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Abstract. We present a new framework to represent and analyze dynamic facial
motions using a decomposable generative model. In this paper, we consider facial
expressions which lie on a one dimensional closed manifold, i.e., start from some
configuration and coming back to the same configuration, while there are other
sources of variability such as different classes of expression, and different peo-
ple, etc., all of which are needed to be parameterized. The learned model supports
tasks such as facial expression recognition, person identification, and synthesis.
We aim to learn a generative model that can generate different dynamic facial
appearances for different people and for different expressions. Given a single
image or a sequence of images, we can use the model to solve for the tempo-
ral embedding, expression type and person identification parameters. As a result
we can directly infer intensity of facial expression, expression type, and person
identity from the visual input. The model can successfully be used to recognize
expressions performed by different people never seen during training. We show
experiment results for applying the framework for simultaneous face and facial
expression recognition.

Sub-categories: 1.1 Novel algorithms, 1.6 Others: modeling facial expression.

1 Introduction

The appearance of a face performing a facial expression is an example of a dynamic
appearance that has global and local deformations. There are two interesting compo-
nents in dynamic facial expressions: face identity (face geometry and appearance char-
acterizing the person) and facial motion (deformation of face geometry through the
expression and its temporal characteristics). There has been extensive research related
to face recognition [24] emanating from interest in applications in security and visual
surveillance. Most of face recognition systems focused on still face images, i.e., cap-
turing identity through facial geometry and appearance. There have been also interests
on expression invariant face recognition [15,14,2]. Individual differences of facial ex-
pression like expressiveness can be useful as a biometric to enhance accuracy in face
recognition [8]. On the other hand, facial expression analysis gain interest in computer
vision with applications in human emotion analysis for HCI and affective computing.
Most studies of facial expression recognition have focused on static display of intense
expressions even though facial dynamics are important in interpreting facial expression
precisely [1].
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Our objective in this paper is to learn dynamic models for facial expressions that
enable simultaneous recognition of faces and facial expressions. We learn a dynamic
generative model that factors out different face appearance corresponding to different
people and in the same time parameterizes different expressions.

Despite the high dimensionality of the image space in facial expressions, facial
motions lie intrinsically on much lower dimensional subspaces. Therefore, researchers
have tried to exploit subspace analysis in face recognition and facial expression analy-
sis. PCA has been widely used in appearance modeling to discover subspaces for face
appearance variations as in [21,10]. When dealing with dynamic facial expressions, im-
age data lie on low dimensional nonlinear manifolds embedded in the high dimensional
input space. Embedding expression manifolds to low dimensional spaces provides a
way to explicitly model such manifolds. Linear subspace analysis can achieve a linear
embedding of the motion manifold in a subspace. However, the dimensionality of the
subspace depends on the variations in the data and not on the intrinsic dimensional-
ity of the manifold. Nonlinear dimensionality reduction approaches can achieve much
lower dimensionality embedding of nonlinear manifolds through changing the metric
from the original space to the embedding space based on local structure of the manifold,
e.g. [17,19]. Nonlinear dimensionality reduction has been recently exploited to model
the manifold structure in face recognition, facial expression analysis [3]. However, all
these approaches (linear and nonlinear) are data-driven, i.e., the visual input is used to
model motion manifolds. The resulting embeddings are data-driven and, therefore, the
resulting embedded manifolds vary due to person facial geometry, appearance, facial
deformation, and dynamics in facial expressions, which affect collectively the appear-
ance of facial expressions. The embedding of the same facial expression performed by
different people will be quite different and it is hard to find a unified representation of
the manifold. But, conceptually all these manifolds (for the same expression) are the
same. We can think of it as the same expression manifold which is twisted differently in
the input space based on person’s facial appearance. They are all topologically equiv-
alent, i.e., homeomorphic to each other and we can establish a bijection between any
pair of them. Therefore, we utilize a conceptual manifold representation to model facial
expression configuration and learn mappings between the conceptual unified represen-
tation and each individual data manifold.

Different factors affect the face appearance. There had been efforts to decompose
multiple factors affecting appearance from face and facial expression data. Bilinear
models were applied to decompose person-dependent factor and the pose-dependent
factor as the style and content from pose-aligned face images of different people [20]
and facial expression synthesis [4]. Multilinear analysis, or higher-order singular value
decomposition [11], were applied to aligned face images with variation of people, illu-
mination and expression factors and applied for face recognition [22]. In this model,
face images are decomposed into tensor multiplication of different people basis, illumi-
nation basis and expression basis. Facial expressions were also analyzed using multilin-
ear analysis for feature space similar to active appearance model to recognize face and
facial expression simultaneously [23]. All these approaches have limitations in captur-
ing nonlinearity of facial expression as the subspaces are expansion of linear subspace
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of facial images. In addition, all these approaches deal with static facial expressions and
do not model dynamics in facial expression.

