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Abstract. In many supervised learning problems, objects are represented as a se-
quence of observations. To classify such data, existing methods build classifiers
either based on their dynamics, or the statistics of the observations. However, sim-
ilar observations shared by most objects are uninformative for identification. In
this paper, we present a new approach that identifies similar observations across
objects and use only informative data for classification. To do this, we construct
a weighted multipartite graph from the training data, with weights representing
the similarities between observations from different objects. Identification of un-
informative observations is modeled as clustering on this multipartite graph using
a combinatorial optimization formulation. Two-level hierarchical classifiers are,
then, built using the clustering results. The first layer of the classifiers associates
the test observations with a certain cluster, whereas the second level identifies the
object within the cluster. Data associated with uninformative clusters are screened
out. Final identification for the group of observations is obtained using the ma-
jority voting rule only from the informative observations.

We apply our algorithm to the gait recognition problem. The hierarchical clas-
sifiers are built in four different feature spaces for silhouette images. Final classi-
fication is determined by aggregating results from these four feature spaces. The
experimental results show that our method results in improved recognition rates
in most cases compared with other previously reported methods.

1 Introduction

In many supervised learning problems, the object of interest is represented as a sequence
of observations. For instance, in cytological research, living tissue under a microscope
is observed as an ensemble of cell images [1]; and in human motion analysis, an in-
dividual’s movement is captured by cameras as a sequence of image frames [2]. To
distinguish tissue cells, or to identify a person from image sequences, two groups of
approaches have been applied to classify these observations. In the first group, the dy-
namics of all observations from an object, e.g., training a hidden Markov model [3],
are employed to capture the characteristics of the subject. In the second group of ap-
proaches, static features, such as averages and standard deviations in quadratic discrim-
inant function [4], are used to characterize the subject. These “dynamic” and “static”
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features, used to classify the subjects, are obtained through “intra-class” analysis of
each individual subject, i.e., without “inter-class” comparing the similarities and differ-
ences among observations of different subjects. In many cases, some observations from
different subjects are very similar, which do not provide any characteristic information
useful for classification. More significantly, including these uninformative frames in
the classification process tends to smear the differences among subjects, can lead to a
weaker classifier due to the potential confusions. Hence, it is necessary to exclude these
uninformative frames to enhance the classification accuracy and robustness.

Fig. 1. Outline of the proposed classification framework. The uninformative cluster and the cor-
responding samples are shown in shadow. Samples from different subjects are color-coded.

A common approach for removing redundant information is feature selection us-
ing principle component analysis, independent component analysis etc. [5]. These ap-
proaches remove irrelevant features from a given feature set, and thus will modify the
feature space for every sample across different objects. However, there has been no
systematic research on removing uninformative samples, keeping the feature space rep-
resentation unchanged.

In this paper, we present a novel combinatorial optimization approach to identify
similar observations across subjects, ignoring similarities between frames from the
same subject. We construct a multipartite graph structure from observations in the data,
where a partite set corresponds to a subject and vertices in a partite set correspond to the
samples from an object. Such a graph only specifies similarities between observations
from different objects. Then, the problem of identifying similar samples across objects
is formulated as a clustering problem on the multipartite graph. We give an efficient
algorithm for finding the clusters of uninformative samples.

Subsequently, we build supervised hierarchical classifiers, as illustrated in Fig. 1.
The first level classifier performs an assignment of a testing sample to clusters, whereas
the second level carries out the actual subject identification.

The above classification framework could be applied to many problems with en-
semble data. In this paper, methodological details of this work is demonstrated through
the gait recognition problem where objects are the human subjects and the samples
correspond to frames/images from the those subjects.



