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Abstract. Discriminatory information about person identity is multimodal. Yet, 
most person recognition systems are unimodal, e.g. the use of facial appearance. 
With a view to exploiting the complementary nature of different modes of 
information and increasing pattern recognition robustness to test signal 
degradation, we developed a multiple expert biometric person identification 
system that combines information from three experts: face, visual speech, and 
audio. The system uses multimodal fusion in an automatic unsupervised 
manner, adapting to the local performance and output reliability of each of the 
experts. The expert weightings are chosen automatically such that the reliability 
measure of the combined scores is maximized. To test system robustness to 
train/test mismatch, we used a broad range of Gaussian noise and JPEG 
compression to degrade the audio and visual signals, respectively. Experiments 
were carried out on the XM2VTS database. The multimodal expert system out 
performed each of the single experts in all comparisons. At severe audio and 
visual mismatch levels tested, the audio, mouth, face, and tri-expert fusion 
accuracies were 37.1%, 48%, 75%, and 92.7% respectively, representing a 
relative improvement of 23.6% over the best performing expert. 

1   Introduction 

Biometrics is a field of technology devoted to verification or identification of 
individuals using physiological or behavioral traits. Verification, a binary 
classification problem, involves the validation of a claimed identity whereas 
identification, a multi-class problem, involves identifying a user from a set of enrolled 
subjects; and becomes more difficult as the number of enrollees increases. In audio-
video processing, the video modality lends itself to two experts, the face expert and 
the visual speech expert (referred to as the mouth expert here). 

Deployed person recognition systems are generally unimodal. Face based 
identification is susceptible to pose/illumination variation, occlusion, and poor image 
quality [1], [2]. Audio-based identification achieves high performance when the 
signal-to-noise ratio (SNR) is high. Yet, the performance degrades quickly as the test 
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SNR decreases (referred to as a train/test mismatch), as shown in [3] and elsewhere. 
Visual speech based person identification under performs audio and face based 
experts, and is not thought of as a stand-alone person recognition expert. 

To combat these limitations of unimodal audio-video based experts, a multimodal 
fusion approach can be adopted. This can both improve robustness and overall 
performance. The audio, face, and mouth modalities contain non-redundant, 
complementary information about person identity. For example, it was reported in [2] 
that the performance of the FaceIt face recognizer [4] is extremely sensitive to eye 
occlusion (dark sunglasses), yet the effect of mouth occlusion (scarf) was 
significantly lower. This provides motivation for combining the FaceIt and mouth 
experts, i.e. combining an expert emphasizing eye information with an expert 
emphasizing mouth information. Also, it is expected that, for person identity, audio 
and video information are complementary. 

In order to exploit this complementary information, issues arise, such as how to 
account for the reliabilities of the modalities and at what level to carry out the fusion. 
Only a few studies have investigated the combination of audio, face, and temporal 
mouth information for the purpose of person recognition [5], [6], [7]. The majority of 
studies are bi-modal, employing either the audio and face modalities, [8], or, the audio 
and temporal mouth modalities (ignoring face) [3], [9], [10]. 

The audio, mouth, and face experts were combined for person recognition in [5], 
[6], [7]; yet none of these studies employed expert weights that adapt automatically to 
local test conditions. In [5], fusion was carried out at the decision level, thus no 
individual expert reliability information could be considered. The weighted sum rule 
was employed in [7], however, the weights could only be varied using manual 
supervision. In [6], the weights were global and set empirically. To the best 
knowledge of the authors, no person recognition system exists, that combines the 
audio, mouth, and face experts in an automatic unsupervised manner, while adapting 
to the local performance of each expert. 

The aim of this study was to develop a tri-expert person recognition fusion system, 
combining audio, mouth sequence, and face information in an automatic unsupervised 
manner. Specifically the tri-expert information was to be combined, such that the 
fused system provided improved performance beyond existing systems, exhibiting 
higher robustness to mild through adverse test levels of both audio and visual (face 
and mouth) noise (train/test mismatch). Therefore, to fully fulfill the aims of this 
study, the contribution from each source of information to the final decision must be 
weighted dynamically by taking the current reliability of each source into account. 