In this paper, we learn nonlinear mappings between a conceptual embedding space
and facial expression image space and decompose the mapping space using multilinear
analysis. The mapping between sequences of facial expression and embedding points
contains characteristics of the data invariant to temporal variations and change with dif-
ferent people facial expression and different types of facial expressions. We decompose
the mapping space into person face appearance factor, which is person dependent and
consistent for each person, and expression factor, which depends on expression type
and common to all people with the same expression. In addition, we explicitly decom-
pose the intrinsic face configuration during the expression, as a function of time in the
embedding space, from other conceptually orthogonal factors such as facial expres-
sions and person face appearances. As a result, we learn a nonlinear generative model
of facial expression with modeling dynamics in low dimensional embedding space and
decomposing of multiple factors in facial expressions.

Contribution: In this paper we consider facial expressions which lie on a one dimen-
sional closed manifold, i.e., start from some configuration and coming back to the same
configuration. We introduce a framework to learn decomposable generative models for
dynamic appearance of facial expressions where the motion is constrained to one di-
mensional closed manifolds while there are other sources of variability such as different
classes of expression, and different people, etc., all of which are needed to be parame-
terized. The learned model supports tasks such as facial expression recognition, person
identification, and synthesis. Given a single image or a sequence of images, we can
use the model to solve for the temporal embedding, expression type and person iden-
tification parameters. As a result we can directly infer intensity of facial expression,
expression type, and person face from the visual input. The model can successfully be
used to recognize expressions performed by different people never seen in the training.

2 Facial Expression Manifolds and Nonlinear Decomposable
Generative Models

We investigate low dimensional manifolds and propose conceptual manifold embed-
ding as a representation of facial expression dynamics in Sec. 2.1. In order to preserve
nonlinearity of facial expression in our generative model, we learn nonlinear mapping
between embedding space and image space of facial expression in Sec. 2.2. The decom-
posable compact parameterization of the generative model is achieved using multilinear
analysis of the mapping coefficients in Sec. 2.3.

2.1 Facial Expression Manifolds and Conceptual Manifold Embedding

We use conceptual manifold embedding for facial expressions as a uniform represen-
tation of facial expression manifolds. Conceptually, each expression sequence forms
a one-dimensional closed trajectory in the input space as the expression starts from a
neutral face and comes back to the neutral face. Data-driven low dimensional manifolds



20 C.-S. Lee and A. Elgammal

using nonlinear dimensionality reduction algorithms such as LLE [17] and Isomap [19]
vary in different people and in different expression types. Fig. 1 shows low dimensional
manifold representation of facial expression sequences when we applied LLE to high
dimensional vector representations of image sequences of facial expressions. The fa-
cial expression data with twice repetitions of the same type expression are captured and
normalized for each person as shown in Fig. 1 (a) and (b). Fig. 1 (c) and (d) show the
manifolds found by applying the LLE algorithm. The manifolds are elliptical curves
with distortions according to the person face and expressions. Isomap and other nonlin-
ear dimensionality reduction algorithms show similar results. Sometimes the manifold
does not show smooth curves due to noise in the tracking data and images. In addition,
the embedding manifolds can be very different in some case. It is hard to find represen-
tations comparable each manifold for multiple expression styles and expression types.
Conceptually, however, all data driven manifolds are equal. They are all topologically
equivalent, i.e., homeomorphic to each other, and to a circular curve. Therefore, we can
use the unit circle in 2D space as a conceptual embedding space for facial expressions.

