in a 
modest efficiency gain. In the experiments reported on this paper the largest effect 
was a 30% decrease in computation time for a grid size of approximately 100, but 
with decreasing returns as higher grid sizes lead to thinner surface regions and shift 
the balance between the total surface counts and the size of the grid, so for larger 
values (N>230) the cost of enforcing this constraint can outweigh the benefits. 

However, this can benefit some applications like soft docking [1], where the 
surface and core grids are manipulated to model flexibility in the structures to dock, 
or if the minimum acceptable surface contact is high. 

3.4   Constraining the Search Space 

Conceptually, the real-space (geometrical) search of BiGGER can be seen as three 
nested cycles spanning the Z, Y, and X coordinates (Figure 4), from the outer to the 
inner cycle. This allows us to decompose the enforcement of constraint (1) by 
projecting it in the three directions: 

At least K atoms of set A must be within Rω of at least one atom of set B (2) 
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where Rω replaces the Euclidean distance R and represents the modulus of coordinate 
differences on one axis Z, Y or X. Rω has the same value of R; the different notation is 
to remind us that this is not a Euclidean distance value, but its projection on one 
coordinate axis. This makes the constraint slightly less stringent, by considering the 
distance to be a cube of side 2R instead of a sphere of diameter 2R, but this can be 
easily corrected by testing each candidate configuration to see if it also respects 
Euclidean distance (we have  successfully adopted a similar approach when applying 
constraint programming to determine the 3D structure of proteins from NMR data: 
rather than representing the region within distance R of some point by a sphere of 
diameter 2R, we conservatively  adopted a cube with side 2R to simplify constraint 
propagation [15]). 

The propagation algorithm, is the same for each axis, and consists of two steps. 
The first step is to determine the neighbourhood of radius R of atoms in group B, 
projected on the coordinate axis being considered. The next step is to generate a list of 
segments representing the displacements for which at least K atoms of group A are 
inside the segments defining the neighbourhood R of the atoms in group B. 
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Fig. 5. Generating the displacement domain in one dimension. The left panel shows the 
generation of the neighbourhood of radius R of group B. The panel on the right shows the 
allowed displacements for each atom, and the final displacement domain for a K value of 2. 

The calculation of the neighbourhood of B in some coordinate (either X, Y or Z) is 
illustrated in Figure 5. The positions of atoms B1, B2 and B3 in this coordinate are 
respectively 5, 9 and 17. Their neighbourhoods within a distance 3 are (2;8), (6;12) 
and (14;20). Merging the two first intervals, the neighbourhood 3 of the atom set B is 
thus (2;12) and (14;20).  

To calculate the displacement values that place an atom of group A inside the 
neighbourhood of group B we only have to shift the segments defining the 
neighbourhood of B by the coordinate value of the atom. For example, atom A1, with 
coordinate 9, lies inside the neighbourhood 3 of B if its displacement lies in the range 
(-7;3) or (5;11). Similarly, atoms A2 and A3, with coordinate values 13 and 18, 
respectively may be displaced by (-11;-1) or (1;7) and (-16;-6) or (-4;2).  

Once we have the displacement segments for all atoms, we must generate the 
segments describing the region at least K atoms are in the neighbourhood of B, which 
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is a simple counting procedure (hence, the constraint (2) need not be limited to 
specifying a lower bound for the distances to respect. The value of K can also be an 
upper bound, or a specific value, or even any number of values).  

In this case, there are at least two atoms of set A within neighbourhood 3 of atom 
set B if the displacement lies in ranges (-11;3) and (5;7). In ranges (-7;-6) and (-4;-1) 
all 3 A atoms are in the neighbourhood 3 of B. The algorithm is outlined in Figure 6. 

  

 1. DomainB ← Empty_Domain 

 2. for each b ∈ AtomsB do 
 3.  DomainB ← DomainB ∪ Domain(b,Dist)  

 4. D  ← Zeroes 

 5. for each a ∈ AtomsA do 
 6.  D ← D + Shift_Domain(DomainB,AtomsA(a).Coord) 

 7. for each i ∈ D do  
 8.  Translation(i)← D(i) > Min_Contacts 

Fig. 6. Propagation of one distance constraint in one dimension, where Dist is the distance 
value and Min_Contacts the minimum number of atoms in set B to be in contact with set A 

The propagation of a constraint of the type (2) produces a translation domain 
(Translation, in the algorithm outlined in Figure 6). The intersection of all translation 
domains for all constraints of this type for one coordinate axis generates a translation 
domain that is used to initialise domains Dx, Dy and Dz in the translation search 
(Figure 4). Thus the propagation of constraint (2) prunes the domain of the allowed 
displacements in all 3 axes, in a nested sequence. First the domain along the Z axis is 
determined and pruned adequately; then, for each remaining value of the 
displacement along Z, the domain of the displacements along Y is pruned; finally, for 
each remaining (Z, Y) pair, the constraint is enforced on the displacement along X. 

The time complexity of enforcing constraint (2) in one axis is O(a+b+N), where a 
is the number of atoms in group A and b the number of atoms in group B, and N is the 
grid size. Since this must be done for the translation dimensions the overall 
complexity contribution is O(N3), which does not change the O(N4) complexity of the 
geometric search algorithm. Nevertheless, pruning the search space makes the search 
faster, as demonstrated by the experimental results presented in the next section. 

4   Results 

To determine the performance of BiGGER relative to the FFT approach, we 
compared the search time with that reported with ZDock for the immunoglobulin 
complex between IgG1 Idiotypic Fab and Igg2A anti-idiotypic Fab [12]. For this 
complex the authors reported a run time of 19 CPU hours on an SGI Origin 2000 with 
32 R10000 processors, for a search through 6,389 orientations. The performance of 
each R10000 processor in the SGI Origin workstation is roughly a third (SSBENCH 
floating point benchmark) to a fourth (SPECfp95 and SPECfp2000) of the 



384 L. Krippahl and P. Barahona 

 

performance of a Pentium 4 2.8GHz CPU for floating point operations, so this allows 
us to make an approximate comparison between the two algorithms. 

To compare the algorithms we ran BiGGER on the same protein complex as 
reported in [12] (PDB structure codes 1AIF and 1IAI) at different resolutions to 
generate different grid sizes (the resolution is the size of the grid cell). The reason for 
using the same structure is that running time for BiGGER depends slightly on the 
shape and relative sizes of the docking partners, so in our comparisons with ZDock 
changes occur in only one variable, the size of the grid. 

Chart A on Figure 7 shows the plot of the average for 10 orientations for BiGGER 
for each grid size (black dots) compared to the estimated time for ZDock on a similar 
platform, represented by the staircase plot. The FFT algorithm requires the grid to be 
decomposed into shorter sequences, so N must be factorable into powers of small 
prime numbers for FFT to be usable; ideally, N should be a power of 2. This results in 
a staircase-like performance plot, using the values of N for which FFT is most 
efficient. To simplify the plot, we represented the computation time for ZDock on the 
relevant N values where N is a power of two (64, 128, 256, 512). In protein docking it 
is unlikely that values outside this range are necessary. 

Chart B (Figure 7) shows the experimental results using only the propagation of 
the surface overlap constraint (section 3.1) or both surface and core overlap 
constraints (sections 3.1 and 3.2). The experimental results are compared with the 
naïve O(N6) complexity of comparing all the grids in all configurations, and the O(N4) 
complexity estimated for BiGGER as the grid size tends to infinity. 

The real-space (geometrical) search in BiGGER seems to be at least as efficient in 
computation time as the FFT approach, and significantly more efficient in those cases 
where the size of the structures is just enough to force the grid size in the FFT to a 
larger increment of N. This conclusion is valid for the practical range of grid sizes 
used in protein docking, though with a time complexity of O(N4), which is slightly 
worse than the O(N3Log(N)) of FFT, BiGGER eventually becomes slower than FFT 
as grid size increases. 
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Fig. 7. Plots of search time as a function of the grid size. Chart A compares BiGGER (dots) to 
the estimated time for a FFT implementation (ZDock) on the same hardware. Chart B compares 
BiGGER with only the surface overlap constraint (Section 3.1) and both the surface and core 
overlap constraints (section 3.1 and 3.2). Both charts also show the theoretical values for O(N6) 
and O(N4) complexities assuming a constant scaling factor such that both correspond to the 
estimated factor for the ZDock implementation of the FFT method at N=40. 
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However, the space complexity of BiGGER is O(N2), except for fractal shapes, 
whereas the memory requirements for the FFT approach are O(N3), and the necessity 
of using floating point matrices makes it very demanding in this regard. With a 256 
grid size and double precision, FFT docking requires 130Mb per grid. Since 3 grids 
are necessary, one for each protein and one for the correlation matrix, this amounts to 
approximately 500Mb, or 8Gb for N=512. The grid representation in BiGGER 
requires only a few megabytes, and the total memory usage of the program is 
approximately 10Mb of RAM at running time (15Mb for the largest example in the 
chart with N=330, 5Mb for the smallest with N=42). Space complexity may be as 
relevant as time complexity because the geometric search is trivial to parallelize, since 
each orientation in the rotation space can be explored independently. 

The other advantage of our approach is the possibility of reducing the search space 
according to information about the interaction of the two proteins. Previous 
publications showed the advantages of using such information to score the models 
generated [4, 10, 11], without using this information to narrow the search, so here we 
address only the performance gains in restricting the search space with the algorithm 
described in section 3.4, using as example the CAPRI [1] targets 2 and 4 through 7, 
corresponding to our submitted predictions for CAPRI rounds 1 and 2 [4]. 

For the largest protein on each pair of proteins to dock we selected five alpha-
Carbon atoms: three from the three interface residues that we had used to test the 
models obtained with an unconstrained search in [4], plus two from two decoy 
residues picked at random away from the interface region. The constraint imposed on 
the search was that at least 3 of the alpha-Carbon atoms of these five residues on the 
largest protein must be within 10Å of at least one atom of the smallest protein, which 
restricts the search the region of the three correct residues and away from the region 
with the two decoys. Even this modest information has a significant effect on the 
quality of the prediction of the protein complex, as shown in [4]. Here we focus 
exclusively on the performance issues of using the constraints to prune the search 
space, as a proper discussion of the evaluation of protein complex models would be 
outside the scope of this paper. 

Table 1. Shows the residues selected as correct interface residues and decoys for each CAPRI 
target, and the time of the constrained and unconstrained searches in minutes 

ID Complex Correct Residues Decoys Constr. Unconst. 
2 VP6-FAB P171,A244,M300 D62,G43 210 720 

4 Amilase-Amy10 S243,S245,G249 N364,D375 40 160 

5 Amilase-Amy07 S270,G271,G285 R30,N220 90 180 

6 Amilase-Amy09 N53,S145,V349 S471,T219 30 150 

7 Exotoxin A1-TC AR N20,N54,Y84 N178,G108 80 180 

Table 1 shows the residues selected as correct interface residues and decoys for 
each protein, and the time for the constrained search as a fraction of the time for the 
unconstrained search. The total time for the constrained search (through 6,389 
orientations) ranged from three and a half hours for ID 2 to 30 minutes for ID 6 
(approximate results on a P4 at 2.8 GHz running Windows XP ™) 
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The time gains depend on how much the search space is pruned by the constraint, 
so it will depend on the shape and size of the structures as well as the number and 
placement of the distance constraints and the stringency of the cardinality constraint 
over the distances to enforce. Still, these results suggest a significant reduction in 
computation time (two to five times) even when constraining only a few points on 
only one of the partners. With more stringent constraints, such as requiring that one 
specific point on one structure be close to one of a few points in the other, the 
constrained search time can be less than 5% of the unconstrained search time (for 
example, 23 minutes instead of 12 hours in the case of complex ID 2). 

5   Conclusion 

By taking advantage of Constraint Programming techniques, BiGGER is faster than 
the FFT correlation method for matching three-dimensional shapes for N up to 
approximately 500. With larger grids, the O(N4) time complexity of BiGGER 
eliminates the advantage of simpler and faster operations, making it slower than the 
FFT algorithm with its O(N3Log(N)) time complexity. However, at large grid sizes 
the O(N3) space complexity of FFT is a severe disadvantage compared to the O(N2) 
space complexity of BiGGER. Although we cannot state categorically that, on 
performance alone, our approach is superior to the FFT method, this shows that our 
algorithm is at a similar performance level as the currently most popular approach for 
modelling protein-protein complexes. 

The main advantage of BiGGER is in being suited for the efficient implementation 
of a wide range of constraints on distances between parts of the structures to fit, 
which is often important in protein docking, and potentially important in other 
problems of finding optimal surface matches between complex shapes subject to 
geometrical constraints. 

For the problem of protein docking, in which we are most interested, the algorithm 
has been applied successfully to model the interaction between a Pseudoazurin and a 
Nitrite Reductase [16] and is currently being applied to modelling two other protein 
interactions (Fibrinogen-MMP2 and FNR-Ferredoxin) with promising results. 
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Abstract. In this paper we study the complexity of the weighted maxi-
mum constraint satisfaction problem (Max CSP) over an arbitrary finite
domain. In this problem, one is given a collection of weighted constraints
on overlapping sets of variables, and the goal is to find an assignment
of values to the variables so as to maximize the total weight of satisfied
constraints. Max CSP is NP-hard in general; however, some restrictions
on the form of constraints may ensure tractability. Recent results indi-
cate that there is a connection between tractability of such restricted
problems and supermodularity of the allowed constraint types with re-
spect to some lattice ordering of the domain. We prove several results
confirming this in a special case when the lattice ordering is as loose as
possible, i.e., a diamond one.

1 Introduction

The main object of our study in this paper is the maximum constraint satis-
faction problem (Max CSP) where one is given a collection of constraints on
overlapping sets of variables and the goal is to find an assignment of values to the
variables that maximizes the number of satisfied constraints. A number of clas-
sical optimization problems including Max k-Sat, Max Cut and Max Dicut
can be represented in this framework, and it can also be used to model optimiza-
tion problems arising in more applied settings, such as database design [11].

The Max-CSP framework has been well-studied in the Boolean case, that is,
when the set of values for the variables is {0, 1}. Many fundamental results have
been obtained, containing both complexity classifications and approximation
properties (see, e.g., [10,18,20]). In the non-Boolean case, a number of results
have been obtained that concern approximation properties (see, e.g., [11,14]).
However, the study of efficient exact algorithms and complexity for subproblems
of non-Boolean Max CSP has started only very recently [8,21], and the present
paper is a contribution towards this line of research.

We study a standard parameterized version of the Max CSP, in which re-
strictions may be imposed on the types of constraints allowed in the instances.
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The most well-known examples of such problems are Max k-Sat and Max Cut.
In particular, we investigate which restrictions make such problems tractable, by
allowing a polynomial time algorithm to find an optimal assignment. This setting
(in several variations) has been extensively studied and completely classified in
the Boolean case [6,10,20]. In contrast, we consider here the case where the set
of possible values is an arbitrary finite set.

Let D denote a finite set with |D| > 1. Let R
(m)
D denote the set of all m-ary

predicates over D, that is, functions from Dm to {0, 1}, and let RD =
⋃∞

m=1 R
(m)
D .

Also, let Z+ denote the set of all non-negative integers.

Definition 1. A constraint over a set of variables V = {x1, x2, . . . , xn} is an
expression of the form f(x) where

– f ∈ R
(m)
D is called the constraint predicate; and

– x = (xi1 , . . . , xim ) is called the constraint scope.

The constraint f is said to be satisfied on a tuple a = (ai1 , . . . , aim) ∈ Dm if
f(a) = 1.

Definition 2. For a finite F ⊆ RD, an instance of the weighted Max CSP(F)
problem is a pair (V, C) where

– V = {x1, . . . , xn} is a set of variables taking their values from the set D;
– C is a collection of constraints f1(x1), . . . , fq(xq) over V , where fi ∈ F for

all 1 ≤ i ≤ q; each constraint fi(xi) is assigned a weight �i ∈ Z+.

The goal is to find an assignment φ : V → D that maximizes the total weight of
satisfied constraints, that is, to maximize the function f : Dn → Z+, defined by
f(x1, . . . , xn) =

∑q
i=1 �i · fi(xi).

Note that throughout the paper the values 0 and 1 taken by any predicate will
be considered, rather unusually, as integers, not as Boolean values, and addition
will always denote the addition of integers. Throughout the paper, we assume
that F is finite.

Example 1. The Max Cut problem is the problem of partitioning the set of
vertices of a given undirected graph with weighted edges into two subsets so
as to maximize the total weight of edges with ends being in different subsets.
Let neq2 be the binary predicate on {0, 1} such that neq2(x, y) = 1⇔ x �= y.
Then the Max Cut problem is the same as Max CSP({neq2}). To see this,
think of vertices of a given graph as of variables, and apply the predicate to
every pair of variables x, y such that (x, y) is an edge in the graph. Let fdicut

be the binary predicate on {0, 1} such that fdicut(x, y) = 1 ⇔ x = 0, y = 1.
Then Max CSP({fdicut}) is essentially the problem Max Dicut which is the
problem of partitioning the vertices of a digraph with weighted arcs into two
subsets V0 and V1 so as to maximize the total weight of arcs going from V0 to
V1. It is well known that both Max Cut and Max Dicut are NP-hard (see,
e.g., [10]).
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The main research problem we will study in this paper is the following:

Problem 1. What are the sets F such that Max CSP(F) is tractable?

For the Boolean case, Problem 1 was solved in [9]. It appears that Boolean
problems Max CSP(F) exhibit a dichotomy in that such a problem either is
solvable exactly in polynomial time or else is NP-hard (which cannot be taken for
granted because of Ladner’s theorem). The paper [9] also describes the boundary
between the two cases.

Versions of Problem 1 for other non-Boolean constraint problems (including
decision, quantified, and counting problems) have been actively studied in the
last years, with many classification results obtained (see, e.g., [1–4,17]). Expe-
rience in the study of various forms of constraint satisfaction (see, e.g., [2,3])
has shown that the more general form of such problems, in which the domain is
an arbitrary finite set, is often considerably more difficult to analyze than the
Boolean case.

The algebraic combinatorial property of supermodularity (see Section 2) is a
well-known source of tractable maximization problems [5,15]. In combinatorial
optimization, this property (or the dual property of submodularity) is usually
considered on subsets of a set or on distributive lattices [5,19]. However, it can
be considered on arbitrary lattices, and this has proved useful in operational re-
search [22]. Very recently [8], this general form of supermodularity was proposed
as the main tool in tackling Problem 1. Indeed, for |D| = 2, this property was
shown [8] to completely characterize the tractable cases of Max CSP (origi-
nally, the characterization was obtained [9] in a different form), and moreover,
this property also essentially characterizes the tractable cases for |D| = 3 [21].

Interestingly, the relevance of an ordering of the domain is not suggested
in any way by the formulation of Problem 1. In this paper we determine the
complexity of Max CSP assuming that the domain has a lattice ordering, but
the order is a diamond order, that is, it is as loose as a lattice order can possibly
be.

The structure of the paper is as follows: in Section 2 we discuss lattices,
supermodularity, and their relevance in the study of Max CSP. In Section 3
we describe the structure of supermodular predicates on diamonds, which we
use in Section 4 to show that Max CSP with such constraints can be solved
in cubic time. In Section 5 we show that a certain small set of supermodular
constraints on diamonds gives rise to NP-hard problems when extended with
any non-supermodular constraint.

2 Preliminaries

In this section we discuss the well-known combinatorial algebraic property of
supermodularity [22] which will play a crucial role in classifying the complexity
of Max CSP problems.

A partial order on a set D is called a lattice order if, for every x, y ∈ D,
there exists a greatest lower bound x� y (called the meet of a and b) and a least
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upper bound x� y (called the join). The corresponding algebra L = (D,�,�) is
called a lattice. It is well-known that any finite lattice L has a greatest element
1L and a least element 0L. A lattice is called distributive (also known as a ring
family) if it can be represented by subsets of a set, the operations being set-
theoretic intersection and union. For n ≥ 2, an n-diamond (or simply a diamond),
denoted Mn, is a lattice on an (n + 2)-element set such that all n elements in
Mn\{0Mn , 1Mn} are pairwise incomparable. The Hasse diagram ofMn is given
in Fig. 1. Since every element of any finite lattice must be comparable with both

Fig. 1. A diamond lattice Mn

the top and the bottom elements, diamonds are as unordered as lattices can
possibly be. The middle elements ofMn are called atoms. Note that, for every
pair of distinct atoms a and b, we have a � b = 0Mn and a � b = 1Mn . It is
well-known (and easy to see) that a distributive lattice cannot containM3 (and
hence anyMn with n ≥ 3) as a sublattice. In the literature (e.g., [12]), the lattice
M3 is often called the diamond. It is one of the two minimal non-distributive
lattices. For more information on lattices and orders, see [12].

For tuples a = (a1, . . . , an), b = (b1, . . . , bn) in Dn, let a�b and a�b denote
the tuples (a1 � b1, . . . , an � bn) and (a1 � b1, . . . , an � bn), respectively.

Definition 3. Let L be a lattice on D. A function f : Dn → R is called super-
modular on L if it satisfies

f(a) + f(b) ≤ f(a � b) + f(a � b) (1)

for all a,b ∈ Dn, and f is called submodular on L if the inverse inequality
holds. The set of all supermodular predicates on L will be denoted SpmodL.

The standard definition of sub- and supermodular (set) functions [5,15] cor-
responds to the special case of the above definition when |D| = 2. Recall that
a chain is a totally ordered lattice. Sub- and supermodular functions on finite
chains have been studied in combinatorial optimization under the name of Monge
and inverse Monge matrices and arrays (see survey [5]). Note that chains and
diamonds represent “opposite” types of lattices: chains have all possible compa-
rabilities, while diamonds have as few comparabilities as possible.

The following results have been previously obtained in classifying the com-
plexity of Max CSP.
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Theorem 1 ([8]). If F is supermodular on some distributive lattice on D, then
Max CSP(F) is tractable.

An endomorphism ofF is a unary operationπ on D such that, for all f ∈ F and
all (a1, . . . , am) ∈ Dm, we have f(a1, . . . , am) = 1 ⇒ f(π(a1), . . . , π(am)) = 1.
We will say that F is a core if every endomorphism of F is injective (i.e., a per-
mutation). The intuition here is that if F is not a core then it has a non-injective
endomorphism π, which implies that, for every assignment φ, there is another as-
signment πφ that satisfies all constraints satisfied by φ and uses only a restricted
set of values, so the problem is equivalent to a problem over this smaller set.

Theorem 2 ([8,10,21]). Let |D| ≤ 3 and F ⊆ RD be a core. If F ⊆ SpmodC for
some chain C on D then Max CSP(F) is tractable. Otherwise, Max CSP(F) is
NP-hard.

Proofs of both theorems cited above enjoyed support of known results on
classical submodular (set) functions and on Monge matrices and arrays. However,
if we are unable to represent the lattice operations by set-theoretic ones then
the analysis of supermodular functions becomes significantly more difficult.

We will now consider a form of supermodular constraints that can be defined
on any lattice.

Definition 4. A predicate f ∈ R
(n)
D will be called 2-monotone1 on a poset P on

D if it can be expressed as follows

f(x) = 1⇔ ((xi1 4 ai1)∧ . . .∧ (xis 4 ais))∨ ((xj1 5 bji)∧ . . .∧ (xjt 5 bjt)) (2)

where x = (x1, . . . , xn), ai1 , . . . , ais , bj1 , . . . , bjt ∈ D, and either of the two dis-
juncts may be empty (i.e., the value of s or t may be zero).

It is straightforward to check that every 2-monotone predicate on a lattice
is supermodular on it. The next theorem is, to the best of our knowledge, the
only one available on the complexity of supermodular constraints on arbitrary
lattices.

Theorem 3 ([8]). Let L be a lattice on a finite set D. If F consists of 2-
monotone predicates on L, then Max CSP(F) is tractable.

3 The Structure of Supermodular Predicates on
Diamonds

In the rest of this paper we consider supermodular constraints on diamondsMn.
Throughout the rest of this paper, let M be an arbitrary (fixed) n-diamond,
n ≥ 2. In this section, we describe the structure of supermodular predicates on
M by representing them as logical formulas involving constants (elements ofM)
and the order relation 4 ofM.
1 In [8], such predicates are called generalized 2-monotone.
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For a subset D′ ⊆ D, let uD′ denote the predicate such that uD′(x) = 1 ⇔
x ∈ D′. The following lemma can be easily derived directly from the definition
of supermodularity.

Lemma 1. A unary predicate uD′ is in SpmodM if and only if either both
0M, 1M ∈ D′ or else |D′| ≤ 2 and at least one of 0M, 1M is in D′.

In the next theorem, the condition (y 5 c), where y and c are tuples of the
same length, will denote

∧
(yi 5 ci). The condition (y 4 c) is defined similarly.

Theorem 4. Every predicate f(x1, . . . , xm) in SpmodM, such that f takes both
values 0 and 1, can be represented as one of the following logical implications:

1. [(xi 4 a1) ∨ . . . ∨ (xi 4 al)] =⇒ (xi 4 0M) where the aj’s are atoms;
2. ¬(y 5 c) =⇒ (z 4 d) where y and z are some subsequences of (x1, . . . , xm),

and c, d are tuples of elements of M (of corresponding length) such that c
contains no 0M and d no 1M;

3. [(xi 4 b1) ∨ · · · ∨ (xi 4 bk) ∨ ¬(y 5 c)] =⇒ (xi 4 a) where the bj’s are
atoms, y does not contain xi, and a �= 1M;

4. ¬(xi 5 b) =⇒ [¬(xi 5 a1) ∧ · · · ∧ ¬(xi 5 al) ∧ (y 4 c)] where the aj’s are
atoms, y does not contain xi, and b �= 0M;

5. ¬(y 5 c) =⇒ false where y is a subsequence of (x1, . . . , xm) and c contains
no 0M;

6. true =⇒ (y 4 c) where y is a subsequence of (x1, . . . , xm) and c contains
no 1M.

Conversely, every predicate that can be represented in one of the above forms
belongs to SpmodM.

Example 2. The unary predicate of type (1) above is the same as uD′ where
D′ = D \ {a1, . . . , al}. The predicates uD′ ∈ SpmodM with |D′| ≤ 2 are the
unary predicates of types (5) and (6).

Remark 1. Note that constraints of types (2),(5), and (6) are 2-monotone onM,
while constraints of types (3) and (4) (and most of those of type (1)) are not.

Proof. It is straightforward to verify that all the predicates in the list are actually
supermodular. Now we prove the converse. Consider first the case where the pred-
icate f is essentially unary, i.e., there is a variable xi such that f(x1, . . . , xm) =
uD′(xi) for some D′ � D. If D′ = {x : x 4 a} or D′ = {x : x 5 a} for some
atom a then f is of the form (5) or (6); otherwise both 0M and 1M are in D′ by
Lemma 1, and if a1, . . . , al denote the atoms of the lattice that are not in D′,
then it is clear that f is described by the implication (1).

Now we may assume that f is not essentially unary. If it is 2-monotone, then it
is easy to see that f must be described by an implication of type (2), (5) or (6). So
now we assume that f is not essentially unary and it is not 2-monotone; we prove
that it is described by an implication of type (3) or (4). We require a few claims:

Claim 0. The set X of all tuples u such that f(u) = 1 is a sublattice of Mm,
i.e. is closed under join and meet.

This follows immediately from the supermodularity of f .
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Claim 1. There exist indices 1 ≤ i1, . . . , ik, j1, . . . , jl ≤ n, atoms e1, . . . , ek and
b1, . . . , bl of M such that f(x) = 1 if and only if

[¬(xi1 5 e1) ∧ · · · ∧ ¬(xik
5 ek)]

∨
[¬(xj1 4 b1) ∧ · · · ∧ ¬(xjl

4 bl)].

Notice first that the set Z of tuples u such that f(u) = 0 is convex in Mm, i.e.
if u 4 v 4 w with f(u) = f(w) = 0 then f(v) = 0. To show this we construct
a tuple v′ as follows: for each coordinate i it is easy to find an element v′i such
that vi � v′i = ui and vi � v′i = wi. Hence v � v′ = u and v � v′ = w so by
supermodularity of f neither v nor v′ is in X . It follows in particular that neither
0Mm nor 1Mm is in Z; indeed, if 0Mm ∈ Z, let a be the smallest element in X
(the meet of all elements in X), which exists by Claim 0. Since Z is convex it
follows that every element above a is in X so f is 2-monotone, a contradiction.
The argument for 1Mm is identical.

Now let w ∈ Z be minimal, and let v 4 w. As above we can find a tuple v′

such that v� v′ = w; by supermodularity of f it follows that v = w or v′ = w.
It is easy to deduce from this that there exists a coordinate s such that ws is
an atom ofM and wt = 0M for all t �= s. A similar argument shows that every
maximal element of Z has a unique coordinate which is an atom and all others
are equal to 1M.

Since Z is convex, we have that f(x) = 0 if and only if x is above some
minimal element of Z and below some maximal element of Z; Claim 1 then
follows immediately.

For each index i ∈ {i1, . . . , ik} that appears in the expression in Claim 1,
there is a corresponding condition of the form

¬(xi 5 es1) ∧ · · · ∧ ¬(xi 5 esr);

let Ii denote the set of elements of M that satisfy this condition. Obviously
it cannot contain 1M and must contain 0M. Similarly, define for each index
j ∈ {j1, . . . , jl} the set Fj of all elements of M that satisfy the corresponding
condition of the form

¬(xj 4 bt1) ∧ · · · ∧ ¬(xj 4 btq);

it is clear that 0M �∈ Fj and 1M ∈ Fj .
The condition of Claim 1 can now be rephrased as follows: f(x) = 1 if and

only if xi ∈ Ii for all i ∈ {i1, . . . , ik} or xj ∈ Fj for all j ∈ {j1, . . . , jl}. It is
straightforward to verify that since f is not 2-monotone, one of the Ii or one of
the Fj must contain 2 distinct atoms. We consider the first case, and we show
that the predicate f is of type (4). The case where some Fj contains two atoms
is dual and will yield type (3).

Claim 2. Suppose that Ii contains distinct atoms c and d for some i ∈ {i1, . . . , ik}.
Then (a) i is the only index with this property, (b) {j1, . . . , jl} = {i} and (c) Fi

does not contain 2 distinct atoms.
We prove (b) first. We have that

f(0M, . . . , 0M, c, 0M, . . . , 0M) = f(0M, . . . , 0M, d, 0M, . . . , 0M) = 1
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(where c and d appear in the i-th position) and by supermodularity it follows
that f(0M, . . . , 0M, 1M, 0M, . . . , 0M) = 1 also. Since Ii does not contain 1M,
we have that xj ∈ Fj for each j ∈ {j1, . . . , jl}; since Fj never contains 0M,
(b) follows immediately. Since {j1, . . . , jl} is non-empty, (a) follows immediately
from (b). Finally, if Fi contained distinct atoms then by dualising the preceding
argument we would obtain that {i1, . . . , ik} = {i} from which it would follow
that f would be essentially unary, contrary to our assumption. This concludes
the proof of the claim.

Let b denote the minimal element in Fi, and for each index s ∈ {i1, . . . , ik}
different from i let cs denote the (unique) maximal element of Is; then we can
describe f as follows: f(x) = 1 if and only if

[xi ∈ Ii ∧ (y 4 c)] ∨ (xi 5 b)

where y is a tuple of variables different from xi and c is the tuple whose entries
are the cs defined previously. It remains to rewrite the condition xi ∈ Ii. Suppose
first that there exists at least one atom of M outside Ii, and let a1, . . . , al

denote the atoms outside Ii. Then it is clear that xi ∈ Ii if and only if ¬(xi 5
a1)∨ · · · ∨ ¬(xi 5 al) holds, so the predicate f is of type (4) (simply restate the
disjunction as an implication). Now for the last possibility, where Ii contains all
of D except 1M; then it is easy to see that f can be described by the following:

[¬(xi 5 b) ∧ (y 4 c)] ∨ (xi 5 b)

and this completes the proof of the theorem. ��

4 Supermodular Constraints on Diamonds are Tractable

In this section we prove the main tractability result of this paper. The proof
technique extends ideas from the proof of Theorem 3.

Theorem 5. If F ⊆ SpmodM then Max CSP(F) can be solved (to optimality)
in O(t3 · |D|3 + q3) time where t is the number of variables and q is the number
of constraints in an instance.

Proof. We will show how the problem can be reduced to the well-known tractable
problem Min Cut.

Let I = {ρ1 · f1(x1), . . . , ρq · fq(xq)}, q ≥ 1, be an instance of weighted
Max CSP(F), over a set of variables V = {x1, , . . . , , xn}.
Construction.
Let∞ denote an integer greater than

∑
ρi. For each constraint fi, fix a represen-

tation as described in Theorem 4. In the following construction, we will refer to
the type of fi which will be a number from 1 to 6 according to the type of repre-
sentation. Every condition of the form (y 4 c) will be read as

∧
(xis 4 cis), and

every condition of the form ¬(y 5 c) as
∨
¬(xis 5 cis), where is runs through

the indices of variables in y. Moreover, we replace every (sub)formula of the
form ¬(x 5 1M) by

∨n
i=1 ¬(x 5 ai) where a1, . . . , an are the atoms ofM.
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We construct a digraph GI as follows:

– The vertices of GI are as follows
• {T, F}∪ {xd | x ∈ V, d ∈M}∪{x̄d | x ∈ V, d ∈ M is an atom}∪ {ei, ēi |

i = 1, 2, . . . , q}2.
For each fi of type (5), we identify the vertex ei with F . Similarly, for each
fi of type (6), we identify the vertex ēi with T .

– The arcs of GI are defined as follows:
• For each atom c in M and for each x ∈ V , there is an arc from x0M to

xc with weight ∞, and an arc from x̄c to x1M with weight ∞;
• For each pair of distinct atoms c, d inM and for each x ∈ V , there is an

arc from xc to x̄d with weight ∞;
• For each fi, there is an arc from ēi to ei with weight ρi;
• For each fi of types (1-4), and each subformula of the form (x 4 a) or
¬(x 5 a) in the consequent of fi, there is an arc from ei to xa or x̄a,
respectively, with weight ∞;
• For each fi of types (1-4), and each subformula of the form (x 4 a)

or ¬(x 5 a) in the antecedent of fi, there is an arc from xa or x̄a,
respectively, to ēi, with weight ∞;
• For each fi of type (5), and each subformula of the form ¬(x 5 a) in it,

there is an arc from x̄a to ēi with weight ∞;
• For each fi of type (6), and each subformula of the form (x 4 a) in it,

there is an arc from ei to xa with weight ∞;

Arcs with weight less than ∞ will be called constraint arcs.
It is easy to see that GI is a digraph with source T (corresponding to true)

and sink F (corresponding to false). Note that paths of non-constraint arcs
between vertices corresponding to any given variable x ∈ V precisely correspond
to logical implications that hold between the corresponding assertions.

Define the deficiency of an assignment φ as the difference between
∑q

i=1 ρi

and the evaluation of φ on I. In other words, the deficiency of φ is the total
weight of constraints not satisfied by φ. We will prove that minimal cuts in GI
exactly correspond to optimal assignments to I. More precisely, we will show
that, for each minimal cut in GI with weight ρ, there is an assignment for I
with deficiency at most ρ, and, for each assignment to I with deficiency ρ′, there
is a cut in GI with weight ρ′.

The semantics of the construction of GI will be as follows: the vertices of the
form xa or x̄a correspond to assertions of the form x 4 a or ¬(x 5 a), respec-
tively, and arcs denote implications about these assertions. Given a minimal cut
in GI , we will call a vertex xa reaching if F can be reached from it without cross-
ing the cut. Furthermore, if a vertex xa is reaching then this will designate that
the corresponding assertion is false, and otherwise the corresponding assertion
is true. A constraint is not satisfied if and only if the corresponding constraint
arc crosses the cut.
2 The vertices xd will correspond to the expressions x % d and x̄d to ¬(x & d).
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Let C be a minimal cut in GI . Obviously, C contains only constraint arcs.
First we show that, for every variable x ∈ V , there is a unique minimal element
a ∈M such that xa is non-reaching. All we need to show is the following: if c, d
are distinct atoms such that both xc and xd are both non-reaching then so is
x0M . Assume that, on the contrary, x0M is reaching. Then there is a path from
x0M to F not crossing the cut. By examining the arcs of GI , it is easy to notice
that such a path has to go through a vertex x̄a for some atom a ∈M. However,
we have an arc from at least one of vertices xc, xd to x̄a, and hence at least one
of this vertices would have a path to F not crossing the cut, a contradiction.

Note that, for every x ∈ V , there are no arcs coming out of x1M . Hence, for
every x ∈ V , there is a unique minimal element v ∈ M such that F cannot be
reached from xv without crossing the cut.

Define an assignment φC as follows:

φC(x) is the unique minimal element a such that xa is non-reaching.

We now make some observations. Note that, for all x ∈ V and a ∈ M, we have
that φC(x) 4 a if and only xa is non-reaching. Moreover, if x̄a is reaching then,
for each atom b �= a, we have an arc from xb to x̄a meaning that φC(x) �4 b, and
hence φC(x) 5 a. Furthermore, if x̄a is non-reaching then φC(x) �= a. Indeed, if
φC(x) = a then xb is reaching for all atoms b �= a, and, since every path from
xb to F has to go through a vertex x̄c for some c, we have that x̄c is reaching.
Then c �= a, and there is an arc from xa to x̄c, so xa is reaching, a contradiction.
To summarize,

– if a node of the form xa or x̄a is reaching then the corresponding assertion
is falsified by the assignment φC ;

– if a node of the form xa is non-reaching then φC(x) 4 a;
– if a node of the form x̄a is non-reaching then the truth value of the corre-

sponding assertion is undecided.

Suppose that a constraint arc corresponding to a constraint fi is not in the
cut. We claim that fi is satisfied by the assignment φC . To show this, we will go
through the possible types of fi.

If fi is of type (1), (2), (5), or (6), then the claim is straightforward. For
example, let fi be of type (1). If the node x0M corresponding to the consequent
is reaching, then so are all nodes corresponding to the antecedent. Hence, all
atomic formulas in fi(xi) are falsified by the assignment φC , and the implication
is true. If x0M is non-reaching, then φC(x) = 0M, and the constraint is clearly
satisfied. The argument for types (2), (5), (6) is very similar.

Let fi be of type (3). Then, if the node corresponding to the consequent is
non-reaching then the consequent is satisfied by φC , and so the constraint is
satisfied. If this node is reaching then every node corresponding to the disjuncts
in the antecedent is reaching. Then both antecedent and consequent are falsified
by φC , and the constraint is satisfied.

Let fi be of type (4), that is, of the form

¬(xi 5 b) =⇒ [¬(xi 5 a1) ∧ · · · ∧ ¬(xi 5 al) ∧ (y 4 c)].
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If a node corresponding to some conjunct in the consequent is reaching, then
the node corresponding to the antecedent is also reaching. So φC(xi) 5 b, and
the constraint is satisfied. More generally, if the node corresponding to the an-
tecedent is reaching then the constraint is satisfied regardless of what happens
with the consequent. Assume that all nodes corresponding to conjuncts in the
consequent and in the antecedent are non-reaching. Then the conjunct (y 4 c)
is satisfied by φC . Furthermore, we know (see the observations above) that
φC(xi) �= b, and also that φC(xi) �= as for 1 ≤ s ≤ l. If φC(xi) = 1M then
both the antecedent and the consequent of fi are false, and hence fi is satisfied.
Otherwise, φC(xi) �5 b and φC(xi) �5 as for 1 ≤ s ≤ l, so fi is satisfied anyway.

Conversely, let φ be an assignment to I, and let K be the set of constraints
in I that are not satisfied by φ. Consider any path from T to F . It is clear that
if all constraints corresponding to constraint arcs on this path are satisfied, then
we have a chain of valid implications starting from true and finishing at false.
Since this is impossible, at least one constraint corresponding to such an arc is
not satisfied by φ. Hence, the constraints arcs corresponding to constraints in
K form a cut in GI . Furthermore, by the choice of K, the weight of this cut is
equal to the deficiency of φ.

It follows that the standard algorithm [16] for the Min Cut problem can
be used to find an optimal assignment for any instance of Max CSP(F). This
algorithm runs in O(k3) where k is the number of vertices in the graph. Since
the number of vertices in GI is at most 2(1 + t · |D|+ q), the result follows. ��

5 A Partial Converse

We will now prove a partial converse to Theorem 5.
The following theorem shows that, in order to establish that a given function

f is supermodular on a given lattice, it is sufficient to prove supermodularity of
certain unary and binary functions derived from f by substituting constants for
variables. This result was proved in [13] for submodular functions on lattices, but
clearly it is also is true for supermodular functions because f is supermodular if
and only if −f is submodular.

Theorem 6 ([13]). Let L be a finite lattice. An n-ary function f on L is su-
permodular on L if and only if it satisfies inequality (1) for all a,b ∈ Ln such
that

– ai = bi with one exception, or
– ai = bi with two exceptions, and, for each i, the elements ai and bi are

comparable in L.

Theorem 7. Let F contain all at most binary 2-monotone predicates on M.
If F ⊆ SpmodM then Max CSP(F) is tractable. Otherwise, Max CSP(F) is
NP-hard.

Proof. If F ⊆ SpmodM then the result follows from Theorem 5. Otherwise,
there is a predicate f ∈ F such that f �∈ SpmodM. First, we prove that we can
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assume f to be at most binary. By Theorem 6, we can substitute constants for
all but at most two variables in such a way that the obtained predicate f ′ is
not supermodular onM. We now show that f ′ can be assumed to be in F . We
will consider the case when f ′ is binary, the other case (when f ′ is unary) is
similar. Assume without loss of generality that f ′(x1, x2) = f(x1, x2, a1, . . . , ap),
and reduce Max CSP(F ∪ {f ′}) to Max CSP(F). Let I be an instance of
Max CSP(F ∪ {f ′}) and W the total weight of all constraints in I, plus 1.
Transform I into an instance I ′ of Max CSP(F) as follows:

1. For each constraint fi(xi) in I such that fi = f ′

– replace f ′ with f
– keep the same first two variables as in the original constraint
– introduce fresh variables yi

1, . . . , y
i
p for the last p variables.

2. For every new variable yi
s introduced in step 1, add

– a constraint yi
s 5 as with weight W , and

– a constraint yi
s 4 as, with weight W .

Clearly this transformation can be performed in polynomial time, and the
constraints added in step two above ensure that, in every optimal solution to
I′, every variable yi

s takes the value as. Hence, optimal solutions to I and to I ′
precisely correspond to each other. So, indeed, f can be assumed to be at most
binary. We consider the two cases separately.

Case 1. f is unary.
By Lemma 1, f = uD′ for some non-empty D′ ⊆ D such that either 0M, 1M �∈ D′

or else |D′| > 2 and at least one of 0M, 1M is not in D′. If f = u{a} where a is an
atom then we choose another atom b and consider the predicate u{1M,a,b}. Note
that the predicate u{1M,b} is 2-monotone on M (and hence belongs to F), and
u{1M,a,b}(x) = u{1M,b}(x) + f(x). Hence, we may assume that u{1M,a,b} ∈ F ,
since, in any instance, this predicate can be replaced by the sum above. It follows
that we can now assume that f = uD′ where two distinct atoms a, b belong to
D′, but at least one of 0M, 1M (say, 0M) does not. We will show how to reduce
Max CSP({fdicut}) (see Example 1) to Max CSP(F). Assume that the domain
D for Max CSP({fdicut}) is {a, b} where a plays the role of 0 and b that of 1.
Let g ∈ F be such that g(x, y) = 1⇔ [(x 4 a) ∧ (y 4 b)].

Take an arbitrary instance I of Max CSP({fdicut}). Replace each constraint
fdicut(x, y) by g(x, y) with the same weight. Let W be the total weight of all
constraints in I plus 1. For every variable x in I, add the constraint f(x) with
weight W and denote the obtained instance by I ′. Note that any solution to I ′
that assigns 0M to any variable is suboptimal because it violates one of the large-
weight constraints. Moreover, if a solution assigns a value d to some variable,
and d �∈ {a, b}, then d can be changed to one of a, b without decreasing the total
weight of the solution. Hence, there is an optimal solution to I ′ which uses only
values a and b. Clearly, this solution is also optimal for I. The other direction is
similar, since any optimal solution to I is also an optimal solution to I ′, or else
the transformation of solutions to I′ such as described above would produce a
better solution to I.
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Case 2. f is binary.
Note that, by Theorem 6, if we cannot use case 1 then the tuples a = (a1, a2)
and b = (b1, b2) witnessing non-supermodularity of f can be chosen in such a
way that ai and bi are comparable for i = 1, 2. For i = 1, 2, define functions
ti : {0, 1} → {ai, bi} by the following rule:

– if ai � bi then ti(0) = ai and ti(1) = bi;
– if bi � ai then ti(0) = bi and ti(1) = ai.

Then it is easy to check that the binary function g′ ∈ R{0,1} such that
g′(x1, x2) = f(t1(x1), t2(x2)) is a Boolean non-supermodular function. We will
need unary functions c′0, c′1 on {0, 1} which are defined as follows: c′i(x) is 1 if
x = i and 0 otherwise. It follows from Theorem 2 that Max CSP(F ′) on {0, 1},
where F ′ = {g′, c′0, c′1}, is NP-hard. (Note that that we include c′0, c

′
1 to ensure

that F ′ is a core). We will give a polynomial time reduction from this problem
to Max CSP(F).

In the reduction, we will use functions hi(x, y), i = 1, 2, defined by the rule

hi(x, y) = 1⇔ ((x 4 0) ∧ (y 4 ti(0))) ∨ ((x 5 1) ∧ (y 5 ti(1))).

It is easy to see that these functions are 2-monotone on M. In the rest of the
proof we identify 0M, 1M with the corresponding elements 0,1 from the domain
of F ′. Other functions used in the reduction are u{0}, u{1}, u{0,1}, u{a1,b1},
u{a2,b2}. By Lemma 1, all these functions are supermodular onM, and, in fact,
they are 2-monotone (recall that ai and bi are comparable, so at least one of
them is 0M or 1M).

Let f ′(x1, , . . . , , xn) =
∑q

i=1 ρi · f ′
i(xi) be an instance I ′ of Max CSP(F ′),

over the set V = {x1, . . . , xn} of variables. Let W =
∑

ρi + 1. Construct an
instance I of Max CSP(F) containing all variables from V and further variables
and constraints as follows.

– For every 1 ≤ i ≤ q such that f ′
i(xi) = g′(xj1 , xj2 ), introduce

• two new variables yi
j1

, yi
j2

,
• constraint f(yi

j1 , y
i
j2) with weight ρi,

• constraints u{a1,b1}(y
i
j1), u{a2,b2}(y

i
j2), each with weight W ,

• constraints h1(xj1 , y
i
j1

), h2(xj2 , y
i
j2

), each with weight W ;
– for every 1 ≤ i ≤ q such that f ′

i(xi) = c′0(xj1 ), introduce constraint u{0}(xj1)
with weight ρi;

– for every 1 ≤ i ≤ q such that f ′
i(xi) = c′1(xj1 ), introduce constraint u{1}(xj1)

with weight ρi;
– for every variable xi ∈ V , introduce constraint u{0,1}(xi) with weight W .

It is easy to see that I can be built from I′ in polynomial time. Let l be the
number of constraints with weight W in I.

For every assignment φ′ to I ′, let φ be an assignment to I which coincides
with φ′ on V , and, for every variable yi

js
(s = 1, 2), set φ(yi

js
) = ts(φ′(xjs)). It is

easy to see that φ satisfies all constraints of weight W . Moreover, every constraint
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of the form c′i(xj1 ), i ∈ {0, 1}, in I′ is satisfied if and only if the corresponding
constraint u{i}(x′

j1
) in I is satisfied. It follows from the construction of the

function g′ and the choice of functions hi and u{0,1} in I that a constraint f ′
i(xi)

in I ′ with the constraint function g′ is satisfied if and only if the corresponding
constraint with constraint function f in I is satisfied. Hence, if the total weight
of satisfied constraints in I ′ is ρ then the total weight of satisfied constraints in
I is l ·W + ρ.

In the other direction, it is easy to see that every optimal assignment φ to
I satisfies all constraints of weight W , therefore its weight is l ·W + ρ for some
ρ < W . In particular, it follows that φ(x) ∈ {0, 1} for every x ∈ V . Let φ′ be
an assignment to I ′ that is the restriction of φ to V . Then the total weight
of satisfied constraints in I ′ is ρ. Indeed, this follows from the fact that all
constraints of the form hi, u{i}, and u{0,1} are satisfied, that all variables yi

js
,

s = 1, 2, take values in the corresponding sets {as, bs}, and these values can
always be recovered from the values of the variables xjs by using the functions
ts. Thus, optimal assignments to I and to I ′ exactly correspond to each other,
and the result follows. ��

6 Conclusion

We have proved that the Max CSP problem for constraints that are super-
modular on diamonds is tractable. This is the first result about tractability of
all supermodular constraints on non-distributive lattices. One natural exten-
sion of this line of research is to establish similar results for other classes of
non-distributive lattices. It would be interesting to explore methods of proving
tractability of Max CSP other than via a reduction to submodular set func-
tion minimization (as in [8]) or via an explicit description of predicates (as in
this paper). Can the technique of multimorphisms [6,7] be effectively used in
the study of non-Boolean Max CSP? Another interesting direction for future
work is to study approximability of hard Max CSP problems. It is known that,
for |D| ≤ 3, all hard problems Max CSP(F) are APX-complete [10,21], that
is, they do not admit a polynomial-time approximation scheme. Is this true for
larger domains?
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Abstract. One of the main differences between complete SAT solvers
and exact Max-SAT solvers is that the former make an intensive use of
unit propagation at each node of the proof tree while the latter, in order
to ensure optimality, can only apply unit propagation to a restricted
number of nodes. In this paper, we describe a branch and bound Max-
SAT solver that applies unit propagation at each node of the proof tree
to compute the lower bound instead of applying unit propagation to
simplify the formula. The new lower bound captures the lower bound
based on inconsistency counts that apply most of the state-of-the-art
Max-SAT solvers as well as other improvements, like the start rule, that
have been defined to get a lower bound of better quality. Moreover, our
solver incorporates the Jeroslow-Wang variable selection heuristic, the
pure literal and dominating unit clause rules, and novel preprocessing
techniques. The experimental investigation we conducted to compare
our solver with the most modern Max-SAT solvers provides experimental
evidence that our solver is very competitive.

1 Introduction

In recent years there has been a growing interest in defining formalisms and tech-
niques for modeling and solving problems with soft constraints [13]. Even when
most of the research has been around the Max-CSP problem, we observe an in-
creasing activity around the Max-SAT problem and, in particular, in developing
fast Max-SAT solvers [1,2,4,6,18,20].

Given the good results obtained in SAT on solving NP-complete decision
problems in application areas as diverse as automatic test pattern generation,
bounded model checking, planning, graph coloring and software verification, it
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seems sensible to believe that part of the technology that has been developed for
SAT solvers like BerkMin [7], Chaff [21], Grasp [12], SATO [19], and Satz [11]
could be adapted and incorporated into modern Max-SAT solvers in order to
solve efficiently problems with soft constraints.

One of the main differences between complete SAT solvers and exact Max-
SAT solvers is that the former make an intensive use of unit propagation at each
node of the proof tree while the latter, in order to ensure optimality, can only ap-
ply unit propagation to a restricted number of nodes. In this paper, we describe
a branch and bound Max-SAT solver that applies unit propagation at each node
of the proof tree to compute the lower bound instead of applying unit propa-
gation to simplify the formula. The new lower bound captures the lower bound
based on inconsistency counts that apply most of the state-of-the-art Max-SAT
solvers as well as other improvements, like the start rule, that have been defined
to get a lower bound of better quality. Moreover, our solver incorporates the
Jeroslow-Wang variable selection heuristic, the pure literal and dominating unit
clause rules, and novel preprocessing techniques. The experimental investigation
we conducted to compare our solver with the most modern Max-SAT solvers
provides experimental evidence that our solver is very competitive.

The structure of the paper is as follows: we first give some notation and
preliminary definitions, and describe a basic branch and bound algorithm for
Max-SAT. Then, we give a detailed description of the Max-SAT solver we have
developed, and report on the experimental investigation. Finally, we present
some concluding remarks.

2 Notation and Definitions

In propositional logic a variable pi may take values 0 (for false) or 1 (for true). A
literal li is a variable pi or its negation ¬pi. A clause is a disjunction of literals,
and a CNF formula is a conjunction of clauses. An assignment of truth values to
the propositional variables satisfies a literal pi if pi takes the value 1 and satisfies
a literal ¬pi if pi takes the value 0, satisfies a clause if it satisfies at least one
literal of the clause, and satisfies a CNF formula if it satisfies all the clauses of
the formula.

The Max-SAT problem for a CNF formula φ is the problem of finding an
assignment of values to propositional variables that minimizes the number of un-
satisfied clauses (or equivalently, that maximizes the number of satisfied clauses).
Max-SAT is called Max-k-SAT when all the clauses have k literals per clause.

3 Description of a Basic Max-SAT Solver

The space of all possible assignments for a CNF formula φ can be repre-
sented as a search tree, where internal nodes represent partial assignments and
leaf nodes represent complete assignments. A branch and bound algorithm for
Max-SAT explores the search tree in a depth-first manner. At every node, the
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algorithm compares the number of clauses unsatisfied by the best complete as-
signment found so far —called upper bound (UB)— with the number of clauses
unsatisfied by the current partial assignment (unsat) plus an underestimation
of the number of clauses that will become unsatisfied if we extend the cur-
rent partial assignment into a complete assignment (underestimation). The sum
unsat + underestimation is called lower bound (LB). Obviously, if UB ≤ LB,
a better assignment cannot be found from this point in search. In that case, the
algorithm prunes the subtree below the current node and backtracks to a higher
level in the search tree. If UB > LB, it extends the current partial assignment by
instantiating one more variable; which leads to the creation of two branches from
the current branch: the left branch corresponds to assigning the new variable to
false, and the right branch corresponds to assigning the new variable to true. In
that case, the formula associated with the left (right) branch is obtained from
the formula of the current node by deleting all the clauses containing the literal
¬p (p) and removing all the occurrences of the literal p (¬p); i.e., the algorithm
applies the one-literal rule. The solution to Max-SAT is the value that UB takes
after exploring the entire search tree.

Input: max-sat(φ, UB) : A CNF formula φ and an upper bound UB
1: if φ = ∅ or φ only contains empty clauses then
2: return empty-clauses(φ)
3: end if
4: if LB(φ) ≥ UB then
5: return ∞
6: end if
7: p ← select-variable(φ)
8: UB ← min(UB,max-sat(φ¬p, UB))
9: return min(UB, max-sat(φp, UB))

Output: The minimal number of unsatisfied clauses of φ

Fig. 1. Basic branch and bound algorithm for Max-SAT

Figure 1 shows the pseudo-code of a basic branch and bound algorithms for
Max-SAT. We use the following notation:

– empty-clauses(φ) is a function that returns the number of empty clauses of φ.
– LB(φ) is a lower bound for φ.
– UB is an upper bound of the number of unsatisfied clauses in an optimal

solution. We assume that the initial value is ∞.
– select-variable(φ) is a function that returns a variable of φ following an

heuristic.
– φp (φ¬p) is the formula obtained by applying the one-literal rule to φ using

the literal p (¬p).

State-of-the-art Max-SAT solvers implement that basic algorithm augmented
with preprocessing techniques, clever variable selection heuristics, powerful in-
ference techniques, lower bounds of good quality, and efficient data structures.
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4 Description of the Solver

Our solver implements the previous basic branch and bound algorithm aug-
mented with a number of improvements that we explain below.

4.1 Preprocessing Techniques

We present the two preprocessing techniques of our solver. The first technique
consists of computing an initial upper bound with a local search procedure.
The second technique consists of simplifying the input formula by applying a
resolution refinement to binary clauses.

Before starting to explore the search tree, we obtain an upper bound on
the number of unsatisfied clauses in an optimal solution using the local search
procedure GSAT [15]. This technique was first used by Borchers& Furman in
their solver BF [5].

GSAT is a local search algorithm that starts with a randomly generated truth
assignment for the input CNF formula, and tries to find a truth assignment that
satisfies a maximal number of clauses by iteratively flipping the value of one
propositional variable (i.e.; changing the value from true to false or vice versa).
The selection of the variable to be flipped is based on the difference between the
number of clauses satisfied by the new assignment and the number of clauses
satisfied by the current assignment. This value, which is positive for those flips
that cause an increment in the number of satisfied clauses, is called the score
of the variable. In every step, a variable with maximal score is flipped. If there
are several variables with maximal score, one of these is randomly selected. Our
solver runs 10 tries, with 10.000 flips per try, and takes as initial upper bound
the minimum number of unsatisfied clauses found.

It is worth to mention that GSAT found an optimal solution for most of
the instances tested in our experimental investigation. For hardest instances, it
would be useful to compute the initial upper bound with local search solvers that
incorporate techniques to escape from local optima more sophisticated than the
techniques implemented in GSAT.

Moreover, our solver does an additional action: if the initial upper bound
is 1, we know that the input formula can only have 0 or 1 unsatisfied clauses.
In this case, we solve the instance with Satz [10,11]. If Satz determines that the
instance is satisfiable, then the solution to Max-SAT is 0. If Satz determines
that the instance is unsatisfiable, then the solution to Max-SAT is 1. This way
we take advantage of SAT techniques, like the sophisticated variable selection
heuristic of Satz, that have not yet been extended to Max-SAT. We observed in
the experiments that the run-time gains obtained with our preprocessing can be
up to one order of magnitude.

Before the search starts, we also simplify the input formula by applying the
resolution rule to a particular class of binary clauses. We replace every pair of
clauses l1∨l2 and ¬l1∨l2 with the clause l2. The advantage of this preprocessing is
that we generate new unit clauses. Note that arbitrary binary resolution cannot
be applied safely in Max-SAT. This rule was first introduced in [3].
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4.2 Inference Techniques

We next define the inference rules that our solver applies at each node of the
proof tree in order to simplify the formula associated with the node:

– Pure literal rule: If a literal only appears with either positive polarity or
negative polarity, we delete the clauses containing that literal.

– Dominating Unit Clause (DUC) rule: DUC [14] is an inference rule that
allows one to fix the truth value of a variable; i.e., it avoids to apply branching
on that variable. DUC is defined as follows: If the number of clauses in which
a literal p (¬p) appears is not bigger than the number of unit clauses in which
the literal ¬p (p) appears, then the value of p can be set to false (true).

– Unit propagation: When branching is done, branch and bound algorithms
for Max-SAT apply the one-literal rule (simplifying with the branching lit-
eral) instead of applying unit propagation as in most SAT solvers.1 If unit
propagation is applied at each node, the algorithm can return a non-optimal
solution. For example, if we apply unit propagation to p∧¬q ∧ (¬p∨ q)∧¬p
using the unit clause ¬p, we derive one empty clause while if we use the unit
clause p, we derive two empty clauses. However, when the difference between
the lower bound and the upper bound is one, unit propagation can be safely
applied, because otherwise by fixing to false any literal of any unit clause
we reach the upper bound. This inference technique, which was first used by
Borchers&Furman [5], is also used in our solver. Nevertheless, the novel use
of unit propagation that we introduce, in this paper, is explained below.

4.3 Variable Selection Heuristic

Our solver implements the variable selection heuristic known as Jeroslow-Wang
rule (JW) [9,8]: Given a formula φ, for each literal l of φ the following function is
defined:

J(l) =
∑

l∈C∈φ

2−|C|

where |C| is the length of clause C. JW selects a variable p of φ among those that
maximize J(p) + J(¬p).

4.4 Computation of the Lower Bound

To compute an underestimation of the number of clauses that will become un-
satisfied if we extend the current partial assignment into a complete assignment,
our solver proceeds as follows:

1. Let φ be the current CNF formula
2. underestimation := 0
3. Apply the one-literal rule to the unit clauses of φ until an empty clause is

derived.
1 By unit propagation we mean the repeated application of the one-literal rule until a

saturation state is reached.
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4. If no empty clause can be derived, exit.
5. Let φ′ be φ without the clauses that have been used to derive the empty

clause.
6. φ := φ′

7. underestimation := underestimation + 1
8. go to 3

Example 1. Let φ be the following CNF formula:

x1 ∧ x2 ∧ x3 ∧ x4 ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ ¬x4 ∧ x5 ∧ (¬x5 ∨ ¬x2) ∧ (¬x5 ∨ x2).

With our lower bound we are able to establish that the number of unsatisfied
clauses in φ is at least 3. The steps performed are the following ones:

1. φ = �∧ x4 ∧¬x4 ∧ x5 ∧ (¬x5 ∨¬x2)∧ (¬x5 ∨ x2) and underestimation = 1,
where the empty clause was derived from the clauses x1, x2, x3,¬x1 ∨¬x2 ∨
¬x3 by applying unit propagation.

2. φ = �∧�∧ x5 ∧ (¬x5 ∨¬x2)∧ (¬x5 ∨ x2) and underestimation = 2, where
the new empty clause was derived from the clauses x4,¬x4 by applying unit
propagation.

3. φ = � ∧ � ∧ � and underestimation = 3, where the new empty clause was
derived from the clauses x5,¬x5∨¬x2,¬x5∨x2 by applying unit propagation.

Given an unsatisfiable CNF formula φ = φ1 ∪ φ2, it is well-known that Max-
SAT(φ) ≥ Max-SAT(φ1) + Max-SAT(φ2). So, we have that if φ1 are the clauses
involved in the derivation of an empty clause by unit propagation, we can conclude
that Max-SAT(φ) ≥ 1+ Max-SAT(φ2). This is the idea behind our lower bound.

Most of the existing exact Max-SAT solvers use the following lower
bound [17]:

LB(φ) = unsat +
∑

p occurs in φ

min(ic(p), ic(¬p)),

where φ is the formula associated with the current partial assignment, and ic(p)
(ic(¬p)) —inconsistency count of p (¬p)— is the number of clauses that become
unsatisfied if the current partial assignment is extended by fixing p to true (false);
in other words, ic(p) (ic(¬p)) coincides with the number of unit clauses of φ
that contain ¬p (p). Note that our lower bound captures the lower bound based
on inconsistency counts: if we apply that lower bound to the formula φ from
Example 1, it is captured when we derive the empty clause from x4 and ¬x4.
Observe that while our lower bound is 3, this lower bound is only 1.

With our approach we also capture more sophisticated rules that are not often
applied during the search for an optimal solution not because they do not provide
useful information but because the overhead of computing the rule with the data
structures defined in most solvers does not compensate the benefits obtained.
This is the case of the star rule [3]:2 if we have a clause of the form ¬l1∨· · ·∨¬lk,
2 The start rule defined in [3] was inspired by the so-called star rule in [14]. Neverthe-

less, the rule defined in [14] is not used to compute lower bounds.
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where l1, . . . , lk are literals, and k unit clauses of the form l1, . . . , lk, then the
lower bound can be incremented by one. We considered this rule with a very low
overhead: it is known that unit propagation can be computed in linear time with
respect to the size of the formula. In the formula φ from Example 1, the star-rule
is captured when we derive the empty clause from x1∧x2∧x3∧(¬x1∨¬x2∨¬x3).

We also capture other situations that have not been described as rules. For
example, when we derive the empty clause from x5 ∧ (¬x5 ∨¬x2)∧ (¬x5 ∨x2) in
the formula φ from Example 1, it can be seen as that we replace (¬x5 ∨ ¬x2) ∧
(¬x5 ∨ x2) with ¬x5, as an application of the resolution refinement explained
above, and then derive the empty clause from x5 and ¬x5.

5 Experimental Results

We conducted an experimental investigation in order to compare the perfor-
mance of our Max-SAT solver with the following state-of-the-art solvers:

– BF [5]: a branch and bound Max-SAT solver which uses MOMS as dynamic
variable selection heuristic, and it considers neither underestimations in the
lower bound nor formula reduction preprocessing and DUC. It was developed
by Borchers&Furman in 1999.

– GLMS [6]: a Max-SAT solver that encodes the input instance as a constraint
network and solves that network with a state-of-the-art Max-CSP solver
with a sophisticated and good performing lower bound. It was developed by
Givry, Larrosa, Meseguer & Schiex in and presented at CP-2003.

– XZ [18]: a branch and bound Max-SAT solver developed by Xing & Zhang
and presented at CP-2004. We used the second release of this solver which
is known as MaxSolver.

– AGN [1]: a branch and bound Max-2-SAT solver. It was developed by Alber,
Gramm &Niedermeier in 1998.

– ZSM [20]: a branch and bound Max-2-SAT solver. It was developed by Zhang,
Shen &Manyà in 2003. Improved lower bounds for this solver are described
in [16].

– Lazy [4]: a branch and bound Max-SAT solver with lazy data structures
and a static variable selection heuristic. It was developed by Alsinet, Manyà
&Planes and presented at SAT-2005.

In this section we refer to our solver as UP. As explained above, UP computes
an initial upper bound with a local search solver. That upper bound is also
provided as input to the rest of solvers.

As benchmarks we used randomly generated Max-2-SAT instances and the
set of individual Max-SAT instances that were used as benchmarks by Givry,
Larrosa, Meseguer & Schiex in their CP-2003 paper. These instances are Max-3-
SAT, graph coloring and pigeon hole instances. The experiments were performed
on a 2GHz Pentium IV with 512 Mb of RAM under Linux.

In our first experiment, we evaluated the impact of the new lower bound
based on unit propagation. We compared UP with a version of UP (called IC in
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the plot) where the lower bound is computed by means of inconsistency counts,
and with a version of UP (called Star in the plot) where the lower bound is
computed by means of inconsistency counts and the star rule. As benchmark
we used sets of random Max-2-SAT instances with 50 variables and a number
of clauses ranging from 200 to 1000. Each set had 500 instances. The results
obtained are shown in Figure 2. Along the horizontal axis is the number of
clauses, and along the vertical axis is the mean number of backtracks (left plot)
and the mean time (right plot), in seconds, needed to solve an instance of a set.
Notice that we use a log scale to represent both backtracks and run-time. We
observe that our lower bound outperforms dramatically the rest of lower bounds
in both the number of backtracks and the time needed to solve an instance.
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Fig. 2. Experimental results for 50-variable Max-2-SAT instances for evaluating the
impact of the lower bound based on unit propagation

In our second experiment, we evaluated the impact of simplifying the input
formula by applying, as a preprocessing, the resolution refinement defined in
the previous section. We compared UP with a version of UP without that pre-
processing. As benchmark we used sets of random Max-2-SAT instances with
100 variables and a number of clauses ranging from 200 to 800. Each set had
500 instances. The results obtained are shown in Figure 3. Along the horizontal
axis is the number of clauses, and along the vertical axis is the mean number of
backtracks (left plot) and the mean time (right plot), in seconds, needed to solve
an instance of a set. We observe that the resolution refinement we have defined
gives raise to substantial gains.

In our third experiment, we generated sets of random Max-2-SAT instances
with 100 and 150 variables and a different number of clauses. Each set had 500
instances. The results of solving such instances with UP, BF, GLMS, XZ, AGN,
ZSM and Lazy are shown in Figure 4. Along the horizontal axis is the number
of clauses, and along the vertical axis is the mean time, in seconds, needed to
solve an instance of a set. Notice that we use a log scale to represent run-time.
Observe that UP outperforms the rest of solvers, including ZSM and AGN that
are specifically designed to solve Max-2-SAT instances. XZ shows a good scaling
behavior but UP is up to 6 times faster than XZ in the hardest instances.
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Fig. 3. Experimental results for 100-variable Max-2-SAT instances for evaluating the
impact of the preprocessing based on a resolution refinement

It is worth mentioning that Givry, Larrosa, Meseguer & Schiex showed that
their solver is much better than CPLEX and two pseudo-Boolean solvers (PBS
and OPBDP) on randomly generated Max-2-SAT instances. Since UP outper-
forms GLMS, we could conclude that UP is better than CPLEX, PBS and
OPBDP on Max-2-SAT instances.
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Fig. 4. Experimental results for 100-variable and 150-variable Max-2-SAT instances.
Mean time (in seconds).

In our fourth experiment, we solved the Max-3-SAT (dubois and aim), graph
coloring (Pret) and pigeon hole (hole) instances used by Givry, Larrosa, Meseguer
& Schiex in their CP-2003 paper. We compared UP with GLMS, XZ, BF and
Lazy. AGN and ZSM were not considered because they only admit Max-2-SAT
instances. We used a cutoff of 600 seconds as in [6]. The results clearly indicate
that UP is superior to the rest of solvers.3 In this experiment, where the minimal
number of unsatisfied clauses of each instance is one, it was crucial to get one as
initial upper bound and then solve the instance with Satz.

3 The results indicated by an hyphen (-) correspond to a segmentation fault.
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Instance BF GLMS XZ Lazy UP
Pret60 25 8.98 473 9.75 98 7.29
Pret60 40 9.03 455 9.43 98 7.49
Pret60 60 9.47 463 9.75 98 7.44
Pret60 75 8.94 466 9.75 98 1 7.28
dubois20 5.93 378 8.23 39 5.29
dubois21 12 >600 17 85 5.87
dubois22 22 >600 34 219 15
dubois23 45 >600 70 >600 42
dubois24 92 >600 140 >600 47
dubois25 194 >600 299 >600 127
dubois26 413 >600 >600 >600 339
dubois27 >600 >600 >600 >600 383
dubois28 >600 >600 >600 >600 >600
dubois29 >600 >600 >600 >600 >600
dubois30 >600 >600 >600 >600 >600
aim-50-1-6n1 0.11 0.01 0.08 0.01 0.01
aim-50-1-6n2 0.28 0.01 0.05 20 0.01
aim-50-1-6n3 0.14 0.01 0.10 3.84 0.01
aim-50-1-6n4 0.14 0.01 0.05 29 0.01
aim-50-2-6n1 0.16 0.01 0.09 43 0.01
aim-50-2-6n2 0.14 0.01 0.06 21 0.01
aim-50-2-6n3 0.15 0.01 0.08 24 0.01
aim-50-2-6n4 0.01 0.01 0.09 0.01 0.01
aim-100-1-6n1 >600 >600 450 >600 0.01
aim-100-1-6n2 297 287 79 >600 0.01
aim-100-1-6n3 >600 >600 519 >600 0.01
aim-100-1-6n4 >600 >600 197 >600 0.01
aim-100-2-6n1 182 >600 76 >600 0.01
aim-100-2-6n2 0.12 0.01 41 0.01 0.01
aim-100-2-6n3 0.14 0.01 33 0.01 0.01
aim-100-2-6n4 104 >600 44 >600 0.01
hole6 0.13 0.14 0.07 0.04 0.01
hole7 0.17 1.33 - 0.27 0.03
hole8 1.28 14 0.06 5.81 0.31
hole9 14 155 - 84 2.81
hole10 245 >600 0.07 >600 30

Fig. 5. Experimental results for Max-3-SAT, graph coloring and pigeon hole instances

The results of this paper indicate that the new lower bound based on unit
propagation in combination with the other techniques we have incorporated into
UP are a very competitive approach to solving Max-SAT. We are currently work-
ing on incorporating more powerful variable selection heuristics to UP and on
applying more inference techniques at the formula associated with each node of
the proof tree generated by UP. The results of this paper also provide experimen-
tal evidence that revisiting the solving techniques developed for SAT and trying
to adapt them to Max-SAT could lead to good performing Max-SAT solvers.
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Abstract. Conflict-directed search algorithms have formed the core of
practical, model-based reasoning systems for the last three decades. At
the core of many of these applications is a series of discrete constraint
optimization problems and a conflict-directed search algorithm, which
uses conflicts in the forward search step to focus search away from known
infeasibilities and towards the optimal feasible solution. In the arena of
model-based autonomy, deep space probes have given way to more agile
vehicles, such as coordinated vehicle control, which must robustly control
their continuous dynamics. Controlling these systems requires optimizing
over continuous, as well as discrete variables, using linear as well as logical
constraints.

This paper explores the development of algorithms for solving hybrid
discrete/linear optimization problems that use conflicts in the forward
search direction, carried from the conflict-directed search algorithm in
model-based reasoning. We introduce a novel algorithm called General-
ized Conflict-Directed Branch and Bound (GCD-BB). GCD-BB extends
traditional Branch and Bound (B&B), by first constructing conflicts
from nodes of the search tree that are found to be infeasible or sub-
optimal, and then by using these conflicts to guide the forward search
away from known infeasible and sub-optimal states. Evaluated empir-
ically on a range of test problems of coordinated air vehicle control,
GCD-BB demonstrates a substantial improvement in performance com-
pared to a traditional B&B algorithm applied to either disjunctive linear
programs or an equivalent binary integer programming encoding.

1 Introduction

Conflict-directed search algorithms have formed the core of practical, model-
based reasoning systems for the last three decades, including the analysis of
electrical circuits [1], the diagnosis of thousand-component circuits [5], and the
model-based autonomous control of a deep space probe [10]. A conflict, also
called nogood, is a partial assignment to a problem′s state variables, representing
sets of search states that are discovered to be infeasible, in the process of testing
candidate solutions.
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At the core of many of the above applications is a series of discrete constraint
optimization problems, whose constraints are expressed in propositional state
logic, and a set of conflict-directed algorithms, which use conflicts to focus search
away from known infeasibilities and towards the optimal feasible solution.

In the arena of model-based autonomy, deep space probes have given way
to more agile vehicles, including rovers, airplanes and legged robots [20], which
must robustly control their continuous dynamics according to some higher level
plan. Controlling these systems requires optimizing over continuous, as well as
discrete variables, using linear as well as logical constraints. In particular, [22]
introduces an approach for model-based execution of continuous, non-holonomic
systems, and demonstrates this capability for coordinated air vehicle search and
rescue, using a real-time hardware-in-the-loop testbed.

In this framework the air vehicle control trajectories are generated and up-
dated in real-time, by encoding the plan′s logical constraints and the vehicles
continuous dynamics as a disjunctive linear program (DLP). A DLP [3] general-
izes the constraints in linear programs (LPs) to clauses comprised of disjunctions
of linear inequalities. A DLP is one instance of a growing class of hybrid rep-
resentations that are used to encode mixed discrete/linear constraints, such as
mixed linear logic programs (MLLPs) [13] and LCNF [16], in addition to the well
known mixed integer programs (MIPs) and binary integer programs (BIPs).

In this paper we explore the development of algorithms for solving hybrid dis-
crete/linear optimization problems (HDLOPs) that use conflicts in the forward
search direction, similar to the conflict-directed A* algorithm [23]. We introduce
an algorithm called Generalized Conflict-Directed Branch and Bound (GCD-
BB) applied to the solution of DLPs. GCD-BB extends traditional Branch and
Bound (B&B), by first constructing a conflict from each search node that is
found to be infeasible or sub-optimal, and then by using these conflicts to guide
the forward search away from known infeasible and sub-optimal states.

In the next section we begin by reviewing the DLP formulation. Second, we
introduce the GCD-BB algorithm, including B&B for DLPs, generalized con-
flicts, conflict-directed search and the relaxation method. Third, we evaluate
GCD-BB empirically on the test problems generated by the coordinated air ve-
hicle path planner [22]. GCD-BB demonstrates a substantial improvement in
performance compared to a traditional B&B algorithm applied to either DLPs
or an equivalent BIP encoding. Finally, we conclude and discuss future work.

2 Disjunctive Linear Programs

A DLP is defined in Eq.1 [3], where x is a vector of decision variables, f(x) is a
linear cost function, and the constraints are a conjunction of n clauses, each of
which (clause i) is a disjunction of (mi) linear inequalities, Cij(x) ≤ 0.

Minimize f(x)

Subject to
∧

i=1,...,n

(
∨

j=1,...,mi

Cij(x) ≤ 0) (1)
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A DLP reduces to a standard Linear Program (LP) in the special case when
every clause in the DLP is a unit clause, that is mi = 1, ∀i = 1, . . . , n. A clause
is a unit clause if it only contains one linear inequality. For a DLP to be feasible,
no clause in the DLP should be violated. A clause is violated if none of the linear
inequalities in the clause is satisfied.

For example, in Fig.1 a vehicle has to go from point A to C, without hitting
the obstacle B, while minimizing fuel use. Its DLP formulation is Eq. 2.

Fig. 1. A simple example of a hybrid discrete/linear optimization problem

Minimize f(x)
Subject to g(x) ≤ 0

xt ≤ xL ∨ xt ≥ xR ∨ yt ≤ yB ∨ yt ≥ yT ,

∀t = 1, . . . , n

(2)

Here ∨ denotes logical or, and x is a vector of decision variables that includes,
at each time step t(= 1, . . . , n), the position, velocity and acceleration of the
vehicle. f(x) is a linear cost function in terms of fuel use, and g(x) ≤ 0 is a
conjunction of linear inequalities on vehicle dynamics, and the last constraint
keeps the vehicle outside obstacle B, at each time step t.

Note that HDLOPs can also be formulated in other ways: BIPs [17, 15, 14],
MLLPs [13] and LCNF [16]. Our GCD-BB algorithm, though introduced in the
context of DLPs, can be generalized to other formulations. Our focus is on the
generalization of forward conflict-directed search to these hybrid problems, not
on the DLP encoding in particular.

3 The GCD-BB Algorithm

The GCD-BB algorithm builds upon B&B and incorporates three key innovative
features: first, Generalized Conflict Learning learns conflicts comprised of con-
straint sets that produce either infeasibility or sub-optimality; second, Forward
Conflict-Directed Search guides the forward step of the search away from regions
of state space corresponding to known conflicts; and third, Induced Unit Clause
Relaxation uses unit propagation to form a relaxed problem and reduce the
size of its unassigned problem. In addition, we compare different search orders:
Best-first Search (BFS) versus Depth-first Search (DFS). In the following sub-
sections, we develop these key features of GCD-BB in detail, including examples
and pseudo code.
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3.1 Branch and Bound for DLPs

GCD-BB builds upon B&B, which is frequently used by BIPs and MIPs, to solve
problems involving both discrete and continuous variables. Instead of exploring
the entire feasible set of a constrained problem, B&B uses bounds on the optimal
cost, in order to avoid exploring subsets of the feasible set that it can prove
are sub-optimal, that is, subsets whose optimal solution is not better than the
incumbent, which is the best solution found so far. The algorithm for B&B
applied to DLPs is Alg. 1.

Alg. 1 is special for DLPs, in mainly function Clause-Violated? and function
Expand-Node. Clause-Violated? checks if any clause is violated by the relaxed so-
lution. Note that a node in the search tree represents a set of unselected clauses
and a set of selected unit clauses. At each node in the search tree, the selected unit

Algorithm 1 BB-DLP(DLP )
1: upperBound ← +∞
2: timestamp = 0
3: put DLP into a FILO queue
4: while queue is not empty do
5: node ← remove from queue
6: node.relaxedSolution ← solveLP(node.relaxedLP)
7: if node.relaxedLP is infeasible then
8: continue {node is deleted}
9: else if node.relaxedValue ≥ upperBound then

10: continue {node is deleted}
11: else
12: expand = False
13: for each clause in node.nonUnitClauses do
14: if Clause-Violated?(clause, node.relaxedSolution) then
15: expand ← True
16: break
17: end if
18: end for
19: if expand = False then
20: upperBound← node.relaxedValue {a new incumbent was found}
21: incumbent ← node.relaxedSolution
22: else
23: put Expand-Node(node, timestamp) in queue
24: timestamp← timestamp + 1
25: end if
26: end if
27: end while
28: if upperBound < +∞ then
29: return incumbent
30: else
31: return INFEASIBLE
32: end if
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clause set and the objective function form the relaxed LP to be solved1. While the
search tree of B&B for BIPs branches by assigning values to the binary variables, in
Expand-Node, B&B for DLPs branches by splitting clauses; that is, a tree node is
expanded by selecting one of the DLP clauses, and then selecting one of the clauses′

disjuncts for each of the child nodes.More detailed pseudo code canbe found in [21].

3.2 Generalized Conflict Learning

Underlying the power of B&B is its ability to prune subsets of the search tree
that correspond to relaxed subproblems that are identified as inconsistent or
sub-optimal, as seen in line 7 and 9 in Alg.1. Hence two opportunities exist for
learning and pruning. We exploit these opportunities by introducing the concept
of generalized conflict learning, which extracts a description from each fathomed
subproblem that is infeasible or sub-optimal. This avoids exploring subproblems
with the same description in the future. To accomplish this we add functions
Extract-Infeasibility and Extract-Suboptimality after line 7 and 9 in Alg. 1,
respectively. It is valuable to have each conflict as compact as possible, so that
the subspace that can be pruned is as large as possible.

In the related fields of model-based reasoning and discrete constraint sat-
isfaction, conflict-directed methods, such as dependency-directed backtracking
[1], backjumping [2], conflict-directed backjumping [8] and dynamic backtracking
[7], dramatically improve the performance of backtrack (BT) search, by learning
the source of each inconsistency discovered and using this information, called
a conflict (or nogood), to prune additional subtrees that the conflict identifies
as inconsistent. Similarly nogood learning is a standard technique for improving
BT search, in CSP [6][19] and in SAT solvers [12].

Definition of a Conflict. In the context of DLPs, each conflict can be one
of two types: an infeasibility conflict, or a sub-optimality conflict. An infeasibil-
ity conflict is a set of inconsistent constraints of an infeasible subproblem. An
example is the constraint set {a,b,c,d} in Fig. 2(a). A sub-optimality conflict
is a set of active constraints of a sub-optimal subproblem. An inequality con-
straint gi(x) ≤ 0 is active at a feasible point x̃ if gi(x̃) = 0. An example of a
sub-optimality conflict is the constraint set {a,b,d} in Fig. 2(b).

Definition of a Minimal Conflict. A conflict is minimal if none of its proper
subsets is a conflict. For example, the constraint set {a,c,d} in Fig. 2(a) is a
minimal conflict, as it is an inconsistent constraint set and every proper subset
of it is consistent. Constraint set {a,d} in Fig. 2(b) is also a minimal conflict.
Note that there can be more than one minimal conflict (possibly with differ-
ent cardinalities) involved in one infeasibility or sub-optimality, and a minimal
1 p′ is a relaxed LP of an optimization problem p, if the feasible region of p′ contains

the feasible region of p, and they have the same objective function. Therefore if p′ is
infeasible, then p is infeasible. Assuming minimization, if p′ is solved with an optimal
value v, the optimal value of p is guaranteed to be greater than or equal to v. B&B uses
relaxed problems to obtain lower bounds of the original problem.



420 H. Li and B. Williams

(a) Constraint set
{a,b,c,d} is inconsistent.
It is an infeasibility
conflict.

(b) The optimal solu-
tion is X∗. Constraints
a, b and d are all ac-
tive. Set {a,b,d} is a sub-
optimality conflict.

Fig. 2. Examples of conflicts

conflict is not guaranteed to have the minimum cardinality. We extract minimal
conflicts instead of any conflicts, since minimal conflicts can prune larger portion
of the state space. However, we do not try to extract the minimum conflict of a
subproblem, because it is NP-complete.

Implementation. The function of extracting the minimal infeasibility conflict
is provided by the commercial software CPLEX. Intuitively, A dual variable of an
LP problem is the cost for violating a constraint in the LP. Thus the dual vector
of an LP has the same dimension as the number of constraints in the LP. The
presence of violation costs allows the constraints of the LP to be broken, and the
goal is to minimize the violation costs. A constraint is consistent if and only if
the costs can be minimized to zero. Therefore the set of non-zero dual variables
of the infeasible LP corresponds to the set of the inconsistent constraints that
forms a minimal infeasibility conflict.

For sub-optimality, we use the dual method of LP to extract minimal con-
flicts. According to Complementary Slackness [11] from linear optimization the-
ory, the non-zero terms of the optimal dual vector correspond to the set of active
constraints (assuming with cardinality k) at the optimal solution (assuming with
dimension n) of the LP. When the optimal solution is non-degenerate, it is guar-
anteed that k ≤ n and the active constraint set is the minimal sub-optimality
conflict; when there is degeneracy, we take any min{k, n} constraints from the
active constraint set to form the minimal sub-optimality conflict.

Once extracted, the minimal conflict is stored in a conflict database, con-
flictDB, indexed by a timestamp that marks its discovery time.

3.3 Forward Conflict-Directed Search

We use forward conflict-directed search to guide the forward step of search away
from regions of the feasible space that are ruled out by known conflicts. Backward
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search methods also use conflicts to direct search, such as dependency-directed
backtracking [1], backjumping [2], conflict-directed backjumping [8], dynamic
backtracking [7] and LPSAT [16]. These backtrack search methods use conflicts
both to select backtrack points and as a cache to prune nodes without testing
consistency. In contrast, methods like conflict-directed A* [23] use conflicts in
forward search, to move away from known bad states. Thus not only one conflict
is used to prune multiple subtrees, but also several conflicts can be combined as
one compact description to prune multiple subtrees. We generalize this idea to
guiding B&B away from regions of state space that the known conflicts indicate
as infeasible or sub-optimal. Our experimental results show that forward conflict-
directed search significantly outperforms backtrack search with conflicts on a
range of cooperative vehicle plan execution problems.

In terms of implementation, we replace function Expand-Node in Alg. 1 with
function General-Expand-Node (Alg. 2). When there is no unresolved conflict2,
the normal Expand-Node is used, and when unresolved conflicts exist, forward
conflict-directed search is performed. Forward conflict-directed search (Forward-

Algorithm 2 General-Expand-Node(node, timestamp,conflictDB)
1: conflictSet ← conflictDB(timestamp)
2: if conflictSet is empty then
3: Expand-Node(node, timestamp)
4: else
5: Forward-CD-Search(node, conflictSet)
6: end if

CD-Search as in Alg. 2) includes three steps: 1) Generate-Constituent-Kernels, 2)
Generate-Kernels (Alg. 3) and 3) Generate-And-Test-DLP-Candidates (Alg. 5).
An example is shown in Fig. 3.

A constituent kernel is a minimal description of the states that resolve a
conflict. In the context of DLPs, a constituent kernel of a conflict is a linear
inequality that is the negation of a linear inequality in the conflict. For example,
one constituent kernel of the minimal infeasibility conflict in Fig. 2(a) is {x −
y ≤ 0}3.

In [23] kernels are generated to resolve all known conflicts, by combining the
constituent kernels using minimal set covering. It views minimal set covering
as a search and uses A* to find the kernel containing the best utility state. In
the context of DLPs, we similarly build up a kernel by incrementally selecting
constituent kernels (which are linear inequalities) from discovered conflicts using
minimal set covering. However, we do not use A* search to identify the best

2 A node resolves conflict C if at least one of the C′s disjuncts is explicitly excluded
in the relaxed LP of the node.

3 It is not the strictly correct negation of x − y ≥ 0, but in the context of linear
programming, it is correct and convenient.
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Fig. 3. Each conflict is mapped to a set of constituent kernels, which resolve that con-
flict alone. Kernels are generated by combining the constituent kernels using minimal
set covering. A DLP candidate is formed for each kernel, and is checked for consistency.

Fig. 4. (a) A partial tree of B&B for DLPs. The creation time of each node is shown
on the left of the node. Two conflicts are discovered at the bottom. (b) The search tree
for minimal set covering to generate kernels from constituent kernels.

kernel. In order to evaluate the heuristic during A* search, we would need to solve
an LP at each step as we build the kernels; this can be very costly. Instead GCD-
BB generates a DLP candidate with each kernel, as shown in Fig. 3, and prunes
the DLPs that are propositionally unsatisfiable, using a fast unit propagation
test before solving any relaxed LP, as shown in Alg. 5.

As shown in Generate-Kernels (Alg. 3), we use minimal set covering to gen-
erate the kernels. Fig. 4(b) demonstrates Generate-Kernels by continuing the
example from Fig. 3. In particular, in Fig. 4(b) the tree branches by splitting
on constituent kernels. In this example, each node represents a set of chosen
constituent kernels: the root node is an empty set, and the leaf node on the right
is {¬c1,¬c2}. At each node, consistency is checked (line 8 in Alg. 3), and then
Generate-Kernels checks whether any of the existing kernels is a subset of the
current node (line 10). If this is the case, there is no need to keep expanding
the node, and it is removed. In this event, the leaf node is marked with an X in
Fig. 4(b); otherwise, Generate-Kernels checks whether any conflict is unresolved
at the current node (line 16): if yes, the node is expanded by splitting on the
constituent kernels of the unresolved conflicts (line 17); otherwise, the node is
added to the kernel list, while removing from the list any node whose set of
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Algorithm 3 Generate-Kernels(constituentKernelSet)
1: root ← {}
2: root.unresolved ← constituentKernelSet {initializes node.unresolved}
3: put root in a queue
4: kernelSet← {}
5: nodeDelete ← False {the flag to determine whether to delete a node}
6: while queue is not empty do
7: node ← remove from queue
8: if Consistent?(node) then
9: for each E in kernelSet do

10: if E ⊆ node then
11: nodeDelete ← True {checks whether any of the existing kernels is a

subset of the current node}
12: break
13: end if
14: end for
15: if nodeDelete = False then
16: if Unresolved-Conflict?(node, node.unresolved) then
17: put Expand-Conflict(node, node.unresolved) in queue {checks whether

any conflicts are unresolved by node}
18: else
19: Add-To-Minimal-Sets(kernelSet, node) {avoids any node that is a

superset of another in kernelSet}
20: end if
21: end if
22: end if
23: end while
24: return kernelSet

Algorithm 4 Add-To-Minimal-Sets(Set, S)
for each E in Set do

if E ⊂ S then
return Set

else if S ⊂ E then
remove E from Set

end if
end for
return Set ∪ {S}

constraints is a superset of another node (line 19). The node at the far left of
Fig. 4(b) resolves all the conflict and, therefore, is not expanded.

Finally, a timestamp is used to record the time that a node is created or a
conflict is discovered. We use timestamps to ensure that each node resolves all
conflicts, while avoiding repetition. This is accomplished through the following
rules: 1. if {conflict time = node time}, there is no need to resolve the conflict
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Algorithm 5 Generate-And-Test-DLP-Candidate(kernelSet, DLP )
1: S ← DLP.unitClauses
2: for each kernel in kernelSet do
3: if Consistent?(S ∪ kernel) then
4: DLP.unitClauses ← S ∪ kernel {checks whether kernel is consistent with

the unit clause set of DLP}
5: add DLP in DLPList
6: end if
7: end for
8: return DLPList

when expanding the node. For example, in Fig. 4(a), node c3 and its children
(if any) are guaranteed to resolve the two conflicts {b1, c1} and {b1, c2}. 2. If
{conflict time > node time}, we expand the node in order to resolve the conflict
using the conflict’s constituent kernels. For example, node b2 and a2 are to
be expanded using Forward-CD-Search. 3. If {conflict time < node time}, the
conflict is guaranteed to be resolved by an ancestor node of the current node,
and therefore, needs not to be resolved again.

3.4 Induced Unit Clause Relaxation

Relaxation is an essential tool for quickly characterizing a problem when the
original problem is hard to solve directly; it provides bounds on feasibility and
the optimal value of a problem, which are commonly used to prune the search
space. Previous research [18] typically solves DLPs by reformulating them as
BIPs, where a relaxed LP is formed by relaxing the binary constraint (x ∈ {0, 1})
to the continuous linear constraint (0 ≤ x ≤ 1).

An alternative way of creating a relaxed LP is to operate on the DLP encod-
ing directly, by removing all non-unit clauses from the DLP. Prior work argues
for the reformulation of DLP as BIP relaxation, with the rationale that it main-
tains some of the constraints of the non-unit clauses through the continuous
relaxation from binary to real-valued variables, in contrast to ignoring all the
non-unit clauses. However, this benefit is at the cost of adding binary variables
and constraints, which increases the dimensionality of the search problem.

Our approach starts with the direct DLP relaxation. We overcome the weak-
ness of standard DLP relaxation (loss of non-unit clauses) by adding to the
relaxation unit clauses that are logically entailed by the original DLP. In the
experiment section we compare our induced unit clause relaxation with the BIP
relaxation and show a profound improvement on a range of cooperative vehicle
plan execution problems.

In terms of implementation, as seen in Alg.6 and the example in Fig. 5,
Induce-Unit-Clause performs unit propagation among the unit and non-unit
clauses to induce more unit clauses and simplify a DLP. A relaxed LP is also
formed by combining the objective function and the unit clause set (line 2).
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Algorithm 6 Induce-Unit-Clause(DLP )
1: {DLP .unitClauses, DLP .nonUnitClauses} ←

Unit-Propagation({DLP .unitClauses, DLP .nonUnitClauses})
2: DLP .relaxedLP ←< DLP .objective, DLP .unitClauses>
3: return DLP

Fig. 5. A simple example of induced unit clause relaxation

3.5 Search Order: Best-First Versus Depth-First

Given a fixed set of heuristic information, [4] shows that best-first search is
the most efficient algorithm in terms of time efficiency. Intuitively, this is be-
cause BFS does not visit any node whose heuristic value is worse than the op-
timum, and all nodes better than the optimum must be visited to ensure that
the optimum is not missed. However, BFS can take dramatically more mem-
ory space than DFS. Nevertheless, with conflict learning and forward conflict-
directed search, the queue of the BFS search tree can be significantly reduced.
Our experimental results show that on a range of test problems BFS can take
memory space similar to DFS, while taking significantly less time to find the
optimum.

An additional issue for GCD-BB is that the concept of sub-optimality is
rooted in maintaining an incumbent. Hence, it can be applied to DFS but not to
BFS. To evaluate these tradeoffs, our experiments in the next section compare
the use of BFS and conflict learning from infeasibility only, with DFS and conflict
learning from both infeasibility and from suboptimality.

4 Experimental Performance Analysis

This section provides experimental results of the GCD-BB algorithm, compared
with the benchmark B&B algorithm applied either to DLPs or to an equivalent
BIP encoding, on a range of test problems of coordinated air vehicle control
[22]. We also compare the effect of several algorithmic variants, in particular,
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BFS versus DFS, infeasibility conflict learning versus sub-optimality conflict
learning and forward search versus backtrack search. While each algorithmic
variant terminates with the same optimal solution, GCD-BB achieves an order
of magnitude speed-up over BIP-BB. In addition, the difference in performance
increases as the problem size increases.

As the bulk of the computational effort expended by these algorithms is de-
voted to solving relaxed LP problems, the total number and average size of these
LPs are representative of the total computational effort involved in solving the
HDLOPs. Note that extracting infeasibility conflicts and sub-optimality conflicts
can be achieved as by-products of solving the LPs, and therefore does not incur
any additional LP to solve. We use the total number of relaxed LPs solved and
the average LP size as our LP solver and hardware independent measures of
computation time. To measure memory space use, maximum queue size is used.

Table 1. Comparison on the number of relaxed LPs

Clause/ 80/ 700/ 1492/ 2456/
Variable 36 144 300 480
BIP-BB 31.5 2009 4890 8133

DLP BFS
without Conflict Learning 24.3 735.6 1569 2651

Infeasibility Conflict 19.2 67.3 96.3 130.2
Conflict-directed Backtrack 23.1 396.7 887.8 1406

DLP DFS

without Conflict Learning 28.0 2014 3023 4662
Infeasibility Conflict 22.5 106.0 225.4 370.5

Conflict-directed Backtrack 25.9 596.9 1260 1994
Infeasibility+Suboptimality Conflict 22.1 76.4 84.4 102.9

Suboptimality Conflict 25.8 127.6 363.7 715.0

We programmed BIP-BB, GCD-BB and its variations in Java. All used the
commercial software CPLEX as the LP solver. Test problems were generated
using the model-based temporal planner [22], performing multi-vehicle search
and rescue missions. This planner takes as input a temporally flexible state
plan, which specifies the goals of a mission, and a continuous model of vehicle
dynamics, and encodes them in DLPs. The GCD-BB solver generates an opti-
mal vehicle control sequence that achieves the constraints in the temporal plan.
For each Clause/Variable set, 15 problems were generated and the average was
recorded in the tables.

Table 1 records the number of relaxed LPs solved by each algorithm. In both
the DLP BFS and the DLP DFS cases, the algorithm with conflict learning per-
forms significantly better than the one without conflict learning. In addition, the
difference increases with the test problem size. The backtrack algorithm, based
on dependency-directed backtracking [1], uses infeasibility conflicts as a cache
to check consistency of a relaxed LP before solving it. We observe that in both
the BFS and the DFS cases, the forward algorithm performs significantly better
than the backward algorithm. In order to show the reason for using our DLP re-
laxation instead of the continuous relaxation of BIP, we compare row “BIP-BB”
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with row “DLP DFS without Conflict Learning”, and DLP performs significantly
better than BIP. To address the tradeoffs of BFS and DFS, we observe that in
terms of time efficiency, BFS performs better than DFS, in both the “without
Conflict Learning” and the “Infeasibility Conflict” cases. Finally, “BFS Infeasi-
bility Conflict” performs similar to “DFS Infeasibility+Suboptimality Conflict”;
for large test problems, DFS performs better than BFS.

Table 2. Comparison on the average size of relaxed LPs

Clause/ 80/ 700/ 1492/ 2456/
Variable 36 144 300 480
BIP-BB 90 889 1909 3911

DLP BFS
without Conflict Learning 72 685 1460 2406

Infeasibility Conflict 70 677 1457 2389
Conflict-directed Backtrack 72 691 1461 2397

DLP DFS

without Conflict Learning 76 692 1475 2421
Infeasibility Conflict 74 691 1470 2403

Conflict-directed Backtrack 75 692 1472 2427
Infeasibility+Suboptimality Conflict 73 691 1470 2403

Suboptimality Conflict 74 692 1471 2410

Table 3. Comparison on the maximum queue size

Clause/ 80/ 700/ 1492/ 2456/
Variable 36 144 300 480
BIP-BB 8.4 30.8 46.2 58.7

DLP BFS
without Conflict Learning 19.1 161.1 296.8 419.0

Infeasibility Conflict 6.4 18.3 38.4 52.5
Conflict-directed Backtrack 15.6 101.7 205.1 327.8

DLP DFS

without Conflict Learning 6.1 18.7 25.1 30.3
Infeasibility Conflict 6.5 21.4 45.0 57.3

Conflict-directed Backtrack 6.1 18.4 23.5 28.1
Infeasibility+Suboptimality Conflict 6.5 21.4 33.0 40.9

Suboptimality Conflict 6.5 21.6 38.7 47.0

As seen in Table 2, the average size of LPs solved in BIP is much larger than
that of the LPs solved for DLPs, and the difference grows larger as the problem
size increases. Experiments also show that the average size of LPs solved by each
DLP algorithm variant is similar to one another.

Maximum queue size of the search tree of each algorithm is recorded in
Table 3. Our goal is to compare the memory use of BFS algorithms with that of
DFS algorithms. BFS without Conflict Learning takes significantly more memory
space than any other algorithm. Compared with DFS without Conflict Learning,
its maximum queue size is from 68% to 90% larger. However, it is notable that
using conflict learning, the memory taken by BFS is reduced to the same level
as DFS.
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5 Discussion

This paper presented a novel algorithm, Generalized Conflict-Directed Branch
and Bound, that efficiently solves DLP problems through a powerful three-fold
method, featuring generalized conflict learning, forward conflict-directed search
and induced unit clause relaxation. The key feature of the approach reasons
about infeasible or sub-optimal subsets of state space using conflicts, in order
to guide the forward step of search, by moving away from regions of state space
corresponding to known conflicts. Our experiments on model-based temporal
plan execution for cooperative vehicles demonstrated an order of magnitude
speed-up over BIP-BB.

The authors are in the process of applying GCD-BB to the BIP formulation,
and empirically comparing GCD-BB with the cutting plane method and Benders
Decomposition. Although GCD-BB can be applied to any MIPs and BIPs, our
preliminary results show that there is not always significant improvement over
the standard B&B. Future work will include experimenting on a wider range of
test problems to understand better this behavior.
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Abstract. The availability of commodity multiprocessors offers signifi-
cant opportunities for addressing the increasing computational require-
ments of optimization applications. To leverage these potential benefits,
it is important however to make parallel processing easily accessible to
a wide audience of optimization programmers. This paper addresses this
challenge by proposing parallel programming abstractions that keep the
distance between sequential and parallel local search algorithms as small
as possible. The abstractions, that include parallel loops, interruptions,
and thread pools, are compositional and cleanly separate the optimiza-
tion program and the parallel instructions. They have been evaluated
experimentally on a variety of applications, including facility location
and coloring, for which they provide significant speedups.

1 Introduction

With the availability of commodity multiprocessors (e.g., dual Apple G5s) and
the advent of multi-core chips (e.g., the 870 processor from AMD and the forth-
coming Cell Architecture), parallel processing is becoming widely affordable. It
also provides significant opportunities to meet the increasing computational re-
quirements of optimization applications as the field moves towards large-scale,
online, and stochastic optimization. Indeed, optimization applications often ex-
hibit significant parallelism. For instance, multistart local search, hybrid local
search, cooperating local search, and online stochastic optimization all involve
multiple, largely independent, searches that only communicates loosely and asyn-
chronously. Search in constraint programming can also be viewed as largely in-
dependent searches, communicating computation paths [3, 9] or subproblems [8].

Unfortunately, a major obstacle in exploiting these opportunities is the ad-
ditional expertise required to write parallel algorithms, since optimization ap-
plications already demand mathematical sophistication, domain expertise, and
programming abilities. It is thus important to leverage the promises of multi-
processors as transparently as possible, imposing as small a burden as possible
on optimization modelers and programmers.

This paper describes an attempt to address this challenge. It proposes high-
level abstractions for parallel programming in Comet, an object-oriented lan-
guage featuring a constraint-based architecture for local search. The parallel
abstractions exploit multiprocessors in a transparent way and have a number of
desirable properties. They are natural counterparts to sequential constructs, en-
suring a small distance between the sequential and parallel versions of the same
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algorithm. The abstractions are general-purpose and widely applicable, yet they
provide a natural vehicle to express a variety of parallel optimization algorithms.
The abstractions are compositional and cleanly separate the optimization models
from the parallel code, allowing modelers/programmers to reuse their existing
models when exploiting parallelism. Finally, their implementation leverages the
advanced control abstractions of Comet such as events and first-order closures
[10] and is primarily based on source-to-source transformations.

The rest of the paper is organized as follows. Section 2 reviews the enabling
technologies, i.e., threads and monitors. Section 3 describes the abstractions and
their implementations. Section 4 describes the experimental results.

2 Enabling Concurrent Technologies

Threads and monitors are the enabling technology for the parallel abstractions
of Comet. Although these concurrent programming extensions resemble those
of Java, the subtle differences between them contribute in making Comet’s
abstractions natural, convenient, and easier to implement. In particular, threads
exhibit a nice synergy with first-order closures, the foundation of many control
abstractions of Comet [10]. Figure 1 illustrates both threads and monitors in
Comet. The class Count (lines 1–6) encapsulates a counter. Due to the keyword
synchronized, the class is a monitor: its method invocations execute in mutual
exclusion. An instance of the class is declared in line 7. The core of the program
is a loop creating two threads (lines 8-12). The body of each thread, executed
upon the thread creation, increments the counter c 200 times, by 1 for the first
thread (i=1) and by 2 for the second thread (i=2).

Threads have their own version of the Comet runtime, including a stack
for function and method calls, and are implemented by native threads of the
operating system. Threads are first-class objects in Comet but, unlike Java, they
do not have to extend an existing class. Rather, upon creation, they execute a
closure specified by their statement (e.g., lines 10–11 in Figure 1) and the current
environment. This design decision, i.e., the ability to use a closure as the thread
code, is fundamental in keeping the distance between sequential and parallel code
small in Comet. Observe that, in Figure 1, the two threads naturally increment
the counter by different amounts thanks to the use of closures.

Figure 2 shows a program implementing an (unordered) producer/consumer
monitor. Class Buffer (lines 1–10) specifies a buffer than can store up to sz in-

1. synchronized class Count {
2. int c;
3. Count(int i) { c = i; }
4. void incr(int n) { c += n; }
5. int get() { return c; }
6. }

7. Count c(0);
8. forall(i in 1..2) {
9. thread
10. forall(k in 1..200)
11. c.incr(i);
12. }

Fig. 1. Illustrating Threads and Monitors in Comet
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1. synchronized class Buffer {
2. int[] buffer;
3. int sz;
4. int nb;
5. Condition full;
6. Condition empty;
7. Buffer(int s);
8. void produce(int s);
9. int consume();
10. }
11. Buffer::Buffer(int s) {
12. sz = s;
13. nb = 0;
14. buffer = new int[0..sz-1];
15. }
16. void Buffer::produce(int s) {
17. if (nb == sz) full.wait();
18. buffer[nb++] = s;
19. empty.signal();
20. }

21. int Buffer::consume() {
22. if (nb == 0) empty.wait();
23. int v = buffer[--nb];
24. full.signal();
25. return v;
26. }

27. Buffer b(2);
28. thread consumer {
29. for(int k=0;k<100;k++) {
30. int c = b.consume();
31. cout << "-" << c << flush;
32. }
33. }
34. thread producer {
45. for(int k=0;k<100;k++) {
36. b.produce(k);
37. cout << "+" << k << flush;
38. }
39. }

Fig. 2. A Simple Producer/Consumer Pattern in Comet

tegers. Method produces stores an integer in the buffer, while method consumes
retrieves an integer from it. The monitor uses two conditions, full and empty, to
synchronize the producers and consumers. When the buffer is full, the producers
wait until there is room in the buffer (line 17). When the buffer is empty, the
consumers wait until some integer is available (line 22). The producers and con-
sumers also notify their respective conditions when they produce and consume
integers (lines 19 and 24 respectively). As is traditional, when a thread waits
on a condition, it releases the monitor and must re-acquire it upon reactivation.
Observe that, unlike Java, Comet may use several conditions inside a monitor
which, once again, simplifies several concurrent programming patterns. Here is
the beginning of the output of this Comet program when executed on an Apple
G5 with 2 processors: +0+1-1-0+2+3-3-2+4+5-5-4+6+7-7-6+8+9-9-8...

3 Parallel Abstractions

The parallel abstractions of Comet support various parallel loops, interruptions,
as well as thread and model pools.

3.1 Parallel Execution

Comet provides a parall construct, as the parallel counterpart to the sequen-
tial forall loop. Reconsider the counter example from Figure 1. It could be
rewritten, and expanded, as follows:
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1. Buffer b(2);
2. pardo {
3. forall(k in 0..99) {
4. int c = b.consume();
5. cout << "-" << c << flush;
6. }
7. } |

8. {
9. forall(k in 0..99) {
10. b.produce(k);
11. cout << "+" << k << flush;
12. }
13. }

Fig. 3. Revisiting the Simple Producer/Consumer Pattern in Comet

1. Count c(0);
2. parall(i in 1..2)
3. forall(k in 1..200)
4. c.incr(i);
5. cout << "value: " << c.get() << endl;

Lines 2–4 feature a parallel loop in Comet: the loop body may be executed in
parallel for all values of the loop parameter. Operationally the parall instruction
creates a thread to execute the loop body for each value of i. These threads are
joined after the loop, i.e., the instruction following the loop is only executed
after all threads completed their execution. Hence the Comet code displays
the correct value (600) of the counter in line 5, since the output instruction is
guaranteed to execute only after the completion of the parall instruction (which
was not the case for the program in Figure 1). The instructions have the same
effect as the sequential code:

1. Count c(0);
2. forall(i in 1..2)
3. forall(k in 1..200)
4. c.incr(i);
5. cout << "value: " << c.get() << endl;

showing how easy it is to move from a sequential to a parallel implementation.
1. synchronized class Count {
2. int c;
3. Count(int i) { c = i; }
4. void incr(int n) { c += n; }
5. int get() { return c; }
6. }

7. Count c(0);
8. forall(i in 1..2) {
9. thread
10. forall(k in 1..200)
11. c.incr(i);
12. }

Figure 3 revisits the producer/consumer pattern from Figure 2 and illustrates
its implementation with the pardo construct of Comet. As is the case with the
parall construct, the instruction following line 12 in the program (if any) only
executes after completion of the pardo instruction.

Many optimization algorithms apply a local search multiple times. This is the
case for multistart or iterated local searches that apply a local search repeatedly
from (typically) different starting solutions; hybrid evolutionary algorithms and
scatter search that apply a local search on a population of solutions; and on-
line stochastic optimization where a local search produces solutions to a variety
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of scenarios before making a decision. These algorithms exhibit inherent paral-
lelism which an optimization system should be able to exploit naturally, without
requiring significant expertise in parallel programming. Consider uncapacitated
facility location for which state-of-the-art algorithms are based on multistart
tabu search [11] and hybrid heuristics [1]. The fragment

1. Solution sol[1..nbTrials];
2. parall(i in 1..nbTrials) {
3. WarehouseLocation location(); location.state();
4. sol[i] = location.search();
5. }
6. selectMax(i in 1..nbTrials)(sol[i].getValue())
7. cout << "Solution at Cost: " << sol[i].getValue() << endl;

depicts the Comet implementation of a parallel multistart variable neighbor-
hood search. Each execution of the body creates a facility location model and
states its constraints (line 3), and searches for a high-quality solution from a
randomly generated initial solution (line 4). The returned solution is stored in
sol[i] (line 4 again). Once all executions are completed, the values of the best
found solutions is displayed (lines 6–7). The parallel code enjoys some interest-
ing properties. First, it provides a parallel counterpart to a natural sequential
implementation: the parall instruction simply replaces the forall construct
of Comet. Second, the modeling and search components of the application are
independent from the parallel code: they have not been modified when moving
from the sequential to the parallel implementation.

Some complex applications in scheduling and vehicle routing explore hetero-
geneous neighborhoods and may feature several distinct local search algorithms
collaborating in finding a solution. For instance, the snippet

pardo exploreRNA() | exploreNB();

illustrates how the two neighborhoods of the jobshop algorithm of Dell’Amico
and Trubian [5] can be explored in parallel. The exploration code in [10] uses a
neighborhood selector that must now be a synchronized object. Once again, the
effort of moving from a sequential to a parallel implementation is minimal.

The implementation of the parall construct uses a source-to-source trans-
formation that creates a thread for each iteration and a barrier to join all the
threads. For instance, the parallel Comet for facility location just described is
transformed into the Comet code:

1. Solution sol[1..nbTrials];
2. Barrier joinPoint();
3. forall(i in 1..nbTrials) {
4. joinPoint.incr();
5. thread {
6. WarehouseLocation location(); location.state();
7. sol[i] = location.search();
8. joinPoint.decr();
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9. }
10. }
11. joinPoint.wait();
12. selectMax(i in 1..nbTrials)(sol[i].getValue())
13. cout << "Solution at Cost: " << sol[i].getValue() << endl;

During the transformation, the parall construct is replaced by a forall loop
that creates a thread at each iteration (lines 4-9). As a consequence, nbTrials+
1 threads may be executing simultaneously: the master thread executing the
forall instruction and the nbTrials slave threads created during the loop. The
master thread waits for the completion of all slaves after the loop (line 11) before
proceeding to subsequent instructions. The synchronization is performed using
a barrier declared in line 2. The monitor is incremented in line 4 to specify that
a new thread is about to join the execution and is decremented in line 8, just
before the thread completes its execution.

3.2 Thread Pools

The implementation of the parall instruction associates a thread with each
iteration of the parallel loop. Since each thread has its own runtime control blocks
and stacks, this implementation may induce some non-negligible overhead when
the number of iterations is large. The concept of thread pool, i.e., a collection
of cooperating threads, overcomes this limitation and allows Comet programs
to map nicely onto the underlying architecture. The parall instruction can be
parameterized by a thread pool which is then responsible for executing the loop
iterations in parallel. The size of the thread pool can be determined according
to the number of available processors or any other appropriate criterion.

Figure 4 depicts the implementation of the multistart local search for facility
location in terms of thread pools. The pool is declared in line 1, used in the
parall instruction (line 3), and closed after the loop (line 7). Observe the small
distance between the sequential and parallel code and the clean separation be-
tween the model, the parallel code, and the mapping on the target architecture.

The implementation of the parall instruction over parallel pools (and thus
thread pools) is also based on a source-to-source transformation. However, it

1. ThreadPool tp(4);
2. Solution sol[1..nbTrials];
3. parall<tp>(i in 1..nbTrials) {
4. WarehouseLocation location(); location.state();
5. sol[i] = location.search();
6. }
7. tp.close();
8. selectMax(i in 1..nbTrials)(sol[i].getValue())
9. cout << ‘‘Best Solution at Cost: ‘‘ << sol[i].getValue() << endl;

Fig. 4. The Parall Instruction over Thread Pools for a Multistart Local Search
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1. ThreadPool tp(4);
2. Solution sol[1..nbTrials];
3. Barrier joinPoint();
4. forall(i in 1..nbTrials) {
5. joinPoint.incr();
6. closure cl {
7. WarehouseLocation location(); location.state();
8. sol[i] = location.search();
9. joinPoint.decr();
10. }
11. tp.execute(cl);
12. }
13. joinPoint.wait();
14. tp.close();
15. selectMax(i in 1..nbTrials)(sol[i].getValue())
16. cout << "Solution at Cost: " << sol[i].getValue() << endl;

Fig. 5. The Implementation of the Parall Instruction over Thread Pools

differs from the earlier implementation by not using threads. Instead it creates
closures that are submitted to the pool for execution. Figure 5 depicts the re-
sult of the source-to-source transformation for the code presented in Figure 4.
The main novelty is the creation, for each iteration of the parallel loop, of a
closure (lines 6–10) which is submitted to the pool (line 11). The implementa-
tion is shown in Figure 6. Thread pools implement the interface ParallelPool
and support a method execute on closures. Its core is the constructor (lines
4–13). It first constructs a producer/consumer buffer of closures whose imple-
mentation is similar to the Comet class in Figure 2. It then creates n threads
that consume and execute closures. These closures are produced by the parall
instruction for each iteration as shown in Figure 5 and the execute method of
the thread pool simply “produces” a closure for the buffer. When the thread
pool is closed (line 14), all threads are terminated, since method terminate on
the producer/consumer buffer wakes all threads waiting for a closure. Note that
first-class closures [10] are critical in implementing the abstractions.

3.3 Interruptions

Multistart local searches are also useful when for finding feasible solutions. In-
deed, many algorithms use restarts to avoid being trapped in long unsuccessful
runs. Contrary to optimization problems where all searches are potentially per-
tinent, a multistart local search for constraint satisfaction should terminate as
soon as a feasible solution is found. Consider the code

1. Boolean found(false);
2. parall(i in Trials) {
3. ProgressiveParty pp(); pp.state();
4. found := pp.search();
5. } until found;
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1. class ThreadPool implements ParallelPool {
2. ClosureBuffer buffer;
3. bool closed;
4. ThreadPool(int n) {
5. closed = false;
6. buffer = new ClosureBuffer(n);
7. forall(i in 1..n)
8. thread b
9. while (!closed) {
10. Closure v = buffer.consume();
11. if (v != null) call(v);
12. }
13. }
14. void execute(Closure v) { buffer.produce(v); }
15. void close() { closed = true; buffer.terminate(); }
16. }

Fig. 6. The Implementation of the Thread Pool

which uses a multistart local search to solve the progressive party (see [7, 13] for
descriptions of the tabu-search algorithm). The code declares a Boolean variable
found to denote whether a solution has been found (line 1). This variable is then
used in line 5 to specify that the local searches must terminate as soon as found
becomes true. Each loop iteration creates an instance of the model, states the
constraints, and searches for a feasible solution from a random starting point.

This Comet code features a complete separation between the model and the
parallel instructions, although the operational behavior of the model is funda-
mentally affected. There is no need in Comet to enhance the model to implement
interruptions, showing the compositionality and the modularity promoted by the
parallel abstractions. Observe also that interruptions are a fundamental abstrac-
tions for many applications: they may be used to interrupt local searches after
some internal or external event as is frequently the case in online optimization
or when cooperating local searches produces new improving solutions.

The implementation of interruptions relies on events [10] and is once again
based on a source-to-source transformation. The rewriting is best understood as
a two-step process. The first step rewrites the parall instruction into a forall
loop featuring a break/when construct to terminate the threads, while the sec-
ond step rewrites this construct into an event and an exception. For instance,
Figure 7 depicts the rewriting for the multistart local search for the progressive
party problem described earlier: the left and right columns show the result of
the first and second phases respectively. The main novelty in the left column
is the break/when instruction in lines 6–10: the new construct encapsulates the
search and terminates when found becomes true. The right column shows how
the break/when instruction is rewritten in terms of an event (lines 6b–6d) which
monitors whether the Boolean variable is updated (line 6b) and interrupts the
search by throwing an exception from inside the event-handler (line 6c) when
the Boolean becomes true. It is important to highlight the operational behavior
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1. Boolean found(false);
2. Barrier joinPoint();
3. forall(i in Trials:!found){
4. joinPoint.incr();
5. thread {
6. break {
7. ProgressiveParty pp();
8. pp.state();
9. found := pp.search());
10. } when found;
11. joinPoint.decr();
12. }
13.}

=⇒ 1. Boolean found(false);
2. Barrier joinPoint();
3. forall(i in Trials:!found){
4. joinPoint.incr();
5. thread {
6a. try {
6b whenever found@changes(){
6c. throw new Stop();
6d. } in {
7. ProgressiveParty pp();
8. pp.state();
9. found := pp.search();
10a. }
10b. } catch (Stop e) {}
11. joinPoint.decr();
12. }
13.}

Fig. 7. The Implementation of Early Termination for a Multistart Local Search

induced by this implementation. Whenever the Boolean becomes true, an event
is published to all the concerned threads, each of which now interrupts its exe-
cution by throwing an exception in their event-handlers. The ability of a thread
to post events caught in other threads is fundamental in implementing inter-
ruptions and providing the desired compositionality and separation of concerns
of the abstractions. Observe also that the novel whenever/in construct that
specifies the scope in which the event is active. This generalization ensures that
notifications only reach relevant events, which is essentially when the parallel
code is embedded in outermost loops (as in the Golomb ruler discussed later).

3.4 Parallel Repeat Loop

Once thread pools are available, some additional parallel abstractions become
natural. Reconsider the progressive party problem where the number of restarts
is not chosen a priori. The multistart local search procedure can be implemented
by the parallel counterpart to a repeat loop:

1. Boolean found(false);
2. ThreadPool tp(4);
3. parrepeat<tp> {
4. ProgressiveParty pp(); pp.state();
5. found := found || pp.search();
6. } until found;
7. tp.close();

The parrepeat instruction uses the thread pool to execute its body in parallel
until a feasible solution is found. Each time a thread completes a local search,
it restarts a new search. Once a solution is obtained, all the threads in the pool
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1. Boolean found(false);
2. ThreadPool tp(4);
3. BoundedSemaphore sem(4);
4. do {
5. sem.incr();
6. closure cl {
7. break {
8. ProgressiveParty pp(); pp.state();
9. found := pp.search();
10. } when found;
11. sem.decr();
12. };
13. tp.execute(cl);
14. } while (!found);
15. tp.close();

Fig. 8. The Implementation of Parallel Repeat Loops

terminate, at which stage the parallel repeat also terminates. It is important to
emphasize the novelty of the parrepeat construct: the automatic vectorization
performed by automatic vectorization in compilers (e.g., the recent GCC-4 com-
piler) only applies to for loops. It is the availability of interuptions (and thus of
events and closures) and the application domain that allow the parallelizations
of loops with no apriori bounds on the number of iterations.

The implementation of the parrepeat construct is based on a source-to-
source transformation and a bounded semaphore (i.e., a synchronization object
that blocks when it is about to become negative or to exceed its upper bound).
For instance, Figure 8 shows the rewriting for the progressive party problem. The
implementation creates a bounded semaphore (line 3) ensuring that at most 4
threads are searching at any one time. The semaphore is incremented before
creating a closure (line 5) and decremented upon completion of a search (line
12). The master thread (executing the loop) blocks as soon at the semaphore
reaches its upper bound before moving to the next iteration to produce a new
closure. Whenever a solution is found by some thread, all threads in the pool
are interrupted and the master thread exits the loop.

3.5 Model Pools

Thread pools remove the one-to-one mapping between a thread and a loop iter-
ation, avoid the overhead of running many threads, and allow for novel parallel
abstractions. However, they do not avoid the overhead induced by creating many
instances of the same model and stating the model constraints. For instance, the
multistart local searches presented so far always construct a new model for each
iteration of the parallel loops, an overhead which may be avoided by sequen-
tial restarts. This overhead, if non-negligible, can be remedied by model pools
which are now responsible for executing the loop iterations. Consider again the
multistart local search for facility location. With model pools, it becomes:
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1. ParallelModel model[1..4] = new WarehouseLocation();
2. ModelPool mp(model);
3. Solution s[Trials];
4. parall<mp>(i in Trials) s[i] = mp.search();
5. mp.close();

The Comet code creates an array of models (line 1), which are then used to de-
fine the model pool (line 2). The parall instruction is now parameterized by the
model pool to implement the multistart local search. A particularly interesting
feature of this Comet program is the way solutions are produced: the paral-
lel loop requests the model pool to search for solutions, not individual models
(line 4). This liberates programmers from keeping track of which models are now
available and which are busy. As a consequence, the parallel abstractions pro-
mote elegant compositionality and separation of concerns, letting users focus on
their (sequential) models, automating the synchronization aspects, and reusing
the same models in sequential and parallel settings. Note also that the models
in the pool may implement different search strategies as sometimes proposed in
cooperating local search: it suffices to fill the model array with different models,
showing the simplicity of parallelizing heterogeneous models.

To be included in a model pool, a model must implement the interface de-
picted in Figure 9. The interface contains methods for stating the model con-
straint, searching for a solution, searching for a solution from a given starting
point, and searching for solutions using several existing solutions, as is typically
the case in hybrid evolutionary algorithms and scatter search.

The problem of finding optimal, or near-optimal, Golomb rulers using hybrid
evolutionary algorithms is an interesting illustration of model pools. The hybrid
algorithm is organized as a series of searches, each of which finding a shorter
ruler. More precisely, the basic step of the algorithm is to find a Golomb ruler
whose length is smaller than l. This feasibility search is performed by an hybrid
evolutionary algorithm applying a tabu search on solutions obtained by crossing
existing solutions in the population. The initial population is simply a set of
(infeasible) rulers of size smaller than l and the crossover operator combines
two rulers by taking the first half of the first ruler and the second half of the
second one. At each iteration, the hybrid algorithm has a population of n rulers
and generates a new population of the same size by repeatedly choosing two
rulers randomly, crossing them, and applying the tabu search. Each iteration is
inherently parallel and can be implemented by the Comet code

1. interface ParallelModel {
2. void state();
3. Solution search();
4. Solution search(Solution s);
5. Solution search(Solution s1,Solution s2);
6. Solution search(Solution[] s);
7. }

Fig. 9. The Interface of Parallel Models
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1. Solution o[k in Pop] = pop[k];
2. parall<mp>(k in Pop) {
3. select(i in Pop, j in Pop: i != j) {
4. pop[k] = mp.search(o[i],o[j]);
5. found := (pop[k].getValue() == 0);
6. }
7. } until found;

where mp is a model pool. The code uses a parallel loop, early termination,
and model pools. The computation starts by storing the current population in
o, making it the old population (line 1). The search for a feasible ruler uses a
parall instruction over a model pool, terminating when found becomes true
(lines 2-7). The model pool contains a number of Golomb ruler models that can
be used simultaneously in the parallel loop. Each iteration selects two solutions
in the old population, crosses them, searches for a solution using the model
pool, and stores the resulting solution in pop[k], i.e., the kth element of the
new population (line 4). If the ruler is feasible (i.e., its objective, which denotes
the number of constraint violations, is zero), all threads are interrupted and the
loop execution completes after the assignment in line 5. This code is included in
an outermost loop, which will start a new search for a shorter ruler.

The resulting Comet code exhibits several desirable properties. First, the
parallel code is almost identical to the sequential code. The only changes are, in

1. class ModelPool implements ParallelPool {
2. bool closed;
3. ModelBuffer mbuf;
4. ClosureBuffer cbuf;
5. ModelPool(ParallelModel[] models){
6. closed = false;
7. mbuf = new ModelBuffer(models.size());
8. cbuf = new ClosureBuffer(models.size());
9. forall(i in 1..models.size()) {
10. models[i].state(); mbuf.produce(models[i]);
11. }
12. forall(i in 1..models.size())
13. thread b { while (!closed) call(cbuf.consume()); }
14. }
15. void submit(Closure body) { cbuf.produce(body);}
16. void close() { closed = true; mbuf.terminate(); cbuf.terminate(); }
17. Solution search() {
18. ParallelModel m = mbuf.consume();
19. Solution s = m.search();
20. mbuf.produce(m);
21. return s;
22. }
23.}

Fig. 10. The Implementation of Model Pools
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fact, the parallel loop which replaces its sequential counterpart and the model
pool which generalizes the single model of the sequential implementation. Sec-
ond, the compositionality and separation of concerns promoted by the parallel
abstractions ensure that the parallel implementation induces no changes to the
basic model, i.e., the constraints, the tabu search, and the crossover operators.
Only the generation of the new population is affected and it is precisely the code
that is being parallelized. Observe that the Comet program has no explicit
synchronization, thread management, or termination code.

Model pools use the same source-to-source transformation as thread pools,
since both are implementations of parallel pools. The main difference is in the
implementation of the pool itself which is depicted in Figure 10. In addition
to the closure buffer, model pools also use a buffer to keep track of models
available for execution. Initially, the pool states the constraints in all models
and “produces” the models (lines 9–11). When a search instruction is executed
(lines 17–22), the pool first “consumes” a model (line 18), applies the search on
the so-obtained model (line 19), and “produces” the model back (line 20). Note
that the implementation decouples the threads and models: coupling them is not
correct when parallel loops also use parallel instructions.

4 Experimental Results

Table 1 presents preliminary experimental results on a Apple G5 with two pro-
cessors. The table reports the solution quality (min(S), max(S), avg(S)), the
average running time in seconds, and how much of the potential speedup (in
percentage) is achieved by the parallel implementation. Note that the parallel
implementation is unlikely to approach 100% because the operating systems is
also running on one of the processors. The tested program includes a multi-
start variable-neighborhood search for uncapacitated facility location (probably
the most effective algorithm for this problem), the tabu-search algorithm for
graph-coloring from [6] running for a large number of iterations, and an hybrid
evolutionary algorithm for finding Golomb rulers. The facility location lines cov-
ers 30 benchmarks from the class FPP17, which requires a multistart strategy

Table 1. Experimental Results on a Dual Apple G5

Problem min(S) avg(S) max(S) avg(T ) %(S)
Facility Location (//) 54526.00 54545.20 54557.00 63.97
Facility Location (seq) 54526.00 54545.20 54557.00 49.92 44%
Coloring (5) (seq) 66.00 66.38 67.00 240.33
Coloring (5) (//) 65.00 66.32 67.00 130.16 92%
Coloring (1c) (seq) 64.00 64.51 65.00 368.38
Coloring (1c) (//) 64.00 64.34 65.00 209.16 86%
Golomb-11 (seq) 72.00 72.00 72.00 57.08
Golomb-11 (//) 72.00 72.00 72.00 36.90 71%
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to obtain high-quality results. Each benchmark is run 100 times, accounting for
a total of 6,000 runs. The coloring algorithm was evaluated on the benchmarks
R250.5.Col (250 vertices and 50% density) whose best-known solution is 65 and
R250.1c.Col (250 vertices and 90% density) whose best-known solution is 64,
accounting for 200 runs. The Golomb ruler program was run until the optimal
solution (of length 72) was found, also accounting for 200 runs. The experimen-
tal results confirm the practicality of the extensions. On coloring, the parallel
implementation produces 92% and 86% of the maximum speedups. On facility
location, 44% of the potential speedup is realized. The smaller percentage is due
partly due to differences in runtimes between several runs (decreasing in fact the
maximum possible speedup) and the memory allocation necessary to maintain
the best set of facilities to swap. Since both threads use the same memory pool
and garbage collection, there is some contention for memory. The Golomb ruler
produces 71% of the maximum speedup, which is quite impressive since there are
considerable differences between runs and the execution also terminates as soon
as the optimal solution is found. Overall these results are promising. Moreover,
potential limitations have been isolated and can be remedied.

5 Related Work

The parallel abstractions of Comet share the same motivation as openMP, a pre-
processor for parallel loops in C and Fortran [4, 2]. Both systems aim at making
parallel computing widely accessible by reducing the distance between sequen-
tial and parallel code. openMP supports instructions that resemble the parall
and pardo constructs of Comet. However, the parallel abstractions of Comet
are simpler and richer, primarily because of its advanced control abstractions:
first-order closures and events. Unlike openMP, there is no need in Comet to
specify the role of variables in parallel loop. The role of variables in Comet is
uniform with respect to events [10], nondeterminism [12], and parallelism. Unlike
openMP, Comet provides interruptions and parallel repeat/while loops which
impose no a-priori bounds on the number of iterations. The concepts of paral-
lel pools naturally support homogeneous and heterogeneous cooperating local
searches and reduces the overhead that plagues simpler parallel loops. Finally,
the parallel abstractions of Comet are modular and compositional, separates the
optimization models from the parallel code, and imposes minimal requirements
on the underlying implementation which remains simple and easily maintainable.

6 Conclusion

This paper proposed parallel programming abstractions to exploit the availabil-
ity of commodity multiprocessors in Comet. The abstractions include parallel
loops, interruptions, as well as thread and model pools. They address the need of
making parallel constraint-based local search and hybrid algorithms as close as
possible to their sequential counterparts. In particular, they are compositional,
cleanly separates the parallel codes from the optimization models, and leverages
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the advanced control abstractions of Comet: events and first-order closures.
Preliminary results on a variety of applications indicate that they can be imple-
mented with minimal overhead. Future research will be devoted to a distributed
implementation of Comet on networks of commodity computers.

Acknowledgments. Special thanks to the first reviewer for his detailed comments.
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Abstract. Interactive tasks such as online configuration and e-commerce can be
modelled as constraint satisfaction problems (CSPs). These can be solved inter-
actively by a user assigning values to variables. The user may require advice
and explanations from a system to help him/her find a satisfactory solution. Ex-
planations of failure in constraint programming tend to focus on conflict. How-
ever, what is really desirable is an explanation that is corrective in the sense that
it provides the basis for moving forward in the problem-solving process. More
specifically, when faced with a dead-end, or when a desirable value has been re-
moved from a domain, we need to compute alternative assignments for a subset
of the assigned variables that enables the user to move forward. This paper de-
fines this notion of corrective explanation, and proposes an algorithm to generate
such explanations. The approach is shown to perform well on both real-world
configuration benchmarks and randomly generated problems.

1 Introduction

It is now generally accepted by the constraint processing community that “ease-of-use”
is the next research challenge that must be tackled in order to ensure widespread adop-
tion of constraint technology in industrial applications [14]. One of the most important
aspects of such a challenge is the development of new approaches to generating ex-
planations. In this paper we focus on supporting interactive constraint satisfaction, a
setting where a user solves a problem interactively by adding constraints. For example,
configuration problems are typically solved interactively by a user who assigns values,
representing the various options that are available, to variables representing the features
of the product being configured.

In such an application it is important that the user can be guided towards a desired
solution without being forced to blindly backtrack [1]. Specifically, during the course
of interactive problem solving the user may encounter difficulties such as inconsistency
or desirable values being eliminated due to conflicts with previous decisions. In such
situations it is desirable for the interactive system to generate an explanation that, rather
than focusing on what has caused the problem, explains what can be done to overcome
it. Explanations of failure in constraint satisfaction tend to focus on blame; what we
often need is an explanation that is corrective in the sense that it provides the basis
for moving forward. In particular, when faced with a dead-end, we want to find a set
of assigned variables for which there are alternative assignments that allow a user to
continue making consistent decisions.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 445–459, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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To address this issue we introduce the notion of corrective explanation. To demon-
strate the distinction between corrective explanations and more traditional blame-based
“causal explanations”, consider the example in Figure 1.

{r,b} {r,b}{r,b} {r, b} {r,b}

v1 v3v2 v4 v5

Fig. 1. An example of corrective versus causal explanations

This figure presents assignments of colours to variables in a colouring problem. We
have assigned colours as shown to the first 4 variables (highlighted in black), only two
colours are available, and for the purposes of this simple example, we are just running
a basic backtracking algorithm. We have encountered a dead-end on variable v5 at this
point. A “causal explanation” algorithm would look to assign blame to a set of vari-
ables whose assignments are sufficient to leave us at this dead-end, because every value
for v5 is inconsistent with one of these assignments. In this case, v3 and v4 provide a
causal explanation. However, v3 and v4 do not provide a corrective explanation because
changing their instantiations alone is not sufficient to enable us to move forward and
assign a consistent value to v5.

Given this causal explanation, a backtrack search algorithm, or more importantly a
human user making the choices in an interactive setting – imagine a customer trying
to configure a product at an e-commerce website – would now go back to reconsider
v4, and finding no further alternatives there, would backtrack to v3. There the customer
could try b(lue) for v3, but would be told that it is not consistent with the prior choice for
v2. At this point, the customer might understandably explode at the computer screen:
“You told me the problem was my choices for v3 and v4, but now I’ve looked at all
the other possible choices for these and you tell me that isn’t good enough; what kind
of an ‘explanation’ was that?” And imagine how the customer might feel if there had
been dozens of other choices to consider at v3 and v4, none of which in fact allowed the
customer to move forward to a successful choice for v5.

A corrective explanation which does permit forward movement can be found based
on {v1, v4}. Making v1 b(lue) and v4 r(ed) allows us to proceed to assign a value to
v5, blue. In general there might be more than one set of reassignments that allows us
to proceed, and more than one set of corrective explanation variables. For example,
another corrective explanation can be found here based on {v2, v3}. In general, we
might expect to prefer shorter corrective explanations (fewer variables). However, we
might have other “goodness” criteria, e.g. we might prefer not to change v1.

The contributions of this paper are as follows:

1. We formally define the general notion of corrective explanation, which is a new
form of explanation for constraint programming1.

1 We introduced the corrective explanation concept and the heuristic method earlier ourselves,
but only in the context of a Doctoral Program abstract [11] and a poster [12].
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2. We present a systematic algorithm, CORRECTIVEEXP, for finding minimal correc-
tive explanations.

3. We demonstrate the utility of CORRECTIVEEXP on a number of real-world config-
uration problems and randomly generated instances, showing that corrective expla-
nations can be found for these problems with effort close to the best-case theoretical
performance of the algorithm.

4. We compare CORRECTIVEEXP with a branch-and-bound method for finding
minimal corrective explanations and a heuristic method that finds corrective ex-
planations, but does not guarantee minimality; we identify contexts in which COR-
RECTIVEEXP is the algorithm of choice.

