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Abstract. We propose a new technique for simultaneously executing
face deformation modeling and 3D head pose estimation. Previous meth-
ods for estimating 3D head pose require a preliminary training stage for
the head model, and cannot start tracking the head pose until this stage
is complete. In contrast, our proposed method can acquire and refine a
user’s deformable head model in parallel with tracking the user’s head
pose. This allows progressive improvement in the accuracy of the esti-
mation of head pose and face deformation.

Our technique consists of three main steps. In the first step we esti-
mate the 3D head pose using a head model that is obtained automat-
ically. The second step finds true positions of feature points by using
the resulting poses of the first step. Finally, the basis vectors of face
deformation are calculated from the true positions of feature points to
acquire a new deformable head model as a linear combination of the basis
vectors.

The iteration of the three steps refines the deformable head model,
thus improving the accuracy of head pose estimation progressively. The
improvement has been successfully demonstrated via experiments.

1 Introduction

Tracking of 3D head pose is regarded as an important topic in computer vision.
So far a number of researchers have developed methods for estimating 3D head
pose. Many of those methods employ a rigid model that can only deal with
3D translation and rotation [1, 7, 14, 16, 20, 17]. Actually, the human face is of-
ten deformed significantly due to various factors, for example, change of facial
expression, which causes deterioration of accuracy or failure of tracking.

This has motivated work that uses a model to represent deformation of a user’s
face, that is, a deformable head model. Black and Yacoob segment the human
face into rigid parts and deformable parts, and estimate head pose and face
expression with the segmented model [2]. Several researchers use 3D deformable
surface models, for example mesh models, for estimating fine deformation of a
user’s face [10, 6, 3, 18, 5]. Recently, the Active Appearance Model (AAM) and
similar methods have been studied by many researchers. Matthews and Baker
presented good survey on AAM [15]. While those methods have the potential for
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good estimation, some sort of 3D geometrical model, for example the deformable
head model itself, must be prepared with manual feature extraction or 3D laser
scanning. An approach for solving this problem is automatic tracking of several
feature points, and then analyzing the coordinates of the tracked points for
acquiring basis shape vectors of face deformation. In this approach, Gokturk
et al. utilizes the Principal Component Analysis (PCA) [8], and Del Bue et al.
makes use of the non-rigid factorization technique [4].

The previously proposed methods that use a deformable head model as de-
scribed above have a common problem: they require a preliminary stage to ac-
quire the head model. Those methods cannot start real-time tracking of 3D head
pose before completing that stage, and they do not have a framework for refining
the deformable head model using estimation results.

In this paper, we propose a new method for acquiring and refining a user’s
deformable head model in parallel with estimating the user’s head pose in real
time. This means that our method requires no cumbersome preparation for con-
structing a head model. The method for acquiring a deformable head model
consists of three steps. In the first step we estimate the 3D head pose and
the face deformation using a head model that is obtained automatically. Sec-
ond, we find true positions of feature points by using the resulting poses of the
first step. Finally, the basis vectors of face deformation are calculated from the
true positions of the feature points to acquire a new deformable head model
as a linear combination of the basis vectors. Since the newly acquired model
is used for the next estimation of the 3D head pose and face deformation,
our method can progressively improve the accuracy of estimating pose and
deformation.

The main contributions of our study are summarized in the following three
points: 1) real-time estimation of 3D head pose without a preliminary training
stage, 2) real-time refinement of a deformable head model, and 3) progressive
improvement of the accuracy of estimating head pose and face deformation. The
improvement has been successfully demonstrated via experiments.

The reminder of this paper is organized as follows. In Section 2, we describe
our method for estimating head pose and face deformation. We then propose
a method for acquiring a deformable head model in Section 3. We show the
experimental results of our method in Section 4. Finally, we conclude this paper
in Section 5.

2 Real-Time Estimation of 3D Head Pose with
Deformable Head Model

In this section, we describe our method for estimating 3D head pose and defor-
mation from image inputs from two calibrated cameras1, the left camera and
the right camera, that incorporate a deformable head model.