A set of image sequences which represent a full cycle of the facial expressions are
used in conceptual embedding of facial expressions. Each image sequence is of a certain
person with a certain expression. Each person has multiple expression image sequences.
The image sequences are not necessarily to be of the same length. We denote each
sequence by Y se = {yse

1 · · ·yse
Nse

} where e denotes the expression label and s is person

(a) Smile sequences from subject Db

(b) Smile sequences from subject S

(c) LLE embedding for Db’s smile
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(d) LLE embedding for S’s smile
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Fig. 1. Facial expression manifolds in different subjects: (a) and (b): Facial expression image
sequences. (2 cycles 480 frames):40th, 80th, 120th, 160th, 200th, 240th, 280th, 320th, 360th,
400th, 440th, 480th frames. (c) and (d): Nonlinear manifold embeddings of facial expression
sequences by LLE.
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face label. Let Ne and Ns denote the number of expressions and the number of people
respectively, i.e., there are Ns ×Ne sequences. Each sequence is temporally embedded
at equidistance on a unit circle such that xse

i = [cos(2πi/Nse) sin(2πi/Nse)], i =
1 · · ·Nse. Notice that by temporal embedding on a unit circle we do not preserve the
metric in input space. Rather, we preserve the topology of the manifold.

2.2 Nonlinear Mapping Between Embedding Space and Image Space

Nonlinear mapping between embedding space and image space can be achieved through
raidal basis function interpolation [6]. Given a set of distinctive representative and ar-
bitrary points {zi ∈ R

2, i = 1 · · ·N} we can define an empirical kernel map[18] as
ψN (x) : R

2 → R
N where

ψN (x) = [φ(x, z1), · · · , φ(x, zN )]T, (1)

given a kernel function φ(·). For each input sequence Y se and its embedding Xse

we can learn a nonlinear mapping function fse(x) that satisfies fse(xi) = yi, i =
1 · · ·Nse and minimizes a regularized risk criteria. Such function admits a representa-
tion of the form

f(x) =
N∑

i=1

wiφ(x, zi),

i.e., the whole mapping can be written as

fse(x) = Bse · ψ(x) (2)

where B is a d×N coefficient matrix. If radial symmetric kernel function is used, we
can think of equation 2 as a typical Generalized Radial basis function (GRBF) inter-
polation [16] where each row in the matrix B represents the interpolation coefficients
for corresponding element in the input. i.e., we have d simultaneous interpolation func-
tions each from 2D to 1D. The mapping coefficients can be obtained by solving the
linear system

[yse
1 · · ·yse

Nse
] = Bse[ψ(xse

1 ) · · ·ψ(xse
Nse

)]

Where the left hand side is a d×Nse matrix formed by stacking the images of sequence
se column wise and the right hand side matrix is an N×Nse matrix formed by stacking
kernel mapped vectors. Using these nonlinear mapping, we can capture nonlinearity
of facial expression in different people and expressions. More details about fitting the
model can be found in [6].

2.3 Decomposition of Nonlinear Mapping Space

Each nonlinear mapping is affected by multiple factors such as expressions and person
faces. Mapping coefficients can be arranged into high order tensor according to expres-
sion type and person face. We applied multilinear tensor analysis to decompose the
mapping into multiple orthogonal factors. This is a generalization of the nonlinear style
and content decomposition as introduced in [7]. Multilinear analysis can be achieved by
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higher-order singular value decomposition (HOSVD) with unfolding, which is a gener-
alization of singular value decomposition (SVD) [11]. Each of the coefficient matrices
Bse = [b1b2 · · · bN ] can be represented as a coefficient vector bse by column stacking
(stacking its columns above each other to form a vector). Therefore, bse is anNc = d·N
dimensional vector. All the coefficient vectors can then be arranged in an order-three fa-
cial expression coefficient tensor B with dimensionalityNs ×Ne ×Nc. The coefficient
tensor is then decomposed as

B = Z ×1 S ×2 E ×3 F (3)

where S is the mode-1 basis of B, which represents the orthogonal basis for the person
face. Similarly, E is the mode-2 basis representing the orthogonal basis of the expres-
sion and F represents the basis for the mapping coefficient space. The dimensionality of
these matrices areNs×Ns,Ne×Ne, Nc×Nc for S,E and F respectively. Z is a core
tensor, with dimensionalityNs×Ne×Nc which governs the interactions among differ-
ent mode basis matrices. Similar to PCA, it is desired to reduce the dimensionality for
each of the orthogonal spaces to retain a subspace representation. This can be achieved
by applying higher-order orthogonal iteration for dimensionality reduction [12].

Given this decomposition and given any Ns dimensional person face vector s and
any Ne dimensional expression vector e we can generate coefficient matrix Bse by
unstacking the vector bse obtained by tensor product bse = Z ×1 s ×2 e. Therefore
we can generate any specific instant of the expression by specifying the configuration
parameter xt through the kernel map defined in equation 1. Therefore, the whole model
for generating image yse

t can be expressed as

yse
t = unstacking(Z ×1 s ×2 e) · ψ(xt) .

