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Abstract. Non-negative matrix factorization (NMF) is a recently developed 
method for finding parts-based representation of non-negative data such as face 
images. Although it has successfully been applied in several applications, di-
rectly using NMF for face recognition often leads to low performance. More-
over, when performing on large databases, NMF needs considerable computa-
tional costs. In this paper, we propose a novel NMF method, namely 2DNMF, 
which stands for 2-D non-negative matrix factorization. The main difference 
between NMF and 2DNMF is that the former first align images into 1D vectors 
and then represents them with a set of 1D bases, while the latter regards images 
as 2D matrices and represents them with a set of 2D bases. Experimental results 
on several face databases show that 2DNMF has better image reconstruction 
quality than NMF under the same compression ratio. Also the running time of 
2DNMF is less, and the recognition accuracy higher than that of NMF. 

1   Introduction 

There is psychological and physiological evidence for parts-based representations in 
the brain, and certain computational theories of object rely on such representations 
[11]. For that reason, parts-based learning has received much interest in machine 
learning, computer vision and pattern recognition [13]. Many parts-based image rep-
resentation approaches ca be ascribed to a general subspace method, which has been 
successfully used in many high dimensional data analysis applications. Given a class 
of image patterns, there are many approaches to construct the subspace. One such 
method is principal component analysis (PCA) [10], also known as Eigenface method 
in face recognition [19]. In PCA, any image can be represented as a linear combina-
tion of a set of orthogonal bases which form an optimal transform in the sense of 
reconstruction error. However, due to the holistic nature of the method, PCA cannot 
extract basis components manifesting localized features [13]. And its two extensions: 
independent component analysis (ICA) [4], [17] and kernel principal component 
analysis (KPCA) [18] also have the same problem. 
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Recently a new subspace method called non-negative matrix factorization (NMF) 
[11] is proposed to learn the parts of objects and images. NMF imposes the non-
negativity constraints in its bases and coefficients. Thus NMF learns localized fea-
tures that can be added together to reconstruct the whole images, because only addi-
tive combination, not subtractive cancellations, are allowed in the reconstruction [11], 
[20], [6], [9], [5]. The localized, parts-based representation is very different from the 
holistic ‘eigenface’ of PCA. And due to its parts-based representation property, NMF 
or its variations have been used to image classification [1], [7], [8], face expression 
recognition [2], face detection [3], face and object recognition [13], [14], [15]. How-
ever, experiments have shown that when used for image compression and recognition 
tasks, NMF usually has low image reconstruction image quality and low recognition 
accuracy. Also NMF needs comparatively more computational costs due to the alter-
nate iterations. To try to overcome those problems, many improved algorithms are 
proposed including local NMF [13] and sparse NMF [9] which impose extra con-
straints on the bases. But those methods often need even more iteration time to learn 
the bases, especially for high-dimensional data such as faces. 

In this paper, we present a novel NMF method, called 2-Dimensional non-negative 
matrix factorization (2DNMF) for image representation and recognition. The key 
difference between 2DNMF and NMF is that the former adopt a novel representation 
for original images. In traditional NMF, the 2D image matrices must be previously 
transformed into 1D image vectors. The resulting image vectors usually lead to a 
high-dimensional image vector space, where it is difficult to find good bases to ap-
proximately reconstruct original images. That is also called the ‘curse of dimensional-
ity’ problem, which is more apparent in small-sample-size cases. Another disadvan-
tage of NMF is that such a matrix-to-vector transform may cause the loss of some 
structure information hiding in original 2D images. In contrast to the 1D representa-
tion of NMF, we adopt a more natural 2D matrix representation in 2DNMF, i.e. repre-
senting 2D images with a set of 2D bases. We first apply NMF on column vectors and 
then row vectors of original images to obtain the corresponding 1D column bases and 
1D row bases respectively, and finally compute the outer-product of those two 1D 
bases as the 2D bases used in 2DNMF. To evaluate the performances of 2DNMF, a 
series of experiments are performed on several face databases: FERET, UMIST, Yale 
and AR. The experimental results demonstrate advantages of 2DNMF over NMF on 
image reconstruction quality at similar compression ratio, computational efficiency 
and recognition accuracy. 