This paper is organized as follows. Sections 2 and 3 describe how person 
identification based on audio, mouth features, and face was performed. Section 4 
investigates classifier fusion and develops the proposed fusion strategy. In Section 5, 
the audio-video corpus employed and its’ augmentation for the specific experiments is 
described. In Section 6, we present results of extensive evaluations examining 
individual expert performance and fusion performance. The results are discussed in 
Section 7 and finally in Section 8, conclusions from the results are drawn. 
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2   Audio Identification 

Audio based speaker identification is a mature topic, [11]. Standard acoustic methods 
are employed here. For the feature extraction, the audio signal was divided into 
frames using a Hamming window of length 20 ms, with an overlap of 10 ms. Mel-
frequency cepstral coefficients (MFCCs) of dimension 16 were extracted from each 
frame [12]. The energy [12] of each frame was also calculated and used as a 17th static 
feature. Static features refer to features extracted from individual audio frames that do 
not depend on other frames. Seventeen first order derivatives or delta features were 
calculated using WD adjacent static frames, where WD is the delta window size. The 
delta frames were appended to the static audio features to give an audio feature vector 
of dimension 34. These are calculated using HTK [12], employing a WD value of five 
frames. Cepstral mean normalization [12] was performed on the audio feature vectors 
(to each audio utterance). 

A text dependent speaker identification methodology was tested. For text 
dependent modeling [13], the same utterance is spoken by the subject for both 
training and testing. It was employed, as opposed to text independent modeling [11], 
due to its suitability to the database used in this study (see Section 5). The N subject 
classes Sn, n=1,2,…,N, are represented by N speaker hidden Markov models (HMMs) 
denoted by λn, n=1,2,…,N. The speaker utterance that is to be classified is a sentence, 
which is represented by a sequence, OA, of feature vectors or observations denoted by, 

},,...,,...,{ 21 ATtA ooooO =  (1) 

where ot is the speech frame at time t and TA denotes the number of observations. For 
HMMs, the output scores are in log-likelihood form, denoted by ll(OA|λn). 

3   Video Based Identification 

Visual speech based speaker recognition differs from face recognition in two major 
ways. Firstly, face recognition employs the entire face area, conversely, visual based 
speaker recognition employs a region of interest about the speakers’ mouth, where 
most of the speech information is contained. Secondly, for face recognition, a gallery 
of static face images forms a template, whereas for visual based speaker recognition, 
it is attempted to model the temporal characteristics of the visual speech signal. 

3.1   Mouth Features Expert 

It has been consistently shown in several visual speech studies, that pixel based 
features outperform geometric features [14], [15]. Geometric features/lip-contours 
require significantly more sophisticated mouth-tracking techniques compared to just 
locating the mouth region of interested (ROI) for pixel-based features. This may be 
difficult, particularly when the visual conditions are poor. Pixel based features employ 
linear transforms to map the image ROI into a lower dimensional space, removing the 
redundant information while retaining pertinent speech information. Many types of 
transforms are examined in the literature, including the discrete cosine transform 
(DCT) [14], [16], discrete wavelet transform (DWT) [14], and principal component 



Robust Automatic Human Identification Using Face, Mouth, and Acoustic Information 267 

 

analysis (PCA) [15]. The DCT is one of most commonly employed image transforms. 
It has good de-correlation and energy compaction properties and has been found to 
outperform other transforms [15]. The visual mouth features were extracted from the 
mouth ROI, which consists of a 49×49 color pixel block (see Fig. 3). To account for 
varying illumination conditions across sessions, the gray scale ROI was histogram 
equalized and the mean pixel value was subtracted. The two dimensional DCT was 
applied to the pre-processed gray scale pixel blocks. 

Considering that most of the information of an image is contained in the lower 
DCT spatial frequencies, the first 15 non-zero DCT coefficients were selected, using a 
mask that selects the coefficients in a tri-angular fashion (upper-left region of the 
transform matrix) [14]. This gives the static features. The visual sentences were 
modelled using the same HMM methodology as described for the audio sentences. 
Dynamic features (frame derivatives of the static features) were employed in previous 
studies, but exhibited very poor robustness to video degradation, compared to using 
just static features [17], and were not employed here. We have TV visual observations 
(generally TA ≈ 4xTV) and a sequence, OM, of visual mouth speech feature vectors or 
observations denoted by, 

}.,...,,...,,{ 21 VTtM ooooO =  (2) 

Each mouth expert HMM gives the log-likelihood ll(OM|λn), that the observation 
sequence OM was produced by the nth mouth expert model λn. 