The remainder of the paper is organised as follows. In Section 2 we formally define
the notion of corrective explanation in the context of finite domain constraint satisfac-
tion. We present an algorithm for computing minimal corrective explanations in Sec-
tion 3, which is then evaluated in Section 4. The current state-of-the-art in explanation
generation is surveyed in Section 5, highlighting the differences between existing meth-
ods and the type of explanation presented here, and outlining some important aspects
of our research agenda. A number of concluding remarks are made in Section 6.

2 Corrective Explanation

A constraint satisfaction problem (CSP) is a 3-tuple P =̂ 〈X ,D, C〉 where X is a finite
set of variables X =̂ {x1, . . . , xn}, D is a set of finite domains D =̂ {D(x1), . . . ,
D(xn)} where the the domain D(xi) is the finite set of values that variable xi can take,
and a set of constraints C =̂ {c1, . . . , cm}. Each constraint ci is defined by the ordered
set var(ci) of the variables it involves, and a set sol(ci) of allowed combinations of
values. An assignment of values to the variables in var(ci) satisfies ci if it belongs to
sol(ci). A solution to a constraint satisfaction problem is an assignment of a value from
its domain to each variable such that every constraint in the network is satisfied.

In interactive constraint satisfaction it is often useful to partition the set of con-
straints, C, into a set of background constraints, B, and a set of user-specified con-
straints, U , such that C =̂ B ∪ U . The set of background constraints, B, are those
constraints that form the technical characteristics of the problem, such as compatibility
constraints in configuration, routing constraints in travel planning, etc. Such constraints
cannot be modified. On the other hand the set of user-specified constraints, U , define
the set of decisions made by the user during the interactive session and can, therefore,
be modifed.

We assume that the set of background constraints are consistent, i.e. that 〈X ,D,B〉
is soluble. We furthermore assume that the constraints in U represent assignments of
values to variables. This is a reasonable assumption in many interactive contexts such
as configuration and travel planning where a user tries to find a satisfactory solution
by specifying values for each variable in the problem. It is trivial to extend the work
presented here to handle more general constraints.

Unless the system maintains global consistency after each decision, the user can
reach a state where a consistent assignment for the current variable cannot be found. For
example, if the system relies on checking the user’s assignments for consistency against
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the constraints in the problem, a user may reach a dead-end just as in chronological
backtrack search. On the other hand, if the system relies on some form of lookahead
(e.g. forward checking or arc-consistency), then the user may not be able to find an
assignment for the current variable that does not cause the wipe-out of the domain
of some future variable. A corrective explanation should identify reassignments for
a subset of the user’s decisions that guarantee that consistency is recovered so that
the user can continue making decisions about future variables. We refer to this set of
assignments as a corrective explanation of inconsistency, since rather than focusing on
explaining why the problem is inconsistent, it focuses on the more useful issue of how
to overcome inconsistency.

We may also reach a point where the user would like to restore a value for a partic-
ular variable that was removed due to one or more of the user’s previous decisions. A
corrective explanation in this context should identify reassignments that guarantee that
the desired value is restored so that it can be selected and consistency is maintained.
We refer to this set of reassignments as a corrective explanation for value restoration.
Note that both of these forms of explanation are semantically equivalent, the difference
being how we want to move ahead: is any value for the current variable acceptable or is
a specific value required? We now focus on the general notion of corrective explanation.

Formally, given a P =̂ 〈X ,D,B ∪ U〉, let X =̂ vars(U), the set of variables for
which the user has assigned values. Let x ∈ X − X be the current variable to which
the user wishes to assign a value. If there does not exist a value, v ∈ D(x), such that
P ′ =̂ 〈X ,D,B ∪ U ∪ {(x, v)}〉 can be extended to a solution then we need to compute
a corrective explanation.

Definition 1 (Corrective Explanation). Given P ′ =̂ 〈X ,D,B ∪ U ∪ {(x, v)}〉 which
is inconsistent for all v ∈ D(x), where x is the current variable that the user wishes
to assign, let E = {(e1, ve1 ), . . . , (ek, vek

)} be a set of assignments in U , i.e. E ⊆ U ,
such that 〈X ,D,B ∪ (U − E) ∪ {(x, v)}}〉 extends to a solution for some v ∈ D(x). A
corrective explanation, E ′, is a reassignment of the variables in E such that 〈X ,D,B ∪
(U − E) ∪ E ′ ∪ {(x, v)}}〉 has a solution. The length of the explanation is |E ′|.

Informally, a corrective explanation is a reassignment of a subset of the user’s unary
decision constraints that enables the user to assign at least one more variable. For the
moment we do not concern ourselves with preferred explanations [9]. This issue will be
discussed later in this paper. However, we can focus on either finding any explanation or
one that requires making a minimum number of changes to the user’s set of decisions.

The problem of finding a corrective explanation, disregarding the number of changes
to the user’s decisions that it implies, is equivalent to solving the underlying CSP, and is
therefore NP-complete. The problem of finding the corrective explanation that requires
the minimum number of changes to the user’s decisions is equivalent to the problem of
finding the closest solution to his current partial assignment. This is equivalent to solving
the MOSTCLOSE problem [8], which has been shown to be FPNP [log n]-complete.

However, rather than trying to find an explanation that is optimal, in the sense that
it requires that a minimum number of changes are made to the user’s decisions, we can
consider finding minimal length corrective explanations. A minimal length corrective
explanation is one for which any proper subset of its variables cannot be reassigned to
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provide a corrective explanation. It is this type of explanation that we will focus on in
Section 3.

3 Computing Corrective Explanations

Our objective is to support users as they try to interactively solve problems by making
assignments to variables in domains such as product configuration. While in practice
many of the problems that are solved in this way are easy, maintaining global con-
sistency in an online/real-time fashion may not be practical due to the need for fast
response times. One could compile the problem into a data-structure that can main-
tain global consistency, such as an automaton [1], but this may not be necessary if
the interactive solver can recover consistency in reasonable time when required. Fur-
thermore, many compilation methods, which have the advantage of maintaining global
consistency and generating explanations quickly, can have difficulties dealing with in-
tensional constraints and dynamic problems, while also having worst-case exponential
space complexity.

Explanations that are guaranteed to be corrective can be generated from solutions
to the problem. These explanations can be calculated relatively cheaply, in terms of the
number of constraint checks required to compute them. The objective when trying to
greedily find a corrective explanation is to try to find a solution to the CSP that involves
as many of the user’s assignments as possible using carefully chosen variable and value
ordering heuristics. Once a solution is found, the corrective explanation can be deter-
mined by simply comparing the assignments made by the user with the assignments
in the solution. The corrective explanation that will be proposed to the user is simply
the set of assignments to variables in the solution that differ from the user’s original
assignments. However, such explanations have no guarantee of being minimal.

Corrective explanations can also be regarded as diagnoses that can be computed
using hitting-tree techniques [15]. However, diagnosis algorithms typically focus on
finding all diagnoses, while in an interactive context we are usually interested in just
finding a single explanation. Junker [9] points out the dualities of conflicts and relax-
ations, which are equivalent to diagnoses, and proposes an algorithm, QUICKXPLAIN,
that focuses on detecting minimal conflicts. His algorithm can be readily modified to
compute maximal relaxations. However, a corrective explanation is more than just the
complement of a relaxation, i.e. those variables whose assignments must be modified
in order to guarantee consistency. A corrective explanation also proposes alternative
assignments for those variables that ensure a solution can be found.

3.1 Generating Corrective Explanations Using Relaxations

We adopt an approach similar to that taken by many others working on explanation
generation [9]. Given a set of constraints that do not admit a solution, some constraints
must be removed to restore consistency. As noted earlier, in this paper we focus on
solving problems interactively where we have a set of background constraints, B, that
we assume admit a solution, and a set of user constraints, U . Therefore, to recover
consistency it is sufficient to remove some or all of the constraints in U .
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Definition 2 (Relaxation). Given a CSP, P =̂ 〈X ,D,B ∪ U〉, we define Pr as 〈X ,D,
B ∪R〉 such thatR ⊆ U and Pr admits a solution. We refer to R as a relaxation of U .

We can define both optimal and maximal relaxations.

Definition 3 (Optimal and Maximal Relaxations). A relaxation R is maximal if no
superset of it is also a relaxation. A relaxation R is optimal if there does not exist a
relaxationR′ such that |R′| > |R|.

A corrective explanation can be generated from a relaxation. If R is a relaxation
of the user’s constraints, U , that is consistent with a solution, sol, the corresponding
corrective explanation is sol ⇓ vars(U − R), i.e. the set of assignments from sol for
the variables in the constraints in U but not in R. If R is an optimal (respectively,
maximal) length relaxation, then the corresponding corrective explanation is optimal
(respectively, minimal).

3.2 Algorithm

We propose a constructive algorithm for computing maximal relaxations, inspired by
the conflict detection algorithm QUICKXPLAIN [9]. Since we need to find reassign-
ments of the variables based on a relaxation of the user’s assignments we do not em-
ploy a “divide-and-conquer” approach as in QUICKXPLAIN, but instead employ an
approach based on binary search. The CORRECTIVEEXP algorithm is presented as Al-
gorithm 1. An explanation is generated iff the set of constraints B ∪ U are inconsistent.
The procedure CONSISTENT verifies that a solution exists. For tree structured CSPs
arc-consistency is sufficient, but in general we need to resort to search. If an explana-
tion is required, a call to CORRECTIVERELAX is made, presented as Algorithm 3. The
assignments for the variables that form the corrective explanation are obtained from the
last solution used to prove thatR is a globally consistent relaxation of U .

Algorithm 1. CORRECTIVEEXP(B,U)

Input: A set of background constraints B, an ordered set of user constraints U .
Output: A corrective explanation.
if CONSISTENT(B∪ U) then return ∅;
else

letR← CORRECTIVERELAX(∅,U , ∅, B);
sol ← RESTORELASTSOLUTION;
return sol ⇓ vars(U −R);

CORRECTIVERELAX finds a maximal relaxation by removing, one-by-one, con-
straints that cause inconsistency. The algorithm performs a binary search on the set of
user constraints, U . Starting from an empty relaxation, its successively adds constraints
from U to the relaxation while it remains consistent (i.e. a solution still exists). Upon
attempting to add a set of constraints that are inconsistent, the algorithm identifies con-
straints that are responsible for the inconsistency and removes them individually, pre-
venting their consideration again. This is correct, since if a constraint is inconsistent
with a partial relaxation, it will be inconsistent with all of its extensions.
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Algorithm 2. CONSISTENT(C)

Input: A set of constraints, C.
Output: A Boolean: consistent or not consistent.
sol ← FINDSOLUTION(C);
SAVESOLUTION sol;
if not null(sol) then return TRUE;
else return FALSE;

Algorithm 3. CORRECTIVERELAX(R,U ,A,B)

Input:R the set of constraints being tested in this invocation; U the ordered set of
constraints yet to be tested; A the most recent additions toR; and the set of
background constraints B.

Output: A maximal relaxation of U .
if U = ∅ then

if CONSISTENT(R∪ B) then returnR;
else returnR−A;

else if CONSISTENT(R∪ B) then
let (*1,*2) ← SPLIT(U);
return CORRECTIVERELAX(R∪*1,*2,*1,B);

else if A = {a} then
let (*1,*2) ← SPLIT(U);
return CORRECTIVERELAX((R−A) ∪*1,*2,*1,B);

else
let (*1,*2) ← SPLIT(A);
return CORRECTIVERELAX((R−A) ∪*1,*2 ∪ U ,*1,B);

Algorithm 4. SPLIT(Ł)

Input: An ordered set of constraints Ł.
Output: A partition of Ł.
let α1, .., αn be an enumeration of Ł;
let k be +n

2
, ;

return ({α1, .., αk},{αk+1, .., αn}) ;

The algorithm’s SPLIT procedure, presented as Algorithm 4, splits a set of con-
straints in a binary search fashion. However, as for QUICKXPLAIN [9], there are a
number of other possibilities that can be used there.

Theorem 1 (Correctness). The algorithm CORRECTIVEEXP always terminates and
always returns a corrective explanation of minimal length for B ∪ U .

Proof. (Sketch) An explanation is not required if B ∪ U is consistent, in which case
CORRECTIVEEXP terminates with ∅. This is correct since no assignments in U need
to be modified to recover consistency. If an explanation is required, CORRECTIVEEXP

builds a maximal relaxation,R, by adding assignments from a binary search on U . Sets
of assignments, A, are removed from U and added to to R while they are consistent
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with R. If inconsistency is detected, the most recent set of assignments to be added to
the relaxation, i.e. A, is repeatedly divided until all assignments inconsistent with R
have been removed fromA. Each assignment inconsistent with the current relaxation is
removed individually within CORRECTIVERELAX by the case “else if A = {a}”. We
terminate when there are no more assignments in U to be considered. All assignments
in U that are consistent with B will have been added to R. Only those assignments
in U that are inconsistent with R will have been removed, therefore ensuring that the
resultant relaxation is of maximal length. It is easy to see that the corrective explanation
computed in the last line of CORRECTIVEEXP is, therefore, of minimal length. ��

The best case performance of CORRECTIVEEXP is similar to that of QUICKX-
PLAIN. Finding a relaxation is equivalent to a binary search on the constraints in U . If
k = |U|, then the path to any constraint has length log k. To find a relaxation of size r
from amongst these k constraints, the best case is for all k − r constraints not involved
in the relaxation to be located in the same subtree of the binary search tree explored by
the algorithm. Reaching the root of that subtree requires log k − log (k − r) calls to
CONSISTENT. To fully explore the subtree requires 2 · (k− r) calls. Therefore, the best
case number of calls to CONSISTENT required to find a maximal relaxation, and hence
a minimal corrective explanation, is 2 · (k − r) + log k

k−r . If relaxations are relatively
large with respect to the size of U , the algorithm is quite efficient. Indeed, as we will
see in the experimental evaluation, it is normally the case the the algorithm performs
close to its best case.

4 Experiments

We present an evaluation of CORRECTIVEEXP. The primary objective of the evaluation
was to study how the algorithm behaves when computing corrective explanations for
a variety of different problem classes. In particular, we focused on the length and cost
of corrective explanations. We also considered how close to finding explanations of
optimal length we could get using CORRECTIVEEXP, as well as observing how close
to its best-case behaviour could be achieved.

We ran a suite of experiments on a number of real-world configuration benchmark
problems as well as random soluble binary CSPs. The solver we used in our experiments
is based on generalised forward checking.

The real-world problems used were the Renault Megane Problem [1] and the Bike
Configuration Problem [6]. The Renault Megane Configuration benchmark deals with
the configuration of a family of cars. The problem consists of 101 variables, domain
sizes vary from 2 to 43, and there are 113 constraints, almost all of which are non-
binary. The number of solutions to the problem is over 1.4 × 1012. The Bike problem
deals with the configuration of bicycles. The problem consists of 34 variables, domain
sizes vary from 2 to 16, and there are 40 constraints, many of which are non-binary. The
number of solutions to the problem is over 1.3× 108.

We also generated 500 random CSPs comprising 15 variables, with 10 values per
domain, tightness 0.3 and density ranging from 0.3-0.6. These problems are all in the
soluble region. These problems sizes were chosen as being representative of many prob-
lems one finds in interactive applications. For example, the standard benchmarks used in
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recommender systems and case-based reasoning systems typically have 10-15 features
(variables) and 5-15 possible values for each.

We considered both the task of generating corrective explanations for consistency
recovery and corrective explanations for value restoration. For each of the real-world
problems studied, a set of 500 distinct test-points were generated for the experiment by
simulating a user solving each problem, and recording the situations for which the user
either required or requested corrective explanations. For the random problems we gen-
erated one test-point per problem. Test-points were generated for both the consistency
recovery and value restoration tasks for each problem. The simulated user instantiated
variables randomly and values lexicographically. In order to compare explanation gen-
eration techniques we generate explanations for the situations described by these test-
points. This ensures that we compare the techniques fairly, as explanations are generated
on the basis of the same search state. Further details of how test-points were generated
are provided below when discussing each experiment.

We compare three approaches to generating corrective explanations:

1. A branch-and-bound search to find optimal (minimum) length explanation;
2. The CORRECTIVEEXP algorithm proposed in this paper;
3. A heuristic-based approach which returns a corrective explanation based on the first

solution found for the problem [12].

In the third case above, using the heuristic-based approach, corrective explanations
are found by returning any differences between the assignments made by the user and
the assignments in a solution found using carefully chosen variable and value ordering
heuristics. These heuristics attempt to maximise the number of user assignments in such
a solution. The value ordering heuristic favours values chosen by the user during search,
by selecting those first whenever possible, and uses random choices for the remaining
ones. We partition the set of variables into two subsets: those that are user-assigned and
those that are still unassigned. User-assigned variables are considered first, and within
each subset of variables the min(dom/deg) ordering heuristic was used. The intuition
here is that during search the user’s choices are always considered first, so they are
more likely to participate in the solution used to generate an explanation.

4.1 Results

Consistency Recovery. In this experiment we simulate a user who is simply trying to
find a solution to the problem. Test-points are generated when the user reaches a variable
for which a consistent assignment cannot be found. For each explanation we record
its length, the depth at which the explanation was requested (reflecting the number of
assignments the user has already made), and the cost of the explanation (measured
by the number of constraint checks required to generate it). The results are averaged
at various intervals in the depth. For example for the Megane problem the results are
presented in steps of 10, i.e. the data for each explanation requested between 1 and
10 are averaged and presented at depth 10 in the graph, between 11 and 20, etc. The
results for the experiments on the benchmark configuration problems are presented in
Figures 2(a), 2(c), 3(a) and 3(c). We do not present results for the random problems for
this experiment since each approach found, effectively, optimal explanations.
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Fig. 2. Results for finding explanations for the Renault Megane Configuration Benchmark

Value Restoration. For each interaction in these experiments (attempt to make a vari-
able assignment) there was a 10% chance that the user would ask to restore a value re-
moved from the domain of the current variable. The explanation length, depth and cost
are plotted as per the consistency restoration experiment. The results for the benchmark
experiments are presented in Figures 2(b), 2(d), 3(b) and 3(d). Results for the experi-
ments on the random problems are presented in Figure 4.

4.2 Discussion

We discuss our results in detail below, but first give a summary of our evaluation. We
demonstrate that CORRECTIVEEXP almost always finds optimal length explanations
without incurring the high costs associated with a branch-and-bound approach. While
for the real-world benchmarks a heuristic approach often finds explanations that are
close to optimal very cheaply, we show that in the more controlled context of ran-
dom problems, CORRECTIVEEXP can find significantly shorter explanations. In almost
every case CORRECTIVEEXP finds corrective explanations with effort close to the best-
case theoretical performance of the algorithm.



Generating Corrective Explanations for Interactive Constraint Satisfaction 455

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25 30 35 40

C
on

st
ra

in
t C

he
ck

s

Depth

Average Cost - Bike Problem

 1 Pass Min(dom/deg) 
 B&B Min(dom/deg) 

 CorrectiveExp 

(a) Average cost of consistency recov-
ery explanations

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25 30 35 40

C
on

st
ra

in
t C

he
ck

s

Depth

Average Cost - Bike Problem

 1 Pass Min(dom/deg) 
 B&B Min(dom/deg) 

 CorrectiveExp 

(b) Average cost of value restoration
explanations

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

V
ar

ia
bl

es

Depth

Average Length - Bike Problem

 1 Pass Min(dom/deg) 
 B&B Min(dom/deg) 

 CorrectiveExp 

(c) Average length of consistency re-
covery explanations

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

V
ar

ia
bl

es

Depth

Average Length - Bike Problem

 1 Pass Min(dom/deg) 
 B&B Min(dom/deg) 

 CorrectiveExp 

(d) Average length of value restoration
explanations

Fig. 3. Results for finding explanations for the Bike Configuration Benchmark

Benchmark Problems. We see that the CORRECTIVEEXP explanations are always
close to optimal length for both tasks. In fact CORRECTIVEEXP found minimum expla-
nations in every case in the experiments on the benchmark problems with the exception
of some test cases for the Megane problem, when attempting to restore consistency at
depths between 80 and 90. The heuristic search-based approach also performed well
for the benchmark problems. Explanations of within one variable of optimal were gen-
erated for the Bike and Megane problems.

Explanations for the consistency recovery task tend to be shorter, as they aim only
to allow the user to proceed with his/her search whereas the value restoration expla-
nations may require modifying many more of the user’s earlier decisions in order to
accommodate a specific new preference.

In Figures 2(a) and 3(a) the average explanation costs for consistency recovery
task are presented. The results for the value restoration task are shown in Figures 2(b)
and 3(b). It should be noted that CORRECTIVEEXP always finds explanations using a
number of constraint checks close to the best case for the algorithm. For example, con-
sider Figure 2(a) when computing an explanation to recover consistency at depth 50.
The average cost to find a solution is less that 2000 consistency checks, while CORREC-
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(h) Average Length: density 0.6

Fig. 4. Results for finding corrective explanations for value restoration for random binary prob-
lems (15 variables, 10 values, tightness 0.3)
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TIVEEXP requires approximately 16000. The best case number of solutions required for
CORRECTIVEEXP to find a minimal corrective explanation in this case is 8.

Minimum length explanations found using branch-and-bound tend to be very expen-
sive to compute, as one would expect, while a greedy heuristic-based approach finds ex-
planations quickly. CORRECTIVEEXP explanations are considerably cheaper (by orders
of magnitude) than the branch-and-bound algorithm while still finding explanations of
optimal length.

The greedy search-based explanation generation technique performs very well for
the benchmark configuration problems. Close to optimal explanations (within one vari-
able) are found very cheaply (1000’s of constraint checks). CORRECTIVEEXP finds
minimal explanations which are optimal in almost every case. For these problems it is
doubtful whether the additional cost is warranted given how well a heuristic approach
seems to perform. However, with modest additional search cost CORRECTIVEEXP will
guarantee minimality and performs close to its theoretical best-case.

Random Problems. For random problems we only present results for the value restora-
tion task, for reasons outlined earlier. For most of the problem densities we considered
it is clear that a heuristic search-based approach is not as effective on these problems
as it was on the real-world configuration benchmarks when we consider the length of
the explanations found. However, CORRECTIVEEXP finds optimal length explanations
in every case. From the perspective of search cost, CORRECTIVEEXP again is orders
of magnitude better than a branch-and-bound approach, but not prohibitively worse
than finding a single solution. Indeed, it is again performing close to its theoretical
best-case.

Of particular interest is that for lower density problems a heuristic search-based
approach generates explanations that can be considerably longer than optimal, but that
guaranteeing minimality using CORRECTIVEEXP (and in these cases optimality) is not
prohibitively more expensive than finding a single solution, which is encouraging.

While not reported here, we did run experiments on random problems at the phase
transition with results consistent with those presented here. However, since solutions be-
come rarer as the phase transition point is reached, it is to be expected that the heuristic-
based approach starts to find explanations that are very close to optimal. Therefore,
we argue that the experiment we have presented here is the most interesting from the
perspective of explanation generation for interactive constraint satisfaction, since such
problems tend to have many solutions.

5 Related Work

QUICKXPLAIN [9] is the current industry standard explanation algorithm. It is used
as the explanation component of ILOG’s Configurator product. However, QUICKX-
PLAIN does not compute corrective explanations, but minimal conflict sets. These can
be regarded as minimal causal explanations discussed in the Introduction. The QUICK-
XPLAIN algorithm could be modified to find maximal relaxations, however this would
simply provide us with a corrective set of variables, i.e. those variables that must be
reassigned corrective values to give a corrective explanation. The CORRECTIVEEXP
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proposed here does essentially this, but directly. However, we acknowledge QUICKX-
PLAIN as providing motivation for developing a relaxation-based approach to finding
corrective explanations.

There is a considerable amount of work on explanation in constraint satisfaction. For
example, many researchers have addressed the generation of explanations in interactive
constraint-based systems [1, 2, 4]. There has also been work on explanations that focus
on explaining why a particular solution to a problem exists [10, 13, 16]. However, these
existing approaches to generating explanations are primarily focused on conflict. While
sometimes such conflict-based explanations may be helpful, in the context of interactive
constraint satisfaction such explanations are of limited value to a user who wishes to
progress through the interactive process by finding assignments that are guaranteed
to yield a solution. Recent work on tradeoff generation [5] is closely related to the
notion of corrective explanation. However, a tradeoff is essentially a binary constraint.
A corrective explanation can be much more general.

We see our research developing along three fronts. Firstly, there are strong links be-
tween the notion of corrective explanation and that of a diagnosis in both model-based
diagnosis [15] and ATMS [3]. However, while diagnosis algorithms focus on finding all
diagnoses, we are interested in finding a single diagnosis which can be used to form the
basis of an explanation. Building on the work of Junker [9], we plan to further explore
the potential for relaxation-focused algorithms for finding corrective explanations. Sec-
ondly, we will address the issue of computing corrective explanations that take users’
preferences into account. Thirdly, in this paper we considered one possible algorithm
for finding corrective explanations, in addition to the heuristic approach we have pro-
posed previously [12]. However, there are other search-based techniques that we could
consider, for example, repair-based techniques [7] as well as techniques for solving
dynamic CSPs [17].

6 Conclusion

Interactive tasks such as online configuration and e-commerce can be modelled as con-
straint satisfaction problems (CSPs). These can be solved interactively by a user assign-
ing values to variables. In this paper we have characterised a class of explanations that
have not been previously studied in the field of constraint satisfaction. Such explana-
tions focus on how to overcome inconsistency, rather than explain its presence. We call
these corrective explanations.

We have proposed an algorithm for generating minimal corrective explanations,
and have demonstrated that such an approach is practical. We evaluated the approach
on both real-world configuration benchmarks and randomly generated problems with
encouraging results. Finally, we outlined aspects of our research agenda in this area.
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Based on Statistics

Gilles Pesant1 and Jean-Charles Régin2
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Abstract. Many combinatorial problems require of their solutions that
they achieve a certain balance of given features. In the constraint pro-
gramming literature, little has been written to specifically address this
issue, particularly at the modeling level. We propose a new constraint
dedicated to balancing, based on well-known and well-understood con-
cepts in statistics. We show how it can be used to model different sit-
uations in which balance is important. We also design efficient filtering
algorithms to guide the search towards balanced solutions.

1 Introduction

We have seen many advances in CP modeling in recent years. Useful problem
substructures have been identified, leading to new constraints with efficient filter-
ing algorithms. Soft constraints have been introduced to handle over-constrained
problems. Lexicographic constraints have been designed to break problem sym-
metries. Efforts to automate the modeling process have also been made.

One aspect that has lacked a truly satisfying approach to date is the ability
to balance certain features of a solution. Take for example the balanced aca-
demic curriculum problem [1], in which courses are assigned to periods so as to
balance the academic load between periods. Because of additional constraints
(prerequisite courses, minimum and maximum number of courses per period)
and a varying number of credits per course, reaching perfect balance is gener-
ally impossible. Given that, some common ways of encouraging balance at the
modeling level are:

a) to set reasonable bounds on each load, tolerating a certain deviation
from the ideal value;

b) to minimize the greatest load, thus avoiding outliers (or at least those
above the ideal value);

c) to take the least square error.
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The first two options both have the disadvantage of putting on an equal
footing solutions with quite different balance:

a) If we require that loads belong to [8, 12], aiming for an ideal load of
10, then sets of loads {10, 10, 10, 10, 9, 11} and {8, 8, 8, 12, 12, 12} both satisfy
the restriction but the former is much more balanced. The situation could be
corrected somewhat by only allowing deviations for a few of the loads, but which
ones should it be? We run the risk of being unfair (ironically) or, even worse, of
excluding legitimate solutions.

b) Loads {10, 10, 10, 10, 9, 11} and {9, 9, 9, 11, 11, 11} both have a greatest
load of 11 but again the former is more balanced.

The last option corrects this by considering a combination of individual de-
viations. However it requires that we solve a discrete optimization problem, with
a nonlinear objective as is the case for the second option. This may not be easy
and, if other real objectives are present, we have to come up with suitable weights
for the different terms of the objective function. Balance can also be dealt with
in the search strategy: by keeping track of previous course assignments, we can
favor certain future assignments that will improve the balance. This is helpful
but using it on its own means that an important aspect of the problem is not
present at all in the model itself.

Balance is often important in assignment problems or in problems with an
assignment component. We give a few examples. In assembly line balancing the
workload of the line operators must be balanced. In rostering we may talk of
fairness instead of balance, because of the human factor. Here we want a fair
distribution of weekends off or of night shifts among workers, for example. In ve-
hicle routing one dimension of the problem is to partition the customers into the
different routes — balancing the number of customers served on each route, the
quantity of goods delivered, or the time required to complete the route may be
of interest. In one of the few works specifically addressing balance in the context
of constraint satisfaction, an earth observation satellite scheduling and sharing
problem is used to investigate three ways of handling fairness among agents
with competing observation requirements [3]. The first one applies a decompo-
sition into individual problems, each with a fair share of observation windows,
but overall efficiency suffers. The second one favors efficiency and sets a lower
bound on individual shares for fairness (option a) above). The third one com-
putes a set of Pareto-optimal solutions in the two-dimensional space of overall
efficiency and fairness. To evaluate fairness, they use the Gini index, popular in
microeconomics.
We could describe the balance we seek in the following way:

• the average value should be close to a given target, corresponding to the
ideal value;

• there should be no outliers, as they would correspond to an unbalanced
situation;

• values should be grouped around the average value.
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We claim that statistics provide appropriate mathematical concepts to express
this. We will propose a constraint expressing balance in a way similar to the
method of least squares mentioned before but by setting limits on the deviation
instead of minimizing an objective which must be weighted relative to other
potential objectives.

The rest of this paper is organized as follows. Section 2 reviews some basic
concepts and definitions in statistics. Section 3 defines the new constraint based
on statistics that we propose and presents typical uses. Section 4 derives some
inequalities bounding the number of variables taking extreme values and uses
them to filter the domains of the variables. Section 5 builds up to another filtering
algorithm, this one achieving bounds consistency.

2 Statistics Background

Given a collection of numbers, even simple summary statistics about them can be
revealing. Measures of location tell us about the central tendency of the values.
The most common such measures are the mode, the median, and the mean. The
mode is the value(s) occurring most often in a given collection of numbers. The
median, denoted x̃, is the smallest value such that at least half of the numbers
are no larger than it, and at least half of the numbers are at least as large as it.
We will prefer to use the mean because it is instrumental in telling us how many
values may exceed a given threshold, which will prove useful to filter domains.

Definition 1 (Mean). The (arithmetic) mean of a collection of values
〈x1, x2, . . . , xn〉, denoted μ, is computed as

μ =
1
n

n∑
i=1

xi. (1)

Measures of spread tell us whether the values tend to be bunched together or
spread out. The most common measures are the range, the semi-quartile range,
and the standard deviation. The range is the size of the smallest interval con-
taining all the values. Unfortunately that measure is highly sensitive to outliers.
The semi-quartile range, half the size of the smallest interval containing fifty
percent of the most central values, partially overcomes that drawback. We favor
the more familiar standard deviation, partly for the same reason as the mean:
we will be able to limit the number of values straying away from the center.

Definition 2 (Standard Deviation). The standard (or root-mean-square)
deviation of a collection of values 〈x1, x2, . . . , xn〉, denoted σ, is computed as

σ = (
1
n

n∑
i=1

(xi − μ)2)
1
2 . (2)

An alternate way of computing the standard deviation, which is more numeri-
cally stable, is obtained through the Koenig-Huyghens relation:

σ2 =
1
n

n∑
i=1

x2
i − μ2. (3)
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Measures of skewness tell us about the general shape of the distribution of val-
ues. Two collections of values with identical mean and standard deviation may
nevertheless be significantly different. A perfectly symmetric continuous distri-
bution will have its median and mean coincide. A distribution with a positive
(resp. negative) bias will have x̃ < μ (resp. x̃ > μ). The Pearson coefficient,
computed as 3(μ − x̃)/σ, is one way to measure skewness. The simpler form
μ− x̃ at least preserves the sign of the bias.

Two well-known inequalities for random variables can be recast for our pur-
pose. They can be useful to derive filtering algorithms.

Theorem 1 (Markov’s Inequality). Consider a collection of non-negative
values 〈x1, x2, . . . , xn〉 with mean μ, and some threshold τ . Then the fraction of
these values that are greater or equal to τ is at most μ

τ .

For example, if the threshold selected is three times the mean then at most one
third of the values are no smaller than that threshold.

Theorem 2 (Bienaymé-Chebychev’s Inequality). Consider a collection of
values 〈x1, x2, . . . , xn〉 with mean μ and standard deviation σ, and some positive
number k. Then the fraction of these values that are kσ or further from μ is at
most 1

k2 .

This important result bounds the number of values that can be far from the
mean. For example, at most 25% of the values may be two standard deviations
away from the mean and at most 4% may be five standard deviations away.

3 The Spread Constraint

This section defines and discusses the constraint we propose. We first give some
basic definitions and notation in constraint programming.

Definition 3 (Finite-Domain (Discrete) Variable). A finite-domain (dis-
crete) variable x takes a value in D(x), a finite set called its domain. Whenever
there is a total order defined on that set (e.g. when it is a subset of N), we denote the
smallest (resp. largest) value x may take as xmin (resp. xmax).

Definition 4(Bounded-Domain(Continuous)Variable).Abounded-domain
(continuous) variable y takes a value in ID(y) = [ymin, ymax], an interval onR called
its domain as well.

Definition 5 (Relaxed Domain). Given finite-domain variable x, we denote
by ID(x) its domain relaxed to the continuous interval [xmin, xmax]. By extension
for a union of domains D =

⋃n
i=1 D(xi), let ID represent the continuous interval

[minn
i=1 xmin

i , maxn
i=1 xmax

i ] .
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We are now ready to state the constraint:

Definition 6 (Spread Constraint). Given a set of finite-domain variables X =
{x1, x2, . . . , xn} and bounded-domain continuous variables μ, σ, and x̃, constraint
spread(X, μ, σ, x̃) states that the collection of values taken by the variables of X
exhibits an arithmetic mean μ, a standard deviation σ, and a median x̃.

There are clear advantages to this formulation. First, it is not affected by a
permutation of the values given to the xi’s. No particular variable or subset of
variables is a priori identified as taking a lower value than others, for example,
which might be necessary with other approaches to fairness, ironically introduc-
ing a bias. Second, it is not affected by the sign of the deviation. The impact
on the standard deviation of a value away from the mean is the same whether
the value is above or below the mean. Finally, it is based on well-established
concepts in statistics.

3.1 Typical Uses

We outline some typical uses of the constraint by focusing on how μ is constrained
and illustrate them with examples taken from rostering. First note that if we set
σ to 0, we are asking for perfect fairness: every xi should be identical. If in essence
we have a fixed number of balls to distribute as evenly as possible into a fixed
number of boxes, μ is fixed since it corresponds to the ratio of the number of balls
to the number of boxes. We constrain the variables by limiting σ. This situation
occurs, for example, when night shifts should be evenly distributed among 10 staff
members and we know that there are exactly 200 night shifts to cover:

spread(X, 20, [0, 1], x̃)

If on the contrary the number of balls is unknown,μ is not fixed. We may have some
approximate idea of what the mean should be and in this case μ is constrained
around that approximation. For example, weekends off should be evenly spread
over the whole planning horizon in an individual schedule. Taking our variables
to be the size of the gaps between such weekends and even given the number of
them, the mean may not be known because of the uncertainty as to where the last
weekend off falls. Nevertheless, we may wish for a typical gap of 3:

spread(X, [2.8, 3.2], [0, 0.5], x̃)

Other times we have no idea what the mean could be and μ is left free. For
example, a weekend on which one day is worked and the other not is called a
“broken” weekend, a generally undesirable feature. We often do not know in
advance how many such weekends will occur in a schedule but we nevertheless
wish the number of broken weekends to be evenly distributed among all staff
members. Considering a roster over w weeks, we could state:

spread(X, [0, w], [0,
w

3
], x̃)
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If two of the staff members have more seniority, their number of broken weekends
should be about half that of the others:

y1 = 2x1, y2 = 2x2, yi = xi (3 ≤ i ≤ n), spread(Y, [0, w], [0,
w

3
], x̃)

Since broken weekends are undesirable, we could prefer instead that the distribu-
tion of values does not show a negative bias, i.e. there should not be a majority
of staff members with an above-average number of such weekends:

0 ≤ x̃ ≤ μ ≤ w, spread(X, μ, [0,
w

3
], x̃)

4 Fast Filtering

It would be difficult to efficiently achieve domain consistency on the spread con-
straint because even in the special case where μ is fixed, we are left with a linear
Diophantine equation originating from Definition 1. In the case of Definition 2,
it is not even linear. Bounds consistency is a common compromise in such a case.
At a minimum, we can apply bounds consistency on (1) and (3).

Example 1. Consider a set of ten variables required to take integer values from
{7, 8, . . . , 13} such that μ ∈ [9.5, 10.5]. Suppose that at some point five of the
variables are fixed to value 13. Bounds consistency on (1) alone will remove 13
from the domain of every other variable as there is no support for a sixth variable
taking that value: [9.5, 10.5]∩(6×13+4× [7, 13])/10 = [9.5, 10.5]∩ [10.6, 13] = ∅.

Theorem 1 bounds the number of occurrences of values far from the mean.
We could extend this result to filter the domains of the variables in X but it
would not give us more than bounds consistency on (1). However Theorem 2
also bounds the number of occurrences of values far from the mean and we will
show that it can lead to more filtering than bounds consistency on (1) and (3).

4.1 Exploiting Bienaymé-Chebychev’s Inequality

We wish to derive a family of inequalities for consecutive integer thresholds
away from the mean. The key observation is that the value k in the theorem
need not be integer: we therefore use appropriate values of k that will provide
the integer thresholds we need. By seeking these exact values we obtain the
strongest possible bounds from the theorem.

Let D =
⋃n

i=1 D(xi) and ID = [a, b]. Define variables c�, � ∈ {a, a + 1, . . . , b}
as the number of times a variable from X takes value �. First consider the case
μ− a ≥ b− μ. Since this means there is at least as much slack below μ as there
is above, we focus on threshold values below, that is a + j for 0 ≤ j < μ − a.
For each threshold a + j we seek k such that μ− kσ = a + j, in order to get the
smallest bound 1

k2 . Solving for k we obtain k = μ−a−j
σ , yielding:

a+j∑
�=a

c� +
b∑

�=μmax+μmin−(a+j)

c� ≤ 7
σ2

(μ− a− j)2
· n8 0 ≤ j < μ− a (4)
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The lower limit in the second sum ensures that it only considers values that are
at least μ− (a + j) away from the mean, as in the first sum.

Similarly when μ − a < b− μ, for each threshold b − j we seek k such that
μ + kσ = b− j, yielding:

μmin−((b−j)−μmax)∑
�=a

c� +
b∑

�=b−j

c� ≤ 7
σ2

(b− μ− j)2
· n8 0 ≤ j < b− μ (5)

These inequalities can lead to better filtering than bounds consistency on (1)
and (3) because they simultaneously take into account μ and σ, as illustrated in
the following example.

Example 2. Consider again the situation depicted in Example 1 with the ad-
ditional restriction that σ ∈ [0, 0.4]. The left-hand side of (3) consequently
lies in [0, 0.16], which has plenty of overlap with the right-hand side (10 ×
[72, 132] − [9.52, 10.52])/10 ⊂ [−61.25, 78.75]. It is easy to verify that (3) is
bounds consistent: for example, checking value 7 only shrinks the right-hand
side to [−61.25, 66.75]. Equation (1) is bounds consistent as well. However in-
equality (4) for j = 1 gives c7 + c8 + c12 + c13 ≤ 70.71̄8 = 0. In other words, the
domain of each xi can be narrowed to {9, 10, 11}.

The c� variables are the same we would use in a global cardinality constraint
except that here we do not bound them individually but in telescoping sums.
We can maintain bounds consistency on each inequality in O(b−a) time and use
an upper bound constraint (half of a gcc) between the c�’s and the xi’s on which
we maintain bounds consistency in O(n + t) time where t is the time required
to sort the xi’s by their bounds [4]. (Note however that we do not necessarily
achieve bounds consistency on the spread constraint as Example 3 will show.)
The overall time complexity isO(n+t+(b−a)2). Since n, the number of variables,
is typically much larger than b− a, the span of the values, the algorithm runs in
linear time under the reasonable assumption that b− a is a small constant.

4.2 Median

Simple inequalities follow from the definition of the median:

x̃min−1∑
i=a

c� < 7n
2
8,

x̃max∑
i=a

c� ≥ 1
n

2
2 (6)

b∑
i=x̃max+1

c� < 7n
2
8,

b∑
i=x̃min

c� ≥ 1
n

2
2 (7)

We can maintain bounds consistency on them as well but here we should combine
them with a (full) bounds consistent gcc constraint [4][2]. To filter on x̃, we can
use the fact that x̃ = min{k |

∑k
i=a c� ≥ 1n

2 2} = max{k |
∑b

i=k c� ≥ 1n
2 2}.
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5 A Bounds Consistency Algorithm

The algorithm of the previous section did not consider the individual domains
of the xi’s but worked instead from the smallest interval containing all of them.
Even a very simple example like Example 3 is enough to show that some fil-
tering may be missed when the domains are significantly different. This section
describes an algorithm that takes into account the span of each individual do-
main of the xi’s and that achieves bounds consistency for the spread constraint.

Example 3. Consider two variables with respective domains {7, 8} and {12, 13}
such that μ ∈ [9.5, 10.5] and σ ∈ [0, 2]. Equations (1) and (3) are bounds consis-
tent and inequality (4) for j = 0 gives c7 + c13 ≤ 71.288 = 1 but there is clearly
no solution with 7 or 13.

5.1 Establishing the Optimal Value

Definition 7. Let X = {x1, x2, . . . , xn} as before and define the following prob-
lem Π(X, q) for some fixed number q:

min
n∑

i=1

(xi −
q

n
)2 such that

n∑
i=1

xi = q, xi ∈ ID(xi) 1 ≤ i ≤ n.

We also define the more general problem Π(X, [�q, uq]):

min
n∑

i=1

(xi −
q

n
)2 such that

n∑
i=1

xi = q, xi ∈ ID(xi) 1 ≤ i ≤ n, q ∈ [�q, uq].

We will denote by opt(Π) the optimal value of the problem Π.

Definition 8. An assignment A : x .→ ID(x) over X is said to be a ν-centered
assignment when

A(x) =

⎧⎨⎩
xmax, if xmax ≤ ν
xmin, if xmin ≥ ν
ν, otherwise

Lemma 1. Any optimal solution to Π(X, q) must be a ν-centered assignment.

Proof. The objective function of Π(X, q) can be rewritten as follows:
∑

(xi −
q
n )2 = (

∑
x2

i ) − q2

n because
∑

xi = q. Thus, for a given q the minimum value
of
∑

(xi − q
n )2 can be deduced from the minimum value of

∑
x2

i . Consider
an assignment A on X which is a solution to Π(X, q) but not a ν-centered
assignment. We prove that

∑
(A(xi))2 is not optimal by constructing another

assignment B such that
∑

(B(xi))2 <
∑

(A(xi))2. There are three ways in which
A may fail to be a ν-centered assignment:

• ∃ i, j s.t. xmin
i < A(xi) < xmax

i , xmin
j < A(xj) < xmax

j , and A(xi) > A(xj).
Define B as B(xi) = A(xi)− d, B(xj) = A(xj) + d, B(xk) = A(xk) for k �= i, j,
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Table 1. Relevant values computed from Example 4

I ES(I) |M(I)| V (I) GC(I) q-opt(Π(X, I)) opt(Π(X, I))
[0, 1] 13 2 [13, 15] 18 15 19.5
[1, 2] 12 3 [15, 18] 24 18 12.0
[2, 3] 14 2 [18, 20] 21 20 8.3̄
[3, 4] 8 4 [20, 24] 24 24 8.0
[4, 5] 16 2 [24, 26] 24 24 8.0
[5, 6] 26 0 [26, 26] 26 26 9.3̄
[6, 9] 20 1 [26, 29] 24 26 9.3̄

where d = 1
2 min((xmax

j − A(xj)), (A(xi) − A(xj)), (A(xi) − xmin
i )). Then B is

also a solution to Π(X, q) from the definition of B and the choice of d. Now
(B(xi))2 + (B(xj))2 = (A(xi) − d)2 + (A(xj) + d)2 = (A(xi))2 + (A(xj))2 +
2d(A(xj) − A(xi) + d). Since A(xj) < A(xi), d > 0 and d ≤ (A(xi) − A(xj))/2
we have that 2d(A(xj)−A(xi)+ d) < 0. Thus (B(xi))2 +(B(xj))2 < (A(xi))2 +
(A(xj))2 and B is a better assignment.

• ∃ i s.t. A(xi) = xmax
i > ν (and the symmetric case A(xi) = xmin

i < ν).
Take j s.t. A(xj) = ν < xmax

j (if we cannot find such a j then we are in the third
case below). Build B as in the first case.

• ∃ i, j s.t. A(xi) = xmax
i , A(xj) = xmin

j , and A(xi) > A(xj) (i.e. the two
groups overlap). Build B as in the first case. �

To simplify the analysis, we first partition ID into intervals in which the
status of the relaxed domains of the xi’s does not vary: each either completely
lies to the left or right, or completely contains the interval. We then exhibit
a particular ν-centered assignment and show that it is an optimal solution to
Π(X, q). Finally we generalize for an unspecified value q ∈ [�q, uq].

Definition 9. Let B(X) be the sorted sequence of bounds of the relaxed domains
of the variables of X, in non-decreasing order and with duplicates removed. De-
fine I(X) as the set of intervals defined by a pair of two consecutive elements of
B(X). The kth interval of I(X) is denoted by Ik.

Example 4. Let D(x1) = [0, 2], D(x2) = [1, 4], D(x3) = [0, 5], D(x4) = [3, 5],
D(x5) = [3, 4], D(x6) = [6, 9]. Then I1 = [0, 1], I2 = [1, 2], I3 = [2, 3], I4 = [3, 4],
I5 = [4, 5], I6 = [5, 6], I7 = [6, 9].

Definition 10. S(X) =
∑

x∈X xmin and S(X) =
∑

x∈X xmax.
Let I be an interval of I(X). Then

• R(I) = {x | xmin ≥ max(I)}, the variables lying to the right of I
• L(I) = {x | xmax ≤ min(I)}, the variables lying to the left of I
• M(I) = {x | I ⊆ ID(x)}, the variables overlapping I
• ES(I) =

∑
x∈L(I) xmax +

∑
x∈R(I) xmin

• V (I) = [ES(I) + min(I)× |M(I)|, ES(I) + max(I)× |M(I)|]
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Lemma 2. ES(Ik+1) = ES(Ik) + (pk+1 − qk+1)×max(Ik),
where pk+1 = |L(Ik+1)| − |L(Ik)| and qk+1 = |R(Ik)| − |R(Ik+1)|.

Proof. ∀x ∈ (R(Ik) − R(Ik+1)) xmin = min(Ik+1) and ∀x ∈ (L(Ik+1) − L(Ik))
xmax = max(Ik). From Def. 9 max(Ik) = min(Ik+1). �

Proposition 1. ∀a ∈ [S(X), S(X)] there exists I ∈ I(X) such that a ∈ V (I).

Proof. We already have min(V (I1)) = S(X) and max(V (I|I(X)|)) = S(X). It is
therefore sufficient to show that for any two consecutive intervals Ik, Ik+1 from
I(X), we have min(V (Ik+1)) = max(V (Ik)), thus leaving no gaps. Let mk =
|M(Ik)| and mk+1 = |M(Ik+1)|. From Lemma 2, min(V (Ik+1)) = ES(Ik+1) +
mk+1 min(Ik+1) = ES(Ik) + (pk+1 − qk+1)max(Ik) + mk+1 min(Ik+1).
In addition, mk+1 = mk − pk+1 + qk+1 and min(Ik+1) = max(Ik).
Therefore min(V (Ik+1)) = ES(Ik) + max(Ik)× |M(Ik)| = max(V (Ik)). �

Definition 11. Given a value q such that q ∈ [S(X), S(X)] and I such that
q ∈ V (I), define the following assignment Aq,I on X:

Aq,I(x) =

⎧⎨⎩
xmax, x ∈ L(I)
xmin, x ∈ R(I)
(q − ES(I))/|M(I)|, x ∈M(I)

Lemma 3. Assignment Aq,I is a feasible solution to Π(X, q) and is ν-centered.

Proof. We first have to show that every variable is assigned a value within its
relaxed domain. It is immediate in the first two cases but not so for x ∈ M(I).
Since q ∈ V (I), we have q − ES(I) ∈ [min(I) × |M(I)|, max(I) × |M(I)|] and
so (q − ES(I))/|M(I)| ∈ [min(I), max(I)] = I ⊆ ID(x), by definition of M(I).
This also shows that Aq,I is ν-centered with ν = (q−ES(I))/|M(I)|. As for the
sum,

∑n
i=1 Aq,I(x) = ES(I) + |M(I)|(q − ES(I))/|M(I)| = q. �

Theorem 3. Aq,I is an optimal solution to Π(X, q).

Proof. Given lemmas 1 and 3, it is sufficient to show that Aq,I is the unique fea-
sible ν-centered assignment for Π(X, q). Suppose A′ is another such assignment.
There is at least one variable xj such that A′(xj) > Aq,I(xj) because Aq,I and
A′ are not equal but have the same sum. So, A′(xj) > xmin

j and from Def. 8 for
A′ we have ∀i s.t. A′(xi) < A′(xj) : A′(xi) = xmax

i ≥ Aq,I(xi). Then, consider
any variable xi with A′(xi) ≥ A′(xj) and assume that Aq,I(xi) > A′(xi). In this
case, Aq,I(xi) > Aq,I(xj) and since xmax

j ≥ A′(xj) > Aq,I(xj) Def. 8 for Aq,I

implies that Aq,I(xi) = xmin
i which is not possible because Aq,I(xi) > A′(xi).

Therefore ∀i s.t. A′(xi) ≥ A′(xj): A′(xi) ≥ Aq,I(xi). Thus, ∀i = 1..n, i �= j :
A′(xi) ≥ Aq,I(xi) and A′(xj) > Aq,I(xj) so the sum of the elements of Aq,I

cannot be equal to the sum of the elements of A′. �

Next we propose to do the same thing for the more general problem Π(X, [�q, uq]).
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Theorem 4. Given I ∈ I(X) and GC(I) = n × ES(I)/(n − |M(I)|). We will
denote by q-opt(Π(X, V (I))) the value of q ∈ V (I) for which the objective value
of Π(X, V (I)) is optimal. Then

(i) If GC(I) ∈ V (I) then q-opt(Π(X, V (I))) = GC(I).
(ii) If GC(I) > max(V (I)) then q-opt(Π(X, V (I))) = max(V (I)).
(iii) If GC(I) < min(V (I)) then q-opt(Π(X, V (I))) = min(V (I)).

Proof. Consider q ∈ V (I) and q′ ∈ V (I) with q �= q′. From Theorem 3 Aq,I is
an optimal solution of Π(X, q), Aq′,I is an optimal solution of Π(X, q′). We have∑

(xi− q
n )2 = (

∑
x2

i )− q2

n and let D(q, q′) =
∑

(Aq,I(x)− q
n )2−

∑
(Aq′,I(x)− q′

n )2.
The values q and q′ belong to V (I) so ∀x ∈ (L(I) ∪ R(I)): Aq,I(x) = Aq′,I(x).
Therefore the sums of the squares for Aq,I and Aq′,I differ only for the elements
of M(I). If M(I) = ∅ then min(V (I)) = max(V (I)) so q′ �= q does not exist.
Let m = |M(I)| and e = ES(I). For Aq,I we have x ∈ M(I) ⇒ Aq,I(x) =
(q − e)/m, so

∑
x∈M(I) Aq,I(x)2 =

∑
x∈M(I)((q − e)/m)2 = 1

m(q2 + e2 − 2qe).

Thus D(q, q′) = 1
m (q2 + e2−2qe)− q2

n −
1
m((q′)2 + e2−2q′e)+ (q′)2

n or D(q, q′) =
1

nm ((n − m)(q2 − (q′)2) − 2ne(q − q′). Let q′ = q − α for some α �= 0 then

D(q, q − α) = α
nm [(n −m)(2q − α) − 2ne] = 2αq(n−m)

nm − α2(n−m)
nm − 2αne

nm . Now,
we can use this property to prove the theorem:

(i) Let q = GC(I) = ne
n−m then D(q, q−α) = −α2(n−m)

nm therefore since n >
m for all α such that (q−α) ∈ V (I), D(q, q−α) < 0 so q-opt(Π(X, V (I))) = q.

(ii) Let q = max(V (I)) then D(q, q − α) = 2αmax(V (I))(n−m)
nm − α2(n−m)

nm −
2αne
nm .We haveGC(I) = ne

n−m > max(V (I)) andn > m and q−α < max(V (I))⇒
α > 0 so 2αmax(V (I))(n−m)

nm < 2α(ne/(n−m))(n−m)
nm = 2αne

nm . Therefore D(q, q−α) <
−α2(n−m)

nm < 0 because n > m. So q-opt(Π(X, V (I))) = q = max(V (I)).

(iii) Let q = min(V (I)) then D(q, q − α) = 2αmin(V (I))(n−m)
nm − α2(n−m)

nm −
2αne
nm . We have GC(I) = ne/(n − m) < min(V (I)) and (n − m) > 0 and

q − α > min(V (I)) ⇒ α < 0 so α(n − m) < 0 and 2αmin(V (I))(n−m)
nm <

2α(ne/(n−m))(n−m)
nm = 2αne

nm . Therefore D(q, q − α) < −α2(n−m)
nm < 0 because

n > m. So q-opt(Π(X, V (I))) = q = min(V (I)). �

Corollary 1. Theorem 4 holds if V (I) is replaced by V (I) ∩ [�q, uq] provided
V (I) ∩ [�q, uq] �= ∅.

5.2 Computing the Optimal Value

Given I and the xi’s sorted according to their bounds, Algorithm 1 computes
q-opt(Π(X, V (I))) and opt(Π(X, V (I))) for all I ∈ I in linear time. Following
the notation of Lemma 2 we have pk = |L(Ik)| − |L(Ik−1)| and qk = |R(Ik−1)| −
|R(Ik)|.

The two steps of the algorithm before the loop can certainly be performed in
O(n). We argue that each iteration of the loop can be computed in O(pk + qk)
time. Sets L(Ik), R(Ik), and M(Ik) are obtained in pk, qk, and pk + qk steps
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Algorithm 1. Computing q-opt(Π(X, V (I))) and opt(Π(X, V (I))) for allI ∈ I

Compute L(I1), R(I1), M(I1), and ES(I1);
Compute q-opt(Π(X,V (I1))) and opt(Π(X,V (I1))) using Th. 4 and Def. 11 and 7;
for k = 2 to |I| do

L(Ik)← L(Ik−1) ∪ {x | xmax = max(Ik−1)};
R(Ik)← R(Ik−1) \ {x | xmin = max(Ik−1)};
M(Ik)← M(Ik−1) \ {x | xmax = max(Ik−1)} ∪ {x | xmin = max(Ik−1)};
ES(Ik)← ES(Ik−1) + (pk − qk)×max(Ik−1);
V (Ik)← [ES(Ik) + min(Ik)× |M(Ik)|, ES(Ik) + max(Ik)× |M(Ik)|];
GC(Ik)← n× ES(Ik)/(n− |M(Ik)|);
Compute opt(Π(X, V (Ik))) and opt(Π(X, V (Ik))) using Th. 4, Def. 11 and 7;

respectively, which correspond to the number of elements added or deleted (each
is obtained in constant time since the xi’s are sorted). From Lemma 2, ES(Ik)
can also be computed in pk + qk steps. When all these values are known, V (Ik)
and GC(Ik) can be computed in O(1) so from Theorem 4 q-opt(Π(X, V (Ik)))
can be computed in O(1). In addition, opt(Π(X, V (Ik−1))) is known and Aq,Ik−1

has pk + qk values different from Aq′,Ik
so opt(Π(X, V (Ik))) can be computed

with O(pk + qk) operations using the formula
∑

(xi − q)2 =
∑

(xi)2 − q2

n .
Since

∑n
k=1 pk = n and

∑n
k=1 qk = n, the total amount of time to compute

q-opt(Π(X, V (I))) and opt(Π(X, V (I))) for all I ∈ I is in O(n).
Therefore, if we are provided with a maximum value πmax for Π(X, [�q, uq])

then we can reduce the interval [μmin, μmax] for μ since q = nμ. Such a value
can be easily obtained from σmax because from Def. 2 and Def. 7 we have the
relation n(σmax)2 = πmax.

5.3 Bounds Reduction

We consider a variable x of X and we study the consequences of the modifications
of the bounds of x. Of course if there is an interval I for which Aq,I(x) = xmin

and opt(Π(X, V (I))) is consistent with πmax (i.e. less than or equal to πmax)
then there is no need to consider any modification of the minimum, and the
same reasoning can be applied to xmax.

For a given interval I, we know how to compute efficiently the optimal solu-
tion opt(Π(X, V (I))). Thus, we can study the consequences of the modification
of the bounds of x for this interval, that is searching what are the minimum
and the maximum values that x can take while opt(Π(X, V (I))) ≤ πmax. Then,
we can repeat this process for all the intervals. Efficiently computing the new
possible bounds of x is not obvious because when x is changing the possible sum
of the variables is also changing and this impacts the value GC(I), and the op-
timal value of Π(X, V (I)) depends on it. The following propositions show how
to compute them. For convenience let I be an interval, m = |M(I)|, e = ES(I),
δ = πmax − opt(Π(X, V (I))). and sol(a, b, c) = −b+

√
b2−ac

a .
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Proposition 2. Given x ∈ R(I), let Π(X ′, V ′(I)) be the problem obtained by
setting x′ = x + d, V ′(I) and GC′(I) be the corresponding quantities for X ′.

(i) If GC(I) < min(V (I)) then
GC′(I) < min(V ′(I)) with d < d1 = n−m

m (min(V (I)) −GC(I)) and
max(d) = sol(a1, b1, c1), with a1 = 1− 1

n , b1 = x− min(V (I))
n , c1 = −δ

(ii) If min(V (I)) ≤ GC(I) < max(V (I)) then
min(V ′(I)) ≤ GC′(I) < max(V ′(I)) with d < d2 = n−m

m (max(V (I)) − GC(I))
and max(d) = sol(a2, b2, c2), with a2 = 1 + m−n

(n−m)2 , b2 = mES(I)
n−m + x − GC(I)

n−m ,
c2 = −δ

(iii) If GC(I) ≥ max(V (I)) then
GC′(I) ≥ max(V ′(I)) with max(d) = sol(a3, b3, c3), with a3 = a1, c3 = c1 and
b3 = x− max(V (I))

n

Proof. (i) x ∈ R(I), so ES′(I) = ES(I) + d, V ′(I) = V (I) + d, M ′(I) = M(I)
and GC′(I) = GC(I) + nd/(n − m). Then GC′(I) < min(V ′(I)) if GC(I) +
nd/(n−m) < min(V (I))+d that is d < n−m

m (min(V (I))−GC(I)). The optimal
value for q′ is min(V ′(I)) = q + d. Consider opt′ = Π(X ′, V ′(I)). Then opt′ =∑

j �=i(x
′
j)

2 + (x′
i)

2 − q′2
n . In addition, ∀x′

j ∈ R(I) ∪ L(I) with x′
j �= x: x′

j = xj

and ∀x′
j ∈ M ′(I): x′

j = (q′ − ES′(I))/m = q − ES(I)/m = xj . Then, opt′ =∑
j �=i(xj)2 +(xi +d)2− (q+d)2

n . So, the value of d for which opt′ = πmax is a root
of the equation: (1− 1

n )d2 + 2d(x− q
n )− δ = 0, which has only one positive root.

(ii) similar as (i) excepted that the variables of M(I) have no longer the
same value. If xj ∈M(I) then x′

j = (GC′(I)− ES′(I))/m = xj + d/(n−m).
(iii) similar as (i) excepted that q = max(V (I)). �

From this proposition and for a given interval I and a given variable x ∈ R(I),
we can define Function compute-d (see Algorithm 2) which computes the greatest
possible value of d. It is called with xmin as parameter for x. Its time complexity
is in O(1) because the recursive call in line ln1 does not satisfy the (i) and the
recursive call in line ln2 does not satisfy neither (i) or (ii).

The following proposition just mirrors the previous one and an algorithm
similar to Algorithm 2 can be derived from it.

Proposition 3. Given x ∈ L(I), let Π(X ′, V ′(I)) be the problem obtained by
setting x′ = x− d, V ′(I) and GC′(I) be the corresponding quantities for X ′.

(i) If GC(I) > max(V (I)) then
GC′(I) > max(V ′(I)) with d < d1 = n−m

m (GC(I) −max(V (I))) and
max(d) = sol(a1,−b1, c1), with a1, b1 and c1 as defined in Prop.2.(i).

(ii) If max(V (I) ≥ GC(I) > min(V (I)) then
max(V ′(I)) ≥ GC′(I) > min(V ′(I)) with d < d2 = n−m

m (GC(I) − min(V (I)))
and max(d) = sol(a2,−b2, c2), with a2, b2 and c2 as defined in Prop.2.(ii).

(iii) If GC(I) ≤ min(V (I)) then
GC′(I) ≤ min(V ′(I)) with max(d) = sol(a3,−b3, c3), with a3, b3 and c3 as de-
fined in Prop.2.(iii).
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Algorithm 2. Adjusting the upper bound of x ∈ R(I)

Function compute-d(V (I),ES(I), GC(I),m, x): number

if GC(I) < min(V (I)) then
Compute max(d) as indicated in Proposition 2(i);
d1 ← n−m

m
(min(V (I))−GC(I))

if max(d) < d1 then
Return max(d);

else
x′ ← x + d1; V ′(I)← V (I) + d1; ES′(I)← ES(I) + d1; GC′(I)← min(V ′(I))
ln1: Return d1+ compute-d(V ′(I),ES′(I),GC′(I),m, x′);

if min(V (I)) ≤ GC(I) < max(V (I)) then
Compute max(d) as indicated in Proposition 2(ii);
d2 ← n−m

m
(max(V (I))−GC(I));

if max(d) < d2 then
Return max(d);

else
x′ ← x + d2; V ′(I)← V (I) + d2; ES′(I)← ES(I) + d2; GC′(I)← max(V ′(I))
ln2: Return d2+ compute-d(V ′(I),ES′(I),GC′(I),m, x′);

Compute max(d) as indicated in Proposition 2(iii) and Return max(d);

When x ∈M(I) the problem is more complex because if x is modified then the
number of variables in M(I) is also modified:

Proposition 4. Given x ∈ M(I), let Π(X ′, V ′(I)) be the problem obtained by
setting x′ = x + d, V ′(I) and GC′(I) be the corresponding quantities for X ′.

(i) If GC(I) < min(V (I)) then
GC′(I) < min(V ′(I)) with d < d1 = n−m+1

m−1 [(min(V (I))−GC(I))+ ne
(n−m)(m−1) ]

and max(d) = sol(a, b, c), with q = min(V (I)) and a = 1 − 1
n + m

(n−m+1)2 , b =
em

(n−m)(n−m+1)−
em

(n−m)(n−m+1)2−
q
n+x, c = − m2e2

(n−m)2(n−m+1)+
me2

(n−m)2(n−m+1)2−
δ

(ii) If min(V (I)) ≤ GC(I) < max(V (I)) then
min(V ′(I)) ≤ GC′(I) < max(V ′(I)) with d < d2 = n−m+1

m−1 [(max(V (I)) −
GC(I)) + ne

(n−m)(m−1) ] and max(d) = sol(a, b, c), with a = 1 + m−n
(n−m+1)2 , b =

x+ em
(n−m)(n−m+1)−

GC(I)
n−m+1 + e

(n−m+1)2 , c = − e2

(n−m)(n−m+1)2 + 2GC(I)e
(n−m)(n−m+1)−

2me2

(n−m)2(n−m+1) − δ

(iii) If GC(I) ≥ max(V (I)) then
GC′(I) ≥ max(V ′(I)) with max(d) = sol(a, b, c) of (i) with q = max(V (I)).

From this proposition we can derive a function which computes the maximum
value of d. This function is slightly different from the one of Algorithm 2, because
if x ∈ M(I) then after modifying x we have x ∈ R(I). So after a modification
the proposed function directly calls Function compute-d of Algorithm 2.

Proposition 5. Given x ∈ M(I), let Π(X ′, V ′(I)) be the problem obtained by
setting x′ = x− d, V ′(I) and GC′(I) be the corresponding quantities for X ′.
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(i) If GC(I) > max(V (I)) then
GC ′(I) > max(V ′(I)) with d < d1 = n−m+1

m−1 [(GC(I)−max(V (I)))+ ne
(n−m)(m−1) ]

and max(d) = sol(a1,−b1, c1), with a1, b1 and c1 as defined in Prop.4.(i).
(ii) If GC(I) ∈ V (I) then

GC′(I) ∈ V ′(I) with d < d1 = n−m+1
m−1 [(GC(I) −min(V (I))) + ne

(n−m)(m−1) ] and
max(d) = sol(a2,−b2, c2), with a2, b2 and c2 as defined in Prop.4.(ii).

(iii) If GC(I) < min(V (I)) then
GC′(I) < min(V ′(I)) with max(d) = sol(a3,−b3, c3), with a3, b3 and c3 as de-
fined in Prop.4.(iii).

We can derive a similar algorithm from the previous propositions as we did
from Proposition 4. Then, for each x ∈ X we can compute for every interval I ∈ I
the minimum and the maximum values of x denoted by min(x) and max(x) such
that opt(Π(X, V (I))) ≤ πmax. By taking the minimum value of min(x) among
the values computed for every interval we obtain the new minimum value of
D(x), and by taking the maximum value of max(x) among the values computed
for every interval we obtain the new maximum value of D(x). Since the number
of intervals is at most n, this process takes O(n) time per variable. So we can
achieve bounds consistency on the variables of X is in O(n2).

6 Conclusion

This paper introduced a new constraint to express balance among n variables
in constraint programming models. It is based on the notions of mean, median,
and standard deviation from statistics. We gave several examples showing how
balance can be formulated with this constraint. Two efficient filtering algorithms
were given. The first one runs in O(n) time under a reasonable assumption. The
second one achieves bounds consistency in O(n2) time.
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Abstract. Many symmetry breaking techniques assume that the sym-
metries of a CSP are given as input in addition to the CSP itself. We
present a method that can be used to detect all the symmetries of a
CSP. This method constructs a graph that has the same symmetries as
the CSP. Then, generators for the symmetry group are computed using a
graph automorphism algorithm. This method improves and extends pre-
vious work in order to cover global constraints, arithmetic expressions
and value symmetries. We show that this method is able to find symme-
tries for examples that were thought to be too convoluted for automated
detection. We also show that the overhead of symmetry detection is quite
negligible, even on very large instances. We present a comprehensive set
of examples where automated symmetry detection is coupled with sym-
metry breaking techniques.

1 Introduction

Symmetry for a Constraint Satisfaction Problem (CSP) is a mapping of the
CSP onto itself that preserves its solutions. If a CSP has some symmetry, it
may be the case that all symmetrical variants of every dead end encountered
during the search must be explored before a solution can be found. Even if
the problem is easy to solve, all symmetrical variants of a solution are also
solutions, and listing all of them may just be impossible in practice. Among
symmetries, two categories have been studied in detail, variable symmetries,
and value symmetries. A variable symmetry is a permutation of variables that
leave a given CSP invariant. A value symmetry is a permutation of values that
leave the CSP invariant. Both kinds of symmetries can be combined. There are
even some symmetries that cannot be decomposed as the product of a variable
and a value symmetry.

This paper focuses on symmetry detection. However, we will present some
experiments where symmetry detection is coupled with some symmetry breaking
technique in order to provide a fully automated procedure. Our approach, as well
as its predecessors, relies on the efficient computations of the symmetries of a
given graph. The idea is to construct a graph such that the automorphisms of
the graph are symmetries of the CSP. Then a graph automorphism algorithm is
used to compute these symmetries. These can be used in turn as an input for
symmetry breaking techniques.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 475–489, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Before explaining our method in detail, let us introduce a simple example
in order to give a flavor of it. We consider the Latin square problem. We want
to fill a n by n square such that (i) every cell contains a value from 1 to n (ii)
the values in each row are all different (iii) the values in each column are all
different. A natural model for this is to have one variable per cell of the square
with initial domain {1, 2, . . . , n}. There is an all different constraint for variables
in each row, and an all different constraint for variables in each column. There
are many variable symmetries. Any row permutation is a symmetry, as well as
any column permutation. Moreover, any reflection along a diagonal is also a
symmetry. There are 2(n!)2 variable symmetries in fact.

ct4

ct5 ct6 ct7 ct8

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

ct1

ct2

ct3

Fig. 1. Latin square graph

The graph corresponding to this CSP is given in figure 1. There is one node
per variable, and one node per all different constraint. Edges link every constraint
to the variables in its scope. Vertices are grouped into 2 classes, one for the
variables, and one for the constraints. Symmetries can only map a vertex to a
vertex in the same class. Labels for vertices are represented for the sake of clarity,
but they are not relevant for defining symmetries. Our graph automorphism
algorithm finds 1152 symmetries, which is what theory predicts.

The rest of the paper is organized as follows. Section 2 gives some background
and discusses related work. Section 3 shows that we can routinely compute sym-
metries of graphs that have over a million edges. Section 4 describes how to ex-
tend the work of [17] to detect variable symmetries for any kind of CSP. Section
5 extends this in order to take into account any kind of symmetries, including
value symmetries. Section 6 contains a set of experiments that show that the
overhead of symmetry detection is quite negligible. We conclude in section 7.

2 Preliminaries

The symmetries we consider are permutations, i.e. one to one mappings (bijec-
tions) from a finite set onto itself. Without loss of generality, we can consider
permutations of In, where In is the set of integers ranging from 0 to n−1. Let Sn

be the set of all permutations of the set In. The image of i by the permutation
σ is denoted iσ.
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A constraint satisfaction problem P (CSP) with n variables is a tuple P =
(X ,V ,D, C) where X is a finite set of variables (xi)i∈In , V is a finite set of values,
D a finite set of finite sets (Di)i∈In , and every constraint in C is a subset of the
cross product

⊗
i∈In Di such that Di ⊆ V for all i. Without loss of generality,

we can assume that V = Id for some d.
A literal is a statement of the form xi = j where j ∈ Di.
An assignment is a set of literals, one for each variable of the CSP. A partial

assignment is a subset of an assignment.
A solution to (V ,D, C) is an assignment that is consistent with every member

of C.
A symmetry is a bijection from literals to literals that maps solutions to

solutions.
A variable symmetry is a symmetry g such that there exists a permutation

σ of the variables such that (xi = j)g = (xiσ = j). In such case we will denote g
by σ:

(xi = j)σ = (xiσ = j) (1)

A value symmetry is a symmetry g such that there exists a permutation θ of In

such that (xi = j)g = (x = jθ). In such case we will denote g by θ:

(xi = j)θ = (xi = jθ) (2)

Our definition of symmetries is similar to the one used in [9]. Other variable sym-
metry detection approaches are described in [4] and [23]. However these are quite
ad hoc and do not cover all the symmetries we will exemplify in this paper. Oth-
ers provide some language constructs in order to facilitate the description of the
symmetries of the problem [11][7]. The use of graph automorphism for detecting
symmetries for SAT problems has been proposed in [1]. This has been further
extended in [17]. Graph automorphism has also been used in the mathematical
programming community[13].

3 Graph Automorphism

The graphs we consider are simple (i.e. undirected without loops and multiple
edges), and colored. A colored graph is a triple (V, E, c) where V is a finite set
of vertices, E a set of edges between these vertices, and c a function from V to
integers. An edge is a set of two vertices. An automorphism of the graph (V, E)
is a one to one mapping (bijection) f from V to V such that:

∀e ∈ E, f(e) ∈ E

∀v ∈ V, c(f(v)) = c(v)

where f({i, j}) = {f(i), f(j)}.
Finding whether such a nonidentity function exists is known as the graph

automorphism (GA) problem. GA is in NP but it is not known whether it is
in P or not [10]. Colors are used to restrict the symmetries of the graph. For



478 J.-F. Puget

Table 1. SAT instances

Instance Graph Symmetry Detection Gain
Name Vertices Edges Group Gen SAUCY AUTOM
2pipe 3575 14625 2.26E+45 68 0.06 0.0052 11.5
3pipe 10048 58556 7.29E+136 160 0.15 0.017 8.8
4pipe 21547 167942 1.08E+289 292 0.62 0.055 11.3
5pipe 38746 403799 2.51E+507 464 1.74 0.14 12.4
6pipe 65839 812525 1.34E+796 676 4.8 0.29 16.6
7pipe 100668 1498971 3.68E+1158 928 10.8 0.55 19.6

Table 2. MIP instances

Instance Graph Symmetry Detection Gain
Name Vertices Edges Group Gen NAUTY SAUCY AUTOM N/A S/A
p2756 9248 14674 1.18E+21 70 6.05 0.1 0.0045 1344 22.2

roll3000 8108 34033 1.92E+61 203 8.7 0.11 0.0048 1813 22.9
qiu 3872 5272 48 4 5.2 0.02 0.005 1040 4.0

seymour 6316 33549 2.78E+234 210 6.36 0.1 0.0052 1223 19.2
arki001 18062 36065 5.23E+44 37 29.65 0.05 0.0073 4062 6.8

air04 9727 82692 4.95E+12 41 22 0.04 0.0075 2933 5.3
a1c1s1 14000 17218 1 0 20.3 0.06 0.0091 2231 6.6

cap6000 17575 57642 120 4 49.6 0.05 0.0092 5391 5.4
swath 14675 41951 3.35E+816 461 79.47 0.64 0.011 7225 58.2

protfold 7448 26992 4 2 24.13 0.04 0.0148 1630 2.7
dano3mip 24927 87507 32768 15 84.7 0.06 0.02 4235 3.0

nsrand-ipx 13406 229311 1.04E+325 1007 601.92 4.23 0.029 20756 145.9
10teams 2255 12150 1.76E+13 19 3.81 0.08 0.031 123 2.6
mzzv11 34082 148946 4.57E+46 155 285.36 0.4 0.032 8918 12.5

mzzv42z 38468 167552 1.30E+33 110 206.41 0.38 0.037 5579 10.3
mod011 25629 32445 6.79E+3169 1698 2982.57 8.31 0.053 56275 156.8
fast0507 63516 409349 5.71E+254 834 5420.91 3.35 0.064 84702 52.3

net12 56875 109123 1 0 1742.56 0.22 0.077 22631 2.9
mkc 15863 24165 1.32E+77 190 725.85 0.56 0.084 8641 6.7

msc98-ip 82756 138681 4.27E+3700 5969 26881.46 86.13 0.106 253599 812.5
ds 68388 1024059 4.00E+00 2 3789.63 0.16 0.106 35751 1.5

nw04 87518 636666 3.65E+15872 41293 17446.6 0.188 92801.1
t1717 74436 325689 8.32E+54755 57457 16590.88 0.295 56240.3

rd-rplusc-21 133969 859562 2.33E+25647 71300 187313.56 0.326 574581.5
atlanta-ip 234210 421272 1.29E+4455 11694 736.61 0.42 1753.8

momentum3 270818 1149959 4.66E+36 55 1.74 0.45 3.9
stp3d 677539 975299 6.48E+178 594 136.85 2.56 53.5

instance, in the graph of figure 1, we have two colors, one for variables, and the
other for constraints.

One of the most efficient procedure for computing colored graph automor-
phisms is NAUTY [12]. NAUTY is quite efficient for dense graphs, where the
number of edges grows quadratically with the number of vertices. In [2] a sparse
graph automorphism software called SAUCY is presented. It uses the same prin-
ciples as NAUTY, but a spare graph representation is used. We have also im-
plemented a graph automorphism software based on Nauty principles that uses
sparsity (AUTOM). In order to asses its efficiency we have performed two ex-
periments.

First we ran SAUCY and AUTOM on the graphs presented in [12]. Results
are shown in Table 1. All the running times are expressed in seconds. They
are obtained on a 1.4 GHz Pentium M laptop running Windows XP and ILOG
Solver 6.1. We ran SAUCY and NAUTY on the same computer. The last column
indicates the speedup of AUTOM over SAUCY.

We ran a second set of experiments on large graphs coming from MIPLIB
examples. These are CSPs where all constraints are linear, and where variables
are either integer or floating point variables. The graphs are constructed using
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the techniques described later in the paper. The point here is not to solve these
problems using a constraint programming software. It is to show that we can
efficiently detect all the symmetries on sparse graphs that have up to a million
edges in few seconds. Results are shown in table 2. The last two columns show the
speedup of AUTOM vs. NAUTY (N/A) and the speedup of AUTOM vs. SAUCY
(S/A). NAUTY wasn’t able to compute the automorphism of the largest graphs.
SAUCY, despite its use of sparsity, is more than half a million times slower than
AUTOM on one instance.

4 Detection of Variable Symmetries

The idea of the method is to construct a graph with one vertex per variable.
For each constraint we add some vertices and some edges linking them to the
variables. The resulting graph must have symmetries that are equivalent to the
symmetries of the constraint. Then the graphs for all constraints are combined
into a single graph.

4.1 One Extensional Constraint

Let us consider first the case where there is a single constraint in the CSP. The
case of more complex CSPs will be described later. This constraint is given in
extension, i.e. the set of assignments consistent with the constraint is given.
The variables are x1, x2, . . . , xn. A consistent assignment < x1 = ai1, x2 =
ai2, . . . , xn = ain > is described by a tuple < aij1, ai2, . . . , ain >.

The graph for this constraint is constructed as follows. There is one vertex
per variable. A vertex is added for each value aij in the domain of xi. A vertex is
added for each consistent assignment. A last vertex is added for the constraint.
Variable vertices are of the same color. Assignment vertices are of the same color,
different from the previous one. The constraint vertex is yet of another color.
Value vertices are linked to the variable vertex. The constraint vertex is linked
to every assignment vertex. The vertex for assignment < ai1, ai2, . . . , ain > is
linked to the vertices representing aij1, ai2, . . . , ain. All the value vertices aij for
a given value j are colored with a new color, different from the ones already
used. This ensures that only variables symmetries can be detected.

Example 1. An equality constraint x = y on two variables ranging from 1 to
3 is represented by the assignments < 1, 1 >, < 2, 2 >, < 3, 3 >. Its graph is
represented in figure 2(a). There is one trivial symmetry in this graph. It swaps
x and y and their values.

Example 2. An inequality constraint x < y on two variables ranging from 1
to 3 is represented by the assignments < 1, 2 >, < 1, 3 >, < 2, 3 >. Its graph is
represented in figure 2(b). There is no symmetry in this graph, given that values
have different colors.

Example 3. A constraint arising in sports league scheduling. It relates 3 vari-
ables g, x and y, where g is a game, and where x, y are the teams of that game.



480 J.-F. Puget

=

x

1

2

3

A1

A2

A3 3

2

1

y

(a) Equality

<

x

1

2

3

A1

A2

A3 3

2

1

y

(b) Inequality

game

1

2

3

4

5

6

A1

A2

A3

A4

A5

A6

g
1

2

3

1

2

3

x

y

(c) Game

Fig. 2. Some symmetry graphs

The corresponding graph is represented in figure 2(c). For 3 teams, there are 3
games and 6 consistent assignments listed below. Assignment < a, b, c > is noted
a = (b vs. c).

1 = (1 vs. 2), 2 = (1 vs. 3), 3 = (2 vs. 1), 4 = (2 vs. 3), 5 = (3 vs. 1), 6 = (3 vs.2)

When there are less inconsistent assignments than consistent ones, it is equivalent
and more efficient to use inconsistent assignments for constructing the graph.
For instance, the graph for x �= y can be the same as the one in figure 2(a), with
the label of the constraint changed to �= instead of =.

It can be proved that the above graph construction is correct and complete.
Indeed, the symmetries of the graph and the symmetries of the CSP are equiv-
alent. We omit the proof.

4.2 One Intentional Constraint

In general, it is possible to create a simpler graph that still has the same sym-
metries than the constraint. For instance, the equality graph of figure 2(a) has
one non trivial symmetry that swaps the two variables. A much simpler graph
having the same symmetry is given in figure 3(a). Similarly, the inequality graph
has no symmetry. A much simpler graph is given in figure 3(b). In this graph, a
dummy vertex d is introduced to break the symmetry. All the dummy vertices
corresponding to inequalities are colored with a new color distinct from all the
colors used for the other nodes.

A global constraint can be also represented that way, instead of listing all
the assignments consistent with it. For instance, an all different constraint can
be represented with only one vertex, linked to every variable. Such graph has
many symmetries: any variable permutation is a symmetry. This is precisely the
set of symmetries allowed by the constraint.

Let us look at another global constraint, the global cardinality constraint
gcc(X, C, V ) where X is a vector of variables < x1, . . . , xn >, C another vector
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Fig. 3. Simpler graphs

of variables < c1, . . . , cm >, and V a vector of values < v1, . . . , vm >[18]. The
constraint states that ci is the number of occurrences of vi in the vector X . A
study of the constraint shows that the variables in X can be freely permuted,
but not the variables in C. Indeed, the latter are linked to the values in V . A
graph capturing these symmetries is the following. There is one vertex for the
constraint, and one per value in V . Each variable in X is linked to the constraint.
Each value in V is linked to the constraint. Each variable ci in C is linked to
the corresponding value vi. Value nodes are colored with m different colors. This
removes the symmetries among the ci variables.

4.3 Handling Several Constraints

When a CSP contains several constraints, we simply add the nodes and edges
described previously for each constraint. Vertices playing identical roles in differ-
ent constraints are merged. For instance, constraints given in extension require
the introduction of a vertex for every value in the domain of the variables in its
scope. When there are several such constraints, all the value nodes corresponding
to a given value in a given domain are merged. Colors are also merged for some
vertices: all the constraints of the same kind have the same color. This enables
symmetries that permute constraints as well as variables.

Example 4. Let us consider the Latin square problem presented in the intro-
duction. The graph in figure 1 is constructed with one vertex per all different
constraint. Each constraint is linked to the variables in its scope. All the vertices
representing the all different constraints have the same color.

The above construction is correct : any symmetry of the graph is a symmetry
of the CSP. We omit the proof because of lack of space. However, it is not com-
plete. Indeed, there may be some symmetries of the CSP that are not equivalent
to some symmetries of the graph.

Example 5. Let us consider the CSP x = y ∧ y = z. Its graph is depicted in
figure 3(c). This graph has only one non trivial symmetry that swaps x and z.
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This is indeed a symmetry of the CSP. However, any variable permutation is a
symmetry of the CSP. In order to be able to detect these symmetries, a simple
modification of the graph fixes the problem: it is sufficient to always take the
transitive closure of the equality constraints. In our example, this means to add
the vertex for the constraint x = z. The resulting graph is depicted in figure
3(d). Similarly, we take the transitive closure of the ≤ constraints. Moreover,
when both x ≤ y and y ≤ are present, they are replaced by x = y. These
transformations are applied until a fix point is reached.

4.4 Expressions

Many CP systems let the user create expressions with arithmetic operators
(+,×,−, /) and logical operators (∧,∨,¬). Then a simple approach is to con-
struct a parse graph for each expression, as explained in [17]. The general idea
is to create one vertex per operator. This vertex is linked to the vertices repre-
senting its operands. However, doing so could create false symmetries, because
some operators (−,/) do not accept symmetries among their operands. In order
to avoid this, we decompose these operators with a unary inverse operator. The
expression x− y is handled as x + (−y). Similarly, x/y is handled as x× (1/y).

Some care must be taken as well in order to avoid breaking symmetries un-
intentionally. For instance, consider the CSP x + y + z = 10. Obviously, any
variable permutation defines a symmetry. However, depending on the associa-
tivity rule for the operator, the corresponding graph may not have that many
symmetries. For instance, if the CSP is interpreted as (x+y)+z, then the graph
is depicted in figure 3(e). Its non trivial symmetry swaps x and y. The other
variable permutations are not symmetries of this graph. A simple fix is to use
an n− ary version of the operator, as depicted in figure 3(f). In this graph, any
variable permutation is a symmetry. This grouping of associative operators was
introduced in [17].

Example 6. Let us consider a simple example from [5]. We want to solve the
following equation, where the letter represent different numbers from 1 to 9, and
BC means 10B + C, etc.

B C D 10 E F G I10 H

xx x

+ ++

/ / /

x x x

+

A

=/=

=

1

10

Fig. 4. A
BC

+ D
EF

+ G
HI

= 1 puzzle
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The corresponding graph is given in figure 4.4.
Another issue must be dealt with. The graph automorphism algorithm ac-

cepts only simple graphs, i.e. graphs where at most one edge can exist between
any two vertices. However the constructs given so far may lead to non simple
graphs when variables are repeated. For instance, the CSP A×A = 1 will create
the graph in figure 5(a). This can be dealt with a power operator. The resulting
graph is given in figure 5(b).
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Fig. 5. Handling expressions

Example 7. Let us consider the following example from [6]. Its graph is depicted
in figure 5(c). There are 144 symmetries corresponding to the 24 permutations
of A, B, C, D to the 6 permutations of E, F, G, and to their combinations.

A×A×A+B×B×B+C×C×C+D×D×D = E×E×E+G×G×G+H×H×H

5 Detection of All Symmetries

The constructs presented so far are geared towards the detection of variable
symmetries. It is quite simple to extend these constructs for the detection of any
symmetry, including value symmetries.

5.1 One Extensional Constraint

Let us first consider a CSP with a unique constraint described by the assignments
consistent with it. Its symmetry graph is the similar to the one in section 4.1.
The only difference is that now all the value vertices are of the same color. This
yields some very interesting results. For instance, there are 12 symmetries for
the graph of figure 2(a). They correspond to the swap of the two variables, the
permutations of the 3 values, and their combinations.
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The graph of figure 2(b) has one non trivial symmetry:

(x y)(1x 3y)(2x 2y)(3x 1y)(A1 A3) (3)

This symmetry swaps x and y. It also maps value i to 3− i. It is interesting to
see that such non trivial symmetry is automatically detected.

5.2 One Intentional Constraint

The treatment of all constraints must take into account the values in the domains
of the variables. For instance, it is no longer possible to simplify the graph from
figure 2(b) to figure 3(b). Indeed, doing so would prevent us from discovering
the symmetry (3).

The treatment of global constraints must be revisited as well. Indeed, we
want to construct graphs that reflect all the symmetries allowed by a constraint,
including value symmetries if any. We further want to be able to detect symme-
tries that are not a combination of variable and value symmetry. Our approach
uses a hidden reformulation of the CSP with binary variables yij (variables with
domains equal to {0, 1}). The variable yij equals 1 if and only if xi = j. There-
fore, we may denote the variable yij by xi = j. The yij form a square matrix
when all the x variables have the same domain. In the general case, there are
holes in the yij matrix. Holes are filled with zeroes. Using these new variables
does not change the solutions of the CSP, nor its symmetriesvalsym. Variable
symmetries of P are equivalent to permutations of the rows of the yij matrix by
(1). Value symmetries of P are equivalent to permutations of the columns of the
same matrix by (2). By definition, the new variables satisfy:

∀i
∑

yij = 1

Then, many global constraints can be expressed with the yij variables. We con-
struct the graph corresponding to these elementary constraints. In the graph,
there is no node for the original variables of the CSP. There is one vertex per
variable yij . These vertices are in fact the value vertices aij that we introduced
in section 4.1. These vertices are linked to the graphs induced by the elementary
constraints. Note that the variables yij are not added to the CSP. They are only
used for the construction of the graph. The original CSP formulation is kept as
it is.

Example 8. The graph corresponding to x = y is represented in figure 6(a).

Example 9. The graph corresponding to x < y is given figure 6(b).

Example 10. The graph corresponding to the game constraint game(g, x, y) is
the one given in figure 6(c).

Example 11. The all different constraint on the variables x1, . . . , xn can be
expressed as:

∀j
∑

i

yij ≤ 1 (4)
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Fig. 6. Some symmetry graphs

If the number of variables is equal to the number of values, then the constraint
can be stated by

∀j
∑

i

yij = 1 (5)

Then, depending on the case the vertices and edges for equation (4) or (5) are
added.

Example 12. Let us consider the global cardinality constraint gcc(X, C, V )
where X is a vector of variables < x1, . . . , xn >, C another vector of variables
< c1, . . . , cm >, and V a vector of values < v1, . . . , vm >. Let yij be the variables
corresponding to the values of the xi variables, and let zkl be the variables
corresponding to the values of the ck variables. Then the gcc constraint can be
expressed by:

∀j
∑

i

yij =
∑

l

l × zjl (6)

Indeed, we have that
∑

i yij = cj and that ck =
∑

l l×zkl. Therefore, the vertices
an edges corresponding to (6) are added.

5.3 Handling Expressions

The treatment of expressions is more complex. Indeed, one needs to be able to
express the relationship between value vertices of x op y and the value vertices of
x and y. A generic way is to replace expressions by constraints. For instance, an
expression x op y where op is a binary operator can be replaced by a new variable z
and a ternary constraint op(z, x, y). Then this ternary constraint can be described
in extension. This approach is correct: any symmetry of the resulting graph is a
symmetry of the CSP. However, it may lead to extremely large graphs.

We have decided to only handle some simple expressions when detecting all
symmetries. We handle expressions f(x) involving only one occurrence of one
variable x. Let yj be the vertices representing x = j. Then the only possible
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values for f(x) are given by f(j) with j ranging over the domain of x. Then
the vertices representing the values of f(x) are of the form f(c) = f(j), with
j ranging over the domain of x. We then merge the vertex f(x) = f(j) with
the vertex x = j. Therefore, no additional vertices are needed to represent such
expressions.

Example 13. Let us consider the expression x + a, where a is a constant. The
vertex (x + a) = j is the same as the vertex x = (j − a). Therefore, no extra
binary variables need to be introduced for the expression x + a.

Example 14. The n queen problem is usually represented by the following
model. There are n variables xi with domains {1, 2, . . . , n}. There are three all
different constraints stating that: the xi are pair wise distinct, the xi + i are
pair wise distinct, and the xi − i are pair wise distinct. The symmetry graph
contains n2 vertices of the form xi = j. By construction, these nodes are linked
to the elementary constraint

∑
j xij = 1. The all different constraint on the xi is

represented by the elementary constraints
∑

j xij = 1, after (5). The expressions
xi + i are represented without additional vertices. Indeed, the vertex (xi + i) =
j is the same as the vertex xi = (j − i). The all different constraint on the
xi + i is represented by the equation

∑
j((xi + i) = j) ≤ 1. This is the same

as
∑

j(xi = (j − i)) ≤ 1, which yields
∑

j yi,j−i ≤ 1. Similarly, the all different
constraint on the xi− i expressions results in

∑
j yi,j+i ≤ 1. The resulting graph

has 8 symmetries. Let Y be the 2D matrix of the variables yij . Then yij = 1 if
and only if there is a queen on square ij. The 8 symmetries are the symmetries
of the square Y . This is rather interesting, because the authors of [7] claimed
that automatic symmetry detection would not be able to detect the 8 square
symmetries on the n queen example.

6 Experimental Results

We have implemented the graph constructions outlined in this paper, as well as
the AUTOM algorithm described in section 3. This results in a fully automated
procedure that takes as input a CSP and outputs generators for its group of sym-
metry. We have performed various experiments in order to assess the efficiency
of our symmetry detection method.

Once symmetries are detected, various symmetry breaking techniques can be
used. When the variables are subject to an all different constraint, then all vari-
able symmetries can be removed by imposing a partial order on the variables
(VAR). This partial order can be automatically computed from the symme-
tries we detect[15]. More general variable symmetries can be partially broken by
stating a lexicographic ordering constraint for each generator of the symmetry
group[2] (GEN). When the problem is a surjection, i.e. when each value ap-
pears in every solution, then all value symmetries can be broken using a partial
order on the occurrences of the values [16] (OCC). More general cases of sym-
metries can be handled by generic methods that use the group of symmetry as
input, such as GAP-SBDD[6], GAP-SBDS[5], STAB[14], and GE-tree[20].
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We haven’t implemented such methods yet. All results are given in table 3. For
each example we give the number of symmetries, the time needed to detect sym-
metries, the symmetry breaking technique used, and the time needed to solve the
problem with, and without symmetry breaking. The time to detect symmetries
includes the time for constructing the graph and the time to run the automor-
phism algorithm. Results show that the time spent on finding symmetries is
quite negligible.

Problem Size Break Detection Sym No sym
Graceful K3 × P2 VAR+OCC 0 0.01 0.12

K4 × P2 VAR+OCC 0 0.27 13.6
K5 × P2 VAR+OCC 0 6.5
K6 × P2 VAR+OCC 0 305

n× n queen 5 VAR 0 0 0.06
6 VAR 0.0 0 0.92
7 VAR 0.02 0.11 268.03
8 VAR 0.03 4.27

Most Perfect 4 VAR 0.01 0.02 0.47
8 VAR 0.09 0.39

12 VAR 0.44 22.2
16 VAR 4.6 275.6

sport 6 VAR+OCC 0.00 0.04
8 VAR+OCC 0.01 0.15

10 VAR+OCC 0.05 35.15

The examples used are the following ones. Unless otherwise stated, the search
used to solve the examples is quite straightforward. It is a depth first search
where one variable is selected at each node. The order in which variables is
selected is the order given by variable indices. Values are tried in increasing
order. Graceful graphs are taken from[15]. The sport scheduling examples are
taken from[19]. We report results for finding all solutions. The n × n queen
example is taken from [9]. The Most Perfect Magic Square example is taken from
[20]. Besides running time results, some interesting observations can be made. In
the graceful examples, all the variable symmetries are found. Moreover, the non
trivial value symmetry is also found. This symmetry maps a to n−a where n is a
constant depending on the problem instance. We show in [16] that the automated
symmetry detection combined with the VAR and OCC methods significantly
outperforms the approach of [19] for sports league scheduling. For matrix models
such as BIBD, the generators found by our algorithms correspond to the swap of
two consecutive rows or two consecutive columns. Therefore the GEN method
that states one lexicographic ordering constraint for each generator is equivalent
to the double lex method of [3]. It is worth noticing that this is achieved without
any input beside the usual CSP model for BIBD.

7 Conclusion

We have presented a fully automated symmetry detection method. This method
constructs a graph that has the same symmetries as the CSP. Then, a graph
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automorphism algorithm computes a set of generators for the symmetry group.
Our implementation is very efficient, and can handle graphs that have over a
million edges in few seconds. We have described how to construct graphs for
CSP that contains global constraints, arithmetic and logical expressions. We
have also shown how to extend the method in order to detect value symmetries.
Symmetries that are not combinations of variable and value symmetries such as
the 8 square symmetries can be discovered. Some non trivial value symmetries
can be automatically detected. For instance, symmetries of the form a→ n− a,
where n is a constant, have been discovered in some examples. Experiments
show that the time used for the detection of symmetries is small compared
to the search for solutions. We used a simple value and variable ordering for
our experiments, as little is known about which orderings are effective when
searching for all solutions. It would be interesting to use the findings of [22] for
this purpose.

Our method can be seen as a continuation of the work presented in [17].
We have extended this method to cover global constraints and value symmetries
among other.

The method is powerful, but it is based on the syntactic expression of the
CSP. This may prevent the discovery of some symmetries. We have described
some new techniques, such as the use of transitivity of relations, to cope with
that problem. The author welcomes examples of CSPs where it is believed that
our method would miss some symmetries. It would be interesting to describe
the class of CSPs for which our method detects all symmetries. For cases where
some symmetries are not apparent in the syntax of the CSP, one can combine
the symmetries detected by our method with symmetries given as input using
systems such as the ones in [11][4][7].
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Breaking All Value Symmetries in Surjection
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Abstract. We propose a surprisingly simple new way of breaking all
value symmetries with constraints. Our method requires the addition of
one variable per value of the problem plus a linear number of binary con-
straints. The set of constraints is automatically computed from the sym-
metries of the problem using computational group theory. Our method
applies to problems where every value is taken by at least one variable.
Such problems occur frequently in practice. Various experiments show
that our method is extremely effective when compared to previously
published methods.

1 Introduction

A symmetry for a Constraint Satisfaction Problem (CSP) is a mapping of the
CSP onto itself that preserves its structure as well as its solutions. If a CSP
has some symmetries, it may be the case that all symmetrical variants of every
dead end encountered during the search must be explored before a solution
can be found. Even if the problem is easy to solve, all symmetrical variants of
a solution are also solutions, and listing all of them may just be impossible in
practice. Among symmetries, two categories have been studied in detail: variable
symmetries, and value symmetries. A variable symmetry is a permutation of
variables that leave a given CSP invariant. A value symmetry is a permutation
of values that leave the CSP invariant. Both kind of symmetries can be combined.
There are even some symmetries that cannot be decomposed as the product of
a variable and a value symmetry.

Let us introduce an example that will be used throughout the paper. This
problem is the sports league scheduling (problem 026 in the CSPLIB [6]). The
problem is to schedule a tournament of n teams over n−1 weeks, with each week
divided into n/2 periods. A game between two teams must occur every period
of every week. A tournament must satisfy the following three constraints: every
team plays once a week; every team plays at most twice in the same period over
the tournament; every team plays every other team. A natural model for this
problem is to introduce a matrix of variables xij representing the game played
during period i of week j. The values of the variables are the possible games.
Note that all possible games must be played. Problems having this property
are called surjection problems because the mapping from variables to values is a
surjection (onto mapping).

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 490–504, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Here is a solution for n = 6 (note that games i vs. j and j vs. i are the same):

0 vs. 1 0 vs. 2 2 vs. 4 3 vs. 5 1 vs. 4
2 vs. 5 1 vs. 3 1 vs. 5 0 vs. 4 2 vs. 3
3 vs. 4 4 vs. 5 0 vs. 3 1 vs. 2 0 vs. 5

This problem has many symmetries. First of all, weeks can be exchanged.
This means that the columns of the matrix can be freely exchanged. This is a
variable symmetry. For instance, the following is a solution of the problem (the
first two columns have been swapped):

0 vs. 2 0 vs. 1 2 vs. 4 3 vs. 5 1 vs. 4
1 vs. 3 2 vs. 5 1 vs. 5 0 vs. 4 2 vs. 3
4 vs. 5 3 vs. 4 0 vs. 3 1 vs. 2 0 vs. 5

Second, the periods can be exchanged. This means that the rows of the matrix
can be freely permuted. This is a variable symmetry. For instance, the following
is a solution (the first two rows have been swapped):

1 vs. 3 2 vs. 5 1 vs. 5 0 vs. 4 2 vs. 3
0 vs. 2 0 vs. 1 2 vs. 4 3 vs. 5 1 vs. 4
4 vs. 5 3 vs. 4 0 vs. 3 1 vs. 2 0 vs. 5

Third, the teams themselves can be exchanged. Any permutation of teams
defines a permutation of the games. This is a value symmetry. For instance, the
following is a solution (teams 1 and 2 have been swapped):

2 vs. 3 1 vs. 5 2 vs. 5 0 vs. 4 1 vs. 3
0 vs. 1 0 vs. 2 1 vs. 4 3 vs. 5 2 vs. 4
4 vs. 5 3 vs. 4 0 vs. 3 1 vs. 2 0 vs. 5

The three types of symmetries can be independently applied. Therefore, there
are (n− 1)!(n/2)!n! symmetries in this problem, which is 4877107200 for n = 8.
Listing all solutions may be impossible for n = 8, not to speak about larger
values for n.

We focus in this paper on value symmetries. The paper is organized as follows.
After some preliminaries in Section 2, we summarize the method of [14] for
breaking variable symmetries. This method is then used in section 4 to break
all value symmetries for surjection problems. In section 5 we discuss how to
break value symmetries when there are also variable symmetries. In section 6
we perform a comparison of our method with previously published ones using
various examples. We conclude with a discussion of related work and possible
improvements in section 7.

2 Preliminaries

The symmetries we consider are permutations, i.e. one to one mappings (bijec-
tions) from a finite set onto itself. Without loss of generality, we can consider
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permutations of In, where In is the set of integers ranging from 0 to n − 1.
For instance, we can label the variables of a CSP with integers, such that any
variable symmetry is completely described by a permutation of the labels of its
variables. This is formalized as follows.

Let Sn be the set of all permutations of the set In. The image of i by the
permutation σ is denoted iσ. A permutation σ ∈ Sn is fully described by the
vector [0σ, 1σ, . . . , (n−1)σ]. The product of two permutations σ and θ is defined
by i(σθ) = (iσ)θ.

A constraint satisfaction problem P (CSP) with n variables is a tuple P =
(X ,V ,D, C) where X is a finite set of variables (xi)i∈In , V is a finite set of values,
D a finite set of finite sets (Di)i∈In , and every constraint in C is a subset of the
cross product

⊗
i∈In Di such that Di ⊆ V for all i. Without loss of generality,

we can assume that V = Id for some d.
A literal is a statement of the form xi = j where j ∈ Di.
An assignment is a set of literals, one for each variable of the CSP. A partial

assignment is a subset of an assignment.
A solution to (V ,D, C) is an assignment that is consistent with every member

of C.
A symmetry is a bijection from literals to literals that maps solutions to

solutions.
A variable symmetry is a symmetry g such that there is a permutation σ of

the variables such that (xi = j)g = (xiσ = j). In such case, we will denote g
by σ:

(xi = j)σ = (xiσ = j) (1)

A value symmetry is a symmetry g such that there exists a permutation θ of In

such that (xi = j)g = (xi = jθ). In such case we will denote g by θ:

(xi = j)θ = (xi = jθ) (2)

Our definition of symmetries is similar to the one used in [10].

3 Breaking Variable Symmetries Using Computational
Group Theory

The set of symmetries of a CSP forms a group, in the mathematical sense.
Indeed, the composition of two symmetries is a symmetry, the identity function
is a symmetry, and any symmetry can be inverted. This observation led to the
publication of various symmetry breaking techniques that use the properties
of the symmetry group. These use Computational Group Theory(CGT) [21] :
GAP-SBDD [8], GAP-SBDS [7], and GE-tree [19]. In [14] we have used CGT to
prove that all the variable symmetries of a CSP could be broken with at most
n − 1 binary constraints provided that all variables are pairwise different. The
reminder of this section explains this method. First of all, let us introduce two
useful notions.
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Given i ∈ In and a permutation group G ⊆ Sn, the orbit of i in G, denoted
iG, is the set of elements to which i can be mapped to by an element of G:

iG = {iσ|σ ∈ G}

Given i ∈ In and a permutation group G ⊆ Sn, the stabilizer of i in G, denoted
iG, is the set of permutations of G that leave i unchanged:

iG = {σ ∈ G|iσ = i}

Let us see how this method works on the example given in the introduction.
This example can be modeled with a 3 by 5 matrix model as follows:

x0 x1 x2 x3 x4

x5 x6 x7 x8 x9

x10 x11 x12 x13 x14

Variable symmetries are generated by column permutations and by row per-
mutations. We will identify a variable and its index. We first consider the group
of variable symmetries G0. We compute the orbit of 0 in this group. This is the
set of variables to which x0 can be mapped to using any permutation of both
row and columns. It is easy to see that any variable can be reached this way.
Therefore, the orbit of 0 is the set of all variables:

U0 = 0G0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

We then consider the stabilizer G1 of 0 in G0. This is the set of symmetries that
leave x0 unchanged. Any symmetry in G1 maps the first row to itself, and the
first column to itself. The other row can be permuted, and the other columns
can be permuted. Then we compute the orbit of 1 in G1. It is easy to see that
this is the first row except for 0. Therefore, the orbit of 1 in G1 is :

U1 = 1G1 = {1, 2, 3, 4}

We then compute the stabilizer of 1, etc. This yields

G2 = 1G1 , U2 = 2G2 = {2, 3, 4}
G3 = 2G2 , U3 = 3G3 = {3, 4}
G4 = 3G3 , U4 = 4G4 = {4}
G5 = 4G3 , U5 = 5G5 = {5, 10}
Gi = {id}, Ui = {i} ∀i ≥ 6

More generally, we compute the sequence of stabilizers and orbits defined by:

G0 = G, Gi = (i− 1)Gi−1 , Ui = iGi

By definition, Gi = {σ ∈ G|0σ = 0 ∧ . . . ∧ (i− 1)σ = i− 1}
Then we state the constraints:

∀i, j ∈ In, (j ∈ Ui ∧ j �= i)→ (xi < xj)
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In our example, this yields the following constraints:

∀i = 1, . . . , 14, x0 < xi,

∀i = 2, . . . , 4, x1 < xi

∀i = 3, 4, x2 < xi

x3 < x4

x5 < x10

Some constraints are redundant. For instance x0 < x10 is implied by x0 < x5
and x5 < x10. These can be removed as follows. Given j ∈ In, it may be the
case that j belongs to several of the sets Ui. In such case, let us define rj as the
largest i different from j such that j belongs to Ui. If j belongs to no Ui other
than Uj, then let rj = j. Then, the main result of [14] states:

Theorem 1. [14] With the above notation, given a CSP with n variables x0, . . . ,
xn−1 such that all variables are pairwise distinct, then all variable symmetries
can be broken by at most n − 1 binary constraints. These constraints are given
by :

∀j ∈ In, rj �= j → xrj < xj (3)

Theorem 1 can be slightly extended (see [15]) by relaxing the surjection condition
into a weaker form where any pair of variables appearing in the same orbit are
different :

∀i, j, k, j ∈ Ui ∧ k ∈ Ui → xj �= xk (4)

In our example, the constraints (3) are:

∀i = 6, . . . , 14, x0 < xi,

∀i = 0, . . . , 3, xi < xi+1

x0 < x5 < x10

In other words, x0 must be the smallest element in the matrix, the first row must
be increasing, and the first column must be increasing. In this case, we find the
same constraints as the ones given in [4]. There are only 30 solutions satisfying
these constraints. Without these constraints, there are 21600 solutions, many of
them being symmetric variants.

4 Breaking Value Symmetries

We are given a surjection CSP. The key idea of our method is to reason about
the order in which values appear in the solution of the CSP P . Let us select
an arbitrary ordering on the variables of P . Without loss of generality, we can
rename the variables such that the ordering is x0, x1, . . . , xn. Let zj be the index
of the first variable equal to j:

∀j ∈ Id, ∀i ∈ In, zj = min{i ∈ In|xi = j} (5)
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Then, any value symmetry is a variable symmetry for the variables zj . Indeed,
let us define a new CSP val(P). Its variables are the variables zj . The domain
of these variables is In. The constraints are:

∃(xi)i∈In C ∧ (zj = min{i ∈ In|xi = j})

where C is the set of the constraints of P . In other words, a solution of val(P)
is computed from a solution of P using (5). Then, we have:

Lemma 2. Every value symmetry θ for P induces a variable symmetry of
val(P). This variable symmetry is defined by:

(zj = a)θ = (zjθ = a)

Proof. Let us consider a solution s for val(P). We want to prove that θ(s) is

a solution of val(P). s is of the form zj = min{i|ai = j}, where xi = ai is a
solution of P . Then xi = ai

θ is also a solution of P because θ is a value symmetry
for P . The corresponding solution for val(P) is given by zj = min{i|aθ

i = j}.
This is equivalent to zj = min{i|ai = j(θ−1)}. This, in turn, is equivalent to
zjθ = min{i|ai = j}. �

Therefore, one can use any variable symmetry breaking technique on the z
variables in order to break value symmetries on the CSP. One could, for instance,
use the lexicographic constraints of [3]. The number of these constraints can grow
exponentially with the number of variables zj . Using the following result, we can
significantly reduce the number of symmetry breaking constraints.

Lemma 3. Let zj be d variables satisfying (5). Then, we have that

∀i, j ∈ Id, i �= j → zi �= zj

Proof. Each variable xi can take only one value. �

Therefore we can apply the symmetry breaking technique described in the
previous section, which yields:

Theorem 4. With the above notation, all value symmetries can be broken with
at most d− 1 binary constraints on the zj variables.

Proof. Breaking all variable symmetries of val(P) breaks all value symmetries by
Lemma 2. The variables of val(P) are pairwise different by Lemma 3. Therefore,
Theorem 1 can be applied. �

Note that this is still valid if condition (4) holds.
The second idea used in our method is that the channeling constraint (5) can

be enforced in a surprisingly simple way:

Theorem 5. With the above notations, constraint (5) is equivalent to a linear
number of binary constraints. These constraints are given by:

∀i ∈ In, j ∈ Id, (xi = j)→ (zj ≤ i) (6)
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∀i ∈ In, j ∈ Id, (zj = i)→ (xi = j) (7)

Proof. The fact that the variables zj satisfy both (6) and (7) is an immediate
consequence of (5). We need to prove that the converse is true. Assume that the
variables zj satisfy both (6) and (7). Assume further that xi = ai is a solution
of P . Let cj be the value of zj . Let us define bj = min{i|xi = j}. We want
to prove that cj = bj . By (6) zj ≤ i for each i such that ai = j. Therefore
cj ≤ min{i|xi = j}, i.e. cj ≤ bj . Conversely, by (7), xcj = j, therefore cj ≥ bj .
There are 2nd binary constraints in (6) and (7), which is linear in the size of the
CSP. �

Let us look at our example. We introduce 15 variables zi, and the correspond-
ing channeling constraints (6)(7). Value symmetries are generated by team per-
mutations as explained in the introduction. Applying the above results to this
group of value symmetries yields the following constraints:

∀i > 0, z0 < zi

∀i = 2 . . . 8, z1 < zi

z2 < z3
z3 < z4

Adding these constraints to the problem leaves only 30 solutions instead of 21600.
Note that these 30 solutions are not the same as the 30 solutions that satisfy
the variable symmetry breaking constraints given in the previous section. In fact
there is only one solution satisfying both set of constraints.

5 Breaking Both Variable and Value Symmetries

For the sake of clarity, we will refer to variable symmetry breaking constraints
(such as the ones of Theorem 1) as VAR, and we will refer to the value symmetry
breaking constraints of Theorem 4 and Theorem 5 as OCC.

The combination of variable symmetry breaking with value symmetry break-
ing has received some interest in the recent years, see [10] [20] [14] [4] for instance.
It would be tempting to say that one can freely state VAR constraints with the
OCC constraints. This can be wrong in general. For instance, let us consider
a simple CSP with 2 variables x0, x1, a domain of 2 values, and the constraint
x0 �= x1. There are 2 solutions, x0 = 0 ∧ x1 = 1, and x0 = 1 ∧ x1 = 0. Variable
symmetries can be broken by adding the VAR constraint x0 > x1. The only
solution satisfying this constraint is x0 = 1 ∧ x1 = 0. For value symmetries,
we introduce two variables z0, z1 and the channeling constraints (6)(7). Value
symmetries can then be broken by z0 < z1. The only solutions satisfying this is
x0 = 0∧ x1 = 1. On this example we see that there are no solutions that satisfy
both the VAR constraints and the OCC constraints. In fact, the problem comes
from the fact that we used incompatible order for the variables xi when defining
the symmetry breaking constraints.
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Fortunately, both VAR and OCC constraints can be stated at the same time
when the same variable ordering is used (X stands for the vector of variables xi,
and Z stands for the vector of variables zj):

Theorem 6. Let P be a CSP, G1 its group of variable symmetries, and G2 its
group of value symmetries. The addition of the variables zj, their channeling
constraints (5) and the following constraints keep at least one solution in every
solution orbit.

∀σ ∈ G1, X � Xσ (8)
∀θ ∈ G2, Z � Zθ (9)

This means that for any solution, there is a solution in its orbit (i.e. symmetrical
to it) that satisfy (8) and (9). In particular, for surjection problems, we have seen
that (9) is equivalent to the OCC constraints:

Corollary 7. Let P be a surjection CSP, G1 its group of variable symmetries,
and G2 its group of value symmetries. The addition of the variables zj, their
channeling constraints (5), the constraints (8) and the OCC constraints keep at
least one solution in every solution orbit.

Proof of theorem 6. It is shown in [4] how to transform P into a new CSP
P ′ such that all value symmetries of P become variable symmetries of P ′. Al-
though this was used for the case where any row permutation and any column
permutation is a symmetry, this idea can be generalized to more general cases.
The idea is to add n× d additional binary variables yij (variables with domains
equal to {0, 1}). We also add the following channeling constraints:

∀i ∈ In, j ∈ Id, (yij = 1)↔ (xi = j) (10)

These constraints state that yij = 1 if and only if xi = j. Adding these new
variables does not change the solutions of the CSP. Variable symmetries of P are
equivalent to permutations of the rows of the yij matrix by (1). Value symmetries
of P are equivalent to permutations of the columns of the same matrix by (2).

Let Y be the vector obtained by concatenating the columns of the matrix
yij . The variables yij are ranked in increasing values of j then increasing values
of i in the vector Y . Let Yj be the variables in the j-th column of the matrix.
Since a variable xi can only take one value, the columns of the yij matrix must
be all different. More precisely, no two columns can have a variable equal to 1
in the same row. This means that it is sufficient to compare the index of the
first occurrence of ’1’ in each column in order to compare lexicographically two
columns Yj and Yk. These indices are precisely equal to the variables zj and zk

that were introduced in the previous section. Therefore :

(Yj � Yk)↔ (zj < zk) (11)

Let us consider a value symmetry θ for P . Then θ is a permutation of the matrix
columns. The value symmetry θ maps columns to columns. This is formalized
as follows:
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Yj = (y0i, y1j , . . . , y(d−1)j)

(Y θ)j = (y0jθ , y1jθ , . . . , y(d−1)jθ )

This symmetry is broken by the lexicographic constraint [3]:

Y � Y θ

From the definition of �, this is equivalent to the disjunction of the following
constraints:

Y0 < Y0σ

Y0 = Y0σ ∧ Y1 < Y1σ

...
Y0 = Y0σ ∧ . . . ∧ Yd−2 = Y(d−2)σ ∧ Yd−1 < Y(d−1)σ

Y0 = Y0σ ∧ . . . ∧ Yd−2 = Y(d−2)σ ∧ Yd−1 = Y(d−1)σ

By using (11), this is exactly equivalent to Z � Zθ. This proves that:

(Y � Y θ)↔ (Z � Zθ) (12)

Similarly, one can prove that for any variable symmetry σ, we have:

(Y � Y σ)↔ (X � Xσ) (13)

From [3], it is safe to add all possible lexicographic constraints on the Y variables.
In particular, it is safe to add the following constraints:

∀σ ∈ G1, Y � Y σ

∀θ ∈ G2, Y � Y θ

By (13) and(12) these are equivalent to (8) and (9). �

6 Experimental Results

6.1 Implementation Hints

Our approach does not require any additional input beside the CSP. Both vari-
able and value symmetries are automatically derived using the method of [16].
Then, the algorithm of [14] is applied for generating the constraints on the zj

variables.
All the running times are expressed in seconds. They are measured on a

1.4 GHz Pentium M laptop running Windows XP and ILOG Solver 6.1. Unless
otherwise stated, the search used to solve the examples is quite straightforward.
It is a depth first search where one variable is selected at each node. The order
in which variables is selected is the order given by variable indices. Values are
tried in increasing order.
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6.2 Full Value Symmetry Group

Things get simpler when any value permutation is a symmetry. Typical examples
include bin packing and graph coloring. In the latter, the exact color assigned
to a vertex does not matter. What matter are the sets of vertices that have the
same color. For problems where any value permutation is a value symmetry, our
algorithm results in the following constraints:

OCC

⎧⎨⎩
∀i ∈ In, j ∈ Id, xi = j → zj ≤ i
∀i ∈ In, j ∈ Id, zj = i→ xi = j
∀j ∈ Id−1 zj < zj+1

Several methods have been published for breaking value symmetries in this case.
A modified search strategy was proposed in [22]. See also [2] for a modified
search strategy breaking value symmetries for graph coloring problems. A set of
constraint achieving the same effect as the search of [22] is proposed in [5]. The
idea is to introduce 2n variables mi and ri such that:

IPG

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀i ∈ In, mi ∈ In

∀i ∈ In, ri ∈ In

∀i ∈ In, xi = xri

∀i ∈ In, ri = rri

∀i ∈ In, ri ≤ i
x0 = 0
m0 = 0
r0 = 0

∀i ∈ In, i > 0 mi = max(mi−1, xi)
∀i ∈ In, i > 0 (ri = i)↔ (mi − 1 = mi−1)

These are much more complex and less efficient than our constraints (OCC).
Let us look at the n × n queen problem taken from [10]. The problem is

to color a n × n chessboard with n colors, such that no line (row, column or
diagonal) contains the same color twice. This can be seen as searching for n non
intersecting solutions to the n queens problem. Each solution is given by the
squares containing one of the n colors. This problem can be modeled with n2

variables, one per square of the chess board, and one all different constraint per
line. We assume that variables are ordered row by row.

x0 x1 . . . xn−1
xn xn+1 . . . x2n−1
...

...
...

...
xn(n−1) . . . . . . xn2−1

Value symmetry breaking constraints are:

z1 < z2 < . . . < zn−1 < zn
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There are also some variable symmetries corresponding to the 8 symmetries of
a square. These can be broken by the following VAR constraints [15]:

x0 < xn−1, x0 < xn(n−1), x0 < xn2−1, x1 < xn

We can state both variable and value symmetry breaking constraints because of
corollary 7. Results are shown in Table 1. First fail principle is used: the variable
with the smallest domain size is selected during search. We also give the results
of [10], where SBBD and GE-trees are used to break all the symmetries of the
problem. These methods break all symmetries, but they are very expensive. Our
technique is much more efficient. However, it does not break all symmetries, as
shown by the number of solutions found. Our method breaks values symmetries
and it breaks variable symmetries, but it does not break all their combinations.
A possible explanation is the following. The propagation of value symmetry
breaking constraints fixes the first row:

x0 = 0, x1 = 1, . . . , xn−1 = n− 1

Then it is easy to see that all variable symmetry breaking constraints are trivially
satisfied. This means that stating these constraints will not further reduce the
number of solutions of the problem.

Table 1. Results for finding all solutions to the n× n queen problem

n [10] VAR+OCC
sols time sols bt time

5 1 0.68 2 0 0
6 0 0.96 0 5 0
7 1 8.36 4 271 0.11
8 0 927.36 0 23794 4.27

6.3 Permutation Problems

Another special case of interest is when the variables of the CSP must be pair-
wise different, among other constraints. This class of problems is quite large. It
includes the pigeon hole problem and the sports scheduling problem.

Most perfect magic squares, studied in [13], are given as an example of a
CSP with convoluted value symmetries in [19]. In [13], it is proven that most
perfect magic squares are in a one to one relationship with reversible squares.
A reversible square of size n× n (where n ≡ 0 mod 4) has entries 1 . . . n2 such
that:

1. The sum or the two entries at diagonally opposite corners of any rectangle or
sub-square equals the sum of the other pair of diagonally opposite corners.

2. In each row or column, the sum of the first and last entries equals the sum
of the next and the next to last number, etc.

3. Diametrically opposed numbers sum to n2 + 1.
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Any solution is one of 2n+1((n/2)!)2 symmetric equivalent [13]. For n = 16,
this is about 2.13e+14. The model of [19] for this problem has one variable per
entry with its cell as value. In addition to the above constraints on entries, there
is an all different constraint. Therefore, OCC constraints can be used. It is worth
noting that in this case the channeling constraints of theorem 5 can be simplified
into:

∀i ∈ In, j ∈ Id, (xi = j)↔ (zj = i) (14)

This means that the zj variables are the variables corresponding to cells, with
entries as values.

We report for various sizes the time used to compute the symmetry breaking
constraints (CGT) as well as the time used for finding all non symmetrical solu-
tions (search). We also report the results of [19], obtained with GAP-SBDD and
with GE-tree on a computer about half the speed of ours. A direct comparison
is difficult because they directly search for most perfect magic squares whereas
we search for reversible squares. It is worth comparing the time spent in the
symmetry computations though, because these deal with the same symmetry
group. Our method spends much less time in symmetry computations because
these need to be done only once before the search starts.

Table 2. Results for finding all solutions on the most perfect magic squares

OCC GAP-SBDD GE-tree
n sols CGT search CGT search CGT search
4 3 0.01 0.02 0.3 0.3 0.2 0.1
8 10 0.09 0.39 5.4 125.4 0.7 90.0
12 42 0.44 22.2 2745 12518 29.1 10901.8
16 35 4.6 275.6

6.4 Sports League Scheduling

The example given in the introduction has been solved using the model of [17].
In this model, some clever symmetry breaking constraint was added. The game
(0 vs. i) must appear on week i. We compare this symmetry breaking constraint
with the VAR constraints and the OCC constraints. Results are given in table
3. A “-” means that the program was still running after one hour. This shows
that our automatically derived symmetry breaking constraints are more efficient
than carefully thought ones.

Table 3. Results for finding all solutions on sports league scheduling

n no sym [17] VAR OCC VAR+OCC
sols bt time sols bt time sols bt time sols bt time sols bt time

6 21600 139454 9.89 60 448 0.11 30 220 0.09 30 480 0.2 1 18 0.04
8 - - - - 1385 458073 157.5
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In [18], a better model was proposed. The idea was to first ignore the con-
straint stating that each team must play at most twice in a given period. Then the
problem is a round robin problem, for which solutions are known. The problem
is then to rearrange the games within each week so that the period constraint
is satisfied. Therefore, value symmetries are permutations of teams that map
games to games in the same week. In [18], symmetries are broken by a fixing one
game.

Table 4. Results for finding all solutions using 2nd model

n [18] VAR OCC VAR+OCC

sols bt time sols bt time sols bt time sols bt time
6 2 12 0.04 5 17 0.06 3 8 0.05 1 4 0.04
8 96 407 0.21 112 1491 0.32 128 1202 0.32 18 274 0.15

10 169344 2266531 224.29 63504 2150549 232.04 307572 6727391 723.36 10357 327602 35.15

We report results for this improved model in table 4. Again, our automatically
derived symmetry breaking constraints are more efficient than carefully thought
ones.

We have also benchmarked the timings needed to find the first solution using
the second model. We have used the variable ordering described in [18]. We
have compared the timings with the symmetry breaking constraint of [18] and
our combination of VAR and OCC constraints. We have not detected any
measurable difference up to n = 40. The ILOG Solver code used for [17] and [18]
are available from the author.

7 Related Work and Future Research

We have presented a surprisingly simple yet effective way of breaking all value
symmetries for a large class of CSPs. These are CSPs where all values appear
in every solution. Our method relies on the introduction of one variable per
value of the problem. This variable represents the index of the first occurrence
of the value. A surprisingly simple set of channeling constraints are sufficient to
define the value of this variable. Channeling constraints can be expressed with
a linear number of rather simple binary constraints. Then value symmetries are
equivalent to variable symmetries for these newly added variables. Breaking these
symmetries can be done with a linear number of constraints. We have further
shown that it is safe to combine this new way of breaking value symmetries with
symmetry breaking constraints.

Our method has been fully automated. First of all, the value symmetry group
and the variable symmetry group are computed using graph automorphism pack-
ages [16]. Second, once the symmetry groups are given, symmetry breaking con-
straints are automatically derived using computational group theory. Various
experiments show that our method is much more efficient than the previously
published ones.

The idea of using channeling constraints for turning value symmetries in
variable symmetries has been proposed in [4]. In that paper, it was proposed
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to replace the variables of the CSP by binary variables defined by equation
(10). However this was only defined for problems where any value permutation
is a symmetry. In [11] and [12], channeling constraints are proposed for matrix
models. However, the channeling constraints are different from ours. In that
work, a set variable is introduced for every value. This set variable represents
the set of occurrences of the value (instead of the first occurrence in our case).
Then symmetries are broken using lexicographic constraints on the matrix of set
variables. When the group of value symmetries is not the full symmetry group,
an exponential number of symmetry breaking constraints can be necessary for
breaking all symmetries. This is to be contrasted with our approach that only
requires a linear number of binary constraints for breaking all value symmetries.
The method of [3] has been improved in [1]. In that work, a linear number of
symmetry breaking constraints is stated, one for each generator of the symmetry
group. However, these do not necessarily break all symmetries, contrarily to the
ones we are using.

Our method breaks all value symmetries, provided all values appear in any so-
lution of the problem. The method can still be applied when this is not true. First
of all, the method can be applied provided condition (4) holds. Second, we can al-
ways extend a CSP so that the surjection condition becomes true. It is sufficient to
add d dummy variables xn, xn+1, . . . , xn+d−1 with domains Dn+i = {i}. Adding
these variables does not change the solutions of the CSP. However, the CSP is now
a surjection: each value appears in at least one of the variables x0, x1, . . . , xn+d−1.
Our method can then be applied. It is strong enough to still break all symmetries
in a modified pigeon hole problem where variable domains are enlarged. However,
it may not break all value symmetries in all problems. We plan to evaluate this
technique on various non surjective problems.

Another possible improvement of the method is to look for cases where it
would be easy to break the symmetries that are the product of a variable sym-
metry and a value symmetry. Indeed, we have provided various evidence that
breaking variable symmetries and value symmetries separately still leaves many
symmetries in the problems at hand.

Last, it would be interesting to see if the method can be extended to handle
local symmetries, i.e. symmetries that appear during the search for solutions.
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Abstract. In this paper, we present AC-*, a new configurable, generic
and adaptive algorithm for establishing arc consistency for binary con-
straints. AC-* is configurable, that is by combining some parameters
AC-* corresponds to any existing AC algorithm: AC-3, AC-4, AC-6,
AC-7, AC-2000, AC-2001, AC-8, AC-3d, AC-3.2 and AC-3.3. AC-* is
generic, like AC-5, because it may take into account the structure of the
constraints.

AC-* is adaptive because the underlining algorithm can be changed
during the computation in order to use the most efficient one. This new
algorithm leads to a new nomenclature of the AC algorithms which is
based on the different features used by the algorithm like the values
that are reconsidered when a domain is modified, or the fact that bi-
directionality is taken into account, or the way a new support is sought.
This new nomenclature shows that several new possible combinations are
now possible. That is, we can easily combine some ideas of AC-3 with
some ideas of AC-7 and some ideas of AC-2001 with some ideas of AC-6.
Some experimental results highlight the advantages of our approach.

1 Introduction

In this paper we focus our attention on binary constraints. For more than twenty
years, a lot of algorithms establishing arc consistency (AC algorithms) have
been proposed: AC-3 [6], AC-4 [7], AC-5 [9], AC-6 [1], AC-7, AC-Inference, AC-
Identical [2], AC-8 [4], AC-2000: [3], AC-2001 (also denoted by AC-3.1 [10]) [3],
AC-3d [8], AC-3.2 and AC-3.3 [5]. Unfortunately, these algorithms are differently
described and their comparison is not easy. Therefore, we propose a configurable,
generic and adaptive AC algorithm, called AC-*.

Configurable means that the previous existing algorithms can be represented
by setting some predefined parameters. This has some advantages:

• this unique algorithm can represent all known algorithms and it clearly
shows the differences between them,

• some new arc consistency algorithms can be easily and quickly derived
from AC-*, because some combinations of parameters have never been tested,

• AC-* leads to a new nomenclature which is much more explicit than
the current one (”AC-” followed by a number.), because algorithms are now ex-
pressed by combinations of predefined parameters. For instance, AC-3 is renamed
AC-pvD-sD and AC-6 becomes AC-pvΔs-last-sD.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 505–519, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Generic means that AC-* is also a framework that can be derived to take into
account some specificity of some binary constraints. In other words, dedicated
algorithms can be written, for functional constraints for instance. This corre-
sponds to a part of the generic aspects of AC-5. In our case, the incremental
behavior of the AC-5 is generalized.

Adaptive means that AC-* is able to use different algorithms successively as
suggested in [3]. For instance, first AC-2001 can be used then AC-7 and then AC-
2001 depending on which one seems to be the best for the current configuration
of domains and delta domains. We think that CP will be strongly improved
if a filtering algorithm is in itself capable to select at each time its
best version, instead of asking the user to do it a priori.

This paper is organized as follows. First, we recall some definitions of CP.
Then, we study all the existing algorithms, and we identify different concepts
of the AC algorithms and detail the AC-* algorithm. A new nomenclature is
proposed. Then, the adaptive behavior of AC-* algorithm is considered. At last,
after studying some experiments, we conclude.

2 Preliminaries

A finite constraint network N is defined as a set of n variables X = {x1, . . . ,
xn}, a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the
finite set of possible values for variable xi, and a set C of constraints between
variables. A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir )
is a subset T (C) of the Cartesian product D(xi1) × · · · ×D(xir ) that specifies
the allowed combinations of values for the variables xi1 , . . . , xir . An element
of D(xi1 ) × · · · × D(xir ) is called a tuple on X(C) and τ [x] is the value of
τ assigned to x. A value a for a variable x is often denoted by (x, a). (x, a)
is valid iff a ∈ D(x). Let C be a constraint. A tuple τ on X(C) is valid iff
∀x ∈ X(C), τ [x] ∈ D(x); and τ is a support for (x, a) iff τ [x] = a and τ ∈ T (C).
C is consistent iff ∃τ ∈ T (C) which is valid. A value a ∈ D(x) is consistent
with C iff x �∈ X(C) or there exists a valid support for (x, a). A constraint is
arc consistent iff ∀x ∈ X(C), D(x) �= ∅ and ∀a ∈ D(x), a is consistent with C.

A filtering algorithm associated with a constraint C is an algorithm which
may remove some values that are inconsistent with C; and that does not remove
any consistent values. If the filtering algorithm removes all the values inconsistent
with C then we say that it establishes arc consistency of C and that it is an AC
algorithm.

The delta domain of a variable x with respect to a filtering algorithm F
associated with a constraint C is the set of values that have been removed from
the domain of x between two successive calls of F . It is denoted by Δ(x, F )
and a value in Δ(x, F ) is called a delta value. More information about delta
domains can be found in [9] or in the manual of ILOG Solver. Note that the
conjunction of the elements in the delta domains form the waitingList of AC-
6 and AC-7 algorithms. Sometimes, all the filtering algorithms depending on
the modifications of D(x) are successively considered after the modifications of
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x. Thus, if there is no side effect (that is x is not modified by these filtering
algorithms), then all these filtering algorithms can share the same delta domain
for x, and only one representation is needed. Therefore, there is no need to
specify the filtering algorithm for identifying the delta domain associated with
a filtering algorithm and the delta domain of x is denoted by Δ(x).

Propagation is the mechanism that consists of calling the filtering algorithm
associated with the constraints involving a variable x each time the domain of
this variable is modified. If every filtering algorithm associated with every con-
straint establishes arc consistency then we say that the propagation mechanism
establishes arc consistency of the network.

Algorithm 1. function propagation
propagation()

while ∃y such that Δ(y) �= ∅ do
pick y with Δ(y) �= ∅
for each constraint C involving y do

(D(x), Δ(x))← filter(C,x, y,Δ(y))
if D(x) = ∅ then return false

Δ(y)← ∅
return true

Function propagation of Algorithm 1 is a possible implementation of this
mechanism when delta domains are shared.
The filtering algorithm associated with the constraint C defined on x and y cor-
responds to Function filter(C, x, y, Δ(y)). This function removes some values
of D(x) that are not consistent with the constraint with respect to Δ(y). It also
updates the delta domain of x. For a constraint C this function will also be
called with the parameters (C, y, x, Δ(x)).

3 Arc Consistency Algorithms

We will consider a constraint C defined on x and y for which we study the
consequences of the modification of D(y).

Definition 1. Let x be a variable and F be a filtering algorithm aiming to re-
move some values of D(x). We call pending values of x w.r.t. F , the set of
valid values of x for which a valid support is sought by F when F is called.

Thanks to this definition, and if every value which is not a pending value is
consistent with the constraint then the principles of AC algorithms can be easily
expressed:

Check whether there exists a valid support for every pending value
and remove those that have none.
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Algorithm 2. AC-* filtering algorithm
filter(in C, x, y, Δ(y)): (domain,delta domain)

get the parameters of C
pvType← selectpvType(C,x, y,Δ(y),pvType)
sType← selectsType(C,x, y,Δ(y),sType)
(x, a)← pvType.firstPendingValue(C,x, y,Δ(y))
while (x, a) �= nil do

if ¬ existValidSupport(C,x, a, y,sType) then

1 D(x)← D(x)− {a}
Δ(x)← Δ(x) ∪ {a}
if D(x) = ∅ then return (∅, Δ(x))

(x, a)← pvType.nextPendingValue(C,x, y, Δ(y), a)

return (D(x), Δ(x))

Algorithm 2 is a possible implementation of this principle. This is also the
core of the generic AC-* algorithm. Functions selectpvType and select-
sType can be ignored at this point. They will be detailed later. Functions
firstPendingValue and nextPendingValue identify the pending values,
and Function existValidSupport searches for a valid support for these pend-
ing values.

We can now give the principles of these functions for each existing algorithm.

AC-3: The pending values are the values of D(x), and Δ(y) is not used at
all. All the values of D(x) are considered and the search for a valid support is
done by checking in D(y) if there is a support for a value of D(x). There is no
memorization of the previous computations, so the same computations can be
done several times. The search for a valid support of a value is in O(d) and a
value can be a pending value d times, so for one value the algorithm is in O(d2).
Since there are d value, the time complexity for one constraint is in O(d3)1. The
advantage of this approach is that the space complexity is in O(1) per constraint.

AC-4: In AC-4 the tuple set T (C) of the constraint is pre-computed and stored
in a structure that we call a table. This table contains for every value (x, a)
a pointer to the next tuple involving (x, a). Therefore, the space complexity of
AC-4 is in O(d2). The pending values are for each (y, b) ∈ Δ(y) all the valid
values (x, a) such that ((x, a)(y, b)) ∈ T (C). The values that are not pending
values are not compatible with the value of Δ(y), therefore there are consistent
with the constraint. Note that a value (x, a) can be considered several times as
a pending value for a given set Δ(y). The search for a valid support is imme-
diate because Function existValidSupport can be implemented in O(1) by
associating with every value (x, a) a counter which counts the number of times
1 In this paper, we will always express the complexities per constraint, because a con-

straint network can involved several types of constraints. The usual way to express
complexities can be obtained by multiplying the complexity we give by the number
of binary constraints of the network.
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(x, a) has a support in D(y). Then, each time this function is called the counter
is decremented (because (x, a) lost a valid support) and if the counter is equal
to zero then there is no longer any valid support. AC-4 was the first algorithm
reaching the optimal O(d2) time complexity, because no computation is made
twice. However, a lot of computations are systematically done.