The rest of the paper is organized as follows: Section 2 first introduces NMF 
method briefly. This is followed by the detailed description of 2DNMF algorithm in 
Section 3. In Section 4, experimental results are presented for the FERET, UMIST, 
Yale, and AR face databases to demonstrate the effectiveness of 2DNMF. Finally, we 
conclude in Section 5. 

2   Non-negative Matrix Factorization 

The key ingredient of NMF is the non-negativity constraints imposed on the two fac-
tors, and the non-negativity constraints are compatible with the intuitive notion of  
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combining parts to form a whole. Because a part-based representation can naturally 
deal with partial occlusion and some illumination problems, it has received much 
attention recently. Assume that the image database is represented as an n×m matrix 
V, each column of which contains n non-negative pixel values of one of the m face 
images. In order to compress data or reduce the dimensionality, NMF finds two non-
negative matrix factors W and H such that 

∑
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Here the r columns of W are called NMF bases, and the columns of H are its com-
bining coefficients. The dimensions of W and H are n× r and r×m respectively. The 
rank r of the factorization is usually chosen such that (n+m)r<nm, and hence the com-
pression or dimensionality reduction is achieved. The compression ratio of NMF is 
easily gotten as nm/ (nr+mr). 

To find an approximate factorization V ≈ W H, a cost function is needed to quan-
tify the quality of the approximation. NMF uses the divergence measure as the objec-
tive function 
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NMF factorization is a solution to the following optimization problem: 

Problem 1 [12]. Minimize ( || )D V WH with respect to W and H , subject to the 

constraints , 0W H ≥ . 

In order to obtain W and H, a multiplicative update rule is given in [11] as follows: 
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The pseudo-code for computing the bases W and coefficients H following the 
above iterative procedure is given in Algorithm 1. 

Algorithm 1: NMF 
Input: n×m matrix V, each column of which denotes the 
aligned image vector, and rank r 
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Output: n×r matrix W and r×m matrix H 
1. Obtain initial values for W and H, and set 1k ←  
2. While not convergent 
3.  update the bases W using Eqs. (3a) and (3b)  
4.  update the coefficients H using Eq. (3c)  

5.  1k k← +  
6. EndWhile 

3   2-D Non-negative Matrix Factorization 

3.1   2DNMF Algorithm 

Let p× q matrices Ak , k=1, 2, …, m, denote original training images. In traditional 
NMF, a 2D image is first transformed into a 1D vector, and then the image databases 
are represented with an n× m matrix V, each column of which contains n=pq non-
negative pixel values of one of the m face images. In 2DNMF, however, we never 
transform the 2D images into its corresponding 1D vectors. Instead we will use a 
more straightforward way which views an image as a 2D matrix. 

The procedure of 2DNMF method consists of two successive stages. At first we 
align the m training images into a p× qm matrix X = [A1, A2, …, Am], where each Ak 
denotes one of the m face images. Similar to NMF, 2DNMF first finds p× d non-
negative matrix L and d× qm non-negative matrix H such that 

X LH≈  (4) 

Here L and H are the bases and combining coefficients respectively. For conven-
ience, we divide H into m d×q sub-matrices as H = [H1, H2, …, Hm], where Hk de-
notes the coefficients of the image Ak. Since each column of X corresponds to a col-
umn of original images, we also call L as column bases. Thus the k-th image Ak can 
be written as a weighted sum of the column bases L as follows: 

,     1,2,...,k kA LH k m≈ =  (5) 

The column bases L can be obtained by solving the following optimization problem: 

Problem 2a. Minimize ( || )D X LH with respect to L and H , subject to the con-

straints , 0L H ≥ . 

Problem 2a can be solved by performing NMF algorithm on X with rank d. We 
also call the first stage for computing column bases L as Column NMF.  