3.2   Face Expert 

Most current face recognition algorithms can be categorized into two classes, image 
template-based or geometry feature-based. The template-based methods compute the 
correlation between a face and one or more model templates to estimate the face 
identity. Statistical tools such as Support Vector Machines (SVM) [18], Linear 
Discriminant Analysis (LDA) [19], [20], Principal Component Analysis (PCA) [21], 
[22], Kernel Methods [23], and Neural Networks [24] have been used to construct a 
suitable set of face templates. While these templates can be viewed as features, they 
mostly capture global features of the face images. Facial occlusion is often difficult to 
handle in these approaches. 

The geometry feature-based methods analyze explicit local facial features, and 
their geometric relationships. Cootes et al. have presented an active shape model in 
[25] extending the approach by Yuille [26]. Wiskott et al. developed an elastic bunch 
graph matching algorithm for face recognition in [27]. Penev et. al [28] developed 
PCA into Local Feature Analysis (LFA) which is the basis for the commercial face 
recognition system FaceIt. LFA addresses two major problems of PCA. The 
application of PCA to a set of images yields a global representation of the image 
features that is not robust to variability due to localized changes in the input. 
Furthermore the PCA representation is non topographic, so nearby values in the 
feature representation do not necessarily correspond to nearby values in the input. 
LFA overcomes these problems by using localized image features in form of multi-
scale filters. The feature images are then encoded using PCA to obtain a compact 
description. 



268 N.A. Fox et al. 

 

FaceIt was among the top performing systems in a number of independent 
evaluations [1], [2], [29]. It has been shown to be robust against variations in lighting, 
facial expression and lower face occlusion. Each of the registered N subjects is 
represented by a face template λn. Unlike for the audio and mouth experts employed 
here, FaceIt gives a confidence score, rather than a log-likelihood, denoted here by 
l(OF|λn), i.e. the likelihood that the face observation OF belongs to the nth face 
template λn. For FaceIt, the set of N templates, λn, n=1…N, receives maximum and 
minimum scores of ten and zero respectively, i.e. l(OF|λn)∈[0,10]. 

4   Classifier Fusion 

The fusion of audio and video information falls into two broad categories, early 
integration and late integration [13]. Early-integration consists of concatenating the 
feature vectors, from the different modalities, to give a combined larger dimensional 
feature vector. This has the disadvantage of high dimensionality and the inability to 
take the reliability of the individual modalities into account. Furthermore, features 
from some experts may not be suitable or even available for fusion with speech-based 
features, e.g. the FaceIt face recognizer. 

Late integration can occur at the score level or at the decision level; and has 
several advantages: a) late integration involves lower data dimensions than early 
integration, b) early integration is less robust to sensor failure, c) for late integration, 
it is more straightforward to add new experts, d) late integration allows the fusion of 
modalities possessing different temporal synchrony e.g. face and audio. 

A significant amount of information is lost when the expert confidence scores are 
mapped to the class labels (decisions). This is why that, if the individual expert 
reliabilities are to be considered, fusion should occur at the score and not the decision 
level, as the score level information is crucial for discerning the reliability of each 
expert. For decision fusion, the number of classifiers should be higher than the 
number of classes. This is reasonable for person verification. For person 
identification, the number of classes is large, rendering decision fusion unsuitable. 

Two typical methods of combining the output scores from the NE experts are the 
product and the sum rules [30]. The product rule consists of multiplying the NE scores 
together. It is sensitive to expert errors; in the extreme case, if any single expert 
produces a close to zero score for a specific class; the combined score for that class 
will be close to zero. The sum rule is less sensitive to expert errors and will 
outperform the product rule when the expert errors are large. The robustness of the 
sum rule to expert errors was shown theoretically and verified experimentally in [30]. 