AC-5: This algorithm is mainly a generic algorithm. It has been designed in
order to be able to take into account the specificity or the structure of the
considered constraints. In other words, Function existValidSupport can be
specialized by the user in order to benefit from the exploitation of the structure
of the constraint. For instance, functional constraints are more much simple and
arc consistency for these constraints can be established in O(d) per constraint.
Function filter and the propagation mechanism we gave are similar to AC-5
ideas.

AC-6: AC-6 mixes some principles of AC-3 with some ideas of AC-4. AC-6 uses
the idea of AC-4 to determine the pending values, but instead of considering all
the values supported by the values in Δ(y), it exploits the fact that the knowl-
edge of one support is enough. AC-6 can be viewed as a lazy computation of
supports. AC-6 introduces another data structure which is a variation of the
table: the S-list: for every value (y, b), S-list[(y, b)] is the list of values that are
currently supported by (y, b). Contrary to AC-4, in AC-6 the knowledge of only
one support is enough, i.e. a value (x, a) is supported by only one value of D(y).
Hence there is at most one value of D(y) that contains (x, a) in its S-list. Then,
the pending values are the valid values contained in the S-lists of the values in
Δ(y). If a value of D(x) is not a pending value then it means that its support
has not been deleted so the value is consistent with the constraint. If a new valid
support (y, b) is found for a value (x, a) then (x, a) is removed from the S-list
containing it and added to the S-list[(y, b)]. Note that, for a given Δ(y), a value
(x, a) can be considered only once as a pending value. Function existValidSup-
port is an improvement of the AC-3’s one, because the checks in the domains
are made w.r.t. an ordering and are started from the support that just has been
lost. The space complexity of AC-6 is in O(d) because a value belongs to at most
one S-list and its time complexity is in O(d2), because a value can be a pend-
ing value only d times and the search for a valid support is done in O(d) globally.

AC-7: This is an improvement of AC-6. AC-7 exploits the fact that if (x, a) is
supported by (y, b) then (y, b) is also supported by (x, a). Then, for each pending
value (x, a), AC-7 proposes to search first for a valid value in S-list[(x, a)], and to
remove from the S-list every non valid value which is reached. In this case, we say
that the support is sought by inference. This idea contradicts an invariant of
AC-6: a support found by inference is no longer necessarily the last value checked
in D(y) when searching for a valid support. Since this information is needed to
avoid repeating some compatibility checks in Function existValidSupport,
AC-7 introduces explicitly the concept of last value by the data last associated
with every value in order to differentiate the concept of current support and the
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concept of last value returned by Function existValidSupport. AC-7 ensures
the property: If last[(x, a)] = (y, b) then there is no support (y, c) in D(y) with
c < b. If no support is found by inference, then AC-7 uses an improvement of the
AC-6’s method to find a support in D(y). Negative compatibility checks can be
avoided if last[(y, b)] > (x, a), because in this case we know that (x, a) is a not
a support of (y, b) and so that (y, b) is not a support for (x, a). The properties
on which AC-7 is based are often called bidirectionalities. Hence, AC-7 is able
to save some checks in the domain in regard to AC-6, while keeping the same
space and time complexity.

AC-Inference: This algorithm uses the S-lists of AC-6 to determine in the same
way the values for which a valid support must be sought, but the search for a
new support is different from the AC-6’s method. For every value (x, a), two lists
of values are used: P-list[(x, a)] and U-list[(x, a)]. P-list[(x, a)] contains some
supports of (x, a), where as U-list[(x, a)] contains the values for which their com-
patibility with (x, a) has never been tested. When a valid support is sought for
(x, a), it checks first if there is a valid value in P-list[(x, a)], and every non valid
value that is reached is removed from the P-list. If no valid value is found in the
P-list, then the values of U-list[(x, a)] are successively considered until a valid
support is found. Every value of the U-list[(x, a)] which is checked is removed
from the U-list and added to the P-list if this value is a support. When a new
support is found, then some inference rules can be applied to deduce new sup-
ports and the U-list and P-list are accordingly modified. The inference rules can
be general like the AC-7’s one or depending on the constraint like commutativ-
ity or reflexivity [2]. The space and time complexities are in O(d2) per constraint.

AC-Identical: This is an extension of AC-Inference which exploits the fact that
the same constraint can be defined on different variables. In this case, any knowl-
edge obtained from one constraint is inferred for the other similar constraints
and the P-list and U-list are shared by similar constraints.

AC-2000: This is a modification of AC-3. The pending values are the values
of D(x) that have a support in Δ(y). No extra data is used, so it is costly to
compute the pending values. Thus, AC-2000 uses this set of pending values only
if |Δ(y)| < 0.2|D(x)|; otherwise D(x) is considered as in AC-3. Hence, AC-2000
is the first adaptive AC algorithm.

AC-2001: This algorithm is based on AC-3 and uses the ”last value” concept
of AC-6. That is, the pending values are the same as for AC-3 and function
existValidSupport is similar as the AC-6’one, except that it is checked if the
last value is valid. This algorithm inherits the space complexity of AC-6, with-
out using the S-lists. Note also that this presentation of AC-2001 is original and
simpler than the one given in [3].

AC-3.3: AC-3.3 is an improvement of AC-2001 which associates with every value
(x, a) a counter corresponding to a lower bound of the size of S-list[(x, a)]. The



AC-*: A Configurable, Generic and Adaptive Arc Consistency Algorithm 511

algorithm does not use any S-list, but counters instead. When a valid support is
sought for, the counter of (x, a) is first tested, if it is strictly greater than 0 then
we know that a valid support exists. This valid support cannot be identified but
we know that there is one. If (y, b) is deleted then the counters of all the values
supported by (y, b) are decremented.

We will not consider AC-8 [4], AC-3d [8], and AC-3.2 [5], because they mainly
improve AC-3 by proposing to propagate the constraints w.r.t. specific orderings,
and this is not our purpose.

The AC algorithms may use the following data structures:

Support: support[(x, a)] is the current support of (x, a).
Last: the last value of (x, a) is represented by last[(x, a)] which is a value of
D(y) or nil.
S-List, P-List, U-list: these are classical list data structures. For any list L
we consider that we are provided with the following functions implemented in
O(1): add(L, (x, a)), which adds (x, a) to L, remove(L, (x, a)), which removes
(x, a) from L, and |L| which computes the size of L.
Tuple counters: For each a ∈ D(x): counter[(x, a)] counts the number of valid
tuples of T (C) containing (x, a).
Table: A table is the set of tuples T (C) associated with two functions im-
plemented in O(1): firstTuple(C, y, b) which returns the first tuple of T (C)
containing (y, b) and nextTuple(C, y, b, τ) which returns the first tuple of T (C)
containing (y, b) and following τ . These functions return nil when no such spec-
ified tuple exists.

Now, we propose to identify the different concepts used by the existing algo-
rithms instead of having one function per algorithm and one parameter corre-
sponding to each specific algorithm. Thus, we will have a configurable algorithm
from which every AC algorithm could be obtained by combining some parame-
ters, each of them corresponding to a concept.

4 Pending Values

Finding efficiently a small set of pending values is difficult because pending values
sets deal with two different concepts at the same time: validity and support.
Thus, several sets of pending values have been considered. We identify four type
of sets called pvType:

1. The values of D(x) (like in AC-3, AC-2001, AC-3.3). This set is denoted by pvD.
2. The valid values lastly supported by the values of Δ(y), that is the AC-

Inference, AC-Identical. It is denoted by pvΔs.
3. The values that belong to a tuple containing a value of Δ(y). A value is

pending as many times as it is contained in such a tuple. AC-4 uses this set
denoted by pvΔt.

4. The values of D(x) compatible with at least one value of Δ(y), as in
5. AC-2000. This set is denoted by pvΔc.
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Since we aim to have a generic algorithm, we propose to define a fifth type: pvG

which represents any function given by the user. For instance, for x < y only the
modifications of the maximum value of D(y) can lead to new deletions. Thus,
the pending values are the values of D(x) that are greater than the maximum
value of D(y).

Algorithm 3 is a possible implementation of the computation of pending val-
ues. Depending on the type of pending values, the algorithm traverses a partic-
ular set. Note that some functions require ”internal data” (a data whose value
is stored). We assume that first(D(x)) returns the first value of D(x) and
next(D(x), a) returns the first value of D(x) strictly greater than a. Function
seekValidSupportedValue(C, x, a) returns a valid supported value belonging
to the S-list[(y, b)].

5 Existence of a Valid Support

Function existValidSupport also differentiates the existing algorithms. Al-
most each algorithm uses a different method. We identify eight ways to check
whether a valid support exists for (x, a):

1. Check in the domain from scratch (AC-3, AC-2000.)
2. Check if the last value is still valid and if not check in the domain from

the last value (AC-2001.)
3. Check in the domain from the last value (AC-6.)
4. Test if a valid support can be found in S-list[(x, a)], then check in the

domain from the last value. When searching in the domain, use the fact that
last values are available to avoid explicit compatibility checks (AC-7.)

5. Check if there is a valid support in P-list[(x, a)], if there is none check
the compatibility with the valid values of U-list[(x, a)]. After checking some
compatibilities, deduce the results of some other compatibility checks and update
accordingly U-lists and P-lists (AC-Inference, AC-identical.)

6. Decrement the counter storing the number of valid supports and test if
it is strictly greater than 0 (AC-4.)

7. Use a specific function dedicated to the constraint.
8. Use counters storing a lower bound of |S-list[(x, a)]|, and check in the

domain from the last value (AC-3.3.)
The last point deserves a particular attention. The time complexity of using a

counter of the number of elements in a list is the same as the management of the
list. Moreover, AC-3.3 implies that the counters are immediately updated when
a value is removed, which is not the case with AC-7, which uses a lazy approach
to maintain the consistency of the S-list. This has been proved more efficient.
Therefore, we will implement AC-3.3 with S-lists instead of lower bounds.

We propose to consider the following parameters:

• last: the search for a valid support uses the last data to restart the search
from it. The last value is also used to avoid some negative checks (AC-6, AC-7,
AC-Inference, AC-Identical, AC-2001, AC-3.3.)
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Algorithm 3. Pending values selection based on pvType

pvType = pvD

firstPendingValue(C,x, y,Δ(y)): return first(D(x))
nextPendingValue(C,x, y, Δ(y), a):return next(D(x), a)

pvType = pvΔs (b is a local data)
firstPendingValue(C,x, y,Δ(y)): value

b←first(Δ(y))
return traverseS-list(C, x, y,Δ(y))

nextPendingValue(C,x, y, Δ(y), a): value
return traverseS-list(C, x, y,Δ(y))

traverseS-list(C, x, y, Δ(y)): value
while (y, b) �= nil do

(x, a)←seekValidSupportedValue(C,y, b)
if (x, a) �= nil then return (x, a)
b←next(Δ(y), b)

return nil
pvType = pvΔt (b is a local data)

firstPendingValue(C,x, y,Δ(y)): value
b←first(Δ(y))
τ ←firstTuple(C, y, b)
return traverseTuple(C,x, y,Δ(y), τ )

nextPendingValue(C,x, y, Δ(y), a): value
τ ←nextTuple(C,x, y, b, ((x, a), (y, b)))
return traverseTuple(C,x, y,Δ(y), τ )

traverseTuple(C,x, y, Δ(y), τ ): value
while (y, b) �= nil do

while τ �= nil do
if τ [x] ∈ D(x) then return (x, τ [x])
τ ←nextTuple(C,x, y, b, τ )

b←next(Δ(y), b)
τ ←firstTuple(C,x, y, b)

return nil
pvType = pvΔc

firstPendingValue(C, y, Δ(y)): value
a ←first(D(x))
return seekCompatible(C, x, y,Δ(y), a)

nextPendingValue(C, y,Δ(y), a): value
a ←next(D(x), a)
return seekCompatible(C, x, y,Δ(y), a)

seekCompatible(C, x, y,Δ(y), a): value
while (x, a) �= nil do

for each b ∈ Δ(y) do
if ((x, a), (y, b)) ∈ T (C) then return (x, a)

(x, a)←next(D(x), a)

return nil
pvType = pvG: example of generic function: < constraint

firstPendingValue(C, y, Δ(y)): value
return next(D(x),max(D(y))− 1)

nextPendingValue(C,x, y, Δ(y), a):return next(D(x), a)
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Algorithm 4. Functions existValidSupport and seekValidSupported-
Value

existValidSupport(C,x, a, y,sType): boolean
if slist then remove(S-list[support[(x, a)]], (x, a))
(y, b)← nil
if last and last[(x, a)] ∈ D(y) then (y, b)← last[(x, a)]
if inf and (y, b) = nil then

(y, b)← seekValidSupportedValue(C,x, a)

if (y, b) = nil then
(y, b)← sType.seekValidSupport(C,x, a, y)

if slist and (y, b) �= nil then add(S-list[(y, b)], (x, a))
if (y, b) �= nil then support[(x, a)]← (y, b)
return ((y, b) �= nil)

seekValidSupportedValue(C,x, a) : value
for each value (y, b) ∈ S-list[(x, a)] do

if b ∈ D(y) then return (y, b)
remove(S-list[(x, a)], y, b)

return nil

• inf: the search for a valid support is first done by searching for a valid
supported value in the S-list (AC-7, AC-3.3.)

• slist: this parameter means that the S-lists are used.
• sD: the search for a valid support is made by testing the compatibility

between (x, a) and the values in D(y) (AC-3, AC-6, AC-7, AC-2000, AC-2001,
AC-3.3.)

• sC: A valid support is sought by decrementing the counter of valid tuples
and by checking if it is greater than 0 (AC-4.)

• sT: the search for a valid support is made by testing the validity of the
values of P-list[(x, a)] and by checking if there is a value in U-list[(x, a)] which
is valid and compatible with (x, a) (AC-Inference, AC-Identical.)

• sGen: the search for a valid support is defined by a function provided by
the user and dedicated to the constraint.
From these parameters we can now propose a possible code for Function ex-
istValidSupport of AC-* algorithm (see Algorithm 4.) Possible instantiations
of Function seekValidSupport are given by Algorithm 5. An example is also
given for constraint <.

6 Analysis of Different Methods

The main issue of AC algorithms is to deal with two different concepts: support
and validity. It is difficult to handle these two concepts at the same time. Thus,
the algorithms usually privilege one concept:
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Algorithm 5. Functions seeking for a valid support
sType = sD

seekValidSupport(C,x, a, y) : value
b← first(D(y))
if last then

b←next(D(y),last[(x, a)])
while b �= nil do

if last[(y, b)] ≤ (x, a) and (a, b) ∈ T (C) then
last[(x, a)]← (y, b)
return (y, b)

b←next(D(y), b)

else
while b �= nil do

if ((x, a), (y, b)) ∈ T (C) then return (y, b)
b←next(D(y), b)

return nil
sType= sC

seekValidSupport(C,x, a, y) : value
counter[(x, a)]← counter[(x, a)]− 1
if counter[(x, a)] = 0 then return nil
else return (y,first(D(y)))

sType =sT

seekValidSupport(C,x, a, y) : value
for each (y, b) ∈ P-list[(x, a)] do

remove(P-list[(x, a)], (y, b))
if b ∈ D(y) then return (y, b)

for each (y, b) ∈ U-list[(x, a)] do
remove(U-list[(x, a)], (y, b))
remove(U-list[(y, b)], (x, a))
if ((x, a), (y, b)) ∈ T (C) then

add(P-list[(y, b)], (x, a))
if b ∈ D(y) then return (y, b)

return nil
sType= sGen example of generic function: < constraint

seekValidSupport(C,x, a, y) : return false

• When constructing the pending values set, pvD algorithms totally ignore
the concept of support. The other algorithms try to combine the two concepts:
pvD algorithms consider first the validity, whereas pvΔt algorithms deal first with
all supports. And, pvΔs algorithms traverse the current supported values and
check their validity.

• When searching for a new support, sD algorithms consider the valid values,
and then check if they are support, whereas sT algorithms traverse the supports
and check for their validity.
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7 Nomenclature

From the different concepts we have identified we can propose a new nomencla-
ture for the AC algorithms. Until now, the naming used the prefix ”AC-” followed
by a number or date. Excepted AC-Inference or AC-Identical which have tried
to express a little bit some ideas of the algorithms, it is clearly impossible to
understand the specificities of each algorithm from their name.

The nomenclature we propose still uses AC as prefix. The combinations of
parameters corresponding to the AC algorithm are added to this AC prefix. For
instance, AC-pvD-sD means that the pending values are the values of D(x) and
that a new valid support is sought in the domain by checking the compatibil-
ities between values. This is exactly the description of AC-3. For the adaptive
algorithms a ”/” is used to differentiate the possibilities: AC-2000 is renamed
AC-pvΔc/pvD-sD. We can describe all the existing algorithms:

name new name
AC-3 AC-pvD-sD
AC-4 AC-pvΔt-sC
AC-6 AC-pvΔs-last-sD
AC-7 AC-pvΔs-last-inf-sD
AC-Inference or AC-Identical AC-pvΔs-sT
AC-2000 AC-pvΔc/pvD-sD
AC-2001 AC-pvD-last-sD
AC-3.3 AC-pvD-last-inf-sD

8 Adaptive Algorithm

The advantage of adaptive algorithms is to avoid some pathological cases of each
algorithm. The following property exactly differentiates AC-2001 and AC-6:

Property 1. [3] The number of values that are considered to find the pending
values in:

• a pvD oriented algorithm is |pvD| = |D(x)|.
• a pvΔs oriented algorithm is

|pvΔs| = |Δ(y)|+
∑

b∈Δ(y) |S-list[(y, b)]|
These two numbers are sufficient to differentiate AC-2001 and AC-6 because

they use both the same algorithm to find a support for a value. This is clearly
shown by their new names that are respectively AC-pvD-last-sD and AC-pvΔs-
last-sD. So, by considering the method to find the pending values that studies
the smallest number of values we can define an algorithm which is better than
any of two previous ones.

We can use first a pvΔs oriented algorithm and then switch to a pvD one and
conversely. Unfortunately, it is difficult to quickly compute |pvΔs|, because the
sum needs to consider every value of the delta domain independently. However,
we immediately have: |pvΔs| ≥ 2|Δ(y)|, and |Δ(y)| can be incrementally main-
tained, thus we can consider that we know its value in O(1). Algorithm 6 is
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a possible implementation of the functions selecting sType and pvType that is
used by Algorithm 2 (AC-2000 is taken into account thanks to this function.)

Algorithm 6. Selection of pvType and sType
selectpvType(C,x,y,Δ(y),pvType):pvType

if pvType=pvΔc/pvD then
if |Δ(y)| < 0.2|D(x)| then return pvΔc

return pvD

if pvType=pvD/pvΔs then
if |D(x)| < 2.|Δ(y)| then return pvD

if |D(x)|<|Δ(y)|+
∑

b∈Δ(y)

|S-list[(y, b)]| then return pvD

return pvΔs

return pvType

selectsType(C, x, a, sType) : sType
if sType=sD/sT then

if |D(x)| < |P-list[(x, a)]| then return sD

return sT

return sType

Switching from a type of algorithm to another one can also cause some other
problems, because the different types of algorithms do not use the same data
structures. When switching from an algorithm using a data structure to an algo-
rithm that does not use it we have two possibilities: either the data structure is
updated after switching, or it is systematically updated even if it is not used. For
the S-lists, the cost to maintain them is O(1) per deletion or addition therefore
the second solution is simpler. For the U-lists and the P-lists there is no problem
because they do not need to be updated.

We have seen that it is possible to change the way the pending values are
computed. Two other possibilities are: we can use or not the inf parameter, or we
can switch from sD and sT and conversely. However, it is much more complicated
to find a good criterion of selection, because the lists are modified when using
inf or sT. After some experiments it appears that the switch from inf to no inf does
not change anything, and that it is sometimes effective to switch from sD to sT

and conversely. If the size of the domain is smaller than the size of the P-list
then sD is selected, else sT is selected. (see Algorithm 6.)

9 Experiments

We propose a comparison of the MAC version of the algorithms on the well-
known RLFAPs benchmarks. We give the results only for instances SCEN#1,
SCEN#8, SCEN#11 because the results are quite representative. For each al-
gorithm we give the time (in s) needed by the algorithm to solve the problem
with a Pentium II 300Mhz machine. A bullet means that the algorithm uses the
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corresponding parameter. An adaptive algorithm may have several bullets which
means that it uses different modes.

AC-4 AC-3 AC AC AC AC-6 AC-7 AC
2000 2001 3.3 Inf

pvΔt •
pvΔc •
pvΔs • • • • • • •
pvD • • • • • • • •
last • • • • • • • •
inf • • •
sD • • • • • • • • •
sC •
sT • • •
#1 10.7 2.3 2.0 1.5 1.3 2.0 2.0 1.8 1.8 0.8 0.6 0.6
#8 1.42 1.64 1.62 1.2 1.15 0.5 0.46 0.1 0.09 0.1 0.03 0.02
#11 84.8 39.5 38.4 22.6 18.6 14.7 14.1 10.2 10.2 9.6 6.2 5.6

This results clearly show that adaptive algorithms perform better than non
adaptive and that the sT algorithms are better than the others.

10 Conclusion

We have presented AC-* a new configurable, generic and adaptive algorithm,
which is able to represent all existing algorithms that establish arc consistency
for binary constraints. We have clearly differentiated all the existing algorithms
thanks to the identification of the underlying concepts. We have proposed new
combinations of concepts that perform well, as shown by some experimental
results.
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Abstract. In this paper, we detail the versions of the arc consistency
algorithms for binary constraints based on list of supports and last value
when they are maintained during the search for solutions. In other words,
we give the explicit codes of MAC-6 and MAC-7 algorithms. Moreover,
we present an original way to restore the last values of AC-6 and AC-7
algorithms in order to obtain a MAC version of these algorithms whose
space complexity remains in O(ed) while keeping the O(ed2) time com-
plexity on any branch of the tree search, where d is the size of the largest
domain and e is the number of constraints. This result outperforms all
previous studies.

1 Introduction

In this paper we focus our attention on binary constraints. The MAC version
of an algorithm establishing arc consistency (AC algorithm), is the maintaining
of this AC algorithm during the search for a solution. For more than twenty
years, a lot of AC algorithms have been proposed: AC-3 [6], AC-4 [7], AC-5 [12],
AC-6 [1], AC-7, AC-Inference, AC-Identical [2], AC-8 [4], AC-2000: [3], AC-2001
(also denoted by AC-3.1 [13]) [3], AC-3d [9], AC-3.2 and AC-3.3 [5]. Some AC
algorithms, like AC-3 or AC-2000, are easy to maintain during the search whereas
some others are much more complex. This is mainly the case for algorithms based
on the concept of list of support (S-list) and on the concept of last support
(last value). These algorithms, like AC-6, AC-7, or AC-2001, involve some data
structures that need to be restored after a backtrack. Currently, there is no MAC
version of these algorithms capable to keep the optimal time complexity on every
branch of the tree search (O(d2) per constraint, where d is the size of the largest
domain), without sacrificing the space complexity. More precisely, the algorithms
AC-6, AC-7 and AC-2001 involve data structures that lead to a space complexity
of O(d) per constraint, but the MAC versions of these algorithms require to save
some modifications of these data structures in order to restart the computations
after a backtrack in a way similar as if this backtrack did not happen, and so
they keep the same time complexity for any branch of the tree search as for one
establishment of arc consistency. These savings have a cost which depends on the
depth of the tree search and that is bounded by d. Therefore some authors have
proposed algorithms having a O(d min(n, d)) space complexity per constraint

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 520–533, 2005.
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[8,10,11], where n is the number of variables. Thus, the nice space complexity of
these AC algorithms is lost for their MAC versions.

In this paper, we propose an original MAC version of the algorithms involving
S-lists and last values with a space complexity in O(d) per constraint while
keeping the optimal time complexity (O(d2)) for any branch of the tree search.

At this moment, our main goal is to close this open question and not to
propose an algorithm outperforming MAC-6 or MAC-7.

This paper is organized as follows. First, we recall some definitions of CP
and we give a classical backtrack algorithm associated with a propagation mech-
anism. Then, we give a classical AC algorithm using the S-List and last value
data structures. Next, we identify the problems of the MAC version of this al-
gorithm, and we propose a new MAC version without additional cost. At last,
we conclude.

2 Preliminaries

A finite constraint network N is defined as a set of n variables X =
{x1, . . . , xn}, a set of current domains D = {D(x1), . . . , D(xn)} where D(xi)
is the finite set of possible values for variable xi, and a set C of constraints
between variables. A constraint C on the ordered set of variables X(C) =
(xi1 , . . . , xir ) is a subset T (C) of the Cartesian product D(xi1 ) × · · · × D(xir )
that specifies the allowed combinations of values for the variables xi1 , . . . , xir .
An element of D(xi1 )× · · · ×D(xir ) is called a tuple on X(C) and τ [x] is the
value of τ assigned to x. A value a for a variable x is often denoted by (x, a).
(x, a) is valid iff a ∈ D(x). Let C be a constraint. A tuple τ on X(C) is valid iff
∀x ∈ X(C), τ [x] ∈ D(x); and τ is a support for (x, a) iff τ [x] = a and τ ∈ T (C).
C is consistent iff ∃τ ∈ T (C) which is valid. A value a ∈ D(x) is consistent
with C iff x �∈ X(C) or there exists a valid support for (x, a). A constraint
is arc consistent iff ∀x ∈ X(C), D(x) �= ∅ and ∀a ∈ D(x), a is consistent
with C.

A filtering algorithm associated with a constraint C is an algorithm which
may remove some values that are inconsistent with C; and that does not remove
any consistent values. If the filtering algorithm removes all the values inconsistent
with C then we say that it establishes arc consistency of C and that it is an AC
algorithm.

The delta domain of a variable x with respect to a filtering algorithm F
associated with a constraint C is the set of values that have been removed from
the domain of x between two successive calls of F . It is denoted by Δ(x, F )
and a value in Δ(x, F ) is called a delta value. More information about delta
domains can be found in [12] or in the manual of ILOG Solver. Note that the
conjunction of the elements in the delta domains form the waitingList of AC-
6 and AC-7 algorithms. Sometimes, all the filtering algorithms depending on
the modifications of D(x) are successively considered after the modifications of
x. Thus, if there is no side effect (that is x is not modified by these filtering
algorithms), then all these filtering algorithms can share the same delta domain
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for x, and only one representation is needed. Therefore, there is no need to
specify the filtering algorithm for identifying the delta domain associated with
a filtering algorithm and the delta domain of x is denoted by Δ(x).

Propagation is the mechanism that consists of calling the filtering algorithm
associated with the constraints involving a variable x each time the domain of
this variable is modified. If every filtering algorithm associated with every con-
straint establishes arc consistency then we say that the propagation mechanism
establishes arc consistency of the network.

Algorithm 1. function searchForSolution
searchForSolution(x, a)

addConstraint(x = a)
if all variables are instantiated then printSolution()
else

if propagation() then
do

y ← selectVariable()
b← selectValue(y)
searchForSolution(y, b)
removeFromDomain(y, b)

while D(y) �= ∅ and propagation()

restoreCN()

propagation()
while ∃y such that Δ(y) �= ∅ do

pick y with Δ(y) �= ∅
for each constraint C involving y do

(D(x), Δ(x))← filter(C,x, y,Δ(y))
if D(x) = ∅ then return false

Δ(y)← ∅
return true

Function propagation of Algorithm 1 is a possible implementation of this
mechanism when delta domains are shared.
The filtering algorithm associated with the constraint C defined on x and y cor-
responds to Function filter(C, x, y, Δ(y)). This function removes some values
of D(x) that are not consistent with the constraint with respect to Δ(y). It also
updates the delta domain of x. For a constraint C this function will also be
called with the parameters (C, y, x, Δ(x)).

Algorithm 1 also contains a classical recursive search procedure which selects
a variable, then a value for this variable and call the propagation mechanism.
Function restoreCN restores the data structures used by the constraint when
a backtrack occurs. We assume that Function searchForSolution is called
first with a dummy variable x and a dummy value a such that the constraint
x = a has no effect.
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3 Arc Consistency Algorithms

We will consider a constraint C defined on x and y for which we study the
consequences of the modification of D(y). For the sake of clarity, we will avoid
adding systematically C as a parameter of every data structure. For instance,
we will denote by data[(x, a)] a value linked to (x, a) instead of data[C, (x, a)].

Definition 1. Let x be a variable and F be a filtering algorithm aiming to re-
move some values of D(x). We call pending values of x w.r.t. F , the set of
valid values of x for which a valid support is sought by F when F is called.

Thanks to this definition, and if every value which is not a pending value is
consistent with the constraint then the principles of AC algorithms can be
easily expressed:

Check whether there exists a valid support for every pending value
and remove those that have none.

Algorithm 2. An AC algorithm
filter(in C, x, y, Δ(y)): (domain,delta domain)

(x, a)← firstPendingValue(C,x, y, Δ(y))
while (x, a) �= nil do

if ¬ existValidSupport(C,x, a, y,getΔValue(C)) then
D(x)← D(x)− {a}
Δ(x)← Δ(x) ∪ {a}
if D(x) = ∅ then return (∅, Δ(x))

(x, a)← nextPendingValue(C,x, y,Δ(y), a)

return (D(x), Δ(x))

Algorithm 2 is a possible implementation of this principle. Functions first-
PendingValue and nextPendingValue identify the pending values, and
Function existValidSupport searches for a valid support for these pending
values. We can now detail the principles of these functions for AC-6 and AC-7
algorithms.

AC-6: AC-6 introduces the S-list data structure: for every value (y, b), the
S-list associated with (y, b), denoted by S-list[(y, b)], is the list of values that
are currently supported by (y, b). A value (x, a) is supported by only one
value of D(y), so there is at most one value of D(y) that contains (x, a)
in its S-list. Then, the pending values are the valid values contained in the
S-lists of the values in Δ(y). If a value of D(x) is not a pending value then it
means that its support has not been deleted so the value is consistent with the
constraint. The search for a valid support (Function existValidSupport) is
done by checking in D(y) whether there is a support for (x, a). These checks
are made w.r.t an ordering and are started from the support that just has
been lost, which is the delta value containing the current value in its S-list.
The space complexity of AC-6 is in O(d) because a value belongs to at most
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one S-list and its time complexity is in O(d2), because a value can be a pend-
ing value only d times and the search for a valid support is done in O(d) globally.

AC-7: AC-7 improves AC-6 by exploiting the fact that if (x, a) is supported
by (y, b) then (y, b) is also supported by (x, a). Thus, when searching for a valid
support for (x, a), AC-7 proposes, first, to search for a valid value in S-list[(x, a)],
and every non valid value which is reached is removed from the S-list. We say
that the valid support is sought by inference. This idea contradicts an invariant
of AC-6: a valid support found by inference is no longer necessarily the latest
checked value in D(y). Therefore, AC-7 introduces explicitly the concept of last
value by the data last associated with every value. AC-7 ensures the property:
If last[(x, a)] = (y, b) then there is no support (y, c) in D(y) with c < b. If no
support is found by inference, then AC-7 uses an improvement of the AC-6’s
method to find a support in D(y). When we want to know whether (y, b) is a
support of (x, a), we can immediately give a negative answer if last[(y, b)] >
(x, a), because in this case we know that (x, a) is a not a support of (y, b) and
so that (y, b) is not a support for (x, a). The property on which AC-7 is based
are often called bidirectionality. Hence, AC-7 is able to save some checks in the
domain in regard to AC-6, while keeping the same space and time complexity.

The MAC version of AC-6 needs an explicit representation of the latest checked
value, thus the AC-6 and AC-7 algorithms use the following data structures:

last: the last value of (x, a) for a constraint C is represented by last[(x, a)] which
is equal to a value of y or nil.
S-List: these are classical list data structures.

Algorithm 3. Pending values computation
// b is an internal data
firstPendingValue(C,x, y,Δ(y)): value

b←first(Δ(y))
return traverseS-list(C, x, y,Δ(y))

nextPendingValue(C,x, y, Δ(y), a): value
return traverseS-list(C, x, y,Δ(y))

traverseS-list(C, x, y,Δ(y)): value
while (y, b) �= nil do

(x, a)←seekValidSupportedValue(C,y, b)
if (x, a) �= nil then return (x, a)
b←next(Δ(y), b)

return nil
getΔValue(C, x, y, Δ(y)): return b

We can give a MAC version of AC-6 and AC-7:
Algorithm 3 is a possible implementation of the computation of pend-

ing values. We assume that first(D(x)) returns the first value of D(x) and
next(D(x), a) returns the first value of D(x) strictly greater than a.
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Function seekValidSupportedValue(C, x, a) returns a valid supported
value belonging to the S-list[(y, b)] (see Algorithm 5.) Algorithm 4 gives a possi-
ble implementation of Function existValidSupport and Function seekValid-
Support.

The S-list representation will be detailed in a specific section, notably because
it has to be carefully designed in order to be efficiently maintained during the
search.

Algorithm 4. Search for a valid support
existValidSupport(C,x, a, y, δy): boolean

if last[(x, a)] ∈ D(y) then (y, b)← last[(x, a)])
if AC-7 and (y, b) = nil then

(y, b)← seekValidSupportedValue(C,x, a)

if (y, b) = nil then
(y, b)← seekValidSupport(C,x, a, y)

updateS-list(C, x, a, y, δy, b)
return ((y, b) �= nil)

seekValidSupport(C,x, a, y): value
b←next(D(y),last[(x, a)])
while b �= nil do

if last[(y, b)] ≤ (x, a) and ((x, a), (y, b)) ∈ T (C) then
last[(x, a)]← (y, b)
return (y, b)

b←next(D(y), b)

return nil

4 Maintenance During the Search

In this section, we propose a MAC version of an AC algorithm using S-lists
and/or last values having the same space and time complexity as the AC algo-
rithm.

Two types of data structures can be identified for a filtering algorithm (like
an AC algorithm for instance) :

• the external data structures. These are the data structures from which
the constraint of the filtering algorithm is stated, for instance the variables on
which the constraint is defined or the list of combinations allowed by the con-
straint.

• the internal data structures. These are the data structures needed by
the filtering algorithm. The space complexity of the filtering algorithm is usu-
ally based on these data structures. For instance, AC-6 and AC-7 require data
structures in O(d).

There is no particular problem when we go down to the search tree, because the
instantiations of variables lead only to the deletion of values. The main difficulty
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is to manage the internal data structures when a failure occurs, that is when
there is a backtrack.

Consider that N is the current node of the search. The internal data struc-
tures associated with an AC algorithm contain certain values. These values are
called the state of the internal data structures. Then, assume that the search
is continued from N and then backtracked to N . In this case, two possibilities
have been identified [8]:

• the state of the internal data structure at the node N is exactly restored
• an equivalent state is restored.

4.1 Exact Restoration of the State

This method saves the modifications of the state of an AC algorithm in order to
restore exactly this state after a backtrack. In other words, every data contains
the same value as it had when N was the current node. This implies that every
modification of a data has to be saved in order to be restored after a backtrack.
Every S-list and every last value can be modified d times per constraint during
the search. Thus, the space complexity is multiplied by a factor of d. So, this
possibility cannot lead to a MAC version without additional cost.

4.2 Restoration of an Equivalent State

The algorithms have an optimal time complexity when some properties are sat-
isfied. What is important is not the way they are satisfied, but only the fact
that they are satisfied. For some data structures it is not necessary to restore
exactly the values they contained before. For instance, if (y, b) was the current
support of (x, a) for the node N and if this support changes to become (y, c)
then (y, c) can be the current support of (x, a) when all the nodes following N
are backtracked. This means that there is no need to change the elements in the
S-list when backtracking. It is only required to add some values that have been
removed.

We propose, in the next sections, to study how the S-Lists and the last values
can be managed in order to restore only an equivalent state.

5 S-List Management

If an equivalent state is accepted after backtracking, then there is no need to
save the modifications of supports, because they do not need to be restored.
However, in order to keep an optimal time complexity for every branch of the
tree search, the MAC version of AC-6 and AC-7 needs to remove from S-lists
the values that are traversed and that are not valid to avoid considering them
several times.

Function seekValidSupportedValue manages this deletion. So, this func-
tion deserves a particular attention.
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This function is called during the computation of the pending values or when
a valid support is sought by inference (AC-7). When it is called for a value
(x, a) it traverses the S-list of (x, a) until a valid value is found and removes
from this S-list the non valid values that are reached. In the MAC version, a
specific restoration of the S-list is needed. More precisely, if (y, b) is reached
when traversing S-list[(x, a)] then (x, a) is the current valid support for (y, b) for
this constraint. Thus, if (y, b) is no longer valid when it is reached, then (y, b)
is removed from S-list[(x, a)], but after backtracking the node of the tree search
that led to the deletion of (y, b) it is necessary to restore (y, b) in S-list[(x, a)],
because at this moment (y, b) will be valid and (y, b) needs to have a valid
support. Therefore, when an element is removed from the S-list when traversing
it, it is necessary to save this information in order to restore it later.

In order to avoid unnecessary memory consumption we propose to represent
the S-list as follows :

– The first element of an S-list of a value (y, b) is denoted by firstS[(y, b)] which
is equal to a value of x or nil.

– The S-lists exploit the fact that for a constraint, each value (x, a) can be in at
most one S-list. So, every value (x, a) is associated with a data nextInS[(x, a)]
which is the next element in the S-list of the support of (x, a). For instance,
S-list[(y, b)] = ((x, a), (x, d), (x, e)) will be represented by : firstS[(y, b)] =
(x, a); nextInS[(x, a)] = (x, d); nextInS[(x, d)] = (x, e); nextInS[(x, e)] = nil.
The nextInS data are systematically associated with every value so they are
preallocated.

The saving-restoration of a support by MAC, can be easily done by adding a
data to every value (x, a): restoreSupport[(x, a)]. This data contains the support
of (x, a) if (x, a) has been removed from the S-list of its support; otherwise it
contains nil. This data will be used to restore (x, a) in the S-list of its support
when a will be restored in D(x). More precisely, assume that (y, b) is the support
of (x, a) and that (x, a) has been removed from S-list[(y, b)] when searching for a
valid support of (y, b) by inference. Then, the data restoreSupport[(x, a)] will be
set to (y, b). And, when (x, a) will be restored in the domain of its variable after
backtracking, then (x, a) will be added to the S-list of restoreSupport[(x, a)]. Of
course, if restoreSupport[(x, a)] is nil then nothing happens.

Another point must also be considered. Function existValidSupport calls
Function updateS-list in order to update the S-list when a new valid support
is found. Conceptually there is no problem, if a new valid support (y, b) is found
for a value (x, a) then (x, a) is added to S-list[(y, b)]. However, before being
added to a S-list, (x, a) must be removed from the S-list of its current support.
This deletion causes some problems of implementation because the S-lists are
unidirectional lists and to perform a deletion it is necessary to know the previous
element. In order to avoid this problem, we have decided to systematically remove
all the reached elements from the S-list. Thus, every element which is considered
is the first element of the list and so there is no longer any problem to remove it.
Function updateS-list implements that idea and Algorithm 5 gives a possible
implementation of the management of S-lists.
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Algorithm 5. Management of Supported Values Lists
seekValidSupportedValue(C,x, a) : value

while firstS[(x, a)] �= nil do
(y, b)← firstS[(x, a)]
if b ∈ D(y) then return (y, b)
firstS[(x, a)] ← nextInS[(y, b)]
restoreSupport[(y, b)]← (x, a)

return nil
updateS-list(C, x, a, y, δy, b)

firstS[(y, δy)]← nextInS[(x,a)]
if (y, b) = nil then restoreSupport[(x, a)]← (y, δy)
else

nextInS[(x,a)]← firstS[(y, b)]
firstS[(y, b)] ← (x, a)

restoreSupports(C, (x, a))
// the value a is restored in D(x)
(y, b)← restoreSupport[(x, a)]
if restoreSupport[(x, a)] �= nil then

// (x, a) is added to the S-list of its support (y, b)
nextInS[(x,a)]← firstS[(y, b)]
firstS[(y, b)] ← (x, a)
restoreSupport[(x, a)]← nil

6 Last Management

First, when an equivalent state is restored, it is necessary to slightly modify the
AC algorithm. The last value of (x, a) can indeed be valid and not be the current
support of (x, a), because the supports are not systematically restored. Thus, it
is necessary to check the validity of the last value in the MAC version of an AC
algorithm (See first line of Function existValidSupport.)

The concept of last value is necessary for AC-6 and AC-7 algorithms to have
an O(d2) time complexity per constraint. Any last value satisfies the following
property:

Property 1. Let (y, b) =last[(x, a)] then
(i) ∀c ∈ D(y), c < b⇒ ((x, a), (y, c)) �∈ T (C).
(ii) Function seekValidSupport has never checked the compatibility be-

tween (x, a) and any element d ∈ D(y) with d > b.

This property ensures that the compatibility between two values will never be
checked twice.

If the last values are not restored after backtracking then the time complexity
of AC-6 and AC-7 algorithms is in O(d3). We can prove that claim with the
following example. Consider a value (x, a) that has exactly ten supports among
the 100 values of y: (y, 91), (y, 92)..., (y, 100); and a node N of the tree search
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for which the valid support of (x, a) is (y, 91). If the last value is not restored
after a backtrack then there are two possibilities to define a new last value:

• the new last value is recomputed from the first value of the domain
• the new last value is defined from the current last value, but the domains

are considered as circular domains: the next value of the maximum value is the
minimum value.

For the first case, it is clear that all the values strictly less than (y, 91) will
have to be reconsidered after every backtrack for computing a valid support.
For the second possibility, we can imagine an example for which before back-
tracking (y, 100) is the current support; then after the backtrack and since the
domains are considered as circular domains it will be necessary to reconsidered
again all the values that are strictly less than (y, 91).

Note also, that if the last value is not correctly restored it is no longer possible
to totally exploit the bidirectionality. So, it is necessary to correctly restore the
last values.

6.1 Saving-Restoration of Last Values

The simplest way is to save the current value of last each time it is modified and
then to restore these values after a backtrack. This method can be improved by
remarking that it is sufficient to save only the first modification of the last value
for a given node of the tree search. In this case, the space complexity of AC-6
and AC-7 algorithms is multiplied by min(n, d) where n is the maximum of the
tree search depth [8,10,11].

6.2 Recomputation of Last Values

We propose an original method to restore the correct last value. Instead of being
based on savings this method is based on recomputations.

Consider a node N + 1 of the tree search obtained from a node N . We will
denote by DN (y) (resp. DN+1(y)) the domain of the variable y at node N (resp.
N +1). Then, we have the following proposition on which our algorithm is based:

Proposition 1. Let DR(y)=DN (y)−DN+1(y) and K(x, a) be the set of values
of y that are compatible with (x, a) w.r.t. C. If last[(x, a)] satisfies Property 1
for node N + 1 then min(last[(x, a)], min(K(x, a)∩DR(y)) is a possible value of
last[(x, a)] for node N .

proof: It is sufficient to prove that min(last[(x, a)], min(K(x, a) ∩ DR(y))) satisfies
Property 1:

(i) : Let b =last[(x, a)]. We have DN (y) = DN+1(y) ∪ DR(y) and by Property
1.(i) ∀c ∈ DN+1(y), c < b ⇒ ((x, a), (y, c)) �∈ T (C). Thus, if ∀c ∈ DR(y), c < b ⇒
((x, a), (y, c)) �∈ T (C) then last[(x, a)] also satisfies Property 1.(i). On the other hand,
if ∃c ∈ DR(y) with c < b and ((x, a), (y, c)) ∈ T (C) then d = min(K(x, a) ∩ DR(y))
satisfies Property 1.(i).
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(ii) If min(last[(x, a)], min(K(x, a)∩DR(y)) =last[(x, a)] then last[(x, a)] has the
same value for node N + 1 and for node N . Property 1.(ii) is satisfied by last[(x, a)]
for node N + 1 therefore it is also satisfied by last[(x, a)] for node N .

If min(last[(x, a)], min(K(x, a)∩DR(y)) = min(K(x, a)∩DR(y)) = d then suppose
that Function seekValidSupport has reached a value c > d of y when seeking for a
new support for the value (x, a) in the branch of the tree search going from the root to
node N . The value a is still in DN (x), so it means that Function seekValidSupport
found a valid support for (x, a) which is greater than c and so greater than d. Since d

is a support and d ∈ DN (y) this is not possible. So, Property 1.(ii) holds. -

This proposition is used to restore the last values for the node N , that is
when the node N+1 is backtracked.

Example: Consider the following last values for node N : last[(x, 0)] = (y, 0),
last[(x, 1)] = (y, 1), last[(x, 2)] = (y, 2); and the following domains DN (x) =
{0, 1, 2} and DN(y) = {0, 1, 3.., 50}. Now, suppose that the last values for
node N+1 are last[(x, 0)] = (y, 0), last[(x, 2)] = (y, 20), last[(x, 3)] = (y, 20);
and the domains are DN+1(x) = {0, 1} and DN+1(y) = {0, 3..20, 30..50}, so
DR(y) = {1, 2, 21..29}. From Proposition 1, when node N+1 is backtracked the
last values will be recomputed as follows: last[(x, 0)] = min((y, 0), min(K(x, 0)∩
DR(y)) = (y, 0), because 0 is less than any value of DR(y). Then last[(x, 1)]
is equal to min((y, 20), min(K(x, 1) ∩ DR(y)) and value (y, 1) is the mini-
mum so last[(x, 1)] = (y, 1). For last[(x, 2)] an interesting result is obtained:
min(last[(x, 2)], min(K(x, 2) ∩ DR(y)) = (y, 20) because the values less than 2
are not possible (in node N we had last[(x, 2)] = (y, 2)) and 2 �∈ DN(y) and all
the values less than 20 have been negatively checked (because they are still in
the domains of DN+1(y)).

This example shows that the values that are restored by recomputation
can be different from the ones that would had been restored by savings. In
fact they are greater than or equal to the ones restored by savings. So, the
backtrack to the node N may benefit from the computations that
have been performed after the node N . Therefore, a lot of computations
can be avoided. For our example, for (x, 2) the values of D(y) less than 20 will
no longer be considered for the next subtrees whose root is N .

Algorithm: Only the values of D(x) ∪DR(x) needs to have their last value re-
stored (See Algorithm 6.) Function recomputeLast is called for every variable
of every constraint after every backtrack.

Time Complexity of Function recomputeLast: For one restoration and
for one variable of a constraint its time complexity is in O(|D(x)| × |DR(y)|).
Thus, for one branch of the tree search its time complexity is in O(

∑
i |D0(x)|×

|DRi(y)|) = O(|D0(x)| ×
∑

i |DRi(y)|). Moreover, the set DRi(y) are pair-
wise disjoint for one branch of the tree search and their union is included in
D(y). Therefore we have

∑
i |DRi(y)| ≤ |D0(y)| and the time complexity is in

O(|D0(x)| × |D0(y)|) = O(d2) per constraint, that is the same time complexity
as for AC-6 or AC-7 algorithms.
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Algorithm 6. Restoration of last values by recomputation
recomputeLast(C, x)
for each a ∈ (D(x) ∪DR(x)) do

for each b ∈ DR(y) do
if ((x, a), (y, b)) ∈ T (C) then

last[(x, a)]← min(last[(x, a)], (y, b))

6.3 Improvements

The previous algorithm needs to be improved to be efficient in practice.

Improvement of Function recomputeLast:

• the values of DR(y) can be ordered to reduce the number of tests. If the
complexity of one sort is in d log(d) then the time complexity of all the sorts
for one branch of the tree search will be equal to

∑
i |DRi(y)| log(|DRi(y)|) ≤∑

i |DRi(y)| log(d)≤ log(d)
∑

i |DRi(y)|≤d log(d)≤ d2.
• if (x, a) ∈ DR(x), then a new data storing the first value of a last for the

current node (that is only one data is introduced per value) can be used. This
new data saves the last value that has to be restored for the values that are
removed by the current node. So, the last of these values can be restored in O(1)
per value.

• if (x, a) ∈ D(x) and last[(x, a)] �∈ D(y) and last[(x, a)] �∈ DR(y) then
the last is correct and no restoration is needed. In order to avoid considering
these values, a global list LM of values of variables is associated with every
constraint. If last[(x, a)] is modified by Function seekValidSupport or by
Function recomputeLast then (x, a) is added to the head of LM . If (x, a) was
already in the list then it is first removed from it before adding it again (that
is the ordering of the list is changed). In addition an added value is marked
with the current node of the tree search. Then, when node N is backtracked
only the values of the list associated with node N have to be considered. These
values are at the beginning of the LM list. This method does not change the
space complexity, because a value can be in the LM list of a constraint at
most once.

Reduction of the Number of Studied Constraints: when a node N is back-
tracked, it is useless to call Function recomputeLast for constraints that have
not been propagated at node N . A constraint can be propagated at most d times,
because to be propagated at least one value must have been removed. Thus,
we can associate with every node of the tree search the list of the constraints
that have been propagated for this node without changing the space complexity.
Then when node N is backtracked, Function recomputeLast is called only
for the constraints belonging to the list of propagated constraints associated
with N .



532 J.-C. Régin

7 Discussion and Experiments

We tested our algorithm on different kinds of problems and compared it to a
MAC version explicitly saving the last values. For some problems like n-queens
there is almost no difference, but for some other problems like the RLFAPs and
mainly instance 11, the improvements we give are really worthwhile. Without
these improvements a factor of 15 is observed, but with these improvements the
new algorithm is slower by only a factor of 2 and this is the worst result we have
observed. For a lot of instances only 30% is lost. At last, this new algorithm
always performs better than MAC-3, MAC-4 and MAC-2001. In addition, there
is still room for improvement.

This method could also be worthwhile for the implementation of non binary
constraints. Non binary constraints imply the explicit creation of tuples, whereas
with binary constraints we can only work with domains. Moreover, a tuple can
support several values. So, the memory management of the creation/deletion of
tuples is difficult. Our method should lead to simpler algorithms.

8 Conclusion

In this paper we have presented MAC versions of AC-6 and AC-7 algorithms. We
have also given a new method to restore the last value that lead to MAC-6 and
MAC-7 algorithms having the same space complexity as AC-6 and AC-7. This
result improves all the previous studies and closes an open question. In addition
this work can be seen as a step toward a better understanding of AC algorithms
and could lead to new improvements to existing algorithms. For instance, we
have given an example for which our method saves a lot of checks in regards to
the classical MAC algorithm.
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Abstract. It has now been clear for some time that for many qualitative spatial
or temporal calculi, for instance the well-known RCC8 calculus, the operation
of composition of relations which is used is actually only weak composition,
which is defined as the strongest relation in the calculus that contains the real
composition. An immediate consequence for qualitative calculi where weak com-
position is not equivalent to composition is that the well-known concept of path-
consistency is not applicable anymore. In these cases we can only use algebraic
closure which corresponds to applying the path-consistency algorithm with weak
composition instead of composition.

In this paper we analyse the effects of having weak compositions. Starting
with atomic CSPs, we show under which conditions algebraic closure can be
used to decide consistency in a qualitative calculus, how weak consistency af-
fects different important techniques for analysing qualitative calculi and under
which conditions these techniques can be applied. For our analysis we introduce
a new concept for qualitative relations, the “closure under constraints”. It turns
out that the most important property of a qualitative calculus is not whether weak
composition is equivalent to composition, but whether the relations are closed un-
der constraints. All our results are general and can be applied to all existing and
future qualitative spatial and temporal calculi. We close our paper with a road
map of how qualitative calculi should be analysed. As a side effect it turns out
that some results in the literature have to be reconsidered.

1 Introduction

The domain of qualitative temporal reasoning underwent a major change when Allen
[1] proposed a new calculus which up to a degree resulted in embedding it in the general
paradigm of constraint satisfaction problems (CSPs). CSPs have their well-established
sets of questions and methods, and qualitative temporal reasoning, and more recently
qualitative spatial reasoning, has profited significantly from developing tools and meth-
ods analogous to those of classical constraint satisfaction. In particular, a central ques-
tion for classical constraint networks is the consistency problem: is the set of constraints
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specified by the constraint network consistent, that is, can the variables be instantiated
with values from the domains in such a way that all constraints are satisfied?

Part of the apparatus for solving the problem consists of filtering algorithms which
are able to restrict the domains of the variables without changing the problem, while
remaining reasonably efficient from a computational point of view. Various algorithms
such as arc consistency, path consistency, and various notions of k-consistency have
been extensively studied in that direction. Reasoning about temporal or spatial qualita-
tive constraint networks on the same line as CSPs has proved a fruitful approach. Both
domains indeed share a general paradigm. However, there is a fundamental difference
between the two situations:

– Relations in classical CSPs are finite relations, so they can be explicitly manipulated
as sets of tuples of elements of a finite domain. In other terms, relations are given
and processed in an extensional way.

– By contrast, relations in (most) qualitative temporal and spatial reasoning
formalisms are provided in intentional terms – or, to use a more down-to-earth
expression, they are infinite relations, which means that there is no feasible way
of dealing with them extensionally.

But is that such an important point? We think it is, although this was not apparent
for Allen’s calculus. The differences began to appear when it became obvious that new
formalisms, such as for instance the RCC8 calculus [19], could behave in a significantly
different way than Allen’s calculus. The differences have to do with changes in the
notion of composition, with the modified meaning of the the classical concept of path-
consistency and its relationship to consistency, and with the inapplicability of familiar
techniques for analysing qualitative calculi.

1.1 Composition

Constraint propagation mainly uses the operation of composition of two binary rela-
tions. In the finite case, there is only a finite number of binary relations. In Allen’s case,
although the domains are infinite, the compositions of the thirteen atomic relations are
themselves unions of atomic relations. But this is not the case in general, where insist-
ing on genuine composition could lead to considering an infinite number of relations,
whereas the basic idea of qualitative reasoning is to deal with a finite number of rela-
tions. The way around the difficulty consists in using weak composition, which only
approximates true composition.

1.2 Path Consistency and Other Qualitative Techniques

When only weak composition is used then some algorithms and techniques which re-
quire true composition can only use weak composition instead. This might lead to the
inapplicability of their outcomes. Path-consistency, for example, relies on the fact that
a constraint between two variables must be at least as restrictive as every path in the
constraint network between the same two variables. The influence of the paths de-
pends on composition of relations on the path. If we use algebraic closure instead of
path-consistency, which is essentially path-consistency with weak composition, then
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we might not detect restrictions imposed by composition and therefore the filtering ef-
fect of algebraic closure is weaker than that of path-consistency. As a consequence it
might not be possible to use algebraic closure as a decision procedure for certain cal-
culi. Likewise, commonly used reduction techniques lose their strength when using only
weak composition and might not lead to valid reductions.

The main goal of this paper is to thoroughly analyse how the use of weak com-
position instead of composition affects the applicability of the common filtering algo-
rithms and reduction techniques and to determine under which conditions their out-
comes match that of their composition-based counterparts.

1.3 Related Work

The concepts of weak composition and algebraic closure are not new. Although there
has not always been a unified terminology to describe these concepts, many authors
have pointed out that composition tables do not necessarily correspond to the formal
definition of composition [4,5,8,13]. Consequently, many researchers have been inter-
ested in finding criteria for (refutation) completeness of compositional reasoning, and
Bennett et al. ([4,5]) posed this as a challenge and conjectured a possible solution. Later
work focused on dealing with this problem for RCC8 [6,11]. In particular Li and Ying
([11]) showed that no RCC8 model can be interpreted extensionally, i.e., for RCC8
composition is always only a weak composition, which gives a negative answer to Ben-
nett et al.’s conjecture. Our paper is the first to give a general account on the effects of
having weak composition and a general and clear criterion for the relationship between
algebraic closure and consistency. Therefore, the results of this paper are important
for establishing the foundations of qualitative spatial and temporal reasoning and are a
useful tool for investigating and developing qualitative calculi.

The structure of the paper is as follows: Section 2 introduces the main notions and
terminology about constraint networks, various notions of consistency and discusses
weak composition and algebraic closure. Section 3 provides a characterisation of those
calculi for which algebraic closure decides consistency for atomic networks. Section 4
examines the conditions under which general techniques of reduction can be applied
to a qualitative calculus. Finally, Section 5 draws general conclusions in terms of how
qualitative calculi should be analysed, and shows that some existing results have to be
revisited in consequence.

2 Background

2.1 Constraint Networks

Knowledge between different entities can be represented by using constraints. A binary
relation R over a domainD is a set of pairs of elements ofD, i.e., R ⊆ D×D. A binary
constraint xRy between two variables x and y restricts the possible instantiations of x
and y to the pairs contained in the relation R. A constraint satisfaction problem (CSP)
consists of a finite set of variables V , a domain D with possible instantiations for each
variable vi ∈ V and a finite set C of constraints between the variables of V . A solution
of a CSP is an instantiation of each variable vi ∈ V with a value di ∈ D such that all
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constraints of C are satisfied, i.e., for each constraint viRvj ∈ C we have (di, dj) ∈ R. If
a CSP has a solution, it is called consistent or satisfiable. Several algebraic operations
are defined on relations that carry over to constraints, the most important ones being
union (∪), intersection (∩), and complement (·) of a relation, defined as the usual set-
theoretic operators, as well as converse (·−1) defined as R−1 = {(a, b)|(b, a) ∈ R} and
composition (◦) of two relations R and S which is the relation R ◦ S = {(a, b) | ∃c :
(a, c) ∈ R and (c, b) ∈ S}.

2.2 Path-Consistency

Because of the high complexity of deciding consistency, different forms of local con-
sistency and algorithms for achieving local consistency were introduced. Local consis-
tency is used to prune the search space by eliminating local inconsistencies. In some
cases local consistency is even enough for deciding consistency. Montanari [15] devel-
oped a form of local consistency which Mackworth [14] later called path-consistency.
Montanari’s notion of path-consistency considers all paths between two variables.
Mackworth showed that it is equivalent to consider only paths of length two, so path-
consistency can be defined as follows: a CSP is path-consistent, if for every instantiation
of two variables vi, vj ∈ V that satisfies viRijvj ∈ C there exists an instantiation of
every third variable vk ∈ V such that viRikvk ∈ C and vkRkjvj ∈ C are also satisfied.
Formally, for every triple of variables vi, vj , vk ∈ V : ∀di, dj : [(di, dj) ∈ Rij → ∃dk :
((di, dk) ∈ Rik∧(dk, dj) ∈ Rkj)]. Montanari also developed an algorithm that makes a
CSP path-consistent, which was later simplified and called path-consistency algorithm
or enforcing path-consistency. A path-consistency algorithm eliminates locally incon-
sistent tuples from the relations between the variables by successively applying the
following operation to all triples of variables vi, vj , vk ∈ V until a fixpoint is reached:
Rij := Rij ∩ (Rik ◦ Rkj). If the empty relation occurs, then the CSP is inconsistent.
Otherwise the resulting CSP is path-consistent.

2.3 Varieties of k-Consistency

Freuder [7] generalised path-consistency and the weaker notion of arc-consistency to
k-consistency: A CSP is k-consistent, if for every subset Vk ⊂ V of k variables the
following holds: for every instantiation of k − 1 variables of Vk that satisfies all con-
straints of C that involve only these k − 1 variables, there is an instantiation of the
remaining variable of Vk such that all constraints involving only variables of Vk are sat-
isfied. So if a CSP is k-consistent, we know that each consistent instantiation of k − 1
variables can be extended to any k-th variable. A CSP is strongly k-consistent, if it is
i-consistent for every i ≤ k. If a CSP with n variables is strongly n-consistent (also
called globally consistent) then a solution can be constructed incrementally without
backtracking. 3-consistency is equivalent to path-consistency, 2-consistency is equiva-
lent to arc-consistency.

2.4 Qualitative Spatial and Temporal Relations

The main difference of spatial or temporal CSPs to normal CSPs is that the domains of
the spatial and temporal variables are usually infinite. For instance, there are infinitely
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many time points or temporal intervals on the time line and infinitely many regions in
a two or three dimensional space. Hence it is not feasible to represent relations as sets
of tuples, nor is it feasible to apply algorithms that enumerate values of the domains.
Instead, relations can be used as symbols and reasoning has to be done by manipulating
symbols. This implies that the calculus, which deals with extensional relations in the
finite case, becomes intensional in the sense that it manipulates symbols which stand
for infinite relations. The usual way of dealing with relations in qualitative spatial and
temporal reasoning is to have a finite (usually small) set A of jointly exhaustive and
pairwise disjoint (JEPD) relations, i.e., each possible tuple (a, b) ∈ D×D is contained
in exactly one relation R ∈ A. The relations of a JEPD setA are called atomic relations.
The full set of available relations is then the powerset R = 2A which enables us to
represent indefinite knowledge, e.g., the constraint x{Ri, Rj , Rk}y specifies that the
relation between x and y is one of Ri, Rj or Rk, where Ri, Rj , Rk are atomic relations.

2.5 Composition and Weak Composition

Using these relations we can now represent qualitative spatial or temporal knowledge
using CSPs and use constraint-based methods for deciding whether such a CSP is con-
sistent, i.e., whether it has a solution. Since we are not dealing with explicit tuples
anymore, we have to compute the algebraic operators for the relations. These oper-
ators are the only connection of the relation symbols to the tuples contained in the
relations and they have to be computed depending on the tuples contained in the rela-
tions. Union, complement, converse, and intersection of relations are again the usual
set-theoretic operators while composition is not as straightforward. Composition has
to be computed only for pairs of atomic relations since composition of non-atomic re-
lations is the union of the composition of the involved atomic relations. Nevertheless,
according to the definition of composition, we would have to look at an infinite number
of tuples in order to compute composition of atomic relations, which is clearly not fea-
sible. Fortunately, many domains such as points or intervals on a time line are ordered
or otherwise well-structured domains and composition can be computed using the for-
mal definitions of the relations. However, for domains such as arbitrary spatial regions
that are not well structured and where there is no common representation for the entities
we consider, computing the true composition is not feasible and composition has to be
approximated by using weak composition [6]. Weak composition (') of two relations S
and T is defined as the strongest relation R ∈ 2A which contains S ◦ T , or formally,
S ' T = {Ri ∈ A|Ri ∩ (S ◦ T ) �= ∅}. The advantage of weak composition is that we
stay within the given set of relationsR = 2A while applying the algebraic operators, as
R is by definition closed under weak composition, union, intersection, and converse.

In cases where composition cannot be formally computed (e.g. RCC8 [19]), it is
often very difficult to determine whether weak composition is equivalent to composition
or not. Usually only non-equality can be shown by giving a counterexample, while it is
very difficult to prove equality. However, weak composition has also been used in cases
where composition could have been computed because the domain is well-structured
and consists of pairs of ordered points, but where the authors did not seem to be aware
thatR is not closed under composition (e.g. INDU, PDN, or PIDN [17,16,18]).
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Example 1 (Region Connection Calculus RCC8 [19]). RCC8 is a topological constraint
language based on eight atomic relations between extended regions of a topological
space. Regions are regular subsets of a topological space, they can have holes and can
consist of multiple disconnected pieces. The eight atomic relations DC (disconnected),
EC (externally connected), PO (partial overlap), EQ (equal), TPP (tangential proper
part), NTPP (non-tangential proper part) and their converse relations TPPi, NTPPi
were originally defined in first-order logic. It was shown by Düntsch [6], that the com-
position of RCC8 is actually only a weak composition. Consider the consistent RCC8
constraints B{TPP}A, B{EC}C, C{TPP}A. If A is instantiated as a region with
two disconnected pieces and B completely fills one piece, then C cannot be instanti-
ated. So TPP is not a subset of EC ◦ TPP [11] and consequently RCC8 is not closed
under composition.

2.6 Algebraic Closure

When weak composition differs from composition, we cannot apply the path-consistency
algorithm as it requires composition and not just weak composition. We can, however,
replace the composition operator in the path-consistency algorithm with the weak com-
position operator. The resulting algorithm is called the algebraic closure algorithm [12]
which makes a network algebraically closed or a-closed.

If weak composition is equal to composition, then the two algorithms are also equiv-
alent. But whenever we have only weak composition, an a-closed network is not neces-
sarily path-consistent as there are relations S and T such that S ◦ T ⊂ S ' T . So there
are tuples (u, v) ∈ S ' T for which there is no w with (u, w) ∈ S and (w, v) ∈ T ,
i.e., for which (u, v) �∈ S ◦T . This contradicts the path-consistency requirements given
above.

Path-consistency has always been an important property when analysing qualitative
calculi, in particular as a method for identifying tractability. When this method is not
available, it is not clear what the consequences of this will be. Will it still be possible to
find calculi for which a-closure decides consistency even if weak composition differs
from composition? What effect does it have on techniques used for analysing quali-
tative calculi which require composition and not just weak composition? And what is
very important, does it mean that some results in the literature have to be revised or
is it enough to reformulate them? These and related questions will be answered in the
remainder of the paper. As an immediate consequence, unless we have proven other-
wise, we should for all qualitative spatial and temporal calculi always assume that we
are dealing with weak composition and that it is not equivalent to composition.

3 Weak Composition and Algebraic Closure

For analysing the effects of weak composition, we will mainly focus on its effects on
the most commonly studied reasoning problem, the consistency problem, i.e., whether
a given set Θ of spatial or temporal constraints has a solution. Recall that consistency
means that there is at least one instantiation for each variable of Θ with a value from its
domain which satisfies all constraints. This is different from global consistency which
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Table 1. Does a-closure decide atomic CSPs depending on whether weak composition differs
from composition?

a-closure sufficient a-closure not sufficient

weak composition = composition Interval Algebra [1] STAR calculus [21]
rectangle algebra [9] containment algebra [10]

block algebra [3] cyclic algebra [2]
weak composition �= composition RCC8 [19], discrete IA INDU [17],PDN [16], PIDN [18]

requires strong k-consistency for all k. Global consistency cannot be obtained when we
have only weak composition as we have no method for even determining 3-consistency.
For the mere purpose of deciding consistency it actually seems overly strong to require
any form of k-consistency as we are not interested in whether any consistent instanti-
ation of k variables can be extended to k + 1 variables, but only whether there exists
at least one consistent instantiation. Therefore it might not be too weak for deciding
consistency to have only algebraic closure instead of path-consistency.

In the following we restrict ourselves to atomic CSPs, i.e., CSPs where all con-
straints are restricted to be atomic relations. If a-closure does not even decide atomic
CSPs, it will not decide more general CSPs. We will later see how the results for atomic
CSPs can be extended to less restricted CSPs. Let us first analyse for some existing cal-
culi how the two properties whether a-closure decides atomic CSPs and whether weak
composition differs from composition relate. We listed the results in Table 1 and they
are significant:

Proposition 1. LetR be a finite set of qualitative relations. Whether a-closure decides
consistency for atomic CSPs overR is independent of whether weak composition differs
from composition for relations inR.

This observation shows us that whether or not a-closure decides atomic CSPs does
not depend on whether weak composition is equivalent to composition or not. Instead
we will have to find another criterion for when a-closure decides atomic CSPs. In order
to find such a criterion we will look at some examples where a-closure does not decide
atomic CSPs and see if we can derive some commonalities.

Example 2 (STAR calculus [21]). Directions between two-dimensional points are dis-
tinguished by specifying an arbitrary number of angles which separate direction sec-
tors. The atomic relations are the sectors as well as the lines that separate the sectors
(see Figure 1 left). The domain is ordered so it is possible to compute composition. The
relations are closed under composition. If more than two angles are given, then by us-
ing constraint configurations involving four or more variables, it is possible to refine the
atomic relations that correspond to sectors to different particular angles (see Figure 1
right). By combining configurations that refine the same atomic relation to different
angles, inconsistencies can be constructed that cannot be detected by a-closure. In this
example we can see thateven true composition can be too weak. Although we know
the composition and all relations are closed under composition, it is possible to refine
atomic relations using networks with more than three nodes.
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Fig. 1. A STAR calculus with 3 angles resulting in 13 atomic relations (left). The right picture
shows an atomic CSP whose constraints enforce that D must be 45 degrees to the left of B,
i.e., the constraint B{11}D is refined by the other constraints to the line orthogonal to relation
2. Therefore, the atomic relation 11 can be refined to a subatomic relation using the given con-
straints.

Example 3 (INDU calculus [17]). Allen’s 13 interval relations are combined with rela-
tive duration of intervals given in the form of a point algebra, i.e., INDU relations are of
the form R = Iδ where I is an interval relation (precedes p, meets m, during d, starts s,
overlaps o, finishes f, equal =, and the converse relations fi,oi,si,di,mi,pi) and δ a dura-
tion relation (<, >, =). This leads to only 25 atomic relations as some combinations are
impossible, e.g., a{s}b enforces that the duration of a must be less than that of b. Only
weak composition is used, as for example the triple a{s<}b, a{m<}c, c{f<}b enforces
that a < 0.5∗b and c > 0.5∗b. So an instantiation where a = 0.5∗b cannot be extended
to a consistent instantiation of c. In the same way it is possible to generate any metric
duration constraint of the form duration(x) R α ∗ duration(b) where R ∈ {<, >, =}
and α is a rational number. Consequently, it is possible to construct inconsistent atomic
CSPs which are a-closed.

In both examples it is possible to refine atomic relations to subatomic relations that
have no tuples in common, i.e., which do not overlap. This can be used to construct
inconsistent examples which are still a-closed. Note that in the case of the interval
algebra over integers it is possible to refine atomic relations to subatomic relations, e.g.,
a{p}b, b{p}c leads to a{p + 2}c, where p + 2 indicates that a must precede c by at
least 2 more integers than is required by the precedes relation. But since these new
subatomic relations always overlap, it is not possible to construct inconsistencies which
are a-closed. Let us formally define these terms.

Definition 1 (refinement to a subatomic relation). Let Θ be a consistent atomic CSP
over a set A and xRy ∈ Θ a constraint. Let R′ be the union of all tuples (u, v) ∈ R
that can be instantiated to x and y as part of a solution of Θ. If R′ ⊂ R, then Θ refines
R to the subatomic relation R′.

Definition 2 (closure under constraints). Let A be a set of atomic relations. A is
closed under constraints if no relation R ∈ A can be refined to non-overlapping sub-
atomic relations, i.e., if for each R ∈ A all subatomic relations R′ ⊂ R to which R can
be refined to have a nonempty intersection.

In the following theorem we show that the observation made in these examples holds
in general and we can prove in which cases a-closure decides atomic CSPs, which is
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independent of whether weak composition differs from composition and only depends
on whether the atomic relations are closed under constraints. Therefore, the new concept
of closure under constraints turns out to be a very important property of qualitative
reasoning.

Theorem 1. Let A be a finite set of atomic relations. Then a-closure decides consis-
tency of CSPs overA if and only if A is closed under constraints.

Proof Sketch.⇒: Given a set of atomic relationsA = {R1, . . . , Rn}. We have to prove
that if A is not closed under constraints, then a-closure does not decide consistency
over A. A is not closed under constraints means that there is an atomic relation Rk ∈
A which can be refined to non-overlapping subatomic relations using atomic sets of
constraints overA. We will prove this by constructing an a-closed but inconsistent set of
constraints overA for those cases where A is not closed under constraints. We assume
without loss of generality that if A is not closed under constraints, there are at least
two non-overlapping subatomic relations R1

k, R2
k of Rk which can be obtained using

the atomic sets of constraints Θ1, Θ2 (both are a-closed and consistent and contain the
constraint xRky). We combine all tuples of Rk not contained in R1

k or R2
k to Rm

k and
have that R1

k ∪R2
k ∪Rm

k = Rk and that R1
k, R2

k, Rm
k are pairwise disjoint.

We can now form a new set of atomic relations A′ where Rk is replaced with
R1

k, R2
k, Rm

k (analogous for R−1
k ). All the other relations are the same as in A. The

weak composition table of A′ differs from that of A for the entries that contain Rk or
R−1

k . Since R1
k and R2

k can be obtained by atomic sets of constraints overA, the entries
in the weak composition table of A′ cannot be the same for R1

k and for R2
k. Therefore,

there must be a relation Rl ∈ A for which the entries of Rl 'R1
k and of Rl 'R2

k differ.
We assume that Rl ' Rk = S and that Rl ' R1

k = S \ S1 and Rl ' R2
k = S \ S2,

with S, S1, S2 ∈ 2A and S1 �= S2. We chose a non-empty one, say S1, and can
now obtain an inconsistent triple xR1

ky, zRlx, zS1y for which the corresponding triple
xRky, zRlx, zS1y is consistent. Note that we use A′ only for identifying Rl and S1.

If we now consider the set of constraints Θ = Θ1 ∪ {zRlx, zS1y} (where z is
a fresh variable not contained in Θ1), then Θ is clearly inconsistent since Θ1 refines
xRky to xR1

ky and since Rl 'R1
k = S \S1. However, applying the a-closure algorithm

to Θ (resulting in Θ′) using the weak composition table of A does not result in an
inconsistency, since a-closure does not see the implicit refinement of xRky to xR1

ky.
⇐: Proof by induction over the size n of Θ. Induction hypothesis: P (n) = {For

sets Θ of atomic constraints of size n, if it is not possible to refine atomic relations to
non-overlapping subatomic relations, then a-closure decides consistency for Θ.} This
is clear for n ≤ 3. Now take an a-closed atomic CSP Θ of size n+1 overA and assume
that P (n) is true. For every variable x ∈ Θ let Θx be the atomic CSP that results from
Θ by removing all constraints that involve x. Because of P (n), Θx is consistent for
all x ∈ Θ. Let Rx be the subatomic relation to which R is refined to in Θx and let
R′ be the intersection of Rx for all x ∈ Θ. If R′ is non-empty for every R ∈ A, i.e.,
if it is not possible to refine R to non-overlapping subatomic relations, then we can
choose a consistent instantiation of Θx which contains for every relation R only tuples
of R′. Since no relation R of Θx can be refined beyond R′ by adding constraints of Θ
that involve x, it is clear that we can then also find a consistent instantiation for x, and
thereby obtain a consistent instantiation of Θ.
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This theorem is not constructive in the sense that it does not help us to prove that
a-closure decides consistency for a particular calculus. But such a general construc-
tive theorem would not be possible as it depends on the semantics of the relations and
on the domains whether a-closure decides consistency. This has to be formally proven
in a different way for each new calculus and for each new domain. What our theo-
rem gives us, however, is a simple explanation why a-closure is independent of whether
weak composition differs from composition: It makes no difference whatsoever whether
non-overlapping subatomic relations are obtained via triples of constraints or via larger
constellations (as in Example 2). In both cases a-closure cannot detect all inconsisten-
cies. Our theorem also gives us both, a simple method for determining when a-closure
does not decide consistency, and a very good heuristic for approximating when it does.
Consider the following heuristic:

Does the considered domain enable more distinctions than those made by the
atomic relations, and if so, can these distinctions be enforced by a set of con-
straints over existing relations?

This works for the three examples we already mentioned. It also works for any other
calculus that we looked at. Take for instance the containment algebra which is basically
the interval algebra without distinguishing directions [10]. So having directions would
be a natural distinction and it is easy to show that we can distinguish relative directions
by giving constraints: If a is disjoint from b and c touches b but is disjoint from a, then
c must be on the same side of a as b. This can be used to construct a-closed inconsistent
configurations. For RCC8, the domain offers plenty of other distinctions, but none of
them can be enforced by giving a set of RCC8 constraints. This gives a good indication
that a-closure decides consistency (which has been proven in [22]). If we restrict the
domain of RCC8, e.g., to two-dimensional discs of the same size, then we can find
distinctions which can be enforced by giving constraints.

When defining a new qualitative calculus by defining a set of atomic relations, it
is desirable that algebraic closure decides consistency of atomic CSPs. Therefore, we
recommend to test the above given heuristic when defining a new qualitative calculus
and to make sure that the new atomic relations are closed under constraints. In section 5
we discuss the consequences of having a set of relations which is not closed under
constraints.

4 Effects on Qualitative Reduction Techniques

In the analysis of qualitative calculi it is usually tried to transfer properties such as
tractability or applicability of the a-closure algorithm for deciding consistency to larger
sets of relations and ideally find the maximal sets that have these properties. Such gen-
eral techniques involve composition of relations in one way or another and it is not clear
whether they can still be applied if only weak composition is known and if they have
been properly applied in the literature. It might be that replacing composition with weak
composition and path-consistency with a-closure is sufficient, but it might also be that
existing results turn out to be wrong or not applicable. In this section we look at two
important general techniques for extending properties to larger sets of relations.
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Fig. 2. (1) A consistent INDU network which becomes inconsistent when replacing b{s<, d<}a
with (2). From (1) we get b > 0.5 ∗ a and from (2) we get b < 0.5 ∗ a.

The first technique is very widely used and is based on the fact that a set of relations
S ⊆ 2A and the closure Ŝ of S under composition, intersection, and converse have the
same complexity. This results from a proof that the consistency problem for Ŝ (written
as CSPSAT(Ŝ)) can be polynomially reduced to CSPSAT(S) by inductively replacing
each constraint xRy over a relation R ∈ Ŝ \S by either xSy∧xTy or by xSz◦zTy for
S, T ∈ S [22]. If we have only weak composition, then we have two problems. First, we
can only look at the closure of S under intersection, converse, and weak composition
(we will denote this weak closure by Ŝw). And, second, we can replace a constraint xRy
over a relation R ∈ Ŝw \S only by xSy∧xTy or by xSz'zTy for S, T ∈ S. For xSz'
zTy we know that it might not be a consistent replacement for xRy. In Figure 2 we give
an example for a consistent set of INDU constraints which becomes inconsistent if we
replace a non-atomic constraint by an intersection of two weak compositions of other
INDU relations.

So it is clear that this widely used technique does not apply in all cases where we
have only weak composition. In the following theorem we show when it can still be
applied.

Theorem 2. LetR be a finite set of qualitative relations and S ⊆ R a set of relations.
Then CSPSAT(Ŝw) can be polynomially reduced to CSPSAT(S) if a-closure decides
consistency for atomic CSPs overR.

Proof Sketch. Consider an a-closed set Θ of constraints over Ŝw. When inductively
replacing constraints over Ŝw with constraints over S, i.e., when replacing xRy where
R ∈ Ŝw with xSz and zTy where S ' T = R and S, T ∈ S and z is a fresh vari-
able, then potential solutions are lost. However, all these triples of relations (R, S, T )
are minimal, i.e., every atomic relation of R can be part of a solution of the triple. No
solutions are lost when replacing constraints with the intersection of two other con-
straints or by a converse constraint. Let Θ′ be the set obtained from Θ after inductively
replacing all constraints over Ŝw with constraints over S. Since potential solutions are
lost in the transformation, the only problematic case is where Θ is consistent but Θ′

is inconsistent. If Θ is consistent, then there must be a refinement of Θ to a consis-
tent atomic CSP Θa. For each constraint xRy of Θ which is replaced, all the resulting
triples are minimal and are not related to any other variable in Θ. Note that due to the
inductive replacement, some constraints will be replaced by stacks of minimal triples.
Therefore, each R can be replaced with any of its atomic relations without making the
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resulting stacks inconsistent. Intersecting Θ′ with Θa followed by computing a-closure
will always result in an a-closed set. Since the stacks contain only minimal triples, it is
clear that they can be subsequently refined to atomic relations. The relations between
the fresh variables and the variables of Θ can also be refined to atomic relations as
they were unrelated before applying a-closure. The resulting atomic CSP will always
be a-closed, so Θ′ must be consistent if a-closure decides atomic CSPs.

This covers all the cases in the middle column of Table 1 such as RCC8, but does not
cover those cases in the bottom right cell. This result is very important for all exist-
ing and future calculi where only weak composition is used. We know now that for
all calculi where a-closure decides atomic CSPs, complexity results can be transferred
between a set of relations and its closure, independent of whether we are using weak
composition or composition. This also resolves all doubts (Düntsch, personal commu-
nication) about applying this technique to RCC8. On the other hand, we cannot use this
popular method of transferring complexity results in cases where we have only weak
composition and a-closure does not decide atomic CSPs. For all existing calculi that
fall into this category, we should reconsider the complexity analysis. In the following
section we will have a look at the complexity results of INDU and PIDN and it turns
out that some of the complexity results in the literature are wrong.

The second general technique which is very useful for analysing computational
properties and identifying large tractable subsets is the refinement method [20]. It gives
a simple algorithm for showing if a set S ⊆ 2A can be refined to a set T ⊆ 2A in
the sense that for every path-consistent set of constraints Θ over S and every relation
S ∈ S we can always refine S to a subrelation T ⊆ S with T ∈ T . If path-consistency
decides consistency for T then it must also decide consistency for S.

Theorem 3. Let R be a finite set of qualitative relations for which a-closure decides
atomic CSPs. The refinement method also works for weak composition by using the
a-closure algorithm instead of the path-consistency algorithm.

Proof Sketch. Any a-closed triple of variables is minimal. So if a relation S can be
refined to T in any a-closed triple that contains S, then the refinement can be made in
any a-closed network without making the resulting network not a-closed. If a-closure
decides the resulting network, then it also decides the original network.

Note that the refinement method only makes sense if a-closure decides atomic CSPs as
the whole purpose of the refinement method is to transfer applicability of a-closure for
deciding consistency from one subset ofR to another.

5 A Road Map for Analysing Qualitative Calculi

Using the results of our paper we can now analyse new and revisit existing qualitative
spatial and temporal calculi. When defining a new set of atomic relations and the do-
main is not ordered, we have to assume that we have only weak composition unless we
can prove the contrary. The most important step is to prove whether a-closure decides
atomic CSPs for our new calculus. It is possible to use the heuristic given in the pre-
vious section, but if a-closure decides atomic CSPs, then this has to be proven using
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the semantics of the relations. If it turns out that a-closure decides atomic CSPs then
we can proceed by applying the techniques we discussed in the previous section, i.e.,
we can identify larger tractable subsets by using the refinement method and by com-
puting the closure of known tractable subsets under intersection, converse and (weak)
composition. But what if it does not?

5.1 When A-Closure Does Not Decide Atomic CSPs

This is the case for many calculi in the literature (see e.g. Table 1) and will proba-
bly be the case for many future calculi. As shown in Theorem 1 this means that it is
possible to enforce non-overlapping subatomic relations. If we only get finitely many
non-overlapping subatomic relations, as, e.g., for the containment algebra, then it is best
to study the calculus obtained by the finitely many new atomic relations and treat the
original calculus as a subcalculus of the new calculus. If we do get infinitely many non-
overlapping subatomic relations, however, then we suggest to proceed in one of two dif-
ferent ways. Let us first reflect what it means to have infinitely many non-overlapping
subatomic relations: An important property of a qualitative calculus is to have only
finitely many distinctions. So if we have to make infinitely many distinctions, then we
do not have a qualitative calculus anymore! Therefore we cannot expect that qualitative
methods and techniques that are only based on (weak) compositions help us in any way.
This is also the reason why we analysed the techniques in the previous section only for
cases where a-closure decides atomic CSPs, i.e., where we do have qualitative calculi.1

One way of dealing with these calculi is to acknowledge that we do not have a
qualitative calculus anymore and to use algorithms that deal with quantitative calculi
instead. It might be that consistency can still be decided in polynomial time using these
algorithms. Another way is to find the source that makes the calculus quantitative and
to eliminate this source in such a way that it has no effect anymore, e.g., by combining
atomic relations to form coarser atomic relations. Both of these ways were considered
for the STAR calculus [21]. A third way, which is sometimes chosen, but which we
discourage everyone from taking, is to look at 4-consistency.

5.2 Problems with Using 4-Consistency

We sometimes see results in the literature of the form “4-consistency decides consis-
tency for a set of relations S ⊆ 2A and therefore S is tractable.” What we have not
seen so far is a proper 4-consistency algorithm. For infinite domains where we only
manipulate relation symbols, a 4-consistency algorithm must be based on composition
of real ternary relations. The question then is how can we show that the composition
of the ternary relations is not just a weak composition. Just like computing composi-
tion for binary relations, we might have to check an infinite number of domain values.
Consequently, there could be no 4-consistent configurations at all or it could be NP
hard to show whether a configuration is 4-consistent. This makes these results rather

1 It is unlikely to find a version of Theorem 2 for cases where a-closure does not decide atomic
CSPs. As a heuristic, the following property could be considered: xRy can only be replaced
with xSz, zTy if for all weak compositions Ri /Rj that contain R the intersection of all real
compositions Ri ◦Rj is nonempty.
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useless from a practical point of view and certainly does not allow the conclusion that
these sets are tractable. We illustrate this using an example from the literature where
4-consistency was wrongly used for proving that certain subsets of INDU or PIDN
[17,18] are tractable.

1. 4-consistency decides consistency for S ⊆ 2A

2. Deciding consistency is NP-hard for T ⊆ S

The first result was proven for some subsets of INDU and PIDN [17,18]. We obtained
the second result by a straightforward reduction of the NP-hard consistency problem of
PDN [16] to INDU and PIDN. It is clear from this example that 4-consistency results
cannot be used for proving tractability. Validity and applicability of similar results in
the literature should be reconsidered as well.

6 Conclusions

We started with the well-known observation that in many cases in qualitative spatial and
temporal reasoning only weak composition can be determined. This requires us to use
a-closure instead of path-consistency. We thoroughly analysed the consequences of this
fact and showed that the main difficulty is not whether weak composition differs from
composition, but whether it is possible to generate non-overlapping subatomic relations,
a property which we prove to be equivalent to whether a-closure decides atomic CSPs.
Since this occurs also in cases where weak composition is equal to composition, our
analysis does not only affect cases where only weak composition is known (which are
most cases where the domains are not ordered) but qualitative spatial and temporal
calculi in general. We also showed under which conditions some important techniques
for analysing qualitative calculi can be applied and finally gave a roadmap for how
qualitative calculi should be developed and analysed. As a side effect of our analysis
we found that some results in the literature have to be reconsidered.
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Abstract. Competition and cooperation can boost the performance of
search. Both can be implemented with a portfolio of algorithms which
run in parallel, give hints to each other and compete for being the first
to finish and deliver the solution. In this paper we present a new generic
framework for the application of algorithms for distributed constraint
satisfaction which makes use of both cooperation and competition. This
framework improves the performance of two different standard algo-
rithms by one order of magnitude and can reduce the risk of poor perfor-
mance by up to three orders of magnitude. Moreover it greatly reduces
the classical idleness flaw usually observed in distributed hierarchy-based
searches. We expect our new methods to be similarly beneficial for any
tree-based distributed search and describe ways on how to incorporate
them.

1 Introduction

In many application domains constraint-based tree-search methods are the tech-
nology of choice to solve NP-complete problems today. However, when actually
applying the algorithms without further customization, we have often expe-
rienced unacceptable performance. This results from various well-investigated
factors including bad modelling and the choice of a wrong labelling strategy.
The solution for bad modelling often resides in a good understanding of the
constraint processing which results in the application of well known modelling
patterns (channeling constraints, redundant modelling, etc). Finding a good la-
belling strategy is not obvious and usually requires long and expensive prelim-
inary experiments on a set of realistic problem instances. Performing those ex-
periments or defining realistic input samples is far from being simple for today’s
large scale real life applications. Ideally we would not have to make a choice for a
labelling strategy at all and rather be able to use an algorithm “out-of-the-box”
which finds the best strategy itself [Pug04].

The previous observations are emphasized in the processing of distributed
constraint satisfaction problems (DisCSPs). Indeed, the distributed nature of
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those problems makes any preliminary experimental step difficult since con-
strained problems usually emerge from the interaction of independent and dis-
connected agents transiently agreeing to look after a set of globally consistent
local solutions [FM02].

This work targets on those cases where bad performance in DisCSP can be
prevented by choosing a good labelling strategy and executing it in a benefiting
order within the agents. In this paper we define a notion for the risk we have to
face when choosing an agent-ordering and present the new “M-” framework1 for
the execution of distributed search. An M- portfolio executes several distributed
search strategies in parallel and let them compete and cooperate for being the
first to finish. We apply the framework in two case studies where we define
the algorithms “M-ABT” and “M-IDIBT” which improve their counterparts
ABT [YDIK92] and IDIBT [Ham02] significantly. With these case studies we can
show the benefit of competition and cooperation for the underlying distributed
search algorithms. We expect the “M-” framework to be similarily beneficial
for other tree-based DisCSP algorithms. Cooperation of distributed searches is
implemented with the aggregation of knowledge within agents and thus yields
no extra communication. The knowledge gained from all the parallel searches
is used by the agents for their local decision making in each single search. We
present two principles of aggregation and employ them in methods which are
applicable to the limited scope of the agents in DisCSP.

In the next section we define the risks we have to face in search. This can be
used as another metric (besides performance) to evaluate algorithms. In Section
3 we present the new “M-” framework. Section 4 describes our case studies and
Section 5 their empirical evaluation. Then we discuss related work, summarize
the results and outline some ideas for future work.

2 Risks in Search

Here we present two definitions of risk is search. The first notion called random-
ization risk is related to the changes in performances when the same algorithm
is applied multiple times to a single problem instance. The second notion called
selection risk represents the risk of selecting the wrong algorithm, i.e., the one
which performs poorly on the considered instance.

2.1 Randomization Risk

In [GS01] “risk” is defined as the standard deviation of the performance of one
algorithm applied to one problem multiple times. This risk increases when more
randomness is used in the algorithms.

Definition 1. The R-Risk is the standard deviation of the performance of one
algorithm applied multiply to one problem.

1 M stands for Multi-Directional. “M-” searches in multiple directions, namely agent
topologies, at the same time.
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Reducing the R-Risk leads in many cases to trade-offs in performance [GSK98],
such that the reduction of this risk is in general not desirable. For instance, we
would in most cases rather wait between 1–10 seconds for a solution than waiting
7–8 seconds. In the latter case the risk is lower but we do not have the chance
to get the best performance.

In asynchronous and distributed systems we are not able to eliminate ran-
domness at all. Besides intended randomness (e.g. in value selection functions)
it emerges from external factors including the CPU scheduling to agents or un-
predictable times for message passing [ZM03].

To get a standpoint of the R-Risk in DisCSP we made a preliminary ex-
periment, where randomness emerged from distribution only. We solved binary
DisCSPs with the IDIBT and ABT algorithms with random message delays
and unpredictable agent-activation. It turned out that the R-Risk is in general
very high (compared to monolithic systems). Even with completely deterministic
value-selection functions the performance of different runs of the algorithm on
the same problem differed significantly. For instance, the ABT algorithm with
lexicographic labelling applied 100 times to the 10-queens problem could find
one solution in 297–5374 ms while IDIBT applied 100 times took 1640–1984 ms.
The R-Risk resulting exclusively from distribution was 807 for ABT and 96 for
IDIBT.

2.2 Selection Risk

The risk we take when we select a certain algorithm or a heuristic to be applied
within an algorithm to solve a problem will always be that this is the wrong
choice. For most problems we do not know in advance, which the best algorithm
or heuristic will be and may select one which performs much worse than others.
We’ll refer to this risk as to the Selection-Risk (S-Risk).

Definition 2. The S-Risk of a set of algorithms A is the standard deviation of
the performance of each a ∈ A applied the same number of times to one problem.

We investigated the S-Risk emerging from the chosen agent ordering in IDIBT in
a preliminary experiment on small, fairly hard random problems (15 variables, 5
values, density 0.3, tightness 0.4). We used one variable per agent and could thus
implement variable-orderings in the ordering of agents. We used lexicographic
value selection and four different static variable-ordering heuristics: a well-known
“intelligent” heuristic, its inverse (which should be bad) and two different blind
heuristics. As expected, we could observe that the intelligent heuristic dominates
in average but that it is not always the best. It was the fastest in 59% of the tests,
but it was also the slowest in 5% of the experiments. The second best heuris-
tic (best in 18%) was also the second worst (also 18%). The “anti-intelligent”
heuristic turned out to be the best of the four in 7% after all. The differences
between the performances were quite significant with a factor of up to 5. Applied
to the same problems, ABT gave very similar results with a larger performance
range of up to factor 40.



552 G. Ringwelski and Y. Hamadi

3 Multi-directional Distributed Search

By a direction in search we refer to a variable ordering. In this paper we con-
sider only static orderings but the “M-” framework can be used with dynamic
orderings as well. In DisCSP the variable ordering implies the agent topology.
Assume that each agent hosts one variable, for each constraint a directed connec-
tion between two agents/variables is imposed. The direction defines the priority
of the agents and thus in which direction backtracking is performed. In Fig-
ure 1 we show two different static agent-topologies emerging from two different
variable-ordering heuristics in DisCSP.

The idea of Multi-Directional search is that several variable orderings and
thus several agent topologies are used by concurrent searches. We refer to this
idea as to the “M-” framework for DisCSP. Applied to an algorithm X it defines
a DisCSP algorithm M-X which applies X multiply in parallel. Each search
operates in its usual way on one of the previously selected topologies. In each
agent the multiple searches use separate contexts to store the various pieces
of information they require. These include for example adjacent agents, their
current value or their beliefs about the current values of other agents. Given
the topologies in Figure 1, agent X3 for example, would contain two contexts.
In the one which is related to maxDegree it would store X7 as lower prioritized
adjacent agent and in the other it would store X1. In ABT or IDIBT it would
thus address messages that notify others of new values (ok? in ABT, infoVal in
IDIBT) to agent X7 in one search effort and to X1 in the other.

In a set of such agents different search-efforts can be made in parallel. Each
message will refer to a context and will be processed in the scope of this context.
The first search to terminate will deliver the solution or report failure. Termi-
nation detection has thus to be implemented for each of the contexts separately.
This does not yield any extra communication as shown for the multiple contexts
of IDIBT in [Ham02].

X1

X3={a,b,

X7={a,b}
X4={a,b,

DisCSP
ordering ordering

min−domain

c,d}
X1={a,b, X5={a,b}

X6={a,b,
c}

X2={a,b}

c}

c}

max−degree

X1

X2

X3 X4 X5

X7 X6

X6

X5 X2 X7

X4X3

Fig. 1. DisCSP and agent topologies implied by variable orderings
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One motivation for this is to reduce the S-Risk by adding more diversity
to the used portfolio. Assuming we do not know anything about the quality
of orderings, the chance of including a good ordering in a set of M different
orderings is |M |-times higher than selecting it for execution in one search. When
we know intelligent heuristics we should include them but the use of many of
them will reduce the risk of bad performance for every single problem instance
(cf. experiment in Section on S-Risk). Furthermore the expected performance
is improved with the “M-” framework since always the best heuristic in the
portfolio will deliver the solution or report failure. If we have a portfolio of
orderings M where the expected runtime of each m ∈ M is t(m) then ideally
(if no overhead emerges) the system terminates after min({t(m)|m ∈M}). The
resulting trade-offs and overheads for this are investigated in this paper.

The trade-off in space is linear in the number of applied orderings. Thus, it
clearly depends on the size of the data structures that need to be duplicated for
the contexts. This will include only internal data structures which are related to
the state of search. “M-” does not duplicate the whole agent. The data structures
for communication for instance are jointly used by all the concurrent search
efforts.

The trade-off in computational costs will be described in detail in the Section
on the Empirical Evaluation.

3.1 Aggregation

Besides the idea of letting randomized algorithms compete to become “as good
as the best” the “M-” framework can also use cooperation. With this we may be
able to be even “better than the best”, by accelerating the best search effort even
more by providing it with useful knowledge others have found. Cooperation is
implemented in the aggregation of knowledge within the agents. The agents use
the information gained from one search to make better decisions (value selection)
in another search. This enlarges the amount of knowledge on the basis of which
local decisions are made.

In distributed search, the only information that agents can use for aggrega-
tion is their view to the global system. With multiple contexts, the agents have
multiple views and thus more information available for their local reasoning.
In this setting, the aggregation yields no extra communication costs. It can be
performed locally and does not require any messages or blackboard-access.

In order to implement Aggregation we have to make two design decisions:
first, which knowledge is used and second, how it is used. As mentioned before
we use knowledge that is available for free from the internally stored data of the
agents. In particular this may include:

Usage. Each agent knows the values it currently has selected in each search.
Support. Each agent can store currently known values of other agents (agent-

view) and the constraints that need to be satisfied with these values.
Nogoods. Agents may store partial assignments that are found to be incon-

sistent.
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Effort. Each agent knows for each search how much effort in terms of the
number of backtracks it has already invested.

The interpretation of this knowledge can follow two orthogonal principles: di-
versity and emulation. Diversity implements the idea of traversing the search
space in different parts simultaneously in order not to miss the part in which a
solution can be found. The concept of emulation implements the idea of cooper-
ative problem solving, where agents try to combine (partial) solutions in order
to make use of work which others have already done.

With these concepts of providing and interpreting knowledge we can define
the portfolio of aggregation methods shown in Table 1. In each box we provide
a name (to be used in the following) and a short description of which value is
preferably selected by an agent for a search.

Table 1. Methods of aggregation

diversity emulation
usage minUsed: the value which is

used the least in other searches
maxUsed: the value which is
used most in other searches

support – maxSupport: the value that is
most supported by constraints
wrt. current agent-views

nogood differ: the value which is least
included in nogoods

share: always use nogoods of
all searches

effort minBt: a value which is not the
current value of searches with
many backtracks

maxBt: the current value of
the search with most back-
tracks

4 Algorithms

As a case study to investigate the benefit of competition and cooperation in
distributed search we implemented M-IDIBT and M-ABT.

M-IDIBT. This algorithm incorporates IDIBT [Ham02] in the “M-” framework.
IDIBT already uses multiple contexts to perform parallel search (i.e., splitting of
search tree). We use the contexts for different variable-orderings but apply each of
them to the complete search tree. In order to prevent the required pre-processing
of the agent topology with DisAO [Ham02] we changed the algorithm to add the
required extra links between agents dynamically during search (similar to the
processing of “addLink”-messages in ABT). Finally we extended the algorithm
to support dynamic value selection which is essential for Aggregation.

M-ABT. This algorithm incorporates ABT [YDIK92] in the “M-” framwork.
For this we implemented contexts by duplicating the local storage of current
value, agent-view and nogood-store. Storing the nogood-store multiply may have
large trade-offs in space, but sharing it means applying Aggregation and is thus
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considered separately. In M-ABT every message carries additionally the id of its
related search. No other changes were made to the original algorithm.

5 Empirical Evaluation

For the empirical evaluation of the “M-” framework we processed more than
180000 DisCSPs with M-IDIBT and M-ABT. We solved random binary prob-
lems (15 variables, 5 values), n-queens-problems with n up to 20 and quasi-
group completion problems with up to 81 agents. To compare the performance
of the algorithms we counted overall constraint checks (cc), concurrent constraint
checks(ccc), the overall number of messages(mc), the longest path of sequential
messages(smc) and the run time (t) given in seconds. The runtime represents
the “parallel time”, i.e., the CPU+System time of the slowest agent.

All tests were run in a Java multi-threaded simulator where each agent
implements a thread using random message delays and unpredictable thread-
scheduling. All the threads were executed in one process and thus on one pro-
cessor (2 Ghz Windows PC).

5.1 Basic Performance

In Figure 2 we show the median numbers of messages sent and the runtime to
find one solution by different sized portfolios on fairly hard instances (density
0.3, tightness 0.4) of random problems (sample size 300). No aggregation was
used in these experiments. The best known2 variable-ordering (maxDegree) was
used in each portfolio including those of size 1 which are equivalent to the basic
algorithms. In the larger portfolios blind orderings (lex and random) and more
instances of maxDegree were added. It can be seen that with increasing portfolio-
size there is more communication (sent messages) between agents. In the same
Figure we show the run time, which correlated strongly to smc and ccc. It can be
seen that the performance improves up to a certain point when larger portfolios
are used. In our experimental setting this point is reached with size 10. With
larger portfolios no further speedup can be achieved which would make up the
communication cost and computational overhead.

5.2 Risks

To evaluate the risks we used the same experimental setting as before but with
random variable orderings and lexicographic value selection. This static value se-
lection would reduce the R-Risk as widely as possible. Using random orderings
would eliminate the effects we get from knowledge about heuristics and allow
for a non-biased evaluation. Each portfolio was applied 100 times to one hard
random problem instance. The standard-deviation of the runtime is shown in
Figure 3 on a logarithmic scale. It can be seen that the risk is reduced signifi-
cantly with the use of portfolios. With portfolio size 20, for instance, the risks
2 We made preliminary experiments to determine this.
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Fig. 2. Communication and runtime in portfolios

of M-IDIBT and M-ABT are 344 and 727 times smaller than the ones of IDIBT
and ABT, respectively.

5.3 Performance with Aggregation

The benefit of Aggregation which is implemented with the different value se-
lection heuristics is presented in Table 2. Each column in the table shows the
median values of at least 100 samples solved with M-IDIBT with a portfolio of
size 10 applied to 30 different hard random and quasigroup completion prob-
lems. The latter class of problems (cf. [GS01]) were encoded in a straightforward
model: N2 variables, one variable per agent, no symmetry breaking, binary con-
straints only. We solved problems with a 42% ratio of pre-assigned values which
is the peak value in the phase transition for all orders, i.e., we used the hardest
problem instances for our test.

In the table we refer to the aggregation methods introduced in Table 1, the
bottom line shows the performance with random value selection (and thus no
aggregation). When we consider the running time, it seems that the choice of
the best method depends on the problem. For the quasigroup, aggregation based
on the emulation principle seems to be better, on random problems not.

Interestingly, message passing operations present a different picture. It can
be seen that maxSupport uses by far the least messages. These operations are
reduced by a factor of 7 (resp. 38) for random (resp. quasigroups) problems.
However, it cannot outperform the others significantly since the computation of
this aggregation method is relatively costly. To this respect there is, however,



Boosting Distributed Constraint Satisfaction 557

 100

 1000

 10000

 100000

 1e+06

 2  4  6  8  10  12  14  16  18  20

se
le

ct
io

n 
ris

k 
(lo

g 
sc

al
e)

portfolio size

M-ABT
M-IDIBT

Fig. 3. S-Risk including the R-Risk emerging from distribution

Table 2. Performance of aggregation methods

random quasigroups
smc ccc t smc

1000
ccc
1000

t
minUsed 367 2196 1.563 102 1625 448
maxUsed 379 2118 1.437 40 635 182
minBt 392 2281 1.640 104 1330 367
maxBt 433 2541 1.820 43 694 171

maxSupp 57 5718 1.922 1.9 3727 143
random 409 2406 1.664 73 1068 298

potential since we do not use an incremental algorithm for this. Moreover, mes-
sage passing are the most critical operations in real systems and this for either
long latencies or high energy consumption (e.g., ad-hoc networks [FM02]). The
previous remark makes the maxSupport aggregation method really promising.

5.4 Overall Performance

In order to evaluate the relevance of the “M-” framework we investigated how it
scales in larger and more structured problems. For this we applied good config-
urations found in the previous experiments to the well-known quasigroup com-
pletion problem.

Table 3 shows the experimental results of distributed search algorithms on
problems of different orders (each column represents an order). ABT and IDIBT
used the domain/degree variable ordering, which was tested best in preliminary
experiments. In the larger portfolios we used domain/degree and additional other
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heuristics including maxDegree, minDomain, lex and random. In all portfolios
Aggregation with the method maxUsed was applied. For each order (column) we
show the median runtime (in seconds) to solve 20 different problems (once each)
and the number of solved problems. When less than 10 instances could be solved
within a timeout of two hours we naturally cannot provide meaningful median
results. In the experiments with M-ABT we have also observed runs which were
aborted because of memory problems in our simulator. For order 8 these were
about one third of the unsolved problems, for order 9 this problem occurred in
all unsuccessful tests. This memory problem arising from the nogood-storage of
ABT was addressed in [BBMM05] and is not subject to this research.

Table 3. Median performance and instances solved (out of 20) of quasigroup comple-
tion problems with 42% pre-assigned values

5 6 7 8 9
ABT 0.3, 20 -, 8 -, 1 -, 0 -, 0
size 5 0.5, 20 5.9, 19 35.8, 14 -, 2 -, 0
size 10 0.6, 20 6.1, 20 40.6, 17 -, 8 -, 1
IDIBT 1.8, 20 12.4, 20 234, 20 4356, 16 -, 5
size 5 0.2, 20 0.9, 20 9.3, 20 709, 20 -, 6
size 10 0.3, 20 1.7, 20 8.2, 20 339, 20 -, 8

From the successful tests it can be seen that portfolios improve the median
performance of IDIBT significantly. In the problems of order 7 a portfolio of
10 was 28 times faster than the regular IDIBT. Furthermore, portfolios seem
to become more and more beneficial in larger problems as the portfolio of size
10 seems to scale better than smaller one. ABT does not benefit in the median
runtime but the reduced risk makes a big difference. With the portfolio we could
solve 14 resp. 17 instances of order 7 problems whereas the plain algorithm could
only solve one.

5.5 Idle Time

To complete the presentation of our experimental results let us consider time
utilization in distributed search. It appears that both considered classical al-
gorithms underuse available resources. This is figured in the first two columns
of Table 4 for various problem classes. The numbers represent the average idle
times (10-100 samples) of the agents.

We can observe that ABT and IDIBT are most of the time idle. This idle-
ness comes from the inherent disbalance of work in DisCSPs. Indeed, it is well
known that the hierarchical ordering of the agents makes low priority agents
(at the bottom) more active than high priority ones. Ideally the work should be
balanced. Ideally one agent on the top of the hierarchy in context 1 should be in
the bottom in context 2, etc (e.g., see agent in charge of variable X1 in figure 1).
Obviously, since we use well known variable ordering heuristics we cannot en-
force such a property. However, the previous is an argument for multi-directional
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Table 4. Idle times of agents in DisCSP

problem class idle time of agents
ABT IDIBT M-ABT M-IDIBT

easy random 87% 92% 56% 47%
hard random 92% 96% 39% 59%
n-queens 91% 94% 48% 52%
hard quasigroups 87% 93% 28% 59%

search which can use the previous idle time “for free” in order to perform fur-
ther computations in concurrent search efforts. This is figured in the last two
columns of the table where the M- framework with a portfolio of size 10 applied
to the same problems makes a better use of computational resources and this
can be understood as an important decrease in idle times for either M-ABT or
M-IDIBT.

6 Related Work

The benefit of cooperating searches executed in parallel was first investigated for
CSP in [HH93]. They used multiple agents, each of which executed one mono-
lithic search algorithm. Agents cooperated by writing/reading hints to/from a
common blackboard. The hints were partial solutions or nogoods its sender has
found and the receiver could re-use them in its efforts. In contrast to our work,
this multi-agent system was an artefact created for the cooperation. Thus the
overhead it produced, especially when not every agent could use its own proces-
sor, added directly to the overall performance. Another big difference between
Hogg’s work and ours is that DisCSP agents do not have a global view of the
searches and can thus only communicate what’s in their agent-view which usually
captures partial solutions for comparably few variables only.

Later the expected performance and the expected (Randomization-) risk in
portfolios of algorithms was investigated in [GS97, GS01]. No cooperation be-
tween the processes was used here. In the newer paper the authors concluded
that portfolios, provided there are enough processors, reduce the risk and im-
prove the performance. When algorithms do not run in parallel (i.e., when not
each search can use its own processor) the portfolio approach becomes equivalent
to random restarts [GSK98]. Using only one processor, the expected performance
and risk of both are equivalent. In contrast to Gomes and Selman we cannot al-
locate search processes to CPUs. In DisCSP we have to allocate each agent,
which participates in every search, to one process. Thus the load-balancing is
performed by the agents and not by the designer of the portfolio. In this paper
we consider agents that do this on a first-come-first-serve basis. Furthermore we
use cooperation between the agents and the parallelism is not an overhead-prune
artefact.

Recent work on constraint optimization [CB04] has shown that letting mul-
tiple search algorithms compete and cooperate can be very beneficial without



560 G. Ringwelski and Y. Hamadi

having to know much about the algorithms themselves. They successfully use
various optimization methods on one processor which compete for finding the
next best solutions. Furthermore they cooperate by interchanging the best known
feasible solutions. However, this method of cooperation cannot be applied to our
distributed constraint satisfaction settings.

A different research trend performs “algorithm selection” [Ric76]. Here, port-
folio does not represent competing methods but complementary ones. The prob-
lem is then to select from the portfolio the best possible method in order to
tackle some incoming instance. [LBNA+03] applies the previous to combina-
torial optimization. The authors use portfolios which combine algorithms with
uncorrelated easy inputs. Their approach requires an extensive experimental
step. It starts with the identification of problem’s features which are representa-
tive of runtime performances. These features are used to generate a large set of
problem instances which allow the collection of runtime data for each individual
algorithm. Finally, statistical regression is used to learn a real-valued function
of the features which allows runtime prediction. In real situation, the previous
function predicts each algorithm’s running time and the real instance is solved
with the algorithm identified as the fastest one. The key point is to combine
uncorrelated methods in order to exploit their relative strengths. The most im-
portant drawback here is the extensive offline step. This step must be performed
for each new domain space. Moreover a careful analysis of the problem must be
performed by the end-user to identify key parameters. The previous makes this
approach highly unrealistic in a truly distributed system made by opportunisti-
cally connected components [FM02]. Finally knowledge sharing is not possible
in this approach.

7 Conclusion and Future Work

In this paper we have presented a new generic framework for the execution
of DisCSP algorithms. We have tested it with two standard methods but any
tree-based distributed search should easily fit in the M- framework. The frame-
work executes a portfolio of cooperative DisCSP algorithms with different agent-
orderings concurrently until the first of them terminates. In real (truly dis-
tributed) applications, our framework will have to start with the computation of
different orderings. The generic Distributed Agent Ordering heuristic (DisAO)
[HBQ98] could easily be generalized at no extra message passing cost to concur-
rently compute several distributed hierarchies. The main idea is to simultane-
ously exchange several heuristic evaluation of a sub-problem instead of one.

This use of heterogeneous portfolios is shown to be very beneficial. It improves
the performance and reduces the risk of distributed search. With our framework
we were able to achieve a speedup of one order of magnitude while reducing the
risk by up to three orders of magnitude compared to the traditional execution
of the used algorithm.

The portfolios seem to make a better use of computational resources by
reducing the idle time of agents. This is the first of two special advantages of the
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application of portfolios in DisCSP: we do not have to artificially add parallelism
and the related overhead but can use idle resources instead. The M- framework
can be seen as a solution to the classical “work unbalance” flaw of tree-based
distributed search algorithms.

We analysed and defined distributed cooperation (Aggregation) with respect
to two orthogonal principles diversity and emulation. Each principle was applied
without overhead within the limited scope of each agent’s knowledge. This is the
second special advantage of using Aggregation in DisCSP: it yields no communi-
cational costs and preserves privacy because processes are not related to search
efforts but to agents instead. Our experiments identified the emulation-based
maxSupport heuristic as the most promising one. Indeed, it is able to efficiently
aggregate partial solutions which brings a large reduction in message passing
operations.

Our present results greatly improve the applicability of DisCSP algorithms
by providing greater efficiency and robustness to two classical tree search al-
gorithms. In future work we would like to investigate how portfolios are best
composed and how they could implement a more informed Aggregation (beyond
agent’s scope). The composition could be studied with different hand or sys-
tem made portfolios or by dynamic adaptation during search. The latter could
provide more resources to the most promising efforts. The former could take ad-
vantage of heterogeneous portfolios involving various tree- and local-search com-
bined with some distributed consistency-enforcement method (e.g., [Ham99]).
Finally, knowledge Aggregation could be easily improved at no cost by adding
extra information to existing message passing operations (search effort, etc).
This would give a more informed view of the distributed system which could be
used by the Aggregation methods.
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Abstract. Many important combinatorial optimization problems can
be expressed as constraint satisfaction problems with soft constraints.
When problems are too difficult to be solved exactly, approximation
methods become the best option. Mini-bucket elimination (MBE) is a
well known approximation method for combinatorial optimization prob-
lems. It has a control parameter z that allow us to trade time and space
for accuracy. In practice it is the space and not the time that limits the
execution with high values of z. In this paper we introduce a set of im-
provements on the way MBE handles memory. The resulting algorithm
dfMBE may be orders of magnitude more efficient. As a consequence,
higher values of z can be used which, in turn, yields significantly bet-
ter bounds. We demonstrate our approach in scheduling, probabilistic
reasoning and resource allocation problems.

1 Introduction

Constraint satisfaction problems (CSPs) involve the assignment of a set of vari-
ables subject to a set of constraints. The addition of soft constraints [1] extend
the CSP framework to optimization tasks (we will assume optimization as mini-
mization). Many problems in a variety of domains such as probabilistic reasoning
[2], bioinformatics [3], scheduling [4], etc, can be naturally expressed as soft CSPs.
In recent years a big effort has been made in the development of algorithms to
solve this type of problems. In some cases, specialized algorithms can be designed
to solve more efficiently particular problems. Nevertheless in this paper we will
focus on general techniques.

There are two main approaches to solving soft CSPs: search and inference.
Search algorithms traverse the tree of possible assignments typically following the
deph-first branch-and-bound (BnB) principle [5,6]. Inference algorithms solve
the problem by a sequence of reductions following the dynamic programming
principle [7]. A well known inference algorithm is bucket elimination (BE) [8].
It falls into the category of the so-called decomposition methods [7]. In general,
solving a soft CSP is NP-hard. Therefore, all known algorithms require expo-
nential resources in the worst case, which means that many instances cannot be
solved with current technology. Given the practical importance of this type of
problems, when exact methods fail, algorithms that approximate the solution
become very desirable.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 563–577, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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When an instance is too difficult to be solved exactly, both search and in-
ference, can be adapted to approximate its solution. BnB maintains during the
search an upper bound of the optimum. Thus, it can be seen as an any-time
algorithm providing increasingly better upper bounds. Alternatively, if BnB is
executed in an iterative deepening manner it provides an increasing sequence of
lower bounds. Both of these approaches are polynomial in space, and the time
can be adjusted to the user needs. The BE algorithm can also be approximated
which results in the mini-buckets elimination algorithm (MBE) [9]. In its more
general formulation, the outcome of MBE is a lower and an upper bound of the
optimum. It is arguably one of the best-known general approximation algorithms
for soft CSPs and it has shown to be effective in a variety of domains including
several probabilistic tasks in bayesian networks. It uses a control parameter z
that allow us to trade time and space for accuracy. The time and space com-
plexity of MBE is exponential in z and it is important to note that, with current
computers, it is the space, rather than the time, that prohibits the execution of
the algorithm beyond certain values of z.

In this paper, we show how to decrease the space demands of MBE. Our
approach is based on the concept of computation tree (CT). A CT provides a
graphical view of the MBE execution and can be computed as a pre-process. It is
somewhat similar to the tree-decomposition in decomposition methods [9], where
the first step is to build the tree-decomposition and the second step is to solve
the problem. Our first contribution is a set of local transformations to the CT
with which a more rational use of memory is achieved. They include: i) branch
re-arrangement (nodes are moved upwards along a branch which means that the
elimination of a variable is anticipated) and, ii) vertical tree compaction (adjacent
nodes are joined which means that a sequence of operations is performed in a
single step).

The second contribution is the exploitation of memory deallocation of inter-
mediate functions when they become redundant. By construction of CT, MBE
can be seen as a top-down traversal of the CT. The order of the traversal is im-
posed by the order in which variables are eliminated. We make the observation
that any top-down traversal of the CT would produce the same outcome. Then,
we propose to traverse the CT in a depth-first manner in order to decrease the
number of intermediate functions that must be simultaneously stored. We show
that with a depth-first traversal of the CT, the order of children has an impact
in the space complexity which provides an additional source of improvement. We
also discuss the benefits of horizontal node compaction. It is important to note
that none of these transformations risk the accuracy of the algorithm.

The new algorithm that incorporates all these techniques is called depth-first
mini-bucket elimination dfMBE. Our experiments show in a number of domains
that dfMBE may provide important space savings. The main consequence is that
in a given computer (namely, for a fixed amount of memory), dfMBE(z) can be
executed with a higher value of z than MBE(z) which, in turn, may yield better
lower bounds.
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The structure of the paper is as follows: Section 2 provides preliminary def-
initions, Section 3 introduces CTs and two local transformations, Section 4 in-
troduces dfMBE and additional CT transformations, Section 5 reports our ex-
perimental results and, finally, Section 6 gives conclusions and discusses future
work.

2 Preliminaries

2.1 Soft CSPs

Let X = (x1, . . . , xn) be an ordered set of variables and D = (D1, . . . , Dn) an
ordered set of domains. Domain Di is a finite set of potential values for xi. The
assignment (i.e, instantiation) of variable xi with a ∈ Di is noted (xi ← a). A
tuple is an ordered set of assignments to different variables (xi1 ← ai1 , . . . , xik

←
aik

). The set of variables (xi1 , . . . , xik
) assigned by a tuple t, noted var(t), is

called its scope. The size of var(t) is the arity of t. We focus on two basic
operations over tuples: The projection of t over A ⊆ var(t), noted t[A], is a
sub-tuple of t containing only the instantiation of variables in A. Let t and s
be two tuples having the same instantiations to the common variables. Their
join, noted t · s, is a new tuple which contains the assignments of both t and s.
Projecting a tuple t over the empty set t[∅] produces the empty tuple λ. We say
that a tuple t is a complete instantiation when var(t) = X . Sometimes, when we
want to emphasize that a tuple is a complete instantiation we will call it X .

A soft CSP is a triple (X ,D,F), where X = {x1, . . . , xn} and D = {D1, . . . ,
Dn} are sets of variables and domains. F = {f1, . . . , fr} is a set of functions
that form an objective function. Function fi over S ⊆ X associates valuations to
tuples t such that var(t) = S. The set of variables S is the scope of f and is noted
var(fi). Abusing notation, when var(fi) ⊂ var(t), fi(t) will mean fi(t[var(fi)]).
Functions may be given explicitly as tables or implicitly as mathematical ex-
pressions or computer procedures. The space complexity of explicitly storing a
function fi is sp(fi) =

∏
xj∈var(fi) |Dj |.

Different soft CSP frameworks differ in: the set of possible valuations, the
way functions are combined in order to form the objective function, and the
task required of the objective function [1]. For simplicity, in the following we
will assume weighted CSPs. In the weighted CSP (WCSP) model, valuations are
natural numbers, the objective function is the sum of the functions,

F (X) =
r∑

i=1

fi(X)

and it has to be minimized.

2.2 Bucket and Mini-Bucket Elimination

Bucket elimination (BE)[8,10] is a well-known algorithm for soft CSPs. It uses
the following two operations on functions:
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function BE(X ,D,F)
1. for each i = n..1 do
2. Bi := {f ∈ F | xi ∈ var(f)}
3. gi := (

∑
f∈Bi

f) ↓ xi;
4. F := (F ∪ {gi})− Bi;
5. endfor
6. t := λ;
7. for each i = 1..n do
8. v := argmina∈Di

{(∑f∈Bi
f)(t · (xi ← a))}

9. t := t · (xi ← v);
10. endfor
11. return(g1, t);
endfunction

Fig. 1. Bucket Elimination. Given a WCSP (X ,D,F), the algorithm returns a con-
stant function g1 (i.e, var(g1) = ∅) with the optimal cost, along with one optimal
assignment t.

– The sum of two functions f and g denoted (f + g) is a new function with
scope var(f)∪var(g) which returns for each tuple the sum of costs of f and
g,

(f + g)(t) = f(t) + g(t)

– The elimination of variable xi from f , denoted f ↓ xi, is a new function
with scope var(f) − {xi} which returns for each tuple t the minimum cost
extension of t to xi,

(f ↓ xi)(t) = min
a∈Di

{f(t · (xi ← a))}

where t · (xi ← a) means the extension of t so as to include the assignment of
a to xi. Observe that when f is a unary function (i.e., arity one), eliminating
the only variable in its scope produces a constant.

The result of summing functions or eliminating variables cannot, in general,
be expressed intensionally. Therefore, we store functions as tables.

BE (Figure 1) uses an arbitrary variable ordering o that we assume, without
loss of generality, lexicographical (i.e, o = (x1, x2, . . . , xn)). It works in two
phases. In the first phase (lines 1-5), the algorithm eliminates variables one by
one, from last to first, according to o. The elimination of variable xi is done as
follows: F is the set of current functions. The algorithm computes the so called
bucket of xi, noted Bi, which contains all cost functions in F having xi in their
scope (line 2). Next, BE computes a new function gi by summing all functions
in Bi and subsequently eliminating xi (line 3). Then, F is updated by removing
the functions in Bi and adding gi (line 4). The new F does not contain xi (all
functions mentioning xi were removed) but preserves the value of the optimal
cost. The elimination of the last variable produces an empty-scope function (i.e.,
a constant) which is the optimal cost of the problem. The second phase (lines 6-
11) generates an optimal assignment of variables. It uses the set of buckets that
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were computed in the first phase. Starting from an empty assignment t (line
6), variables are assigned from first to last according to o. The optimal value
for xi is the best value regarding the extension of t with respect to the sum of
functions in Bi (lines 8,9). We use argmin to denote the argument producing the
minimum valuation. The time and space complexity of BE is exponential in a
structural parameter called induced width. In practice, it is the space and not
the time what makes the algorithm unfeasible in many instances.

Mini-bucket elimination (MBE) [9] is an approximation of BE that can be
used to bound the optimum when the problem is too difficult to be solved ex-
actly. Given a control parameter z, MBE partitions buckets into smaller subsets
called mini-buckets such that their arity is bounded by z+1. Each mini-bucket is
processed independently. At the end of the first phase, MBE has a lower bound
of the problem optimum. In the second phase MBE computes a (non-necessarily
optimal) assignment t. The evaluation of t on the objective function F (t) con-
stitutes an upper bound of the problem optimum. The pseudo-code of MBE is
the result of replacing lines 3 and 4 in the algorithm of Figure 1 by,

3. {Pi1 , . . . ,Pik
} := Partition(Bi);

3b. for each j = 1..k do gij := (
∑

f∈Pij
f) ↓ xi;

4. F := (F ∪ {gi1 , . . . , gik
})− Bi;

The time and space complexity of MBE is exponential in z. Parameter z allows
to trade time and space for accuracy, because greater values of z increment the
number of functions that can be included in each mini-bucket. Therefore, the
bounds will be presumably tighter.

Consider as a example a WCSP instance with seven variables and the fol-
lowing set of cost functions,

F = {f1(x6, x5, x4), f2(x6, x5, x3), f3(x5, x3, x2), f4(x6, x4, x2), f5(x7, x2, x1),

f6(x7, x6, x1)}

One possible execution of MBE(3) along the lexicographical variable ordering
leads to the following trace,

Bucket7: f6(x7, x6, x1), f5(x7, x2, x1)
Bucket6: g71(x6, x2, x1) = (f6 + f5) ↓ x7,

f4(x6, x4, x2), f2(x6, x5, x3), f1(x6, x5, x4)
Bucket5: g61(x5, x4, x3) = (f1 + f2) ↓ x6, f3(x5, x3, x2)
Bucket4: g62(x4, x2, x1) = (f4 + g71) ↓ x6,

g51(x4, x3, x2) = (f3 + g61) ↓ x5

Bucket3: g41(x3, x2, x1) = (g62 + g51) ↓ x4

Bucket2: g31(x2, x1) = g41 ↓ x3

Bucket1: g21(x1) = g31 ↓ x2

Result: g11() = g21 ↓ x1
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3 Improving MBE Memory Usage

The first phase of MBE (as well as BE) can be seen as an algebraic expression
that combines sums and variable eliminations. For instance, the execution of
MBE(3) in the previous example is equivalent to the computation of the following
expression,

((f3 + (f1 + f2) ↓ x6) ↓ x5 + (f4 + (f6 + f5) ↓ x7) ↓ x6) ↓ x4 ↓ x3 ↓ x2 ↓ x1

Note that each function appears only once in the formulae.
A computation tree (CT first introduced in [11]) provides a graphical view of

the algebraic expression. The leaves are the original functions (arguments of the
formulae) and internal nodes represent the computation of intermediate func-
tions. If the node has only one child, the only operation performed is the elimi-
nation of one variables. Otherwise, all the children are summed and one variable
is eliminated. Figure 2.A depicts the CT of the previous example. Dotted lines
emphasize tree-leaves, which are associated to original functions. Even when
original function are given explicitely as tables, do not include their space in the
MBE cost. Adjacent to each internal node we indicate the variable that is elimi-
nated. Although CTs are somehow related to decomposition-trees, they differ in
the way they represent original functions. Besides, since CTs originate from MBE
executions, they do not need to satisfy the running intersection property [7].

In the following we distinguish the computation of the CT from the evaluation
of its associated expression. Given the scope of the original functions, a variable
ordering, a policy for mini-bucket partitioning and a value for z, it is possible to
compute the corresponding CT as a pre-process. Computing the CT is no more
than finding the set of computations that the algorithm will perform in order to
evaluate the formula.

One advantage of computing the CT in a pre-process is that it makes it easy
to obtain the exact memory demands of MBE by summing the space require-
ments of every internal node of the CT. For instance, the CT in Figure 2.A, will
need to store 5 functions of arity 3, 1 functions of arity 2, 1 function of arity 1
and 1 function of arity 0. Assuming domains of size 10, MBE will need to store
5× 103 + 1× 102 + 1× 101 + 1× 100 = 5111 table entries.

CTs allow us to identify and remedy some space inefficiencies of MBE. In
the following we describe two local transformations of CTs that improve their
space requirements.

3.1 Branch Re-Arrangement

Consider again the CT in Figure 2.A. Observe that if we follow any branch in
top-down order, variables are eliminated in decreasing order, because this is the
order used by MBE. As a consequence, the elimination of x1 is left to the end.
However, this variable only appears in the two leftmost leaves. It is inefficient to
carry it over down to the CT root, since it could have been eliminated higher up.

Consider a node v of a CT with a single child. Let xi be the variable that is
eliminated at v. Let u be the first descendent of v with k > 1 children. If only
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Fig. 2. Four different computation trees: A) original CT, B) after branch re-
arrangement, C) after vertical compaction, D) after horizontal compaction

one child w of u has xi in its scope, node v (namely, the elimination of xi) can
be moved in between w and u. We only perform the change if w is not a leaf.
Branch re-arrangement is the process of applying the previous rule in a bottom-
up order, moving nodes as close to the leaves as possible. The benefit of branch
re-arrangement is that xi disappears from the scope of intermediate functions
earlier in the tree. In the CT of Figure 2.A, the leftmost branch can be re-
arranged: variable x1 can be eliminated right after x7. Moreover, the rightmost
branch can also be re-arranged: variable x3 can be eliminated right after x5.
Figure 2.B shows the resulting CT. The space requirements of the new CT are
decreased from 5111 to 3311. Observe that branch re-arrangement can never
increase the space requirements of a CT.

3.2 Vertical Compaction

Consider the CT in Figure 2.B. There are two single-child nodes. In single-child
nodes the only associated computation is a variable elimination. MBE considers
each variable elimination as an independent operation because they take place in
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different buckets. However, a sequence of variable eliminations can be performed
simultaneously in a single step without changing the outcome or increasing the
time complexity. The advantage is that intermediate functions do not need to
be stored.

Vertical compaction is the process of merging internal linear paths into one
node representing the sequence of computations. An internal linear path is a path
between an internal node v and one of its ancestors w, (v, v1 . . . , vk, w), such that
every node in the path except v has only one child. After the compaction every
internal node of the CT has k > 1 children. There is one exception: there may be
internal nodes with only child if the child is a leaf. Figure 2.C depicts the result
of applying vertical compaction to the CT of Figure 2.B. The space requirements
of the new CT are decreased from 3311 to 1301. It is clear that the compaction of
a CT may produce space saving and can never increase the space requirements
of a CT.

4 Depth-First MBE

A CT can be traversed in any top-down order. A node can be computed as
soon as all its children are available. Whatever traversal strategy is used it has
to keep all intermediate functions because they are used in the second phase
of the algorithm in order to compute the upper bound. However, the space
consumption of the traversal can be drastically reduced if we sacrifice the upper
bound and deallocate the memory used by intermediate functions when they
become redundant. A function becomes redundant as soon as its parent has
been computed. Note that an alternative solution that we do not explore in this
paper is to store redundant functions in the hard-disk. Thus, the upper bound
is not lost.

Without memory deallocation the traversal order has no effect on the space
complexity, but this is no longer true when memory is deallocated. Traversing
the CT depth-first has the advantage of only demanding the space of the cur-
rent branch: computing a node only requires to have available its children, so
they have to be sequentially and recursively computed. We denote by dfMBE
the algorithm that traverses depth-first the CT and deallocates memory when
intermediate functions become redundant. The space complexity of dfMBE can
be formalized by means of a recurrence. Let v be a node, gv the associated func-
tion and (w1, . . . , wk) its ordered set of children. R(v) is the space complexity of
computing the sub-tree rooted by a CT node v and is given by,

R(v) =
k+1
max
i=1
{

i−1∑
j=1

sp(gwj) + R(wi)}

where R(wk+1) = sp(gv) by definition. Also, the space sp() of original functions
is 0 because we do not count it as used by the algorithm. The space complexity
of dfMBE is obtained by evaluating R(v) at the root of the CT. In words, the
recursion indicates that the space required to compute node v is the maximum
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among the space required to compute its children. However, when computing a
given child, the space occupied by all its previous siblings must be added because
they need to be available for the final computation of v.

Consider the CT of Figure 2.C. We showed in the previous Section that, with
no memory deallocation, the space cost of internal nodes was 1301. If the CT is
traversed depth-first, the cost (disregarding original functions) is,

max{R(g62), sp(g62) + R(g31), sp(g62) + sp(g31) + sp(g41)} =

max{200, 100 + 1100, 100 + 100 + 1} = 1200

Observe that the order of children affects the space complexity of dfMBE. For
instance, if we reverse the two children of the root in Figure 2.C, the space
complexity of dfMBE is decreased to,

max{R(g31), sp(g31) + R(g62), sp(g31) + sp(g62) + sp(g41)} =

max{1100, 100 + 200, 100 + 100 + 1} = 1100

In our implementation of dfMBE we make an additional optimization of the CT
by processing nodes from leaves to the root. At each node, we swap the order of
two of its children if it brings a space improvement.

Consider now the two children of the root-node in the CT of Figure 2.C.
The scope of the associated functions g61 and g62 is the same. Since they will be
summed up, one table can be shared to stored both of them as follows: the table
entries are initialized to 0, the two functions are computed sequentially, and
each function value is added to the table current value. Figure 2.D illustrates
this idea. The cost of dfMBE with this new CT is,

max{R(g62), sp(g62) + sp(g41)} =

max{max{100, 100 + 100, 100 + 1000, 100 + 1000}, 100 + 1} = 1100

which brings no gain over the CT in Figure 2.C. However, in some cases it may
bring significant benefits. Note that R(g62) = max{R(g11), sp(g11) + sp(g62),
sp(g62) + R(g61), sp(g62) + sp(g61)}. In our implementation, we check siblings
pair-wise. If sharing their storing table produces space savings we take such an
action.

5 Experimental Results

We have tested our approach in three different domains. We compare the memory
requirements for MBE, MBE’ (i.e, mini-buckets under the computation tree
resulting from branch re-arrangement and vertical compaction), and dfMBE in
a given computer (in other words, with a fixed amount of memory). For each
domain we execute MBE(z1), MBE’(z2) and dfMBE(z3), where z1, z2 and z3
are the highest feasible values of the control parameter for each algorithm, given
the available memory.
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In all our experiments, the original CT was obtained assuming a MBE ex-
ecution in which the order of variable elimination was established with the
min-degree heuristic. For the elimination of each variable, mini-buckets are con-
structed one by one with the following process: Select one original function (or
a non-original function if there are no original functions left). Choose among
the remaining functions the one that adds the least number of variables to the
mini-bucket until no more functions can be included in that mini-bucket.

In our benchmarks domain sizes range from 2 to 44, and some instances have
variables with different domain size. Consequently, the arity of a function is not
a proper way to indicate its spacial cost, which means that the control parameter
z of MBE may be misleading (it forbids a function of arity z + 1 with binary
domains and allows a function of arity z with domains of size 4 that is much
more costly to store). We overcome this problem by modifying the meaning of
z: In the original formulation of MBE, the arity of intermediate functions is
bounded by z, but in our implementation the size of intermediate functions is
bounded by 2z.

5.1 Scheduling

For our first experiment, we consider the scheduling of an earth observation
satellite. Given a set of candidate photographs, the problem is to select the best
subset that the satellite will actually take. The selected subset of photographs
must satisfy a large number of imperative constraints and at the same time max-
imize the importance of selected photographs. We experimented with instances
from the Spot5 satellite [4] that can be trivially translated into the WCSP frame-
work. These instances have unary, binary and ternary constraints, and domains
of size 2 and 4. Some instances include in their original formulation an additional
capacity constraint imposed by the on-board storage limit. In our experiments
we discarded such constraint.

Figure 3 reports the results that we have obtained assuming a computer with
a memory limit of 1.5 Gigabytes. The first column identifies the instance. The
second column indicates the induced width with the min-degree ordering. The
third, fourth and fifth columns report the memory requirements in Megabytes
with the three algorithms for different values of z. If the number is given in ital-
ics it means that it surpasses the space limit of the computer and the algorithm
could not be executed (the memory requirement was obtained from the analysis
of the CT). The sixth and seventh column indicate the value of z and the lower
bound that is obtained. For each instance, we report results for three increasing
values of z: the limit for MBE, MBE’ and dfMBE. It can be observed that MBE’
requires from 2 to 10 times less memory than MBE, which allows the execution
with values of z up to 4 units higher. However, the most impressive results are
obtained with dfMBE, which may require 275 times less space than MBE (e.g.
instance 1405). As a consequence dfMBE can be executed with values of z up to
9 units higher (e.g. instance 1506), which in turn yields lower bounds up to 20%
higher (e.g. instance 507). The mean space gain from MBE to dfMBE is 113.34,
the mean increment of z is 7 and the mean increment of the lower bound is 8.74%.
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Memory Requirement (Mb) Lower
Instance w∗ CTMBE CTMBE′ CTdfMBE z Bound

17161 10373 1052 27 158274
1504 43 1945 911 65 23 148259

1240 577 34 22 142257
227707 50435 1310 27 180356

1506 51 5503 1099 24 21 180316
1185 214 4 18 166305

137825 11250 524 26 210085
1401 156 11430 874 40 22 203083

1286 131 6 19 196080
237480 28144 1048 27 223189

1403 156 13416 1277 36 22 193185
1153 125 5 18 189180

325213 54378 1179 27 219302
1405 156 7226 1317 24 21 214283

1548 289 3 18 203268
113739 14764 1048 27 141105

28 139 8374 1424 65 23 141105
694 109 5 19 148105

22558 6032 1572 28 125050
42 51 2112 1123 147 24 135050

1090 590 65 23 133050
82823 38425 917 27 206

5 83 1861 843 16 21 192
536 253 4 18 186

17903 7966 1048 27 5197
408 60 2609 1355 163 24 6195

1408 752 5 23 5197
58396 24513 1179 27 14258

412 61 2771 882 40 22 17224
1420 434 16 21 14220

172071 24566 1048 27 19295
414 144 8605 1205 49 22 18301

1154 166 4 19 18292
15833 8644 1067 27 18231

505 39 2834 1534 139 24 19217
1488 800 65 23 19206

76346 16932 1310 27 15286
507 91 6222 1571 81 23 15280

1217 250 10 20 12255
130553 26671 1114 27 18286

509 151 6812 1008 40 22 17285
946 162 4 19 17267

Fig. 3. Spot5 results. Memory bound of 1.5 Gb.