The second stage of 2DNMF involves of computing the row bases. Fom Eq. (5), 

we construct a new q × dm matrix 1 2[ , ,..., ]T T T
mH H H H′ = . Similarly, 2DNMF 

seeks a q×g non-negative matrix R and a g×dm non-negative matrix C such that  
H RC′ ≈  (6) 



354 D. Zhang, S. Chen, and Z.-H. Zhou 

 

Here R and C are the bases and combining coefficients respectively. And we also 
divide C into m g×d sub-matrices as C = [C1, C2, …, Cm], where Ck denotes the coef-

ficients of the matrix T
kH . Because the columns of H ′ contains the row information 

of original images, we call R as row bases. Thus T
kH is formulated as a weighted sum 

of the row bases R as follows: 

,     1,2,...,T
k kH RC k m≈ =  (7) 

The row bases R can be obtained by solving the following optimization problem: 

Problem 2b. Minimize ( || )D H RC′ with respect to R and C , subject to the con-

straints , 0R C ≥ . 

Similarly, problem 2b can be solved by performing NMF algorithm on H ′  with 
rank g. And we call the second stage for computing row bases R as Row NMF.  

By now we have obtained the p×d dimensional column bases L and the q×g di-
mensional row bases R. By substituting Eq. (7) into Eq. (6), we get 

 ,     1,2,...,T T
k kA LC R k m≈ =  (8) 

Let L = [l1, l2, …, ld], R = [r1, r2, …, rg], and define the 2D bases of 2DNMF as the 

outer product between the column base il  and the row base jr  as follows: 
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Fig. 1. An illustration for the 2DNMF algorithm 
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It is easy to verify that the 2D bases Eij s have the following properties: 

1) Eij is a 2D matrix with the same size of original image, i.e. p×q. 
2) The intrinsic dimensionality of Eij is 1. 
3) Any training image Ak can be approximately represented with a weighted sum of 

2D bases Eij s. 

Figure 1 gives a simple illustration for the procedure of 2DNMF. For a p×q di-
mensional image Ak, it experiences the Column NMF operation (Eq. (5)) and the Row 
NMF operation (Eq. (7)) successively. If the ranks d and g are chosen such that d < p 
and g < q, then figure 1 indicates that we can approximately represent the original 

image Ak with much smaller matrix kD . 
The pseudo-code for computing the column bases L, row bases R, and the 2D 

bases Eij s is given in part of Algorithm 2. 

Algorithm 2: 2DNMF 

Input: p×q matrices { } 1

m

k k
A

=
, and rank d, g 

Output: p×d column bases L, q×g row bases R, d×g ma-
trices { }

1

mk

k
D

=
 and 2D bases ijE  

1. Align the m training images into a p×qm matrix X = 
[A1, A2, …, Am]  

2. Perform Column NMF on X with rank d: X LH≈ , obtain-
ing column bases L and coefficients matrix    H = [H1, 
H2, …, Hm]  

3. Construct q×dm matrix 1 2[ , ,..., ]T T T
mH H H H′ =  

4. Perform Row NMF on H with rank g:H RC′ ≈ , obtaining 
row bases R and coefficients matrix C = [C1, C2, …, Cm]  
5. For k = 1 to m 

6.       
k T

kD C←  

7. EndFor 
8. For i = 1 to d, for j =1 to g 

9.       
T

ij i jE l r← ⋅  

10. EndFor 

3.2   2DNMF-Based Image Compression 

Suppose we have learned the 2D bases , (1 ,1 )T
ij i jE l r i d j g= ⋅ ≤ ≤ ≤ ≤ , from the 

training images Ak , k=1, 2, …, m. According to Eq. (10) each training image Ak can 
be approximately reconstructed as 

1 1

ˆ
gd

k
k ij ij

i j

A D E
= =

=∑∑  (11) 

Here ˆ
kA  denotes the reconstructed image corresponding to image Ak.  
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In Eq. (11), the coefficients kD  are obtained by performing Column NMF (Eq. (5)) 

and the Row NMF (Eq. (7)) successively. For a test image A which is not contained in 
the training sets, the values for the coefficients D  are unknown. However, we can 

approximately compute D L AR+≈ ( L+  is the generalized inverse of L ), and then use 

Â LDR+≈  ( R+  is the generalized inverse of R ) to get the reconstructed image.  
In this paper, we measure the quality of the reconstructed image using the peak 

signal-to-noise ratio (PSNR), which is defined as follows: 
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Here A denotes the original image, B denotes the reconstructed image, and p, q is the 
size of the image. 