Experts scores can take many forms such as posteriors, likelihoods, and distance 
measures. Non-normalized scores cannot be integrated sensibly in their raw form, as 
it is impossible to fuse incomparable numerical scales. The min-max technique shifts 
and scales the scores into the range [0,1]. Given a set or a list of N scores {Sn}n=1…N 
corresponding to N class labels the normalized score is calculated as: 
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where Smax and Smin are the maximum and minimum scores from the set {Sn}. While 
been straightforward to implement the min-max norm, has been found to have 
comparable performance to more complicated methods [31], hence, it was used for 
experiments reported here. Its’ poor robustness to outlier scores can be circumvented 
(in the person identification scenario) by considering only the top M ranked scores for 
normalization. This omits the worst (outlier) expert scores. 

4.1   The Proposed Method 

The fusion strategy was first developed for fusing any two experts, and was then 
extended to include an additional third expert. Each expert provides a list of N 
likelihoods: {l(Om|λn)}n=1...N with m ∈ {A, M, F}. These are ranked into descending 
order and normalized into the range [0,1] using Eqn. (3), applied to only the top M 
scores. Using a high value for M may retain the worst s(outlier) scores, which could 
unfairly skew the distribution. A very low value, would result in information loss; the 
limit been M=1, where all confidence information has been lost. Tests showed that 
the system performance degraded for M<50 and M>100. A value for M of 75 was 
employed for this study1. This value may depend on N, the number of classes. The set 
of M ranked normalized scores is denoted by {S(Om|λi)}i=1...M. We have the weighted 
sum rule (for the specific case of two experts): 
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where S(O1,O2|λi) represents the combined likelihood that the observations O1 and O2 
were produced by the subject class λi; and αm is the weight of the mth expert, subject to 
the constraints that ∑αm=1 and 0 ≤ αm ≤ 1 for m=1...NE. Given that the weights αm are 
variable, some sort of reliability measure must be devised, which takes the confidence 
associated with each expert into account, and is used to determine the αm values. 

Expert reliability parameters can be calculated at the signal or at the score level. 
Signal based reliability measures are generally acoustic based [32] which have the 
disadvantage of having no corresponding video reliability measure. Even if an 
observation signal is of high quality, the expert may still give a misclassification for 
two (non-exhaustive) reasons: 1) the correct subject class may be indistinguishable for 
the given expert, and may be consistently misclassified, 2) the model/template for the 
correct subject may be a poor representation. A signal based reliability measure 
cannot take these into account. The distribution of the set of expert confidence scores 
contains information not only about the integrity of the observation signal, but also 
the reliability of that experts’ decision. Taking these points into account, it is better to 
calculate the reliability measure based on the expert scores. 

If the highest ranked class receives a high score and all of the other classes receive 
relatively low scores, then the confidence level is high. Conversely, if all the classes 
receive similar scores, the confidence is low. Various metrics exist, which can be used 
to capture this confidence information. Examples include, score entropy [32], 
dispersion [32], variance [9], and difference [9]. For a test observation vector Om, we 
 

                                                           
1 The overall performance did not vary significantly for 50<M<100. 
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have the set of M ranked normalized scores {S(Om|λi)}i=1...M. The difference, ξ, 
between the two highest ranked confidence scores is calculated as 

),|()|( 21 λλξ mmm OSOS −=  (5) 

where λ1 and λ2 are the subject classes achieving the highest and second highest ranks 
respectively, and m denotes the expert. This metric was employed for this study. 

A mapping between the reliability estimates and the expert weightings is required. 
In [16], [32] a sigmoidal mapping was used to map the reliability estimates to the 
fusion weights. The sigmoidal parameters require training, which is difficult when the 
amount of audio-visual data is scare, and may be specific to the noise type. Another 
option is to form bins of evaluation reliability values and the corresponding αm values 
(found by exhaustive search), effectively a lookup table, but again this requires 
extensive training. Considering the small amount of audio-visual training data 
generally available, it was decided to use a non-learned approach to map the 
reliability estimates to the αm values. This was carried out as follows: 

For each specific identification trial (user interaction), the system is presented with 
two expert observations, O1 and O2. 