This can be expressed abstractly also in the generative form by arranging the tensor Z
into a order-four tensor C

yt = C ×1 s ×2 e ×3 ψ(x) ×4 L , (4)

where dimensionality of core tensor C is Ns ×Ne ×N × d, ψ(x) is a basis vector for
kernel mapping with dimensionN for given x and L is collection of basis vectors of all
pixel elements with dimension d×d . We can analyze facial expression image sequence
by estimation of the parameters in this generative model.

3 Facial Expression Analysis and Synthesis Using Generative
Models

There are two main approaches in representing facial motions for facial expression
analysis: model-based or appearance-based. Geometric features are extracted with the
aid of 2D or 3D face models in model-based approaches. 3D deformable generic face
model [5] or multistate facial component models [13] are used to extract facial features.
Active appearance model are employed to use both shape and textures in [10][23]. Our
generative model use pixel intensity itself as an appearance representation as we want,
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not only to analyze, but also to synthesize facial expressions in the image space. The
final representation of facial expressions in our generative model, however, is a compact
person face vector and an expression vector that are invariant to temporal characteristics
and low dimensional embedding that represents temporal characteristics.

The generative model supports both sequence-based and frame-based recognition of
facial expressions. Facial expression recognition system can be categorized into frame-
based and sequence-based methods [8] according to the use of temporal information. In
frame-based methods, the input image is treated independently either a static image or
a frame of a sequence. Frame-based method does not use temporal information in the
recognition process. In sequence-based methods, the HMMs are frequently used to uti-
lize temporal information in facial expression recognition [5]. In our generative model,
the temporal characteristics are modeled in low dimensional conceptual manifolds and
we can utilize the temporal characteristics of the whole sequence by analyzing facial ex-
pression based on the mapping between the low dimensional embedding and the whole
image sequence. We also provide methods to estimate expression parameters and face
parameters from single static image.

3.1 Preprocessing: Cropping and Normalizing Face Images

The alignment and normalization of captured faces using a standard face is an important
preprocessing in facial expression recognition to achieve robust recognition of facial
expressions in head motion and lighting condition change. We interactively select two
eyes and a nose tip locations, which are relatively consistent during facial expressions,
from one face image for each subject. Based on the selected templates, we perform de-
tection of each template location from subsequent facial image by finding maximum
correlation of the template images in the given frame image. We cropped images based
on eye locations and nose similar to [14] after affine transformation to align the loca-
tion of eyes and nose tip to a standard front face. Fig. 2 (a) shows interactively selected
two eyes and a nose tip templates. A cropping region is decided after detection of tem-
plate locations and affine transformation for every new image as shown in (b). Fig. 2
(c) shows normalization results in the sequence where the first frame is used to select
templates and (d) in another sequence with different expression of the same subject

(a) (b) (c)

(d)

Fig. 2. Cropping and normalizing face images to a standard front face: (a) Selected templates
(eyes and a nose tip). (b) Template detection, affine transformation and selected cropping region.
(c) A normalized sequence where templates are selected from the first frame. (d) A normalized
sequence from another expression of the same person.
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without new template selections. We further processed the normalization of brightness
when necessary. As a result, we can recognize facial expression robustly with changes
of head location and small changes of head orientation from a frontal view.

3.2 Facial Expression Representation

Our generative model represents facial expressions using three state variables of the
generative model: person face vector s, expression vector e, and embedding manifold
point x, whose dimensions are Ns, Ne and 2 without further dimensionality reduction
using orthogonal iteration. The embedding can be parameterized by one dimensional
vector as the conceptual embedding manifold, unit circle, is one dimensional manifold
in two dimensional space. The total number of dimensions of the parameters to repre-
sent a facial image is Ns + Ne + 1 after we learn the generative model. Fig. 3 shows
examples of person face vectors (a) and expression vectors (b) when we learn the gen-
erative model from eight people with six different expressions related to basic emo-
tions from Cohn-Kanade AU coded facial expression database [9], where Ns = 8 and
Ne = 6. Plottings in three dimensional space using the first three parameters of face
class vectors (c) and facial expression class vectors (d) give insight to the similarity
among different person faces and different facial expression classes. Interestingly, plot-
ting of the first three parameters of six basic expressions in Fig. 3 (d) shows embedding
similar to the conceptual distance of six expressions in the image space. The surprise
expression class vector is located far from other expressions, which is connected to dis-
tinguishable different visual motions in surprise. Anger, fear, disgust, and sadness are
relatively close to each other than other expressions since they are distinguished visu-
ally using more subtle motions. The expression vector captures characteristics of image
space facial expression in low dimensional space.

