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Abstract. Non-rigid 3D shape recovery is an inherently ambiguous problem.
Given a specific rigid motion, different non-rigid shapes can be found that fit the
measurements. To solve this ambiguity prior knowledge on the shape and motion
should be used to constrain the solution. This paper is based on the observation
that often not all the points on a moving and deforming surface such as a human
face are undergoing non-rigid motion. Some of the points are frequently on rigid
parts of the structure – for instance the nose – while others lie on deformable
areas. First we develop a segmentation algorithm to separate rigid and non-rigid
motion. Once this segmentation is available, the rigid points can be used to es-
timate the overall rigid motion and to constrain the underlying mean shape. We
propose two reconstruction algorithms and show that improved reconstructions
can be obtained when the priors on the shape are used on synthetic and real data.

1 Introduction

In this paper we focus on the estimation of the 3D shape and motion of a deformable
object such as a human face which is moving rigidly while performing different fa-
cial expressions. The face can be thought of as an underlying rigid body undergoing a
global rotation and translation while suffering some local non-rigid deformations. Our
aim is the simultaneous recovery of motion and 3D non-rigid shape from multiple im-
ages exploiting prior knowledge on the structure such as the rigidity of some of the
observed points.

In the past years numerous techniques have been proposed to solve the structure
from motion problem in the case of rigid objects and more recently the framework has
also been extended to deal with non-rigid objects. The main challenge in non-rigid
structure from motion is to disambiguate the contribution to the image motion given by
the shape deformation and that caused by the rigid motion. Bregler et al [3] introduced
a representation for non-rigid 3D shape where any configuration can be expressed as
a linear combination of basis shapes that define the principal modes of deformation of
the object. They proposed a factorization method that exploits the rank constraint on
the measurement matrix and enforces orthonormality constraints on camera rotations to
recover the motion and the non-rigid 3D shape. Their work can be seen as an extension
of Tomasi and Kanade’s factorization framework [12] to the case of deformable objects.
Torresani et al. [13] extended the method of Bregler et al. to a trilinear optimization
problem by minimizing 2D image reprojection error using Alternating Least Squares.
Brand [2] proposed an alternative optimization method and added an extra constraint
on the basis shapes: the deformations should be as small as possible relative to the
rigid shape.
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The main problem with these approaches stems from the fact that deformation and
motion are ambiguous. Given a specific configuration of points on the image plane,
different 3D non-rigid shapes and camera motions can be found that fit the measure-
ments. To solve this ambiguity prior knowledge on the shape and motion should be
used to constrain the solution. Recently, Xiao et al. [17] proved that the orthogonality
constraints were insufficient to disambiguate rigid motion and deformations. They iden-
tified a new set of constraints on the shape bases which, when used in addition to the
rotation constraints, provide a closed form solution to the problem of non-rigid structure
from motion. However, their solution requires that there be K frames (where K is the
number of basis shapes) in which the shapes are known to be independent. Non-linear
optimization schemes that minimize image reprojection error have also been proposed
to refine an initial solution [1,4]. The advantage of these methods is that they provide
a maximum likelihood estimate in the presence of Gaussian noise and prior knowledge
on any of the model parameters can be easily incorporated to the cost function in the
form of penalty terms. The need for incorporating prior information on the motion or
shape parameters to avoid the ambiguities inherent to non-rigid shape estimation is also
recognised by Torresani et.al. [15,14] who propose an algorithm that learns the time-
varying shape of a non-rigid 3D object from uncalibrated 2D tracking data. Temporal
smoothness in the object shape can be imposed within their framework which can also
deal with missing data.

In this paper we focus on the observation that often not all the points on a moving
and deforming surface – such as a human face – are undergoing non-rigid motion. Some
of the points are frequently on rigid parts of the structure – for instance the nose – while
others lie on deformable areas. Intuitively, if a segmentation is available, the rigid points
can be used to estimate the overall rigid motion and to constrain the underlying mean
shape by estimating the local deformations exclusively with the parameters associated
to the non-rigid component of the 3D model. Our observation is also supported by
recent studies on the notion of shape average by Yezzi and Soatto introduced in [18]
where the authors precisely separate motion and deformation components for robustly
matching, registering and tracking deformable objects.