1. The two experts each generate a set of N match scores, {l(O1|λn)} and 
{l(O2|λn)}, which are normalized to give the sets of M ranked scores 
{S(O1|λi)}i=1...M and {S(O2|λi)}i=1...M. 

2. The fusion parameter α2 is varied from 0 to 1 in steps of 0.05. For each of 
these α2 values, the expert score lists {S(O1|λi)} and {S(O2|λi)} are combined 
using Eqn. (4) (with α1=1-α2), to give the combined set of N scores 
{S12,n}={S(O1,O2|λn)}n=1...N. We have N, not M, S12 scores here because the 
sets of M normalized scores arising from experts 1 and 2 will in general 
correspond to different sets of M subject classes; some of the N S12 scores 
will be zeroed valued. 

3. The combined score set is subsequently normalized as before, to give 
{S(O1,O2|λi)}i=1...M, and the combined score reliability estimate, denoted by 
ξ12, is calculated, as in Eqn. (5). ξ12 can be thought of as a linear weighted 
combination of the individual expert reliabilities ξ1 and ξ2 because 
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(6) 

where λ1 and λ2 are the subject classes achieving the highest and second 
highest ranks respectively, as before. However, the ξ12 value is calculated 
using Eqn. (5) and not Eqn. (6) because the set of scores {S12,n} is 
normalized, and hence Eqn. (6) does not hold exactly. 

4. We choose the α2 value that maximizes ξ12 for the given test according to 
Eqn. (7), to give the fusion parameters α2opt and α1opt = 1-α2opt. The 
maximum ξ12 value should correspond to the combined scores of highest 
confidence, i.e. maximizes the score separation between the highest ranked 
class and the other classes. Finally, we combine {S(O1|λi)} and {S(O2|λi)} as 
in Eqn. (4) (using α1opt and α2opt), to form the combined score list {S12,n}opt, 

n=1,…,N which is used to make the final identification decision. 
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It should be noted that the above procedure is carried out for every identification 
trial, and thus the fusion weights are determined online and automatically in an 
unsupervised manner. Also, O1/O2 above can represent any of m ∈ {A, M, F}. For 
illustration, Fig. 1 gives four examples of the specific case of fusing the scores arising 
from audio and mouth observations. The four examples show that the weight selection 
procedure has the ability to adapt the weights to the reliability of each expert. 
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Fig. 1. The variation of the combined score reliability estimate w.r.t. α2; and the individual 
expert reliability estimates are shown for four scenarios: (a) expert 1 is more reliable (selected 
α2opt = 0.15), (b) expert 2 is more reliable (α2opt = 0.9), (c) experts 1 and 2 have similar 
reliabilities (α2opt = 0.5), and (d) expert 2 has a very low reliability (ξ2 = 8x10-4), and α2opt = 0 

4.2   Fusion of the Three Experts 

The bi-expert fusion method developed above can be employed to combine the output 
scores from any pair of person identification experts. In order to carry out tri-expert 
fusion of the audio, mouth, and face experts, a cascade approach is employed. Firstly, 
the two visual based experts (face and mouth) are combined, thus giving N “face-
mouth” scores. This is shown in the first block of Fig. 2, where “N Score 
Integration” refers to the general bi-expert fusion block as described above. It is 
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intuitive to fuse the two visual experts initially, as a noisy visual observation signal is 
likely to affect both the face and mouth experts; in which case, the audio scores can 
still be weighted highly to counteract this. The “face-mouth” scores are subsequently 
fused with the N audio scores to give a tri-expert identification decision. We will now 
describe the fusion experiments that were carried out using the proposed method. 

ID
DecisionN

Audio Face-Mouth
Scores

N Face
Scores

N
Face-Mouth

Scores

N Score
Integration

N Score
Integration

N Mouth
Scores

N Audio
Scores

 
Fig. 2. Flow diagram for the fusion of all three experts 

5   Audio-Visual Corpus 

The XM2VTS audio-visual database [19] was used for the experiments, and consists 
of video data recorded from 295 subjects in four sessions, spaced monthly. The first 
recording per session of the phonetically balanced third sentence (“Joe took father’s 
green shoe bench out”) was used. Some sentence recordings were clipped. Due to this 
and other errors, only 248 subjects were used for the experiments. The position of the 
mouth ROI was determined by manually labeling the left and right labial corners and 
taking the center point. Frames were manually labeled for every 10th frame only; the 
ROI positions for the other frames were interpolated. 