A New Combinatorial Approach to Supervised Learning 57

Gait Recognition

To identify a walking subject from an image (frame) sequence, current gait recogni-
tion approaches can be classified as either model-based [9,10,11,12,13] or model-free
[2,14,15,16,17,18,19,20] based on whether a specific humanoid model is employed.
Joint angle trajectories [9,10,11,12,13], body shape parameters [16,19], or other fea-
tures [2,14,15,17,18,20] extracted from images, were used to represent gait character-
istics. When a probe frame sequence is available, the same features are extracted and
compared to those in the training data.

Both of these approaches calculate the similarity between the probe sequence and
a sequence from any subject in the data, and label the probe sequence as the one with
the highest similarity value. However, for subjects represented by silhouette images,
or binary images with foreground pixels labeled as 1 and background as 0, very often
similar silhouette images occurs among different subjects. Accurate and robust identifi-
cation can be achieved by training classifiers on frames that are signatures of individual
subjects, and excluding the ubiquitously present frames. There is no previous work, to
our knowledge, on studying the similarity across frames from different subjects and
pinpoint the uninformative ones.

We constructed four feature spaces for silhouette images to formulate of similarity
measure between samples. Hierarchical classifiers are built in each feature space. Fol-
lowing classification in each space separately, results in the four feature spaces for all
images within the test sequence are aggregated to provide the final classification results.

The organization of this paper is as follows. Section 2 presents a description of the
four feature spaces for silhouette images. In Section 3, we present our algorithm for
identifying uninformative clusters of similar image frames across subjects. The hierar-
chical classification process and the aggregation method are described in Section 4. In
Section 5, we present the experimental results and discussions, followed by conclusions
in Section 6.

2 Feature Spaces for Silhouette Images

The usual inputs in the gait recognition problem are binary silhouette images to elimi-
nate the texture and color information from original images. In this section, we provide
a domain-specific feature extraction procedure for the contour points of the human sil-
houette, and design four different feature spaces for similarity measurement between
images. Our classification framework can be applied to other problems by simply mod-
ifying the feature spaces.

2.1 Contour Point Detection

Our image features are defined on contour points, as the locations of these points encode
a given silhouette image. We design eight filters to detect contour points in silhouette
images, as shown in Fig. 2. These detectors are linear filters with various orientations.
A foreground point is marked as a contour point only when the convolution between the
silhouette image and any of the eight filters is greater than a certain threshold. Compared
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Fig. 2. Eight feature detectors for contour points

Fig. 3. Upper left panel: original silhouette image. Lower left: combined contour point detection
results. Second to last columns: responses to the feature detectors in Fig. 2.

with simple morphological operations such as removing foreground pixels whose four-
connected neighbors are foreground as well, these detectors can find the outer contour
of the silhouette image and also the orientation of the corresponding boundary. Fig. 3
illustrates the results of this contour point detection process. For the silhouette image
in the upper left panel, the responses to the eight filters are shown in the second to
last columns. Combining these individual filter responses leads to the complete contour
point plot shown in the lower left panel of Fig. 3.

2.2 Relative Shape Vector

To measure the relative location of a contour point within the silhouette, we introduce a
new shape descriptor, called Relative Shape Vector (RSV). For any point p within a set
of contour points C, all other points in the set C − {p} should be located in two of the
eight overlapping windows as shown in Fig 4(a). Counting the number of contour points
located in each window results in an eight-dimensional vector (c1(p, C), · · · , c8(p, C)).
The RSV for the point p with respect to set C is a normalized version of this vector,
defined as follows:

RSV (p, C) = (α1(p, C), · · · , α8(p, C)), (1)

where αi(p, C) = ci(p, C)/
∑8

k=1 ck(p, C), i = 1, . . . , 8. The RSVs for contour points
A, B, and C in Fig. 4(b) are given in Fig. 4(c). Note that this is similar to the shape con-
text descriptor [21], except that we have a set of overlapping windows and the histogram
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Fig. 4. (a) The eight windows used in Relative Shape Vector calculation. The number inside each
section is the window index. (b) Three contour points on a silhouette image. (c) The correspond-
ing eight-dimensional RSVs. Brighter shades means higher value.

is only calculated based on orientations, regardless of distances. Therefore, RSVs pre-
serve redundant information with overlapping windows, and describe less details of the
shape by ignoring relative distances, making it less sensitive to changes in the contours.