1 Although we assume a two-camera configuration here, we can increase the number
of cameras without altering the algorithm of our proposed method.
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2.1 Deformable Head Model

In our method, the head model has K feature points, and each feature point
consists of two components: the 3D position in the model coordinate system
fixed to a user’s head at the frame t, and two small image templates. Let M t be
the 3K-dimensional shape vector that consists of 3D coordinates of K feature
points in the model coordinate system. Also, TL and TR are defined as the image
template sets for the left camera and the right camera respectively. Here, K is
set to 10 to represent these ten feature points: the inner and outer corners of
both eyes, both corners of the mouth, both nostrils, and the inner corner of both
brows.

The shape vector M t of our deformable head model is formulated as:

M t = M̄ + Mat (1)

where M̄ is the mean shape vector, M is the 3K×B basis shape matrix, which
consists of B columns of the basis shape vectors, and at is a B-dimensional coef-
ficient vector of M. Here, the shape M t is represented as a linear combination
of the constant basis shape vectors corresponding to the columns of M in a sim-
ilar way to other methods [8, 15, 5]. The limited size of B, B = 5 in this method
enables us to represent the face deformation by a small number of parameters
in at, We will describe how the basis matrix M and the mean vector M̄ are
obtained later in Section 3.

2.2 Particle Filter for Estimating Head Pose and Face Deformation

During tracking we produce successive estimation of a (6+B) dimensional state
vector xt = (pT

t , aT
t )T for each image frame t. Here, pt is the translation and

the rotation from the world coordinate system to the model coordinate system.
For pose estimation we make use of the deformable head model and the particle
filtering technique.

A particle filter [9] represents the probability density function (PDF) of a
state as a set of many discrete samples, each sample with a corresponding
weight. Hence, this sample set can approximate an arbitrary PDF including
non-Gaussian ones. Our method uses the sample set {(s(i)

t ; π(i)
t )}(i = 1 . . .N),

which consists of N discrete samples s
(i)
t in the (6 + B) dimensional state space

and their corresponding weights π
(i)
t .

The main flow of our estimation method is shown in Fig.1. We first generate
N new samples {s

(i)
t } based on the sample set {(s(i)

t−1; π
(i)
t−1)} and the following

motion model on the assumption of a uniform straight motion of a user’s head
between each pair of successive image frames:

s
(i)
t = s′

t−1 + τvt−1 + ω (2)

where s′
t−1 is a chosen sample from {(s(i)

t−1; π
(i)
t−1)}, τ is the time interval between

frames, vt−1 represents the velocity of the pose that is calculated at the end of
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Fig. 1. Flow of estimating head pose and deformation
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Fig. 2. Flow of acquiring deformable head model

the previous estimation step t − 1, and ω is system noise. In addition, ω is a
(6 + B) dimensional Gaussian noise vector with a zero mean, and the upper-left
6 × 6 elements of its covariance matrix corresponding to the pose parameters
are adaptively controlled depending on the velocity of the head. We have found
that such control of system noise improves the robustness against sudden abrupt
motion while maintaining the high accuracy of estimating head pose at the same
time [17]. On the other hand, the rest of the covariance matrix is a diagonal
matrix whose diagonal elements are represented by a B-dimensional constant
vector β. Each element of β is proportional to the corresponding element of the
standard deviation vector µ of at which is calculated by PCA as explained in
Section 3.3.

After we obtain new samples {s
(i)
t } we compute the weight π

(i)
t by evaluating

each sample s
(i)
t based on the set of current input images.

Given a sample s
(i)
t , we apply the normalized correlation-based function

Nh(s(i)
t ) with the following processes. In this function, the shape of the head
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model is first deformed by the deformation elements a
(i)
t of s

(i)
t using Eq.(1).

The deformed shape is then translated and rotated depending on the pose el-
ements p

(i)
t of s

(i)
t . After the 3D feature points of the transformed shape are

projected onto the image plane h, the sum of matching scores is calculated be-
tween the neighboring region of each projected 2D point and the corresponding
template included in the template set Th by normalized correlation. The sum is
given as the output of Nh(s(i)

t ).
We apply Nh(s(i)

t ) to all image planes h to produce a total score c
(i)
t (Eq.(3)).