5.2 Probabilistic Reasoning

Bayesian Networks provides a formalism for reasoning about partial beliefs under
conditions of uncertainty [2]. They are defined by a directed acyclic graph over
nodes representing variables of interest. The arcs indicate the existence of direct
causal influences between linked variables quantified by conditional probability
tables (CPTs) that are attached to each cluster of parents-child nodes in the
network. There are several possible tasks over a belief network. We tested the
performance of our scheme for solving the most probable explanation (MPE)
task: given evidence x1 ← v1, . . . , xp ← vp (i.e., some variable assignments), its
MPE is the maximization of the objective function,
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P (X) =
r∏

i=1

fi(X)

subject to tuples that respect the evidence. It is easy to see that MPE can be
expressed as a WCSP by replacing probability tables by their logarithm. We use
two types of belief networks: Random and Noisy-OR Networks [12].

Uniform Random Bayesian Networks
Memory Requirement (Mb) Lower

N, C, P w∗ CTMBE CTMBE′ CTdfMBE z Bound % better
3635 598 239 26.36 18.61 40

128, 85, 4 31.71 2579 315 171 25.75 18.35 90
370 84 45 22.95 17.56 -
4144 999 205 26.21 20.68 50

128, 95, 4 43.96 1941 317 146 24.9 20.34 90
335 94 43 22.5 19.51 -
4537 825 264 26.2 23.58 60

128, 105, 4 38.71 2192 391 185 25.3 23.27 95
358 89 48 22.7 22.16 -
4114 807 261 25.85 26.22 60

128, 115, 4 48.32 1823 345 172 24.7 25.61 100
355 99 43 22.5 24.69 -

Noisy-OR Pnoise = 0.40
Memory Requirement (Mb)

N, C, P w∗ CTMBE CTMBE′ CTdfMBE z % solved
4777 662 164 26.35 73

128, 85, 4 35.39 2805 256 153 25.6 68
331 68 29 22.65 47
4331 681 222 26.25 84

128, 95, 4 38.61 2545 308 169 25.35 84
340 74 34 22.55 58
3125 683 260 25.55 50

128, 105, 4 43.06 1646 285 136 24.6 50
364 91 45 22.45 15
4446 918 199 25.95 65

128, 115, 4 46.51 1530 352 149 24.75 50
340 102 46 22.55 25
Noisy-OR Pnoise = 0.50

4780 631 242 26.45 75
128, 85, 4 40.74 3154 330 177 25.7 75

384 71 33 22.8 60
3663 356 243 25.89 55

128, 95, 4 38.12 2170 309 158 25.15 55
368 76 49 22.63 25
5080 952 245 26.4 65

128, 105, 4 43.04 2006 329 109 24.8 65
371 79 33 22.6 45
3506 964 227 26.05 60

128, 115, 4 46.25 1552 342 176 24.7 45
384 94 43 22.5 35

Fig. 4. MPE on bayesian networks. 20 samples. Memory bound of 512 Mb.

Uniform random bayesian networks and noisy-OR networks are generated
using parameters (N, K, C, P ), where N is the number of variables, K is their
domain size, C is the number of conditional probability tables, and P is the
number of parents in each conditional probability table. Instances are generated
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by selecting C variables at random. For each selected variable xi, P parents are
randomly selected from the set of variables with index less than i (if i ≤ P only
i− 1 parents are selected).

For random bayesian networks, each probability table is randomly generated
using a uniform distribution. For noisy-OR networks, each probability table rep-
resents a noisy OR-function. For each CPT, we randomly assign to each par-
ent variable yj a value Pj ∈ [0..Pnoise]. The CPT is then defined as, P (x =
0|y1, . . . , yP ) =

∏
yj=1 Pj and P (x = 1|y1, . . . , yP ) = 1− P (x = 0|y1, . . . , yP ).

Fig 4 present results of random and noisy-OR networks assuming a computer
with a memory limit of 512 Megabytes. In each table we fix parameters N , K
and P and change the value of C in order to control the network’s sparseness.
For each parameter setting we generate and solve a sample of 20 instances. We
always assumed empty evidence and report mean values.

It can be observed that dfMBE requires from 15 to 29 times less memory
than MBE, which allows the execution with values of z up to 3 units higher.
The mean space gain from MBE to dfMBE is 18.56, the mean increment of z is
3.51 and the mean increment of the lower bound is 5.75%. For uniform random
networks we also report the mean number of instances executed with CTMBE′

and CTdfMBE in which the lower bound increases with respect its execution
with CTMBE and CTMBE′ , respectively (i.e., %better column).

With random networks we also executed the efficient WCSP branch-and-
bound solver Toolbar 1 initializing its upper bound with the lower bound
given by dfMBE and observed that it did not terminate with a time limit of
one hour. Considering that dfMBE with the highest z value takes less than 300
seconds in this domain, we conclude that dfMBE is a better approach than
iterative deepening branch and bound.

We observed that noisy-OR networks could be easily solved to optimality
with ToolBar. Therefore, we also report for each parameter setting and each
value of z, how many instances are solved to optimality with MBE, MBE’ and
dfMBE.

5.3 Resource Allocation

For our third experiment, we consider the frequency assignment problem where
the task is to assign non-interfering frequencies to a set of communication links.
We experimented with some instances of the so-called radio link frequency as-
signment problem [13] that can be expressed as WCSP. The optimization task
is to provide the assignment with minimum global interference. In its usual for-
mulation, these instances have binary cost functions and domains of size up to
44. We experimented with CELAR6, CELAR7 and graph instances. For lack of
space, Fig 5 only reports graph instances where we obtained the best results. It
can be observed that dfMBE is also very effective in this domain. It can require
on average by 430.25 times less memory than MBE, which allows the execution
with values of z up to 5.25 units larger.

1 http://mulcyber.toulouse.inra.fr/projects/toolbar/



576 E. Rollon and J. Larrosa

Memory Requirement (Mb)
Instance w∗ CTMBE CTMBE′ CTdfMBE z

15955 1992 49 28
graph05 135 12880 1102 86 27

1483 201 25 24
30364 2544 300 28

graph06 296 17291 1320 300 27
1354 117 10 23

14797 1866 527 28
graph07 146 8187 266 49 27

1511 180 45 24
30331 2044 113 28

graph11reduc 275 15630 1183 113 27
1267 154 22 23

55260 3079 22 28
graph11 495 5935 338 30 25

547 83 11 21
23532 3570 692 28

graph12 234 3399 493 134 26
1379 230 21 24

67123 6447 723 28
graph13reduc 619 9964 1070 121 25

1572 141 13 22
89091 6828 1067 28

graph13 706 7354 515 24 25
806 161 11 21

Fig. 5. RLFAP. Memory bound of 1.5 Gb.

6 Conclusions and Future Work

Mini-bucket elimination (MBE) is a well-known approximation algorithm for
combinatorial optimization problems. Its output is an upper and lower bound
of the problem optimum. It has a control parameter with which the user can
trade computing resources (namely, cpu time and memory) for approximation
accuracy. With current computers it is usually the space rather than the cpu
time what imposes a technological limit to the control parameter.

In this paper we have introduced a set of improvements to the spatial cost of
MBE. Our approach is based on the concept of computation trees (CT), which
provide a pictorical view of the MBE execution. We show that CTs uncover some
space inefficiencies of MBE. Such inefficiencies can be overcome by local trans-
formations of the CT that preserve the outcome of the algorithm and its time
complexity. In particular, we introduce the concepts of branch re-arrangement
and vertical compaction of CTs.

Besides, we show that if we sacrifice the upper bound we can deallocate inter-
mediate computations that are very space consuming. In this context, we intro-
duce depth-first MBE (dfMBE), that traverses the CT in a depth-first manner.
The space demands of dfMBE can also be reduced by additional CT transfor-
mations such as children re-ordering and children merging.

We demonstrate the relevance of dfMBE in scheduling, probabilistic reason-
ing and resource allocation where we show that dfMBE can divide the space
demand of MBE by a factor of 18.56 to 430.25 depending on the domain. Such
space decrement allows the execution of dfMBE with higher values of the control
parameter, which in turn, may yield better bounds.
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In our future work we want to investigate more compact encodings for cost
tables. A simple approach is to establish a default cost and store (e.g. in a hash
table) only those tuples with non-default cost. A more sophisticated approach
is to explore encodings based on Binary Decision Diagrams (BDDs), a graph
based representation for boolean function manipulation. In this paper we have
assumed a given mini-bucket partition policy. In our experiments, we observed
that the chosen policy may have a big influence in both the topology of the CT
and the quality of the reported bounds. We want to improve our understanding
of such phenomenon and establish robust and effective policies.
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Abstract. QBF is the problem of deciding the satisfiability of quantified boolean
formulae in which variables can be either universally or existentially quantified.
QBF generalizes SAT (SAT is QBF under the restriction all variables are exis-
tential) and is in practice much harder to solve than SAT. One of the sources of
added complexity in QBF arises from the restrictions quantifier nesting places on
the variable orderings that can be utilized during backtracking search. In this pa-
per we present a technique for alleviating some of this complexity by utilizing an
order unconstrained SAT solver during QBF solving. The innovation of our paper
lies in the integration of SAT and QBF. We have developed methods that allow
information obtained from each solver to be used to improve the performance
of the other. Unlike previous attempts to avoid the ordering constraints imposed
by quantifier nesting, our algorithm retains the polynomial space requirements
of standard backtracking search. Our empirical results demonstrate that our tech-
niques allow improvements over the current state-of-the-art in QBF solvers.

1 Introduction

QBF is the problem of deciding the satisfiability of a quantified boolean formula where
variables can be either universally or existentially quantified. It generalizes SAT in
which all variables are (implicitly) existentially quantified. Constraint satisfaction prob-
lems (CSPs) can be similarly generalized from their purely existential version to QCSP
where some of the variables become universal [5].

Adding universally quantified variables yields a considerable increase in expres-
sive power, and consequently QBF and QCSPs can compactly represent a much wider
range of problems than SAT and ordinary CSPs. These include problems like condi-
tional planning, non-monotonic reasoning, problems in electronic design automation,
scheduling, model checking and verification, see, e.g., [6,12,21].

However, this added expressiveness comes with a price. Namely QBF is much
more difficult to solve than SAT. From the point of view of complexity theory QBF
is PSPACE-complete where as SAT is “only” NP-complete [23]. Despite this intrinsi-
cally high complexity the goal of developing practically useful QBF solvers still seems
to be feasible given sufficient conceptual and technical advances. This paper presents
some new techniques that make progress towards this goal.

Most current QBF solvers, e.g., QuBE [15], Semprop [17], Quaffle [25] are adapta-
tions of the classic DPLL backtracking search algorithm originally developed for solv-
ing SAT [10]. There are two main properties of QBF that must be accommodated by
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the search. First, the search must solve both settings of every universal variable, and
second the variable ordering followed during search must respect the ordering imposed
by quantifier nesting. Both of these properties make QBF solving slower than SAT. The
first property is intrinsic to QBF, and must be accommodated in some fashion by any
QBF solver. The second property is, however, somewhat more tractable, and various
attempts have been made to avoid the variable ordering constraint. To date, however,
all techniques for avoiding this constraint require exponential space in general, e.g., the
Skolemization/expansion approach used by the Quantor [4] and Skizzo [3] solvers and
the BDD technique used in [1].

In this paper we develop an algorithm that makes extensive use of order-free SAT
solving in an attempt to alleviate (but not completely remove) the variable ordering con-
straint. Our algorithm retains the important polynomial space property of backtracking
search. It can also use any extra space that can be provided to improve its performance,
but extra space is not required for correctness (this is a common feature with current
SAT and QBF backtracking solvers).

We utilize a backtracking SAT solver in a backtracking QBF solver. Because both
solvers are doing backtracking search we are able to develop techniques to integrate
them very tightly. For example, both solvers search the same tree and share all of their
datastructures, including using the same stack to store the current path. The key inno-
vation of our method lies in techniques for sharing information between the two solvers
so that information computed during SAT solving can be used to improve QBF solving
and vice versa. The result is a QBF solver that is able to improve on current state of the
art on a number of benchmark suites.

In the rest of the paper we first present some necessary background, and set the
context for our algorithm. We then present the details of our algorithm, prove some
results about the algorithm’s formal behavior and provide empirical evidence of its
effectiveness. We close with a discussion of previous work, directions for future work,
and some conclusions.

2 Background

A quantified boolean formula has the form Q.F , where F is a propositional formula
expressed in CNF and Q is a sequence of quantified variables (∀x or ∃x). We require
that no variable appears twice in Q and that the set of variables in F and Q is identical.

A quantifier block qb of Q is a maximal subsequence of Q where every variable
in qb has the same type of quantifier. We order the quantifier blocks by their sequence
of appearance in Q: qb1 < qb2 iff qb1 appears before qb2 in Q.

Each variable x in F appears in some quantifier block, which we denote as qb(x),
and the ordering of the quantifier blocks imposes a partial order on the variables. For
two variables x and y we say that x <qb y iff qb(x) < qb(y). Note that the variables
in the same quantifier block are unordered, so we write x ≤qb y iff qb(x) ≤ qb(y). We
also say that x is universal (existential) if its quantifier in Q is ∀ (∃).

For example, ∃e1e2.∀u1u2.∃e3e4.(e1, u2, e4) ∧ (¬u2,¬e4) is a QBF with Q =
∃e1e2.∀u1u2.∃e3e4 and F equal to the two clauses (e1, u2, e4) and (¬u2,¬e4). The
quantifier blocks in order are ∃e1e2, ∀u1u2, and ∃e3e4, and we have that, e.g., e1 <qb

e3, u1 <qb e4, u1 is universal, and e4 is existential.
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A SAT modelMS of a CNF formula F is a truth assignment π to the variables of
F that satisfies every clause in F . We denote the value of a variable v in π by π(v). In
contrast a QBF model (Q-model)MQ of a quantified formula Q.F is a tree of truth
assignments in which the root is the empty truth assignment, and every node n assigns
a truth value to a variable of F not yet assigned by one of n’s ancestors. The treeMQ

is subject to the following conditions. (1) For every node n inMQ, if n assigns a truth
value to a universal variable x then n has exactly one sibling that assigns the opposite
truth value to x, and if n assigns a truth value to an existential variable then n has no
siblings. For every sequence of truth assignments π from the root to a leaf ofMQ we
have: (2) π must assign the variables in an order that respects <qb . That is if n assigns x
and one of n’s ancestors assigns y then we must have that y ≤qb x. And (3) π is a SAT
model of F . A Q-model has a path for every possible setting of the universal variables
of Q, and thus has size exponential in the number of universals contained in Q. We
say that a QBF Q.F is QSAT if it has a Q-model. The QBF problem is to determine
whether or not Q.F is QSAT.

DPLL works on the principle of assigning variables, simplifying the formula to
account for that assignment and then recursively solving the simplified formula. The
reduction of a formula Q.F by a literal � (denoted by Q.F |�) is the new formula
Q′.F ′ where F ′ is F with all clauses containing � marked as being satisfied (implic-
itly removed) and ¬� marked as falsified in all remaining clauses (implicitly � has been
removed from these clauses), and Q′ is Q with the variable of � and its quantifier re-
moved. For example,

(
∀xz.∃y.(¬y, x, z)∧(¬x, y)

)
|¬x = ∀z.∃y(¬y, z), where (¬x, y)

has been marked as satisfied and x has been marked as falsified in (¬y, x, z). An alter-
native view of conditions (2) and (3) on a Q-model given above is that the subtree below
every node n must be a Q-model of the formula Q.F |πn where πn is the sequence of
literals made true on the path from the root to (and including) n.

From the definition of a Q-model it follows that if F ′ is logically equivalent to F
(F ′ has the same SAT models as F ) then Q.F is QSAT if and only if Q.F ′ is QSAT:
condition 3 above is invariant for F and F ′. Thus unit propagation and clause learning
can be performed without changing Q.F ’s QSAT status: both of these transform F to
a logically equivalent F ′. A QSAT preserving (but not SAT preserving) transformation
that can additionally be performed on Q.F is universal reduction. The universal re-
duction of a clause c is to remove all universal variables v from c such that for every
other variable x in c we have x ≤qb v. Such universals are called tailing. The intuition
is as follows. Say that v ∈ c is a tailing universal, then in any Q-Model, c must be
satisfied along any path prior to v being instantiated. (Thus c with v removed imposes
the same constraint on the set of Q-models as does c). If not then since v is universal,
any path that fails to satisfy c prior to instantiating v must have an extension in which v
is set to false: but then that extension will falsify c and violate condition (3).

We call the application of unit propagation and universal reduction until closure
Q-propagation, and denote by QProp(Q.F ) the new formula that results from Q-
propagation. In Q-propagation any universal reduction steps are always performed prior
to any unit propagation steps: a unit clause containing only a universal variable should
yield the empty clause rather than forcing the universal.
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The algorithm utilized in modern SAT solvers (e.g., [18]) can be adapted to solve
QBF. A recursive version of this algorithm is shown in Fig. 1. Modern backtracking
QBF solvers employ two non-chronological backtracking schemes: conflict analysis
and solution analysis. Conflict analysis is a standard SAT technique that involves learn-
ing new clauses via a resolution process. A failure deadend (line 2) is reached when F
contains a clause in which all literals have been falsified by some subset of the literals
that reduced F at the previous levels (the prefix). From this falsified clause a new falsi-
fied clause c can be learned via a process of resolution and universal reduction (conflict
analysis). DPLL-QBF will then backtrack to the asserting level of c, which is the level
where all but one of the literals in c have been falsified. This is the level where c is
made unit (line 4). After returning from all levels deeper than BTLevel (line 13-14 or
19-20), the solver arrives at line 12 or line 19, where we now have that the new clause
c is unit and forces �. Notice that the solver does not actually undo the original deci-
sion made at this level (the setting of the variable v chosen at line 9). Rather it simply
augments the reduction of Q.F by the new unit implicant � (line 11 and 18). Thus the
solver might return to this level on failure a number of times: each time it discovers
that another literal is implied at this level. Eventually, the recursive call at line 12 re-
turns success at this level or returns to a higher level. (Each failure return sets another
variable, so a failure return to this level at line 12 can only occur a finite number of
times.)

1: 〈bool Result, literal forced, int BTLevel〉QBF-DPLL(Q.F , Level)
2: if F contains a falsified clause then
3: Compute new clause c by Conflict Analysis
4: forced = deepest literal in c and BTLevel = level c is made unit
5: return 〈FAIL, forced, BTLevel〉
6: if all clauses of F are satisfied then
7: Compute Backtrack Level (BTLevel) by Solution (Cube) Analysis
8: return 〈SUCCEED, –, BTLevel〉
9: Pick v from the first quantifier block and let � = v or ¬v

10: repeat
11: Q.F = QProp

(
Q.F |�

)
12: 〈Result, �, BTLevel〉 = QBF-DPLL

(
Q.F, Level + 1

)
13: if BTLevel < Level then
14: return 〈Result, �, BTLevel〉
15: until Result == SUCCEED /* v must be universal for this to happen */
16: let � be v’s opposite value from line 9.
17: repeat
18: Q.F = QProp

(
Q.F |�

)
19: 〈Result, �, BTLevel〉 = QBF-DPLL

(
Q.F, Level + 1

)
20: if BTLevel < Level then
21: return 〈Result, �, BTLevel〉
22: until TRUE /* line 19 will eventually return BTLevel < Level */

Fig. 1. DPLL for QBF
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Success returns occur as a consequence of solution analysis (line 7). Solution anal-
ysis is a technique particular to QBF that identifies a subset of the assignments that
are sufficient to make the QBF QSAT. This subset of assignments is called a cube. The
solver can then backtrack to the deepest universal in the cube, skipping other universals
not mentioned in the cube and any existentials irrespective of whether or not they are
in the cube. Thus line 16 (success return) can be reached only if v is universal. A cube
containing one setting of a universal can be combined with another cube containing the
other setting to obtain a new cube in a cube resolution process akin to the resolution
of clauses. In particular, if the deepest universal in the cube has already had its other
value solved, the solver will combine these two cubes and remove the deepest universal.
Hence, on success the solver always backtracks to a universal variable whose other side
is not yet solved (line 12), and thus the recursive call on line 19 can never return with
a successful result. We can, however, return from the call at line 19 a number of times
with newly implied literals learned from failures by conflict analysis.

One additional aspect of solution and conflict analysis is that the new clauses and
cubes can be stored (learned), reused along other paths in the search, and combined
together to produce more powerful clauses and cubes. Cube and clause learning is es-
sential in achieving state of the art performance in QBF solving. In Fig. 1 lines 2-4 and
6-7 would be modified to take into account learned clauses and cubes (e.g., at line 2 we
would also fail if any learned clause was falsified, and at line 6 we would also succeed
if any learned cube became true, similarly the backtrack level computed at lines 4 and 7
would take into account the already learned cubes and clauses). Cube and clause learn-
ing is developed in more detail in, e.g., [14,16,24,25]. With the enhancements of cube
and clause learning QBF-DPLL as specified in Fig. 1 is quite close to state of the art
solvers like Quaffle [25] and QuBE [15].

Finally note that QBF-DPLL requires only linear space (in the number of variables
n), and only quadratic space (in n) when it utilizes non-chronological conflict and so-
lution backtracking.1 However, when clause and/or cube learning is employed (i.e.,
the cubes and clauses are stored) the algorithm can consume as much space as can be
provided. Nevertheless, learning clauses and cubes does not affect the soundness or
completeness of the algorithm, it only helps to improve performance. In particular, we
can adopt any strategy for deleting these learned clauses and cubes when we run out of
space, without affecting the correctness of the algorithm. In this sense QBF-DPLL, like
most current SAT solvers, is an “any-space algorithm,” it can utilize any space provided
above and beyond its basic polynomial space requirements, but it can also work under
any fixed space bound (above its basic requirements).

At line 9 we see that QBF-DPLL must always branch on a variable from the out-
ermost quantifier block. This imposes a constraint on the possible variable orderings
the search can use. We now turn to a new algorithm S-QBF that tries to alleviate this
constraint on variable ordering imposed by the quantifier prefix Q.

1 In the worst case with conflict and solution backtracking we must store a clause (cube) for ev-
ery failed existential value (successful universal value) along the current path being explored.
These clauses (cubes) have maximum size equal to the number variables n, and the current
path can contain at most n literals.
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3 S-QBF

As explained in the introduction there is no escaping the fact that in QBF we have
to ensure that both settings of each universal variable are solvable.2 The constraint on
variable ordering imposed by the quantifier sequencing can also be a significant imped-
iment to performance. In SAT, e.g., it is provable that an inflexible variable ordering can
cause an exponential explosion in the size of the backtracking search tree. That is, there
exist families of UNSAT problems for which any DPLL search tree where each branch
follows a fixed variable ordering is exponential in size, whereas a quasi-polynomially
(O(nlog n)) sized DPLL search tree exists when a dynamic ordering is used [8,2].

This observation (also bolstered by empirical observations of the tremendous im-
pact variable ordering has on DPLL SAT search), is the underlying motivation for our
approach. In particular, consider a QBF formula Q.F in which the body F is UNSAT.
If all of quantifier blocks have size 1, QBF-DPLL will be forced to follow a fixed static
variable ordering in proving Q.F to be UNQSAT. On the other hand an order unre-
stricted SAT solver might be able to determine that F is UNSAT very quickly, which
will immediately tell us that Q.F is UNQSAT.

The idea of testing the body of the formula, F , can be used recursively at every in-
vocation of QBF-DPLL, just before line 9 prior to recursively solving the entire formula
(body plus quantifier) with the order constrained QBF search. If the body F is UNSAT,
we can backtrack immediately. If F is SAT, then we still do not know whether or not
Q.F is QSAT, so we have to continue recursively solving Q.F with our QBF solver.

Furthermore, if F is SAT our SAT solver will find a satisfying truth assignment for
F . This truth assignment is a sensible candidate for the left-most path in a Q-model. So
after we obtain the SAT solution we can follow this solution in the QBF solver during its
first (left-most) descent. It can, however, be the case that the SAT truth assignment is not
in fact a feasible left-most path for the QBF solver. In particular, this truth assignment
might not survive the stronger Q-propagation performed by the QBF solver. For exam-
ple, if Q.F = ∀a, b.∃c.(a, c) ∧ (b,¬c), then the SAT solver could return π = 〈¬a, b, c〉
as SAT truth assignment for F . However, the QBF solver following this solution would
first instantiate ¬a which by Q-Propagation (unit-propagation plus universal reduction)
would reduce Q.F to ∀b.(), i.e., F would contain an empty clause.

Putting these pieces together we obtain the S-QBF algorithm given in Fig. 2. The
algorithm is a modification of QBF-DPLL. S-QBF is first invoked with the input for-
mula Q.F , Level equal to 1, and π = {}. Its first task is to find a SAT solution (line
4-8). The SAT solver might discover a number of literals implied at higher levels. Lit-
erals implied at higher levels cause S-QBF to backtrack, assert those literals, and then
proceed downwards again. The SAT solver might also discover literals implied at the
current level. These literals are used to reduce the input formula Q.F (line 8) via Q-
propagation: these literals are independent of any choices made by the SAT solver so
their consequences need to be accounted for by the QBF solver. After Q-propagating
these implied literals the SAT solver is called again to see if it can find a SAT solution
in light of these added constraints on F .

2 Cube learning is specifically designed to improve the efficiency of achieving this.
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1: 〈bool Result, literal forced, int BTLevel〉 S-QBF(Q.F , Level, π)
2: if F contains a falsified clause or if all of its clauses are satisfied. then
3: Perform non-chronological backtracking using conflict or solution analysis as in QBF-

DPLL lines 2-8.
4: while π == {} do /* No current SAT solution */
5: 〈π, �, BTLevel〉 = SAT

(
F, Level

)
6: if BTLevel < Level then /* SAT can cause S-QBF to backtrack */
7: return 〈FAIL, �, BTLevel〉
8: Q.F = QProp

(
Q.F |�

)
9: Pick v from the first quantifier block and let � = π(v)

10: repeat /* Second and subsequent invocations of S-QBF need to find new SAT solution */
11: Q.F = QProp

(
Q.F |�

)
12: 〈Result, �, BTLevel〉 = S-QBF

(
Q.F, Level + 1, π

)
13: if BTLevel < Level then
14: return 〈Result, �, BTLevel〉
15: π = {}
16: until Result == SUCCEED
17: let � be v’s opposite value from line 9.
18: repeat /* First and all subsequent invocations of S-QBF need to find new SAT solution */
19: Q.F = QProp

(
Q.F |�

)
20: 〈Result, �, BTLevel〉 = S-QBF

(
Q.F, Level + 1, {})

21: if BTLevel < Level then
22: return 〈Result, �, BTLevel〉
23: until TRUE /* line 20 will eventually return BTLevel < Level */

Fig. 2. S-QBF

Eventually, the SAT solver finds a SAT solution (π is returned containing this solu-
tion), or causes a backtrack to a higher level in the QBF solver. If a solution is found, the
QBF solver heuristically tries to follow this solution (in quantifier order) by choosing a
value for v that agrees with π (line 9). The SAT solution π is passed down to the next
recursion where it is followed as far as possible, either to a failure or a Q-solution at
line 2-3.3 Any conflicts encountered will cause a backtrack which will return to line 20
or 12 of some invocation after which the next invocation will call the SAT solver again.
Thus the SAT solver is being used to refute UNSAT subtrees, and more importantly to
compute new conflict clauses that can (a) cause the QBF solver to backtrack and (b)
discover that various literals are implied at previous levels of the search. All of this in-
formation, computed by the SAT solver, is sound for the QBF solver: UNSAT subtrees
are UNQSAT, any new clause learned by the SAT solver is a valid new clause for the
QBF solver, and if a literal � is SAT implied at a previous level of the tree then � is
Q-SAT implied at that level as well.

It should be noted that the SAT solver can also make an S-QBF invocation backtrack
from line 20, even though we know that the other side of the universal branched on in

3 Q-propagation might cause S-QBF to fail while following π even though π is a SAT solution.
Note that Q-Propagation cannot be applied in the SAT solver since Q-Propagation is only
valid when the variables are instantiated in quantifier order whereas the SAT solver is order
unconstrained.
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that invocation has already been successfully solved. This might seem strange, since at
this point we already know that the current prefix (above the Level of this invocation)
contains at least one satisfying assignment below it. Thus one might think that the SAT
solver could never then conclude that the prefix is contradictory. However, although
the prefix is not SAT contradictory, it could still be QBF contradictory. For example,
say that the prefix contains the literal a, the body F contains the clauses (¬a,¬b, c, d),
(¬a,¬b, c,¬d), (¬a,¬b,¬c, d), (¬a,¬b,¬c,¬d), b is universal, b <qb c, and b <qb d.
The QBF solver will be able to solve the setting ¬b without difficulty, as this setting
satisfies all of these clauses. However, when at line 20 the setting b is made these four
clauses become contradictory. Q-propagation cannot detect the contradiction so the SAT
solver will be invoked in the next recursive S-QBF call. SAT will be able to learn the
new clause (¬a,¬b), which after universal reduction becomes (¬a). This will cause the
QBF solver to backtrack all the way to the point where a was added to the prefix.

Integration of SAT and QBF. In our implementation of S-QBF we built our own
SAT solver (utilizing all of the modern techniques like 1-UIP clause learning, watched
literals, etc. [18]). In this way we were able to obtain a much tighter integration between
the SAT solver and the QBF solver, e.g., sharing of datastructures.

Clause learning is the basic unit of communication between the two solvers. As
pointed out above, learned clauses are not necessary for correctness, but they are very
helpful for efficiency. In particular, both the QBF solver, via contradictions generated
via Q-propagation, and the SAT solver via contradictions generated via unit propagation
can learn clauses. Universal reduction is applied to these learned clauses to make them
more powerful. All of these learned clauses arise from sequences of Q-resolution steps,
thus as shown in [7] they are all logical consequences of the input QBF. That is, they
do not alter the QSAT status of the input. This means that any clause learned by either
solver can be used by both solvers to prune paths from the search space they explore.

This is useful as each solver is able to learn different kinds of clauses. In partic-
ular, since the SAT solver is order unrestricted it can learn powerful clauses via its
VSIDS heuristic which would never be learned by the order restricted QBF solver.
These clauses can significantly prune the set of paths explored by the QBF solver. On
the other hand the QBF solver is able to employ stronger Q-propagation and so it also
can learn clauses that the SAT solver could never learn. These clauses allow the SAT
solver to prune paths that are fine from the point of view of SAT but which are contra-
dictory with respect to QBF.

Another way that the SAT and QBF solvers are integrated involves techniques for
finding “good” SAT solutions (if any exist) [13]. In particular, a good SAT solution is a
solution that will allow the QBF solver to generate a good cube (at line 3) if the QBF
solver is able to follow the SAT solution down to a leaf. Our technique here is to alter
the SAT heuristic for choosing the next decision literal so as to minimize the number of
clauses satisfied only by universal variables in the solution. In our implementation we
try to branch on existentials that appear in clauses currently only satisfied by universals.
Thus, this heuristic tries to ensure that as many clauses as possible are satisfied by
existentials. This will result in a smaller cube being generated during solution analysis.

Finally, unlike the rigid prescription of Fig.2, our implementation employs some
additional heuristic flexibility in deciding when to invoke the SAT solver. The most
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important difference is that on many problems the SAT solver will return a SAT solution
that fails when we try to follow it using the stronger Q-propagation. This failure then
invokes another call to SAT which returns another SAT solution which again fails as
we follow it. This sequence of “SAT-ok”, “QBF-bad” solutions returned by SAT can be
quite long and time consuming. Hence, if this happens more than a certain number of
times (5 in our implementation) we give up on SAT solving for this descent and instead
try to find a solution using the QBF solver and Q-propagation. In most such cases Q-
propagation is able to quickly descend to a leaf from which point we continue with
S-QBF. Otherwise the Q-propagation descent learns a conflict, we backtrack, and again
continue with S-QBF.

Formal Results

Theorem 1. S-QBF is sound and complete.

A sketch of the proof is as follows. First by relating the operations performed by QBF-
DPLL on failure return to Q-resolution steps [7] it can be shown that QBF-DPLL will
backtrack from the root of the search tree with FAIL only if its input is Q-UNSAT.
Similarly it can be show that any recursive invocation of QBF-DPLL backtracks with
SUCCESS only if its input is QSAT. Thus QBF-DPLL is sound. That it is also complete
follows from the fact that no recursive call has exactly the same prefix of assignments
as another call (after a failure a new literal is added to the prefix, and after a success
the prefix has a different value for one of the universal variables). Since there are only a
finite number of sets of assignments, there can only be a finite number of recursive calls,
and the root QBF-DPLL invocation must eventually return (with the correct answer).

SAT in S-QBF only allows S-QBF to backtrack on failure, it does not affect success
backtracking. Thus, SUCCESS returns continue to correctly prove QSAT. Furthermore,
all operations performed by SAT during failure backtracking are sound Q-resolution
steps, so S-QBF also preserves the property that it backtracks from the root with FAIL
only if its input is Q-UNSAT. That is, S-QBF retains QBF-DPLL’s soundness property.

Observation 1. S-QBF is systematic. That is, it never revisits the same set of assign-
ments.

The previous argument still holds so S-QBF retains the systematic property of QBF-
DPLL. This also means that S-QBF is complete.

4 Empirical Results

4.1 Benchmark Settings

We compared an implementation of our approach with two state of the art search based
QBF solvers—Quaffle [25] (version as of Feb. 2005) and Qube (release 1.3) [15]. We
also ran experiments with the non search based solver Quantor [4] (version as of Jan
2004). Like these solvers our implementation also utilizes techniques for detecting
monotone literals, heuristics for guiding cube resolution, and some other standard im-
provements over the basic algorithm given in Fig.2.



Using SAT in QBF 587

Table 1. Summary of results reported in Table 2. Shown are the percentage of failed runs and the
CPU time used (for each benchmark family and in total).

Solver Blocks Chain Comp Game K Robots Term Toilet Total
S-QBF 0% 66% 25% 0% 37% 0% 0% 0% 22%

2, 991s 10, 493s 5, 000s 1, 345s 70, 848s 959s 2, 577s 672s 26h
Qube 20% 0% 75% 57% 25% 0% 66% 50% 31%

10, 305s 3, 499s 16, 030 39, 723s 59, 594s 2, 373s 12, 566s 11, 057s 43h
Quaffle 20% 33% 0% 71% 50% 0% 0% 25% 43%

5, 709s 9, 978s 69s 50, 217s 96, 251s 410s 299s 6, 057s 47h
S− 0% 66% 50% 57% 43% 0% 0% 25% 40%

4, 932s 10, 439s 10, 000s 42, 548s 84, 279s 2, 400s 3, 246s 9, 486s 45h

We used the following benchmark families from QBFLib: Adder, FlipFlop, Von-
Neumann, Counter, Toilet c/g, Robots D2, Term, Comp, Z4ml, S1169, S1196, S298
and all instances provided by Pan and Rintanen (≈ 350 instances). In addition, we used
a benchmark family introduced in [20] called Game (120 instances).

We excluded the families Mutex, Szymanski and Tree since all of them can be triv-
ially solved by simple preprocessing. Further details will be discussed in a subsequent
paper. We also excluded all of the other families from QBFLib (2004), e.g., Jmc and
Uclid, because only one or two of their instances could be solved by any of the search
based solvers.

Due to space limitations we exclude results on any instance that had one of the
following properties: (1) the difference in solving time between all search based solvers
is small (less than either 200 seconds or within 10% of the fastest time); or (2) no search
based solver can solve it in under 5,000 seconds. The remaining results are shown in
Table 2. All experiments were performed on a 2.4 GHz Pentium IV with 3GB of RAM.

A summary of these results is presented in Table 4.1. In this table we show the
total time used by each solver for all instances in each benchmark family (among those
instances shown in Table 2. The “Total” column show the sum of the time over all
benchmarks. To obtain a time in the presence of failures we added a penalty of 5, 000
seconds per failure. (Thus the times should be used only for qualitative comparisons). In
addition, the table shows the percentage of failed instances for each benchmark family
and in total.

4.2 Discussion

Table 4.1 shows that our new approach improves the current state of the art in search
based solvers, in aggregate solving the most problems and taking the least time of any
of the solvers. S-QBF is not always the fastest solver, but it does improve on Quaffle and
Qube on 21 out of the 68 problems reported on in Table 2. In many of the other cases it
is very competitive, being the worst solver of the three search based solvers on only 9
of the 68 problems. As noted above we experimented with many other benchmarks, but
on these the solvers could not be effectively discriminated.

To obtain a more accurate assessment of the benefit provided specifically by our
new techniques for using SAT (vs. differences in implementation and heuristics), we
built a derivative of S-QBF. This derivative (denoted S−) used the same code base, the
same variable ordering heuristic, the same cube learning and clause learning techniques,
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etc. S− is simply S-QBF without the SAT solver. This provided us with a much more
accurate control against which to assess our new techniques. The summary performance
of S−, shown in Table 4.1, demonstrates that although our base QBF solver is quite
effective, our new techniques for using SAT yield clear performance advantages. Table 2
shows in more detail the time taken by the different solvers on individual problems
(columns S−, S-QBF, Quaffle, and QuBE).

It is also useful to examine the effect SAT has on the size of the QBF search tree.
Columns SAT-dec, Q-dec, S− Q-dec of Table 2 show the number of decisions made by
the SAT solver, the number of decisions made by the QBF solver (in S-QBF), and the
number of decisions made by S− (where SAT is not used). In most cases we see that
the SAT solver is able to significantly reduce the number of decisions the QBF solver
needs to make (comparing columns Q-dec and S− Q-dec). In fact, in many cases the
sum of the SAT and QBF decisions in S-QBF is less than the number of QBF decisions
used by the pure QBF solver S−.

QBF decisions are more expensive than SAT decisions as they require extra work
(e.g., triggering of cubes, detecting monotone literals, detecting the empty theory).
Hence reducing the number of QBF decisions has a strong impact on the run-time (e.g,
in the Blocks, Game, and Toilet benchmarks). In our implementation SAT decisions are
made 5 to 10 times faster than QBF decisions depending on the problem instance. This
means that using SAT can yield improvements even when the sum of decisions in SAT
and QBF is higher than the number of decision made by pure QBF (in S−) (e.g., the K
benchmarks).

The SAT solver can, however, sometimes be a waste of time. For example the Chain
benchmarks contain Q-propagation implication chains under which a QBF solver will
never encounter a failure. Thus it is pointless to use a SAT solver to detect failures, and
we see that on chain16v.17 S-QBF performs the same number of Q-decisions as S−.
S− fails on the two larger chain problems, even without the slow down of extraneous
SAT solving. This is because the low-level efficiency of our solver is not as optimized
as Qube or Quaffle. In some cases SAT solving can even be harmful, as following its
solutions can be misleading. For example, on k d4 p-6 S-QBF makes many more QBF
decisions than when SAT is not used (S−). But in the vast majority of the cases SAT is
more informative than misleading.

Quantor is another state of the art QBF solver, but it is not based on backtracking
search. Instead Quantor utilizes a variable elimination scheme based on the original
resolution procedure of Davis-Putnam [11] and an additional scheme of universal ex-
pansion. It falls into the class of worst case space exponential algorithms. Quantor’s
approach often superior on these benchmarks. However, its failure rate is 24% which
is slightly higher than that achieved by S-QBF. Furthermore, while we expect a few
more problems could be solved by S-QBF given more time, Quantor is exhausting ad-
dressable memory on most of its failures. Overall, space exponential algorithms have
the disadvantage that space is a much less flexible resource than time.

The question of whether space intensive algorithms like Quantor, Skizzo [3], or
QMRES [19] will eventually be the best way to solve QBF remains open. However,
we are more optimistic about search based methods. In particular, the wide variance
in the times achieved by search based solvers shows that there is a lot of room for
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Table 2. Benchmark Results

Problem Instance QSAT? SAT-dec Q-dec S− Q-dec S− S-QBF Quaffle QuBE Quantor
blocks3i.5.3 0 37779 50482 439625 32.05 4.53 158.25 453.98 0.36
blocks3i.5.4 1 47300 62403 298121 11.85 3.12 11.08 4626.19 0.38
blocks4i.6.4 0 7367 6438 19931487 3116.49 0.95 fail 203.99 0.31
blocks4ii.6.3 0 6087 5685 6409879 1042.46 1.1 208.19 21.02 22.63
blocks4ii.7.2 0 1804960 1444039 2860315 729.34 2981.66 312.28 fail 43.23
chain16v.17 1 65519 131582 131582 439.97 493.32 129.3 71.14 0.04
chain19v.20 1 - - - fail fail 4849.32 1123.53 0.07
chain20v.21 1 - - - fail fail fail 2304.390 0.08
comp 1 1.0 0 o 0 3401 755 - fail 0.12 1.92 fail 0.02
comp 1 1.0 1 o 1 0 34 34 0 0 0 1030.88 0.04
comp 1 0.2 1 o 1 0 58 58 0.01 0.01 0 fail 0.03
comp 1 0.2 0 o 0 - - - fail fail 67.63 fail 0.05
game20 20 40 2 1 3855587 4425993 2754583 260.23 440.94 fail 98.26 0.08
game20 25 25 1 1 4517800 2213579 - fail 309.46 fail 369.5 fail
game20 25 25 2 1 2109107 1168113 - fail 125.29 fail 2874.96 fail
game20 25 25 3 1 920314 413170 2027831 326.64 40.06 fail 1150.51 fail
game20 25 25 4 1 3298510 1680483 - fail 222.13 fail 1651.43 fail
game20 25 50 1 1 3298510 1680483 - fail 221.74 fail 1657.63 fail
game50 25 25 1 1 2452664 954186 12368548 477.79 64.22 fail 1869.7 fail
game50 25 25 3 1 188743 66888 6182150 220.99 4.13 fail fail fail
game50 25 25 4 1 72203 34183 - fail 1.63 fail 51.48 fail
game100 25 25 2 1 36165 24291 - fail 0.73 fail fail 9.26
game100 25 25 3 1 32923 16184 - fail 0.63 4.06 fail 0.04
game150 25 25 1 0 0 21 21 0 0 0 fail 0.01
game150 25 25 2 1 208546 175239 - fail 4.22 4.34 fail 0.01
game150 25 25 4 1 14604 13567 41798186 1262.76 0.3 208.79 fail 0.01
k branch p-5 1 - - - fail fail fail 3854.78 fail
k d4 p-6 0 5542611 55260801 2005 0.42 1689.13 fail 837.45 1.43
k dum n-6 1 1876929 1639193 1692680 221.21 122.79 fail 117.42 0.02
k dum n-8 1 - - - fail fail fail 2916.89 0.06
k dum p-11 0 - - - fail fail 871.44 1014.83 5.32
k grz n-9 1 366963 294974 736851 117.68 22.32 3534.32 67.06 3.86
k grz n-12 1 1231288 1106900 2884937 3093.12 285.7 fail 250.53 10.3
k grz n-13 1 1420342 1277434 3339392 4046.65 353.39 fail 253.01 11.29
k grz n-16 1 5110635 4232820 - fail 711.97 fail 1253.97 32.15
k grz n-17 1 6310863 5229135 - fail 1396.91 fail 1321.97 20.7
k grz p-10 0 - - - fail fail fail 164.81 6.78
k grz p-14 0 - - - fail fail fail 1270.28 17.19
k grz p-16 0 - - - fail fail 2481.57 1694.67 27.73
k grz p-17 0 - - - fail fail 3107.51 1922.98 21.37
k lin n-7 1 1836874 900248 174011 404.32 194.34 169.26 49.75 454.34
k lin n-14 1 4503632 2422960 - fail 4030.32 2525.31 1353.86 fail
k lin n-15 1 - - fail fail 3008.53 2108.53 fail
k path n-5 1 3814468 3658630 3037899 473.3 493.5 fail 158.02 0
k path n-6 1 - - - fail fail fail 1514.29 0.01
k path p-6 0 2895489 2490412 823834 101.87 406.71 270.42 30.26 0.01
k ph n-15 1 - - 4072609 3731.09 fail 283.51 158.02 2962.78
k poly n-3 1 4702368 2945933 5078474 1445.27 426.24 fail 151.16 0
k poly n-4 1 - - - fail fail fail 1651.2 0
k poly p-7 0 0 83 83 0 0 0 fail 0.01
k poly p-8 0 0 99 99 0 0 0 fail 0.02
k poly p-10 0 0 123 123 0 0 0 fail 0.04
k poly p-11 0 0 131 131 0.01 0.01 0 fail 0.03
k poly p-12 0 0 147 147 0.01 0.01 0 fail 0.03
k poly p-14 0 0 171 171 0.01 0.01 0 fail 0.03
k poly p-17 0 0 203 203 0.01 0.01 0 fail 0.03
k t4p n-2 1 2400994 2228055 1410656 645.73 709.56 fail 84.11 0.02
k t4p p-4 0 - - - fail fail fail 194.57 0.1
robots1 5 2 72.7 1 21720 3002426 313292 44.14 221.7 19.64 1385.68 fail
robots1 5 2 42.7 0 29395 7713081 4458791 1519.08 672.14 288.06 565.01 fail
robots1 5 2 61.6 0 17992 4529115 4619291 836.47 268.29 99.34 424.87 fail
term1 1 0.2 0 i 0 2708395 2655162 2906302 3238.12 2555.78 296.52 fail fail
term1 1 1.0 1 o 1 129 88 722 0.03 0.02 0.06 2566.76 0.07
term1 1 1.0 0 o 0 36105 6769 7276 7.86 18.65 3.11 fail 1.57
toilet6.1.11 0 54468 44831 108215 48.5 22.47 9.21 307.92 0.09
toilet7.1.13 0 347166 273852 1225940 3570.54 617.92 39.76 fail 1.14
toilet7.1.14 1 888 1097 712183 867.72 0.32 45.65 749.85 0.02
toilet10.1.20 1 57 264 - fail 0.1 fail fail fail
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improvements in heuristics. Several instances in the Game benchmark family illustrate
this point. Some can be solved in only a few seconds by S-QBF but cause Quantor to
exhaust available memory.

5 Relation to Previous Work

A number of other approaches have been proposed for escaping from the ordering con-
straints imposed by the quantifier prefix. Quantor [4], and Skizzo [3] both employ the
device of removing universal variables by adding multiple copies of their scoped exis-
tentials. (A process akin to Skolemization in first-order logic). Once all universals have
been removed the transformed theory becomes an order unconstrained SAT theory.

As our empirical results demonstrate this technique can be very effective, but in
general it requires exponential space. Our empirical results also demonstrate that it is
not difficult to find problems solvable by QBF-DPLL that are unsolvable by Quantor
(Skizzo was not yet available for experimentation).

A more recent order unconstrained approach is based on a BDD representation of
a Q-model [1]. The idea here is to generate arbitrary SAT solutions with a SAT solver,
adding those solutions to the BDD. The BDD will eventually collapses to TRUE if the
set of added SAT solutions suffice to form all paths in a Q-model. However, the BDD
can grow to an exponential size prior to collapsing. Furthermore, the SAT solver can
generate SAT solutions that form paths in disjoint Q-models—thus the BDD might be
even larger as it has to represent multiple distinct Q-models before one collapses to a
solution. The empirical results reported in [1] do not improve on the state of the art.

The idea of utilizing a SAT solver within QBF was first presented in [9]. SAT solv-
ing was employed to determine trivial truth (satisfiability after removing all universals
from every clause) and trivial falsity (unsatisfiability of the subset of clauses that con-
tain only existentials) at every recursive call. Trivial truth is a very strong condition: the
remaining theory can easily be QSAT even though it is not trivially true. Furthermore,
because a different clause set is being used, the satisfiability testing employed in trivial
truth cannot be used to learn clauses for the remaining QBF search. Trivial falsity on
the other hand is strictly weaker than the SAT testing we employ. Trivial falsity tests
SAT on a subset of the clauses, hence whenever it reports UNSAT our SAT testing will
also report UNSAT. Furthermore, our SAT testing can report UNSAT even on formulas
that are not trivially false.

In more closely related work an incomplete SAT solver was used [13]. If a SAT solu-
tion was found it could be heuristically followed in an attempt to reach a successful leaf
in the QBF search. This is quite different from our motivation which is to refute UNSAT
subtree. This requires a complete SAT solver as well as a tighter integration between
the SAT and QBF solvers. Empirically the WalkQSat solver reported in [13] did not dis-
play good performance. Independently to our work [22] utilized a complete SAT solver
(ZChaff [18]). It allows the pruning of UNSAT subtrees and the computed reason for
this conflict is used in the QBF solver to apply backtracking. However, the integration of
the two solvers is not as tight as it is in our approach. For instance, the solvers operate
on two distinct representations of the formula so that except for backtracking no ex-
change of learned clauses takes place between the SAT and QBF solvers. Furthermore,
operations like the propagation of variable (un)assignments has to be performed twice.
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6 Conclusions

We have presented an approach for integrating order unconstrained SAT solving within
an order constrained QBF solver. By utilizing clause learning techniques, and the fact
that a SAT learned clause is valid for QBF, we have been able to achieve a tight integra-
tion between the SAT solver and the QBF solver so that information computed in each
part can be used to improve the performance of the other part.

A number of natural questions remain, most of which center around the issue of
obtaining more information from the SAT solving computations. Our techniques mainly
take advantage of failure information computed by the SAT solver, and we have shown
that this can make a tremendous difference in performance. We have also found that the
heuristic technique of guiding the SAT solver to find a “good cube” solution can have
a large impact on performance. In general, however, there is considerable room for
improvement in the whole area of heuristics for QBF, and an intriguing open question
is whether or not useful heuristic information could be gathered during SAT solving.
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Abstract. Besides search, complete inference methods can also be used
to solve soft constraint problems. Their main drawback is the high spatial
complexity. To improve its practical usage, we present an approach to
decrease memory consumtion in tree decomposition methods, a class of
complete inference algorithms. This approach, called function filtering,
allows to detect and remove some tuples that appear to be consistent
(with a cost below the upper bound) but that will become inconsistent
(with a cost exceeding the upper bound) when extended to other vari-
ables. Using this idea, we have developed new algorithms CTEf, MCTEf
and IMCTEf, standing for cluster, mini-cluster and iterative mini-cluster
tree elimination with function filtering. We demonstrate empirically the
benefits of our approach.

1 Introduction

In constraint satisfaction, inference is widely used but in a very limited form. A
simple example is arc consistency: by the inspection of constraints and domains,
it is able to deduce that some values will never be in a solution so they can be
removed. Arc consistency is incomplete inference since it cannot always produce
a solution. Inference can also be complete. Some algorithms are adaptive consis-
tency [8], cluster tree methods [9] and bucket elimination [10]. Their temporal
and spatial complexities are exponential in some parameters of the constraint
graph (see [6] for details). When compared with search methods (exponential
complexity in time but lineal complexity in space), they look unattractive, espe-
cially when search is enhanced with the powerful machinery of local consistency
coupled with global constraints.

In the soft constraints realm, satisfaction is replaced by optimization. This
causes that problems with soft constraints become more difficult to solve than
their hard counterparts. The same solving ideas are recreated here. Search meth-
ods, based on a branch-and-bound schema, are combined with soft local consis-
tencies to filter domains [15]. Complete inference methods are easily adapted
to compute the optimum, at the cost of dragging large arity constraints. Their

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 593–606, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



594 M. Sánchez, J. Larrosa, and P. Meseguer

high spatial complexity is the main drawback to be used in practice. Never-
theless, this issue is not always unavoidable: when there are ways to control
the spatial complexity, complete inference can provide excellent performance
[14].

The simplest form to control space complexity is the use of an upper bound of
the optimal cost. This allows one to remove tuples whose cost exceed the upper
bound, because their will never contribute to the optimum. Good upper bounds
can be found by problem inspection, sampling or local search. In addition to
upper bound usage, the basic operation of complete inference, constraint com-
bination, should be handled with extreme care due to its multiplicative nature.
Strategies that anticipate if some tuples will not produce a solution should be
used, to limit as much as possible the combinatorial explosion. This is the sub-
ject of this paper. In the field of Bayesian Inference a work in a similar direction
exists [11].

In this paper, we present a new strategy to decrease the memory consumption
of tree decomposition methods, a class of complete inference algorithms, when
applied to weighted CSP. Tree decomposition methods work on a decomposition
of the problem with a tree structure. They solve subproblems or “parts”, sending
the result of one part to the rest of the problem. The tree structure permits an
orderly exchange of information. The key idea we have pursued is as follows.
When combining constraints in one part of the problem, if it happens that some
of the resulting tuples would become unacceptable after sending them to another
part, would it not be better to detect those tuples before sending, and eliminate
them once and for all? In some cases we are able to detect that some tuples,
apparently acceptable when solving a subproblem (that is, with a cost below
the upper bound), will become unacceptable (with a cost exceeding the upper
bound) when used in another subproblem, so we can remove them and decrease
the memory usage. Obviously, it is possible to find problems where our method
causes no benefits, but in this case it causes no harm as well. 1

This technique is called function filtering, and it has been applied to hard
constraints [16]. In the soft case, approximation techniques that limit the arity of
the subproblem to solve can be successfully combined with function filtering, so
successive iterations can increment the size of the subproblem to solve without
increasing memory usage.

The paper structure is as follows. In Section 2 we summarize the notions used
in the rest of the paper. In Section 3, we present the idea of function filtering. In
Section 4 we apply function filtering to tree decomposition methods, producing
the CTEf, MCTEf and IMCTEf algorithms, that stand for cluster, mini-cluster
and iterative mini-cluster tree elimination with function filtering. Experimental
results appear in Section 5, showing the obtained benefits on a set of benchmarks.
Finally, Section 6 contains some conclusions.

1 A similarity with arc-consistency (AC) can be stated here. You can find problems on
which AC causes no change, but this does not invalidate AC as a extremely useful
notion in constraint reasoning.
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2 Preliminaries

2.1 Weighted CSP

Valuation structures are algebraic entities to specify costs in valued CSP. We
use a particular structure S(k) [13], for weighted CSP. Formally,

Definition 1. A valuation structure is a triple S = 〈E,⊕,;〉, where E is the
set of costs totally ordered by ;, and ⊕ is the binary internal operation to com-
bine costs. The maximum and minimum costs are denoted as ! and ⊥. ⊕ is
commutative, associative, monotone, ⊥ is the neutral element and ! is the an-
nihilator.

Definition 2. The valuation structure S(k) is a triple 〈[0, 1, ..., k],⊕,≥〉 where
! = k, ⊥ = 0 and

– k ∈ [1, . . . ,∞],
– a⊕ b = min{k, a + b}, and
– ≥ is the standard order among naturals.

Definition 3. A Weighted CSP (WCSP) is a tuple 〈X, D, C, S(k)〉 where,

– X = {x1, ..., xn} is a set of n variables;
– D = {D1, ..., Dn} is a set of finite domains, each variable xi ∈ X taking its

values in Di;
– C is a finite set of constraints as cost functions. Each function f ∈ C relates

a number of variables var(f) = {xi1 , . . . xir} called its scope, and assigns
costs to tuples t ∈

∏
xi∈var(f) Di such that,

f(t) =

⎧⎪⎨⎪⎩
0 if t is allowed
[1 . . . k-1] if t is partially allowed
k if t is totally forbidden

– S(k) is a valuation structure.

An assignment or tuple tS on a sequence of variables S = (x1, x2, . . . , xk), is
a sequence of values (a1, a2, . . . , ak) such that a1 is the value for x1, a2 is the
value for x2 and so on. An assignment tS is complete if S = X . Given S′ ⊂ S,
tS [S′] is the tuple obtained removing from tS the values of variables in S−S′. If
S is implicitly assumed or irrelevant, we write directly t. For clarity, we assume
that f(tS) (with var(f) ⊂ S) always means f(tS [var(f)]), so we select from
tuple tS the values of variables in f and ignore the others. The concatenation
of two tuples tS and t′T , noted t.t′S∪T , is a new tuple on S ∪ T formed by the
union of its values, and it is only defined if common variables coincide in their
corresponding values. A complete assignment tS is consistent if

⊕
f∈C f(t) < k.

Else tS is inconsistent. A solution of a WCSP is a complete consistent assignment
with minimum cost. The problem of finding a solution is NP-hard. It is easy to
check that WCSP with k = 1 reduces to classical CSP.
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We define two operations on functions:

– Projecting out. Given a function f , projecting out variable x ∈ var(f),
denoted f⇓x, is a new function with scope var(f) − x. Every tuple remov-
ing x component is present in the projection and its cost is the minimum
among all permitted x extensions: f⇓x(t) = mina∈Dx(f(a.t)). Projecting out
the variable of a unary function produces a constant. Any constant can be
considered an empty scope function.

– Sum. Given two functions f and g, its sum f + g is a new function with
scope var(f)∪var(g) and ∀t ∈

∏
xi∈var(f) Di, ∀t′ ∈

∏
xj∈var(g) Dj such that

t.t′ is defined, (f + g)(t.t′) = f(t)⊕ g(t′).

Definition 4. Function g is a lower bound of function f , denoted g ≤ f , if
var(g) ⊆ var(f) and for all possible tuples t of f , g(t) ≤ f(t). Abusing notation,
a set of functions G is a lower bound of function f iff (

∑
g∈G g) ≤ f

Property 1. For any function f , (f⇓x) is a lower bound of f .

Property 2.
∑

f∈F (f⇓x) ≤ (
∑

f∈F f)⇓x holds.

2.2 Tree Decomposition

A tree decomposition of a WCSP is a clustering of the functions in C such that
clusters are linked if they share variables and form an acyclic tree network.

Definition 5. A tree decomposition for a WCSP 〈X, D, C, S(k)〉 is a triplet
〈T, χ, ψ〉, where T = 〈V, E〉 is a tree. χ and ψ are labeling functions which
associate with each vertex v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ C that satisfy
the following conditions:

1. For each function f ∈ C, there is exactly one vertex v ∈ V such that f ∈
ψ(v). In addition, vertex v satisfies var(f) ⊆ χ(v).

2. For each variable x ∈ X, the set {v ∈ V |x ∈ χ(v)} induces a connected
subtree of T .

Tree decompositions for CSP often relax condition (1) by requiring that any
function f ∈ C must appear in at least one vertex v ∈ V of the decomposition
(see [6]). For WCSP, if function f appears in two vertices, tree decomposition
methods could add twice its contribution, so the exactly condition is required.

Definition 6. The tree-width of a tree decomposition is the maximum number
of variables in a vertex minus one tw = maxv∈V |χ(v)| − 1. Let (u, v) be an edge
of a tree-decomposition, the separator of u and v is sep(u, v) = χ(u) ∩ χ(v),
formed by the common variables between two vertices of the decomposition. We
will call s the maximum separator size s = max(u,v)∈E |sep(u, v)|. The eliminator
of u and v is defined as elim(u, v) = χ(u)−sep(u, v), and represent the variables
in u that are not present in v.
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In [5] tree decomposition is defined only for binary graphs and hyper-tree
decomposition for hyper-graphs. Following [6] we use the concept of tree decom-
position of a CSP referring to an hyper-tree decomposition of the hyper-graph
formed by the functions of the CSP. We also extend this definition for WCSP
imposing that every constraint must appear exactly once in all clusters.

Example 1. The crossword puzzle of Figure 1 is a WCSP 〈{x0, . . . , x9}, {a, . . . , z},
{f1, . . . , f4}, S(k)〉, with a variable per cell, functions correspond to vertical and
horizontal slots and accepts words of numbers from ”zero” to ”ten”, that can also
be reversed. The cost of each word is its number or its number plus one, if reversed.
Any other word costs k.

For example: f1(x1, x2, x3, x4)= {(zero,0), (orez,1), (four,4), (rouf,5), (five,5),
(evif,6), (nine,9), (enin,10)} and f2(x7,x8,x9)= {(one,1), (eno,2), (two,2), (owt,3),
(six,6), (xis,7), (ten,10), (net,11)}. An optimal solution tuple is {(x0, z), (x1, z),
(x2, e), (x3, r), (x4, o), (x5, r), (x6, n), (x7, o), (x8, n), (x9, e)} with cost 2.

f1 x1 x2 x3 x4

0 z e r o

1 o r e z

4 f o u r

5 r u o f

5 f i v e

6 e v i f

9 n i n e

10 e n i n

f2 x7 x8 x9

1 o n e

2 e n o

2 t w o

3 o w t

6 s i x

7 x i s

10 t e n

11 n e t

f3 x0 x2 x5 x7

0 z e r o

1 o r e z

4 f o u r

5 r u o f

5 f i v e

6 e v i f

9 n i n e

10 e n i n

f4 x4 x6 x9

1 o n e

2 e n o

2 t w o

3 o w t

6 s i x

7 x i s

10 t e n

11 n e t

x0
f3 ↓

x1
f1 →

x2 x3 x4
f4 ↓

x5 x6

x7
f2 →

x8 x9

v

ψv = {f3, f4}
χv = {x0, x2, x5

x7, x4, x6, x9}

u

ψu = {f1, f2}
χu = {x1, x2, x3,

x4, x7, x8, x9}

Fig. 1. Upper: crossword functions. Lower left: the crossword puzzle. Lower right: a
possible tree decomposition.

2.3 Cluster and Mini-Cluster Tree Elimination

Cluster-Tree Elimination (CTE) is a generic algorithm that can be used for CSP
solving and unifies other inference algorithms such as Bucket Elimination [3,10].
CTE also solves a constraint optimization problem by sending messages along
every edge of a tree decomposition of the problem. Concepts of this Section are
more extensively described in [6].

Given a tree decomposition 〈〈V, E〉, χ, ψ〉, every edge (u, v) ∈ E has associ-
ated two CTE messages denoted m(u,v), from u to v, and m(v,u), from v to u.
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procedure CTE(〈X, D, C, k〉, 〈〈V, E〉, χ, ψ〉)
1 for each (u, v) ∈ E s.t. all m(i,u), i �= v have arrived do
2 B ← ψ(u) ∪ {m(i,u) | (i, u) ∈ E, i �= v};
3 m(u,v) ← (

∑
f∈B

f) ⇓elim(u,v);
4 send m(u,v);

Fig. 2. The CTE algorithm. 〈X, D, C, k〉 is a WCSP instance and 〈〈V, E〉, χ, ψ〉 is its
tree decomposition.

Message m(u,v) is a function computed summing all functions in ψ(v) with all
incoming CTE messages except from m(v,u) and then projecting out the vari-
ables in u not mentioned by v, that is variables in elim(u, v). m(u,v) has scope
sep(u, v). In Figure 2 we present the CTE algorithm. Line 1 is a loop that looks
for edges such that all their incoming messages but one have arrived. Lines 2
gathers the set of functions to be summed. Line 3 performs the sum and projec-
tion. Let T (u, v) (resp. T (v, u)) denote the subtree of T containing the connected
component containing vertex u (resp. v) after the removal of edge (u, v).

Property 3. m(u,v)(t) is equal to the minimum cost of extending tuple t to the
subproblem induced by T (u, v). This is guaranteed by the correctness of the
algorithm.

The complexity of CTE is time O((|C|+ |V |).deg.dtw+1) and space O(|V |.ds)
where tw is the tree-width, |C| is the number of constraints, |V | is the number
of nodes of the tree decomposition, deg is the maximum degree in the tree
decomposition, d is largest domain size and s is maximum separator size. In
Figure 3 we can see an execution of CTE on example 1. Original functions have
size 8. Once the messages have been sent we can compute the solution in any of
the two nodes. For example, in v the minimum cost of f2 + f3 + m(u,v) is the
optimal solution.

Mini-Cluster-Tree Elimination (MCTE(r)) approximates the exact CTE al-
gorithm. When the number of variables in a cluster is too high, it is not possible
to compute a single message that captures the joint effect of all functions of
the cluster plus all incoming messages due to memory limitations. In this case,
MCTE(r) computes a lower bound of the problem by limiting by a constant r
the arity of the functions sent in the messages. This is because we can not afford
to compute one single function that will be of high arity and then project it.

A MCTE(r) message, noted M(u,v), is a set of functions that approximate
the corresponding CTE message m(u,v) (namely M(u,v) ≤ m(u,v)). It is com-
puted as m(u,v) but instead of summing all functions of set B (line 2 of CTE
algorithm in Figure 2), it computes a partition P = {B1, B2, . . . , Bp} of B such

vu
m(v,u) =

(f3 + f4) ⇓ {x0, x5, x6}

m(u,v) =
(f1 + f2) ⇓ {x1, x3, x8}

Fig. 3. The 2 CTE messages of edge (u, v) of example 1
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that the sum of the functions in every Bi does not exceed arity r. We compute
M(u,v) from P by summing all functions in every partition and project out from
each resulting function the variables not mentioned by node v. The MCTE(r)
algorithm is obtained replacing line 3 of the CTE algorithm by the following lines,

3.1 P ← partitioning(B, r);
3.2 M(u,v) ← {(∑f∈Bi

f) ⇓ elim(u, v)|Bi ∈ P};
MCTE(r) time complexity is O((|C| + |V |).deg.dr) and space is O(|V |.dr).

3 Function Filtering

A nogood is a tuple t that cannot be extended into a complete consistent assign-
ment. Nogoods are useless for solution generation, so they can be eliminated as
soon as are detected.

Typically, a cost function f is stored in an array Tf , where tuples t are the in-
dexes and Tf [t] stores f(t), the cost of t. The space used by Tf is Θ(

∏
i∈var(f) |Di|).

Costs can be retrieved in constant time. An alternative is to store function f as
a set Sf containing all pairs (t, f(t)) with cost less than k, Sf = {(t, f(t)| t ∈∏

xi∈var(f) Di, f(t) < k}. We define the size of a function f , denoted |f |, as the
number of tuples with cost less than k. The space used by Sf is Θ(|f |), which
can be smaller than the space of Tf if f contains many inconsistent tuples. If Sf

is implemented as a hash table, f(t) can be retrieved in constant time.
In the following, we will assume that functions are stored as sets of pairs.

Then, computing f ⇓x has time complexity O(|f |). Regarding the sum of two
functions f + g, there are two basic ways to compute it: (i) iterate over all the
combinations of (t, f(t)) ∈ Sf and (t′, g(t′)) ∈ Sg and, if they match, compute
(t · t′, f(t)⊕ g(t′)), which has complexity O(|f ||g|), and (ii) compute every tuple
t over var(f) ∪ var(g) and retrieve from Sf and Sg the f(t) and g(t) values,
which has complexity O(exp(|var(f) ∪ var(g)|)). Since one can choose the best
option beforehand, the cost is O(min{|f ||g|, exp(|var(f) ∪ var(g)|)}). Observe
that the efficiency of computing the previous operations depends on the size of
the functions.

We now introduce the function filtering operation, which allows us to reduce
the size of a function f before operating with it. The idea is to anticipate the
detection of nogoods of f in order to remove them from Sf as soon as possible.

Definition 7. The function filtering operation applied to a function f from a
set of functions H, noted f

H
, is the process of performing a consistency test to

every tuple t of f after adding the contribution of every function in H. Every
tuple that reaches the upper bound k is removed from Sf .

f
H

(t) =

⎧⎨⎩f(t) if
( ⊕
h∈H

h(t)
)
⊕ f(t) < k

k otherwise
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Suppose that we know that f will be eventually summed with g. If there is a
tuple t, (t, f(t)) ∈ Sf such that t · t′ will become a nogood after the sum for
any t′, (t′, g(t′)) ∈ Sg, we can safely remove (t, f(t)) from Sf right away. The
following Property formalizes the previous observation.

Property 4. Let f (resp. g) be a function and F (resp. G) a lower bound. When
summing f and g, if previously we filter each function with the lower bound of
the other function, the result is preserved. Namely,

f
G

+ gF = f + g

Besides, the sum is done with functions of smaller size. Thus, it is presumably
done more efficiently.

Example 2. Consider node u of tree decomposition of example 1 with ψu =
{f1, f2}. Potentially |f1| = 264 but as we record consistent tuples only (k =∞)
we have |f1| = |f2| = 8. They do not share any variable so |f1 + f2| = 64. If
we set k = 5, this causes that some tuples of f1 and f2 become nogoods and
they can be eliminated. Now, |f1| = 3, |f2| = 4. To make |f1 + f2| = 8, we need
3 ∗ 4 = 12 operations. To use Property 4, we take as G the set formed by the
function f2 ⇓ {x7, x8, x9}, that is, G = {f2 ⇓ {x7, x8, x9}} = {1} (G is a lower
bound of f2 by Property 1). |f1

G| = 2. Filtering with G allows us to add 1 to
every tuple of f1, which causes that tuple (four, 4) becomes a nogood (it reaches
k = 5) and can be eliminated. Therefore, we only need 2 ∗ 4 = 8 operations to
compute the sum.

The following property shows that filtering functions can be safely brought in-
side summations, anticipating the detection of nogoods and reducing the size of
functions.

Property 5. Let f and g be two functions and H a set of functions, f /∈ H, g /∈ H :

f + g
H

= f
H

+ gH
H

Example 3. We show an application of the previous property:

Take H as a lower bound of a func-
tion h that has to be added with f and
g. In the example 1 solved by CTE,
functions f1 and f2 of node u have to be
added with m(v,u). Functions in node
v projecting out variables in elim(v, u)
form a set that is a lower bound of
m(v,u) (see Properties 1 and 2). So we
take H = {f3 ⇓ {x0, x5}, f4 ⇓ {x6}}:

f3 ⇓{x0,x5} x2 x7

0 e o

1 r z

4 o r

5 u f

5 i e

6 v f

10 n n

f4 ⇓x6 x4 x9

1 o e

2 e o

2 t o

3 o t

6 s x

7 x s

10 t n

11 n t

To compute f1 + f2
H

, we first compute f1 + f2. Since they have no variables in
common |f1+f2| = 64. Applying filtering with H , we realize that values z, r, f for
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x4 are not permitted by f4 ⇓x6 , so all tuples including them are eliminated (32
tuples). We also realize that values t, s, x are not permitted by f3 ⇓{x0,x5}, so all

remaining tuples including them are eliminated (16 tuples). Now |f1 + f2
H | = 16.

As Property 5 says, we could realize this fact by filtering functions f1 and f2 in
advance, and then filtering their sum. Filtering f1 removes tuples with forbidden
values for x4, |f1

H | = 4, and filtering f2 removes tuples with forbidden values
for x7, |f2

H | = 4. Then, |f1
H

+ f2
H | = 16, and additional filtering causes no

removals. So the application of Property 5 allows us to save 64− 16 = 48 tuples,
a 75% of the initial memory.

Previous discussion implicitly assumes k =∞. Lower values of k causes fur-
ther savings. For instance, let us assume k = 5. Then, |f1+f2| = 8. Filtering with
H causes to remove all tuples with z for x4 and t for x7 (5 tuples). In addition,
the cost of two tuples reaches k so they are eliminated. Now, |f1 + f2

H | = 1.
Applying Property 5, we first filter f1 and f2 with H , which leaves a single tuple
in each function |f1

H | = |f2
H | = 1, and additional filtering causes no removals.

So the application of Property 5 allows us to save 8− 1 = 7 tuples, a 87% of the
initial memory.

4 CTE and MCTE with Function Filtering

Now we integrate the idea of filtering into the CTE schema. First, we define a
filtering tree-decomposition which adds a new labelling φ to a tree-decomposition
that will be used for filtering purposes.

Definition 8. A filtering tree-decomposition of a WCSP is a tuple 〈T, χ, ψ, φ〉
where:

– 〈T, χ, ψ〉 is a tree-decomposition as in definition5.
– φ is a labelling. φ(u, v) is a set of functions associated to edge (u, v) ∈ E

with scope included in sep(u, v). φ(u, v) must be a lower bound of the corre-
sponding m(u,v) CTE message (namely, φ(u, v) ≤ m(u,v)).

The new algorithms CTEf and MCTEf(r) use a filtering tree decomposi-
tion. They are essentially equivalent to CTE and MCTE(r) except in that they
use φ(u, v) for filtering functions before computing the message m(u,v) or M(u,v).
The pseudo-code of CTEf is obtained by replacing line 3 of the algorithm by line,

3 m(u,v) ←
∑

f∈B f
φ(u,v) ⇓elim(u,v);

Besides, the computation of the new line 3, will make discretional use of Prop-
erty 5. Similarly for MCTEf(r) we replace line 3 by two lines,

3.1 P ← partitioning(B, r);

3.2 M(u,v) ← {(∑
f∈Bi

f)
φ(u,v) ⇓elim(u,v) |Bi ∈ P};
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procedure IMCTE(〈X, D, C, k〉, 〈〈V, E〉, χ, ψ〉)
1 for each (u, v) ∈ E do φ(u, v) := {∅};
2 r := 1;
3 repeat
4 MCTEf(r);
5 for each (u, v) ∈ E do φ(u, v) := M(u,v);
6 r := r + 1;
7 until exact solution or exhausted resources

Fig. 4. The IMCTE algorithm. 〈X, D, C, k〉 is a WCSP instance and 〈〈V, E〉, χ, ψ〉 is
its tree decomposition.

The effectiveness of the new algorithms will depend on the ability of finding good
lower bounds φ(u, v) for the messages m(u,v) (resp. M(u,v)). If we use dummy
lower bounds (i.e, φ(u, v) = ∅, for all (u, v) ∈ E), CTEf (resp. MCTEf(r)) is
clearly equivalent to CTE (resp. MCTE(r)). It is important to note that the
algorithms will be correct as long as φ(u, v) is a true lower bound which can be
computed with either a domain-specific or general technique (see [5] [4] [7] for a
collection of general lower bound techniques). An option is to include in φ(u, v)
all the original functions used to compute m(v,u) properly projected,

φ(u, v) = {f ⇓S | f ∈ ψ(w), w ∈ T (u, v), S = var(f) − χ(u)}

Our CTEf and MCTEf implementations use this lower bound. Another option
for CTEf is to include in φ(u, v) a message M(v,u) from a previously computed
execution of MCTE(r). When we apply the previous idea to MCTEf, we obtain
a recursive algorithm which naturally produces an elegant iterative approxi-
mating method that we call iterative MCTEf (IMCTEf). The idea is to exe-
cute MCTEf(r) using as lower bounds φ(u, v) the messages M r−1

(v,u) computed
by MCTEf(r − 1) which, recursively, uses the messages M r−2

(v,u) computed by
MCTEf(r − 2), an so on. Algorithm 4 develops this idea. Starting from dummy
lower bounds (line 1), we execute MCTEf(r) for increasing values of r (line 4).
The lower bounds computed by MCTEf(r) will be used to detect and filter no-
goods during the execution of MCTEf(r +1) (line 5). The algorithm follows this
process until the exact solution is computed (namely, MCTEf does not break
messages into smaller functions), or the available resources are exhausted.

5 Experimental Results

Experiments are focused in two aspects:

1. Showing that CTEf versus state of the art CTE uses less tuples to find the
exact solution.

2. Inside an approximation schema we show that MCTEf(r), exhausts resources
at a smaller r and finds worst LB than the iterative version IMCTEf where
the previous messages of MCTEf(r) execution are used as filters.
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Table 1. Columns are: instance, number of variables, number of constraints, maximum
domain size, maximum separator size, tuples consumed by CTE algorithm, tuples con-
sumed by CTEf algorithm (- denotes exhausted memory), arity r reached by MCTE(r),
LB computed by MCTE(r), arity r reached by IMCTEf, LB computed by IMCTE (be-
fore resources exhausted), optimal UB of the problem. When marked with (*) means
that the instance is optimally by at least one of the algorithms.

MCTEf(r) IMCTEf

|X| |C| d sep CTE CTEf r LB r LB UB

dubois100 75 200 2 3 3k 2k 1*
wp2100 50 95 2 9 6k 1k 16*
wp2150 50 138 2 15 302k 40k 34*
wp2200 50 186 2 19 - 733k 69*
wp2250 50 233 2 24 - - 23 71 25 96 96*
wp2300 50 261 2 26 - - 22 84 26 132 132*
wp2350 50 302 2 30 - - 21 129 21 159 212
wp2400 50 340 2 30 - - 20 70 20 137 212
wp2450 50 378 2 31 - - 20 130 20 187 257
wp2500 50 418 2 34 - - 20 168 20 251 318
spot54 67 271 4 11 754k 16k 37*
spot29 82 462 4 14 - 63k 8059*
spot503 143 635 4 8 - 34k 11113*
spot404 100 710 4 20 - 306k 115*
spot505 240 2242 4 22 - - 12 8044 15 19217 21254
spot42 190 1394 4 26 - - 13 116001 15 127050 155051

We have tested CTE, CTEf, MCTEf(r) and IMCTEf on DIMACS dubois Max-
Sat instances, Borchers Weigthed Max-Sat (can be obtained at [2]) instances
and SPOT instances (described in [12]). Tree decompositions where computed
using the ToolBar library (available at [1]) that implements a min fill heuristic
for this purpose and visualized with LEDA library.

The efficiency of inference algorithms strongly relies on achieving a good tree
decomposition of the problem, ideally one with small maximum separator size,
the bottleneck of CTE based algorithms. The number of edges of the decompo-
sition is important for IMCTE algorithm because it has to store all the messages
in both directions. Two instances and its corresponding tree decompositions are
drawn in figure 6.

State of the art CTE always assumes that the memory spent by the algo-
rithm is always equal to the worst case ds for every sent message. So here we
assume that we always use the upper bound of the problem to filter tuples. We
want to prove that assuming that functions only store consistent tuples with
the joint effect of applying filtering techniques to anticipate inconsistent tuples,
the memory stored in the solving process is actually much less than the worst
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Fig. 6. On the left column visualization of the SPOT404 and wp2250 instances where
small dots represent ternary constraints. On the right column the corresponding tree
decomposition where each node is drawn proportionally to the number of variables
|χ(v)| which is plotted inside the node.

case space complexity assumed by usual CTE. When ds is small usual CTE is
feasible. For example in dubois100 we have 23 = 8 and we can hardly see the
improvement of CTEf. In instances where both CTE and CTEf are feasible (see
the first Borcher’s and first SPOT instances) the latter solves the problem with
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one order of magnitude less tuples. As the separator size increases CTE becomes
at some point infeasible. This happens in wp2200 where we have ds = 219 and
however CTEf is still feasible spending 733k tuples. In instances wp2250 and
wp2300 an interesting thing happens; neither CTE nor CTEf can solve them,
but the iterative version IMCTEf can solve it. In figure 5 the execution of the
algorithm is plotted for instance wp2250. Each new execution with a bigger arity
uses the previous computed messages as filtering functions. The total number of
tuples for a particular execution is computed summing all the tuples of the sent
messages. We can see that there is a critical arity where a maximum of tuples
is generated. Iterations corresponding to last r’s generate less tuples, this is due
to the good increasing quality of previous messages. On the right of the same
figure the computed lower bound for each arity is plotted.

When the separator size increases and instances cannot be optimally solved
by any algorithm (CTE, CTEf, MCTEf, IMCTEf) the latter approximates the
problem with a higher lower bound in all cases and reaches a higher arity in
some of them.

When sending a particular message an important fact is how we sum all
the available functions for that message. The direct way is to sum them two by
two if the arity limit permits, applying filtering at each sum with all possible
available filters. We must be careful with summing first functions with low cost,
because they can quickly exhaust memory since almost no tuple will reach the
level to be detected as inconsistent. So at this point some heuristics have been
tested to select the pairs of functions to be summed. The two giving the best
results are the following ones: (i) minimize mean cost of function tuples and (ii)
minimum arity of the generated function. When minimum arity coincides then
we minimize cost.

6 Conclusions

We have presented the idea of function filtering for WCSP case, where constraints
are cost functions, inside a complete inference schema. This idea has been nicely
combined with tree decomposition algorithms, producing new algorithms which
experimentally require far less memory than their original counterparts. This
represent an important step forward the practical applicability of complete in-
ference for WCSP solving.

So far, the use of upper and lower bounds for WCSP solving was limited
to search methods, namely branch-and-bound search. This is the first time that
are used inside complete inference methods, to speed up their execution and to
reduce their memory consumption. As results show, this combination has been
quite beneficial. Combining other inference methods with bounds usage seems a
promising line of research and deserves further exploration in the future.
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Abstract. In this paper, we present an algorithm for finding utilitarian
optimal solutions to Simple and Disjunctive Temporal Problems with
Preferences (STPPs and DTPPs) based on Benders’ decomposition and
adopting SAT techniques. In our approach, each temporal constraint is
replaced by a Boolean indicator variable and the decomposed problem
is solved by a tightly integrated STP solver and SAT solver. Several
hybridization techniques that take advantage of each solver’s strengths
are introduced. Finally, empirical evidence is presented to demonstrate
the effectiveness of our method compared to other algorithms.

1 Introduction

Temporal Constraint Satisfaction Problems (TCSPs) [1] are a subclass of con-
straint satisfaction problems that model constraints over variables with temporal
domains. Several TCSP subproblems have been used successfully as components
in planning and scheduling applications such as NASA’s Mars Rover [2] and
Autominder [3]. In planning and scheduling domains, the variables in TCSPs
represent events to be scheduled or executed by an agent, and the constraints
specify allowable times and temporal differences between those events. The main
task for these systems, when given a TCSP, is to assign to all variables times
that respect all constraints.

Over the last decade, efficient algorithms have been developed for reasoning
about TCSP subproblems, which include Simple Temporal Problems (STPs)[1],
Binary TCSPs (bTCSPs) [1] and Disjunctive Temporal Problems (DTPs) [4,5,6].
The most expressive of these, the DTP, has received considerable attention due
to its ability to express relationships found in temporal planning problems.

Recent efforts have extended STPs and DTPs to include soft constraints,
or preferences [7,8,9,10,11]. Preferences, which are represented as functions that
map temporal assignments to a local preference value, denote how well an as-
signment satisfies the constraint to which it is attached. By aggregating the local
preference values, the value of the entire set of assignments (a solution) can be
quantified. Preferences change the problem to one of finding optimal solutions,
i.e., solutions that maximize the aggregated preference value. Three different
types of aggregation have been explored in the STP case, which result in three
types of optimality: maximin optimality, where the lowest local preference value
is maximized; utilitarian optimality, where the sum of local preference values
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is maximized; and stratified egalitarian optimality, where the Pareto-optimal
maximin solution is found. For the DTP case, only a solution for the maximin
case has been published [10]1. In this paper, we present a single solution to the
problems of finding utilitarian-optimal solutions to both STPs with Preferences
(STPPs) and DTPs with Preferences (DTPPs).

To solve STPPs and DTPPs, we adapt a recent SAT-based algorithm [15] de-
signed for solving Mixed Logical Linear Programming (MLLP) problems involv-
ing two types of constraints: logical constraints over Boolean variables, and Unit-
Two-Variable-Per-inequality (UTVPI) integer constraints of the form ax− by ≤
d, where a, b ∈ {−1, 0, 1}. The temporal constraints of the form x − y ≤ d,
where x and y represent times assigned to events, and d is a real bound on
their temporal difference, can be safely solved using the same UTVPI solver of
[15]. This algorithm is implemented in the Ario Satisfiability Modulo Theories
(SMT) Solver [16]. To encode the STPPs and DTPPs as MLLPs, we adopt a
recent strategy for approximating preference functions in an STPP or DTPP
with a set of temporal difference constraints [11] and show how to encode the
relationships between the temporal constraints and the logical constraints. The
result is an MLLP SAT problem with an objective function. We adapt the SAT-
based algorithm of Ario to reason about the objective function and exploit the
structure in the STPPs and DTPPs.

This paper presents the first algorithm (to our knowledge) for finding utilitar-
ian-optimal solutions to DTPPs. While this is the main contribution of the paper,
we emphasize that the DTPP is a restricted form of the problems solvable by our
algorithm. Adding non-temporal logical constraints requires no modification. In
fact, Ario is optimized to handle them, having been built on the recent advances
in SAT solvers. In the future work section, we discuss other uses for the solver.

2 Background

A Simple Temporal Problem (STP) is a pair 〈X, C〉, where X is a set of events,
and C is a set of temporal constraints of the form: x − y ∈ [c, d], x, y ∈ X and
c, d ∈ <. Often, STP constraints are single-bounded, i.e. in the form x− y ≤ d.
The dual-bounded version can be represented as a pair of single-bounded con-
straints: x − y ≤ d ∧ y − x ≤ −c. While there is no difference in the expres-
sive power of STPs that use the single- or dual-bounded constraints, the dual-
bounded variety are more convenient when preferences are involved.

An STP solution is an assignment of times to events that satisfies all con-
straints. An STP is consistent if at least one solution exists. Checking consistency
requires O(|X |3) time, using an all-pairs shortest path algorithm.

To extend an STP to an STPP, each constraint is assigned a preference
function that maps a temporal difference between the constraint’s events to a

1 Tractable DTP subproblems have been identified [12,13], as have tractable instances
of soft constraint problems [14]. However, in this paper, we are interested in arbitrary
DTPs with preferences–a more expressive, but intractable class of problems.
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preference value, a quantitative measure of the difference’s desirability. STPP
constraints thus have the form: 〈x− y ∈ [a, b], f : t ∈ [a, b]→ {0,<+}〉.

As noted above, once preference functions are added, the challenge becomes
one of finding an optimal solution. We evaluate a solution with an objective
function that aggregates the values from each constraint’s preference function.
In this paper, we use the sum function, which results in utilitarian optimality.

A DTP is also described as a pair 〈X, C〉, only each constraint is a disjunction
of the STP constraints just described. A DTP solution is an assignment of times
to events that satisfy at least one disjunct of all constraints. A DTP is consistent
if at least one solution exists. Checking the consistency of a DTP is NP-Hard, but
recent techniques have substantially improved their average-case performance.

We extend a DTP to a DTPP by adding a preference function to the disjuncts
in each constraint. If multiple disjuncts in a constraint are satisfied by a solution,
the constraint’s local preference value is taken from the highest valued disjunct.

3 Motivating Example

We describe a very simple example of an STPP based on the Mars rover domain
[9], taken directly from [11]. We then extend the example to the DTPP case and
discuss why the DTPP case is so much more difficult.

The daily plan for a Mars rover must satisfy a set of constraints that ensure
the safety of the rover while maximizing the scientific value of the experiments
it performs. Imagine a very simple scenario in which two events need to be opti-
mally scheduled: the start- and end-time of a single experiment (events S and E).
The experiment can begin immediately after the instrument it requires becomes
available (event A, set to time 0), but it is preferable that some time separates
A and S to allow the instrument to cool. This preference is expressed as MC1
(Mars constraint 1) in Figure 1(a); the horizontal axis represents the difference
between events A and S, while the vertical axis represents the preference value
assigned to each temporal difference.

The scientific value of the experiment changes irregularly with time spent
running it (E-S), but is mitigated by the instrument’s significant power usage.
The net value is expressed by the function in Figure 1(b). Finally, since other
experiments can begin once the current experiment ends, it is preferred that the
experiment finish as early as possible. Figure 1(c) expresses this relationship.

A legal solution in this example is one in which E < 12 and 1 ≤ E − S < 7;
that is, one in which all preference functions map to a nonnegative value. For
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Fig. 1. Example preference functions for the Mars Rover example
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a solution {A = 0, S = 3, E = 6}, constraints MC1, MC2, and MC3 have
respective preference values 3, 1, and 3, for a utilitarian value of 7. An optimal
solution, with a utilitarian value 10, is {A = 0, S = 4, E = 5}.

Notice that even with such a trivial example, it is not immediately apparent
whether a given solution is optimal. In fact, unless all preference functions are
convex, the problem of finding the optimal solution is NP-Hard.

Extending to the DTPP case makes the problem even more difficult. Imagine
that the number of experiments to schedule in our Mars rover example increases
from one to three: the one originally described (which uses the same instru-
ment as the previous experiment), and two others that use a second instrument.
The three experiments can be executed in any order, but they cannot overlap.
Therefore, three constraints are needed to express that each pair cannot overlap,
i.e. DTPP constraints are needed to express sentiments such as “Experiment 1
can end before Experiment 2 begins or start after Experiment 2 ends” and to
designate which option is more preferable.

Whereas the STPP case had only a single ordering possible for the events to
be scheduled, the new situation allows six different orderings for the experiments.
If we were scheduling four experiments, the six disjunctive constraints needed
would allow 24 different orderings. This exponential increase in possible orderings
is intuitive evidence of why finding utilitarian optimal solutions to DTPPs is so
much more difficult than the STPP case.

4 Solving MLLPs

Mixed Logical Linear Programming (MLLP) problems [17] consist of logical con-
straints over Boolean variables and temporal difference constraints over tempo-
ral variables, i.e. STP constraints. Disjunctions involving both Boolean variables
and STP constraints allow the representation of conditional STP constraints.

One common method for solving an MLLP problem is Benders’ Decomposi-
tion [18], which partitions the problem into a master subproblem containing only
Boolean variables and logical formulas, and a subproblem containing the STP
constraints. The two subproblems are linked using indicator variables, which are
Boolean variables that represent whether a particular STP constraint is asserted.
Every reference to an STP constraint in the original problem is replaced with the
constraint’s indicator variable, converting all disjunctions that involve temporal
constraints into pure Boolean formulas. An MLLP solution is an assignment to
all variables, Boolean and temporal, in which all constraints are satisfied.

A simple MLLP containing 2 Boolean variables, 3 STP constraints, and 3
logical constraints is listed below, along with its Benders’ decomposition:

MLLP Benders’ decomposition
A1 ∨ (x − y ≤ 3) A1 ∨ B1

y − z ≤ 5 B2 Boolean subproblem
¬A1 ∨ ¬A2 ∨ (y − x ≤ 5) ¬A1 ∨ ¬A2 ∨ B3

B1 → (x − y ≤ 3)
B2 → (y − z ≤ 5) STP subproblem
B3 → (y − x ≤ 5)
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In the most straight-forward application of Benders’ decomposition, the two
subproblems are solved separately. First, a SAT solver finds a consistent set of
assignments for all Boolean variables. Then, all STP constraints whose indicator
variables are set to true are gathered and checked for consistency. If the set of
STP constraints is consistent, then a solution is found and the algorithm exits. If
inconsistent, the set of STP constraints causing the inconsistency is determined.
Since the set of inconsistent STP constraints cannot participate in any solution,
they represent a conflict, which can be encoded as a clause in the Boolean part
(known as a Benders’ Cut). The conflict clause states that the combination of
indicator variables associated with those STP constraints cannot all be true at
once. The process continues, attempting to find an alternative solution to the
Boolean subproblem augmented with the Benders’ Cut.

Despite the fact that satisfiability checking is NP-complete, recent enhance-
ments in modern backtrack SAT algorithms have made them very efficient and
scalable. At a high-level, SAT solvers operate by assigning values to the Boolean
variables and detecting possible implications and conflicts caused by the as-
signed values. The SAT problem is encoded in Conjunctive Normal Form, which
is a conjunction of clauses. A clause is the disjunction of literals, and a literal
is a Boolean variable or its negation. Upon assigning a literal, consequent im-
plications are detected by adopting a two-watched-literal strategy where each
clause is only propagated if one of its two watched literals is assigned to false
[19]. In case of a conflict, where all literals in a clause are false, a new clause is
learned to prevent the conflict from being encountered again. Conflict analysis
is performed by backward traversal of the implication graph that can result in
non-chronological backtracking. For more details, the reader is referred to [20].

4.1 Integrated Solving

A recent algorithm has improved performance by solving both subproblems to-
gether. The algorithm, found in [15] and implemented in the Ario SMT solver
[16] (hereafter, the Ario algorithm), tightly integrates both solvers.

In this algorithm, each time an assignment is made to a Boolean indicator
variable during search, its corresponding STP constraint is activated and checked
for consistency with other activated STP constraints. This is achieved using the
incremental algorithm of Jaffar et. al. [21] for solving problems involving UTVPI
integer constraints, which are slightly more general than STP constraints. Each
time a new STP constraint is added to the STP solver, it generates a set of new
STP constraints that are implied by the addition. For instance, adding the STP
constraint y−z ≤ d2 to the set {x−y ≤ d1} will result in generating the implied
STP constraint x−z ≤ d1+d2. If a newly generated STP constraint is equivalent
to or stronger than the STP constraint implied by an indicator variable, the
indicator variable is assigned to true. Any conflict detected in the activated STP
constraints can be encoded as a clause on the Boolean side. However, given that
the integrated solver checks the consistency of the temporal side as it makes
assignments, such conflicts will often be found much sooner.
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4.2 Encoding a DTP as an MLLP

DTPs (and by extension STPs) can be directly encoded as MLLP problems.
DTPs are simply MLLPs that do not include any Boolean variables. During
Benders’ decomposition, each disjunct i of DTP constraint k, denoted C〈k,i〉,
is given an indicator variable B〈k,i〉 on the Boolean side, and the disjunctive
constraint will have the Boolean form of

∨
i B〈k,i〉.

The MLLP algorithm of Ario bears a strong resemblance to the meta-CSP
concept used by many DTP solvers. To create the meta-CSP of a DTP, a CSP
variable is created for each DTP constraint; the domain of the CSP variable
includes one value for each disjunct in the DTP constraint. During search, as-
signments are made to the meta-CSP variables. After a variable is assigned a
value, the disjunct associated with that value (i.e. an STP constraint) is added
to an incremental STP solver, much like the Jaffar solver mentioned above. This
act resembles the process of assigning an indicator variable to true and adding
the indicated STP constraint to the Jaffar solver.

Given the strong similarity of the two methods, it is unsurprising that many
techniques in one apply to the other. In fact, many of the efficiency techniques
used to prune the search of Meta-CSPs have an analogue in the Ario algorithm.
For example, the method of incorporating conflicts detected on the STP side
into the Boolean side has a CSP analogue called no-good learning. A method
called removal of subsumed variables in DTP solvers identifies disjuncts that
are already satisfied (without being inserted into the STP solver) and assigns
them to their meta-CSP variables. This technique is an integral part of the Ario
algorithm, which sets indicator variables to true when the STP constraints they
imply are subsumed by the implied constraints discovered by the STP solver.

These techniques help reduce the role of the relatively slow STP solver by
shifting more work toward the efficient SAT solver. When describing our modifi-
cations to the Ario algorithm, we will show how to incorporate another technique
found in DTP solvers, called semantic branching.

5 Solving DTPPs

To extend Ario’s MLLP algorithm into a DTPP solver, we address three issues:
how to represent arbitrary preference functions in an MLLP; how to convert the
solver from a satisfaction algorithm to an optimization algorithm; and how to
improve performance by taking advantage of the structure of DTPPs.

5.1 Encoding Preference Functions as an MLLP

In the preceding section, we described how STP constraints are linked to Boolean
variables using the conditional form of Bi → x − y ≤ d. We can use the same
mechanism to reason about arbitrary preference functions. In other words, we
can represent a DTPP with arbitrary preference functions as an MLLP.

If the preference functions are restricted to be convex, they can be easily
represented (or at least approximated) by a set of linear functions [9]. However,
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Fig. 2. The preference projections for each constraint in the Mars rover example (see
Section 3). Each line segment at level l represents intervals for which the value of the
preference function is l or greater. “X” marks ends of open intervals.

when arbitrary, non-convex preference functions exist (such as the one in Fig-
ure 2(b)), more complicated schemes are required. For our purposes, we adopt
the scheme presented in [11], which approximates arbitrary preference functions
using a set of hard STP constraints, called a preference projection [11]2. After
creating the preference projections, we assign an indicator variable to each ele-
ment of the preference projection (i.e. to each hard STP constraint) and show
how to define Boolean formulas that will ensure that any solution to the MLLP
is a solution to the DTPP and vice-versa.

To obtain a preference projection for a DTPP constraint, we first discretize
the range of its preference functions into a finite set of real values A, called a
preference value set ({0, 1, 2, 3, 4} in our Mars rover example). Then, we project
each disjunct (STPP constraint) at each level l ∈ A into a set of hard STP
constraints. In the end, each function will be represented as a set of hard STP
constraints. Again, we refer to disjunct i of DTPP constraint k as C〈k,i〉.

The projection of disjunct C〈k,i〉 at preference level l is a list of STP con-
straints representing the intervals at which C〈k,i〉 is satisfied at preference level l
or higher. Figure 2(d)-(f) shows the preference projection for each constraint in
our Mars rover example (Figure 2(a)-(c)). Each horizontal line segment in Figure
2(d)-(f) is an STP constraint in the preference projection. For example, the line
segment at preference level 3 in Figure 1(f) denotes that if 0 ≤ E −A ≤ 6, then
the preference value for constraint MC3 will be 3 or greater.

Once we have a list of STP constraints for each disjunct of each DTPP con-
straint, we union the lists for all disjuncts that belong to the same DTPP con-
straint and level. Therefore, we end with a list of STP constraints for each level

2 Although the method only approximates functions, the degree of approximation can
be controlled by varying the number of preference levels.
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and each DTPP constraint. The following two definitions formalize the idea of
a preference projection for STPP and DTPP constraints.

Definition 1 (STPP Preference Projection). (From [11]) Given an STPP
constraint C〈k,i〉 = 〈x−y ∈ [a, b], f〉, the preference projection at level l is
P〈k,i〉[l] = {c1, c2, . . . , cn}, where cp = 〈x− y ∈ [ap, bp]〉, bp <ap+1 for 0 ≤ p < n
and

⋃n
p=1[ap, bp] = {t|f(t) ≥ l}. The STPP preference projection is P〈k,i〉 =⋃

l∈A P〈k,i〉[l].

That is, the preference projection at level l for an STPP constraint is the
unique set of maximal intervals for which the constraint receives preference ≥ l.

Definition 2 (DTPP Preference Projection). Given a DTPP constraint
Ck = C〈k,1〉 ∨ C〈k,2〉 ∨ . . . ∨ C〈k,n〉, the preference projection for Ck at level l is
Pk[l] =

⋃n
i=1 P〈k,i〉[l]. We refer to the set of all hard STP constraints projected

from Ck using preference value set A as the preference projection for Ck,
denoted Pk =

⋃
l∈A Pk[l].

Thus, for each DTPP constraint Ck and each level l, the list of dual-bounded
STP constraints is denoted as Pk[l]. Using the definitions, we can show that
if an assignment of times to each temporal variable satisfies at least one STP
constraint in Pk[l], then DTPP constraint Ck will be satisfied at level l or greater.
If we find the maximum l for which some STP constraint in Pk[l] is satisfied,
we say that the assignment satisfies the DTPP constraint at level l. If we sum
this value for all DTPP constraints in the problem, we have the utilitarian value
of the assignment. Therefore, the utilitarian value of any assignment can be
approximated3 by finding the highest valued satisfied STP constraint in each
DTPP constraint’s preference projection.

We can define an indicator variable B〈k,l,p〉 to imply the pth element of Pk[l].
Just as in the DTP case, a solution exists when at least one B variable for
each DTPP constraint is “true” and the STP constraints implied by the true B
variables represent a consistent STP. In terms of indicator variables, the following
Boolean constraint must be satisfied:

∧
k

∨
l

∨
p

B〈k,l,p〉.

When preferences are present, we are not content with finding any assignment
to the indicator variables that satisfies the above Boolean constraint; we want the
assignment that maximizes an objective function. To prepare for encoding the
objective function, we factor the above constraint by introducing an intermediate
variable for each DTPP constraint and level: B〈k,l〉 =

∨
p B〈k,l,p〉. In the next

section, we show how to tie these intermediate variables to the objective function.
As an example, consider the preference projection for MC2 in Figure 2(e).

There are 7 STP constraints in the projection: 1 at level 0, B〈2,0,0〉; 1 at level 1,
B〈2,1,0〉; 2 at level 2, B〈2,2,0〉 and B〈2,2,1〉; 2 at level 3, B〈2,3,0〉 and B〈2,3,1〉; and 1
at level 4, B〈2,4,0〉. The Boolean constraints in the first column below represent
this preference projection:

3 Subject to the approximation error of the discretization process.
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B〈2,4〉 = B〈2,4,0〉 M〈2,4〉 = B〈2,4〉
B〈2,3〉 = B〈2,3,0〉 ∨ B〈2,3,1〉 M〈2,3〉 = B〈2,3〉 ∧ ¬B〈2,4〉
B〈2,2〉 = B〈2,2,0〉 ∨ B〈2,2,1〉 M〈2,2〉 = B〈2,2〉 ∧ ¬B〈2,3〉
B〈2,1〉 = B〈2,1,0〉 M〈2,1〉 = B〈2,1〉 ∧ ¬B〈2,2〉
B〈2,0〉 = B〈2,0,0〉 M〈2,0〉 = B〈2,0〉 ∧ ¬B〈2,1〉

To ensure every DTPP constraint is satisfied, a final Boolean equivalent to
the unfactored Boolean constraint above is required:

∧
k

∨
l

B〈k,l〉.

5.2 Finding the Optimal Solution to the MLLP

The optimal solution to a DTPP is an assignment of times to temporal variables
that produces the highest utilitarian value. The utilitarian value is calculated by
finding a true indicator variable from each DTPP constraint and summing their
l values. If more than one indicator variable is true for a given DTPP constraint,
the one with the maximum l value is used.

To find the maximum l value for each DTPP constraint k, we add Boolean
constraints of the form M〈k,l〉 = B〈k,l〉 ∧ ¬B〈k,l+1〉, where the variable M〈k,l〉
becomes true if l is the highest level satisfied for constraint k4. The second column
in the table above shows the M variables and constraints for our example.

The objective function for the optimization problem is therefore a sum con-
sisting of one term for each level of each DTPP constraint: l ·M〈k,l〉. Thus, the
objective function for the MLLP is the following: max

∑
k

∑
l

l ·M〈k,l〉.

We perform the optimization by solving a sequence of satisfaction problems.
We encode the objective function as a special linear constraint:

∑
k

∑
l

l ·M〈k,l〉 ≥

lowerBound, where lowerBound is a constant that we increase after each prob-
lem in the sequence is solved. The search starts by solving the satisfaction
problem in which lowerBound is set to 0. If the solver finds a solution, and
the objective evaluation of that solution is some value v, then we update the
lowerBound value in the special constraint to v + 1, and re-solve the problem.
At each iteration the lower bound is updated and the search terminates when
the problem becomes unsatisfiable. The last satisfiable lowerBound then will be
the maximum value of the objective function.

5.3 Exploiting the DTPP Structure

Thus far, we have described a method for finding the optimal solution to a DTPP
by encoding the STP constraints in the preference projection as an MLLP and
by solving a sequence of MLLPs with a special constraint encoding the objective
function. We now discuss how to take advantage of the structure of the DTPP
and its objective function to improve performance.

4 For each DTPP constraint’s top-level M variable, the included Boolean constraint
is M〈k,l〉 = B〈k,l〉.
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Semantic Branching. One method used by meta-CSP solvers that did not
already exist in our MLLP solver is semantic branching. In semantic branching,
as soon as the solver finds that enforcing an STP constraint cannot lead to any
solution, it infers that the negation of that STP constraint should hold in any
solution. Enforcing the negation of the STP constraint further prunes the search,
possibly detecting dead ends in the search sooner than otherwise possible. In our
method, each time an indicator variable for an STP constraint is set to false,
the temporal solver can enforce the negation of the STP constraint. A similar
method was also successfully used in another SAT-based DTP solver [6].

Relationships Among STP Constraints. STP constraints projected from a
single DTPP disjunct are closely related. Note that each interval of a preference
projection constraint is a subset of an interval in every level below it. Therefore,
if a set of assignments satisfies a projected STP constraint at level l, then at least
one STP constraint is satisfied at all lower levels. Conversely, if no STP constraint
at level l is satisfied, then no STP constraint at any higher level can be satisfied.
We encode this relationship using the Boolean formulas ¬B(k,l) → ¬B(k,l+1).

Efficient Processing of Objective Function. Each time a Boolean variable
is assigned or unassigned, the value of the objective function may change. To
avoid constantly updating the objective value, our algorithm instead monitors
an upper bound for the objective function, which changes much less often. To
calculate the upper bound, we first locate the highest non-false M variable for
each DTPP constraint, i.e., the non-false M variable with the highest l value.
We refer to this set as the watched M variables. Then, we sum the l value of all
watched variables to produce the upper bound. The upper bound only needs to
be updated when one of the watched M variables is assigned to false.

When the upper bound becomes equal to the lowerBound value in the objec-
tive function, all the corresponding watched variables should be implied to true.
On the other hand, if the upper bound becomes less than lowerBound, a conflict
is detected. The reason for the conflict is the set of M variables whose assign-
ment to false resulted in the drop of the watched-sum below its lowerBound.
The conflict set is passed to the SAT Solver as a new clause, and backtracking
occurs. This method incorporates standard branch-and-bound concepts.

Pruning Using Slack. We use the difference between the upper and lower
bounds to help prune the search. We use this difference, called the slack, to
prune disjuncts that are projected from the lower preference levels. Consider our
Mars Rover example and the case where the lowerBound = 8 and the watched
variables are M〈1,4〉, M〈2,2〉 and M〈3,4〉. The upper bound in this case is 10
(4+2+4), resulting in a slack of 2. When choosing an indicator variable to assert
in constraint 1, all indicator variables at level 1 or lower can be ignored because
they would lower the upper bound by an amount greater than the available slack;
therefore, we can safely assign false to the variables M〈1,0〉 and M〈1,1〉.

In general, any M〈k,l〉 variable will be assigned to false if it is detected that
assigning M〈k,l〉 to true would prevent the sum in the objective function from
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reaching the lower bound. In short, if for some DTPP constraint k, the watched
element of the objective function is M〈k,l∗〉, then all variables M〈k,l〉 in which
l < (l∗ − slack), should be assigned to false.

When the lowest M variables are implied to false, it effectively raises the
minimum level at which the DTPP constraint must be satisfied. In the above
case, the minimum level was raised to 2. To encode this explicitly, we simply
set B〈3,2〉 to true. The same effect can be produced by adding a set of Boolean
constraints of the form:

∧l
a=0 ¬M(k,a) → B(k,l+1) to the problem.

6 Experimental Results

Our algorithm for optimally solving the DTPPs is incorporated into the SMT-
solver Ario [16]. Its STP algorithm is a specialization of its UTVPI engine fully
explained in [15]. All experiments were conducted on a Pentium-IV 2800MHz
machine with 1 GB of RAM running Linux.

6.1 Generating Random DTPPs

For the tests described in this section, we generated random DTPPs using a set of
parameters 〈E, C, D−, D+, L, R−, R+, S〉, where E is the number of events, C is
the number of constraints, D− and D+ are the minimum and maximum bounds
on any constraint, and the remaining elements define the preference functions.

We first generate a set of events {x1, x2, . . . , xE}. Then, we generate a set
of C 2-disjunct DTP constraints (without preference functions) by creating one
disjunct at a time. For each disjunct of each constraint, we randomly choose
a pair of events, and then randomly choose an upper and lower bound for the
temporal difference between the events from the interval [D−, D+].

Once the hard DTP constraints are formed, we create a preference function
for each disjunct. Instead of creating the functions directly, we create the con-
straints of its function’s preference projection. The lowest level of the preference
projection is formed using the bounds that were chosen for the underlying STP
constraint. To form a new constraint at the next level, we first calculate the width
of the new constraint’s interval by multiplying the width of the previous con-
straint’s interval by a reduction factor, chosen from the interval [R−, R+] ⊂ [0, 1].
An interval of the newly calculated width is created and placed randomly within
the original interval. With probability S, the new interval is split into two parts,
and each interval is randomly placed. When S is 0, the interval never splits,
and the result is a preference function that is semi-convex5, as in Figure 2(d).
When S is greater than 0, functions such as those in Figure 2(e) are created. We
continue creating new preference levels until the calculated interval width for a
new level is 0 (occurs often because we round to the nearest integer) or we hit
the maximum number of preference levels defined by L.

5 A funtion f is semi-convex if the set {X : f(X) ≥ Y } forms an interval for all Y [7].
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6.2 Experiment 1: Varying Problem Size

Given that no other algorithm exists for finding utilitarian-optimal solutions
to DTPPs, our first set of experiments evaluates Ario in terms of the differ-
ent parameters in the DTPP problem, generated as previously explained. For
each problem, we fixed the following parameters: {D− = −50, D+ = 100, R− =
0.5, R+ = 0.9, S = 0}. In the first run, we fixed the number of preference levels
(L) to 5 and varied the number of 2-disjunct constraints (C) from 10 to 70.
In the second run, we fixed C to 35 and varied L from 2 to 9. In both runs,
the number of events (E) was set to 4

5C (constant constraint density). Figure 3
shows the average and median running times for 20 trials of each problem size.
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Fig. 3. Running times for 20 trials solving problems with different numbers of con-
straints and preference levels. (a) number of preference levels fixed at 5. (b) number of
constraints fixed to 35. (Timeout set to 1000s)
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levels than the number of constraints. Fortunately, the number of preference lev-
els is controllable; we choose this number when we create the preference projec-
tion. Thus, the knowledge engineer can trade off accuracy (number of preference
levels) for speed. The number of constraints is problem dependent, so practically
it is more important that we do well in this dimension.

In a third run, we held the problem size constant (C = 35, L = 5) and varied
the constraint density by varying E from 8 to 44. The result, shown in Figure 4,
qualitatively resembles the result of many CSP density tests: for over- or under-
constrained problems, finding the optimal solution is fairly easy, while problems
in the middle range are much more difficult. Note that the previous two runs in
this experiment used a density of 1.25 (E = 4

5C), which is in the difficult range.

6.3 Experiment 2: Performance on STPPs

We compared Ario’s performance on STPPs to two methods for solving STPPs:

1. Simplex-based MIP method using the solver XPRESS-MP [22]. In this meth-
od, the disjunction between the temporal constraints associated with each
preference level was removed using the Big-M method. Specifically, each
temporal constraint of the form d1 ≤ x−y ≤ d2 in the preference projections
was replaced by the following two constraints:

x− y ≤ d2 + M(1−B〈k,l,p〉)
x− y ≥ d1 −M(1−B〈k,l,p〉)

where M is the Big-M parameter and B〈k,l,p〉 is a binary variable represent-
ing the projected constraint. Since each constraint k should be individually
satisfied, a constraint of the form

∑
l

∑
p B〈k,l,p〉 = 1 is also entered for each

constraint k. The objective function is encoded as below:

max
∑

k

∑
l

∑
p

l ·B〈k,l,p〉

2. GAPS[11]. GAPS was the first algorithm specifically-designed for solving
STPPs with unrestricted preference functions. Although GAPS was designed
to maximize anytime performance, it is also complete, which allows us to
compare against it. GAPS executes a greedy search in the space defined by
the STPP preference projection. Each point in the search space is a compo-
nent STP, which is an STP formed by selecting a single STP constraint from
each preference projection. It starts with the component STP formed by se-
lecting the STP constraint at the lowest preference level of each projection,
and incrementally improves it by replacing one STP constraint in the com-
ponent STP with another from a higher preference level. Once the greedy
search finds a component STP that cannot be improved, it is finished with
the first iteration. The first greedy solution is used to partition the problem
into several smaller STPPs, each of which can be searched using the same
greedy search. Each partition prunes much of the search space and prevents
previously visited parts of the space from being revisited.
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In this test, we used to the same fixed parameters as the first run in Ex-
periment 1, except we increased S to 0.05, resulting in non-convex preference
functions. Figure 5 shows that Ario outperforms both MIP and GAPS methods
for the cases in which the number of preference levels is 5.

7 Conclusions and Future Work

In this paper, we presented an algorithm for finding utilitarian optimal solutions
to STPPs and DTPPs based on Benders’ decomposition and adopting SAT tech-
niques. In our approach, we adopt the technique of representing each preference
function as a set of hard STP constraints called a preference projection. Each
temporal constraint in the preference projection is replaced by a Boolean indica-
tor variable and the decomposed problem is solved by a tightly integrated STP
solver and a SAT solver. We showed empirically that our method finds an opti-
mal solution to STPPs much faster than the most recent algorithm, and showed
how the running time of our algorithm on DTPPs varied with problem size.

As we mentioned in the introduction, STPPs and DTPPs only take advantage
of part of the expressive power of Ario. Many real world problems contain not
only temporal constraints, but logical constraints as well, which Ario can repre-
sent and reason about with no modification. Allowing logical constraints enables
the representation of optional constraints, conditional constraints, and temporal
constraints with variable bounds. Using such devices, we can extend our Mars
rover example to include optional experiments, experiments that can only take
place if some environmental condition holds, and experiments whose duration
depends on the amount of sunlight available or amount of power remaining.
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Abstract. The eplex library of the ECLiPSe Constraint Logic Programming
platform allows the integration of Mathematical Programming techniques with
its native Constraint Logic Programming techniques within the same unified
framework. It provides an interface to state-of-the-art Mathematical Program-
ming solvers, and a set of programming primitives that allow ‘hybrid’ techniques
to be easily expressed. This paper presents these facilities, and discusses some
associated implementation issues.

1 Introduction

Constraint Programming (CP) and Mathematical Programming (MP) are two ap-
proaches that have been used to tackle large scale Combinatorial Optimisation prob-
lems. In recent years, there has been significant research effort [19] to combine the two,
exploiting their complementary strengths, to develop ‘hybrid’ algorithms that can tackle
problems that are difficult for either approach alone.

Much of the recent algorithmic research and development work at IC-Parc has been
focused on this hybrid approach. The ECLiPSe Constraint Logic Programming (CLP)
platform is the programming environment used for this development work. As devel-
opers of ECLiPSe, we aim to provide a unified high-level platform for programmers
to explore different approaches to solving their problems. To allow the exploration of
hybrid and MP techniques from a CLP perspective, we developed the eplex library for
ECLiPSe, whose first version was released in 1997 and which has been under continu-
ous development since, mainly driven by application requirements.

In this paper, we present the eplex library in its current form. Our aim is to high-
light the facilities provided which enable the MP/hybrid algorithms to be developed in
ECLiPSe, rather than describing the algorithms themselves. We also assume that the
reader has some familiarity with CLP languages and concepts.

2 Motivation and Objectives

With this work, we pursued the following objectives

– make the convenience of CLP available for modelling MP problems
– make state-of-the-art implementations of MP solvers accessible and provide a uni-

fied interface to them

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 622–636, 2005.
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– provide the means to safely combine standard MP optimisation solvers and
propagation-based CP solvers

While the first two objectives give rise to relatively straightforward engineering tasks,
everyone who wants to smoothly integrate CP and MP faces the dilemma that the stan-
dard solution techniques exhibit quite fundamental differences:

In CP, problems are solved by a combination of propagation (the systematic exclu-
sion of non-solutions from the search space) and search (the heuristic partitioning of the
search space into smaller, more manageable sub-spaces). This principle is very general
and not specific to a particular problem class. It is however aimed at constraint satisfac-
tion, i.e. at finding all solutions that satisfy the constraints. If an objective function is
given, and optimisation is required, then this is usually achieved by applying a bound-
ing method on top of the all-solutions method, i.e. incrementally looking for solutions
that are better than a previously found one.

In MP, we deal with two particular problem classes: linear programming problems
(LP, linear constraints over continuous variables), and (mixed) integer problems (MIP,
where some or all of the variables are required to take integral values).

For LP, we have very good algorithms (simplex and interior point methods) which,
given a constraint system and an additional objective, can find one (of possibly many)
optimal solutions quite efficiently. But unlike constraint propagation techniques, these
algorithms do not compute a representation of a reduced search space, and can therefore
not straightforwardly be integrated into a CP system.

MIP solution techniques are also difficult to integrate with CP, but for a different
reason. Like for general CP, there is no efficient direct algorithm for solving MIPs. MIPs
are therefore solved by a combination of branch-and-bound search with an underlying
LP solver. When integrating with CP, we face the problem of having to merge the CP
and the MIP search. Because the MIP search is usually implemented as a black box,
this is difficult to achieve.

3 Functionality

Like other solvers in ECLiPSe, eplex is implemented in the form of a library. The eplex
library allows MP problems to be modelled in ECLiPSe, and solved (optimised) by an
external MP solver. In terms of solving, we provide two interfaces, a low-level proce-
dural one that is close to the MP solver’s given API, and a safe, logical one that is close
to the concepts used in propagation-based CP solvers. In either case, our interfaces try
to hide as much as possible the differences between the different brands of MP solvers
that we interface to.

3.1 Declarative Modelling

Problems are modelled in the same way as with other ECLiPSe solvers, i.e. by speci-
fying a logic program where some of the predicates represent the constraints to be sat-
isfied. The constraints that eplex supports are equalities and inequalities ($=/2, $>=/2,
$=</2) over linear arithmetic expressions, the integrality constraint (integers/1) and
the bounds constraint ($::/2) which is just a special case of inequalities. They are used
as in the following examples:
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:- lib(eplex).

model1([X,Y], X) :-
X $= Y + 1,
integers([X]),
X + Y $>= 4.

model_knapsack(Bools, Weights, Profits, Cap, Profit) :-
Bools $:: 0..1,
integers(Bools),
Bools*Weights $=< Cap, % List*List (dot product)
Bools*Profits $= Profit.

The first example, model1, defines a problem with two variables, one equality, one
inequality and one integrality constraint. The second example, model knapsack, is a
model for a knapsack problem, consisting of the declaration of a list of boolean vari-
ables, and stating a capacity constraint and a profit equation, using the given lists of
item weights and profits.

Note that this modelling code is solver-independent, in particular, it is completely
identical to the modelling code that would be used for ECLiPSe’s interval and finite-
domain propagation solver ic!

3.2 Procedural Solver Interface

Once a problem has been modelled by means of constraints, we want to solve it. We
first present a conventional, procedural interface that is very close to the API provided
by the MP solvers, and not too different from the way an imperative language would
interface to such a solver. In addition to the constraint predicates that are used in the
problem model, we simply provide additional primitives for (i) specifying the objective,
(ii) invoking the solver, and (iii) accessing solution information. The model above can
then be solved using this additional code:

solve :-
model1([X,Y], Cost),
eplex_solver_setup(min(Cost)),
eplex_solve(Opt),
eplex_var_get(X, solution, OptX),
eplex_var_get(Y, solution, OptY),
printf("Solution X=%f, Y=%f at cost %f%n", [OptX,OptY,Opt]).

Setup and solving. Solver setup is performed via the eplex solver setup/1, which
initialises the MP solver for this problem. Constraints can be stated before or after
solver setup. In this case, we stated the constraints before solver setup. Operationally,
constraints stated before solver setup are delayed, and during solver setup, the objective
is set, and all constraints stated so far are collected and passed to the solver in one batch.
No solving is performed at this time: this is the job of the separate eplex solve/1
predicate, which invokes the MP solver and either fails (if the problem is infeasible) or
returns the optimal objective value. The point of separating setup and solving function-
alities is to enable repeated re-solving of the problem, usually with a slightly modified
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problem. After the initial problem setup, additional constraints and variables can be in-
crementally added to the problem (and indeed be removed on backtracking) in the same
way this would happen with the constraints of a CP solver. Problem modification can
be interleaved with new calls to the solver.

Accessing results. Apart from computing the optimal objective, the solver also finds
one set of solution values for the problem variables. These values must be explicitly
retrieved using the eplex var get/3 predicate. This may seem surprising at first -
why are the variables not instantiated to their solution values? There are two reasons:
First, the MP solver delivers only one of possibly many solutions, so it would not be
logically correct to assign this value. In particular, this initial solution may no longer be
feasible once additional constraints are added and the problem is re-solved.

A second problem is that MP solvers are typically implemented using floating-point
arithmetic, making the results subject to rounding errors. This means that with non-
integral variables, the floating-point values that the solver considers a solution will usu-
ally not be suitable to serve as actual variable instantiations. In particular when equality
constraints are involved, passive checking of the constraints with floating-point solu-
tions filled in will usually fail (because we are violating the golden programmer’s rule
of never comparing floating-point values for equality). All non-integral solutions from
an MP solver should therefore always be considered as approximations. A good use for
them is as a labelling heuristics within a search routine.

The eplex var get/3predicate is also used to retrieve other variable-related solver
information, like the reduced costs, which are useful to do cost-based filtering [12]. Sim-
ilar interface predicates give access to further information from the solver, for instance
dual values for the constraints.

3.3 Logical Integration with CLP

The problem with the procedural interface described above is that the semantics of
the posted constraints is only respected when the programmer explicitly invokes the
eplex solve/1 predicate in the right places of the code.

The programming paradigm of a CP system is however that the constraints ‘take
care of themselves’, i.e. once they have been posted, the system should automatically
make sure that they are not violated. And not only that: much of the power of CP derives
from the data-driven way in which the consequences of changes are propagated through
a constraint network. Each CP constraint is represented by one or more propagators,
which are suspended awaiting specific events (which generally involve changes to the
variables in the constraint) that will trigger their execution.

We now combine the availability of the MP solver with the idea of event-driven ex-
ecution in order to achieve a logically correct implementation of our linear constraints,
to detect inconsistency as soon as possible, and even to propagate information in case of
consistency. We just need to make sure that the solver is automatically invoked when-
ever the corresponding constraint system has changed, more precisely, if it was tight-
ened in a way that invalidates the previously found solution. This may happen through
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– the addition of new linear constraints (new_constraint)
– new, tighter variable bounds that exclude the solution value (deviating_bounds)
– instantiation of variables to a value different from its solution value

(deviating_inst)

The eplex library supports all these (and a few more) trigger conditions, which can be
specified as parameters to an extended version of the eplex solver setup predicate.
Note that the laziest trigger condition that still achieves logically correct handling of the
constraints is the deviating_inst-condition: when variables are instantiated to a non-
solution value, the solver is reinvoked. In particular, it is guaranteed that the constraints
will have been checked (and inconsistency detected) once all variables are instantiated.
Additional trigger conditions will make the system more eager: when using all three
conditions above, inconsistency will be detected as soon as possible.

Additionally, the programmer can specify their own triggering conditions based on
the general suspend and resume mechanism of ECLiPSe. The MP solver can thus be
made to trigger only on ‘interesting’ problem changes, reducing unnecessary computa-
tion in case the predefined trigger conditions turn out to trigger too eagerly.

An automatically triggered solver can do more than just detecting inconsistency:
it computes an optimum cost for the current state of the constraint system. Since the
constraints can only get tighter later, this cost can be used as a lower bound (in case
of minimisation) on the cost variable (C in the example code). The MP solver thus
acquires the characteristics of a propagation constraint: it reacts to e.g. bound changes
in its problem variables, and imposes a new bound on its cost variable. It can therefore
take part in propagation sequences, and it can be considered as a compound constraint,
representing the whole MP problem with all its variables.

In a setting where (cheap) interval-propagation constraints are mixed with (expen-
sive) MP-solver constraints, we prioritise the execution such that the expensive con-
straints are only executed once the cheap constraints have reached a fixpoint. That way,
MP solving is done only as many times as absolutely necessary.

Another way in which a solver can perform propagation is by pruning variable
bounds using reduced cost information [12]. This feature is available as a further solver
setup option. Other information from the MP solve can be used to assist the CP solve
more indirectly, e.g. using the solution values for labelling the variables.

3.4 Multiple Subproblems

Since the constraint syntax is identical for different solvers, in a hybrid program it be-
comes necessary to specify which solver a constraint is intended for. This is syntacti-
cally solved by prefixing the constraint with the solver name (which is in fact simply
an ECLiPSe module name), e.g. with ic:(X+Y $>= 4) the constraint is posted to the ic
interval CP solver, with eplex:(X+Y $>= 4) the constraint is posted to the eplex MP
solver.

We also wanted to provide the flexibility to group eplex constraints into separate
subproblems that can then be handled as independent subproblems by an MP solver.
This is done through the concept of eplex instances. The constraints are prefixed with
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instance names to group them into different subproblems. The following example de-
fines two overlapping subproblems, corresponding to the two declared eplex instances
‘lp’ and ‘mip’:

:- eplex_instance(mip).
:- eplex_instance(lp).

model2([X,Y,Z]) :-
[lp,mip]: (X $= Y + 1),
mip: integers([X]),
[lp,mip]: (X + Y $>= 4).

Each constraint here is posted to one or both solver instances. Note that not only
constraints, but also the solver setup, solve and access predicates can be prefixed by an
instance name in order to make them apply to a particular instance. The solver-prefix is
first-class, i.e. it can be a variable and specified at runtime.

3.5 Branch-and-Cut

Using the automatic triggering mechanism, the solving of an eplex problem can be
tightly integrated into the CP system’s constraint propagation and search process. The
most natural example of this is the implementation of a branch-and-cut search. Here,
some of the constraints of the full problem are initially relaxed. Branching is then done
by adding different constraints to the problem on each branch of a search node.

The simplest example of this in MP is the MIP search. It is used to obtain the
optimal integral solution to a problem, where at each node, a relaxed linear problem is
solved, and in each branch constraints are added to push integer variables away from
non-integer solution values. This search can be implemented in ECLiPSe, using eplex
to solve the relaxed problem automatically when required:

example_mip(Vars, Opt) :-
model(Vars, Ints, Obj), % problem specification
eplex_solver_setup(min(Obj), Opt, [], [deviating_bounds]),
bb_min((branch(Ints),eplex_get(cost,Opt)), Opt, _). % (A)

branch(Ints) :-
(

member(X, Ints), %
eplex_var_get(X, solution, Sol), % (B)
abs(Sol - round(Sol)) >= 1e-5 %

->
( X $=< floor(Sol) ; X $>= ceiling(Sol) ), % (C)
branch(Ints)

;
true % integer solution found

).

For this program, we are using two features of ECLiPSe to perform the required search:
Disjunctions ’;’ with automatic depth-first search to explore all alternatives (line C),
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and the generic branch-and-bound control procedure bb min to impose cost bounds and
locate an optimal solution (line A).

We use the MP solver only to solve the continuous relaxation of the problem, and
take care of integrality constraints explicitly. At each search node, we select a variable
whose value should be integral, but is indeed fractional in the current solution to the
continuous relaxation (lines B). The program then branches by adding (bounds-) con-
straints to the problem to push the solution away from the non-integral value (line C).

The eplex problem is set up with a call to eplex_solver_setup/4, which al-
lows the user to customise the solver setup. The last argument specifies the pre-built
deviating_bounds trigger condition, so the solver is triggered by the exact condition
we need to push the solution value of an integer value away from its fractional value: if
it is fractional and is outside the new bound, the solver would be invoked. By default, if
trigger conditions are specified, then the problem will be solved once immediately after
set up, so that there is a solution available when the solver is triggered. Also, in general,
if a branching decision does not affect the MP problem variables (as specified by the
trigger condition), then the solver is not invoked.

The above example is a very simple implementation of a MIP search and is of course
not competitive with the MIP search built into the MP solver. However, this search
framework can be used to implement more flexible and elaborate search strategies that
cannot be performed by the black-box MP solver alone. Indeed the subproblem solved
at each node can be a MIP or any of the problem types supported by the MP solver.
Examples of this more involved search are probe backtrack search [9] and its generali-
sation [2], which was used to implement a commercial transportation application.

4 Implementation Considerations

4.1 Outline of Implementation

The eplex library is written in both ECLiPSe and C, corresponding to the logical and
low-level interfaces outlined in section 3. Two MP solvers are currently supported: Dash
Optimization’s Xpress-MP [15], and ILOG CPLEX [17]. Because of the differences
between the two solvers’ API and because not all eplex features are directly supported
by both solvers, the C layer contains some solver dependent code. The ECLiPSe layer
is almost completely solver independent.

Each eplex instance is implemented as a problem instance of the MP solver. The
problem instance is created when eplex_solver_setup is called, using the objec-
tive function and any constraints that have been posted to the eplex instance. In this
phase, the main job of the eplex interface is to convert the ECLiPSe modelling level
representation of the problem’s variables and constraints into the form required by the
MP solver, namely a compact row- or column-wise matrix representation. Constraints
posted after initial solver setup are added to the problem instance incrementally.

In terms of data structures, each eplex problem is represented by a problem handle
at the ECLiPSe level. This is simply a Prolog structure storing a reference to the MP
solver instance plus various information associated with the problem, e.g. the solution
values for the variables. The ECLiPSe level variables are linked to the solver by means
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of variable attributes (now a feature of several popular Prolog implementations): each
problem variable is given an eplex attribute which refers to the problem handle. If a
variable occurs in more than one eplex instance, a chain of eplex attributes is created,
one for each eplex instance.

The data-driven triggering of the MP solver is implemented using the suspension
(delayed goal) mechanism of ECLiPSe. A ‘demon’ goal which invokes the MP solver
is created, which is woken and executed whenever the specified triggering conditions
are met.

Any changes made to a problem after setup (e.g. adding constraints, changing vari-
able bounds), need to be undone on backtracking to maintain the ‘logical behaviour’ of
the whole system. As far as ECLiPSe level data structures are concerned, this undoing
is automatic. The challenge for the eplex interface is to make changes in the external
MP solver behave in the same way. This is done at the C level with ECLiPSe’s ‘trail
undo’ facility, which allows a C function call to be trailed on forward execution, and
executed when it is untrailed. Several changes are undone this way, the most important
is to restore the original problem matrix after backtracking. As constraints posted after
problem setup are appended to the end of the matrix, the original matrix is restored
simply by resetting the matrix to its former size. It should be noted that for some types
of incremental changes, the use of a time-stamping technique[1] is essential in order to
avoid excessive trailing.

None of the features required to implement the eplex library are specific to ECLiPSe:
an interface to C/C++, suspension, attributed variables, and a ‘trail undo’ facility, are
supported by other CLP systems. It should thus be possible to implement the eplex
library in other CLP languages, although not trivial due to lack of standardisation.

4.2 Overheads of Performing Search in ECLiPSe

A main concern is the efficiency of the common scenario of conducting search in
ECLiPSe while solving multiple subproblems. Can a high-level language like ECLiPSe

efficiently maintain the search-tree needed and can it allow an MP problem to be effi-
ciently modified and solved repeatedly?

An issue is how the successive subproblems are produced. In many cases, the suc-
cessive subproblems are derived from each other with small changes, and eplex will
allow the same MP problem to be incrementally changed and re-solved. This should
be more efficient than the alternative, which is to construct each subproblem afresh for
each solve.

We tried to measure the impact of incremental modifications and maintaining the
search-tree in ECLiPSe by timing various ways of performing MIP, the most common
MP search method. Firstly, we perform the MIP search using the MP solver. Secondly,
we perform the MIP search in ECLiPSe, using the MP solver as a linear solver at each
node, and allowing the problem to be incrementally modified. Thirdly, we perform the
MIP search in ECLiPSe as before, but construct the problem afresh at each node.

The MIP problem used for this study is taken from a set of examples that originated
from MIPLIB [4], a standard MIP benchmark suite.

The results, obtained on a 900MHz Pentium III Linux box with 256M of memory,
running ECLiPSe 5.8 with CPLEX 8.1.1, are presented in Figure 1. For each problem,
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Program CPLEX mip ECLiPSe incr. mip ECLiPSe non-incr mip
vars cons nodes node−1 calls node−1 nodes node−1 load

flugpl 18 17 70 0.393 4957 0.339 5221 3.33 1.74
flugplan 18 17 70 0.404 1986 0.393 2187 3.22 1.65
sample2 67 45 75 1.79 353 0.652 345 6.58 4.47
noswot 128 182 1 55.1 1127 1.63 32786 17.0 13.3
bell3a-nonred 133 111 18845 1.19 142583 1.45 162027 14.2 9.44

Fig. 1. Performing MIP search in ECLiPSe

its size in terms of number of variables (vars) and constraints (cons) are given. For most
of the problems with the solver MIP and incremental MIP, the solving is repeated 10 to
100 times to get a more accurate timing, and each timing is done 3 times.

In the table, we give either the number of nodes in the MIP search tree (including
the root node), or (in the incremental case, where there is one solver call per MIP node),
the number of solver calls, and the derived average time spent per node (runtime divided
by the number of nodes) of the search tree. In addition, the last column in the table is
the time needed to load the initial problem once into the MP solver, all timings are in
ms. The problem is constructed and loaded 1000 times, to simulate the construction of
the problem in the non-incremental MIP search.

MIP search-tree size. A simple depth-first branch-and-bound search similar to that
outlined in section 3.5 was used for the ECLiPSe MIP. The MP MIP search benefits
from good branching decisions and other optimisations, and its MIP search-trees are
significantly smaller than ECLiPSe’s. Our interest in this study is not how good the
MP’s MIP strategy is, but in the overheads in performing a search in ECLiPSe. For
this, the time spent on each node of the search-tree is a more accurate reflection of the
overheads associated with implementing the search.

Incremental vs. non-incremental search. Even for small problems like the ones tested,
the ECLiPSe incremental MIP search is about 10 times faster per node than the non-
incremental version. Modifying an existing problem is much less costly than construct-
ing the problem anew, as loading the problem is relatively expensive. In addition, the
incremental case is able to ‘warm start’ a problem when the modified problem is re-
solved – the solver will not start solving from scratch, but instead will try to reuse
information from the previous solve.

ECLiPSe search vs. MP search. Comparing the incremental search with the MP solver’s
MIP search is somewhat more complicated: the MP’s MIP search is tightly integrated
with its linear solver, and this should result in lower overheads in the solving of each
node, for example, adding the constraints at each node can be done more directly. Fur-
thermore, some optimisations can be done once at the start of the MP solver’s MIP
search, rather than repeatedly at each node, as is the case for the ECLiPSe MIP search.
At each node, the MP MIP search can also take advantage of the knowledge that it is
performing a MIP search, for example by posting extra cuts that would be invalid for
the LP problem and the problem may even be solved more than once per node to drive
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it closer to an integer solution. However, the effect of this may be more to reduce the
search-tree size, rather than make the solve at each node faster: the noswot result is a
striking example of this: the MP MIP solves the problem with a single node, but this
solve itself is relatively expensive, even taking into account the cost of loading the prob-
lem. Thus, the time per node comparison presented in the results should be taken with
care.

As the size of the MIP search-tree is so small for many of the MP MIP search, it
is not too meaningful to use the per node time for comparison: the cost of loading the
problem into the solver, and the cost of performing the initial solve, which is likely to
be more expensive because it does not benefit from a warm start, will skew the results
too much. However, for bell3a-nonred, where the search-tree is sufficiently large,
the time per node for the MP MIP and incremental MIP are quite similar, suggesting
that the cost of using ECLiPSe to control the MIP search is not prohibitive.

Impact on real applications. This ability to solve multiple problems, and to repeatedly
modify and solve problems has been used to good effect to solve very large problems.
In some applications, over a million subproblems were solved in a single program, e.g.
[7], which performs a complex search and at each node solves a series of subproblems,
including some that have a quadratic objective.