2.3 The Four Feature Spaces

As the RSV describes the relative location of a given contour point with respect to
others, points on different images but at roughly the same relative locations will have
similar RSV values. Therefore, grouping in the RSV space results in segmentation of
contour points according to their relative locations on a silhouette. Fig. 5 shows the
grouping results for two different images using the k-mean algorithm [22], where k =
13 is chosen empirically. We see that points at the same relative locations are labeled as
the same group. These grouping results enable us to define four feature spaces for the
silhouette images:

– Feature Space 1: Gravity Center Distance For each group of points in a given image,
we obtain its gravity center. The first feature space contains all distances between
different gravity centers, normalized with largest one. With 13 groups, the dimen-
sionality of this feature space is 78.
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Fig. 5. Grouping results of contour points in two silhouette images. Group numbers are labeled
alongside the contour points.
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– Feature Space 2: Relative Center Distance
For each gravity center, we rank its distances to other 12 centers, and obtain two
relative distances as the smallest and the second largest distances with respect to
the largest one among these 12 distances. This 26-dimensional feature measures
relative distances within each image.

– Feature Space 3: Local Orientation Statistics
The third feature space is designed to capture the boundary orientation information.
The orientation of the silhouette image at each contour point is contained in the
filter responses to the eight filters shown in Fig. 2. The average response from all
points in each group can be interpreted as a histogram of silhouette orientation at the
contour points. This 65-dimensional feature captures the local orientation statistics.

– Feature Space 4: Local Shape Statistics
Another feature we want to capture is the local distribution of contour points within
each group. These local shape statistics include the two eigenvalues of the covari-
ance matrix of these points, the ratio of the eigenvalues, and the orientation of the
principle components.

The above four feature spaces provide rich descriptions of the shape within a sil-
houette image and different opportunities for recognition. Similar silhouetted images
are close to each other in the feature spaces. Therefore, we are able to cluster images
according to their similarities within these four feature spaces.

3 Multipartite Graph Clustering and Filtering

In this section, we describe the clustering method for identifying uninformative frames
in a given feature space. Given the representation of frames in a feature space, our
goal is to divide the training data frames from multiple subjects into two classes: a
set with subject-specific frames, and another with non-subject-specific ones (shared by
many subjects). It is likely that filtering out frames that are similar (or uninformative)
across subjects would increase the accuracy of classification. Finding such uninfor-
mative frames can be cast as a clustering problem on a graph representing similarity
between frames from different subjects.

In a traditional clustering scenario, frames close to each other are grouped as a clus-
ter. However, in our problem, similarity between frames from the same subject should
not to be considered, as we are only interested in finding clusters containing similar
frames from different subjects. Such a similarity structure is captured by a multipartite
graph, where we denote a subject as a partite set and frames from a subject as ver-
tices in the corresponding partite set. An illustration of this representation is in Fig. 6,
where we show a complete three-partite graph. The multipartite graph representation is
suitable because it only considers the similarity relationships between frames from dif-
ferent subjects. The presence of clusters in the multipartite graph reveals the similarity
among frames from different objects and those containing very similar frames from a
large number of subjects are considered as uninformative.

In graph theory, clusters are related to dense subgraphs called cliques [7]. Therefore,
our problem of identifying similar frames across different subjects can be formulated
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Fig. 6. A complete three-partite graph

as finding cliques in a multipartite graph [6]. However, the maximum clique finding
problem, and its various weighted formulations for multipartite graphs, are proven to
be NP-complete [8,6]. Due to the sensitivity of the filtering problem and the additional
requirement for finding similar frames across different subjects only, existing cluster-
ing methods are inadequate. Heuristics are often used to find clusters in data [7] but
these heuristic methods are not well suited to our approach since they cannot guarantee
finding best multipartite clusters. Therefore, we need an optimization based procedure
whose exact solution can be found. In this paper, we propose such a multipartite graph
clustering method for finding clusters of uninformative frames. The objective function
in our multipartite clustering method have favorable properties which guarantee that a
globally optimal solution can be found with an efficient algorithm.