Our approach first performs rigid and non-rigid motion segmentation on the fully
observed image data to separate both types of motion using an automatic measure of
deformability of shapes [10]. Once the points have been segmented into the rigid and
non-rigid sets we recover the overall rigid motion from the rigid set and we formalise
the problem of non-rigid shape estimation as a constrained minimization adding priors
on the degree of deformability of each point. We perform experiments on synthetic and
real data which validate the approach and show that the addition of priors on the rigidity
of some of the points improves the 3D reconstruction.

The paper is organised as follows. In section 2 we describe the non-rigid factor-
ization framework. In section 3 we propose a rigid and non-rigid motion segmentation
algorithm. Section 4 presents two alternative algorithms to recover the 3D shape using
rigidity constraints on the non-deforming segmented points. Finally, in section 5 we
show experiments on synthetic and real data to validate the segmentation algorithm and
the 3D reconstruction methods.
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2 Non-rigid 3D Modelling Using Factorization

Tomasi and Kanade’s factorization algorithm has recently been extended to the case of
non-rigid 3D structure, assuming affine viewing conditions [3,2,13,4]. The model used
to express the deformations is point-wise and the 3D shape of any specific configuration
S is approximated by a linear combination of a set of K basis shapes Sk which represent
the principal modes of deformation of the object:

S =
K

∑
k=1

lkSk S,Sk ∈ ℜ3×P lk ∈ ℜ (1)

where each basis shape Sk is a 3× P matrix which contains the 3D locations of P
object points for that particular mode of deformation. Assuming an orthographic camera
model the shape is then projected onto an image frame i giving P image points:

[
xi1 ... xiP

]
= Ri

(
P

∑
k=1

likSk

)

(2)

where each xi j = [ui jvi j]T contains the horizontal and vertical image coordinates of the
point – referred to the centroid of the object – and Ri encodes the first two rows of the
rotation matrix for a specific frame i. If all P points are tracked in F image frames we
may construct the measurement matrix W which can be expressed as:

W =

⎡

⎢
⎣

x11 . . . x1P
...

...
xF1 . . . xFP

⎤

⎥
⎦=

⎡

⎢
⎣

l11R1 . . . l1KR1
...

...
lF1RF . . . lFKRF

⎤

⎥
⎦

⎡

⎢
⎣

S1
...
SK

⎤

⎥
⎦ (3)

Clearly, the rank of the measurement matrix is constrained to be at most 3K, where
K is the number of deformations. This rank constraint can be exploited to factorize the
measurement matrix into a motion matrix M̂ and a shape matrix Ŝ by truncating the SVD
of W to rank 3K. However, this factorization is not unique since any invertible 3K ×3K
matrix Q can be inserted in the decomposition leading to the alternative factorization:
W = (M̂Q)(Q−1Ŝ). The problem is to find a transformation matrix Q that renders the ap-
propriate replicated block structure of the motion matrix shown in Equation (3) and that
removes the affine ambiguity, upgrading the reconstruction to a metric one.

In this paper we address the problem of non-rigid shape estimation and we propose
a new solution which incorporates information on the degree of deformability of the
3D points. First we identify the points whose motion can be explained purely by a rigid
transformation. This knowledge provides some constraints or priors on the values of the
3D shape which will allow to solve the inherent problem of ambiguity present in the
motion and 3D shape in non-rigid factorization.

3 Automatic Rigid and Non-rigid Motion Segmentation

As a first step to 3D structure recovery we propose to separate points in the sequence
that exhibit a purely rigid motion from those which are also suffering some non-rigid
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deformations. To do this we apply a subset selection technique on the non-rigid com-
ponent of the point trajectories encoded in the measurement matrix W. Subset selection
is a technique commonly used in feature selection problems where a group of features
is extracted to obtain a robust solution to a particular estimation problem [7].

Under the factorization framework, features are represented by their image point
trajectories stored in W. Our goal is to find the set of features whose motion can be
modelled exactly as a rigid motion. In this case we formulate the segmentation problem
as finding a subset of trajectories Wrigid within the measurement matrix such that the
following condition is satisfied:

rank(Wrigid) = 3. (4)

The segmentation algorithm follows a sequential backward selection strategy [9]
by initially considering all the trajectories in the measurement matrix and iteratively
deleting one by one those which are contributing most to the rank of the matrix, i.e. the
points that exhibit the most non-rigid motion. As the stop criterion for the classification
task, we compute the rank of the measurement matrix of the remaining points which
will become 3 when only the rigid trajectories are left.