4.3 Memory Considerations

Multiple representation of problem. For large problems, the memory required to repre-
sent the MP problem can be significant. Moreover, the problem may be represented in
different forms at the same time during the execution. At the ECLiPSe level, the con-
straints for the problem are initially represented as expressions. When they are added
to the MP solver, they are first converted to a normalised form, and then passed to the
C level to construct the data structures required by the MP solver API. Both the C data
structures and the normalised form are only required temporarily, and the memory used
can be recovered once the constraints have been passed to the MP solver.

If a constraint is required by the MP solver and another ECLiPSe solver, then it has
to be represented in both. If it is only required by the MP solver, then the ECLiPSe

representation can be dropped once it has been passed to the MP solver. This is done
automatically by ECLiPSe if the constraint is posted incrementally to the MP solver
and then not referred to elsewhere in the program.

For most applications, the constraints for eplex are not given statically in the model
code, but are computed from some sort of abstract representation of the problem, e.g. a
graph. This will impose extra memory usage on the program.

MP representation of the problem. The MP solver stores the problem in a compact
form, with only the non-zero coefficients of the constraints stored (along with their
location in the problem matrix). In ECLiPSe, the constraint are represented as expres-
sions, which also normally contain only non-zero coefficients. However, more memory
is required to store the expression as it is designed for ease of manipulation rather than
minimise memory usage. The exact amount of memory required depends on the actual
expressions used, but is roughly about 4 to 5 times greater than that of the compact
form.
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A concrete example. We examined Thorsten Winterer’s Swapper program from his
thesis [24], which is an application to swap aircrafts for scheduled flights. We examine
his single MIP formulation of the problem, and the largest problem instance he used:
this extracted a MIP problem from a graph constructed from the raw flight data, and
has 421473 constraints and 145278 variables. As written, the program first constructs
all the constraints, before posting them all to the MP solver in one go.

However, as the constraints are not used elsewhere at the ECLiPSe level, and most
of the constraints can be extracted without looking at the whole graph, they can be
posted to the MP solver immediately. We modified the program to do this, and the peak
memory usage was greatly reduced: from about 400M to 150M. The execution time (to
the point where the problem have been loaded into the MP solver), however, increased
slightly from 102 seconds to 126 seconds (on a Pentium 4 2GHz Linux box with 1G
of memory, running CPLEX 9.0). This is probably due to the increase in memory man-
agement in the solver when the constraints are added to it incrementally.

In summary, while the ECLiPSe representation of the problem is less compact than
the compact matrix representation, it is often not necessary to represent the whole prob-
lem at the ECLiPSe level. In addition, even though the ECLiPSe representation is less
compact, it still avoids representing the non-zero coefficients, and would use far less
memory than a full, non-sparse matrix for the problem, so it is still possible to represent
quite large problems. At IC-Parc, eplex has been used successfully to solve problems
that approach 1 million constraints and variables e.g. [25] (627168 variables, 947967
constraints).

5 Related Work

5.1 Extensions of eplex

In addition to direct use of eplex in applications, eplex is also used at IC-Parc to develop
various hybridisation forms, such as column generation [10], Bender’s decomposition
[11] and Lagrangian relaxation [20]. Of these, column generation is now packaged as
an ECLiPSe library. In addition to the facilities described in this paper, eplex provides
additional low-level support for the colgen library, for example, adding new columns
with non-zero coefficients in existing rows of the matrix.

5.2 CLP Systems that Perform MP Solving

An alternative to providing an interface to an external MP solver is to implement an MP
solver. In this case, it should be possible to achieve much tighter coupling between the
MP solving and the rest of the CLP system, e.g., there may be no need to construct a
separate representation of the problem for the MP solver as in eplex. In fact, this is the
approach taken by many of the earlier CLP systems that have constraint solvers over
the real domain, such as CLP(R) [18], and clp(Q,R) [16], both of which implemented
their own Simplex solvers.

For CLP(R), the solver is used to determine the feasibility of a set of constraints,
rather than finding an optimal. The tighter integration of the solver with the rest of the
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CLP system allows the posted constraints to be actively simplified as new constraints
are added. However, this ability to rewrite constraints means more complex backtrack-
ing actions are required to restore the constraints: unlike in eplex, where the problem
matrix can simply be restored to its original size on backtracking. The Q variant of
clp(Q,R) performs all calculations with rational rather than floating point values, avoid-
ing imprecision problems at the cost of increased time and memory. Another difference
with eplex is that both CLP(R) and clp(Q,R) do not provide mechanisms for separating
the constraints into different subproblems that are solved independently.

Performance comparison. A motivation for the eplex interface is that an external MP
solver would be more efficient than trying to implement an MP solver directly – consid-
erable effort and specialist knowledge have been devoted to implementing MP solvers
such as CPLEX and Xpress, and it is unlikely that similar effort (and indeed the spe-
cialist knowledge) can be devoted to a single component in a CLP system. To see if
this belief is correct, we compared eplex using both the CPLEX and Xpress MP solvers
against clp(Q,R). clp(Q,R) has a Simplex solver implemented in Prolog with attributed
variables, and can optimise LP and MIP problems. It is available with several CLP sys-
tems, including ECLiPSe. Some effort was spent to implement an efficient Simplex
solver, although the MIP search implementation is still quite a simple one.

Program clpr,eclipse eplex,CPLEX eplex,xpress
lp mip lp mip lp mip

flugpl 0.0087s 2.43s 1.43× 88.4× 1.21× 33.4×
flugplan 0.0089s 0.99s 1.56× 35.0× 1.27× 13.5×
sample2 0.17s 4.31s 12.7× 32.2× 12.7× 29.3×
noswot 2.95s – 78.5× (0.0551s) 67.8× (2.31s)
bell3a-nonred 4.53s 20472s 164× 913× 168× 957×

Fig. 2. Speedup comparison of clp(Q,R) with eplex

Figure 2 shows the speedups of solving the same problems used in the search com-
parison (section 4.2) with eplex (using CPLEX 8.1.1 and Xpress MP 14.27), relative
to the performance of the R solver of clp(Q,R). The results were obtained using a
900MHz Pentium III Linux box running ECLiPSe 5.8. The problems are solved as
both LP (where the integer constraints are dropped) and MIP problems, and the timings
are presented for clp(Q,R) (in seconds) and for the MIP noswot times for CPLEX and
Xpress, as the clp(Q,R) was unable to solve this problem due to stack overflow.

Except for the smallest problems (flugpl and flugplan), eplex with the two MP
solvers was significantly faster than clp(Q,R) running on ECLiPSe: between 1 and 2
orders of magnitudes for the linear problems, and 1 and 3 orders of magnitudes for the
MIP problems.1 In addition, the difference is greater for the larger problems, so the

1 The performance of the ECLiPSe version of clp(Q,R) is quite comparable to that on other
CLP systems. For example, the measured difference in execution time between ECLiPSe and
SICStus Prolog (version 3.11.2) running these problems is at most 25%.



634 K. Shen and J. Schimpf

difference would likely even be greater for the type of application problems that have
been tackled using eplex.

In addition to the performance advantages, the external MP solvers offer more op-
tions. For example, both Primal and Dual Simplex and interior point methods are avail-
able for solving problems, and quadratic problems (i.e. problems with quadratic objec-
tives) can be solved.

5.3 Other Ways of Combining CP and MP

Using problem files. Instead of interfacing to the callable library of the MP solver, an
alternative would be to generate a file specifying the problem in one of the standard
formats (MPS or LP) that can then be read in and solved by an MP solver. The solution
is written to a file and read back by the user program. This provides a looser coupling
between the CLP language and the MP solver, and is probably easier to implement for
solving individual MP problems. This approach was used initially to interface ECLiPSe

to an MP solver [14], before the development of eplex, and was also used by COSYTEC
to combine CHIP [3] with Xpress MP to solve a part of a train schedule problem.2 How-
ever, it is less flexible than using the callable library. For example, it would be difficult
to repeatedly modify and resolve the same problem, without creating the problem anew
each time, and it would be difficult to achieve tight co-operation between the MP solver
and other solvers in the CLP system.

Other high-level languages combining MP and CP. Eplex allows MP and CP problems
to be modelled in a high-level language. In the MP community, the need for a easy-
to-use way of modelling MP problem lead to the development of modelling languages
such as AMPL [13] and GAMS [5]. This in turn lead to the development of OPL [22],
which extended MP modelling languages to model and solve CP problems as well.
However, like other MP modelling languages, OPL lacks the flexibility of a full-blown
programming language, and to allow a problem to be decomposed into subproblems that
are solved separately, a scripting language, OPL Script [23], was introduced. As each
subproblem can be solved by different methods, it does allow some hybrid solving.
Additionally, limited predefined ways of combining CP and MP solving in the same
OPL model is also possible, but as OPL Script is separate from the OPL model, more
programmatic control is not possible within the search specification. In addition, the
only way available to modify a problem and re-solve it is to change the data (constraints)
associated with the OPL model using OPL script, and then re-initialise the model. This
appears to create a new instance of the problem, which can be much more expensive
than incremental changes of the problem, as discussed in section 4.2.

Although OPL/OPL Script is solver independent, it is currently available with ILOG
CPLEX and Solver only.

Xpress-Mosel [8] offers high-level language functionality with Xpress-MP, and
with the announcement of the constraint-base module Xpress-CP, which uses the con-
straint engine of CHIP, similar functionality to OPL is available.

2 Personal communication with Helmut Simonis, 2004.
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Combining MP and CP in an imperative language. Using a high-level language to
combine CP and MP is not the only possibility. Much existing hybrid research work
is done using C/C++, interfacing to MP solvers such as ILOG CPLEX and CP solvers
such as ILOG Solver. In fact, ILOG provides Concert Technology [17], a common C++
classes and functions for Solver and CPLEX, to aid the writing of such code. With this
approach, the user would not benefit from the high-level ease of programming provided
by a language such as ECLiPSe or OPL, and furthermore, the programs are no longer
solver independent.

5.4 Other Common Solver Interfaces

The MP modelling languages like GAMS and AMPL are both available for use with
different MP solvers. Unlike OPL, however, they do not provide a CP solving compo-
nent.

The Open Solver Interface (OSI) from the COIN-OR project [6, 21] is a uniform
API in C++ for calling MP solvers. This allows solver independent program code to be
written in C++. In 2004, we investigated if eplex can use OSI as the API, rather than
directly the CPLEX and Xpress API, for accessing the MP solvers. This would also give
eplex immediate access to other solvers such as GNU’s GLPK. A prototype eplex-like
interface, implementing the minimal required functionality, was developed. However,
at the time, the OSI API was not flexible enough, particularly for MIP problems, to
replace our existing interface.

6 Conclusion

We believe that eplex provides a very powerful and flexible interface for users to solve
problems with MP and hybridisation techniques within a CLP language. While it is now
implemented for ECLiPSe, it should be possible to adapt it for other CLP languages.

The interface is still evolving to meet the needs of our users. In the short term, we
plan to add support for globally valid constraint pools (‘global cuts’ pools) – once added
to the pool, these constraints will apply to all subsequent solving of the problem, even
after backtracking.

We also plan to support Bender’s Decomposition and Lagrangian Relaxation as
libraries for ECLiPSe, so that the techniques can be used by the general users without
reprogramming these techniques on their own.
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Abstract. When the search for a solution to a constraint satisfaction
problem backtracks, it is not usually worthwhile to remember the as-
signment that failed, because the same assignment will not occur again.
However, we show that for some problems recording assignments is use-
ful, because other assignments can lead to the same state of the search.
We demonstrate this in two classes of permutation problem, a satisfac-
tion problem and an optimization problem. Caching states visited has
proved effective in reducing both search effort and run-time for difficult
instances of each class, and the space requirements are manageable.

1 Introduction

The aim of this paper is to show that for some types of constraint problem it
can be worthwhile to cache information about the assignments visited during the
search for solutions; this information can be used to prune parts of the search
visited later and avoid wasted effort.

When a constraint satisfaction problem (CSP) is solved by depth-first back-
tracking search, and the search backtracks, the failure of the current assignment
is due to some inconsistency that is not explicitly stated in the constraints. The
search has discovered that the assignment cannot be extended to a solution; it
is a nogood. There is no point in recording the assignment itself, in order to
avoid it in future, because the search will never revisit it anyway. However, in
some problems, assignments can occur later in the search that are equivalent to
the failed assignment, in the sense that they leave the remaining search in the
same state, and hence whether or not the equivalent assignment will fail can be
determined from the failed assignment.

In such a case, if assignments are recorded and an assignment occurs later in
the search that is equivalent to one that has already failed, the search can imme-
diately backtrack without rediscovering the same failure. Permutation problems
are a promising type of problem where equivalent states might occur. We demon-
strate the value of recording assignments in two classes of permutation problem,
where both search effort and run-time can be considerably reduced.

Previous work on recording nogoods has depended on identifying a subset of
the failed assignment that is responsible for the failure and adding this smaller
nogood to the CSP as a new constraint; although the assignment will not occur
again during the search, the subset may. For instance, Frost and Dechter [5]
use a backjumping algorithm that identifies a conflict set causing the failing
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assignment. Katsirelos and Bacchus [10] adapt the nogood recording techniques
successful in SAT, by keeping a record of the reasons for removing a value from
the domain of a variable and using these reasons, with the constraints that
each variable must have a value, to construct nogoods on failure. Bayardo and
Mirankar [1] discuss the fact that the space requirements of these methods of
learning nogoods during search can be prohibitive without some restriction on
the nogoods learnt, or some way of deleting nogoods no longer considered useful.

In comparison to these methods, the ideas discussed here are specific to a
particular type of problem. On the other hand, they have the advantage that it
is not necessary to identify a reason for a failure. Furthermore, the process of
matching an assignment with the cache is simplified by the fact that matching
assignments can only occur at the same level of the search tree. The results will
show that for the examples considered, the space requirements are manageable,
even for the most difficult problems requiring extensive search.

Two classes of permutation problem are considered below: a satisfaction prob-
lem and an optimization problem. In both cases, caching is very beneficial in
speeding up the solution of difficult problems. It is slightly more complex to in-
corporate caching into the search for optimal solutions, but essentially the same
method is used. Other applications of the same idea are also discussed.

2 Permutation Problems and Caching

In this section, we discuss how equivalent assignments can arise in permuta-
tion problems. Two assignments can be considered equivalent if they leave the
search in the same state, i.e. the subproblems consisting of the not-yet-assigned
variables and their current domains (after any constraint propagation) are the
same and the assignments to the future variables that are consistent with the
assignments already made are the same in both cases. Hence, if an assignment
cannot be extended to a complete solution, i.e. is a nogood, neither can any
equivalent assignment. Two assignments can only be equivalent if they involve
the same set of variables, because the set of variables that have not yet been
assigned must be the same. Since equivalent assignments leave the search in the
same state, we can think of a set of equivalent assignments as a (search) state;
and they will be referred to as states below.

A permutation problem is a CSP with the same number of values as variables
in which the constraints restrict every variable to have a different value [8]. If
the search algorithm assigns the variables in lexicographic order, an assignment
of size k consists of k of the values assigned to the first k variables. For some
permutation problems, whether or not the assignment can be extended to a
complete solution depends only on the set of values assigned, rather than on the
order in which they are assigned to the variables, together with possibly a few
other features of the assignment. In the ‘Black Hole’ problem discussed in the
next section, for instance, two assignments to the first k variables are equivalent
if the set of values assigned to the first k − 1 variables is the same, and the
kth variable is assigned the same value in both. Recording the set of values,
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along with the other features, if any, can then allow the inconsistency of future
assignments using the same set of values to be recognised without further search.

3 The Game of ‘Black Hole’

The first problem class examined is a class of satisfaction problems, i.e. just
one solution is required, or determination that there is no solution. It arises
from a game of Patience or Solitaire, that can be straightforwardly modelled
in constraint programming. ‘Black Hole’ was invented by David Parlett, who
describes it thus:

“Layout Put the Ace of spades in the middle of the board as the base or
‘black hole’. Deal all the other cards face up in seventeen fans of three,
orbiting the black hole.
Object To build the whole pack into a single suite based on the black
hole.
Play The exposed card of each fan is available for building. Build in
ascending or descending sequence regardless of suit, going up or down
ad lib and changing direction as often as necessary. Ranking is continuous
between Ace and King. For example, a start might be made as follows:
A-K-Q-K-A-2-3-4-3- and so on.”

The table below shows an instance of the game: the 17 columns represent
the 17 ‘fans’ of 3 cards each:

7♠ 3♦ 5♠ T♣ 6♠ J♣ J♠ 4♦ 7♥ 9♦ 7♦ 2♣ 3♥ 7♣ 3♠ 6♦ 9♣
J♥ 4♠ K♦ Q♦ T♠ T♦ A♣ 9♠ 9♥ Q♠ K♠ Q♥ 5♥ K♣ 8♥ J♦ 2♦
2♥ 5♣ T♥ 3♣ 8♣ A♥ 2♠ 8♠ 5♦ K♥ Q♣ 4♥ 6♣ 6♥ A♦ 4♣ 8♦

We can represent a solution as a sequence of the 52 cards in the pack, starting
with the ace of spades, the sequence representing the order in which the cards
will be played into the Black Hole. The top card in each column is available to
add to the sequence of cards being built. A solution to this game is:

A♠-2♣-3♠-4♦-5♠-6♠-7♠-8♥-9♠-8♠-9♣-T♠-J♠-Q♥-J♥-T♣-J♣-Q♦-K♦-A♣-
2♠-3♥-2♦-3♣-4♥-5♥-6♣-7♥-8♣-7♣-6♦-7♦-8♦-9♥-T♥-9♦-T♦-J♦-Q♠-K♠-
A♥-K♥-Q♣-K♣-A♦-2♥-3♦-4♠-5♣-6♥-5♦-4♣
A constraint programming model for this problem is described in [6]. It is mod-
elled as a permutation problem: the cards are numbered 0 (the ace of spades) to
51 and the sequence of cards is represented as a permutation of these numbers.
There are two sets of dual variables: xi represents position i in the sequence, and
its value represents a card; yj represents a card and its value is the position in
the sequence where that card occurs. These are linked by the usual channelling
constraints: xi = j iff yj = i, 0 ≤ i, j ≤ 51. The constraints that a card covering
another card must be played before it are represented by < constraints on the
corresponding yj variables. Constraints between xi and xi+1, 0 ≤ i < 51, ensure
that each card must be followed by a card whose value is one higher or one lower.
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We set x0 = 0, i.e. the ace of spades is the first card in the sequence. The search
strategy assigns values to the variables xi, i = 1, 2, ..., 51 in order, i.e. the sequence
of cards is built up as it would be played in the game. Some equivalent sequences
that would result from exchanging two cards of the same rank but different suits
are eliminated by conditional symmetry breaking constraints, as described in [7];
a conditional symmetry holds only within a subproblem of the CSP. Eliminating
the conditional symmetry has a huge impact on the search, for any instance that
requires a significant amount of backtracking to find a solution.

This model has been implemented in ILOG Solver 6.0 and applied to 2,500
randomly generated instances that were used to produce the results in [6]. The
performance of the CP model is highly skewed: half of the instances take fewer
than 100 backtracks to solve, or to prove unsatisfiable, whereas the most difficult
instances take millions of backtracks. This is shown in Figure 1, where the in-
stances are sorted by search effort. About 12% of the instances are unsatisfiable;
for most of these, the proof is trivial (for instance, the game cannot be won if
the top layer of cards contains neither a 2 nor a King). On the other hand, the
instances that are most difficult for the CP model are also unsatisfiable.
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Fig. 1. Number of backtracks to solve 2500 random instances of ‘Black Hole’

4 Caching States in ‘Black Hole’

At any point during search where the current assignment is about to be extended,
a valid sequence of cards has been built up, starting from the ace of spades.
Whether or not the sequence can be completed depends only on the cards that
have been played and the last card; apart from the last card, the order of the
previously-played cards is immaterial.
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For instance, suppose the following sequence of cards occurs during search
(assuming that in some game the sequence is possible, given the initial layout of
the cards):

A♠-2♣-3♠-4♦-5♠-4♣-3♣-2♠-A♣-K♦-A♦-2♦-3♦
If at some later point in the search, the following sequence occurs:

A♠-K♦-A♦-2♣-3♠-2♠-A♣-2♦-3♣-4♣-5♠-4♦-3♦

the second sequence will not lead to a solution. The set of cards in both sequences
is the same, and they end with the same card. Hence, in both cases, the remaining
cards and their layout are the same. Since the first sequence did not lead to a
solution (otherwise the search would have terminated), the second will not either.

Based on this insight, the search algorithm in Solver has been modified to
record and use the relevant information. The search seeks to extend the current
sequence of cards at choice points. Suppose that the first unassigned variable is xk

and the values of the earlier variables are x0 = 0, x1 = v1, ..., xk−1 = vk−1. (Some
of these values may have been assigned by constraint propagation rather than
previous choices.) The search is about to extend this assignment by assigning the
value vk to xk. A binary choice is created between xk = vk and xk �= vk, for some
value vk in the domain of xk. The set of cards played so far, {v1, v2, ..., vk−1} and
the card about to be played, vk, are then compared against the states already
cached. If the search has previously assigned {v1, v2, ..., vk−1} to the variables
x1, x2, ..., xk−1, in some order, and vk to xk, then the branch xk = vk should fail.
If no match is found, a new state is added to the cache, consisting of the set of
cards already played and the card about to be played, and the search continues.
In the example, when the 3♦is about to be added to the sequence, the set {2♠,
3♠, 5♠, A♦, 2♦, 4♦, K♦, A♣, 2♣, 3♣, 4♣}, and x12 = 3♦, would be compared
with the states already visited.

(Note that constraint propagation may also have reduced the domains of
some future variables to a single value, which will therefore have been assigned,
but this can be considered as part of the state of the remaining search left by
the sequence x0 = 0, x1 = v1, ..., xk−1 = vk−1.)

The implementation represents the set of cards in the current sequence, ex-
cluding the A♠, as a 51-bit integer, where bit i = 1 if card i is in the set,
1 ≤ i ≤ 51. The current state can only match a state in the cache if both
the number of cards played (k − 1) and the current card (vk) match. Hence,
the cache is indexed by these items. It is stored as an array of extensible ar-
rays, one for each possible combination of k − 1 and vk: this is a somewhat
crude storage system, but has proved adequate for this problem. Within the
relevant extensible array, the integer representing {v1, v2, ..., vk−1} is compared
with the corresponding stored integers, until either a match is found, or there
is no match. In the former case, the search backtracks: the current state can-
not lead to a solution. Otherwise, the integer representing {v1, v2, ..., vk−1} is
added to the array, xk = vk is added to the sequence being built and the search
continues.
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When an assignment of length k fails, it would in theory be possible to
represent this information as a k-ary constraint. In ‘Black Hole’, the failure has
revealed that assigning {v1, v2, ..., vk−1} to {x1, x2, ..., xk−1}, in any order, and
vk to xk is inconsistent, and a constraint expressing this could be added to the
CSP. However, as will be seen, tens of thousands of states may be cached in
solving an instance of ‘Black Hole’; storing and processing so many constraints
added during search would undoubtedly take more space and time than the
caching proposed here.
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Fig. 2. Solving 2500 random instances of ‘Black Hole’: difference in number of back-
tracks between the original search and the search with cached states, instances in the
same order as Figure 1

Figure 2 shows the reduction in the number of backtracks required to solve
the 2,500 instances resulting from caching states. Only the instances which take
fewer backtracks with caching than without are shown, but the instances are
given the same numbering as in Figure 1 (so that the most difficult instance
from Figure 1 is still shown as instance 2500). It is clear that the saving in
search effort increases with the search effort originally expended.

For all but 15 of the 1,206 instances that take 50 or fewer backtracks to find a
solution, caching states visited makes no difference to the search effort. However,
since few states are cached in these cases, the run-time is hardly affected either.
Solver occasionally reports a longer run-time with caching than without, by up
to 0.01 sec., but only for instances that take little time to solve in either case.

At the other end of the scale, the instances that take more than 1 million
backtracks with the original search are shown in Table 1; these instances have
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Table 1. Number of backtracks and run-time in seconds (on a 1.7GHz Pentium M PC,
running Windows 2000) to solve the most difficult of the 2,500 ‘Black Hole’ instances,
with and without caching states visited

No caching Caching
Backtracks Time Backtracks Time

3,943,901 1,427.93 1,020,371 431.33
3,790,412 1,454.16 1,259,151 509.94
1,901,738 721.07 606,231 251.01
1,735,849 681.57 528,379 233.40
1,540,321 582.71 619,735 257.95
1,065,596 398.44 423,416 176.01

no solution. For these instances, caching states visited reduces the search effort
by at least 60%; for the most difficult instance, the reduction is nearly 75%. In
spite of the unsophisticated storage of the cache, the saving in run-time is nearly
as great; more than 55% for all six instances, and 70% for the most difficult
instance.
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Fig. 3. Proving insolubility for the most difficult ‘Black Hole’ instance in the sample,
with and without caching

To show more clearly how caching affects the search, Figure 3 shows the
search profile for the most difficult instance of the 2,500 for the original search.
The number of choice points is plotted against the number of variables assigned
when the choice point is created, so showing the depth in the search where the
choice point occurs. The number of cached states at each depth is also shown;
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this is equal to the number of choice points where no matching state is found in
the cache and the search is allowed to continue.

The total number of cached states for the instance shown in Figure 3 is
about 1.25 million (< 221). In a permutation problem, the number of possible
assignments is at most the number of subsets of the values, i.e. 2n, where n is the
length of the sequence, in this case effectively 51; hence, this is an upper bound
on the number of states that need to be cached during the course of search.
However, in this case, most of the subsets of the cards are not feasible states,
since a valid sequence cannot be constructed in which the cards follow each other
correctly in ascending or descending rank. Hence, the number of possible cached
states is much less than 251, even for the difficult unsatisfiable instances.

5 An Optimization Problem: Talent Scheduling

In this section, the application of these ideas to an optimization problem is con-
sidered. The rehearsal problem is prob039 in CSPLib: constraint programming
approaches to solving it have been discussed in [11]. The talent scheduling prob-
lem [2] is a generalization of the rehearsal problem, arising in film production.
A film requires a certain number of days of filming, which can be shot in any
order. Each day’s filming (called a ‘scene’ below) requires some subset of the
actors. Actors are paid from the first day that they are required to the last day,
including any day when they are not working. Hence, the schedule should mini-
mize the cost of paying actors while they are waiting for their next scene but not
working; actors are paid different rates, so the cost is the waiting time, weighted
by the pay rates of the actors. The rehearsal problem is similar, except that it is
simply the total waiting time that is minimized: this is equivalent to the actors
all being paid the same rate.

Again this is a permutation problem: a schedule is a permutation of the
scenes. As before, we can define two sets of dual variables: si represents position
i in the sequence, and its value represents a scene; dj represents a scene and its
value is the position in the sequence where that scene occurs. The channelling
constraints are: si = j iff dj = i, 1 ≤ i, j ≤ n, where n is the number of scenes to
be shot and hence the length of the sequence. There are constraints in the model
to allow the waiting time for each actor to be derived from the sequence of scenes:
these are described in [11]. The model used for the experiments described in this
paper differs slightly from the one described in [11]: in that case dominance rules
were added as constraints to the CP model whenever there is a pair of scenes
i and j such that every actor required for i is required for j, and j requires
one additional actor, a. The rules specify that if scene i is before scene j in the
sequence, actor a must not be required until after scene i. For the experiments
described in this paper, similar rules are used to cover the case that scene j
requires two additional actors.

An optimal solution is found using the default optimization strategy provided
by ILOG Solver; the cost of the best sequence found so far becomes an upper
bound on the cost of any sequence found in future. As the search proceeds,
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this constraint on the cost becomes increasingly tight, so that eventually no
further sequence can be found with cost less than the incumbent solution, which
has therefore been proved optimal. Because any permutation of the scenes is a
feasible schedule, the first solution is found immediately, simply sequencing the
scenes according to the order that they appear in the data.

The search strategy used in [11] is to assign scenes from the ends to the middle
of the sequence, i.e. the variables are assigned in the order s1, sn, s2, sn−1, .... The
advantage of this over building up the sequence consecutively from the start is
that if an actor is assigned to a scene in the first part of the sequence and also
to a scene in the second part of the sequence, that actor’s total waiting time is
known: it does not depend on the order of the remaining scenes. Hence, partial
sequences that will be more expensive than the best solution found so far can
be pruned early.

For this problem, with this search strategy, a state consists of the set of scenes
already placed at the start of the sequence, and the set of scenes scheduled at
the end of the sequence. Because it is an optimization problem, we also need
to record the cost associated with the partial sequence: that is, the waiting cost
during the scenes already sequenced that is incurred for actors that are on set
but not working during those scenes.

In the ‘Black Hole’ problem, if a search state matches one of those in the
cache, this branch of the search can be pruned. In this case, however, if there is
a matching state in the cache, but the current state is cheaper, then it may lead
to a better complete solution than the best found so far, and so the search should
continue. In that case, the cost associated with the cached state is replaced by
the cost of the current partial sequence.

The cache is indexed only by the total number of scenes sequenced, corre-
sponding to the depth in the search tree where the state occurs. Given the search
strategy, if this number is even, say 2m, then m scenes have been sequenced in
the first part of the sequence and m in the last part; if the number is odd, say
2m+1, then m+1 scenes are in the first part and m in the second. For problems
that require a lot of search to find an optimal solution, there can be many states
cached at some levels of search. To speed up the search for a matching state,
the cache at each level is divided between a fixed number of extensible arrays,
and the states are distributed evenly over these arrays using a hash function.
Applying the hash function to the current state gives the index of the array
where any possible matching state will be stored. Again, this method could be
made more sophisticated so that matching is faster, but as will be seen from
the results, this method is good enough to speed up search significantly and so
demonstrate that caching is worthwhile.

When a state is stored in the cache, the search continues and tries to complete
the sequence at a cost lower than the best solution so far. If this can be done,
then conceivably it would be worth storing the cost of completing the sequence
in the cache. Then if any future partial sequence matches the cached state, with
lower cost than the cost of the stored partial sequence, the cost of completing it
can be immediately known, and so whether it can beat the incumbent solution.
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This might allow some states whose cost is lower than the previous occurrence
of the same state to be pruned, because the minimum cost of a complete se-
quence based on this partial sequence cannot beat the incumbent solution. This
has not been done for several reasons; first, it would complicate the algorithm
to return to the cache to store completion costs for all partial sequences lead-
ing to each new solution, and would mean that satisfaction and optimization
problems would be treated very differently. Secondly, relatively few solutions of
successively lower cost are found during the course of the search; most sequences
are never completed, because at some point their cumulative cost is higher than
the best known solution. Hence, storing the completion cost in the cache seems
unlikely to give a great reduction in search, and would certainly complicate the
algorithm and make it more difficult to generalize.

6 Talent Scheduling Results

In this section, the results of using caching are presented, both for the rehearsal
problem described in CSPLib, and for a number of talent scheduling problems,
which are much more difficult to solve. The ‘Mob Story’ problem is derived from
the problem in [2] (based on a film of that name); the data for this problem is
also given in CSPLib. It has 20 scenes to sequence. The ‘Mob Storyx’ instances
are derived from it by taking the first x scenes in the data.

Tables 2 and 3 show the effect of caching states for these relatively small
problems together with the rehearsal problem. In Table 2, as in [11], the sequence
is built from the ends to the middle, as described earlier. In Table 3, the sequence
is built from the start to the end, i.e. the search variables are assigned in the
order s1, s2, ..., sn. This makes implementing caching simpler, since the state
consists of only the set of scenes at the start of the sequence.

Table 2. Solving small instances of the talent scheduling problem, with and without
caching, building the sequence from both ends to the middle

Problem No caching Caching
Backtracks Time Backtracks Time Cached states

rehearsal 286 0.04 276 0.04 204
Mob Story10 289 0.05 281 0.06 236
Mob Story12 2,859 0.27 2,579 0.33 1,670
Mob Story14 15,598 1.64 10,439 1.48 5,597
Mob Story15 41,796 4.71 23,565 3.51 10,833
Mob Story 1,026,328 132.93 405,888 64.71 136,765

As already claimed, building the sequence from the ends to the middle is
much faster than building from start to end. However, caching states makes a
much greater difference when the worse variable ordering is used; caching with
the poor variable ordering is better than the ‘ends-to-middle’ variable order-
ing without caching. Caching is still very worthwhile for the larger instances
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Table 3. Solving small instances of the talent scheduling problem, with and without
caching, building the sequence from start to end

Problem No caching Caching
Backtracks Time Backtracks Time Cached states

rehearsal 1,734 0.12 967 0.07 301
Mob Story10 1,054 0.17 838 0.13 291
Mob Story12 11,613 1.46 6,765 0.64 1,387
Mob Story14 350,991 56.19 68,134 6.09 7,341
Mob Story15 758,270 143.84 109,381 10.98 11,781
Mob Story 13,614,469 1,917.92 658,784 83.93 72,382

Table 4. Solving larger instances of the talent scheduling problem, with and without
caching, and with both variable orders

Build sequence start to end, Build sequence ends to middle
with caching No caching Caching

Time Cached Time Time Cached
Problem Backtracks (sec.) states Backtracks (sec.) Backtracks (sec.) states
film105 536,299 51.18 61,100 459,071 48.10 118,361 16.07 40,511
film116 1,160,295 143.72 81,084 2,102,591 277.96 744,481 125.8 225,314
film119 1,505,228 97.49 127,459 1,493,988 171.47 526,392 70.80 144,226
film118 2,333,385 178.22 201,115 2,618,066 315.74 606,591 93.10 205,190
film114 2,569,252 217.21 162,027 4,909,250 472.79 1,032,902 127.00 267,526
film103 4,723,274 313.18 215,354 2,628,434 250.42 607,935 76.69 180,133
film117 6,303,052 396.04 193,163 4,078,225 384.52 651,781 76.86 174,100

with the ‘ends-to-middle’ variable ordering, and the combination gives the best
performance overall. However, with this variable ordering, caching reduces the
run-time only by half for the Mob Story problem, compared with an order of
magnitude reduction with the poor variable ordering. Evidently, the better vari-
able ordering already leads to less wasted search, and so gives less scope for
further reductions from caching.

Finally, Table 4 gives results on randomly-generated instances based on the
characteristics of the Mob Story problem. These instances were generated with
originally 20 scenes, as in the Mob Story problem. However, two scenes requir-
ing the same set of actors can clearly be treated as one scene taking two days
to shoot: requiring these scenes to be sequenced consecutively will not affect
the optimality of any solution. After merging scenes in this way, most of these
instances have slightly fewer than 20 scenes. Even so, they proved to be more
difficult than the original Mob Story problem, overall, and so have not been
attempted with ‘start-to-end’ variable ordering and no caching.

As with the Mob Story problem, the poor variable ordering with caching
states gives better performance on the whole than the better variable ordering
without caching, and the ‘ends-to-middle’ ordering with caching gives better re-
sults still. The size of the cache does not present any difficulty for these instances.
However, the cache size is much closer to 2n than in the ‘Black Hole’ problems:
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since every sequence represents a feasible schedule, a greater proportion of the
possible subsets is likely to be met during search than in the ‘Black Hole’ prob-
lems, where many subsets cannot form feasible sequences. The ‘ends-to-middle’
ordering does not require more states to be cached, on average, than ‘start-to-
end’ ordering. This is somewhat surprising, since the total number of possible
states is larger, if the state consists of two subsets of the scenes (representing
the first and last parts of the sequence) rather than one.

Figure 4 gives a similar search profile to Figure 3 for this problem class: it is
based on the most difficult instance shown in Table 4. Recall that the search can
extend an assignment even when it matches a state in the cache, provided that
the cost of the assignment is lower than the stored cost. Hence, cached states
can be ‘re-used’ when their associated costs are updated, and so the number of
cached states in relation to the number of choice points is much smaller than in
the ‘Black Hole’ problems.
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Fig. 4. Profile of number of choice points, with and without caching, and number of
states cached, at each depth in search, for the random instance film117

7 Discussion

Caching would be a potentially valuable way of avoiding wasted search in other
permutation problems, as well as those discussed here, though not all are suit-
able. For instance, Langford’s problem (prob024 in CSPLib) is not a suitable
candidate: if we consider a partial assignment to the first k variables represent-
ing the positions in the sequence, then whether or not the assignment can be
extended to a solution depends on the order of the values assigned to the vari-
ables and not just the set of values. On the other hand, Fink and Voss [3]
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discuss a number of sequencing problems that could potentially be modelled as
permutation problems and are suitable for caching. The problems that they dis-
cuss are related to the talent scheduling problem, but have a variety of different
objectives. For instance, ‘minimization of the number of simultaneously open
stacks’ is equivalent to the talent scheduling problem but with the objective to
minimize the maximum number of actors on set (either acting in the current
scene or waiting) at any time. We could expect that caching could be useful for
this problem, just as in the talent scheduling problem itself.

Focacci and Shaw [4] describe a similar approach to that in this paper, in the
context of the Travelling Salesman Problem and the TSP with Time Windows
(which are again permutation problems). They record nogoods during search and
use local search to test whether the current assignment (a sequence of cities) can
be rearranged to give a lower cost assignment that is an extension of a nogood;
if so, the current assignment can be pruned.

Jefferson, Miguel, Miguel and Tarim [9] discuss the game of Peg Solitaire,
modelled as a CSP. The game is played with pegs on a board studded with
holes; a peg can jump over a neighbouring peg into a hole beyond, and the
jumped-over peg is removed. The aim is to start from a state where all the holes
but one are filled, to a state where only one peg is left. This is not a permutation
problem, but it has some similarities and the authors noted that the same state
of the board can be reached in multiple ways.

Jefferson et al. consider the existence of different paths to the same state as a
form of symmetry, and sets of equivalent paths as symmetry equivalence classes.
However, this does not seem a useful point of view, since the ‘symmetries’ are not
identified, only equivalent paths. They attempted to deal with equivalent board
states by preprocessing to find sets of equivalent paths and adding constraints
to forbid all but one path in each set, as in conventional symmetry breaking.
They found the sets by exhaustive search, which is only practicable for short
paths. As a result, they could only eliminate equivalent board states occurring
near the top of the search tree, which did not lead to great benefits.

On the other hand, Peg Solitaire seems a good candidate for caching states
dynamically as they are encountered during the search, as described in this
paper, even though this is not a permutation problem. Whether or not the game
can be completed from a given board state does not depend on how that state
was reached, so that this is similar to ‘Black Hole’. Moreover, a given board state
can only occur at a particular depth in the search (games require a fixed number
of moves to complete). Hence, a cache of board states could be indexed by the
depth in search, just as in the ‘Black Hole’ and talent scheduling examples. This
example suggests that caching states during search could have wider application
than permutation problems; the key feature is that different assignments should
lead to the same state of the search.

The method described in this paper assumes that variables will be assigned in
a static order. In the ‘Black Hole’ problem, for instance, an assignment to a subset
of the variables that does not represent a consecutive sequence of cards would
not leave the search in the same state as an assignment of the same values to
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these variables in a different order. The requirement of a static variable ordering
is not a restriction, however, since a static ordering that builds up the sequence
consecutively is a good search strategy for problems requiring the construction
of a sequence, such as ‘Black Hole’, talent scheduling, Peg Solitaire and so on.

The space requirements of the cache are not an issue for the problems in-
vestigated in this paper. For ‘Black Hole’, especially, many of the potentially
251 states are not feasible, and so are never visited and never cached. Space is
potentially more likely to present difficulties for the talent scheduling problem,
where in theory every possible state could be visited, although since assignments
that already exceed the current cost bound fail, this cannot happen in practice.
The instances reported here are near the limit of what can be solved in a rea-
sonable time with the current model and search strategy, so that solving larger
instances, and thereby needing a larger cache, is not practicable. However, a bet-
ter value ordering heuristic, for instance based on that described by Cheng et al.
[2], should mean that the first solution found would be much closer to optimal
than at present. This would allow larger instances to be solved; but at the same
time the better cost bound would also limit the number of states cached. Future
work will investigate the overall effect on the size of the cache. If the cache size
ever becomes too large, it would be possible to limit its size, for instance by
simply not saving more states when the cache reaches a preset size, thus trading
a smaller reduction in run-time for space.

8 Conclusion

It has been shown that in some classes of problem, two assignments to the same
set of variables can leave the search in the same state; hence if one assignment
is a nogood, so is the other. By caching the problem-specific details that will
allow equivalent states to be recognised, wasted search exploring equivalent as-
signments can be avoided. In satisfaction problems, such as the ‘Black Hole’
problem, if the current assignment matches one in the cache, an equivalent as-
signment has already failed; hence the current assignment will also fail and the
search should backtrack. In optimization problems, such as the talent scheduling
problem, the cost of the current assignment should also be compared with the
cost associated with the cached state; the current assignment should fail if it is
at least as expensive as the cached state. The two case studies considered in this
paper have shown that caching can reduce the run-time for difficult instances
by at least half, and sometimes by an order of magnitude, depending on the
problem and the instance. It does not always give any benefit for instances that
are already easy to solve, but in those cases does not increase run-time either.
Although in previous work, recording nogoods has been problematic because
of the very large number of nogoods generated, the number of states cached
has not presented any difficulty for the cases investigated here, and looking for
a matching state in the cache has not incurred a heavy overhead, in spite of
somewhat crude storage methods. Permutation problems in general seem most
likely to give rise to equivalent states; the example of Peg Solitaire, which is
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not a permutation problem, shows that caching states could also have wider
application.
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Abstract. The Quantified CSP (QCSP) is a generalization of the CSP
which allows for universally quantified variables. For each possible se-
quence of assignments to such variables, we have to find a way to set the
values of the remaining, existentially quantified, variables so that all the
constraints are satisfied. Such problems arise in areas such as planning
under uncertainty, model checking, and adversary game playing. QCSPs
are starting to attract interest following the development of numerous
efficient solvers for the closely related area of QBF. Two approaches have
been studied so far; the encoding of QCSPs into QBF, and the gener-
alization of well-known search procedures for CSPs, like FC and MAC,
to the quantified case. In this paper we introduce a new approach which
utilizes repair-based techniques. We describe a framework for a QCSP
solver in which complete and incomplete repair-based methods can be
incorporated. We also evaluate such a solver that applies backtracking
and local search methods based on the min-conflicts heuristic. Experi-
mental results demonstrate that even simple repair-based techniques can
outperform the state-of-the-art solver QCSP-Solve.

1 Introduction

The standard CSP framework has been extended in many ways to deal with prob-
lems that contain uncertainty. The Quantified Constraint Satisfaction Problem
(QCSP) is such an extension in which some of the variables may be universally
quantified. Universal variables are used to model actions or events for which we
are uncertain. For example, user choices in a configuration problem, or opponent
moves in an adversary game. In a QCSP we try to find a strategy, defining the
values of the existential variables for all possible sequences of instantiations for
the universal variables, so that all the constraints in the problem are satisfied.
The QCSP can be used to model PSPACE-complete decision problems from
areas such as planning under uncertainty, design, adversary game playing, and
model checking. For example, in game playing we may want to find a winning
strategy for all possible moves of the opponent. In a design problem it may be
required that a configuration must be possible for all possible sequences of user
choices. As a final example, when planning in a safety critical environment, such
as a nuclear station, we require that an action is possible for every eventuality.

Although there is a significant body of work on quantified problems with
continuous domains (e.g. [1,9]), little work has been done on QCSPs with discrete
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finite domains. Interest in such problems has very recently started to grow,
following the development of numerous efficient solvers in the closely related
area of Quantified Boolean Formulae (QBF or QSAT). Currently, there are two
general approaches to solving QCSPs: 1) The direct approach where techniques
from CSPs are extended to deal with quantification [2,7,5], and 2) the approach
based on encoding QCSPs as QBFs and solving the encoded problem using a
QBF solver [4]. Gent et.al. [5] showed that QCSP-Solve, an advanced solver that
follows the first approach, significantly outperforms the second approach of [4].

In this paper we introduce an alternative approach to QCSP solving, based
on techniques for repairing variable assignments. Repair-based methods, such as
min-conflicts and WSAT, have been successfully applied in CSPs and SAT to
solve large hard problems. Many variations have been proposed, either coupled
with local search (incomplete ones), or with backtracking (complete ones). An
incomplete repair-based method, called WalkQSAT, has also been developed and
applied in QBF [3]. As explained in [3], a search state in QBF (and QCSP) is
not merely an assignment of values to variables, in which case the application
of standard repair methods would be straightforward. A search state is best de-
scribed as a strategy where we try to set the existential variables so that for
all values of the universals there is a solution. At a first glance, this makes the
use of repair-based methods (and especially incomplete ones) counterintuitive.
However, as we will explain, the process of solving a QCSP (or a QBF) involves
many searches (in the standard sense) for consistent assignments of closely re-
lated CSP instances. This property was exploited in [3] to obtain a QBF solver
based on local search.

This paper describes a framework for the implementation of repair-based
techniques for QCSPs. Following [3], this framework is built on top of a standard
backtracking algorithm. We demonstrate how complete and incomplete varia-
tions of a simple repair-based technique that utilizes the min-conflicts heuristic
can be implemented within the proposed framework, resulting in an efficient
QCSP solver. After giving some preliminary background about QCSPs and
repair-based methods for CSPs, we present a framework that combines standard
backtracking search with a repair-based procedure. Then we discuss various im-
plementations of the framework. Finally, we present an experimental evaluation
of the introduced techniques. Results demonstrate that repair-based methods
display promising performance, they can be competitive, and often better, than
QCSP-Solve.

2 Preliminaries

In standard CSPs all variables are existentially quantified. QCSPs are more
expressive than CSPs in that they allow universally quantified variables. They
enable the formulation of problems where all contingencies must be allowed for.

Definition 1. A Quantified Constraint Satisfaction Problem (QCSP) is a for-
mula of the form QC where Q is a sequence of quantifiers Q1x1 . . . Qnxn, where
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each Qi quantifies (∃ or ∀) a variable xi and each variable occurs exactly once
in the sequence. C is a conjunction of constraints (c1 ∧ . . . ∧ cm) where each ci

involves some variables among x1, . . . , xn.

The semantics of a QCSP QC can be defined recursively as follows. If C is
empty then the problem is true. If Q is of the form ∃x1Q2x2 . . . Qnxn then QC
is true iff there exists some value a ∈ D(x1) such that Q2x2 . . . QnxnC[(x1, a)]1

is true. If Q is of the form ∀x1Q2x2 . . .Qnxn then QC is true iff for each value
a ∈ D(x1), Q2x2...QnxnC[(x1, a)] is true. In a binary QCSP, each constraint,
denoted by c(xi, xj), involves two variables (xi and xj) which may be universally
or existentially quantified. As an example of a realistic problem that can be
modelled as a QCSP consider the following.

Example 1. Imagine an interactive configuration problem (for example, in PC
or car configuration) where a system is built step by step. There are various
components, some of which are selected by the user while others must be filled
in by the configurator based on various constraints regarding the connections
between components. Each time the user selects a specific component, the sys-
tem must complement the selected part with any extra components required
by the specifications. There are 3 components, x1, x2, x3, which the user must
specify. Each of them can be implemented in 3 different ways, denoted by x11,
x12, and x13 for x1, and accordingly for the other components. For instance,
the 3 components might correspond to hard disk, RAM, and motherboard in
PC configuration. There are also 3 extra components, y1, y2, y3, required. The
implementation of these components depends on the choices of implementation
for components x1, x2, and x3. Again each of them can be implemented in 3
different ways. Assume that y1 and y2 must be placed adjacent to x1 according
to the system’s specification, y2 must also be adjacent to x2, and y3 must be
placed adjacent to x2 and x3. Also, there are constraints with respect to the
compatibility between adjacent components. For example, “if x11 is selected for
x1 then y12 must be selected for y2”.

Initially the user must select one of the 3 possible implementations of x1.
Now the configurator must specify the implementation of component y1 accord-
ing to the constraint on the connection between x1 and y1. Then the user must
specify the implementation of x2 and the system will add component y2 accord-
ing to the restrictions on the connections of y2 to x1 and x2. Finally, the user
must specify the implementation of x3 and the system will add the appropriate
implementation of y3.

An interesting question for the system provider is whether a configuration
exists for all possible sequences of user choices. This question can be modelled as
QCSP where components chosen by the user correspond to universal variables
and the extra components correspond to existential variables. The domain of a
variable consists of the possible implementations of the corresponding compo-
nent. Each compatibility restriction on the connection between components is
1 D(x1) and (x1, a) denote the domain of variable x1 and the assignment of value a

to x1 respectively.
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modelled as a constraint between the corresponding variables. The above prob-
lem can be modelled by the following QCSP:
∀x1∃y1∀x2∃y2∀x3∃y3(c(x1, y1), c(x1, y2), c(x2, y2), c(x2, y3), c(x3, y3))

The QCSP is a problem that only recently started to attract interest, and
as a result very few solution methods have been proposed. In [2] Bordeaux and
Monfroy introduced ways to implement arc consistency in QCSPs. Algorithms
for arc consistency, forward checking and MAC in binary QCSPs were described
in [7]. A solution method based on encoding QCSPs as QBFs was proposed and
evaluated in [4]. Finally, an advanced solver for QCSPs that incorporates various
look-ahead and look-back methods was presented in [5].

In the rest of the paper we will sometimes refer to universally and existentially
quantified variables as universals and existentials respectively.

2.1 Repair-Based Methods

Many repair-methods for CSPs have been proposed in the literature. Typically,
these methods begin by giving tentative values to all variables resulting in a
complete, but inconsistent, assignment. Then they try to repair the initial as-
signment either by using it to guide a backtracking-based search, or by making
local moves (i.e. changes of some variable assignments). The former methods are
typically complete while the latter are incomplete.

Incomplete repair-based methods, such as min-conflicts [8] and WSAT [11],
have been widely used in CSPs and SAT to tackle large hard problems where
standard backtracking-based methods are inefficient. Such a method, called
WalkQSAT, has also been developed and applied in QBF [3]. Although the appli-
cation of incomplete local search in QBF looks counterintuitive at a first glance,
WalkQSAT was found to be competitive with state-of-the-art QBF solvers on
some hard instances. However, local search methods suffer from their inherent
incompleteness. That is, they cannot guarantee that a solution will be returned,
if one exists, or that a proof of insolubility will be provided when no solution
exists.

To overcome this, some repair strategies have been combined with back-
tracking search to achieve completeness and at the same time yield the benefits
that search in the space of repairs may offer (for example [8,13,12]). Also, many
methods that combine local and backtracking search and utilize repairs have
been proposed (for example [10,6]).

3 A Framework for Repair-Based Methods in QCSPs

In this section we describe a general framework that can be used to imple-
ment repair-based methods for QCSPs. First, we briefly discuss how a direct
backtracking-based solver works. Then we show how repair-based methods can
be implemented on top of such a solver.
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3.1 Backtracking Search in QCSPs

A basic backtracking algorithm for QCSPs works as follows: Variables are in-
stantiated one by one in the order they appear in Q2. If a consistent leaf node
is reached then the algorithm backtracks to the last universal and assigns it its
next available value. If the current variable is universal and paths to consistent
leaf nodes have been found for all of its values, then the algorithm backtracks
to the last universal to check its next value. Whenever a dead-end occurs the
algorithm backtracks to the previously instantiated existential and tries another
assignment. The algorithm terminates successfully if paths to consistent leaf
nodes have been found for all the values of the first universal in Q. The algo-
rithm terminates unsuccessfully if there is a backtrack from the first existential.
In this case there is no way to set the values of the existentials so that for all
values of the universals there is a consistent assignment.

All direct algorithms for QCSPs are based on the above scheme to system-
atically traverse the search space. QCSP-Solve significantly enhances the basic
algorithm with various look-ahead and look-back features. QCSP-Solve’s main
features are the following: Arc consistency is applied during preprocessing to re-
move all constraints of the form ∃ xi∀ xj , c(xi, xj) and ∀ xi∀ xj , c(xi, xj) and also
prune the domains of existentials. Forward checking (or arc consistency) is ap-
plied after each variable instantiation to prune the domains of future existential
variables and discover dead-ends early. Before assigning a value to a universal
variable, QCSP-Solve performs forward checking (or arc consistency) for all the
available values of the variable. These variations of FC and MAC, called FC1
and MAC1 in [5], can discover dead-ends earlier than the standard versions. The
pure value rule, which is the equivalent of the pure literal rule for QBF, is also
applied during search. According to this rule, if a value of an existential has
no conflicts with values of future variables then the existential is immediately
assigned with that value. If a value of a universal has no conflicts with values of
future variables then it is removed from the domain of the universal.

When encountering a dead-end, QCSP-Solve applies conflict-based back-
jumping (CBJ) to backjump to a variable that is responsible for the dead-end.
After reaching a consistent leaf node, solution-directed pruning (SDP) is ap-
plied to the last universal (and possibly others further back) to avoid redundant
search. SDP identifies the values of the last universal that are compatible with
all the assignments of the future existentials in the previous path to a consistent
leaf node, and avoids running a search for them. If there are no more values for
the last universal, SDP is applied for the universal immediately before the last in
Q. This is repeated recursively until a universal is found with at least one value
for which SDP does not apply. QCSP-Solve then backjumps to this universal.

3.2 Motivation

Before describing the framework for repair-based search, let us first discuss the
motivation behind the application of such methods. As mentioned in the Intro-
2 Note that consecutive existentials or universals can be instantiated in any order.
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duction, solving a QCSP involves solving a large number of similar standard
CSPs. What does this mean? Consider a QCSP QC where there are k existen-
tials after the last universal xi in Q. When variable xi is reached for the first
time by a backtracking algorithm, it will be assigned its first value, say a, and
then essentially a standard search will commence in the CSP comprising of the
remaining k existentials. Assuming a solution is found, the algorithm will back-
track to xi, assign it its next value, say b, and start another search in the CSP
comprising of the k existentials. These two searches will be performed in two
CSPs that are very similar. The only difference is that xi takes value a in the
first, and value b in the second. Now, since we already have a solution for the
first CSP, the only way that this not a solution for the second CSP as well, is
if assignment (xi, b) is in conflict with a subset of the assignments that the k
existentials have in the first solution. If this subset is small, it is reasonable to
try to repair it (i.e. change the assignments of the variables involved in it so that
they become consistent), instead of starting search from scratch.

The following example illustrates the above point, and shows how search
effort can be saved using repair-based techniques.

Example 2. Consider a QCSP QC where Q = ∀x1∃x2∃x3∃x4, and D(x1) =
{0, 1}, D(x2) = D(x3) = D(x4) = {0, 1, 2}. Assume that after instantiating x1
to 0, a solution is found with x2 = x3 = x4 = 2. A standard search algorithm
like QCSP-Solve will now backtrack to x1, assign it value 1 and try to find a
consistent instantiation of the existentials. Assuming that the only consistent
instantiation is (x2 = 2, x3 = 2, x4 = 1), QCSP-Solve will exhaustively search
the subtrees rooted at the circled nodes in Figure 1 before discovering this. On
the other hand, a repair-based method will use the previous solution (x2 = x3 =
x4 = 2) to guide a (complete or incomplete) search in the space of repairs.
Assume that value 1 of x1 is consistent with value 2 of both x2 and x3. Also,
it is in conflict with values 0 and 2 of x4, but consistent with value 1. Finally,
value 1 of x4 is consistent with value 2 of both x2 and x3. A repair-based method
can proceed as follows: Since the assignments in the guiding previous solution of
both x2 and x3 are consistent with the new assignment of x1, it will try to repair
the inconsistent assignment of x4. The only consistent value of x4 is 1, which
will be assigned to it and the algorithm will terminate avoiding fruitless search.
Note that the SDP feature of QCSP-Solve cannot detect this since value 1 of x1
is not consistent with the previous assignments of all existentials after x1.

It is important to point out that the applicability of repair-based methods
is not restricted to the last universal in Q, or to universals only. Consider an
arbitrary universal xi that has been assigned its first value a. If the algorithm
determines that the future problem is consistent then it will backtrack to xi and
assign it its next value b. A repair-based method can use the assignments of
the variables after xi, along the previously discovered path to a consistent leaf
node, as a tentative initial assignment for these variables. This assignment will
guide search, in the space of repairs, for a path to a consistent leaf node, which
will now include assignment (xi, b). The process can work in a similar way for



658 K. Stergiou

∀x1

∃ x2

∃ x3

∃ x4

conflict

Fig. 1. Search tree of Example 2. Dark nodes are instantiations for existentials that
are along solution paths. The subtrees below the nodes in the dashed circle are skipped
by the repair-based method, while QCSP-Solve has to explore them exhaustively.

existentials. This is similar to the way WalkQSAT operates in QBF. These issues
will be clarified below, after the framework for repair-based search is presented.

3.3 Repair-Based Search

A high level description of a framework for repair-based search in QCSPs, called
RB-Schema (from Repair-Based-Schema), is shown in Figure 2. It takes a QCSP
QC and returns TRUE if the problem is satisfiable, and FALSE otherwise. Note
that if the repair-based method used is incomplete then FALSE will not neces-
sarily mean that the problem is unsatisfiable. RB-Schema is based on a standard
backtracking search procedure as described above. The main difference with the
existing algorithms, such as QCSP-Solve, is that whenever a backtrack to a
universal or existential variable is performed, RB-Schema tries to reach a con-
sistent leaf node by repairing the assignments of the variables in the previously
discovered solution. In Figure 2,

– c var is the current variable and prev var is the variable that was visited by
the algorithm immediately before c var. That is, if the algorithm is moving
forward, prev var is c var − 1. If the algorithm backtracks from a variable
xi to c var then prev var is xi.

– Propagate() is a function that propagates the current variable assignment
to the future (unassigned) variables (future vars). It can be instantiated to
forward checking, arc consistency, or any other propagation method.

– Repair() is a function that implements a repair-based method for CSPs. It
takes as input the set of future variables and the previously found solution
(prev sol), and it tries to repair prev sol so that it is consistent with the
new assignment of c var (and all assignments of variables before c var).
For reasons of simplicity we do not include the updates of prev sol in the
pseudocode. The actual implementation of function Repair() depends on
the repair-based method used.

RB-Schema operates in exactly the same way as a standard backtracking
algorithm until it reaches the first consistent leaf node. Lines 12 and 26 ensure
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Boolean RB-Schema (Q,C)
1: c var ← leftmost variable in the quantification formula
2: while there is no backtrack from the first existential or universal
3: if c var is existential
4: if no more values in D(c var)
5: c var ← previously assigned existential variable
6: else
7: assign c var with next available value a ∈ D(c var)
8: Propagate(future vars,(c var, a))
9: if there is no domain wipe-out
10: if c var is the last variable in Q
11: c var ← previously assigned universal variable
12: else if c var > prev var or no consistent leaf node has been found
13: c var ← next unassigned variable
14: else //a backtrack to c var was performed//
15: SOLUTION FOUND = Repair(future vars,prev sol)
16: if SOLUTION FOUND = TRUE
17: c var ← last variable in Q
18: else //c var is universal//
19: if no more values in D(c var)
20: if c var is the first universal return TRUE
21: else c var ← previously assigned universal variable
22: else
23: assign c var with next available value a ∈ D(c var)
24: Propagate(future vars,(c var, a))
25: if there is no domain wipe-out
26: if c var > prev var
27: c var ← next unassigned variable
28: else //a backtrack to c var was performed//
29: SOLUTION FOUND = Repair(future vars,prev sol)
30: if SOLUTION FOUND = TRUE
31: c var ← last variable in Q
32: else
33: c var ← previously assigned existential variable
34: else
35: c var ← previously assigned existential variable
36: if there is a backtrack from the first existential return FALSE
37: return TRUE

Fig. 2. A framework for repair-based methods in QCSPs

this by preventing calls to Repair() unless a consistent leaf node has been found.
Thereafter, RB-Schema works as follows.

After a backtrack to a universal variable, there are two cases. If there are
no values left in the domain of c var, the algorithm backtracks to the previous
universal (line 21), unless c var is the first universal, in which case RB-Schema
terminates successfully (line 20). If there are values left then c var is assigned its
next value and the assignment is propagated (lines 23-24). If there is a domain
wipe-out, the algorithm backtracks to the last existential (line 35). Otherwise, it
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calls function Repair() to repair the previous solution under the new assignment
of c var (line 29). If this is successful, the last variable in Q becomes the new
current variable (line 31) to initiate a new search for the next value of the last
universal in Q. If Repair() is unsuccessful3, the algorithm backtracks to the last
existential (line 33).

After a backtrack to an existential, there are two cases. If there are no values
left in the domain of c var, the algorithm backtracks to the previous existential
(line 5). If a backtrack from the first existential is performed then RB-Schema
terminates unsuccessfully. If there are values left then c var is assigned its next
value and the assignment is propagated (lines 7-8). If there is a domain wipe-
out, the next value of c var will be tried in the next iteration of the while loop.
Otherwise, if c var is the last variable in Q, the algorithm backtracks to the
previous universal (line 11). If it is not the last variable, function Repair() is
called to repair the previous solution under the new assignment of c var (line
15). If this is successful, the last variable in Q becomes the new current variable
(line 17) to initiate a new search for the next value of the last universal in Q.
If Repair() is unsuccessful, the next value of c var will be tried in the next
iteration of the while loop.

Note that when Repair() is called (line 15 or 29) there are two alternative
ways in which the future subproblem (i.e. the problem defined by variables after
c var in Q) can be viewed by the repair-based method:

1. All variables in the future subproblem, including universals, can be viewed
as existentials. In this case, the repair-based method will be free to change
the assignment of any variable while trying to repair the previous solution.
This is the approach followed in [3].

2. All universals in the future subproblem can be can be viewed as fixed to the
assignment they had in the previous solution. In this case, the repair-based
method will only be able to change the assignments of existential variables
while repairing the previous solution.

The only practical difference between the two approaches is that they may iterate
through the domains of some universals in different orders.

The currently implemented instantiations of RB-Schema incorporate FC1
look-ahead and the pure value rule. In order to keep the pseudocode simple, these
features are not shown in Figure 2, but we should note that embedding them
into RB-Schema is straightforward. Also, SDP is subsumed by any repair-based
technique. However, CBJ has not yet been implemented within RB-Schema.

Example 3. Consider a QCSP QC, where Q = ∀x1∃x2∃x3∀x4∃x5∃x6 and all
variables have {0, 1} domains. Assume that there are some constraints, which
we do not mention for simplicity reasons. Figure 3 depicts a series of states
during search that illustrate the way SB-Schema operates.

Starting with x1, SB-Schema will proceed to assign values to variables, just
like a standard backtracking algorithm, until the first consistent leaf node is
3 This means that either a complete method proved that there is no solution, or an

incomplete method terminated without finding a solution.
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found. The path to this node includes the gray nodes of Figure 3a. Now the
algorithm will backtrack to the last universal (x4), assign it its next value, prop-
agate the assignment, and call function Repair() to search for a consistent
assignment of the future variables x5 and x6. The repair-based method imple-
mented by function Repair() will use the values that x5 and x6 had in the
previous solution as a tentative assignment that will be repaired. The repaired
assignment is depicted in Figure 3b. The numbers beside nodes (x5, 1) and (x6, 1)
give the values of the variables in the initial tentative assignment.

Since there are no more values in D(x4), SB-Schema will backtrack further
back to x1, assign it its next value, propagate the assignment, and call function
Repair() to search for a consistent assignment of the future variables based on
the previous solution. The repaired assignment is depicted in Figure 3c. Since
SB-Schema has reached a consistent leaf node, it will backtrack to the previous
universal (x4) and assign it its next value (0). Let us assume that the propaga-
tion of this assignment results in a fail (i.e. a domain wipe-out of some future
variable), as depicted in Figure 3d. SB-Schema will backtrack to the previous
existential (x3), assign it its next value, propagate the assignment, and call
Repair() to search for a consistent assignment of the future variables. The re-
paired assignment is depicted in Figure 3e. Note that the assignment of x4 has
changed compared to the initial tentative assignment. This is because we assume
that Repair() views all variables in the future subproblem as existentials when
trying to repair the previous solution. Therefore, such a change is possible. Fi-
nally, SB-Schema will backtrack to x4, assign it its next value, propagate the
assignment, and call Repair() to search for a consistent assignment of the future
variables. The resulting assignment is depicted in Figure 3f.
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Fig. 3. Search states in the problem of Example 3. Gray nodes denote the current
instantiations at each stage of search. Black nodes correspond to past assignments of
universals. The number in brackets beside a gray node is the value that the correspond-
ing variable had in the previous solution.
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4 Instantiations of the Framework

In this section we show how the framework described above can be instantiated to
yield complete or incomplete repair-based methods for QCSPs. We first describe
a complete backtracking-based method and then an incomplete local search one.
Both utilize the min-conflicts heuristic to guide the selection of variable assign-
ment repairs. Finally, we discuss how the application of repair techniques can be
modified to yield a more efficient algorithm.

A Backtracking-Based Method. Various complete repair-based methods for
CSPs have been proposed ([8,13,12]). Any of them can be used in the context
of RB-Schema by implementing it as function Repair(). We have experimented
with one the simplest methods; min-conflicts backtracking (originally called in-
formed backtrack in [8]). We now describe how it operates within RB-Schema.

Assume that function Repair() is called after a backtrack to some universal
or existential variable xi. The assignments of the variables after xi on the pre-
viously discovered path to a consistent leaf node are passed to Repair(). These
comprise the initial tentative assignment that will be used to guide search in the
space of repairs. Initially, all variables are in list VARS-LEFT, and as they are re-
paired, they are placed in list VARS-DONE. The values of all variables are ordered
according to the min-conflicts heuristic. That is, in ascending order according to
the number of conflicts with the assignments of variables in VARS-LEFT. If there
is no way to repair the assignment of a variable without conflicting with the as-
signment of a variable in VARS-DONE, the algorithm backtracks to the previously
repaired variable and undoes its assignment. Min-conflicts backtracking is essen-
tially a complete backtracking algorithm that uses the min-conflicts heuristic for
value ordering. In our implementation, we augmented the simple backtracking
algorithm with forward checking and the pure value rule.

A Local Search Method. Local search methods for CSPs have been widely
studied and applied on large hard problems (for example, [8,11]). Any of them can
be used in the context of RB-Schema by implementing it as function Repair().
We have experimented with one the simplest methods; min-conflicts hill-climbing
[8]). This algorithm tries to repair the initial tentative assignment by making a
series of local moves. At each such move a variable that is in conflict is randomly
selected and it is given the value which minimizes the number of conflicts with
other variables. This process repeats until a consistent total assignment is found,
or a local optimum is reached (i.e. no change in variable assignments can decrease
the number of conflicts). In the former case, Repair() returns TRUE, and in the
latter FALSE. Although many techniques for escaping local optima have been pro-
posed, for the purposes of this paper we only implemented the basic min-conflicts
procedure. Since min-conflicts hill-climbing is incomplete, RB-Schema instanti-
ated with this method is also incomplete.

Min-conflicts hill-climbing can be easily modified to return UNKNOWN in-
stead of FALSE when it gets stuck in a local optimum. This will help determine if
the QCSP is actually unsatisfiable or the result is unspecified due to the solver’s



Repair-Based Methods for Quantified CSPs 663

incompleteness. Like WalkQSAT for the case of QBF, an incomplete instantia-
tion of RB-Schema can sometimes determine unsatisfiability because it performs
constraint propagation. The most trivial case is the one where the first variable
in Q is universal and, when propagated, all its possible assignments result in a
domain-wipeout.

ModifyingtheRepair-BasedApproach. RB-Schemacalls functionRepair()
each time a backtrack is performed. However, as we discovered empirically, this is
not always efficient. One of the reasons is that the interplay between the under-
lying backtracking algorithm and function Repair() adds a lot of cpu time over-
head, due to various data structures that need to be maintained. We discovered
that RB-Schema, instantiated in any of the above ways, becomes much more effi-
cient when restricted in the following way: For any block of consecutive universals
∀xi . . . ∀xj , Repair() is called only for the last one (xj). Universalsxi, . . . , xj−1 are
assigned one by one as usual. Apart from avoiding the overheads explained above,
this can result in earlier domain wipe-out detection. Assume that the propagation
of all possible assignments of variable xi+1 results in a domain wipe-out. Standard
RB-Schema will discover this when the first backtrack to xi+1 occurs and FC1 is
applied. This means that all assignments of variablesxi+2, . . . , xj will be tried first.
On the other hand, the restricted version of RB-Schema will first instantiate xi and
then move on to xi+1. At this point FC1 will be applied and the dead end will be
discovered. All the experiments reported in the following section were performed
with this version of RB-Schema.

Apart from its inherent incompleteness, RB-Schema instantiated with an
incomplete repair-based method suffers from another drawback. Consider the
case where c var is universal and Repair() returns FALSE (or UNKNOWN)
while there actually exists a solution in the future subproblem. This will force a
backtrack to the previous existential which may cause the exploration of a large
portion of the search space. On the other hand, it is possible that a complete
method, which identified the solution, could proceed to prove the satisfiability
of the QCSP in a few steps. To avoid such phenomena, we experimented with a
simple variation of RB-Schema where a call to Repair() initiates a min-conflicts
hill climbing search, and in case of failure, min-conflicts backtracking is then
called. This ensures that the algorithm is complete.

5 Experiments

In this section we present indicative results from an experimental comparison
between repair-based techniques and QCSP-Solve on randomly generated prob-
lems. We only experimented with random problems because, currently, QCSP-
Solve can only deal with binary and ternary constraints. This limitation, which
is unrelated to the approach presented in this paper, prohibits us, for the time
being, from using realistic QCSPs from areas such as configuration and game
playing, where non-binary constraints of high arities are present.

Random problems were created using the generation model proposed in [5].
In this model variables are quantified in three blocks, a block of existentials fol-
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lowed by a block of universals, then another block of existentials. The generator
takes 7 parameters: < n, n∀, npos, d, p, q∀∃, q∃∃ > where n is the total number
of variables, n∀ is the number of universals, npos is the position of the first
universal in Q, d is the uniform domain size, and p is the number of binary
constraints as a fraction of all possible constraints. All constraints are of type
∃ xi∃ xj , c(xi, xj) or ∀ xi∃ xj , c(xi, xj). Constraints of type ∃ xi∀ xj , c(xi, xj)
and ∀ xi∀ xj , c(xi, xj) can be removed by applying arc consistency as a prepro-
cessing step [7], and therefore, no such constraints are generated. q∃∃ specifies
the number of allowed tuples in ∃ xi∃ xj , c(xi, xj) constraints as a fraction of all
possible tuples. For ∀ xi∃ xj , c(xi, xj) constraints, a random total bijection from
D(xi) to D(xj) is generated and q∀∃ specifies the fraction of allowed tuples from
the d tuples in the bijection. All tuples not in the bijection are allowed. This
feature of the generation model ensures that, under certain parameter settings,
the generated instances are free from a flaw of the generation model used in [7].

Apart from problems where variables are quantified in three blocks, we also
experimented with problems where there are five blocks of variables with alter-
nating quantification, starting with a block of existentials. Such problems were
generated in a way similar to the one described above. Figures 4 and 5 compare
the performance of QCSP-Solve to various repair-based methods. SB-Schema-
MCback and SB-Schema-MChc stand for SB-Schema where function Repair()
is instantiated to min-conflicts backtracking and min-conflicts hill climbing re-
spectively. SB-Schema-MCcomb is the version which combines the two methods.
In the problems of Figure 4 variables are quantified in three blocks, while in those
of Figures 5 variables are quantified in five blocks, with each block containing
four variables. Both figures give average cpu times over 100 instances.
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From Figures 4 and 5 we can make the following observations:

– SB-Schema-MCback is constantly slower (around 2-3 times) than QCSP-
Solve. SB-Schema-MCback reduces slightly the numbers of node visits
compared to QCSP-Solve, but the reduction is not enough to overcome the
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overheads caused by the interaction between the underlying backtracking
procedure and the repair-based method. However, we have to keep in mind
that min-conflicts backtracking is a rather simplistic algorithm. Other, more
advanced, complete methods can potentially be competitive with QCSP-
Solve.

– SB-Schema-MChc is constantly faster than QCSP-Solve. For high values of
q∃∃ (≥ 0.75), where all problems are satisfiable, SB-Schema-MChc success-
fully solves all instances. However, for low values of q∃∃ (≤ 0.60), where all
problems are unsatisfiable, SB-Schema-MChc returns UNKNOWN (i.e. it
is unable to determine unsatisfiability) for the majority of instances. Simi-
larly, at the phase transition region there are many unsatisfiable instances
for which SB-Schema-MChc returns UNKNOWN. Around the phase transi-
tion there are also a few instances for which SB-Schema-MChc displays the
problematic behavior explained in Section 4. Because of them the average
run times of SB-Schema-MChc are not much better than QCSP-Solve, de-
spite the fact that for the majority of instances SB-Schema-MChc is much
faster.

– SB-Schema-MCcomb is slower than QCSP-Solve in the insoluble region and
faster in the soluble one and at the phase transition. This can be explained if
we consider that for insoluble problems SB-Schema-MCcomb makes a lot of
calls to the min-conflicts backtracking procedure because min-conflicts hill
climbing fails very often. For soluble ones the calls to min-conflicts hill climb-
ing find a solution fast most of the times, avoiding calls to min-conflicts back-
tracking. Also, at the phase transition the call to min-conflicts backtracking
after a failed min-conflicts hill climbing ensures that the problematic behav-
ior of SB-Schema-MChc is alleviated.

Overall, we can see that simple repair-based methods can outperform (though
not significantly) the state-of-the-art solver QCSP-Solve, especially for satisfiable
instances. We conjecture that the performance of SB-Schema can be significantly
enhanced by applying more advanced repair-based techniques and augmenting
the underlying backtracking algorithm with capabilities such as CBJ.

6 Conclusion

In this paper we studied repair-based methods for QCSPs. We demonstrated that
such methods are promising because QCSPs involve many searches in very sim-
ilar CSPs. We showed how a flexible framework, within which any repair-based
method can be implemented, can be built on top of a standard backtracking
algorithm. Preliminary experiments showed that simple implementations of the
framework based on the min-conflicts heuristic can outperform QCSP-Solve, a
state-of-the-art QCSP solver. As future work we intend to consider more ad-
vanced backtracking and local search instantiations of the repair-based frame-
work. Also, we plan to investigate hybrid algorithms that, depending on the
problem properties, either apply standard search or repair-based methods.
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Abstract. FLUX is a CLP-approach for programming agents that rea-
son about actions under incomplete state knowledge. FLUX is based on
the solution to the fundamental frame problem in the fluent calculus. The
core is a set of Constraint Handling Rules for the constraints that are
used to encode state knowledge. In order to allow for efficient constraint
solving, the original expressiveness of state representations in FLUX has
been carefully restricted. In this paper, we enhance the expressiveness by
adding both implication and universal quantification constraints. We do
so without losing the computational merits of FLUX. We present a set
of Constraint Handling Rules for these new constraints and prove their
correctness against the fluent calculus.

1 Introduction

Reasoning about actions is one of the central issues in Artificial Intelligence [1].
The classical formalism for representing knowledge of actions and their effects
is the situation calculus [2]. A fundamental challenge in this context is raised
by the classical frame problem, which means to find an efficient way of inferring
what changes and what does not change as a result of an action [3]. Simple
solutions to this problem, such as STRIPS [4], apply only to the special case
of complete knowledge. Solutions to the frame problem for the general case of
incomplete states have recently evolved into logic programming approaches, e.g.,
[5,6] based on the situation calculus and the event calculus, respectively. These
allow to program agents who use an internal world model for decision making
and who reason about their actions in order to keep this model up to date
as they move along. However, both of the aforementioned approaches lack an
explicit notion of states. Knowledge of the current state is represented indirectly
via the initial conditions and the actions which the agent has performed up to
now. As a consequence, the entire history of actions is needed when evaluating
a condition in an agent program [7]. This problem has been overcome in the
language FLUX [8], where an incomplete state is explicitly represented by a
list (of atomic state components) along with constraints. Actions are specified
in terms of how they affect a state, which allows agents to progress the state
whenever they execute an action and, hence, to directly evaluate conditions in
agent programs against the current world model. This is necessary if we aim at
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programs that scale up to non-trivial domains in which agents need to perform
long sequences of actions [8].

The core of FLUX is a set of Constraint Handling Rules [9] for the constraints
that are used to describe (incomplete) states. The semantics of FLUX, and in
particular of the constraint solver, is given by the fluent calculus—an action for-
malism which can be viewed as an extension of the classical situation calculus by
the basic notion of a state [10]. In order to obtain an efficient constraint solver,
the expressiveness of FLUX as presented in [11] has been carefully restricted:
States are composed of finitely many atomic state components, so-called fluents,
accompanied by constraints for (possibly universally quantified) negated single
fluents and for disjunctions of fluents. These restrictions allow for efficient con-
straint solving based on unit resolution, so that evaluating a new constraint is
linear in the size of the constraint store. This is necessary if we aim at a system
which scales up gracefully to domains with a large state space [8].

However, the restrictions imposed on the state representation in FLUX are
too weak to cover two important phenomena: Firstly, if an action has conditional
effects and the condition is unknown at the time when the action is performed,
then a complete encoding of what is known after the action requires implica-
tion constraints . Secondly, a state in which infinitely many instances of a fluent
hold cannot be expressed in a finite list. In this paper, we will overcome these
restrictions by extending FLUX to both implication constraints and constraints
for universal quantification. We will develop a set of Constraint Handling Rules
which again is carefully designed so as to retain the linear complexity of con-
straint solving in FLUX. Correctness of these rules is formally proved against
the semantics of the fluent calculus.

2 Reasoning About Actions with FLUX

2.1 The Fluent Calculus

The fluent calculus [10] is a predicate logic language which extends the classical
situation calculus [2]. The latter builds on the basic notions of actions (i.e., prim-
itive behaviors of an agent), situations (i.e., sequences of actions), and fluents
(i.e., atomic state components). To this, the fluent calculus adds the notion of
states (i.e., collections of fluents).

Definition 1. A fluent calculus signature consists of a finite set A of func-
tions into sort action and a finite set F of functions into sort fluent. Sort
fluent is a sub-sort of state. Furthermore,

S0 : sit ∅ : state
Do : action× sit .→ sit ◦ : state × state .→ state

State : sit .→ state

Inherited from the situation calculus, constant S0 denotes the initial situation
and Do(a, s) denotes the situation after performing action a in situation s.
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The term State(s) denotes the state in situation s. Constant ∅ denotes the
empty state. Finally, every fluent is a (singleton) state, and if z1 and z2 are
states then so is z1 ◦ z2.1 A fluent f is defined to hold in a state z just in
case z can be decomposed into two states one of which is the singleton f . For
notational convenience, the following macro is used as an abbreviation for the
corresponding equational formula:

Holds(f, z) def= (∃z′) z = f ◦ z′ (1)

The foundational axioms of the fluent calculus stipulate that function “◦” shares
essential properties with the union operation for sets:

Definition 2. The foundational axioms Fstate of the fluent calculus include:

1. Associativity and commutativity,

(z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3) z1 ◦ z2 = z2 ◦ z1 (2)

2. Empty state axiom,
¬Holds(f, ∅) (3)

3. Irreducibility and decomposition,

Holds(f1, f) ⊃ f1 = f (4)
Holds(f, z1 ◦ z2) ⊃ Holds(f, z1) ∨ Holds(f, z2) (5)

Associativity allows us to omit parentheses in nested applications of “◦”.2

Based on the notion of a state, the frame problem is solved in the fluent
calculus by axioms which define the effects of an action A(x) in situation s in
terms of how State(s) is updated to the successor State(Do(A(x), s)) . To this
end, two functions “− ” and “ + ” are used which denote, respectively, removal
and addition of fluents to states. They have a purely axiomatic characterization:
Let ϑ−, ϑ+ be finitely many fluent terms connected by “◦”, then

z1 − ∅ = z2
def= z2 = z1

z1 − (f ◦ ϑ−) = z2
def= (∃z) ( (z = z1 ∨ z ◦ f = z1) ∧ ¬Holds(f, z)

∧ z − ϑ− = z2)
z2 = (z1 − ϑ−) + ϑ+ def= (∃z) (z1 − ϑ− = z ∧ z2 = z ◦ ϑ+)

The crucial item is the second one, which inductively defines removal of fluents
f using a case distinction: Either z1 − f equals z1 (which applies in case
¬Holds(f, z1)), or (z1 − f) ◦ f equals z1 (which applies in case Holds(f, z1)).
1 Throughout the paper, free variables in formulas are assumed to be universally

quantified. Variables of sorts fluent, state, action, and situation shall be denoted
by the letters f , z , a, and s, respectively. The function “◦” is written in infix
notation. A (possibly empty) sequence of variables is denoted by x. We use the
standard logical connectives ¬, ∧, ∨, ⊃ (implication), and ≡ (equivalence).

2 The full axiomatic foundation of the fluent calculus contains two further axioms [8],
which, however, are not needed in the present paper. By the foundational axioms,
states are essentially flat sets (of fluents), i.e., which do not contain sets as elements.
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2.2 FLUX

The basic data structure in FLUX is that of an incomplete state, which represents
what an agent knows of the state of its environment in a specific situation. An
incomplete state is encoded as a fluent list which carries a tail variable; e.g.,

Z0 = [solution(a),solution(b),litmus(p1) | Z]

shall encode the knowledge that there are at least the two (chemical) solutions
a,b and the litmus paper p1. In addition to knowledge of fluents that hold in
a state, FLUX—as presented in [11]—allows to encode negative and disjunctive
state information as constraints on the tail variable. For example,

not_holds(red(p1),Z), or_holds([acidic(a),acidic(b)],Z),
not_holds_all(solution(_),Z)

encodes the knowledge that the litmus paper is not red, that one of the two
solutions is acidic, and that there are no other solutions available. The semantics
of a FLUX state specification is given by an equational fluent calculus formula,
here (∃Z) (Z0 = solution(a)◦solution(b)◦litmus(p1)◦Z), along with formulas
corresponding to the semantics of the constraints:

constraint semantics
not_holds(F,Z) ¬Holds(F, Z)
not_holds_all(F,Z) (∀x)¬Holds(F, Z) , x variables in F

or_holds([F1,...,Fk],Z)
∨k

i=1 Holds(Fi, Z)

(6)

In [11], a set of Constraint Handling Rules (CHRs) [9] has been developed
for the FLUX constraints. CHRs are of the form

H1,...,Hm <=> G1,...,Gk | B1,...,Bn.

where the head H1, . . . , Hm are constraints (m ≥ 1); the guard G1, . . . , Gk are
Prolog literals (k ≥ 0); and the body B1, . . . , Bn are constraints (n ≥ 0). An
empty guard is omitted; the empty body is denoted by true. The declarative
interpretation of a CHR is given by the formula

(∀x) (G1 ∧ . . . ∧Gk ⊃ [H1 ∧ . . . ∧Hm ≡ (∃y) (B1 ∧ . . . ∧Bn)] ) (7)

where x are the variables in both guard and head and y are the variables which
additionally occur in the body. The procedural interpretation of a CHR is given
by a transition in a constraint store: If the head can be matched against elements
of the constraint store and the guard can be derived, then the constraints of the
head are replaced by the constraints of the body.

The two main computation mechanisms for constraint solving in FLUX are
propagation and unit resolution. Figure 1 depicts two out of the total of 18 rules,
each of which has been verified against the foundational axioms of the fluent cal-
culus. The first example CHR propagates a negation constraint through a list



Handling Implication and Universal Quantification Constraints in FLUX 671

not_holds(F,[F1|Z]) <=> neq(F,F1), not_holds(F,Z).

not_holds(F,Z) \ or_holds(V,Z) <=> member(G,V,W), F==G | or_holds(W,Z).

Fig. 1. Two example CHRs for the FLUX constraints. The auxiliary predicate
neq(F, G) defines the inequality of F and G by a finite domain constraint [12] among
the arguments of the two fluents. Predicate member(X, Y, Z) is true if X occurs in list Y

and if Z is Y without X. Notation H1 \ H2 <=> G | B abbreviates H1,H2 <=> G | H1,B.

of fluents. Suppose, say, that tail variable Z of our example state were substi-
tuted by [red(X)|Z1], then not_holds(red(p1),[red(X)|Z1]) reduces to fi-
nite domain constraint p1 �= X along with not_holds(red(p1),Z1). The second
CHR resolves a disjunction in the presence of a negation constraint. Suppose,
for instance, we add the constraint not_holds(acidic(b),Z) to our exam-
ple state, then or_holds([acidic(a),acidic(b)],Z) reduces to the singleton
or_holds([acidic(a)],Z).3

Actions are specified in FLUX by state update axioms . Two examples are,

state_update(Z1,get_litmus_paper(P),Z2,[]) :-
update(Z1,[litmus(P)],[],Z2).

state_update(Z1,sense_paper(P),Z2,[Red]) :-
( Red=true, holds(red(P),Z1) ;

Red=false, not_holds(red(P),Z1) ), Z2 = Z1.

The semantics of the auxiliary predicate update(Z1,P,N,Z2) is given by the
fluent calculus update equation Z2 = (Z1 − N) + P. The last argument of
state update being empty indicates that action get litmus paper does not
involve sensing. The action of sensing the status of a litmus paper, on the other
hand, does not cause any physical effect, hence the state equality Z2=Z1. Recall,
for instance, the initial state from above, then

?- state_update(Z0,get_litmus_paper(p2),Z1,[]),
state_update(Z1,sense_paper(p2),Z2,[true]).

Z2 = [litmus(p2),solution(a),solution(b),litmus(p1),red(p2)|Z]
Constraints:
not_holds(red(p1),Z)
or_holds([acidic(a),acidic(b)],Z)
not_holds_all(solution(_),Z)
...

3 It is worth mentioning that the guard in the second CHR of Figure 1 cannot be
simplified to member(F, V, W) because constraints may contain variables. For example,
(∃X)¬Holds(acidic(X), Z) and Holds(acidic(a), Z)∨Holds(red(p), Z) do not imply
Holds(red(p), Z).
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The constraint solver and the definition of state update provide the basis for
agent programs in which an internal model of the environment is used for decision
making and where this model is updated through the execution of actions.

3 Handling Implication Constraints

3.1 Why Implication Constraints?

The constraints and CHRs for FLUX presented in [11] have been carefully de-
signed to allow for efficient constraint solving. This has been achieved by restrict-
ing disjunctions to positive atoms only, which allows to apply unit resolution.
As a consequence, the computational effort of evaluating a new constraint is
linear in the size of the constraint store. A disadvantage, however, is that the
restricted expressiveness is too weak for solving problems which involve actions
with conditional effects and where the condition is unknown at execution time.
As an example, consider the action dip(P,X) of dipping litmus paper P into
solution X, of which it is not known whether it is acidic or not. With the given
restricted expressiveness, FLUX requires to specify this action by the following
state update axiom:

state_update(Z1,dip(P,X),Z2,[]) :-
\+ not_holds(acidic(X),Z1) -> update(Z1,[red(P)],[],Z2) ;
\+ holds(acidic(X),Z1) -> update(Z1,[],[red(P)],Z2) ;
cancel(red(P),Z1,Z2).

That is, if state Z1 contains sufficient information to conclude that acidic(X)
cannot be false, then the agent can update its state knowledge by +red(P).
Conversely, if the agent knows that acidic(X) cannot hold, then it updates its
state by −red(P). If, however, the status of acidic(X) is not known in Z1,
then cancel(F,Z1,Z2) means that state Z2 is as state Z1 except that any
constraint on fluent F is cancelled. With this, the essence of the Litmus Test
cannot be expressed, because testing a solution and afterwards checking the color
of the paper does not enable the agent to infer the status of the solution. Recall,
for example, the initial state Z0 in Section 2, then

?- state_update(Z0,dip(p1,a),Z1,[]),
state_update(Z1,sense_paper(p1),Z2,[true]).

Z2 = [solution(a),solution(b),litmus(p1),red(p1) | _]

Although fluent red(p1) is known to be true now, it does not follow that
solution a is acidic. The reason is that initially the status of the solution is
unknown, and hence the only inferred effect of applying the state update axiom
for dip(p1,a) is that paper p1 is no longer known not to be red. The restricted
expressiveness of FLUX does not allow to encode the effect of this action in such
a way that the logical dependency between redness of the paper and acidity of
the solution is captured in the successor state. This is a general limitation of the
existing FLUX when it comes to actions with conditional effects.
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if_then_holds(F,G1,Z) <=> if_then_or_holds(F,[G1],Z). %1

if_then_or_holds(F,[],Z) <=> not_holds(F,Z). %2
if_then_or_holds(_,_,[]) <=> true. %3
if_then_or_holds(_,V,Z) <=> member(eq(X,Y),V), %4

or_neq(exists,X,Y,D), \+ call(D) | true.
if_then_or_holds(F,V,Z) <=> member(eq(X,Y),V,W), %5

\+ (and_eq(X,Y,D), call(D))
| if_then_or_holds(F,W,Z).

Fig. 2. Simplification CHRs for implication constraints. The auxiliary predicates
or neq(exists, X, Y, D) and and eq(X, Y, D) define D to be a finite domain constraint
that encodes, respectively, inequality X �= Y and equality X = Y (see [11] for details).

3.2 Handling Implication Constraints

In this section, we will extend FLUX by a constraint for disjunctions contain-
ing a negative literal. A special case of this will be an auxiliary constraint for
implicational dependencies between two fluents:

constraint semantics
if_then_or_holds(F,[G1,...,Gk],Z) Holds(F, Z) ⊃

∨k
i=1 Holds(Gi, Z)

if_then_holds(F,G,Z) Holds(F, Z) ⊃ Holds(G, Z)
(8)

We incorporate the new constraint into FLUX by adding a set of Constraint
Handling Rules. Each of the new CHRs, too, constitutes either a simplification,
propagation, or unit resolution step, so that evaluating a new constraint is still
linear in the size of the constraint store. The first part of the new set of CHRs is
depicted in Figure 2. The solver employs an extended notion of an implication
constraint where the disjunctive part may include atoms of the form eq(X,Y)
and neq(X,Y) with X and Y being lists of equal length. The meaning of this
general constraint if_then_or_holds(F,[G1,...,Gk],Z) is

Holds(F, Z) ⊃
k∨

i=1

⎧⎨⎩
Holds(Gi, Z) if Gi is a fluent
X = Y if Gi is eq(X,Y)
X �= Y if Gi is neq(X,Y)

(9)

This generalization is needed for propagating an implication constraint contain-
ing fluents with variable arguments, as will be shown below.

To begin with, CHR 1 defines if_then_holds in terms of the general im-
plication constraint. CHRs 2–5 are simplification rules. Consider, say, the impli-
cation constraint if_then_or_holds(acidic(a),[eq([p1],[p2])],Z), which
has a singleton, equational disjunction. To this, CHR 5 applies since p1 = p2
fails. The application of the rule yields if_then_or_holds(acidic(a),[],Z),
which by CHR 2 gets reduced to not_holds(acidic(a),Z).

The four CHRs in Figure 3 encode unit resolution steps. Specifically, CHRs 6
and 7 solve an implication whose antecedent is implied by a negation constraint.
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not_holds(F,Z) \ if_then_or_holds(G,_,Z) <=> F==G | true. %6
not_holds_all(F,Z) \ if_then_or_holds(G,_,Z) <=> inst(G,F) | true. %7

not_holds(F,Z) \ if_then_or_holds(C,V,Z) <=> %8
member(G,V,W), F==G | if_then_or_holds(C,W,Z).

not_holds_all(F,Z) \ if_then_or_holds(C,V,Z) <=> %9
member(G,V,W), inst(G,F) | if_then_or_holds(C,W,Z).

Fig. 3. Unit resolution CHRs for implication constraints. Predicate inst(G, F) means
that fluent term G is an instance of F.

CHRs 8 and 9 resolve an implication containing a disjunct that unifies with a
negation constraint. For example, in the presence of not_holds(red(p1),Z),
implication if_then_or_holds(acidic(a),[red(p1)],Z) reduces, by CHR 8,
to if_then_or_holds(acidic(a),[],Z).

Crucial for constraint solving in FLUX is the propagation through a list
of fluents. It is needed whenever the variable state argument is substituted by
an (incomplete) list. This happens when an agent performs actions or acquires
new information about the world. In general, propagating a constraint through
a list of fluents requires us to evaluate these fluents against those that occur
in the constraint. CHRs 10–12 in Figure 4 model the propagation of our new
implication constraint. Specifically, the first case in CHR 10 applies if the an-
tecedent of the implication is true in the given state. The other two cases employ
the 4-ary constraint if_then_or_holds(C,[G1,...,Gk],[H1,...,Hl],[F|Z]),
whose intended semantics is

Holds(C, Z) ⊃
∨k

i=1

⎧⎨⎩
Holds(Gi, F ◦ Z) if Gi is a fluent
X = Y if Gi is eq(X,Y)
X �= Y if Gi is neq(X,Y)

∨
∨l

j=1

⎧⎨⎩
Holds(Hj , Z) if Hj is a fluent
X = Y if Hj is eq(X,Y)
X �= Y if Hj is neq(X,Y)

(10)

Hence, the Gi’s are the fluents that have not yet been evaluated against the
head F of the state list, while the Hj ’s are those fluents that have been evaluated.
For example, Holds(G, F (x)◦ z) ⊃ Holds(F (a), F (x)◦ z)∨Holds(F (b), F (x)◦ z)
is equivalent to Holds(G, z) ⊃ x = a ∨ x = b ∨ Holds(F (a), z) ∨ Holds(F (b), z)
according to the foundational axioms of decomposition and irreducibility and
given the unique-name axiom F (x) = F (y) ⊃ x = y. Correspondingly,

if(g,[f(a),f(b)],[f(X)|Z])
<=> if(g,[f(a),f(b)],[],[f(X)|Z])
<=> if(g,[f(b)],[eq([a],[X]),f(a)],[f(X)|Z])
<=> if(g,[],[eq([b],[X]),f(b),eq([a],[X]),f(a)],[f(X)|Z])
<=> if(g,[eq([b],[X]),f(b),eq([a],[X]),f(a)],Z)

(where if abbreviates if_then_or_holds). The third case in CHR 10 applies
when the antecedent of an implication constraint unifies with the head of a state.
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if_then_or_holds(C,V,[F|Z]) <=> %10
C==F -> or_holds(V,[F|Z]) ;
C\=F -> if_then_or_holds(C,V,[],[F|Z]) ;
C=..[_|ArgX], F=..[_|ArgY], or_holds([neq(ArgX,ArgY)|V],[F|Z]),

if_then_or_holds(C,V,[],[F|Z]).

if_then_or_holds(C,[G|V],W,[F|Z]) <=> %11
G==F -> true ;
G\=F -> if_then_or_holds(C,V,[G|W],[F|Z]) ;
G=..[_|ArgX], F=..[_|ArgY],

if_then_or_holds(C,V,[eq(ArgX,ArgY),G|W],[F|Z]).

if_then_or_holds(C,[],W,[_|Z]) <=> if_then_or_holds(C,W,Z). %12

Fig. 4. Propagation CHRs for implication constraints

For example, Holds(F (a), F (x) ◦ z) ⊃ Holds(G, F (x) ◦ z) is equivalent to

[a �= x ∨Holds(G, z)] ∧ [Holds(F (a), z) ⊃ Holds(G, z)]

Correspondingly, if_then_or_holds(f(a),[g],[f(X)|Z]) is reduced to

or_holds([neq([a],[X]),g],Z)
if_then_or_holds(f(a),[g],Z)

3.3 Correctness

In the following we prove the formal correctness of the new Constraint Handling
Rules against the underlying theory of the fluent calculus. The proof is based
on the declarative interpretation of CHRs (see (7)) and the semantics of the
constraints in terms of the fluent calculus, given by (6) and (8)–(10).

Theorem 1. CHRs 1–12 are correct under the foundational axioms Fstate and
the assumption of uniqueness-of-names (UNA) for all fluents.

Proof. The logical reading of the rules are given by these formulas:

1. [Holds(f, z) ⊃ G1] ≡ [Holds(f, z) ⊃
∨1

i=1 Gi];
2. [Holds(f, z) ⊃

∨0
i=1 Gi] ≡ ¬Holds(f, z);

3. [Holds(f, ∅) ⊃
∨k

i=1 Gi] ≡ !;
4. If ¬x �= y then [Holds(f, z) ⊃ x = y ∨

∨k
i=1 Gi] ≡ !;

5. If ¬x = y then [Holds(f, z) ⊃ x = y ∨
∨k

i=1 Gi] ≡ [Holds(f, z) ⊃
∨k

i=1 Gi];
6. If ¬Holds(f, z) then [(Holds(f, z) ⊃

∨k
i=1 Gi] ≡ !;

7. If (∀x)¬Holds(f, z) and g is an instance of f then
[(Holds(g, z) ⊃

∨k
i=1 Gi] ≡ !;

8. If ¬Holds(f1, z) then
[Holds(f, z) ⊃ Holds(f1, z) ∨

∨k
i=1 Gi] ≡ [Holds(f, z) ⊃

∨k
i=1 Gi];



676 M. Thielscher

9. If (∀x)¬Holds(f1, z) and g is an instance of f1 then
[Holds(f, z) ⊃ Holds(g, z) ∨

∨k
i=1 Gi] ≡ [Holds(f, z) ⊃

∨k
i=1 Gi];

10. The following corresponds to the three cases in CHR 10:
(a) [Holds(f, f ◦ z) ⊃

∨k
i=1 Gi] ≡

∨k
i=1 Gi;

(b) If f �= f1 then [Holds(f, f1 ◦ z) ⊃
∨k

i=1 Gi] ≡ [Holds(f, z) ⊃
∨k

i=1 Gi];
(c) [Holds(F (x), F (y) ◦ z) ⊃

∨k
i=1 Gi] ≡

[(x �= y ∨
∨k

i=1 Gi) ∧ (Holds(F (x), z) ⊃
∨k

i=1 Gi)];
11. The following corresponds to the three cases in CHR 11:

(a) [Holds(f, z) ⊃ Holds(f1, f1 ◦ z) ∨
∨k

i=1 Gi ∨
∨l

j=1 Hj ] ≡ !;
(b) If g �= f1 then [Holds(f, z) ⊃ (Holds(g, f1 ◦ z)∨

∨k
i=1 Gi)∨

∨l
j=1 Hj ] ≡

[Holds(f, z) ⊃
∨k

i=1 Gi ∨ (Holds(g, z) ∨
∨l

j=1 Hj)];
(c) [Holds(f, z) ⊃ (Holds(F (x), F (y) ◦ z) ∨

∨k
i=1 Gi) ∨

∨l
j=1 Hj] ≡

[Holds(f, z) ⊃
∨k

i=1 Gi ∨ (x = y ∨Holds(F (x), z) ∨
∨l

j=1 Hj)];
12. [Holds(c, z) ⊃

∨0
i=1 Gi ∨

∨l
j=1 Hj ] ≡ [Holds(c, z) ⊃

∨l
j=1 Hj ].

Let F be the underlying fluent functions, then Fstate ∪ UNA[F ] 4 entails each
of the formulas above: Claims 1, 2, 4–9, and 12 are tautologies. Claim 3 fol-
lows by the foundational axiom on the empty state, (3). Claims 10(a) and 11(a)
follow by the definition of Holds , (1). Claim 10(b) follows by the foundational
axioms of decomposition, (5), and irreducibility, (4). Regarding 10(c), by de-
composition and irreducibility Holds(F (x), F (y) ◦ z) ⊃

∨k
i=1 Gi is equivalent to

[x �= y ∧ ¬Holds(F (x), z)] ∨
∨k

i=1 Gi . This, in turn, is equivalent to the conjunc-
tion [x �= y∨

∨k
i=1 Gi]∧ [¬Holds(F (x), z)∨

∨k
i=1 Gi], which implies the claim. Re-

garding 11(b), if g �= f1 then by decomposition and irreducibility Holds(g, f1◦z)
is equivalent to Holds(g, z), which implies the claim. Regarding 11(c), finally, by
decomposition, UNA[F ], and irreducibility Holds(F (x), F (y) ◦ z) is equivalent
to x = y ∨ Holds(F (x), z), which implies the claim.

While the extended set of CHRs is provably correct, a limitation is inherited
from the original solver: Agents are not able to draw all conclusions that follow
logically from a state specification if the underlying arithmetic solver trades full
inference capabilities for efficiency; we refer to [11] for details.

3.4 Using the Implication Constraint

The new constraint allows to encode the logical dependencies that result from
applying an action with conditional effects in situations where it is unknown
whether the condition holds. The crucial action in the Litmus Test example can
thus be encoded in such a way as to retain the dependency of cause and effect in
case the status of the chemical solution in question is unknown. By the following
update specification for action dip(P,X), first any knowledge of fluent red(P)
is cancelled in state Z1, since this fluent may be affected by the action, and then
the effect of the action is that red(P) is true in case acidic(X) holds and false
in case acidic(X) does not hold:
4 UNA[f1, . . . , fn] def=

∧
i<j fi(x) �= fj(y) ∧ ∧i[fi(x) = fi(y) ⊃ x = y].
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state_update(Z1,dip(P,X),Z2,[]) :-
cancel(red(P),Z1,Z2),
if_then_holds(acidic(X),red(P),Z2),
if_then_holds(red(P),acidic(X),Z2).

Recall, e.g., the scenario discussed in Section 3.1, where it is given that either of
two solutions is acidic and where the litmus paper is dipped into one of them:5

init(Z0) :- Z0 = [solution(a),solution(b),litmus(p1) | Z],
not_holds(red(p1),Z),
or_holds([acidic(a),acidic(b)],Z),
not_holds_all(solution(_),Z),
duplicate_free(Z0).

?- init(Z0), state_update(Z0,dip(p1,a),Z1,[]).

Z1 = [solution(a),solution(b),litmus(p1) | Z]
Constraints:
or_holds([acidic(a),acidic(b)],Z),
if_then_or_holds(acidic(a),[red(p1)],Z)
if_then_or_holds(red(p1),[acidic(a)],Z)
...

Suppose, now, that the subsequent test of the litmus paper reveals that it turned
red. The update axiom for action sense_paper (cf. Section 2) effects a substitu-
tion of state variable Z by [red(p1)|_]. The extended FLUX constraint solver
is then able to reduce the two implication constraints from above:

?- init(Z0),
state_update(Z0,dip(p1,a),Z1,[]),
state_update(Z1,sense_paper(p1),Z2,[true]).

Z2 = [solution(a),solution(b),litmus(p1),red(p1),acidic(a) | _]

Thus it follows that solution a must be acidic. Conversely, suppose that the
test of the litmus paper reveals that it did not turn red. In this case the update
axiom for action sense_paper adds the constraint not_holds(red(p1),Z).
Again the extended FLUX constraint solver is able to reduce the two implication
constraints from above. Furthermore, the disjunction is solved:

?- init(Z0),
state_update(Z0,dip(p1,a),Z1,[]),
state_update(Z1,sense_paper(p1),Z2,[true]).

Z2 = [solution(a),solution(b),litmus(p1),acidic(b) | _]

Thus it follows that solution b must be acidic.
5 Auxiliary constraint duplicate free(Z) ensures that no fluent occurs twice in Z.
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3.5 Why Not General Disjunctions?

Read as disjunction, the new implication constraint allows to encode disjunctive
clauses which include one negative literal (namely, the antecedent). This imme-
diately raises the question of introducing general disjunctions with two or more
negative literals. This, however, can only be done either by defining a highly
incomplete constraint solver, or by worsening the complexity to exponential. To
see why, consider a disjunctive statement with two negations, like

¬Holds(F (a), F (x1) ◦ . . . ◦ F (xn) ◦ z) ∨ ¬Holds(F (b), F (x1) ◦ . . . ◦ F (xn) ◦ z)

Using propagation through the first element of the state, F (x1), this formula is
equivalent to the conjunction of these four constraints:

a �= x1 ∨ b �= x1
a �= x1 ∨ ¬Holds(F (b), F (x2) ◦ . . . ◦ F (xn) ◦ z)
b �= x1 ∨ ¬Holds(F (a), F (x2) ◦ . . . ◦ F (xn) ◦ z)
¬Holds(F (a), F (x2) ◦ . . . ◦ F (xn) ◦ z) ∨ ¬Holds(F (b), F (x2) ◦ . . . ◦ F (xn) ◦ z)

Assuming uniqueness-of-names, the first disjunction is trivially true, but the
other three constraints need to be propagated further. Propagation through the
remaining n − 1 fluents will result in 2n − 1 constraints. Hence, either con-
straint solving becomes exponential, or the solver avoids propagating a general
disjunction. The latter, however, would render the solver powerless.

4 Handling Universal Quantification Constraints

A second limitation of the constraint solver presented in [11] is that it lacks
universally quantified positive information. In this section, we will extend FLUX
further by a constraint all_holds(F,C,Z) with the intended semantics

(∀x) (C[x] ⊃ Holds(F, Z) ) (11)

where x are the variables occurring in fluent F and where C[x] is a finite domain
constraint over x. The special case of unconstrained universal quantification
shall be encoded by all_holds(F,Z), meaning (∀x)Holds(F, Z). In a similar
way, we generalize universally quantified negation to all_not_holds(F,C,Z)
with the intended semantics

(∀x) (C[x] ⊃ ¬Holds(F, Z) ) (12)

where x are the variables occurring in fluent F and where C[x] is a finite
domain constraint over x. In the following, we present a set of CHRs for the
new universal quantification constraints. Lack of space, however, will prevent us
from discussing this extension as thoroughly as in the preceding section.
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all_holds(F,Z) <=> all_holds(F,(0#=0),Z).

all_holds(F,C,Z), not_holds(G,Z) ==> %1
copy_fluent(F,C,F1,C1) | F1=G, call(#\+C1).

all_holds(F,C,Z), all_not_holds(G,D,Z) <=> %2
copy_fluent(F,C,F1,C1), copy_fluent(G,D,G1,D1),
F1=G1, call(C1#/\D1) | false.

all_holds(F,C,Z) \ or_holds(V,Z) <=> %3
member(G,V), copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1) | true.

all_holds(F,C,Z) \ if_then_or_holds(G,V,Z) <=> %4
copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1) | or_holds(V,Z).

all_holds(F,C,Z) \ if_then_or_holds(_,V,Z) <=> %5
member(G,V), copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1) | true.

all_holds(F,C,[G|Z]) <=> %6
\+ (F=G, call(C)) -> all_holds(F,C,Z) ;
F=..[_|ArgX], G=..[_|ArgY],
or_neq(exists,ArgX,ArgY,C1), all_holds(F,(C#/\C1),Z).

Fig. 5. The CHRs for universal quantification constraints. Following the syntax of
Eclipse Prolog, the symbol # is used to identify the operators for composing finite
domain constraints. The auxiliary predicate copy fluent(F, C, F1, C1) defines F1 and
C1 to be variable-disjoint variants of, respectively, fluent F and constraint C. CHR 1
is a so-called propagation rule, where the constraints in the head are not removed from
the constraint store.

4.1 Handling the Universal Constraint

Figure 5 depicts unit resolution and propagation rules for constraint all_holds.
Specifically, CHRs 1 and 2 model unit resolution wrt. negation constraints. For
example, the constraints all_holds(f(X),X#>5,Z) and not_holds(f(8),Z)
together imply, by CHR 1, the finite domain constraint #\+ 8#>5, which fails
(since 8 > 5). CHR 3 models the subsumption of a disjunctive constraint by
a universal one. For example, given all_holds(f(X),X#>5,Z) the disjunctive
constraint or_holds([f(3),f(7)],Z) is true (since 7 > 5). CHR 4 models
unit resolution wrt. an implication constraint whose antecedent is implied by
a universal constraint, whereas CHR 5 solves an implication constraint whose
succedent is subsumed by a universal constraint. Finally, CHR 6 defines the
propagation of a universal constraint through a state list: In case the head flu-
ent g of the state is within the range of the universal constraint, this range
is restricted so as to be unequal to g. For example, propagation applied to
all_holds(f(X),X#>5,[f(6)|Z]) yields all_holds(f(X),X#>6,Z).

A similar set of CHRs for negated universal quantification is given in Figure 6.
Altogether the rules can be shown to be correct wrt. the foundational axioms of
the fluent calculus.

Theorem 2. CHRs 1–11 in Figures 5 and 6 are correct under the foundational
axioms Fstate and the assumption of uniqueness-of-names for all fluents.
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not_holds_all(F,Z) <=> all_not_holds(F,(0#=0),Z).

all_not_holds(F,C,Z) \ not_holds(G,Z) <=> %7
copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1) | true.

all_not_holds(F,C,Z) \ or_holds(V,Z) <=> %8
member(G,V,W), copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1)
| or_holds(W,Z).

all_not_holds(F,C,Z) \ if_then_or_holds(G,_,Z) <=> %9
copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1) | true.

all_not_holds(F,C,Z) \ if_then_or_holds(F2,V,Z) <=> %10
member(G,V,W), copy_fluent(F,C,F1,C1), F1=G, \+ call(#\+C1)
| if_then_or_holds(F2,W,Z).

all_not_holds(F,C,[G|Z]) <=> %11
(\+ (F=G, call(C)) -> true ;
copy_fluent(F,C,F1,C1), F1=G, call(#\+C1)), all_not_holds(F,C,Z).

Fig. 6. CHRs for universally quantified negation

4.2 Using the Universal Constraints

The new universal constraints can be used for domains with states in which
infinitely many instances of a fluent are true and, at the same time, infinitely
many of its instances are false. We conclude this section with a small example
of a fluent F which, initially, is known to be true for all integers greater than 2
and false for all negative integers. The agent then performs several actions which
affect specific instances of the fluent:

init(Z0) :- all_holds(f(X),X#>2,Z0),
all_not_holds(f(X),X#<0,Z0), duplicate_free(Z0).

state_update(Z1,set(X), Z2,[]) :- update(Z1,[f(X)],[],Z2).
state_update(Z1,reset(X),Z2,[]) :- update(Z1,[],[f(X)],Z2).

?- init(Z0),
state_update(Z0,set(-2), Z1,[]),
state_update(Z1,reset(5),Z2,[]),
state_update(Z2,set(0), Z3,[]).

Z3 = [f(0),f(-2) | Z]
Constraints:
all_holds(f(X),X#>2 #/\ X#\=5,Z)
all_not_holds(f(X),X#<0,Z)
not_holds(f(5),Z)
not_holds(f(0),Z)
duplicate_free(Z)
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5 Summary

We have enriched significantly the expressiveness of state representations in
FLUX by introducing both implication and universal quantification constraints.
We have presented a set of Constraint Handling Rules based solely on simpli-
fication, propagation, and unit resolution, so that the efficiency of constraint
solving in FLUX is retained. The rules have been formally verified against the
fluent calculus.

The closest work is the logic program presented in [5] for GOLOG with in-
complete states. The main difference is that states are only indirectly represented
in GOLOG and that regression through the history of actions is used to evaluate
conditions in agent programs. In contrast, FLUX uses explicit representations of
incomplete states along with the computation mechanism of progression, which
allows to evaluate conditions directly against the updated state. A further dif-
ference is that the GOLOG variant of [5] employs a general theorem prover for
evaluating a regressed condition (against the initial state knowledge). In con-
trast, the motivation for FLUX is to retain a restricted expressiveness in order
to be able to employ efficient inference techniques. Benchmark problems have
shown that FLUX scales much better to domains with large state space and in
which agents perform long sequences of actions [8,7].
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Abstract. Many benchmark domains in AI planning including Blocks,
Logistics, Gripper, Satellite, and others lack the interactions that
characterize puzzles and can be solved non-optimally in low polyno-
mial time. They are indeed easy problems for people, although as with
many other problems in AI, not always easy for machines. In this paper,
we address the question of whether simple problems such as these can
be solved in a simple way, i.e., without search, by means of a domain-
independent planner. We address this question empirically by extending
the constraint-based planner CPT with additional domain-independent
inference mechanisms. We show then for the first time that these and sev-
eral other benchmark domains can be solved with no backtracks while
performing only polynomial node operations. This is a remarkable finding
in our view that suggests that the classes of problems that are solvable
without search may be actually much broader than the classes that have
been identified so far by work in Tractable Planning.

1 Introduction

Simple problems can be hard for a general problem solver when the structure
of the problems is not exploited. Domains like Blocks, Logistics, Satellite and
others, for example, have all a low polynomial complexity (once the optimal-
ity requirement is dropped) and yet they all have been challenging for domain-
independent planners until quite recently. Current planners solve these and other
problems by exploiting structure in the form of heuristic functions that are ex-
tracted automatically and guide the search for plans [1,2].

In this paper, we address the question of whether these and other simple,
tractable domains can be solved by a domain-independent planner with no search
at all by performing polynomial node operations only. The work in Tractable
Planning addresses a related question by studying fragments of general planning
languages such as Strips over which planning is polynomial [3–6]. Unfortunately,
the fragments that have been identified so far as tractable remain somehow
narrow and do not account for the tractability of the standard benchmarks.
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In this work we approach this problem in a different way – empirically – by
developing a general planning algorithm and showing that it solves these and
other domains backtrack free, suggesting thus that the classes of problems that
can be solved with no search by means of a domain-independent planner may be
much broader than the ones that have been identified theoretically so far. Closing
the gap between the empirical results and the theoretical accounts arises then
as a key challenge that we hope to approach elsewhere.

The planning algorithm that we use for solving the various domains backtrack-
free is an extension of the constraint-based planner cpt, an optimal temporal
planner that combines a POCL branching scheme (for Partial Order Causal Link
Planning [7]) with strong pruning mechanisms [8]. The extension is modular and
takes the form of additional domain-independent constraints and inference mech-
anisms. We will refer to domain-independent planners that aim to solve simple
problems in a backtrack-free manner by performing low polynomial operations in
every node, as easy planners. The development of easy planners, we believe, is a
crisp and meaningful goal, which may yield insights that an exclusive focus on per-
formance may not, like the identification of broader tractable planning fragments,
and the process by which people actually plan. Humans indeed are quite good at
solving these simple problems, and while it is often assumed that this ability is
the result of domain-dependent strategies, our results suggest that they may also
result from simple but general inference mechanisms.

By itself, cpt like other SAT and constraint-based optimal planners [9–11],
does not make for a good suboptimal planner and much less for an easy planner.
Indeed, while SAT and constraint-based planners can be used with large, non-
optimal planning horizons (which are upper bounds on the makespan of the
plan), they face two problems: 1) SAT and CSP encodings based on one variable
per time point, as normally used, become too large to handle for large planning
horizons; and 2) the constraint that requires the goals to be true at the planning
horizon becomes ineffective when the horizon is set too high.

In cpt the first is not a problem because, being a temporal planner, cpt
uses temporal rather than boolean encodings; i.e. for each action in the domain,
a single variable represents the starting time of the action in the plan. Thus, the
use of a large bound on the admissible makespan of plans has a direct effect on
the upper bounds of the temporal variables but not in their number.

cpt, on the other hand, does not escape from Problem 2: with a large bound
on the makespan, the search becomes less constrained and focused, and even
problems that are solved backtrack free with the optimal bound are not solved
at all after thousands of backtracks when a larger bound is used instead. In this
work, we tackle this problem by extending the inferential capabilities of cpt so
that it relies less on inferences drawn from the bounding constraint and more on
domain-independent inferences not captured by cpt. The new version of cpt,
that we call ecpt, does simple but more extensive reasoning, making use and
adapting techniques like landmarks [12,13] and distances [14] among others.

The paper is organized as follows. We first review the cpt planner, discuss
its strength as an optimal planner and its weakness as a suboptimal planner, and
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introduce extensions of the inferential machinery of cpt that render the search
backtrack-free over a wide range of domains. We then evaluate the resulting
planner, ecpt, and discuss implications and open ends.

2 CPT

cpt is a domain-independent temporal planner that combines a branching scheme
based on Partial Order Causal Link (POCL) Planning with powerful and sound
pruning rules implemented as constraints [8]. The key novelty in cpt in relation to
other formulations [7,15,16] is the ability to reason about supports, precedences,
and causal links involving actions that are not in the plan. In this way, cpt can
prune the start time and supports of actions that are not yet in the plan, rule
out actions from the plan, detect failures early on, etc. The inferences in cpt are
supported by a convenient representation of POCL plans in terms of variables and
constraints. For example, for each action a in the domain there is a variable T (a)
that represents the starting time of a, and for each precondition p of a, a variable
S(p, a) that represents the supporter of precondition p of a. A causal link a′[p]a is
thus represented by the constraint S(p, a) = a′, while its negation is represented
by the constraint S(p, a) �= a′ which means that a′ cannot produce p for a, i.e. the
causal link a′[p]a is forbidden. Unlike other POCL planners based on constraints
however, [17–20], cpt represents and reasons with all these variables, whether or
not the action a is part of the current plan.

cpt uses a simple extension of the Strips language that accommodates con-
current actions with integer durations. A temporal planning problem is a tuple
P = 〈A, I, O, G〉 where A is a set of ground atoms, I ⊆ A and G ⊆ A represent
the initial and goal situations, and O is the set of ground Strips operators, each
with precondition, add, and delete list pre(a), add(a), and del(a), and duration
dur(a). As is common in POCL planning, there are also the dummy actions
Start and End with zero durations, the first with an empty precondition and
effect I; the latter with precondition G and empty effects. As in graphplan
[21], two actions a and a′ interfere when one deletes a precondition or positive
effect of the other. cpt follows the simple model of time in [22] where interfering
actions cannot overlap, and produces valid plans with minimum makespan.

The basic formulation of the cpt planner can be described in four parts:
preprocessing, variables, constraints, and branching. After the preprocessing, the
variables are created and the constraints are asserted and propagated. If an
inconsistency is found, no valid plan for the problem exists. Otherwise, the con-
straint T (End) = B for the bound B on the makespan, set to the earliest possible
starting time of the action End (i.e.; B = Tmin(End) which is determined by
preprocessing, see below), is asserted and propagated. The branching scheme
then takes over and if no solution is found, the process restarts by retracting
the constraint T (End) = B and replacing it with T (End) = B + 1 (1 being
the smallest time unit). The search is then restarted from scratch with the new
bound, and this is repeated until a solution is found. For simplicity, we follow
[8] and assume that no action in the domain can be done more than once in
the plan. This restriction is removed in the last version of cpt, which is the one
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that we use, that introduces a distinction between action types and tokens. Such
details, however, reported in [23], are not needed here and are omitted.

2.1 Preprocessing

In the preprocessing phase, cpt computes the heuristic values h2
T (a) and

h2
T ({p, q}) for each action a ∈ O and each atom pair {p, q} as in [24]. The values

provide lower bounds on the times to achieve the preconditions of a and the
pair of atoms p, q, from the initial situation I. The (structural) mutexes (pairs of
atoms that cannot be true in a world situation) are then identified as the pairs
of atoms p, q for which h2

T ({p, q}) =∞. An action a is said to e-delete an atom p
when either a deletes p, a adds an atom q such that q and p are mutex, or a pre-
condition r of a is mutex with p and a does not add p. In all cases, if a e-deletes
p, p is false after doing a; see [25]. Finally, Tmin(End) = max{p,q}⊆G h2

T ({p, q}).
In addition, the simpler heuristic h1

T is used for defining distances between
actions [14]. For each action a ∈ O, the h1

T heuristic is computed from an initial
situation Ia that includes all facts except those that are e-deleted by a. The
distances dist(a, a′) are then set to the resulting h1

T (a′) values. These distances
encode lower bounds on the slack that must be inserted between the completion
of a and the start of a′ in any legal plan in which a′ follows a. They are not
symmetric in general and their calculation, which remains polynomial, involves
the computation of the h1

T heuristic |O| times.

2.2 Variables and Domains

The state of the planner is given by a collection of variables, domains, and
constraints. As emphasized above, the variables are defined for each action a ∈
O and not only for the actions in the current plan. Moreover, variables are
created for each precondition p of each action a as indicated below. The domain
of variable X is indicated by D[X ] or simply as X :: [Xmin, Xmax] if X is a
numerical variable. The variables, their initial domains, and their meanings are:

– T (a) :: [0,∞] encodes the starting time of each action a, with T (Start) = 0
– S(p, a) encodes the support of precondition p of action a with initial domain

D[S(p, a)] = O(p) where O(p) is the set of actions in O that add p
– T (p, a) :: [0,∞] encodes the starting time of S(p, a)
– InP lan(a) :: [0, 1] indicates the presence of a in plan; InP lan(Start) =

InP lan(End) = 1 (true)

In addition, the set of actions in the current plan is kept in the variable Steps;
i.e., Steps = {a | InP lan(a) = 1}. Variables T (a), S(p, a), and T (p, a) associated
with actions a which are either in or out of the current plan (i.e., actions for
which the InP lan(a) variable is not set to either 0 or 1 yet) are conditional
in the following sense: these variables and their domains are meaningful only
under the assumption that they will be part of the plan. In order to ensure this
interpretation, some care needs to be taken in the propagation of constraints as
explained in [8].
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2.3 Constraints

The constraints correspond basically to disjunctions, rules, and precedences, or
their combination. Temporal constraints are propagated by bounds consistency
[26]. The constraints apply to all actions a ∈ O and all p ∈ pre(a); we use δ(a, a′)
to stand for dur(a) + dist(a, a′).

– Bounds: For all a ∈ O, T (Start)+δ(Start, a) ≤ T (a) and T (a)+δ(a, End) ≤
T (End)

– Preconditions: Supporter a′ of precondition p of a must precede a by an
amount that depends on δ(a′, a):

T (a) ≥ min
a′∈D[S(p,a)]

(T (a′) + δ(a′, a))

T (a) ≥ T (p, a) + min
a′∈D[S(p,a)]

δ(a′, a)

T (a′) + δ(a′, a) > T (a)→ S(p, a) �= a′

– Causal Link Constraints: For all a ∈ O, p ∈ pre(a) and a′ that e-deletes
p, a′ precedes S(p, a) or follows a

T (a′)+dur(a′)+ min
a′′∈D[S(p,a)]

dist(a′, a′′) ≤ T (p, a) ∨ T (a)+δ(a, a′) ≤ T (a′)

– Mutex Constraints: For effect-interfering a and a′1

T (a) + δ(a, a′) ≤ T (a′) ∨ T (a′) + δ(a′, a) ≤ T (a)

– Support Constraints: T (p, a) and S(p, a) related by

S(p, a) = a′ → T (p, a) = T (a′)

T (p, a) �= T (a′)→ S(p, a) �= a′

min
a′∈D[S(p,a)]

T (a′) ≤ T (p, a) ≤ max
a′∈D[S(p,a)]

T (a′)

2.4 Branching

As in POCL planning, branching in cpt proceeds by iteratively selecting and
fixing flaws in non-terminal states σ, backtracking upon inconsistencies. A state
σ is given by the variables, their domains, and the constraints involving them.
The initial state σ0 contains the variables, domains, and constraints above, along
with the bounding constraint T (End) = B where B is the current bound on the
makespan, which in the optimal setting is set to a lower bound and is then
increased until a plan is found. A state is inconsistent when a non-conditional
variable has an empty domain, while a consistent state σ with no flaws is a goal
state from which a valid plan P with bound B can be extracted by scheduling
the in-plan variables at their earliest starting times.

The definition of ‘flaws’ parallels the one in POCL planning expressed in
terms of the temporal and support variables, with the addition of ‘mutex threats’:
1 Two actions are effect-interfering in cpt when one deletes a positive effect of the

other, and neither one e-deletes a precondition of the other.
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– Support Threats: a′ threatens a support S(p, a) when both actions a and
a′ are in the current plan, a′ e-deletes p, and neither Tmin(a′) + dur(a′) ≤
Tmin(p, a) nor Tmin(a) + dur(a) ≤ Tmin(a′) hold,

– Open Conditions: S(p, a) is an open condition when |D[S(p, a)]| > 1 holds
for an action a in the plan,

– Mutex Threats: a and a′ constitute a mutex threat when both actions are in
the plan, they are effect-interfering, and neither Tmin(a)+dur(a) ≤ Tmin(a′)
nor Tmin(a′) + dur(a′) ≤ Tmin(a) hold.

Flaws are selected for repair in the following order: first Support Threats (ST’s),
then Open Conditions (OC’s), and finally Mutex Threats (MT’s). ST’s and
MT’s are repaired by posting precedence constraints, while OC’s are repaired by
choosing a supporter, as usual in POCL planning.

3 eCPT

cpt is an optimal temporal planner with good performance which is competitive
with the best SAT parallel planners when actions have uniform durations [8].
At the same time, for non-optimal planning, cpt has the advantage that the
size of the encodings does not grow with the bound; indeed the bound in cpt
enters only through the constraint T (End) = B, which affects the domain upper
bounds of the variables but not their number. In spite of this, however, cpt does
not make for a good suboptimal planner, because like SAT and CSP planners
it still relies heavily on the bounding constraint which becomes ineffective for
large values of B.

Figure 1 shows the performance of cpt for the Tower-n problem for several
values of n and several horizons B. Tower-n is the problem of assembling a
specific tower of n blocks which are initially on the table. This is a trivial problem
for people, but as shown in [8], it is not trivial for most optimal planners. cpt,
however, solves this problem optimally backtrack free for any value of n. As the
figure shows, however, the times and the number of backtracks increase when
the horizon B is increased above the optimal bound, and for large values of B,
cpt cannot solve these problems after thousands of seconds and backtracks.

The figure also shows the performance of ecpt, the extension of cpt de-
scribed in this paper. It can be seen that while the performance of cpt degrades
with the increase of the bound B, the performance of ecpt remains stable, and
actually backtrack free for the different values of B. ecpt exploits the flexibility
afforded by the Constraint-Programming formulation underlying cpt, extending
it with inferences that do not rely as much on the bound, and which produce a
backtrack-free behavior across a wide range of domains. In this section we focus
on such inferences.

3.1 Impossible Supports

Many supports can be eliminated at preprocessing avoiding some dead-ends
during the search. For example, the action a′ = putdown(b1) can never support
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Fig. 1. Performance of cpt and ecpt over Tower-n for various numbers of blocks n
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ecpt.

the precondition p = handempty of an action like a = unstack(b1, b3). This is
because action a has another precondition p′ = on(b1, b3) which is e-deleted by
a′ (false after a′) and which then would have to be reestablished by another
action b before a. Yet it can be shown that in this domain, any such action b
e-deletes p and is thus incompatible with the causal link a′[p]a.

More generally, let dist(a′, p, a) refer to a lower bound on the slack between
actions a′ and a in any valid plan in which a′ is a supporter of precondition p
of a. We show that for some cases, at preprocessing time, it can be shown that
dist(a′, p, a) =∞, and hence, that a′ can be safely removed from the domain of
the variable S(p, a) encoding the support of precondition p of a.

This actually happens when some precondition p′ of a is not reachable from
the initial situation that includes all the facts except those e-deleted by a′ and
where the actions that either add or delete p are excluded. The reason for this
exclusion is that if a′ supports the precondition p of a then it can be assumed
that no action adding or deleting p can occur between a′ and a (the first part
is the systematicity requirement [7]). By a proposition being reachable we mean
that it makes it into the so-called relaxed planning graph; the planning graph
with the delete lists excluded [27].

This simple test prunes the action putdown(b1) as a possible support of the
precondition handempty of action unstack(b1, b3), the action stack(b1, b3) as a
possible support of precondition clear(b1) of pickup(b1), etc.

3.2 Unique Supports

We say that an action consumes an atom p when it requires and deletes p.
For example, the actions unstack(b3, b1) and pickup(b2) both consume the atom
handempty. In such cases, if the actions make it into the plan, it can be shown
that their common precondition p must have different supports. Indeed, if an
action a deletes a precondition of a′, and a′ deletes a precondition of a, a and a′
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are incompatible and cannot overlap in time according to the semantics. Then
either a must precede a′ or a′ must precede a, and in either case, the precondition
p needs to be established at least twice: one for the first action, and one for
the second. The constraint S(p, a) �= S(p, a′) for pairs of actions a and a′ that
consume p, ensures this, and when one of the support variables S(p, a) or S(p, a′)
is instantiated to a value b, b is immediately removed from the domain of the
other variable.

3.3 Distance Boosting

The distances dist(a, a′) precomputed for all pairs of actions a and a′ provide a
lower bound on the slack between the end of a and the beginning of a′. In some
cases, this lower bound can be easily improved, leading to stronger inferences.
For example, the distance between the actions putdown(b1) and pickup(b1) is
0, as it is actually possible to do one action after the other. Yet the action
putdown(b1) followed by pickup(b1) makes sense only if some other action using
the effects of the first, occurs between these two, as when block b1 is on block
b2 but needs to be moved on top of the block beneath b2.

Let us say that an action a cancels an action a′ when 1) every atom added
by a′ is e-deleted by a, and 2) every atom added by a is a precondition of a′.
Thus, when a cancels a′, the sequence a′, a does not add anything that was not
already true before a′. For example, pickup(b1) cancels the action putdown(b1).

When an action a cancels a′, and there is a precondition p of a that is made
true by a′ (i.e., p is added by a′ and is mutex with some precondition of a′), the
distance dist(a′, p, a) introduced above becomes∞ if all the actions that use an
effect of a′ e-delete p. In such case, as before, the action a′ can be excluded from
the domain of the S(p, a) variable. Otherwise, the distance dist(a′, a) can be
increased to minb[dist(a′, b)+dist(b, a)] with b ranging over the actions different
than a and a′ that either use an effect of a′ but do not e-delete p or do not use
necessarily an effect of a′ but add p (because a′ may be followed by an action c
before a that e-deletes p but only if there is another action b between c and a
that re-establishes p).

In this way, the distance between the actions putdown(a) and pickup(a) in
Blocks is increased by 2, the distance between sail(a, b) and sail(b, a) in Ferry
is increased by 1, etc. The net effect is similar to pruning cycles of size two in
standard heuristic search. Pruning cycles of larger sizes, however, appears to be
more difficult in the POCL setting, although similar ideas can potentially be
used for pruning certain sequences of commutative actions.

3.4 Qualitative Precedences

Unlike traditional POCL planners, cpt reasons with temporal precedences of the
form T (a) + δ(a, a′) ≤ T (a′) rather than with qualitative precedences. cpt is a
CP-based temporal planner and such a choice arises naturally from the repre-
sentation used. Yet, the constraint propagation mechanism, bounds consistency,
is incomplete, and in a planning context, it is often too weak. In particular,
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bounds consistency does not capture transitivity: namely from the constraints
A < B and B < C, it does not entail A < C. Indeed if the initial domains of
the variables A, B, and C is [1, . . . , 100], bounds consistency reduces the do-
mains to [1, . . . , 98], [2, . . . , 99], and [3, . . . , 100] respectively, which do not make
A < C true for all value combinations. Transitivities, however, are important
in planning, and thus ecpt incorporates, in addition to temporal precedences,
qualitative precedences of the form a ≺ a′ not limited to the actions a and a′

in the plan. Such qualitative precedences are obtained every time a temporal
precedence is asserted or entailed, and are kept closed under transitivity.2 When
a new qualitative precedence a ≺ a′ is found, the transitive closure is computed
as follows: if a belongs to the current partial plan, then for all a′′ such that
a′′ ≺ a, a′′ ≺ a′ is recorded; and if a′ belongs to the plan, then for all a′′ such
that a′ ≺ a′′, a ≺ a′′ is recorded. The same updates are incrementally performed
for an existing relation a ≺ a′ with a or a′ not in the plan, as soon as a or a′

make it into the plan.
Then two inference rules make use of these qualitative precedences for prun-

ing further the domains of the support variables:

– for an action a′ in the plan that adds a precondition p of an action a: if
a ≺ a′ then S(p, a) �= a′

– for an action a′ that adds a precondition p of an action a and an action b in
the plan that e-deletes p: if a′ ≺ b and b ≺ a, then S(p, a) �= a′

3.5 Action Landmarks

Like all POCL planners, cpt starts with a partial plan with two actions only:
Start and End. In many cases, however, it is possible to infer easily that certain
other actions must be in the plan as well. For example, if a block b1 must
be moved but is beneath two blocks b3 and b2 in that order, then the actions
unstack(b3, b2) and unstack(b2, b1) will have to be taken at some point, and
moreover, the first must precede the second. In ecpt we identify such necessary
actions and a partial order on them in a preprocessing step, following the idea
of landmarks introduced in [12], in the form presented in [13]. An action a is
a landmark if the action End is not reachable when the action a is excluded
from the domain (as mentioned above, an action a is reachable when it makes it
into the relaxed planning graph). Also, a landmark action a precedes a landmark
action b, when b is not reachable when the action a is excluded. Action landmarks
and the partial order on them are computed in the preprocessing step and are
included in the initial state of the planner along with the actions Start and End.
This involves the calculation of |O| relaxed planning graphs, one for each action
in the domain.

2 Temporal precedences are asserted as a result of the branching decisions correspond-
ing to support and mutex threats, and are inferred when either supports are asserted
or inferred, or when one of the disjuncts in a causal link or mutex constraint becomes
false.
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3.6 Branching and Heuristics

ecpt retains the same branching scheme as cpt and the same ordering: it first
branches on support threats (ST’s), then on open conditions (OC’s), and finally
on mutex threats (MT’s). The heuristic for selecting the support threats and
open conditions however, is slightly different.

Support threats 〈a′, S(p, a)〉 are selected in ecpt minimizing Tmin(a), break-
ing ties by first minimizing Tmax(p, a), and then with the slack based criterion
used in cpt. Open supports S(p, a) are selected minimizing Tmax(p, a), breaking
ties minimizing slack(a′, a) where a′ is the producer of a in D[S(p, a)] with min
Tmin(a′). Also the constraint posted in the second case is S(p, a) = a′, and if
that fails, S(p, a) �= a′.

4 Experimental Results

While our motivation behind the development of ecpt is to study empirically the
possibility of solving a wide variety of planning benchmarks with no search, we
report also results that are illustrative for assessing ecpt as either an optimal
or suboptimal planner in relation with state-of-the-art systems such as ff or
satplan04. ff [27] is a suboptimal, sequential planner winner of the 2nd Int.
Planning Competition, while satplan04 [9] is an optimal parallel planner winner
of the Optimal Track of the 4th and last Int. Planning Competition that relies
on the Siege SAT solver [28]. The instances and domains are all from the 2nd and
3rd Int. Planning Competitions [29,30], and the results have been obtained using
a Pentium IV machine running at 2.8Ghz, with 1Gb of RAM, under Linux. The
time limit for each problem is 30 minutes, and all times include preprocessing.
Since ff and satplan04 cannot handle temporal domains, we consider only
the formulation in which all actions have unit duration. The bound B on the
makespan for suboptimal ecpt is then set to 200 which is well above the optimal
makespan in these benchmarks.