3.1 Multipartite Graph Clustering

For a problem with k subjects in the training data, let Vi, i ∈ {1, 2, . . . , k} denote a set
of vertices which represent frames from subject i. We construct an undirected weighted
multipartite graph G = (V,E,W ), where V = ∪k

i=1Vi, and E ⊆ ∪i�=jVi × Vj is the
set of weighted, undirected edges connecting vertices from different partite sets. The
weight wij ∈ W on the edge eij ∈ E represents the similarity between the vertices i
and j.

Let H denote a subset of V such that H contains vertices from at least two partite.
We define a score functionF (H) to measure the proximity among elements inH . Then,
our multipartite quasi-clique, or a cluster, H∗, is defined as the subset with the largest
score value, i.e,

H∗ = arg max
H⊆V

F (H). (2)

The efficiency of extracting the optimal set H∗ is closely related to the algebraic prop-
erties of F (H). When the set function F (H) is quasi-concave, i.e,

F (H1 ∪H2) ≥ min(F (H1), F (H2)) ∀H1, H2 ⊆ V (3)

the optimal solution can be efficiently obtained, if F (H) can be efficiently computed.
Here, F (H) is designed using a linkage function π(i,H) that measures the degree of
similarity of the frame i ∈ H to other frames in H , leading to the following definition:

F (H) = min
i∈V

π(i, V ), ∀i ∈ V ∀H ⊆ V (4)
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In other words,F (H) is theπ(i,H) values of the least similar (outlier) frame inH . Then,
according to (2), the subset, H∗ contains frames such that similarity of the least similar
frame in H is maximum. It can be proved that F (H) as defined in (4) is quasi-concave
if and only if the linkage function π(i,H) is monotonically increasing [23], i.e,

π(i,H) ≥ π(i,H1) ∀i, ∀H1, ∀H : i ∈ H1 ⊆ H ⊆ V (5)

The linkage function is constructed from the pair-wise similarity values between frames
from different subjects. Besides being monotone increasing, the linkage function should
be designed such that π(i,H) and hence F (H) can be efficiently computed; this would
guarantee a polynomial time procedure to find H∗. At the same time, the linkage func-
tion should capture an appropriate notion of similarity so that the optimal solution H∗

captures the multipartite quasi-clique nature of relationships between frames contained
in H∗. Although a large family of linkage functions satisfying the above requirements
exists, we use a simple and intuitive linkage function to demonstrate our approach. If
mij (≥ o) is the similarity value between frame i from subject s(i) and frame j from
subject s(j) (s(j) �= s(i)), then the linkage function is defined as

π(i,H) =
k∑

�=1
� �=s(i)

∑

j∈H

s(j) �=s(i)

mij (6)

In other words, the linkage function π(i,H) aggregates the similarity between the frame
i from subject s(i) and all other frames in H that do not belong to subject s(i).

Table 1. Pseudocode to extract H∗

Step 0: Set t := 1; H1 := V ; H∗ := V ;
Step 1: Find Mt := {i : π(i,Ht) = min

j∈Ht

π(j,Ht)};
Step 2: if ((Ht \Mt = ∅) ∨ (π(i,Ht) = 0 ∀i ∈ Ht)) STOP.

else Ht+1 := Ht \Mt; t := t+ 1;
if (F (Ht) > F (H∗)) H∗ = Ht;
go to Step 1.