3.3 Sequence-Based Facial Expression Recognition

Given a sequence of images representing a facial expression, we can solve for the ex-
pression class paramter, e, and person face parameter, s. First, the sequence is embed-

(a) Eight style vectors
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(d) Plotting expression vectors in 3D
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Fig. 3. Facial expression analysis for eight subjects with six expressions from Cohn-
Kanade dataset
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(a) Iteration: sadness
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0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Surprise Expression

Happy
Surprise
Sadness
Anger
Disgust
Fear

(c) Iteration: happy
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(d) Iteration: anger
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Fig. 4. The convergence of estimated expression parameters in iterations

ded to a unit circle and aligned to the model as described in Sec. 2. Then, mapping
coefficients B are learned from the aligned embedding to the input. Given such coeffi-
cients, we need to find the optimal s and e, which minimize the error

E(s, e) = ‖b −Z ×1 s ×2 e‖ , (5)

where b is the vector representation of matrix B by column stacking. If the person face
parameter s is known, we can obtain a closed form solution for e. This can be achieved
by evaluating the tensor product G = Z ×1 s to obtain tensor G. Solution for b can
be obtained by solving the system b = G ×2 e for e which can be written as a typical
linear system by unfolding G as a matrix. Therefore the expression estimation e can be
obtained by

e = (G2)+b (6)

where G2 is the matrix obtained by mode-2 unfolding of G and + denotes the pseudo
inverse using singular value decomposition (SVD). Similarly we can analytically solve
for s if the expression parameter, e, is known by forming a tensor H = Z ×2 e:

s = (H1)+b (7)

where H1 is the matrix obtained by mode-1 unfolding of H.
Iterative estimations of e and s using equations 6 and 7 would lead to a local minima

for the error in 5. Fig. 4 shows examples of expression estimation in iteration using new
sequences. Y axis shows Euclidian distance between the estimated expression vector
and six expression class vectors in the generative model in Sec. 4.1. Usually the esti-
mation parameters of expressions converge into one of expression class vectors within
several iterations. Fig. 4 (d) shows a case when more than ten iterations are required to
reach stable solution in the estimation of expression vector.

3.4 Frame-Based Facial Expression Recognition

When the input is a single face image, it is desired to estimate temporal embedding or
the face configuration in addition to expression and person face parameters in the gener-
ative model. Given an input image y, we need to estimate configuration, x , expression
parameter e, and person face parameter s which minimize the reconstruction error

E(x, s, e) =|| y − C ×1 s ×2 e ×3 ψ(x) || (8)
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We can use a robust error metric instead of Euclidian distance in error measurements.
In both cases we end up with a nonlinear optimization problem.

We assume optimal estimated expression parameter for a given image can be written
as a linear combination of expression class vectors in the training data. i.e., we need to
solve for linear regression weights α such that e =

∑Ke

k=1 αkek where each ek is one
of Ke expression class vectors in the training data. Similarly for the person face, we
need to solve for weights β such that s =

∑Ks

k=1 βksk where each sk is one of Ks face
class vectors.

If the expression vector and the person face vector are known, then equation 8 is re-
duced to a nonlinear 1-dimensional search problem for configuration x on the unit circle
that minimizes the error. On the other hand, if the configuration vector and the person face
vector are known, we can obtain expression conditional class probabilities p(ek|y,x, s)
which is proportional to observation likelihood p(y | x, s, ek). Such likelihood can be
estimated assuming a Gaussian density centered around C ×1 sk ×2 e ×3 ψ(x), i.e.,

p(y | x, s, ek) ≈ N(C ×1 sk ×2 e ×3 ψ(x), Σek

).

Given expression class probabilities we can set the weights to αk = p(ek | y,x, s).
Similarly, if the configuration vector and the expression vector are known, we can obtain
face class weights by evaluating image likelihood given each face class sk assuming a
Gaussian density centered at C ×1 sk ×2 e ×3 ψ(x).