Obviously the rank of the rigid points will not be exactly equal to 3 in the presence
of noise. Instead, we have used an automatic method to determine the deformability
index of a set of trajectories [10]. This method estimates the value of K – the number
of independent basis shapes needed to describe the non-rigid motion – automatically in
a non-iterative way. It provides a fixed threshold for comparing the eigenvalues of the
matrix to determine the rank. For the case of a 3D rigid body the deformability index K
is equal to 1 while in the case of a non-rigid body the index is 3K therefore this provides
a good selection criterion to separate both sets of trajectories. The complete algorithm
is detailed below:

– Initialize Wrigid = W
– Determine the deformability index K for Wrigid

1. Compute Wrigid � UDVT with SVD.
2. Define S = D1/2VT

3. Extract the non-rigid component of the shape matrix ~S3(K−1)×P =
[

S̃1 ... S̃P
]

where

each S̃ j is a 3(K − 1)× 1 vector which contains the 3D coordinates of the jth 3D
point associated to the K −1 non-rigid bases.

4. Determine the maximum norm vector: S̃t = max{ ‖ S̃1 ‖, ... ,‖ S̃P ‖ }.
5. Remove the selected trajectory t from Wrigid and determine the new deformability

index K.
6. If K = 1 stop the iteration.
7. Else, go to step 1.

We have obtained successful rigid and non-rigid motion segmentations on synthetic
sequences using this algorithm. The results will be discussed in the experimental sec-
tion. Note that the method converges to the right solution only if there is a unique set of
rigid points such that K = 1. In the case where different groups of features satisfy the
rank condition the algorithm could converge to the wrong set.
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4 Non-rigid Shape and Motion Estimation Using Rigidity
Constraints

Once we have segmented the scene into rigid and non-rigid points, we can use the in-
formation on the rigidity of the points to constrain the shape estimation. First we define
the constraints that arise based on the observation that a generic shape is composed
by points with different degrees of deformation. Kim and Hong [8] defined the degree
of non-rigidity of a point as its degree of deviation from the average shape to classify
points into three classes: rigid, near-rigid and non-rigid. Based on this measure they
proposed a method to estimate average shape using the degree of non-rigidity to weight
the contribution of each point in an iterative certainty re-weighted factorization scheme.
In contrast, we use the knowledge that some points of the scene are rigid to construct
specific linear constraints which will in turn eliminate the inherent ambiguities present
in non-rigid shape estimation.

4.1 Rigidity Constraint

Definition (rigid point). If the motion of a point p is completely rigid for the entire
sequence, the structure referring to the point can be expressed entirely by the first basis
(K = 1) called the rigid basis.

It follows from this definition that a completely rigid point p is entirely parameter-
ized by:

Sp =
[

Sp1

0

]
(5)

where Sp1 is a 3-vector which contains 3D coordinates of the rigid component and 0
is a 3(K −1)-vector of zeros. It is possible to reorder the measurement matrix after the
detection of all the rigid points by defining the permutation matrix P such that:

WP =
[
Wrigid Wnonrigid

]
=

⎡

⎢
⎣

l11R1 ... l1KR1
...

...
lF1RF ... lFKRF

⎤

⎥
⎦

[
Srigid Snonrigid

0

]
(6)

where Srigid is a (3× r) matrix containing the 3D coordinates of the r rigid points,
Snonrigid is a (3K × d) matrix containing the 3D coordinates of the K basis shapes for
the d deformable points and 0 is a 3(K − 1)× r matrix of zeros. Notice that it is now
possible to apply Tomasi and Kanade’s rigid factorization on the measurement matrix
containing the image trajectories of the rigid points Wrigid and decompose it into the
motion and rigid structure components as:

Wrigid =

⎡

⎢
⎣

R1
...
R f

⎤

⎥
⎦Srigid (7)
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4.2 Non-rigid Shape and Motion Estimation

In this section we solve for the non-rigid shape and motion given the 2D image tracks
and incorporating the above constraint on the automatically segmented rigid points.
Our approach is to minimize image reprojection error subject to the rigidity of the non-
deforming points. The cost function being minimised is:

χ = ∑
i, j

‖ xi j − x̂i j ‖2= ∑
i, j

‖ xi j − (Ri ∑
k

likSk) ‖2 (8)

where xi j are the measured image points and x̂i j the estimated image points. We pro-
pose two alternative solutions to this constrained minimization: a linear alternate least
squares approach which incorporates the rigidity constraints using Generalised Singu-
lar Value Decomposition and a fully non-linear minimization scheme using priors on
the rigid shape parameters in a Maximum A Posteriori estimation.