Equations (10) and (11) indicate that the p×d matrix L, q×g matrix R and the 

d×g matrix kD , k=1, 2, …, m, can be used to reconstruct the original m p×q matri-

ces Ak , k=1, 2, …, m. The memories required for storing L, R and kD , k=1, 2, …, m, 
are pd+qg+mdg. So if pd+qg+mdg < mpq, the compression or dimensionality 
reduction is achieved. And it is easy to compute the compression ratio of 2DNMF as 
mpq / ( pd+qg+mdg). 

3.3   2DNMF-Based Face Recognition 

It contains two steps when using 2DNMF for recognition. One is the feature extrac-
tion step and the other is classification step. 

In feature extraction step, we first project each training image Ak into the bilinear 

space as a feature matrix T
k kF L A R= , for k=1, 2, …, m, which are then used as the 

comparing prototypes. A test or query face image A to be classified is represented by 

its projection onto the space as T
AF L AR= . 

In classification step, we calculate the distance based on Frobenius norm between 
the query and each prototype as follows: 

( , )A k A k F
d F F F F= −  

And the query is classified to the class to which the closest prototype belongs. 

4   Experimental Results 

In this section, we experimentally evaluate the performance of 2DNMF with NMF 
and local NMF (LNMF) [13] on several face databases. All our experiments are car-

(12) 

( ) 13
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ried out on a P4 1.7 GHz PC machine with 512M memory. For all the three algo-
rithms, the convergence condition is  

( ) ( )
, ,

max max 0.01new old old
ij ij ij

i j i j
W W W− <  ( ) 

Where new
ijW  is the value of the bases at the current iteration step while old

ijW  de-

notes the value at the last iteration. The maximum iteration steps for NMF and LNMF 
are both set to 100.  

The parameters d (number of column bases) and g (number of row bases) in 
2DNMF are both set to 20 in all experiments, if without explicit explanations. 
The value of r (number of bases) in NMF and LNMF is chosen such that NMF, 
LNMF and 2DNMF have similar compression ratio in most cases, except for the 
Yale database where we assure r=16 at least. For example, if we set d=g=20 on 
the training set (m=200, p=q=60, n=pq=3600) of the FERET database, the com-
pression ratio of 2DNMF will be mpq / ( pd+qg+mdg)=8.74. And then we adjust 
the value of r to make the compression ratio of NMF and LNMF near to 8.74. 
Here we choose r=22, and the corresponding compression ratio of NMF and 
LNMF is nm/ (nr+mr)= 8.61. 

4.1   Datasets 

We use the following four face databases in our experiments: FERET, UMIST, Yale 
and AR [16] face database. Table 1 summarizes the statistics of the four datasets (the 
 

Table 1. Statistics of four face databases 

Datasets Size Dimension # of classes 
FERET1 400(200) 60×60 200 
UMIST2 575(375) 112×92 20 
Yale3 165 (75) 100×100 15 
AR4 1400(700) 66×48 100 

values in bracket indicate the size of training set). Note that for FERET and AR we 
only use a subset of the whole datasets. More detailed description of the four face 
databases can be obtained through browsing the face databases websites, whose 
linked address are given at the bottom of this page. 

4.2   Learning the Bases 

In this subsection, we compute the bases of NMF and 2DNMF from the training set. 
For comparison, we also compute the bases of PCA and its extension 2DPCA [21]. 

                                                           
1 http://www.itl.nist.gov/iad/humanid/feret/feret_master.html 
2 http://images.ee.umist.ac.uk/danny/database.html 
3 http://cvc.yale.edu/projects/yalefaces/yalefaces.html 
4 http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html 

14
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We do the experiment on the FERET face databases, and 200 fa face images are used 
as the training set. 