We then calculate the weight π
(i)
t from the total score c

(i)
t using a Gaussian

function as in Eq.(4). Finally, each weight π
(i)
t is normalized so that the sum of

the π
(i)
t is equal to 1.

c
(i)
t =

∑

h∈{L,R}
Nh(s(i)

t ) (3)

π
(i)
t ∝ exp

⎛

⎜⎝−

(
2K − c

(i)
t

)2

2σ2 − 1
2

B∑

b=1

(
a
(i)
t,b

µb

)2
⎞

⎟⎠ (4)

Here, σ is the standard deviation of the Gaussian function and is empirically
set to 3.0, a

(i)
t,b is the b-th element of a

(i)
t , and µb is the b-th element of µ. Note

that in Eq.(4) we multiply the function with regard to a
(i)
t by using standard

deviation vector µ in order to prevent excessive face deformation.
We finally calculate the state vector xt representing the current pose pt and

deformation at by using the sample set {(s(i)
t ; π(i)

t )}. In this calculation, we
aggregate only the neighborhood of the sample with the maximum weight using
the following equation:

w
(i)
t =

{
1 if ‖s

(i)
t − s

(M)
t ‖ < d

0 else
(5)

xt =
∑N

i=1 s
(i)
t π

(i)
t w

(i)
t∑N

i=1 π
(i)
t w

(i)
t

(6)

where π
(M)
t is the maximum of {π

(i)
t }, and s

(M)
t is the sample corresponding to

π
(M)
t . In the current implementation, the value of d is empirically determined.
We also calculate the velocity vt of xt for the estimation of the next frame:

vt =
xt − xt−1

τ
(7)

where the last B elements of vt corresponding to face deformation are set to 0,
because the variation of the face deformation parameters does not match well
with the assumption of uniform straight motion.
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2.3 Halfway Partitioned Sampling

We could obtain the new sample set {(s(i)
t ; π(i)

t )} using the procedure described
above. Actually, instead of the procedure described above, we apply the follow-
ing sampling and weighting method which is similar to the partitioned sampling
technique [13] in principle. We call this sampling technique the halfway parti-
tioned sampling.

According to our observations, the motion of the human head and face can be
categorized into two typical situations: rigid transformation of head pose with
little face deformation, and face deformation with little transformation of head
pose. For efficiently handling such situations, we first apply the drift of the pose
elements from Eq.(2) to just half of the total samples; to the other half, we apply
only the deformation elements’ operation from Eq.(2). Then we determine the
weights of those samples by Eq.(3) and (4).

After that, we apply a standard resampling technique, that is total resampling
in the all dimensions, to the sample set {(s(i)

t ; π(i)
t )} to improve the accuracy of

the PDF. Even if face deformation and rigid transformation occur simultane-
ously, our method can handle such cases owing to this resampling process.

3 Method for Acquiring Deformable Head Model

In this section, we explain the method for acquiring the deformable head model
of a user’s head. This method consists of an automatic initialization step and
three model acquisition steps as shown in Fig.2.

In the automatic initialization step, we construct the rigid head model as the
initial head model. This initialization step is described in Section 3.1. After the
initialization, we execute the three steps for acquiring a deformable head model.
At the first step, we estimate the 3D head pose pt and face deformation at

from input images in real time, as described in Section 2. In the second step,
we find the true positions of feature points in each input frame by using pt and
at, as described in Section 3.2. Finally, in the third step, we calculate the mean
shape vector M̄ and the basis shape matrix M in Eq.(1) by using the PCA as
described in Section 3.3.

The new deformable head model is then used for the next estimation of 3D
head pose and face deformation in the first step. This framework allows progres-
sive improvement of the accuracy for estimating head pose and face deformation
in parallel with refining a user’s deformable head model.

3.1 Initial Acquisition of Head Model

The initialization step automatically constructs a 3D rigid model of a user’s
head. In this step, we utilize the OKAO vision library developed by OMRON
Corporation [12]. This library is used for detecting a face and 6 facial feature
points, that is, the inner and outer corners of both eyes, both corners of the
mouth, from input images. The other feature points are detected as the distinct
features [19] satisfying certain geometrical relations given a priori.
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We first try to detect those feature points from the left image, and then search
for the corresponding points based on epipolar constraints from the right image.
After that, the 3D shape M is calculated based on triangulation, and the 3D
shape and image template set TL, TR are registered together.

Note that we cannot estimate the deformation vector at when we have only
the rigid model just after this initialization step. In such situation, at is set to
zero vector.

3.2 Finding True 3D Positions of Feature Points

The purpose of this step, the second step of acquiring a deformable head model,
is to find the true 3D positions of feature points from each input image frame.
For constructing an accurate deformable head model, we have to collect the
exact positions of each feature point. However, these positions do not necessarily
coincide with the positions given in M t which are calculated from Eq.(1) and
the estimated at.