This setting favors an iterative procedures for solving for x, e, s. However, wrong
estimation of any of the vectors would lead to wrong estimation of the others and leads
to a local minima. For example wrong estimation of the expression vector would lead
to a totally wrong estimate of configuration parameter and therefore wrong estimate for
person face parameter. To avoid this we use a deterministic annealing like procedure
where in the beginning the expression weights and person face weights are forced to be
close to uniform weights to avoid hard decisions about expression and face classes. The
weights gradually become discriminative thereafter. To achieve this, we use a variable
expression and person face class variances which are uniform to all classes and are
defined as Σe = Teσ

2
eI and Σs = Tsσ

2
sI respectively. The parameters Te and Ts start

with large values and are gradually reduced and in each step and a new configuration
estimate is computed. Several iterations with decreasing Te and Ts allow estimations
of the expression vector, the person face vector and face configuration iteratively and
allow estimations of expression and face from a single image.

3.5 Facial Expression Synthesis

Our model can generate new facial expressions by combinations of new facial expres-
sion parameter and person face parameter. As we have decomposed the mapping space
that captures nonlinear deformation in facial expressions, the linear interpolation of the
face style and facial expression still somewhat captures nonlinearity in the facial expres-
sion. In addition, we can control the parameters for person face and facial expression
separately as a result of the multilinear decomposition. A new person face vector and
a new facial expression vector can be synthesized by linear interpolation of existing
person face class vectors and expression class vectors using parameter αi, and βj as
follows:
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(a) Neutral → smile → surprise (b) Surprise → angry → neutral

(c) Subject A face → subject B face (d) Subject B face → subject C face

(e) Simultaneous transfer of face and expression: neutral → smile → surprise → fear → neutral

Fig. 5. Facial expression synthesis: First row: Expression transfer. Second row: Person face trans-
fer during smile expression. Third row: simultaneous transfer of facial expression and person face.

enew = α1e1 + α2e2 + · · ·+ αNeeNe , snew = β1s1 + β2s2 + · · ·+ βNssNs , (9)

where
∑

i αi = 1, and
∑

j βj = 1, and αi ≥ 0 and βi ≥ 0 in order to be linear inter-
polation in the convex set of the original expression classes and face classes. Here αi

and βj are control parameters whereas they are estimated in recognition as in Sec. 3.4.
We can also control these interpolation parameters according to temporal information
or configuration. A new facial expression image can be generated using new style and
expression parameters.

ynew
t = C ×1 snew

t ×2 enew
t ×3 ψ(xt) (10)

Fig. 5 shows examples of the synthesis of new facial expressions and person faces.
During synthesis of the new images, we combine control parameter t to embedding
coordinate x and interpolation parameter α and β. In case of Fig. 5 (a), the t changed
0 → 1 and new expression parameter enew

t = (1−t)esmile+tesurprise. As a result, the
facial expression starts from neutral expression of smile and animates new expression
as t changes and when t = 1, the expression become a peak expression of surprise.
In case of (b), the t changed 1 → 0. In the same way, we can synthesize new faces
during smile expressions as in (c) and (d). Fig. 5 (e) is the simultaneous control of the
person face and expression parameters. This shows the potential of synthesis of new
facial expression in the image space using our generative model.

4 Experimental Results

4.1 Person Independent Recognition of Facial Expression: Cohn-Kanade Facial
Expression Data Set

We test the performance of facial expression analysis by our generative model using
Cohn-Kanade AU coded facial expression database [9]. We first collected eight sub-
jects with all six basic expression sequences, which are 48 expression sequences whose
frame number varies between 11 and 33 to target display. We performed normaliza-
tion by cropping image sequence based on template eyes and nose images as explained
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in Sec. 3.1. We embed the sequence into a half circle in the conceptual manifold as
we counted the sequence of the data as half of one cycle among neutral → target ex-
pression → neutral expression. Eight equal-distance centers are used in learning GRBF
with thin-plate spline basis. We used a full dimension to represent each style and expres-
sion. Fig. 3 shows the representation of expression vectors and person face vectors after
learning the generative models from these eight subjects with six expressions. Fig. 5
shows examples of facial expression synthesis using this generative model.

Sequence-Based Expression Recognition: The performance of person independent
facial expression recognition is tested by leave-one-out cross-validation method using
whole sequences in the database [9]. We learned a generative model using 42 sequences
of seven subjectsand and tested six sequences of one subject whose data are not used
for learning the generative model. We tested the recognition performance by select-
ing the nearest expression class vector after iterations by sequence-based expression
recognition in Sec. 3.3. Table 1 shows the confusion matrix for 48 sequences. The re-
sult shows potentials of the estimated expression vectors as feature vectors for other
advanced classifiers like SVM.