To test the robustness of the proposed system, both the audio and video (face 
sequence) test signals were degraded to provide a train/test mismatch. Ten levels of 
audio and visual degradation were applied; emulating mild to adverse train/test 
mismatch noise levels, which may be encountered in a realistic operating 
environment. Additive white Gaussian noise was applied to the clean audio at SNR 
levels ranging from 48 dB to 21 dB in 3 dB decrements. In [14], an image transform 
based approach was used to carry out visual word recognition. The system 
demonstrated robustness to JPEG compression, with no significant drop in 
performance until JPEG quality factors (QF) levels fell below 10. For our study, in 
order to account for practical video conditions, the video frame images were 
compressed using JPEG compression. We tested ten levels of JPEG QF, i.e. 

2}, 3, 4, 6, 8, 10, 14, 18, 25, {50,∈QF  (8) 

where a QF of 100 represents the original uncompressed image. The compression was 
applied to each video frame individually. The mouth ROI was then extracted from the 
compressed images. Manually labeled mouth coordinates were employed, so that any 
drop in performance would be due to mismatched testing rather than poorer mouth 
tracking. The variation of the face and corresponding mouth ROI images w.r.t. JPEG 
QF is shown in Fig. 3. JPEG blocking artifacts are evident at the lower QF levels. 
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Fig. 3. Ten levels of JPEG compression and corresponding mouth ROI images 

6   Experiments and Results 

The proposed tri-expert system was applied to closed-set person identification. It can 
also be applied to the more general problem of open-set person recognition. 

Audio Expert: The HMMs were trained/tested using HTK [12]. The first three 
sessions were used for training and the last for testing. A prototype HMM consists of 
the initial parameters. Since there are only three training utterances per subject, there 
was insufficient training data to train a speaker HMM directly from a prototype 
model. For this reason, a background HMM was trained using three of the sessions 
for all N subjects, and was used to initialize the training of the speaker models. All 
models were trained on the clean speech and tested on the various SNR levels. This 
provides for an audio train/test mismatch. The num+ber of HMM states that 
maximized the audio accuracy was found empirically to be eleven (with a mix of two 
Gaussians per state). Fig. 4 shows how the audio expert performs w.r.t. audio 
degradation. A maximum accuracy of 97.6% was achieved at 48dB, with dropped to 
37.1% at 21 dB. 
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Fig. 4a. Audio expert performance versus 
audio degradation level 

Fig. 4b. Mouth expert performance versus 
number of HMM states 

Mouth Expert: The effect of the number of HMM states on the performance of 
the mouth expert was initially tested. One Gaussian per state was used. The result of 
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this is shown in Fig. 4b. The mouth expert performed best with just one state and 
decreased steadily with increasing number of states. For the visual degradation 
experiments the mouth expert HMMs were trained on the “clean“ (uncompressed) 
visual images and tested on the degraded visual images. This provided for a visual 
train/test mismatch. The results are given in Table 1 and Fig. 5c. 

Face Expert: The face gallery set, comprising of three images, was formed by 
arbitrarily extracting the 9th image frame from the first three sessions. The probe 
images used for testing were obtained from the fourth session (again, the 9th frame). 
The gallery sets consisted of the original uncompressed images and the probe sets 
consisted of degraded images at the ten levels of JPEG compression. This provided 
for a gallery/probe mismatch. The results are given in Table 1 and Fig. 5c. 

Fusion Experiments: Four fusion experiments were carried out using the 
proposed fusion method: 1) the face and mouth experts, 2) the audio and mouth 
experts, 3) the audio and face experts, and 4) the audio, face, and mouth experts. The 
face, mouth, and face-mouth fusion performance w.r.t. JPEG QF mismatch is given in  
Table 1 and Fig. 5c. For the three audio-visual fusion experiments, ten levels of both 
visual (JPEG QF) and audio (dB) degradation were examined. The results for these 
experiments are given in Fig. 5 and Table 2, with the audio-mouth results in Fig. 5a, 
the audio-face results in Fig. 5b, and the audio-face-mouth, results in Fig. 5d. 