The algorithm to find the optimal solution H∗ is described in Table 1 [23]. This
iterative algorithm begins with the calculation of F (V ) and the set M1 containing the
subset of frames that satisfy F (V ) = π(i, V ), i.e, M1 = {i ∈ V : π(i, V ) = F (V )}.
The frames in M1 are removed from V to obtain H2 = V \ M1. At iteration t, it
considers the set Ht−1 as the input, calculates F (Ht−1), identifies the subset Mt such
that F (Ht−1) = π(it, Ht−1), ∀it ∈Mt, and removes this subset fromHt−1 to produce
Ht = Ht−1 \Mt. The algorithm terminates at iteration T whenHT = ∅ or π(i,HT ) =
0 ∀i ∈ HT . It outputs H∗ as the subset, Hj with the smallest j such that F (Hj) ≥
F (Hl) ∀l ∈ {1, 2, . . . , T}.

The above formulation gives us one multipartite cluster, however, many such clus-
ters would be present in the multipartite graph. Assuming that these clusters are unre-
lated to each other, we can use a simple heuristic to find cluster H∗, remove it from
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the set V , and find another cluster in the remaining set V \ H∗. This can be applied
iteratively to find all the multipartite clusters.

3.2 Determining Uninformative Clusters

There are two criteria for determining which clusters should be labeled as uninforma-
tive. First of all, frames within such clusters should be highly similar to each other.
Secondly, these clusters should contain frames from most of the subjects.

From the above procedure, similarity among frames within a cluster is given by the
score value F (H∗) of cluster H∗. Since this score value is the aggregated similarity
between a frame and all other frames in the cluster, it would, in general, be larger
for larger clusters. Hence we use the average similarity value of a cluster defined as
F (H∗)/|H∗|, instead of F (H∗) for estimating homogeneity within a cluster. Clusters
with large average similarity values, but containing frames from just a few subjects are
actually informative for classification as they characterize the subjects therein. Hence,
only those clusters containing frames where most subjects have an average similarity
value above a certain threshold are labeled as uninformative.

4 Details of Classification

Clusters obtained in the previous section provide a hierarchical structure for the entire
data, based on which we build our classifiers as shown in Fig. 1. The first level is to
determine whether a probe frame is informative, whereas identification within each
informative cluster is specified in the second level. In addition, for a group of frames
from an unknown subject, we aggregate the identification results from all informative
ones to reach a final identification.

4.1 Hierarchical Classifiers

There are a number of standard methods available for binary or multi-class classifi-
cation. Here we use Bayesian logistic regression(BLR) [24] as the first level of our
hierarchical classifier structure and the nearest neighbor as the second level classifier.

First Level - Bayesian Logistic Regression. To determine the cluster for a probe
frame, we train a binary classifier for each cluster obtained from Section 3. The
Bayesian logistic regression (BLR) [24] is applied to achieve state of the art effec-
tiveness while avoiding over-fitting.

Given a training set containing n samples, s1, . . . , sn, with corresponding labels
y1, . . . , yn, the BLR aims at finding the best parameter value which maximizes the
conditional probability model of the form

p(y = +1|β, si) = ψ(βT si), where ψ(r) =
exp(r)

1 + exp(r)

is a logistic regression model, and β is a parameter to be determined through the learn-
ing process. We choose Laplace distribution as a prior distribution for each component
of β. This sparse favoring prior guarantees most components of β have a 0 or near zero
value. Fast and accurate prediction could be achieved through the method provided
in [24].
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Second Level - Nearest Neighbor. If a probe frame is labeled as an uninformative
cluster (the cluster shadowed in Fig. 1), this frame does not contain characteristic in-
formation, and will be screened out from classification. The second level of classifier is
used only for the frames classified as informative.

Within each informative cluster, there are multiple frames from several subjects. We
choose the nearest neighbor method due to its simplicity and low bias.