Frame-Based Expression Recognition: Using the generative model, we can estimate
person face parameters and expression parameters for a given expression image or se-
quence of images based on frame-by-frame estimation. We collected additional data that
have five different expressions from 16 subjects. We used the generative model learned
by eight subjects with six expressions to estimate expression parameters and person face
parameters using deterministic annealing in Sec. 3.4. Fig. 6 (a) (b) (c) shows expression
weight values α of every frame in three different expression sequences. The weights

Table 1. Person-independent average confusion matrix by sequence-based expression recognition

Emotion Happy Surprise Sadness Anger Disgust Fear
Happy 25%(2) 0 0 37.5%(3) 25%(2) 25%(2)

Surprise 12.5%(1) 62.5%(5) 12.5%(1) 0 0 12.5%(1)
Sadness 0 0 37.5%(3) 25%(2) 12.5%(1) 25%(2)
Anger 12.5%(1) 0 37.5%(3) 50%(4) 0 0

Disgust 12.5%(1) 12.5%(1) 12.5%(1) 25%(2) 12.5%(1) 25%(2)
Fear 0 0 0 50%(4) 0 50%(4)

(a) Happy: (4,8,12,16,20th frames)
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(b) Surprise: (2,5,8,11,14th frames)
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(c) Sadness: (1,5,9,13,17th frames)
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Fig. 6. Estimated expression weights in frame-based estimations
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become more discriminative as expressions get closer to target expressions. We can
recognize the expression using the maximum weight expression class in every frame.
Table 2 shows recognition results when we classified facial expression using maximum
expression weight of the last frame from 80 sequences.

Table 2. Person-independent average confusion matrix by frame-based recognition: classification
only last frame maximum weight expression

Emotion Happy Surprise Sadness Anger Disgust Fear
Happy 93.3%(14) 0 0 0 0 6.7%(1)

Surprise 0 100%(16) 0 0 0 0
Sadness 0 7.1%(1) 28.6%(4) 7.1%(1) 35.7%(5) 21.4%(3)
Anger 9.1%(1) 0 18.2%(2) 27.3%(3) 45.4% 0

Disgust 9.1%(1) 0 9.1%(1) 18.2%(2) 63.6%(7) 0
Fear 25%(3) 0 8.3%(1) 0 8.3%(1) 58.3%(7)

4.2 Dynamic Facial Expression and Face Recognition

We used CMU-AMP facial expression database which are used for robust face recogni-
tion in variant facial expressions [14]. We collected sequences of ten people with three
expressions (smile, anger, surprise) by manual segmentation from the whole sequences.
We learned a generative model from nine people. The last one person data are used to
test recognition of expression as a new person. The unit circle is used to embed each
expression sequence.

We used the learned generative model to recognize facial expression, and person
identity at each frame from the whole sequence using the frame-based algorithm in
section 3.4. Fig. 7 (a) shows example frames of a whole sequence and the three differ-
ent expression probabilities obtained in each frame (d)(e)(f). The person face weights,
which are used to person identification, consistantly show dominant weights for the
subject face as in Fig. 7 (b). Fig. 7 (c) shows that the estimated embedding parameters

(a) Source sequence images
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Fig. 7. Facial expression analysis with partially trained segements
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(a) Source sequence images
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(d) Expression weight: surprise
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Fig. 8. Expression recognition for a new person

are close to the true embedding from manually selected sequences. We used the learned
model to recognize facial expressions from sequences of a new person whose data are
not used during training. Fig. 8 shows recognition of expressions for the new person.
The model can generalize for the new person and can distinguish three expressions from
the whole sequence.

5 Conclusion

In this paper we presented a framework for learning a decomposable generative model
for facial expression analysis. Conceptual manifold embedding on a unit circle is used
to model the intrinsic facial expression configuration on a closed 1D manifold. The em-
bedding allows modeling any variations (twists) of the manifold given any number fac-
tors such as different people, different expression, etc; since all resulting manifolds are
still topologically equivalent to the unit circle. This is not achievable if data-driven em-
bedding is used. The use of a generative model is tied to the use of conceptual embed-
ding since the mapping from the manifold representation to the input space will be well
defined in contrast to a discriminative model where the mapping from the visual input
to manifold representation is not necessarily a function. We introduced a framework to
solve facial expression factors, person face factors and configurations in iterative meth-
ods for the whole sequence and in deterministic annealing methods for a given frame. The
estimated expression parameters can be used as feature vectors for expression recogni-
tion using advanced classification algorithms like SVM. The frame-by-frame estimation
of facial expression shows similar weights when expression image is close to the neutral
face and more discriminative weights when it is near to target facial expressions. The
weights of facial expression may be useful not only for facial expression recognition but
also for other characteristics like expressiveness in the expression.