Table 1. The mouth, face, and face-mouth fusion accuracies for the ten levels of JPEG QF 

JPEG QF 50 25 18 14 10 8 6 4 3 2

Mouth [%] 85.9 85.1 84.3 84.3 82.7 80.2 79.4 60.5 50.8 48.0

FaceIt [%] 98.8 98.8 99.6 99.6 98.8 98.8 98.0 91.9 85.9 75.0

Mouth-FaceIt [%] 100.0 99.2 100.0 100.0 100.0 100.0 100.0 98.4 92.7 87.5
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Fig. 5. The accuracies for the fusion of: (a) the audio and mouth experts, (b) the audio and face 
experts, (c) the face and mouth experts, and (d) the audio, face, and mouth experts 
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Table 2. The accuracies for the mouth (M), face (F), audio (A), and the fusion of: (a) the face 
and mouth experts (FM), (b) the audio and mouth experts (AM), (c) the audio and face experts 
(AF), and (d) the audio, face, and mouth experts (AFM) 

dB 33 30 27 24 21

A 93.1 89.1 75.8 57.3 37.1

M 80.2 AM 98.8 97.6 96.0 91.1 86.3

F 98.8 AF 99.6 99.6 99.6 99.6 99.6

FM 100.0 AFM 100.0 100.0 100.0 100.0 100.0

M 79.4 AM 98.8 97.2 94.4 89.9 85.1

F 98.0 AF 99.6 99.6 99.6 99.2 98.8

FM 100.0 AFM 100.0 100.0 100.0 100.0 100.0

M 60.5 AM 97.6 96.4 91.1 84.7 76.6

F 91.9 AF 99.2 99.2 98.0 96.8 96.4

FM 98.4 AFM 99.6 99.2 98.8 98.4 98.4

M 50.8 AM 97.6 95.6 91.9 81.5 72.6

F 85.9 AF 99.2 98.8 97.2 94.8 93.1

FM 92.7 AFM 99.2 98.8 98.4 97.6 96.4

M 48.0 AM 97.2 95.2 91.1 80.6 71.4

F 75.0 AF 98.8 97.2 93.1 89.9 86.3

FM 87.5 AFM 97.6 97.2 96.4 95.6 92.7

3

2

QF

8

6

4

 

7   Discussion 

With regard to the specific experiments, the audio expert performed very well under 
near “clean” testing conditions, however the accuracy roll off w.r.t. SNR is very high. 
For the mouth expert experiments, the fact that the static visual features performed 
best with just one state indicates that HMMs may not be required to model visual 
speech, rather, a Gaussian mixture model (GMM) approach [11] would be sufficient. 
The best mouth expert accuracy is 85.9%. A reasonable level of robustness to video 
degradation is exhibited; with an accuracy of 48.2% at a QF of 2. 

It was expected that FaceIt, a commercial system, employing features located 
throughout the entire face would outperform an expert employing features extracted 
from just the mouth ROI. The face expert outperformed the mouth expert at all levels 
of train/test mismatch. The highest face expert accuracy of 98.8% is 15% higher 
(relative) than the highest mouth expert accuracy of 85.9%. The face expert also 
exhibits higher robustness to JPEG compression, when compared to the mouth expert, 
with accuracies exceeding 98%, for all test mismatch levels exceeding a QF of 4. At 
the highest mismatch QF level of 2, the face expert accuracy was 75%, and the mouth 
expert accuracy was 48%. The superior performance of FaceIt is more impressive 
when considering that the FaceIt gallery consists of only three images, whereas the 
mouth expert model has the advantage of “seeing” three sequences of video frames 
and hence more variation in the subjects’ appearance. The robustness of the face 
expert against JPEG compression is in line with results from the Face Recognition 
Vendor Test 2000 [1], where similar observations were made. 