Fig. 2 plots parts of the bases gotten from the four methods respectively. Fig. 2 (a) 
and (b) are plotted using the method in [21]. For NMF the first 16 columns of matrix 
 

    
(a)                        (b) 

    
(c)                                      (d) 

Fig. 2. Bases obtained from PCA (a), 2DPCA (b), NMF (c) and 2DNMF (d) respectively. (a) 
and (b) are plotted using the method in [21]. For NMF the first 16 columns of matrix W are 
retransformed to matrix for plotting, while for 2DNMF the 16 bases Eij (1≤i≤4, 1≤j≤4) are 
directly plotted as images. 

W are retransformed to matrix for plotting, while for 2DNMF the 16 bases Eij (1 ≤ I ≤ 
4, 1 ≤  j ≤ 4) are directly plotted as images.  

From Fig. 2, we can see that both the bases of PCA and 2DPCA are global. Com-
pared with PCA, 2DPCA possess of some strip or block like structures. The reason for 
that is 2DPCA is essentially a kind of line-based PCA [21]. However, the bases of 
2DPCA cannot yet reflect any local or part-based features. On the other hand, Fig. 2(c) 
indicates that although NMF is a part-based algorithm, its bases still take on some holis-
tic property similar to PCA. In contrast we notice from Fig. 2(d) that the bases of 
2DNMF are much sparser than those of NMF. It is worth noting that although the base 
of 2DNMF is sparse, it has no parts-based (like eye, mouth, etc. in face image) features 
any more due to the essence of 2D methods. That is, 2DNMF is essentially a kind of 
line-based NMF, so what 2DNMF really learns are some parts of ‘line’.  

Because each base of 2DNMF can be generated using a p-dimensional col-
umn base and a q-dimensional row base, its storing cost (p+q) is much less than 
that of NMF base (which is pq). Thus we can use much more sparse-distributed 
2D bases to represent original image, which will be further discussed in the next 
subsection. 
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Fig. 3. Some reconstructed training images on FERET database. First row: original images. 
Second row: images gotten by NMF. Third row: images gotten by LNMF. Bottom row: images 
gotten by 2DNMF. 

Table 2. Comparisons of the performances (PSNR / compression ratio / recognition accuracy) 
of NMF, LNMF and 2DNMF on four datasets 

Data sets NMF LNMF 2DNMF 
FERET 20.89 / 8.6/ 0.68 7.74 / 8.6/ 0.73 23.50 / 8.7/ 0.79 
UMIST 21.34 / 24.1/ 0.71 8.08 / 24.1/ 0.67 24.12 / 25.1/ 0.76 
Yale 22.03 / 4.7/ 0.69 7.16 / 4.7/ 0.68 23.98 / 22.1/ 0.81 
AR 19.50 / 8.0/ 0.49 5.00 / 8.0/ 0.62 20.68 / 7.9/ 0.64 

 
 

4.3   Image Compression and Reconstruction 

In this subsection, we will compare the compression performances of NMF, LNMF 
and 2DNMF. We carry out experiments on the training set of the four datasets listed 
in table 1. That is, we only use the training images to learn the bases of NMF, LNMF 
and 2DNMF respectively. After that we reconstruct the training images or a new 
image not appearing in the training sets (test images) using the corresponding meth-
ods discussed in subsection 3.2. 

Table 2 gives the PSNR values of NMF, LNMF and 2DNMF on the four datasets, 
and the corresponding compression ratios are also given in the brackets of the table. 
Table 2 shows that 2DNMF has the highest PSNR values on all the four datasets un-
der nearly the same compression ratio except for the Yale database, where even when 
the compression ratio of 2DNMF is 5 times of that of NMF and LNMF, the former 
still achieves the best performance.  

Fig. 3 shows parts of the reconstructed training images using NMF, LNMF and 
2DNMF respectively on the FERET database. From Fig. 3, although the reconstructed 
images of NMF and LNMF smoother than that of 2DNMF, they don’t resemble the 
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Fig. 4. Some reconstructed test images on FERET database using the same bases as those in 
figure 3. First row: original test images. Second row: images gotten by NMF. Third row: im-
ages gotten by LNMF. Bottom row: images gotten by 2DNMF. 

original images any more. That phenomenon is especially severe for LNMF, because 
it imposes additional constrains on the bases which are useful for recognition but not 
for reconstruction, as clearly shown in Fig. 3. On the other hand, although there exist 
some stripping artifacts arising from the use of 2D bases of outer products of 1D row 
and column bases, 2DNMF reconstruct the original image more faithfully than the 
other two methods. 