Table 1 shows for each domain, the total number of instances, the num-
ber of instances solved by ecpt, the number of instances solved backtrack free
(and in parenthesis, the max number of backtracks over problems solved with
backtracks), and the max number of nodes generated (in POCL planning, this
number is different than the number of actions in the plan). For illustration
purposes, the number of instances solved and the corresponding max number of
nodes generated are reported also for ff [27]. As it can be seen, ecpt solves 339
out of 350 instances, 336 of them backtrack free, including all the instances of
Blocks, Ferry, Logistics, Gripper, Miconic, Rovers and Satellite (the 11 unsolved
instances are actually all caused by memory limitations in the Claire language
rather than time). This is quite remarkable; these are instances that were chal-
lenging until very recently. ecpt solves actually 3 instances more than ff over
this set of problems, ecpt having best relative coverage in Blocks and DriverLog,
and ff in Depots and Zeno. In the last domain from IPC-3, Freecell, ff solves
more instances than ecpt, which no longer exhibits a backtrack-free behavior.
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Table 1. eCPT vs. FF: Coverage over various simple domains, showing # problems
solved, backtrack free (max # backtracks), and max # of nodes generated

eCPT FF
#pbs solved b.-free (max b.) max nd solved max nd

blocks 50 50 50 (0) 275 42 146624
depots 20 18 16 (4) 285 19 166141
driver 20 17 16 (5) 176 15 4657
ferry 50 50 50 (0) 1176 50 201
gripper 50 50 50 (0) 201 50 200
logistics 50 50 50 (0) 273 50 2088
miconic 50 50 50 (0) 131 50 76
rovers 20 20 20 (0) 207 20 3072
satellite 20 20 20 (0) 249 20 5889
zeno 20 14 14 (0) 70 20 933
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Fig. 2. eCPT running times on all domains

This domain, however, causes difficulties to ff as well due to the presence of
dead-ends [31].

Not all the new inference rules are needed to generate the backtrack free
behavior in every domain; yet Impossible Supports appears to be critical for
Depots, Distance Boosting for Depots, DriverLog and Ferry, Qualitative Prece-
dences for all domains except Blocks, and Action Landmarks for Blocks. In addi-
tion, often some disjunctions of rule sets are critical as well. For example, while
either Qualitative Precedences or Unique Supports can be removed in Blocks
without generating additional backtracks, the removal of both sets of rules does
cause backtracks. Also, the modified heuristics are crucial for all domains.

Information about the runtime of ecpt over the various domains can be seen
in Figure 2, with Table 2 providing additional details for selected instances in
comparison with ff. As it can be seen, the runtimes for ecpt tend to scale
well although they do not compete with the runtimes of ff (except for a few
Depots instances): ff generates many more nodes but does so faster. Plan quality
measured in the number of actions in the plan is better for ff in domains like
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Table 2. eCPT vs. FF: further details on a few instances

CPU time (sec.) Actions Nodes
eCPT FF eCPT FF eCPT (bkts) FF

bw-ipc48 59.51 - 74 - 281 (0) -
bw-ipc49 78.37 - 80 - 282 (0) -
bw-ipc50 85.09 0.02 88 86 235 (0) 195
log-ipc48 50.56 0.20 164 142 261 (0) 515
log-ipc49 51.54 0.50 176 171 273 (0) 1252
log-ipc50 50.39 0.43 161 154 245 (0) 1147
depots06 66.23 - 68 - 160 (0) -
depots07 1.27 0.01 28 25 68 (0) 142
depots08 13.13 579.89 75 43 206 (0) 172478
driver14 5.40 0.09 48 45 75 (0) 1209
driver15 39.91 0.03 69 44 130 (0) 161
driver16 147.15 - 107 - 163 (5) -
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Fig. 3. eCPT vs. CPT for optimal planning

Logistics or DriverLog, which may have to do with the fact that ecpt computes
concurrent plans.

The scatter plots in Figures 3 and 4 compare ecpt respectively with cpt
and satplan04 as optimal planners; dots above (below) the diagonal indicate
instances where ecpt is faster (resp. slower), while dots on the right (top) border
are unsolved by ecpt (resp. the other planner). ecpt solves 207 out of the 350 in-
stances, while cpt and satplan04 solve 179 and 180 instances respectively. ecpt
generates many fewer nodes than cpt, often running orders-of-magnitude faster
(although not always so as the additional overhead does not always pay off).

As suboptimal planners, ecpt solves 339 out of the 350 instances, while cpt
solves only 66 instances, with runtimes often above 1000 seconds, resulting usu-
ally in poor plans. This is because, as mentioned above, cpt behavior degrades
quickly as the bound on the makespan is pushed above the optimal value leaving
the problems unconstrained and the search unfocused.
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5 Discussion

The task of solving simple planning problems in a domain-independent way with
no search, by performing low polynomial operations in every node, is a crisp and
meaningful goal, which may yield insights that an exclusive focus on performance
may not, like the identification of broader tractable planning fragments, and
the process by which people actually plan. In this work we have shown that a
suitable extension of the temporal planner cpt achieves this behavior over a wide
range of benchmark domains. The new constraints and inference mechanisms
have been obtained from observing the behavior of cpt over various domains.
The fact that this fine grain analysis is possible, and that the results can be
easily incorporated into the planner, is a clear benefit of the CP formulation,
which thus provides a way for making use of (human) domain-specific analysis
for improving the performance of a domain-independent planner. We have also
empirically evaluated the resulting planner ecpt, as a suboptimal and optimal
planner, and have shown significant gains over cpt.

The finding that a few inference rules is all that it takes to render the search
backtrack free in domains which until recently were considered challenging for
planners, bears some similarity with the empirical observation in [2] that a sim-
ple domain-independent heuristic function can effectively guide the search for
plans in many domains, an idea exploited in many current planners. The two de-
vices for taming the search, however, are different: heuristic estimators provide
numeric information to weight alternatives, the inference rules provide struc-
tural information to discard alternatives. We believe that it should be possible
to prove some domains backtrack free for ecpt, and in this way identify new ab-
stract classes of tractable problems. Current classes, as defined in [3–6] remain
somewhat narrow, and do not account for the tractability of existing bench-
marks [32]. In the future, we want to investigate the gap between the empirical
results and current theoretical tractability accounts, and explore the possibility
of obtaining the behavior of ecpt from a general inference engine and not a
customized implementation.
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Last but not least, we have recently studied in detail the traces for some of
the problems considered, and noticed that in several cases, some of the decisions
taken are the result of ties. Since we are interested in making the planning process
transparent such ties pose a problem for justifying the decisions that are taken.
We decided then to explore all the branches that are tied, rather than selecting
the first branch only, hoping that all tied branches would lead to backtrack-free
solutions. We discovered however that in some problems, this was not the case;
namely, in some cases the way in which the code was breaking ties mattered, and
in such cases, this had to do, for example, with the order of the actions in the
PDDL file. Our next goal is thus not only to extend the range of domains that
are solved backtrack-free but to do so in a robust way, meaning that decisions
that are found to be equally good according to the criteria that are explicit in
eCPT, should all lead equally well to the solution (namely backtrack free). This
requires refining the rules and the selection criterion in eCPT still further. The
most recent results that we have obtained, suggest that this is possible too.
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Abstract. In this paper, we present a constraint-partitioning approach for find-
ing local optimal solutions of large-scale mixed-integer nonlinear programming
problems (MINLPs). Based on our observation that MINLPs in many engineer-
ing applications have highly structured constraints, we propose to partition these
MINLPs by their constraints into subproblems, solve each subproblem by an ex-
isting solver, and resolve those violated global constraints across the subprob-
lems using our theory of extended saddle points. Constraint partitioning allows
many MINLPs that cannot be solved by existing solvers to be solvable because it
leads to easier subproblems that are significant relaxations of the original prob-
lem. The success of our approach relies on our ability to resolve violated global
constraints efficiently, without requiring exhaustive enumerations of variable val-
ues in these constraints. We have developed an algorithm for automatically parti-
tioning a large MINLP in order to minimize the number of global constraints, an
iterative method for determining the optimal number of partitions in order to min-
imize the search time, and an efficient strategy for resolving violated global con-
straints. Our experimental results demonstrate significant improvements over the
best existing solvers in terms of solution time and quality in solving a collection
of mixed-integer and continuous nonlinear constrained optimization benchmarks.

1 Introduction

In this paper, we study mixed-integer nonlinear programming problems (MINLPs) of
the following general form:

(Pm) : min
z

f(z), (1)

subject to h(z) = 0 and g(z) ≤ 0,

where variable z = (x, y), and x ∈ Rv and y ∈ Dw are, respectively, the continuous and
the discrete parts. The objective function f is continuous and differentiable with respect
to x, whereas the constraint functions h = (h1, . . . , hm)T and g = (g1, . . . , gr)T are
general functions that can be discontinuous, non-differentiable, and not in closed form.
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MINLPs defined by Pm include discrete problems and continuous nonlinear pro-
gramming problems (CNLPs) as special cases. Ample applications exist in production
management, operations research, optimal control, and engineering designs.

Because there is no closed-form solution to Pm, we aim at finding local optimal
solutions to the problem. We, however, focus on solving some of the more difficult
instances that cannot be solved by existing solvers.

An example MINLP that cannot be solved by existing solvers is TRIMLON12. This
is an instance of the TRIMLON benchmark [9] with I = J = 12. The goal is to produce
a set of product paper rolls from raw paper rolls by assigning continuous variables m[j]
and y[j] and integer variables n[i, j], where i = 1, . . . , I and j = 1, . . . , J , in order to
minimize f as a function of the trim loss and the overall production cost.

objective: minz=(y,m,n) f(z) =
∑J

j=1(c[j] ·m[j] + C[j] · y[j]) (OBJ)

subject to: Bmin ≤
∑I

i=1(b[i] · n[i, j]) ≤ Bmax (C1)∑I
i=1 n[i, j]−Nmax ≤ 0 (C2)

y[i]−m[j] ≤ 0 (C3)
m[j]−M · y[j] ≤ 0 (C4)
Nord[i] −

∑J
j=1(m[j] · n[i, j]) ≤ 0. (C5)

An instance can be specified by defining I and J , leading to (I+2)J variables and 5J+
I constraints. For example, there are 168 variables and 72 constraints in TRIMLON12.

A key observation we have made on many application benchmarks, including
TRIMLON12, is that their constraints do not involve variables that are picked ran-
domly from their variable sets. Invariably, many constraints in these benchmarks are
highly structured because they model relationships that have strong spatial or temporal
locality, such as those in physical structures and task scheduling.

Figure 1a illustrates this point by depicting the constraint structure of TRIMLON12.
It shows a dot where a constraint (with a unique ID on the x axis) is related to a variable
(with a unique ID on the y axis). With the order of the variables and the constraints ar-
ranged properly, the figure shows a strong regular structure of the constraints. Figures 1b
and 1c further illustrate the regular constraint structure of two other benchmarks.
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Fig. 1. Regular structures of constraints in some MINLP and CNLP benchmarks. A dot in each
graph represents a variable associated with a constraint.
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for evaluating a subproblem. As the number of partitions increases, the number of global con-
straints to be satisfied increases, while the average time to solve a subproblem decreases.

Based on the regular constraint structure of a problem instance, we can cluster its
constraints into multiple loosely coupled partitions. To illustrate the idea, consider the
partitioning of the constraints in TRIMLON12 by index j ∈ SJ = {1, · · · , 12}. Sup-
pose SJ is partitioned into N disjoint subsets in such a way that S1 ∪ · · · ∪ SN =
SJ . Then the kth subproblem, k = 1, . . . , N , has variables y[j], m[j], n[j, i], where
i = 1, · · · , I, j ∈ Sk, and a common objective function (OBJ). (C1)-(C4) are its local
constraints because each involves only local indexes on j. (C5), however, is a global
constraint because it involves a summation over all j.

Figure 2 illustrates the decomposition of TRIMLON12 into N = 12 partitions,
where SJ is partitioned evenly and Sk = {k}. Of the 72 constraints, 60 are local and
12 are global. Hence, the fraction of constraints that are global is 16.7%.

The fraction of constraints that are global in a problem instance depends strongly on
its constraint structure and the number of partitions. Using the straightforward scheme
in TRIMLON12 to partition the constraints evenly, Figure 3a illustrates that the fraction
of global constraints either increases monotonically or stays unchanged with respect to
the number of partitions for four benchmarks.

In contrast, the time required to solve a subproblem decreases monotonically as
the number of partitions is increased. When a problem is partitioned by its constraints,
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Fig. 4. An illustration of subspace partitioning and constraint partitioning. Subspace partitioning
decomposes P into a disjunction (∨) of subproblems, where the complexity of each subproblem
is similar to that of P . In contrast, constraint partitioning decomposes P into a conjunction (∧)
of subproblems and a set of global constraints (G) to be resolved, where the complexity of each
subproblem is substantially smaller than that of P .

each subproblem is much more relaxed than the original problem and can be solved in
exponentially less time than the original. Figure 3b illustrates this exponential decrease
of the average time for solving a subproblem with increasing number of partitions. The
overheads between no partitioning and partitioning can be several orders of magnitude.

The partitioning of a problem by its constraints creates a new issue not addressed in
past studies, namely, the resolution of global constraints relating the subproblems.

Traditional methods solve MINLPs by subspace partitioning. This decomposes a
problem by partitioning its variable space into a disjunction (∨) of subspaces and by
exploring each subspace one at a time until the problem is solved (Figure 4a). Although
pruning and ordering strategies can make the search more efficient by not requiring the
search of every subspace, the complexity of searching each subspace is very similar to
that of the original problem. In contrast, constraint partitioning decomposes the con-
straints of a problem into a conjunction (∧) of subproblems that must all be solved in
order to solve the original problem. Each subproblem is typically much more relaxed
than the original and requires significantly less time to solve (Figure 3b). However,
there are global constraints (S

G
in Figure 4b) that may not be satisfied after solving the

subproblems independently. These global constraints include constraints in P that span
across variables in multiple subproblems and new constraints added to maintain the con-
sistency of shared variables across the subproblems. As a result, the subproblems may
need to be solved multiple times in order to resolve any violated global constraints. The
number of times that the subproblems are to be solved depends strongly on the difficulty
in resolving the violated global constraints.

The keys to the success of using constraint partitioning to solve MINLPs and
CNLPs, therefore, depend on the identification of the constraint structure of a prob-
lem instance and the efficient resolution of its violated global constraints. To this end,
we study four related issues in this paper.

a) Automated analysis of the constraint structure of a problem instance and its par-
titioning into subproblems. We present in Section 4.1 the analysis of an instance spec-
ified in some standard form (such as AMPL [5] and GAMS). We show methods for
determining the structure of an instance after possibly reorganizing its variables and its
constraints, and identify the dimension by which the constraints can be partitioned.
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b) Optimality of the partitioning. The optimality relies on trade-offs between the
number of violated global constraints to be resolved (Figures 3a) and the overhead for
evaluating a subproblem (Figure 3b). We present in Section 4.1 a metric for compar-
ing the various partitioning schemes and a simple and effective heuristic method for
selecting the optimal partitioning according to the metric.

c) Resolution of violated global constraints. We present in Section 3 the theory of
extended saddle points (ESP) for resolving violated global constraints. The theory was
originally developed for solving AI planning problems [15] whose constraints are not
necessarily continuous, differentiable, and in closed form. Since continuity and differ-
entiability of the continuous subspace is generally true in CNLPs and MINLPs, they
can be exploited to speed up tremendously the solution of each subproblem.

d) Demonstration of improvements over existing solvers. We demonstrate the suc-
cess of our approach in Section 5 by solving some large-scale CNLP and MINLP bench-
marks that cannot be solved by other leading solvers.

2 Previous Work

In this section, we survey existing penalty methods for solving CNLPs and MINLPs
and partitioning methods for decomposing large problems into subproblems.

Penalty Methods for Constrained Programming. Penalty methods belong to a gen-
eral approach that can solve continuous, discrete, and mixed constrained optimization
problems, with no continuity, differentiability, and convexity requirements. A penalty
function of Pm is a summation of its objective and constraint functions (possibly under
some transformations) weighted by penalties. The goal of a penalty method is to find
suitable penalty values in such a way that the z∗ which minimizes the penalty function
corresponds to a local optimal solution of Pm.

Penalty methods can be classified into global (resp., local) optimal penalty methods
that look for constrained global (resp., local) optimal solutions.

Global optimal penalty methods rely on the one-to-one correspondence between a
constrained global minimum (CGM) of Pm and a global minimum z∗ of the following
penalty function with non-negative (transformed) constraint functions [13]:

Ls(z, c) = f(z) + c ·
[ m∑

i=1

(hi(z))ρ +
r∑

i=1

(max(0, gi(z)))ρ

]
, (2)

where ρ is a constant no less than 1, and c is a positive penalty parameter that is larger
than a finite c∗. Here, c∗ can be finite or infinite, depending on the value of ρ, and can
be statically chosen or dynamically adjusted.

Methods based on finding the global minimum of (2) are of limited practical impor-
tance because the search of a global minimum of a nonlinear function is very computa-
tionally expensive. Techniques like simulated annealing are too slow because they only
achieve global optimality with asymptotic convergence.

To avoid expensive global optimization, local optimal penalty methods have been
developed for finding constrained local minima (CLM) instead of CGM. One approach
is the Lagrange-multiplier method developed for solving CNLPs with continuous and
differentiable objective and constraint functions. It relies on the Karush-Kuhn-Tucker
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(KKT) condition [1], a first-order necessary condition on a CLM that is also a regular
point. Because the condition is expressed as a system of simultaneous equations, its so-
lution leads to unique Lagrange multipliers at a CLM. When the condition is nonlinear
and not solvable in closed form, iterative procedures have been developed. However,
there is no efficient solution procedure for resolving inconsistent assignments when the
nonlinear equations are partitioned into subproblems and solved independently.

Another local optimal penalty method for solving CNLPs is the 
1-penalty method
based on the following 
1-penalty function [8]:


1(z, c) = f(z) + c ·max
(

0, |h1(z)|, · · · , |hm(z)|, g1(z), · · · , gq(z)
)

. (3)

Its theory shows that there is a one-to-one correspondence between a CLM and an un-
constrained local minimum of (3) when c is larger than a finite c∗. The method cannot
support the constraint partitioning of Pm for two reasons. First, the theory was derived
under the continuity and differentiability assumptions on constraints similar to those in
the first-order KKT condition. In fact, c∗ can be proved to be the maximum of all La-
grange multipliers of the corresponding Lagrangian formulation. Second, since there is
only one penalty c on the maximum of all constraint violations, it is difficult to partition
(3) by its constraints and to reach a consistent value of c across the subproblems.

Existing Partitioning Methods. Partitioning is popular in existing methods for solving
NLPs. Many MINLP solution methods are based on subspace partitioning and decom-
pose the search space of a problem instance into subproblems. Examples include the
following. a) Generalized Benders decomposition (GBD) [6] decomposes a problem
space into multiple subspaces by fixing the values of its discrete variables, and by using
a master problem to derive bounds and to prune inferior subproblems. b) Outer ap-
proximation (OA) [4] is similar to GBD except that the master problem is formulated
using primal information and outer linearization. c) Generalized cross decomposition
(GCD) [10] iterates between a phase solving the primal and dual subproblems and a
phase solving the master problem. d) Branch-and-reduce methods [14] solve MINLPs
and CNLPs by a branch-and-bound algorithm and exploit factorable programming to
construct relaxed problems. All these methods require the original problem to have spe-
cial decomposable structures and the subproblems to have some special properties, such
as nonempty and compact subspaces with convex objective and constraint functions.

Another class of decomposition methods is separable programming methods based
on duality [1]. By decomposing a large problem into multiple much simpler subprob-
lems, they have similar advantages as our constraint partitioning approach. However,
they are limited in their general applications because they have restricted assumptions,
such as linearity or convexity of functions. In this paper, we study a general constrained
optimization approach with no restricted assumptions on constraint functions. Instead
of using duality, we build our theoretical foundation on a novel penalty formulation
discussed in the next section.

3 Constraint Partitioning by Penalty Formulations

In this section, we summarize our theory of extended saddle points (ESP). Our goal
in solving Pm is to find a constrained local minimum z∗ = (x∗, y∗) with respect to



Solving Large-Scale Nonlinear Programming Problems by Constraint Partitioning 703

Nm(z∗), the mixed neighborhood of z∗. Due to space limitations, we only summarize
some high-level concepts without the precise formalism [15].

Definition 1. A mixed neighborhoodNm(z), z = (x, y), in mixed space Rv × Dw is:

Nm(z) =
{

(x′, y)
∣∣ x′ ∈ Nc(x)

}
∪
{

(x, y′)
∣∣ y′ ∈ N (y)

}
, (4)

where Nc(x) = {x′ : ‖x′ − x‖ ≤ ε and ε → 0} is the continuous neighborhood of x,
and the discrete neighborhoodN (y) is a finite user-defined set of points {y′ ∈ Dw}.

Definition 2. Point z∗ is a CLMm, a constrained local minimum of Pm with respect
to points in Nm(z∗), if z∗ is feasible and f(z∗) ≤ f(z) for all feasible z ∈ Nm(z∗).

Definition 3. The penalty function of Pm with penalty vectors α ∈ Rm and β ∈ Rr is:

Lm(z, α, β) = f(z) + αT |h(z)|+ βT max(0, g(z)). (5)

Theorem 1. Necessary and sufficient ESPC on CLMm of Pm [15]. Assuming z∗ ∈
Rv × Dw of Pm satisfies a constraint-qualification condition (not shown due to space
limitations), then z∗ is a CLMm of Pm iff there exist finite α∗ ≥ 0 and β∗ ≥ 0 that
satisfies the following extended saddle-point condition (ESPC):

Lm(z∗, α, β) ≤ Lm(z∗, α∗∗, β∗∗) ≤ Lm(z, α∗∗, β∗∗) (6)

for any α∗∗ > α∗ and β∗∗ > β∗ and for all z ∈ Nm(z∗), α ∈ Rm, and β ∈ Rr.

Note that the condition in (6) is rather loose because it only needs to be satisfied for
any α∗∗ and β∗∗ that are larger than some critical α∗ and β∗. The theorem is important
because it establishes a one-to-one correspondence between a CLMm z∗ of Pm and
an ESP of the corresponding unconstrained penalty function in (5) when penalties are
sufficiently large. Moreover, it leads to a way for finding CLMm. Since an ESP is a
local minimum of (5) (but not the converse), z∗ can be found by increasing gradually
the penalties of violated constraints in (5) and by finding repeatedly local minima of (5)
until a feasible solution to Pm is obtained. This is practical because there exist many
search algorithms for locating the local minima of unconstrained nonlinear functions.

The ESPC in Theorem 1 has two features that distinguish it from the traditional
penalty theory. First, because the ESPC can be satisfied by many possible penalty val-
ues, the search of these penalties can be carried out in a partitioned fashion in which
each subproblem is solved by looking for any penalty values that are larger than α∗ and
β∗. This is not possible if the search were formulated as the solution of a system of
nonlinear equations as in the KKT condition, or as the search of a single penalty term in
the 
1-penalty function in (3). Second, the condition is developed for general constraint
functions and does not require continuity and differentiability as in the KKT condition.
Further, it can be implemented by looking for the local minima of a nonlinear penalty
function, and not for the global minima as in the general penalty theory.

Consider Pt, a version of Pm whose constraints can be partitioned into N stages.
Stage t, t = 1, . . . , N , has local state vector z(t) = (z1(t), . . . , zut(t))

T , where z(t)
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includes all the variables that appear in any of the local constraints in stage t. Note that
since the partitioning is by constraints, z(1), . . . , z(N) may overlap with each other.

(Pt) : min
z

J(z) (7)

subject to h(t)(z(t)) = 0, g(t)(z(t)) ≤ 0 (local constraints)

and H(z) = 0, G(z) ≤ 0 (global constraints).

Here, h(t) = (h(t)
1 , . . . , h

(t)
mt)T and g(t) = (g(t)

1 , . . . , g
(t)
rt )T are local-constraint func-

tions in stage t that involve z(t); and H = (H1, . . . , Hp)T and G = (G1, . . . , Gq)T

are global-constraint functions that involve z ∈ X × Y .
Without showing the details [15], we first describe intuitively Nb(z), the mixed

neighborhood of z in Pt. Nb(z) is made up of N neighborhoods, each perturbing z in
one of the stages of Pt, while keeping the overlapped variables consistent across the
other stages. Next, by considering Pt as a MINLP and by defining the corresponding
penalty function, we apply Theorem 1 and derive the ESPC of Pt. Finally, we decom-
pose the ESPC into N necessary conditions, one for each stage, and an overall necessary
condition on the global constraints across the subproblems.

The partitioned condition in stage t can be satisfied by finding the ESPs in that
stage. Because finding an ESP is equivalent to solving a MINLP, we can reformulate
the search in stage t as the solution of the following optimization problem:(

P
(t)
t

)
: min

z(t)
J(z) + γT |H(z)|+ ηT max(0, G(z)) (8)

subject to h(t)(z(t)) = 0 and g(t)(z(t)) ≤ 0.

The weighted global-constraint violations in the objective of P
(t)
t are important because

they lead to points that minimize such violations. When they are large enough, solving
P

(t)
t will lead to points, if they exist, that satisfy the global constraints.

4 Partitioning and Resolution Strategies

Figure 5 presents CPOPT, a partition-and-resolve procedure for solving Pt. It first parti-
tions the constraints into N subproblems (Line 2 of Figure 5b, discussed in Section 4.1).
With fixed γ and η, it then solves P

(t)
t in stage t using an existing solver (Line 6). To

allow P
(t)
t to be solvable by an existing solver that requires a differentiable objective

function, we transform P
(t)
t into the following equivalent MINLP:

min
z(t)

J(z) + γT a + ηT b (9)

subject to h(t)(z(t)) = 0 and g(t)(z(t)) ≤ 0,

−a ≤ H(z) ≤ a and G(z) ≤ b,

where a and b are non-negative auxiliary vectors. After solving each subproblem, we
increase γ and η on the violated global constraints (Line 7, discussed in Section 4.2).
The process is repeated until a CLMm to Pt is found or when γ and η exceed their
maximum bounds (Line 9, discussed in Section 4.2).

We describe below the partitioning of the constraints and the update of the penalties.
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(
P

(N)
t

)
:

subject to h(N)(z(N)) = 0 and g(N)(z(N)) ≤ 0

minz(N) J(z) + γT |H(z)| + ηT max(0, G(z))(
P

(1)
t

)
:

subject to h(1)(z(1)) = 0 and g(1)(z(1)) ≤ 0

minz(1) J(z) + γT |H(z)| + ηT max(0, G(z))

Lm(z, α, β, γ, η)
2⏐

γ,η
to find γ∗∗ and η∗∗

a) The partition-and-resolve framework to look for CLMm of Pt

1. procedure CPOPT
2. call automated partition(); // automatically partition the problem //
3. γ ←− γ0; η ←− η0; // initialize penalty values for global constraints//
4. repeat // outer loop //
5. for t = 1 to N // iterate over all N stages to solve P

(t)
t in stage t //

6. apply an existing solver to solve P
(t)
t ;

7. call update penalty(); // update penalties of violated global constraints //
8. end for;
9. until stopping condition is satisfied;
10. end procedure

b) CPOPT: Implementation of the partition-and-resolve framework

Fig. 5. The partition-and-resolve procedure to look for CLMm of Pt

4.1 Strategies for Partitioning Constraints into Subproblems

Our goal in Line 2 of Figure 5b is to partition the constraints in such a way that mini-
mizes the overall search time. Since the enumeration of all possible ways of partition-
ing is computationally prohibitive, we restrict our strategy to only partitioning by index
vectors of problems modeled by the AMPL language [5].

Definition 4. An index vector V in an AMPL model is a finite ordered array of discrete
elements that are used to index variables and constraints.

For example, TRIMLON12 described in Section 1 has two index vectors: I = J =
{1, · · · , 12}. A variable or a constraint function can be indexed by one or more index
vectors: n[i, j], i ∈ I, j ∈ J , is indexed by I and J ; and (C5) is indexed by I alone.

Definition 5. A partitioning index vector (PIV) of an AMPL model is an index vector
in the model that is used for partitioning the constraints.

Definition 6. Constraint partitioning by PIV. Given a PIV of an AMPL model, an N -
partition by the PIV is a collection of subsets of the PIV, S1, · · · , SN , where a) Si ∈
PIV ; b) S1 ∪ · · · ∪ SN = PIV ; and c) Si ∩ Sj = ∅ for i �= j and i, j = 1 . . .N .

The constraints of a problem can be partitioned along one or more index vectors.
With multiple index vectors, the Cartesian-product space of the PIVs is partitioned into
subsets. For instance, we have shown in Section 1 the partitioning of TRIMLON12 by
J into N = 12 subproblems; that is, PIV = {J}, and S1 = {1}, · · · , S12 = {12}. This
allows all the constraints indexed by J (C1 to C4) to be grouped into local constraints,
and those not indexed by J (C5) to be the global constraints.
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Fig. 6. Ratio of global constraints when partitioned by different PIVs for two MINLPs

We argue that it is reasonable and effective to partition constraints by their index
vectors. First, indexing is essential in modeling languages like AMPL and GAMS for
representing a complex problem in a compact form. Without it, it will be very cum-
bersome to use a unique name for each variable, especially when there are thousands
of variables and constraints. Second, index vectors in large application problems are
typically associated with physical entities. When constraints are partitioned by their in-
dex vectors, the partitions can be interpreted meaningfully. For example, index vector
J in TRIMLON12 corresponds to the possible cuts of paper rolls, and a subproblem
partitioned by J entails the optimization of the individual paper production in each cut.

Given a MINLP specified in AMPL, we present in the following our approach to
automatically partition the problem by its constraints. We propose a metric to measure
the quality of partitioning, present an algorithm to select the optimal PIV, illustrate the
trade-offs between the number of partitions and the overall complexity, and show an
efficient heuristic for determining the optimal number of partitions.

a) Metric of partition-ability. Since the time to solve a partitioned problem is largely
driven by the overhead in resolving its inconsistent global constraints, we define Rglobal

to be the ratio of the number of global constraints to the number of all constraints. This
metric also needs to account for the shared variables in multiple subproblems that must
be consistent with each other. For simplicity, we assume each shared variable v that
appears in k subproblems to be equivalent to k − 1 global constraints, where the ith

constraint involves the consistency between the ith copy and the i+1st copy. Note that
the metric is heuristic because the exact overhead depends on the difficulty of resolving
the inconsistent global constraints and not on the number of global constraints.

b) Selection of PIV. To select the best PIV that minimizes Rglobal, we observe from
the benchmarks tested that the best PIV for a problem instance is independent of the
number of partitions N . To illustrate this observation, Figure 6 plots the value of Rglobal

for various PIVs as a function of N for two benchmarks. It shows that the best PIV that
minimizes Rglobal is the same for all N . Based on this property, we first fix an arbitrary
value of N in our implementation. As there are usually less than five index vectors in
a model file, we just enumerate all possible combinations of PIVs, compute Rglobal for
each case, and pick the one that minimizes Rglobal.

c) Number of partitions. Based on the best PIV selected, we decide next the number
of partitions. Experimentally, we have observed a convex relationship between N and
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Table 1. Trade-offs between N and the total solution time on the SPACE-960-r MINLP

Number of partitions N 1 15
�

�

�

�30 60 120 240 480

Time per subproblem >3600 8.4
�

�

�

�3.3 3.1 2.8 2.7 2.6

Time per iteration >3600 126
�

�

�

�99 186 336 648 1248

Number of iterations 1 1
�

�

�

�1 2 2 2 5

Total time to solve problem >3600 126
�

�

�

�99 372 672 1296 6240

1. procedure optimal number of partitions (PIV)
2. N ←− |PIV |; last time ←− ∞ ;
3. repeat
4. evaluate a subproblem under N partitions, and record the solution time Tp(N);
5. overall time ←− Tp(N) · N ;
6. if (overall time > last time) then return (2N );
7. last time ←− overall time;
8. N ←− N/2 ;
9. end repeat
10. end procedure

Fig. 7. An iterative algorithm to estimate the optimal number of partitions

the total solution time. We illustrate this observation in Table 1 for various values of N
on the SPACE-960-r MINLP from the MacMINLP library [12]. It shows the average
time to solve a subproblem, the total time to solve N subproblems in one iteration,
the number of iterations needed to resolve the inconsistent global constraints, and the
overall time to solve the problem. The best N for this problem is 30.

The convex relationship is intuitively reasonable. When the number of partitions is
small or when there is no partitioning, the global constraints will be few in number and
easy to revolve, but each subproblem is large and expensive to evaluate. On the other
hand, when there are many partitions, each subproblem is small and easy to evaluate,
but there will be many global constraints that are hard to resolve.

The convex relationship allows us to determine an optimal number of partitions that
minimizes the overall solution time. We start with the maximum number of partitions
in the original problem (Line 2 of Figure 7) and evaluate a few subproblems in order
to estimate Tp(N), the average time to solve a subproblem when there are N parti-
tions (Line 4). We also evaluate overall time, the time to solve all the subproblems
once (Line 5). Assuming the number of iterations for resolving the global constraints
to be small, overall time will be related to the time to solve the original problem by a
constant factor. This assumption is generally true for the benchmarks tested when N is
close to the optimal value (as illustrated in Table 1). Next, we reduce N by half (Line
8) and repeat the process. We stop the process when we hit the bottom of the convex
curve and report 2N that leads to the minimum overall time (Line 6).

The algorithm requires Tp(N), which can be estimated accurately based on the ob-
servation that it has little variations when the constraints are partitioned evenly. Table 2
illustrates this observation and shows that the standard deviation of the time to evalu-
ate a subproblem is very small for two values of N . As a result, we only evaluate one
subproblem in each iteration of Figure 7 in order to estimate Tp(N) (Line 4).
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Table 2. Average and standard deviation of solution time per subproblem for two benchmarks

Problem instance ORTHRGDS SPACE-960-r

Number of partitions N 1000 20 100 10
Avg. time per subproblem (Tp(N)) 1.8 8.5 2.8 9.4

Std. dev. of time per subproblem 0.021 0.31 0.013 0.015

For the SPACE-960-r MINLP in Table 1, we set N to 480, 240, 120, 60, 30, 15. We
stop at N = 15 and report N = 30 when overall time starts to increase. The total time
for solving the six subproblems is only 22.9 seconds, which is small when compared to
the 160.45 seconds required by CPOPT for solving the original problem (see Table 3).

4.2 Strategies for Updating Penalty Values

After solving each subproblem, we use the following formulas to update the penalty
vectors γ and μ of violated global constraints (Line 7 of Figure 5b):

γ ←− γ + ρT |H(z)|, η ←− η + �T max(0, G(z)), (10)

where ρ and � are vectors for controlling the rate of updating γ and η.
We update each element of ρ and � dynamically until the corresponding global con-

straint is satisfied. Vector ρ is initialized to ρ0 and is updated as follows. For each global
constraint Hi, i = 1, · · · , p, we use ci to count the number of consecutive subproblem
evaluations in which Hi is violated since the last update of ρi. After solving a subprob-
lem, we increase ci by 1 if Hi is violated; if ci reaches threshold K , which means that
Hi has not been satisfied in K consecutive subproblem evaluations, we increase ρi by:

ρi ←− ρi · α, where α > 1, (11)

and reset ci to 0. If Hi is satisfied, we reset ρi to ρ0 and ci to 0. In our implementation,
we choose ρ0 = 0.01, K = 3 and, α = 1.25. We update � in the same manner.

The procedure in Figure 5 may generate fixed points of (5) that do not satisfy The-
orem 1. This happens because an ESP is a local minimum of (5) but not the converse.
One way to escape from infeasible fixed points of (5) is to allow periodic decreases of
γ and η (Line 7 of Figure 5b). These decreases “lower” the barrier in the penalty func-
tion and allow local descents in the inner loop to escape from an infeasible region. In
our implementation, we scale down γ and η by multiplying each penalty by a random
value between 0.4 and 0.6 if we cannot decrease the maximum violation of the global
constraints or improve the objective after solving five consecutive subproblems.

Example. Consider the partitioning of TRIMLON12 into 12 subproblems along index
J and the solution of the following P

(t)
t in Stage j:

min
z=(y,m,n)

f(z) +
I∑

i=1

⎛⎝η[i] ·max

⎛⎝0, Nord[i]−
J∑

j=1

m[j] · n[i, j]

⎞⎠⎞⎠
subject to: local constraints (C1) - (C4) for Subproblem j, j = 1, · · · , 12,
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Fig. 8. Illustration of solving TRIMLON12 by CPOPT

where η is the penalty vector for the global constraints (C5). Using the penalty update
strategy discussed, Figure 8 shows the change on the sum of all penalty values in η
and the sum of the violations on the global constrains as CPOPT is run. The search
terminates in 46 iterations when all the global constraints are resolved.

5 Experimental Results

In this section, we compare the performance of CPOPT to that of other leading solvers.
In CPOPT, if P

(t)
t is a MINLP, CPOPT first generates a good starting point by solving

it as a CNLP using SNOPT [7] without the integrality requirement, before solving it by
MINLP BB [11]. If P

(t)
t is a CNLP, CPOPT applies SNOPT to solve it directly.

We have compared CPOPT to two of the best MINLP solvers, MINLP BB [11] and
BARON [14], on a collection of MINLP benchmarks from the MacMINLP library [12].
MINLP BB implements a branch-and-bound algorithm with a sequential-quadratic-
programming (SQP) solver for solving continuous subproblems, whereas BARON is
a mixed-integer constrained solver implementing the branch-and-reduce algorithm. Of
the 43 benchmarks in MacMINLP, we only show the results on 22 in Table 3. The re-
maining 21 benchmarks are all small problems and can be solved easily by all three
solvers in tens of seconds or less. For these 21 benchmarks, the average solution times
for CPOPT, BARON, and MINLP BB are, respectively 8.40 seconds, 4.59 seconds, and
5.45 seconds. CPOPT is slower in solving these small problems due to its overhead in
partitioning and in resolving the violated global constraints.

Note that although branch-and-bound methods, such as BARON and MINLP BB,
are theoretically complete methods that will converge to global optima, it is difficult to
achieve global optimality in practice. BARON reports the best feasible solution found
during its search until it times out in the 3600-sec time limit. For large problems, the gap
between the lower and upper bounds usually does not vanish before termination, which
implies that the solution found may not be optimal. Similarly, MINLP BB reports the
best solution found before it times out or runs out of memory.

We have also compared CPOPT to two of the best CNLP solvers, Lancelot (a solver
implementing an augmented Lagrangian method) [3] and SNOPT (an SQP solver) [7]
on the CNLPs from the CUTE library [2]. Table 3 summarizes only the results on
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Table 3. Results on solving MINLP benchmarks from the MacMINLP library [12] and CNLP
benchmarks from the CUTE library [2]. Results on MINLP BB and BARON were obtained
by submitting jobs to the NEOS server (http://www-neos.mcs.anl.gov/neos/) and BARON’s site
(http://archimedes.scs.uiuc.edu/baron/baron.html), respectively; results of other solvers were col-
lected on an AMD Athlon MP2800 PC running RH Linux AS4 and a time limit of 3,600 sec. All
timing results are in sec and should be compared only within a solver. For each instance, nc and
nv represent, respectively, the number of constraints and the number of variables. Solutions with
the best quality are boxed. “−” means that no feasible solutions were found in the time limit.

ID nc nv Quality Time Quality Time Quality Time

MINLP Test Problem MINLP BB BARON CPOPT(MINLP BB)

C-RELOAD-q-49 1430 3733 − − −
�
�

�
�-1.13 69.45

C-RELOAD-q-104 3338 13936 − − − −
�
�

�
�-1.14 353.74

Ex12.6.3 57 92
�
�

�
�19.6 23

�
�

�
�19.6 423.1

�
�

�
�19.6 13.43

Ex12.6.4 57 88
�
�

�
�8.6 70

�
�

�
�8.6 478.2

�
�

�
�8.6 2.94

Ex12.6.5 76 130 15.1 4
�
�

�
�10.3 845.5 10.6 3.33

Ex12.6.6 97 180
�
�

�
�16.3 18

�
�

�
�16.3 937.4

�
�

�
�16.3 149.40

PUMP 34 24 − − 131124 977
�
�

�
�130788 84.53

SPACE-960-i 6497 5537 − − − −
�
�

�
�7.65E6 187.43

SPACE-960-ir 3617 2657 − − − −
�
�

�
�7.64E6 145.76

SPACE-960 8417 15137 − − − −
�
�

�
�7.84E6 1206.43

SPACE-960-r 5537 12257 − − − −
�
�

�
�5.13E6 160.45

STOCKCYCLE 97 480 − − 436341 n/a
�
�

�
�119948.7 6.45

TRIMLON4 24 24 12.2 10
�
�

�
�8.3 11.0

�
�

�
�8.3 2.73

TRIMLON5 30 35 12.5 14
�
�

�
�10.3 55.3

�
�

�
�10.3 24.5

TRIMLON6 36 48 18.8 19
�
�

�
�15.6 1092.9

�
�

�
�15.6 15.94

TRIMLON7 42 63 − −
�
�

�
�17.5 990.7 18.1 65.34

TRIMLON12 72 168 − − − −
�
�

�
�95.5 345.50

TRIMLOSS4 64 105 10.8 99 − −
�
�

�
�10.6 9.76

TRIMLOSS5 90 161 12.6 190 − −
�
�

�
�10.7 76.85

TRIMLOSS6 120 215 − − − −
�
�

�
�22.1 69.03

TRIMLOSS7 154 345 − − − −
�
�

�
�26.7 59.32

TRIMLOSS12 384 800 − − − −
�
�

�
�138.8 323.94

CNLP Test Problem Lancelot SNOPT CPOPT(SNOPT)

CATENARY 166 501 - - - -
�
�

�
�-1.35E5 245.64

DTOC6 5000 10001 - - - -
�
�

�
�1.02E6 58.05

EIGMAXB 101 101
�
�

�
�0.91 1.34 - - 1.87 24.33

GILBERT 1000 1000 2459.46 1.12 4700.61 689.18
�
�

�
�2454.67 39.55

HADAMARD 256 129 - - - -
�
�

�
�0.99 7.88

KISSING 903 127 0.84 123.43 - -
�
�

�
�0.77 73.45

OPTCDEG 4000 6001 - -
�
�

�
�45.76 10.23 46.98 19.65

ORTHREGC 5000 10005 - - 3469.05 557.98
�
�

�
�2614.34 143.65

ORTHREGD 5000 10003 - - 8729.64 208.27
�
�

�
�7932.92 123.49

ORTHRGDM 5000 10003
�
�

�
�1513.80 4.56 10167.82 250.00 2340.34 20.34

ORTHRGDS 5000 10003 912.41 4.20 - -
�
�

�
�894.65 105.34

VANDERM1 199 100 - - - -
�
�

�
�0.0 45.34

VANDERM3 199 100 - - - -
�
�

�
�0.0 36.70

VANDERM4 199 100 - - - -
�
�

�
�0.0 52.33
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the 14 CUTE benchmarks that either Lancelot or SNOPT has difficulty with. For the
remaining CUTE benchmarks that are easy to solve, the average solution times for
Lancelot, SNOPT, and CPOPT are, respectively, 23.43 seconds, 13.04 seconds, and
19.34 seconds. For the same reason as before, CPOPT is slower in solving those small
problems due to its additional overhead. The results show that, for those difficult-to-
solve CUTE benchmarks, CPOPT can find the best solution, that it is one to two orders
of magnitude faster, and that it scales well.
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Abstract. Factor analysis is a statistical technique for reducing the number of
factors responsible for a matrix of correlations to a smaller number of factors that
may reflect underlying variables. In this study factor analysis was used to deter-
mine if variation in search efficiency due to different variable ordering heuristics
could be analyzed by this method to reveal basic sources of variation. It was
found that the variation could be ascribed to two major factors, which appear to
be related to contention (immediate failure) and to forward propagation (future
failure). This was most clearcut with homogeneous random problems, but similar
factor patterns were demonstrated for problems with small-world characteristics.
Heuristics can be classified in terms of whether they tend to support one or the
other strategy, or whether they balance the two; these differences are reflected
in the pattern of loadings on the two major factors. Moreover, improvements in
efficiency can be obtained by heuristic combinations (“heuristic synergy”) only
if the combination includes heuristics that are highly correlated with each factor;
therefore, two such heuristics are sufficient. This work represents a step toward
understanding the action of heuristics as well as suggesting limits to heuristic
performance.

1 Introduction

Variable ordering heuristics are an effective means of reducing search effort. Numerous
heuristics have been devised, and many others are conceivable. At present, there is no
effective way to classify them other than in terms of features of the problem that they
discriminate, such as domain size or number of constraints associated with a variable,
or their overall effect on efficiency (which allows us to speak of heuristics and anti-
heuristics, with respect to efficiency under random selection).

Outstanding open questions in this domain include,

1. To what degree are heuristics doing different things?,
2. How many factors serve to differentiate heuristics? In other words, how many dis-

tinguishable heuristic actions or strategies are there?

Related to the latter is the question, are better heuristics better because they’re doing
something new, or are they just better with respect to some fundamental factor like
responsiveness to conflict?

At present, we have not really begun to address such questions let alone answer them
cogently. In particular, there has been no attempt to analyze variability in performance

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 712–726, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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in order to link it to differences in heuristics, except to say that heuristic X is more
efficient than Y (on problem P ). Contemporary discussions of experimental analysis of
algorithms are almost entirely concerned with the latter question (e.g. [1]).

However, statistical methods exist that are designed to analyze variation across a
set of measures by attempting to associate the total variance with a small number of
common factors (ideally a much smaller number than the number of original measures).
These techniques, collectively known as factor analysis, may be well-suited for the
present task.

This approach is based on inter-problem variation. As will be shown, heuristics can
be distinguished by the pattern of variation in search effort across problems. If the action
of two heuristics is due to a common strategy, then the pattern of variation should be
similar.

As far as the author is aware, factor analysis has not been used before in the analysis
of algorithms. It may, in fact, be well-suited to the study of non-deterministic search,
because the latter appears to be affected by many rather ill-defined features. This work is
therefore also meant to contribute to the development of a proper experimental science
in constraint satisfaction and related areas.

The next section gives a brief, general description of the basic technique and dis-
cusses its use in this domain. Section 3 outlines the experiment methodology. Section
4 describes some representative results of this analysis, and clarifies some ‘anomalies’
that can occur in the factor loadings. Section 5 shows the generality of the basic factor
pattern across different types of problems and algorithms. Section 6 discusses hypothe-
ses regarding the factors obtained from this analysis. Section 7 considers other problem
classes. Section 8 evaluates some recently proposed heuristics in terms of the basic
factors observed. Section 9 gives conclusions.

2 Background: Factor Analysis

“Factor analysis” refers to a collection of methods for reducing a set of variables to a
smaller set that is equivalent in the sense that the set of measurements associated with
the original variables can be derived from linear combinations of the new variables. This
allows the investigator to reinterpret the original measurements in terms of a smaller set
of possibly more basic variables. For details on these procedures see [2] [3].

The basic model can be described in this form (taken from [2]),

zj = aj1F1 + aj2F2 + . . . + ajmFm + djUj (j = 1, 2, . . . , n),

for the jth measure, where the Fi are common factors, i.e. factors common to all mea-
sures and Uj a unique factor associated with measure j. Usually m << n. The coef-
ficients ajk are often referred to as “loadings”. The square of the coefficient of Uj is
referred to as the “uniqueness”, because this is the portion of the variance unique to
measure j.

Factor analysis is based on correlation coefficients and, thus, on measures of vari-
ance and covariance. Here, it is important to understand the meaning of the correlation
coefficient itself - and not just the rough-and-ready intuition of relatedness that it is
meant to support. The formula for the correlation coefficient can be written
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1
SxSy

N∑
i=1

(Xi − X̄)(Yi − Ȳ )
N

In this case, the product of the standard deviations of variates X and Y has been fac-
tored out of the summation, leaving the formula for covariance. Since the former is the
product of the average deviation from the mean for each variate, the latter can only
equal it when the deviations of Xi and Yi are of equal magnitude and all are either in
the same direction (all positive or all negative products). The coefficient is, therefore, a
kind of normalized covariance. It can be interpreted as indicating the accuracy of pre-
diction of variable Y , given X (or vice versa), or the reduction in variance of variable
Y when the value of variable X is known [4]. In the present context, the correlation
between two measurements determines the extent to which they are loaded on the same
factor [2].

Factor analysis begins with a matrix of correlations derived from a sample of n val-
ues for each variable. For example, if the variables were cognitive or personality tests,
the matrix would be composed of correlations between all pairs of tests across n indi-
viduals. A factor extraction process is applied, which (for the analyses of concern here)
extracts a set of uncorrelated factors which together account for a maximal amount of
the variance in the original matrix. In this case, the ajk above are equal to the correlation
coefficient between zj and Fk [2].

There are many methods of factor extraction. Here, the maximum-likelihood
method was used, which starts from a hypothesis of m common factors and determines
maximum likelihood estimates using the original correlation matrix [3] [2]. Once ob-
tained, the set of factors, which forms a basis for an m-space, can be rotated according to
various criteria. Here varimax rotation was used; this method tries to eliminate negative
loadings while producing maximal loadings on the smallest set of measures possible.

In interpreting patterns of differences, one cannot assume that causal factors behave
additively, only that patterns of variation can be expressed as additive combinations.
Although factor analysis can thereby identify independent sources of variation, their
interpretation requires further investigation.

2.1 Illustrative Example

The following example, based on a textbook demonstration in [5], shows the power of
this approach. It involves a set of 100 randomly generated rectangles with length and
width between 1 and 50 inclusive. The original variables are nine formulas based on
length (L) and width (W):

1. y1 = L 6. y6 = 20L + 20W
2. y2 = W 7. y7 = 10L + 20W
3. y3 = 10L 8. y8 = 40L + 10W
4. y4 = 10W 9. y9 = 10L + 30W
5. y5 = 20L + 10W

For each rectangle, an estimate or ‘measurement’ of yi was obtained by calculating the
formula from the dimensions of that rectangle and adding a random error. (The latter
introduces unrelated (‘spurious’) patterns of variation, which should obscure the effect
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of basic variables.) Using the software package described below, results were obtained
that corresponded closely to the original textbook example, despite differences in the
procedure for extracting factors. (The method of principal components was used in
the reference cited.) In both cases, two factors accounted for a large proportion of the
variance. Since all variables in which length predominated loaded highly on one of
these factors, while all variables in which width predominated loaded highly on the
other (Table 1), these factors could be identified with the variables of length and width
in the original formulas. The same pattern of factor loadings was apparent even when
observations included large errors (Table 1).

Table 1. Factor analysis of rectangle ‘measurements’

formula error 20/100 error 50/250 error 100/500
factor 1 factor 2 unique factor 1 factor 2 unique factor 1 factor 2 unique

1 0.936 0.124 0.679 0.538 0.511 0.730
2 0.938 0.119 0.725 0.466 0.444 0.803
3 0.982 0.035 0.877 0.222 0.761 0.411
4 0.983 0.034 0.910 0.171 0.682 0.535
5 0.890 0.449 0.007 0.442 0.869 0.049 0.485 0.793 0.136
6 0.695 0.716 0.005 0.722 0.672 0.027 0.683 0.667 0.089
7 0.440 0.894 0.007 0.889 0.408 0.044 0.815 0.354 0.211
8 0.970 0.235 0.005 0.207 0.967 0.022 0.335 0.878 0.116
9 0.303 0.951 0.005 0.950 0.276 0.021 0.921 0.207 0.108

Notes. Error values are maximum error for first two and last seven formulas, respectively.
Columns show loadings on two factors and unique factor coefficients for each measure. Unless
otherwise noted, in this and later tables blank cells indicate factor loadings < |0.1|, which are not
printed by the program. Factors are shown in descending order by amount of variance accounted
for. (In these analyses amounts for the two factors were nearly identical.) In this and later tables,
factor loadings ≥ 0.6 are in boldface. For these analyses, the proportion of variance accounted
for by two factors was 0.962, 0.827 and 0.651, respectively.

In the analysis of algorithms there is no error in measurement as typically occurs
in empirical science. But there may be problem-specific features and details of search
that act to obscure whatever basic variables are present. Hence, the robustness of factor
analysis in the face of irrelevant variation may be important in this domain as well.

3 Experimental Methods

3.1 Factor Analysis

System R was used in this work, downloaded from http://www.r-project.org. The fac-
tanal() function was used for the factor analysis. This program uses the maximum like-
lihood method for finding factors [3].

As noted in Section 2, maximum likelihood methods require the number of factors
as input. Since the number of significant factors was not known beforehand, various
numbers of factors were tested, first, to determine at what point factor extraction ceased
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to account for any significant part of the variance, second, to determine which number
of factors gave strong, reliable results.

If there are other sources of variation than the ones emphasized here, since they are
less important in their effects and less reliable across experiments, they are likely to
be related to features of specific problem sets interacting with vagaries of the search
process. In addition, the possible existence of further factors does not diminish the
importance of the ones demonstrated here.

The present analyses were done with 100 or 500 problems. In comparisons between
these sample sizes, the proportion of variance accounted for by successive factors and
the factor loadings were similar for both problem sets; hence, the results described in
this paper are all based on sets of 100 problems.

3.2 Heuristics, Problems, and Procedure

Heuristics used in basic tests included well-known heuristics based on simple CSP pa-
rameters, heuristics chosen for their analytic properties with respect to features of search
(the FFx series [6] and the promise variable ordering heuristic [7]), and a few other
heuristics that have been used in a project on learning heuristics [8].

The initial analyses were based on a set of twelve heuristics (abbreviations in paren-
theses are those used in the following tables):

• Minimum domain size (dm). Choose a variable with the smallest current domain
size
• Minimum domain over static degree (d/dg). Choose a variable for which this quo-

tient is minimal.
• Minimum domain over forward degree (d/fd). Choose a variable for which this

quotient is minimal.
• Maximum forward degree (fd). Choose a variable with the largest number of neigh-

bors (adjacent nodes) in the set of uninstantiated variables.
• Maximum backward degree (bkd). Choose the variable with largest number of

neighbors in the set of instantiated variables.
• Maximum product of static degree and forward degree (dg*fd).
• Maximum (future) edgesum (edgsm). Choose an edge between future (uninstanti-

ated) variables for which the sum of the degrees of the two adjacent variables is
maximal, then choose the variable in this pair with the largest forward degree.
• FF2 (ff2) See [6] for descriptions of the FFx heuristics.
• FF3 (ff3)
• FF4 (ff4)
• Maximum promise (prom). Choose the variable with the largest summed promise

values across its domain. (Promise for a value is the product (
∏

) of the supporting
values taken across all domains of neighboring future variables. Geelen’s heuristic
chose the smallest sum, but this proved to be an anti-heuristic, at least when used
with lexical value ordering.)
• Maximum static degree (stdeg). Order variables by descending degree in the con-

straint graph.
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All but the last heuristic involve dynamic features of the problem. In all cases, ties
were broken according to the lexical order of the variable labels. Values were chosen
according to their lexical order.

Initial tests were done with homogeneous random CSPs (soluble unless otherwise
noted). Problems were generated according to a probability-of-inclusion model for pos-
sible constraints, domain elements and constraint tuples (cf. [9]). In all cases graphs
were fully connected. Densities given are graph densities.

Later tests were based on other problem classes: geometric problems, which are
random problems with small-world characteristics, and quasigroups-with-holes. Geo-
metric problems are generated by choosing n points with random coordinates within
the unit square to represent the n variables, and adding edges between all pairs of vari-
ables whose points are separated by a distance less than some threshold. In addition,
connectivity is ensured by checking for connected components and if there is more
than one, connecting them by adding an edge between variables in two components
with the smallest separation of any pairs of points in those components.

The algorithms used in these experiments were MAC-3 and forward checking. The
main tests were based on (i) nodes visited during search, (ii) constraint checks. Since
both measures produced similar patterns of factor loadings, results in this paper are
restricted to search nodes.

4 Factor Patterns for CSP Heuristics

4.1 Basic Results

Table 2 shows a typical correlation matrix for this set of heuristics, based on nodes
searched. The size of the coefficients varies greatly; more importantly, there are indi-
cations of clusters of heuristics with high inter-correlations, although such clustering is
not clearcut.

Table 2. Sample Correlation Matrix for Nodes Searched

dm d/dg d/fd fd bkd dg*fd edsm ff2 ff3 ff4 prom
dm
d/dg .171
d/fd .153 .987
fd .099 .842 .858
bkd .743 .295 .256 .255
dg*fd .096 .854 .870 .975 .252
edgsm .066 .823 .840 .975 .213 .951
ff2 .238 .881 .866 .710 .295 .730 .695
ff3 .269 .847 .824 .703 .369 .717 .688 .953
ff4 .267 .862 .839 .729 .379 .746 .700 .919 .937
prom -.049 .690 .713 .832 .123 .842 .831 .582 .585 .589
sdeg .113 .839 .858 .952 .245 .977 .929 .715 .705 .730 .824
Notes. Based on 100 <30,8,0.31,0.34> problems. Half-matrix with
ones on diagonal omitted.

The most important result of the initial analyses was that every test yielded two
main factors which produced a similar pattern of loadings for the heuristics and which
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together accounted for most of the variance (≥ 70%) (Table 3). In most tests, the bulk
of the remaining variance was associated with high unique factor loadings for minimum
domain size and maximum backward degree.

Table 3. Factor Analysis for CSP heuristics

heuristic <30,8,0.31,0.34> <50,10,0.18,0.37>
nodes factor 1 factor 2 unique nodes factor 1 factor 2 unique

dom 261 0.310 0.904 11334 0.146 0.281 0.900
d/dg 143 0.695 0.638 0.018 2076 0.913 0.394 0.011
d/fd 130 0.726 0.599 0.114 1621 0.909 0.404 0.010
fd 164 0.940 0.300 0.027 2625 0.443 0.873 0.042
bkd 481 0.154 0.316 0.876 27391 0.107 0.224 0.938
dg*fd 151 0.937 0.322 0.018 2418 0.436 0.897 0.005
edgsm 160 0.925 0.286 0.062 2840
ff2 163 0.488 0.846 0.046 3148 0.801 0.364 0.225
ff3 154 0.475 0.847 0.057 2579 0.635 0.448 0.396
ff4 122 0.519 0.798 0.095 1562 0.734 0.445 0.263
prom 232 0.823 0.212 0.278 7777 0.380 0.702 0.363
stdeg 147 0.923 0.315 0.050 2000 0.486 0.835 0.067
Notes. Numbers under “nodes” are averages. Not all 12 heuristics could
be analyzed together in second set of problems, so edgesum was omitted.

There are no simple relations between average performance and loading on a partic-
ular factor. However, the difference between min domain and backward degree and the
remaining heuristics does have a definite relation to the pattern of loadings, as indicated
by the results in the next section.

4.2 Resolution of Anomalous Loadings for Specific Heuristics

On the basis of selection strategy, it is not clear why minimum domain size and max-
imum backward degree show distinct patterns of variation, reflected in high unique-
nesses. One possible explanation is that these heuristics, unlike the others, ‘start out
blind’, since at the top level(s) of search the features they use do not distinguish among
variables. For domain size, this is true because the problems had equal domains initially,
and few or no values were filtered before the first assignment. For backward degree, at
the top of the search tree all variables have a backward degree of zero, and it may be
necessary to instantiate several variables before the remaining ones can be usefully dis-
tinguished with respect to this feature. As a result, the pattern of variation associated
with these heuristics may be related to lexical choices at the top of the search tree.

To evaluate this hypothesis, tests were carried out in which the first k variable
choices were made according to their lexical order, and the remaining choices were
made using one of the 12 heuristics. The rationale for this is that under this condition
all tests begin the same way, so differences in the pattern of variation cannot be due to
a distinct pattern of choices at the beginning of search.

The results of these tests are shown in Table 4. It can be seen that this manipulation
served to eliminate the high unique factor loadings, first for domain size and then for
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backward degree as well. When this occurred, both heuristics showed high correlations
(loadings) with one of the main factors. This manipulation did not have a marked effect
on the difference in search efficiency between the two ‘anomalous’ heuristics and the
others, so the change in the factor pattern cannot be ascribed to an elimination of this
difference.

Table 4. Factor Analysis for Heuristics after k Lexical Choices

heuristic k = 1 k = 3
nodes factor 1 factor 2 unique nodes factor 1 factor 2 unique

dom 11378 0.787 0.301 0.290 19587 0.804 0.565 0.034
d/dg 2738 0.956 0.271 0.013 7712 0.752 0.652 0.010
d/fd 2192 0.952 0.272 0.019 6473 0.744 0.660 0.011
fd 3762 0.575 0.571 0.343 9551 0.602 0.796 0.005
bkd 27391 0.526 0.312 0.626 37536 0.708 0.488 0.261
dg*fd 5456 0.315 0.946 0.005 8567 0.626 0.775 0.008
edgsm 6377 0.295 0.939 0.032 9462 0.617 0.783 0.007
ff2 5499 0.824 0.311 0.224 11583 0.802 0.587 0.012
ff3 4559 0.831 0.294 0.223 10402 0.794 0.602 0.008
ff4 2851 0.798 0.352 0.239 6435 0.789 0.607 0.009
prom 9564 0.581 0.483 0.430 21344 0.588 0.763 0.073
stdeg 4839 0.311 0.937 0.024 7980 0.648 0.752 0.015
Notes. <50,10,0.18,0.37> problems. To better distinguish the highest
loadings, in the columns under k=3 only those ≥ 0.7 are in boldface.

When the first three choices were lexical, the proportion of variance accounted for
by the first two factors was 0.96. This is evidence that for these problems and heuristics,
the pattern of variation in search efficiency can be ascribed to a very small number of
distinct factors - in the causal sense.

As expected, increasing the number of lexical choices caused performance to deteri-
orate. Despite differences in degree of deterioration, the basic pattern of factor loadings
remained the same, although there were changes in the size of the loadings.

In another test, using the <30,8.0.31,0.34> problems, data from search based on
lexical ordering were added to the original set of data. In this case, the pattern of loading
on the first two factors was essentially unchanged, while a distinct third factor emerged
with high loadings (0.84-0.85) for min domain, max backward degree, and the lexical
ordering. This supports the hypothesis that the pattern of variation associated with these
heuristics is related to the initial lexical choice in the variable ordering.

Another way to evaluate the original loadings for min domain is to vary domain size.
This was done using the same parameters as with the original 50-variable problems, but
generating problems with an expected domain size of ten rather than a fixed domain
size. (The maximum domain size was set to 20 and each potential domain element was
chosen with a probability of 1/2.) With these problems, a factor analysis for two (or
more) factors resulted in higher loading (0.55) for min domain on the same factor as in
the tests with initial lexical choices, although there was still a moderately high unique
factor loading (d̂j = 0.58).
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4.3 Analysis of Easy Problems

In tests with easy problems (one run per problem), the factors described in previous
sections were not clearcut. There were fewer substantial loadings, and the proportion of
variance accounted for by these factors was greatly diminished. For most heuristics, the
unique factor loading was very high. Table 5 shows an example for 50-variable prob-
lems with parameters similar to those in the previous section but with looser constraints.

Obviously, differences among heuristics must be due to different variable selections
at some point in search. For problems with many solutions, it is more likely that this in
turn leads to differences in value selections and thus to different solutions. As a result,
each heuristic will show a more distinct pattern of variation across problems than with
harder problems.

In this case, if there are basic variables affecting heuristic performance, it may be
possible to average out peculiarities due to differences in value selection by testing prob-
lems repeatedly and choosing values at random. This was done, testing each problem
100 times with each heuristic. In this case, the simple factor structure observed earlier
was apparent (Table 5, right-hand columns). Note that, at the same time the high unique
factor loading for min domain and max backward degree remain; this is expected, since
these heuristics still choose variables randomly at the top of the search tree. (The high
unique loading for the promise heuristics cannot at present be explained.)

Table 5. Factor Analysis for Easy Problems

heuristic 1 run/problem w. lexical value 100 runs/problem, rand. value
nodes factor 1 factor 2 unique factor 1 factor 2 unique

dom 93 0.992 0.523 0.284 0.646
d/dg 63 0.814 0.331 0.819 0.331 0.220
d/fd 62 0.464 0.784 0.828 0.377 0.172
fd 67 0.920 0.154 0.409 0.811 0.174
bkd 166 0.994 0.339 0.206 0.842
dg*fd 68 0.620 0.616 0.460 0.708 0.288
edgsm 70 0.828 0.314 0.515 0.674 0.280
ff2 68 0.243 0.326 0.835 0.883 0.252 0.156
ff3 68 -0.121 0.982 0.754 0.192 0.395
ff4 57 -0.133 0.981 0.878 0.241 0.170
prom 109 0.335 0.228 0.836 0.340 0.884
stdeg 63 0.365 0.865 0.649 0.511 0.318
Note. Problem parameters were <50,10,0.184,0.32>.

From this and the previous analysis, we can posit a rule-of-thumb for interpreting
factor patterns in this domain. This is that high unique factor loadings tend to be as-
sociated with random selection in some form. In this and the previous section it was
shown that when differences due to random selection are eliminated, the high unique
factor loadings vanish. On the basis of this rule-of-thumb, we can tentatively ascribe the
anomalous result for the promise heuristic in Table 5 to some kind of random selection.

By resolving these anomalies, we have additional evidence that factor analysis pro-
duces reasonable patterns of results in this domain. In most cases, when the analysis
showed deviations from a simple structure, it was possible to delineate features of the
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solving process that could be expected to produce deviations under these circumstances,
leading, in particular, to significant loadings on unique factors.

5 Generality of Factor Patterns

5.1 Soluble and Insoluble Problems

The results in Table 6 show that a similar pattern of factor loadings is also found for
insoluble problems and for a set of problems with singleton solution sets (obtained
by generating problems in the usual manner and collecting only those with a single
solution). In the latter test, differences in the pattern of variation across problems cannot
be due to differences in the solution found.

Table 6. Factor Analysis: All Solutions, No Solutions

heuristic soluble/all solutions insoluble singleton soln set
factor 1 factor 2 unique factor 1 factor 2 unique factor 1 factor 2 unique

dom 0.610 0.672 0.177 0.378 0.396 0.701 0.310 0.904
d/dg 0.639 0.760 0.014 0.667 0.650 0.132 0.695 0.638 0.109
d/fd 0.685 0.723 0.008 0.684 0.637 0.127 0.726 0.599 0.114
fd 0.787 0.615 0.005 0.856 0.416 0.094 0.940 0.300 0.027
bkd 0.598 0.612 0.268 0.375 0.191 0.823 0.154 0.316 0.876
dg*fd 0.750 0.656 0.007 0.867 0.458 0.039 0.937 0.322 0.018
edgsm 0.787 0.615 0.005 0.925 0.286 0.062
ff2 0.636 0.760 0.019 0.414 0.882 0.052 0.488 0.846 0.046
ff3 0.700 0.702 0.017 0.465 0.854 0.053 0.475 0.847 0.057
ff4 0.737 0.658 0.024 0.430 0.832 0.123 0.519 0.798 0.095
prom 0.741 0.648 0.030 0.819 0.412 0.159 0.823 0.212 0.278
stdeg 0.721 0.683 0.015 0.831 0.497 0.062 0.923 0.315 0.050
Note. For first two analyses, <30,8,0.31,0.34>, for third <30,8,0.31,0.37>.

In addition, the <30,8,0.31,0.34> problems were tested when the search was for all
solutions. In this case, the pattern of loadings was quite different, although again two
factors accounted for ≥ 95% of the variance in tests with 2 or 3 factors. One problem
in evaluating this condition is that some variation must be due to differences in the size
of subtrees containing only solutions. (The average number of solutions was about 500
for these problems.)

5.2 MAC and Forward Checking

Tests with forward checking give the same pattern of factor loadings as with MAC,
despite the fact that max forward degree and other heuristics that load highly on the
same factor perform poorly when used with this algorithm. Table 7 shows results from
a composite test that included both MAC and forward checking for selected heuristics.
Since the loadings are very similar with each algorithm, there are still only two major
factors. In this case min domain and max backward degree are each associated with a
separate factor in which they are the only heuristics with high loadings.
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Table 7. Combined Analysis for MAC and FC

heuristic nodes factor 1 factor 2 factor 3 factor 4
MAC

dom 11,334 0.126 0.114 0.886 0.188
d/dg 2076 0.864 0.398 0.138
fd 2625 0.451 0.848 0.167
bkd 27,391 0.114 0.297 0.851
ff3 2579 0.718 0.383 0.121
ff4 1562 0.784 0.404 0.174
stdeg 2000 0.493 0.819 0.159

forward checking
dom 212,389 0.136 0.956 0.246
d/dg 32,368 0.896 0.322
fd 38,568,409 0.373 0.680
bkd 7,101,104 0.128 0.150 0.943
ff3 151,893 0.744 0.388
ff4 43,416 0.786 0.379 0.186
stdeg 2,450,958 0.384 0.761 0.105
Notes. <50,10,0.184,0.37> problems, selected heuristics.

6 Interpreting the Factors

To assess the significance of the two major factors, we first consider the heuristics most
closely associated with each of them. Since the FF (fail-first) heuristics always have
high loadings on the same factor, and these pseudo-heuristics are designed to select for
failure, we will tentatively label this factor as a “current failure” or “contention” factor.
This is also supported by the high loading of backward degree on this factor once the
effect of random selection has been removed, since this heuristic chooses according to
the number of constraints with previous variables and does not consider future variables
at all. The association of min domain with this factor suggests a relation to amount of
branching, but this is contradicted by results for the FF heuristics with forward check-
ing; here the branching factor is very high.

High loadings on the other major factor always seem to involve future variables,
either directly adjacent (max forward degree) or one edge away (edgesum). It is also
significant that the diagnostic heuristic, max summed promise, which is based entirely
on look-ahead assessment, usually loads highly on this factor.

Increasing the number of future variables adjacent to the current variable could
have either of two effects. It could lead to eventual failure through greater propagation
(because more variables are adjacent to the variable just assigned a value). It might
also enhance the promise of the heuristic (adherence to the “promise policy” [10]),
since there are now more small domains among the future variables and, therefore, less
chance for choosing invalid assignments. However, the latter hypothesis cannot account
for the presence of this factor when problems are insoluble (Table 6). Hence, the second
factor will be tentatively labeled as a “propagation” or “future failure” factor.

Most heuristics have at least moderate loadings on both factors. This is not surpris-
ing, since most heuristics would be expected to affect both current and future failure.
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Here, it is critical to note that factor analysis guarantees that the factors are uncorrelated.
This gives us reason to think that there may be two separate causal factors, despite the
tendency of most heuristics to be associated with both (factor analysis) factors, even in
some cases to a similar degree.

6.1 Evidence from Heuristic Synergies

A separate line of evidence comes from the analysis of heuristic ‘synergies’, especially
in the form of weighted sums of ranked selections by different heuristics (as first de-
scribed in [8]). This work has shown that weighted sums of ranked selections by differ-
ent heuristics can sometimes outperform any of the individual heuristics in isolation.

Table 8. Results for Heuristic Combinations

heur/combinat nodes combinat nodes combinat nodes
dom 11,334 dom+d/dg 2327 dom+fd+bkwd 1430
d/dg 2076 dom+fd 1317 dom+fd+stdeg 1374
fd 2625 dom+bkwd 12,521 dom+bkwd+stdeg 1822
bkd 27,391 dom+stdeg 1427 fd+bkwd+stdeg 1991
stdeg 2000 fd+stdeg 2344 dom+d/dg+fd+stdeg 1374

bkwd+stdeg 1876 dom+d/dg+bkwd+stdeg 1834
all five heuristics 1470

Note. <50,10,0.184,0.37> problems.

Sample results are shown in Table 8, for five heuristics and for heuristic “combina-
tions”. The latter were obtained by rating each choice with respect to each heuristic on
a descending scale from 10 to 1 and then adding these ratings, weighted according to
the heuristic. For the results in Table 8, heuristics were given equal weights.

These results show that some combinations do better, in terms of number of search
nodes, than any heuristic used by itself. Other combinations yield no improvement over
the best heuristic in the mix. The most significant finding is that whether or not there
is marked improvement can be predicted from the factor loadings for the heuristics
(cf. Table 3). In fact, all instances of heuristic synergy occurred when the heuristics
in combination loaded highly on different major factors. Moreover, the best results for
combinations of two heuristics were as good as any results for combinations of three or
more. This is consistent with the conclusion that there are only two significant causal
factors that distinguish heuristic performance.

From this, it can also be concluded that successful combinations (synergies) involve
both of the major factors. Here it may be noted that domain/degree, one of the most
efficient heuristics known, is itself a combination of heuristics which are associated
with different major factors.

6.2 Analysis of Fail-First Measures

Data on five measures related to failure during search were collected for the <50,10,
0.184, 0.37> problems. These data are based on all-solutions runs, to avoid confound-
ing effects of differences in promise (cf. [9]). The measures (means or counts per prob-
lem) were mistake-tree size (mistake-trees are insoluble subtrees rooted at the first bad
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assignment or “mistake”; this gives the most adequate measure of fail-firstness [cf. [9]]),
number of mistakes (initial bad assignments, which must eventually be retracted; this is
the number of mistake-trees), faildepth (depth at which an assignment ‘fails’, i.e. leads
to a domain wipeout), fail-length (difference between the level of a mistake and the
level of subsequent failure), and number of failures.

When factor analysis was applied to these measures, using the 12 heuristics and the
MAC algorithm, the same factor patterns were found as for number of nodes, with the
exception of number of mistakes. In other words, all measures related to fail-firstness
(the tendency to fail as soon as possible given that one is in an insoluble subtree, [9])
gave the same factors and loading patterns as the analysis based on search efficiency.

For mistakes, most heuristics loaded about equally on both factors. Moreover, in a
one-factor analysis based on this measure, the single factor accounted for 94% of the
variance. Since this measure reflects the promise of a heuristic [10], this suggests that
for these problems all heuristics behaved similarly with respect to promise.

These results support the hypothesis that the two basic variables are, indeed, imme-
diate and future failure. They also confirm that, at least for problems in critical complex-
ity regions, a two-fold classification of heuristics based on their association with one or
the other factor is sufficient to account for nearly all the variation in performance.

7 Results for Other Problem Classes

The factor analysis with geometric problems gave results similar to those with homo-
geneous random problems; in particular, the pattern of loadings suggested that the con-
tention and propagation effects were also the most important variables affecting pat-
terns of variation in search. However, there were three important differences: (1) the
domain/degree heuristics loaded highly on a separate (third) factor, (2) the promise
heuristic did not load highly on a major factor and showed a high unique factor loading,
(3) in these single-heuristic tests, min domain loaded highly on the ‘contention’ factor.

These differences must have to do with the graph topology of these problems.
(While these problems were denser than the random problems discussed earlier, tests
with random problems of greater density gave results similar to the latter.) Presumably,
with the min domain heuristic search will tend to stay within a cluster of variables,
while the forward-degree heuristics are likely to move search to other clumps where
the number of uninstantiated neighbors is greater. The domain/degree heuristics should
behave in an intermediate fashion. This is borne out by the patterns of correlation: while
the FF heuristics and the forward-degree heuristics were highly correlated among them-
selves, domain/degree heuristics were almost equally well-correlated with both of these
groups. It is therefore possible that the better balance between contention and propaga-
tion that would be expected in the domain/degree heuristics results in a distinct pattern
of variation in search efficiency for these problems.

Evaluating tests with quasigroups was not straightforward. This was partly because
some heuristics could not be used, since they either did not discriminate among vari-
ables (max static degree) or they were equivalent to other heuristics (e.g. domain/static
degree, degree * forward-degree, backward degree, and less obviously, the edgesum
heuristic). In addition, in cases involving forward-degree heuristics, the heuristic/anti-
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heuristic roles were reversed, so min forward degree and min promise became the
heuristics; but these heuristics cannot be considered to enhance propagation.

A three-factor analysis gave the most reasonable results, with min domain and min
domain/forward degree loading highly on the first factor, ff2 and ff3 on the second and
ff4 on the third, while min forward degree and min promise had high unique factor
loadings. Since min forward degree’s heuristic effects are apparently based on search
remaining within a partly instantiated clique, this may represent a contention strategy
distinct from that of min domain, which should not be as clique-bound. This suggests
that for highly structured problems, factor analysis may produce further (meaningful)
factors when some heuristics make selections in relation to structural features.

8 Analysis of Some Recently Proposed Heuristics

Naturally, it is of interest to know how recently proposed heuristics fit into this frame-
work. To this end, the min kappa heuristic [11], an extended DVO heuristic (H 1 DD *)
[12], and the weighted degree heuristic of [13] were tested with the <50,10,0.18,0.37>
problems, and the results incorporated into the original factor analysis for these prob-
lems. In this analysis, min kappa loaded highly on the ‘propagation’ factor, while min
weighted degree loaded highly on the ‘contention’ factor. The DVO* heuristic had a
loading between 0.6 and 0.7 on the contention factor and a loading of about 0.5 on the
propagation factor. It appears that the behavior of these heuristics can be accounted for
in terms of the two basic factors. On the basis of the present analysis, the DVO* heuris-
tic appears to have properties most consistent with heuristic efficiency. (It also had the
lowest mean node count of any heuristic tested with these problems).

9 Conclusions and Open Questions

The usefulness of factor analysis is that it gives us hints about where to look for mean-
ingful causal relations. It has the added strength of ‘bounding our quest’ by giving us
some idea of the number of significant variables involved in a domain of study, such as
the basis for differences among heuristics with respect to search efficiency.

In the present work this technique has allowed us to delineate two basic factors
that account for much of the variation in search efficiency for a set of variable ordering
heuristics. Further experimentation has allowed us to associate these factors with two
causal factors, immediate and future failure. This leads to a new basis for classifying
variable ordering heuristics. Evidence has also been adduced to show that heuristic
selection can improve performance when both factors are taken into account.

In this analysis, the absolute magnitude of search efficiency is not reflected in the
factors or the patterns of loadings. This occurs because all distributions are standardized
before the analysis. This is both a strength and a limitation. It allows the analysis to
delineate similar patterns of variation despite great differences in overall efficiency (as
in the MAC/FC analysis). At the same time, further analysis is needed to account for
differences in overall efficiency, as in the case of FC and propagation heuristics.

In this domain, factor analysis not only gives evidence (when properly interpreted)
for basic heuristic strategies, but it also shows that problems are differentially affected
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by each strategy; otherwise, there would not be discernible differences in the pattern of
variation under heuristics that emphasize one or the other strategy.

The study of heuristics now has three aspects:

• adherence to an ideal (optimal) policy [9]
• measureable features of heuristics such as the branching factor or mistake-tree size
• differences in heuristic action that cause heuristics to discriminate among problems

and which are reflected in the “factors” derived from factor analysis

An important goal of future studies is to better understand the relations among these
features of heuristic search.
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Abstract. We present a new and more efficient heuristic by restricting
lookahead saturation (LAS) with NVO (neighbourhood variable order-
ing) and DEW (dynamic equality weighting). We report on the integra-
tion of this heuristic in Satz, a high-performance SAT solver, showing
empirically that it significantly improves the performance on an exten-
sive range of benchmark problems that exhibit hard structure.

1 Introduction

During the last decade, many new techniques have been proposed to enhance the
performance of the DPLL procedure for solving various hard real-world problems
represented in conjunctive normal form (CNF). One of the main improvements
of this decision procedure has been the development of better branching variable
selection through the use of unit propagation (UP) heuristics [1], which detect
failed literals through a one-step lookahead. The effect of integrating the UP
heuristic into DPLL is to prune the search tree earlier.

In this paper, we provide a new heuristic, DEW-NVO-LAS, which restricts
lookahead saturation (LAS) with NVO (neighbourhood variable ordering) and
DEW (dynamic equality weighting). DEW weighs equality literals during NVO-
restricted lookahead saturation, firstly to restrict the variables to be propagated
through the lookahead process, and secondly so that the next branching variable
chosen can be the one having the highest score. We report on the integration of
the DEW-NVO-LAS heuristic into Satz, showing empirically that it significantly
improves Satz’s performance on a range of benchmark problems, such as bounded
model checking, cryptographic key search, FPGA routing, equivalence checking
in circuits, and, particularly, the challenging 32-bit parity learning problems.
The same problems are used for a comparative study between Dew Satz, the
DEW-NVO-LAS-enhanced Satz solver, and other state-of-the-art SAT solvers.

2 Lookahead Saturation with Restriction

Lookahead saturation (LAS) based DPLL was studied in [2]. The key idea un-
derlying LAS is to choose a branching variable which is really the best from an
irreducible sub-formula at a given node of search tree. LAS is very similar to the
“singleton arc consistency” (SAC) algorithm in CSP reasoning [3].

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 727–731, 2005.
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Intuitively, although a reasoning-intensive process such as LAS can reduce
the search tree size enormously, this increased efficiency is outweighed by the cost
in terms of runtime. For that reason, we restrict the LAS process using the NVO
and DEW heuristics. While the NVO heuristic concentrates on restricting the
number of variables to be examined in the next iterative lookahead process by
considering only the neighbours of the currently assigned variable in the currently
size-reduced clauses, the DEW heuristic restricts the number of literals to be
examined during the iterative lookahead process. DEW alone is not particularly
useful in this regard, it must be incorporated into NVO-LAS to be really effective.

The basic concept of DEW is as follow. Whenever the binary equality clause
xi ⇔ xj , which is equivalent to 2 CNF clauses x̄i ∨ xj and xi ∨ x̄j , occurs in the
formula at a node, Satz needs to perform the lookahead process on xi, x̄i, xj ,
and x̄j . As result, variables xi and xj will be associated the same weight, (i.e. 3
following the computation at line 25 of Algorithm 1). Clearly, the processing of
xj and x̄j is redundant, so avoid it by assigning the implied literal x̄j (xj ’s) the
weight of its parent literal x̄i (xi’s), and then by restricting the lookahead process
to literals with weight zero. By doing so, we save two lookahead processes.

To clarify the concept, we present a concrete example. Consider the following
simple formula with binary equality clauses: (x1 ⇔ x2)∧ (x2 ⇔ x3)∧ (x1 ⇔ x4).
The Satz solver evaluates iteratively each variable of the formula by two forced
unit propagations, where there is no failed literal found. Each literal of the
formula gets the same weight, i.e. 3. Intuitively, we do not need to lookahead
on variables x2, x3 and x4 after performing lookahead on x1: all three get the
weight of the parent x1. The effect of the DEW heuristic is that the weight of
each implied literal accumulates dynamically during the lookahead process, and
if it is greater than zero then no lookahead process is done on that literal. The
DEW heuristic is executed only whenever binary equality clauses occur in the
current state formula.

Our main observation is that DEW benefits markedly from NVO-LAS. We in-
tegrate DEW-NVO-LAS heuristic into Satz, and call the new solver by Dew Satz.
Intuitively, the merged heuristic will enhance the performance of NVO-LAS
by avoiding the redundant lookahead process, which is computed by DEW. At
the same time the DEW heuristic benefits from NVO-LAS as this dynamically
bounds the number of variables to be weighed. The two mutually compatible
heuristics work together to improve lookahead-based DPLL. Dew Satz also in-
herits from Satz a preprocessor for saturating the input clauses under resolution
with the restriction to clauses of length ≤ 3, removing subsumed clauses and
tautologies along the way. In certain cases, the preprocessor may remove some
equality clauses.

Algorithm 1 sketches the branching rule of Dew Satz. The procedure Com-
pute DEW(xi) is called for weighting the implied literals of the parent variable
xi. The function UP(Fi) at line 7 (10) of Algorithm 1 is executed if w(xi)=0
(w(x̄i)=0). When there is no conflict found during the two unit propagations,
then variable xi will be piled into the branching variable candidates stack B.
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Algorithm 1. DEW-NVO-LAS-BranchingRule(F)
1: Push each variable xi ∈ V to NVO STACK;
2: repeat
3: B := ∅; Finit := F ;
4: for each variable xi ∈ NVO STACK do
5: Let F ′

i and F ′′
i be two copies of F ;

6: if w{xi} = 0 then
7: F ′

i := UP(F ′
i ∪ {xi});

8: end if
9: if w{x̄i} = 0 then

10: F ′′
i := UP(F ′′

i ∪ {x̄i});
11: end if
12: if empty clause ∈ F ′

i and empty clause ∈ F ′′
i then

13: return ”unsatisfiable”;
14: else if empty clause ∈ F ′

i then
15: F := F ′′

i ; NVO(xi);
16: else if empty clause ∈ F ′′

i then
17: F := F ′

i ; NVO(xi);
18: else
19: w(xi) := diff (F ′

i ,F); w(x̄i) := diff (F ′′
i ,F);

20: B := B ∪ {xi}; Compute DEW(xi);
21: end if
22: end for
23: until F = Finit

24: for each variable xi ∈ B do
25: W(xi) := w(xi) ∗ w(x̄i) + w(xi) + w(x̄i);
26: end for
27: NVO(xi);
28: return xi with highest W(xi) to branch on;

3 Experimental Results

The 32-bit parity problem instances are considered as a challenging problem [4].
To answer the challenge, equality reasoning has been integrated differently in
different solvers [5,6,7,8]. EqSatz uses equality reasoning in the search process
while Lsat and March eq use it in their preprocessors.

In Table 1, we present the performance of Dew Satz on par16* and the
challenging par32* instances in comparison with the following state-of-the-art
solvers: EqSatz, Satz (ver. Satz215), zChaff (ver. 2004.11.15), March eq (ver.
March eq 010), Lsat (ver. 1.1). It is important to observe that Dew Satz can
solve the 32-bit parity problem in the range of 411 to 17,564 seconds. It solved
the par32-5 and par32-5-c instances without using the preprocessor (with pre-
processing, these instances took 27 and 29 hours respectively). The results of
Dew Satz refute the pessimistic view that lookahead-based DPLL must perform
poorly on such highly structured problems.

In order to evaluate further the performance of Dew Satz versus other solvers
used above, we extended the empirical study to include some well-known circuit-
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Table 1. CPU time (in seconds) comparison. ”>24h” shows that the problem cannot
be solved in 24 hours.

Instance (#Vars/#Cls) Satz Dew Satz EqSatz Lsat March eq zChaff
par16* 12.97 1.26 0.55 0.56 0.17 6.12
par32-1 (3176/10227) >24h 12,918 242 126 0.22 >24h
par32-2 (3176/10253) >24h 5,804 69 60 0.27 >24h
par32-3 (3176/10297) >24h 7,198 2,863 183 2.89 >24h
par32-4 (3176/10313) >24h 11,005 209 86 1.64 >24h
par32-5 (3176/10325) >24h 17,564 2,639 418 8.07 >24h
par32-1-c (1315/5254) >24h 10,990 335 270 2.63 >24h
par32-2-c (1303/5206) >24h 411 13 16 2.19 >24h
par32-3-c (1325/5294) >24h 4,474 1,220 374 6.65 >24h
par32-4-c (1333/5326) >24h 7,090 202 115 0.45 >24h
par32-5-c (1339/5350) >24h 11,899 2,896 97 6.44 >24h

Table 2. CPU time (in seconds) on realistic benchmark problems

Problem Dew Satz Satz EqSatz March eq zChaff
barrel6 4.13 271 0.17 0.13 2.95
barrel7 8.62 1,896 0.23 0.25 11
barrel8 72 >5,000 0.36 0.38 44
barrel9 158 >5,000 0.80 0.87 66
longmult10 64 736 385 213 872
longmult11 79 998 480 232 1,625
longmult12 97 1,098 542 167 1,643
longmult13 127 1,246 617 53 2,225
longmult14 154 1,419 706 30 1,456
longmult15 256 1,651 743 23 392
queueinvar12 1.26 0.81 0.67 2.19 0.22
queueinvar14 2.50 1.96 1.17 4.19 0.42
queueinvar16 1.11 1.05 1.06 3.44 0.35
queueinvar18 11 12 1.02 25 1.76
queueinvar20 13 19 1.58 40 3.13
cnf-r3*(8) 10.88 (1) 12,032 2,992 271 11.37
bart*(21) 0.88 0.35 (17) 85,403 (1) 6,838 16
homer*(15) 3,054 (15) 75,000 (15) 75,000 (15) 75,000 (1) 9,245
lisa*(14) 2,955 1,721 5,788 1,211 (3) 30,349
hwb-n20*(3) 177 148 188 46 1,355
hwb-n22*(3) 771 637 716 144 3,700
hwb-n24*(3) 3,457 3,115 4,170 1,115 (3) 15,000
pb-sat*(12) (2) 13,818 (2) 15,793 (4) 24,478 7,869 (4) 21,099
pb-unsat*(12) 19,547 22,269 (4) 24,293 (1) 19,659 (8) 44,144
philips-org 697 3,845 1974 >5,000 >5,000
philips 295 1,086 2401 726 >5,000
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related benchmark problems. All problems used in the study are taken from
SATLIB (www.satlib.org), where some of them are used in previous SAT com-
petitions. Some of the problem instances contain more than 600,000 variables.
The problems cnf-r3*, bart*, lisa* and pb-sat* are satisfiable, and the others
are unsatisfiable. The timebound for this experiment is 5,000 seconds per prob-
lem instance. Table 2 shows the runtimes of Dew Satz, Satz, EqSatz, March eq
and zChaff on these problems. The numbers of instances of some problems are
indicated in brackets after the problem names, and the number of instances on
which each solver failed is also indicated in brackets before the total time. We
count 5,000 as the increment in runtime for an unsolved instance. The exper-
imentations were conducted on Intel Pentium 4 PCs with 3 GHz CPU, under
Linux.

In general, this extended study further confirms the superior performance of
Dew Satz in comparison with the other four solvers. Where Dew Satz fails to
solve 2 instances in the given timebound (instance pb-sat-40-4-02 needs 6,005 sec-
onds and instance pb-sat-40-4-03 needs 12,958 seconds), Satz, EqSatz, March eq
and zChaff fail on 20, 40, 18 and 21 instances respectively of the 108 given.

The empirical results also show that unit propagation based lookahead in
DPLL is still a powerful technique. Simply enhancing it with a straightforward
heuristic allows us to solve many more hard problems, as shown by the results
above.
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Abstract. In this paper we present and evaluate an evolutionary approach for
learning new constraint satisfaction algorithms, specifically for MAX-SAT opti-
misation problems. Our approach offers two significant advantages over existing
methods: it allows the evolution of more complex combinations of heuristics, and;
it can identify fruitful synergies among heuristics. Using four different classes
of MAX-SAT problems, we experimentally demonstrate that algorithms evolved
with this method exhibit superior performance in comparison to general purpose
methods.

1 Introduction

Algorithms to solve MAX-SAT problems encounter a number of additional challenges
to regular satisfiability testing: firstly, unless the optimal cost is known a priori, a lo-
cal search is unable to recognise the optimality of a solution. Secondly, for a complete
search to prove optimality, the search space of a MAX-SAT problem must be thoroughly
examined, being unable to terminate once a satisfying solution has been found. Addi-
tionally, until the current cost bound is exceeded, backtracking search must overlook
constraint violations that would have triggered immediate backtracking in satisfiability
testing.

To overcome these challenges recent work [1,2] has adopted a two-phase approach,
using a greedy local search routine to determine an initial cost bound for a branch
and bound procedure, which then determines the globally optimal solution. Each of
these works relies on a single ordering heuristic that has been demonstrated to perform
well on a generalised range of benchmark instances. However, as good performance on
such instances is not necessarily indicative of superior performance on other specific
problems [3], how should the algorithm most suited to a specific problem of interest be
identified?

Adaptive problem solving methods [4] have been developed to address this and are
able to modify their behaviour to suit specific problems. Such methods permit efficient,
problem specific algorithms to be developed automatically without the involvement of
human problem solving expertise. The contribution of this paper is a method by which
new algorithms can be automatically evolved for particular classes of problems. In an
empirical study, we show that our evolved algorithms significantly outperform existing
approaches on a range of NP-hard MAX-SAT optimisation problems.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 732–736, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Existing Adaptive Methods

All of the methods considered here adapt by combining in different ways atomic mea-
sures, i.e. simple functions that describe the nature of the problem and the state of the
search.

The MULTI-TAC system developed by Minton [4] is designed to synthesise algo-
rithms for solving CSPs. Exploration of new algorithms is by way of a beam search,
designed to control the number of candidate heuristics that will be examined. As the
beam search selects only the best B candidate algorithms for further consideration,
MULTI-TAC is susceptible to overlooking synergies, i.e. measures that perform poorly
individually but well in conjunction with other methods.

The Adaptive Constraint Engine (ACE) of Epstein et al. [5] learns the appropriate
importance of individual advisors (measures) for particular problems. ACE is only ap-
plicable for use with complete search, as a trace of the expanded search tree is necessary
to update advisor weights. Although described as being applicable to over-constrained
problems, it does not obviously follow how this type of weight update scheme would
apply when every search path eventually derives an inconsistency. There appears to be
a practical limitation on the complexity of algorithms that can be learned by ACE, but
unlike the beam search method used in MULTI-TAC, the use of feedback to update
weights facilitates the identification of synergies between heuristics.

A third approach is the CLASS system developed by Fukunaga [6], which can con-
struct algorithms of arbitrary complexity. Adaptation in CLASS is evolutionary, using
a specialised composition operator to generate new algorithms. This operator is solely
applicable to algorithms of an if-then form and, as the offspring generated with it are al-
ways larger and more complex than their parents, term rewriting must be used to reduce
the size of generated algorithms.

ACE, MULTI-TAC and CLASS each have different strengths, but clearly the po-
tential exists to overcome a number of their limitations. The foregoing discussion has
identified a number of features crucial to the expressiveness and performance of an
adaptive system:

1. Ability to represent both complete and local search routines
2. Unrestricted complexity
3. Ability to recognise and exploit synergies
4. Appropriateness for satisfiable and over-constrained problems
5. The ability to learn from failure

Our adaptive system exhibits all of these characteristics and is presented in the next
section.

3 Evolving Algorithms

As genetic programming [7] has been developed specifically to address the problem of
evolving complex structures, it is surprising that it is yet to be successfully applied to
the domain of adapting algorithms. This study sets out to redress this absence from the
adaptive constraint algorithm literature, but also to study the importance of more com-
plex, non-linear (multiplicative) combinations of measures that previous works have
used in only a limited fashion.



734 S. Bain, J. Thornton, and A. Sattar

A constraint satisfaction algorithm may be viewed as a procedure that iteratively
makes moves, i.e. variable-value assignments (in complete search), or reassignments
(in local search). At each iteration, procedures of both types rank potential moves ac-
cording to heuristic merit. Such a heuristic is simply a functional expression composed
from measures describing the nature of the problem and the state of the search. This rep-
resentation satisfies criteria 1 & 2 above, being suitable for search procedures of both
types and without an a priori complexity bound. One method suitable for the adaptation
of these functional expressions is genetic programming.

Genetic programming [7] begins with a random population of expressions, which
in this case represent search heuristics. Methods analogous to natural selection and bi-
ological reproduction are used to breed subsequent populations of heuristics that better
solve the target problem. As the probability of incorporating an individual into the next
generation is determined probabilistically by its fitness, poorly performing algorithms
are not automatically excluded, permitting synergies to be identified (criteria 3). Fur-
thermore, the fitness measure can incorporate a variety of performance data, making
genetic programming suitable for both satisfiable or over-constrained problems (cri-
teria 4) and allowing it to distinguish between heuristics, even if they fail to locate a
solution (criteria 5).

3.1 Empirical Study

Four different classes of problems were selected from which training instances were
drawn. These were hard random MAX-3-SAT problems (uuf100) from SATLIB; un-
satisfiable jnh problems from the DIMACS benchmark set; random MAX-2-SAT prob-
lems from Borchers’ work1 [1]; and SAT encoded unsatisfiable quasigroup instances,
generated according to [8].

To determine the best algorithm for each particular training instance (listed in Ta-
ble 1), the evolutionary procedure was run 5 times and for 50 generations for each
instance. The initial generation of algorithms all incorporate the MOMS heuristic but
are otherwise randomly generated. The fitness measure used was the number of back-
tracks necessary to determine the optimal solution to the training instance, standardised
so that fewer backtracks equates to higher fitness. The composition of each successive
generation was as follows, to give a total of np = 50 algorithms in each generation: the
previous nc = 3 best algorithms; nb = 36 new algorithms generated by standard GP
crossover; and, nm = 11 algorithms generated by mutation.

The results of the experiments are tabulated in Table 1, both for linear (weighted-
sum combinations) and non-linear (multiplicative) combinations of measures. Every
evolved algorithm required fewer backtracks than MOMS on its training instance, with
algorithms employing linear combinations of heuristics offering mean and median im-
provements over standard MOMS of 56.2% and 62.7% respectively, but algorithms
employing non-linear combinations offering mean and median improvements of 58.4%
and 65.3% respectively. There was less distinction in terms of time however, with
evolved algorithms offering on average no more than a 34% improvement over MOMS.

On its own though, the ability of an algorithm to perform well on a single training
problem is not particularly useful, due to the computational time required for training.

1 For clarity, instances are named as p CLAUSESIZE #VARS #CONSTRAINTS.
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Table 1. Comparison of performance of evolved algorithms on training instances, along with the
expression of the best performing algorithm for each. Boldface denotes the algorithm requiring
the fewest backtracks.

Instance Cost MOMS Evolved Linear With Non-linear
(GSAT / BTs BTs Time BTs Time
Optimal) %MOMS %MOMS

uuf100-0420.cnf (2/2) 11030 8571 123.8% 8580 134.3%
MOMS+Degree-3*(RevJW+Linear)

uuf100-04.cnf (2/2) 11085 8491 132.0% 8706 116.9%
MOMS+CountSatisfy+10*(ValUsed-10*FwdDegree)

uuf100-0327.cnf (3/1) 17950 748 8.64% 472 4.3%
MOMS+MOMSLiteral*(2SJW-NumWillDetermine)

uuf100-0190.cnf (3/2) 31064 7524 42.5% 5969 35.2%
MOMS+2SidedJW*(Linear*MOMSStrict+1)+MOMSStrict

uuf100-0332.cnf (3/2) 46709 6015 25.5% 5378 23.1%
MOMS+1stOrder+MOMS*(MOMSStrict+NumWillDetermine+RevJW)

p 2 50 200.cnf (16/16) 5835 783 23.2% 798 21.6%
MOMS+20*(100*FwdDegree+2SidedJW)

p 2 50 250.cnf (22/22) 27610 5827 35.5% 4855 31.8%
MOMS+(Undetermined+UnitClause)*(JeroslowWang*1stOrder*FwdDegree)

p 2 100 300.cnf (15/15) 84062 6619 15.4% 6521 14.1%
MOMS+(72*Undetermined2*FwdDegree*Degree)

jnh310.cnf (3/3) 4744 3923 89.2% 3711 122.4%
MOMS+Degree+(UndetCount*FwdDegree*MOMSStrict*NumConstraints)

jnh307.cnf (3/3) 5244 2668 68.1% 3177 100.0%
MOMS+FwdDegree-180*Determined

jnh303.cnf (3/3) 21554 18102 132.3% 15830 103.9%
MOMS+BwdDegree+(BwdDegree*MOMSLiteral*UnitClause*Linear)

jnh302.cnf (4/4) 35335 29458 122.7% 25440 137.1%
MOMS+MOMSStrict*(UnitClause*UndetCount*MOMSLiteral+1)

jnh305.cnf (4/3) 39104 7984 29.5% 7498 37.3%
MOMS+CountSatisfy*(MOMSStrict-1stOrder*MOMSLiteral)

qg3-05.cnf (5/5) 21935 11817 79.1% 10998 71.3%
MOMS+(JeroslowWang*UnitClause+ValUsed)*(MOMSStrict*Linear)

Table 2. Performance of MOMS and evolved linear & non-linear variants on test sets. Boldface
denotes the algorithm requiring fewest mean backtracks.

Class Num. MOMS BTs Linear BTs Non-Linear BTs
Instances Mean Median Mean Median Mean Median

uuf100 100 1311 295 1308 288 1320 289
jnh 34 3592 550 2665 457 2325 475

quasigroup 3 2.95E6 311986 238950 132901 69037 84530
MAX-2-SAT 6 3.16E6 629613 410180 87362 100070 34628

To be truly useful, good performance on a training instance must translate into good
performance on a class of similar problems. To demonstrate that evolved algorithms
exhibit such performance, the evolved algorithms for each training instance were eval-
uated on a larger test set of problems of their class.
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Performance results for MOMS and the best evolved algorithm in each class are
tabulated in Table 2. These results show that evolved algorithms, particularly the non-
linear variants, offer significant performance benefits on the larger test sets as well.

4 Conclusions and Future Work

This work has demonstrated a new method for automatically adapting algorithms that
exhibits a number of desirable characteristics absent in other work, specifically the abil-
ity to discover synergies between heuristics and to explore complex non-linear combi-
nations of heuristics. These two important features are a step toward developing fully
automated constraint solving algorithms.

The evolved algorithms were shown to outperform the well-known MOMS heuris-
tic on training instances taken from four different classes of NP-hard optimisation prob-
lems. An evaluation of the evolved algorithms on larger test sets of problems showed
that on three of the four classes examined, an evolved algorithm substantially outper-
formed MOMS in terms of backtracks. These results indicate that genetic methods are
certainly appropriate for the adaptation of algorithms.

Finally, in evaluating the importance of non-linear algorithms, we found them to
have better backtrack performance on 10 of the 14 training instances. Although exhibit-
ing only comparable performance on the uuf100 test set, non-linear variants achieved
superior performance on all other test sets, including both a structured and a smaller
random problem set. This suggests that non-linear combinations identify and exploit
structure overlooked by a linear approach, and whilst not appropriate for all problem
classes, there can be substantial performance gains from non-linear combinations on
problem classes that are sufficiently homogenous.

An extended version of this paper is available from the author’s homepage at
http://stuart.multics.org
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Abstract. Multi-Point Constructive Search maintains a small set of “elite solu-
tions” that are used to heuristically guide constructive search through periodically
restarting search from an elite solution. Empirical results indicate that for job
shop scheduling optimization problems and quasi-group completion problems,
multi-point constructive search performs significantly better than chronological
backtracking and bounded backtracking with random restart.

1 Introduction

Metaheuristics such as path relinking [5] maintain a small number (e.g., five to ten)
of “elite solutions,” that are used to guide search into areas that appear promising. This
paper introduces the maintenance of multiple solutions to guide constructive tree search.
Given a set of elite solutions, we probabilistically choose to start constructive search
either from a random elite solution or from an empty solution. If a good solution is
found within some bound of the search effort, it is inserted into the elite set, replacing
one of the existing solutions.

2 Multi-point Constructive Search

Pseudocode for the basic Multi-Point Constructive Search (MPCS) algorithm is shown
in Algorithm 1. The algorithm initializes a set, e, of elite solutions and then enters
a while-loop. In each iteration, with probability, p, search is started from an empty
solution (line 6) or from a randomly selected elite solution (line 12). The best solution
found, s, is inserted into the elite set, in the former case, if it is better than the worst elite
solution and, in the latter case, if it is better than the starting elite solution. Each search is
limited by a fail-bound and the algorithm has some overall bound on the computational
resources. The best elite solution is returned.

Searching from an Elite Solution. Let a reference solution, r, be a set of variable as-
signments, {〈V1 = x1〉, . . . , 〈Vm = xm〉}, m ≤ n, where n is the number of vari-
ables. At a node in the search, any variable ordering heuristic can be used to choose
a variable, Vi, to be assigned. If x ∈ dom(Vi), where 〈Vi = x〉 ∈ r, a choice point,
〈Vi = x〉 ∨ 〈Vi �= x〉, is made. Otherwise, if x /∈ dom(Vi), any value ordering heuristic
is used to choose z ∈ dom(Vi) and a choice point is asserted using value z. An upper

� This work has received support from ILOG, SA.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 737–741, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



738 J.C. Beck

Algorithm 1. MPCS: Multi-Point Constructive Search
MPCS():

1 initialize elite solution set e
2 while termination criteria unmet do

3 if rand[0, 1) < p then

4 set upper bound on cost function
5 set fail bound, b
6 s := search(∅, b)
7 if s �= NIL and s is better than worst(e) then

8 replace worst(e) with s

else

9 r := randomly chosen element of e
10 set upper bound on cost function
11 set fail bound, b
12 s := search(r, b)
13 if s �= NIL s is better than r then

14 replace r with s

15 return best(e)

bound is placed on the cost function (line 10), and therefore a value assigned in the ref-
erence solution is not necessarily consistent with the current partial assignment. Note
that our criterion for assigning a value from a reference solution covers the case where
no value is assigned (i.e., when r is a partial solution and m < n).

Bounding the Cost Function. Before each search (lines 6 and 11), we place an upper
bound on the cost function. We experiment with three approaches. Global bound: Al-
ways set the upper bound on the search cost to the best cost found so far. Local bound:
When starting from an empty solution, set the upper bound to be equal the cost of the
worst elite solution. When starting from an elite solution, set the upper bound to be the
cost of the reference solution. Adaptive: Use the global bound policy for |e| searches
whenever a new global best solution is found then revert to the local bound policy.

Elite Solution Initialization. The elite solutions can be initialized by any search tech-
nique. In this paper, we use independent runs of standard chronological backtracking
with a randomized heuristic and do not constrain the cost function. The search effort is
limited by a maximum number of fails for each run.

Finding a Solution From Scratch. A solution is found from scratch (line 6) using any
standard constructive search with a randomized heuristic and a bound on the number of
fails. It is possible that no solution is found within the fail bound.

Bounding the Search. The effort spent on each individual search is bounded by a fail
bound (lines 5 and 11). We associate a fail bound, initialized to 32, with each elite
solution. Whenever search from an elite solution does not find a better solution, the
corresponding fail bound is doubled. When an elite solution is replaced, the bound for
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the new elite solution is set to 32. When searching from an empty solution, we use the
mean fail bound of the elite solutions and do not increase any fail bounds if a better
solution is not found.

Adaptations for Constraint Satisfaction. To adapt the approach to a satisfaction context,
we rate partial solutions by the number of unassigned variables. When a dead-end is
encountered, the number of variables that have not been assigned are counted. Partial
solutions with fewer unassigned variables are assumed to be better. We make no effort
to search after a dead-end is encountered to try to determine if any of the currently
unassigned variables could be assigned without creating further constraint violations.

3 Empirical Studies

Three variations of MPCS are used, corresponding to the different ways to set the cost
bound: multi-point with global bound, mpgb; multi-point with local bound, mplb; and
multi-point with adaptive bound, mp-adapt. We set p = 0.5 and |e| = 8. The effort
to initialize the elite solutions is included in the results. For comparison, we use stan-
dard chronological backtracking (chron) and bounded backtracking with restart (bbt)
following the same fail-bound sequence used for the multi-point techniques. The bbt
algorithm is Algorithm 1 with line 12 is replaced by a copy of line 6. The only dif-
ferences between bbt and the MPCS variations is the maintenance and use of the elite
solutions. In particular, the same heuristics, propagation, and fail-bound sequence are
used across these algorithms. All algorithms are run ten times with aggregate results
presented as described below. A time limit of 600 CPU seconds is given for each run:
algorithms report whenever they have found a new best solution allowing the creation
of normalized run-time graphs. All algorithms are implemented in ILOG Scheduler 6.0
and run on a 2.8GHz Pentium 4 with 512Mb RAM running Fedora Core 2.

The Job Shop Scheduling Problem. An n×m job shop scheduling problem (JSP) con-
tains n jobs each composed of m completely ordered activities. Each activity, has a
pre-defined duration and a resource that it must have unique use of during its duration.
There are m resources and each activity in a job requires a different resource. A solu-
tion to the JSP is a sequence of activities on each resource such that the makespan, the
time between the maximum end time of all activities and the minimum start time of
all activities, is minimized. We are interested in the optimization version of the prob-
lem: given a limited CPU time, return the solution with the smallest makespan found.
Ten 20 × 20 JSPs were generated with randomly selected job routings and the activity
durations independently and randomly drawn from [1, 99] [8].

Randomized texture-based heuristics [3] and the standard constraint propagation
techniques for scheduling [2] are used. To initialize the elite solutions, |e| independent
runs of a randomized algorithm that produces semi-active schedules is used. Each run
is limited to 1000 fails. We compare algorithms based on mean relative error (MRE) as
shown in Equation (1) where K is a set of problem instances, R is a set of independent
runs, c(a, k, r) is the lowest cost found by algorithm a on instance k in run r, and c∗(k)
is the lowest cost known for k.

MRE(a, K, R) =
1

|R||K|
∑
r∈R

∑
k∈K

c(a, k, r)− c∗(k)
c∗(k)

(1)
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Fig. 1. Mean relative error to the best known solutions for each algorithm over ten independent
runs of ten problem instances
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Fig. 2. Mean number of fails (left) and mean run-time (right) for the order-30 problems in each
subset. Each point on the graph is the mean of ten independent runs on ten problem instances.

Figure 1 demonstrates that multi-point search is a significant improvement
over both chron and bbt. Statistical analysis1 is performed for time points t ∈
{100, 200, . . . , 600}. The difference between bbt and mpgb and between bbt and mp-
adapt is statistically significant at all time points. The bbt algorithm performs signifi-
cantly better than mplb at t = 100 but significantly worse for t ≥ 300. Turning to the
MPCS variations, mplb is significantly worse than mp-adapt for t ≤ 400 and signifi-
cantly worse than mpgb at t ≤ 300. The mp-adapt algorithm is significantly better than
mpgb at all t ≥ 300.

The Quasigroup-with-Holes Completion Problem. An n × n quasigroup-with-holes
(QWH) is a partially completed matrix where each row and column is required to be a
permutation of the first n integers. A solution requires that all the empty cells (“holes”)
are consistently filled. The problem is NP-complete and bounded backtracking with
randomized restart has been shown to be a strong performer [6]. We generated 100
balanced, order-30 QWH problems (i.e,. n = 30) using a generator that guarantees sat-
isfiability [1]. Ten sets with problem instances each are generated with the number of

1 A randomized paired-t test [4] and a significance level of p ≤ 0.005 were used.
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holes, m = {315, 320, . . . , 360}. These values were chosen to span the difficulty peak
identified in the literature. Each algorithm was run ten times on each problem instance
with a limit on each run of 2,000,000 fails.

The same search framework as above was used, implemented in ILOG Solver 6.0
on the same machine. The fail-limit to initialize each elite solution was set to 100 fails.
The variable ordering heuristic randomly chooses a variable with minimum domain size
while the value ordering is random. All-different constraints with extended propagation
[7] are placed on each row and column.

Figure 2 presents the mean number of fails and mean run-time for each subset and
algorithm. The MPCS variants mplb and mp-adapt perform significantly better than all
other techniques for m ≥ 325 for both the mean number of fails and the mean run-time.

4 Conclusion and Future Work

This paper introduces multi-point constructive search. The search technique maintains a
small set of elite solutions that are used to conduct a series of resource-limited construc-
tive searches. Depending on the outcome, new solutions are inserted into the elite set,
replacing existing solutions. Two sets of experiments are conducted and significant per-
formance gains relative to chronological backtracking and bounded backtracking with
random restart are observed both on constraint models of optimization problems and
satisfaction problems. Experiments are underway to systematically evaluate different
parameter settings.
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Abstract. This article presents a basic scheme for deriving systematically a fil-
tering algorithm from the graph properties based representation of global con-
straints. This scheme is based on the bounds of the graph characteristics used in
the description of a global constraint. The article provides bounds for the most
common used graph characteristics.

1 Introduction

Beldiceanu presented in [1] a systematic description of these global constraints in terms
of graph properties: among the 224 constraints of the catalog of global constraints,
about 200 constraints are described as a conjunction of graph properties where each
graph property has a the form P op V , where P is a graph characteristics, op is a
comparison operator in {≤,≥, =, �=}, and V a domain variable1.

Example 1. Consider the nvalue(N,{x1, ..., xm}) constraint [3], where N, x1, ..., xm are
domain variables. The nvalue constraint holds iff the number of distinct values assigned to the
variables in X = {x1, ..., xm} is equal to N . It can been seen as enforcing the following graph
property: the number of strongly connected components of the intersection graph G(X ,E),
where E = {xi ∈ X , xj ∈ X : xi = xj}, is equal to N .

In this context, Dávid Hanák made a preliminary exploitation of this description
for designing filtering algorithms, for a particular graph property [4]. In this article we
present a systematic approach which aims at providing generic filtering algorithms for
the most used graph properties [1]: given a specification of a global constraint C in
terms of graph properties, we can derive a filtering algorithm for C.

A global constraint C is represented as an initial digraph Gi = (Xi, Ei): to each
vertex in Xi corresponds a variable involved in C, while to each arc e in Ei corresponds
a binary constraint involving the variables at both extremities of e. To generate Gi

from the parameters of C, the set of arcs generators described in [1] is used. When all
variables of C are fixed, we remove from Gi all binary constraints which do not hold
as well as isolated vertices, i.e., vertices which are not extremity of an arc. This final
digraph is denoted by Gf . C is defined by a conjunction of graph properties which

1 A domain variable is a variable that ranges over a finite set of integers; dom(V ), min(V ) and
max(V ) respectively denote the set of possible values of variable V , the minimum value of
V and the maximum value of V .

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 742–746, 2005.
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should be satisfied by Gf . Each graph property has the form P op V ; P is a graph
characteristics, V is an domain variable and op is one of the comparison operator≥,≤,
=, �=. Within the global constraint catalog [1], common used graph characteristics are:

– NARC and NVERTEX denote the number of arcs and vertices: they are re-
spectively used by 95 and 17 global constraints,

– NCC and NSCC denote the number of connected and strongly connected com-
ponents; they are used in the description of 19 and 13 global constraints,

– NSINK (respectively NSOURCE) denotes the number of vertices which don’t
have any successor (resp. predecessor); they are respectively used by 16 and 15
global constraints; since NSINK and NSOURCE are similar, the rest of this
article considers NSINK.

Example 2. Consider the nvalue(N,X) constraint. Parts (A) and (B) of Fig. 1 respectively
show the initial digraph Gi generated for the nvalue constraint with X = {x1, x2, x3, x4}
and the digraph Gf associated with the ground solution nvalue(3, {5, 8, 1, 5}). Each vertex
of Gi depicts its corresponding variable. All arcs corresponding to equality constraints that are
not satisfied are removed to obtain Gf from Gi. Each vertex of Gf depicts the value assigned to
its corresponding variable. The nvalue constraint is defined by the graph property NSCC =
N . The nvalue(3, {5, 8, 1, 5}) constraint holds since Gf contains three strongly connected
components, which can be interpreted as the fact that N is equal to the number of distinct values
taken by the variables x1, x2, x3 and x4. Part (C) of Fig. 1 will be referenced in Example 3.

1x 1x2x 2x

3x 3x4x 4x

(B)(A) (C)

5 8

5 1

Fig. 1. (A) Initial digraph Gi associated with the nvalue(N, {x1, x2, x3, x4}) constraint. (B)
Final digraph Gf of the ground solution nvalue(3, {5, 8, 1, 5}). (C) Intermediate digraph.

2 Filtering from Graph Properties

Given a graph property P op V occurring in the description of a global constraint, this
section first shows how to reduce the domain of V in order to enforce P op V . Finally,
it discuss the case where several graph properties are used to define a global constraint.
We first introduce the notion of intermediate digraph derived from the initial digraph
Gi, where vertices and arcs can have different status as detailed below. The purpose
of this intermediate digraph is to reflect the knowledge we currently have about the
vertices and the arcs of Gi that may or may not belong to the final digraph Gf . This
knowledge comes from two sources:

– Because of the current domain of its variables, a binary constraint associated to an
arc of Gi does not hold (or is entailed),

– Because of an external reason, a given arc or vertex of Gi is forced to belong to Gf

(or is forced to no belong to Gf ).
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When a global constraint C is posted the intermediate digraph corresponds to Gi, while
when all variables of C are fixed the intermediate digraph is equal to Gf .

Notation 1. Let Gi = (Xi, Ei) be the initial digraph of a global constraint C, and
Gf = (Xf , Ef ) its final digraph. At a given step corresponding to a partial assignment
of values to the variables of C, we classify a vertex vj ∈ Xi and an arc ek ∈ Ei:

– vj is a T -vertex (true) iff vj ∈ Xf ; vj is a F -vertex (false) iff vj /∈ Xf ; otherwise
vj is a U -vertex (undetermined). XT , XF and XU respectively denote the sets of
T -vertices, of F -vertices and of U -vertices.

– ek is a T -arc (true) iff ek ∈ Ef ; ek is a F -arc (false) iff ek /∈ Ef ; otherwise ek is
a U -arc (undetermined). ET , EF and EU respectively denote the sets of T -arcs, of
F -arcs and of U -arcs.

The definition of the intermediate digraph takes into account the fact that the final
graph will not contain any isolated vertex.

Definition 1. The intermediate digraph is the digraph defined from Gi, XT , XF , XU ,
ET , EF , EU by applying the next rules while they induce some modifications:

– Remove all F -arcs,
– Any F -vertex which is not the extremity of at least one T -arc is removed; when

a vertex is removed, we remove also all its ingoing and outgoing arcs which are
turned to F -arcs,

– Any U -vertex which is not the extremity of at least one arc is removed,
– Any U -vertex which is an extremity of a T -arc is turned to a T -vertex,
– If a T -vertex is the extremity of exactly one U -arc e and not the extremity of any

T -arc, then e is turned to a T -arc.

When a vertex or an arc is removed, or when the status of a vertex or of an arc is
changed by one of the previous rule the sets XT , XF , XU , ET , EF , EU are updated to
reflect this change.

Example 3. Consider again the nvalue(N,X) constraint presented in the introduction,
and assume that not all variables of X = {x1, x2, x3, x4} are fixed: dom(x1)={5},
dom(x2)={5}, dom(x3)={5, 8}, dom(x4)={1}. Furthermore assume that, for an equality con-
straint ec associated to an arc of the initial digraph Gi of nvalue, entailment is only de-
tected when all variables occurring in ec are fixed. This leads to partition the edges of
Gi in the following three sets ET = {(x1, x1),(x1, x4),(x3, x3),(x4, x1),(x4, x4)}, EU =
{(x1, x2),(x2, x1),(x2, x2),(x2, x4),(x4, x2)} and EF = {(x1, x2),(x2, x3),(x3, x1),(x3, x2),
(x3, x4),(x4, x3)}. The status of the vertices is initially set undetermined (i.e. XU =
{x1, x2, x3, x4}) and we apply the rules of Definition 1 in order to obtain the intermediate di-
graph depicted by part (C) of Fig. 1. A plain line depicts a T -vertex or a T -arc, while a dashed
line indicates a U -vertex or an U -arc. The same style will be used in all other figures of this
article in order to depict T -vertices, T -arcs, U -vertices and U -arcs.

Property 1. From the definition of Gf , the global constraint C has no solution if the
intermediate digraph contains a F -vertex or if it contains a T -vertex which is not the
extremity of any arc.
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Given a graph property P op V associated to a global constraint C, the intermediate
digraph will be used for evaluating a lower bound P and an upper bound P of the graph
characteristics P . Section 4 provides the algorithms for computing P and P for different
graph characteristics. It assumes that all U -vertices or arcs of the intermediate digraph
can be freely turned into T -vertices or T -arcs (resp. F -vertices or F -arcs). According to
the comparison operator op, the next table gives the different possible cases for reducing
the domain of variable V according to P and P .

P ≤ V min(V ) ≥ max(P, min(V ))
P ≥ V max(V ) ≤ min(P , max(V ))
P = V min(V ) ≥ max(P, min(V )) ∧ max(V ) ≤ min(P , max(V ))
P �= V P = P ⇒ P /∈ dom(V )

3 Bounds of Graph Characteristics

This section is devoted to the evaluation of lower and upper bounds of the graph charac-
teristics introduced in Section 2. For this purpose, we will deal with graphs derived from
the intermediate digraph with different sets of arcs and vertices which are described in
the following notations.

Notation 2. Let Q, R and S be non-empty words over the alphabet {T, U}.

– Given a word W , w ∈W denotes a letter of W .
– XQ and EQ respectively denote

⋃
q∈Q Xq and

⋃
q∈Q Eq .

– XQ,R (resp. XQ,¬R) denotes v ∈ XQ such that there is at least one arc (resp. there
is no arc) in ER where v is an extremity.

– EQ,R denotes the set of arcs (v1, v2) ∈ EQ such that v1 ∈ XR or v2 ∈ XR.
– XQ,R,S (resp. XQ,R,¬S) denotes v ∈ XQ,R such that, within the vertices which

share an arc with v, there is at least one vertex in XS (resp. no vertex is in XS).
– XQ,¬R,¬S denotes v ∈ XQ,¬R such that, within the vertices which share an arc

with v, no vertex is in XS .

Based on the previous notations, we define four kind of graphs, where X is a set of
vertices and E a set of arcs:

–
−→
G(X , E) denotes the digraph defined by the vertex set X and the subset of arcs of
E having their two extremities in X .

–
−→
G(E) denotes the digraph defined by the set of arcs E and the set of vertices which
are extremities of arcs in E .

–
←→
G (X , E) (resp.

←→
G (E)) denotes the undirected graph derived from

−→
G(X , E) (resp.

−→
G(E)) by forgetting the orientation of the arcs and by keeping its eventual loops.

Example 4. We illustrate some sets of vertices and arcs previously introduced and some graphs
on the intermediate digraph depicted by part (C) of Fig. 1:

– XU,T = {x1, x4}, XU,¬T = {x3},
– EUT = {(x1, x1), (x1, x2), (x1, x4), (x2, x1), (x2, x2), (x2, x4), (x3, x3), (x4, x1), (x4,

x2), (x4, x4)},
– EU,T = {(x1, x2), (x2, x1), (x2, x2), (x2, x4), (x4, x2)},
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–
−→
G(XT , ET ) =

−→
G({x1, x3, x4}, {(x1, x1), (x1, x4), (x3, x3), (x4, x1), (x4, x1)})

–
−→
G(EU) =

−→
G({x1, x2, x4}, {(x1, x2), (x2, x1), (x2, x4), (x4, x2)}).

Computing lower and upper bounds of graph characteristics can be seen as com-
puting some graph characteristics on the graphs previously introduced. Some bounds
are expressed in terms of graph characteristics that correspond to non-polynomial prob-
lems. However in such a case we provide bounds that are sharp. Note that many of
the digraphs, which express a global constraint, belong to specific graph classes for
which a non-polynomial problem becomes polynomial. Even when the computation is
polynomial, we can get better worst-case complexity by exploiting the structure of the
intermediate digraph.

Bound of graph characteristics Sharpness Polynomial

NARC ≥ |ET | + |XT,¬T | − μ(
←→
G (XT,¬T , EU )) yes yes

NARC ≤ |ETU | yes yes

NVERTEX ≥ |XT |+ h(
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )) yes no

NVERTEX ≤ |XTU | yes yes

NCC ≥ nccT (
−→
G(XTU , ETU )) yes yes

NCC ≤ nccTni + μl(
←→
G rem ) yes yes

NSCC ≥ nsccT (
−→
G(XTU , ETU )) yes yes

NSCC ≤ nscc(
−→
G(XTU , ET )) yes yes

NSINK ≥ nsinkT (
−→
G(XTU , ETU )) no yes

NSINK ≤ nsink(
−→
G(XT , ET )) + |XU | no yes

The table provides a lower and an upper bound for the different graph characteris-
tics. Proofs are available in [2]. μ(G) is the cardinality of a maximum matching of G.
μl(G) is the maximum size of a set of edges of G, such that no two edges have a vertex
in common, where G eventually contains loops. Given a bipartite graph G((X, Y ), E),
a hitting set is a set of vertices in Y required to cover all vertices of X . h(G) denotes the
cardinality of a minimum hitting set of G. nscc(G) and nsink(G) respectively denote
the number of strongly connected components and the number of sinks of G. nccT (G)
and nsccT (G) respectively denote the number of connected components, strongly con-
nected components with at least one T -vertex. nsinkT (G) denotes the number of sinks
of G which are T -vertices. nccTni(G) denotes the number of connected components
formed only by T -arcs and T -vertices which are not isolated vertices.
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Abstract. This paper presents a technique for learning parameterized implied
constraints. They can be added to a model to improve the solving process. Exper-
iments on implied Gcc constraints show the interest of our approach.

1 Introduction

Automatic model reformulation is a key issue for researchers [5,4,3]. The objective is
to decrease the expertise required to use constraint programming. One way to improve
a model consists of adding implied constraints. An implied constraint is not mandatory
to express the problem but it helps to solve it [7]. In this paper, we assume that we
have a model which expresses the problem, but the solving time is not satisfactory. We
wish to improve it by automatically adding new implied constraints. Our idea is to use
a learning algorithm that deduces new parameterized constraints from assignments of
values to sets of variables. The set of tuples allowed by a parameterized constraint not
only depends on its variables and their domains, but also on some extra information
provided by parameters, which are not necessarily part of the problem variables. For
instance, the NValue(p, [X1, . . . , Xn]) constraint holds iff p is equal to the number
of different values taken by X1, . . . , Xn. p can be a CSP variable (in its more general
definition) or a parameter which leads to different sets of allowed tuples on the Xi’s,
depending of the values it can take. In our context, a learning algorithm would try,
for example, to learn the smallest range of possible values for p s.t. no solution exists
outside this range. If the algorithm returns a lower bound min(p) > 0, or an upper
bound max(p) < n, then the learned constraint can be of interest. 1

2 Learning Parameterized Constraints

The set of tuples allowed by a classical constraint is known once the variables it involves
and their domains are set. A parameterized constraint may allow different sets of tuples
depending on the possible values for its parameters. Let us first define parameterized
constraints in the most general way to let our work be as general as possible.

1 A lot of existing constraints [1] may be used as implied parameterized constraints: AtLeast,
AtMost, Change, Common, Count, Gcc, Max, Min, NValue, etc.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 747–751, 2005.
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Definition 1. Given a set of parameters Δ = {p1, ..., p|Δ|} taking their values in the set
of integers , a parameterized constraint C is a constraint which expresses a property
on the variables it involves (denoted by var(C)) depending on the possible values for
its set of parameters Δ. Given s ∈ |Δ|, an assignment of values to the parameters,
C(s) refers to the set of allowed tuples of the constraint C when each pi in Δ takes the
ith value in s, noted s[pi]. Given S ⊆ |Δ|, C(S) =

∨
s∈S C(s).

Definition 2. Given a constraint C with parameters Δ and a tuple e on var(C) (or a
superset of var(C)), Se contains the combinations s in |Δ| s.t. C(s) accepts e.

Our goal is to learn implied constraints on any type of constraint problem: we focus
on those parameterized constraints where for any tuple e on var(C), Se �= ∅. The basic
idea is to learn the parameters of an implied constraint C by exploiting information pro-
vided by solutions and non-solutions of a subproblem (stem from the initial problem by
removing variables and constraints). Indeed, if the current model is not good, obviously
it should not easily provide instances2 for the whole problem. By definition, if a learned
constraint is valid in a subproblem then it is still valid in the main problem. Variables
of the subproblem are then the decision variables involved in the learned implied con-
straint. W.r.t. optimization problems, in the context of a Branch and Bound algorithm,
a way to proceed is to learn new implied constraints at each step of the optimization.3

We assume now that the subproblem and the constraint C to learn have been chosen.

Notation 1. P = (X ,D, C) is the problem used to learn an implied constraint.

Definition 3. An implied constraint C for P is a constraint s.t. var(C) ⊆ X and the
set Sol(P) of solutions ofP is equal to Sol((X ,D, C∪{C})); Namely, for any instance
e ∈ Sol(P), e[var(C)] is allowed by C.

We consider only constraints for which C( |Δ|) is the universal constraint (i.e., for
any tuple e, Se �= ∅). Thus, following Definition 3, C( |Δ|) is an implied constraint
for the problem P . The objective of a learning algorithm will be to learn a ’target’ set
T ⊆ |Δ|, as small as possible, s.t. C(T ) is still an implied constraint. Any s ∈ |Δ|

which is not necessary to accept some solutions of P can be removed from T .

Notation 2. Given a problem P = (X ,D, C) and a parameterized constraint C, we
denote by required(T ) the set of elements r of |Δ| such that r ∈ required(T ) iff
C( |Δ| \ {r}) is not an implied constraint, namely r is compulsory in T if we want
C(T ) to be an implied constraint in P . poss(T ) denotes those r in |Δ| for which we
do not know if they must belong to required(T ).

In other words, required(T ) represents those combinations of values for the pa-
rameters that are necessary to preserve the set of solutions of P , and poss(T ) those for
which we have not proved yet that we would not lose solutions without them. The fact
that an implied constraint should not remove solutions when we add it to the problem
leads to the following property w.r.t. positive instances.

2 Given a problem P = (X ,D, C), an instance e is an assignment of values to variables in X .
It is positive if e belongs to Sol(P), otherwise it is negative.

3 We may observe a nice cooperation between the learning and the solving phases: new learned
constraints help at each step to solve the problem, and thus to learn the next ones.
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Property 1. Let e+ be a positive instance and T ⊆ |Δ|. If C(T ) is an implied con-
straint for P then T ∩ Se+ �= ∅.
Proof. e+ is a solution of P . At least one s ∈ T should accept that instance to preserve the set
of solutions of P . So, s ∈ Se+ by Definition 2. ��
Corollary 1. Let e+ be a positive instance of P and C a parameterized constraint. If
there is a unique s ∈ |Δ| such that e+[var(C)] ∈ C(s) then s ∈ required(T ).

Negative instances will help to remove from poss(T ) the combinations of parame-
ters that can be removed without losing solutions. When receiving a negative instance
e−, we want to know if it is possible to reduce the target set T in order to reject e−

while preserving Sol(P).

Property 2. Let P be a problem, C a parameterized constraint, and S ⊂ |Δ|. If P
augmented with the constraint C(S) has no solution then C( |Δ| \ S) is an implied
constraint for P .

Proof. By previous assumption, we know that C( |Δ|) is an implied constraint for P . Since
P∪{C(S)} is inconsistent, we know that ∀e ∈ Sol(P), Se∩S = ∅. Thus Sol(P+C( |Δ|)) =
Sol(P + C( |Δ| \ S)). ��
Corollary 2. Let P be a problem, C a parameterized constraint, S ⊆ |Δ|, and
poss(T ) a set s.t. C(poss(T )) is implied on P . If P augmented with the constraint
C(S) has no solution then C(poss(T ) \ S) is an implied constraint for P .

Checking if P augmented with the constraint C(S) is inconsistent (line 2) is obviously
NP-hard. Even if P in this learning phase is not supposed to be the whole problem we
want to reformulate, it is necessary to follow some heuristics to avoid huge numbers
of NP-hard calls to a solver. For a parameterized constraint C, different representations
of parameters may exist. The more general case studied until now (Algorithm 1) con-
sists of considering that allowed tuples of parameters for C are given in extension as a
set T . Corollary 1 may then seem weak. However, in practice, most of parameterized
constraints are s.t. any two different combinations of parameters in |Δ| correspond
to disjoint sets of allowed tuples on var(C). We call them parameter-partitioned con-
straints. For instance, NValue(p, [X1, . . . , Xn]) is parameter-partitioned since a single
value of p corresponds to an assignment of the Xi.

Algorithm 1 Learning Algorithm for Parameterized Constraints

Input: C, Δ, E = {e1, . . . , ek} a set of instances for P .
Output: poss(T ), s.t. C(poss(T )) is an implied constraint for P .
required(T ) ← ∅; poss(T ) ← |Δ|;
while (E �= ∅) and (required(T ) �= poss(T )) do

Pick e ∈ E;
if e is positive then

if |Se| = 1 then required(T ) ← required(T ) ∪ Se; /* Corol. 1*/1

else
for some S ⊆ (poss(T ) \ required(T )) do

if Sol(X ,D, C ∪ C(S)) = ∅ then poss(T ) ← poss(T ) \ S; /* Corol. 2*/2

else put an element of Sol(X ,D, C ∪ C(S)) as positive instance in E

.
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Corollary 3. Let e+ be a positive instance. If C is a parameter-partitioned constraint,
se+ ∈ required(T ), where se+ is the only element in Se+ .

This corollary allows a faster construction of required(T ) compared with
Algorithm 1. Moreover, existing parameterized constraints are usually defined by sets
of possible values for their parameters taken separately, which is less expressive than
considering directly any subset of |Δ|. It is possible to exploit this fact. We will note
T [pi] for the values of a parameter we wish to learn. Then, required(T [pi]) = {ki ∈

s.t. ∃s ∈ required(T ), s[pi] = ki}, namely the set of values for pi that are re-
quired in T [pi]. Similarly, poss(T [pi]) = {ki ∈ s.t. ∃s ∈ poss(T ), s[pi] = ki}.
If the possible values for a parameter pi are a set of integers, the learning algo-
rithm uses sets of integers to represent required(T [pi]) and poss(T [pi]). The pa-
rameterized constraint will be called with poss(T [p1]) × . . . × poss(T [p|Δ|]). If the
possible values for pi are a range of integers, the learning algorithm uses ranges
of the form [min(poss(T [pi]))..max(poss(T [pi]))] to represent poss(T [pi]) (resp.
required(T [pi])). Properties 1 and 2 can be rewritten to fit these two cases.

Property 3. Let e+ be a positive instance of P and C a parameterized constraint s.t.
parameters are sets of integers. If there is a unique s ∈ |Δ| such that e+[var(C)] ∈
C(s) then for any pi ∈ Δ, s[pi] ∈ required(T [pi]).

Property 4. Let P be a problem, C a parameterized constraint where parameters are a
set of integers, and poss(T ) a set s.t. C(poss(T )) is implied on P . Let p be a parameter
of C, v a value in poss(T [p]), and S = {s ∈ poss(T ) s.t. s[p] = v}. If P augmented
with C(S) has no solution then v can be removed from poss(T [p]).

Note that for each negative instance e−, if the constraint is parameter-partitioned, a
heuristic can be used to apply property 4 with v = se− [p].

Property 5. Let e+ be a positive instance of P and C a parameterized constraint s.t.
parameters are ranges. If there is a unique s ∈ |Δ| such that e+[var(C)] ∈ C(s) then
for any pi ∈ Δ, min(required(T [pi])) ≤ s[pi] ≤ max(required(T [pi])).

Property 6. Let P be a problem, C a parameterized constraint where parameters are
ranges, and poss(T ) a set s.t. C(poss(T )) is implied on P . Let p be a parameter of
C, v a value in poss(T [p]), and S = {s ∈ poss(T ) s.t. s[p] ≤ v} (respectively:
S = {s ∈ poss(T ) s.t. s[p] ≥ v}). If P augmented with C(S) has no solution then
min(poss(T [p])) > v (respectively: max(poss(T [pi])) < v).