4.2 Classification Rule

To classify an unknown subject X = {(x11, x12, x13, x14), . . . , (xn1, xn2, xn3, xn4)}
with n frames where xk. = (xk1, xk2, xk3, xk4) is the representation for the frame
k in the four different feature spaces, we apply four different classifiers C1, C2, C3

and C4 in corresponding feature spaces. Let mij denote the number of informative
frames assigned by the classifier Cj to subject i in the training data-set. We integrate
the classification results from the individual classifiers for estimating the membership
ri of the unknown subjectX to the subject i. We used the ordered weighting assignment
(OWA) [25] where weights for each classifier are ordered according to the confidence
levels of the classifier. Precisely, for estimating the membership of X to i, the mij ’s,
j = 1, . . . , 4 are sorted asmij1

≥ . . . ≥ mij4
and ordered weighted assignment, rOWA

i

is calculated as rOWA
i =

∑4
l=1 wl

mij
l
. It must be noted thatmij

l
is different frommij .

The procedure to find the weights w
l

will be described shortly. The final classification
r∗ for X is obtained as the subject which shows highest level of assignment [26] , i.e.,
r∗ = arg max

i
rOWA
i , where i is a subject from the training data.

The weight vector w = (w1, w2, w3, w4) used in the above classification rule must
satisfy

∑4
l=1 wl

= 1 andw
l
≥ 0 ∀l, wherewl is quantized into ten discrete values, i.e.,

w
l
∈ {0.1, 0.2, . . . , 0.9, 1.0}. The optimal weights under this restriction are obtained,

by exhaustively searching all possible combinations, as the one which maximizes the
accuracy of the above classifier under 5-fold cross-validation on the training data.

5 Experimental Results and Analysis

We apply our method to the silhouette images from Human ID Gait Challenge Database
collected at the University of South Florida (USF) in May and November 2001. There
are a total of 122 subjects in the data, walking on different surfaces (G/C), with different
shoes (A/B), with/without carrying a briefcase (BF/NB), and captured with two cameras
(R/L) at different times (t1/t2). There are 12 carefully designed experiments to test
whether identification can be made under different walking conditions, as summarized
in Table 2 [27].

The image frames from different subjects are clustered using the multipartite graph
clustering procedure described in section 3. On average about 87% of the training data
are classified into clusters. Most of the clusters contain frames from a few subjects,
therefore, they are considered as informative from classification perspective. Across
different feature spaces, we are able to label (on average) about 14% of all frames as
uninformative. Figure 7 shows some frames detected as uninformative. As we can see,
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Table 2. 12 probe sets with the common gallery of (G, A, R, t1) containing 122 subjects

Experiment Probe Difference
A G, A, L View
B G, B, R Shoe
C G, B, L Shoe View
D C, A, R Surface
E C, B, R Surface Shoe
F C, A, L Surface View
G C, B, L Surface Shoe View
H G, A, R, BF Briefcase
I G, B, R, BF Shoe, Briefcase
J G, A, L, BF View, Briefcase
K G, A/B, R, NB, BF, t2 Time
L C, A/B, R, NB, BF, t2 Surface Time

Fig. 7. A representative instance of uninformative frames from different subjects, in the USF data,
within an (uninformative) multipartite cluster

most frames are captured during the mid-swing/mid-stance phase of a gait cycle. This
is consistent with our intuition because at this stage of a gait cycle, most body parts
overlap with each other and could not show details in the silhouette images.

Further, classifiers are constructed based on the clustering results in the four differ-
ent feature spaces. The corresponding recognition rates, together with the aggregation
results of different feature spaces, are given in Table 3. In addition, Fig. 8 illustrates the
aggregation recognition results by the cumulative match score (CMS).