For this purpose, we make use of the feature tracking technique [11, 19]. Let
M ′

t be the 3K-dimensional vector that represents the true 3D coordinates of K
feature points in the model coordinate system. For reliably finding M ′

t, we refer
to pt and at which are estimated in the first step (Section 2).

At first, we define a function Ph that first transforms M ′
t by the head pose

pt and then projects the transformed points onto the image plane h:

mh,t = Ph(pt, M
′
t) (8)

where mh,t is a 2K-dimensional vector that consists of the 2D coordinates of
K projected points. We also define a K-dimensional intensity vector Ih

t (mh,t)
whose k-th element is the intensity of the k-th 2D position represented by mh,t

in the input image frame t from the camera h.
By using those definitions, we produce the energy function EI

t to minimize as
follows:

EI
t =

∑

ROI
h∈{L, R}

{
ρ‖Ih

t (mh,t) − Ih
t−1(mh,t−1)‖2

+‖Ih
t (mh,t) − Ih

1 (mh,1)‖2

}
(9)

Here, the first term in Eq.(9) is the standard energy function representing the
difference between the K Regions Of Interest (ROIs) in the current image Ih

t

and their corresponding ROIs in the previous image Ih
t−1. In contrast, the second

term works for the minimization of the difference between the current image Ih
t

and the first image Ih
1 . This term is useful for avoiding the drift of feature

points as used also in [8]. In addition, ρ is a constant for determining the ratio
between the effect of the first term and that of the second term. In the current
implementation, ρ is empirically set to 4, and the size of ROI is 16 × 16.

We also introduce the additional term EM
t based on the estimated shape

M t. This term plays a very important role for preventing failure of tracking the
feature points especially when a user’s head pose changes significantly.
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EM
t = ‖M ′

t − M t‖2 (10)

This function means that we find each point of M ′
t in the neighboring region of

each point of M t. Such method for finding the point reduces significantly the
probability of losing tracking of feature points. Furthermore, as the deformable
head model is refined more accurately, the minimization of EM

t becomes more
effective for finding the correct 3D coordinates of feature points.

Hence, we minimize the following energy function for the purpose of
finding M ′

t:

Et = EI
t + εEM

t (11)

where ε is a constant, and it is empirically set to 2000.
M ′

t is then found by minimizing Et in a similar way to [8]. That is, we
calculate the difference dM ′

t = M ′
t − M ′

t−1 successively in each input frame.
This is achieved by setting the derivative of Et with respect to dM ′

t to 0.
While the technique described above yields a good tracking result M ′

t, the
components caused by rigid transformation are occasionally involved in M ′

t.
This might lead to incorrect deformable head models that cannot appropriately
distinguish face deformation from rigid transformation.

For this reason, we need to eliminate the components of transformation in-
volved in M ′

t in a similar way to the method used in [15]. We first calculate
the mean shape M̄

′ of the series from M ′
1 to M ′

t−1. Then, we apply 3D trans-
lation and rotation to M ′

t so that the sum of the square distance between the
corresponding points of M ′

t and M̄
′ is minimized. While this operation can

eliminate the unwanted components due to rigid transformation, it might have
an adverse affect on the correctly calculated M ′

t. Therefore, we apply this op-
eration only if necessary: when the distance between M ′

t and M t exceeds the
constant threshold.

3.3 Acquisition of Deformable Head Model by PCA

In the third step of acquiring a deformable head model, we calculate the mean
shape vector M̄ and the basis shape matrix M in Eq.(1). Our method applies
the PCA to the accumulated correct shape set {M ′

t}; then uses the first B
basis vectors to form M for representing face deformation in a similar way
to the method by Gokturk et al. [8] This contributes to preventing unfeasible
deformation of the human face as well as reducing the number of dimensions of
the state vector xt.

Here, we briefly describe how to acquire M̄ and M. To be precise, {M ′
t}

consists of only the shape M ′
t when a user is facing toward the cameras judging

from the estimated pose pt; this is because we desire to use as reliable data as
possible for acquiring the deformable head model. We first calculate the mean
shape vector M̄ from {M ′

t}. Then, in {M ′
t}, we count the M ′

t satisfying the
condition where the distance between M ′

t and M̄ exceeds the predetermined
threshold. If this number exceeds the predetermined number L (L = 600 in the
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current implementation), we apply the PCA to {M ′
t}. This condition is neces-

sary for judging whether {M ′
t} includes sufficient amount of shape deformation.