Linear Equality-Constrained Least Squares Using GSVD. First we propose an al-
ternating least squares scheme to minimize the cost function described in equation (8).
The algorithm alternates between solving for the basis shapes S and for the configura-
tion weights lik. The configuration weights are initialised to random values. The scheme
can be summarised as follows:

1. Given Ri and lik equation (3) can be used to estimate S linearly subject to the con-
straint S̃p = 0 for p ∈ Ω with Ω being the set of r points considered to be rigid
throughout the sequence.

2. Given Ri and S solve for all lik using linear least-squares.
3. Iterate the above two steps until convergence.

Note that the algorithm does not solve for the overall rigid motion encoded in the
rotation matrices R since these are calculated before hand by running the rigid factor-
ization algorithm of Tomasi and Kanade on the rigid points. Rearranging equation (3)
the problem of solving for S subject to the rigidity constraint can be expressed as an
unconstrained least squares system of the form:

min ‖
[
A

λC

]
x−
[

b
λd

]
‖2 (9)

where A represents the linear equations, C the linear constraints and b and d are the
known observations. It is shown [5] that for λ → ∞ the final solution lies on the surface
defined by Cx = d and thus we obtain a linear equality-constrained least squares (LSE)
problem:

min ‖ Ax−b ‖2 (10)

subject to:
Cx = d (11)

A method to solve the above LSE problem is directly to factorize both A and C using
Generalized Singular Value Decomposition (GSVD) (see [6] for details).
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Bundle Adjustment Using Priors. The correct approach to non-rigid factorization is
to formulate the problem as a non-linear least square estimation minimizing the distance
of the reprojection error in the model parameters:

arg min
RiSklik

∑
i, j

‖ xi j − x̂i j ‖2= arg min
RiSklik

∑
i, j

‖ xi j − (Ri ∑
k

likSk) ‖2 (12)

where xi j are the measured image points and x̂i j the estimated image points.
This method has the advantage of providing a true maximum likelihood estimate,

provided the noise distribution is Gaussian. Besides, prior knowledge on any of the
model parameters can be easily incorporated to the error cost function in the form of
penalty terms. However, it suffers from the fact that it requires an initialization that
is close to the global minimum. Therefore these methods are generally used as a final
refinement step.

One of the main advantages of performing a prior segmentation of rigid and non-
rigid motion is firstly that the rigid motion (estimates of the rotation matrices R) can
be pre-computed by performing rigid factorization on the rigid points. This provides a
very good initial estimate for the rotation parameters, which coupled with the priors on
the 3D shape help solve the ambiguities.

Our prior expectation is that the points detected as being rigid have a zero non-rigid
component and can therefore be modelled entirely by the first basis shape:

Sp =
[

Sp1

S̃p

]
=
[

Sp1

0

]
(13)

Therefore our expected prior value of the coordinates of the non-rigid bases S̃p is
zero in this case. For every rigid point in the scene we model the distribution of S̃p as
a Gaussian with a small variance and solve the problem as a Maximum A Posteriori
estimation (MAP).

5 Results

5.1 Synthetic Data

The synthetic 3D data consisted of a set of random points sampled inside a cube of
size 50×50×50 units. Five sequences were generated with 8, 16, 32, 64 and 128 non-
rigid points sampled inside the cube. Each sequence also included 8 rigid points (the
vertices of the cube). Figure 1 shows the 3D data used in each of the five sequences with
the rigid points joined up for display purposes. Our aim is to show the performance of
our approach under different degrees of non-rigidity. The deformations for the non-
rigid points were generated using random basis shapes as well as random deformation
weights. Two basis shapes were used and the first basis shape had the largest weight
equal to 1. The data was then rotated and translated over 25 frames and projected onto
the images using an orthographic camera model and Gaussian noise was added to the
image coordinates. The overall rotation about any axis was 90 degrees at most.
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(a) (b) (c) (d) (e)

Fig. 1. Synthetic sequence. Example of ground truth of the 3D shape with 8 rigid points (vertices
of the cube) and (a) 8, (b) 16, (c) 32, (d) 64 and (e) 128 non-rigid points.