References

1. Z. Ambadar, J. W. Schooler, and J. F. Cohn. Deciphering the enigmatic face: The impor-
tance of facial dynamics in interpreting subtle facial expressions. Psychological Science,
16(5):403–410, 2005.

2. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Expression-invariant 3d face recognition.
In AVBPA, LNCS 2688, pages 62–70, 2003.



Facial Expression Analysis Using Nonlinear Decomposable Generative Models 31

3. Y. Chang, C. Hu, and M. Turk. Probabilistic expression analysis on manifolds. In Proc. of
CVPR, pages 520–527, 2004.

4. E. S. Chuang, H. Deshpande, and C. Bregler. Facial expression space learning. In Pacific
Conference on Computer Graphics and Applications, pages 68–76, 2002.

5. I. Cohen, N. Sebe, A. Garg, L. S. Chen, and T. S. Huang. Facial expression recognition from
video sequences: Temporal and static modeling. CVIU, pages 160–187, 2003.

6. A. Elgammal. Nonlinear manifold learning for dynamic shape and dynamic appearance. In
Workshop Proc. of GMBV, 2004.

7. A. Elgammal and C.-S. Lee. Separating style and content on a nonlinear manifold. In Proc.
of CVPR, volume 1, pages 478–485, 2004.

8. A. K. Jain and S. Z. Li, editors. Handbook of Face Recognition, chapter 11. Face Expression
Analysis. Springer, 2005.

9. T. Kanade, Y. Tian, and J. F. Cohn. Comprehensive database for facial expression analysis.
In Proc. of FGR, pages 46–53, 2000.

10. A. Lanitis, C. J. Taylor, and T. F. Cootes. Automatic interpretation and coding of face images
using flexible models. IEEE Trans. PAMI, 19(7):743–756, 1997.

11. L. D. Lathauwer, B. de Moor, and J. Vandewalle. A multilinear singular value decomposiiton.
SIAM Journal On Matrix Analysis and Applications, 21(4):1253–1278, 2000.

12. L. D. Lathauwer, B. de Moor, and J. Vandewalle. On the best rank-1 and rank-(r1, r2, ..., rn)
approximation of higher-order tensors. SIAM Journal On Matrix Analysis and Applications,
21(4):1324–1342, 2000.

13. Y. li Tian, T. Kanade, and J. F. Cohn. Recognizing action units for facial expression analysis.
IEEE Trans. PAMI, 23(2), 2001.

14. X. Liu, T. Chen, and B. V. Kumar. Face authentication for multiple subjects using eigenflow.
Pattern Recognitioin, 36:313–328, 2003.

15. A. M. Martinez. Recognizing expression variant faces from a single sample image per class.
In Proc. of CVPR, pages 353–358, 2003.

16. T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE,
78(9):1481–1497, 1990.

17. S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

18. B. Schlkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. MIT Press, 2002.

19. J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlin-
ear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

20. J. B. Tenenbaum and W. T. Freeman. Separating style and content with biliear models.
Neural Computation, 12:1247–1283, 2000.

21. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience,
3(1):71–86, 1991.

22. M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Tensor-
faces. In 7th European Conference on Computer Vision, pages 447–460, 2002.

23. H. Wang and N. Ahuja. Facial expression decomposition. In Proc. of ICCV, volume 2, pages
958–965, 2003.

24. W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A literature survey.
ACM Comput. Surv., 35(4):399–458, 2003.


	Introduction
	Facial Expression Manifolds and Nonlinear Decomposable Generative Models
	Facial Expression Manifolds and Conceptual Manifold Embedding
	Nonlinear Mapping Between Embedding Space and Image Space
	Decomposition of Nonlinear Mapping Space

	Facial Expression Analysis and Synthesis Using Generative Models
	Preprocessing: Cropping and Normalizing Face Images
	Facial Expression Representation
	Sequence-Based Facial Expression Recognition
	Frame-Based Facial Expression Recognition
	Facial Expression Synthesis

	Experimental Results
	Person Independent Recognition of Facial Expression: Cohn-Kanade Facial Expression Data Set
	Dynamic Facial Expression and Face Recognition

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