3 Experiments

We implemented with Choco [2] a learning algorithm for implied Gcc (global cardinal-
ity constraints [6]) where parameters are ranges. On the two intentionally naive models
we implemented to evaluate the interest of our algorithm, tables compare the solving
time of an initial model with the same model augmented with a learned Gcc.4

4 In the tables located at the left the last column indicates the solving time, whereas in the tables
located at the right the last column indicates the sum of the learning time and the solving time.
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Table 1. Scheduling satisfaction problem with a fixed makespan, precedence constraints, and
m = m1+m2 tasks (requiring one or two resources). maxi is the maximum allowed resource. 15
assignments where used to learn an implied Gcc on a problem relaxed from resource constraints.

(a) Initial model.

m1/m2 maxi #nodes time (sec.)
4/0 4 — > 60
4/0 3 42,129 7.4
4/0 2 85 0.12
3/1 4 45 0.030
3/1 3 33 0.041
3/1 2 7 (no sol) 0.030

(b) Augm. Model.

m1/m2 maxi #nodes time (sec.)
4/0 4 47 0.297 + 0.026
4/0 3 47 0.279 + 0.018
4/0 2 23 0.265 + 0.015
3/1 4 43 0.312 + 0.031
3/1 3 30 0.286 + 0.019
3/1 2 3 (no sol) 0.279 + 0.013

Table 2. Optimization problem (allocation). n is the problem size (number of variables), |E| is
the number of assignments used to learn implied Gcc’s.

(a) Initial Model.

n #nodes time (sec.)
10 110 0.2
15 2,648 7.6
20 137,982 183.2

(b) Augm. Model.

n |E| #nodes time (sec.)
10 10 12 0.2 + 0.0
15 10 57 2.6 + 1.1
15 20 50 3.8 + 1.1
15 40 50 5.9 + 0.9
20 10 4,801 5.7 + 14.9
20 20 2,800 6.8 + 13.0
20 40 1,998 9.1 + 8.4
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1 Introduction

Benders decomposition [1] is a solving strategy based on the separation of the
variables of the problem. It is often introduced as a basis for models and tech-
niques using the complementary strengths of constraint programming and opti-
mization techniques. Hybridization schemes have appeared recently and provided
interesting computational results [4,5,7,8]. They have been extended [2,3,6] to
take into account other kinds of sub-problems and not only the classical lin-
ear programming ones. However, decomposition has never been proposed to our
knowledge in a generic constraint programming approach. This paper discusses
the way a decomposition framework could be embedded in a constraint solver,
taking advantage of structures for a non expert user. We explore the possibility
of deriving logic Benders cuts using an explanation-based framework for CP and
describe Benders decomposition as a nogood recording strategy. We propose a
tool implemented at the top of an explained constraint solver that could offer
such a systematic decomposition framework.

2 Context

Explanations for Constraint Programming. An explanation records in-
formation to justify a decision of the solver as a domain reduction or a con-
tradiction. It is made of a set of constraints C′ (a subset of the original con-
straints) and a set of decisions dc1, dc2, . . . dcn taken during search. An expla-
nation of the removal of value a from variable v, expl(v �= a) will be written
C′ ∧ dc1 ∧ dc2 ∧ · · · ∧ dcn ⇒ v �= a. An explanation is computed for any contra-
diction during the search and intelligent backtracking algorithms that question
a relevant decision appearing in the conflict are then conceivable.

Principles of Benders Decomposition. Benders decomposition can be seen
as a form of learning from mistakes. It is based on a partition of the variables
into two sets: x, y. The strategy can be applied to a problem of the form P :

P : Min f(y) + cx SP : Min cx DSP : Max u(a− g(y))
s.t : g(y) + Ax ≥ a s.t : Ax ≥ a− g(y) s.t : uA ≤ c
with : y ∈ D, x ≥ 0 with : x ≥ 0 with : u ≥ 0

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 752–756, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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A master problem considers only the y variables. A sub-problem (SP) tries
to complete the assignment on x. If it is possible, the problem is solved, but
if not, a cut (a constraint rejecting at least the current assignment on y) is
produced and added to the master problem: it is called a Benders cut. This
cut is the key point of the method, it has the form z ≥ h(y) (z represents the
objective function – z = f(y) + cx) and is inferred by the dual of the sub-
problem (DSP). So, even if the cut is derived from a particular y, it is valid
for all y and excludes a large class of assignments. From all of this, it can be
noticed that duals variables or multipliers1 need to be defined to apply the
decomposition. However, a generalized scheme has been proposed in 1972 by
Goeffrion [2]. Hooker [3] proposed also to enlarge the classical notion of dual
by introducing an inference dual available for all kinds of sub-problems. They
suggest a different way of thinking about duality: a Benders decomposition based
on logic. For a discrete satisfaction problem, the resolution of the dual consists
in computing the infeasibility proof and determining under what conditions the
proof remains valid: this is exactly what explanations are designed for.

3 A Decomposition Approach in CP

In this paper, we consider problems which can be represented by P :

P : Min obj MP : Min z SP k : Min szk

s.t : Ct(x, y) s.t : Cti(x, y) s.t : Ct(xk, y)
with : x ∈ Dx, y ∈ Dy z < z xk ∈ Dx

y ∈ Dy

Ct(x, y) denotes a set of constraints on variables x, y and obj can be equal to
{f(x, y), f(y), 0}. The problem P will be denoted {Pxy, Py , P0} according to the
corresponding objective functions. The decomposition scheme is done among x
and y. We suppose that the remaining problem over x can be formulated using n
sub-problems exhibiting strong intra-relationships and weak inter-relationships.
Ideally, they should be as small and independent as possible to ensure the re-
maining sub-problem to be easy. So we make the assumption for the sub-problem
to offer such an ideal (denoted by P ) or approximate structure (denoted P

′
, so

we get in the same way {P ′
xy, P

′
y, P

′
0}). Master problem and sub-problems have

then the generic form MP and SP (where Cti(x, y) is the union of Ct(x, y) and
the benders cut gathered at iteration i).

3.1 Benders Cuts as Explanations

The Benders cut is a logic expression over the y variables, generated from the
sub-problem solution. The cut must ensure that the algorithm terminates and
finds the optimal solution. At iteration k, the added Benders cut must have the
following properties:
1 Referring to linear programming duality.
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1. It is valid; it does not exclude any feasible solution over the x, y variables of
the original problem (according to the current upper bound of z).

2. It must exclude at least the current instantiation y of the master that has
been proved as sub-optimal or inconsistent

(2) ensures the termination of the algorithm and (1) ensures optimality as the
master problem is proved to remain a valid relaxation and to provide a lower
bound of P . As the explanation is a subset of the decisions taken by the master, it
excludes at least the current assignment. An empty set indicates an infeasible P
whereas the complete set excludes only y. The explanation is proved to be valid as
long as constraints compute valid explanations as they perform a valid pruning.
Note that the structure of the dual is used through the explanation algorithms
embedded within constraints. In fact, the computation of explanations is lazy2.
Therefore, such an inference dual provides an arbitrary3 dual solution but not
necessarily the optimal one.

3.2 Decomposition Scheme

One of the key point of Benders decomposition is to be able to derive a master
problem that provides a valid lower bound for the original P . We used the
following master problems for initial problems Py, P0 and Pxy :

MPy : Min f(y) MP0 : Min 0 MPxy : Min r(y) = relax(f(x, y))
s.t : Cti(x, y) s.t : Cti(x, y) s.t : Cti(x, y)
y ∈ Dy y ∈ Dy y ∈ Dy

One can notice here that MPy provides a valid lower bound as it is a relax-
ation of Py. It is also the case for P0 as it is a satisfaction problem. However, it
is not true in the general case of Pxy where a specific master problem must be
designed. In fact, a new objective function called r(y) defined on y variables and
providing a lower bound has to be defined by the user.

There are some cases where the original function is itself a relaxation (e.g. a
coloring problem) but in a generic case, the master problem take the form of a
feasibility problem where the cuts added can be seen as expl(z ≥ z∗)⇒ z ≥ z∗.

4 A Benders Decomposition Algorithm for CP

Figure 1 presents our algorithm4. It has been implemented as a library of the Java
version of the PaLM solver embedded within the choco (see http://choco.sf.net)
constraints solver. The standard CP model is only enriched by indicating for
each variable the problem to which it belongs (the master or the index of the
sub-problem).
2 Not all possible explanations are computed when removing a value for scalability

reasons. Only the one corresponding to the solver actual reasoning is kept.
3 It is also the case for linear duality as any dual solution is a bound for the primal.
4 Line 8 is used in the case of P

′
0 and P

′
y whereas lines 5, 11, 13, and 14 concerns Pxy.

The case of P
′
xy is not yet included.
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input : an initial solution to the master problem y,
(1) begin
(2) repeat
(3) Cut = ∅
(4) for each sub-problem spbk do
(5) Pxy : update upper bound of spbk with computeUb(k) using {z, szi, ∀i < k})
(6) solve spbk on (y, xk) to optimality
(7) add its inconsistency (if spbk is infeasible)/optimality explanation to Cut

(8) P
′
0 , P

′
y : spbk+1 =

⋃
i≤k,i>k′ spbi, with k′, the last infeasible sub-problem.

(9) endfor
(10) if (Cut �= ∅) then
(11) Pxy : Cut = computeCut(Cut)
(12) add all explanations ∈ Cut to the master problem
(13) Pxy : update the upper bound of z with computeUb(0) using {z, sz1, . . . , szn})
(14) Pxy : store (x, y) if it is an improving solution
(15) solve the master problem to optimality
(16) endif
(17) until the master problem is infeasible

∨
Cut = ∅

(18) Py , P0, P
′
0 , P

′
y : the solution (y, x) is optimal if Cut = ∅ otherwise, P is infeasible.

(19) Pxy : the solution (y, x) is the optimal solution of P otherwise P is infeasible.
(20) end

Fig. 1. A Generic Benders algorithm for P0, Py (P
′
0 , P

′
y) and Pxy

4.1 Specific Handling for Problems P0 and Py

P0 and Py are closely related because they both use satisfaction problems as sub-
problems. Backjumping algorithms are used to compute explanations (to provide
dual informations) on the sub-problems. Moreover, the use of backjumping for
the master is possible for P0 (which is a traditional CSP) and allows the partial
avoidance of thrashing on the master problem when adding the cuts. This is a
response to Thorsteinsson [5] concerns about possible significant overhead due to
redundant computations. Concerning approximated structures: at any iteration
k, the next sub-problem k+1 considered is chosen according to the rule described
line 8. So if one sub-problem is consistent, the next one starts from its solution
and consider for branching the variables of both problems. Such a strategy hopes
to benefit from the relative independency of sub-problems (it does not imply
any overhead compared to solving one single sub-problem) to derive disjoint
cuts. There is obviously a compromise between the time spent for solving sub-
problems and the accuracy of the retrieved information.

4.2 Specific Handling for Problem Pxy

To keep isolated sub-problems, we do not add the objective function as a con-
straint which could propagate from one sub-problem to another. Instead, we
provide a way to compute the bound of one problem according to other known
bounds (master and slaves) with an empty explanation. So the propagation is
done at hand to only incriminate the master problem solution using:
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– computeCut(Explanation[] expls) (line 11): computes the explanation(s) to
be added to the master according to the objective function. A sum would
lead to a union among explanations for example;

– computeUb(int k) (line 5,13): computes an upper bound on zk according to y
and known zi with i < k. In the case k = 0 (the master problem) it computes
the upper bound of the overall objective function z if every SPk was feasible.

At each iteration, a lower bound is obtained once the master problem has
been solved. The algorithm stops once the lower bound meets the upper bound
computed after the slaves. One can notice that the upper bound does not neces-
sarily follow a decreasing trend whereas the lower bound is only growing ensuring
the termination of the algorithm as long as variables have finite domains.

5 Conclusion

We have investigated in this paper how to derive logic Benders cuts using an
explanation based framework for Constraint Programming. Accuracy of cuts us-
ing explanations is nevertheless questionnable. Indeed, remaining sub-problems
are not polynomial (compared to a traditional MILP approach for Benders and
assuming that LP is polynomial) and explanations constitute a weaker cut as
a lazy computation is used. First experimental results using structured random
binary problems show that Benders becomes advantageous in case of hard sub-
problems compared to a branching using the same structure information within
a backjumping algorithm. Moreover, we believe that the presence of subset of
variables exhibiting a strong impact over the whole problem could be efficiently
used by such an approach. Our next step is to apply the technique on hard
academical problems and we are currently investigating how hard latin square
instances could be decomposed.
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Abstract. The Boolean Constraint Propagation (BCP) is a well-known helpful
technique implemented in most state-of-the-art efficient satisfiability solvers. We
propose in this paper a new use of the BCP to deduce sub-clauses from the asso-
ciated implication graph. Our aim is to reduce the length of clauses thanks to the
subsumption rule. We show how such extension can be grafted to modern SAT
solvers and we provide some experimental results of the sub-clauses deduction
as a pretreatment process.

1 Introduction

Recent impressive progress in the practical resolution of hard and large SAT instances
allows real-world problems to be addressed (e.g. [1,2,3]). Indeed, instances from practi-
cal applications contain some structures (e.g. [4,5]) that can be attractive to SAT solvers.
Most of modern SAT solver are based on the well-known DPLL procedure [6] where
Boolean Constraint Propagation is maintained at each step of the search process. This
important part has motivated many works on efficient implementation of BCP (e.g.
zchaff [7]) and on extending its practical use.

In this paper, the constraint graph generated by BCP process is used to deduce new
resolvents. The set of such possible resolvents can be of exponential size in the worst-
case w.r.t. the set of clauses encoded in the constraint graph. We focus on a polynomial
time and constant space complexity approach. Then, we show how such an extension
can be grafted to modern SAT solvers.

2 Definitions and Preliminaries

A CNF formula Σ is a conjunction of clauses (the set of clauses is denoted cla(Σ)),
where a clause is a disjunction of literals. A literal is a positive or negative propositional
variable. The set of variables (resp. literals) occurring in Σ is denoted var(Σ) (resp.
lit(Σ)). The negation of a set A of literals (denoted Ā) is the set of the corresponding

� This work is supported by the Region Picardie under HTSC project.
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opposite literals. A∨ (resp. A∧) is denoted as the disjunction (resp. conjunction) of all
literals of A.

Let c1 and c2 be two clauses of Σ.

i) subsumption rule: When c1 ⊂ c2 (i.e. c1 is a sub-clause of c2), c1 subsumes c2.
ii) resolution rule: If there exists a literal l s.t. l ∈ c1 and ¬l ∈ c2, then a resolvent r

on l of c1 and c2 can be defined as r = res(l, c1, c2) = c1\{l} ∪ c2\{¬l}. A resolvent
r is called a subsuming resolvent iff ∃c ∈ Σ s.t. r subsumes c.

Boolean Constraint Propagation consists on setting all unit literals to the value true
until encountering an empty clause or until no unit clause remains in the formula.

An Implication Graph associated to Σ and a set I of decision literals is a labeled
directed acyclic graph Gig(Σ, I) = (V ,A). V is a set of distinct vertices labeled with the
literals of I and the literals forced to true during the BCP process.A is a set of distinct
directed edges 〈li, lj〉 ({li, lj} ∈ V) such that li = true contributes to force lj =
true through the BCP process. The set of edges {∀k〈lik

, lj〉} represents the complete
implication {li1 ∧ li2 ∧ . . . ∧ lin ⇒ lj}. Each directed edge 〈li, lj〉 is labeled with
the clause of Σ used by the BCP. Thus, each node of the graph corresponds to one
variable assignment. The set of literals which force to true a given literal l is named
”predecessors” of the labeled vertex l. This set is denoted pred(l). In such a context,
each implied literal l from Gig is labeled with the decision level α corresponding to the
decision-level where l is assigned.

3 Exploiting BCP for Sub-clauses Deduction

It is well known that BCP can be seen as a restricted form of resolution. At each step
a subsuming resolvent is produced between a unit clause and another clause of the for-
mula. Our aim in this paper is to produce such resolvents from Gig . Thus, we start from
a given literal of the implication graph, then a new resolvent (internal node) is generated
between two clauses corresponding to the implications of such a literal and one of its
predecessor from the implication graph. The process is then recursively applied between
the current resolvent and an implication of one of its literals. In the following definition,
we introduce a sub-inference exploiting such resolution process for sub-clause deduc-
tion.

Definition 1. Let Σ be a formula, l ∈ lit(Σ) and Gig(Σ, l) an implication graph. A
clause c is l-sub-inferred from Σ if ∃c′ ∈ Σ such that one of the following condition is
satisfied : i) c ∈ N and c ⊂ c′. ii) ∃c′′ ∈ N s.t. c = res(p, c′, c′′) ⊂ c′.

Proposition 1. Let Σ be a formula, l ∈ lit(Σ) and Gig(Σ, l) = (V ,A). A sub-inferred
clause c can be computed in O(|cla(Σ)| × (|V|+ |A|)2).

Proof. BCP and Gig = (V,A) are first processed (in linear time) on Σ ∧ l (|V| ≤ |var(Σ)|).
Considering a clause c′ from Σ, we try to find any implication clause c represented in Gig fol-
lowing definition 1. From a vertex s, we first consider the implication pred(s) → s from Gig .
Let us suppose that there is no way to deduce a clause c that subsumes c′ from Gig . The impli-
cation clause pred(s) → s contains at least one literal p which does not belong to c′. We then
substitute pred(p) for p in the implication pred(s) → s. Following this principle, a subset of
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d
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x2

x3
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x5

z

c1

c2

c3

c4

c5

Σ =

⎧⎪⎨⎪⎩
c1 : ¬d ∨ x1 c4 : ¬x1 ∨ ¬x2 ∨ ¬z ∨ x4
c2 : ¬d ∨ x2 c5 : ¬x3 ∨ ¬x4 ∨ x5
c3 : ¬x1 ∨ x3 c6 : ¬d ∨ ¬x3 ∨ x5 ∨ x6

c7 : ¬x1 ∨ x2 ∨ x5

⎫⎪⎬⎪⎭

Fig. 1. Formula Σ and it associated BCP setting d to True

vertices (possibly all) of Gig is visited while it exists at least one literal of the current implication
which does not belong to c′. This is computed until one or more decision literals (i.e. with no
predecessors) which does not belong to c are reached. Thus, the sub-clauses deduction depends
on the number of vertices of Gig . If a clause c such that c subsumes c′ (as mentioned in definition
1) can be deduced from Gig , the process previously described allows to visit vertices of Gig until
one of the condition of the definition 1 is valid. Consequently, considering one vertex of Gig , only
one traversal of Gig is needed (O(|V| + |A|)). This has to be computed for all vertices of Gig .
As each clause of Σ could be considered, the worst case complexity of this global computation
process is O(|cla(Σ)| × (|V| + |A|)2).

Within a practical framework, only a restricted subset of clauses of Σ is considered
for each BCP.

Algorithm 1. GetSubClause(Gig:IG, A:set of literals, y:literal, c:clause, α:decision-level)

1: if ∃xr ∈ Ā ∪ {y}|¬xr ∈ c and ∀x ∈ ((Ā ∪ {y}) − {xr}) ∩ Vα, x ∈ c then
2: Σ = (Σ − {c} ∪ {c − {¬xr}})dl>maxx �∈c,x∈A∩(V−Vα)(dlx)

3: if pred(xr) �= ∅ then
4: GetSubClauseLevel(Gig , A − {xr} ∪ pred(xr), y, c, α)
5: end if
6: else
7: if ∀x ∈ (Ā ∪ {y}) ∩ Vα, x ∈ c then
8: Σ = (Σ − {c} ∪ {(Ā ∩ c)∨ ∨ y})dl>maxx �∈c,x∈A∩V−Vα

(dlx)

9: x = choice(A)
10: if pred(x) �= ∅ then
11: GetSubClauseLevel(Gig , A − {x} ∪ pred(x), y, c, α)
12: end if
13: else
14: Choose x ∈ A|x �∈ c and ¬x �∈ c
15: if pred(x) �= ∅ then
16: GetSubClauseLevel(Gig , A − {x} ∪ pred(x), y, c, α)
17: end if
18: end if

19: end if

4 Inferring Sub-clauses During Search

For a clause c of Σ, the function GetSubclause of algorithm 1 finds according to the
definition 1 and if they exists, sub-clauses which directly subsume c (see line 7) and
clauses whose resolvents with c subsume c (see line 1). Let us denote Vα the set of
literals assigned at the current decision-level α. Searching for all subsumptions from
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Table 1. Preliminary results

zchaff Pretreatment (180s) +zchaff Pretreatment (300s) +zchaff
Instance S/U nodes time nodes subs fixed var. time nodes subs fixed var. time

SAT.dat.k90 S N/A N/A N/A 373 2 917 N/A 6 157 239 598 4 419 13 264
abp4-...-403 U 2 843 489 9 751 2 369 440 1 368 359 6 950 1 675 832 1 458 380 4 808
2bitadd 10 U 60 605 40 60 605 0 0 221 60 605 0 0 340
longmult12 U 1 164 158 2 926 1 020 640 48 124 2 736 1 108 196 48 137 3 118
longmult13 U 1 567 022 3 871 1 180 017 49 129 3 220 1 145 954 49 137 2 918
longmult15 U 625 534 675 498 430 37 19 806 384 451 51 170 789
flat200-10 S 14 202 2 14 202 0 0 182 14 202 0 0 303

difp 19 3 wal rcr S 2 030 996 2342 1 257 747 330 431 1 999 1 914 713 349 433 6 134
difp 20 3 wal rcr S 64380 5 718 328 318 401 541 718 328 318 401 674
i10mul...sat03-353 U 7 806 817 11 808 6 379 809 4 157 59 6 842 6 622 326 4 655 83 8 613
alu4mul...sat03-344 U 4 923 861 14 263 4 703 752 1 005 10 12 942 5 423 715 1 080 10 14 170

7pipe q0 k U 1 829 574 453 1 688 006 18 124 52 583 1 785 586 18 125 59 723

the current implication graph Gig is obtained as follow: ∀y ∈ Vα, ∀c ∈ Σ|y ∈ c,
GetSubclause(Gig, pred(y), y, c, α). In algorithm 1, we assume that y ∈ Vα and A ⊂
V such that A∧ → y.

To illustrate, let us consider formula Σ and the implication graph, obtained from
the formula Σ when assigning d to true at decision-level α and assigning z to true
at decision-level β < α (Fig. 1). To deduce a sub-clause of c6 and considering im-
plications of x5 through the implication graph, we will first consider the implication
x3 ∧ x4 → x5. The variable x3 belongs to the current implication and to the clause c6.
As x4 does not belong to c6, any implication containing this literal does not subsume c6.
So we replace x4 in A by its predecessors x1, x2 and z. Following our principle, x1 and
x2 are not literals of c6, and d is there common predecessor. We deduce d∧x3∧z → x5,
and the corresponding clause ¬d∨¬x3 ∨¬z∨x5 does not subsume c6. However, since
z has been assigned at a lower decision-level, c4 can be considered as only composed
of ¬x1∨¬x2∨x4 while z keeps its current value (before backtracking at decision-level
β). The deduced clause is then c′6 : ¬d ∨ ¬x3 ∨ x5 (for decision-level greater than
β), which subsumes c6. Following the process on c′6 upon the current set A = {x3, d},
x3 is chosen (d has no predecessor). Through Gig(Σ, {d, z}), x1 and d are succes-
sively visited and the implication d → x5 is deduced. The corresponding sub-clause :
c′′6 : ¬d∨x5 subsumes c6. The subsumed literals of c6 will be restored when backtrack-
ing at decision-level β. This level restriction is due to literal z, which does not belong
to the clause c6. Obviously, if c4 was only composed of literals ¬x1 ∨¬x2 ∨ x4, then z
would not be a literal of c′′6 . Consequently, the corresponding subsumption would have
been global (i.e. available for the whole search tree).

5 Experimental Results

Our technique can be applied after each step of BCP, either if it leads to a conflict or
not. Comparative results of Table 1 show the impact (on time and number of nodes
of zchaff1) of a restricted form of our sub-clauses deduction technique, limited to a
pretreatment (preprocessing) of the original formula. A time limit of the pretreatment

1 zchaff version 2004.11.15.
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has been arbitrarily set to two different values (180 and 300 seconds). After the pre-
treatment, zchaff is run on the simplified formula. The time limit allowed for solving
a given instance has been set to 4 hours. “N/A” means that the solver did not answer
before this time limit. Columns named “subs” (resp. “fixed var.”) represent the number
of subsumptions (resp. variables assigned) found thanks to the pretreatment. Columns
“time” represent the whole computation time (pretreatment when used + zchaff) to
solve the instance. Finally, “S”(resp. “U”) means that the instance is Satisfiable (resp.
Unsatisfiable). For “Bounded Model Checking” instances (“longmult*” and “abp*”),
the number of nodes can decrease by up to 50% in comparison with stand-alone zchaff.
However, we note that sub-clauses deduction strongly depends on benchmark type (no
subsumption found for “flat*” instances). Let us recall that these preliminary results are
only computed at the root of the search-tree. Obviously, this technique can be applied
at each node of the search tree. In such a case, sub-clauses deduction can seen as a new
form of learning.

6 Conclusion and Future Work

In this paper a new extension of the scope of boolean constraint propagation is pre-
sented. Indeed, many new resolvents can be generated using the BCP implication graph
leading to a powerful resolution-based technique. We have shown that when a subset of
such resolvent (those that achieve a sub-clauses deduction) are considered, we obtain
a polynomial time approach that can be grafted to DPLL-like techniques. Clearly, our
preliminary experiments are encouraging on some classes of instances. To substantiate
our claim on the usefulness of the proposed approach, further experimental validation is
needed. Moreover, this work has to be completed by adding dynamic use of sub-clauses
deduction at each node of the resolution tree. Considering the computation time of our
approach, deduced resolvents will have to be evaluated according to their practical use.
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1 Introduction

Hybrid search methods synthesize desirable aspects of both constructive and
local search methods. Constructive methods are systematic and complete, but
exhibit poor performance on large problems because bad decisions made early
in the search persist for exponentially long times. In contrast, stochastic local
search methods are immune to the tyranny of early mistakes. Local search meth-
ods replace systematicity with stochastic techniques for diversifying the search.
However, the lack of systematicity makes remembering the history of past states
problematic. Typically, hybrid methods introduce a stochastic element into a ba-
sically constructive search framework. Lynce [6] uses randomized backtracking
in a complete boolean satisfiability solver which incorporates clause (nogood)
learning to ensure completeness. Jussein & Lhomme [4] perform a constructive
search while keeping conflict sets (nogoods) in a Tabu list and backtrack via a
stochastic local search in the space of conflict sets.

Our method, called Systematic Local Search (SysLS) [3], follows the opposite
approach. We incorporate systematicity within an inherently stochastic search
method (like [2]). SysLS searches through a space of complete variable assign-
ments and relaxes the requirement for maintaining feasibility. It preserves full
freedom to move heuristically in the search space with maximum heuristic infor-
mation available. While many local search methods easily get trapped in local
optima, SysLS records local optima as nogoods in a search memory. Nogoods
force the search away from these maximally consistent but unacceptable so-
lutions. Our method is analogous to other diversification mechanisms in local
search (eg- Tabu search) but is systematic and inherits the sound resolution rule
for nogood learning. In this paper, we extend SysLS for optimization and, in
particular, for job shop scheduling problems.

2 Systematic Local Search for Optimization

We begin this section with relevant definitions for the SysLS schema from [3]. A
CSP is a tuple (V, D, C) where V is a set of variables with domains D and C is
a set of k-ary constraints (k ≤ |V |) on k variables in V .

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 762–766, 2005.
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Definition 1. A nogood is a set of variable assignments λ⊥ = {〈x = a〉}x∈X , X ⊆
V , such that no solution to the CSP contains the variable assignments of λ⊥.

Definition 2. Given a nogood search memory, Γ , an assignment 〈x = a〉 is
disallowed if and only if ∃λ⊥ ∈ Γ, 〈x = a〉 ∈ λ⊥ and ∀〈x′ = a′〉 ∈ λ⊥ \ {〈x = a〉}
is the current assignment of the variable x′. Otherwise the assignment is allowed.

Definition 3. The live domain of a variable x is Δx = {a ∈ Dx|〈x = a〉
is allowed}.

When the live domain of a variable is empty, nogood resolution allows the
inference of a new nogood from the nogoods disallowing the domain elements.
We define a valuation function fx(a) for a variable assignment 〈x = a〉 which is
dependent on the current assignments of the other variables in V . The valuation
function is used to guide the search towards feasible solutions. We classify each
variable into one of four possible classes within the context of minimizing fx(a).

1. MAXIMAL: A variable x is maximal if and only if its current assignment
〈x = a〉 is such that ∀b ∈ Δx, fx(a) ≤ fx(b).

2. SUBMAXIMAL: A variable x is submaximal if and only if ∃b ∈ Δx such
that fx(b) < fx(a).

3. INF : A variable x is in an infeasible state if its current assignment is 〈x = a〉
but a �∈ Δx.

4. NULL: Otherwise, x is currently not assigned a value.

In [3], the valuation function fx(a) for solving CSPs is the number of constraints
violated when 〈x = a〉 given the other current variable assignments (eg- min-
conflicts). Hence, SysLS perceives the CSP as an optimization problem to mini-
mize the number of violated constraints while inducing new nogoods at every local
minima. In this paper, we consider extensions to SysLS for constraint optimization
problems (COPs). A solution to a COP is a complete assignment that both satis-
fies all the constraints and optimizes the objective function, Copt. For most opti-
mization problems, a problem-specific neighbourhood is available formoving in the
space of complete feasible assignments. So, here we search in the space of feasible
variable assignments and concentrate on improving the objective function. Hence,
at every local optimum, the constraints are satisfied but the objective value might
not be optimal. We wish to record a nogood that captures the subset of variable as-
signments responsible for the objective value, thus preventing non-solutions w.r.t.
optimizing the objective function. Relying on a neighbourhood that preserves fea-
sibility, we can consider the valuation function fx(a) that guides the search simply
as the value ofCopt whenx is reassigned to a. We can now rewrite the original SysLS
algorithm for solving optimization problems.

Figure 1 shows the new search method called SysLSopt-NG. The algorithm
receives as input of a set of variables V and the objective function Copt. It out-
puts the first optimal solution or the best solution found. The variable ordering
select(V ) is based on the classification of variables into the classes described
above 1. It is specified by a precedence order among the classes and then an
1 For the SysLSopt-NG instance, we ignore the NULL class because we always main-

tain a complete assignment.
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Input: variable set V and Copt

Output: best solution found
α ← initial complete assignment;1

repeat2

while not all x ∈ α are MAXIMAL do3

let x = select(V ) ;4

assign(x) ;5

update the best solution if a better solution is found ;6

end7

λ⊥ = label(Copt) ;8

add λ⊥ to the nogood cache Γ ;9

simplify Γ (as in [2]) ;10

if λφ ∈ Γ then return the best solution found11

until stopping criterion;12

return the best solution found13

Fig. 1. SysLSopt-NG finds an optimal solution for variables V with optimization con-
straint Copt

order between the variables in each class. SysLSopt-NG is parameterized by the
variable ordering relation similarly to the original SysLS schema.

Once a variable is chosen, the action taken is specified by assign(x) according
to the following state transition rules for variables:

1. If the variable is in the MAXIMAL state, do nothing.
2. If the variable is in the SUBMAXIMAL state, then we reassign x to one of

its maximal values.
3. If the variable is in the INF state, we switch the assignment to the maximal

allowed domain element. If all elements are disallowed in the current solution,
no action is taken until one of its assignments becomes allowed.

3 Case Study: The Job Shop Scheduling Problem

We provide a case study of applying SysLSopt-NG to job shop problems (JSPs).
Every JSP has n jobs and m machines. Each job j ∈ J consists of exactly m
operations and each of the m operations is processed on a different machine. The
precedence relations between operations of the same job (RJ) are fixed. Each
operation has a specified duration. For a complete schedule, no two operations
can execute on the same machine at the same time. The objective function (Copt)
is to minimize the makespan, i.e. the time at which the last operation finishes
execution. The JSP is known to be NP-hard.

Below we formulate the JSP as a constraint optimization problem. A vari-
able v is defined as the ordering between two different operations processed on
the same machine. For every variable, the domain D contains only two values
D = {≺,>} specifying the ordering. The subset of m × (n − 1) variables cor-
responding to the processing sequence on the m machines is denoted V 1. A
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complete JSP schedule can be represented by a directed acyclic graph (DAG)
G where the nodes are operations and precedence relations in RJ and V 1 are
the arcs between operations whose length is equal to the duration of the source
operation. Every operation is scheduled at its earliest start time determined by
G and the makespan is equal to the length of the critical path in G. The critical
path involves arcs corresponding to some precedence relations in RJ and some
variables in V 1. Such a set of variables on the critical path is denoted by V 2

(V 2 ⊆ V 1). If the neighbourhood only changes variable assignments in V 2, then
the schedule remains feasible as shown in [5]. At a local optimum, SysLSopt-
NG induces a nogood on the subset of variable assignments responsible for the
makespan. Since it is solely determined by the critical path, the nogood contains
only the variable assignments in V 2.

Theorem 1. If any nogood recorded at a local optima represents the assign-
ment of V 2, then nogood resolution is sound with respect to finding the optimal
solution. (Proof omitted)

The parameterized components of the algorithm (Fig 1) are implemented as:

1. initial solution - The operations on a machine are ordered by their prece-
dence ordering in their respective jobs.

2. select(V) - The precedence between variable classes is SUBMAXIMAL ≺
INF. The variable ordering within the variable class SUBMAXIMAL is best-
improvement. Under class INF, we choose a recency-based diversification
scheme. The preference is first given to the oldest variable assignment. Ties
are broken by the shorter makespan value. In addition, we never choose an
INF variable whose live domain is empty.

3. stopping criterion - Stop when either known optimal makespan is reached
or the maximum number of iterations has been executed.

4 Experimental Results

The empirical evaluation of SysLSopt-NG is on the well-known Lawrence bench-
mark 2. We compare our results with two standard heuristic approaches, simu-
lated annealing (SA) [5] and Tabu search (TB) [1]. We also consider two state-
of-the-art specialized approaches: a fast taboo search (TSF) [7], and a tabu
search using shifting bottleneck procedure (TSB) [8]. The maximum number of
iterations is set to 20000 similarly to the other authors. All the experiments are
run on a PC with an Intel 2.8 GHz processor and 512 MB memory. able 1 shows
results in terms of the relative error 3. Table 2 summarizes the best makespan,
the mean relative error (MRE) and the mean run-time over 10 runs (t̄) of
some very hard instances. The SysLSopt-NG performs extremely well on the 40
Lawrence instances where 27 are solved optimally (OPT in Table 1) and the best
makespan values are generally within 2% of the optimal. The SysLSopt-NG is
2 From OR-Library at http://people.brunel.ac.uk/∼mastjjb/jeb/info.html.
3 RE = (Lmin−Lopt)

Lopt
× 100 (Lmin is the best makespan obtained and Lopt is the

optimal makespan).
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Table 1. Comparison of RE on Lawrence
instances

problem SysLS SA TB TSF TSB
La01-05 0 0.30 0.51 0 0
La06-10 0 0 2.25 0 0
La11-15 0 0 1.43 0 0
La16-20 0.13 0.71 1.19 0 0
La21-25 0.64 1.23 3.29 0.10 0.10
La26-30 0.94 2.01 1.94 0.14 0.46
La31-35 0 0 0 0 0
La36-40 1.15 1.67 3.53 0.26 0.58
OPT 27 23 16 33 33
MRE 0.36 0.74 1.77 0.06 0.14

Table 2. Comparison of best make span
on a few hard Lawrence instances

Laxx SysLS t̄(sec) SA TB TSF TSB
La19 843 11.5 848 860 842 842
La21 1055 308.1 1063 1099 1047 1046
La24 941 224.3 952 989 939 938
La25 979 234.7 992 995 977 979
La27 1255 810.8 1269 1258 1236 1235
La29 1177 872.8 1218 1206 1160 1168
La36 1275 455.8 1293 1302 1268 1268
La37 1411 743.0 1433 1453 1407 1411
La38 1212 634.4 1215 1254 1196 1201
La39 1249 639.5 1248 1269 1233 1240
La40 1240 652.5 1234 1261 1229 1233
MRE 1.14 − 2.13 3.63 0.23 0.52

a hybrid search method that combines desirable properties from systematic and
stochastic search methods. The experimental results show that it finds better
solutions than the general local search methods and compares favourably to the
specialized heuristic approaches. Unlike other approaches which are specially
designed for the JSP, the SysLSopt-NG is a very general method for solving
COPs.
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Abstract. Given a configuration of parameters that satisfies a set of
constraints, and given external changes that change and fix the value
of some parameters making the configuration invalid, the problem of
interactive reconfiguration is to assist a user to interactively reassign a
subset of the parameters to reach a consistent configuration again. In this
paper, we present two BDD-based algorithms for solving the problem,
one based on a monolithic BDD-representation of the solution space and
another using a set of BDDs. We carry out experiments on a set of power
supply restoration benchmarks and show that the set-of-BDDs algorithm
scales much better.

1 Introduction

In this paper we look at the problem of interactive reconfiguration where an
already existing (and valid) configuration of parameters becomes inconsistent
due to change of one or more of the parameters forced upon the configuration
for external reasons. For example, in power supply distribution, a fault could
cause a power distribution line to be shut down and a new configuration of
the distribution network must be found. In this situation, our approach is to
change a small subset of the parameters in order to restore consistency. Besides
the number of changed parameters, other user-specific criteria are also relevant
to consider. Therefore, the user should be given control to interactively reassign
this subset of variables, thus effectively exploring the trade-offs between different
criteria, for example, finding a configuration of the power distribution network
that tries to maximize the number of customers regaining electricity without
significantly changing the standard network topology.

2 Theoretical Background

The knowledge about parameters and rules in a configuration problem is cap-
tured as a special kind of CSP model:

Definition 1. A configuration model (CP) C is a triple (X, D, F ) where X is
a set of variables {x1, . . . , xn}, D = D1 × . . . × Dn is the cartesian product of
their finite domains D1, . . . , Dn and F = {f1, ..., fm} is a set of propositional
formulae over atomic propositions xi = v, where v ∈ Di, specifying conditions
on the values of the variables.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 767–771, 2005.
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A total configuration is an assignment ρ of values v1, . . . , vn to each of the
variables represented as a set of pairs (xi, vi) such that vi ∈ Di. A partial con-
figuration ρ is an assignment to a subset of the variables. A total configuration ρ
is valid if it satisfies all the formulae, i.e. ρ |= fj for j = 1, . . . , m, which we also
abbreviate as ρ |= F . A partial configuration ρ is valid, abbreviated as ρ |=p F ,
if it can be extended to a total valid configuration ρ′ ⊇ ρ.

Given a configuration model C = (X, D, F ) and a partial configuration
ρ, interactive configuration is the process of assisting a user in interactively
reaching a total valid configuration starting from ρ. The interaction satisfies
the user-friendly requirement of completeness of inference which demands that
at every interaction step, for every unassigned variable x, and every selectable
value vx, there is a total configuration satisfying this selection, i.e. ∃ρ′.(ρ′ ⊇
ρ ∪ {(x, vx)} ∧ ρ′ |= F ). In previous work [1,2] this functionality was obtained
by representing the set of valid configurations Sol = {ρ | ρ |= F}, as a Binary
Decision Diagram (BDD) [3] through a proper encoding of the finite domains
with Boolean variables. It is called the monolithic approach, since Sol is rep-
resented as a single BDD. The algorithm facilitating interactive configuration
given the already made partial assignment ρ and solution space Sol is denoted
as InCo(Sol, ρ) and described in more details in [4,2].

3 Interactive Reconfiguration

For reconfiguration, we model externally forced changes to the current total as-
signment ρ as a partial assignment ρf (f for fixed assignments). The resulting,
externally modified configuration is denoted by ρ[ρf ] = {(xi, vi) | (xi, vi) ∈
ρf or (xi �∈ dom(ρf ) and (xi, vi) ∈ ρ)}. Given the set of variables R to be unas-
signed we define ρ1 ↑ R = {(xi, vi) ∈ ρ1 | xi �∈ R} read as “ρ1 release R”.

Definition 2 (Interactive Reconfiguration). Given a configuration problem
C(X, D, F ), a starting valid total configuration ρ |= F and a forced partial as-

InRecoMono(Sol, ρ, ρf ) /* ρ is valid and total */
1: ρ1 ← ρ[ρf ] /* ρ1 is invalid and total */
2: if Solρf is empty then halt /* no solution: ρf �|= F */
3: R ← ShortestPath(Solρf , ρ, cost)
4: ρ2 ← ρ1 ↑ R /* ρ2 is valid and partial */
5: ρ′ ← InCo(Sol, ρ2) /* ρ′ is valid and total */
6: return ρ′

Fig. 1. The key part of the monolithic algorithm is the ShortestPath(Solρf , ρ, cost)
function (line 3) which computes a release set R given the BDD for the full solution
space Sol. We first restrict Sol to Solρf as BDD operations. We then find the set
of variables corresponding to the path of lowest cost (according to the function cost)
using a depth-first traversal of the BDD. We assign a positive cost to edges representing
choices we want to avoid (such as electricity consumers switched off) and zero cost to
all other edges (a similar algorithm is described in [5]).
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InRecoSoB(SSol, ρ, ρf ) /* ρ is valid and total */
1: ρ1 ← ρ[ρf ] /* ρ1 is invalid and total */
2: R ← PickReleaseSetSoB(SSol, ρ, ρf )
3: ρ2 ← ρ1 ↑ R /* ρ2 is valid and partial */
4: RelSol ← ∧m

j=1 Solρ2
j

5: ρ′ ← InCo(RelSol, ρ2) /* ρ′ is valid and total */
6: return ρ′

Fig. 2. In a precompilation step, SSol will be computed. We then find (line 2) a release
set R in an incremental fashion and compute a single BDD RelSol of the relevant part
of the solution space to be used for reconfiguration. The BDD RelSol is found as a
conjunction of the BDDs Solρ2

j corresponding to the BDDs Solj restricted with the
assignment ρ2.

PickReleaseSetSoB(SSol, ρ, ρf )
1: Δ ← dom(ρf)
2: ρ1 ← ρ[ρf]
3: R ← ∅
4: while not SoBSAT (SSol, ρ1 ↑ R) do
5: if R ∪ Δ = X then
6: halt /* all variables tried, no solution: ρf �|= F */
7: R ← next(R ∪ Δ) \ Δ
8: end
9: return R

Fig. 3. In each incremental step, the next(Y ) function (line 7) finds from a set of vari-
ables Y a next larger set of variables to be tried for a release set. The set is checked for
being a release set through the satisfiability check performed with the algorithm SoB-

SAT (SSol, ρ) (line 4) which determines whether there exists a total ρ′ ⊇ ρ fulfilling all
the BDDs in SSol. The algorithm SoBSAT is implemented as a Propositional Constraint
Solver that is based on a BDD representation of individual (propositional) constraints,
using the learning and conflict-resolution mechanisms of modern SAT solvers [6,7]. It
is implemented on top of the BDD-package Buddy [8].

signment ρf such that the updated total configuration ρ1 = ρ[ρf ] is invalid. The
reconfiguration problem is to find a (small) release set R ⊆ X \ dom(ρf ) such
that the partial assignment ρ2 = ρ1 ↑ R is valid if such a set exists or report that
it does not exist.

The algorithm in figure 1 presents interactive reconfiguration in the mono-
lithic approach.

Sometimes the monolithic approach is not feasible because the intermediate
or resulting BDD for representing the solutions Sol becomes too big. We therefore
develop an algorithm based on a set of BDDs. There will be a BDD for each of
the formulae fj ∈ F . We denote the j’th BDD by Solj and the full set of BDDs
by SSol. The algorithm in figure 2 illustrates this approach. A key element in the
algorithm, is the incremental computation of the release set (line 2) as presented
in figure 3.
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4 Experimental Evaluation

For experimental evaluation we use a number of instances from the Power Supply
Restoration domain [9,10]. They encode the part of the power distribution net-
work that contains local power sources each of which supply a number of electric
lines, some of which are connected to sinks : transformer stations that consume
electricity from the network and deliver it to final consumers. The instances
were created by Stuart Henney, Tine Bak, Rene Jensen and Lars Sonne [11,12]
in collaboration with NESA - the Danish power distributor in the Copenhagen
area [13]. All the instances are made available for download at [14]. Structural
properties of these instances are reported in [4].

Electric lines can become faulty, for example during bad weather conditions,
in which case the power source supplying the line is turned off. This affects
the entire area supplied from the source, and the problem is in reconfiguring
the network by opening and closing lines, to resupply the maximum number
of consumers in the affected areas while addressing a number of other domain
specific goals (such as minimizing the change of the standard network topology).

For evaluation purposes, three reconfiguration algorithms were developed,
a monolithic-BDD algorithm, and two versions of the set-of-BDD algorithms,
based on different unassignment heuristics H1 and H2 for implementing the next
function (fig. 3, line 7). In general, heuristic H1 unassigns lines powered only from
the affected power source, while H2 additionally unassigns lines powered from
unaffected neighbouring power sources (more details in [4]). In each simulation,

Table 1. We measured the time needed to calculate a release set R, and to compile a
resulting BDD for interactive configuration (fig. 1, fig. 2 - both up to line 4), denoted
as t, t1, t2 for the monolithic, H1 and H2 algorithm respectively. We measured the
maximum percentage of defined sinks that can be left powered (S, S1, S2) as indication
of quality of restoration w.r.t. resupplying the maximum number of customers. We
also measured the maximum percentage of unaffected lines (unchanged line directions)
denoted as RDir, RDir1, RDir2, indicating the restoration quality w.r.t. stability of
network topology. All the numbers reported are averaged over 100 seed-based pseudo-
random simulations (for Complex-P2 and Complex-P3 only 10 simulations) carried at
a Pentium-Xeon machine with 4GB RAM and 1MB L2 Cache, running Linux.

Restoration quality Avg. RT (sec)
Benchmark

S(%) S1(%) S2(%) RDir(%) RDir1(%) RDir2(%) t t1 t2

Std-diagram 98 96.00 96.00 75.54 75.54 75.54 0.17 0.87 1.31
1-6+22-32 100 99.47 99.47 77.33 77.33 77.33 0.50 0.16 0.25

Complex-P2 100 85.19 97.22 84.17 77.31 84.17 3.88 0.14 0.36
Complex-P3 100 90.00 98.42 91.07 91.07 91.07 132.02 0.12 4.44

1-32 - 91.53 99.00 - 91.82 91.82 - 0.10 0.28
Large - 93.98 98.73 - 94.89 94.89 - 0.27 1.43

Complex-P1 - 79.26 96.94 - 78.96 96.86 - 0.77 15.58
Complex* - 86.5 91.92 - 85.52 91.67 - 3.11 12.05
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we loaded a precalculated valid configuration ρ (representing operational power
configuration), and randomly picked a powered line forcing it off. We then ran
the reconfiguration algorithms measuring the number of parameters as shown in
Table 1.

The numbers in Table 1 indicate that the set-of-BDDs approach scales dra-
matically better. The biggest instance where the monolithic approach was appli-
cable was the instance Complex-P3 (28 lines and 19 sinks) with response time of
132.02 seconds, compared to the five times bigger instance Complex (146 lines
and 119 sinks) that was handled in 42 times shorter time (3.11 seconds). The
high percentage of ressupliable sinks and unaffected lines (most quality estimates
are above 90%) supports the intuition about the locality of external effects in the
real world instances (recovery within the 10% of change in network topology).
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Abstract. In recent years, dynamic local search (DLS) clause weighting algo-
rithms have emerged as the local search state-of-the-art for solving propositional
satisfiability problems. This paper introduces a new approach to clause weighting,
known as Divide and Distribute Fixed Weights (DDFW), that transfers weights
from neighbouring satisfied clauses to unsatisfied clauses in order to break out
from local minima. Unlike earlier approaches, DDFW continuously redistributes
a fixed quantity of weight between clauses, and so does not require a weight
smoothing heuristic to control weight growth. It also exploits inherent problem
structure by redistributing weights between neighbouring clauses.

To evaluate our ideas, we compared DDFW with two of the best reactive lo-
cal search algorithms, AdaptNovelty+ and RSAPS. In both these algorithms, a
problem sensitive parameter is automatically adjusted during the search, whereas
DDFW uses a fixed default parameter. Our empirical results show that DDFW
has consistently better performance over a range of SAT benchmark problems.
This gives a strong indication that neighbourhood weight redistribution strategies
could be the key to a next generation of structure exploiting, parameter-free local
search SAT solvers.

1 Introduction

The propositional satisfiability (SAT) problem is at the core of many computer science
and artificial intelligence problems. Hence, finding efficient solutions for SAT has far
reaching implications. In this study, we consider propositional formulae in conjunctive
normal form (CNF): F =

∧
m

∨
n lmn in which each lmn is a literal (propositional

variable or its negation), and each disjunct
∨

n lmn is a clause. The problem is to find an
assignment that satisfies F . Given that SAT is NP complete, systematic search methods
can only solve problems of limited size. On the other hand, relatively simple stochastic
local search (SLS) methods have proved successful on a wide range of larger and more
challenging problems [1].

Since the development of the Breakout heuristic [2], clause weighting dynamic local
search (DLS) algorithms have been intensively investigated, and continually improved
[3,4]. However, the performance of these algorithms remained inferior to their non-
weighting counterparts [5], until the more recent development of weight smoothing
heuristics [6–9]), which currently represent the state-of-the-art for SLS methods on SAT
problems. Interestingly, the two best performing DLS algorithms (SAPS [8] and PAWS
[9]) have converged on the same underlying weighting strategy: increasing weights on
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false clauses in a local minimum, then periodically reducing weights according to a
problem specific parameter setting. PAWS mainly differs from SAPS in performing
additive rather than multiplicative weight updates. A key weakness of these approaches
is that their performance depends on problem specific parameter tuning. This issue was
partly in the development of a reactive version of SAPS (RSAPS [8]) which used the
same adaptive noise mechanism developed in AdaptNovelty+ [10].

The question addressed in the current study is whether there are alternative weight-
ing schemes that can produce further performance gains in the SAT domain. In par-
ticular, we are interested in weight redistribution schemes, that move around a fixed
quantity of weight between clauses. Such an approach offers the advantage of not ex-
plicitly reducing weights, thereby avoiding considerable computational overhead, and
the need for a problem specific weight reduction parameter. Secondly, we are inter-
ested in exploiting structural information contained in the weight distributions between
neighbouring clauses. As adding weight to a clause can only immediately affect those
clauses with which it shares a variable, it appears promising to connect weighting de-
cisions with the relative level of weight on neighbouring clauses. We combine both
weight redistribution and consideration of neighbourhood relationships in the Divide
and Distribute Fixed Weights (DDFW) algorithm, which implements weight redistribu-
tion between neighbouring clauses.

In the remainder of the paper we introduce DDFW in more detail, and provide an
empirical comparison between DDFW, RSAPS and AdaptNovelty+.

2 Divide and Distribute Fixed Weights

DDFW introduces two new ideas into the area of clause weighting algorithms for SAT.
Firstly, it evenly distributes a fixed quantity of weight across all clauses at the start of the
search, and then escapes local minima by transferring weight from satisfied to unsatis-
fied clauses. The existing state-of-the-art clause weighting algorithms have all divided
the weighting process into two distinct steps: i) increasing weights on false clauses in
local minima and ii) decreasing or normalising weights on all clauses after a series of
increases, so that weight growth does not spiral out of control. DDFW combines this
process into a single step of weight transfer, thereby dispensing with the need to decide
when to reduce or normalise weight. In this respect, DDFW is similar to the predeces-
sors of SAPS (SDF [7] and ESG [11]), which both adjust and normalise the weight
distribution in each local minimum. Because these methods adjust weight across all
clauses, they are considerably less efficient than SAPS, which normalises weight after
visiting a series of local minima.1 DDFW escapes the inefficiencies of SDF and ESG by
only transferring weights between pairs of clauses, rather than normalising weight on
all clauses. This transfer involves selecting a single satisfied clause for each currently
unsatisfied clause in a local minimum, reducing the weight on the satisfied clause by an
integer amount and adding that amount to the weight on the unsatisfied clause. Hence
DDFW retains the additive (integer) weighting approach of DLM [6] and PAWS, and

1 Increasing weight on false clauses in a local minimum is efficient because only a small pro-
portion of the total clauses will be false at any one time.
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combines this with an efficient method of weight redistribution, i.e. one that keeps all
weight reasonably normalised without repeatedly adjusting weights on all clauses.

The second and more original idea developed in DDFW, is the exploitation of neigh-
bourhood relationships between clauses when deciding which pairs of clauses will ex-
change weight. We term clause ci to be a neighbour of clause cj , if there exists at least
one literal lim ∈ ci and a second literal ljn ∈ cj such that lim = ljn. Furthermore, we
term ci to be a same sign neighbour of cj if the sign of any lim ∈ ci is equal to the
sign of any ljn ∈ cj where lim = ljn. From this it follows that each literal lim ∈ ci

will have a set of same sign neighbouring clauses Clim . Now, if ci is false, this implies
all literals lim ∈ ci evaluate to false. Hence flipping any lim will cause it to become
true in ci, and also to become true in all the same sign neighbouring clauses of lim,
i.e. Clim . Therefore, flipping lim will help all the clauses in Clim , i.e. it will increase
the number of true literals, thereby increasing the overall level of satisfaction for those
clauses. Conversely, lim has a corresponding set of opposite sign clauses that would be
damaged when lim is flipped. The DDFW heuristic adds weight to each false clause in
a local minimum, by taking weight away from the most weighted same sign neighbour
of that clause. However, the weight on a clause is not allowed to fall below Winit − 1,
where Winit is the initial weight distributed to each clause at the start of the search. If
no neighbouring same sign clause has sufficient weight to give to a false clause, then
a non-neighbouring clause with sufficient weight is chosen randomly. Lastly, if the do-
nating clause has a weight greater than Winit then it donates a weight of two, otherwise
it donates a weight of one. The program logic for DDFW is otherwise based on PAWS,
and is shown below:

Algorithm 1. DDFW(F , Winit)
1: randomly instantiate each literal in F ;
2: set the weight wi for each clause ci ∈ F to Winit;
3: while solution is not found and not timeout do
4: find and return a list L of literals causing the greatest reduction in weighted cost Δw when flipped;
5: if (Δw < 0) or (Δw = 0 and probability ≤ 15%) then
6: randomly flip a literal in L;
7: else
8: for each false clause cf do
9: select a satisfied same sign neighbouring clause ck with maximum weight wk ;

10: if wk < Winit then
11: randomly select a clause ck with weight wk ≥ Winit;
12: end if
13: if wk > Winit then
14: transfer a weight of two from ck to cf ;
15: else
16: transfer a weight of one from ck to cf ;
17: end if
18: end for
19: end if
20: end while

The intuition behind the DDFW heuristic is that clauses that share same sign literals
should form alliances, because a flip that benefits one of these clauses will always ben-
efit some other member(s) of the group. Hence, clauses that are connected in this way
will form groups that tend towards keeping each other satisfied. However, these groups
are not closed, as each clause will have clauses within its own group that are connected
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by other literals to other groups. Weight is therefore able to move between groups as
necessary, rather than being uniformly smoothed (as in existing methods).2

3 Analysis of Results and Conclusions

The results in Table 1 show that overall DDFW dominates AdaptNovelty+ and RSAPS,
having the best performance on 11 of the 25 problems, with AdaptNovelty+ having the

Table 1. Comparison of runtimes with best local search performance in bold. The DPLL results
are the best of either Satz or zChaff, with dominating DPLL times indicated with a ‘*’. DDFW
was run with a fixed Winit value of 8. The problems are taken from the earlier PAWS study [9],
where bw large = blocks world planning, ais = all-interval-series, flat = graph colouring, f and uf =
randomly generated hard 3-SAT problems, and the 30v and 50v problems are randomly generated
hard binary CSPs, where v = number of variables, d = domain size and c = constraint density. All
experiments were performed on a Sun supercomputer with 8 × Sun Fire V880 servers, each with
8 × UltraSPARC-III 900MHz CPU and 8GB memory per node. Problems with a mean flip count
of less than one million were tested on 1,000 runs, otherwise tests were over 100 runs, with all
runs having a 20 million flip cut-off, except 50v15d40c, which used 50 million.

DDFW AdaptNovelty+ RSAPS DPLL
Problem Success Mean Time Success Mean Time Success Mean Time Time

bw large.a 100 0.00 100 0.01 100 0.01 0.01
bw large.b 100 0.04 100 0.13 100 0.06 *0.01
bw large.c 100 0.49 61 7.50 84 19.85 0.53
bw large.d 100 1.31 18 19.96 4 109.00 2.01
ais10 100 1.10 100 2.00 100 0.02 0.06
logistics.c 100 0.67 100 0.08 100 0.01 0.08
flat100-med 100 0.01 100 0.00 100 0.00 0.01
flat100-hard 100 0.03 100 0.03 100 0.02 *0.01
flat200-med 100 0.11 100 0.08 100 0.13 0.12
flat200-hard 100 0.99 37 4.32 78 5.04 *0.03
uf100-hard 100 0.00 100 0.00 100 0.00 0.01
uf250-med 100 0.02 100 0.00 100 0.02 1.25
uf250-hard 100 0.65 97 1.09 100 0.18 0.32
uf400-med 100 0.06 100 0.11 100 0.13 57.81
uf400-hard 100 0.57 45 12.30 100 4.07 178.92
f800-med 100 0.97 100 0.25 16 15.20 timed out
f800-hard 100 2.81 72 3.70 8 15.50 timed out
f1600-med 100 3.44 95 1.88 0 timed out timed out
f1600-hard 100 17.38 96 18.86 0 timed out timed out
par16-med 62 36.20 49 53.30 84 52.80 *1.52
par16-hard 48 45.70 21 26.30 71 20.60 *0.57
30v10d80c 100 1.52 100 0.01 100 0.15 0.26
30v10d40c 100 2.86 100 0.02 100 0.12 0.02
50v15d80c 100 130.00 100 0.45 47 60.66 timed out
50v15d40c 56 578.76 98 169.55 3 57.70 timed out

2 To the best of our knowledge the only other SAT local search techniques to exploit neigh-
bourhood relationships were [3] and [12]. These approaches used opposite sign relationships
to generate new clauses by resolution, and so are not directly related to the work on DDFW.
DDFW’s weight transfer approach also bears similarities to the operations research subgradi-
ent optimisation techniques discussed in [11].
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better performance on 8 and RSAPS on 6 of the remaining problems. In addition,
DDFW achieved a 95% success rate over the whole problem set, where AdaptNov-
elty+ and RSAPS achieved 83% and 72% respectively. As versions of AdaptNovelty+
have won the SAT 2004 and 2005 local search competitions, the superior performance
of DDFW is a significant achievement. In further tests (not reported here), DDFW was
not able to match the performance PAWS or SAPS on the Table 1 problem set, when
problem specific parameter tuning was allowed. Nevertheless DDFW showed the best
performance on default parameter settings, and, when tuning was allowed, it was signif-
icantly better on all bw large problems and several graph colouring and random 3-SAT
problems.

In conclusion, DDFW represents a powerful general purpose SAT solver for prob-
lem domains where extensive parameter tuning is not practical. The work on DDFW
also represents a first step in the development of a weight redistribution approach to
clause weighting, and shows a simple way that neighbourhood structure can be used to
guide weight redistribution decisions. In future work we consider it will be promising
to extend a DDFW-like approach to handle MAX-SAT problems with hard and soft
constraints. Here the natural division between mandatory and optional clause satisfac-
tion can be exploited by redistributing weight from hard to soft clauses, and vice versa,
according to whether all hard clauses are currently satisfied.
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Abstract. Methods exploiting tree-decompositions seem to provide the
best approach for solving constraint networks w.r.t. the theoretical time
complexity. However, they have not shown a real practical interest yet.
In this paper, we study several methods for computing a rough optimal
tree-decomposition and assess their relevance for solving CSPs.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful frame-
work for representing and solving efficiently many problems. A CSP instance is
defined by a tuple (X, D, C). X is a set {x1, . . . , xn} of n variables. Each vari-
able xi takes its values in a finite domain from D. The variables are subject to
the constraints from C which express restrictions between the different possi-
ble assignments. Given an instance (X, D, C), the CSP problem, which consists
in determining whether a solution (i.e. an assignment of each variable which
satisfies each constraint) exists, is NP-complete. In this paper, without loss of
generality, we only consider binary constraints (i.e. constraints which involve two
variables). So, the structure of a CSP can be represented by the graph (X, C),
called the constraint graph.

The usual method for solving CSPs is based on backtracking search. This ap-
proach, often efficient in practice, has an exponential theoretical time complexity
in O(e.dn) for an instance having n variables and e constraints and whose largest
domain has d values. Several works have been developed to improve this theo-
retical complexity bound thanks to particular features of the instance. The best
known bound is given by the ”tree-width” w of a CSP. This parameter, related
to a tree-decomposition of the constraint graph, leads to a time complexity in
O(n.dw+1). As w+1 ≤ n, depending on the instances, we can expect a significant
gain w.r.t. enumerative approaches. So several methods have been proposed to
reach this bound like Tree-Clustering [1] or BTD [2]. Yet, the space complexity,
often linear for enumerative methods, is in O(n.s.ds) with s the size of the largest
minimal separators of the graph and so may make such an approach unusable in
practice. Hence, most of works based on this approach only present theoretical
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results. Except [2,3], no practical results have been provided. Moreover, find-
ing an optimal tree-decomposition (i.e. a tree-decomposition with width w) is
NP-Hard [4]. So approximate optimal tree-decompositions (with width w+ s.t.
w ≤ w+ ≤ n − 1) are often exploited. Yet, although this choice is first induced
by runtime reasons, we will show that it seems sensible in practice. This paper
deals with the computation of a suitable tree-decomposition w.r.t. CSP solving.

An algorithmic way to compute a tree-decomposition relies on triangulated
graphs [5]. As any graph G is not necessarily triangulated, we can triangulate
G. A triangulation of G consists in adding a set C′ of edges to G s.t. G′ =
(X, C∪C′) is triangulated. The width of G′ is equal to the maximal size of cliques
minus one in graph G′. The tree-width of G is then equal to the minimal width
over all triangulations. Hence, a rough tree-decomposition can be computed by
using a non-optimal triangulation. Many algorithms exist for computing such
a triangulation. So, in order to make structural methods efficient, this paper
studies and compares some of them w.r.t. to CSP solving. This work is performed
by using the BTD method [2] (one of few structural methods which have been
implemented and used successfully for practical CSP solving).

By lack of place, the ideas we present are not fully developed and explained.
A more complete version of this paper can be found in [6].

2 Triangulation Algorithms

This section raises the problem of computing ”good” tree-decompositions thanks
to ”good” triangulations. Several approaches and algorithms have been proposed
for triangulations. In any case, they aim to minimize either the number of added
edges, or the size of the cliques in the triangulated graph. We can distinguish
four classes of approaches. First, computing an optimal triangulation is NP-
hard. So no polynomial algorithm is known yet and the proposed algorithms
have an exponential time complexity. Secondly, we can exploit approximation
algorithms which approximate the optimum by a constant factor and whose
complexity is often polynomial in the tree-width [7]. Unfortunately, implement-
ing these two first approaches do not have much interest from a practical view-
point (e.g. the latter is time expensive while obtaining results of poor quality).
On the other hand, we can exploit minimal triangulations. A minimal trian-
gulation computes a set C′ s.t. (X, C ∪C′) is triangulated and, for every subset
C” ⊂ C′, (X, C ∪ C”) is not triangulated. Note that a minimal triangulation
is not necessarily optimal. The main interest of this approach is related to the
existence of polynomial algorithms (e.g. LEX-M [8] and LB [9] whose time com-
plexity is O(ne′) with e′ the number of edges in the triangulated graph). Finally,
the fourth approach, namely heuristic triangulations, generally add some
edges to the initial graph until the graph is triangulated. They often achieve this
work in polynomial time (between O(n + e′) and O(n(n + e′))) but they do not
provide any minimality warranty. Nonetheless, in practice, they can be easily
implemented and their interest seems justified. In effect, these heuristics appear
to obtain triangulations reasonably close to the optimum [10]. In the following,
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we consider two such heuristics: MCS and min-fill. MCS relies on the algorithm
of [11] which recognizes the triangulated graphs. Min-fill orders the vertices from
1 to n by choosing as next vertex one which leads to add a minimum of edges
when completing the subgraph induced by its unnumbered neighbors.

3 Experimental Study

3.1 Comparison Based on Graphical Criteria

According to the experiments presented in the literature, the two first approaches
do not appear very interesting as a first step of a CSP solving method due to a
too expensive runtime w.r.t. the weak improvement of the value w+. Hence, we
only assess the interest of the two other approaches by experimenting them on
graphs from real-world problems and random structured graphs (partial k-trees).

Table 1 presents empirical results for some graphs of the CALMA archive
(real-world frequency assignment problems). We compare four triangulation al-
gorithms, namely n-LEX-M, n-LB, n-min-fill and n-MCS, defined respectively
from LEX-M, LB, min-fill and MCS. Precisely, each algorithm n-X fixes the
choice of the first vertex and then uses the method X for the remaining vertices.
It repeats this process by choosing each vertex as the first vertex. We note that
the best results w.r.t. tree-width are performed by n-min-fill and n-LB. However,
n-LB offers a more promising trade-off between the runtime and the quality of
w+. These results appear generally better than ones obtained by the MSVS
heuristic [12] (based on network flow techniques instead of triangulation). Note
that we have observed similar trends on partial k-trees [6].

As an indication, a random choice of the first vertex leads, of course, to worse
results. However, these results are often very close to the previous ones. They
are obtained in a time divided by n w.r.t. the times provided in table 1. For
instance, for CALMA problems, the time does not exceed 2 s.

Table 1. Tree-width obtained after triangulation and triangulation time (in s) for
graphs from CALMA archive

Instance n e n-LEX-M n-LB n-min-fill n-MCS
w+ time w+ time w+ time w+ time

CELAR02 100 311 10 0.42 10 0.36 10 0.53 10 0.33
CELAR03 200 721 17 4.71 17 3.71 14 5.78 17 4.32
CELAR06 100 350 11 0.42 11 0.37 11 0.58 11 0.37
CELAR07 200 817 19 4.42 18 3.80 16 6.44 18 4.20
CELAR08 458 1655 20 55.85 19 82.73 16 73.57 19 51.74
CELAR09 340 1130 18 39.96 18 38.89 16 31.43 19 36.36
GRAPH05 100 416 28 1.00 26 0.68 25 1.34 31 0.97
GRAPH06 200 843 58 15.56 53 7.92 54 19.64 58 15.65
GRAPH11 340 1425 106 146.16 90 39.63 91 162.90 104 150.13
GRAPH12 340 1256 99 140.09 85 45.19 85 148.28 96 142.62
GRAPH13 458 1877 146 558.38 120 115.43 126 710.06 131 640.62
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Table 2. Runtime (in s) for a value s respectively unlimited and limited to 10. T and
M mean that some instances cannot be solved for time reason or for a lack of memory.

Instance d t Time for unlimited s Time for s limited to 10
LEX-M LB min-fill MCS LEX-M LB min-fill MCS

CELAR02 50 1216 2.72 2.81 2.73 2.80 2.74 2.82 2.72 2.80
CELAR03 30 373 2.22 57.71 M 1.95 2.23 2.60 1.45 1.51
CELAR06 50 1155 3.40 3.52 3.41 3.50 3.43 3.53 3.41 3.48
CELAR07 25 209 12.79 M 13.23 4.66 4.92 4.83 4.86 4.69
CELAR09 25 209 12.47 T 11.82 6.72 4.69 4.88 4.66 4.76

Table 3. Runtime (in s) and value of w+ for class (150, 25, 15, t, 5, 15) after removing
p% edges (with s limited to 5)

p t LEX-M LB min-fill MCS
w+ time w+ time w+ time w+ time

10% 215 18.50 5.53 14.00 3.95 15.97 10.66 14.03 4.06
20% 237 22.00 4.07 14.00 4.37 16.33 6.74 14.00 3.53
30% 257 23.30 82.79 14.00 2.85 17.20 5.49 15.03 3.81
40% 285 24.90 78.22 14.00 1.11 15.33 1.21 15.33 5.88

Here, the quality of a decomposition is only assessed w.r.t. the value of
w+. Nonetheless, from the viewpoint of CSP solving, the most relevant crite-
rion is related to the solving efficiency obtained thanks to the computed tree-
decomposition. Of course, this computation must be achieved in reasonable time.

3.2 Comparison Based on CSP Solving Efficiency

In the frame of CSP solving, the quality of a decomposition mostly depends on
the practical efficiency we obtain by exploiting it. So we compare LEX-M, LB,
min-fill and MCS w.r.t. CSP solving. We consider random CSPs whose graph is
one of some CALMA instances (see table 2). Surprisingly, the most interesting
decompositions are computed by MCS. Moreover, when we limit the maximal
size of separators in the decomposition, the gap between the triangulations sig-
nificantly decreases. Note that, for efficiency reasons, it is our interest to reduce
the value of s, by aggregating the clusters which share a large intersection.

Then, we experiment on partial random structured CSPs (see table 3). For
each instance, we randomly produce a random structured CSP [2] and then we
remove p% edges. The least promising method, namely MCS, obtains interesting
results. Only LB obtains similar or better results w.r.t. the value of w+ or the
CSP solving. However, on the whole, MCS seems the most robust heuristic since
it often provides the best approximation of w+ while offering a limited value of s
and solving efficiently CSP. The value of s seems to be an important criterion for
the practical solving efficiency. Indeed, with an unlimited value of s, LB or min-
fill cannot success in solving some classes (see table 2). Yet, when s is bounded,
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LB and min-fill may obtain results close to ones of MCS. Likewise, bounding the
value of s significantly improves the results obtained by TM.

4 Discussion and Conclusion

We have considered several approaches for computing a tree-decomposition by
triangulating the constraint graph. First, we have observed that, for solving
CSPs, the heuristic triangulations in polynomial time might be sufficient to
produce a suitable decomposition. Indeed, the optimal or approximate triangu-
lations turn to be too expensive in time w.r.t. the improvement we can expect
for the solving. Besides, the criterion w+ is not relevant enough for CSP solving.
Finally, we have noted that limiting the size s of the largest minimal separator
allows us to improve the solving runtime, what contradicts the theory (i.e. the
time complexity) which requires to minimize w+ rather than s.

This study must be carried on. The first way consists in improving the com-
putation of tree-decompositions by computing a decomposition which optimizes
the solving instead of minimizing the value w+. Then, another way relies on
the strategies to achieve the best depth-first traversal of the associated cluster
tree w.r.t. CSP solving, what corresponds to variable heuristics for enumerative
methods. Finally, our study must be extended to Valued CSP.
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Abstract. Interacting with a web service enabled marketplace in order
to achieve a complex task involves sequencing a set of individual service
operations, gathering information from the services, and making choices.
We propose to encode the problem of issuing requests to a composition
of web services as a constraint-based problem.

1 Introduction

Services are autonomous computational entities which live on a network and
interact by asynchronous message passing. Services publish standard interfaces
to enable their discovery, binding and invocation. The most prominent exam-
ple is given by the XML-based standards known as web services, and the most
interesting open challenge therein is the service composition problem, i.e., aggre-
gating services for achieving complex tasks. Here we concentrate on the problem
of enabling a user to express complex requests/goals against a pre-compiled com-
position of services in the form of a business process/domain (in this paper we
use these words interchangebly). What we have is a description of a business
domain (e.g., an electronic marketplace) and the user’s request (e.g., the cheap-
est travel offer), which is satisfied by invoking the appropriate domain services.
We propose to model the domain and request via constraints. Solving such con-
straints means finding an executable plan to satisfy the user’s request in the
business domain. Section 2 introduces the example which runs throughout the
paper; definitions of the business domain and request language are in Section 3;
the constraint encoding is in Section 4; Section 5 concludes the paper — its
extended version is [1], e.g., with the encoding algorithms and related work.

2 Organizing a Trip

Let us consider a travel marketplace and the organization of a trip. A generic trip
organization can be modeled by a complex business process encompassing several
actions and states. Moving from one state to another may involve the discovery
of information, the choice of which action to take and even nondeterministic
actions – i.e., their outcome states, hence their effects may be different and not
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determined until execution. In [2], we showed a business process for organizing
a trip with 36 states (http://www.opentravel.org); here we consider a subset
of that process. When deciding on a trip, the user may want to book first the
hotel of the final destination and then a carrier to reach the hotel location.
The figure represents this business process snippet as a state transition system.

�������	s1

a1:reserveRoom

��

a2:failure
��

�������	s2

a3:reserveFlight

��
a2:reserveTrain

�� �������	s3

The first action is the hotel reservation (a1 leaving state
s1). This may result in the room reservation (state s2)
or in a failure (back to s1); “which is which” is unknown
until execution. Finally, there are two ways to reach s3,
the state in which a carrier for the hotel is booked: i.e.,
by either flying or taking a train. This means choosing
either the reserveTrain action or the reserveFlight
one. Given this, a user may also want to have a hotel
reserved, prefer flying to taking a train and optionally
wish to spend no more than 100 euros.

3 Web Service Interactions

Interacting with a web service enabled marketplace to achieve a complex request
involves sequencing a set of individual service operations, gathering information
from the services and making choices. The complex request of the user is similar
to a planning goal, while the business process describing the possible behav-
iors of the marketplace is similar to a planning domain. Here we propose to
model the business domain and the user’s request via constraints. The business
domain is a state-transition system with one characterizing peculiarity: nonde-
terministic actions. Formally, the domain is a tuple of states, actions, variables,
failure states, and a transition function; we refer to [2] for the definition. Here
we only note that the transition function maps a state and an action into a
set of states and an individual state. The rationale is that of all the states an
action reaches, one is the action’s normal outcome, while the others are the ac-
tion’s failure states. The request language definition is derived from [2]: basic
requests are vital p, atomic p, vital-maint p, atomic-maint p, with p a propo-
sition. A request g is a basic request or of the form achieve-all g, optional g
before-then g, prefer-to g. Having an initial state and the user’s request g, a
plan is given by sequences of actions (of the business domain) that leave from
the initial state and satisfy the user’s request. In Section 4, we obtain a plan by
encoding domains and requests as numeric constraints.

Let us reconsider our example of Section 2 and the figure therein: the set of
states S is {s1, s2, s3}, the set of actions A is {bookHotel a1, reserveTrain a2,
reserveFlight a3}, and the set of variables is {price, hotelBooked,
trainBooked, flightBooked}. The first variable ranges over natural numbers
while all the other variables are Boolean. As for the transition function,
bookHotel a1 brings the system nondeterministically into 〈{s1, s2}, s2〉, which
means that s2 is the normal state, whereas s1 is the failure state. As for the
actions’ effects on variables, we have: the normal bookHotel action a′

1 increases
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price and sets hotelBooked to 1 (i.e., true); the failure bookHotel action a′′
1

has no effect on the variables; the reserveTrain action a2 increases price
and sets trainBooked to 1; the reserveFlight action a3 increases price and
sets flightBooked to 1. The request in Section 2 is now achieve-all (vital
hotelBooked = 1;atomic-maint price < 100;prefer (vital flightBooked =
1tovital trainBooked = 1)).

4 Constraint-Based Encoding of the Business Domain

Services offer a set of independently invocable operations. The operations act on
a number of variables whose values may depend on a single service invocation or,
more generally, on a number of invocations on several independent services. Here,
constraints model how the values of a variable spanning across such services may
change. Additionally, the user has requests and preferences in achieving complex
tasks. We model these via additional constraints on the service domain. In par-
ticular there are two types of Boolean variables: controlled variables, denoted
by βi, and non-controlled variables, denoted by ξi. The rationale is that the
constraint system may not choose values for non-controlled variables, and then a
solution to the problem is such regardless of their assignments. We also assume
that, once executed, a nondeterministic action has always its first execution out-
come. The constraints of our encoding have the form [∀ξi :] cv �� value where:
value is a value from the domain of the variable v; cv is a vector of expressions
of the form

∑
βi[ξi]ai,k (with βi, ξi ∈ {0, 1}), the ξi are non-controlled variables,

ai,k is the effect of the action ai for the outcome k, �� is in {<, >,≥,≤, =}, and [·]
denotes that the enclosed expression may not occur in the constraint. Formally,
a service constraint problem is a tuple CP = 〈β,N , ξ, C〉, where β is a set of
controlled Boolean variables, N is a set of controlled variables over N, ξ is a set
of non-controlled Boolean variables, C is a set of constraints as above, in which
a non-controlled variable is (i) either universally quantified over, (ii) or a value
is available and substituted for it. A solution to a service constraint problem is
an assignment to controlled variables such that all the problem constraints are
satisfied. The encoding of the service interaction problem is split in the domain
encoding (phase 1 ), and the request encoding (phase 2 ).
Phase 1 (domain encoding): given a business domain and an initial state s,
the domain-encoding returns a set of constraints cv as above. In what follows,
n represents the number of times a cycle is followed, while ai represents not
only the action but also its effects. The following table briefly illustrates such
encoding.
Phase 2 (request encoding): the user’s request is added and encoded as follows.
vital v �� v0: if the request is vital with respect to v constrained by �� on v0,
the v encoding in the constraint vector c (denoted by cv)is considered and it is
added to the cv �� v0 constraint set. Also all the ξv variables associated with cv

are set to ξ0
v , that is, the normal execution must be followed.

atomic v �� v0: as above, but all nondeterministic executions are considered,
thus all non-controlled variables ξ get universally quantified over.
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Business domain Constraint encoding
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vital-maint v �� v0: all the states visited during execution are considered. One
quantifies over the execution steps, repeating the constraints as in the vital case
above for each step.
atomic-maint v �� v0: as above, but all nondeterministic executions are consid-
ered, so all non-controlled variables ξ get universally quantified over.
achieve-all g1 . . . , gn: all sub-requests g1, . . . , gn are recursively executed; all ba-
sic requests coming from these are thus considered. If during the execution some
choices are made for the same branch point among different sub-requests, then
these choices are forced to be always the same by introducing a controlled vari-
able u. E.g., suppose that uj, j ∈ {1, 2}, denotes the branch chosen for trying
to satisfy the j-th request; uj = 0 expresses that no choices were made; then
u1 �= 0 ∧ u2 �= 0⇒ u1 = u2 is added as constraint.
before g1then g2: as above, but one tries to satisfy first g1 then g2 is.
prefer g1to g2: the request variables are instantiated along a certain order. Op-
tional requests are prefer-to request with g2 equal to true.

The Travel Example Encoded. Let us spell out part of the encoding of the
example from Section 2. Its domain and initial state s1 give the constraint
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β1(ξ1nafail
1 + ξ2(aok

1 + β2a2 + β3a3)) which represents the paths from state s1
to s3 with n being the number of times the cycle is followed. When requests are
encoded, for each basic request a new set of variables is introduced. The first sub-
request to be parsed is vital hotelBooked = 1. Only the aok

1 outcome affects the
hotelBooked variable, thus the constraint is β′

1ξ2a
ok
1 = 1 and the non-controlled

variables are assigned to normal executions, i.e., ξ2 = 1, ξ1 = 0. The other vital
requests are treated similarly. The request of preferring flying to taking the train
gives the assignment β′′′

i = 1 and βiv
i = 0 as first, for all i ∈ {1, .., 3}. A solution

is β
(j)
1 = 1, β

(j)
2 = 0, β

(j)
3 = 1, for all j ∈ {1, .., 4}. This corresponds to booking

the hotel (bookHotel) and reserving a flight (reserveFlight), assuming that
the total price is less than 100. However, if the flight price is 200, the above is no
longer a solution; but the preference constraint allows for an assignment which
is a solution, that is, by taking the train (reserveTrain) instead of the plane
(if the total cost is less than 100).

5 Concluding Remarks

We propose to model business domains and users’ requests via numeric con-
straints. Pivotal properties of the encoding are its dealing with nondeterministic
actions, its being unbounded, its capability of representing the possible execu-
tions of domain actions; these are relevant features in a web service enabled
marketplaces, and make the encoding a major improvement with respect to [2].
In particular, here we deal with numeric requests without encoding them into
Boolean properties. Moreover, we also handle users’ preference requests. A num-
ber of issues remain open. Most notably, we have not yet assessed the efficiency
of the proposed algorithms with respect to the minimality of the encoding. We
have not considered the framework in the context of interleaving planning and
execution, nor with respect to run-time information gathering. The last is a
crucial issue in a web service scenario. However, we have preliminary results in
extending the presented work in this direction.
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1 Introduction

Since MAX 2SAT is one of the famous NP-hard optimization problems, many
heuristics and (polynomial-time) approximation algorithms have been proposed in the
literature [1,4,5,6]. To evaluate the performance of such algorithms, there are two pos-
sibilities; theoretical analysis and empirical study.

In theoretical analysis, an approximation ratio of the algorithm is often used as a
measure. The approximation ratio is an upper bound on the ratio of an approximated
cost to the optimal cost, and hence, this is a worst case measure. It is often di cult to
analyze theoretically the performance of heuristics or hybrid algorithms.

On the other hand, empirical study can estimate the performance of approximation
algorithms from various points of view.There is no di culty in estimating the perfor-
mance except generating a number of (random) input instances. Though it is obviously
easy to generate test instances without the optimal solutions, we should also know the
optimal solution for each test instance. While there exists a number of benchmark in-
stances with the optimal solutions, we still do not have enough number of test instances.
Hence, we would like to have a sure way of generating nontrivial test instances system-
atically, i.e., instance generator.

Our ideal goal is to design an algorithm that can randomly generate all possible
test instances (i.e., whole 2CNF formulas) with the optimal solution where its running
time is polynomial in the length of the output formula.1 However, if there exists such
an algorithm, the recognition of the pair of a test instance and its optimal solution is
in NP. On the other hand, the complement problem, i.e., recognizing the pair of a test
instance and its suboptimal solution, is also in NP, since random bits used to generate
each formula in the algorithm become a witness for both problems. This concludes
NP co-NP and it is unlikely. Therefore we have to relax the problem.

We can consider two relaxations: (i) allow error in the output of the algorithm and
(ii) restrict the class of instances generated. The former one gives Monte Carlo algo-
rithms that output a feasible solution instead of the optimal solution with low error

This research was partially supported by the Ministry of Education, Science, Sports and Cul-
ture, Grant-in-Aid for Young Scientists (B), 1570008.

1 If we accept exponential time, there exists a trivial algorithm; generate a formula at random,
then find the optimal solution by exhaustive search.
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probability (for example, [9,10]). In this paper, we focus on the latter approach, i.e., an
instance generator randomly outputs a test instance and the optimal solution with prob-
ability 1 where the set of instances generated is a strict subset of all possible instances
(hereafter, we say such an instance generator is exact).

However, this approach creates new di culties. If the instances generated this way
are easy to solve, it is not appropriate to use them for empirical study. Hence, we have
to theoretically analyze the hardness of solving the generated instances, for example,
solving MAX 2SAT over the formulas generated is NP-hard.

In the literature, Dimitriou proposed an exact instance generator for MAX kSAT [3].
They experimentally showed that by appropriately choosing parameters one can con-
trol the hardness of the generated instances leading to an easy-hard-easy pattern. But
there is no theoretical guarantee of hardness. Yamamoto also proposed an exact instance
generator for MAX 2SAT [10]. To characterize the optimal solutions, this algorithm re-
quires an expander graph, which is hard to randomly generate. Since they use an explicit
expander graph construction algorithm, this is not truly a random instance generator.

Unfortunately, for any NP optimization problem U, the decision problem of U
over the instances generated by any polynomial-time exact instance generator is in
NP co-NP. Hence, it seems di cult to show the computational hardness of instances
generated. Moreover, if a solver can e ciently recognize that input instances are gener-
ated by a specific instance generator, such instances might be easily solvable. Therefore,
we investigate how hard it is to recognize our instances.

We propose an exact instance generator based on the concept of a linear-time algo-
rithm for 2SAT. For the proposed generator, we show that the set of instances generated
is NP-complete. From computational point of view, this means that finding an optimal
solution for our instances is as hard as searching for a satisfying assignment for satisfi-
able 3CNF formulas. We also show that it is even NP-hard to approximately recognize
our instances.

2 Our Instance Generator

We start with some notations. A literal over X x1 xn , the set of n Boolean
variables, is x X or its negation x. A k-clause over X is a disjunction of exactly k
literals over X whose underlying variables are distinct. Let kCNF formula over X be a
collection of k-clauses over X. We allow any clause to appear more than once.A truth
assignment over X is a map of X to 0 1 n. We use 1 and 0 to denote true and false
respectively. A truth assignment t satisfies a clause c i at least one literal in c has a
value 1. Otherwise we say t falsifies c. MAX 2SAT is a problem to find an assignment
that satisfies the maximum number of clauses for given 2CNF formula.

For any 2CNF formula F over X, the implication graph of F is a directed (multi)
graph GF (V E), where V is the set of all possible literals, i.e., X xi xi X , and
E (vi v j) vi v j V and (vi v j) F . Note that if E contains an edge (vi v j),
then the edge (v j vi) also exists. We say that such an edge is a complement edge
of the other. For any edge (vi v j), if one assigns true to vi, one has to set v j true
to satisfy the original clause (vi v j); hence the name implication graph. Any 2CNF
formula F is unsatisfiable i GF has a cycle that contains v and v simultaneously [2].
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Strictly speaking, if there is one such cycle C, there must be another cycle that consists
of all complement edges of the cycle C. Therefore we call such a pair of two cycles as
a contradictory bicycle. For any truth assignment t over X, let t be the set of 2CNF
formulas over X such that any F t satisfies the following conditions: (i) F has
exactly one clause falsified by t, (ii) GF has one contradictory bicycle, and (iii) if we
remove any clause from F, the remaining formula is satisfiable, i.e., F is a minimal
unsatisfiable formula. We also denote by t the set of 2-clauses over X satisfied by t.

It is easy to see that we can randomly generate any formula in t for an arbitrary
truth assignment t. To illustrate this, w.l.o.g. we assume that t 1n. Let B be an arbi-
trary formula of t. It is clear that every clause falsified by t consists of two negative
literalsand B contains exactly one such clause. Such a clause is transformed into edges
from a positive literal to a negative literal in the implication graph GB. Furthermore,
each cycle also has exactly one edge from a negative literal to a positive literal. We can
divide each cycle into two paths, a path consisting of positive literals only and a path
of negative literals only.We remark that there exists at least one common variable as a
contradictory variable, in both paths. Also, since any 2-clause is complement-free, the
last variable of each path is distinct from the first variable of the other path.Thus, we
only need to generate two sequences of variables that have at least one common variable
and the first variable of each sequence is distinct from the last variable of the other.

Here, for an arbitrary truth assignment t and a positive number k, we consider a
2CNF formula F that consists of (not necessary distinct) k formulas in t and some
clauses in t. Obviously, any truth assignment falsifies at least k clauses of F since GF

has k contradictory bicycles. This means that an upper bound of the minimum number
of unsatisfiable clauses is k. On the other hand, since there exist exact k formulas of Bt,
F has just k clauses falsified by t, i.e., the lower bound is also k. Thus it is clear that t is
the optimal solution of F and the minimum number of unsatisfiable clauses in F is k. Let

be a set of such formulas, i.e., F t s.t. F consists of elements of t and t

It is easy to see that we can randomly generate an arbitrary formula in and its optimal
solution t by appropriate randomized algorithms (see Algorithm 1), e.g., first choose t
at random, then construct a formula as a conjunction of some elements of t and t.
Clearly, the running time of our instance generator is linear in the length of the instance
generated. We remark that if the number of additional clauses from Ct is 0, the instance
generated has at least two optimal solutions, t and t, and hence, we add such clauses.

Algorithm 1. An example of generation algorithm
Input: the number of variables n
begin

Let F be an empty formula;
Choose t 0 1 n uniformly at random;
Choose the minimum number of unsatisfiable clauses k ( 0);
for i 1 to k do Generate a 2CNF formula over X from t at random and add it to
F;
Add r clauses of t to F at random (where r is a random nonnegative integer);
Output: F and t

end
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3 The Hardness Results

In this section, we consider the hardness of the instances generated. As described in the
introduction, it is not easy to show computational hardness of the instances generated.
This means that if we can e ciently recognize instances generated, such instances can-
not be hard. Therefore, we consider how hard it is to recognize our instances. First, we
show the hardness of exact recognition.

Theorem 1. The set of generated instances is NP-complete.

Proof. It is clear that is in NP because of the witness, that is, a truth assignment t and
a partition into k formulas of t and a subset of t for each instance.

Hereafter we show a reduction from 3SAT. Let F3CNF be an arbitrary 3CNF formula
over X with m 3-clauses c1 c2 cm. For any i, 1 i m, we translate the ith 3-
clause ci (li 1 li 2 li 3) of F3CNF (li means an arbitrary literal over X) into the 2CNF
formula over X and Yi yi 1 yi 2 , Bi (li 1 yi 1)(yi 1 li 2)(li 2 yi 2)(yi 2 li 3)(li 3

yi 1)(yi 1 yi 2)(yi 2 li 1)(yi 2 li 1) We remark that the variables in Yi appear only in Bi.
Bi contains exactly one contradictory bicycle, and thus any truth assignment over X Yi

falsifies at least one clause. Let a 2CNF formula F2CNF be the conjunction of Bi for all i.
Hence F2CNF has 8m clauses over n 2m variables, X i Yi . It is not di cult to show
that, in F2CNF, the number of contradictory bicycles is equal to the minimum number of
unsatisfiable clauses i F3CNF is satisfiable.

This result directly means that finding an optimal solution of our instances is at least
as hard as searching for a satisfying assignment of satisfiable 3CNF formulas. Thus, a
polynomial-time algorithm that can obtain an optimal solution for any instance in
is unlikely. Moreover, in the above discussion we assume that we know the maximum
contradictory bicycle packing. It, however, seems hard to obtain the maximum contra-
dictory bicycle packing in general.

Next, we consider the hardness of approximate recognition.

Theorem 2. For any constant 0, it is NP-hard to distinguish any 2CNF formula in
from the 2CNF formulas in which the ratio of the minimum number of unsatisfiable

clauses to the maximum number of contradictory bicycles is 9 8 .

Proof. We consider the same reduction as in the proof of Theorem 1. We have already
shown that any satisfiable F3CNF with m clauses over X is transformed to F2CNF with
8m clauses where the minimum number of unsatisfiable clauses is m.

Now we consider the case F3CNF is unsatisfiable. For any truth assignment over
X that falsifies the ith clause ci of F3CNF, we can find a truth assignment over Yi that
falsifies exactly two clauses in Bi. We again remark that we can set a truth assignment
over Yi independently of a truth assignment over Y j since any variable of Yi does not
appear in B j for any j i. Thus, if k clauses of F3CNF are unsatisfiable, m k clauses
of F2CNF are unsatisfiable.

Now we focus on 3CNF formulas for which only a fraction 7 8 of the clauses
can be satisfied. Such 3CNF formulas are transformed into 2CNF formulas with m
contradictory bicycles and m (1 8 )m (9 8 )m unsatisfiable clauses. Since it is
NP-hard to distinguish between such 3CNF formulas and satisfiable 3CNF formulas [7],
we conclude the proof.
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Unfortunately, this result does not directly imply hardness of the instances generated
for approximation algorithms. However, if there exists an approximation algorithm that
approximates any instance of I within a fraction 8m 9m 8

8m m 55 56, such an algorithm
can distinguish satisfiable 3CNF formulas from unsatisfiable 3CNF formulas and it is
unlikely. We remark that this ratio, 55 56 0 982, is still much larger than 21 22
0 955 which is the best known inapproximability upper bound for MAX 2SAT [7] (Khot
et al. [8] recently improved this ratio to 0.944 under some unproven conjectures).

4 Concluding Remarks

We analyzed that it is hard to recognize instances by the proposed instance generator
for MAX 2SAT. On the other hand, the generator is still naı̈ve, that is, our generator is
only generating positive instances of NP-complete problem. Hence it may generate a
number of easy instances and it is important to eliminate such easy instances.

While we focused on theoretical hardness in this paper, we would like to experi-
mentally check hardness against a number of MAX SAT solvers. Since the proposed
instance generator uses many (exposed and hidden) parameters, such as the number
of contradictory bicycle, the length of each bicycle, the total number of clauses and
so on, we also have to determine an appropriate range of such parameters. We expect
that there exists a phase transition phenomenon, and hence, an easy-hard-easy pattern
on some parameters. Finally, it is better if we can generate some instances outside of

. Since is NP-complete, we may apply techniques to generate hard (or negative)
instances for other NP-hard problems (e.g., SAT).
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Abstract. The generalization of the constraint satisfaction problem
with universal quantifiers is a challenging PSPACE-complete problem,
which is interesting theoretically and also relevant to solving other
PSPACE problems arising in AI, such as reasoning with uncertainty, and
multiplayer games. I define two new levels of consistency for QCSP, and
give an algorithm to enforce consistency for one of these definitions. The
algorithm is embedded in backtracking search, and tested empirically.
The aims of this work are to increase the facilities available for mod-
elling and to increase the power of constraint propagation for QCSPs.
The work is motivated by examples from adversarial games.

1 Introduction

The finite quantified constraint satisfaction problem (QCSP) is a generalization
of the finite constraint satisfaction problem (CSP), in which variables may be
universally quantified. QCSP can be used to model problems containing uncer-
tainty, in the form of variables which have a finite domain but whose value is
unknown. Therefore a QCSP solver finds solutions suitable for all values of these
variables. A QCSP has a quantifier sequence which quantifies (existentially, ∃, or
universally, ∀) each variable in the instance. For each possible value of a univer-
sal variable, we find a solution for the later variables in the sequence. Therefore
the solution is no longer a sequence of assignments to the variables, but a tree
of assignments where the variables are set in quantification order, branching for
each value of the universal variables. This is known as a strategy, and can be
exponential in size. This generalization increases the computational complex-
ity (under the usual assumption that P�NP�PSPACE): QCSP is PSPACE-
complete. QCSP can be used to model problems from areas such as planning
with uncertainty and multiplayer games. Intuitively, these problems correspond
to the question: Does there exist an action, such that for any eventuality, does
there exist a second action, such that for any eventuality, etc, I am successful?
Actions are represented with existential variables, and eventualities with uni-
versals. Bordeaux and Monfroy [3] and Mamoulis and Stergiou [1] define levels
of consistency for various quantified constraints of bounded arity. I introduce a
general consistency algorithm for quantified constraints of any arity, based on
Bessière and Régin’s GAC-Schema [4].

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 792–796, 2005.
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1 2 3 4 5 6 7

∃grey1∀black1∃grey2∀black2∃grey3 :
greywins(grey1, black1, grey2, black2, grey3)

Fig. 1. Connect-4 endgame

Connect-4. For example consider the Connect-4 endgame in figure 1. The aim
of Connect-4 is to make a line of four counters, vertically, horizontally or diag-
onally. The two players take turns, and can only place a counter at the bottom
of a column on the board. It is grey to move, and it can be seen that columns
2 and 4 are the only moves allowing grey to win in 3 moves if black defends
perfectly. The five such winning sequences are 2-2-4-4-5, 2-2-5-4-4, 4-4-5-2-2, 4-
4-5-2-6 and 4-4-5-6-2. As shown below the figure, this problem can be modelled
as a QCSP, with 5 variables representing the column numbers of the 5 moves,
with just one 5-ary constraint representing that grey wins (i.e. the constraint
is satisfied iff grey wins, thus all the rules of the game are exactly encoded in
one constraint). This is similar to a 5-move lookahead constraint, but with the
additional restriction that grey must win within the 5 moves. Ideally, the prop-
agation algorithm would restrict all three of the grey move variables. Ignoring
the quantification and applying GAC infers nothing. I define two stronger lev-
els of consistency, WQGAC, which infers that grey1 ∈ {2, 4}, and the stronger
SQGAC, which also infers grey2 ∈ {4, 5}, and grey3 ∈ {2, 4, 5, 6}. I give an
algorithm for WQGAC in section 3.

2 Defining Quantified Generalized Arc Consistency

A flavour of the definitions of weak and strong quantified generalized arc con-
sistency is given below, based on the full definitions in [8]. XC is the variables
within the scope of the constraint C. CS is the set of supporting tuples of the con-
straint C, with each tuple sorted in quantification order. The domain of variable
xi is Di.

Definition 1. Support
Given some constraint C, a value a ∈ Di for a variable xi ∈ XC has domain

support in C iff there exists a tuple t ∈ CS such that ti = a 1 and ∀xj ∈ XC :
tj ∈ Dj. Similarly, a partial assignment p (which is a set of pairs 〈xi, a〉) over
C has domain support in C iff there exists a tuple t ∈ CS such that for all pairs
〈xi, a〉 in p, ti = a and ∀xj ∈ XC : tj ∈ Dj.
1 tk is used to refer to the element of t corresponding to variable xk.
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Definition 2. Weak Quantified GAC
A constraint C is weak quantified GAC (WQGAC) iff for each variable x ∈

XC and value a ∈ Dx, with inner universal variables xi, xj , . . ., each partial
assignment p = {〈x, a〉, 〈xi, b〉|b ∈ Di, 〈xj , c〉|c ∈ Dj , . . .]} has domain support.

For the example in figure 1, WQGAC is able to prune the following values from
grey1 : 1, 3, 5, 6, 7, but is unable to prune the other existential variables.

Definition 3. Strong Quantified GAC
A constraint C is strong quantified GAC (SQGAC) iff for each variable x ∈

XC and value a ∈ Dx, with inner universal variables xi, xj , . . ., each partial
assignment p = {〈x, a〉, 〈xi, b〉|b ∈ Di, 〈xj , c〉|c ∈ Dj , . . .} has domain support
and all the supporting tuples can form part of the same strategy. For any two
supporting tuples τ and τ ′ this is the case iff ∃λ∀i < λ : τi = τ ′

i ∧ τλ �= τ ′
λ∧∀(xλ)

(i.e. the leftmost difference between the tuples must correspond to a universal
variable).

For the example in figure 1, an algorithm enforcing SQGAC would be able to
prune from all three existential variables, in contrast to WQGAC. An SQGAC
algorithm would infer grey2 ∈ {4, 5}, and grey3 ∈ {2, 4, 5, 6}.

3 A General Algorithm for Enforcing WQGAC

This section describes the proposed WQGAC-Schema algorithm, derived from
GAC-Schema[4], a successful framework for GAC. In this section most attention
will be given to the differences between WQGAC-Schema and GAC-Schema.
On constraints with no universal variables, the behaviour of WQGAC-Schema
is identical to GAC-Schema.

The main change to GAC-Schema is to replace the notion of support to match
the definition of WQGAC: that a value of some variable must be supported for
all sequences of values of inner universal variables. This change does not alter
the time complexity. The space complexity increases to O(ndn). The modified
data structure SC is described below (S and lastC are modified likewise [8]), to
be compared with [4].

SC(p) contains tuples that have been found to satisfy C and which include
the partial assignment p. Each tuple supports n partial assignments, so when
a tuple is found, it is added to all n relevant sets in SC . The current support
τ for p is included, and is removed when it is invalidated. Domain removals
may invalidate other tuples λ �= τ contained in SC , but λ may not be removed
immediately, so when searching for a new current support for p, SC(p) may
contain invalid tuples.

In all cases the full description of a procedure is given in [8]. To propagate
a pruned value (x, a), the procedure is summarized here. For all tuples t in SC

which contain (x, a), t is removed from SC . If this leaves a partial assignment
p unsupported, a new support is sought by calling seekNextSupport(). This
procedure is specific to the constraint type.
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Predicates. The constraint is defined by an arbitrary expression for which no
specific propagation algorithm is known. The user provides a black box function
fC(τ), which returns true iff the tuple τ satisfies the constraint, false otherwise.
The only change from the GAC-Schema version in [4] is that the variable y and
value b have been replaced everywhere with partial assignment p. The basic idea
is that supporting tuples are tested in lexicographic order against fC , skipping
forward whenever possible.

Positive Constraints. Here the set of allowed tuples (CS) is given explicitly.
This is slightly altered from the algorithm given by Bessière and Régin [4], with
the data structure from Mohr and Masini [7]. The set CS is sorted by partial
assignment, to match the requirements of supporting a value. For each pair
〈xi, a〉, the tuples matching 〈xi, a〉 are divided into each possible sequence of inner
universal assignments. (This does not increase the asymptotic space consumption
because each tuple of length n has n references to it.) The seekNextSupport
procedure simply returns the next valid tuple in the relevant list.

Negative Constraints. The set of disallowed tuples is given explicitly. Bessière
and Régin give an efficient method based on hashing which uses the predicate
instantiation and can be used without modification [4].

Testing WQGAC-Schema on a Connect-4 Endgame. To illustrate the
strength of WQGAC and the efficiency of WQGAC-Schema, I use the running
example (figure 1). The predicate instantiation of WQGAC-Schema is used. To
my knowledge, there is no way of representing the quintary constraint with
shorter constraints without losing propagation, hence there is no direct compar-
ison to be made. Grey can win in three moves if black defends perfectly, and
in two moves if black makes a mistake. There are five winning sequences where
black defends perfectly: 2-2-4-4-5, 2-2-5-4-4, 4-4-5-2-2, 4-4-5-2-6 and 4-4-5-6-2.
Table 1 shows three consecutive actions on the greywins constraint. (Asserting a
value includes calling propagate to exhaustion.) CPU times are given for an im-
plementation in Java, running with the Java 5.0 HotSpot compiler on a Pentium
4 3.06GHz with 1GB of memory. Although some attention was paid to efficiency
in the implementation, this was not the main concern and the CPU times could
be improved. Only 15.2% of the tuples were tested against the predicate, showing
that WQGAC-Schema is effective in jumping over irrelevant tuples.

Testing WQGAC-Schema with Noughts and Crosses. WQGAC-Schema
is embedded in a simple backtracking search for QCSP. An experiment based on

Table 1. Connect-4 results

Action Tuples tested Total tested % Values pruned CPU time

establishWQGAC() 2196 grey1 : 1, 3, 5, 6, 7 0.046s
assert grey1 �= 2 207 15.2% none 0.008s
assert black1 = 4 151 grey2 : 1, 2, 3, 4, 6, 7 and

grey3 : 1, 3, 4, 5, 7
0.016s
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noughts and crosses (tic-tac-toe) is described in the technical report [8]. First the
game is modelled with 9 move variables (with alternating quantification) each
with domain size 9, and board state variables for each move. The pure value
rule [2] is dynamically applied to universal variables, so that values representing
cheating moves are not explored. The question encoded is: can the first player
win under any circumstances, to which the answer is no. All constraints are im-
plemented using WQGAC-Schema+predicate. The longest constraints are arity
10, for detecting the winning condition. The search explored 4107 internal nodes
in 26.205s, taking on average 6.38ms per node. This is compared to a similar
model, with the final 3 moves eliminated and replaced with one large constraint
of arity 12. Three constraints of arity 10 are removed. The number of internal
nodes is reduced to 3403, explored in 13.782s, on average 4.05ms per node. To
an extent, this shows the potential of consolidating a set of constraints into a
single high-arity constraint, because better propagation is achieved and the time
to reach local consistency at each node is reduced.

4 Conclusion and Acknowledgments

Generalized arc-consistency has been well studied and is very important in CSP.
I have defined for QCSP two new levels of consistency based on GAC, and have
developed an algorithm for one. This was briefly tested on game problems.

This work is funded by EPSRC, and I would like to thank my supervisor
Ian Gent, the anonymous reviewers and Ian Miguel, who made many helpful
comments on this paper.
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Abstract. Sports scheduling is a classical problem in the field of com-
binatorial optimization. One of the first successful methods to solve a
complex instance was implemented using constraint programming. In
this article, we explore an alternate and lighter way of modeling the
round-robin part of the problem. We show this model can be enriched
by additional propagations that complement the all different constraint.

1 Introduction

Until 1996, sports scheduling was done by hand. Under the added pressure
of team addition and television network requests, the scheduling itself was
given over to computer programs and computer programmers. The set of sports
scheduling problems can be roughly divided into two different kinds of problems.
The first one minimizes the number of breaks, i.e. sequences of two matches at
home or two matches away from home. The second type of problem minimizes
the total traveled distance of all teams during the season. These two kinds of
problems usually come with additional side constraints: forbidden matches, for-
bidden sequences in the home/away variables, wishes from television networks
and from teams, and fair sub-schedules for different teams (regarding weekdays
and weekends in team schedules and regarding television time slots). Please refer
to [1] for more details and to [2–6] for resolution techniques.

To solve a particular asian instance involving a double round-robin assign-
ment, we implemented a classical model using a series of variables representing
the schedules of each team over the different time periods. Despite our best
efforts at that time, we could not find solutions for fourteen teams or more.
This was insufficient as the objective was to schedule eighteen or twenty teams.
Failure to solve this problem resulted from three factors: (a) lack of propaga-
tion among the different constraints of the problem, (b) difficulty in writing an
efficient scheduling search strategy and (c) the complexity of the propagation
involved just to represent the model.

To overcome these weaknesses, we decided to switch the model to a match
model where variables represent matches between teams and their assignment
represents the time period in which this match will be played. This model is
lighter but still lacks propagation between the global cardinality constraint [7]
stating that n/2 matches must occur in each time period and the set of all
different constraints [8] stating that each team plays all its matches on a different
week. This lack of propagation is explored in section 3 and computational results
are shown in section 4.
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2 Models for Round Robin

The classical team model relies on a matrix of variables, one per team and per
time period. The value assigned to this variable corresponds to the opponent of
this team in the same time period. Associated with these variables is a parallel
matrix of Boolean variables indicating if the match is played at home or away.
This is the usual model as found in [5]. In this particular instance, there is a nasty
constraint stating that there is a minimum distance d between the two matches
between two teams. This constraint is implemented by a set of all different
constraints on gliding intervals of length d+1. As these two matches must occur
in different half-seasons, we can restrict these intervals to those crossing the half
of the season. Unfortunately, a translated scheduling is not possible in particular
because of additional side constraints and wishes.

Despite our best efforts (Local search, Large Neighborhood Search, random-
ized strategies, complex heuristics) we were not able to find any feasible solution
to the problem for fourteen or more teams. The problem lies in the selection of
the variable to assign. The domain of each variable is small and homogeneous,
thus killing any attempt based on the size of the domains. We then tried to fill
the schedule chronologically, or by alternating teams and time periods. None of
this turned out to be robust enough.

Furthermore, propagation is very heavy in the classical model. It involves
a lot of all different constraints, many equivalences between simple assignment
constraints, a lot of table constraints, and quite a large number of global cardi-
nality constraints. Thus, using this model, every choice point is simply slow.

We then decided to switch to a dual view of the problem using a match rep-
resentation. In this model, we create n × (n − 1) variables representing all the
different matches of the form: team x plays against team y at home. The domain
of these variables are all the possibles time periods. We also create a matrix of
intermediate home/away binary variables as in the classical model. We added
the following constraints on this model: (a) the match variables and the home-
away variables are linked together using a custom constraint that simply counts
possible home matches and possible away matches for each pair (week, team);
(b) for each team and all matches involving this team, an all different constraint
states that these matches occur on different days; (c) a global cardinality con-
straint states that there are n/2 matches per week; (d) there is at least one and
at most two home matches for every sequence of three home/away variables –
this is encoded using a sequence constraint [9]; and (e) the minimum distance
constraint is now implemented using a disjunction of minimum differences be-
tween the two match variables (a vs. b and b vs. a). This last constraint also
implement the fact that each half schedule is full.

This match model is much lighter because it contains only one global cardi-
nality constraint, no gliding all different constraints, no pairing constraint and
no huge set of equivalences between constraints.

On the search side, the variables seem to carry more weight than the op-
ponent variables in the previous model. This is linked to the fact that each
match variable roughly corresponds to two team variables and two home/away
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variables. Thus, reducing the domain of a match variable directly reduces the
domain of the two opponent variables (directly; both at the same time and not
through complex propagation) and the two home/away variables.

Our first experiments demonstrated that the model is lighter. Finding solu-
tions was easier and faster for up to eighteen or twenty teams. The only downside
was that there was a high number of fails, even for the small instances. This vis-
ible thrashing hinted at a lack of propagation between the different constraints
of the model. This will be explored in the next section.

3 Missing Propagation on the Match Model

In this section, we explore the lack of propagation of the round-robin part of the
problem. This is encoded as a set of all different constraints (one per team) and
a global cardinality constraint (fixing the number of matches per time period).

This is the first propagation rule we implemented: each match belongs to
two all different constraints. If we assign a value to this match, this value will
be removed from all matches of both all different constraints. If we remove
more than the available slack (w.r.t. the global cardinality constraint), then this
assignment is not possible and thus we can remove the value from the match.

This constraint can be implemented easily by a careful count of the number
of possible matches for a given value in the conflict set (union of the two all
different constraints) of a match.

We can go a bit further. For a given match m and a given possible value v for
this match, we can examine the residual set of the conflict set of m, i.e. the set
of all matches where v is still possible and which are not in the conflict set of m.
Then we can compute the maximum number of simultaneous assignments of v
that can be made on this residual set while satisfying the all different constraints.
If this maximum number is strictly smaller than the number of times that v
needs to be assigned minus one (for the assignment of v to m), then we can
safely remove v from m.

Unfortunately, in the general case, computing this maximum number of si-
multaneous assignments is rather intractable. The first propagation rule explores
the case when this number is zero. Another tractable case is when the number
is one. In that case, this means that the maximum number of simultaneous as-
signments of the residual set is one, which is equivalent to the case where all
matches of the residual sets share a common team.

Both these rules can be implemented using a n3 propagation rule where n is
the number of teams.

4 Experimental Results

To test the propagation properties of all the models described in this article, we
implements seven models:
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TW1 This is the team model without the pairing constraint
TW2 This is the team model with the pairing constraint
MW1 This is the match model without any additional constraints
MW2 This is the match model with the first propagation rule
MW3 This is the match model with both propagation rules
CM1 This is the combination of TW2 and MW1 with channeling constraints
CM2 This is the combination of TW2 and MW3 with channeling constraints

We run the same exact searches in parallel on all these models. At each step,
we records the size of the search space (the sum of the logarithm of the size of
the domain of all variables). Then we compare these for the seven models and we
store all the search space sizes if at least one of them is different from the others.
This denotes a different propagation. Furthermore, we also counted the number
of times one model find that the current assignment is unfeasible (failure) when
not all of the other models find the same conclusion. Please note that these
experiments can be done even if we do not find solutions for the problem.

We present the results in the following table in the following way: for each
size and each model, we present in the first line the average size of the search
space over all stored datas and in the second line the number of times this model
was found inconsistent differently from the other models. Results should be read
that way, the lower the figure in the first line, the smaller the search space.
This indicates a stronger propagation. The order is reversed for the second line,
a greater number of fails indicates again a better propagation that is able to
deduce inconsistencies earlier.

Size TW1 TW2 MW1 MW2 MW3 CM1 CM2
12 210.27 210.27 205.33 204.84 202.70 203.85 201.74

23 23 39 41 46 46 51
14 292.95 292.95 291.49 291.36 272.58 286.58 268.54

13 13 14 14 60 28 72
16 364.49 364.49 377.77 376.82 375.55 358.27 357.50

36 36 10 12 14 47 48
18 441.38 441.38 424.98 424.96 424.58 424.65 424.27

0 0 11 11 11 11 11
20 633.87 633.87 630.79 630.78 630.35 630.57 630.13

0 0 0 0 0 0 0

The following points are worth noticing:

– We did not see any differences between TW1 and TW2 (addition of the
pairing constraint). This is counter intuitive and should be explored further.

– The second propagation rule propagates much more than the first propaga-
tion rule.

– The two models do not have the same propagation and they reinforce each
other as seen in the CM2 results. The number of observed failures is much
greater than in the other models. This means that we will deduce failure
earlier and thus the search space can perform exponantially better.
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– It is difficult to compare on the quantitative aspects of these figures. How
they translates in the actual solving of the sport scheduling problem falls in
the future work section. At this point, we can only compare models and not
judge them individually.

5 Conclusion

Sports leagues scheduling problems are and remain challenging. Introducing a
dual view of the classical team model provided us with two main achievements.

First, we were able to devise a more meaningful search strategy thanks to a
reduction in the number of decision variables. This was instrumental in allow-
ing us to solve problems with up to eighteen or twenty teams while with the
original model, we were limited to twelve teams. Second, we were able to create
original additional propagation rules that are different from the week-oriented
propagations found in the usual model.

As we demonstrated, these new propagation rules can reduce the search space
at least as effectively as the best constraints of the original model (symmetric
all different/1-factor/pairing). The most interesting aspect is that the new con-
straints propagate differently than the traditional ones and the combination of
the best constraints from both models leads to serious improvements over results
obtained with either model.
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9. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints.
In Smolka, G., ed.: Principles and Practice of Constraint Programming - CP97,
Third International Conference, Linz, Austria, October 29 - November 1, 1997,
Proceedings. Volume 1330 of Lecture Notes in Computer Science., Springer (1997)



Approximations in Distributed Optimization

Adrian Petcu and Boi Faltings

Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
{adrian.petcu, boi.faltings}@epfl.ch

Abstract. We present a parameterized approximation scheme for distributed
combinatorial optimization problems based on dynamic programming. The algo-
rithm is a utility propagation method and requires a linear number of messages.
For exact computation, the size of the largest message is exponential in the width
of the constraint graph. We present a distributed approximation scheme where
the size of the largest message can be adapted to the desired approximation ratio,
α. The process is similar to a distributed version of the minibucket elimination
scheme, performed on a DFS traversal of the problem.

The second part of this paper presents an anytime version of the algorithm,
that is suitable for very large, distributed problems, where the propagations may
take too long to complete.

Simulation results show that these algorithms are a viable approach to real
world, loose optimization problems, possibly of unbounded size.

1 Introduction

Constraint satisfaction and optimization are powerful paradigms that model a large
range of tasks like scheduling, planning, optimal process control, etc.

To address distributed optimization, complete algorithms like OptAPO, ADOPT
and DPOP have been recently introduced.

In distributed systems, in addition to computational costs, one has to take into ac-
count the communication overhead incurred as a consequence of the message exchange.
Backtracking algorithms like ADOPT [3] work by trying out many combinations of
value assignments, and each one of these state changes requires at least a message. This
translates into an exponential amount of single-value messages, which generally entails
a big communication overhead that should be avoided.

Centralized/distributed hybrids like OptAPO [2] mitigate the communication ex-
plosion by centralizing parts of the problem in some agents, and solving these parts
centrally, and then distributing the results. Arguably, this approach suffers from privacy
problems, and performance bottlenecks in the centralizing nodes.

Dynamic programming algorithms like DPOP [4] generate a linear number of mes-
sages. However, in case the problems have high induced width, the messages generated
in the high-width areas of the problem get large.

We propose in this paper ADPOP, an approximate version of DPOP, which allows
the desired tradeoff between solution quality and computational complexity (see sec-
tion 3). The second part of this paper (section 4) presents AnyPOP, an anytime version
of ADPOP, which provides increasingly accurate solutions while the propagation is
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still in progress. This makes it suitable for very large, distributed problems, where the
propagations may take a long time to complete.

Simulation results on distributed meeting scheduling problems show this approach
to be viable for real world, loose, possibly unbounded optimization problems.

2 Definitions and Notation

A discrete multiagent constraint optimization problem (MCOP) is a tuple < X ,D,R >
such that:
X = {X1, ..., Xm} is the set of variables/solving agents; D = {d1, ..., dm} is

a set of domains of the variables, each given as a finite set of possible values. R =
{r1, ..., rp} is a set of relations, where a relation ri is a function di1 × .. × dik → R

which denotes how much utility is assigned to each possible combination of values of
the involved variables. The goal is to find an assignment X ∗ for the variables Xi that
maximizes the aggregate overall utility.

3 ADPOP – A Configurable Approximation Method

This is an approximate version of the DPOP algorithm from [4]. DPOP is a distributed
version of the bucket elimination scheme from [1], which works on a DFS ordering.

DPOP has 3 phases. First, a DFS traversal of the graph is done using a standard
distributed DFS algorithm.

The second phase (UTIL propagation) is a bottom-up process, which starts from the
leaves and propagates upwards only through tree edges. The agents send UTIL messages
to their parents. These messages summarize the influence of the sending variable and its
whole subtree on the rest of the problem. They are equivalent to the induced constraints
computed in the variable elimination steps in the bucket elimination scheme.

When the UTIL propagation reaches the root, the top-down solution reconstruction
process is initiated.

3.1 Approximations: Dropping Dimensions Through Approximate Projections

The time/space complexity of DPOP’s utility propagation is exponential in the induced
width (see [4] for the proof). Therefore, in case the problem has high induced width,
it is no longer feasible to compute and send exact messages. However, if we renounce
exactness, we can impose a limit maxDims on the maximum number of dimensions
any message in the system can carry. When the dimensionality of the outgoing message
exceeds this limit, the algorithm drops a set S of dimensions to stay below the limit.
This is done by applying a maximal/minimal projection on the respective dimensions
(retains the upper/lower bounds w.r.t. the respective variables). The set S of dimensions
to be dropped can be selected according to a greedy process. The two resulting messages
are bundled together and sent to the parent as upper/lower bounds.

This process is similar to Dechter’s minibucket elimination scheme (see [1]). How-
ever, notice that ADPOP is a distributed algorithm, with a well-defined elimination or-
der, given by a DFS traversal of the problem graph. This particular ordering is very well
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suited for a distributed setting for a number of reasons. First, it can easily be combined
with the most constrained node heuristic to obtain low-width orderings. Second, it en-
sures a good degree of parallelism since nodes in disjoint branches can work in parallel.
Third, deciding how to combine incoming messages, deciding for which ones to wait
and where to send the outgoing ones is made straightforward by the DFS hierarchy.

Furthermore, when the maxDims bound is exceeded, then some dimensions are
forcibly removed by approximate projections, as opposed to computing several lower
dimensionality messages, as the minibucket scheme does.

Propagating both lower and upper bound messages gives us the ability to determine
locally the maximal distance δ from the optimal solution for each value from the domain
of the current variable.

This enables several ways of reasoning with bounds. First, let us consider the UTIL
propagation. If a specified approximation ratio α is given, we can make sure that our fu-
ture solution will observe this bound by dropping only as many dimensions as allowed
by it. Alternatively, if a maxDims bound is specified, then we can drop as many dimen-
sions as needed, and still compute an overall δ that shows how far from the optimum is
the solution. In case the obtained δ is not satisfactory, one can repeat the process, with
increased maxDims, reusing the work that was previously done in the areas where
maxDims was not exceeded.

Second, during the value assignment propagation, one can choose the assignments
according to two strategies. An optimistic strategy that assigns the values with the high-
est upper bounds gives some chances of finding good solutions by choosing ”promis-
ing” assignments. On the other hand, a pessimistic strategy that chooses the values with
the highest lower bounds offers a guarantee on the quality of the chosen solution.

Algorithm Complexity. In all cases, this algorithm produces a linear number of mes-
sages. Its complexity lies in the size of the UTIL messages.

The worst case is when the exact solution is required (maxDims = ∞, or α = 1).
In this case, the complexity equals the induced width of the graph [4]. If the bound
maxDims is imposed and is smaller than the width, no message larger than this is
produced, and complexity is exponential in this bound.

In case an approximation ratio is specified, and maxDims is infinite, in the worst
case complexity is again exponential in the width of the graph.

4 AnyPOP – An Anytime Algorithm for Large Optimization
Problems

In large, distributed constraint networks, it may take a long time until these propagations
complete. In the following, we develop a way to decide quickly, locally, the value of
each variable, based on a limited number of UTIL/VALUE messages from the neighbors.
As time goes by, and the propagation spreads out, and more and more UTIL/VALUE
messages come from the neighbors, we refine these decisions. As opposed to a local
search method, we obtain guarantees on the quality of the solution, even before allow-
ing the propagations to complete. There are obvious advantages to this approach: one
can quickly start with a reasonably good solution, and refine it as time goes by.
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The intuition is simple: the value taken by any node Xi can have an influence on the
rest of the problem only through the constraints between Xi and its direct neighbors.
UTIL messages received by Xi already sum up its influence on the sending subtree.
Thus, based on the set of UTIL messages Xi already received, and on the valuation
structure of the constraints between Xi and its neighbors that did not already send UTIL
messages, Xi can decide with a certain error bound what is the effect of each one of its
values on the rest of the problem.

In some cases, when these error bounds are sufficiently low, Xi can decide on an
assignment for itself even before receiving all of its UTIL/VALUE messages. In such a
case, one can simply start the VALUE propagation phase immediately, without waiting
for the rest of the UTIL/VALUE messages to come.

AnyPOP also exhibits some built-in fault tolerance. If messages are lost, solution
quality degrades. However, the algorithm still provides the best solution it can infer
based on the information that was sent/received successfully.

5 Experimental Evaluation

Our experiments were performed on distributed meeting scheduling problems, where a
set of agents try to jointly find the best schedule for a set of meetings. Each agent has a
variable for each meeting it is involved in. The values are the possible starting times. All
agents must agree on the start time of each meeting, and an agent cannot participate in
2 meetings at the same time. Each agent assigns to each meeting at each particular time
a certain utility, and the task is to find the schedule that maximizes the overall utility.

We ran experiments on an especially difficult problem with 70 agents, 140 variables
and 204 binary constraints. The induced width is 7, meaning that the biggest message
holds over two million values. We ran the algorithm with increasing maxDims. Table 1
shows the results in this order: maximal dimensionality, maximal distance δ from the
optimum for all UTIL messages, the average δ per message, the distance of the approx-
imate solution to the true optimum, the total amount of UTIL information transmitted
(the sum of the sizes of the individual UTIL messages), maximal message size, and the
utility of the solutions found.

Table 1. Max. dimensions vs. solution accuracy: problem with 140 vars, 204 constraints,width=7

maxDims Max δ /msg % Avg δ /msg % δ /overall % Total UTIL payload Max msg size Utility
1 44.83 13.55 2.90 2104 16 2278
2 36.00 4.54 2.69 10032 128 2283
3 17.14 1.27 2.43 39600 1024 2289
4 13.11 0.57 0.81 130912 8192 2327
5 10.00 0.19 0.43 498200 65536 2336
6 1.36 0.04 0.30 1808904 524288 2339
7 0.00 0.00 0.00 3614064 2097152 2346

The accuracy of the solutions increases with the increase of maxDims, culminating
with the optimal value for maxDims = 7. However, there is also a dramatic increase



806 A. Petcu and B. Faltings

Table 2. AnyPOP dynamic evolution: problem with 140 vars, 204 constraints,width=7

Snapshot # Max δ /var % Avg δ /var % Utility δ /overall % Assig changes
1 94.44 80.77 1555 33.72 0
2 66.07 16.7 1625 30.73 99
3 42.42 3.92 2036 13.21 73
4 13.51 1 2254 3.92 19
5 13.51 0.94 2289 2.43 1

in computation effort and network load. If we compare the first and the last lines of
the table, we see that we can achieve a solution which is within 3% of the optimum
with 3 orders of magnitude less effort (2k values vs. 3M). Therefore, in some cases it is
beneficial to settle for a suboptimal solution obtained with much less effort.

To test simultaneously both AnyPOP’s anytime performance and its ability to deal
with low resources, we performed another experiment on the same instance, with
maxDims=3. We took 5 runtime snapshots: the first snapshot was taken before send-
ing/receiving any message, and subsequent ones after each node has received another
message. The last snapshot is taken after all messages are sent/received. The assign-
ments discovered by each of the snapshots are used to compute the overall utility.
We notice a steady progress of the algorithm towards a solution, culminating with
the best solution found by ADPOP on the same test problem, with the same bound
maxDims = 3. There is also a steady decrease of the error bounds, and of the assign-
ment changes between snapshots.

6 Conclusions and Future Work

We proposed an approximate algorithm for distributed optimization, allowing for the
desired tradeoff between solution quality and computational complexity. We also pre-
sented an anytime version of this algorithm, suitable for large distributed problems.
Experimental results show that these algorithms are a viable approach to large but loose
real world optimization problems.

Future work includes finding heuristics for generating DFS trees with low induced
width and ”intelligent” selection of the dimensions to be dropped out.

References

1. Rina Dechter. Bucket elimination: A unifying framework for processing hard and soft con-
straints. Constraints: An International Journal, 7(2):51–55, 1997.

2. Roger Mailler and Victor Lesser. Solving distributed constraint optimization problems using
cooperative mediation. Proceedings of Third International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS 2004), 2004.

3. P. J. Modi, W. M. Shen, and M. Tambe. An asynchronous complete method for distributed
constraint optimization. In Proc. AAMAS, 2003.

4. Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint optimization. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI-05,
Edinburgh, Scotland, Aug 2005.



Extremal CSPs

Nicolas Prcovic
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Abstract. We present a new class of binary CSPs called extremal CSPs. The
CSPs of this class are inconsistent but would become consistent if any pair of
variable assignments among the forbidden ones was allowed. Being inconsistent,
they cannot be solved by any local repair method. As they allow a great num-
ber of partial (almost complete) solutions, they can be very hard to solve with
tree search methods integrating domain filtering. We experiment that balanced
extremal CSPs are much harder to solve than random CSPs of same size at the
complexity peak.

1 Introduction

Even if the Constraint Satisfaction Problem is NP-complete, it is known that only a
small part of the CSP set is hard to solve with the methods used until now. When a
problem has a lot of solutions uniformly distributed in the search space, local repair
methods are efficient. When a problem is much overconstrained, a tree search associated
with a domain filtering technique can allow to prove quickly that the problem has no
solution. Only the problems that resist to that two types of solving methods are usually
considered as hard.

Characterizations of hardness for CSPs have been found for random CSPs defined
by some parameters (number of variables, domain size, graph density and constraint
tightness). In this model, the CSPs for which parameters are such that they have prob-
ability 0.5 to have a solution are longer to solve than the others on the average. The
drawback of this characterization is that it does not give a property that would ensure
the hardness of the problem but only a stronger probability to be hard. In addition, some
other general properties (e.g., backbone, minimal backdoor and unsatisfiable core size)
for explaining problem hardness have been proposed. However, they do not allow a
precise description of hard problem’s structure. In this paper, we propose a simple yet
precise description of CSPs that are necessarily hard to solve with the usual solving
techniques.

2 Resistant CSPs

We place ourselves in the context of binary CSPs, where each problem is defined by
a triple (X, D, C), where X={x1, ..., xn} is the variable set, D={D1, ..., Dn} is the
discrete and finite domain set (where each domain Di contains the values that can be
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assigned to variable xi) and C is the constraint set that explicits the allowed variable
assignment pairs. We say that a CSP is consistent iff it has a solution, that is, a variable
assignment set A such that any two variable assignments in A form a pair that belongs
to C. A binary CSP can be modeled as a simple vertex-colored graph using what is
called its microstructure.

Definition 1. Microstructure of a CSP
The microstructure of a CSP is a vertex-colored graph for which each vertex is a vari-
able assignment (with a value of its domain), for which each edge corresponds to an
allowed pair of variable assignments and for which each vertex is colored by its vari-
able number.

The microstructure of a CSP with n variables is a n-partite n-colored graph (each part
has its own color). The CSP is consistent if its microstructure contains a n-clique (a
complete induced subgraph with n vertices).

We consider tree search procedures that filter the domains dynamically by main-
taining some kind of local consistency, such as Forward-Checking and MAC. Our idea
is to consider the hardest the problems that resist to the best possible value or variable
ordering heuristics.

Definition 2. Minimum search tree (of a procedure)
Given a tree search procedure, the minimum search tree of an inconsistent CSP is the
one that results from a sequence of optimal (dynamic) variable choices that minimizes
the total number of nodes in the tree.

In other words, among the set of all the search trees that can be obtained by varying at
some points the variable to choose next, the minimum search tree is the one containing
the minimum number of nodes. A search tree is a proof of inconsistency. Each node
is an elementary step of polynomial time complexity. The search tree depends on the
solving procedure that is used.

Definition 3. CSP resistance
Given a tree search procedure, a CSP P1 is more resistant than a CSP P2 if the minimum
search tree of P1 has more nodes than the one of P2.

Therefore, an (inconsistent) problem is resistant for a procedure if there exists no
short proof of its inconsistency, even with the best possible heuristic. If a CSP is resis-
tant then it is also hard in the usual sense (ie, long to solve on the average). Notice that
consistent problems are not resistant (even if some may be considered hard in the usual
sense) since there exists a short proof of their consistency. We aim at discovering the
CSPs that best resist to any tree search procedure.

3 Extremal CSPs

For a given variable set X and domain set D, we are going to define the extremal CSP
class, which has the following informal property: any CSP P (with variable set X and
domain set D) not in this class is such that there always exists a CSP in this class which
is more resistant than P. The general idea is that if we can solve efficiently any CSP of
this class then we are also able to solve any CSP outside this class.
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Definition 4. Extremal CSP
A CSP is extremal if its microstructure is such that it does not contain any n-clique but
the addition of any new edge between two vertices of different color would create a
n-clique.

In other words, a CSP is extremal1 if it is inconsistent and if adding any new pair of
variable assignments in its constraint set would make this CSP consistent. The extremal
CSPs are saturated with partial solutions involving n− 1 variable assignments. There-
fore, they are potentially hard to solve with any tree search methods because domain
filtering techniques maintaining some level of local consistency (arc-consistency, path-
consistency or a higher level of consistency) may be totally inoperative. Their relative
resistance is explained by the following reasons:

– Adding a new allowed pair of variable assignments to an extremal CSP makes it
consistent, so there exists a way of reaching one of its solutions quickly.

– Removing an allowed pair of variable assignments introduces a new possibility for
the search procedure to backtrack on a subtree that would have been explored. In
others words, a nogood (ie, an implied constraint) is added and the minimum length
of the proof of its inconsistency can be shortened.

Each extremal CSP is thus more resistant than a lot of other CSPs: the ones allow-
ing exactly the same pairs of variable assignments plus some other pairs or (exclusive)
minus some other pairs. Obviously, the fact that a CSP is extremal does not ensure
it is more resistant than any other non extremal CSP of same size. However, any non
extremal CSP has at least one extremal CSP of same size which is more resistant. There-
fore, the most resistant CSPs are extremal.

Fig. 1. The only five possible structures of extremal CSPs that have 3 variables and 2 values in
their domains. The ellipses surround the vertices of same color. There is no triangle. Adding any
edge between two vertices of different color would create a triangle.

1 The extremal graph theory is ”the study of how the intrinsic structure of graphs ensures certain
types of properties (e.g., clique-formation and graph colorings) under appropriate conditions”
(Eric W. Weisstein). Hence, microstructures of extremal CSPs are just extremal graphs.
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The study of extremal CSPs allows to obtain new means to decide if a CSP is con-
sistent or not.

Proposition 1. A CSP is inconsistent if and only if its microstructure is a spanning sub-
graph of the microstructure of an extremal CSP with the same variables and domains.

Proof. It is obvious that any CSP whose microstruture is a spanning subgraph of the
microstructure of an extremal CSP is inconsistent because extremal CSPs are. Now, let
G be the microstructure of an inconsistent CSP. By adding iteratively to G one edge that
maintains inconsistency, we can always reach an extremal microstructure. G is then a
spanning subgraph of the microstructure of an extremal CSP.

We designed a simple procedure for generating extremal CSPs. It consists in starting
from a complete n-partite graph (a problem without any constraint) then iterating the
following cycle: find a n-clique (a solution) and remove an edge of this n-clique. The
procedure halts when the modified microstructure does not contain any more n-clique
(the problem is inconsistent). In order to ensure that the problem is extremal, we forbid
the removal of an edge of a newly discovered n-clique if it belonged to one of the n-
cliques previously found. We thus ensure that adding later any edge would make appear
again the n-clique this edge belonged to.

4 Balanced Extremal CSPs

Since not all extremal CSPs are very resistant (they are only more resistant than others),
we have to find another property to ensure a strong resistance. According to our defi-
nition of resistance, a CSP (extremal or not) can be resistant only if the time spent to
solve it is not sensitive to the ordering of the variable selection during the tree search.
If it is not the case, there is a high variability in the size of the search tree, then there
exists a small search tree generated thanks to a good variable ordering. But if it is not
sensitive at all to the variable ordering, this means the problem is totally symmetrical
(like the CSP at the bottom right of figure 1). Indeed, only choices between symmetri-
cal alternatives are insignificant because each one leads to an equivalent situation. So
in order to generate extremal CSPs that are actually hard, we managed to minimize the
variation of degree between their vertices of highest and lowest degree. This is very
easy to integrate into our procedure: among all the edges that can be removed from the
microstructure, we always select the edge that maintains the lowest variation of degree.
The balance between the degrees of the vertices favors the apparition of symmetries but
does not guarantee them at all.

In order to verify the hardness of balanced extremal CSPs, after having generated
them with our procedure, we solved them thanks to a classical tree search method: a
Forward-Checking procedure with the dom/deg2 dynamic variable ordering heuristic.
Table 1 shows results for the first hundred balanced extremal CSPs generated for each
parametering (number of variables, domain size). These results are compared with the
ones obtained with the same solving procedure on the hardest classical random CSPs
of same size from [1], ie random CSPs for which the constraint graph is complete and
the constraint tightness is set as to reach the complexity peak.

2 Domain size / degree of the variable in the constraint graph.
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Table 1. Comparison of the average number of backtracks (BT) and nodes for different problem
sizes between the first 100 balanced extremal CSPs generated by our procedure and 100 instances
of the hardest random CSPs. The average values are followed by the intervals of values between
brackets.

balanced extremal CSPs hardest random CSPs
n d # BT # nodes # BT # nodes

13 8 251 (247-255) 503 (499-507) 11 (0-22) 93 (13-183)
17 6 115 (108-142) 365 (323-512) 10 (0-20) 99 (17-185)
22 5 78 (6-209) 223 (36-575) 7 (0-17) 94 (22-185)
25 4 12821 (5049-30070) 43022 (20948-102431) 6 (5-10) 50 (32-70)

One characteristic of the CSPs we have generated is that their hardness is not an in-
creasing function of the number of variables and domain size. We have conjectured the
following cause. As equality between the degrees of the vertices is a necessary but not
sufficient condition for symmetry existence, we thought our procedure could have gen-
erated very symmetrical CSPs in some cases and no symmetrical CSPs in other cases.
For checking this, we have used Nauty [2] to compute the orbits3 of the microstructures.
The more orbits in a graph, the less symmetrical it is. In our experiments, we note that
the hardest extremal CSPs (problems for which domain size is 4) are the ones that have
some symmetries (90 orbits on the average). Knowing their symmetries can be very
useful to accelerate their resolution thanks to various symmetry breaking techniques.
However the other extremal CSPs are easier but still much harder than the hardest ran-
dom CSPs. These CSPs are not symmetrical but have some regularity and a high degree
of local consistency that make our variable ordering heuristic and filtering technique
inoperative.