Rigid and Non-rigid Motion Segmentation. Figure 4(a) shows results of the motion
segmentation algorithm on a sequence using 8 rigid and 32 non-rigid points. The noise
level for this particular experiment was set to be σ = 1.5 pixels. The −y axis of the
graph shows the current value of the deformation index (K) and the −x axis represents
the total number of total points left at each iteration. The algorithm classifies points
according to the current value of K. The first 32 points are selected as non-rigid as their
deformability index K is consistently close to 2. When the 33rd point is selected one
can observe a sudden drop in the value of K to 1.5 which then tends to 1. This is the
cut-off point and the 8 remaining points are correctly classified as rigid.

3D Reconstruction. We have tested 3 reconstruction algorithms: the linear GSVD
method, bundle adjustment without priors (MLE) and bundle-adjustment incorporating
priors on the 3D structure (MAP). Figure 2 shows the 2D image reprojection error, rel-
ative 3D reconstruction error and absolute rotation error using each of the 3 algorithms,
for varying ratios of rigid/non-rigid scene points and different levels of measurement
noise. It becomes clear that GSVD and MAP outperform MLE thus showing the im-
proved performance when prior information on the shape is incorporated. In fact the
GSVD and MAP error curves appear superimposed which shows that they converge to
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Fig. 2. Relative 3D error (%), rms rotation error (deg) and 2D reprojection error for the synthetic
experiments for different ratios of rigid/non-rigid points and increasing levels of noise
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Fig. 3. Relative 3D error (%), rms rotation error (deg) and 2D reprojection error for the synthetic
experiments for different numbers of basis shapes and increasing levels of noise
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Fig. 4. (a) Deformability index for the automatic segmentation experiment. The graph shows its
sudden decrease upon selection of point #33 (the first rigid point). (b) Face data used in the real
experiment. Points connected with wireframes show the selected rigid points located on the nose,
temples and side of the face.

the same solution, with the main observable difference being the higher speed of con-
vergence for the MAP approach. Note that the MLE approach is not able to compute a
correct 3D reconstruction even for the noiseless case showing that the added priors are
fundamental to avoid local minima given by ambiguous configurations of motion and
deformation parameters.

The number of basis shapes were then varied (d = 3, 4 and 5) to test the perfor-
mance of the algorithm with respect to this parameter. Figure 3 shows the 2D image
reprojection error, relative 3D reconstruction error and absolute rotation error obtained
with GSVD, MLE and MAP. As expected, the error increases with the number of basis
shapes for all 3 algorithms. Once more GSVD and MAP have almost identical perfor-
mance and provide better results than MLE.
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Frame 1 Frame 167 Frame 273 Frame 310

Ground truth

BA with priors

Ground truth

BA with priors

Ground truth

BA with priors

Fig. 5. Front, side and top views of the ground truth and reconstructed face with priors. Recon-
structions are shown for frames 1, 167, 273 and 310.
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5.2 Real Data

In this experiment we use real 3D data of a human face undergoing rigid motion –
mainly rotation – while performing different facial expressions. The 3D data was cap-
tured using a VICON motion capture system by tracking the subject wearing 37 markers
on the face. The 3D points were then projected synthetically onto an image sequence
310 frames long using an orthographic camera model and noise of variance σ = 0.5
pixels was added to the image coordinates. In this case the segmentation of points into
rigid and non-rigid sets was done manually. Figure 4(b) shows a frontal view of the face
where the 14 rigid points – situated on the nose, temples and the side of the face – are
marked with circles.

Figure 5 shows the ground truth and reconstructed shape from front, side and top
views using the bundle adjustment algorithm incorporating rigidity priors on the non-
deforming points. The deformations are very well captured by the model even for
the frames in which the facial expressions are more exaggerated. Crucially, the addi-
tion of the priors helps remove the ambiguity between the rotational and deformation
components.

6 Future Work

We are currently investigating other solutions for rigid and non-rigid motion segmen-
tation using alternative approaches [11,16]. Torresani et al.’s [15] method for learn-
ing non-rigid 3D shape from 2D motion using the expectation maximization algorithm
could also be used to perform the segmentation.

We also plan to exploit looser rigidity constraints on the shape such as the 3D points
behaving rigidly only for a set of frames and to include other priors such as the symme-
try of the structure.
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