For the fusion of the face and mouth experts, a perfect face-mouth accuracy of 
100% is achieved at several levels of JPEG QF mismatch. Also, the face-mouth 
accuracies are higher than either of the face or mouth expert accuracies for all levels 
of JPEG QF mismatch, i.e. enhancing fusion. The most significant improvements are 
yielded for the higher levels of mismatch, for example at the lowest QF level of 2, the 
face-mouth, face, and mouth accuracies are, 87.5%, 75%, and 48% respectively, 
representing a 17% relative improvement over the face expert alone. The improved 
face-mouth performance indicates that the mouth features complement the facial 
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features that the FaceIt engine employs. The improvement may be due to two factors. 
a) the face expert emphasizes eye information and hence the mouth expert is 
complementary, b) the fact that the mouth expert can capture the variation of the 
mouth ROI over the training video frame sequences. 

The audio-mouth accuracies represent an improvement over the individual audio 
and mouth expert accuracies at all tested levels of audio and visual train/test 
mismatch. At the (21dB, 2QF) operating point, the audio, mouth, and audio-mouth 
accuracies are 37.1%, 48%, and 71.4% respectively, representing a relative 
improvement of 49% over the mouth expert. The audio-face results also show an 
improvement over the individual experts. At the (21dB, 2QF) operating point, the 
audio, face, and audio-face accuracies are 37.1%, 75%, and 86.3% respectively, 
representing a 21% relative improvement over the audio-mouth accuracy. 

For the tri-expert experiments, perfect audio-face-mouth 100% accuracies were 
achieved at the majority of operating points. From Fig. 5 it is evident that the tri-
expert performance exceeds the performance of either the audio-mouth or audio-face 
fusion. The improvements in performance were most significant, at the highest levels 
of train/test mismatch. At 21dB, the audio accuracy is 37.1% and at a JPEG QF of 2, 
the face and mouth accuracies are 75% and 48% respectively. At the (21dB, 2QF) 
operating point, the audio-mouth, audio-face, and audio-face-mouth accuracies are 
71.4%, 86.3%, and 92.7% respectively. Improvements over the face-mouth accuracies 
were also achieved, particularly at the (21dB, 2QF) operating point, where an 
accuracy of 92.7% outperforms the face-mouth accuracy of 87.5% at a QF of 2. This 
highlights the increased robustness of the tri-expert fusion over bi-expert fusion and 
exemplifies the robustness of our tri-expert fusion method to both audio and visual 
degradation. Importantly, integrating a highly mismatched scenario (e.g. audio 37.1% 
at 21dB) with a “clean” test (e.g. face 75%, mouth 48% at QF2) does not result in 
catastrophic fusion (audio-face-mouth 92.7%). These results were achieved with the 
tri-expert fusion block having no prior knowledge of the level or type of audio or 
visual degradation. The fusion method is not computationally expensive as only 
1+1/0.05 = 21 fusion-parameter steps are carried out to determine the best fusion 
weight and also, the reliability measure is computed with a basic subtraction. 

Further work includes testing the performance of the fusion system using different 
types of audio and visual degradations, and examining other reliability measures. 

8   Conclusion 

A multiple expert biometric person identification system has been presented, which 
combines information from three experts, namely: face, audio, and visual speech 
information in an automatic unsupervised fusion, adapting to the local performance of 
each expert, and taking into account the output-score based reliability estimates of 
each of the experts. Previous tri-expert (face, mouth, and audio) fusion studies employ 
un-weighted fusion or else fixed weights; expert reliability information is not 
considered. A benefit of the approach described is that audio-visual training data is 
not required to tune the fusion process. Importantly, no assumption has been made 
about the type of audio or visual noise that may cause an expert to perform poorly. 
The results show improved fusion accuracies for the gamut of tested levels of audio 
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and visual degradation, compared to the individual expert accuracies. This highlights 
the complementary nature of the mouth and face experts under clean and noisy test 
conditions, and in turn, the complementary nature of audio and video based 
information. The deployment tri-expert information should be robust to varying facial 
expressions, which may deform the eye or mouth region. These results are important 
for remote authentication applications, where bandwidth is limited and uncontrolled 
acoustic noise is probable, such as, video telephony and online authentication. 
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