5 Conclusion

Aiming at characterizing what a hard CSP is, we have introduced the extremal CSP
class. We have shown experimentally that, by generating balanced extremal CSPs (for
which microstructure vertices have close degrees), we can build problems that are much
harder than random CSPs of same size at the complexity peak. Balanced extremal CSPs
have been designed to resist to almost all existing solving techniques: local repair meth-
ods, tree search with domain filtering, intelligent backtracking, perfect variable or value
ordering, symmetry breaking. So, they constitute a challenge and require elaborating
solving techniques that may be totally different from the classical ones.
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Abstract. We describe how the propagator for the All-Different
constraint can be generalized to prune variables whose domains are not
just simple finite integer domains. We show, for example, how it can be
used to propagate set, multiset and tuple variables.

1 Introduction

Constraint programming has restricted itself largely to finding values for vari-
ables taken from finite integer domains. However, we might want to consider
variables representing sets [11–13], multisets [14], ordered tuples, or other struc-
tures. These variable types reduce the space needed to represent possible domain
values, improve the efficiency of constraint propagators and inherit all the usual
benefits of data abstraction like ease of debugging and code maintenance.

As an example, consider the round robin sports scheduling problem (prob026
in CSPLib). In this problem, we wish to find a schedule satisfying a number
of constraints including that a team never plays twice with another team. We
therefore would like a propagator which works on an All-Different constraint
posted on variables whose values are pairs of teams. In this paper, we consider
how to efficiently and effectively implement the All-Different constraint on
variables whose values are sets, multisets or tuples. Due to space restrictions, we
omit proofs. A longer version of the paper is available as a technical report.

2 Propagators for the All-Different Constraint

Propagating the All-Different constraint involves removing from the domain
of variables those values that cannot be part of a consistent assignment. To design
his propagator, Leconte [16] introduced the concept of Hall set based on Hall’s
work [1].

Definition 1. A Hall set is a set H of values such that the number of variables
whose domain is contained in H is equal to the cardinality of H. More formally,
H is a Hall set if and only if |H | = |{xi | dom(xi) ⊆ H}|.
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To enforce domain consistency, it is necessary and sufficient to detect every
Hall set H and remove its values from the domains that are not fully contained in
H . Régin’s propagator [4] uses matching theory to detect Hall sets. Leconte [16],
Puget [17], López-Ortiz et al. [9] use simpler ways to detect Hall intervals and
achieve weaker consistencies.

3 Beyond Integer Variables

A propagator designed for integer variables can be applied to any type of variable
whose domain can be enumerated. For instance, let the following variables be
sets whose domains are expressed by a set of required values and a set of allowed
values. {} ⊆ S1, S2, S3, S4 ⊆ {1, 2} and {} ⊆ S5, S6 ⊆ {2, 3}. Variable domains
can be expanded as follows: S1, S2, S3, S4 ∈ {{}, {1}, {2}, {1, 2}} and S5, S6 ∈
{{}, {2}, {3}, {2, 3}}. By enforcing GAC on the All-Different constraint, we
obtain S1, S2, S3, S4 ∈ {{}, {1}, {2}, {1, 2}} and S5, S6 ∈ {{3}, {2, 3}}. We can
now convert the domains back to their initial representation. {} ⊆ S1, S2, S3, S4 ⊆
{1, 2} and {3} ⊆ S5, S6 ⊆ {2, 3}.

This technique always works but is not tractable in general since variable
domains might have exponential size. For instance, the domain of ∅ ⊆ Si ⊆ [1, n]
contains 2n elements. The following important lemma allows us to ignore such
variables and focus just on those with “small” domains.

Lemma 1. Let n be the number of variables and let F be a set of variables
whose domains are not contained in any Hall set. Let xi �∈ F be a variable whose
domain contains more than n − |F | values. Then dom(xi) is not contained in
any Hall set.

Lemma 1 helps us to find variables F whose domain cannot be contained
in a Hall set. Algorithm 1 prunes the domains of n variables and ensures that
domains larger than n do not slow down the propagation.

To apply our new techniques, three conditions must be satisfied by the rep-
resentation of the variables: computing the size of the domain must be tractable
(Line 1), domains must be efficiently enumerable (Line 2) and efficiently com-
puted from an enumeration of values (Line 3). The next sections describe how
different representations of domains for set, multiset and tuple variables meet
these three conditions.

F ← ∅
1 for xi ∈ X do if |dom(xi)| > |X| − |F | then F ← F ∪ {xi}
2 Expand domains of variables in X − F .

Propagate the All-Different constraint on variables X − F and find Hall sets H .
for xi ∈ F do dom(xi) ← dom(xi) − H

3 Collapse domains of variables in X

−

F .

All-Different propagator for variables with large domainsAlgorithm 1.
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4 All-Different on Sets

Several representations of domains have been suggested for set variables. The
most common representations use a set of required elements lb and a set of al-
lowed elements ub such that any set S satisfying lb ⊆ S ⊆ ub belongs to the
domain [11,12]. The cardinality of dom(S) is 2|ub−lb| and can be computed in
constant time. Often, to represent more precisely the possible values, a cardinal-
ity variable C is added such that |S| ∈ dom(C). The size of the domain is then
given by

∑
j∈dom(C)

(|ub−lb|
j−|lb|

)
and this can be computed in O(|dom(C)|) steps.

To increase the expressiveness of the domain representation, Sadler and
Gervet [6] suggest adding a lexicographic ordering constraint. We therefore say
that S1 < S2 holds if S1 comes before S2 in a lexicographical order. The new
domain representation now involves two lexicographic bounds l ≤ S ≤ u. To
compute the size of such domains, we consider the binary vector representation
where each bit of a vector corresponds to an element in ub − lb. The bit is set
to 1 if the element belongs to the set and 0 otherwise. Let a and b be the bi-
nary vector representation of the lexicographical bounds l and u. Let a − 1 be
the vector that lexicographically precedes a. Function f computes the number
of binary vectors lexicographicaly smaller than or equal to s with k bits set to
one. Assuming that

(
x
y

)
= 0 for any y < 0, the size of domain S is given by the

following equations.

|dom(S)| =
∑
k∈C

(f(b, k)− f(a− 1, k)) (1)

f([sm, . . . , s1], k) =
m∑

i=1

si

(
i− 1

k −
∑m

j=i+1 sj

)
+ δ(s, k) (2)

δ([sm, . . . , s1], k) =
{

1 if
∑m

i=1 si = k and s0 = 0
0 otherwise (3)

Function f can be evaluated in O(|ub− lb|) steps. The size of domain dom(S)
therefore requires O(|ub− lb||dom(C)|) steps to compute.

We can enumerate the sets in dom(S) of cardinality k for each k ∈ dom(C).
Based on the lexicographic bound l, we find the first set of cardinality k. Algo-
rithm T from Knuth [8] provides subsequent sets. Proceeding this way results in
a O(|dom(C)||ub − lb|+ |dom(S)|) algorithm. When there are no lexicographic
bounds, the complexity can be reduced to O(max(|ub− lb|, |dom(S)|)).

5 All-Different on Tuples

A tuple t is an ordered sequence of n elements that allows multiple occurrences.
The most common way to represent the domain of a tuple is simply by associating
an integer variable to each of the tuple components. A tuple of size n is therefore
represented by n integer variables x1, . . . , xn.

To apply an All-Different constraint to a set of tuples, a common so-
lution is to create an integer variable t for each tuple. If each component xi
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ranges from 0 to ci exclusively, we add the channeling following constraint
t =
∑n

i

∏n
j=i+1 cjxi.

This technique suffers from either inefficient or ineffective channeling between
variable t and the components xi. Most constraint libraries enforce bound con-
sistency on t. A modification to the domain of xi does not necessarily affect t.
Conversely, even if all tuples encoded in dom(t) have xi �= v, value v will most
often not be removed from dom(xi). On the other hand, enforcing domain con-
sistency typically requires O(|dom(t)|) steps which can be time consuming when
domains are large.

To address this issue, one can define a tuple variable whose domain is defined
by the domain of its components. dom(t) = dom(x1)× . . .× dom(xn). The size
of such a domain is given by |dom(t)| =

∏n
i=1 |dom(xi)| which can be computed

in O(n) steps.
As Sadler and Gervet [6] did for sets, we can add lexicographical bounds to

tuples l ≤ t ≤ u in order to better express the values the domain contains.
Let idx(v, x) be the number of values smaller than v in the domain of

the integer variable x. Assuming idx(v, x) has a running time complexity of
O(log(|dom(x)|)), the size of the domain can be evaluated in O(n+log(|dom(t)|))
steps using |dom(t)| = 1+

∑n
i=1

(
(idx(u[i], xi)− idx(l[i], xi))

∏n
j=i+1 |dom(xi)|

)
Algorithm M from Knuth [7] enumerates the domain of a tuple variable in

lexicographical order. Assuming the domain of all component variables have the
same size, this algorithm runs in O(|dom(t)|) steps which is optimal.

6 All-Different on Multi-sets

Unlike sets, multi-sets allow multiple occurrences of a same element. A multi-set
can be represented by a tuple where each component indicates the multiplicity of
an element in the multi-set. All algorithms explained in Section 5 can therefore
be applied to multi-sets.

7 Indexing Domain Values

Propagators for the All-Different constraint, like the one proposed by
Régin [4], need to store information about the values appearing in the domains
of variables. When values are integers, a table T can store information related to
value v in entry T [v]. Algorithm ?? ensures that no more than n2 distinct values
will be handled by the propagator. When these n2 values come from a signifi-
cantly larger set of values, table T becomes very sparse. To allow better direct
access, we need to map the n2 values to an index in the interval [1, n2]. The trie
data structure retrieves the value associated to a set, a multi-set, a tuple, or any
other sequential data structure of length l in O(l) steps. This technique permits
existing propagators to work without a penalty for sparse domain values.
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8 Conclusions

We have described how existing propagators for the All-Different constraint
can be generalized to prune variables whose domains are not just simple finite
integer domains. In particular, we described how it can be used to propagate set,
multi-set and tuple variables. This result can easily be generalized for the global
cardinality constraint. Many other global constraints still remain to be general-
ized to deal with variables which are not just simple integer finite domains, as
well as to variables of other types.
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Abstract. This paper introduces an architecture for generic constraint
implementations based on variable views and range iterators. Views al-
low, for example, to scale, translate, and negate variables. The paper
shows how to make constraint implementations generic and how to reuse
a single generic implementation with different views for different con-
straints. Applications of views exemplify their usefulness and their po-
tential for simplifying constraint implementations. We introduce domain
operations compatible with views based on range iterators to access and
modify entire variable domains.

1 Introduction

This paper contributes a new architecture based on variable views and range
iterators. The architecture comprises an additional level of abstraction to decou-
ple variable implementations from propagators (as constraint implementations).
Propagators compute generically with variable views instead of variables. Views
support operations like scaling, translation, and negation of variables.

Range iterators support powerful and efficient domain operations on variables
and variable views. The operations can access and modify multiple values of a
variable domain simultaneously. Range iterators are efficient as they help avoid-
ing temporary data structures. They simplify the construction of propagators
by serving as adaptors between variables and propagator datastructures.

The architecture is carefully separated from its implementation. The archi-
tecture can be used for arbitrary constraint programming systems and has been
fully implemented in Gecode [2].

2 Constraint Programming Systems

This section introduces the model for finite domain constraint programming
systems considered in this paper and relates it to existing systems.

We assume that a constraint is implemented by a propagator. A propagator
maintains a collection of variables and performs constraint propagation by exe-
cuting operations on these variables. In the following we consider finite domain
variables and propagators. A finite domain variable x has an associated domain
dom(x) being a subset of some finite subset of the integers.
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Propagators do not manipulate variable domains directly but use operations
provided by the variable. These operations return information about the domain
or update the domain. In addition, they handle failure (the domain becomes
empty) and control propagation of other propagators sharing variables.

A value operation on a variable involves a single integer as result or argument.
We assume that a variable x with D = dom(x) provides the following value
operations: x.getmin() returns min D, x.getmax() returns maxD, x.adjmin(n)
updates dom(x) to {m ∈ D | m ≥ n}, x.adjmax(n) updates dom(x) to {m ∈
D | m ≤ n}, and x.excval(n) updates dom(x) to {m ∈ D | m �= n}.

These operations are typical for finite domain constraint programming sys-
tems like Choco [5], ILOG Solver [7,8,3], Eclipse [1], Mozart [6], and Sicstus [4].
Some systems provide additional operations such as for assigning values.

A domain operation supports access or update of multiple values of a variable
domain simultaneously. In many systems this is provided by supporting an ab-
stract set-datatype for variable domains, as for example in Choco [5], Eclipse [1],
Mozart [6], and Sicstus [4]. ILOG Solver [7,8,3] only allows access by iterating
over the values of a variable domain.

Range notation [n .. m] is used to refer to the set of integers {l ∈ Z | n ≤ l ≤
m}. A range sequence ranges(I) for a finite set of integers I ⊆ Z is the shortest
sequence s = 〈[n1 .. m1] , . . . , [nk .. mk]〉 such that I is covered (set(s) = I, where
set(s) is defined as

⋃k
i=1 [ni .. mi]) and the ranges are ordered by their smallest

elements (ni ≤ ni+1 for 1 ≤ i < k). The above range sequence is also written as
〈[ni .. mi]〉ki=1. Clearly, a range sequence is unique, none of its ranges is empty,
and mi + 1 < ni+1 for 1 ≤ i < k.

3 Variable Views with Value Operations

This section introduces variable views with value operations.
Consider as an example the well-known finite domain constraint model for

n-Queens using three alldifferent constraints. To be implemented efficiently, this
model requires an alldifferent constraint supporting that the values of xi + ci

are different, where the xi are variables and the ci are integers. Systems with
this extension of alldifferent must implement two very similar versions of the
same propagator. This is tedious and increases the amount of code that requires
maintenance. In the following we make propagators generic: the same propagator
can be reused for several variants.

To make a propagator generic, all its operations on variables are replaced by
operations on variable views. A variable view (view for short) implements the
same operations as a variable. A view stores a reference to a variable. Invoking an
operation on the view executes the appropriate operation on the view’s variable.
Multiple variants of a propagator can be obtained by instantiating the single
generic propagator with multiple different variable views.

For an offset-view v = voffset(x, c) for a variable x and an integer c, perform-
ing an operation on v results in performing an operation on x+c. The operations
on the offset-view are:
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v.getmin() := x.getmin() + c v.getmax() := x.getmax() + c
v.adjmin(n) := x.adjmin(n− c) v.adjmax(n) := x.adjmax(n− c)
v.excval(n) := x.excval(n− c)

To obtain both alldifferent propagators, also an identity-view is needed. An
operation on an identity-view vid(x) for a variable x performs the same op-
eration on x. That is, identity-views turn variables into views to comply with
propagators now computing with views. Obtaining the two variants of alldif-
ferent is straightforward: the propagator is made generic with respect to which
view it uses. Using the propagator with both an identity-view and an offset-view
yields the required propagators.

A scale-view v = vscale(a, x) for a positive integer a > 0 and a variable x
defines operations such that v behaves as a · x:

v.getmin() := a · x.getmin() v.getmax() := a · x.getmax()
v.adjmin(n) := x.adjmin(1n/a2) v.adjmax(n) := x.adjmax(7n/a8)
v.excval(n) := if n mod a = 0 then x.excval(n/a)

As an example, consider the implementation of linear equations. With scale-
views it is sufficient to implement the simple propagator

∑n
i=1 vi = c for views

vi. Then, a general version
∑n

i=1 ai · xi = c (using scale-views) as well as an
optimized version

∑n
i=1 xi = c (using identity-views) can be obtained.

A minus-view v = vminus(x) for a variable x provides operations such that
v behaves as −x. Its operations reflect that the smallest possible value for x is
the largest possible value for −x and vice versa.

Derived views. It is unnecessarily restrictive to define views in terms of vari-
ables. The actual requirement for a view is that its variable provides the same
operations. It is straightforward to make views generic themselves: views can be
defined in terms of other views. The only exception are identity-views as they
serve the very purpose of casting a variable into a view. Views such as offset,
scale, and minus are called derived views : they are derived from some other view.

With derived views being defined in terms of views, the first step to use a
derived view is to turn a variable into a view by an identity-view. For example,
a minus-view v for the variable x is obtained by v = vminus(vid(x)).

The coefficient of a scale-view is restricted to be positive. Allowing arbitrary
non-zero constants a in a scale-view s = vscale(a, x) requires to take the signed-
ness of a into account. This extension is inefficient. A more efficient way is to
restrict scale-views to positive coefficients and use an additional minus-view for
cases where negative coefficients are required.

Derived views exploit that views do not need to be implemented in terms of
variables. This can be taken to the extreme in that a view has no access at all
to a variable. A constant-view v = vcon(c) for an integer c provides operations
such that v behaves as a variable x being equal to c. Constant-views allow to
obtain optimized variants of more general propagators. For example, x + y = c
can the be obtained from x + y + z = c without any overhead.
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4 Domain Operations and Range Iterators

A range iterator r for a range sequence s = 〈[ni .. mi]〉ki=1 allows to iterate over
s: each [ni .. mi] can be obtained in sequential order but only one at a time.
A range iterator r provides the following operations: r .done() tests whether all
ranges have been iterated, r .next() moves to the next range, and r .min() and
r .max() return the minimum and maximum value for the current range. By
set(r) we refer to the set defined by an iterator r (with set(r) = set(s)).

A range iterator hides its implementation. Iteration can be by position, but
it can also be by traversing a list. The latter is particularly interesting if variable
domains are implemented as lists of ranges themselves.

Variables are extended with operations to access and modify their domains
with range iterators. For a variable x, the operation x. getdom() returns a range
iterator for ranges(dom(x)). For a range iterator r the operation x. setdom(r)
updates dom(x) to set(r) provided that set(r) ⊆ dom(x).

With the help of iterators, richer domain operations are effortless. For a
variable x and a range iterator r, the operation x. adjdom(r) replaces dom(x)
by dom(x) ∩ set(r), whereas x. excdom(r) replaces dom(x) by dom(x) \ set(r).

Global constraints are typically implemented by a propagator computing over
some involved data structure, such as for example a variable-value graph for
domain-consistent all-distinct [9]. After propagation, the new variable domains
must be transferred from the data structure to the variables. This can be achieved
by using a range iterator as adaptor. The adaptor operates on the data structure
and iterates the range sequence for a particular variable. The iterator then can
be passed to the appropriate domain operation.

5 Variable Views with Domain Operations

Domain operations for identity-views and constant-views are straightforward.
The domain operations for an identity-view v = vid(x) use the domain oper-
ations on x: v. getdom() := x. getdom() and v. setdom(r) := x. setdom(r). For
a constant-view v = vcon(c), the operation v. getdom() returns an iterator for
the singleton range sequence 〈[c .. c]〉. The operation v. setdom(r) just checks
whether the range sequence of r is empty.

Domain operations for an offset-view voffset(v, c) are provided by an offset-
iterator. The operations of an offset-iterator o for a range iterator r and an
integer c (created by ioffset(r, c)) are as follows:

o.min() := r .min() + c o.max() := r .max() + c
o.done() := r .done() o.next() := r .next()

The domain operations for an offset view v = voffset(v, c) are as follows:

v. getdom() := ioffset(x. getdom(), c)
v. setdom(r) := x. setdom(ioffset(r,−c))

Providing domain-operations for minus-views and scale-views is similar.
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6 Implementation

The presented architecture can be implemented as an orthogonal layer of abstrac-
tion for any constraint programming system. The only demand on the imple-
mentation language is that it supports polymorphism of some kind: propagators
operate on different views, domain operations and iterators on different iterators.

C++ features parametric polymorphism through templates. Due to monomor-
phization, the compiler can perform aggressive optimizations, in particular in-
lining. Gecode makes heavy use of templates. A thorough inspection of the code
generated by several C++ compilers shows that all operations on both views and
iterators are inlined entirely. The abstractions thus do not impose a runtime
penalty (compared to a system without views and iterators).
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In constraint optimization, global constraints play a decisive role. To develop an effi-
cient optimization tool, we need to be able to assess whether we are still able to improve
the objective function further. This observation has lead to the development of a special
kind of global constraints, so-called optimization constraints [2,5]. Roughly speaking,
an optimization constraint expresses our wish to search for improving solutions only
while enforcing feasibility for at least one of the constraints of the problem.

Since optimization constraints essentially evolve as a conjunction of a constraint on
the objective value and some constraint of the constraint program, for many optimiza-
tion constraints achieving generalized arc-consistency turns out to be NP-hard. Conse-
quently, weaker notions of consistency have been developed with the aim to get our-
selves back into the realm of tractable inference techniques. In [6,7], we introduced the
concept of approximated consistency which is a refined and stronger notion of relaxed
consistency [1] for optimization constraints. Approximated consistency asks that all as-
signments are removed from consideration whose commitment would cause a bound
with guaranteed accuracy to drop below the given threshold.

We study the automatic recording problem (ARP) that consists in the solution of a
knapsack problem where items are associated with time intervals and only items can be
selected whose corresponding intervals do not overlap. The combination of a knapsack
constraint with non-overlapping time-interval constraints can be identified as a sub-
problem in many more scheduling problems. For example, satellite scheduling can be
viewed as a refinement of the automatic recording problem. Therefore, it is of general
interest to study a global constraint that augments the knapsack constraint with time-
interval consistency of selected items. This idea gives raise to the Automatic Recording
Constraint (ARC), which we want to study in this paper. Obviously, as an augmenta-
tion of the knapsack constraint, achieving generalized arc-consistency for the ARC is
NP-hard. Consequently, we will develop a filtering algorithm for the constraint that does
not guarantee backtrack-free search for the ARP, but that achieves at least approximated
consistency with respect to bounds of arbitrary accuracy.

1 ARP Approximation

In the interest of space, we need to omit formal definitions of optimization constraints
and approximated consistency. We refer the reader to [1,7,8]. Let us define the Auto-
matic Recording Problem and its corresponding constraint.

Given n ∈ IN, denote with V = {1, . . . , n} the set of items, and with start(i) <
end(i) ∀ i ∈ V the corresponding starting and ending times. With w = (wi)1≤i≤n ∈
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INn
+ we denote the storage requirements, K ∈ IN+ denotes the storage capacity, and

p = (pi)1≤i≤n ∈ INn the profit vector. Finally, let us define n binary variables X1, . . . ,-
Xn ∈ {0, 1}. We say that the interval Ii := [start(i), end(i)] corresponds to item
i ∈ V , and call two items i, j ∈ V overlapping whose corresponding intervals overlap,
i.e. Ii ∩ Ij �= ∅. We call pX :=

∑
i | Xi=1 pi the user satisfaction (with respect to X).

The Automatic Recording Problem (ARP) consists in finding an assignment X =
(X1, . . . , Xn) ∈ {0, 1}n such that (a) The selection X can be stored within the given
disc size, i.e.

∑
i wiXi ≤ K . (b) At most one item must be selected at a time, i.e.

Ii ∩ Ij = ∅ ∀ i < j s.t. Xi = 1 = Xj . (c) X maximizes the user satisfaction, i.e.
pX ≥ pY ∀ Y respecting (a) and (b). Then, given a lower bound on the objective func-
tion B ∈ IN and domains of the binary variables X1, . . . , Xn, the Automatic Recording
Constraint (ARC) consists in enforcing that a solution to the ARP with pX > B.

In less formal terms, the ARC requires us to find a selection of items such that the
total weight limit is not exceeded, no two items overlap in time, and the total objective
value is greater than that of the best know feasible solution. Note that enforcing gen-
eralized arc-consistency (GAC) on the ARC is NP-hard, which is easy to see by the
fact that finding an improving solution would otherwise be possible in a backtrack-free
search [3] or by simple reduction to the knapsack constraint [7].

Approximated consistency requires that a lower threshold that is diminished by
some fraction of the overall best possible performance is guaranteed to be exceeded.
In our pursuit to develop a filtering algorithm for the ARC, let us first study the ARP
and see whether we can develop a fast approximation algorithm for the problem. Let
pmax := max{pi | 1 ≤ i ≤ n}. We develop a pseudo-polynomial algorithm running
in Θ(n2pmax) that will be used later to derive a fully polynomial time approximation
scheme (FPTAS) for the ARP.

1.1 A Dynamic Programming Algorithm

The algorithm we develop in the following is similar to the teaching book dynamic
programming algorithm for knapsack problems. Setting IN := IN ∪ {∞} and ψ :=
npmax + 1, we compute a matrix M = (mkl) ∈ IN

n+1×ψ
, 0 ≤ k ≤ ψ, 0 ≤ l ≤ n. In

mkl, we store the minimal knapsack capacity that is needed to achieve a profit greater
or equal k using items lower or equal l only (mkl =∞ iff

∑
1≤i≤l pi < k).

We assume that V is ordered with respect to increasing ending times, i.e., 1 ≤ i <
j ≤ n implies ei ≤ ej . Further, denote with lastj ∈ V ∪ {0} the last non-overlapping
node lower than j, i.e., elastj < sj and ei ≥ sj ∀ lastj < i ≤ j.

We set lastj := 0 iff no such node exists, i.e., iff e0 ≥ sj . To simplify the notation,
let us assume that mk,0 =∞ for all 0 < k < ψ, and mk,0 = 0 for all k ≤ 0. Then,

mkl = min{mk,l−1, mk−pl,lastl
+ wl}. (1)

The above recursion equation yields a dynamic programming algorithm: First, we
sort the items with respect to their ending times and determine lasti for all 0 ≤ i < n.
Both can be done in time Θ(n log n). Then, we build up the matrix column by column,
and within each column from top to bottom. Finally, we compute max{k | mk,n ≤
K}. The total running time of this procedure and the memory needed are obviously in
Θ(|M |) = Θ(n2pmax).
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1.2 A Fully Polynomial Time Approximation Scheme

We exploit a core idea from [4] to limit the total number of non-infinity entries per
column: According to Equation 1, each column depends solely on the column imme-
diately to the left and the column that belongs to the last predecessor of the currently
newly added item. We construct new sparse columns as lists of only non-infinity en-
tries that are ordered with increasing profit. This can be done easily by running through
the corresponding lists of columns that determine the entries in the new column. After
a new column is created, we “trim” it by eliminating entries whose profit (the corre-
sponding row of the matrix entry) is only slightly better than that of another entry in the
column. Formally, we remove an entry if there exists a prior entry mkl in the list if and
only if there exists a prior and not previously removed entry mjl such that j ≥ (1− δ)k
for some 1 > δ = δ(ε) > 0. And whenever an entry mkl is removed, its representant
entry is set to mjl := min{mjl,mkl

}. All this can be done in one linear top to bot-
tom pass through the column. Then, after the trimming, successive elements in the list
differ by a factor of at least 1/(1 − δ). Thus, each sparse column can contain at most
log1/(1−δ)(npmax) = ln(npmax)

− ln(1−δ) ≤
ln(npmax)

δ elements. Note that every new column,
before it is trimmed itself, cannot contain more than two times this value. Consequently,
the algorithm will only take time O(n ln(npmax)

δ ).
Now, what error have we introduced by trimming the columns? By induction on the

column indices l, it can shown easily that in the lth column, if there existed an entry mkl

in the original dynamic program, then there exists an entry mjl in the trimmed version
such that (1 − δ)lk ≤ l ≤ k and mjl ≤ mkl. Consequently, the entry mkn ≤ K that
achieves the optimal profit k has a representant mln ≤ mkl ≤ K with l ≥ (1 − δ)nk.
When setting δ = ε/n, then it follows l ≥ (1 − ε

n )nk ≥ (1 − ε)k. Consequently, we

achieve an FPTAS that runs in time O(n2 ln(npmax)
ε ).

2 Approximated Consistency for the ARC

In order to achieve a filtering algorithm for the ARC based on the routine that we de-
veloped before, we closely follow the idea of defining a directed acyclic graph over
the trimmed dynamic programming matrix. The idea was first introduced in [9] and
consequently lead to the filtering algorithms in [7].

We define the weighted, directed, and acyclic graph for the untrimmed matrix as
follows: Every non-infinity entry in the matrix defines a node in the graph. In accor-
dance to Equation 1, each node has at most two incoming arcs: one emanating from
the column immediately to the left, and another emanating from the column that cor-
responds to the last predecessor of the item that is newly added in the current column
(whereby the column of the last predecessor may be identical to the column immedi-
ately to the left). That is, one incoming arc represents the decision not to use the newly
added item (we refer to those arcs as zero-arcs), and the other incoming arc represents
the decision to add the new item corresponding to the new column (we refer to those
arcs as one-arcs). A zero-arc has associated weight 0, a one-arc has the same weight
as the item corresponding to the column the target node belongs to. To express that we
are only looking for solutions with profit greater B, we add a sink node t and connect
it to the graph by directing arcs to t from exactly those nodes in the last column that
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have profit greater B. With this construction, we ensure a one-to-one correspondence
between solutions to the ARP and paths in the graph: A feasible, improving solution
corresponds exactly to a path from m00 to t that has weight lower or equal K . We call
such paths admissible. The original numbers in the dynamic programming matrix now
correspond to shortest-path distances from m0,0 to the individual nodes.

The question that arises is how we can incorporate the idea of trimming a column.
Trimming removes nodes from columns so as to make sure that the number of non-
infinity entries stays polynomial in every column. We would like to trim, but we must
make sure that by removing nodes we do not eliminate arcs from the graph that could
actually belong to admissible paths. Otherwise we may end up filtering values from
variable domains that could actually lead to improving, feasible solutions with respect
to the ARC, i.e. our filtering algorithm could filter incorrectly, which we must prevent.

The algorithm that we propose uses the trimming idea as follows: In the graph,
whenever a column entry would be removed by trimming, we keep the respective node
and add an arc with weight 0 to the node that represents the node. The trimmed node has
no other outgoing arcs, especially none that target outside of the column that it belongs
to. This implies that, for new columns that are generated later, the trimmed node is of
no relevance, so that we can still keep the column fill-in under control. With this slight
modification of the graph, we can ensure that it has polynomial size and that the filtering
method achieves ε-consistency for the ARC.

Let us formalize the idea by defining the graph corresponding to the trimmed
dynamic program as follows. We define the weighted, directed, and acyclic graph
G(δ) = (N, A, v) (whereby we always only consider nodes mqk which have a non-
infinity value in the dynamic program) by setting: NR := {mqk | 0 ≤ q ≤
npmax, 0 ≤ k ≤ n, mqk δ−untrimmed}. NT := {mqk | 0 ≤ q ≤ npmax, 0 ≤
k ≤ n, mqk δ−trimmed}. N := NR ∪ NT ∪ {t}. A0 := {(mq,k−1, mqk) | k ≥
1, mq,k−1 ∈ NR, mqk ∈ NR ∪ NT }. A1 := {(mq−pk,lastk

, mqk) | k ≥ 1, q ≥
pk, mq−pk,lastk

∈ NR, mqk ∈ NR ∪ NT }. AR := {(mpk, mqk) | mpk ∈
NT , mqk ∈ NR, (1 − δ)p ≤ q < p}. At := {(mqn, t) | q ≥ B, mqn ∈ NR}.
A := A0∪A1∪AR∪At. v(e) := 0 for all e ∈ A0∪AR∪At. v(mq−pk,lastk

, mqk) := wk

for all (mq−pk,lastk
, mqk) ∈ A1.

Note that, for an admissible path (m00, . . . , mpn, t) in the graph, the sequence of
arcs in A0 and A1 (whereby we ignore arcs in AR and At) determines the correspond-
ing solution to the ARP when we set all items that belong to skipped columns to 0.
That corresponding solution then has the same weight as the path, and according to
Section 1.2 for the corresponding solutions profit q it holds: (1 − ε)q ≤ p ≤ q.

Theorem 1. Given 1 > ε > 0, we set δ := ε/n.

1. If there exists a path W = (m00, . . . , mpn, t) in G(0) with p ≥ B and such that
v(W ) ≤ K , then there exists a path X = (m00, . . . , mqn, t) in G(δ) such that
q ≥ (1 − ε)B, v(X) ≤ K , and the corresponding solutions to W and X are
identical.

2. If there exists a path X = (m00, . . . , mqn, t) in G(δ) with q ≥ (1− ε)B and such
that v(X) ≤ K , then there exists a path W = (m00, . . . , mpn, t) in G(0) such
that p ≥ (1 − ε)B, v(W ) ≤ K , and the corresponding solutions to W and X are
identical.
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We exploit this theorem to devise the following filtering algorithm: Thanks to the
fact that our graph is directed and acyclic, we can apply linear time shorter path fil-
tering techniques that remove those and only those arcs that cannot be visited by any
admissible path. After shorter path filtering, every arc in the pruned graph can be part
of a path from m00 to t with weight lower or equal K . Since arcs really correspond to
decisions to include or exclude and item in our solution, there exists a one-arc (zero-arc)
to a node in column i iff item i is included (excluded) in some improving, feasible so-
lution. Consequently, by searching the pruned graph for columns in which no node has
incoming one-arcs, we can identify those and only those items that must be excluded in
all improving, feasible solutions. The situation is only slightly more complicated when
a column has no incoming zero-arcs. In contrast to knapsack approximation, for the
ARC there exist arcs that cross several columns. If there still exists such an arc that
can be part of an admissible path, then the items that belong to the columns that are
bridged can obviously be excluded in some admissible solution. Consequently, if a col-
umn has only incoming one-arcs and no arc crosses the column, then and only then it
must indeed be included in all feasible improving solutions. Without going into details,
we just note that the detection of items that must be included can be performed in time
O(n log n + |M |).

According to Theorem 1 (1), this is a correct filtering algorithm for the ARC, and
according to Theorem 1 (2) we are sure to eliminate all assignments that would cause
the best optimal solution to drop below (1 − ε)B. Assuming that B is given as a lower
bound on the objective, i.e. B ≤ P ∗, we finally have:

Corollary 1. Approximated consistency for the ARC can be achieved in time O(n2

ln(npmax)/ε).

References

1. T. Fahle and M. Sellmann. Cost-Based Filtering for the Constrained Knapsack Problem. An-
nals of Operations Research, 115:73–93, 2002.

2. F. Focacci, A. Lodi, M. Milano. Cost-Based Domain Filtering. Principles and Practice of
Constraint Programming (CP) Springer LNCS 1713:189–203, 1999.

3. E.C. Freuder. A Sufficient Condition for Backtrack-Free Search. Journal of the ACM,
29(1):24–32, 1982.

4. O.H. Ibarra and C.E. Kim. Fast Approximation Algorithms for the Knapsack and Sum of
Subset Problems. Journal of the ACM, 22(4):463–468, 1975.

5. M. Milano. Integration of Mathematical Programming and Constraint Programming for Com-
binatorial Optimization Problems, Tutorial at CP2000, 2000.

6. M. Sellmann. The Practice of Approximated Consistency for Knapsack Constraints. Proceed-
ings of the Nineteenth National Conference on Artificial Intelligence (AAAI), AAAI Press, pp.
179-184, 2004.

7. M. Sellmann. Approximated Consistency for Knapsack Constraints. CP, Springer LNCS
2833: 679–693, 2003.

8. M. Sellmann and T. Fahle. Constraint Programming Based Lagrangian Relaxation for the
Automatic Recording Problem. Annals of Operations Research, 118:17-33, 2003.

9. M. Trick. A Dynamic Programming Approach for Consistency and Propagation for Knapsack
Constraints. 3rd International Workshop on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CP-AI-OR), pp. 113–124, 2001.



Towards an Optimal CNF Encoding of
Boolean Cardinality Constraints

Carsten Sinz

Institute for Formal Models and Verification,
Johannes Kepler University Linz, A-4040 Linz, Austria

carsten.sinz@jku.at

Abstract. We consider the problem of encoding Boolean cardinality constraints
in conjunctive normal form (CNF). Boolean cardinality constraints are formulae
expressing that at most (resp. at least) k out of n propositional variables are true.
We give two novel encodings that improve upon existing results, one which re-
quires only 7n clauses and 2n auxiliary variables, and another one demanding
O(n · k) clauses, but with the advantage that inconsistencies can be detected in
linear time by unit propagation alone. Moreover, we prove a linear lower bound
on the number of required clauses for any such encoding.

1 Introduction

Cardinality constraints—expressing numerical bounds on discrete quantities—arise fre-
quently out of the encoding of real-world problems, e.g. in product configuration, radio
frequency assignment or in reconstructing images form computer tomographs [1–3].
With considerable progress made over the last years in solving propositional satisfia-
bility (SAT) instances, interest increased in tackling problems that include cardinality
constraints using SAT-solvers. This, however, requires an encoding of cardinality con-
straints in the language of purely propositional logic or, more specifically, in conjunctive
normal form (CNF), the predominant input language of modern SAT-solvers.

Boolean cardinality constraints put numerical restrictions on the number of propo-
sitional variables that are allowed to be true at the same time. A typical construct like
≤k (x1, . . . , xn) expresses that not more than k of the n variables x1, . . . , xn are al-
lowed to be true. The traditional way of converting a constraint like≤k (x1, . . . , xn) to
purely propositional logic is by explicitly excluding all possible combinations of k + 1
variables being simultaneously true, thus obtaining∧

M⊆{1,...,n}
|M|=k+1

∨
i∈M

¬xi ,

which requires
(

n
k+1

)
clauses of length k + 1. In the worst case of k = 1n/22 − 1

this amounts to O(2n/
√

n/2) clauses. Better encodings are known [3,4] and will be
further improved in this paper. The general idea of these improved encodings is to build
a count-and-compare hardware circuit and then translate this circuit to CNF. Besides
the constraint’s variables x1, . . . , xn, additional encoding variables s1, . . . , sm will be

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 827–831, 2005.
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allowed. Formally, we are looking for an optimal encoding (typically minimizing the
number of clauses) according to the following definition.

Definition 1. A clause set E over the variables V = {x1, . . . , xn, s1, . . . , sm} is a
clausal encoding of ≤k (x1, . . . , xn) if for all assignments α : {x1, . . . , xn} → B the
following holds: there is an extension of α to α∗ : V → B that is a model of E if and
only if α is a model of ≤k (x1, . . . , xn), i.e. if and only if at most k of the variables xi

are set to 1 by α.

2 Encoding Using a Sequential Counter

We now give a CNF encoding for cardinality constraints of the form ≤k (x1, . . . , xn)
that is based on a sequential counter circuit. The circuit is shown in Fig. 1 and computes
partial sums si =

∑i
j=1 xj for increasing values of i up to the final i = n. The values

of all si’s are represented as unary numbers. The overflow bits vi are set to true if the
partial sum si is greater than k.

To convert this circuit to CNF, we first build defining equations for the partial sum
bits si,j and the overflow bits vi. We then simplify these equations, noting that all over-
flow bits have to be zero. The resulting equations are then converted to CNF, further
noting that one direction of the equations can be dropped due to polarity considerations
(the basic technique was introduced by Tseitin [5], and later re-invented and extended
by different authors, e.g. Jackson and Sheridan [6]). We thus arrive at a set of clauses,
call it LTn,k

SEQ, defining the cardinality constraint≤k (x1, . . . , xn) based on the sequen-
tial counter (for k > 0 and n > 1):

(¬x1 ∨ s1,1)
(¬s1,j) for 1 < j ≤ k
(¬xi ∨ si,1)
(¬si−1,1 ∨ si,1)
(¬xi ∨ ¬si−1,j−1 ∨ si,j)
(¬si−1,j ∨ si,j)

}
for 1 < j ≤ k

(¬xi ∨ ¬si−1,k)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ for 1 < i < n

(¬xn ∨ ¬sn−1,k)

LTn,k
SEQ consists of 2nk + 2n − 3k + 1 clauses and requires (n − 1) · k auxiliary

variables for the encoding. Due to its practical importance, we explicitly give the clause
set LTn,1

SEQ (for the case k = 1, as a formula):

(¬x1∨s1,1)∧(¬xn∨¬sn−1,1)∧
∧

1<i<n

(
(¬xi∨si,1)∧(¬si−1,1∨si,1)∧(¬xi∨¬si−1,1)

)
This clause set consists of 3n− 4 clauses (and n− 1 additional encoding variables) and
is thus—with regard to the number of clauses—superior to the naı̈ve encoding for all
n > 5. The following theorem summarizes our results.1.

1 Due to space limitations we do not give proofs here. They can be found, however, on the Web
at http://www-sr.informatik.uni-tuebingen.de/˜sinz/CardConstraints.
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Fig. 1. Left: Circuit for computing ≤k (x1, . . . , xn). si,j denotes the j-th digit of the i-th partial
sum si in unary representation; variables vi are overflow bits, indicating that the i-th partial sum
is greater than k. Right: Sub-circuit for computing a partial sum si in unary representation.

Theorem 1. LTn,k
SEQ is a clausal encoding of ≤ k (x1, . . . , xn) requiring O(n · k)

clauses andO(n · k) auxiliary variables.

The encoding LTn,k
SEQ also fulfills the efficiency condition given by Bailleux and

Boufkhad [3]. If more than k variables are set to true (which violates the cardinality
constraint ≤k (x1, . . . , xn)), this can be detected by unit propagation alone, i.e. by a
linear time decision procedure. Moreover, for a partial assignment that sets k of the
variables xi to true, the value of all other xi’s can be derived by unit propagation.

3 Encoding Using a Parallel Counter

The second encoding we present is based on a parallel counter circuit designed by
Muller and Preparata [7]. Their counter (shown in Fig. 2) recursively splits the input
bits xi into two halves, and counts the number of inputs that are set to true in each
half. The results—represented as binary numbers—are then added using a standard m-
bit binary adder. In order to obtain a circuit for cardinality constraints based on this
counter, the output bits of the counter are handed on to a subsequent comparator which
checks whether or not the counter value is less than k. (The comparator is not shown in
Fig. 2.)

Parallel Counter Circuit. The parallel counter consists of n − 7log n8 − 1 full-adders
and at most 7log n8 half-adders, as was shown by Muller and Preparata (‘log’ denoting
the logarithmus dualis). The encoding of each half-adder and full-adder is based on
the well-known equations for these circuits. We finally obtain three clauses {(a ∨ ¬b ∨
sout), (¬a∨¬b∨ cout), (¬a∨ b∨ sout)} for each half-adder (computing a⊕ b) and seven
clauses

(a ∨ b ∨ ¬c ∨ sout) (¬a ∨ b ∨ c ∨ sout) (¬a ∨ ¬b ∨ cout)
(a ∨ ¬b ∨ c ∨ sout) (¬a ∨ ¬b ∨ ¬c ∨ sout) (¬a ∨ ¬c ∨ cout)

(¬b ∨ ¬c ∨ cout)
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Fig. 2. Parallel counter according to Muller and Preparata [7] for recursively computing the binary
number of inputs xi that are set to true. The sub-circuits Aj are 1-bit-(full-)adders.

for each full-adder (computing a ⊕ b ⊕ c) , summing up to at most 7n− 47log n8 − 7
clauses. Here again, only implications, but not full equivalences, have to be encoded.
This is due to the polarity-based simplification technique already used above and the
observation that only ones have to be propagated to the outputs, but not zeroes. Aux-
iliary variables are needed for the sum and carry bits of the half- and full-adders, we
therefore need at most 2 · (n− 1) additional encoding variables.

Comparator Circuit. The comparator circuit has to make sure that the result of the bi-
nary counter (smsm−1 . . . s0) is not greater than k. For building this binary comparator
we assume that the constraint’s limit k is given as an (m + 1)-bit binary number, say
k = km . . . k0. We can then easily give recursive equations to generate the clauses for
the (m + 1)-bit comparator:

L(k0) =

{
{{¬s0}} if k0 = 0
∅ if k0 = 1

L(ki . . . k0) =

{
{{¬si}} ∪ L(ki−1 . . . k0) if ki = 0
{{¬si}} ⊗ L(ki−1 . . . k0) if ki = 1

Here ⊗ denotes clause distribution, i.e. A ⊗ B = {x ∪ y | x ∈ A, y ∈ B} for sets of
clauses A, B. With this definition, L(km . . . k0) is the clause set that ensures that the
counter’s output is less than k. It contains at most m + 1 clauses. Denoting the com-
bined clause set (parallel counter and comparator) by LTn,k

PAR, we obtain the following
theorem (using m = 7log n8).

Theorem 2. LTn,k
PAR is a clausal encoding of ≤k (x1, . . . , xn) requiring at most 7n−

37logn8 − 6 clauses and 2n− 2 auxiliary variables.

4 Comparison, Lower Bound and Conclusion

Criteria for assessing the clausal encodings are (i) the number of clauses required; (ii)
the number of additional propositional variables required; and (iii) the time needed to



Towards an Optimal CNF Encoding of Boolean Cardinality Constraints 831

decide the encoding. In our comparison we have included the naı̈ve encoding (men-
tioned in the introduction) and the encodings of Bailleux&Boufkhad and Warners.

Table 1. Comparison of different encodings for ≤k (x1, . . . , xn)

Encoding #clauses #aux. vars decided
Naı̈ve

(
n

k+1

)
0 immediately

Sequential unary counter (LTn,k
SEQ) O(n · k) O(n · k) by unit prop.

Parallel binary counter (LTn,k
PAR) 7n − 3log n� − 6 2n − 2 by search

Bailleux & Boufkhad [3] O(n2) O(n · log n) by unit prop.
Warners [4] 8n 2n by search

With respect to the number of clauses required, our encoding LTn,k
PAR is the best, as

can be seen from Table 1; however, it requires search to check whether the constraint is
fulfilled or not. Among the encodings requiring no search is that of Bailleux&Boufkhad
and our LTn,k

SEQ encoding. The latter performs better for small values of k, whereas the
former is better for large bounds.

Considering optimality of clausal encodings for ≤k (x1, . . . , xn), we have shown
elsewhere that for all n ∈ N and all k with 0 ≤ k < n − 1, each clausal (CNF)
encoding of≤k (x1, . . . , xn) requires at least n clauses. Such a proof touches the realm
of Boolean function complexity [8]. It might be an interesting topic for future research
to see in how far results from this field are transferrable to the area of minimal clausal
encodings. We think that looking for improved lower bounds is worthwhile and still
expect much room for improvement here. Moreover, an experimental evaluation of the
different encodings should be of great practical value.
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1 Introduction

Our goal is to build a declarative framework for approximate graph matching where
various constraints can be stated upon the pattern graph, enabling approximate con-
strained subgraph matching, extending models and constraints proposed by Rudolf [1]
and Valiente et al. [2]. In the present work, we propose a CSP approach for approximate
subgraph matching where the potential approximation is declaratively stated in the pat-
tern graph as mandatory/optional nodes/edges. Forbidden edges, that is edges that may
not be included in the matching, can be declared on the pattern graph. We also want to
declare properties between pairs of nodes in the pattern graph, such as distance prop-
erties, that can be either stated by the user, or automatically inferred by the system. In
the former case, such properties can define new approximate patterns. In the latter case,
these redundant constraints enhance the pruning.

2 Approximate Subgraph Matching

2.1 Problem Definition

A subgraph monomorphism between a pattern graph Gp = (Np, Ep) and a target
graph Gt = (Nt, Et) is an injective function f : Np → Nt respecting (u, v) ∈ Ep ⇒
(f(u), f(v)) ∈ Et. A constraint model to solve the exact subgraph matching problem
has been proposed by several authors [2] [1]. This model focuses on monomorphism
and will form our basic monomorphism constraints. The variables X = {x1, ..., xn}
are the nodes of the pattern graph and their respective domain D(xi) is the set of tar-
get nodes. The assignment must respect two conditions: all variables have a different
value and the structure of the pattern must be kept (monomorphism condition). In a
CSP framework, the first condition is implemented with the classical Alldiff (x1, ..., xn)
constraint [3] [4]. The second condition is translated into a monomorphism constraint.

A useful extension of subgraph matching is approximate subgraph matching, where
the pattern graph and the found subgraph in the target graph may differ with respect to
their structure.

Optional Nodes. In our framework, the approximation is declared upon the pattern
graph. Some nodes are declared optional, i.e. nodes that may not be in the matching.
Specifying optional edges in a monomorphism problem is useless as it is equivalent to
omitting the edge in the pattern. The status of the edges depends on the optional state
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of their endpoints. An edge having an optional node as one of its endpoints is optional.
An optional edge is not considered in the matching if one of its endpoints is not part of
the matching. Otherwise, the edge must also be a part of the matching.

Forbidden Edges. Edges may also be declared as forbidden between their two end-
points (u, v), meaning that if u and v are in the domain of f , then (u, v) must not
exist in the target graph. A pattern graph with all its complementary edges declared as
forbidden induces a subgraph isomorphism instead of a subgraph monomorphism.

A pattern graph with optional nodes and forbidden edges forms an approximate
pattern graph.

Definition 1. An approximate pattern graph is a tuple (Np, Op, Ep, Fp) where
(Np, Ep) is a graph, Op ⊆ NP is the set of optional nodes and Fp ⊆ Np × Np is
the set of forbidden edges, with Ep ∩ Fp = ∅.

The corresponding matching is called an approximate subgraph matching.

Definition 2. An approximate subgraph matching between an approximate pattern
graph Gp = (Np, Op, Ep, Fp) and a target graph Gt = (Nt, Et) is a partial function
f : Np → Nt such that:

1. Np \Op ⊆ dom(f)
2. ∀ i, j ∈ dom(f) : i �= j ⇒ f(i) �= f(j)
3. ∀ i, j ∈ dom(f) : (i, j) ∈ Ep ⇒ (f(i), f(j)) ∈ Et

4. ∀ i, j ∈ dom(f) : (i, j) ∈ Fp ⇒ (f(i), f(j)) /∈ Et

The notation dom(f) represents the domain of f . Elements of dom(f) are called
the selected nodes of the matching. This means that dom(f) can be represented by a
finite set variable. Its lower bound flb consists of all selected nodes, and its upper bound
fglb consists of selected nodes and nodes that could be selected.

3 Constraints for Approximate Subgraph Matching

Alldiff Constraint. The Alldiff constraint must be adapted to variables that may not be
assigned. One solution is to create symbolic values e1, ..., en and put ei in the initial
domain of xi. In a solution, xi = ei if xi is not assigned to any target node. Using these
n symbolic values, a global Alldiff constraint can still be posted as in the exact case.

Morphism Constraint. The basic morphism condition forcing the matching to respect
the pattern structure (see [2]) has been generalized to handle more general morphism
conditions as well as optional nodes:

MC(x1, ..., xn, A, B) ≡
∧

i,j(i, j) ∈ A ∧ i, j ∈ dom(f)⇒ (xi, xj) ∈ B
The former constraint states that a morphism relation between two pattern nodes xi and
xj must be forced if and only if they are present in the domain of f . The MC constraint
can be rewritten as:

∀ i ∈ Np ∀ a ∈ Nt : ( |D(xi) ∩ Vt(a)| = 0
∧ i ∈ dom(f) )⇒ a /∈ D(xj) ∀ j ∈ Vp(i) .
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The proposed propagator keeps track of relations between all the target nodes and
the domain D(xi) in a structure S(i, a) = |D(xi) ∩ Vt(a)| representing the number
of relations between a target node a and D(xi) (see [2]).The additional condition i ∈
dom(f) states that only selected nodes should propagate under the morphism condition.
The propagation of the morphism constraint of an optional i is computed but performed
only when i is in the domain of f . As depicted in Figure 1, all selected nodes propagate
in their neighborhood but optional nodes propagate only when they are selected.

Fig. 1. Pruning method for the approximate morphism condition

Forbidden Edges Constraint. A constraint for the forbidden edges (condition 4 in the
matching) can be obtained by parameterizing MC with Et = {(a, b) /∈ Et}:

MC(x1, ..., xn, Fp, Et) .
The constraints for the approximate subgraph isomorphism problem are then:

alldiff(x1, ..., xn) ∧ MC(x1, ..., xn, Ep, Et) ∧ MC(x1, ..., xn, Fp, Et) .
However a single propagator MCFA handling the last two constraints was imple-
mented, using the relation |D(xi) ∩ V t(a)| = 0⇔ |D(xi) ∩ Vt(a)| = |D(xi)|.
Local Alldiff Constraint. A local alldiff redundant LA+ constraint checks if there are
enough candidate target nodes for xi neighborhood if xi is assigned to a target node
a. If it not the case, a can be pruned from D(xi). Note that the xi neighborhood is re-
stricted to the variables representing selected nodes, noted as V +

p (i). The LA constraint
is expressed as:

LA+(xi, A, B) ≡ | ∪j∈V +
p (i,A) D(xj) ∩ Vt(xi, B)| ≥ |V +

p (i, A)|

LA+(x1, ..., xn, A, B) ≡
∧
i

LA+(xi, A, B) .

Constraint LA+ plays a pruning role. It can be implemented by maintaining the neigh-
borhood variable, with an O(d) time complexity, whenever the domain of xi is pruned.
The structure R+(i, a) = |{ j ∈ V +

p (i) | a ∈ D(xj) }| depends not only on the domain
of the neighborhood of xi but also on the neighborhood variable. Whenever the lower
bound of V +

p (i) changes, the structure R+(i, ·) must be updated in O(D), resulting in
a O(ND2) amortized complexity. Moreover, R+(i, a) may be incremented from zero
to one, resulting in an increment of CT+(i, a) = | ∪j∈V +

p (i) D(xj) ∩ Vt(a)|, which is

not monotone. Nevertheless, when condition CT+(i, a) < |V +
p (i)| is fulfilled, a can be

safely pruned from xi, because if there is not enough candidates for a given subgroup
of the neighborhood, node i cannot be mapped to node a.
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Distance Constraints. Thanks to the parameters A and B, former MC and LA con-
straints can be used to create redundant constraints such as shortest path constraint
MCdist, generalizing other works on shortest path distance [5]. If dist(a, b) denotes
the shortest-path distance between node a and b, then the MCdist constraint can be
formulated as:

MCdist(x1, ..., xn, k) ≡
∧

i,j dist(i, j) = k ⇒ dist(xi, xj) ≤ k.
Suppose Ek

p = {(i, j) | dist(i, j) = k} and Ek
t = {(a, b) | dist(a, b) ≤ k}. Then

MCdist is equivalent to:

MCdist(x1, ..., xn, k) ≡MC(x1, .., xn, Ek
p , Ek

t ).

4 Experiments

Our CSP model for approximate subgraph matching has been implemented inside
the CSP framework of Oz/Mozart (www.mozart-oz.org). Parametric propagators
were implemented.Various transformations of Ep and Et were automated to instanti-
ate propagators for the forbidden edges and the distance constraints. We also included
facility constraints to declare distance constraints between specific pattern nodes.

Two distinct sets of graphs were selected. The first set comes from [8]. The graphs
are characterized by their probability η (eta = 0.01 is noted r001 in Table 2) that an
edge is present between two distinct node n and n′. Those graphs were used to evaluate
vflib algorithm performance [7]. In our experiments, pattern graph size is 20% of the
target graph size, target graph size ranges from 20 to 200, and all solutions are searched.
The second set contains graphs having different topological structures as explained in
[2]. These graphs were generated using the Stanford GraphBase [9] and are the graphs
tested in [2], consisting of 406 directed instances and 1225 undirected instances.

Experiments show that CSP approach for subgraph matching solves more prob-
lem within a time limit against a C++ specialized checking-based method called vflib
described in [7]. The vflib algorithm has been reimplemented in Oz/Mozart. Table 1
shows the percentage of instances solved within a time limit of 5 minutes, for directed
and undirected instances. Single specialized propagator MCFA for forbidden edges
is more efficient than the version with two propagators. Table 2 supports this asser-

Table 1. Comparison over GraphBase directed and undirected graphs

All solutions for directed graphs 5 min.
solved unsol total time mean time

vflib C++ 63,7% 36,3% 12.01 min. 0.02 min.
ozvflib 59,8% 40,2% 11.52 min. 0.02 min.
CSP 68,7% 31,3% 31.4 min. 0.07 min.

All solutions for undirected graphs 5 min.
solved unsol total time mean time

vflib C++ 48,3% 51,7% 9.31 min. 0.007 min.
ozvflib 39,5% 60,5% 4.43 min. 0.003 min.
CSP 57,7% 42,3% 11.39 min. 0.009 min.

Table 2. Parameterized MC versus MCFA

CSP parameterized MC 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
100 100 0 100 0 96 4
200 79 21 62 38 10 90

CSP MCFA 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
100 100 0 100 0 99 1
200 83 17 80 20 34 66
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tion. Preliminary results show that matching with 40% of optional nodes and few (≤ 5)
additional distance constraints is tractable.

5 Perspectives

The proposed framework for declarative approximate subgraph matching open various
research directions. Better heuristics could be developed when searching for an approx-
imate matching. Our algorithm for exact matching could also be compared with other
algorithms dedicated to the largest common subgraph problem. We also intend to apply
our approximate matching algorithm for the analysis of biochemical networks. Exten-
sive experiments should highlight the benefits of distance constraints. Finally, as the
(approximate) matching is expressed as a combination of (parameterized) constraints,
subgraph matching could be integrated in a constraint language handling graph vari-
ables, such as CP(Graph) [10] [11].
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Abstract. In this work, we present a distributed model for solving large-
scale CSPs. Our technique carries out a partition over the constraint
network by a graph partitioning software, such as each subproblem is as
independent as possible and, it can be solved in a reasonable time.

The CSP is partitioned into a set of semi-independent subproblems and solved
concurrently. The partition is carried out by means of a graph partitioning soft-
ware called METIS [1]. In this way, the constraint partition is carried out in
a preprocessing step in which an agent is committed to study the appropriate
number of subproblems. The main idea of our multi-agent model is based on
[2] but partitioning the problem in k subproblems as independent as possible,
classifying the subproblem in the appropriate order and solving them concur-
rently. Once the constraints are divided into k blocks by a preprocessing agent, a
group of block agents concurrently manages each block of constraints. Each block
agent is in charge of solving its own subproblem by means of a search algorithm.
This subproblem is composed by its CSP subject to the variable assignment
generated by the previous block agents. Thus, block agent 1 works on its group
of constraints. If block agent 1 finds a solution to its subproblem, then it sends
the consistent partial state to block agent 2, and both they work concurrently
to solve their specific subproblems; block agent 1 tries to find other solution and
block agent 2 tries to solve its subproblem knowing that its common variables
have been assigned by block agent 1. Thus, block agent j, with the variable as-
signments generated by the previous block agents, works concurrently with the
previous block agents, and tries to find a more complete consistent state using a
search algorithm. Finally, the last block agent k, working concurrently with block
agents 1, 2, ...(k − 1), tries to find a consistent state to find a problem solution.

Our distributed model is being applied to the railway scheduling problem
which can be modelled by a CSP which is composed by thousand of variables
and thousand of constraints.
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We have defined a new formalism, based on Max-SAT, for encoding and solving
over-constrained problems. Our formalism is an extension of Boolean CNF for-
mulas in which we deal with blocks of Boolean clauses instead of dealing with
individual clauses. Every block, formed by a set of clauses, is declared either as
a hard block (i.e., must be satisfied by any solution) or as a soft block (i.e., can
be violated by some solution). The idea behind the notion of block is that it en-
codes a problem constraint (for example, adjacent vertices have different colors);
in general, it is not enough a single clause to encode a problem constraint. We
call soft CNF formulas to this new kind of formulas.

We have implemented two branch and bound solvers, Soft-SAT-S and Soft-
SAT-D, for our problem solving approach. Given a soft CNF formula φ, our
solvers search a truth assignment that satisfies all the hard blocks of φ and
the maximum number of soft blocks. Both solvers are equipped with lazy data
structures and a good performing lower bound. The variable selection heuristic
in Soft-SAT-S is static while in Soft-SAT-D is dynamic.

We conducted an experimental investigation for comparing our approach
with weighted Max-SAT and Max-CSP. In the instances tested, we observed
that Soft-SAT solvers are substantially superior to weighted Max-SAT solvers.
On the one hand, our lower bound is of better quality because it takes into
account the domain of the variables as in Max-CSP. On the other hand, the dis-
tinction between hard and soft blocks allows us to apply more powerful inference
techniques; for example, unit clauses in hard blocks can be propagated. With
respect to Max-CSP, we observed that Soft-SAT is very competitive as can be
seen in the table below; it shows time in seconds. We compared Soft-SAT-S, Soft-
SAT-D and the weighted CSP solvers PFC-MPRDAC1 and Toolbar2 on sets of
100 graph coloring instances generated with Culberson’s generator. Experiments
were performed on a 1.6 Ghz AMD64-Opteron with 1 Gbyte RAM.

Soft-SAT-S Soft-SAT-D Toolbar PFC-MPRDAC
〈n, k, c〉 mean median mean median mean median mean median
〈15, 15, 8〉 56.35 5.54 325.00 27.19 98.14 19.46 102.81 15.87
〈15, 15, 10〉 56.23 0.03 266.83 0.03 146.65 0.05 105.81 0.13
〈16, 14, 6〉 153.64 36.53 1068.80 243.54 110.22 29.92 186.40 64.43
〈16, 14, 8〉 88.92 10.27 464.33 33.93 144.15 23.02 157.84 20.75
〈16, 16, 6〉 162.34 101.10 1142.79 682.78 110.50 63.65 199.33 146.87
〈16, 16, 8〉 48.63 12.68 229.35 37.77 105.31 28.12 114.27 29.99

1 http://www.lsi.upc.es/˜larrosa
2 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro (version July, 2005)
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The annual international Trading Agent Competition–Supply Chain Manage-
ment (TAC–SCM) game is based around the manufacture and supply of PCs.
There are multiple agents in the game, scheduling production, competing for or-
ders from customers and components from suppliers. A key decision to be made
each day in the game is what offers should be made to customers. Each day, the
agents receive a set of request for quotes (RFQ) from customers, agents respond
with offers, and then the customers select the lowest bid.

We have developed an agent to compete in the competition that combines
constraint-based optimisation, reasoning with probabilities, and learning of mar-
ket conditions in an attempt to determine what customer requests to bid on
and what prices to bid. Our agent maintains prices that correspond to different
probabilities of success in winning contracts, using an online learning approach.
By keeping track of the ratio of offers accepted to those made, the prices can
be updated iteratively to move closer to their target probability. This range of
price/probability pairs is then used as input to a constraint model.

For each request, the model chooses whether or not to bid, and selects a price
from the range. These decisions are restricted by capacity and supply constraints.
A capacity constraint ensures that we will be able to schedule any new orders
we receive with existing orders such that the factory capacity for each day in the
current horizon is not exceeded. The agents production ability is also subject
to component availability. By ordering components in advance, we know the
current amount of components available, and we also know how much of each
component will be arriving at each day. This allows us to add a constraint for
availability of supplies.

An objective function is specified that maximises our expected profit, where
the profit on a request is calculated by subtracting from the selling price the
cost of components together with late delivery penalties.

The agent is implemented in Java, using OPL Studio for the constraint-
based optimisation. The agent is competing in the competition, which is a real-
time simulation of 220 trading days, each day lasting 15 real seconds. Initial
results show that the combination of online learning, uncertainty reasoning and
constraint-based optimisation is effective and robust, producing a competitive
trading agent.

� This work is in collaboration with Armagan Tarim, Brahim Hnich and Onur
Koyuncu.

�� D. Burke is supported by Science Foundation Ireland under Grant No. 03/CE3/I405
as part of the Centre for Telecommunications Value-Chain-Driven Research (CTVR).
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Abstract. The car-sequencing problem arises from the manufacture of
cars on an assembly line. A number of cars are to be made on a produc-
tion line; they are not identical because different options are available as
variants on the basic model. The different stations which install the var-
ious options have been designed to handle at most a certain percentage
of the cars passing along the assembly line. Consequently, the cars must
be arranged in a sequence so that these capacities are not exceeded. In
this paper, the formulation of the car-sequencing problem is presented as
a non-binary constraint satisfaction problem (CSP) with constraints of
fixed arity 5. A search algorithm based on non-binary forward checking
(nFC) is used to solve the problem. For the car-sequencing problem the
variables should be assigned consecutively. The choice of value ordering
heuristics having a dramatic effect on solution time for this problem,
different value ordering heuristics were implemented. Since any possible
solution is a permutation of a fixed set of values, a succeed-first strat-
egy for value ordering only postpones the assignment of the difficult
classes and a value ordering based on fail-first could be a better choice.
These methods are compared on the instances reported in the CSPLib.
The results obtained showed the superiority of a strategy of fail-first
type against to a succeed-first strategy. In particular, the MaxUtil and
MaxPQ heuristics allowed a better exploration of the space of solutions
and solved all the instances of problems with 200 variables. It should
be underlined the fact that these problems were solved in little time
(6 seconds on average) and the longest time is 13 seconds for the in-
stance 90 09, whereas for ILOG Solver the least powerful time exceeds 1
minute. This result can be justified by our encoding. Indeed, we encoded
the maximum of constraints (the capacity of each option, the request
for each class) inside an explicit 5-ary constraint with very high tight-
ness (close to 0.95). MaxUtil remains the best heuristic because it is
surprisingly backtrack-free. Within the future work, the filtering method
will be improved. A hybridization between the optimization methods is
another way of interesting research. The use of parallelism also seems an
interesting direction for solving this type of problem.

Keywords: constraint satisfaction, heuristics, problem solving, schedul-
ing, n-ary CSPs, n-ary Forward Checking.
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One of the critical problems in the call center industries is the staffing problem,
since they must face variable demands and because staff costs represent a major
part of the costs of these industries. From a modeling point of view, a call center
is generally modeled as a M/M/N system, also called the Erlang-C model. In
[Koole and Mandelbaum, 2001], the authors present a survey of the state-of-the-
art about possible models of a call center.

In this paper, the problem of dimensioning a call center is modeled as a
deterministic scheduling problem, where resources represent the employees and
jobs correspond to the calls that are received. To each resource are associated
tools that correspond to the skills of employees, and a weigth corresponding to
the cost of employment. To each job are associated a release date, a processing
time, a deadline and a required tool. The objective is to schedule jobs so as to
minimize the weighted number of resources needed to perform the jobs.

For solving this problem, we propose exact methods based on Constraint
Programming Models. Three different models are presented. The second one is
an improvement of the first one, both in terms of constraints definitions and
instanciation methods. The last one introduces redundant constraints to speed
up the resolution process. An approximated algorithm is also proposed, based on
a priority rule and an assignment rule. We also compare our models to a Mixed
Integer Linear Program, solved by CPLEX.

Instances are randomly generated with around 45 resources and from 20 to
200 jobs. Feasible solutions are always obtained within two minutes by using
these methods. CP models are solved using Eclipse 5.8 77 software with the
time limit fixed to two minutes on a PC Pentium III, 1.4 GHz, 512 Mo. CP
can solve the problem optimally with up to 80 jobs. For more than 100 jobs,
the upper bound given by the heuristic algorithm is never improved within two
minutes.
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For practical reasons, most scheduling problems are an abstraction of the real problem
being solved. For example, when you plan your day, you schedule the activities which
are critical; that is you schedule the activities which are essential to the success of your
day. So you may plan what time to leave the house to get to work, when to have meet-
ings, how you share your vehicle with your spouse and so on. On the other hand, you
probably do not consider the activities that are easy to arrange like brushing your teeth,
going to the shops, making photocopies and other such tasks that can usually be accom-
plished whenever you have the time available. Scheduling all of these activities at once
is often too complicated. Instead, a simpler schedule is produced by considering only
the critical activities. However, if a schedule goes wrong, it is often because an activ-
ity turned out to be critical but was not scheduled. We typically learn which activities
are critical by experience and create an abstract scheduling problem which includes all
known critical activities. Instead of scheduling the non-critical activities we estimate
their effects in the abstract scheduling problem.

We are interested in automating this abstraction process for scheduling problems.
In our approach, given a set of activities A to be scheduled1, we choose a subset of
activities, critical(A), and create a simplified scheduling model which approximates the
other activities non-critical(A) instead of scheduling them. We then search this abstract
model for a good, if not optimal solution. A solution is a partial order schedule for
activities in critical(A). This abstract solution is then extended to a solution the entire
problem by inserting the remaining activities non-critical(A) into the schedule.

While the approach reduces complexity by solving the problem in two stages it
does so at a price. There is a risk that the good abstract solution will not produce a good
solution to the entire problem. We know that the optimal solution can be found if we
schedule everything at once, e.g. critical(A)=A, however this has the worst complexity
and is impractical in many cases as time does not allow a complete search. Instead, we
wish to discover the minimal set of critical activities which still yields good or optimal
full solutions in a reasonable amount of time. Our preliminary experiments have shown
that by trying many different subsets of critical activities we are able to discover a good
set critical(A). Even with all the overhead of exploring different abstract models, we
are able to produce better quality solutions than scheduling the entire problem at once.
Although our experiments are still underway, we have found that many quick repetitions
of this abstract process perform well when the size of critical(A) is relatively small.

� This work has received support from Science Foundation Ireland under Grant 00/PI.1/C075,
Irish Research Council for Science, Engineering, and Technology under Grant SC/2003/82,
and ILOG, SA.

1 We schedule to minimize the makespan (the time required to complete the schedule).
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Malostranské náměst́ı 2/25, Praha 1, Czech Republic
pavel.cejnar@st.cuni.cz

The computer constructed local search heuristic function for a SAT problem can
run and solve SAT faster than human designed heuristics.1 The idea behind this
was to start with some predefined primitives chosen in accordance with a human
observation and to combine them using genetic programming. This leads to a
question whether it is possible to construct an effective heuristic function solely
by a computer, a function constructed from very elementary program building
blocks not only from predefined higher-level primitives.

We propose an expressive procedural programming language for description
of local search heuristic functions and we apply the genetic programming concept
to them to get a metaheuristic algorithm with a capability to create potentially
very fast local search heuristic.

To have genetic operations fast we keep the representation of individual heur-
istic functions in the population as simple as possible, e.g. as an ordered list
of instructions in a programming language based on the RAM model. However,
we’ve changed the RAM model language to increase the probability of creating a
meaningful heuristic function when exchanging random parts of the code. These
changes include adding variable types and type checking, using two operand
instructions without an accumulator variable or using a full set of conditional
relative jumps. To read SAT problem instances on the input we’ve added special
datastructures like a variable for the number of clauses or a list of variables in
clauses and we’ve added special instructions to access these datastructures.

A randomly generated population of heuristics is evolved by means of genetic
programming. The Composition genetic operator cuts the code of parents in two
random points, exchanges their central parts and fixes jump targets. With a
given probability the Mutation genetic operator changes some instruction or its
operands. The scoring function evaluates the heuristics on small random SAT
instances first to eliminate very poor heuristics and the remaining ones are then
scored using larger SAT instances.

We are currently working on an implementation of the proposed framework
using a distributed computer system. Depending on the results, it might be
possible to further extend the RAM model with specific constructs for description
of heuristics but without decreasing its expressive power.

� Supported by the Czech Science Foundation under the contract 201/04/1102.
1 Fukunaga, A. S.: Evolving local search heuristics for SAT using genetic programming.

GECCO-2004, Part II, volume 3103 of LNCS, 483-494, (2004).
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Constraint-Based Inference (CBI) [1] is an umbrella term for various superficially
different problems including probabilistic inference, decision-making under un-
certainty, constraint satisfaction, propositional satisfiability, decoding problems,
and possibility inference. In this project we explicitly use the semiring concept
to generalize various CBI problems into a single formal representation frame-
work with a broader coverage of the problem space, based on the synthesis of
existing generalized frameworks from both constraint processing and probabil-
ity inference communities. Based on our generalized CBI framework, extensive
comparative studies of exact and approximate inference approaches are com-
menced. First, we extend generalized arc consistency to probability inference
based on a weaker condition [2]. All the existing arc consistency enforcing algo-
rithms can be generalized and migrated to handle other concrete CBI problems
that satisfy this condition. Second, based on our CBI framework we apply junc-
tion tree algorithms in probability inferences to solve soft CSPs [1]. We show
that the message-passing schemes of junction tree algorithms can be modified
to achieve better computational efficiency if the semiring of a CBI problem has
additional properties. Third, we study loopy message propagation in probability
inference for general CBI problems. We claim in [1] that for CBI problems with
a idempotent combination operator, the loopy message propagation is an exact
inference approach. Our experimental results also show that the loopy message
propagation yields high quality inference approximation for general CBI prob-
lems like Max CSPs. Finally, we discuss the possibilities of integrating stochastic
approaches into our semiring-based CBI framework. We also discuss context-
specific inference with backtracking as a promising inference approach for general
CBI problems. In general, we are aiming at studying the most important com-
mon characteristics of various CBI problems, borrowing design ideas from other
fields based on the analyses and comparison of different inference approaches,
and significantly reducing the amount of implementation work targetted previ-
ously at the individual problems.
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1 Introduction

Tournament scheduling problems arise in many practical applications and their highly
symmetric and combinatorial nature makes them particularly challenging for search
algorithms. This research generalizes the modeling and local search approach proposed
in [1] in order to schedule some challenging, real-life, social tournaments. The approach
also schedules other challenging, social tournaments. Results can be found in the web
version of this abstract.

2 The Debating Tournament Problem

The debating tournament problem (DTT) can be seen as a generalization of the social
golfer.

The DTP can be modeled like the SGP by relaxing the cardinality constraint, i.e.,
replacing the value “1” by k in the equations that define the constraints, the violations,
and the neighborhood, in order to state not that two golfers cannot play in the same
group more than “1” time, but that they cannot play more than k times in the same
group, where k = 2, 3, . . .

3 The Judge Assignment Problem

The judge assignment problem, another real-life problem (given to us by W. Harvey)
can be viewed as superimposing a judge assignment on top of a debating tournament
instance.

The modeling is also similar to the SGP. It receives, as input, a solution to the de-
bating tournament problem. In particular, x[w, g, p] will denote the player scheduled in
position p of group g in week w. The decision variables y[w, g, p] associates a decision
variable with every week, group, and position, where the set Pr of positions for the
judges is included in the set of positions of the debating tournament (i.e., Pr ⊂ P ). The
goal is to find a schedule σ, where the value σ(y[w, g, p]) denotes the judge scheduled
in position 〈w, g, p〉.
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We present an incomplete filtering algorithm for the circuit constraint. The filter
removes redundant values by eliminating non-Hamiltonian edges from the asso-
ciated graph. We prove a necessary condition for an edge to be Hamiltonian,
which provides the basis for eliminating edges of a smaller graph defined on a
separator of the original graph.

The circuit constraint, circuit(y1, . . . , yn), where yj ∈ {1, . . . , n}, is true if
and only if for each j ∈ {1, . . . , n}, yj is the successor of j in some permutation
of 1 . . .n and yj ∈ Dj, where Dj is the domain of variable j.

On a graph of vertices 1, . . . , n, the circuit constraint can be thought as
defining a directed Hamiltonian cycle. Nodes of the graph represent the variables.
A directed edge (i, j) exists if and only if j is in the domain of variable i.
Moreover, elimination of an edge (i, j) from the graph means elimination of the
value j from the domain of variable i. With this representation, the problem of
domain reduction for the circuit constraint reduces to identifying and eliminating
non-Hamiltonian edges on a digraph.

In this paper, we present a recursive algorithm that eliminates non-
Hamiltonian edges from the graph. A much smaller but denser multi-graph is
constructed from a vertex separator S of the original graph by adding certain
labelled edges to the subgraph induced by the separator. A directed edge (v, w)
with label C is added if C is a connected component separated by S and (v, ci)
and (cj , w) are edges of G for some pair of vertices ci, cj in C. We prove that
edges that appear in no Hamiltonian cycle containing at least one edge of each
component label in the constructed graph are non-Hamiltonian in the original
graph. The condition that the constructed graph contains such a Hamiltonian
cycle is viewed as a constraint. Global cardinality constraint with vertex de-
gree constraints is a relaxation of this constraint. Then by applying a filtering
algorithm for the global cardinality constraint together with in and out-vertex
degree constraints, non-Hamiltonian edges are identified and eliminated from
the graph.
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Many problems in chemistry, robotics or molecular biology can be expressed as a
Distance CSP (Constraint Satisfaction Problem). Sometimes, the parameters of
this kind of problems are determined in an experimental way, and therefore they
have an uncertainty degree. A classical approach for solving this class of problems
is to solve the CSP without considering the uncertainties, and to obtain a set
of solutions without knowing the real solution sub-spaces. A better approach is
to apply a branch and prune algorithm to generate a set of disjoint boxes that
include all the solution sub-spaces, but without information about independent
solution sub-spaces or the different types of boxes.

We propose a new methodology built from the combination of both previous
approaches and a feasibility checker for tackling uncertainties in a CSP formed by
distance constraints. A distance constraint c between two points Pi and Pj in a n-
dimensional space can be expressed as c(Pi, Pj) :

∑n
k=1(xik−xjk)2 = d2

ij , where
xik is the k-th coordinate of the point Pi, and dij is the distance value between
them. In this class of problems, all fixed values are called parameters. When a
CSP has parameters with interval values, it is called CSP with uncertainties.

In our methodololy, the main idea consists in solving the CSP without taking
into account the uncertainties, by replacing each parameter with interval value
by the middle point of the interval, and applying a SSA (solution separation
algorithm) to calculate a set of sub-domains. The SSA calculates the equation of
the median plane between each pair of solutions. Then, for each solution found,
we solve a new CSP built from the original CSP (with uncertainties) and a set of
plane inequations. The sub-domain defined by the conjunction of all inequations
is equivalent to the sub-space of a Voronoi diagram for the solution. A branch and
prune algorithm is then applied for each CSP built. We combine this algorithm
with a feasibility checker in order to determine when a box is totally included in
the solution sub-space. The best results of this methodology are obtained when
the following two hypotheses are verified:

– The problem has a finite number of solutions ρ, without taking into account
the uncertainties.

– The problem has only connected sets of solutions around each initial solution,
when we consider the uncertainties.

The first condition allows the separation of the initial domain into a set of sub-
domains containing only one solution found, while the second one, assures the
existence of only one solution sub-space in each sub-domain.
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Abstract. Super solutions are a mechanism to provide robustness to
constraint programs. We introduce a new algorithm that exploits the
similarity between a super solution and its repairs in order to do inference
during search. It improves on previous methods since it is more space
efficient and also faster in practice.

The super model/solution framework [2,3] permits us to formalize a notion of
fault tolerance. An (a, b)-super solution is a solution in which, if a small number
of variables lose their values, we are guaranteed to be able to repair the solu-
tion with only a few changes. We introduce a new algorithm for finding super
solutions that solves a master problem and a number of sub-problems generated
during search. This approach is simple and can be implemented using most of the
constraint toolkits currently available. We then show how we can do inference
while solving a subproblem to reduce the master problem.

The main observation that we make in order to improve the search for a
super solution is that there must be at least n − (a + b) variables assigned
equally in the master problem and any sub-problem. For a given sub-problem,
if the set, or a subset, of variables that need to be assigned the same as in the
master problem is known, then we can prune both the master and the sub-
problem, thus greatly reducing the search space. We introduce two methods to
discover these variables. The first method uses classical filtering methods (such
as GAC or SAC [1]). The second idea is that, intuitively, a repair must be close
to the break in the constraint graph. For instance, in a (1, 1)-super solution, any
“repaired” variable must share a constraint with the “broken” variable. We use
the corresponding notion of neighborhood to deduce equalities between master
and sub-problems.
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Weighted constraint satisfaction problems (WCSP) and Max-SAT are optimization ver-
sions of the CSP framework and SAT repectively. They have many practical applica-
tions. Most current state-of-the-art complete solvers for WCSP and Max-SAT problems
can be described as a basic depth-first branch and bound search that computes a lower
bound during the search that can be used together with the cost of the best solution
found in order to prune entire search subtrees. Recently, a collection of local consis-
tency properties such as NC*, AC*, DAC*, FDAC* and EDAC* have been proposed
for WCSP in order to simplify the problem. In Max-SAT we have recently proposed in-
ference rules to detect unfeasible assignments. Resolution in Max-SAT is an extension
of classical resolution for the SAT problem:

(x ∨A, u), (x̄ ∨B, w)⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(A ∨B, m)
(x ∨A, u�m)
(x̄ ∨B, w �m)
(x ∨A ∨ B̄, m)
(x̄ ∨ Ā ∨B, m)

where A and B are arbitrary disjunctions of literals and m = min{u, w}. We use the
notation [P, . . . , Q] ⇒ [R, . . . , S], where P, Q, . . . are weighted clauses. It means that
if there are some weighted clauses matching with [P, . . . , Q] (left side), they can be
replaced by [R, . . . , S] (right side). We define the neighborhod resolution rule (NRES)
as RES restricted to the A = B case. We also present the novel weighted modus ponens
rule (MP) as:

(x ∨ y, u), (x̄, w)⇒

⎧⎪⎪⎨⎪⎪⎩
(y, m)
(x ∨ y, u�m)
(x̄, w �m)
(x̄ ∨ ȳ, m)

where m = min{u, w}. It is important to realize that this rule can be obtained by
replacing B = false and y = A in the generic resolution rule (RES). Finally, we
are studying the relation between the inference rules and the local consistency proper-
ties. For example, given an extension of the DPLL algorihtm for Max-SAT if it applies
NRES0 rule at each node of the search tree then it enforces the NC* property. If DPLL
applies both NRES0 and NRES1 at each node, it enforces AC*. NRESk denote NRES
restricted to |A| = k with k >= 0. We present the equivalence of the other local
consistency properties for WCSP w.r.t. the new inference rules for Max-SAT.
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In [1] Puget argued for a “model-and-run” paradigm for constraint programming.
He proposed to develop a standard file format to express CP models. There is
no such unified modeling standard available to the CP community, so constraint
programs cannot be developed independently from the used CP library and they
are hard to maintain.

This research targets platform-independent object-oriented modeling of
constraint programs. It will be shown how CP models can be expressed us-
ing software technology standards, and further how these standards will enable
automated transformation and execution of such models. The work reconsiders
results published in [2]. There, we have formally shown how the Unified Model-
ing Language (UML) and the Object Constraint Language (OCL) can be used
to create well formed models of constraint problems called Constraint Network
Schemata (CNS). Resting upon this, the author now proposes to see Model
Driven Architecture (MDA) as a chance for further research advances.

Although this paper mainly presents ideas for the adaption of MDA tech-
niques, some practical results where achieved already in the domain of surgery
planning for hospitals. A first prototypic implementation exists which can solve
XML-representations of CNS-models with our finite domain constraint solver
firstcs. Therefore, the CNS-model and the input data of a constraint problem
are processed from separate XML files to create a Constraint Satisfactory Prob-
lem (CSP) in a data-driven way. The CSP is then solved by firstcs and the
solution is returned as an XML-file, too.

Such processing simplifies the integration into complex business workflows
and helps to increase the acceptance of CP in business applications.
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Constraint Satisfaction Problem instances (CSPs) are a natural way to model
real life problems such as image processing, scheduling and natural language
understanding. In this paper we are concerned with the modeling of problems as
CSPs and how this can affect the performance of different solution algorithms.
In particular we are interested in modeling in the language of subquadrangles.

A Quadrangle is essentially an ‘anything-goes’ constraint for some Cartesian
product of domains. A Subquadrangle [1] is a constraint all of whose projections
to proper subsets of the scope are quadrangles.

Subquadrangles are a very ‘natural’ way in which to represent constraints.
This is because they do not place any restrictions on proper subsets of their
scope, thus reducing the number of required constraint checks. This leads us to
believe that a subquadrangle aware solver could be particularly efficient.

However, in this paper we shall consider another intriguing use of subquad-
rangle modeling. Subquadrangles delay the failure of constraint checks until you
try and assign a value to the last variable in their scope. This makes them ideal
for testing constraint solvers as they are ‘backtrack nasty’.

In this paper we present two methods by which we might decompose a given
instance into a solution equivalent instance whose constraints are all subquad-
rangles.

Our first method converts individual constraints into sets of three subquad-
rangle constraints. This can then be done for each constraint in a CSP in order
to convert the entire problem instance. We are able to demonstrate that this
new formulation has a high degree of local consistency related to the arity of
the original constraints which induce ‘backtrack nasty’ behavior in search algo-
rithms. Unfortunately, this with this method one of the subquadrangles is always
binary.

We also investigate a second method which converts intersecting pairs of
constraints. In this method all of the subquadrangles generated are similar in
arity to the original constraints.
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Mechanisms are decision functions that map the individual preference order-
ings of separate parties into a single ordering over the group outcome. Unfortu-
nately, classical impossibility results, readily extended to preferences, show that
no mechanism can be “fair” for all scenarios [1]. Further, any positive results
typically assume that agents do not form coalitions or other such partnerships.

While coalitions can complicate both theoretical analysis and underlying
paradigms of rationality, in a particular setting they can serve to constrain
a problem to the point of circumventing traditional impossibility results. Au-
tomated mechanism design (AMD) [2] attempts to overcome such results by
designing specific mechanisms for specific situations on the spot. No perfect
mechanism exists that works in every context, but whenever there is informa-
tion about the players, a fair mechanism can exist for that specific setting.

Our goal is mechanism design for preference aggregation over coalitions.
While AMD research has focused on auction and continuous domains, we seek to
model preferences in logic and operate over discrete domains. To do so we use a
recently-proposed logic for extensive games, based in turn on Alternating Time
(ATL) temporal logic [3,4]. While such efforts seek to express desirable prop-
erties, and verify whether a provided mechanism satisfies them, our approach
aspires to automatically generate satisfying mechanisms. Using a standard CSP
solver, we have implemented a preliminary system that does so for an extremely
simplified variant of these languages. The general approach is to establish vari-
ables representing a blank template game tree, and then instantiate them with
the names of players, subject to constraints representing the specified properties.
The space of possible trees is combinatorially large, and even tighter control of
variable ordering and propagation will be necessary to meet this challenge.
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Recent years have witnessed the emergence of a new area involving hybrid solvers
integrating CP- and OR-based methods. The LP relaxation provides bounds on
overall solution quality and can be used for pruning in a branch-and-bound ap-
proach, especially in domains where we have a combination of linear constraints,
well-suited for linear programming (LP) formulations, and discrete constraints,
suited for constraint satisfaction problem (CSP) formulations. However, in a
purely combinatorial setting, so far it has been surprisingly difficult to integrate
LP-based and CSP-based techniques.

We study the behavior of heuristics based on the LP relaxation with respect
to the underlying constraindness of the problem. Our study focuses on the Latin
square (or quasigroup) completion problem as a prototype for highly combinato-
rial problems. This problem is NP-hard and it exhibits an easy-hard-easy pattern
in complexity, measured in the runtime (backtracks) to find a completion [1]. In
our previous work [2] we report an interesting phase transition phenomenon in
the solution integrality of the LP relaxation for this problem.

We find that simple techniques based on the LP relaxation of the problem pro-
vide satisfactory guidance for under- and over-constrained instances. In the criti-
cally constrained region, the performance of such simple techniques degrades, due
to the inherit hardness of the problem. In this setting, we examine a technique that
recomputes the LP relaxation every time a variable is set. This leads to a signif-
icant increase in performance, suggesting that carefully designed “one step at a
time” LP-based heuristics could provide suitable guidance even for the hardest
instances. We examine the quality of the guidance provided by the LP relaxation
as a function of the structure of the problem, i.e., we characterize the performance
of LP heuristics across different constraindness regions in the search space.
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Partially defined or Open Constraints [2] can be used to model the incomplete
knowledge of a concept or a relation. In an Open Constraint, some tuples are
known to be true, some other are known to be false and some are just unknown.
We propose to complete its definition by using Machine Learning techniques.
The idea of the technique we use for learning comes directly from the classical
model of solvers computing a chaotic iteration of reduction operators [1]. We
begin by learning the constraint. But instead of learning it by a classifier which
takes as input all its variables and answers ”yes” if the tuple belongs to the
constraint and ”no” otherwise, we choose to learn the support function n<X=a>

of the constraint for each value of its variables’ domains. A tuple is part of
the constraint if accepted by all support functions for each of its values and
rejected as soon as it gets rejected by one. We propose to use as representation
for learning an Artificial Neural Network (ANN) with an intermediate hidden
layer trained by the classical backpropagation algorithm [4].

When put in a CSP, a constraint should contribute to the domain reduction.
We propose to use the learned classifiers also for solving. In order to do this, we
take the natural extension to intervals [3] of the learned classifiers. Let N<X=a>

be the natural interval extension of n<X=a>. Then, by using as input the current
domain of the variables, we can obtain a range for its output. Since we put a
0.5 threshold after the output neuron, we can reject the value a for X if the
maximum of the output range is less than 0.5, which means that all tuples
are rejected in the current domain intervals. Otherwise, the value remains in the
domain. Our experiments show that the learned consistency is weaker than more
classical consistencies but still reduces notably the search space.

We show that our technique not only has good learning performances but
also yields a very efficient solver for the learned constraint.
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We introduce a new type of network routing problem, the subnet generation
problem (SGP) which is a special case of the traffic placement problem (TPP).
In the TPP, given (1) a network which consists of routers and links, and (2) a set
of point-to-point traffic demands to be placed including finding feasible routes,
the objective is to minimize the sum of costs of the unplaced demands subject
to the Quality-of-Service routing constraints.

The SGP is a TPP with an extra set of constraints that restricts the combi-
nations of demands to be placed. In our SGP, each router has a fixed amount of
information-gain that is to be transmitted to every other router in the subnet.
A subnet is defined as any subset of the routers in the network. This means that
every router in the subnet will have exactly the same total information-gain.
The objective is to find a subnet that maximizes the total information-gain:
there must be a demand with a valid path between every pair of routers in the
subnet. The reason for creating demands among the routers arises from the fact
that every node in a selected group of routers is required to be a client and a
server. The figure below shows an example of a subnet and a path solution.

We describe a structure to split the problem into a master problem (select a
set of demands to be placed) and a subproblem (compute a feasible set of paths
for the demands selected by the master problem). To solve the SGP, we first
apply a state-of-art hybrid tree search algorithm1, designed to solve the TPP.
Then, we explore how the subnet structure in the SGP could be used to solve
the problem more efficiently. In particular, we focus on balancing search between
the master problem and the subproblem to maximize the solution quality within
a fixed computational time.

� I would like to thank Quanshi Xia and Christophe Guettier for their participation.
1 J. Lever. A Local Search/Constraint Propagation Hybrid for a Network Routing

Problem. International Journal of Artificial Intelligence Tools, 14(1):43-60, 2005.
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Redundant modeling combines different models of the same problem using channel-
ing constraints [1]. Channeling constraints allow different formulations of a problem 
to interact, propagating the constraints between different formulations. This can result 
in a significant improvement in performance. Originally, work on redundant modeling 
assumed that redundant models must fully characterize the problem [1]. Later, Smith 
argued that only the primal model need fully characterize the problem, while the dual 
model need only have all the dual variables and channeling constraints between the 
two models (a minimal combined model) [2]. This paper proposes partial redundant 
modeling, an extension of the minimal combined model that encourages more than 
two models, omits some dual variables and omits all the dual constraints. Partial re-
dundant models originate in problems with a categorical structure, where the vari-
ables may be subdivided into categories. Often these categories can be identified as 
groups of variables that fall under n-ary constraints that partition the variables into 
disjoint sets. Real world problems, such as scheduling and rostering, may also have 
categorical structure. Logic puzzles are a class of problems with a simplified version 
of categorical structure. A logic puzzle consists of a set of objects, a set of categories 
(same-size disjoint subsets of those objects) that must take on different values, and a 
set of semantic relations, which specify the relationships that hold between the cate-
gories. In a logic puzzle, each category can be viewed as a subset of CSP variables 
under an all-diff constraint. Different CSP models can be obtained by selecting the 
objects in a different category as the domain values, taking all other objects in the 
other categories to be the variables. We propose to maintain multiple partial redun-
dant models of problems with categorical structure, adding channeling constraints 
between the n-ary constraints in the redundant partial models. These channeling con-
straints make certain that value assignments under an n-ary constraint in one partial 
model are reflected under that n-ary constraint in some other partial model. We call 
these categorical channeling constraints.  
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Graphical models are a powerful representation framework for automated reasoning
tasks. These models use graphs to capture conditional independencies between vari-
ables, allowing for a concise representation of the knowledge. Optimization tasks de-
fined within this framework are typically tackled with either search or inference. Search
methods are time exponential in the number of variables and can operate in linear space.
Inference algorithms are time and space exponential in the tree width of the problem.
This potentially higher space complexity makes these methods impractical.

The AND/OR search space for graphical models is a newly introduced framework
for search that is sensitive to the independencies in the model, often resulting in expo-
nentially reduced complexities. The AND/OR search is based on a pseudo-tree which
expresses independencies between variables, resulting in a search tree exponential in
the depth of the pseudo-tree, rather than the number of variables.

The AND/OR Branch-and-Bound algorithm (AOBB) is a new search method that
explores the AND/OR search tree for solving optimization tasks in graphical models.
In this paper we extend the algorithm for solving combinatorial optimization problems
from the class of Mixed Integer Linear Programs (MILP). A MILP instance is a linear
program where some of the decision variables are constrained to have only integer val-
ues at the optimal solution (we consider only binary integer variables). AOBB can be
readily adapted for solving this class of optimization problems by arranging the inte-
ger variables into a start pseudo-tree and, then, traversing the corresponding AND/OR
search tree. This rather straightforward extension can be further improved. We intro-
duce a dynamic version of AOBB which uses a recursive decomposition of the prob-
lem, based on hypergraph separators. The hypergraph of a MILP instance has a vertex
for each constraint and a hyperedge, which corresponds to a variable, connects all the
constraints that contain that variable. A separator translates into a subset of variables
that, when instantiated, decompose the problem into independent components. The al-
gorithm traverses an AND/OR search tree based on a pseudo-tree which is recomputed
dynamically at each search tree node using the hypergraph separator of the respective
subproblem. The search process is guided in both cases by lower-bounding heuristic
estimates computed at each node by solving the linear relaxation (i.e. ignoring the inte-
grality restrictions) of the subproblem rooted at that node. Preliminary evaluation of the
structural properties of several hard problem instances from the MIPLIB2003 library
showed promise that the new AND/OR search schemes can improve significantly over
the traditional OR tree search approach. Finally, we mention that more advanced strate-
gies developed in the recent years for integer programming, such as the branch-and-cut
scheme, can be readily adapted to exploit the AND/OR structural paradigm.
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Unlike symmetries weak symmetries act only on a subset of the variables and/or respect
only a subset of the constraints of the problem. Therefore, weak symmetries preserve
the state of feasibility only with respect to the subset of variables they act on and only
for the constraints they respect. This means if two solutions are symmetric under the
weak symmetry they yield different full solutions with potentially different feasibility
states.

But weak symmetries cannot be simply broken, since this would result in a loss of
solutions that cannot be derived afterwards. Therefore we propose a modelling tech-
nique that uses additional variables (SymVars) and constraints that enable us to express
symmetric states of a solution. The idea is to decompose a problem P in a way such
that the variables and constraints respected by the weak symmetry is present in one
sub-problem P1 and the rest in the sub-problem P2. This way the weak symmetry acts
as a common symmetry on P1. The additional variables and constraints form a new
sub-problem Psym that is incorporated and the solving order is to find a solution to P1,
consider a symmetric equivalent by Psym and pass the solution to P2 which finds a
solution for the whole problem. By doing so the symmetry on P1 can be broken.

Although additional variables are introduced which extends the search space sym-
metry breaking enables us to reduce the search effort. Whether symmetry breaking does
compensate the extension of the search space by the additional variables depends on the
problem and the search heuristic. But as soon as a solution for P1 is found the whole
equivalence class of solutions can be considered via Psym.

Weak symmetries occur in various problems.They can be found in real-life prob-
lems (especially optimisation problems where the weak symmetry does not respect the
objective value) as well as in in classic problem formulations like the magic square
problem [1] or extensions of problems like the diagonal latin square [2] or the weighted
magic square problem [3].
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The automatic modelling tool Conjure [1] generates CSP models from a prob-
lem specified in the specification language Essence1. Variables in Essence may
have domains currently unsupported by solvers. Also, the elements of the do-
mains may be arbitrarily compound, for example, sets of sets, sets of sets of
sets. Conjure uses a set of refinement rules to compositionally transform the
variables (and constraints) into representations that can be implemented in cur-
rent solvers. Conjure can produce multiple alternative (redundant) represen-
tations of the same variable that may appear simultaneously in the same model.
Currently, Conjure does not generate the channelling constraints [2] that are
needed to maintain the consistency between these simultaneous alternatives.

There are several unsolved issues related to channeling constraints and au-
tomatic modelling, such as, how to identify the cases where a channelled model
performs better than a non-channelled one, and how to implement the chan-
nelling constraints efficiently. In this paper however, we focus the automated
generation of channelling constraints under the Conjure framework.

Our work has identified and proved correct, an algorithm to systematically
generate the channelling constraints needed in a Conjure-generated model.
We briefly describe this algorithm as follows. Let P be a specification refined
by Conjure into the CSP model P ′. Let X be a variable in P that has two
representations X1 and X2 in P ′. Let Y be a new variable with exactly the same
domain of X . We can then re-refine X = Y (channelling constraint between X
and Y ) forcing the X to refine into X1 and the Y into X2. Hence, we produce a
correct channelling constraint between X1 and X2 providing Conjure generates
correct refinements.
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The primary contribution of this paper consists in using the AND/OR search paradigm
[1,2] to define the new concept of semantic width of a constraint network. The well
known parameter tree-width is graph based, and cannot capture context sensitive infor-
mation. This often results in a very loose upper bound on the actual complexity of the
problem. A typical example is the compact result of a compilation schemes such as or-
dered binary decision diagram (OBDD), in spite of a large tree-width (and path-width).
The semantic width is based on the notion of equivalent constraint networks. The idea is
to capture the intrinsic hardness of a problem by the smallest width equivalent network.
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Fig. 1. The 4-queen problem

Example 1. Figure 1a shows the two solutions of the 4-queen problem. The problem is
expressed by a complete graph of tree-width 3, given in Figure 1b. Figure 1c shows an
equivalent problem, which has tree-width 1. The semantic-width of the 4-queen is 1.

This paper specializes the AND/OR formalism to constraint networks and elabo-
rates the properties of AND/OR search graphs. The semantic width characterizes the
size of the minimal AND/OR graph and it is clearly hard to compute. Nevertheless, the
semantic width can explain why sometimes the minimal AND/OR graph or tree are
much smaller than the upper bounds exponential in tree-width or path-width.
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Our goal is to characterize and to be able to predict the search cost, of some of
the most important CSP algorithms and heuristics when solving CSP problems
by obtaining a statistical model of the algorithm runtime based on inexpen-
sively computed parameters obtained from the CSP problem specification and
the associated constraints and nogoods graphs.

Such a model will give us three important items concerning the studied CSP
problems. First, the model provides a tool to predict the search cost of a given
instance, allowing a portfolio of solvers to decide for the best algorithm before
to proceed. Second, the models will give an insight about which are the main
features that characterize the complexity of a RBCSP. Finally, another potential
benefit of the model is pointing out which features are the algorithms most
sensible to, thus helping to guess potential areas of improvement.

This work follows a close related methodology used for SAT problems. In a
first step, we define a broad benchmark scenario that covers a full range of cases
of random binary CSP (RBSCP) problems. We proceed by solving a large set of
instances of each problem, using 3 different algorithms and 3 different variable
ordering heuristics for each one. This first analysis gives already a initial insight
about what type of algorithms performs better according to the size of the prob-
lem. Then we define a set of features to be analyzed in conjunction with the time
performance, some directly related to the problem specification parameters and
some others related to the structure of the constraints and nogoods graphs. Such
a combination of time performance and feature measurements is then analyzed
in order to obtain a statistical model based on regression analysis.

So far we have been able to create a model that has a reasonable quality
for predicting runtime behaviour of the algorithms analysed. The model created
for RBCSP problems includes, as the most significant parameters, the position
of the problem respect the phase transition point, the nogood graph minimum
degree and an upper bound of the constraint graph tree width (or some related
parameter).

Further research is being carried to increase the quality of the model, adding
more relevant parameters, especially graph related ones, so the model can be
used with a higher degree of confidence. We are also extending this work to
model other kinds of more structured problems beyond RBCSP, namely QWH.

� Research partially supported by projects TIC2003-00950 and TIN2004-07933-C03-03
funded by the Ministerio de Educación y Ciencia.
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The two most popular algorithms for solving Constraint Satisfaction Problems are For-
ward Checking (FC) [1] and Maintaining Arc Consistency (MAC) [2]. MAC maintains
full arc consistency while FC maintains a limited form of arc consistency during search.
There is no single champion algorithm: MAC is more efficient on sparse problems which
are tightly constrained but FC has an increasing advantage as problems become dense
and constraints loose. Ideally a good search algorithm should find the right balance—for
any problem—between visiting fewer nodes in the search tree and reducing the work
that is required to establish local consistency. In order to do so, we maintain probabilis-
tic arc consistency during search. The idea is to assume that a support exists and skip
the process of seeking a support if the probability of having some support for a value is
at least equal to some, carefully chosen, stipulated threshold.

Arc consistency involves revisions of domains, which require support checks to
remove unsupported values. In many revisions, some or all values find some support.
If we can predict the existence of a support then a considerable amount of work can be
saved. In order to do so, we propose the notions of a Probabilistic Support Condition
(PSC) and Probabilistic Revision Condition (PRC). If PSC holds then the probability of
having some support for a value is at least equal to the threshold and the process of
seeking a support is skipped. If PRC holds then for each value the probability of having
some support is at least equal to the threshold and the corresponding revision is skipped.

For hard dense problems constraint are generally loose, and on average each value
has several supports, in which case the probability of having some support remains high
for a while with respect to the number of values removed. This enables PSC and PRC

to save checks. For hard sparse problems constraints are generally tight, and on aver-
age each value has only a few supports, in which case the probability of having some
support drops rapidly with respect to the number of values removed. This forces both
PSC and PRC to fail quickly, which in turn forces the algorithm to behave like MAC.
Unlike MAC and FC where the strength of constraint propagation is static, maintain-
ing probabilistic arc consistency allows to adjust the strength of constraint propagation
dynamically during search and performs well on both dense and sparse problems.
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The constraint programming community keeps on creating numerous search al-
gorithms, which differ to a greater or lesser extent. It is an as desirable as difficult
task to implement a variety of search algorithms in a unifying framework.

This design proposal states the object-oriented environment GOOSE, which
supports development of generic search algorithms. It is inspired by Prosser´s cat-
egorisation of backtracking search algorithms [2]. GOOSE is abstract enough to
house dissimilar search approaches and separates abstract generic logic from do-
main details. The research focuses implementation needs and explicitly goes for
an efficient object-oriented design, which enforces code reuse and flexibility by
adequate use of class inheritance and object composition [1]. GOOSE can be im-
plemented in any modern object-oriented language, and as a proof of concept it is
realised within our object-oriented solver firstcs. Up to now the concept han-
dles variants of backtracking search and deals with topics like constraint-based
scheduling, static and dynamic variable ordering, justifications and backjumping,
optimisation, randomisation and restarting techniques. Multidimensional search
structures and control flow organisation are of particular interest. Creating new
complete search algorithms is easy: A generic frame algorithm is completed
by implementing some domain-specific methods. Plug-and-play like assembly
of compatible components easily realises algorithmic variations. The variations
are chiefly achieved by using generic decorator or strategy objects [1], which
can be exchanged during runtime. First experimental results (job-shop schedul-
ing, 3-SAT, n-queens) indicate a performance loss between 0 % (strong pruning)
and 10 % (weak pruning) compared to monolithic equivalents. Future work will
cover the introduction of non-systematic generic search algorithms and dynamic
adaptive search configuration, e.g. switching dynamically from chronological tree
movement to backjumping or from global to local search etc.

Implementing search algorithms according to GOOSE will make them easier
to understand and compare, the code will be flexible and reusable.
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In a constraint optimization problem for multiple agents, the agents have conflicting
preferences in the final solution and the goal is to find an optimal assignment that max-
imizes total utilities of all agents. Two major challenges when solving constraint opti-
mization problems for multiple agents are the complexity of finding optimal solution
and the incentive compatibility for participating agents. First, computing the optimal
solution for large optimization problems are computationally infeasible and it can only
be solved approximately by local search algorithms. Second, ensuring honest elicita-
tion among self-interested agents is computationally expensive. It has been shown that
the only known mechanism that guarantees truthfulness among agents requires comput-
ing optimal solutions, and sub-optimal solutions for such a mechanism will break the
incentive compatibility ([2]).

The long-term goal of our research is to solve these two challenges by using ran-
domization in local search algorithms to find near-optimal solutions while ensuring in-
centive compatibility for bounded-rational agents. Our work is based on the observation
that in real-world settings, the potential for manipulation is limited by uncertainty and
risk. This uncertainty makes it difficult for a manipulator to predict the consequences
of his manipulation and thus makes attempts at manipulating it uninteresting.

In this paper we discuss a general randomization technique, called random subset
optimization, for escaping from local minima in local search algorithms. In each local
choice step, the local search procedure will randomly choose a part of the optimization
function, and optimize for this part only. It turns out that this results in a more focussed
optimization strategy and is shown to be especially effective in some hard optimization
problems. We show that the uncertainty of our randomization algorithms can make
the agents’ manipulation hard, thus prevent bounded rational agents from manipulating
such algorithms. We propose a new hard-to-manipulate local search algorithm using
our randomization scheme ([1]). Experiments on randomly generated problems and
benchmarks from DIMACS show that our technique is very promising: it outperforms
existing local search algorithms both in speed of convergence and solution quality on
both decomposable and non-decomposable problems.
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Preferences and uncertainty occur in many real-life problems. We are concerned
with the coexistence of preference and uncertainty in the same problem. In par-
ticular, we consider uncertainty, defined by the theory of possibility [2], that is
one non-probabilistic way of dealing with uncertainty, that comes from lack of
data or imprecise knowledge.

We propose a method to integrate fuzzy preferences and uncertainty [3], which
follows the approach in [2] and allows one to handle uncertainty within a fuzzy op-
timization engine, which at the same time observing separately the preference and
the robustness of complete instantiations. To order the complete instantiations,
we define three semantics, which correspond to the attitude to the risk.

We generalize this method in [4] to deal also with other classes of prefer-
ences such as probabilistic or weighted constraints [1], and also probabilistic
uncertainty. In particular, probabilistic constraints are very useful for modelling
real-life scenarios where fuzzy constraints are not the ideal setting, because com-
bining preferences multiplying them is better than taking their minimum value.
Weighted constraints are useful to model problems where preferences are penal-
ties (or costs) to be added, and where the best preferences are the smallest ones.

We plan to develop a solver that can handle problems with several classes of
soft constraints, together with uncertainty expressed via possibility or probabil-
ity distributions. The solver will be able to generate solution orderings according
the our semantics as well as others that we will define by following different op-
timistic or pessimistic approaches.

We also plan to develop techniques for reasoning with uncertainty in problems
with both positive and negative preferences.

Acknowledgements. This is a joint work with K. Brent Venable (University
of Padova, Italy).
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We present a propagator which we call Reachability that implements a generalized
reachability constraint on a directed graph g. Given a source node source in g, we can
identify three parts in the Reachability constraint: (1) the relation between each node of
g and the set of nodes that it reaches, (2) the association of each pair of nodes 〈source, i〉
with its set of cut nodes, and (3) the association of each pair of nodes 〈source, i〉 with
its set of bridges.

Formally, this constraint can be defined as follows:

Reachability(g, source, rn, cn, be) ≡ ∀i∈N .
rn(i) = Reach(g, i)∧
cn(i) = CutNodes(g, source, i)∧
be(i) = Bridges(g, source, i)

(1)
where g is a graph whose set of nodes is a subset of N , source is a node of g, rn(i)
is the set of nodes that i reaches in g (defined by Reach(g, i)), cn(i) is the set of
nodes appearing in all paths from source to i in g (defined by CutNodes(g, source, i)),
and be(i) is the set of edges appearing in all paths from source to i in g (defined by
Bridges(g, source, i)) 1.

Reachability has been implemented using a message passing approach on top of the
multi-paradigm programming language Oz [Moz04]. The pruning rules of Reachability
have been defined using the notion of graph variable [DDD05]. In [QVD05a, QVD05b],
we discuss the implementation of Reachability in detail and its suitability for finding
simple paths with mandatory nodes in directed graphs 2.
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1 Any node in N is a cut node between i and j if there is no path going from i to j. Similarly,
any edge in N × N is a bridge between i and j if there is no path going from i to j.

2 The problem of finding a simple path containing a set of mandatory nodes is not trivially
reducible to Hamiltonian path.
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Recently, many algorithms have been designed to propagate global constraints. Unfor-
tunately, some global constraints, such the AT-MOST-1 constraint and the EXTENDED-
GCC are NP-Hard to propagate. Often, these constraints can easily be written as integer
linear programs. Using linear relaxations and other techniques developed by the opera-
tion research community, we want to efficiently propagate such constraints.

We model constraints as integer programs that we relax into linear programs. For
each value v in a variable domain dom(x), we create a binary variable xv . The assign-
ment xv = 1 indicates that x = v while xv = 0 indicates that x �= v. The binary
variables are subject to the following linear program.

Ax ≤ b
0 ≤ xi ≤ 1

}
P

We find a solution to the relaxation using the interior point method. This method always
converges to the interior of the solution polytope. Based on this observation, we con-
clude that if a variable xi subject to l ≤ xi ≤ u is assigned to one of its boundary value
l or u, the variable is assigned to this value in any solution. Therefore, if the interior
point method assigns variable xv to 0, we conclude that v does not have a support in
dom(x).

We studied the consistency enforced by our propagator. We proved that if U is a
totally unimodular matrix and that P has the following form, then GAC is enforced on
the equations Ux ≤ b1. [

U 0
B C

] [
x
y

]
≤
[
b1

b2

]
0 ≤ xi, yj ≤ 1

⎫⎬⎭ P

Some constraints like the CARDINALITY-MATRIX constraint while written in the form
Ax ≤ b have many totally unimodular sub-matrices of A. For each such sub-matrix,
GAC is enforced on the corresponding variables. The resulting consistency is stronger
than consistencies enforced by existing propagators.
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Constraint satisfaction methodology has proven to be a successful technique for solv-
ing variety of combinatorial and optimization problems. Despite this fact, it was ex-
ploited very little in the planning domain. In particular hierarchical task network 
planning (HTN) [2] seems to be suitable for use of constraint programming. The for-
mulation of HTN planning problem involves a lot of structural information which can 
be used to prune the search space. Encoding of this structural information by means of 
constraint programming would provide an effective way for such pruning during the 
search for solution. 

This abstract describes a work currently in progress of which the goal is to develop 
a framework and techniques for solving HTN planning problems using constraint pro-
gramming methodology. The first step to achieve the goal is to propose a suitable 
encoding of HTN planning problems into constraints. We encode HTN planning 
problem for a limited number of steps as a dynamic constraint satisfaction problem 
[2]. Our encoding translates each construct used in the formulation of HTN problem 
into a set of variables and constraints. The resulting constraint model is built hierar-
chically with global tasks (e.g. transport package from location A to location B) on 
the top of the hierarchy and with primitive actions (e.g. load package into the truck at 
location A) at the bottom. The dynamicity of our approach consists in construction of 
this hierarchical model during the search for solution. As the search proceeds and ear-
lier decisions of the search algorithm become fixed, the model is extended with the 
parts modeling later decisions depending on the previous ones. 

Since our encoding relies on the intense combination of constraints via logical con-
junctions, it is necessary to use a method for constraints combination that preserves 
stronger propagation. Such method is for example constructive disjunction [3]. 
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1 Summary

The stable marriage problem (SM) and the Hospital / Residents problem (HR)
are both stable matching problems. They consist of two sets of objects that need
to be matched to each other; in SM men to women, and in HR residents to
hospitals. Each set of objects expresses a ranked preference for the objects in
the other set, in the form of a preference list. The problem is then to find a
matching of one set to the other such that the matching is stable. A matching is
stable iff it contains no blocking pairs. A blocking pair in a matching M consists
of two objects x and y one from each set(x = man and y = woman for SM or x =
hospital and y = resident in HR), such that x and y are not matched in M and
both x and y would rather be matched to each other than to there assignment
in M .

Algorithms have been published for both of these problems and optimal con-
straint models have been published for the stable marriage problem. So the main
question would be why the need for specialised constraint for these problems?

The SM algorithm and the optimal constraint encodings all have a time
complexity of O(n2), but in practice it can take over a minute for the constraint
models to find a solution to a problem of size 45 while the SM algorithm can
find a solution in less than two hundredths of a second. There have not been any
optimal HR constraint models published, but I assume the same performance
gap would exist. The advantage of the constraint solutions are their versatil-
ity. Many harder variants of the stable matching problems can be solved by
adding simple side constraints to the existing models, this is not possible with
the matching algorithms. So the motivation behind a specialised constraint is
to try and combine the efficiency of the algorithm with the versatility of the
constraint models.

In the full version of this paper I discuss issues concerning the creation of
specialised constraints to solve these problems. I then go on to present some em-
pirical results that suggest that specialised constraints significantly out perform
other constraint encodings, in both time and space requirements.

� The author is supported by EPSRC. Software support was given by an ILOG SA’s
academic grant.
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With this work we present a hybrid approach to solve large-scale constraint
satisfaction and optimization problems. The method proposed can be termed
Bounds-Consistent Local Search. It is inspired by the success of a randomized
algorithm for the Boolean Satisfiability (SAT) problem called UnitWalk. We
have adapted the algorithm UnitWalk to integer programs. The search space is
pruned through propagation; particularly we use Bounds-Consistency (BC). In
this way we combine Local Search which performs well on large combinatorial
optimization problems, and consistency propagation methods used to solve con-
straint problems. Unit-Walk is a simple algorithm that performs well on different
instances of hard SAT problems. It has given best results on industrial problems
in SAT competition. It also has been proved it is Probabilistically Approximately
Complete (PAC); it means that it succeeds with probability one without restart-
ing for initial assignment. We opted to use bounds-consistency propagation for
linear constraints for two reasons. Firstly, because bounds-consistency implies
hyper-arc consistency on integer linear inequalities. Hyper-arc consistency is a
strong form of consistency, and linear inequalities are an expressive form of con-
straint that has already been used to model many problems including Multiple
Sequence Alignment problem (MSA) from Bioinformatics. Secondly, large do-
mains do not need to be explicitly represented, which saves a lot of memory
and reduces runtime overheads. With BC we need only maintain two numbers
per integer variable: an upper and a lower bound. BC can be also applied to
non-linear constraints such as all-different, which we plan to deal with in fu-
ture work. The algorithm starts with a random assignment for the variables,
and then explores the search space by randomly choosing the variable to be in-
stantiated. It performs bounds propagation before and during search. If domain
wipe-out occurs then it restarts the search, using previous successful assignments
to guide the selection of domain values. We are improving the algorithm with
new heuristics. We have developed a dynamic prioritization heuristic that uses
the information gained during the search in order to set up variables’ selecting
ordering. This prioritization is updated at each new search, and is inspired by
an another algorithm called Squeaky Wheel Optimization.

� This work has been supported by Science Foundation Ireland under Grant
04/BR/CS0355.
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Representing and solving problems in terms of constraints can be difficult to do 
effectively. A single problem can be modeled in many different ways, either in terms 
of representation or in terms of the solving process. Different approaches can 
outperform each other over different problem classes or even for different instances 
within the same class. It is possible that even the best combination of model and 
search on average is still too slow across a range of problems, taking orders of 
magnitude more time on some problems than combinations that are usually poorer. 
This fact complicates the use of constraints, and makes it very difficult for novice 
users to produce effective solutions. The modeling and solving process would be 
easier if we could develop robust algorithms, which perform acceptably across a 
range of problems. 

We present one method of developing a robust algorithm. We combine a single 
model and a single basic algorithm with a set of variable and value ordering 
heuristics, in a style similar to [1]. The aim is to exploit the variance among the 
orderings to get a more robust procedure, which may be slower on some problems, 
but avoids the significant deterioration on others. During the search, we allocate 
steadily increasing time slices to each ordering, restarting the search at each point. We 
demonstrate the performance of the multiple heuristic approach (MH) on a scheduling 
problem class [2] and on quasi groups with holes (QWH), showing that it is more 
robust and competitive than the standard recommended heuristic. We also compare to 
randomized restarts [3], the leading method for QWH and which uses a similar restart 
policy. We show that MH is poorer in run time and robustness on QWH, but better on 
the scheduling class.  

For the immediate future, we intend to investigate whether MH does perform better 
on insoluble problems (as indicated by the scheduling results). We will also tune the 
heuristics and time slices, and attempt to generate them automatically. 
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In manufacturing scheduling, jobs may have uncertain earliest start times, caused
by supplier lead-time uncertainty. How should we build initial schedules to be
robust to these uncertain release dates? We are attempting to adapt the online
decision making methods from [1]: in particular the expectation and consensus
methods, which combine sampling of future scenarios with deterministic opti-
mization.

First, we assume that we have a probability distribution over the release
dates, and we use this to select samples, giving them a weight proportional to
their probability, which we use when determining the best decision. For expecta-
tion, we consider all possible partial schedules of released jobs up to the earliest
possible uncertain release date (t0), for each sample extend each partial schedule,
and return the one with the lowest expected makespan. For consensus, we find
the optimal decision for each sample, and then choose the one with the highest
sum of weights. We consider three possible types of initial decision: (i) partial
schedules up to t0; (ii) independent resource assignments for a single time step;
and (iii) a tuple of resource assignments for a single time step. The latter two
require re-optimization at each time-step up to t0.

We have implemented the above in Ilog Scheduler 6.0, and tested them on
modified JSP benchmarks [2]. The experiments show that our four adapted meth-
ods all provide good results (i.e. weighted relative error not being more than 2%).
However, it is also possible to get close to the optimal without reasoning about
the uncertain events in advance (e.g. using pure reactive methods). The prob-
lems appear to be too easy, and not sensitive to the uncertainties. Future work
will investigate why this is the case, to determine the features that do make the
problems sensitive to the uncertainty in the release dates.
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In our work, we investigate the role of redundant clauses in characterizing and
solving hard SAT problems. Informally, a redundant clause is one that may be
removed from the CNF representation of a SAT instance without altering the
satisfying assignments of that instance. Correspondingly, a set of prime clauses is
a set of clauses that preserves all the but that contains no redundant clauses. We
identify several interesting features of redundant clauses that provide compelling
evidence of the correlation between the percentage of redundant clauses and the
hardness of instances. We propose a definition of weighted clause-to-variable
ratio (WCV ), which substantially improves the classic clause-to-variable (m/n)
ratio in predicting search cost and explaining the phase transition. WCV is
based on a linear combination of the number of prime clauses (NPC) and the
number of redundant clauses (NRC). We compare WCV to a number of existing
parameters including backbone size and backbone fragility, the constrainedness
measure, and the m/n ratio; we posit a variety of advantages to WCV over
other measures. We believe that full utilization of redundant knowledge to solve
random and real-world SAT problems can significantly improve the performance
of SAT solvers, in terms of the scale of the problems that can be dealt with as
well as the speed with which these problems are solved.
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Fig. 1. (a) The percentage of redundant clauses (%RC) decreased as a function of the
number of clauses, commencing at 40% and decreasing to 20% when the number of
variables reached 250. (b) Correlation between WCV and search cost. n=100.
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Structural decomposition methods have been proposed for identifying tractable
Constraint Satisfaction Problems (CSPs) [1–5]. The basic principle is to de-
compose a CSP into tree-structured sub-problems. The subproblems are solved
independently, then the original CSP is solved in a backtrack-free manner after
the tree structure is made arc-consistent, as described in [1]. In [5], we proposed
four decomposition methods: HINGE+, CUT, TRAVERSE, and CaT and tested
these methods on randomly generated CSPs. We compare these techniques on
instances of the fully interlocked Crossword Puzzle Problems (CPPs) [6] taken
from a public library [7] and identify special cases of the constraint hypergraphs
where some decomposition techniques yield better results than others although
in general the opposite holds. Our future work includes: 1) Identifying more such
configurations, and building hybrid decompositions techniques that exploit this
information; 2) Tailoring existing decomposition methods for fully interlocked
CPPs so that every sub-problem, after backtrack search, has few solutions; and
3) Designing a heuristic for applying local search for fully interlocked CPPs.
This work is supported by CAREER Award #0133568 from the National Sci-
ence Foundation.
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Distributed constraint satisfaction problems (DisCSPs) with asymmetric constraints re-
flect the fact that agents may wish to retain their constraints private. Brito and Meseguer
proposed a model for asymmetric constraints which they term Partially Known Con-
straints (PKC). In the PKC model each binary constraint is divided between the two
constraining agents. In order to solve the resulting DisCSP with asymmetric con-
straints, a two phase asynchronous backtracking algorithm was proposed [BM03]. In
the first phase an asynchronous backtracking algorithm is performed, in which only the
constraints held by the lower priority agents are examined. When a solution is reached,
a second phase is performed in which the consistency of the solution is checked again,
according to the constraints held by the higher priority agents in each binary constraint.

The present paper proposes a one phase asynchronous backtracking algorithm
which solves DisCSPs with asymmetric constraints. In the proposed asynchronous
backtracking for asymmetric constraints algorithm (ABT ASC) agents send their pro-
posed assignments to all their neighbors in the constraints graph. Agents assign their
local variables according to the priority order as in ABT but check the constraints also
against the assignment of lower priority agents. When an agent detects a conflict be-
tween its own assignment and the assignment of an agent with a lower priority than
itself, it sends a Nogood to the lower priority agent but keeps its assignment. Agents
which receive a Nogood from higher priority agents, perform the same operations as if
they have produced this Nogood themselves. As in ABT [Yok00], they remove their
current assignment from their current-domain, store the eliminating Nogood and reas-
sign their variable.

The ABT ASC algorithm is evaluated experimentaly on randomly generated
DisCSPs and is shown to outperform the 2-phase ABT with respect to two
different distributed performance measures. ABT ASC performs fewer non-concurrent
constraints checks by a factor of 6, for the harder problem instances. The load on the
network is very similar for both algorithms, counting the total number of messages sent
by both algorithms.
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Consistency techniques proved to be an efficient method for reducing the search
space of CSP and hence they were modified for soft constraint frameworks too.
Several algorithms for local consistency in Weighted CSP, where costs are as-
signed to tuples, were introduced in [2,3]. The strongest form among them is Full
Star Directional Arc Consistency (FDAC*). The algorithm for enforcing FDAC*
is based on sending costs from one constraint to another in one direction with
respect to the fixed order of variables.

We consider the fixed order of variables to be rather limiting so we propose
Full Star Arc Consistency (FAC*) which extends the cost sending process by
allowing to send the costs in any direction. Because it may not be always possible
to send the cost along a directed edge, the proposed extension enables the costs
to be sent along other paths. The hope is that by combining more costs we can
prune more values from variables’ domains. When enforcing FAC*, we choose a
variable and move the costs towards the chosen variable. The costs of values of
that variable can be used by a value-ordering heuristics during Branch & Bound
search.

Constraint hierarchies [1] are another popular soft constraint framework,
which provides a very simple way for a user to specify preferences over con-
straints. It is possible to use the above-mentioned WCSP consistency algorithms
for constraint hierarchies too. We show how constraint hierarchies with finite
domains using the unsatisfied-count-better comparator [1] can be transformed
to WCSP. We believe that constraint hierarchies with other comparators can
also be transformed to a generalization of WCSP that still allows to use the
algorithms for enforcing FDAC* and FAC*.
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Optimization

Alexander Brodsky1,2 and Hadon Nash2
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2 Adaptive Decisions, Inc., Maryland, USA
hnash@adaptivedecisions.com

We have proposed and implemented the language CoJava, which offers both the
advantages of simulation-like process modeling in Java, and the capabilities of
true decision optimization. We will demonstrate the modeling methodology and
implementation techniques, following an optimization application example.

By design, the syntax of CoJava is identical to the programming language
Java, extended with special constructs to (1) make a non-deterministic choice of
a numeric value, (2) assert a constraint, and (3) designate a program variable as
the objective to be optimized.

A CoJava program thus defines a set of nondeterministic execution paths,
each being a program run with specific selection of values in the choice state-
ments. The semantics of CoJava interprets a program as an optimal nondeter-
ministic execution path, namely, a path that (1) satisfies the range conditions
in the choice statements, (2) satisfies the assert-constraint statements, and (3)
produces the optimal value in a designated program variable, among all execu-
tion paths that satisfy (1) and (2). Thus, to run a CoJava program amounts to
first finding an optimal execution path, and then procedurally executing it.

To optimize a process, each real-world device or facility is modeled, tested and
debugged in pure Java as a class of objects with private state and public methods
which change the state. A process is described as a method of a separate class,
which invokes methods of the model objects passing non-deterministic choices
for arguments, and which designates an optimization objective.

For model developers, it appears as if the program has simply followed a
single execution path which coincidentally produces the optimal objective value.
Thus the learning curve for software developers is minimal.

To find an optimal non-deterministic execution path, we have developed a re-
duction to a standard constraint optimization formulation. Constraint variables
represent values in program variables that can be created at any state of a non-
deterministic execution. In addition to explicit constraints in assert statements,
constraints are constructed to represent transitions from one CoJava program
state to the next.

Based on the reduction, we have developed a CoJava constraint compiler.
The compiler operates by first translating the Java program into a similar Java
program in which the primitive numeric operators and data types are replaced by
symbolic constraint operators and data types. This intermediate java program
is executed to produce a symbolic decision problem, which is then submitted to
an external optimization solver.
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Programming with T OY(FD)
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In [1] we presented the language T OY(FD) that integrates the best features of
existing functional and logic languages, as well as finite domain (FD) constraint
solving. We believe that T OY(FD) is more flexible and expressive than the ex-
isting approaches of constraint logic programming on finite domain (CLP (FD) )
as it integrates FD constraint solving, lazy evaluation, higher order applications
of functions and constraints, polymorphism, type checking, composition of func-
tions (and, in particular, constraints), combination of relational and functional
notation, and a number of other characteristics. These features allow to write
more concise programs, therefore increasing the expressivity level.

From an implementation point of view, T OY(FD) integrates the higher-order
lazy functional logic language T OY and the efficient FD constraint solver of
SICStus Prolog. From a programming point of view, T OY(FD) is the first con-
straint functional logic programming system that provides a wide set of FD
constraints comparable to existing CLP (FD) systems and which is competitive
with them. T OY(FD) supports relational constraints including equality, dise-
quality, arithmetical operators on constraints, a wide set of well-known global
constraints (e.g., all different/1), membership constraints (e.g., domain/3),
propositional constraints, and enumeration constraints (e.g., labeling/2, with
a number of strategies) with optimization.
T OY(FD) also provides a glass box approach via a set of predefined functions

called reflection constraints that allow, at runtime, to recover internal informa-
tion about the constraint solving process. These functions increase the flexibility
of the language as they allow the user to construct specific constraint mechanisms
such as new search strategies.

Generally speaking, T OY(FD) is, from its nature, different to all existing
CLP (FD) languages as its operational mechanism is the result of combin-
ing the operational methods of logic languages (i.e., unification and resolution)
and functional languages (i.e., rewriting). Thus, T OY(FD) is an alternative to
CLP (FD) languages and allows a flexible modelling and quick prototyping at a
very high level that cannot be reached by most of the existing constraint systems.
T OY(FD) is freely available in http://toy.sourceforge.net/.
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Emmanuel Hebrard, Paul Tyler, and Toby Walsh

NICTA and UNSW, Sydney, Australia
{emmanuel.hebrard, paul.tyler, toby.walsh}@nicta.com.au

RobustScheduler is a graphical tool for computing and visualising robust sched-
ules. It allows to compare optimal schedules (shortest overall duration) with schedules
that are robust, although not necessarily optimal. Both the optimal and robust schedule
are computed and displayed as Gantt charts. Moreover, the consequences of delaying a
task on the rest of the schedule can be checked interactively. The robust schedules are
more robust than the optimal since a small pertubation (e.g. a machine breaks) gives
a proportionally small disturbance to the future, in line with the Super-solution/Super-
model framework ([2,3]).

Fig. 1. RobustScheduler screen-shot, above computing the regular optimal schedule, below
computing a robust schedule

The underlying constraint solver1 implements the job-shop scheduling problem us-
ing standard constraint programming methods such as shaving [1], specialised variable
orderings [5] and specialised constraint propagators. The Super-solutions are found us-
ing an algorithm introduced in [4].
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Proterv-II: An Integrated Production Planning
and Scheduling System�

András Kovács, Péter Egri, Tamás Kis, and József Váncza
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Medium-term production planning and short-term scheduling match future pro-
duction load and capacities over various horizons and on different levels of detail.
Although these two levels of the decision hierarchy are strongly interdependent,
traditional systems handle them separately. In the Proterv-II prototype system
that was developed for manufacturing industries, the two levels are linked by an
automated aggregation procedure that constructs the planning representation
from detailed job-shop level data [3].

Projects consist of a number of discrete operations with various resource re-
quirements, interwoven by precedence constraints. Aggregation merges
connected components of projects into aggregate activities. The medium-term
planner solves a resource-constrained project scheduling problem with variable-
intensity activities, subject to strict time windows, but extendible capacities.
The objective functions are minimal extra capacity usage and minimal work-in-
process. For the solution of the planning problem, an MILP model and a branch-
and-cut algorithm with customized cutting planes have been developed [1].

The goal of the short-term scheduler is to unfold the first segments of the
medium-term plan into executable detailed schedules. The scheduler computes
start times for individual manufacturing operation with respect to resource re-
quirements, precedence relations, sequence-independent setup times, and trans-
portation times. The detailed scheduling problem is solved by constraint-based
scheduling techniques. During experiments on large-scale industrial data,
Proterv-II generated close-to-optimal production plans that could be unfolded
into executable schedules. We are currently improving the performance of the
scheduler by novel algorithms adapted to real-life problems [2].
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The Comet Programming Language and System
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Comet is a novel, object-oriented, programming language specifically designed
to simplify the implementation of local search algorithms. Comet supports a
constraint-based architecture for local search organized around two main com-
ponents: a declarative component which models the application in terms of
constraints and functions, and a search component which specifies the search
heuristic and meta-heuristic. Constraints, which are a natural vehicle to express
combinatorial optimization problems, are differentiable objects in Comet: They
maintain a number of properties incrementally and they provide algorithms to
evaluate the effect of various operations on these properties. The search compo-
nent then uses these functionalities to guide the local search using multidimen-
sional, possibly randomized, selectors and first-order control structures such as
events, neighbors, and nondeterminism.

As a result, Comet programs often feature models similar to those of con-
straint programming, although the underlying technology is fundamentally dif-
ferent in nature. In particular, Comet models are high-level, compositional, and
modular. It is possible to add new constraints and to modify or remove existing
ones, without having to worry about the global effect of these changes. Comet
also separates the modeling and search components, allowing programmers to
experiment with different search heuristics and meta-heuristics without affect-
ing the problem modeling. Comet has been applied to many applications and
is often competitive with tailored algorithms for complex applications.

This system demonstration illustrates Comet on a variety of applications
in resource allocation, facility location, and scheduling. It will cover both the
sequential and parallel implementations and the Comet environment.
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Functional verification of modern hardware design consumes roughly 70% of the
effort invested in the design cycle. Simulation of randomly generated stimuli is
the main means of achieving functional verification. A typical verification effort
is centered around a stimuli generator which produces a massive amount of test
cases that are simulated on the verified design. Bugs are then identified when
the design behaves incorrectly. (in some cases this process is complemented by
some amount of formal verification).

In the past few years it became clear across the industry that the most pow-
erful way of generating high-quality stimuli is by utilizing constraint technology.
This is because constraints allow for a natural description of hardware systems
[1]. Hence, CP is now at the core of all leading verification environments [2].

CSP’s arising from stimuli generation are different from other application
domains. One striking difference is the existence of variables with huge (e.g.
264) domains, combined with highly non-linear and non-monotonic constraints.
Another is the requirement to produce multiple different solutions, distributed
roughly uniformly, for the same CSP. Further, the complexity of the design, and
its tendency to change over time, requires a sophisticated modeling capability.

We discuss and demonstrate these and other issues related to stimuli gen-
eration, including the modeling and solution of conditional problems [3] and of
generative CSPs, both of which abound in this domain. We demonstrate complex
stimuli-generation scenarios which are solvable by our special purpose engine, as
well as other important scenarios, which are currently not solvable in a reason-
able time. The latter impose the challenges of current research.

The constraint engine we demonstrate is being developed at IBM for more
than a decade, and is at the core of the stimuli generators used for the functional
verification of all of IBM’s high-end processors and systems [4,5].
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A BDD-Based Interactive Configurator
for Modular Systems
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Interactive configuration can be viewed as interactive CSP solving. We see in-
teractive modular configuration as interactive modular CSP solving, where we
define a modular CSP as a labeled rooted directed multigraph, where each vertex
is labeled with a CSP, and each edge is labeled with (1) a set of total assign-
ments to the variables of the CSP at the source vertex and (2) a set of equality
constraints between the variables in the source and destination CSPs1.

This allows the modeling of hierarchical systems through the use of edges
(to model both has-a and is-a relationships), and the modeling of unbounded
systems through the creation of cycles in the problem graph.

During configuration, the user builds a labeled rooted solution tree which
is homomorphic with the problem graph — each solution tree node (object) is
associated with a problem graph vertex (class) — and which is isomorphic with
the configured system’s structure. The nodes are essentially2 labeled with the
sets of full assignments that can still be part of globally consistent solutions.

A new object is instantiated when the partial assignment within an object
implies a full assignment that is in the assignment set on an outgoing edge
from the class. This new object becomes a child of the other object, and is an
instance of the class at the destination side of the edge. Configuration starts
with the instantiation of the root node from the root vertex.

The user is allowed to assign and unassign variables in arbitrary nodes in ar-
bitrary order. The system removes and adds exactly those values from and to the
domains that, although configuration is unbounded, ensure that a finite and fully
specified solution tree (configuration) is always reachable without backtracking.
It also instantiates and deinstantiates exactly the right objects.

We have developed a research prototype of such an interactive configurator.
It is written in ANSI C, and uses the ncurses library for the user interface. While
it uses BDDs for knowledge representation, the underlying method should also
be applicable to other (compact) finite set representations.

It uses a two-phase approach: an offline compilation phase (which is executed
once for a given problem), and an interactive configuration phase with fast user
interaction, provided the BDDs remain small.

An important result is that the configuration-time sizes of the BDDs cannot
exceed a constant which can be determined at compile time. In particular, they
do not grow as a function of the size of the tree3.
1 The latter can be seen as a way to create shared variables between CSPs.
2 Not exactly, because we extensively use delayed processing.
3 The size of the tree is unbounded but always finite.
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