Fig. 4 shows some reconstructed test images of the three methods on FERET 
database using the same bases as those in Fig. 3. Similar as in Fig. 3, the recon-
structed images of 2DNMF are most faithful compared with those of NMF and 
LNMF. 

4.4   Face Recognition 

In this subsection, we use the learned bases of NMF, LNMF and 2DNMF in section 
4.2 for recognition. The detailed method for recognition has been discussed in section 
3.3, and the recognition accuracy, which is defined as the percentage of correctly 
recognized images in test images, is used as the performance measure.  

The first experiment is recognizing test images on four face databases without 
occlusion and noise and the result is given in part of table 2. Clearly, 2DNMF 
obtains the best accuracy in that case on all the datasets. The second experiment is 
to test the recognition accuracy of the three methods under partial occlusions or 
noises. Fig. 5 gives some examples of different levels of occluded images and 
noisy images (here only the ‘Salt & Pepper’ noise is considered). Fig. 6 gives the 
averaged (20 times) results of the three methods on FERET database when occlu-
sions and noises are considered. From Fig. 6, 2DNMF outperforms NMF and 
LNMF in all cases. And because LNMF learns more localized parts than NMF, it 
achieves better result than NMF. 
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Fig. 5. Some examples of randomly occluded images and noisy images 

 

 

Fig. 6. Comparison of recognition accuracy of NMF, LNMF and 2DNMF under different size 
of occlusions (left) and different level of noises (right) 

  

  

Fig. 7. Comparisons of performances of NMF, LNMF and 2DNMF under different number of 
bases. For NMF and LNMF, number of bases is d*d, while for 2DNMF the both numbers of 
row and column bases are 2d. 
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4.5   The Effect of Number of Bases 

In this subsection, we evaluate the effect of the number of bases used in NMF, LNMF 
and 2DNMF respectively. For NMF and LNMF, we set the number of bases p = d*d, 
and varies d from 1 to 6. For 2DNMF, we set the both the numbers of row and col-
umn bases d=g=2*d, and also varies d from 1 to 6. The results on FERET database 
 are shown in Fig. 7. From Fig. 7, we see that when d is relatively small (e.g. d<4), the 
compression ratio of 2DNMF is much greater than those of NMF and LNMF, and the 
recognition of 2DNMF is apparently higher than those of NMF and LNMF. As the 
value of d increases, the differences on compression ratio and recognition accuracy 
among the three methods reduce, while the difference on execution time begins to 
increase. In nearly all cases, 2DNMF achieves much better performance than the 
other two methods. Remember the number of bases of NMF and LNMF are d*d and 
the number of bases of 2DNMF is 2d+2d=4d. Especially, when d=4, all the three 
methods use the same number of bases. However, from Fig. 7, we know that 2DNMF 
still achieves better performance than NMF and LNMF. 

5   Conclusions 

In this paper, we have proposed a new method, 2-D non-negative matrix factorization 
(2DNMF), for face representation and recognition. This work is aimed to improve the 
performance of original non-negative matrix factorization (NMF) in the following 
aspect: reducing the computational costs, enhancing the image reconstruction quality 
and improving the recognition accuracy with or without occlusions and noises. We 
achieved our goal through using a novel image representation method, i.e. using 2D 
bases instead of traditional 1D bases. Experimental results on four face databases 
convince our claim that 2DNMF improves NMF on the above three aspects. 

The number of bases (d and g) of 2DNMF is set by hand in advance, and if we 
change the values each time, we have to re-execute the whole algorithm, which will 
be very inconvenient in practice. We will investigate how to choose the values auto-
matically like in PCA. Another future work is to investigate further improving the 
recognition accuracy of 2DNMF. But how to use the learned bases and feature vectors 
via NMF for further analysis such as recognition is still an open problem. We also 
encounter that problem in 2DNMF, and maybe we have to integrate 2DNMF with 
other method for better recognition accuracy. 
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