We find that the recognition rates in experiments A and C are consistently better in
space 1 (gravity center distance, see section 2.3); however space space 3 (local orien-
tation statistics) provides better recognition in experiments D through L, while space
4 (local shape statistics) seems to capture essential features in experiment B. This sug-
gests that the four feature spaces capture considerably different aspects of the silhouette
images, although in most cases, the local orientation statistics is the most relevant fea-
ture for recognition. Therefore aggregating results from all four features spaces leads to
improved recognition rates, as shown in Table 3 by utilizing all available information.

In Table 4, our results are compared with others reported previously. Our approach
considerably outperforms the baseline algorithm [27] in 10 out of the 12 cases, while
matching in another one. Our method achieve a much higher recognition rate for exper-
iments K and L, (18% and 15% respectively, comparing to 3% by baseline algorithm),
which are the most difficult experiments in the challenge set. The only favorable case
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Table 3. Recognition rates for different experiments in each of the four feature spaces as well as
the aggregation results

Exp Space 1 Space 2 Space 3 Space 4 Aggregate
A 70 61 66 52 82
B 81 78 78 83 89
C 69 56 54 63 76
D 19 21 31 20 36
E 36 31 40 34 53
F 12 12 16 13 23
G 22 16 22 16 34
H 32 25 42 25 44
I 40 29 50 40 57
J 25 19 28 20 37
K 12 12 12 12 18
L 6 3 12 9 15
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Fig. 8. CMS curves for USF data

for the baseline method is when the subject carries a briefcase in the probe sequence;
we attribute this to insufficient information to distinguish subjects when the briefcase
contour dominates the subject contour. In comparison to the results from HMM ap-
proach [3], our method performs better or equivalently in 5 of the 7 experimental
conditions.

We also compare our method with k-nearest neighbor without screening uninfor-
mative examples. We choose k = 5 in our comparison, and the results show that all
of the 12 cases, uninformative frames adversely affect the recognition rate. Further, we
employ principle component analysis (PCA), a typical feature selection method, to re-
duce the feature space before the k-nearest neighbor classification. Though we maintain
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Table 4. Comparison of recognition rates of our method with other methods

Exp HMM (UMD) Baseline kNN PCA Our work
Id (71 subj.) (122 subj.) (122 subj.) (122 subj.) (122 subj.)
A 99 73 75 75 82
B 89 78 78 78 89
C 78 48 56 56 76
D 36 32 34 34 36
E 29 22 40 40 53
F 24 17 16 16 23
G 18 17 22 22 34
H N/A 61 43 43 44
I N/A 57 48 48 57
J N/A 36 32 30 37
K N/A 3 12 12 18
L N/A 3 6 6 15

95% total variance of the original data, as we can see, there is no gain in applying PCA,
and the recognition rate even decreases in Exp J.

Our method significantly outperforms all other previously reported methods in cases
when the subject walks on a different surface or at different time comparing to the
training data. This shows our method has more prediction power for unknown walking
conditions. Eliminating the common frames across subjects enables us to avoid train-
ing on “noisy” (i.e. uninformative from the classification perspective) frames, thereby
resulting in a higher recognition rate. In contrast, approaches that attempt to capture
strict dynamics of a walking style, such as HMM based methods, cannot isolate the
uninformative frames, and hence may perform poorly.

6 Conclusions and Future Work

A new combinatorial framework for supervised classification problem is proposed in
this paper. In this framework, the similar samples from a large number of subjects are
taken to be uninformative. These uninformative samples are obtained as clusters on a
multipartite graph using a novel combinatorial clustering approach. To classify a test
subject (probe sequence), its observations (image frames) are first classified as either
uninformative or informative; so only the informative frames from the test subject are
used for classification.

This framework is applied to the gait recognition problem, and the results demon-
strate the efficacy of our method. Currently, we treat sequences of images as a group
of frames, without considering the dynamics. However, our framework can be ex-
tended to encode the dynamics by introducing another feature space. Furthermore,
for color/texture images, different feature spaces should also be developed for other
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applications. It would be interesting to see the performance of HMMs when they are
trained on more informative data for classification.
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