By the PCA-based operation, we obtain the basis shape matrix M and the
B-dimensional standard deviation vector µ, each of whose elements represents
the standard deviation of its corresponding column of M. µ is equivalent to
the standard deviation of distribution of at in Eq.(1). Thus, µ is used for de-
termining the variance of random noise in Eq.(2) and the weight of each sample
in Eq.(4).

4 Experimental Evaluation

We have conducted experiments to evaluate the performance of our proposed
method. Our system consists of a Windows-based PC with Intel Pentium4 3.0-
GHz and two CCD black-and-white digital video cameras connected via IEEE-
1394. Each image frame was captured at the resolution of 640 × 480. The size
of image templates for normalized correlation was set to 16 × 16, and a set of
1000 samples was used for particle filtering. Our method runs at 30 frames per
second with this configuration, including the 1st step and the 2nd step of Fig.2.
In addition, the 3rd step of Fig.2, that is, the PCA-based calculation of the shape
vectors, can also execute at very short execution time without spoiling real-time
performance (30fps) of the proposed system.

We prepared an image sequences of a user moving his head pose with occa-
sional face deformation. This image sequence was 60 seconds long and therefore
contained 1800 frames. By using the first 1200 frames, the user’s deformable
head model was acquired with our proposed method. Then, we estimated the
3D head pose and face deformation from the last 600 image frames using the
acquired deformable head model. For the first approximately 150 out of 600
image frames, the user’s head moved by rigid transformation accompanied by
little face deformation. After that, the user moved his head accompanied by face
deformation, for example, opening and closing his mouth.

For comparison, we also conducted head pose estimation from the same 600
image frames using the rigid head model. This rigid head model was acquired
from the initialization step in Section 3.1. We compared those two estimation
results.

Fig.3 shows the estimation results using the rigid head model and the de-
formable head model. In this figure, the thin lines show the results with the
rigid head model, and the thick lines represent the ones using the deformable
head model. For the first 150 frames, both estimation results are similar each
other. This means the deformable head model can estimate rigid transformation
without generating unwanted face deformation. On the other hand, we can see
the clear difference between both results for the remaining 450 frames. As shown
in this figure, the results using the deformable model are far more stable than
the ones using the rigid model. Hence, the deformable head model constructed
by our proposed method has the capability to handle the face deformation in
contrast to the rigid head model.
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Fig. 3. Estimation results with rigid and deformable head model. Translation consists
of x, y, and z: x represents the horizontal motion, y shows the vertical motion, z
corresponds to the depth-directional motion. Rotation consists of roll, yaw, and pitch:
roll is the rotation around the axis toward the front, yaw corresponds to the pan-
directional rotation, and pitch represents the tilt-directional rotation.
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Fig. 4. Resulting images: the images of the left column are the estimation results using
the rigid head model, and the images of the right column are the estimation results
using the deformable head model

Fig.4 shows the resulting images. In this figure, we have drawn the model co-
ordinate axes corresponding to the estimated 3D head pose, and the 2D points
onto which the estimated shape M t is projected. The left column of the figure
is the results using the rigid head model, and the right column shows the results
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using the deformable head model. Also from those results, we can confirm that
our deformable head model handles face deformation successfully.

We can see the video of this experiment on the Web. 2 This video demonstrates
the stability of pose estimation with our deformable head model.

5 Conclusions

In this paper, we proposed a new method for acquiring and refining a user’s
deformable head model in parallel with estimating the user’s 3D head pose in real
time. The main contributions of our study are summarized in the following three
points: 1) real-time estimation of 3D head pose without a preliminary training
stage, 2) real-time refinement of a deformable head model, and 3) progressive
improvement of the accuracy of estimating head pose and face deformation. The
improvement has been successfully demonstrated via experiments. We believe
that this work is the first example to achieve simultaneous execution of face
deformation modeling and 3D head pose estimation in real-time.

For further study, we are planning to use the Candid Covariance-free Incre-
mental PCA (CCIPCA) [21] that allows basis vectors to be updated at each
input image frame.
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